
pro

UNIX* System V/386 Release 3.2
Integrated Software
Development Guide

ATiaT

UNIX® System VI 386
Release 3.2

Integrated Software
Development Guide

If you plan to write applications or drivers that will be integrated with
the INTERACTIVE UNIX Operating System, please be sure to read "In
tegrating Software With the INTERACTIVE UNIX Operating System"
in the INTERACTIVE Software Development System Guide and Programmer's
Reference Manual, which supplements the information found in this
document.

Note that some of the manual pages in Appendix A are superseded by
those in the INTERACTIVE UNIX System V/386 Release 3.2 User's!
System Administrator's Reference Manual and the INTERACTIVE Software
Development System Guide and Programmer's Reference Manual.

©1988AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

Crystal/Writer is a registered trademark of Syntactics Corporation.
Intel is a registered trademark of Intel Corporation.
MS-DOS and XENIX are registered trademarks of Microsoft Corporation.
PC/AT and PC/XT are trademarks of International Business Machines Corporation.
UNIX is a registered trademark of AT&T.

1

2

3

4

5

A

Table of Contents

Introduction
Introduction
Notational Conventions

Unix Application Software
Installation

UNIX Application Software Installation

Device Drivers
Device Drivers

Porting
Porting

Security
Security Notes

Appendix A
Manual Pages

TABLE OF CONTENTS

1 - 1

1 - 3

2- 1

3- 1

4- 1

5- 1

A- 1

Table of Contents

B

c

D

E

F

I

ii ISDG

Appendix B
A Simple Game Port Driver

Appendix C
The Trace Driver

Appendix D
A Prototype Floppy Disk Driver

Appendix E
A Sample Driver Software Package

Appendix F
Porting

Index
Index

B- 1

C- 1

D- 1

E- 1

F- 1

1- 1

1 Introduction

Introduction
Purpose of This Guide
What Is Covered In This Guide
How to Use This Guide

Notational Conventions
Related Documentation

INTRODUCTION

1-1

1-1

1-1

1-2

1-3

1-4

Introduction

Purpose of This Guide

The Integrated Software Developmen t Gu ide (ISDG) is intended for the
Independent Software Vendor (ISV) who develops UNIX System software
applications to run on 386 computer systems. The Guide supplies the infor
mation needed to write application software and installable drivers for new
hardware additions for UNIX System V /386 Release 3.2 (Version 1.0). Also
included is information on the use of the keyboard, the screen, remote termi
nals, and supported printer subsystems.

Adherence to these guidelines helps to ensure compatibility both with the
current 386 processor and with its future enhancements.

What Is Covered In This Guide

The material in this Guide is organized into the following chapters:

• Chapter 1, Introduction, briefly describes what is included in this Guide
and how to use it.

• Chapter 2, UNIX Application Software Installation, outlines the pro
cedure you use to install the UNIX System software and provides the
details necessary to create a software installation floppy disk set for
your computer. Some broad guidelines are also presented for installing
and removing UNIX programs, as well as examples of installing and
removing scripts.

• Chapter 3, Device Drivers, contains the rules and procedures you need
to follow for writing device drivers for the UNIX System V /386. As
you may know, writing a device driver carries a lot of responsibility
because, as part of the UNIX Operating System kernel, it is assumed to
always take the correct action.

• Chapter 4, Porting, discusses recommended approaches to program
ming and preferred programming techniques. As such, it presents port
ing considerations only and is not an exhaustive reference about port
ing.

INTRODUCnON 1·1

Introduction

• Chapter 5, Security, describes enhancements to security made in this
release of UNIX System V /386.

• Appendix A, Manual Pages, contains the manual pages for those 10
programs and files a writer of device drivers needs to know about.

• Appendix B, A Simple Game Port Driver, discusses game controller
hardware as a basis for an elementary UNIX device driver.

• Appendix C, The Trace Driver, presents a pseudo-device, called the
"trace driver," that allows the UNIX Operating System kernel or other
device drivers to report debugging information without .the use of con
sole printf's.

• Appendix D, A Prototype Floppy Disk Driver, contains some selected
portions of the UNIX System V /386 floppy disk device driver source
files.

• Appendix E, A Sample Driver Software Package, shows the 10 modules
needed to install a device driver and describes the Install and Remove
scripts.

• Appendix F, Porting, lists the utility programs required on UNIX Sys
tem V /386 and which can be used in portable programs.

An index is included at the end of the Guide.

How to Use This Guide

To use this Gu ide effectively, you should already have a good working
knowledge of the UNIX Operating System. This Guide is intended as a refer
ence to help you in designing device drivers and other software development
activities.

1 -2 ISDG

Notational Conventions

The following notational conventions are used throughout this Guide:

bold

italic

constant width

<>

<-char>

[]

User input, such as commands, options to com
mands, and names of directories and files, appear
in bold.

Names of variables to which values must be
assigned (such as filename) appear in italic.

UNIX System output, such as prompt signs and
responses to commands, and programming exam
ples appear in constant width.

Input that does not appear on the screen when
typed, such as passwords, keys used as com
mands, or RETURN and other special keys,
appear between angle brackets.

Control characters are shown between angle
brackets because they do not appear on the screen
when typed. The circumflex () represents the
control key (usually labeled CTRL). To type a
control character, hold down the control key
while you type the character specified by char.
For example, the notation <-

d> means to hold
down the control key while pressing the D key;
the letter D will not appear on the screen.

Command options and arguments that are
optional, such as [-msCj], are enclosed in square
brackets.

The vertical bar separates optional arguments
from which you may choose one. For example,
when a command line has the format

command [arg1 I arg2]

you may use either arg1 or arg2 when you issue
command.

INTRODUCTION 1 -3

Notational Conventions

command(number)

An ellipsis after an argument means that more
than one argument may be used on a single com
mand line. A vertical ellipsis is used in program
ming examples to indicate missing portions of
code.

A command name followed by a number in
parentheses refers to the part of a UNIX System
reference manual that documents that command.
(There are two reference manuals: the
User'sjSystem Administrator's Reference Manual
and the Programmer's Reference Manual.) For
example, the notation cat(l) refers to the page in
section 1 of the User'sjSystem Administrator's
Reference Manual that documents the cat com
mand.

Related Documentation

A variety of documents support the UNIX System V /386. Refer to the
Documentation Roadmap, which helps you get acquainted with the documents
you can use with UNIX System V /386 Release 3.2.

The Roadmap helps you to understand general relationships among the
documents and to identify which documents you want to order.

Throughout this Guide, references are made to certain specific documents
listed in the Documentation Roadmap. Rather than list the complete title each
time the document is referenced, the following convention is used :

• The UNIX System V j386 Release 3. 2 Programmer's Guide is referred to
as the Programmer's Guide.

• The UNIX System V /386 Release 3. 2 Programmer's Reference Manual is
referred to as the Programmer's Reference Manual.

• The UNIX System V /386 Release 3.2 User'sjSystem Administrator's
Reference Manual is referred to as the User'sjSystem Administrator's
Reference Manual.

1 -4 ISDG

Notational Conventions

• The UNIX System V /386, Release 3, Block and Character Interface, Device
Driver Reference Manual, Select Code 307-192, September 1987, is
referred to as the Device Driver Reference Manual .

INTRODUCTION 1-5

2 Unix Application Software In
stallation

UNIX Application Software
Installation 2- 1

Installation Scenario 2- 1

Installation Tools 2- 2

cpio 2-2

Special Installation Files 2-3

Installation Program 2-4

Creation of the Software Installation Floppy Disk
Set 2-6

Format of the Floppy Disks 2-7

Name File 2-8

Size File 2-8

Install File 2- 1 1

• Transferral of Programs From the Temporary

Directory 2- 1 2

• Installation of Libraries, Include Files, Etc. 2- 1 3

• Communication with the User 2- 1 3

• Abnormal Termination 2- 1 4

Removal of Installed Software 2- 14

Commands Not Part of the Base System 2- 1 5

Remove Program 2- 1 7

Examples of Scripts 2- 1 7

Install Fruit Example 2- 1 8

Remove Fruit Shell Script 2- 1 9

Remaining Installation Files for the Fruit Package 2-20

UNIX APPLICATION SOFTWARE INSTALLATION

UNIX Application Software Installation

This chapter outlines the procedure used to install UNIX System add-on
software and provides the developer with the details necessary to create a
software installation floppy disk set for UNIX System V /386. Some broad
guidelines are also provided for the installation and removal of programs,
along with examples of the installation and removal programs.

Do not use commands that do not reside on the base system. It is
strongly recommended that the Install and Remove programs be tested
on the base system alone to ensure their proper execution. If your appli
cation uses commands that reside in other foundation set packages (apart
from the base system), your documentation must explicitly tell the user
which packages must be installed for it to work correctly. Refer to the
section " Commands Not Part of the Base System " in this chapter for
more information .

Installation Scenario

Installation of software on UNIX System V /386 is done with the
installpkg procedure that is available from the UNIX System command
prompt.

The user is instructed to insert the software floppy disks in order, as
prompted by the system until all of the disks have been read.

UNIX APPLICATION SOFTWARE INSTALLATION 2-1

UNIX Application Software Installation -------------

Installation Tools

cpio

The basic mechanism to transfer software from a floppy disk to the UNIX
System V /386 hard disk is cpio. The most common forms of the cpio com
mand are as follows:

2-2

To create a floppy:

To read from a floppy:

cpio -ocB > jdev jrdskjf0d9d (360KB)
cpio -ocB > jdev jrdskjf0q15d (1 . 2MB)
cpio -ocB > jdevjrdsk/fO (1 .44MB, other)

cpio -icBd < jdev jrdskjf0d9d (360KB)
cpio -icBd < jdev jrdskjf0q15d (1 . 2MB)
cpio -icBd < jdevjrdskjfo (1 .44MB, other)

The cpio command does not format floppies. Floppy disks must be format
ted. See the cpio(l) manual pages in the User'sjSystem Administrator's Refer
ence Manual for a full discussion of the cpio command and its parameters.
For information on formatting, see the format(1M) manual page in the
User'sjSystem Administrator's Reference Manual.

ISDG

UNIX Application Software Installation

Special Installation Files

The key to the software installation procedure is information stored in the
special installation files . These special installation files must be included by
the developer on the floppies together with the actual software files. It is the
existence of these files that provides the smooth and friendly user-interface
and some error protection. Naturally, these files must also appear on the cpio
list. These files are the following:

1. Size: This is an ASCII file that contains information about the size of
the floppy set. The complete format is presented later in the section
"The Size File."

2. Install: This is an executable file or shell script. It is executed after
the files are copied (by means of cpio) from the floppy disk into the
temporary area and before they are removed from the temporary ins
tallation directory. The contents of Install is the responsibility of the
software developer. See the section " The Install Program" for a dis
cussion of how to create an Install file.

3. Name: This file contains descriptive information about the application
being installed (information that can be made available to the user at
installation time). The format of Name is described in the section
" The Name File."

4. Remove: This is an executable file or shell script. The function is to
remove the software package. See the section " Removal of Installed
Software" for a discussion of the Remove file.

UNIX APPLICATION SOFTWARE INSTALLATION 2·3

UNIX Application Software Installation

5 . Files: This file contains the full path names of the files that are being
installed. Files must list the absolute pathname for each file con
tained on the software installation floppy or created by the Install
program. The names must be completely enumerated and contain no
wildcard characters (for example, asterisks, question marks, etc.).

Installation Program

The installpkg command works as follows:

1. Prompt the User for the First Floppy: The user, presented with a
message, is asked to insert the first floppy disk and strike <ENTER>
when ready.

2. Check Available Disk Space: From the first installation floppy disk,
the Size file is read, and the size of the software to be installed is.
ascertained. If there is sufficient space left on the file systems to store
the new software, the procedure continues. If not, it aborts with an
appropriate error message.

2-4 ISDG

UNIX Application Software Installation

3 . Copy the Floppy Disk Into a Temporary Directory: A temporary
directory is created. (Note that this directory will be removed when
the installation is complete.) The entire floppy disk set is copied into
the temporary directory by means of the cpio -icBd < fdev frdskj£0 .. .
command. It is important to note that for the cpio command, the
pathnames on the software installation floppy disk must be relative
(must not begin with a /) so that the existing files are not acciden
tally corrupted at this stage. Note that applications may be installed
transparently from either 360 KB, 1.2 MB, or 1.44 MB floppy disks.

Note that the temporary directory will be jusrjtmpfinstallxxxx where
xxxx is the process id (PID) of the install process, but the Install script
should not assume this.

4. Check Installation Files for Completeness: The files copied into the
temporary directory are checked to see if they include all of the spe
cial files. They are as follows:

.fSize

.flnstall

.fName

.fRemove

.fFiles (optional)

The specific formats for these files are specified in the section titled
11 Creation of the Software Installation Floppy Disk Set. 11

UNIX APPLICATION SOFTWARE INSTALLATION 2-5

UNIX Application Software Installation

5 . Execute Install (./Install) Relocate Application Programs: The
vendor-supplied install program (stored by cpio in .jlnstall) is exe
cuted. This program, written by the software vendor, must move the
application out of the temporary directory and install any drivers.
Refer to Chapter 3 on writing device drivers. Instructions on how to
create .jlnstall can be found in the section titled 11 The Install File. 11

If .jlnstall is a success (that is, returns a value of zero), the installa
tion proceeds to the next step. If .jlnstall fails (that is, returns a
nonzero value), the installation aborts.

It is the vendor's responsibility to remove any previously installed
fragments of the aborted installation and present the user with a
statement saying that the installation was aborted and why.

6. Update System Files: The Name file is renamed to a unique identif
ier and stored in jusrjoptions. The Files file (vendor-supplied) is
renamed and located in jusrjlibjinstalledjFiles. The Remove pro
gram (also vendor-supplied) is renamed and located in
jusr flib jinstalledjRemove.

7. The Temporary Directory is Removed: The temporary directory
(including any files that remain within the directory) is removed.

8 . Success Message Issued: A success message is issued, and control is
returned to the UNIX System prompt.

Creation of the Software Installation Floppy
Disk Set

2-6

Do not use commands that do not reside on the base system. It is strongly
recommended that the Install and Remove programs be tested on the base
system alone to ensure their proper execution . Refer to the section 11 Com
mands Not Part of the Base System " for more information .

ISDG

UNIX Application Software Installation

Format of the Floppy Disks

The installation disks should be created with the cpio command. The
possible argument options are

cpio -ocB > jdev jrdskjfOqlSd
cpio -ocB > jdev jrdskjf0d9d
cpio -ocB > jdev jrdskj£0

(for 1 .2MB format)
(for 360KB format)
(for 1 .44MB format)

The cpio command does not format floppies . Floppy disks must be for
matted . See the cpio(l) manual pages in the User'sjSystem
Administrator's Reference Manual for a full discussion of the cpio com
mand and its parameters . For information on formatting, see the
format(lM) manual page in the User'sjSystem Administrator's Reference
Manual.

It is imperative that one of these specific options be used since the installation
program that reads the floppy assumes this format.

The list of pathnames that drives the cpio option has two restrictions:

1 . All pathnames MUST be relative (NOT begin with a /). This is
because the cpio command will copy the files into the temporary
directory before the Install program moves them into their permanent
locations.

2 . The first entry on the list should be Size. If the application requires
more than one floppy, the Size file must be on the first floppy and
should appear first.

Following this special file should be the pathnames (without a leading /)
for all files to be placed on the floppy.

The floppy set should be clearly labeled with the name of the product (as
it appears in the Name file), the version of the product (which may include
the date), the floppy number (for example, number 2 of 5) showing the total
number in the package, and the disk format (360 KB, 1 . 2 MB, or 1 .44 MB).

UNIX APPLICATION SOFTWARE INSTALLATION 2·7

UNIX Application Software Installation

Name File

The Name file contains the name of the product as it is to appear during
the installation and removal operations. This fi le is a single record (or single
line} and can contain up to 65 characters of significant data (only the first
65 characters are displayed in the menus} . The Name file is used to deter
mine whether the package has been previously installed. It should be unique.
Avoid the use of shell metacharacters (for example, • / • ? [] & ! $} and single
or double quotes in the Name file.

Size File

The Size file may be a single- or double-record file. It contains the
number of blocks required on the root (/) and user (/usr} file systems to
install and use the application package. A block is defined as 5 1 2 bytes.

Each number put in the Size file should be the larger of the two:

1 . number of blocks that are used while installing the package; or

2 . amount of blocks used up on the system once your package is
installed and exercised by the user for each of the two file systems:
root and user. Note that the root file system typically consists of all
directories on the system, except those under the jusr directory.

To determine how much space the application requires on each file sys
tem, do the following for the application files residing in jusr and the
remainder of the system:

2-8 ISDG

UNIX Application Software Installation

Note that the following assumes 1 .2MB.

1 . Create a floppy set with cpio -ocB > jdev jrdsk/fO to contain the
application files on each file system, one at a time.

2 . Use cd to change to a temporary directory you created.

If any files exist in this directory, move the files into another tem
porary directory or remove the files.

3. Type in cpio -icBdu < jdev jrdsk/fO for each floppy set created in
Step 1 . Do this one at a time.

There should not be any files in the current directory prior to this cpio
command.

4 . Type du -s . to get the number of blocks. If the blocking format is not
5 1 2 bytes, perform a conversion.

5 . Create the Size file as follows:

USR=<number of blocks in jusr>
ROOT=<number of blocks on />

These lines can be in reverse order, and no spaces should be on either
side of the equal sign.

Even if your system has only one file system, you must specify
the requirement for both since some users may have both . If
the user installing the package has only one fi le system,
installpkg will add the two amounts you speci fy in the Size file
to calculate the space requirement.

installpkg will make use of this file as follows:

1 . The following message will be displayed:

Please insert the floppy disk.

UNIX APPLICATION SOFTWARE INSTALLATION 2-9

UNIX Application Software Installation

If the program installation requires nnre than

one floppy disk, be sure to insert the disks in
the proper order, starting with disk number 1 .

After the first floppy disk, instructions will

be provided for inserting the renaini.ng floppy

disks.

Strike ENI'ER when ready

or ESC to stop.

2 . When this is completed, the following in-progress message appears:

Installation is in progress-do not rerrove the floppy disk.

3 . The Size file will be extracted from the first floppy.

Caution should be exercised to prevent running out of disk space dur
ing software instal lation . There is no protection other than the Size
file that can prevent this.

4 . If the Size fi le does not exist, the package is presumed not to be valid.
As long as Size is on the first floppy, lines of the form

USR=<anount>

RCXJI'=<amJunt>

are read in, where <amount> is an integer number of 5 12 -byte disk
blocks.

2-tO ISDG

UNIX Application Software I nstallation

Install File

The user should be notified when the Install program starts. The exam
ple

echo 11Installin] Fruit Camands 11

is shown in the sample script 11 Install Fruit Example 11 in this chapter. If the
Install program takes a long time to run, the user should be periodically
informed of either what is happening or that the installation is still in progress
and proceeding well . The user should not see certain system messages. For
example, the user should be isolated from the stderr messages of commands
that fail. (These should be picked up by the installation program and, if neces
sary, translated into meaningful user messages.) Similarly, when creating a
directory or removing files, stderr and stdout should be redirected.

UNIX APPLICATION SOFTWARE INSTALLATION 2·1 1

UNIX Application Software Installation

Transferral of Programs From the Temporary Directory

The Install program will not be invoked until all the programs and files
on all floppies have been copied into the temporary directory . After that, the
Install program will modify them as needed (for example, change mode or
change ownership). The fi les will then be ready to be moved into their
intended fi le system destination . The transfer (move) is usually a straightfor
ward operation, but there are some common stumbling blocks.

Use the mv command to avoid possible disk space problems stemming from
multiple copies of a single file.

• Permissions: It is advisable to ascertain that permissions are accept
able when created by the cpio command. Executables should have the
correct executable permissions set, and read-write permissions should
be such that the normal user can use them as required. The setuid bit
should also be set where appropriate.

• Ownership: In general, files should be owned by standard system
users (for example, root, bin, uucp, lp, install, etc.) . Be careful not to
include files that are owned by local users with specific machine own
ership (such as the machine where the files were created) .

• Temporary Files: I f any intermediate files are created, place them in
the temporary directory to ensure that fragments are not left.
installpkg removes this directory at the end of the installation .

2-12

When mv is used to move application files from the temporary directory to
the target directory, the file ownership and group attributes may change if
the temporary directory and the target directory reside on di fferent filesys
tems. When mv is used to move files across fi lesystems, the resulting fi le
will be created with the owner and group attributes of the invoking user.
Since installpkg is invoked as root, the resulting files will be created with
root ownership. This may present application problems. Since it is not
guaranteed that the temporary and target directories reside on the same
filesystem, the installation script will force the correct owner and group
attributes of the target files using chown and chgrp.

ISDG

UNIX Application Software Installation

Installation of Libraries, Include Files, Etc.

The overriding concern here is 11 NOT TO OVERWRITE ANYTHING
THAT ALREADY EXISTS. 1 1 Do not redefine any libraries, include files, or
jetcjinittab. Similar restrictions exist for any standard UNIX System file or
executable.

Communication with the User

All communication with the user should be by means of the standard
input and output (stdinjstdout-echojread). It is generally advisable to keep
the user informed as to the state of events, especially delays. When difficul
ties arise, a lternative procedures can be presented and the user consulted . Ask
the user for verification when necessary . The installpkg program issues its
own completion message.

UNIX APPLICATION SOFTWARE I NSTALLATION 2- 1 3

UNIX Application Software Installation

Abnormal Termination

I f an installation procedure must be abnormally terminated (aborted), the
program must return a nonzero exit status (use exit 1) . This inhibits
installpkg from

• giving the user the confirmation message that the package was
installed

• updating the system files to show that the package has been installed

I t is the responsibility of the Install program (and not installpkg) to
remove the files already installed outside of the temporary directory. One
simple way to accomplish this is to execute the Remove program. When an
installation aborts, the user must be informed.

Reasons for abnormal termination include

• Required libraries may be missing.

• The user may have inadvertently removed commands that the Install
program uses.

• The Install program may contain an error.

Removal of Installed Software

Do not use commands that do not reside on the base system. It is strongly
recommended that the Install and Remove programs be tested on the base
system alone to ensure their proper execution . Refer to the section 11 Com
mands Not Part of the Base System 11 for more information .

The UNIX System removepkg command takes as an argument the name
of an installed package either from the displaypkg command or from the user
who, when prompted, selects a name to be removed from a sorted list of the
installed package names. Selection of the package invokes the Remove pro
gram that was originally supplied with the installation software set (currently
residing in the fusrflibfinstalledfRemove directory).

2-14 I SDG

UNIX Application Software Installation

The quality and effectiveness of the Remove program is entirely depen
dent upon its author. The removepkg program checks neither for effective
ness nor completeness . The program looks only for an exit status. I f the
Remove program exits with an error or an abort, the existing software l istings
will NOT be changed . Only i f the Remove program returns a success code
will the software listings be adjusted to reflect the deletion .

As with the Install program, progress messages should be issued to the
user, and system messages (unsolici ted and otherwise) should be fi l tered and
modified . stderr and stdout should be redirected (possibly to fdev fnull).

Commands Not Part of the Base System

Although your Install and Remove scripts should not use commands not
installed as part of the UNIX System Foundation Set Base System (see the
User'sjSystem Administrator 's Reference Manual for more detail on what com
mands are installed as part of the Base System), your application may need to
make use of them . If this is the case, you need to do two things:

1. Point out to the user in clear terms in your user documentation which
UNIX System Foundation Set packages must be installed before the
application may be used .

2 . A t the very beginning o f your Install script, perform the following
steps. After the list of steps is an example of how to implement them:

0 Determine whether or not the full complement of Foundation Set
packages you need to run your application is installed. This can
be done relatively easily by searching through the directory called
jusrjoptions for the names of the packages. See example below .

0 If any of the packages are not installed, your Install script should
issue the appropriate message and exit with a failure code
immediately.

For example, suppose your application required commands from both the
" Editing Package " and the " Network Support Utilities Package (1.1)" in
addition to the Base System package . Both of these packages are included
with the Foundation Set, but suppose the user had installed only the "Editing
Package " in addition to the Base System. Your Install script would then need
to execute the following code (or facsimile thereof) near the very beginning of
the program:

UNIX APPLICATION SOFTWARE INSTALLATION 2·15

UNIX Application Software Installation

e='grep '"Editing Package" /usr/opticms/* 2> /dev/null'

n='grep ""Network SUpport Utilities . *1. 1" /usr/options/* 2> /dev/:rru.l.l'

if [-z "$e" -o -z "$n"]
then

fi

if [-z "$e'' -a -z "$n"

then
missing="both the 'Editing Package' and the

'Network Support utilities Package (1. 1) "'
elif [-z "$e"]

then

missing="the 'Editing Package'"

else

missing = "the 'Network SUpport Utilities Package (1. 1) '"

fi

echo "Error: Before you can install the <name of your application>"

echo "package, you must install $missing"

echo "fran your UNIX System V/386 Foundation Set. Installation"

echo "terminated. II

echo
echo "strike ENl'ER to continue. "

read anything

exit 1

. • . # rest of your Install script

In the example scenario, since the user installed the Editing Package but
not the Network Support Utilities Package, hejshe would see the following
message when your Install script was first executed:

Error: Before you can install the <name of your application>

package, you must install the 'Network SUpport Utilities Package (1 .2) '

fran your UNIX System V/386 Foundation Set . Installation

terminated .

strike ENl'ER to continue.

2- 16 ISDG

UNIX Application Software Installation

Remove Program

The in terface to the removal process is provided through the removepkg
program. This invokes the application Remove program, general ly a shell
script . The Remove program, once executed, should leave the system in the
same state it would have been in had the new application never been
installed . Depending on the situation, files created by the application may
also need to be removed . This is, however, something for the user to decide,
and it is recommended that users be consulted before attempting to remove
any user-owned files. A sample Remove program can be found in the section
titled 11 Remove Fruit Shell Script 11•

Exam ples of Scripts

The following pages show an example of an Install script and a Remove
script. Each program must be custom tailored to the application it supports,
but these programs should serve as guidelines.

UNIX APPLICATION SOFTWARE INSTALLATION 2-17

UNIX Application Software Installation

Install Fruit Example

2- 18

Install Fruit

LINKFILES="orange apple"

TElcr'FILES="orange o txt apple o txt pear o txt "

chm:xi 644 $TEXTFILES

chm:xi 555 pear

echo "Installing Fruit Ccmrands "

mv pear /usrlbin > /dev/null 2>& 1

for i in $LINKFILES

do

ln /usrlbin/pear /usrlbin/${i} > /dev/null 2>&1
done

if [-d /usr/lib/fruit]

then

fi

mkdir /usr/lib/fruit > /dev/null 2>&1
chown bin /usr/lib/fruit

chgrp bin /usr/lib/fr:uit

chm:xi 661 /usr/lib/fruit

echo "Installing Fruit Text "
mv $TEXTFILES /usr/lib/fruit > /dev/null 2>& 1

echo "Adding Fruit to Programs Menu"

cd /usrlbin

chown bin pear

chgrp bin pear

cd /usr/lib/fruit
chcMn bin $TEXTFILES

chgrp bin $TEXTFILES

ISDG

UNIX Application Software Installation

Remove Fruit Shell Script

Renove Fzui t

USRBINFILES="orange apple pear "

FRUI'l'l'EXTS="orange. txt apple. txt pear. txt "

echo "Renoving Fzui t Catman:ls"

cd /usrlbin

nn-f$USRBINFILES

echo "Renoving Fzuit Text"

cd /usr/lib/fruit

nn -f $FRUITTElCI'

cd/

3 equals . . . arrl total; do not renove directoxy if a user put files there

if [-d /usr/lib/fruit]

then

fi

if [3 -eq 'expr \'ls -al /usr/lib/fruit 1 we -1"]

then

fi

echo "Renoving the � /usr/lib/fruit directory"
nn -rf /usr/lib/fruit

echo "Renoving Fzuit Salad fran the Programs Menu"

UNIX APPLICATION SOFTWARE INSTALLATION 2· 1 9

UNIX Application Software Installation

Remaining Installation Files for the Fruit
Package

$

$cat Name
Fruit Information

$

$ cat Size

USR=40
RCOI'=1
$ cat Files

/usr/binlapple

/usr/binlorange

/usr /bin/pear

/usr/lib/fruit/aP&le.txt

/usr/lib/fruit/orange.txt

/usr/lib/fruit/pear. txt

$

2·20 ISDG

3 Device Drivers

Device Drivers
What is a UNIX Device Driver?
The Generic UNIX Driver
Driver Activities and Responsibilities

• System Buffers

• Data Transfer Between System and User Space

• Sleeping and Waking Processes

• Kernel Timers

• Synchronous and Interrupt Sections of a Driver

• Interrupt Processing

• Critical Sections of the Driver

• How Data Moves Between the Kernel and the

Device

• DMA Allocation Routines

UNIX System Driver Specifics
• Types of Devices

• Special Files

• Major and Minor Numbers

• The fdev Directory

• The Master and System Files

Structure of the Device Driver Source Files
• Include Files

• General System Data Structures

• Driver-Specific Data Structures

Function Specifications (Driver Entry Points)
• lnit

• Start
• Open

• Close

• Read and Write

• Strategy

3-1

3-1

3- 2

3-2

3-3

3-4

3-4

3-5

3-6

3-7

3-7

3-8

3-10

3-13

3-13

3-14

3-14

3-15

3-15

3-16

3-16

3-17

3-18

3-19

3-19

3-19

3-20

3-20

3-21

3-23

DEVICE DRIVERS

Device Drivers

ii ISDG

• Ioctl 3-25

• Code for Bringing a Device into Service 3-26

• Poll 3-27

• Halt 3-27

• Kenter 3-27

• Kexit 3-27

• Interrupt Handler 3-27

• Sharing Interrupts and DMA Channels 3-28

• Use of Line Disciplines 3-29

• Function Naming Conventions 3-29

System Utility Functions 3-30

• Sleep and Wakeup 3-30

• Setting Processor Priority Levels 3-31

• Interrupt Priority Level 3-33

• Sleep Priorities 3-34

• Timeout 3-37

Dynamic Memory Allocation 3-37

Allocating Buffer Space 3-38

• Buffer Pool 3-38

• Clists 3-40

UNIX System V /386 Installable Driver
Implementation 3-43

ID Overview 3-43

Controller Interface Basics 3-44

• Interrupts 3-44

• !jO Addresses and Controller Memory Addresses 3-45

• DMA Controller Operations 3-46

User Interface 3-47

• User Privileges 3-47

• Interactions with Other UNIX System V /386

Processes 3-47

Number of Installed Drivers 3-48

UNIX System V /386 Modifications for ID 3-48

• Master File 3-48

• System File 3-49

• space.c 3-49

• ID Directory Structure 3-49

• Device #defines Generated by the Configuration

Process 3-5 1

Device Drivers

Commands for Installing Drivers and Rebuilding
the UNIX Operating System Kernel 3-52

• ldcheck 3-53

• Idinstall 3-53

• ldbuild Command 3-53

The Driver Software Package 3-54

• Driver.o (required) 3-54

• Master (required) 3-54

• System (required) 3-54

• Space.c (optional) 3-55

• Node (optional) 3-55

• !nit (optional) 3-56

• Rc (optional) 3-56

• Shutdown (optional) 3-56

• Name (required) 3-56

• Files (required) 3-57

• Install (required) 3-57

• Remove (required) 3-57

• Size (required) 3-58

• M fsys (optional) and Sfsys (optional) 3-58

• Summary of Modules 3-58

Base System Drivers 3-59

Update Driver Software Package 3-60

Installation/Removal Summary 3-61

Tunable System Parameters 3-63

Modifying An Existing Kernel Parameter 3-63

Defining a New Kernel Parameter 3-64

Reconfiguring the Kernel to Enable New
Parameters 3-64

Device Driver Development Methodology 3-64

DEVICE DRIVERS iii

Device Drivers

This chapter defines procedures for writing and packaging a device driver
for UNIX System V /386 Release 3 .2 (Version 1.0). It contains general informa
tion on " generic " UNIX System device drivers . Also described is the Install
able Driver (ID) scheme for UNIX System V /386. ID allows users to add peri
pheral devices via a floppy diskette containing a Driver Software Package
(DSP). Users will install and remove DSPs by using the installpkg and remo
vepkg commands. This chapter also provides the implementation-dependent
information for UNIX System V /386. Additional generic driver reference
material can be found in the Device Driver Reference Manual.

It is assumed that the reader has user-level experience with the UNIX Sys
tem, some general knowledge of UNIX System concepts, and the ability to
write sophisticated C language programs. Writing a device driver carries a
heavy responsibi lity. As part of the UNIX Operating System kernel, a device
driver is assumed to always take the correct action . Few limits are placed on
the driver by the other parts of the kernel, and the driver must be written to
never compromise the system's stability.

What is a U N IX Device Driver?

The UNIX Operating System kernel can be divided into two parts: the
first part deals with management of the file system and processes, and the
second part deals with the management of physical devices, such as terminals,
disks, tape drives, and network media. To simplify the terminology, this
chapter will refer to the first part as the kernel, al though strictly speaking,
drivers are part of the kernel too. The discussion here will focus on the
second part that contains the drivers, sometimes called the I/0 subsystem.

Associated with each device is a piece of code, called the device driver,
that manages the device hardware. The device driver is responsible for bring
ing the device into and out of service, setting hardware parameters in the
device, transmitting data from the kernel to the device, receiving data from the
device and passing it back to the kernel, and handling device errors .

One strength of the UNIX System is the ease with which new hardware
can be integrated with existing software. The integration process is simple
because the operating system architecture provides a uniform software inter
face to every device. Processes use the same model when communicating
with disks, terminals, printers or even " pseudo " devices that exist only in

DEVICE DRIVERS 3-1

Device Drivers

software. Every device on a UNIX System looks like a file . In fact, the user
level interface to the device is called a 11 special file . 11

The device special files reside in the jdev directory, and a simple ls will
tell you quite a bit about the device. For example, the command ls -1 jdev jlp
will yield the following on UNIX System V /386:

crw- rw- rw 1 root root 7, 1 Nov 26 1 2 : 33 lp

This says that the 11lp 11 (lineprinter) is a character type device (the first letter
of the file mode field is 11C11), and that major number 7, minor device 1 is
assigned to the device. More will be said about device types, both major and
minor numbers, later.

The Generic UNIX Driver

This section addresses issues relevant to drivers on any UNIX System.
Throughout this section, references are made to how things work on a 11 gen
eric 11 or traditional UNIX System, along with some specific details on how
UNIX System V /386 is implemented . The areas of device interrupts and
priority levels in particular are heavily machine-dependent and reflect UNIX
System V /386 implementation .

UNIX System device drivers for different computer systems have many
identical characteristics. However, even on the same machine, one driver may
be very different from another because of the wide spectrum of functions that
drivers perform. Let's first discuss some design issues and examine the com
mon features .

Driver Activities and Responsibilities

A user process runs in a space isolated from critical system data and other
programs, protecting the system and other programs from its mistakes. In
contrast, a driver executes in kernel mode, placing few limits on its freedom of
action . The driver is simply assumed to be correct and responsible.

3-2 ISDG

Device Drivers

This level of responsibility and reliability cannot be avoided . A driver
must be part of the kernel to service interrupts and access device hardware.
The existence of the driver is one of the major factors that permits the kernel
to present a uniform interface for all devices and to protect processes from
some kinds of errors .

The importance of reliable driver code is clear. The driver must not make
mistakes that hurt any portion of the system. I t should process interrupts effi
ciently to preserve the scheduler's ability to balance demands on the system.
I t should use system buffers responsibly to avoid degrading system perfor
mance or requiring that more space be devoted to buffers than is really
needed.

This section provides a broad overview of what device drivers do inside
the UNIX Operating System kernel . The specific details are provided later.
The purpose of the overview is to introduce issues of significance and estab
lish a common language for further discussion . Experienced driver developers
will be familiar with much of the information, but those new to UNIX System
device drivers may find the implications of a multi-tasking environment more
complex than expected .

System Buffers

A fea ture common to most drivers is their use of buffers . There are two
types of buffers in a standard UNIX System V /386 kernel : system buffers and
clists. They differ greatly in size and structure and are meant to fulfill dif
ferent needs.

System buffers are the size of a file system block, on UNIX System V /386,
1 0 24 bytes. This buffer pool primarily supports disk 1/0 operations. The clist
manages groups of buffers of much smaller size, typical ly holding only 64,
1 28 or 2 56 bytes each . They were created to support 1/0 typified by lower
data rates (for example, terminal 1/0). While drivers may allocate their own
data areas or independent buffer pools, this increases the size of the driver,
and thus the size of the kernel .

The buffers are a commonly used UNIX System resource. The pools are
of fixed sizes, though the number of buffers is controlled by constants in the
kernel. Whether it uses a private buffer or the public pools, every driver
should be written with the finite nature of the machine in mind; space used
for buffering is taken away from user processes, so intense buffer use by a
driver can reduce the performance of other drivers or require more memory be
devoted to buffers. If more memory must be allocated to buffers, this
decreases the memory available for user processes. More will be said later

DEVICE DRIVERS 3-3

Device Drivers

about how to obtain and return buffers.

Data Transfer Between System and User Space

The kernel instruction and data spaces are strictly segregated from those
of user processes. The need for the kernel to protect itself is obvious. This
protection creates the need for a way to transfer information from user space
to kernel space and back.

There are several routines for transferring data across the user/system
boundary . Some transfer bytes, some transfer words, and others transfer arbi
trary size buffers. Each type of operation implies a pair of routines: one for
transfers from user space to system space and one for those in the opposite
direction.

At this time, it would be helpful to consider a representative 1/0 opera
tion and the information transfer across the user/kernel boundary it
engenders . As an example, take a request from a process to write a buffer on
the disk. The write routine takes the file descriptor, the buffer address in user
space, and the length of the data in the buffer as parameters.

The system call causes the processor to transfer from user to kernel mode,
and to execute the write routine in the generic file interface. When write()
realizes that the file is " special " (a device), it uses the appropriate switch
table (defined later in the section " Major and Minor Numbers ") to select the
corresponding routine associated with the device. The device driver's write
routine is then faced with a decision.

Since the disk is a shared resource, the device driver may not find it con
venient or possible to do the requested write just when it is requested. How
ever, when the system call returns, the process assumes that the operation is
complete and may do whatever it wishes with its buffer. If the kernel wishes
to defer the write to disk, it must take a copy of the information from user
space, keeping it in system space until the write can be done.

Sleeping and Waking Processes

In the previous section, an example of a write operation to the disk intro
duced several basic concepts . A process might have to wait for the requested
information to be read or written fromjto the disk before continuing. One
way that processes can coordinate their actions with events is through the
sleep() and wakeup() calls.

3-4 ISDG

Device Drivers

Let's consider a read operation in greater detail . When the request is
made, the driver has some calculations and setup functions to perform. After
these are complete, the request for the information can be made, but there will
be a delay before the information is available. The delay will, at a minimum,
be due to the retrieval time for the disk. However, it could be much longer
than that if other requests are queued ahead of this one.

Since UNIX System V /386 is a multi-user, multi-tasking operating system,
it is possible that another job is ready to run and waiting for a chance to use
the machine. One process should not keep the machine idle while another
process is ready to run, so some way must be found to have the first process
wait until its information is available. The Sleep/Wakeup mechanism can
coordinate this. In the disk access example, the read routine in the disk's
driver set would issue a request for the information and put the process to
" sleep. "

A sleeping process is still considered to be an active process but is kept on
a queue of jobs whose execution is suspended while they wait for a particular
event. When the process goes to sleep, it specifies the event that must occur
before it may continue its task. This event is represented by a number, typi
cally an address of a structure associated with the transaction. The sleep() call
records the process number and the event, then places it on the list of sleep
ing processes. Control of the machine is then transferred to the highest prior
ity runnable process.

When the data transfer completes, the disk will post an interrupt, causing
the interrupt routine in the driver to be activated. The interrupt routine will
do whatever is required to properly service the device and issue a wakeup()
call. It must know what number was used by the process as the sleeping
event to wake it. This scenario for coordination between asynchronous events
appears throughout the kernel.

Kernel Timers

In some cases, a driver must be sure that it is awakened after a maximum
period. For those situations where a limit must be placed on how long a pro
cess will sleep, the timeout() facility is available .

This routine takes three arguments: an integer function pointer, a charac
ter pointer, and an integer. The integer specifies the period of time in " ticks, "
one hundredth of a second. The defined constant HZ gives the line frequency
used by a given kernel . When this period of time has passed, the function
pointed to by the first argument to timeout() will be called with the second

DEVICE DRIVERS 3-5

Device Drivers

argument as its parameter.

A driver can ensure that it will be able to resume its execution even if no
call to wakeup() is made by first calling timeout() and then sleep(). This
should be done, however, only if truly necessary, as it carries some heavy pro
cessing requirements. When the call to timeout() is made, it inserts the speci
fied event into the callout table. This data structure is a list of events in a
simple array . Insertion of the event requires copying all elements of the list
following the inserted event.

If the sleeping process is not awakened before the " timeout " event, the
specified function will be called. The second argument to the timeout() rou
tine could be the event the driver was about to sleep on. When the function
is called, it can use this information to call wakeup() to wake the driver. The
function called from the callout table should also set some internal flag to per
mit the driver to distinguish between the two ways it can be awakened.

Synchronous and Interrupt Sections of a Driver

As described earlier, the system uses system buffers and routines to
transfer information across the user/system boundary. Drivers provide the
connection between two frames of reference: the process and real time realms.

The portion of the driver that deals with real time events is driven by
interrupts from devices, and is thus called the interrupt section. The rest of
the driver executes only when the process talking to the driver is the active
process. The execution of this part of the driver is synchronized with the pro
cess it serves and will be called the synchronous portion of the driver.

Since the synchronous portion of the driver has the proper process con
text, it is responsible for organizing the information required for the requested
opera tion . It is responsible for any transfer of information across the
userjsystem boundary. When the request has been properly submitted, the
synchronous portion of the driver can do nothing but wait until the requested
operation is complete, so it sleeps.

The interrupt driven section of the driver responds to the demands of the
device as they come. The synchronous part must leave enough information in
common data structures to permit the interrupt routine to figure out what is
happening. The interrupt routine is called when an operation is complete. I t
is responsible for servicing the device and waking the process waiting on the
event. Note that the interrupt routine can be called at any time and in the
context of any process. I t cannot engage in any activity that depends on

3-6 ISDG

Device Drivers

process context.

Interrupt Processing

The previous section defined the interrupt and synchronous portions of a
driver and mentioned that the interrupt portion is driven by real time events.
The events are demands for attention from the controlled devices.

When a device requests some software service, it generates an 11 inter
rupt. " Each device can interrupt the system at a specific " priority level . " I f
the currently executing code has not blocked interrupts a t that level, i t will
immediately save its status and 1 1 trap 11 to an interrupt handler. The interrupt
routine in the driver must determine the cause of the interrupt and take
appropriate action. If the synchronous portion of the driver was waiting for
this event, the interrupt routine should issue a call to wakeup().

Critical Sections of the Driver

The discussion so far has been centered around a particular interrupt,
occurring in isolation . Though helpful, this view is unrealistic and potentially
misleading. Interrupts from all devices on the system can occur at any time,
and the implications of this are important. The relationship between the syn
chronous and interrupt portions of the driver are affected, as are those
between drivers sharing data .

When two sections of kernel code have a common interest in specific data,
they must be careful to coordinate their efforts . I f an interrupt switches con
trol of the system to the interrupt driven portion of the driver, then manipula
tion of the common data may be caught in the midst of its work. This could
render the information invalid and inconsistent.

These concerns are grouped under the general heading critical sections .
The importance of the issue is clear; the integrity and accuracy of the data
used by drivers is at stake. The word sections refer to the portions of code
that manipulate the common data, rather than the data itself. Thus, a critical
section of code is one that manipulates data that is of concern to another piece
of code capable of interrupting the first.

A routine in the kernel that has a critical section must have a way to pro
tect itself from being interrupted when manipulating cri tical data. A set of
subroutines that permit code to Set the Priority Level (spl) of the processor
solve the problem and are l isted in the section " Setting Processor Priority
Level . 1 1 A clear understanding of the need for these routines can be achieved
only by examining a detailed scenario.

DEVICE DRIVERS 3-7

Device Drivers

Imagine a section of code in the synchronous portion of a driver that
manipulates status flags. Such flags are frequently used to communicate
between the synchronous and interrupt portions of a driver. Consider also
that the interrupt portion has code that manipulates those flags. Finally, real
ize that the manipulations do not take place in a single machine operation.

Consider what happens if the synchronous portion of the driver receives a
request that requires it to manipulate the values of several flags, but in the
midst of the manipulation, the device gives an interrupt, transferring control
to the interrupt portion of the driver. The interrupt routine decides that it
must consult the flag values to make some decision and then set them to new
values.

The flags are in the incorrect state because the synchronous routine has
only half finished changing them when the interrupt routine took over. This
may cause the interrupt routine to go mad, or it may simply make an innocu
ous but incorrect decision. Assume that the interrupt routine does not run
amok but simply looks at the flags, makes decisions, and changes a couple of
flag values. Then when the interrupt returns, the synchronous portion of the
code, unaware that it was interrupted, finishes the changes it had started.

Whether the data manipulated in a critical section is changed by the inter
rupting routine is unimportant. The fact that the interrupting routine uses it
is sufficient, proving any portion of code that can be interrupted and that also
manipulates data of interest to the interrupting code is a critical sectio n .
When a critical section i s identified, i t can be protected from interruption b y a
call to an spl routine of the appropriate level .

How Data Moves Between the Kernel and the Device

The discussions above assume that the data moves magically between the
memory accessible to the kernel and the device itself. This is a machine
dependent detail, but it is instructive to examine how this is done. Some
machines require the central processing unit (CPU) to execute special I/0
instructions to move data between a device register and addressable memory
or to set up a block transfer between the IjO device and memory. This pro
cess is often called direct memory access (DMA). Another scheme, known as
memory mapped IjO, implements the device interface as one or more loca
tions in the memory address space . All of these schemes are used on UNIX
System V /386, but the most common method uses I/0 instructions.

3-8 ISDG

Device Drivers

The operating system usually provides function calls that let drivers access
the data in a general way. UNIX System V /386 implementation provides
inb() to read a single byte from an 1/0 address(port) and outb() to write a sin
gle byte. The functions inw() and outw() manipulate 1 6-bit words, and inl()
and outl() move 32-bit longs. The functions repinsb(), repinsw(), and
repinsd() input a stream of bytes, 1 6-bit words, and 32-bit words, respectively,
from an ljO port to kernel memory. The functions repoutsb(), repoutsw(),
and repoutsd() output streams of bytes, 1 6-bit words, and 32-bit words,
respectively, from an 1/0 port to kernel memory. The syntax of these func
tion calls is shown below, and some of the calls are used in the drivers shown
in the appendices :

unsigned char inb(port)
int port;

outb(port, data)
int port;
char data;

unsigned short inw(port)
int port;

outw(port, data)
int port;
short data;

long inl(port)
int port;

outl(port, data)
int port;
long data;

repinsb(port, addr, cnt)
int port, cnt;
char *addr;

repinsw(port, addr, cnt)
int port, cnt;
short *addr;

DEVICE DRIVERS 3·8

Device Drivers

repinsd(port, addr, cnt)
int port, cnt;
long *addr;

repoutsb(port, addr, cnt)
int port, cnt;
char *addr;

repoutsw(port, addr, cnt)
int port, cnt;
short *addr;

repoutsd(port, addr, cnt)
int port, cnt;
long *addr;

As described earlier, it is the driver's job to copy this data between the
kernel's address space and the user program's address space whenever the
user makes a read() or write() system call .

DMA Allocation Routines

A DMA controller has control registers defining the DMA start address
and word count that the driver must manipulate. See the section " DMA Con
troller Operations . " These routines allow DMA usage to be interlocked
against DMA requests by other drivers . Not all devices use DMA, but those
that do must have exclusive access to their DMA channel for the duration of
the transfer.

The number of DMA channels is hardware-dependent. Some channels
are reserved for such invisible housekeeping functions as screen refresh and
cannot be reallocated .

Some machines have DMA chips that malfunction when more than one
allocated channel is used simultaneously. To allow installation on these
machines, the dm a__s ing le flag is set by default. On machines that do not
suffer from this deficiency, clear the dm a__single flag to allow simultaneous
DMA on multiple channels. This can be done by using the idtune(1 M) com
mand (see Appendix A) to set DMAEXCL to 0 . Legal values are 0 and 1 .

3-10 ISDG

Device Drivers

The names of the various channels are defined in the fi le dma.h.

dma_alloc (channel, mode)

Purpose: This routine allocates a DMA channel .

Parameters: channel is the channel to be al located . If m ode is
DMA_NBLOCK, the routine wil l not sleep until the specified chan
nel is available, but instead return a non-zero value immediately .
I f m ode is DMA_BLOCK, the routine wi l l sleep unt i l the channel i s
available. This routine may only be called at in terrupt time if
DMA_NBLOCK is speci fied.

Result: Returns 0 if the channel is al located; otherwise, returns 1 .

dma_relse (channel)

Purpose: This routine releases a DMA channel that was either
a l located with dma_alloc(), or implicitly allocated by dma_start() .
It should be ca l led as soon as the DMA transfer completes.

Parameters: channel is the channel number that was presented
earlier to dma_alloc() or dma_start().

Result: No return value.

dma_start (dmareqptr)

Purpose: This routine starts up a DMA request. It is designed to
be used at in terrupt time. When the channel is available, the
d_proc routine will be called at spl6(), with a pointer to d_params
as an argument. The d_proc and d_params values are found in the
structure pointed to by dmareqptr. The routine specified by d_proc
must fol low al l the normal rules of UNIX System interrupt rou
tines. The routine should be minimal because it may be called dur
ing some other device's interrupt routine.

Parameters: The dmareqptr structure is defined as follows:

DEVICE DRIVERS 3·1 1

Device Drivers

struct dma.req {
struct dma.req

unsigned sb:>rt
unsigned sb:>rt
paddr_t

lang

int
char

*dmareqptr ;

*d_nxt ;

d_chan;

d_m:xie ;

d_addr ;

d_c:nt;

(*d_proc) () ;

*d_params ;

The d_nxt field is used to link the structure onto a list of dmareq
structures in case it can 't be serviced immediately . The d_I!Dde field
supplies the direction of the transfer: it is either DMA_Wrmode
(from memory to the device) or DMA_Rdm ode (from the deyice to
memory). The d_addr field contains the physical address from
which or to which to transfer. The d_c:nt field contains the number
of bytes or words to transfer. The d_proc routine will be called at
priority spl6() when the channel is available .

Result: Returns 1 if the request was completed immediately or 0 if
it was queued for later execution.

dma._param (channel, mode, addr, cnt)

Purpose: This routine masks the DMA request line on the con
troller, sets the address and count parameters, and sets the mode
(read or write) .

Parameters: channel is the channel number that was earlier
presented to dma._alloc(). mode is either DMA_Wrmode for a write
transfer (from memory to the device), or DMA_Rdmode for a read
transfer (from the device to memory). addr is the physical address
from which or to which to transfer. cnt is the number of bytes
(minus one) to transfer.

Result: The controller is initialized.

3-1 2 ISDG

Device Drivers

dma_enable (channel)

Purpose: This routine clears the mask register on the controller to
allow the DMA transfer to begin.

Parameters: channel is the channel number that was earlier
presented to dma_allocO.

Result: The transfer will take place.

longdma_resid (channel)

Purpose: This routine returns the number of bytes that were not
transferred by the previous dma_enable() request as a long.

Parameters: channel is the channel number that was earlier
presented to dma_alloc().

Result: A long integer expressing the number of bytes not
transferred will be returned.

U N IX System Driver Specifics

Types of Devices

There are two classes of devices: block and character. Block devices are
addressable. As the term implies, the data on the device is formatted and
addressed in 1 1 blocks. 1 1 The term 1 1 character device 1 1 is a misnomer that
should be 1 1 raw device, 1 1 implying that the data being read is raw or unfor
matted; the device drivers and user programs assign semantics to the data, not
the file system. A device could be both a block and character device in a sys
tem configuration, implying that the system can access the device in two
ways.

Although device drivers are normally associated with hardware devices,
some drivers may have no hardware counterpart. These devices are often
referred to as pseudo devices. For example, a trace driver may log certain
classes of events. User programs write to the driver to record the events and
read from the driver to recall the information . The trace driver would have
internal mechanisms for formatting and storing the data. No hardware is
associated with the driver, and the driver interfaces with software only.

DEVICE DRIVERS 3·1 3

Device Drivers

Appendix C contains a sample trace driver as a device driver model. You may
actually use this driver to help debug the driver you are developing.

Special Files

The UNIX System treats a device as if it were a file; that is, when a user
program wishes to access a device, it accesses the file that is associated with
that device. These special files are sometimes called nodes or device nodes.
The system calls that access regular UNIX System files (such as jetcjpasswd)
are therefore the same calls that access devices (such as jdev jconsole). The
system calls are open(), close(), read(), write(), and ioctl() . The section 11 Func
tion Specifications (Driver Entry Points) 1 1 describes the system calls at the
driver level in detail .

Major and Minor Numbers

The device major numbers are used by the system to determine which de
vice driver to execute when a user reads or writes tojfrom the special file.
The system maintains two tables for mapping 1/0 requests to the drivers: one
table for 11 character special 11 and the other for 1 1 block special . 1 1 This implies
that there are two sets of major numbers, one for character devices and one
for block devices. Both start at zero and are numbered up to the last used
major number (with an upper limit of 64 for character devices and a limit of
32 block devices for UNIX System V /386). If you do an Is -1 jdev, you may
find that two very different devices have the same major number. That's
probably because one is a 1 1 block special, 1 1 using the block major number, and
the other is 1 1 character special, 1 1 using the character major number. For those
drivers that are both block and character devices (for example, the floppy
driver), one major number of each type must be assigned. In this case, the
actual numbers may be different and, in fact, often are different.

The minor number is entirely under control of the driver writer and usu
ally refers to 1 1 subdevices 1 1 of the device. These subdevices may be separate
units attached to a controller. A disk device driver, for example, may talk to a
hardware controller (the device) to which several disk drives (subdevices) may
be attached. The UNIX System accesses different subdevices using the dif
ferent minor numbers .

In traditional UNIX Systems, major numbers were assigned by the driver
writer or the system administrator. The mknod command was then used to
create the files (or nodes) to be associated with the device . The UNIX System
V /386 ID feature assigns the major number when the DSP is loaded by the
user. More will be said about this later.

3-1 4 ISDG

Device Drivers

The /dev Directory

The device file may exist anywhere in the file system, but by convention,
all device files are contained in the directory jdev . The names of the files are
generally derived from the names of the hardware, a convention that a l lows
users to know what the device is by looking at the file name. I t would be
confusing if the file jdev jtty were a disk. Part of the name of the device file
usually corresponds to the unit number of the device to be accessed via the
file or, specifically, the minor number.

A new convention of UNIX System V /386 and other UNIX Systems is
that jdev can contain subdirectories that hold the nodes for all the subdevices
of a particular type. This reduces the clutter in the jdev directory. For exam
ple, jdev jdsk contains all the " block special " files for the floppy and hard
disks; jdev jrdsk contains all the " character special " files.

The device file may exist in the file system even though the device is not
configured in the running system. If a user attempts to access the device, or
more specifically, the file, an error will result on the system call . Conversely,
the device may be configured into the running operating system without the
device file in the file system, in which case the device is inaccessible.

The Master and System Files

Associated with device drivers are two device configuration files: the Mas
ter file and the System file (also known as the dfile) . For UNIX System
V /386, the device driver portions of the traditional master file are in a file
named mdevice. The device driver portions of the system files are in a file
called sdevice. See Appendix A and mdevice(4) and sdevice(4) in the
Program mer's Reference Manual for information describing the mdevice and
sdevice file format.

The mdevice file contains the device name (8 characters or less), defini
tion of what functions the device supports (field 3 has an " r " if the read func
tion is implemented, has a " w " if write is implemented, etc.), definition of
block andjor character major number, and other descriptive information about
the driver.

The sdevice fi le con tains information on how the device is installed in the
system, that is, the number of units (subdevices), interrupt vector number
(IVN) used, and other local information .

DEVICE DRIVERS 3-15

Device Drivers

Structure of the Device Driver Source Files

Include Files

Every file in the operating system source code includes header files con
taining declarations of global data structures. The source code for device
drivers need not be contained in a single file, and programmers should subdi
vide the driver among several files if it is large . Even if the driver is contained
in a single file, programmers should follow convention and declare the driver
data structures in new driver-specific header (11 .h 11) files. The definition of the
data structures (the place in the source code where the compiler allocates
memory storage) should be of the form extern, in a 11 . c 11 file, usually the
driver source file. The only data structures that should be defined outside the
driver are those that are configuration-dependent; that is, if the driver needs
to allocate storage for each subdevice, a method is needed to allocate based on
the number configured. For UNIX System V /386, the file Space.c is used to
allocate configuration-dependent data for use by the device driver.

For instance, if a system is configured for 4 trace devices, the file Space.c
will include a line

struct trace tr_data['IR_UNITS] ;

and the include file for the trace driver will contain the declaration of the trace
structure. The configuration process that ID executes will set TR._UNITS
equal to 4 based on the un it parameter (field 3) of the System file . The driver
source code file should 11 include 11 the new header files. Driver file names
conventionally contain the device name as part of their names.

As an example, consider a driver for a new networking device called nnet.
Assume the driver consists of two 1 1 .c 1 1 files, nnet.c and nnetprot.c, and one
header file, nnet.h. The names suggest that the files are associated with the
new nnet device and that the nnetprot.c file contains a protocol for the
device. The header file may contain a declaration such as

3·1 8 ISDG

stru.ct nnet {
char

char

int

int

struct

} ;

nn_state ;

nn_flags ;

nn_port ;

nn_chan ;

nn_queue *ml_qptr ;

and the " .c " files should contain the line

#include "sys/nnet . h"

General System Data Structures

Device Drivers

Driver programmers must not change standard system header files, such
as the proc file, the user file, or the inode file . Since the drivers are a separate
part of the system, it is unacceptable to introduce new data structures and
new " hooks " into standard system data structures to accommodate a private
driver. In addition, changing system data structures could cause user-level
programs to work incorrectly if they rely on the system data structure. For
example, changes to the process table usually require recompilation of the ps
command. Driver programmers should likewise refrain from tampering with
kernel source files.

Usually driver source code must contain some standard " include " files to
allow the driver access to system utilities and data structures commonly used
to return information to the kernel. The list below defines a few of the more
commonly used include files:

1 . jusrjincludejsysjtypes.h - basic system data types

2 . jusrjincludejsysjparam.h - fundamental system parameters

3 . fusrjincludejsysjdir.h - directory structure definition

4 . fusrjincludejsysjuser.h - the user structure definition

The driver must include dir.h and user.h i f the error field u .u_error is
set in the driver or i f the fields u .u_base or u .u_count are used (see
the section " Read and Write ") . The error field gives error

DEVICE DRIVERS 3-1 7

Device Drivers

information to the kernel, and the information later returns to the user
program . The introduction to Section 2 of the Programmer's Reference
Manual describes the values the field may take. I f the driver includes
user.h, it must first include dir.h because of interdependencies
between the two header fi les.

5 . jusrjincludejsysjsignal.h - definition o f system signals

If the driver sends signals to user processes, it must include this file .

6 . jusrjincludejsysjconf.h - definition o f device switch tables

This file is needed if the driver uses line disciplines (see the section
11 Use of Line Disciplines 11) .

7 . jusr jincludejsysjfile.h - definition of file structure

This file is needed if the driver uses control fl ags such as 11 no delay 11

(FNDELAY) .

8 . jusrjincludejsysjbuf.h - definition o f the buf (system buffer) struc
ture

This file is needed if the driver uses the system buffer pool (see the
section 11 Bu ffer Pool 11) .

9. jusrjincludejsysjtty.h - definition o f the clist structure

This file is needed if the driver uses clists (see the section 11 Cl ists 11) .

Driver-Specific Data Structures

Naming Conventions
The names of driver data structures and variables should have the driver

name in the prefix to ease program readability and debugging and to avoid
conflict with other variables in the system with the same name. For example,
in Appendix C, the trace driver contains the variable tr_cnt and the data
structure tr_data . Both names are private to the trace driver, and the prefix
11 tr_ 11 identifies them as belonging to the trace driver.

3- 18 ISDG

Device Drivers

Unit Numbers
As mentioned above, drivers frequently 11 drive 11 several hardware units,

as a terminal driver may 1 1 drive 1 1 many terminals. Each terminal has a unit
number corresponding to the minor number of the device file . Drivers typi
cally contain a data structure that contains a flag field to record the device
status, such as open, sleeping waiting for data to drain, etc. Except for the
inclusion of a flag field, the contents of the data structure are device
dependent, so no recommendation can be given here. However, there should
be one entry per unit, defined in the driver file and declared in the header file .
A sample declaration of the data structure for the fake device nnet was
defined above. Each nnet device should have one of these data structures.

Function Specifications (Driver Entry Points)

This section describes the functions that form the driver interface to the
kernel . For a raw device, they are init, start, open, close, read, write, ioctl,
poll, and halt. For a block device, they are init, start, poll, halt, open, close,
and strategy . A driver need not contain every routine i f one or more are
irrelevant (a l ineprinter driver usually does not have a read routine). If a
device is both raw and block, the driver must contain all the functions, as
appropriate.

I nit

This routine, if present, is called to initialize the device when the operat
ing system is first booted. It is called indirectly through its entry in the
io_init[] table .

nnetinit ()

All init routines are called while interrupts are still disabled (splhi priority) .
These routines should not lower the priority level .

Start

This routine, if present, is also called when the operating system is first
booted . I t is called indirectly through its entry in the io-sta rt() table. The start
routines are called a fter all init routines have been called and a fter interrupts
have been enabled.

nnetstart()

DEVICE DRIVERS 3·1 9

Device Drivers

Open

The kernel calls the driver open function as a result of an open system call
for the device file.

nnetopen(dev, flag, otyp)
int dev_t dev, flag, otyp;

The parameters of the driver open function are the minor device number of
the device file, and the flags supplied in the " oflag " field of the open system
call (see Section 2 of the Programmer's Reference Manual) correspond to flag
values in the header file file.h. The minor device number usually corresponds
to the unit number of the physical device being opened. The responsibility of
the open routine is to establish a " connection " between the user process issu
ing the open call and the device being opened. It is impossible to be more
specific since devices have different ideas of what " being opened " or " being
connected " is. The driver must follow the specifications of the manual for the
open system call regarding the O_NDELA Y flag: if set, the open must return
without waiting for a hardware connection and if clear, the open must block
(see the section " Sleep and Wakeup " on sleep()) until the hardware estab
lishes a connection: Error conditions should be set in the field u .u_error. The
usual error condition is ENXIO, indicating that the device does not exist (out
of range). I f it does not make sense for two processes to open one device
unit, the second open should return with an EBUSY error.

The " otyp " field defines open/close protocol rules to help the driver
know when the " last close " occurs. See " open. h " for the flag values and
additional information.

Close

The kernel calls the driver close function with the minor number of the
device file as its parameter.

nnetclose(dev, flag, otyp)
int flag, otyp;
dev_t dev;

The responsibility of the close function is to end the connection between the
user process and the previously opened device, and to " clean up " the device
(hardware and software) so that it is ready to be opened again.

Note that the kernel calls the driver open function on every open system call
executed by user programs. However, the close function is usually called only

3-20 ISDG

Device Drivers

on the last close system call (see " otyp " rules in " openh "); i f, for example, a
character device is opened by more than one user process, and they then all
close the device and exit, the driver will see several opens, but only one close .

Read and Write

The kernel calls the driver read and write routines to read (write) data
from (to) the device speci fied by the unit number, the only parameter.

and

nnetread(dev)
dev_t dev;

nnetwrite(dev)
dev_t dev;

Drivers for " raw " devices contain these routines . Because user programs and
the operating system execute in different address spaces, the 1/0 cannot take
place directly from the device to the user program (unless the device is also a

" block " device, as will be explained at the end of this section) . There must
be a system buffer between them. When reading, the driver must receive the
data from the device in a read buffer and then copy the data from the buffer
to the user process's local buffer. When writing, the driver must copy the data
from the user process's local buffer and then transmit the data from the sys
tem buffer to the device. The system buffer can be a private driver data struc
ture or one obtained by use of the system util ity routines described in the sec
tion " Allocating Buffer Space. "

In the driver read rou tine, the system variable u .u_base is the address of
the buffer in the user program address space, and the variable u .u_count is
the number of bytes remaining to be read . The functions copyout(), subyte(),
or suword() should be used to copy the data from the driver buffer to the user
buffer:

copyout(ptr_to_driver_buffer, u.u_base, n)
subyte(u .u_base, char_c)
suword(u.u_base, long_w)

where n is the number of bytes the function copies from the buffer (pointer)
ptr_to_driver_buffer in the copyout() function, char_c is the single character
that subyte() copies to the user buffer, and long_w is four bytes copied by
suword() . The driver should use copyout() for copying more than a few bytes
of data. After the function calls, the driver should increment the value of
u .u_base by n and decrement the value of u .u_count by n, the number of
bytes transferred . For subyte(), the value of n is 1. For suword(), n is 4 . If

DEVICE DRIVERS 3-2 1

Device Drivers

either function returns a non-zero value, then u.u_error should be set to
EFAULT to indicate the error.

The driver write routine is similar to the read routine, except that the rou
tines copyin(), fuword() and fubyte() are used to copy data from the user
buffer to a system buffer:

copyin(u.u_base, ptr_to_driver_buffer, n);
fubyte(u .u_base);
fuword(u.u_base);

The system is not responsible for " bad " addresses set in u .u_base (set as a
result of the user system call). If the user is reading in 5 1 2 bytes from the
device into a user data structure that is 256 bytes long, it is not the system's
job to detect the error. The user program must make sure that the data
returning from a read system call will not overflow the user buffer.

The copyio() routine can be used in place of the copyin() and copyout()
routines, i f desired. The copyio() routine copies bytes to and from a physical
address (that is, buffer address) in the kernel to and from a long address (that
is, user data pointer) . The syntax for copyio() is as follows:

copyio(addr, caddr, cnt, mapping)
paddr_t addr;
caddr_t faddr;
unsigned cnt;
int mapping;

The argument addr is a pointer to the physical kernel address to which or
from which the data is to be transferred.

The argument caddr is a 32-bit pointer that contains the offset of the user
address to which or from which the data is to be transferred.

The argument cnt is an unsigned integer that specifies the number of
bytes of data to transfer.

The value of mapping is an integer that designates the direction of the
transfer. The following possible mapping values are defined in user.h:

u_wuo
U--RUD
U_WKD
U--RKD

transfers from user data to kernel data (buffer)
transfers from kernel data (buffer) to user data
transfers from kernel data to buffer

transfers from buffer to kernel data

If successful, this routine performs the specified data transfer; otherwise, it

3-22 I SDG

Device Drivers

returns - 1 .

The read and write routines are responsible for resetting the device
hardware so that later calls work correctly. They are also responsible to
" clean up " errors and keep appropriate statistics.

Raw devices that are also block devices can avoid copying data into an
intermediate buffer by using the physio() routine and the strategy() routine:

physio(strategy, bp, dev, rdwr_flag);
int (*strategy)();
struct buf *bp;
int dev;
int rdwr_flag;

The strategy parameter is the name of the strategy() routine for the device,
described in the next section . The buffer header pointer, bp, is a locally allo
cated buffer header, not one allocated from the buffer pool (as in the section
" Buffer Pool ") because the physio() routine assigns the data pointer in the
buffer to the location in the user program (u.u_base) where the data transfer
should come from or go to. I f the bp parameter is null, the physio() routine
assigns a buffer internally (probably a safer way to invoke it). The dev
parameter is the device number, and the flag rdwr_flag should be B_READ or
B_WRITE, as appropriate. The physio() routine will call the device strategy
routine internally and set up the data transfer directly between the device and
user space. This can only be done if the device is a block device as well as a
raw device. A prototype Floppy Disk Driver in Appendix D contains an
example of physio() usage.

Strategy

Drivers of block devices must define a strategy routine to start 1/0 to and
from the devices:

nnetstra tegy(bp)
struct buf *bp;

The kernel calls the strategy routine with a parameter that is a pointer to a
buffer header containing all the information about the 1/0 operation . For
example, the definition of a strategy function for the disk driver called dsk
would look like

DEVICE DRIVERS 3·23

Device Drivers

#include " sys/buf .h"

dskstrategy(bp)

struct buf *bp;

{
I* body of strategy routine *I

}

The strategy routine uses the following fields in the buffer, but it should not
set them:

1 . dev _t b_dev;

b_dev contains the major and minor number of the device where
the 1/0 is to occur. The minor number is contained in the 8 low
order bits, and the major number is contained in the next 5 low order
bits . The 3 high order bits should not be used.

2 . daddr_t b_blkno;

b_blkno is the block number of the device where the 1/0 is to
occur.

3 . unsigned int b_bcount;

b_bcount is the number of bytes to be transferred by the IfO
operation .

4 . caddr_t b_un.b_addr

b_un.b_addr is the address of the data in the buffer. The data
array is SBUFSIZE bytes long.

5 . int b_flags

b_flags gives the buffer status . If the B-READ bit is set, then the
IjO operation is to read from the device; if the B_WRITE bit is set,
then the 1/0 operation is to write the device.

3-24 ISDG

Device Drivers

If the strategy routine finds an error in setting up the 1/0 or if the device
reports an error via an interrupt, the driver should set the following fields:

1 . b_flags should have the B_ERROR bit or'ed in. The driver should
not assign a value to b_flags because that may erase other bit patterns
that the kernel relies on.

2. char b_error

b_error should be set to an appropriate error value. Typical
values are EIO for some physical IjO error, ENXIO for attempting
1/0 on a bad device or bad device address, or EACCES for attempting
to access a device illegally. The kernel later sets u .u_error with the
value of b_error so that any appropriate value for u.u_error could be
set.

3 . unsigned int b_resid;

b_resid should be set to the number of bytes that have not been
transmitted.

loctl

The driver ioctl routine controls hardware parameters and the interpreta-
tion of data as it passes through the driver via read and write :

nnetioctl(dev, cmd, arg, mode)
int cmd, arg, mode;
dev_t dev;

The routine takes four parameters, all integers:

1 . dev - The minor device (unit) number.

2 . cmd - A command argument that the driver ioctl function interprets as
the type of operation the driver should perform. The command types
vary across the range of devices, but the user manual specifies the
command types that must work for terminals (see the User'sjSystem
Administrator's Reference Manual Section 7, termio(7)) . Drivers that use
an ioctl function typically have a command to 11 read 11 the current ioctl
settings and at least one other that sets new settings. The kernel does
not interpret the command type, so a driver is free to define its own
commands.

DEVICE DRIVERS 3·25

Device Drivers

By convention, ioctl commands are set to complex numbers to
help guard against accidental misuse by users. A common technique
is to pick the first letter of the device name and left shift the ASCII
code by 8, then " or " in a command code into the lower 8 bits . The
values for ioctl commands are usually defined in the driver header file
so that both the driver and user programs can access the commands
via #defines. See trace.h in Appendix C for an example of ioctl
assignments.

3 . arg - An arbitrary argument that can pass parameters between a user
program and the driver. The argument can be the address of a struc
ture in the user program that contains settings for the driver or
hardware. The driver reads the settings from the user program via the
copyin() function and does the appropriate operations . Similarly, the
driver collects current settings and uses the copyout() function to write
the data into the user program structure. Alternatively, the argument
may be an arbitrary integer that has some meaning to the driver.
Except for terminal drivers where the User'sjSystem Administrator's
Reference Manual specifies the argument values (see Section 7, ter
mio(7)), the interpretation of the argument is driver-dependent and
usually depends on the command type; the kernel does not interpret
the argument.

4 . mode - An argument (need not be used) that contains values set when
the device was opened. The driver can use the mode to determine if
the device unit was opened for reading or writing, if necessary, by
checking the FREAD or FWRITE setting.

Code for Bringing a Device into Service

There may be requirements for writing initialization code to bring a device
into service. Often this can be done in the open routine by creating a flag to
determine if this is the first open (generally after a reboot of the system) of the
device. I f such code is necessary, the driver should contain an initialization
function that follows the naming convention described earlier. For our exam
ple, nnet, the initialization function would be called nnetinit().

I f the initialization routine must be called at system initialization time, the
Master file entry for the driver should contain an " I " in field 3 in addition to
the other driver functions that are supported .

3-26 ISDG

Device Drivers

Poll

The routine nnetpoll, if present, is called by the system clock at spl6() dur
ing every clock tick. It is useful for repriming devices that constantly lose
interrupts.

nnetpoll(ps)
int ps;

The parameter ps is an integer that indicates the previous process's priority
when it was interrupted by the system clock.

Halt

The routine nnethalt, if present, is called when the system is shut down.

nnethalt()

Kenter

The routine nnetkenter, if present, is called whenever the kernel is entered
from user mode. I t should be used with extreme care. Significant overhead in
a kenter routine could adversely affect system performance.

nnetkenter()

The kenter routine is called with interrupts disabled . It must not enable inter
rupts, use spl routines, use printf statements, or sleep.

Kexit

The routine nnetkexit, if present, is called whenever the kernel is about to
return to user mode. It should be used with extreme care . Significant overhead
in a kexit routine could adversely affect system performance.

nnetkexit()

The kexit routine is called with interrupts disabled . It must not enable inter
rupts, use spl routines, use printf statements, or sleep.

Interrupt Handler

As described earlier, hardware interrupts cause the processor to stop its
current execution stream and to start executing an instruction stream that ser
vices the interrupt. The system identifies the device causing the interrupt and
accesses a table of interrupt vectors to transfer control to the interrupt handler
for the device.

DEVICE DRIVERS 3·27

Device Drivers

The exact mechanism of associating interrupt vectors with interrupt
handlers varies on different UNIX Systems. The discussion here assumes the
system finds the correct interrupt routine on receipt of the device interrupt,
and it assumes that the system executes the interrupt routine at a processor
execution level high enough to prevent more interrupts of that type. For
UNIX System V /386, there are a limited number of available interrupts . For
more information on this and other machine-dependent aspects of the UNIX
System V /386 interrupt architecture, see the section " Interrupts. "

The device interrupt handler routines handle device interrupts, which are
the device response to data transfers and requests . System software cannot
predict when a device will in terrupt the system . Typically, a system call
blocks, that is, sleeps on an event, awaiting the device to interrupt. The
device interrupt causes the system to invoke the interrupt handler that, in
turn, awakens the blocked system call . For instance, device open routines
may block until the device interrupts and " announces " its connection; or
device read routines may block until the device interrupts and " announce.s "
that data has arrived and can be read into the system .

Upon receipt of the interrupt, the kernel calls the driver interrupt handler:

nnetintr(ivn)
int ivn;

where ivn indicates the in terrupt number associated with the interrupt. The
interrupt handler must identify the reason for the interrupt (device connect,
write acknowledge, data available) and set or clear device state bits as
appropriate. It can also awaken processes that are sleeping (see the section
" Sleep and Wakeup "), waiting for the event corresponding to the interrupt.
Interrupt handlers must not set any fields in the u area, particularly u .u_error,
because the interrupted process is independent of the interrupt. For the same
reason, in terrupt handlers must not call sleep().

Sharing Interrupts and DMA Channels

The UNIX System V /386 Installable Driver (ID) scheme allows for the
sharing of interrupt lines and DMA channels among device drivers . When an
interrupt occurs, the interrupt handler for each device sharing the interrupt is
called . Each interrupt routine must first poll i ts device to see if the interrupt
belongs to them. I f not, they must return immediately with no processing so
that the correct interrupt routine can execute.

3-28 ISDG

Device Drivers

The default during kernel configuration is to disallow devices to share
interrupts. This prevents inadvertent re-use of interrupts or new drivers from
sharing interrupts with old drivers expecting the interrupt to themselves. To
indicate that a device can share its interrupt, field 5 of the sdevice (type field)
entry must include a 3. All devices sharing this interrupt must also have a 3 in
this field. If they do not, an error will result during kernel configuration . See
Appendix A and the Programmer's Reference Manual for manual pages describ
ing the sdevice file format.

To indicate that a device can share its DMA channel, field 3 of the
mdevice (the characteristic field) entry must include a D identifier. All drivers
sharing DMA channels must include a D in field 3 of their mdevice entry. I f
they do not, an error wil l result during kernel configuration. See Appendix A
and the Programmer's Reference Manual for manual pages describing the mdev
ice file format.

Use of Line Disciplines

Line disciplines are modules that interact with a driver to control the data
as it passes between the kernel and the device driver. The driver controls the
hardware, but the l ine discipline module controls software manipulation of the
data. It would be natural to think of networking drivers such that the net
working driver controls the hardware medium, and the network protocol is
contained in a line discipline. But historically, line disciplines have been asso
ciated mostly with terminals. Although used by the UNIX System V /386 con
sole and 11 asy 11 drivers, detailed discussion of line disciplines is beyond the
scope of this chapter. There is, however, additional information on the ttin(),
ttinit(), ttioctl(), ttopen(), ttread(), ttwrite(), etc. line discipline kernel functions
in the Device Driver Reference Manual.

Function Naming Conventions

The names of the driver open, close, read, write, ioctl, strategy, init, poll,
halt, and interrupt routines must be prefaced by the generic driver name. For
example, the names of the routines for the nnet driver are nnetopen(), nnet
close(), nnetread(), nnetwrite(), nnetioctl() and nnetintr(). There are no restric
tions on names for other functions in the driver, but it is best to preface the
function names with the driver name for identification purposes, so you do
not mistakenly define a function already defined in other parts of the operat
ing system.

DEVICE DRIVERS 3-29

Device Drivers

System Utility Functions

The driver calls kernel routines to perform system-level functions, many
of which were introduced in the section 1 1 Driver Activities and Responsibili
ties. 11 The following paragraphs describe the syntax and use of these kernel
functions.

Sleep and Wakeup

As described in the section 1 1 Sleeping and Waking Processes, 1 1 drivers
must sometimes suspend or block their execution to await certain events,
where an event is a system state in hardware or software. The driver waits by
calling the sleep function, and the system does a context switch and schedules
another process.

The sleep function takes two parameters: the address (signifying an
event) upon which the process will sleep and a priority value that is assigned
to the process when it is awakened:

sleep(addr , pri)

caddr_ t addr ;

mt pri ;

The address used for sleeping is an arbitrary address that has no meaning
except to the corresponding wakeup() function call . The sleep addresses are
usually taken from the entry in the device data structure of the device the pro
cess is accessing to guarantee uniqueness across the system. When a process
goes to sleep awaiting an event, the driver should set a flag in the device data
structure indicating the reason to sleep:

driver . state 1 = condition;

sleep(&driver . state , PRICIU'IY) ;

Later, either an interrupt handler or another process will call the wakeup()
function to awaken the sleeping process. The code invoking the wakeup()
function should check for a particular flag bit, indicating the reason that the
process is sleeping. The driver then calls wakeup() with one parameter,
namely the address where a process could be sleeping.

3-30 ISDG

wakeup(addr)
caddr_t addr;

Device Drivers

It is best for code readability and for efficiency to have a one-to-one
correspondence between events and sleep addresses; one address should not
be used for sleeping for two events. Again for clarity, there should be one bit
in the flag field corresponding to every sleep event and, hence, to every sleep
address. The wakeup() function awakens all processes sleeping on the
address, enabling them to execute when the scheduler chooses them. If no
process is sleeping on the address when wakeup() is called, wakeup() returns
with no bad side effects .

It is illegal to call sleep when handling an interrupt since a process
independent of the device could have been executing when the device inter
rupted . If the interrupt handler goes to sleep, the process that was interrupted
is effectively put to sleep for reasons beyond its control . But second and far
more important, sleeping in an interrupt handler could cause the system to
crash in some UNIX System implementations because of the interdependency
of the process context switch mechanism and interrupt levels. The interrupt
handler must, therefore, not invoke other functions that could lead to a call to
sleep() .

SeUing Processor Priority Levels

As described in the section 11 Critical Sections of the Driver, 11 the system
allows devices to interrupt the processor and handles the interrupts immedi
ately. The integrity of system data structures could be destroyed if an inter
rupt handler were to manipulate the same data structures as a process execut
ing in the driver.

To prevent such problems, the system has special functions that set the
processor execution level to prohibit interrupts below certain levels. The func
tions are spiN(), where N ranges between 0 and 7 and corresponds to the
priority level that it has in the kernel. SplO() allows all interrupts to occur,
and spl7() allows none. Most UNIX Systems have an splhi() function to set
the processor execution level to the highest value, which is spl7() for UNIX
System V /386.

DEVICE DRIVERS 3-31

Device Drivers

All spl functions return the previous priority level of the parameter passed
to it. The splx() function is useful in cases where the processor priority level
may have been raised already but where the driver does not know that it has
been raised sufficiently to block out the proper level of interrupts . When the
driver is ready to lower the priority level, it should not lower it all the way to
0 in that case but rather to the old priority level . Consider the following code:

register :int s ;

s = sp15 () ;

while ({ cp = getcb(&tp->t_rawq)) I = NULL)
putcf (cp) ;

tp->t delct = 0 ;

splx{ s) ;

Particularly nasty race conditions can occur if spl functions are not used with
the sleep() function. For example, the code segment

driver . state 1 = oonditian;

while (driver . state & oonditian)

sleep(&driver . state , PRICJUTY) ;

will cause the process to sleep if the condition bit is set in the field
driver.state. (Since processes could sleep on the address for several events,
the sleep call is enclosed in the while loop so that when awakened, the code
will again check that the condition is indeed no longer true. This is one rea
son it is best to sleep on different address values for different sleep reasons.)
Without use of the spl() function, the process could check the condition bit,
find it true, and attempt to call sleep. But if an interrupt occurred before the
process called sleep and the interrupt handler checked the condition bit to
determine if a process was sleeping, it would assume the process was asleep
and call wakeup to awaken it. Consider the following code:

3-32 ISDG

if (driver . state &. oonditian)

driver . state &.= -oc:mdi tian;

wakeup(&.driver . state) ;

Device Drivers

By the time the interrupted process calls sleep(), it will have missed the
wakeup() call, and another one may never come. By bracketing the calls to
sleep() with spl() function calls, the driver prevents the race condition :

spl5 () ;

driver . state 1 = oonditian ;

while (driver . state &. oc:mditian)

sleep(&.driver . state , PRIORITY) ;

splO () ;

Interrupt Priority Level

Another kernel characteristic, Interrupt Priority Level (IPL), interacts with
the spl functions. Some processor architectures have a hardware priority
scheme that defines a hierarchy of which devices can interrupt others. Since
the 80386 processor does not have such a scheme, UNIX System V /386 has
assignable priority levels that simulate hardware priority levels. By defining
an IPL in the sdevice file, we can protect a driver's critical regions at the
appropriate level . IPL8 is the highest level and is reserved for the internal
clock. Drivers at this level cannot be interrupted by other devices (their inter
rupt routines execute at spl7()). A device at IPL6 can be interrupted by a
device at IPL7 or IPL8. In UNIX System V /386, the base system device
drivers use the following IPL levels. This shows that the serial ports run at
the highest priority to prevent loss of data . The lineprinter is more safely
interrupted and is given a low I PL. See the section 11 Controller Interface
Basics 1 1 for a more complete definition of the device configuration assign
ments.

DEVICE DRIVERS 3·33

Device Drivers

DEV IPL Device attached
- - - - - - - - -- - - - - - - - - - - - - - - - - - - -

clock 8 UNIX System clock

asy 7 Serial Ports

fd 6 Floppy Disk

hd 5 Hard Disk

kd 6 Keyboard
lp 3 Line printer (Parallel Port)

rtc 5 Real TUne Clock

Care must be taken not to overstate device interrupt priority and to limit the
amount of time spent at high levels. For example, if any driver elevates to
spl7() for more than a few milliseconds, loss of UNIX System clock time may
result.

Sleep Priorities

The second parameter to the sleep() function, a scheduling parameter used
when the process awakens from its sleep, must be a constant and not a vari
able. The parameter, called the sleep priority, has critical effects on the sleep
ing process's reaction to signals. If it is lower than the manifest constant
PZERO (25 on most systems), that is, it is higher than PZERO (lower value
priority levels mean higher priority in the UNIX System), then the system
does not awaken sleeping processes on receipt of a signal . However, if it is
lower than PZERO, then the system awakens sleeping processes " prema
turely. " If the PCATCH bit (discussed later) is not set, the process immedi
ately finishes the system call, that is, it executes a longjmp() out of the driver.

Sleep calls the longjmp() function . When the system executes longjmp(),
it does not follow the conventional C function call/return sequence but
instead resets the program counter, stack pointer, and data registers to the
values they had when the most recent setjmp() function call was done.

For instance, i f a signal is sent to a process sleeping in the following sleep
call, the system call will end immediately without returning to the code that
called sleep:

sleep((caddr_t)&tp->t_raw:z , PZmO + 5) ;

3-34 ISDG

Device Drivers

When a driver must call sleep, how should the driver programmer determine
the sleep priority? The first decision is whether the process should ignore the
receipt of signals or not. If the driver puts the process to sleep for an event
that is " sure " to happen, then i t should ignore receipt of signals and sleep at
priority greater than PZERO (numerically, less than PZERO).

An example of an event that is " sure " to happen is waiting for a locked
data structure to be unlocked:

if (tp->t_state & T_LOCI<ED)

sleep(&tp->t_state , PlEro - 5) ;

In this case, another process locked the data structure and went to sleep, but it
left the data structure locked so that no other process could change it before it
awakened. Since that process will eventually awaken and unlock the data
structure and then awaken all other processes waiting for the lock to clear, the
event (the wakeup call announcing the unlock) is sure to happen . Otherwise,
the driver has a bug.

If the driver puts a process to sleep while it awaits an event that may not
happen, the process must sleep at a priority less than PZERO (numerically
greater than PZERO). An example of an event that may not happen is wait
ing for data to arrive from a remote device. For example, when the system
reads data from a terminal, the read system call sleeps in the terminal driver
waiting for data to arrive from the terminal. If data never arrives, the read
will sleep indefinitely . When a user at the terminal hits the <BREAK> key or
even hangs up, the terminal driver interrupt handler sends a signal to the
reading process still asleep, and the signal causes the reading process to finish
the system call without having read any data . I f the driver had slept at a
priority value that ignores signals, the process could have been awakened only
by a specific wakeup call. If that wakeup call could never happen (the user
hung up the terminal), then the process would sleep forever, clearly an
undesirable characteristic.

Priority values range between 0 (highest priority) and the constant PUSER
(lowest system priority, usually around 60). When the driver programmer
decides whether the process should ignore signals or not, hejshe must choose
the priority values so as not to affect process scheduling adversely. The sys
tem should be benchmarked using several sleep priority values to tune system
performance with the new driver.

DEVICE DRIVERS 3-35

Device Drivers

Drivers must occasionally " clean up " before doing the longjmp() on
receipt of a signal while sleeping. Since the longjmp(), as discussed so far,
takes place directly from the sleep function call, the priority parameter to the
sleep function call has additional meaning: if the priority parameter is or' ed
with the manifest constant PCA TCH, the sleep call returns the value 1 if
awakened on receipt of a signal. But if the sleeping process is awakened by
an explicit wakeup call rather than by a signal, then the sleep call returns 0 .
The following code sequence allows the driver to clean up before doing the
longjmp() :

if (sleep(sleep_address , oondition 1 PCA'IOI))

I* driver code cleanup */

langjmp(u .u_qsav, 1) ;

Typical items that need cleaning up are locked data structures that should be
unlocked when the system call completes.

tp->t_state 1 = TUX!K; /* locks the driver mrit */

tp->t_state 1 = '!'SLEEP ;
if (sleep((caddr_t) &tp->t_state , TPRI I PCA'!Qi))
{

tp->t_state &= - (TUX!K I '!'SLEEP) ;
langjmp(u .u_qsav, 1) ;

/* sanebody woke up driver . . .

* continue nonnally here */

The kernel saves the field u .u_qsav for use in a longjmp() function cal l . No
other parameter should be used, nor should the driver contain a setjmp() func
tion cal l . The second parameter of the longjmp() function call should always
be 1.

3-36 ISDG

Device Drivers

Timeout

Sometimes, a driver arrives at a state where it wishes to re-enter itself
after a specified time. The driver uses the timeout() function for this purpose.
Timeout takes three parameters: the function to be invoked when the time
increment expires, the value of a parameter with which the function should be
called, and the number of clock cycles to wait before the function is called. A
sample timeout() call is

timeout (repeat , n, count) ;

where n is the parameter to the function repeat(}, to be called after 'clock'
cycles . I f 'count' is 1 00 and if the clock interrupts the processor 1 00 (defined
by the parameter HZ in jusrjincludejsysjparam.h) times a second, the sys
tem will execute the function repeat() in 1 -second real time as a result of the
above timeout() cal l .

The exact time until the timeout takes effect may not be precise because of
the interaction of other parts of the system. The compiler requires prior
declaration of the function name parameter to timeout, as in

extern char *repeat () ;

timeout (repeat , n , count) ;

depending where the function repeat() is defined .

Dynamic Memory Allocation

The routines that al locate data space from memory for internal operating
system use are machine-dependent and beyond the scope of this document.
Specific information on the malloc(), mfree(), and mapinit() kernel functions
can be found in the Device Driver Reference Manual .

DEVICE DRIVERS 3·37

Device Drivers

Allocating Buffer Space

As mentioned in the discussion on the driver read() and write() routines,
drivers may require buffers for passing data around. The following utility rou
tines in the UNIX System provide buffer space.

Buffer Pool

The UNIX System provides a set of buffers that are normally used for file
system 1/0, but they can be " borrowed " by drivers if they follow the rules
outlined here . The driver must include the header file sysjbuf.h. The size of
UNIX System V /386 buffers is 1024 bytes. The functions that drivers may
use to manipulate the buffers are

1 . struct buf •geteblk();

Allocates a buffer and returns a pointer to a buffer header that, in
turn, points to the data buffer.

2 . brelse(bp) struct buf *bp;

Releases a previously allocated buffer.

3 . iowait(bp) struct buf *bp;

Sleeps on the buffer awaiting an event, such as completion of 1/0.

4 . iodone(bp) struct buf *bp;

A wakens a process sleeping via iowait() .

5 . clrbuf(bp) struct buf *bp;

Clears the contents of the buffer (sets every byte in the buffer to 0)
whose header is the pointer bp.

The driver may access the buffer header field b_flags to access buffer state
flags and the field b_un.b_addr to get the address where the data buffer
resides. Acceptable flags to use in the b_flags field are

1 . B_WRITE when writing data from the buffer to the device.

3-38 ISDG

2 . B-READ when reading data from the device .

Device Drivers

3 . B_DONE, set by the function iodone(), to indicate that the IfO opera
tion has completed.

4 . B_ERROR to indicate an error in use of the buffer.

5 . B_BUSY to lock the buffer and prevent other processes from accessing
the buffer. Use of the B_BUSY flag prevents other processes from
accessing the buffer if they first check the flag to see if it is busy.

while (bp->b_flags & B_BUSY)

sleep(bp, IIUPRI) ;

bp->b_flags I = B_BUSY;

6 . B_WANTED to indicate that a process is sleeping awaiting the buffer.
The function brelse() clears the flags B_WANTED and B_BUSY, and
the function geteblk() sets the B_BUSY flag. It is best to " or " and
" and " the flags in, rather than just setting them.

Here is an example of the use of buffers in a tape driver:

DEVICE DRIVERS 3-39

Device Drivers

tapecntl (dev, flag, opoode , arg1 , arg2)

{

Clists

register struct buf *bp ;

register int roode ;

bp = (struct buf *) geteblk() ;

I* CNl'L flag is used to indicate this is a control buffer *I

bp->b_flags I = B_CNI'L ;

I* set async flag so buffer will be released *I

if (flag == FNDELAY)
bp->b_flags I = B_ASYNC ;

bp->b_dev = (M1'0«8) l dev;

tapestrategy(bp) ;

roode = 0 ;

if (flag ! = FNDELAY)
iowait (bp) ;

if (bp->b_flags&B_ERROR)

roode = - 1 ;

bp->b_flags &.= -B_CNI'L ;

brelse (bp) ;

:r.:tul:n (roode) ;

lJy inclu ding the header fi le sysjUy.h, drivers can use clists and cblocks
(generic narr.es for character l ists anJ rh uacter blocks) to buffer small bursts
of d a �a from slow-speed devices. Dri v e rs should use cl ists if they are
in tere!:;ted in r·haracter by character processing of data, as in terminal drivers.
The cnly fic ! d in the cblock that a drivu may access directly is

ch�r :_delim;

The driver nn · · se i t to record status or the cblock. The size of the cblock
data bu ffer i:> CJ SIZE bytes, usually s2t between 64 and 256 bytes, as com
pared to :he l>u ifer sizes of 1 024 byte!" .

3-40 ISDG

Device Drivers

The driver should not access fields in the clist or cblock data structure
(except for c_delim) unless it uses the following routines:

1 . getc(p) struct clist *p;

Returns a character (really an int) from the clist pointed to by p, but it
returns -1 if the clist is empty.

2 . putc(c, p) char c;

struct clist *p;

Places the character at the end of the clist pointed to by p. I f system
resources are exhausted, putc returns - 1 (error); otherwise, i t returns 0 .

3 . struct cblock *getcf()

Returns a new cblock to the caller, returning N ULL if no cblocks are
available in the system .

4 . putcf(cp) struct cblock *cp;

Returns the cblock pointed to by cp to the system.

5 . struct cblock *getcb(p) struct clist *p;

Returns a pointer to the first cblock on the clist p, but it returns NULL
if the clist is empty.

6 . putcb(cp, p) struct cblock *cp; struct clist *p .

Places the cblock pointed to by cp on the end qf the clist p .

7 . getcbp(p, cp, n)

Copies characters from the specified clist, p , to the buffer addressed
by the cp argument. cp is a char * addressing the buffer to which the
characters are to be copied . n is the number of characters to be
copied . getcbp must be cal led a t spl6 () . This routine returns the
number of characters actual ly copied, which i s less than or equa l to n .

8 . putcbp(p, cp, n)

Copies characters from a buffer to the cl ist given as an argument . p is
a struct clist *. cp is a char * , which addresses the buffer. n is the

DEVICE DRIVERS 3·4 1

Device Drivers

number of characters to be copied to the clist. putcbp must be called
at spl6().

Here is an example of the use of clists, taken from a routine to read the
11 canonical 11 input from a terminal (note that the routine is not given here in
its entirety). The tty structure contains the clists Lcanq and Lrawq:

canon(tp)

register stru.ct tty *tp;

{

register struct cblock *cp;

spl5 () ;

if (tp->t_rawq . c_cf == NULL)
tp->t_delct = 0 ;

While (tp->t_delct == 0) {

if (I (tp->t_state&CARR_OO) I I (u .u_fm:xle&ENDEJ.AY)) {

splO () ;
return;

}
tp->t_state I = IASLP ;
sleep((caddr_t)&.tp->t_rawq, Tl'IPRI) ;

if (I (tp->t_lflag&ICAN:N)) {
tp->t_canq = tp->t_rawq ;

tp->t_rawq = ttnulq;

tp->t_delct = 0 ;

splO () ;

return ;

}
splO () ;

While ((cp = getcb(&.tp->t_rawq)) ! = NULL) {
putcb(cp , &.tp->t_canq) ;

if (cp->c_delim)

tp->t_delct-- ;

3-42 ISDG

break;

U N IX System V /386 lnstallable Driver
Implementation

Device Drivers

This section describes the UNIX System V /386 Installable Driver (ID)
scheme, which allows users to add drivers for peripheral devices to their sys
tems. This section provides an overview of what software developers are
required to do when building an installable device driver package.

ID Overview

The ID provides an automatic method of installing device drivers using
the installpkg command delivered in the Base System Package of the UNIX
System V /386 Foundation Set. Driver developers must use the C Program
ming Language Utilities (CPLU) delivered in the C Software Development Set
of the UNIX System V /386 Software Development Set to compile their driver
and build installation scripts for delivery with the device driver (floppy
diskette) package. The section " Device Driver Development Methodology "
provides step-by-step procedures on how to write, compile, debug, and finally
package the device driver.

Users will be exercising ID when adding new peripheral boards to their
system. Performing ID is usually referred to as system reconfiguration and in
the past has required users to know the internals of many system files
(/etcjsystem, jetcjmaster, io.mk, space.h, the config command, etc.) . The
ID builds a new UNIX System at user level, then has the user reboot the sys
tem using the new kernel as is currently done on many other UNIX System
implementations.

The ID provides a packaging strategy applicable to vendor-supplied
drivers . Driver writers must develop an add-on driver software package (DSP)
similar to those for applications programs. The DSP will consist of a driver
object module, an install script, a remove script, and device-specific entries for
system configuration, initialization and shutdown files, as well as space alloca
tion entries normally associated with space.h on earlier UNIX Systems.

The ID allows replacement of " base " drivers via a special DSP called an
Update Package(UDSP). Base drivers are defined as those drivers delivered
with the UNIX System V /386 Base System Set software.

DEVICE DRIVERS 3-43

Device Drivers

Controller Interface Basics

1/0 devices connect to controllers that are either resident on the 386
parent board or on a peripheral board. The controller interface generally
requires

• an interrupt line designated by an interrupt vector number (IVN)

• a port address range through which the CPU and device can commun
icate (lOA - 1/0 address)

• an optional address range that references memory (usually dual-port
RAM, as mentioned in the previous section) on the controller board
(controller memory address (CMA)).

Interrupts

In addition to the 80386 processor chip, most 386 computer systems are
outfitted with two Intel 8259 peripheral interrupt controllers (PIC), each with
8 interrupt lines. The 16 interrupt ports of the controller are assigned as fol
lows:

3-44 ISDG

interrupt

number

0

1

2

3
4

5
6

7
8
9

1 0

1 1

12

1 3

1 4

15

buss

pin

IRQ3

IRQ4
IRQ5

IRQ6
IRQ7
IRQ8
IRQ2
IRQ10

IRQ1 1

IRQ12

IRQ13

IRQ14

IRQ15

ClCilllDil

name

clock

keyboard

game port

can2

cx:m1

hard disk

floppy

printer

Device Drivers

devices an 386 systems
us:in] interrupt

1/100 second timer

keyboard

expansion PIC (see IVN 9)

serial port 2

serial port 1

not used

integral floppy controller

integral parallel port

real time clock

not used (wired to IVN 2)

not used

not used

not used

iAPX387 math co-processor

integral hard disk
controller

not used

In the above table, IVN 0 through 7 have a 11 common name 11 that is
derived from the PC/XT architecture. Most 386 systems have a PC/ AT archi
tecture with 15 available interrupts. IVN 2 is used to connect the second PIC;
however, peripheral boards that use IRQ 2 can still be used by configuring the
device driver to expect IVN 9. Note that with the expansion PIC installed, the
hard disk is moved to IRQ 1 4, freeing up IRQ 5 for PC/XT add-on devices .

Most devices that require an interrupt are hardware strappable to 2 or
more different interrupts to allow the user some flexibility in installation.

1/0 Addresses and Controller Memory Addresses

Each controller requires an lOA and possibly a CMA. These address
regions must be unique and not overlap with any other device's address
regions. Your Hardware Technical Reference Manual should show that lOA
and CMA addresses are permanently assigned to the above list of devices and
to some optional peripheral devices . I f a device on the parent board is not
configured in to a kernel, the in terrupt is freed up, but the lOA and CMA

DEVICE DRIVERS 3-45

Device Drivers

remain assigned to that device and should not be used by any new device.

A quick look at the file fetcfconffd.dfsdevice shows assignments for the
base system. The IVN, starting and ending lOA and CMA addresses for the
UNIX System V /386 without any added peripheral boards, is as follows (lOA
and CMA values are in hexadecimal):

Device Prefix IVN SIOA EIOA S(]otA EDtA

Serial p:>rts asy 4 3£8 3ff 0 0

asy 3 2£8 2ff 0 0

Floppy disk fd 6 3£0 3£7 0 0

Co-processor : fp 1 3 0 0 0 0

Hard Disk : hd 14 320 32£ 0 0

keyboard: kd 1 60 64 0 0

Parallel Part : lp 7 378 37£ 0 0

Real Tllne Clk . : rtc 8 0 0 0 0

DMA Controller Operations

Most 386 computer systems have two Intel 8237 A DMA Controllers,
which provide seven channels to transfer data directly to and from memory
without CPU involvement. The DMA Controller hardware should be
described in your Hardware Technical Reference Manual . The DMA controll
ers are accessed through a collection of control registers mapped to lfO (Port)
addresses. The following table is a summary of DMA channels and their
usage in the base system. Examine the file fusrfincludefsysfdma.h for addi
tional information on control register locations used to initiate DMA.

Ch 0: spare
Ch 1 : spare
Ch 2: floppy
Ch 3: spare
Ch 4: unusable - cascade from chip 1
Ch 5 : spare
Ch 6: spare
Ch 7: spare

3·46 ISDG

Device Drivers

Channels 0-3 support 8-bit transfers, while channels 5-7 support 1 6-bit
transfers. These 1 6-bit channels can transfer up to 1 28K at a time since counts
are in 1 6-bit words instead of 8-bit bytes. The page registers for channels 5 -7
control address bits A1 7-A23 (instead of A1 6-A23); therefore, DMA boun
daries exist at multiples of 1 28K instead of 64K. These 1 6-bit channels cannot
transfer data on odd byte boundaries.

User Interface

The ID allows a user to install or remove device drivers using installpkg
and removepkg. The installpkg command installs a DSP from a floppy
diskette onto UNIX System V /386 and initiates automatic procedures to
reconfigure the kernel . The removepkg command allows the user to select
which package to delete. It then removes the DSP from UNIX System V /386
and reconfigures the kernel without the driver.

The displaypkg command displays any software packages that the user
has installed. DSPs are treated identically to other UNIX System V /386
Software packages. Device drivers that are pre-installed on the system by the
Base System Set floppy diskettes are not displayed by this command.

Each add-on DSP must contain an Install script that will

• optionally prompt the user for any necessary IVN, lOA or CMA infor
mation required due to hardware re-strapping

• check for any conflicts with other drivers (for example, IVN, lOA, or
CMA conflicts)

• reconfigure the kernel with the new driver

User Privileges

The ID uses the same installation rules as any other UNIX System V /386
add-on software, that is, the user needs root permissions. A user must be
super-user to install DSPs.

Interactions with Other UNIX System V /386 Processes

The ID affects other users or processes no more than installing or remov
ing other software with the exception that the final step is to reboot the sys
tem. It is, therefore, not advisable for another user to be logged on via a
remote terminal while installing or removing a DSP.

DEVICE DRIVERS 3-47

Device Drivers

Number of Installed Drivers

Due to limited available interrupts, as defined in the section 11 Interrupts, 11
there is a limit to the number of conventional peripheral devices which can be
installed on a UNIX System V /386. Additional drivers could, however, be
installed for devices not requiring interrupts, for software pseudo-devices, or
for devices sharing interrupts. (See the section 11 Sharing Interrupts and DMA
Channels. 11)

As the table in the section 11 Interrupts 11 shows, there are several AT -type
interrupts available but few XT -type. In that list, IVN3 is assigned to the
add-on serial port (COM2}, and IVN 7 is assigned to the integral parallel port
(lineprinter interface). If you are installing hardware/driver software on a
UNIX System V /386 that does not have a COM2 interface configured or does
not use a lineprinter, it is possible to unconfigure one of those devices, thus
freeing the respective IVN.

UNIX System V /386 Modifications for ID

The general architecture of the kernel components relating to device
drivers and the contents of some system files was modified slightly for ID to
allow UNIX System V /386 users to easily add device drivers to their systems.

Master File

In earlier U NIX Systems, the master file contained information about a l l
1/0 devices that can be configured into a kernel . It also listed tunable param
eters and their default values. For UNIX System V /386, the master fi le has
been split into

• mdevice - the master device file

• mtune - the master tunable parameter file

The format of mdevice and mtune are shown in the manual pages in
Appendix A of this document and in the Programmer's Reference Manual .

3·48 ISDG

Device Drivers

System File

The system file represents a configuration from which a kernel is config-
ured . The system file has been split into

• sdevice - system device file

• stune - system tunable parameter fi le

• sassign - file that specifies the pseudo-devices root, pipe, swap and
dump

The format of sdevice and stune are shown in the manual pages in
Appendix A of this document and in the Programmer's Reference Manual.

space.c

The file jusrjincludejsysjspace.h traditionally contains data structure
declarations required by the kernel and device drivers . The amount of storage
allocated for each driver data structure is dependent on the number of sub
devices configured for a particular device . For UNIX System V /386, since
there was a need to modularize storage allocation and since space allocation
should rightly be done in a fi le, the file jusrjincludejsysjspace.h has
become a collection of space.c files stored in the jetcjconf directory.

These space.c files determine how much storage is required for the main
body of the kernel and each of the added drivers.

These files are compiled and linked into the kernel during reconfiguration .

ID Directory Structure

The root directory for the ID software is jetcjconf. All files and direc
tories are writable only by root so that users cannot inadvertently modify any
thing. The ID directory contains the following subdirectories:

• bin - Stores all ID commands.

• cf.d - Contains configuration-dependent files.

0 stune, sassign, sdevice, mdevice, mtune - Equivalent to the mas
ter and system files of earlier UNIX Systems. The mdevice file is
built from the Master modules of the installed DSPs.

DEVICE DRIVERS 3-49

Device Drivers

D mfsys, sfsys - File system type information (see the mfsys(4) and
sfsys(4) pages in the Programmer's Reference Manual) .

D vuifile - Defines memory management definitions for the kernel .

D init.base - The base system part of fetcjinittab.

D Temporary files used by the reconfiguration process:

conf.c
config.h
direct

fsconf.c
vector.c
unix

kernel data structures and function definitions
kernel #defines for device and system parameters
listing of all driver components included in
the build
File system type configuration data
Interrupt vector definition
The UNIX Operating System kernel; eventually to be
linked to junix.

These temporary files are created and used by the ID reconfigura
tion software, then deleted. If you run the fetcjconf/binfidconfig
command manually, it will create these files for your review.

• sdevice.d - Stores one file for each type of device (that is, controller
board or pseudo-device). The file name will be the same as the DSP
internal name. Each file contains all of the system configuration entries
pertaining to that device. Generally, this file contains a single line
entry . (A device might have two entries in the system configuration if
there were two devices of that type installed in the system.) These files
are copies of the Systems modules of each installed DSP. When con
catenated together, these files comprise the file fetcjconfjcf.djsdevice.

• pack.d - Contains one directory for each DSP installed on the system.
The directory name will be the same as the DSP internal name. The
directories in pack.d contain the Driver.o and space.c files for the
drivers. This directory can also contain a stubs.c file . stubs.c files are
often used as 11 place holders 11 for references the kernel needs to resolve
for code that has been uninstalled. These files are taken from the
Driver.o, Space.c, and Stub.c files of a DSP. Note the change in capi
talization for Stubs.c and Space.c . A DSP must name these files start
ing with an uppercase letter. The ID tools will install the files into
fetcfconfjpack.d using the lowercase forms.

3·50 ISDG

Device Drivers

• rc.d - Contains startup procedures for each of the installed DSP's.
There will be one file per device startup procedure, and the file's con
tents is to be taken from the Rc module of the DSP. The names of the
files will be the same as the DSP's internal names. The contents of this
directory will be linked to jetcjidrc.d whenever a newly configured
kernel is first booted.

• sd.d - Contains shutdown procedures for each of the installed DSPs.
There will be one file per device shutdown procedure, and the file's
contents is to be taken from the Shutdown module of the DSP. The
names of the files will be the same as the DSP's internal names. The
contents of this directory will be linked to jetcjidsd.d whenever a
newly configured kernel is first booted.

• node.d - Contains device node definitions (special files in jdev) for
each of the installed DSPs. There will be one file per device driver,
and the file's contents is taken from the Node module of the DSP. The
file names will be the same as the DSP internal names. The contents
of this directory is the input to the idmknod command.

• init.d - Contains jetcjinittab entries for each of the installed DSPs.
There will be one file per device driver, and the file's contents is taken
from the Init module of the DSP. The file names will be the same as
the DSP internal names. The contents of this directory is the input to
the idmkinit command. (It should be noted that this directory may
also contain jetcjinittab entries other than those associated with
DSPs.)

• mfsys.d - Stores one FS type master data file for each file system type
add-on. These files are taken from the Mfsys module of a DSP. When
concatenated together, these files comprise the file
jete/ conf/ cf.djmfsys.

• sfsys.d - Stores one FS type system data file for each file system type
add-on. These files are taken from the Sfsys module of a DSP. When
concatenated together, these files comprise the file
jetcjconfjcf.djsfsys.

Device #defines Generated by the Configuration Process

The configuration process produces a file config.h that contains device
parameters in the form of #defines that specify the number of units, interrupt
vectors used, and other pertinent information. For example, a device driver

DEVICE DRIVERS 3·51

Device Drivers

that controls several subdevices may not know how many subdevices are
actually installed in the system but can determine the number by including
config.h and referencing the proper #define. The parameters generated in
config.h are prefixed with the device handler prefix in all capital letters as
shown below:

Per device defines :

#define PRFX Set to 1 if device is configured.

#define PRFX_CNTLS Number of entries in System (sdevice)

#define PRFX_UNITS Number of subdevices (see below) .

#define PRFX_CliAN IMA channel used (- 1 if none) •

#def:ine PRFX_TYPE Interrupt vector type used .

Per oontroller defines (PRFX_O represents the first oontroller ,

followed by PRFX_1 , etc .

if nore than one oontroller is :installed) :

file .

#def:ine

#def:ine

#def:ine

PRFX_O

PRFX _ 0 _VEX:"!'

PRFX_O_SIOA

Set to 1 if oontroller 0 is configured .

Interrupt vector used (0 through 1 5) .

Starting Inplt/Output Address .

#def:ine PRFX_O _EIOA

#define PRFX_O _SCMA

#def:ine PRFX_O_EX:MA

#def:ine PRFX_O _DEVNM

Ending Inplt/Output Address .

Starting Controller Menm:y Address .

Ending Controller Menm:y Address .

Device number (sane as PRFX_O_VEX:".I' for

interrupt driven devices) .

It is important to note that since the device driver is delivered as an object
module (Driver.o), the #define cannot be referenced therein . The correct way
to access the value is in the DSP's Space.c file by defining a variable which is
assigned the value of the #define. The driver object module can then simply
reference the variable.

Commands for Installing Drivers and
Rebuilding the UNIX Operating System Kernel

The DSP Install script must use calls to idcheck, idinstall, and idbuild.
Manual pages for these commands are provided in Appendix A of this

3-52 ISDG

Device Drivers

document and in the User'sjSystem Administrator's Reference Manual . Sample
Install and Remove scripts, which use these commands, are provided in
Appendix E.

Ide heck

This command is used to obtain selected information about the system
configuration. The command is designed to help driver writers determine if a
particular driver package is already installed or to test for interrupt vectors,
device addresses, or DMA controllers already in use. It is anticipated that it
will be used in Install scripts that will test for usable IVN, lOA, and CMA
values, then instruct the user to set particular switches or straps on the con
troller board.

ldinstall

The idinstall command is called by the DSP's Install and Remove
scripts, and its function is to install, remove, or update a DSP.

ldbuild Command

This command is a shell script that comprises the reconfiguration
processes. Idbuild

• Informs the user of the approximate length of time to build the kernel .

• Concatenates the files in jetcjconfjsdevice.d to produce the sdevice
file .

• Concatenates the files in fetcfconfjmfsys.d to produce the mfsys fi le .

• Concatenates the files in fetcjconfjsfsys.d to produce the sfsys file .

• Executes the idconfig and idmkunix commands.

• Sets a lock file so that on the next system shutdown,
fetcfconfjd.dfunix will be linked to funix. On the next system
reboot, the same lock file will enable the new driver configuration
(nodes in fdev, jetcfinittab, etc .) to be instal led.

DEVICE DRIVERS 3-53

Device Drivers

The Driver Software Package

This section defines the contents of the Driver Software Package (DSP),
and Appendix E contains an example package. Each DSP must have two
" names. 11 One is the 11 external name 11 that the user will see when the pack
age is installed. The second is an 11 internal name " that the kernel uses to
identify the device. More information is provided about these names below
and in the section 11 Driver Development Procedures. "

The DSP is to be delivered on an installation floppy diskette, as described
in Chapter 2 of this Guide. There you will find general descriptions of the
files and information on ordering and contents. The driver writer must
prepare a DSP consisting of the files (termed modules) described in the fol
lowing sections.

Driver.o (required)

This is the driver object module that is to be configured into the kernel.
This object module must be compiled using the native C Programming
Language Utilities (CPLU) delivered in the C Software Development Set of the
UNIX System V /386 Software Development Set. The section " Device Driver
Development Methodology 11 provides procedures for coding, compiling, and
debugging the driver object module.

Master (required)

This module contains a one-line description of the device being installed.
This module will be added to the ID mdevice file. The syntax of this line
appears in the mdevice(4) manual page in Appendix A of this document and in
the Programmer's Reference Manual .

Fields 6 and 7 of the Master entry should be set to zero. These are the
driver's character and block and character major device numbers. These
values are set by ID when the Master entry is added to the kernel configura
tion.

System (required)

When a DSP is installed, this module is added to the files which will be
included in the kernel the next time the system is rebuilt. During reconfigura
tion, �he System modules for each device are concatenated together to form
the ID file sdevice. The syntax of this line appears in the sdevice(4) manual

3-54 ISDG

Device Drivers

page in Appendix A of this document and in the Programmer's Reference
Man ual.

Space.c (optional)

The file fusrfincludefsysjspace.h traditionally contains data structure
declarations required by the kernel and device drivers. The amount of storage
allocated for each driver data structure is dependent on the number of sub
devices configured for a particular device. For UNIX System V /386, each
driver can have its own Space.c file containing configuration dependent-data
structures.

As an alternative to providing Space.c, the driver writer could preallocate
data in the driver, eliminating the need for this file. This is useful when

• the amount of storage required by the driver is static

• the difference in storage between the minimum and maximum number
of subdevices that can be configured for that device is small

Node (optional)

This file is used to generate the device's " special files " in the fdev direc
tory on the next reboot after the system has been reconfigured. Node con
tains one line for each node that is to be inserted in fdev. The fields can be
separated by spaces. The syntax of this line is as follows:

Field 1 : DSP internal name

Field 2 : name of node to be inserted

Field 3 : ' b ' or ' c ' (block or character device)

Field 4 : minor device nmnber

exanple

DSF-mternal-name nodeO c o
DSF-mternal-name node 1 c

See the idmknod(l M) manual page in Appendix A of this document and in
the User'sjSystem Adminis trator's Reference Manual.

DEVICE DRIVERS 3-55

Device Drivers

lnit (optional)

Some drivers require entries in fetcfinittab to make them operational.
An inittab entry is of the following form (see inittab(4) in the Programmer's
Reference Manual) :

id : rstate : actian: process

Each line of the init module must be of the format action :process, or
rstate:action :process. The id and rstate field will be generated by ID (if your
entry has an rstate field it will be used; otherwise, 11 2 11 will be used). The
new inittab entries will be added to fetcfinittab on the next reboot after the
system has been reconfigured. For more information on the init module for
mat, see the idmkin it(l M) manual page in Appendix A of this document and
in the User'sjSystem Administrator's Reference Manual .

Rc (optional)

This module is an initialization file that is executed when the system is
booted. The new Rc file will be placed in the directory jetcfidrc.d on the
next reboot after the system has been reconfigured and will be invoked on
every system reboot thereafter upon entering init level 2 (see the init(l M)
manual page in the User'sfSystem Administrator's Reference Manual) . When
creating this module the file permissions must allow execution by root.

Shutdown (optional)

This file is executed when the system is shut down. The new shutdown
fi le will be placed in the directory fetcfidsd.d on the next reboot after the
system has been reconfigured and will be invoked on every system shutdown
thereafter upon entering init state 0. When creating this module the file per
missions must allow execution by root.

Name (required)

This module contains the 11 external DSP name, 1 1 which is the name
displayed by the displaypkg command. The package name should be fairly
specific to reduce the chance of conflicting with other packages .

3-56 ISDG

Device Drivers

If the DSP contains just a device driver, then the name Device_Name
Driver might be a good choice. I f, however, the driver is part of a package
that includes a driver, communication protocols, and user commands to access
a network, for example, then perhaps the word " driver " shouldn't even be
used . Something like Net_name Communications Package may be more
appropriate.

The internal name should be derived from the external name for naming
jdev entries and for use by the Install script.

The internal name must be the same as the name appearing in field one of the
Master module. The internal name must uniquely identify the driver and be
eight characters or less. As an example, the Phone Manager Device Driver
might have an internal name of phone. See the section " Driver Development
Procedures " for elaboration of the internal name.

Files (required)

The DSP may contain commands, programs, or data files in addition to
the ones listed as ID modules directly. It is the responsibility of the Install
module to install or make use of these files. The Files module must contain a
full path name of where these additional fi les are to be installed.

Install (required)

This module

• Installs a l l of the fi les that are listed in the module Files. It does not
install any of the ID modules.

• Invokes the ID command idinstall with the -a option and passes it
one -argument, the internal DSP name. This will move the contents of
the DSP to the proper directories.

• I nvokes the ID command idbuild.

Remove (required)

This module

• Removes any commands, programs, or data fi les installed by the
install modu le .

DEVICE DRIVERS 3-57

Device Drivers

• Calls the idinstall command with the -d option and passes it one
argument, the internal DSP name. This will remove the DSP modules.

• Invokes the ID command idbuild.

Size (required)

The contents of the Size file should be the number of blocks required to
install the DSP. A block is defined as 5 1 2 bytes . This file is to be used by the
installpkg program to determine if enough free disk space is available to add
the driver package. At installation time, if insufficient disk space exists to
install the package, the user will be alerted and the installation aborted. In
addition to the space required to store the user commands and files the pack
age is to install, a large amount of temporary space is required to reconfigure
the kernel. The space required in the root (" / ") file system can be roughly
calculated as the size of the current UNIX Operating System kernel image
(/unix) plus 400 blocks. I f the system has a jusr file system, approximately
400 blocks should be specified. An example of a Size file is as follows
(assuming a typical junix is 1 000 blocks):

R001'= 1400

USR=400 .

Mfsys (optional) and Sfsys (optional)

These files are new to UNIX System V /386 Release 3.2 and specify the
addition of file system types to the UNIX Operating System kernel. Addi
tional information can be obtained from the mfsys(4) and sfsys(4) manual
pages in Appendix A of this document and in the Programmer's Reference
Manual .

Summary of Modules

Table 1 lists the modules that may appear in a DSP. The only restriction
on ordering the files is that the Size file must be on the first floppy diskette of
the DSP. See the section " Special Installation Files " in Chapter 2 for more
information on installation packaging.

3·58 ISDG

Module

Size
Name
Install
Remove
Files
Driver.o
Master
System
Space.c
Node
I nit
Rc
Shutdown
Mfsys
Sfsys

Mandatory/Optional

M
M
M
M
M
M
M
M
0
0
0
0
0
0
0

Device Drivers

Definition

Disk space requirements to install DSP
DSP name
Installation script
Remove script
Target paths for commands/data files
Driver object file
Master file entry
System file entry
Driver space allocation file
Special file entries in jdev
jetcjinittab entries
Executed when entering init-level 2
Executed when entering init-level 0
File system type master data
File system type system data

Table 1 . Components of Driver Software Package

Base System Drivers

An examination of jetcjconfjcf.djmdevice will show the installed DSPs
on UNIX System V /386. A partial list of the base system device drivers and
software modules is as follows:

DEVICE DRIVERS 3·58

Device Drivers

Hardware Device Drivers

asy Serial Ports Driver
fd Floppy Disk
hd Hard Disk
kd Keyboard
lp Line printer (Parallel Port)
rtc Real Time Clock

Software Modules

ipc
I dO
mem
msg
prf
sem
shm
sxt
xt

Interprocess Communication (IPC)
TTY Line Discipl ines
Memory 11 driver 11

IPC Messages
Kernel Profiler
IPC Semaphores
IPC Shared Memory
Shell layers
Layers

The above list does not include several drivers and software modules
being packaged as add-ons such as Streams and RFS (Remote File Sharing).
Drivers in the base system are installable drivers that have been delivered in
the Base System Package of the UNIX System V /386 Foundation Set, rather
than separate DSPs. They are just like other DSP's except that there are no
Install or Remove scripts for the base drivers .

The displaypkg and removepkg commands wil l not show these base
drivers, not only to reduce clu tter in those menus but also since it would be
unreasonable to remove the base drivers . Although base drivers cannot be
removed, they can be replaced with new drivers by insta l l ing an update driver
software package (UDSP).

Update Driver Software Package

This package is specifical ly designed to replace base system drivers . A
UDSP must contain the following fi les:

3·60 ISDG

Device Drivers

• Those modules being replaced. Through special options of the ID
commands used to install drivers, the old base driver's modules can be
overlaid, removed, or supplemented . Those driver modules that are
not changed do not have to be redelivered.

• The Install module. This module follows the same rules as for other
driver packages except that it calls idinstall with the -u option.

• The Name module. The external name should include the word
" update. " For example, to replace the floppy disk driver with a new
release, Floppy Disk Driver Update would be an appropriate name.

• The Remove module. This module must print the message " Can not
remove base driver " and return with an exit code of 1 .

This scheme allows the user to install an UDSP just as any other I D pack
age. When the user later uses the displaypkg command, the updated driver
will be listed as Device_Name Driver Update Package. The removepkg
menu will display the same entry, but if the user tries to select the updated
driver, the Remove script defined above will abort the removal . If a subse
quent update to that same driver is ever developed, the requirements for the
UDSP are exactly the same as those itemized above for the first update. The
second update will simply be loaded on top of the first. The Name file and
the Remove file should remain the same in the second update package. This
will cause the removepkg and displaypkg command results to also remain
the same.

I t should be kept in mind that this update scenario is only for use with
base drivers. If an add-on driver ever has an update, i t is expected that the
whole package previously installed will be removed, and the new release then
re-installed.

Installation/Removal Summary

The ID commands and the DSP's modules defined above will be used
together to rebuild and execute a new UNIX Operating System kernel . The
step-by-step procedure to install, reconfigure, and execute a new kernel is as
follows:

DEVICE DRIVERS 3-6 1

Device Drivers

Installing a DSP

1 . The User executes installpkg.

2 . installpkg reads the floppy diskette contents and executes Install .

3 . Install will

Optionally prompt the user to determine hardware {lOA or IVN)
strappings. This may include calling idcheck to test the usability
of the IVN or lOA.

Execute letclconflbinlidinstall with the -a option . This com
mand will

Move the DSP components to target directories
Update the file letclconflcf.dlmdevice

Execute letclconflbinlidbuild. This command will

Execute letclconflbinlidconfig
Execute letclconflbinlidmkunix

Install any user commands, menus, or files.

4 . Upon return to installpkg, the script will call
I etc I conf lbinlidreboot.

5 . After the user confirms idreboot and presses RESET:

3-62 ISDG

The init program is the first user-level program executed after
reboot; letclinittab will execute letclconflbinlidmkenv. This
command tests to determine if this is the first boot of a new ker
nel. If so, the command will

Link letclconflrc.df* to letclidrc.d
Link letclconflsd.df* to letclidsd.d
Execute letclconflbinfidmkinit
Execute jetclconflbinfidmknod
Continue init state 2 initialization

The system boot will then continue normally.

Device Drivers

The process of removing a DSP is very similar to this scenario with
the exceptions that in step 1 the user invokes removepkg, and in step 2,
the Remove script will be deleting commands and files, and the idinstall
command will be called with the -d option to delete the DSP. See the
Opera tions/System Administration Gu ide for a detailed description of this
process.

Tunable System Parameters

As mentioned earlier, there are two files which contain kernel tunable
parameters: fetcfconffd.dfmtune and fetcfconffd.dfstune. These files
can have a profound effect on system performance, and occasionally an add
on device driver or kernel software module may require you to modify an
existing parameter or define a new tunable parameter that is accessible by
other add-on drivers.

Appendix A of this document and the Programmer's Reference Manual pro
vide manual pages for mtune(4) and stune(4). As these pages show, the
mtune file defines a default value along with a minimum and maximum value
for each kernel parameter. An add-on package should never modify a prede
fined system parameter in the mtune file.

Modifying An Existing Kernel Parameter

The stune file is used to modify a system-tunable parameter from its
default value in the mtune file. Not every system-tunable parameter is con
tained in the stune file; only those that are to be set to a value other than the
system default need be entered there. Although the base UNIX System
V /386 defines only a few values in stune, other add-on packages may have
added additional entries into stune. Therefore, if the driver package you are
building requires modifying a parameter value, the idtune command should
be used. See the User'sfSystem Administrator's Reference Manual for the
manual page that describes idtune(I M) . This command will take individual
system parameters, search the stune file, and modify an existing value if
already there or add the parameter to stune if not defined.

DEVICE DRIVERS 3-63

Device Drivers

The value selected must always be within the minimum and maximum
values in the mtune file .

Defining a New Kernel Parameter

If the DSP you are developing is part of a group of kernel software com
ponents, there may be a need to define configurable parameters that other
packages can reference. If this is the case, the Install script can append new
tunable parameters to jetcjconfjcf.djmtune by defining lines in the format
shown in the mtune(4) manual page in the Programmer's Reference Manual .
The DSP Remove script must remove these entries if the user chooses to
remove the package. When modifying mtune, be careful that you do not
modify or delete other values.

Reconfiguring the Kernel to Enable New
Parameters

After the stune andfor mtune files are modified, the system must be
reconfigured using the idbuild command. I f you are modifying the parameter
as part of adding your DSP and your Install script already invokes idbuild,
then, of course, no additional build is required.

Device Driver Development Methodology

We have covered many of the kernel architectural and driver design
details you need to know to write a UNIX device driver. Let's now talk about
how you actually write the code and compile and package a driver. To
accomplish these procedures, you must install the C Programming Language
Utilities (CPLU) delivered in the C Software Development Set of the UNIX
System V /386 Software Development Set.

As with any C program, you must compile, link edit, and execute the
driver. Since the driver is part of the Kernel, it must be link edited together
with the Kernel and the rest of the device drivers. The following can be used
to create a driver object module suitable for the ID:

cc -c Driver . c

You can call the driver source by any name you wish as long a s the object

3-&4 ISDG

Device Drivers

module is renamed Driver.o for later installation . If your driver is composed
of several driver source files, they must each be compiled as above, then com
bined using ld -r. The resultant object module must be renamed Driver.o.

The 10 requires that the driver object file be packaged on an installable
floppy diskette along with the other modules described earlier. While you are
initially developing and debugging the driver, it is not necessary to keep writ
ing floppy diskettes and re-installing everything each time you make a driver
modification. The following section presents a methodology for driver
development, debugging, and testing without the use of floppy installation
packages.

Driver Development Procedures

Many of the steps that follow require you to modify files and directories
owned by root. You must therefore be logged in as root or execute as the
super-user to develop and debug device drivers. Throughout this section, the
trace driver provided in Appendix C is used as a model .

1 . Establish a device " Internal Name. " This can be up to eight charac
ters long and must start with a letter, but it can have digits or under
scores after the first letter.

I t is the name that the ID uses to identify the device. For the trace
driver, the name is " trace . " From now on let's call this
DEV_NAME. For the UNIX System V /386 10 implementation, the
following name definitions based on the internal name are required:

D Field 1 of the Master file . This must be DEV_NAME.

D Field 4 of the Master file . This is the driver entry point (func
tion) prefix. I t is also called the " handler " field. I t can be up to 4
characters . It is desirable to make this identical to field 1 if
DEV _NAME is 4 characters or less. For the trace driver this pre
fix is " tr . "

D Field 1 of the System file. This must be DEV_NAME.

D " Special file " names listed in the Node module. These should
be DEV _NAMEO, DEV _NAME I, etc., unless other issues, like
user perception of the node name, are important. Any numbering
for subdevices should match the minor device of that node. The
trace driver package uses traceO which causes ID to generate

DEVICE DRIVERS 3-65

Device Drivers

jdev jtraceO on the first boot of the new Kernel.

0 Function names inside your driver. The function names must use
the device prefix defined above. The trace driver uses tropen(),
trclose(), trread(), etc.

0 External variables and internal functions used inside the driver.
These should use the prefix defined above or prefix followed by
an underline. The trace driver uses 11 tr_ 11 •

2 . Manually create a System entry . Go to the directory
jetcjconfjsdevice.d, and create a file of name DEV_NAME contain
ing the System information . The trace driver uses the following:

trace Y 0 0 0 0 0 0 0

3 . Manually create an mdevice entry. Since the I D assigns block andjor
character major numbers when the package is installed, your Master
file is required to have zeros in fields 5 and 6. Although you could
manually edit jetcjconfjcf.djmdevice and assign block and character
major numbers, the best approach is to put a file called Master in
your local directory (say jtmp) and execute the command:

/etc/canflbinlidinstall -a -m -k DE.V_NAME

This says add (-a) a Master entry (-m). Watch out! The Master file in
your local directory will be removed by the idinstall command unless
you use the -k option . The trace driver uses the following:

trace ocri ioc tr 0 0 1 - 1

Once idinstall adds the Master entry, examine
jetcjconfjcf.djmdevice and note the block andjor character major
number.

4 . Create a file in jetcjconfjnode.d to tell the ID to create device special
files on the next system boot. The file should be named
DEV _NAME and conform to the Node module format. For the trace
driver the Node module is as follows:

3-&& ISDG

Device Drivers

trace traceO c 0

5 . Create jetcjconfjinit.d, jetcjconfjrc.d, and jetcjconfjsd.d entries if
appropriate. This step can probably wait until debugging has pro
ceeded.

6 . Create a directory called jetcjconfjpack.dfDEV.-NAME. Put
Driver.o and Space.c there (if you need them).

7 . A t this point, i t would b e a good idea to make a copy o f your current
UNIX Operating System kernel . Execute the following:

cp /l.mix /mrlx .bak

8 . Manually execute the jetcjconfjbinjidbuild shell script. This will
run a configuration program and try to link edit your new driver into
the Kernel . You will get a 11 time to rebuild UNIX System 11 message
followed either by a 11 UNIX System has been rebuilt 11 message or by
error messages from the configuration program or link editor.

If you get errors, correct them and repeat the above step. If the Ker
nel was built correctly a new UNIX System image will have been
created in the Jetcjconfjcf.d directory. You can now shut the system
down and reboot. Running jetcjshutdown will cause the system to
enter init state 0, and the new kernel in jetcjconfjcf.d will automati
cally be linked to junix. On the next boot, if you specify junix on
the boot : prompt, the new kernel will execute, and upon entering
init state 2, the new device nodes, inittab entries, etc. , will be
installed.

9 . When the system comes up, test your driver.

Emergency Recovery (New Kernel Will Not Boot)

There is a possibility that the Kernel will fail to boot if your driver con
tains a serious bug. This can be due to a panic() call that you put in your
driver (see the next section) or some other system problem. If this happens,
you should reset your system and boot your original kernel that you hopefully
saved as recommended above. To do this, reset your machine, and when you

DEVICE DRIVERS 3-67

Device Drivers

see the Boot:ing UNIX System . . . message, quickly strike the keyboard space
bar to interrupt the default boot. When the boot prompt appears, type
Junix.bak or whatever you named your old kernel. I f you did not save a
copy of your kernel or some other disaster occurred, you can recover the sys
tem using the following emergency procedures to put a bootable Junix image
back on the hard disk :

1 . Insert Floppy Diskette # l of the Base System Software Set and push
the RESET button on the front panel, or power the system down and
then back up again .

2 . When the prompt Please press <RETURN> when ready to install

the UNIX System appears, press to exit the installation pro
gram.

You are now executing a floppy-bootable UNIX Operating System
kernel . This is not a standard way to run the system. I t should be
used for emergency procedures only.

3 . Execute the following commands:

fsck -y /dev/dsk/Os 1

nount /dev/dsk/Os 1 /mnt

cp /tmix /mnt/tmix
unount /dev/dsk/Os 1

Remove the Floppy Diskette.

check the hard disk
nount the hard disk
oopy a hard disk Kel:nel

Uill'IO\.mt the hard disk

Press the RESET Button or power down and then back up again .

The system should now boot normally with a standard foundation
Kernel . Your new driver and any other drivers you had installed on
your system will not be included in Junix even though they may
appear in the displaypkg output. This can be corrected by removing
your driver and executing jetcjconfjbinjidbuild. If that fails, the
packages should be removed and re-installed.

This procedure can also be useful if other system files are damaged inad
vertently while debugging your driver. There are several reasons your system
may fai l to boot properly or not let you log in after it has booted. For exam
ple, a corrupted password or inittab file could prevent console logins.

3-68 ISDG.

Device Drivers

Since Floppy Diskette # l of the Base System Software Set software con
tains a defaul t jetcjpasswd, jetcjinit, jetcjinittab and other critical files,
you can copy the default file from the floppy diskette to the root file system of
the hard disk using the procedures above. Obviously, user logins you have
added to jetcjpasswd or other system changes you have made since instal
l ing the original base system will be lost when you overwrite the corrupted
file with the floppy diskette default file.

DEVICE DRIVERS 3-69

Device Drivers

Driver Debugging

Kernel Print Statements

There are, of course, limitations in debugging and testing device drivers.
In the absence of a Kernel debugging tool, print statements inside the driver
are the primary method used. Printf() calls made inside the Kernel will
appear on the UNIX System V /386 monitor (/dev ;console). Note that this
printf() is not the same printf in section 3 of the Programmer's Reference
Manual . It has identical syntax to printf(3), but it only supports print options
byte, hexadecimal, character, decimal, unsigned decimal, octal, hexadecimal
and string (option variables b, c, d, u, o, x, and s). The use of printf() is men
tioned for historical purposes. A new general kernel error utility called
cmn_err() should be used in newly written drivers. See the Device Driver
Reference Manual .

Since the print statements are written by the Kernel, there is no way to
redirect the output to a file or to remote terminal . Using print statements also
modifies the timing of driver code execution, which may change the behavior
of problems you are investigating.

Print statements in the driver can be made more efficient by using an ioctl
to set one or more levels of debugging output. This way you can write a sim
ple user program to tum the print output on or off as needed. The game port
driver in Appendix B shows how to do this.

Sometimes kernel print statements scroll by too quickly to read . There is
a limited kernel buffer called putbuf that records all kernel printf's. There are
several ways to later retrieve this data:

1 . Use the crash command. Try the following command after executing
jetcjcrash:

ad -a putbuf 2000

You can examine the crash (lM) manual page in the User'sjSystem
Administrator's Reference Manual for more information.

3·70 ISDG

Device Drivers

2 . Use the built-in kernel console monitor jdev josm. Since the base
system does not have preconfigured jdev josm device nodes, you
should make one:

0 Create a file named jetcjconfjnode.djosm that contains the fol
lowing:

osm osmO c 0

0 Execute the jetcjconfjbinjidmknod command.

0 Use cat or tail to examine jdev josmO.

The cmn_err() has an option of putting the character data only in pu tbuf
and not having the data appear on the console at all . This is done by preced
ing the text string with a 11 ! 11 • For example:

aun_err (CE_N:n'E, " ! this driver print statement will only go into putllllf , not onto the s=een . ") ;

The Trace Driver

Another useful way to observe driver behavior is by using a trace driver.
Such a driver can be called by your driver to log data. A user program can
then be written to read the trace driver either in real-time or as a postmortem
analysis . Appendix C provides the source code for such a driver which logs
data presented to it by trsave() calls made from other drivers . The trace driver
uses clists (see the earlier section 11 Clists 11) to save these traces. Although this
driver isn't delivered with the base UNIX System V /386, you can compile and
link edit the driver into your system from the source code presented in
Appendix C. Not only will jdev jtraceO be useful for your debugging, but it
may help you better understand how the ID works before you actually write
your driver. The game port driver in Appendix B has some calls to trsave() so
you can see how it is used.

System Panics

If the programmer expects that the driver could enter a state that is illegal,
the driver can halt the system by using the panic() function. For example, if
the driver expects one of three specific cases in a switch statement, the driver
can add a fourth default case that calls the panic() function . The argument to

DEVICE DRIVERS 3-7 1

Device Drivers

the panic() function is a string that will appear on the UNIX System V /386
monitor:

panic("Your system has panic ' ed, DE.V_NAME error ! ") ;

The system will dump an image of memory for later analysis. If the error is
recoverable, the driver should not call panic() . As with printf(), new drivers
should use cmn._err() for all panics as described in the Device Driver Reference
Manual . In the example above the correct syntax would be as follows:

ann_err (CE_PANIC , "Your system has panic ' ed, DE.V_NAME error I ") ;

Taking a System Dump

In the event a panic() occurs, there may be some value in examining the
dump produced by the system. Since UNIX System V j386 uses the same
physical hard disk partition for both " swap " and " dump, " it is important
that you do not reboot to the multi-user state before examining the dump. If
the system reaches multi-user state, the dump may be overwritten by system
paging. To examine the dump you must save the dump image. Since the sys
tem detects an improper shutdown, you will receive a message as follows on
the next reboot:

There may be a system d:unp mem:ny image an the swap device .

Do you want to save it? (y/n) >

Answer ' y ' . When given a selection list o f what media to use for the dump
say 'q' for quad density 1 .2 Megabyte floppy disks. (You will need a number
of blank formatted floppy disks) . Follow the instructions concerning floppy
insertion and removal. When the image is written to a floppy disk, you will
see a message reporting that jetcjldsysdump can be used to copy the dump
off the disk. First, however, you must let the reboot continue its checking and
remounting of the file systems.

3·72 ISDG

Device Drivers

When you see the Console Login: prompt, log in and execute
fetcfldsysdump to take the dump off the floppy diskettes.

1 . First do a df to determine a file system that has at least 8000 free disk
blocks.

2 . Execute ulimit 8000.

3 . Execute ldsysdump file, where file is a file name to hold the dump
image. It should be in the file system with ample room as found in
step 1 .

4 . Follow the instructions and specify " q " for quad density disks. Insert
the floppy disks as directed.

Finally, you can use the crash command to examine the dump as follows:

crash -d file

Consult the crash(l M) manual page in the User'sfSystem Administrator's Refer
ence Manual for information on how to use crash to examine the UNIX
Operating System kernel and user process status at the time of the panic() .
One useful piece of information might be to retrieve the panic() printout and
any other kernel messages that have made their way into putbuf. Use the
crash command " od -a putbuf count " where count is the length of the putbuf
data you wish to examine.

Note that the procedures to examine a memory dump only apply to UNIX
Systems that have completed the dump sequence, usually in response to a
panic(). The prompt that you may see after an improper shutdown only indi
cates that the system was not properly brought down and a dump " may "
exist. If the system is inadvertently powered down or reset, or if your device
driver causes the kernel to hang or go berserk without ever executing a
" panic, " no dump will have been taken, and the above procedures will yield
a large memory image that crash will not be able to interpret. Remember, the
following message applies only when you have properly detected an error and
executed the panic() function inside your driver or when your driver has
caused a system error detected by the kernel or some other driver causing i t to
panic() :

DEVICE DRIVERS 3-73

Device Drivers

There may be a system dump meuory image an the swap device .

Do you want to save it? (y/n) >

At this point, it might be well to repeat the advice stated in the introduction :

Writing a device driver carries a heavy responsibility.
As part of the UNIX Operating System
kernel it is assumed to always take the correct action .
Few limits are placed on the driver by the other parts
of the kernel, and the driver must be written
to never compromise the system's stability.

Building the Driver Software Package (Floppy
Set)

Once you have developed your driver, you may want to package the
driver so that it can be installed on other UNIX Systems. The scheme for put
ting a DSP on a floppy diskette is the same as the packaging used for UNIX
System V /386 software packages you might obtain from AT&T or elsewhere.
You must create the files (called modules) that were identified in the section

1 1 The Driver Software Package. 1 1

To begin, create a directory on your UNIX System V /386, and place the
Driver.o, Node, Master, and System files there along with the Init, Rc and
Shutdown files if they are needed (make sure the Rc and Shutdown file per
missions allow execution by root). Also in this directory, place any user com
mands, programs, or data files to be loaded with your driver. Creating a sub
directory for these items is permissible, but it will be the Install script's job to
install them. Review the procedures on floppy packaging under installpkg.
The following additional requirements must be addressed when building an
ID floppy set.

The Size File

In addition to the space required to hold any user commands, programs,
or data files that your package installs, the system you are installing on will
need a large amount of free disk space for the Kernel reconfiguration . See the
section 11 Size (required) . 11

3-74 ISDG

Device Drivers

The Files File

This file should only contain the user programs, commands, and data files
installed by your package, not the 10 modules.

The Install Script

Appendix E contains a sample script you should review. When writing
your script, keep the following rules in mind:

1 . Use idcheck to determine whether your package is already installed
and to verify the usability of IVNsfiOAs your driver and controller
board use.

2 . Perform lD kernel reconfiguration before you install any user com
mands or data files . This simplifies cleanup if the kernel reconfigura
tion terminates for some reason .

3 . Call idinstall and exit appropriately on errors . Use the echo and/or
message commands to tell the user what failed.

4 . Call idbuild and check the return code. I f non-zero, call idinstall to
remove your package. If the driver fails kernel reconfiguration, don't
leave it partially installed.

5 . Install any user programs, data fi les, or commands included in your
package.

The Remove Script

Although there are few reasons a remove operation will fail, the script
should still remove the ID components and reconfigure the system first, then
remove the user files. Check the return codes from the ID commands and
report to the user accordingly. See Appendix E .

Writing the Floppy Diskette

Except for the requirement that the Size file be the first file on the floppy
diskette, the ordering of your fi les is not important. The easiest way to do
this is

put a formatted 360K or 1 .2M diskette in the floppy drive
cd to where your files are
touch Size file
Is -t I cpio -ocB >/devjrdskjf0q15d (f0d9d for 360K floppies)

DEVICE DRIVERS 3· 75

Device Drivers

This procedure works only if all your files are in one directory with no sub
directories . If you use subdirectories, you will have to supply an explicit list
of file names to cpio or use the find command in a way that puts the Size file
first.

How to Document your Driver Installation

This section is intended to give you some precautionary advice to pass on
to your users. I f you are developing a DSP that will be installed by users who
may not be familiar with the implications of system reconfiguration, some
words of caution may be worthwhile:

• Although experience has shown little difficulty installing and removing
a variety of device drivers, there is the potential that a user may have
difficulty booting the system. The cause of this would primarily be due
to some fault in the added driver. If this occurred, the user would have
to reload the Base System Set software, thus losing all user files. It
may therefore be advisable to instruct users to back up user files before
attempting an installation.

• Since a reconfiguration ends with a system reboot, i t would not be
advisable for other users to be logged on to the system through a
remote terminal.

• The user should not hit or <RESET>, power down the sys
tem, or in any way try to interrupt an installation. Although inter
ruption protection is built into the 10 scheme, total protection of a
reboot during an installation can never be completely foolproof.

• Advise your users to run df and determine the free disk space before
even trying an installation. Advise them of the number of free blocks
needed to install the package. Although the Size file provides this
number, the user never sees this information.

• Advise the user not to have any background processes running that
will

0 be adversely affected by a system reboot

0 consume free disk space while a reconfiguration is under way

For example, running uucp during an installation should be
avoided.

3-76 ISDG

Device Drivers

Converting XENIX System V /386 Device
Drivers to UNIX System V /386 Device Drivers

This section presents information on converting XENIX System V /386
device drivers to UNIX System V /386 device drivers.

In UNIX System V /386, the COFF and x.out 286 binaries are supported
by the fbinfi286emul and fbinfx286emul user-level emulators. i286emul
and x286emul trap system calls issued by a 286 program and either handle
the system calls internally or perform necessary argument conversions before
issuing a 386 system call. Therefore, the XENIX System V /386 device driver
code that was used to support system calls from a 286 binary is no longer
necessary.

In Release 3 .2 of UNIX System V /386, the kernel support routines avail
able for device drivers handling 286 system calls [for example, ldtalloc(),
ldtfree(), cvtoint(), and cvtoaddr()] are provided as stubs to help facilitate
compilation. These stubs will be removed in a future release of UNIX
System V /386.

Programmers should keep the following information in mind when converting
XENIX System V /386 device drivers to UNIX System V /386 device drivers:

• All XENIX System V /386 include lines that use the form

#include 11
•• fh/ <file> 11

must be changed to

#include 11 sysf <file> 11

• The UNIX System V /386 Software Generation System (SGS) does not
define the M_I8086, M_l286, or M_I386 symbols. Instead, the i8086,
i286, and i386 symbols can be used for native development.

• UNIX System V /386 does not support the near and far keywords. All
references to near and far should be removed.

DEVICE DRIVERS 3·77

Device Drivers

• In UNIX System V /386, the b_paddr field has been replaced with the
b_un.b_addr field, which stores an address as a kernel virtual address .
In XENIX System V /386, the b_paddr field of the buf structure stores
an address as a physical address. All references to b_paddr should be
changed to b_un.b_addr. Where appropriate, the ktop() macro should
be used to convert the address stored in b_un.b_addr to a physical
address.

• In UNIX System V /386, the b_blkno field of the buf structure stores
block numbers in units of 5 1 2 bytes. In XENIX System V /386, b_blkno
stores blocks in units of 1 024 bytes. Be sure to examine and convert all
references of b_blkno to the units expected by your device driver.

• In UNIX System V /386, all block devices are required to have an
xxprint() routine. The following example shows an xxprint() routine for
a floppy diskette device driver:

flprint (dev, str)

dev_t dev;
char *str ;

{

}

Qllll_err (CE_l'DTE , "%s em floppy diskette unit %d, m:inor %d" , st.:r ,

unitbits (dev) ' m:inor(dev)) ;

• All XENIX System V /386 device driver references to the cmos.h
include file should be changed to sysfcram.h.

• The use of the physio() routine in UNIX System V /386 is slightly dif
ferent than in XENIX System V /386. In UNIX System V /386, the read
and write routines first call the phyck() routine to validate the requested
transfer; physio() is then called with a pointer to the device driver's
xxbreakup() routine. xxbreakup() then calls the system breakup routine
[either dma_breakup() or pio_breakup()) with a pointer to the device
driver's xxstrategy routine. In XENIX System V /386, a driver's read and
write routines called the physio() routine with a pointer to the driver's
strategy routine (possibly with B_TAPE set) .

3-78 ISDG

Device Drivers

The following example illustrates the UNIX System calling conven
tion:

flbreakup(bp)

struct buf *bp;

{
int flstrategy() ;

dma_breakup(flstrategy, bp) ;

}

flread(dev)

dev_t dev;

{
register int size ;

size = flblktosec (flsize [sizeindx(dev)]) ;

/* size in sectors */

if (physck(size , B_READ))

physio(flbreakup, NUIL , dev, B_READ) ;

}

• In UNIX System V /386, the user structure no longer contains the
u_cpu field . A new field in the user structure, u_renv, contains the
same information as u_cpu in bits 1 6-23 .

• UNIX System V /386 calls the open, close, read, write, and ioctl rou
tines with the entire device number. XENIX System V /386 calls these
routines with the minor device number. When converting XENIX Sys
tem V /386 device drivers, be sure to mask off the major portion of the
device number only if the minor number is desired. This can be done
using the minor() macro.

• After all device driver halt routines are called (those defined in the
array io_halt[]), interrupts may be turned on again. If the UNIX Sys
tem V /386 device driver is used to control hardware, its halt routine
should ensure that no interrupt is pending.

DEVICE DRIVERS 3· 79

Device Drivers

• In UNIX System V /386, the disksort() routine uses the b_sector field
of the buf structure to sort requests. In XENIX System V /386, disksort()
uses the b_cylin field of the buf structure to sort requests. By using the
b_sector field (which is a 32-bit field) better resolution can be obtained
over the b_cylin field (which is a 1 6-bit field).

• UNIX System V /386 does not support the XENIX System V /386
mapptov() routine. Instead, the mappages() routine should be used. The
mappages() interface is shown below:

mappages (begmapaddr, length, begphysaddr)
caddr_t begmapaddr;
int length;
paddr_ t begphysaddr ;

Often, XENIX programmers did not use the ktop() macro to convert virtual
addresses to physical addresses (for example, in the first call to copyio(),
which expects a physical address) because in XENIX physical addresses are
equivalent to virtual addresses. In UNIX System V /386, programmers can
not make this assumption; they must use a physical or virtual address where
needed using the proper conversion macro where appropriate.

ISDG

4 Porting

Porting 4-1

Programming Techniques 4-1

Portability Restrictions 4-2

Input/Output Devices 4-2

Utilities Set 4-3

System Calls 4-3

Memory Space 4-3

Tunable System Parameters 4-3

Absolute Memory Addresses 4-4

Absolute Path Names 4-4

System Header Files 4-4

Sign Extension 4-4

Adding New Features 4-6

PORTING

Porting

Portability is the ease in which applications or operating systems can be
adapted to run on machines other than the ones they were designed for.

This chapter focuses on techniques and restrictions that should be considered
when porting from one machine to another.

Programming Techniques

An application program must be machine-independent to be truly port
able. Consequently, when writing a program, do not depend on certain
" hooks " within your host machine to execute the program. To make this
task easier, the following useful practices consciously isolate any system
inherent hooks into manageable sections:

• When dealing with version-related software releases, isolate any
features or functions that are dependent on a specific version of the
software.

• Be careful with the manipulation of internal data structures that
assume padding or other structural elements.

• Whenever appropriate, try to use only library functions/routines and
system calls that are common to the systems.

• When certain " non-portable " elements of the program are required,
attempt to define a common version of the feature that can be adapted
to the allowable ranges of portability to the systems.

• Make an effort to program in a subset of C that is determined by the
commonalities of the compilers of the target systems.

• Determine the formats of data transfers in a hardware-independent
fashion.

• As part of good coding practice, use lint (if possible) to warn you of
any porting problems.

PORTING 4· 1

Porting

Portability Restrictions

A portable application program cannot rely on any of the following re
strictions to operate. Keep in mind, however, that violation of one or more of
the restrictions does not necessarily mean that the executable output file will
not be portable to any other system. It does mean that there can exist one or
more systems where the program will not execute correctly. In the following
discussions, these restrictions are elaborated on. Each is followed by a brief
discussion on adding new features.

• the type or number of inputjoutput devices provided

• more than one minimum utilities set

• more than the minimum system call set

• more than the minimum amount of available memory space

• tunable system parameters

• use of absolute memory addresses

• more than the specified set of absolute path names

• unrestricted use of system header files

• sign extension

Input/Output Devices

A program is not portable if it depends on specific types or numbers of
system interfaces, or special device files. However, programs should access
generic special devices and standard inputjoutput facilities.

4-2 ISDG

Porting

Utilities Set

A program is not portable if it depends on specific utilities sets not avail
able on the target system. Appendix F provides a list of standard utilities sets.

System Calls

A program depending on system calls other than those available on the
target system is not portable. Appendix F provides a list of standard system
calls. This is also true of programs relying on certain system signals or com
mand arguments. Appendix F also provides a list of standard system signals
and command arguments, respectively.

Memory Space

A program that depends on large amounts of memory space for proper
operation rather than relying on secondary storage may not be portable. The
physical address space available to a program depends on the amount of
memory of a particular system, including the number of drivers and tunable
system parameters.

Tunable System Parameters

Any program requiring tunable system parameters to be outside of the
ranges specified in the base system mtune file (see mtune(4) in Appendix A) is
not portable.

PORTING 4-3

Porting

Absolute Memory Addresses

A program that requires absolute addresses or a range of absolute
addresses for proper operation is not portable. This includes references to
registers or memory mapped inputjoutput devices available through header
file definitions. This also applies to shared memory system calls that allow
specification of the shared memory space. A program is in violation of this
restriction if it performs arithmetic that assumes a specific memory range.

Absolute Path Names

A program is not portable if it assumes absolute path names or files other
than those allowed on the target system. A list of standard files are provided
in Appendix F. A list of absolute path names is provided below:

jbin
jdev
jete

/lib
ftmp

fusrfbin
fusrftmp

System Header Files

A program that uses system-specific information by including certain
header files may not be portable. Some of these header files are used for sys
tem calls. Check before using any of these files.

Sign Extension

When a char type is promoted to an int, there may or may not be sign
extension, depending on the compiler. For example:

4-4 ISDG

char c ;
int i ;

c = ' 377 ' ;

i = c ;

Porting

With some compilers, i has a value of 0377 (no sign extension); with oth
ers, i has a value of - 1 . This difference can cause all sorts of problems. For
example, one often uses characters as indices into an array :

char trans [256] ;
char c , d ;

c = ' 200 ' ;

trans [c] = d ;

The index will be negative if c > 0 1 77.

You might run into these problems when porting to the 386, which has a
sign-extending compiler. For example, this problem surfaces when non-ASCII
code sets are used, such as Western European. Those code sets have charac
ters whose codes are > 0 1 77 in addition to ASCII characters.

The solution to this problem is to declare chars as unsigned chars or add
casts. For example:

PORTING 4-5

Porting

char trans [256] ;

unsigned char c , d ;

c = ' 200 ' ;

trans [c] = d ;

char trans [256] ;

char c , d ;

c = ' 200 ' ;

trans [(unsigned char) c] = d ;

Other problems that surface are comparisons. For example:

char c, d;

if (c < d)

Adding New Features

New features must be added carefully to maintain the portability of a pro
gram. If absolute portability is required, new features must be anticipated in
early releases . If this is not possible, new features must be either disallowed
or isolated from the portable systems.

Note that if a new feature is not optional, it may affect compatibility of the
entire system. The decision to add this type of feature must be a conscious
one.

4·6 ISDG

5 Security

Security Notes 5-1

Enhancements to Security 5-1

• Sticky Bit 5-1

• Shadow Password 5-2

User Commands 5- 2

• cron 5- 2

• login 5-3

• mail 5-3

• uucp 5-3

• getspent 5-3

• putspent 5-3

System Administrator Commands 5-4

• cu 5-4

• loginlog 5-4

• lp Commands 5-5

• pwconv 5-5

• jusrjlibjuucpjremote.unknown 5-6

• jusrjspooljcron 5-6

• jusrjspooljuucp 5-6

Compatibility Notes 5-6

• Shell Scripts 5-6

• PATH 5-7

• login 5-7

• ps 5-7

• edit, ex, vedit, vi, view 5-7

SECURITY

Security Notes

Enhancements to Security

Improvements in security have been made in this release of UNIX System
V /386. This chapter provides information about some of these improvements.

Sticky Bit

Public directories like ftmp, fusrftmp, and any other directories writable
by the world or by a group are vulnerable to the removal of their files by any
process . This poses a serious problem to the integrity of files contained in
those directories, as well as to the overall security of the system. To avoid
potential security problems, a solution is to use the 11 sticky bit 1 1 on a directory
to show the restriction on the removal of objects within the directory.

In this release, the sticky bit is set (by default) on the public directories
jtmp and fusrftmp. Before a user can remove files or directories from these
publicly readable and writable directories, some special requirements (given
later in this discussion) must be satisfied. Formerly, anyone could remove any
file or directory in ftmp and fusrftmp.

New in this release is the added functionality of the sticky bit on a direc
tory being settable by a user. In previous releases of UNIX System V /386, the
sticky bit could only be set by the super-user. If a directory is writable and
the sticky bit is on, a user can only remove a file in that directory if one or
more of the following is true:

1 . The user owns the file.

2 . The user owns the directory .

3 . The file is writable by the user.

4 . The user is the super-user.

For information on how to set the sticky bit, see chown(l) in the
User'sjSystem Admin istrator's Reference Manual .

SECURITY 5- 1

Security Notes

The sticky bit on a directory is set by a regular user via the chmod com
mand and the chmod system call . The new file deletion semantics will be
controlled by the unlink and rmdir system calls, because all commands that
remove files (that is, mv, rm, and rmdir) use those calls to do the removal .

Shadow Password

The shadow password file is being developed to address a major security
concern in UNIX System V /386. Currently, encrypted user passwords reside
in the password file (/etcjpasswd), which is readable by all users . Unfriendly
remote users can obtain the password file through a tommand such as uucp.
They can then either find logins that have no password and use them to
access the system or they can try to crack the passwords by using password
generation programs. To deter such activities, encrypted passwords and their
aging information are being moved to an access-restricted file called the " sha
dow password " file (/etcjshadow). The shadow password file will only be
readable by root.

The shadow password fi le contains one entry per login . Each entry con
sists of the following information :

username the user's login name (ID)

password a 1 3-character encrypted password for the user or a lock string
to indicate that the login is not accessible

lastchanged the number of days since January 1 , 1 9 70, that the password
has been modified

min the minimum number of days required between password
changes

max the maximum number of days the password is valid

User Commands

cron

When cron completes a job, it sends a mail message to the user. This
mail message had been sent by root but will now be sent with the ID of the
user who initiated the cron job.

5·2 ISDG

Security Notes

login

In the past, 10 login attempts were permitted before the line would be
dropped. That limit is now changed to 5 attempts. After the fifth unsuccess
ful login attempt, login will sleep for 20 seconds before dropping the line.

mail

The following special characters are not valid in the mail forwarding line:

; & 1 < > ' ' " ? * [] { } () $ # \

If a special character is encountered in the " forward to " line, the mail will
be returned to the sender with the message

i nva l i d addre s s

uucp

System names must not contain unprintable characters or any of these
special characters:

; & 1 < > ' ' " ? * [] { } () $ # \

The uuxqt daemon will not perform remote execution requests for sys
tems whose names contain any of these characters.

gets pent

The getspent routine when first called returns a pointer to the first spwd
structure in the shadow file. Refer to Appendix A for the manual page on this
routine.

putspent

The putspent routine is the inverse of getspent. It writes a line on the
stream fp, which matches the format of jetcjshadow. Refer to Appendix A
for the manual page on this routine.

SECURITY 5-3

Security Notes

System Administrator Commands

cu

A new entry called uudirect is defined in jusrflibfuucpfDevices. When
doing a cu from machine A to machine B on a direct line where uugetty is
running on that line on the remote machine, an extra carriage return must be
sent so that uugetty knows whether it is an incoming or outgoing line. In the
fusrflibfuucpfSystems file, uudirect should be used for the devices field .
For more information on this file, refer to uucp(1C) in the User'sfSystem
Admin istrator's Reference Manual .

login log

To enhance login security, the time of the last login will be displayed
after logging in. To turn on the mechanism that logs unsuccessful attempts to
access the system, the administrator must create the file jusrfadmfloginlog.
If the file loginlog exists and five consecutive unsuccessful login attempts
occur, all will be logged in loginlog, then login will sleep for 20 seconds
before dropping the line. In other words, if a person tries five times unsuc
cessfully to log in at a terminal, all five attempts will be logged in
fusrfadmfloginlog i f the file exists. The login component will then sleep for
20 seconds and drop the line. I f a person has one or two unsuccessful
attempts, none of them will be logged .

To enable logging, the log file should be created with read and write per
mission for owner only. It should be owned by root with group sys.

The fusrfadmjloginlog file is a text file. It will contain one entry for
each unsuccessful attempt. Entries in fusrfadmfloginlog will have the fol
lowing format:

login name:tty specification:time

The login name field contains the login name used in the failed login attempt.
The tty specification field contains the terminal location of the login attempt,
and time contains the approximate time of the login attempt. You must create
this fil e and turn logging on.

5-4 ISDG

Security Notes

lp Commands

The disable command can be made non-executable for regular users by
logging in as root or lp and executing

chmod 4550 jusrjbinfdisable

The cancel command can be made non-executable for regular users by logging
in as root or lp and executing

chmod 4550 jusrjbinjcancel

pwconv

If you attempt to run pwconv with an incorrectly formatted line on
jetcjpasswd (for example, one with too many colons), pwconv will stop
scanning at the bad line. It will complete the conversion, but the new pass
word file and the jetcjshadow file will both have too few lines. You will still
be able to recover the original fetcjpasswd by restoring the old file stored as
jetcjopasswd. To restore the old password file, follow these directions:

Step 1 :

Step 2 :

Step 3 :

Step 4:

Replace the new password file with the original one:

mv jetcjopasswd jetcjpasswd

Remove the shadow password file:

rm jetcjshadow

Find and correct the bad entries in jetcjpassword using vi or ed.

The recommended way of changing the password file is with the tools
provided, not with the editors. However, because the only way to cor
rupt a password file is by using an editor, that becomes the only way to
correct the error as well. The use of any of the editors is still not recom
mended.

Run jusrfbinjpwconv again.

SECURITY 5-5

Security Notes

/usr/lib/uucp/remote.unknown

The remote.unknown file has been changed from a shell script to a C
language executable program. remote.unknown is part of the Basic Network
ing Utilities delivered in the Base System Package of the UNIX System V /386
Foundation Set . When an unknown machine starts a conversation with the
local machine, remote.unknown logs the conversation attempt.

/usr/spool/cron

The fusrfspoolfcron directory, which contains directories for at, cron,
and crontab jobs, will no longer be accessible by users. The directory mode
will now be set to 700.

/usr/spool/uucp

Except for root, users will no longer be able to write in the
fusrfspoolfuucp directory or any directories under it. The directory mode
will now be set to 755 .

Compatibility Notes

Shell Scripts

It is strongly recommended that all applications convert any shell scripts
into binary programs if specific user (group) permissions are required in the
shell script command lines. To pass permissions, the binary program must
have the setuid (gid) mode bit on and the owner (group) of the binary pro
gram set to the ID required. Then the exec system call can be invoked with
the binary program as the argument and the correct permissions will be
passed.

I f i t is not possible to convert the shell scripts into binary programs, then a
binary interface program must be written that would have the setuid mode bit
on and the owner of the file set to root. Next, the process would have to do a
setuid (GID) system call internally with the UID (GID) that must be passed to
a sub-shell . This is only possible because the setuid (setgid) system call sets
both the real and effective UID (GID) when called by a process with the effec
tive UID of root. Finally, the binary interface would then call the shell script .
This is a potentially dangerous procedure unless the programmer is aware of

5-& ISDG

Security Notes

all the implications.

PATH

The default PATH environment variable searches the current directory
first. A super-user unknowingly may run a program in the current directory.
The super-user should change the ROOTPA TH so that the current directory
is searched last instead of first.

login

To discourage intruders, the encrypted password and password aging
information formerly found in fetcfpasswd has been moved to fete/shadow.
This file can only be read by the super-user. Users will still be able to change
their passwords using the passwd command. Password and aging informa
tion is added to fetcfshadow by running a new program, pwconv. This pro
gram can only be executed by the super-user.

If you have an application or program that writes password andfor aging
information into fetcfpasswd, the program will have to be modified so that
pwconv is executed after the information is appended to fetcfpasswd. Until
the modification can be made, the administrator with super-user privilege will
have to run the program before the user who has been added or whose pass
word information has been modified can log in.

ps

In this release of UNIX System V /386, the usage of ps has changed. Now
ps checks and sets the user's effective UID to the real UID and the effective
GID to the real GID. Therefore, only users with a real user ID of root or a
real group 10 of sys will be able to use these options to ps.

edit, ex, vedit, vi, view

The edit, ex, vedit, vi, and view commands allow separate .exrc files in
any directory . In addition, if you change directory to another user's directory
and use any of these editors to edit a file in that other user's directory, the
editor will execute the .exrc file if it exists in the second user's directory. This
functionality has security implications depending on the contents of the .exrc
file, because the commands are executed as the user invoking the editor and
not as the person who owns the .exrc file.

SECURITY 5-7

Security Notes

In this release, a new option has been added to the vi and ex commands
to allow you the option of reading the .exrc file in the current directory. Ini
tially, the flag is not set, that is, the vijex command will NOT read the .exrc
file if it exists in the current working directory. You can modify this option by
inserting the line

set exrc

or the abbreviation

set ex

in the $HOMEf.exrc file, which is read when one of these editors is executed
if the EXINIT variable is not set in the .profile. If you want to set the
EXINIT variable, add the following lines to your .profile:

EXINIT=11set exrc11
export EXINIT

However, you should note that executing vi or ex as another user with su
could result in your files being compromised, since certain variables in the
environment are passed when su is executed without the 11 - 11 option .

For more information, see the ex(l) manual page in the User'sjSystem
Administrator's Reference Manual .

5·8 ISDG

A Appendix A

Manual Pages A- 1

APPENDIX A

Manual Pages

This appendix contains manual pages for those ID programs and files that
a device driver writer needs to know about; that is, programs and files that
may be needed by the Install or Remove script, or that may be used during
driver development. It also contains manual pages for security user com
mands.

• idbuild(I M) - A shell script that does the complete system reconfigura
tion.

• idcheck(I M) - A command that tests for the presence of a driver or
checks the availability of a particular IVN, lOA, or CMA.

• idconfig(I M) - A command that produces a new kernel configuration .

• idinstall(I M) - A command that installs, updates, or removes a driver
package or driver component.

• idmkin it(I M) - A command that updates jetcjinittab.

• idmknod(I M) - A command that updates device nodes in the jdev
directory.

• idmkunix(I M) - A command that builds a new UNIX Operating System
kernel .

• idspace(I M) - A command that interrogates free space in one or more
file systems.

• idtune(I M) - A shell script that specifies system tunable parameters .

• getspent(3X) - A command that gets shadow password fi le entry .

• pu tspent(3X) - A command that writes shadow password file entry .

• mdevice(4) - The device master file (and DSP Master component for-
mat).

• mfsys(4) - The fi le system type master data .

• mtune(4) - The tunable parameter master fi le .

• sdevice(4) - The device system fi le (and DSP System component for
mat).

APPENDIX A A- 1

Manual Pages

• sfsys(4) - File system type system data.

• stune(4) - A tunable parameter system file.

A-2 ISDG

IDBUILD(l M) (Base System) IDBUILD(l M)

NAME
idbuild - build new UNIX System kernel

SYNOPSIS
fetcfconf/binfidbuild

DESCRIPTION
This script builds a new UNIX System kernel using the current system con
figuration in etcfconff. Kernel reconfigurations are usually done after a
device driver is installed, or system tunable parameters are modified. The
script uses the shell variable $ROOT from the user's environment as its
starting path. Except for the special case of kernel development in a non
root source tree, the shell variable ROOT should always be set to null or to

" j " . idbuild exits with a return code of zero on success and non-zero on
failure.

Building a new UNIX System image consists of generating new system con
figuration files, then link-editing the kernel and device driver object
modules in the etcfconf/pack.d object tree. This is done by idbuild by cal
ling the following commands:

etcjconfjbinjidconfig To build kernel configuration files.

etcfconfjbinjidmkunix To process the configuration files and link-edit a
new UNIX System image.

The system configuration files are built by processing the Master and Sys
tem files representing device driver and tunable parameter specifications.
For the i386 UNIX System the files etcfconf/d.dfmdevice, and
etcfconffd.dfmtune represent the Master information. The files
etcfconffd.dfstune, and the files specified in etcfconffsdevice.d/*
represent the System information. The kernel also has file system type
information defined in the files specified by etcfconf/sfsys.df* and
etc/ conf/mfsys.d/*.

Once a new UNIX System kernel has been configured, a lock file is set in
etcf.new_unix which causes the new kernel to replace /unix on the next
system shutdown (i .e. , on the next entry to the init 0 state) . Upon the next
system boot, the new kernel will be executed .

ERROR MESSAGES
Since idbuild calls other system commands to accomplish system reconfi
guration and link editing, it will report all errors encountered by those com
mands, then clean up intermediate files created in the process. In general ,
the exit value 1 indicates an error was encountered by idbuild .

The errors encountered fall into the fol lowing categories:

Master file error messages.
System file error messages.
Tunable file error messages.
Compiler and Link-editor error messages.

All error messages are designed to be self-explanatory.

- 1 -

IDBUILD(l M) (Base System) IDBUILD(l M)

SEE ALSO
idinstall(l m), idtune(l m) .
mdevice(4), mfsys(4), mtune(4), sdevice(4), sfsys(4), stune(4) in the
Programmer's Reference Manual.

- 2 -

IDCHECK(I M) (Base System) IDCHECK(I M)

NAME
idcheck - returns selected information

SYNOPSIS
I etc! conf fbinfidcheck

DESCRIPTION
This command returns selected information about the system configuration.
It is useful in add-on device Driver Software Package (DSP) installation
scripts to determine if a particular device driver has already been installed,
or to verify that a particular interrupt vector, 1/0 address or other selectable
parameter is in fact available for use. The various forms are:

idcheck -p device-name [-i dir) [-r)

idcheck -v vector [-i dir) [-r)

idcheck -d dma-channel [-i dir] [-r)

idcheck -a -1 lower_address -u upper_address [-i dir) [-r)

idcheck -c -1 lower_address -u upper_address [-i dir] [-r)

This command scans the System and Master modules and returns:

1 00 if an error occurs.

0 if no con flict exists.

a positive number greater than 0 and less than 1 00 if a conflict
exists.

The command line options are :

-r Report device name of any con fl icting device on stdout.

-p device-name This option checks for the existence of four different com-
ponents of the DSP. The exit code is the addition of the
return codes from the four checks .

Add 1 to the exit code if the DSP directory under
fetcfconffpack.d exists.

Add 2 to the exit code if the Master module has been
instal led.

Add 4 to the exit code i f the System module has been
insta l led.

Add 8 to the exit code if the Kernel was built with the
System module.

Add 16 to the exit code if a Driver.o is part of the DSP
(vs. a stubs .c fi le) .

-v vector Returns 'type' field of device that is using the vector
speci fied (i .e . , another DSP is already using the vector) .

-d dma-channel Returns 1 if the dma channel specified is being used .

-a This option checks whether the lOA region bounded by
" lower " and " upper " con flict with another DSP

- 1 -

IDCHECK(l M)

-c

-1 address

-u address

-i dir

ERROR MESSAGES

(Base System) IDCHECK(lM)

(" lower " and " upper " are specified with the -1 and -u
options). The exit code is the addition of two different
return codes.

Add 1 to the exit code if the lOA region overlaps with
another device.

Add 2 to the exit code if the lOA region overlaps with
another device and that device has the '0' option speci
fied in the type field of the Master module. The '0 '

option permits a driver to overlap the lOA region of
another driver.

Returns 1 if the CMA region bounded by " lower " and
" upper " conflict with another DSP (" lower " and
" upper " are specified with the -1 and -u options).

Lower bound of address range specified in hex. The lead
ing Ox is unnecessary.

Upper bound of address range specified in hex. The lead
ing Ox is unnecessary.

Specifies the directory in which the ID files sdevice and
mdevice reside. The default directory is jetcjconfjcf.d.

There are no error messages or checks for valid arguments to options.
idcheck interprets these arguments using the rules of scanf(3) and queries the
sdevice and mdevice files. For example, if a letter is used in the place of a
digit, scanf(3) will translate the letter to 0. idcheck will then use this value
in its query.

SEE ALSO
idinstall(1m).

mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 2 -

IDCONFIG(l M) (i386) IDCONFIG(l M)

NAME
idconfig - produce a new kernel configuration

SYNOPSIS
f etcf conf fbinjidconfig

DESCRIPTION
The idconfig command takes as its input a collection of files specifying the
configuration of the next UNIX System to be built . A collection of output
files for use by idmkunix is produced .

The input files expected by idconfig are as follows:

mdevice - Master device speci fica tions
sdevice - System device specifica tions
mtune - Master parameter specifications
stune - System parameter speci fications
mfsys - File system type master data
sfsys - File system type system data
sassign - Device Assignment File

The output fi les produced by idconfig are as follows:

conf.c - Kernel data structures and function definitions
config.h - Kernel parameter and device definitions
vector.c - Interrupt vector definitions
direct - Listing of all driver components included in the build
fsconf.c - File system type configuration data

The command line options are as follows:

-o directory Output files will be created in the directory specified rather
than jetcjconfjcf.d.

-i directory

-r directory

-d file

-t file

-T file

-a file

-c file

-h file

-v file

-p file
-D, -m, -s

-#

Input fi les that normally reside in fetcjconfjcf.d can be
found in the directory specified .

The directory specified will be used as the ID 1 1 root 11 direc
tory rather than jetcjconf.
Use file name rather than sdevice for input.

Use file name rather than stune for input.

Use file name rather than mtune for input.

Use file name rather than sassign for input.

Redirect conf.c output to file name.

Redirect config.h output to file name.

Redirect vector. c output to file name.

Redirect direct output to file name.

These options are no longer supported .

Print debugging information .

- 1 -

IDCONFIG(l M) (i386) IDCONFIG(l M)

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, idcon
fig will exit with a non-zero value and report an error message. All error
messages are designed to be self-explanatory.

SEE ALSO
dmkunix(l M), idbuild(l M), idinstall(l M), mdevice(4), mtune(4), sdevice(4),
stune(4).

- 2 -

IDINSTALL(1 M) (Base System) IDINSTALL(l M)

NAME
idinstall - add, delete, update, or get device driver configuration data

SYNOPSIS
fetcfconf/binfidinstall -(adug] [-e) -(msoptnirhd) dev_name

DESCRIPTION
The idinstall command is called by a Driver Software Package (DSP) Install
script or Remove script to Add (-a), Delete (-d), Update (-u), or Get (-g)
device driver configuration data. idinsta/1 expects to find driver component
files in the current directory. When components are installed or updated,
they are moved or appended to files in the fetcfconf directory and then
deleted from the current directory unless the -k flag is used. The options
for the command are as follows:

Action Specifiers:

-a Add the DSP components

-d Remove the DSP components

-u Update the DSP components

-g Get the DSP components (print to std out, except Master)

Component Specifiers: (*)

-m Master component

-s System component

-o Driver.o component

-p Space.c component

-t Stubs.c component

-n Node (special file) component

-i Inittab component

-r Device Initialization (rc) component

-h Device shutdown (sd) component

-c Mfsys component: file system type config (Master) data

-1 Sfsys component: file system type local (System) data

(*) If no component is specified, the default is all except for the -g
option where a single component must be specified explicitly.

Miscellaneous:

-e Disable free disk space check

-k Keep files (do not remove from current directory) on add or update.

In the simplest case of installing a new DSP, the command syntax used by
the DSP's Install script should be idinstall -a dev_name. In this case the
command will require and install a Driver.o, Master and System entry, and

- 1 -

IDINSTALL(l M) (Base System) IDINSTALL(lM)

optionally install the Space.c, Stubs.c, Node, lnit, Rc, Shutdown, Mfsys, and
Sfsys components if those modules are present in the current directory.

The Driver.o, Space.c, and Stubs.c files are moved to a directory in
fetcfconffpack.d. The dev_name is passed as an argument, which is used
as the directory name. The remaining components are stored in the
corresponding directories under fetcfconf in a file whose name is
dev_name. For example, the Node file would be moved to
fetcfconffnode.dfdev_name.

The idinstall -m usage provides an interface to the idmaster command which
will add, delete, and update mdevice file entries using a Master file from the
local directory. An interface is provided here so that driver writers have a
consistent interface to install any DSP component.

As stated above, driver writers will generally use only the idinstall -a
dev_name form of the command. Other options of idinstall are provided to
allow an Update DSP (i .e. , one that replaces an existing device driver com
ponent) to be installed, and to support installation of multiple controller
boards of the same type.

If the call to idinstall uses the -u (update) option, it will :

overlay the files of the old DSP with the files of the new DSP.

invoke the idmaster command with the 'update' option if a Master
module is part of the new DSP.

idinstall also does a verification that enough free disk space is available to
start the reconfiguration process. This is done by calling the idspace com
mand. idinstall will fail if insufficient space exists, and exit with a non-zero
return code. The -e option bypasses this check.

idinstall makes a record of the last device installed in a file
(/etcf.lasLdev_add) , and saves all removed files from the last delete
operation in a directory (/etcf.lasLdev_del). These files are recovered by
jetcjconfjbinjidmkenv whenever it is determined that a system reconfigura
tion was aborted due to a power failure or unexpected system reboot.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, idinstall
will exit with a non-zero value, and report an error message. All error mes
sages are designed to be self-explanatory. Typical error message that can be
generated by idinstall are as follows:

Device package already exists.
Cannot make the driver package directory.
Cannot remove driver package directory.
Local directory does not contain a Driver object (Driver.o) file.
Local directory does not contain a Master file.
Local directory does not contain a System file.
Cannot remove driver entry.

- 2 -

IDINSTALL(l M) (Base System) IDINSTALL(l M)

SEE ALSO
idspace(l m), idcheck(l m) .
mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 3 -

IDMKINIT(I M) (Base System) IDMKINIT(l M)

NAME
idmkinit - reads files containing specifications

SYNOPSIS
1 etc/ conf/binjidmkinit

DESCRIPTION
This command reads the files containing specifications of fetcfinittab
entries from jetcfconf/init.d and constructs a new inittab file in
fetcjconfjcf.d. It returns 0 on success and a positive number on error.

The files in fetcjconfjinit.d are copies of the !nit modules in device Driver
Software Packages (DSP). There is at most one !nit file per DSP. Each file
contains one line for each inittab entry to be installed. There may be mul
tiple lines (i.e., multiple inittab entries) per file. An inittab entry has the
form (the id field is often called the tag) :

id:rstate:action:process

The !nit module entry must have one of the following forms:

action :process

rstate :action :process

id:rstate:action :process

When idmkinit encounters an entry of the first type, a valid id field will be
generated, and an rstate field of 2 (indicating run on init state 2) will be
generated. When an entry of the second type is encountered only the id
field is prepended. An entry of the third type is incorporated into the new
inittab unchanged.

Since add-on inittab entries specify init state 2 for their rstate field most
often, an entry of the first type should almost always be used. An entry of
the second type may be specified if you need to specify other than state 2 .
DSP's should avoid specifying the id field as in the third entry, since other
add-on applications or DSPs may have already used the id value you have
chosen. The fetcfinit program will encounter serious errors i f one or more
inittab entries contain the same id field.

ldmkinit determines which of the three forms above is being used for the
entry by requiring each entry to have a valid action keyword. Valid action
values are as follows:

off
respawn
ondemand
once
wait
boot
bootwait
powerfail
powerwait
initdefault
sysinit

- 1 -

IDMKINIT(I M) (Base System) IDMKINIT(lM)

The idmkinit command is called automatically upon entering init State 2 on
the next system reboot after a kernel reconfiguration to establish the correct
jetcjinittab for the running junix kernel . idmkinit can be called as a user
level command to test modification of inittab before a DSP is actually built.
It is also useful in installation scripts that do not recon figure the kernel, but
need to create inittab entries. In this case, the inittab generated by idmk
init must be copied to jetcjinittab, and a telinit q command must be run to
make the new entry take a ffect.

The command line options are:

-o directory inittab will be created in the directory specified rather than
jetcjconfjcf.d.

-i directory The ID file init.base, which normally resides in
jetcjconfjcf.d, can be found in the directory specified .

-e directory The !nit modules that are usually in jetcjconfjinit.d can be
found in the directory specified.

-# Print debugging information .

ERROR MESSAGES
An exit value of zero indicates success . I f an error was encountered, idmk
init will exit with a non-zero value and report an error message. All error
messages are designed to be self-explanatory.

SEE ALSO
idbuild(l), idinstall(l m), idmknod(l m), init(l m).

inittab(4) in the Programmer's Reference Manual.

- 2 -

IDMKNOD(l M) (Base System) IDMKNOD(l M)

NAME
idmknod - removes nodes and reads specifications of nodes

SYNOPSIS
I etcf conf/binfidmknod

DESCRIPTION
This command performs the following functions:

Removes the nodes for non-required devices (those that do not have
an 'r' in field 3 of the the device's mdevice entry) from fdev. Ordi
nary files will not be removed. If the fdev directory contains sub
directories, those subdirectories will be transversed and nodes found
for non-required devices will be removed as well. I f empty sub
directories result due to the removal of nodes, the subdirectories are
then removed.

Reads the specifications of nodes given in the files contained in
fetcfconffnode.d and installs these nodes in fdev. If the node
specification defines a path containing subdirectories, the subdirec
tories will be made automatically.

Returns 0 on success and a positive number on error.

The idmknod command is run automatically upon entering init state 2 on the
next system reboot after a kernel reconfiguration to establish the correct
representation of device nodes in the fdev directory for the running funix
kernel. idmknod can be called as a user level command to test modification
of the fdev directory before a DSP is actually built. It is also useful in ins
tallation scripts that do not reconfigure the kernel, but need to create fdev
entries.

The files in fetcfconffnode.d are copies of the Node modules installed by
device Driver Software Packages (DSP). There is at most one file per DSP.
Each file contains one line for each node that is to be installed. The format
of each line is:

Name of device entry (field 1) in the mdevice file (The mdevice entry
will be the line installed by the DSP from its Master module). This
field must be from 1 to 8 characters in length . The first character
must be a letter. The others may be letters, digits, or underscores.

Name of node to be inserted in fdev. The first character must be a
letter. The others may be letters, digits, or underscores. This field
can be a path relative to fdev, and idmknod will create subdirec
tories as needed.

The character b or c. A b indicates that the node is a 'block' type
device and c indicates 'character' type device.

Minor device number. This value must be between 0 and 255 . If
this field is a non-numeric, it is assumed to be a request for a
streams clone device node, and idmknod will set the minor number
to the value of the major number of the device specified.

- 1 -

IDMKNOD(lM) (Base System) IDMKNOD(lM)

Some example node file entries are as follows:

asy HyOO c 1 makes fdev /ttyOO for device 'asy' using minor device
1 .

qt rmtjcOsO c 4 makes fdev /rmtfcOsO for device 'qt' using minor dev
ice 4.

clone netjnaujclone c nau
makes fdevfnetjnaufclone for device 'clone'. The
minor device number is set to the major device
number of device 'nau'.

The command line options are:

-o directory Nodes will be installed in the directory specified rather than
fdev.

-i directory The file mdevice which normally resides in jetcfconfJcf.d,
can be found in the directory specified.

-e directory The Node modules that normally reside in fetcjconfjnode.d
can be found in the directory specified.

-s Suppress removing nodes Gust add new nodes).

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered due to
a syntax or format error in a node entry, an advisory message will be printed
to stdout and the command will continue. If a serious error is encountered
(i.e., a required file cannot be found), idmknod will exit with a non-zero
value and report an error message. All error messages are designed to be
self-explanatory.

SEE ALSO
idinstall(l m), idmkinit(l m).

mdevice(4), sdevice(4) in the Programmer's Reference Manual.

- 2 -

IDMKUNIX(l M) (i386) IDMKUNIX(l M)

NAME
idmkunix - build new UNIX System kernel

SYNOPSIS
jetcjconfjbinjidmkunix

DESCRIPTION
The idmkunix command creates a bootable UNIX Operating System kernel
in the directory jetcjconfjcf.d. The component kernel " core " files and
device driver object files contained in subdirectories of jetcjconfjpack.d are
used as input along with device and parameter definition files produced by
idconfig. In brief, the required input files are as follows:

jetcjconfjcf.djconf.c - Kernel data structures and function definitions
jetcjconfjcf.djconfig.h - Kernel parameter and device definitions
jetcjconfjcf.djvector.c - Interrupt vector definitions
jetcjconfjcf.djdirect - Listing of all driver components included in the build
jetcjconfjcf.djfsconf.c - File system type configuration data
jetcjconfjcf.djvuifile - Memory management definitions for the kernel
jetcjconfjpack.dr jDriver.o - Component kernel object files
jetcjconfjpack.dr jspace.c - Component kernel space allocation files
jetcjconfjpack.d/* jstubs.c - Component kernel stubs files

The command line options are as follows:

-o directory

-i directory

-r directory

-C, CC, -1, ld

-#

ERROR MESSAGES

The file unix be created in the directory specified rather
than jetcjconfjcf.d.

Input files that normally reside in jetcjconfjcf.d can be
found in the directory specified.

The directory specified will be used as the ID " root " direc
tory rather than jetcjconf.

These options are no longer supported.

Print debugging information .

An exit value of zero indicates success . If an error was encountered,
idmkunix will exit with a non-zero value and report an error message. All
error messages are designed to be self-explanatory.

SEE ALSO
idbuild(l M), idconfig(l M), idinstall (I M), mdevice(4), mtune(4), sdevice(4),
stune(4).

- 1 -

IDSPACE(l M) (Base System) IDSPACE(lM)

NAME
idspace - investigates free space

SYNOPSIS
jetcjconfjbinjidspace [-i inodes I [-r blocks I [-u blocks I

[-t blocks I

DESCRIPTION
This command investigates free space in j, jusr, and jtmp file systems to
determine whether sufficient disk blocks and inodes exist in each of poten
tially 3 file systems. The default tests that idspace performs are as follows:

Verify that the root file system (/) has 400 blocks more than the
size of the current junix. This verifies that a device driver being
added to the current junix can be built and placed in the root direc
tory. A check is also made to insure that 1 00 inodes exist in the
root directory.

Determine whether a jusr file system exists. If it does exist, a test
is made that 400 free blocks and 1 00 inodes are available in that file
system. If the file system does not exist, idspace does not complain
since files created in jusr by the reconfiguration process will be
created in the root file system and space requirements are covered
by the test in (1 .) above.

Determine whether a jtmp file system exists. If it does exist, a test
is made that 400 free blocks and 1 00 inodes are available in that file
system. If the file system does not exist, idspace does not complain
since files created in jtmp by the reconfiguration process will be
created in the root file system and space requirements are covered
by the test in (1 .) above.

The command line options are:

-i inodes This option overrides the default test for 1 00 inode in all of the
idspace checks.

-r blocks This option overrides the default test for junix size + 400 blocks
when checking the root (/) file system. When the -r option is
used, the jusr and jtmp file systems are not tested unless expli
citly speci fied.

-u blocks This option overrides the default test for 400 blocks when
checking the jusr file system. When the -u option is used, the
root (/) and jtmp file systems are not tested unless explicitly
specified . If jusr is not a separate file system, an error is
reported .

-t blocks This option overrides the default test for 400 blocks when
checking the jtmp file system. When the -t option is used, the
root (/) and jusr file systems are not tested unless explicitly
specified . If jtmp is not a separate file system, an error is
reported.

- 1 -

IDSPACE(lM) (Base System) IDSPACE(lM)

ERROR MESSAGES
An exit value of zero indicates success. If insufficient space exists in a file
system or an error was encountered due to a syntax or format error, idspace
will report a message. All error messages are designed to be self
explanatory. The specific exit values are as follows:

0 success.

1 command syntax error, or needed file does not exist.

2 file system has insufficient space or inodes.

3 requested file system does not exist (-u and -t options only).

SEE ALSO
idbuild(lm), idinstall(l m).

- 2 -

IDTUNE(l M) (Base System) IDTUNE(l M)

NAME
idtune - attempts to set value of a tunable parameter

SYNOPSIS
fetcfconf/binfidtune [-f l -m J name value

DESCRIPTION
This script attempts to set the value of a tunable parameter. The tunable
parameter to be changed is indicated by name . The desired value for the
tunable parameter is value.

If there is already a value for this parameter (in the stune file), the user will
normally be asked to confirm the change with the following message:

Tunable Parameter name is currently set to old_value.
Is it OK to change it to value? (y fn)

If the user answers y, the change will be made. Otherwise, the tunable
parameter will not be changed, and the following message will be
displayed:

name left at old_value.

However, if the -f (force) option is used, the change will always be made
and no messages will ever be given.

I f the -m (minimum) option is used and there is an existing value which is
greater than the desired value, no change will be made and no message will
be given.

If system tunable parameters are being modified as part of a device driver or
application add-on package, it may not be desirable to prompt the user with
the above question . The add-on package Install script may chose to over
ride the existing value using the -f or -m options. However, care must be
taken not to invalidate a tunable parameter modified earlier by the user or
another add-on package.

In order for the change in parameter to become effective, the UNIX System
kernel must be rebuilt and the system rebooted.

DIAGNOSTICS
The exit status will ne non-zero if errors are encountered.

SEE ALSO
idbuild(l) .

mtune(4), stune(4) in the Programmer's Reference Manual.

- 1 -

GETSPENT(3X) (i386) GETSPENT(3X)

NAME
getspent, getspnam, setspent, endspent, fgetspent - get shadow password
file entry

SYNOPSIS
#include <shadow.h>

struct spwd *getspent ()

struct spwd •getspnam (name)
char •name;

void setspent ()

void endspent ()

struct spwd •fgetspent (fp)
FILE •fp;

DESCRIPTION

FILES

The getspent and getspnam routines each return a pointer to an object with
the following structure containing the broken-out fields of a line in the
fetcfshadow file. Each line in the file contains a " shadow password "
structure, declared in the < shadow.h > header file:

struct spwd {
char
char
long
long
long

};

•sp_namp;
•sp-pwdp;
sp__lstchg;
sp__min;
sp__max;

The getspent routine, when first called, returns a pointer to the first spwd
structure in the file; thereafter, it returns a pointer to the next spwd structure
in the file; so successive calls can be used to search the entire file. The
getspnam routine searches from the beginning of the file until a login name
matching name is found and returns a pointer to the particular structure in
which it was found. The getspent and getspnam routines populate the
sp__min or sp__max field with -1 if the corresponding field in fetcfshadow
is empty. If an end-of-file or an error is encountered on reading, these
functions return a NULL pointer.

A call to the setspent routine has the effect of rewinding the shadow pass
word file to allow repeated searches. The endspent routine may be called to
close the shadow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the
stream fp, which matches the format of fete/shadow.

fete/shadow

SEE ALSO
putspent(3X).

- 1 -

GETSPENT(3X) (i386) GETSPENT(3X)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
If a program not otherwise using standard I/0 uses this routine, the size of
the program will increase more than might be expected.

This routine is for internal use only, compatibility is not guaranteed.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

- 2 -

PUTSPENT(3X) (i386) PUTSPENT(3X)

NAME
putspent - write shadow password file entry

SYNOPSIS
#indude <shadow .h>

int putspent (p, fp)
struct spwd *P;
FILE •fp;

DESCRIPTION
The putspent routine is the inverse of getspent (3X) . Given a pointer to a
spwd structure created by the getspent routine (or the getspnam routine), the
putspent routine writes a line on the stream fp, which matches the format of
jetcjshadow.

If the sp_min or sp_max field of the spwd structure is - 1 , the correspond
ing jetcjshadow field is cleared.

SEE ALSO
getspent(3X).

DIAGNOSTICS
The putspent routine returns non-zero if an error was detected during its
operation, otherwise zero.

WARNING
If a program not otherwise using standard 1/0 uses this routine, the size of
the program will increase more than might be expected.

This routine is for internal use only; compatibility is not guaranteed.

- 1 -

MDEVICE(4) MDEVICE(4)

NAME
mdevice - file format.

SYNOPSIS
mdevice

DESCRIPTION
The mdevice file is included in the directory jetcjconffcf.d. It includes a
one-line description of each device driver and configurable software module
in the system to be built [except for file system types, see mfsys(4)). Each
line in mdevice represents the Master file component from a Driver Software
Package (DSP) either delivered with the base system or installed later via
idinstall.

Each line contains several whitespace-separated fields; they are described
below. Each field must be supplied with a value or a '-' (dash).

1 . Device name: This field is the internal name of the device or module,
and may be up to 8 characters long. The first character of the name
must be an alphabetic character; the others may be letters, digits, or
underscores.

2. Function list : This field is a string of characters that identify driver
functions that are present. Using one of the characters below requires
the driver to have an entry point (function) of the type indicated. If
no functions in the following list are supplied, the field should contain
a dash.

o - open routine

c - close routine

r - read routine

w - write routine

i - ioctl routine

s - startup routine

x - exit routine

f - fork routine

e - exec routine

I - init routine

h - halt routine

p - poll routine
E - kenter routine

X - kexit routine

Note that if the device is a 'block' type device (see field 3. below), a
strategy routine and a print routine are required by default.

3 . Characterist ics of driver: This field contains a set of characters that
indicate the characteristics of the driver. If none of the characters
below apply, the field should contain a dash. The legal characters for

- 1 -

MDEVICE(4)

this field are:

i - The device driver is installable.

c - The device is a 'character' device.

b - The device is a 'block' device .

t - The device is a tty.

o - This device may have only one sdevice entry.

MDEVICE(4)

r - This device is required in all configurations of the Kernel .
This option is intended for drivers delivered with the base
system only. Device nodes (special files in the jdev direc
tory), once made for this device, are never removed. See
idmknod.

S - This device driver is a STREAMS module.

H - This device driver controls hardware.
This option distinguishes drivers that support hardware from
those that are entirely software (pseudo-devices) .

G - This device does not use an interrupt though an interrupt"
is specified in the sdevice entry. This is used when you wish
to associate a device to a specific device group.

D - This option indicates that the device driver can share its
DMA channel .

0 - This option indicates that the lOA range of this device may
overlap that of another device.

4. Handler prefix: This field contains the character string prepended to all
the externally -known handler routines associated with this driver. The
string may be up to 4 characters long.

5. Block Major number : This field should be set to zero in a DSP Master
file. If the device is a 'block' type device, a value will be assigned by
idinsta/1 during installation.

6. Character Major number : This field should be set to zero in a DSP
Master file. If the device is a 'character' type device (or 'STREAMS'
type), a value will be assigned by idinsta/1 during installation .

7. Minimum units: This field is an integer specifying the minimum
number of these devices that can be specified in the sdevice file .

8. Maximum units: This field specifies the maximum number of these
devices that may be specified in the sdevice file. It contains an integer.

9. DMA channel: This field contains an integer that specifies the DMA
channel to be used by this device. If the device does not use DMA,
place a ' - 1 ' in this field. Note that more than one device can share a
DMA channel (previously disallowed).

SPECIFYING STREAMS DEVICES AND MODULES

- 2 -

MDEVICE(4) MDEVICE(4)

STREAMS modules and drivers are treated in a slightly different way from
other drivers in all UNIX Systems, and their configuration reflects this
difference. To specify a STREAMS device driver, its mdevice entry should
contain both an 'S' and a 'c' in the characteristics field (see 3. above). This
indicates that it is a STREAMS driver and that it requires an entry in the
UNIX kernel's cdevsw table, where STREAMS drivers are normally config
ured into the system.

A STREAMS module that is not a device driver, such as a line discipline
module, requires an 'S' in the characteristics field of its mdevice file entry,
but should not include a 'c', as a device driver does.

SEE ALSO
mfsys(4), sdevice(4).

idinstall(l m) in the User'sjSystem Administrator's Reference Manual.

- 3 -

MFSYS(4) MFSYS(4)

NAME
mfsys - file format.

SYNOPSIS
mfsys

DESCRIPTION
The mfsys file contains configuration information for file system types that
are to be included in the next system kernel to be built. It is included in the
directory fetcfconffcf.d, and includes a one-line description of each file sys
tem type. The mfsys file is coalesced from component files in the directory
fetcfconffmfsys.d. Each line contains the following whitespace-separated
fields:

1 . name: This field contains the internal name for the file system type
(e.g. , S5 1 K, DUFST). This name is no more than 32 characters long,
and by convention is composed of upper-case alphanumeric charac
ters.

2 . prefix: The prefix in this field is the string prepended to the fstypsw
handler functions defined for this file system type (e.g., sS, du). The
prefix must be no more that 8 characters long.

3 . flags: The flags field contains a hex number of the form " 0xNN " to
be used in populating the fsinfo data structure table entry for this file
system type.

4 . notify flags: The notify flags field contains a hex number of the form
" OxNN " to be used in population the fsinfo data structure table entry
for this file system type.

5 . function bitstring: The function bitstring i s a string o f 28 O's and 1 's.
Each file system type potentially defines 28 functions to populate the
fstypsw data structure table entry for itself. All file system types do
not supply all the functions in this table, however, and this bitstring is
used to indicate which of the functions are present and which are
absent. A T in this string indicates that a function has been supplied,
and a '0' indicates that a function has not been supplied . Successive
characters in the string represent successive elements of the fstypsw
data structure, with the first entry in this data structure represented by
the rightmost character in the string.

SEE ALSO
sfsys(4).
idinstall (1 m), idbuild(1m) in the User'sjSystem Administrator's Reference
Manual.

- 1 -

MTUNE(4) MTUNE(4)

NAME
mtune - file format.

SYNOPSIS
mtune

DESCRIPTION
The mtune file contains information about all the system tunable parame
ters. Each tunable parameter is specified by a single line in the file, and
each line contains the following whitespace-separated set of fields:

1 . parameter name: A character string no more than 20 characters long.
It is used to construct the preprocessor " #define's " that pass the value
to the system when it is built.

2. default value: This is the default value of the tunable parameter. If
the value is not specified in the stune file, this value will be used when
the system is built.

3. minimum value: This is the minimum allowable value for the tunable
parameter. If the parameter is set in the stune file, the configuration
tools will verify that the new value is equal to or greater than this
value.

4. maximum value: This is the maximum allowable value for the tunable
parameter. If the parameter is set in the stune file, the configuration
tools will check that the new value is equal to or less than this value.

The file mtune normally resides in fetcjconffcf. d . However, a user or an
add-on package should never directly edit the mtune file to change the set
ting of a system tunable parameter. Instead the idtune command should be
used to modify or append the tunable parameter to the stune file.

In order for the new values to become effective the UNIX System kernel
must be rebuilt and the system must then be rebooted.

SEE ALSO
stune(4).

idbuild(l m), idtune(l m) in the User'sfSystem Administrator's Reference
Manual.

- 1 -

SDEVICE(4) SDEVICE(4)

NAME
sdevice - file format.

SYNOPSIS
sdevice

DESCRIPTION
The sdevice file contains local system configuration information for each of
the devices specified in the mdevice file. It contains one or more entries for
each device specified in mdevice. Sdevice is present in the directory
jetcjconfjcf.d, and is coalesced from component files in the directory
jetcjconfjsdevice.d. Files in jetcjconfjsdevice.d are the System file com
ponents either delivered with the base system or installed later via idinstall.

Each entry must contain the following whitespace-separated fields:

1 . Device name: This field contains the internal name of the driver. This
must match one of the names in the first field of an mdevice file entry.

2. Configure: This field must contain the character 'Y' indicating that the
device is to be installed in the Kernel. For testing purposes, an 'N'
may be entered indicating that the device will not be installed.

3 . Unit: This field can b e encoded with a device dependent numeric
value. It is usually used to represent the number of subdevices on a
controller or psuedo-device. Its value must be within the minimum
and maximum values specified in fields 7 and 8 of the mdevice entry.

4. Ipl: The ipl field specifies the system ipl level at which the driver's
interrupt handler will run in the new system kernel. Legal values are
0 through 8. If the driver doesn't have an interrupt handling routine,
put a 0 in this field.

5 . Type: This field indicates the type o f interrupt scheme required b y the
device. The permissible values are:

0 - The device does not require an interrupt line.

1 - The device requires an interrupt line.
If the driver supports more than one hardware controller, each
controller requires a separate interrupt.

2 - The device requires an interrupt line.
If the driver supports more than one hardware controller, each
controller will share the same interrupt.

3 - The device requires an interrupt line.
If the driver supports more than one hardware controller, each
controller will share the same interrupt. Multiple device
drivers having the same ipl level can share this interrupt.

6. Vector: This field contains the interrupt vector number used by the
device. If the Type field contains a 0 (i.e. no interrupt required), this
field should be encoded with a 0. Note that more than one device can
share an interrupt number.

- 1 -

SDEVICE(4) SDEVICE(4)

7. SIOA: The SIOA field (Start 1/0 Address) contains the starting address
on the 1/0 bus through which the device communicates. This field
must be within Oxl and Ox3fff. (If this field is not used, it should be
encoded with the value zero.)

8 . EIOA: The field (End 1/0 Address) contains the end address on the
1/0 bus through which the device communicates. This field must be
within Oxl and Ox3fff. (If this field is not used, it should be encoded
with the value zero.)

9 . SCMA: The SCMA field (Start Controller Memory Address) is used by
controllers that have internal memory. It specifies the starting address
of this memory. This field must be within OxaOOOO and Oxfbfff. (If this
field is not used, it should be encoded with the value zero.)

1 0 . ECMA: The ECMA (End Controller Memory Address) specifies the end
of the internal memory for the device. This field must be within
OxaOOOO and Oxfbfff. (If this field is not used, it should be encoded
with the value zero.)

SEE ALSO
mdevice(4) .
idinstall(l m) in the User'sjSystem Administrator's Reference Manual.

- 2 -

SFSYS(4) SFSYS(4)

NAME
sfsys - file format.

SYNOPSIS
sfsys

DESCRIPTION
The sfsys file contains local system information about each file system type
specified in the mfsys file. I t is present in the directory jetcjconfjcf.d, and
contains a one-line entry for each file system type specified in the mfsys file.
The sfsys file is coalesced from component files in the directory
jetcjconfjsfsys.d. Each line in this file is a whitespace-separate set of fields
that specify:

1 . name: This field contains the internal name of the file system type
(e.g., DUFST, S5 1 K) . By convention, this name is up to 32 characters
long, and is composed of all uppercase alphanumeric characters.

2. Y jN: This field contains either an uppercase 'Y' (for " yes ") or an
uppercase 'N' (for " no) to indicate whether the named file system
type is to be configured into the next system kernel to be built.

SEE ALSO
mfsys(4).
idinstall(l m), idbuild(l m) in the User'sjSystem Administrator's Reference
Manual.

- 1 -

STUNE(4) STUNE(4)

NAME
stune - file format.

SYNOPSIS
stune

DESCRIPTION
The stune file contains local system settings for tunable parameters. The
parameter settings in this file replace the default values specified in the
m tune file, if the new values are within the legal range for the parameter
specified in mtune. The flle contains one line for each parameter to be reset.
Each line contains two whitespace-separated fields:

1 . external name: This is the external name of the tunable parameter
used in the m tune file.

2. value: This field contains the new value for the tunable parameter.

The flle stune normally resides in jetcjconfjcf.d. However, a user or an
add-on package should never directly edit the mtune file. Instead the idtune
command should be used.

In order for the new values to become effective the UNIX kernel must be
rebuilt and the system must then be rebooted.

SEE ALSO
mtune(4).
idbuild(l m), idtune(lm) in the User'sjSystem Administrator's Reference
Manual.

- 1 -

B Appendix B

A Simple Game Port Driver B-1

APPENDIX B

A Simple Game Port Driver

Game Port Driver Example

The Game Port or Game Controller allows one or more joystick or other
positional indicating devices to be plugged into a PC. Game controller boards
are available from several manufacturers, and a large base of MS-DOS
software (mostly video games) already exists. Since the Game Controller
hardware is so simple, it is useful as the basis for an elementary UNIX device
driver. A UNIX driver would allow a UNIX process to be driven by joystick
position inputs.

Although the IJO Address Map assigns Hex address 200 through 20f to
Game Control, the Games Controller peripheral board uses only address 201 .
The interface is initialized by a write to address 201 and provides position
inputs on successive reads of address 201 . The position readings indicate the
position of the joystick as follows:

Bit 7

Joy A
8lt 1

Bit 6

Joy A
8lt 2

Bit S

Joy B
8lt 1

Bit 4

Joy B
axt 2

Bit 3

Joy A
y Pos

Bit 2

Joy A
X Pos

Bit 1

Joy B
y Pos

Bit 0

Joy B
X Pos

Where Joy A and Joy B represent the two joystick inputs, and axt 1 and 8lt
2 represent the mark and fire buttons.

With such an interface, the driver needs no interrupt entry point (IVN 2 is,
however, reserved for the Games Controller and is often referred to as the
" Games Interrupt ") . The following UNIX driver is implemented without
assigning any interrupt vector to the Controller and simply polls the interface
upon a read() call from the Operating System.

The main points to extract from review of this driver are an understanding
of basic driver structure and the use of print£ and trace driver calls used for
driver debugging.

APPENDIX 8 8· 1

A Simple Game Port Driver ------------------

• Lines 29-35 :
Show a way to assign values to ioctl() cmd fields. By convention, the
left shifting of the first letter of the device name and or-ing low-order
values helps to randomize ioctl() arguments across device drivers and
provides some protection if a user process or program opens the wrong
special file. Since the ioctl values must be known by user processes to
set and clear debugging or tracing, it would be advisable to put them in
a header file (for example, jusrjindudejsysjgame.h) so that both the
driver and user programs can access them.

• Line 53:
Shows using the minor() macro in jusrjindudejsysjsysmacros.h to
strip off the upper bits of dev to determine the minor device specified
by the open() system call.

• Line 54:
Puts a printf on jdevjconsole when jdevjgame is opened if the
GAMEDBSET ioctl() call has been made.

• Line 55:
Makes a call to trsave() (line 161), which calls the trace driver (see
Appendix C) if the GAMETRSET ioctl() call has been made.

• Lines 82- 1 1 4
The read() routine. Note the use o f the device prefix in the entry point,
gamereadO and also the use of outb(), inb(), spl(), and copyout(), as
described earlier.

• Lines 154-159:
Implement the conditional use of printf's for debugging.

• Lines 16 1 - 1 89 :
Implement the conditional use of the trace driver for debugging. See
Appendix C.

8-2 ISDG

2

3

4

I*

I*

I*

5 *

CoJ:!;'Z'ight (c) 1985 A�T *I

All Rights Reserved *I

A SU!ple Game Port Driver

A Simple Game Port Driver

6 * The Game Port or Game Controller allows one or nore joystick or

7 * other positicmal indicating devices to be plugged into a l'C .
8 *

9 * Although the I/O Address Map assigns Hex address 200 through 20f to

10 * Game Control ,

1 1 * the Games Controller peripheral board uses ally address 20 1 . The

12 * interface is initialized by a write to address 20 1 and provides

13 * position inplts an successive reads of address 20 1 . The position

14 * rea.d:in}s indicate the position of the joystick as follows :

15 *

16 * This driver contains calls to the trace driver (See Appendix C .) .
17 *

18 *I

19

20 #include "sysltypes . h"

2 1 #include "sys/param . h"

22 #include "sysldir . h"

23 #include " sys/signal .h"

24 #include "sysler:rno . h"

25 #include " syslioctl . h"

26 #include "sys/user .h"

27 #include "syslsysmacros . h"

28

29
30

3 1

32

33

34
35

36

I* ioctl ocmoands *I

#define GAME (' g ' <<8)

#define GAMEDBSET
#define GAMEDn.R
#define GAMmJELAY
#define G.IIME:mSET
#define GAMElRCLR

37 I* flag values *I

38 #define OPEN 0 1

39 #define rs:; 02

40 #define 'mACE 04

4 1

42 char space [1 0] ;

43 struct game {

(GAME I 0 1)

(GAME I 02)

(GAME i 03)

(GAME I 04)

(GAME I 05)

APPENDIX B B-3

A Simple Game Port Driver

44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88

8-4 ISDG

int flag;
int delay;

} game_dev;

gameopen(dev, m:xie)
int dev' node ;

int part ;

part=m:ilxlr(dev) ;
gamedbprt("gamedev: in open" l ;
gamesave(part, 'O ' , 0 , 0) ;
if (part I = 0) {

u.u_erzor = :ENXIO;
retm:n;

if (I (game_ dev. flag&OPEN)) {
qame_dev. flag 1 = OPEN;
game_dev .delay =2 ;

qameclose (dev)
int dev;
{

int part;

part=m:ilxlr(dev) ;
gamedbprt("gamedev: in close") ;
qamesave (part, ' C ' , 0 , 0) ;
if (part I = 0) {

u.u_erzor = ENXIO;
retm:n;

qame_dev. flag &= -OPEN;

qameread(dev)

{
int ii , x, del , junk;
int part;

part=m:ilxlr(dev) ;
qamesave (part, 'R ' ,u.u_count , O) ;

89
90

9 1

92

93

94

95

96
97

98

99
100

1 0 1

102

103

104

105

106

107

108

109

1 1 0

1 1 1

1 12

1 13

1 14

1 15

A Simple Game Port Driver

if (}Xlrt I = 0) {

u . u_errar = ENXIO;
return;

I* Write to the Game Ccmtroller to trigger p:JSitian circuits ,

then read the Game R:>rt Interface (with a slight delay

between read cycles) to re}Xlrt }Xlsitian of joystick

or other game oantrol device .

outb (Ox20 1 , 0) ;

far (ii=O ; ii <= 9 ; ii++) {

far (del= 1 ; del<=game_dev . delay; del++)

junk++ ;

space [ii]=i.nb(Ox20 1) ;

if (u . u_count) {

x=spl4() ;

*I

if (copyout (space , u . u_base , u . u_count)) {

gamedbprt ("/dev/game : read error") ;

u . u_errar = ENXIO;

splx(x) ;

U . U_COI.mt = 0 ;

1 16 gamew.rite (dev)

1 17 {

1 18 int }Xlrt ;

1 19

}Xlrt=minor (dev) ; 120

1 2 1

122

123

gamedbprt ("/dev/game : entered write routine") ;
gamesave (}Xlrt , 'W ' , u . u_count , O) ;

124

125 gameioctl (dev , ard , arg
126

127

1 28

129

130

1 3 1

132

133

int dev;

unsigned int

unsigned int

{

ard · '

arg ;

int }Xlrt ;

}Xlrt=minor (dev) ;
gamesave (}Xlrt , ' I ' , ard , arg) ;

APPENDIX B B-5

A Simple Game Port Driver

1 34 switch(ao:i)
135 case GAMEDBSET:
1 36 game_dev. flag i = DB;;
1 37 break;
138 case GAMEI>l£IR:
1 39 game_dev. flag &.= -ra;;
140 break;
141 case GAMIDELAY:
142 game_dev.delay = arg;
143 break;
144 case GAMETRSET:
145 game_dev. flag 1 = TRACE;
146 break;
147 case GAMEmCI:R:
148 game_dev. flag &.= -TRACE;
149 break;
150 default:
151 u.u_enor = EINVAL;
152
153 }
154 gamedbprt(str)
155 char *str ;
156
157 if (game_dev. flag&DOO)
158 print£ ("%s\n" , str) ;
159
160
161 gamesave (p:>rt , type, -word 1 , -word2)
162 int p:>rt . -word 1 , -word2 ;
163 I.U'lSigned char type ;
164 {
165
166
167
168
169
170
171
172
173
174
175
176
177
178

B-6 ISDG

static int

register sps ;
struct {

short
char
char
short
short

} gameent;

gameseqn;

e_seqn;
e_type ;
e_dev;
e_-word1 ;
e_-word2 ;

if (I (game_dev. flag&TRACE))
retum;

179

180

181

182

183

184

185

186

187

188

189

A Simple Game Port Driver

sps = splS () ;
if (gameseqn >= 077777)

gameseqn = 0 ;

gameent . e_seqn = ++gameseqn;

gameent . e_type = type ;
gameent . e_dev = port ;
gameent. e_ '-'lOrd 1 = '-'lOrd 1 ;

gameent . e_ '-'IOrd2 = '-'IOrd2 ;

trsave (0 , port:%16 , (char *) &. gameent , sizeof (gameent)) ;
splx(sps) ;

APPENDIX 8 B-7

C Appendix C

The Trace Driver C-1

APPENDIX C

The Trace Driver

The Game Port Driver in Appendix B introduced the basic structure of
device drivers, but now let's look at something a bit more practical . The trace
driver is a pseudo-device that allows the UNIX Operating System kernel or
other device drivers to report debugging information without the use of con
sole printf's. The basic mechanism allows calls to the trace driver via trsave()
to store short bursts of trace data in system character buffers (clists). These
data items are retrieved from the clists and are reported to a user process by
reading jdev jtraceO. This driver uses sdme additional calls common to other
drivers, specifically, sleep(), wakeup(), and the clist handling routines.

In addition to providing the driver source code, other files needed to actu-
ally compile and use the trace device are provided:

trace.c - The driver source code
trace.h - The driver header file
Space.c - The DSP's memory allocation file
trsav.c - A user program to read the trace device and redirect

output to a disk file
trfmt.c - A user program to print the trace information

If you wish to key this source code into your system, you can make use of this
trace driver to debug a driver that you are writing.

The following notes help explain some of the driver source (trace.c) code:

• Lines 1 - 1 2 1 :
Represent the inclusion o f system header files and define the open,
close, and ioctl functions. The code is self-explanatory.

• Lines 1 22 - 149:
The trace driver read() routine. The driver blocks (waits) until data is
available via the sleep() function cal l . The read will block until the Ker
nel or some other driver issues a call to trsave(). An example of how
another driver does this is given in Appendix B. When a trsave() call is
made, trace data is put into a clist and a wakeup() is issued. The read
awakens and transfers the trace data to the user process executing the
read and releases the clist. Note the use of the internal trace dnver
address as the sleep event (&tr_p->tr_rcnt).

APPENDIX C C-1

The Trace Driver

2

3

4

5

6

7
8

9

10

1 1

12

13

14

15

16

17

18

19

20

21

22
23

24

25

Since trsave() calls can be done at interrupt level by other drivers,
and since the trsave() function and the trread() function both manipu
late the queue of clists, the read function surrounds its manipulation of
the clist structures with spl calls.

• lines 150- 1 79 :
Data from other drivers is put into clists. Note that trsave() accesses
the system time counter (!bolt), which represents time in ticks (1 / l OOth
of a second on the 386 System) since the system was booted. This
places a time stamp on the trace event.

I* Copyright (C) 1987 AT&T *I
I* All Rights Reserved *I
I* *I
I* Space . c file for 386unix trace driver . *I
I* *I
I* The trace structure defined here provides storage an a *I
/* per-subdevice basis . '!bat is , one trace structure will be *I
I* allocated far each sub-device . The variable TR_UNITS */
I* is a #define created by the idcanfig program. It represents *I
I* the number of trace subdevices far the trace driver . It is *I
I* derived fran field 3 of the "System" entry far the device . *I
I* *I
I* To locate TR_UNITS , this file should include canfig .h. 'Ibis */
I* header file is created by the recanfiguratian process arxi */
I* resides in the local directory of the recanfiguratian *I
I* process (note use of double quotes around canfig .h) . *I
I* *I

#include "sysltypes . h"
#include "sysltty.h"
#include "sysltrace . h"
#include "canfig . h"

struct trace tr_data['IR_UNITS] ;
int tr_c:nt='ffi_UNITS ;

C-2 ISDG

26 I*
27 I*
28
29 I*
30 *

Copyright (c) 1987 A1'6.T
All Rights Reserved

386unix Trace Driver

*I
*I

3 1 * 'nle trace driver is a pseudo-device that allows

The Trace Driver

32 * the UNIX Keznel ar other device drivers to report debJggiiY;J
33 * information wit:hc:Rlt the use of cansole printf ' s .
34 * The basic mechanism used is that calls to the trace driver
35 * (via trsave ()) will store s00rt blrsts of trace data m system
36 * character :rutfers (clists) . 'nlese data items are retrieved fran the
37 * clists and are reported to a user process by reading' fdevftrace .
38 *
39 *I
40
41 #include "sysltypes .h"
42 #mclude "syslsignal .h"
43 #mclude "syslerrno.h"
44 #mclude "syslparam.h"
45 #include "sysldir.h"
46 #mclude "sysluser .h"
47 #include "syslpage .h"
48 #include "syslsysbn.h"
49 #include "sysltty.h"
50 #include "sys/sysmacros .h"
5 1 #include "sys/trace .h"
52
53 #define QPE2Il
54 #define TRSLEEP
55 #define 'IIQoJAX
56 #define NIL0377
57 #define 'IRPIU
58
59 extern mt tr_c:nt;
60 extern struct trace tr_data[] ;
6 1
62 tropen(dev)
63 {
64 mt chan;
65 register struct trace *tr_p;
66
67
68
69
70

chan=minar(dev) ;
if (chan >= tr_c:nt)

u . u_ernxr = ENXIO;
return;

0 1
04
1024

(PZEK> + 3)

APPENDIX C C-3

The Trace Driver

7 1
72
73
74
75
76
77
78
79
80

tr_p = &tr_data[chan] ;
if (tr_y->tr_state&OPm}

u . u_error = F.ACCES ;
return;

tr_y->tr_chno = NIL;
tr_y->tr_state 1 = OPEN;

8 1 trioctl (dev, cmi, arg, nr:xle }
8 2 {
83 register struct trace *tr_p;
84 int chan;
85
86 chan=m:in::>r(dev} ;
87 tr_p = &tr_data[chan] ;
88 switch(cmi} {
89 case 'mACRCO:
90 tr_y->tr_chbits 1 = (0 1<< (int }arg} ;
9 1 return;
92 case '1'RJIGE."l'C :
93 arg = tr_y->tr_chbits ;
94 return;
95 case 'mASETC :
96 tr_y->tr_chbits 1 = arg;
97 return;
98 case 'IRACLRC :
99 tr_y->tr_chbits &= (shart }arg;
100 return;
1 0 1 default :
102 u.u_error = EINVAL;
103 return;
104
105
106
1 07 trclose (dev)
108 {
109
1 10
1 1 1

register struct trace *tr_p;
int chan;

1 12 chan=m:in::>r(dev) ;
1 1 3 tr_p = &tr_data[chan] ;
1 14 tr_y->tr_chbits = 0 ;
1 15 tr_y->tr_ct = 0 ;

C-4 ISDG

1 16
1 17
1 18
1 19
1 20
1 2 1

tr_p->tr_chno = 0 ;
tr_p->tr_rcnt = 0 ;
while (getc(&tr_p->tr_outq)>=O) ;
tr_p->tr_state = 0 ;

The Trace Driver

1 22 t:rread(dev)
1 23 {
1 24
1 25
126
127
128
129
1 30
1 3 1
1 32
133
1 34
1 35
1 36
137
1 38
1 39
140
141
142
143
144
145
146
147
148
149

register struct trace *tr__p;
int chan;

chan=minar (dev) ;
tr__p = &tr_data[chan] ;
spl5 () ;
tr _p->tr _state I = 'IRSLEEP;
while (tr_p->tr_rcnt == 0)

sleep((caddr_t)&tr_p->tr_rcnt, TRPRI) ;
splO () ;
while (u.u_count && tr_p->tr_rcnt) {

if (tr_p->tr_chno == NIL) {
tr_p->tr_chno = getc(&tr_p->tr_outq) ;
tr_p->tr_ct = getc (&tr_p->tr_outq) ;

if (u.u_oount < (tr_p->tr_ct + 2))
return;

passc(tr_p->tr_chno) ;

passc (tr_p->tr_ct) ;
while (tr_p->tr_ct--)

passc (getc (&tr_p->tr_outq)) ;
tr_p->tr_chno = NIL;
tr_p->tr_rcnt-- ;

150 trsave (dev, chno , buf , ct)
151 int dev, chno , ct ;
152 char *buf ;
153
1 54
1 55
1 56
1 57
1 58
159
160

register struct trace *tr_p;
register int n;
register char *cpt ;

if (dev >= tr_cnt)
return;

APPENDIX C C-5

The Trace Driver

161
162
163
164
165
166
167
168
169
170
17 1
172
173
174
175
176
177
178
179

C-6 ISDG

tr_p = &tr_data[dev] ;
ct &= 0377 ;
if ((tr_p->tr_chbits&.(1<<chno)) = 0)

return ;
if ((tr_p->tr_outq. c_oc + ct + 2 + sizeof (l.bolt)) >'DUWC)

return;
putc(choo , &.tr_p->tr_wtq) ;
putc (ct + sizeof(l.bolt) , &.tr_p->tr_outq) ;
cpt = (char *)&l.bolt;
for (n = 0 ; n < sizeof (l.bolt) ; ++n)

putc(*cpt++ , &.tr_p->tr_wtq) ;

for (n=O ;n<ct;n++)
putc(blf[n] , &.tr_p->tr_outq) ;

tr_p->tr_rcnt++ ;
if (tr_p->tr_stats&.'IRSLEE:P) {

tr_p->tr_state &= 'IRSLEE:P;

wakeup((caddr_ t)&.tr_p->tr_rcnt) ;

The Trace Driver

180 /* Copyright (c) 1985 AT&.T */
*/
*/
*/

181 /* All Rights Reserved
182 /*
183 /* trsav - save 386un:ix event traces
184 /* */
185 /* usage : trsav mask device * /
� � v
187 /* Trsav opens the minor device of the trace driver specified */
188 /*
189 /*
190 /*
191 /*
192 /*
193 /*
194 /*
195 /*
196 /*
197
198

by "device , " enables the channels specified by ''mask" (octal) , */
and then reads event records and writes them to its stamard * /
output (unformatted) until killed . Bit 0 of mask enables */
channel zero , bit 1 channel one , etc . * /

*/
Far example , to enable saviD;J of trace channel 0 fran minor * /
device 0 of the trace driver and save the output in a file in */
/'blip, the follawiD;J OCIIIDaDi can be used : */

*/
/*trsav 1 /dev/traceO > /'bllp/teq>. file &. */

199 #include <stdio. h>
200 #include "sys/types . h"
201 #include "sys/tty . h"
202 #include "sys/trace . h"
203
204 char ev[512] ;
205 main(axgc , azgv)
206 char *azgv[] ;
207 {

int fd , n, k, seqno , chbits ;
if (axgc I = 3) {

208
209
2 1 0
2 1 1
2 1 2
2 1 3
214
215
2 16
2 17
2 18
2 19
220
22 1
222
223

fprintf (stderr ' "Inoarrect number of arguments\n") ;
fprintf (stderr , ''Usage : trsav mask device\n") ;
exit(1) ;

}
if ((fd = open(azgv-[2] . 2)) < 0)

perrar ("trsav open : ") ;
exit (2) ;

setbuf (st:dalt, NULL) ;
sscanf (azgv[1] , "%6o" , &.chbits) ;
if ((k = ioctl (fd, TRIISElC , chbits)) < 0) {

perror ("trsav ioctl : ") ;
exit(3) ;

APPENDIX C C-7

The Trace Driver

224
225
226
227
228
229
230
23 1
232
233
234
235

C-8 ISDG

seqno = 1 ;
far (; ;) {

if ((n = read (fd , ev, 5 12)) < 0)
perrar("trsav read : ") ;
exit(4) ;

if (write (1 , ev, n) < 0) {
perrar ("trsav write : ") ;
exit(5) ;

The Trace Driver

I* Copyright (c) 1985 AT&T *I
I* All Rights Reserved *I
I* *I
I* 386urrix trace . h driver header file . *I
I* *I
I* When the I<Cl'L defines are provided in a .h file , *I

236
237
238
239
240
241
242
243
244
245
246

I* both the driver and any user programs that need the I<Cl'L *I
I* values can "WOrk fran the same set of #defines .

247
248
249
250
25 1
252
253
254
255
256
257
258
259
260
261
262
263
264

I*
I*

I* I<Cl'L defines *I
#define 'mAC
#define 'mAOoiD
#define 'mAERRS
#define 'mARPl'
#define 'lRASDE.V
#define 'mAATTI!Cll
#define 'IRADEI'ACH
#define 'lRAmRSm'
#define 'IRAmRGE1'
#define 'mAOPl'S
#define 'IRAFCOOPI'S
#define 'lRACRCO
#define �
#define 'mASEIC
#define 'IW!ClBC
#define 'mASTAT

265 I*
266 * Per trace structure
267 *I
268 struct trace {
269 struct
270 short
27 1 short
272 short
273 unsigned char

274 char

275 } ;

(' T ' «8)
('mAC j 8)
('mAC j 9)
('mAC j 1 0)
('mAC j 1 1)
('mAC j 1 1)
('mAC j 3 1)
('mAC j 32)
('mAC I 34)
('mAC j 33)
('mAC j 35)
('mAC j 16)
('mAC j 17)
('mAC j 18)
('mAC j 19)
('.mAC j 36)

clist tr_outq;
tr_state ;
tr_chbits ;
tr_rcnt ;
tr_chrx> ;
tr_ct ;

*I
*I
*I

APPENDIX C C-9

The Trace Driver

276 I*
277 I*
278 I*
279 /*
280 I*
28 1 I*
282 I*
283 I*
284 I*
285 /*
286 /*
287
288 I*
289 I*
290 I*
29 1 I*
292 /*
293 I*
294 I*
295 I*

296 /*
297 I*
298 I*
299

Copyright (c) 1987 AT&T
All Rights Reserved *I

trfmt - pr:int 386unix event traces

Trfmt reads its st.anjard :input, which it asSillles was
generated by trsav, an:i prints it (fonnatted) to
st.anjard outpxt until killed. Trfmt can read a file
written by trsav ar except pipe outplt as follows :

trfmt < ltmpltemp. file
ar
trsav mask device I trfmt

'Ibis version will fonnat an:i pr:int predefined lines of text
far only a few types of typical driver traces : 0 is "open , "
C is "close , " etc . If you wish to use other trace po:ints :in
your driver, define your own trace identifiers an:i add them
to the case statement below.

300 #include <stdio . h>
30 1
302 #define
303 #define
304

MASK16
SS'roL(x , y)

305
306
307
308
309
3 1 0
3 1 1
3 1 2

struct event {

3 1 3 } ev;

unsigned short
unsigned short
unsigned short
unsigned char
unsigned char
unsigned short
unsigned short

314 main(argc , argv)
3 1 5 char *argv[] ;
3 1 6 {

0 1 77777
((((1ang)x) <<16) 1 (((lang)y)&MASK16))

l.bolt1 ;
l.bolt2 ;

seq;
typ;
dev;
w:i1 ;

w:i2 ;

317 extem :int optirrl;
3 1 8 :int x, fd, k, n , seqno , can ;
319 char *type;
320 lang time 1 ;

C-1 0 ISDG

*I

*I
*/
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*/

321
322

char xxx;

The Trace Driver

323 setbuf (stdout, NULL) ;
324
325
326
327
328
329
330
33 1
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

seqno = 1 ;
for (; ;) {

X = getchar() i
n = getchar() ;
if ((k=fread((char *)&.ev, sizeof (xxx) , n, stdin)) < 0) {

perror() ;
exit(3) ;

}
if (k == 0) {

}

clearerr(stdin) ;
sleep(1) ;
cx:ntinue ;

if (ev . seq I = seqno)
print£("**"d event reooxas lost**O ,

ev . seq - seqno) ;
seqno = ev. seq + 1 ;
if (k == 1 2) {

time 1 = SS'roL(ev . l.bol t2 , ev . l.bolt 1) ;
print£ (" %10lu%6d" , t:ime1 , ev . seq) ;
switch((int)ev. typ) {
case 'W ' :

type = "write" ;
print£ (" %-8s %2o%6o%6o" , type , ev .dev,
ev.wd1 , ev.wd2) ;
break;

case ' R ' :
type = "read" ;
printf(" %-8s %2o%6o%6o" , type , ev.dev,
ev.wd1 , ev.wd2) ;
break;

case ' O ' :
type = "open" ;
print£(" %-8s %2o%6o%6o" , type , ev.dev,
ev.wd1 , ev.wd2) ;
break ;

case ' C ' :
type = "close" ;
printf (" %-8s %2o%6o%6o" , type , ev.dev,
ev.wd1 , ev . wd2) ;
break ;

cas e ' I ' :

APPENDIX C C·1 1

The Trace Driver

366
367
368
369
370
37 1
372
373
374
375
376
377
378
379
380
381
382
383
384

C-1 2 ISDG

I*

type = II ioctl II ;
pr:intf (11 %-8s %2c:K7o'Jblo11 , type , ev . dev,

ev;wd1 , ev.wd2) ;
break;

case ' ? ' :
* Place custcm driver reports here .
* Drivers or Kernel functions which call
* trsave () can use any type def:initians
* and/or pr:int famats deemed appropriate .
*I

default :
pr:int£ (11 %- 1 0c%2o%7o%6o11 , ev . typ ,
ev.dev, ev.wd1 , ev .wd2) ;

pr:intf (11\nll) ;

D Appendix D

A Prototype Floppy Disk Driver o-1

APPENDIX D

A Prototype Floppy Disk Driver

The attached source code presents some selected portions of a prototype
PC floppy disk device driver. This is not the entire source file, and some
aspects of this driver are not representative of more general drivers. For
example, since the floppy driver contains many data structures that are similar
or identical to a companion hard disk driver, some common data structures
are shared by the two device drivers, and the block major device number is
used to access the floppy and hard disk portions of those data structures.
Additionally, some of the function calls made inside the floppy driver are to
functions that have been deleted for brevity or are functions defined in other
source files.

Despite these restrictions, the floppy device driver is a good example of a
rather complex driver. This driver also shows how a driver can implement
both block and character (raw) device ljO. As a block device driver, the
UNIX File System accesses the device through the driver strategy routine (see
PCLstrategy() on line 2 1 1) . Since the floppy driver also acts as a character
device, the " raw " ljO driver entry points (PCL . .read() on line 369 and
PCLwrite() on line 390) are also provided. You can see that the PCLread()
and PCLwrite() routines make use of physio(), which, in tum, calls the floppy
strategy routine.

/*

2 * Copyright (C) 1987 AT&T

3 * All Rights Reserved

4 *

5 *

6 *

7

8

*

*

9 *

1 0

1 1

12

1 3

1 4

15

16

17

*

*

*

*

*

*

*

*

'lbese procedures define portions of a Prototype PC floppy disk driver :

N:1l'E: 'IHIS IS liD1' 'l'HE a:MPLE:l'E DRIVER saJRCE CXDE; OOLY REPRESENI'ATIVE

SEJ:'TICfiS ARE INCUJDID AS EXAMPLES .

PCf_open: Opens a unit by setting flaqs , initializing variables ,

and initializing structures

PCf_close : Closes a unit by resetting flags = }X)Ssibly flushing

buffers = queues

PCf_strategy: Validates requests , queues it on device queue ,

tries to start I/0
PCf_:intr : Processes :interrupts due to access oc:mpletion, seek end ,

= sp.�rious causes

PCf_read: Performs raw read (uses physic routine)
PCf_write : Performs raw write (uses physic routine)
PCf_ioctl : Special functions - fannat , etc .

APPENDIX D D-1

A Prototype Floppy Disk Driver

.. Internal routines : 18

19

20

2 1

.. PCf_init : Initializes device at boat time

..

.. (Other intemal rcutines have been deleted for br:evity)

22 */

23
24 #include <sys/signal .h>

25 #include <sys/types .h>

26 #include <sys/sysmacros .h>

Z7 #include <sys/param.h>

28 #include <sys/systm.h>

29 #include <syslblf .h>
30 #include <sys/ioi::AJf .h>

31 #include <sys/conf .h>

32 #include <sys/dir .h>

33 #include <sys/user .h>
34 #include <sys/ernlO .h>
35 #include <sys/elog.h>
36 #include <sys/open.h>

37 #include <sys/file .h>

38 #include "sys/PCf_disk.h"

39

40
41

/* MAJeR IEIT.ICE-used :in miner device macros * /

/* Fl.oA:!Y assigned B.l.ock Majar=1 ; needed s:ince */

42 /* flomy and w:ini(hard disk) share data structures */

43 char S5fraw_bqf [5 1 2] ;
44 lang Pmt_sec ;

45 lang PJ}'Silddr() ;
46 ext:e= struct PCd_dev PCf_dev[] ; I* device-data-structures */
47 ext:e= struct ioJ::AJf PCf_tab[] ; /* buffer header * /

48 ext:e= struct PCd_dev *PCf_i_tab[] ; /* :intr -> device JDaA):in;J */

49 ext:e= struct !Juf PCf_rbuf[] ; /* raw blffer header */

50 ext:e= struct PCd_odrt PCdf [F_NDRTAB] ; /* drtab$ */
5 1 ext:e= struct fpann_tab ibnf5 12 [) ; / * flomy disk parameter table */

52 ext:e= struct PCd_minar PCd_major[] [F_MAXMIN::R] ;/* major/m:inor number bit map */
53 ext:e= :int fcntr_state ; /* cm:rent state of oantroller*/

54 ext:e= :int activefloppy; /* active flomy I/0 */

55 ext:e= lang ftransvectar ; /* base address of IDI!IIDt'Y transfer area */
56 ext:e= int ftrans_cnt; /* # of sectors be:in;J transferred */
57 ext:e= int fsec_cnt; /* total # sectors transferred so *I

58 struct iotime PCfstat[F_NPm_CDllR] ;
59 ext:e= char Flastdev[F_NPm_cx:trm] ;

60 ext:e= char Ftryfl.op[F_NPm_cx:trm] ;

61

62 PCf_tm:lllt()
63 {
64 I* stub for timeout rout:ine */
65

D-2 ISDG

/*far for a IJuf structure */

A Prototype Floppy Disk Driver

66
I*

* FCf_init

* Call at bcx>t time to init device .

67

68

69

70

7 1

72

73

74

75

76

77

78

* 'lbis :routine sets up the 111111 and intr tables for the :RCM based

* disk :routines . Recali.bratian will be dane by bcx>t strap loader .

*I

FCf_init ()

{

int i ;

struct ioblf *ioblf ;

char arg ;

I* Initialize data structure CCilStants *I

for (i=O ; i < F_NPER_CCNm.; i++) {

79

80

8 1

82

83

84

85

86

87

88

89

90

9 1

92

93

94

FCf_dev[i] .d_state . s_bufh = &l'Cf_tab [i] ; I* tuffer header *I

FCf_dev[i] . d_state . s_devcode = i ; I* device code *I

FCf_dev[i] .d_state . s_level = F_INl'LVL; I* local copy *I

FCf_dev[i] . d_state . s_active = IO_IDLE; I*active flag *I

fcntr_state = IO_IDLE ;

iobuf = &l'Cf_tab[i] ;

iobuf->b_farw = (struct tuf *) iobuf ; l* initialize tuffer *I

iobuf->b_back = (struct tuf *) iobuf ;

iobuf->b_actf = (struct tuf *) iobuf ; l* headers a s in 3 1 0 *I

95

96

97

98 I*

iobuf->b_actl = (struct tuf *) ioblf ;

Flastdev[i] = F96DE.V;
Ft:eyflop[O] = 0 ;

Ft:eyflop[1] = 0 ;

timec:ut:(FCf_tiacut ,&arq, 3*HZ) ;

99 * FCf_open

100 * � a unit.

1 0 1 *
102 * Sets up given partition as open.

103 *I

104 FCf_open(dev , flag, otyp)
105 dev_t dev;

1 06 int flag;
107 l.ttlSigned otyp;

1 08 {

1 09 register struct FCd _dev *dd;

1 10 register struct ioblf*bufh;
1 1 1 register struct tuf *bp;

1 12 register l.ttlSigned l:oard;
1 13 l.ttlSigned unit , x ;
1 14 static int firsttime = 1 ;

APPENDIX D D·3

A Prototype Floppy Disk Driver

1 15

1 16

1 17

1 18

1 19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

D-4 ISDG

char *dp;

int i , fret ;

if (minor(clev) > F _ MAJCMIN:R)
u.u_error = ENXIO ;

return;

/*
* if this is the first open ever then initialize

*/

if (firsttime) {

firsttime-- ;

PCf_init () ;

board = UNIT(FMAJ , clev) ;

dd = &PCf_dev[board1 ;

J::ufh = dd->d_state . s_J::ufh;

if ((dd->d_state . s_flags &. SF_OPEN) == 0)

bp = &PCf_ri:AI:f [UNIT(FMAJ ,dev) 1 ;

X = spl5 () ;

while (bp->b_flags&B_WSY) {

bp->b_flags 1 = B_WANTID;

sleep((caddr_t)bp, PRIBIO) ;

bp->b_flags = B_WSY I B_READ;

splx(x) ;

if ((dd->d_state . s_flags &. SF_OPEN) == 0) {

dd->d_state . s_flags = SF_OPEN I SF_READY

J::ufh->b_active = IO_BUSY ;

RESFriN; · '

u.u_errar = PCf_sweep(dd, dev, flag, bp) ;

bp->b_flags &.= (B_WSY I B_READ) ;

if (bp->b_flags&.B_WANTID)

wakeup((caddr_t)bp) ;

if (u .u_error == 0)

dd->d_state . s_flags = SF_OPEN I SF_READY;

else {

dd->d_state . s_flags = 0 ;

return ;

for (i=O ; i�; i++

dd->d_state . s_popen[i 1 = 0 ;

PCf_start (dd) ;

dp = &.dd->d_state . S..JlClPel'l(0 1 ;

if (otyp == O'In'_LYR)

++dp[O'ln'_LYR1 ;

else if (otyp < Ol'YPCNl'
dp[otyp1 1 = (1 « PARI'ITICN(FMAJ,clev)) ;

A Prototype Floppy Disk Driver

164

165

166 /*

167 * FCf_close

168 * Close a unit .

169 *

170 * Called an last close of a partitian; thus, "close" the partition.

171 * If this was last partition, make the unit closed &. not-ready.

172 * In this case , next open will re-initialize .

173

174

175

176

177

178

179

180

181

182

183

184

185

186

*/

FCf_close (dev, flag , otyp)

register dev-t

int flag;

unsigned otyp;

{

register struct PCd_dev

extem

struct blf

char *dp;

int i ;

if (dev = = rootdev)

dev;

*dd;
dev_ troot:dev;
*bufh;

retw:n; /* never close rootdev */

dd = &FCf_dev[UNIT(FMAJ,dev) 1 ;

/*

187

188

189

190

191

192

193

* Close the partition. If last partitian, close the unit .

*/

dp = &dd->d_state . s_popen[0 1 ;

if (otyp == Ol'llP_LYR)

--dp[Ol'llP_LYR1 ;

else if (otyp < �) 194

195 dp[otyp1 &.= (1 « PARl'ITICfi(FMAJ,dev)) ;

for (i =0 ; i <Ol'n'Clfi' &&. dp[i 1 =--o ; i ++) ; 196

197

198

if (i = �) /* only close if closed for all types of open */

dd->d_state . s_flags = 0 ;

199

200

20 1 /*

202 * FCf_strategy

203 * Qleue an I/0 Request, and start it if not busy already .

204 *

205 * Oleck legality, and adjust for partitians . Reject request if unit is not-ready.

206 *

207 * Note : '!be partition-check algoritlm insists that requests lllllst not cross

208 * a sector boundary . If partitian size is not a nultiple of BSIZE , the

209 * last few sectors in the partition are not accessible .

2 10 */

2 1 1 FCf_strategy(bp)

2 1 2 register struct buf *bp ;

APPENDIX D D-5

A Prototype Floppy Disk Driver

213

214

2 1 5

216

217

218

219

220

22 1

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

25 1

252

253

254

255

256

257

258

259

260

26 1

D·& ISDG

register struct PCd _dev *dd ;

register struct PCd _drtab *dr ;

register struct PCd_cdrt *cdr ;

register struct PCd__part *p ;
struct iob.lf *bufh;

struct Dlf *ap;

daddr_t

unsigned

char drive ;

secno;
x;

drive = UNIT(FMAJ ,bp->b_devl ;

dd = &PCf_dev[drive] ;

dr = &dd->d_drtab;

p = &dr->dr_part[PARTITICN(FMAJ ,bp->b_dev)] ;

PCfstat[drive] . io_bcnt += btoc (bp->b_boount) ;

bp->b_start = lbolt;

/*

* Figure "secno" fran b_blkno. O!eck if ready, and see if fits in partition .

* .Adjust sector # for partition.

*

* Note: if format , b_blkno is already the correct sector number .

*/

secno = bp->b_blkno;

if (Ftryflop[drive] l {

if (secno >= p->p_nsec I I

(secno+ (bp->b_bccnmt+dr->dr_secsiz- 1) /dr->dr_secsiz) > p->p_nsec) {

if (Flastdev[drive] == F96DEV) {

cdr = &PCdf[F48DEV] ;

Flastdev[drive] = F48DEV;

else

cdr = &PCdf[F96DEV] ;

Flastdev[drive] = F96DEV;

dr->dr_ncyl = cdr->cdr_ncyl ;

dr->dr_nhead = cdr->cdr_nhead;

dr->dr_nsec = cdr->cdr_nsec ;

dr->dr_spc = dr->dr_nhead * dr->dr_nsec ;

dr->dr_secsiz = cdr->cdr_secsiz ;

dr->dr__part = cdr->cdr__part;

p = &dr->dr_part[PARI'ITICN(FMAJ , bp->b_dev)] ;

if (((dd->d_state . s_flags & SF_READY) == 0)

I I (secno > p->p_nsec)) {

/* not ready or off erxl * /

bp->b_flags 1 = B_�;

262

263

264

265

2•"6

267

2(P

26<;

..:7 1

272

273

274

275

276

277

278

279

280

28 1

282

283

284

285

286

287

288

289

290

29 1

292

293

294

295

296

297

298

299

300

30 1

302

303

304

305

306

307

308

309

3 10

A Prototype Floppy Disk Driver

bp->b_error = ENXIO;

X = spl5 () ;

iodone (bp) ;
splx(x) ;

retu:m ;

if (secno = p->p_nsec)

if (bp->b_flags &. B_READ)

bp->b_resid = bp->b_bcount ;

else (

bp->b_error = ENXIO;

bp->b_flags I = B_�;

X = spl5 () ;

iodone (bp) ;
splx(x) ;
return;

/* bad block * /

/* return buffer */

if ((secno + (bp->b_bcount+dr->dr_secsiz- 1) 1dr->dr_secsiz) > p->p_nsec) {

I* just asked to read last one . Serd EX>F *I

bp->b_resid = bp->b_bcount;

X = spl5 () ;

iodone (bp) ;

splx(x) ;
return;

secoc> += p->p_fsec ;

bp->b_resid = p->p_fsec/dr->dr_spc ; l* s tarting cylinder of slice *I

I*

* Add request to queue , &. (IIBybe) start it .

*I

X = spl5 () ;

bufh = dd->d_state . s_bufh;

ap = bufh->b_forw;

I*

* find the right place to put this buffer into the list by cylinder number
*I

while (ap != bufh->b_back) {

if ((bp->b_blkrx>+ (bp->b_resid*dr->dr_spc)) < (ap->b_blkrx>+ (ap->b_resid*dr->dr_spc)))
break;

else

ap = apr>av_farw;

if ap == (struct buf *)bufh) {
I* oo list currently exists - start one */

bufh->b_actf = bp;

bufh->b_forw = bp;

bufh->b_back = bp;

bp->av_forw = bp;

APPENDIX D D-7

A Prototype Floppy Disk Driver

3 1 1

3 12

bp->av_back = bp;

3 1 3 else i f (ap == bufh->b_back) {

314 if ((bp->b_blkno+ (bp->b_resid*dr->dr_spc)) < (ap->b_blkno+ (ap->bJesid*dr->dr_spc))) {

3 1 5 bp->av_back = ap->av_back;

316 ap->av_back->av_farw = bp;

317 bp->av_farw = ap;

3 18 ap->av_back = bp;

319 if (bufh->b_farw == ap
320 bufh->b_farw = bp;

32 1

322

323

324

325

326

327

328

329

330

33 1

332

333

334

335

336

337

338

339

340

34 1

342

343

344
345

346
347

348
349

350

35 1

else

else

ap->av_fm:w->av_back = bp;

bp->av_farw = ap->av_farw;

ap->av_farw = bp;

bp->av_back = ap;

bufh->b_back = bp;

bp->av_back = ap->av_back;

ap->av_back->av_farw = bp;

bp->av_farw = ap;

ap->av_back = bp;

if (bufh->b_farw == ap
bufh->b_farw = bp;

if (fcntr_state == IO_IDLE)

splx(x) ;

PCf_:intr (dev)

:int dev;

PCf_start(dd,x) ;

extern char seek_status ;

register struct FCd_dev *dd ;

struct iotuf *bufh;

unsigned :int x ;

static :int save_state=O ;

352 seek_status 1 = Ox80 ;

353 dd = &.PCf_dev[activefloppy] ;

354 bufh = dd->d_state . s_bufh; /* get buf-header , too */

355 if (dd->d_state . s_active = IO_BJSY)

356 /* call BIOS lla%dware Interrupt service routine */
357 flpy_hwintr () ;
358 else

359 save_state=dd->d_state . s_active ;

D-8 ISDG

A Prototype Floppy Disk Driver

360

361

362 /*

363 * PCf_read

364 * "Raw" read. Use physio() .

365 *

366 * Calls :

367 * PCf_strategy (indirectly, thru physio)
368
369

370

37 1

372

373

374

375

376

377

378

379

*/

PCf_read(deY)

dev_t deY;

{

r:egister struct I'Cd_dev *dd;

r:egister struct I'Cd_drtab *dr;

register struct I'Cd_part *p;

dd = &PCf_dev[UNIT(fMAJ,dev)] ;

dr = &dd->d_drtab;

p = &dr->dr_part[P.ARTl'l'l:�(fMAJ ,deY)] ;

if (physck(p->p_nsec ,B_READ) l
380 physio(PCf_strategy, &PCf_rblf [UNIT(fMAJ , deY)] , dev, B_READ) ;
38 1

382

383 /*

384 * PCf_write

385

386
*

*

387 * calls :

"RaW" write . use physio(l .

388 * PCf_strategy (indirectly, thru physio)

389 */

390 PCf_write (dev)

391 dev_tdelr;

392 {

393 register struct I'Cd_dev *dd ;
394 register struct I'Cd_drtab *dr ;

395 r:egister struct I'Cd_part *p;
396

397 dd = &PCf_dev[UNIT(fMAJ, dev)] ;

398 dr = &dd->d_drtab;

399 p = &dr->dr_part [P.ARTl'l'l:�(fMAJ,dev)] ;

400 if (physck(p->p_nsec ,B_WRITE))
401 physio(PCf_strategy, &PCf_rblf [UNIT(fMAJ ,dev)] , dev, B_WRITE) ;

402

403

404 /*

405 * PCf_ioctl
406 */

407 PCf_ioctl (dev, ami, cmiarq, flag)

408 dev_t deY;

APPENDIX D D·9

A Prototype Floppy Disk Driver

409

410

4 1 1

4 1 2

4 1 3

414

415

416

417

418

419

420

42 1

422

423

424

425

426

427

428

429

430

43 1

432

433

434

435

436

437

438

439

440
44 1

442

int

char

int

D-1 0 ISDG

ao:i;
*atdarg;

flag;

register struct buf *bp;

register struct FCd_dev *cld;

register struct FCd_drtab *dr ;

register struct FCd_part *p;

unsignedx;

char j , k, *tblptr;

int *ao:iint ;

dd = &FCf_dev[UNIT(FMAJ , dev) 1 ;

dr = &dd->d_drtab;

bp = &FCf_rbuf [UNIT(FMAJ ,dev) 1 ;

p = &dr->dr_part [P.ARl'l'riGN(FMAJ,dev) 1 ;

switch (ao:i) {
case FMI'FLPY :

/*

break;

case

Specific ioc:tl oode deleted

Specific ioc:tl oode deleted

break; */

default :

u. u_ error = .El!IXIO;

reblrn;

A Prototype Floppy Disk Driver

443

444

445

I*

I*

I*

Copyright (c) 1984 AT&.T

All Rights Reserved

'!HIS IS UNPUBLISHED PRJPRIETARY SCXlRCE <XDE OF MM' 446

447

448

449

450

I* The oopyright notice above does not evidence amr

I* actual or intended publication o£ such scurce code .
1*@(#) 1 . 3 . 1 . 6*1

45 1 I*

452 * disk. h
453 *I

454 #include •syslopen.h"
455

456 /**/

457 I******** M::s AIDED Fat VTCC STUFF******* I

458 #define MAXBAD99

459 #define tfiDIIJS991* systan indicator for UNIX partition *I

460 #defineAL'DGC10x55

461 #define AL'DGC20xAA
462
463 I*** IEFINES '10 SUPl'CRl' 'lHE VAlUABLE SIZE OF AL'l'EllNATE 'DW:XS ***I

*I

*I

*I

*I

*I

464 #define MAXIJPl'040 64 I* Max # o£ bad tracks fer disks o£ 40 MB or less *I

465 #define MAXDI/ER40 99 I* Max # o£ bad tracks for disks greater than 40 MB * 1

466

467

468

#define � 85000 I* Nlmiler o£ sectors in a 40 MB disk *I
I* 83385 sectors for a 40MB with 981 cyl & 5 beads *I

I* 83640 sectors for a 40MB with 820 cyl & 6 heads */

469 I** FLAGS FIE. l'Cw_io RX1l'INES ***************I

470

471

472

473

474

475

#define B_PMmAD

#define B _l'Ml'l'RK

#define B_RBXIVR

#define B_ Hm!SK

020000

030000

060000

070000

I* nust N:l1' overlap see blf .hi *I

I* nust N:l1' overlap see blf .hi *I

I* as above - used for recovery io *I

I* mask for above *I

476 I*** DEFINES Fat CASE � IN IOCI'L :Ra1l'DIES ************I

477

478

479

480

48 1

482

483

484

485

486

487

488

489

490

#define RIDPARM

#define FMl'BAD

#define FMl'llmiFY

#define FMl'FLPY

#define RDP.ARI'BL
#define WRP.ARI'BL
#define WRALTBL

#define WRBXIl'

#define OOFMI'
#define I:XJIIRFY

#define W_RJOCX:JVElt

#define RDALTBL

#define EMTmD

0

2

3

4

5

6

7

8

9

10

1 1

- 1

APPENDIX D D- 1 1

A Prototype Floppy Disk Driver

491
492 /*�* DEFINES FOR WINI VTOC *********************/

493

494

495

496

497

498

#define V5ANITY
#define WfRSICI'l

#define WSS:SIZ
#define S!X:_TRK

#define 'IHHUTE

499 #define '1/RRot

500

OxAA55

1

512

17

0

50 1 /**/

502

503

504

505

506

507

508

509

510

5 1 1

512

513

514

515

516

517

5 18

519

520

521

522

523

524

525

526

527

528

529

#define mJALilEV

#define F48DEV

#define F96DEV

#define F_NmTAB

#define F_NPARl'

#define F_NPER_CXN.!'R

#define F_MAXMI:H:R

#define w_NmTAB

#define W_NPARl'

#define W_NPER_CXN.!'R

#define W_MAXMI:H:R

#define FBAISPEED

#define FOmERIOt

#define �

#define WIW1l'RK

#define mNmR

#define WArllMRK
#define WECCERR
#define �

#define �_SLICE

#define SSWRE'mY

#define S5FRE'mY

#define F_INl'LVL

#define W_INl'LVL

structPCd_minor {

2

4

3

5

2

/* drtab of either 96 or 48tpi floppy */

/* drtab for 48tpi , 9 sec/trk */

/* drtab for 96tpi , 15 sec/trk */

2 /* Jlllllber of drivers per cant:%oller */

F_NmTAB*F_NPARl'*F_NPER _ CXN1'R

5

2

/* maxillllln minor # for floppy driver */

/* number of drivers per oant:roller */

F_MAXMllUV* max:imllm minor # far wini driver */

/* asswnes DDre or equal floppy devs . */
0x0200 /* wrong floppy speed error return * /

0x0 100

0x0300

OxOBOO

Ox1000

0x0200

Ox1 100

Ox4000

4

5

25

6

5

/* wrong floppy type error return * /

/* write protect floppy error retw:n */

/* Wini bad track */

/* Wini unrecoverable error */

/* Wini address mark not fCAIIld * /

/* corrected ecc error */

/* seek error */

/* Major Mil'xlr of E drive */

/* wini ret:zy count */

/* floppy ret:zy oount */

/* floppy interrupt level */

/* wini interrupt level * /

530

53 1

532

unsigned partition: 4 ; /* partition number */

/* alternate drtab ' s */

/* unit number */ 533
unsigned drtab : 4 ;

unsigned unit : 4 ;
534 } ;
535

536

537

538

539

D-1 2

#define UNIT(maj ,dev)

#define IRTAB(maj ,dev)

ISDG

(PCd_major[maj] [minor(dev)] .unit)

/* dev -> unit# map 1003 */

(PCd_major [maj] [minor(dev)] .drtab)

/* dev -> drtab-in:iex map 1003 */

A Prototype Floppy Disk Driver

540 #define PART.ITICJII(maj ,dev) (PCd_majar[maj] [minor(dev)] . partition)
541 I* dev -> partition-index map 1003 *I
542 #define SSD_MIH:R(urmm,dnmm,panum) ((urmm«8) I (dnmm<<4) lpanum)
543 I* 1003 used in c2 15 . c *I

544

545

546 #define Lllii(JU)(secnum) (UlN(secnum) ,HIGH(secnum))

547 I* 1004 c order problem fix for user ease in c2 1 5 . c *I

548 #define UlN(x) ((x)&OxFF) I* "low" byte *I

549 #define HIGH(x) (((x) »8)&0xFF) I* "high" byte *I

550

55 1 I* Gives offset and selector for a pointer dab *I

552 #define �(x) ((unsigned int) (((lonq) (x)) » 1 6))

553 #define OFFSEI'(x) ((unsigned int) (((lc:n;r) (x))&Oxffff))

554

555 I* Whole disk partition table *I

556 struct PCpart {

557 unsigned char bootind;
558 unsigned char bhead;
559 unsigned char b_psec ;

560 unsigned char b_pcyl ;

56 1 unsigned char sysind;

562 unsigned char ebead;

563 unsigned char e_psec ;

564 unsigned char e_pcyl ;

565 lonq relsec ;

566 lonq IDmiSI!C ;

567 } ;
568

569 I*

570 * Winchester Drive Parameter Table

57 1 *I

572

573 struct wpann_tab {

574

575

576

577

578

579

580

58 1

582

583

584

585

586

587

588

unsigned char cyls 1 ;

unsigned char cyls2 ;

char heads ;

char write2_cur ;

char write1_cur ;

char preoalp1 ;

char preocmp2 ;
char ecc_len;

char oc:nt=l_byte ;

char timeout ;

char fmt_ timeoo.t ;

char drvdiaq_timeout ;

lonq zzj ;

} ;

I* nuniJer of cylinders *I

I* Jllllllber of heads *I

I* reduced write current *I

I* write preoc:aqJellSiltion *I

I* max . ecc bJrst len;Jth *I

I* enable retry, enable ecc , 70 usee steps *I

I* standard timeout *I

I* timeout far fonnat drive *I

I* timeout far test drive ready *I

APPENDIX D D-1 3

A Prototype Floppy Disk Driver

589 I*

590 * Floppy Drive Parameter Table

591 *I

592

593

594

595

596

597

598

599

600

60 1

602

603

604

605

st:ruct fpann _tab

606 I*

char spec 1 ;

char spec2 ;

char optim;

char bps ;
char gap ;
char dtl ;

char gapfonnat ;

char fillbyte ;

char hdsettle ;

char notorstime ;

} ;

607 * Floppy Drive Parameter Table
608 *I

609

610 I*

I* first spec byte *I

I* seoon:i spec byte *I

I* wait after opn til nctor off *I

I* bytes per sector *I

I* gap length *I

I* IYl'L *I

I* gap length for fonnat *I

I* fill byte for format *I

I* head settle time *I

I* nctor start time *I

6 1 1 * Partition structure . Ckle per floppy drtab[1 entry.
612 *I

613

614 struct PCd__part {
615

616

617

618 } ;
619

620 I*

usrort
daddr_t

daddr_t

p_flag; l* permission flag *I

p_fsec ; l* first sector *I

p_nsec ; l* number sectors *I

62 1 * VIO: structure for hard disk - one per wini drtab[1 entry.
622 *I

623

624 st:ruct PCd_vtoc

usOOrt v _sanity;

us00rt v_version;

char v_volume[8] ;

us00rt v _sectorsz ;

usOOrt v-nparts ;

I* magic to verify vtoc *I

I* layout version *I

I* volume name *I

I* sector size *I

I* number of partitions per volume *I

625

626

627

628

629

630

631

632

unsigned lang v_reserved[10] ; 1* free space *I

struct PCd__part pw[W_NPART] ; I* wini partitions *I

} ;
633 I*
634 * Per-board configuration.
635 *I
636

637 I*

D-1 4 ISDG

A Prototype Floppy Disk Driver

638 • Per-board driver "dynamic" data .

639 */

640

struct l'Cd_state 64 1

642 char s_active ; I* the state of the controller */

/* - IDLE ar BJSY *I

643

644
645

646
647

648
649

650

651

652

653

654

655

656

657

658

659

660

66 1

char

char

char

s_state ;

s_level ;

s_flags ;

I* what just finished { far interrupt) */

I* what interrupt level { for PCd_io) */

I* flags per spindle ; see below */

char s _JJOPE!11[CYlYFCNl' l ;
s�init;

s_devoode ;

*s_bufh;

I* bit [i] ==> partition[i] open */

char I* status fran init operation */

char /* device-code • I

struct iobuf I* -> l:uffer header */

unsigned s_hcyl ; I* hold cylinder # during restore *I

662

663

} ;

I*

* State Flags .

*I

#define SF_OPEN

#define SF_READY

#define RESEl'IN>

#define STA'l'USCK
#define INDIREX::l'

664 /*

Ox0 1

Ox02

0x04

Ox08

Ox10

I* unit is open */

I* unit is ready; reset by media-change *I

I* unit is resetting */

/* checking status of disk operation */

I* indirect disk operation {data copied */

I* to/fran low lllE!IIOrY) */

665 * Macros to make things easier to read/code/maintain/etc • • .

666 */

667

668 #defineiO_OP(bp) { {bp->b_flags&B_READ) ? DSK_READ :

669 { (bp->b_flags&B _RBIAT) ? DSK_ FOOMAT : DSK_ WRITE))
670

67 1

672

673

674

675

I* AL� 'lRACKilG TABLE */

struct alt_tbl { /* needs to be defined*/

I* rn.mt>er of bad tracks • I

I* first track of alternate area*/

I* last track of alternate area *I

676

ushort a_ :nuntlad;
ushort a_fstalt;

ushort a_lstalt;

ushort a_maxbad;

struct alt {

/* total rn.mt>er of allowable bad tracks* I
677

678

679

680

68 1 } ;
682

ushort a_btrk;
ushort a_strk;

} a_alt[MAXBADJ ;

683 struct PCd-drtab

684 unsigned dr_ncyl ;

I* packed bad track *I

/* packed good track *I

/* # cylinders *

APPENDIX D D-1 5

A Prototype Floppy Disk Driver

685

686
687

688
689
690

691

692

693) ;

694

char dr_nhead;

char dr_nsec ;

struct alt_tbl *dr_altptr ;

unsigned

unsigned

unsigned

struct PCd_part

dr_spc ;

dr_SID;

dr_secsiz ;

*dr_part;

695 struct PCd_odrt
696

697

698

699

700

701) ;
702

703 /*

unsigned

char

char

unsigned

struct PCd_part

crlr_ncyl ;

crlr_nhead;

crlr_nsec ;

crlr_secsiz ;

*air _part ;

I * # heads *I

I* II sectors per track *I

I* alternate track table pointer *I

/* if floppy, O==PM, 1==MFM */

/* actual sectors/cylinier *I

/* sectors/block *I

/* sector-size (bytes) *I

I* partition table pointer */

/* 1 cyliniers */

/* # heads */

/* 1 sectors per track */

/* sector-size */

/* partition table p:linter *I

704 * Device-Data . Ckle per board (declared in driver) .
705 */
706

707 struct PCd_dev
708

709

7 1 0) ;
7 1 1

712 /*

struct

PCd_state

PCd_drtab

d_state ;

d_drtab;

713 * Values of buffer-header b_active , used for nutual-exclusion of
714 * opens an:i other IO requests .
715 */
7 16

#define

#define

#define

#define

/*

IO_IDLE 0

IO_OPPN_wAIT

IO_BUSY 2

IOC_WAIT 3

/* idle -- anything goes */

I* open waitin;J */

I* sanethin;J goin;J an * /

/* waitin;J for the device *I

7 17

7 18

7 19

720

72 1

722

723

724

725

* Values of PCd_state . s_devoode , :internal driver state .

726

727

728

729

730

73 1

732

733

D-1 6

*I

#define FLPY

#define WINI

/*

OxOO
OxOO

/* BIOO flos:py disk selector *I

/* BIOO winchester selector *I

* Floppy liM/MFM codes for drtab[*] .nalt .

*/

#define FLPY_PM

#define FLPY_MFM

ISDG

0 /* PM -- sin;Jle density */

/* MFM -- dooble density */

734

735

736

737

738

739

#define IDESCR

#define WDEOCR

#define �G

740 I*

8

9

32

A Prototype Floppy Disk Driver

I* Floppy workspace descriptor *I

I* Wini workspace descript:or *I

I* rrumber of Wi.ni parameter tables *I

741 **

742 * Parameters OCIIIlCIIl to Fdisk . c and Format . c in regard to the wh:>le disk

743 * partition table

744 **

745 *I

746

747

748

749

750

75 1

752

753

754

755

756

757

#define PARENI'

#define UNIXOS
#define 1::0300

#define 1::030016

#define IXlSDATA

#define ICITVE

#define EMPTY'

#define MIN_USIZ

#define MAXIm

4 I* Number of entries within the partition table *I

I* maximum four entries on wh:>le disk *I

99 I* UNIX + r:a3 (merged) partition *I

I* r:a3 only partition *I

4 I* r:a3 only partition (16-bit FAT) *I

86 I* r:a3-DATA partition *I

128 I* Current partition is active (only 1 per *I

I* drive is allowed) *I

100 I* No partiticm (partition slot unoccupied) *I

19 I* Minimum size (cylinders) far UNIX partition *I

65535L I* max size (sectors) far a r:a3 partition *I

758 /***/

APPENDIX D D- 1 7

E Appendix E

A Sample Driver Software
Package E-1

APPENDIX E

A Sample Driver Software Package

This appendix contains the ID modules needed to install a device driver.
Most of the intelligence of a driver package is in the Install and Remove
scripts. In particular, the Install script should test if the driver package is
already installed and advise the user accordingly. The Install script can also
interrogate which interrupt vectors and/or IjO addresses are available on the
system via the idcheck command and provide an interactive script with which
the user can select an available interrupt or address and set appropriate straps
on the controller board .

The driver package for the trace driver described in Appendix C is pro
vided here as an example. Although this package does not use interrupts or
an I/0 address (as seen in the System module), most of the content of this
driver package relates to any device driver.

The Install script presented here contains a large amount of diagnostic
and recovery information such as checking if the package is already installed
and overwriting the old package if the user confirms the message(!) program.
The script also gives the user a chance to examine reconfiguration errors if the
build fails by redirecting errors to a file in jtmp. If the instal lation proceeds
without errors, the user never sees any of this . I t is up to the driver writer to
decide what level of error recovery and user diagnostics are needed . In the
simplest case, the Install script needs only to call two commands: idinstall
and idbuild. Some items to note in the Install script:

• Make liberal use of the echo and message commands to tell the user
what is going on.

• Make sure you exit with a non-zero return code on installation errors .

• Clean up after an aborted installation .

• In the example (lines 40-43), note that the driver header file is
installed before the system reconfiguration. This is done because the
reconfiguration process requires the header file to be in
jusrjincludejsys. The remaining user fi les and commands are
installed (lines 55-72) after a successful reconfiguration . This method
makes cleanup after an aborted installation a bit easier.

APPENDIX E E· 1

A Sample Driver Software Package

2 # 3861.m:ix Sample Driver Install Script

3 #
4

5 'IMP=/tnp/trace . err

6 ERRR1=" Errors have written to the file $'IMP . "
7 ERRR2=" The Trace Driver software was not installed , and the System
8 has not been notified .

9 Please call the Trace Software Hotline if you
10 need additional information . n

1 1

12 ec:OO "Installin;J Trace DeVice Driver Software Package"

13 /etc/oanf/bi:n/idcheck -p trace 2> $'lMf
14 if [$? ! = 0]

15 then

16 message -cu "The Trace Driver is already installed (or
1 7 partially installed) .
18 Ib you wish to overwrite the existin;J device

19 driver software?•
20 if [$? = 0]
2 1 then
22 /etc/oanf/bi:n/idi.nstal.l -d trace
23

24
else

25 fi
26 fi
27

exit 1

28 /etc/oanf/bi:n/idinstall -a trace 2» $'IMP
29 if [$? ! = 0]
30 then
3 1 message " There wa s an error during package installation . ERROR1 $ERROR2"
32 exit 1
33 fi
34

35 #
36 # Install the .h file before the I::Jui.l.d; Space . c needs a structure
37 # definiticm oantained therein.
38 #
39

40 IllY trace .h /usr/include/sys
41 chcwn bin /usr/include/sys/trace .h
42 cb;p:p bin /usr/include/sys/trace .h
43 chmod 444 /usr/include/sys/trace .h
44

45 /etc/oanf/bi:n/idbuild 2» $'IMP
46 if [$? ! = 0]
47 then

E-2 ISDG

A Sample Driver Software Package

48

49

50

5 1

52

53

54

If an error occurs here , rerrove the driver cx::nqx:ments .

/etc/canflbin/idinstall -d trace

nn -rf /usr/include/sys/trace .h

message "There was an error during Kernel reconfiguratian . $EllRCR1 $ERR:!Q"

exit 1

fi

55 eclx> "Installing O:mtands"

56 for ii in trfmt trsav

57 do
58 ntiT $ii /usrlbin

59 cOOwn bin /usrlbin/$ii

60 chgrp bin /usrlbin/$ii

6 1 chmod 755 /usrlbin/$ii

62 done

63 for ii in trace . c trfmt . c trsav. c

64 do
65 ntiT $ii /usr/src

66 cOOwr1 bin /usr/src/$ii

67

68

69

70

done

chgrp bin /usr/src/$ii

chmod 444 /usr/src/$ii

7 1 nn - f $'D!P
72 exit 0

APPENDIX E E·3

A Sample Driver Software Package

II
2 11 3861.Dlix Sample Driver Renove script

3 II
4 II
5

6 TMP=/tmp/trace . err

7 RmR="An error was encamtered rem::JVin:;J the Trace Driver Package .

8 '!be file $'IMP contains errors repxted by the system. "
9

1 0 ecb:> "Renoving Trace Devi ce Driver Software Package"

1 1 /etc/conflbinlidinstall -d trace 2> $'IMP

12 if [$? I= 0]

1 3 then

14 message $RmR

15 exit 1
16 fi

17

18 /etc/conflbinlidtuild 2» $'IMP

19 if [$? I = 0]

20 then

2 1 message $RmR

22 exit 1

23 fi

24

25 ecb:> "Renoving Callnands"

26 nn -f /usr/include/sys/trace .h lusrlbinltrsav /usrlbinltrfrnt

27 nn -f /usr/src/trace . c lusr/src/trsav. c /usr/src/trfrnt . c

28
29 nn -f $'IMP

30 exit 0

E-4 ISDG

The Name file :

386unix Trace Device Driver Package

The Size file :

IO:Jr=1500
USR=SOO

The Files file :

/Usr/include/sys/trace .h
/Usrlbin/trsav

/Usrlbin/trfmt

lusr/src/trace .c

lusr/src/trsav. c

lusr/src/trfmt. c

The Master file :

trace ocri ioc

The System file :

trace y

tr

0

0

0

A Sample Driver Software Package

0

0 0 0

- 1

0 0

APPENDIX E E-5

A Sample Driver Software Package

'Die Node file :

trace traceD c 0

E-8 ISDG

F Appendix F

Porting
Common Utilities
Common System Calls
Common Signal Set
SYSI86 Argument Set

APPENDIX F

F-1

F-1

F-2

F-3

F-3

Porting

Common Utilities

The following utilities are required to exist on UNIX System V /386
machines, to have the same functionality and the same full path name, and as
such can be used in portable programs.

jbin

cat df login
chgrp du Is
chmod echo mail
chown ed mesg
cmp expr mkdir

cp false mv
cpio grep od
date kill passwd
dd In pr

jusrfbin

getopt news tabs

jete

brc getty mknod
devnm kill all mount
fsck mkfs

jusrjlib

make key

ps sort
pwd stty
red su
rm sync
rmail true
rmdir uname
rsh we
sh who
sleep write

rc umount
shutdown wall

APPENDIX F F·1

Porting

The mail, mesg, news, wall, who, and write commands are specified here
but do not exist in the UNIX XS utilities list. The bcheckrc, dri, config, glos
sary, help, init, labelit, locate, startup, shutdown, telinit, and usage com
mands are specified in the XS list but not here.

Common System Calls

The following system calls are required to exist on all UNIX System
V /386 machines and to have the same functionality, and as such can be used
in portable programs.

_exit execlp getppid plock time
access execv getuid profil times
alarm execve ioctl ptrace ulimit
brk execvp kill read umask
chdir exit link sbrk umount
chmod fcntl lseek setgid uname
chown fork mknod setpgrp unlink
chroot fstat mount setuid us tat
close getegid nice signal utime
creat geteuid open stat wait
dup getgid pause stime write
ex eel getpgrp pipe sync
execle getpid

This list contains all the system calls found in the Programmer's Reference
Manual with the exception of acct(2), the message system calls, the semaphore
system calls, and the shared memory system calls.

The _exit, setgid, and the sys3b system calls are specified here but do not
exist in the UNIX XS system call list.

F-2 ISDG

Porting

Common Signal Set

The following list defines the set of signals that are available for use with
the signa/(2) system call and are common to all UNIX System V /386 machines,
and therefore portable.

SIGH UP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03 quit
SIGILL 04 illegal instruction (not reset when

caught)
SIGTRAP 05 trace trap (not reset when caught)
SIGIOT 06 lOT instruction
SIGEMT 07 EMT instruction
SIGFPE 08 floating-point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 1 0 bus error
SIGSEGV 1 1 segmentation violation
SIGSYS 1 2 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 1 4 alarm clock
SIGTERM 1 5 software termination signal
SIGUSR1 1 6 user-defined signal 1
SIGUSR2 1 7 user-defined signal 2
SIGCLD 1 8 death of a child
SIGPWR 1 9 power fail

SYSI86 Argument Set

The following list defines the set of arguments that are available for use
with the sysi86 system call .

APPENDIX F F-3

Porting --

SI86SWPI
SYSI86DMM

GRNON
GRNFLASH
STIME
SETNAME
RNVR
WNVR
RTODC
CHKSER
SI86NVPRT
SANUPD

F-4 ISDG

1 General SWAP interface
7 Double-map data segment for

readfwritejexecutive support
52 Set green light to solid on state
53 Start green light flashing
54 Set internal time
56 Rename the system
58 Read NVRAM
59 Write NVRAM
60 Read time of day clock
61 Check soft serial number
62 Print an xtra_nvr structure
63 Sanity update of kernel buffers

Index

Abnormal Termination . . . 2-14
Absolute Memory Addresses . . . 4-4
Absolute Path Names . . . 4-4
Adding New Features . . . 4-6
Allocating Buffer Space . . . 3-38
Base System Drivers . . . 3-59
Buffer Pool . . . 3-38
Building the Driver Software Pack-

age (Floppy Set) . . . 3-74
Clists . . . 3-40
Close . . . 3-20
Code for Bringing a Device into Ser

vice . . . 3-26
Commands for Installing Drivers

and Rebuilding the UNIX
Operating System Kernel . . .
3-52

Commands Not Part of the Base
System . . . 2-1 5

Common Signal Set . . . F-3
Common System Calls . . . F-2
Common Utilities . . . F-1
Communication with the User . . .

2-13
Compatibility Notes . . . 5-6
Controller Interface Basics . . . 3-44
Converting XENIX System V /386

Device Drivers to UNIX System
V /386 Device Drivers . . . 3-77

cpio . . . 2-2
Creation of the Software Installation

Floppy Disk Set . . . 2-6
Critical Sections of the Driver . . . 3-7
cron . . . 5-2
cu . . . 5-4
Data Transfer Between System and

User Space . . . 3-4
Defining a New Kernel Parameter . . .

3-64

Device #defines Generated by the
Configuration Process . . . 3-5 1

Device Driver Development Metho-
dology . . . 3-64

Device Drivers . . . 3-1
DMA Allocation Routines . . . 3-1 0
DMA Controller Operations . . . 3-46
Driver Activities and Responsibilities

. . . 3-2
Driver Debugging . . . 3-70
Driver Development Procedures . . .

3-65
Driver Software Package . . . 3-54
Driver-Specific Data Structures . . .

3-1 8
Driver.o (required) . . . 3-54
Dynamic Memory Allocation . . . 3-37
edit, ex, vedit, vi, view . . . 5-7
Emergency Recovery (New Kernel

Will Not Boot) . . . 3-67
Enhancements to Security . . . 5-1
Examples of Scripts . . . 2-1 7
Files (required) . . . 3-5 7
Files File . . . 3-75
Format of the Floppy Disks . . . 2-7
Function Naming Conventions . . .

3-29
Function Specifications (Driver Entry

Points) . . . 3-1 9
General System Data Structures . . .

3-1 7
Generic UNIX Driver . . . 3-2
getspent . . . 5-3
Halt . . . 3-27
How Data Moves Between the Ker

nel and the Device . . . 3-8
How to Document your Driver Ins

tallation . . . 3-76
How to Use This Guide . . . 1-2

INDEX 1- 1

Index

1/0 Addresses and Controller
Memory Addresses . . . 3-45

ID Directory Structure . . . 3-49
ID Overview . . . 3-43
ldbuild Command . . . 3-53
Idcheck . . . 3-53
I dins tall . . . 3-53
Include Files . . . 3-1 6
Init (optional) . . . 3-56
Init . . . 3-19
Input/Output Devices . . . 4-2
Install (required) . . . 3-57
Install File . . . 2-1 1
Install Fruit Example . . . 2-1 8
Install Script . . . 3-75
Installation of Libraries, Include

Files, Etc 2-13
Installation Program . . . 2-4
Installation Scenario . . . 2-1
Installation Tools . . . 2-2
Installation/Removal Summary . . .

3-61
Interactions with Other UNIX Sys-

tem V /386 Processes . . . 3-47
Interrupt Handler . . . 3-27
Interrupt Priority Level . . . 3-33
Interrupt Processing . . . 3-7
Interrupts . . . 3-44
Ioctl . . . 3-25
Kenter . . . 3-27
Kernel Print Statements . . . 3-70
Kernel Timers . . . 3-5
Kexit . . . 3-27
login . . . 5-3, 5-7
login log . . . 5-4
lp Commands . . . 5�5
mail . . . 5-3
Major and Minor Numbers . . . 3-14
Manual Pages . . . A-1
Master (required) . . , 3-54
Master and System Files . . . 3-15

1·2 ISDG

Master File . . . 3-48
Memory Space . . . 4-3
Mfsys (optional) and Sfsys (optional)

. . . 3-58
Modifying Existing Kernel Parameter

. . . 3-63
Name (required) . . . 3-56
Name File . . . 2-8
Node (optional) . . . 3-55
Notational Conventions . . . 1-3
Number of Installed Drivers . . . 3-48
Open . . . 3-20
PATH . . . 5-7
Poll . . . 3-27
Portability Restrictions . . . 4-2
Porting . . . 4-1 , F-1
Programming Techniques . . . 4-1
Prototype Floppy Disk Driver . . . D-1
ps . . . 5-7
Purpose of This Guide . . . 1-1
putspent . . . 5-3
pwconv . . . 5-5
Rc (optional) . . . 3-56
Read and Write . . . 3-21
Reconfiguring the Kernel to Enable

New Parameters . . . 3-64
Related Documentation . . . 1-4
Remaining Installation Files for the

Fruit Package . . . 2-20
Removal of Installed Software . . .

2-14
Remove (required) . . . 3-5 7
Remove Fruit Shell Script . . . 2- 1 9
Remove Program . . . 2-1 7
Remove Script . . . 3-75
Sample Driver Software Package . . .

E-1
Security Notes . . . 5-1
Setting Processor Priority Levels . . .

3-3 1
Shadow Password . . . 5-2

Sharing Interrupts and DMA Chan-
nels . . . 3-28

Shell Scripts . . . 5-6
Shutdown (optional) . . . 3-56
Sign Extension . . . 4-4
Simple Game Port Driver . . . B-1
Size (required) . . . 3-58
Size File . . . 2-8, 3-74
Sleep and Wakeup . . . 3-30
Sleep Priorities . . . 3-34
Sleeping and Waking Processes . . .

3-4
Space.c (optional) . . . 3-55
space.c . . . 3-49
Special Files . . . 3-1 4
Special Installation Files . . . 2-3
Start . . . 3- 1 9
Sticky Bit . . . 5- 1
Strategy . . . 3-23
Structure of the Device Driver

Source Files . . . 3-1 6
Summary of Modules . . . 3-58
Synchronous and Interrupt Sections

of a Driver . . . 3-6
SYS186 Argument Set . . . F-3
System (required) . . . 3-54
System Administrator Commands . . .

5-4
System Buffers . . . 3-3
System Calls . . . 4-3
System File . . . 3-49
System Header Files . . . 4-4
System Panics . . . 3-71
System Utility Functions . . . 3-30
Taking a System Dump . . . 3-72
Timeout . . . 3-37
Trace Driver . . . 3-71
Trace Driver . . . C-1
Transferral of Programs From the

Temporary Directory . . . 2-1 2
Tunable System Parameters . . . 3-63,

Index

4-3
Types of Devices . . . 3- 13
UNIX Application Software Installa

tion . . . 2-1
UNIX System Driver Specifics . . .

3-1 3
UNIX System V /386 Installable

Driver Implementation . . . 3-43
UNIX System V /386 Modifications

for 10 . . . 3-48
Update Driver Software Package . . .

3-60
Use of Line Disciplines . . . 3-29
User Commands . . . 5-2
User Interface . . . 3-47
User Privileges . . . 3-47
Utilities Set . . . 4-3
uucp . . . 5-3
What is a UNIX Device Driver? . . .

3-1
What Is Covered In This Guide . . .

1-1
Writing the Floppy Diskette . . . 3-75

INDEX 1-3

DOC0041-2Y

