
ATB.T

UNIX® System V /386

Release 3.2

Programmer's Guide

Volume I

©1988AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC is a registered trademark and PDP, VA X, and VT100 are trademarks
of Digital Equipment Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
TELETYPE, UNIX, and WRITER'S WORKBENCH are registered
trademarks of AT&T.

Volume I

1

2

3

Table of Contents

Introduction

Introduction

Programming in A UNIX System
Environment: An Overview

xxiii

Introduction 1-1
UNIX System Tools and Where You Can Read About

Them 1-4
Three Programming Environments 1-7
Summary 1-9

Programming Basics
Introduction
Choosing a Programming Language
After Your Code Is Written
The Interface Between a Programming Language and

2-1
2-2
2-7

the UNIX System 2-11
Analysis/Debugging 2-43
Program Organizing Utilities 2-66

Application Programming
Introduction
Application Programming

TABLE OF CONTENTS

3-1
3-2

Table of Contents ----------------------

4

5

6

Language Selection
Advanced Programming Tools
Programming Support Tools
Project Control Tools
liber, A Library System

awk
Introduction

3-5

3-13

3-21

3-34

3-38

4-1
Basic awk 4-2
Patterns 4-12

Actions 4-20

Output 4-38

Input 4-43

Using awk with Other Commands and the Shell 4-49

Example Applications 4-52

awk Summary 4-58

lex
An Overview of lex Programming
Writing lex Programs
Running lex under the UNIX System

yacc
Introduction
Basic Specifications
Parser Operation
Ambiguity and Conflicts
Precedence
Error Handling
The yacc Environment
Hints for Preparing Specifications
Advanced Topics

5-1

5-3

5-18

6-1

6-4

6-13
6-18
6-24
6-28
6-32
6-34
6-38

ii PROGRAMMER'S GUIDE

7

8

9

Volume II

10

Table of Contents

Examples

File and Record Locking
Introduction
Terminology
File Protection
Selecting Advisory or Mandatory Locking

Shared Libraries
Introduction
Using a Shared Library
Building a Shared Library
Summary

lnterprocess Communication
Introduction
Messages
Semaphores
Shared Memory

Extended Terminal Interface
Overview
What is ETI?
Basic ETI Programming
Simple Input and Output
Windows
Panels
Compiling and Linking Panel Programs
Creating Panels
Elementary Panel Window Operations
Moving Panels to the Top or Bottom of the Deck
Updating Panels on the Screen

6-45

7-1
7-2

7-4

7-18

8-1

8-2

8-15

8-59

9-1

9-2
9-38
9-75

10-1

10-5

10-9
10-18
10-58
10-69
10-70

10-71
10-72
10-75
10-76

TABLE OF CONTENTS iii

Table of Contents

Making Panels Invisible
Fetching Panels Above or Below Given Panels
Setting and Fet(:hing the Panel User Pointer
Deleting Panels
Menus
Compiling and Linking Menu Programs
Overview: Writing Menu Programs in ETI
Creating and Freeing Menu Items
Two Kinds of Menus: Single- and Multi-Valued
Manipulating Item Attributes
Setting the Item User Pointer
Creating and Freeing Menus
Manipulating Menu Attributes
Displaying Menus
Menu Driver Processing
Manipulating the Menu User Pointer
Setting and Fetching Menu Options
Forms
Compiling and Linking Form Programs
Overview: Writing Form Programs in ETI
Creating and Freeing Fields
Manipulating Field Attributes
Setting the Field Foreground, Background, and Pad

Character
Some Helpful Features of Fields
Manipulating Field Options
Creating and Freeing Forms
Manipulating Form Attributes
Displaying Forms
Form Driver Processing
Setting and Fetching the Form User Pointer
Setting and Fetching Form Options
Creating and Manipulating Programmer-Defined Field

Types
Other ETI Routines
Routines for DraWing Lines and Other Graphics
Routines for Using Soft Labels
Working with More than One Terminal

iv PROGRAMMER'S GUIDE

10-78
10-80
10-82
10-85
10-86
10-87
10-88
10-92
10-95
10-97

10- 102
10- 105
10- 108
10- 1 12
10- 130
10- 153
10- 156
10- 160
10- 16 1
10- 162
10- 169
10- 173

10- 185
10-187
10- 195
10- 199
10-203
10-206
10-2 14
10-241
10-243

10-246
10-259
10-260
10-262
10-264

11

12

1 3

14

Table of Contents

Working with terminfo Routines
Working with the terminfo Database
TAM Transition Library
Compiling and Running TAM Applications under ETI
Tips for Polishin� TAM Application Programs

Running under ETI
How the TAM Transition Library Works
Program Examples

Common Object File Format (coff)
The Common Object File Format (COFF)

The Link Editor
The Link Editor
Link Editor Command Language
Notes and Special Considerations
Syntax Diagram for Input Directives

make
Introduction
Basic Features

10-266
10-272

10-284
10-285

10-286

10-287

10-296

11-1

12-1

12-4

12-22

12-32

13-1

13-2

Description Files and Substitutions 13-7

Recursive Makefiles 13-11

Source Code Control System File Names: the Tilde 13-17
Command Usage 13-21
Suggestions and Warnings 13-24

Internal Rules 13-25

Source Code Control System
(sees)

TABLE OF CONTENTS v

Table of Contents

15

16

17

Introduction
SCCS For Beginners
Delta Numbering
SCCS Command Conventions
SCCS Commands
sees Files

sdb-the Symbolic Debugger
Introduction
Using sdb

lint
Introduction
Usage
lint Message Types

C Language
Introduction
Lexical Conventions
Storage Class and Type
Operator Conversions
Expressions and Operators
Declarations
Statements
External Definitions
Scope Rules
Compiler Control Lines
Types Revisited
Constant Expressions
Portability Considerations
Syntax Summary

vi PROGRAMMER'S GUIDE

14-1

14-2

14-7

14-10

14-12

14-37

15-1

15-2

16-1
16-2

16-4

17-1

17-2

17-6

17-9
17-12
17-23

17-37

17-43

17-45
17-47
17-52
17-57
17-58
17-59

-------------------- Table of Contents

18

A

G

I

C Programmer's Productivity
Tools

Introducing the C Programmer's Productivity Tools 18-1

cscope 18-3
lprof 18-29

Profiling Examples 18-47

Index to Utilities
Appendix A: Index to Utilities

Glossary
Glossary

Index
Index

A-1

G-1

1-1

TABLE OF CONTENTS vii

...... ·:

��-:. .

�··

.·_ .. -

�·

-. . . -_ �· --

• . c= , • .

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 2-6:

Figure 2-7:

Figure 2-8:

Figure 2-9:

Figure 2-9:

Figure 2-10:

Figure 2-11:

Figure 2-12:

Figure 2-13:

Figure 2-14:

Figure 2-15:

Figure 2-15:

List of Figures

Using Command Line Arguments to Set Flags 2- 13

Using argv[n] Pointers to Pass a File Name 2- 14

C Language Standard I/0 Subroutines 2- 17

String Operations 2- 19

Classifying ASCII Character-Coded Integer Values 2- 19

Conversion Functions and Macros 2-20

Manual Page for gets(3S) 2-23

How gets Is Used in a Program 2-24

A Version of stdio.h (Sheet 1 of 2) 2-25

A Version of stdio.h (Sheet 2 of 2) 2-26

Environment and Status System Calls 2-33

Process Status 2-34

Example of fork 2-37

Example of a popen pipe 2-39

Signal Numbers Defined in
jusr jindudejsysjsignal.h 2-41

Source Code for Sample Program (Sheet 1 of 4) 2-44

Source Code for Sample Program (Sheet 2 of 4) 2-45

LIST OF FIGURES ix

List of Figures

Figure 2-15: Source Code for Sample Program (Sheet 3 of 4)

Figure 2-15: Source Code for Sample Program (Sheet 4 of 4)

Figure 2-16: dlow Output, No Options

Figure 2-17: cflow Output, Using r Option

Figure 2-18: cflow Output, Using ix Option

Figure 2-19: cflow Output, Using r and ix Options

Figure 2-20: ctrace Output (Sheet 1 of 3)

Figure 2-20: ctrace Output (Sheet 2 of 3)

Figure 2-20: ctrace Output (Sheet 3 of 3)

Figure 2-21: cxref Output, Using c Option (Sheet 1 of 5)

Figure 2-21: cxref Output, Using c Option (Sheet 2 of 5)

Figure 2-21: cxref Output, Using c Option (Sheet 3 of 5)

Figure 2-21: cxref Output, Using c Option (Sheet 4 of 5)

Figure 2-21: cxref Output, Using c Option (Sheet 5 of 5)

Figure 2-22: lint Output

Figure 2-23: prof Output

Figure 2-24: make Description File

Figure 2-25: nm Output, with f Option (Sheet 1 of 5)

Figure 2-25: nm Output, with f Option (Sheet 2 of 5)

Figure 2-25: nm Output, with f Option (Sheet 3 of 5)

Figure 2-25: nm Output, with f Option (Sheet 4 of 5)

Figure 2-25: nm Output, with f Option (Sheet 5 of 5)

x PROGRAMMER'S GUIDE

2-46

2-47

2-48

2-49

2-50

2-51

2-53

2-54

2-55

2-56

2-57

2-58

2-59

2-60

2-61

2-64

2-67

2-70

2-71

2-72

2-73

2-74

Figure 3-1:

Figure 3-2:

Figure 3-2:

Figure 4-.1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 4-7:

Figure 4-8:

Figure 4-9:

Figure 5-1:

Figure 8-1:

Figure 8-2:

Figure 8-3:

Figure 8-4:

Figure 8-5:

Figure 8-6:

Figure 8-7:

Figure 8-8:

Figure 8-9:

List of Figures

The fcntl.h Header File 3-16

Object File Library Functions (Sheet 1 Of 2) 3-25

Object File Library Functions (Sheet 2 Of 2) 3-26

awk Program Structure and Example 4-2

The Sample Input File countries 4-4

awk Comparison Operators 4-14

awk Regular Expressions 4-18

awk Built-in Variables 4-20

awk Built-in Arithmetic Functions 4-23

awk Built-in String Functions 4-24

awk print£ Conversion Characters 4-39

getline Function 4-47

Creation and Use of a Lexical Analyzer with lex 5-2

a.out Files Created Using an Archive Library and a
Shared Library 8-8

Processes Using an Archive and a Shared Library 8-9

A Branch Table in a Shared Library 8-12

Imported Symbols in a Shared Library 8-32

File log.c 8-50

File poly.c 8-51

File stats.c 8-52

Header File maux.h 8-53

Specification File 8-56

LIST OF FIGURES xi

List of Figures

Figure 9-1: ipc_perm Data Structure

Figure 9-2: Operation Permissions Codes

Figure 9-3: Control Commands (Flags)

Figure 9-4: msgget() System Call Example (Sheet 1 of 3)

Figure 9-4: msgget() System Call Example (Sheet 2 of 3)

Figure 9-4: msgget() System Call Example (Sheet 3 of 3)

Figure 9-5: msgctl() System Call Example (Sheet 1 of 4)

Figure 9-5: msgctl() System Call Example (Sheet 2 of 4)

Figure 9-5: msgctl() System Call Example (Sheet 3 of 4)

Figure 9-5: msgctl() System Call Example (Sheet 4 of 4)

Figure 9-&: msgop() System Call Example (Sheet 1 of 7)

Figure 9-fi: msgop() System Call Example (Sheet 2 of 7)

Figure 9-fi: msgop() System Call Example (Sheet 3 of 7)

Figure 9-fi: msgop() System Call Example (Sheet 4 of 7)

Figure 9-&: msgop() System Call Example (Sheet 5 of 7)

Figure 9-6: msgop() System Call Example (Sheet 6 of 7)

Figure 9-6: msgop() System Call Example (Sheet 7 of 7)

Figure 9-7: Operation Permissions Codes

Figure 9-8: Control Commands (Flags)

Figure 9-9: semget() System Call Example (Sheet 1 of 3)

Figure 9-9: semget() System Call Example (Sheet 2 of 3)

Figure 9-9: semget() System Call Example (Sheet 3 of 3)

xii PROGRAMMER'S GUIDE

9-5

9-8

9-9

9-13

9-14

9-15

9-20

9-21

9-22

9-23

9-31

9-32

9-33

9-34

9-35

9-36

9-37

9-46

9-46

9-50

9-51

9-52

Figure 9-10:

Figure 9-10:

Figure 9-10:

Figure 9-10:

Figure 9-10:

Figure 9-1 0:

Figure 9-10:

Figure 9-11:

Figure 9-11 :

Figure 9-11:

Figure 9-11:

Figure 9-12:

Figure 9-13:

Figure 9-14:

Figure 9-15:

Figure 9-15:

Figure 9-15:

Figure 9-16:

Figure 9-16:

Figure 9-16:

Figure 9-16:

Figure 9-16:

List of Figures

semctl() System Call Example (Sheet 1 of 7) 9-60

semctl() System Call Example (Sheet 2 of 7) 9-61

semctl() System Call Example (Sheet 3 of 7) 9-62

semctl() System Call Example (Sheet 4 of 7) 9-63

semctl() System Call Example (Sheet 5 of 7) 9-64

semctl() System Call Example (Sheet 6 of 7) 9-65

semctl() System Call Example (Sheet 7 of 7) 9-66

semop(2) System Call Example (Sheet 1 of 4) 9-71

semop(2) System Call Example (Sheet 2 of 4) 9-72

semop(2) System Call Example (Sheet 3 of 4) 9-73

semop(2) System Call Example (Sheet 4 of 4) 9-74

Shared Memory State Information 9-78

Operation Permissions Codes 9-82

Control Commands (Flags) 9-82

shmget(2) System Call Example (Sheet 1 of 3) 9-86

shmget(2) System Call Example (Sheet 2 of 3) 9-87

shmget(2) System Call Example (Sheet 3 of 3) 9-88

shmctl(2) System Call Example (Sheet 1 of 6) 9-93

shmctl(2) System Call Example (Sheet 2 of 6) 9-94

shmctl(2) System Call Example (Sheet 3 of 6) 9-95

shmctl(2) System Call Example (Sheet 4 of 6) 9-96

shmctl() System Call Example (Sheet 5 of 6) 9-97

LIST OF FIGURES xiii

List of Figures

Figure 9·16: shmctl(2) System Call Example (Sheet 6 of 6) 9-98

Figure 9-17: shmop() System Call Example (Sheet 1 of 4) 9-103

Figure 9·17: shmop() System Call Example (Sheet 2 of 4) 9-104

Figure 9·17: shmop() System Call Example (Sheet 3 of 4) 9-105

Figure 9·17: shmop() System Call Example (Sheet 4 of 4) 9-106

Figure 10..1: A Simple ETI Program 10-6

Figure 1 0..2: The Purposes of initscr(), refresh(), and endwin()
in a Program 10-11

Figure 1 0..3: The Relationship between stdscr and a Terminal
Screen 10-15

Figure 1 0..3: The Relationship Between stdscr and a Terminal
Screen (continued) 10-16

Figure 1 0·4: Multiple Windows and Pads Mapped to a Physical
Screen 10-17

Figure 1 0·5: Input Option Settings for ETI Programs 10-54

Figure 1 0..6: Using wnoutrefreshO and doupdateO 10-60

Figure 1 0..7: The Relationship Between a Window and a Termi-
nal Screen 10-61

Figure 1 0..7: The Relationship Between a Window and a Termi-
nal Screen (continued) 10-62

Figure 1 0..7: The Relationship Between a Window and a Termi-
nal Screen (continued) 10-63

Figure 10-8: Sample Routines for Low-Level ETI (curses) Inter-
face 10-67

Figure 1 0..9: Example Using Panel User Pointer 10-83

Figure 10..10: A Sample Menu 10-86

xiv PROGRAMMER'S GUIDE

List of Figures

Figure 10-11: Sample Menu Program to Create a Menu in ETI

Figure 10-12: Creating an Array of Items

Figure 10-13: Using item_valueO in Menu Processing

Figure 10-14: Using an Item User Pointer

Figure 10-15: Changing the Items Associated With a Menu

Figure 10-16: Examples of Menu Format (2, 2)

Figure 10-17: Examples of Menu Format (3, 2)

Figure 10-18: Examples of Menu Format (4, 3)

Figure 10-19: Menu Functions Write to Subwindow, Application
to Window

Figure 10-20: Creating a Menu with a Border

Figure 10-21: Sample Routines Displaying and Erasing Menus

Figure 10-22: Sample Routine that Translates Keys into Menu
Requests

Figure 10-23: Integer Ranges for ETI Key Values and MENU
Requests

Figure 10-24: Sample Menu Output (2)

Figure 10-25: Sample Program Calling the Menu Driver

Figure 10-26: Using an Initialization Routine to Generate Item
Prompts

Figure 10-27: Returning Cursor to its Correct Position for Menu
Driver Processing

Figure 10-28: Example Setting and Using A Menu User Pointer

Figure 10-29: Sample Form Display

10-90

10-93

10-96

10-103

10-109

10-114

10-115

10-115

10-121

10-122

10-128

10-132

10-136

10-137

10-140

10-145

10-150

10-154

10-160

LIST OF FIGURES xv

List of Figures

Figure 10-30: Code To Produce a Simple Form

Figure 10-31: Example Shifting All Form Fields a Given Number
of Rows

Figure 10-32: Setting a Field to TYPE-ENUM of Colors

Figure 10-33: Using the Field Status to Update a Database

Figure 10-34: Using the Field User Pointer to Match Items

Figure 10-35: Creating a Form

Figure 10-36: Form Functions Write to Subwindow, Application
to Window

Figure 10-37: Creating a Border Around a Form

Figure 10-38: Posting and Unposting a Form

Figure 10-39: A Sample Key Virtualization Routine

Figure 10-40: Sweepstakes Form Output

Figure 10-41: An Example of Form Driver Usage

Figure 10-42: Sample Termination Routine that Updates a
Column Total

Figure 10-43: Field Initialization and Termination to Highlight
Current Field

Figure 10-44: Example Manipulating the Current Field

Figure 10-45: Example Changing and Checking the Form Page
Number

Figure 10-46: Repositioning the Cursor After Printing Page
Number

Figure 10-47: Pattern Match Example Using form User Pointer

Figure 10-48: Creating a Programmer-Defined Field Type

xvi PROGRAMMER'S GUIDE

10- 165

10- 175

10- 180

10- 190

10- 193

10-20 1

10-209

10-210

10-212

10-217

10-224

10-228

10-233

10-234

10-236

10-238

10-239

10-242

10-249

List of Figures

Figure 10-49: Creating TYPE_HEX with Padding and Range
Arguments 10-254

Figure 10-50: Creating a Next Choice Function for a Field Type 10-257

Figure 10-51: Sending a Message to Several Terminals 10-265

Figure 10-52: Typical Framework of a terminfo Program 10-267

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 1 of 4) 10-287

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 2 of 4) 10-288

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 3 of 4) 10-289

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 4 of 4) 10-289

Figure 10-54: TAM High-Level Functions 10-291

Figure 10-55: Translation Between TAM Escape Sequences and
Virtual Key Values 10-294

Figure 11-1: Object File Format 11-2

Figure 11-2: File Header Contents 11-4

Figure 11-3: File Header Flags 11-5

Figure 11-4: File Header Declaration 11-6

Figure 11-5: Optional Header Contents 11-7

Figure 11-6: UNIX System Magic Numbers 11-8

Figure 11-7: aouthdr Declaration 11-9

Figure 11-8: Section Header Contents 11-10

Figure 11-9: Section Header Flags 11-11

LIST OF FIGURES xvii

List of Figures

Figure 11·10: Section Header Declaration

Figure 11·11: Relocation Section Contents

Figure 11·12: Relocation Types

Figure 11·13: Relocation Entry Declaration

Figure 11·14: Une Number Grouping

Figure 11·15: Une Number Entry Declaration

Figure 11·16: COFF Symbol Table

Figure 11·17: Special Symbols in the Symbol Table

Figure 11·18: Special Symbols (.bb and .eb)

Figure 11·19: Nested blocks

Figure 11·20: Example of the Symbol Table

Figure 11·21: Symbols for Functions

Figure 11-22: Symbol Table Entry Format

Figure 11-23: Name Field

Figure 11-24: Storage Classes

Figure 11·25: Storage Class by Special Symbols

Figure 11·26: Restricted Storage Classes

Figure 11-27: Storage Class and Value

Figure 11-28: Section Number

Figure 11·29: Section Number and Storage Class

Figure 11-30: Fundamental Types

Figure 11·31: Derived Types

xviii PROGRAMMER'S GUIDE

11-12

11-13

11-14

11-15

11-16

11-17

11-18

11-19

11-20

11-21

11-22

11-22

11-23

11-24

11-25

11-26

11-27

11-28

11-29

11-30

11-31

11-32

List of Figures

Figure 11-32: Type Entries by Storage Class

Figure 11-33: Symbol Table Entry Declaration

Figure 11-34: Auxiliary Symbol Table Entries

Figure 11-35: Format for Auxiliary Table Entries for Sections

Figure 11-36: Tag Names Table Entries

Figure 11-37: Table Entries for End of Structures

Figure 11-38: Table Entries for Functions

Figure 11-39: Table Entries for Arrays

Figure 11-40: End of Block and Function Entries

Figure 11-41: Format for Beginning of Block and Function

Figure 11-42: Entries for Structures, Unions, and Enumerations

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 1 of 2)

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 2 of 2)

Figure 11-44: String Table

Figure 12-1: Operator Symbols

Figure 12-2: Syntax Diagram for Input Directives (Sheet 1 of 4)

Figure 12-2: Syntax Diagram for Input Directives (Sheet 2 of 4)

Figure 12-2: Syntax Diagram for Input Directives (Sheet 3 of 4)

Figure 12-2: Syntax Diagram for Input Directives (Sheet 4 of 4)

Figure 13-1: Summary of Default Transformation Path

Figure 13-2: make Internal Rules (Sheet 1 of 5)

Figure 13-2: make Internal Rules (Sheet 2 of 5)

LIST OF FIGURES

11-33

11-35

11-36

11-37

11-38

11-38

11-39

11-39

11-40

11-40

11-41

11-42

11-43

11-44

12-5

12-32

12-33

12-34

12-35

13-13

13-25

13-26

xix

List of Figures

Figure 13-2: make Internal Rules (Sheet 3 of 5)

Figure 13-2: make Internal Rules (Sheet 4 of 5)

Figure 13-2: make Internal Rules (Sheet 5 of 5)

Figure 14-1: Evolution of an SCCS File

Figure 14-2: Tree Structure with Branch Deltas

Figure 14-3: Extended Branching Concept

Figure 14-4: Determination of New SID

Figure 15-1: Example of sdb Usage (Sheet 1 of 3)

Figure 15-1: Example of sdb Usage (Sheet 2 of 3)

Figure 15-1: Example of sdb Usage (Sheet 3 of 3)

Figure 17-1: Escape Sequences for Nongraphic Characters

Figure 17-2: Computer Hardware Characteristics

Figure 18-1: The cscope Menu of Tasks

Figure 18-2: Menu Manipulation Commands

Figure 18-3: Requesting a Search for a Text String

Figure 18-4: cscope Lists Lines Containing the Text String

Figure 18-5: Commands for Use After Initial Search

Figure 18-6: Examining a Line of Code Found by cscope

Figure 18-7: Requesting a List of Functions that Call alloctest

Figure 18-8: cscope Lists Functions that Call alloctest

Figure 18-9: cscope Lists Functions that Call mymalloc

Figure 18-10: Viewing dispinit in the Editor

xx PROGRAMMER'S GUIDE

13-27

13-28

13-29

14-7

14-8

14-9

14-21

15-13

15-14

15-15

17-4

17-7

18-6

18-7

18-8

18-9

18-10

18-11

18-12

18-13

18-14

18-15

Figure 18-11:

Figure 18-12:

Figure 18-13:

Figure 18-14:

Figure 18-15:

Figure 18-16:

Figure 18-17:

Figure 18-18:

Figure 18-19:

Figure 18-20:

Figure 18-21:

Figure 18-22:

Figure 18-23:

Figure 18-24:

Figure 18·25:

Figure 18-26:

Figure 18-27:

List of Figures

Using cscope to Fix the Problem 18- 16

Commands for Selecting Lines to be Changed 18-20

Changing a Text String 18-2 1

cscope Prompts for Lines to be Changed 18-22

Marking Lines to be Changed 18-23

cscope Displays Changed Lines of Text 18-24

Escaping from cscope to the Shell 18-25

Example of lprof Output 18-37

Example of Output Produced by the x Option 18-39

Example of lprof s Output 18-41

prof Output 18-48

lprof Output for the Function CAfind 18-50

lprof Output for New Version of Function CAfind 18-54

prof Output for New Version of lprof 18-56

lprof Summary Output for a Test Suite 18-57

Fragment of Output from lprof x 18-59

Output from lprof x for Function putdata 18-60

LIST OF FIGURES xxi

·. · ... ·-

. . · . . · ·

. :-:·. ��. .• �; . . :.

<·= ..

· .. :..

Introduction

Purpose

This guide is designed to give you information about programming in the
UNIX System V /386 operating system environment. It does not attempt to
teach you how to write programs. Rather, it is intended to supplement texts
on programming languages by concentrating on the other elements that are
part of getting programs into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing programmers, especially those
who have not worked extensively with the UNIX System. No special level of
programming involvement is assumed. We hope the book will be useful to
people who write only an occasional program, as well as to those who work
on or manage large application development projects.

Programmers in the expert class, or those engaged in developing system
software, may find this guide lacks the depth of information they need. For
them we recommend the Programmer's Reference Manual.

Knowledge of terminal use, of a UNIX System editor, and of the UNIX
System directory /file structure is assumed. If you feel shaky about your
mastery of these basic tools, you might want to look over the User's Guide
before tackling this one. The material is organized into eighteen chapters.

The C Connection

The UNIX System supports many programming languages, and C com
pilers are available on many different operating systems. Nevertheless, the
relationship between the UNIX Operating System and C has always been and
remains very close. Most of the code in the UNIX Operating System is C, and
over the years many organizations using the UNIX System have come to use
C for an increasing portion of their application code. Thus, while this guide is
intended to be useful to you no matter what language(s) you are using, you
will find that, unless there is a specific language-dependent point to be made,
the examples assume you are programming in C.

INTRODUCTION xxlii

Introduction

Hardware/Software Dependencies

The text reflects the way things work on your computer running UNIX
System V /386 at the Release 3 .2 level. If you find commands that work a lit
tle differently in your UNIX System environment, it may be because you are
running under a different release of the software. If some commands do not
seem to exist at all, they may be members of packages not installed on your
system. Appendix A describes the command packages available on your com
puter. If you do find yourself trying to execute a non-existent command,
check Appendix A, then talk to the administrators of your system.

Notational Conventions

Whenever the text includes examples of output from the computer andjor
commands entered by you, we follow the standard notation scheme that is
common throughout UNIX System documentation:

• Commands, options, arguments to commands, and directory and file
names that you type in from your terminal are shown in bold type.

• Text that is printed on your terminal by the computer is shown in
constant width type. Constant width type is also used for code sam

ples because it allows the most accurate representation of spacing.
Spacing is often a matter of coding style but is sometimes critical .

• Comments added to a display to show that part of the display has
been omitted are shown in italic type and are indented to separate
them from the text that represents computer output or input. Com
ments that explain the input or output are shown in the same type font
as the rest of the display.

Italics are also used to show substitutable values, such as, filename,
when the format of a command is shown.

• There is an implied RETURN at the end of each command and menu
response you enter. Where you may be expected to enter only a
RETURN (as in the case where you are accepting a menu default), the
symbol <CR> is used.

xxiv PROGRAMMER'S GUIDE

Introduction

• In cases where you are expected to enter a control character, it is
shown as, for example, CTRL-D. This means that you press the d key
on your keyboard while holding down the CTRL key.

• The dollar sign ($) and pound sign (#) are the standard default prompt
signs for an ordinary user and root. $ means you are logged in as an
ordinary user. # means you are logged in as root.

• When the # prompt is used in an example, it means the command
illustrated may be used only by root.

Command References

When commands are mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses, that is, command(section) . Numbered sections are
located in the following manuals:

Sections (1 , 1M), (7) User'sjSystem Administrator's Reference Manual

Sections (1), (2), (3), (4), (5) Programmer's Reference Manual

Information in the Examples

While every effort has been made to present displays of information just
as they appear on your terminal, it is possible that your system may produce
slightly different output. Some displays depend on a particular machine con
figuration that may differ from yours . Changes between releases of the UNIX
System software may cause small differences in what appears on your termi
nal.

Where complete code samples are shown, we have tried to make sure
they compile and work as represented. Where code fragments are shown,
while we cannot say that they have been compiled, we have attempted to
maintain the same standards of coding accuracy for them.

INTRODUCTION xxv

-:.' ..

. -::- . . ·

.· _i.

' =�-

1 Programming in A UNIX System
Environment: An Overview

Introduction
The Early Days
UNIX System Philosophy Simply Stated

UNIX System Tools and Where
You Can Read About Them
Tools Covered and Not Covered in this Guide
The Shell as a Prototyping Tool

1- 1
1- 1
1-3

1-4
1-4
1-5

Three Programming Environments 1-7
Single-User Programmer 1-7
Application Programming 1-8
Systems Programmers 1-8

Summary 1-9

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW

� ,, :_
-
. . . :

Introduction

The 1 983 Turing Award of the Association for Computing Machinery was
given jointly to Ken Thompson and Dennis Ritchie, the two men who first
designed and developed the UNIX Operating System. The award citation
said, in part:

The success of the UNIX System stems from its tasteful selec
tion of a few key ideas and their elegant implementation. The
model of the UNIX System has led a generation of software
designers to new ways of thinking about programming. The
genius of the UNIX System is its framework which enables
programmers to stand on the work of others.

As programmers working in a UNIX System environment, why should we
care what Thompson and Ritchie did? Does it have any relevance for us
today?

It does because if we understand the thinking behind the system design
and the atmosphere in which it flowered, it can help us become productive
UNIX System programmers more quickly.

The Early Days

You may already have read about how Ken Thompson came across a DEC
PDP-7 machine sitting unused in a hallway at AT&T Bell Laboratories, and
how he and Dennis Ritchie and a few of their colleagues used that as the ori
ginal machine for developing a new operating system that became UNIX.

The important thing to realize, however, is that what they were trying to
do was fashion a pleasant computing environment for themselves. It was not,
11 Let's get together and build an operating system that will attract world-wide
attention. 11

The sequence in which elements of the system fell into place is interest
ing. The first piece was the file system, followed quickly by its organization
into a hierarchy of directories and files. The view of everything, data stores,
programs, commands, directories, even devices, as files of one type or another
was critical, as was the idea of a file as a one-dimensional array of bytes with
no other structure implied. The cleanness and simplicity of this way of look
ing at files has been a major contributing factor to a computer environment
that programmers and other users have found comfortable.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-1

Introduction

The next element was the idea of processes, with one process being able
to create another and communicate with it. This innovative way of looking at
running programs as processes led easily to the practice (quintessentially
UNIX System) of reusing code by calling it from another process . With the
addition of commands to manipulate files and an assembler to produce exe
cutable programs, the system was essentially able to function on its own.

The next major development was the acquisition of a DEC PDP-1 1 and
the installation of the new system on it. This has been described by Ritchie as
a stroke of good luck, in that the PDP-1 1 was to become a hugely successful
machine, its success to some extent adding momentum to the acceptance of
the system that began to be known by the name of UNIX System.

By 1 972 the innovative idea of pipes (connecting links between processes
whereby the output of one becomes the input of the next) had been incor
porated into the system, the operating system had been recoded in higher
level languages (first B, then C) and had been dubbed with the name UNIX
System (coined by Brian Kernighan) . By this point, the " pleasant computing
environment " sought by Thompson and Ritchie was a reality; but some other
things were going on that had a strong influence on the character of the pro
duct then and today.

It is worth pointing out that the UNIX System came out of an atmosphere
that was totally different from that in which most commercially successful
operating systems are produced. The more typical atmosphere is that
described by Tracy Kidder in The Soul of a New Machine. In that case, dozens
of talented programmers worked at white heat, in an atmosphere of extremely
tight security, against murderous deadlines. By contrast, the UNIX System
could be said to have had about a ten-year gestation period. From the begin
ning it attracted the interest of a growing number of brilliant specialists, many
of whom found in the UNIX System an environment that allowed them to
pursue research and development interests of their own, but who, in tum,
contributed additions to the body of tools available for succeeding ranks of
UNIX System programmers.

Beginning in 1971 , the system began to be used for applications within
AT&T Bell Laboratories, and shortly thereafter (1974) was made available at
low cost and without support to colleges and universities. These versions,
called research versions and identified with Arabic numbers up through 7,
occasionally grew on their own and fed back to the main system additional
innovative tools. The widely-used screen editor vi(1), for example, was added
to the UNIX System by William Joy at the University of California, Berkeley.
In 1979, acceding to commercial demand, AT&T began offering supported

1·2 PROGRAMMER'S GUIDE

Introduction

versions (called development versions) of the UNIX System. These are identi
fied with Roman numerals and often have interim release numbers appended.
The current development version, for example, is UNIX System V /386
Release 3 .2 .

Versions of the UNIX System being offered now are coming from an
environment more closely related, perhaps, to the standard software factory.
Features are being added to new releases in response to the expressed needs
of the market place. The essential quality of the UNIX System, however,
remains as the product of the innovative thinking of its originators and the
collegial atmosphere in which they worked. This quality has on occasion
been referred to as the UNIX System philosophy, but what is meant is the
way in which sophisticated programmers have come to work with the UNIX
System.

U NIX System Philosophy Simply Stated

For as long as you are writing programs on a UNIX System you should
keep this motto hanging on your wall :

*
*
*
*

Build an the work of others

*
*

*
*

Unlike computer environments where each new project is like starting
with a blank canvas, on a UNIX System a good percentage of any program
ming effort is lying there in bins, and lbins, and jusrjbins, not to mention
etc, waiting to be used.

The features of the UNIX System (pipes, processes, and the file system)
contribute to this reusability, as does the history of sharing and contributing
that extends back to 1 969. You risk missing the essential nature of the UNIX
System if you do not put this to work.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-3

UNIX System Tools and Where You Can
Read About Them

The term 11 UNIX System tools 11 can stand some clarification. In the nar
rowest sense, it means an existing piece of software used as a component in a
new task. In a broader context, the term is often used to refer to elements of
the UNIX System that might also be called features, utilities, programs, filters,
commands, languages, functions, and so on. It gets confusing because any of
the things that might be called by one or more of these names can be, and
often are, used in the narrow way as part of the solution to a programming
problem.

Tools Covered and Not Covered in this Guide

The Programmer's Guide is about tools used in the process of creating pro
grams in a UNIX System environment, so let us take a minute to talk about
which tools we mean, which ones are not going to be covered in this book,
and where you might find information about those not covered here. Actu
ally, the subject of things not covered in this guide might be even more
important to you than the things that are. We could not possibly cover every
thing you ever need to know about UNIX System tools in this one volume.

Tools not covered in this text:

• the login procedure

• UNIX System editors and how to use them

• how the file system is organized and how you move around in it

• shell programming

Information about these subjects can be found in the User's Guide and a
number of commercially available texts.

Tools covered here can be classified as follows:

• utilities for getting programs running

• utilities for organizing software development projects

• specialized languages

1-4 PROGRAMMER'S GUIDE

• debugging and analyzing tools

UNIX System Tools

• compiled language components that are not part of the language syn
tax, for example, standard libraries, systems calls, and functions

The Shell as a Prototyping Tool

Any time you log in to a UNIX System machine you are using the shell.
The shell is the interactive command interpreter that stands between you and
the UNIX System kernel, but that is only part of the story. Because of its abil
ity to start processes, direct the flow of control, field interrupts, and redirect
input and output, it is a full-fledged programming language. Programs that
use these capabilities are known as shell procedures or shell scripts.

Much innovative use of the shell involves stringing together commands to
be run under the control of a shell script. The dozens and dozens of com
mands that can be used in this way are documented in the User'sfSystem
Administrator's Reference Manual. Time spent with the User's/System
Administrator's Reference Manual can be rewarding. Look through it when you
are trying to fmd a command with just the right option to handle a knotty
programming problem. The more familiar you become with the commands
described in the manual pages, the more you will be able to take full advan
tage of the UNIX System environment.

It is not our purpose here to instruct you in shell programming. What we
want to stress here is the important part that shell procedures can play in
developing prototypes of full-scale applications. While understanding all the
nuances of shell programming can be a fairly complex task, getting a shell
procedure up and running is far less time-consuming than writing, compiling,
and debugging compiled code.

This ability to get a program into production quickly is what makes the
shell a valuable tool for program development. Shell programming allows
you to " build on the work of others " to the greatest possible degree, since it
allows you to piece together major components simply and efficiently. Many
times even large applications can be done using shell procedures. Even if the
application is initially developed as a prototype system for testing purposes
rather than being put into production, many months of work can be saved.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-5

UNIX System Tools

With a prototype for testing, the range of possible user errors can be
determined-something that is not always easy to plan out when an applica
tion is being designed. The method of dealing with strange user input can be
worked out inexpensively, avoiding large re-coding problems.

A common occurrence in the UNIX System environment is to find that an
available UNIX System tool can accomplish with a couple of lines of instruc
tions what might take a page and a half of compiled code. Shell procedures
can intermix compiled modules and regular UNIX System commands to let
you take advantage of work that has gone before.

t -& PROGRAMMER'S GUIDE

Three Programming Environments

We distinguish among three programming environments to emphasize
that the information needs and the way in which UNIX System tools are used
differ from one environment to another. We do not intend to imply a hierar
chy of skill or experience. Highly-skilled programmers with years of experi
ence can be found in the "single-user" category, and relative newcomers can
be members of an application development or systems programming team.

Single-User Programmer

Programmers in this environment are writing programs only to ease the
performance of their primary job. The resulting programs might well be
added to the stock of programs available to the community in which the pro
grammer works. This is similar to the atmosphere in which the UNIX System
thrived; someone develops a useful tool and shares it with the rest of the
organization. Single-user programmers may not have externally imposed
requirements, or co-authors, or project management concerns. The program
ming task itself drives the coding very directly. One advantage of a timeshar
ing system such as UNIX System is that people with programming skills can
be set free to work on their own without having to go through formal project
approval channels and perhaps wait for months for a programming depart
ment to solve their problems.

Single-user programmers need to know how to do the following:

• select an appropriate language

• compile and run programs

• use system libraries

• analyze programs

• debug programs

• keep track of program versions

Most of the information to perform these functions at the single-user level
can be found in Chapter 2.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT! AN OVERVIEW 1-7

Three Programming Environments

Application Programming

Programmers working in this environment are developing systems for the
benefit of other, non-programming users. Most large commercial computer
applications still involve a team of applications development programmers.
They may be employees of the end-user organization, or they may work for a
software development firm. Some of the people working in this environment
may be more in the project management area than working programmers.

Information needs of people in this environment include all the topics in
Chapter 2, plus additional information on the following:

• software control systems

• file and record locking

• communication between processes

• shared memory

• advanced debugging techniques

These topics are discussed in Chapter 3 .

Systems Programmers

These are programmers engaged in writing software tools that are part of,
or closely related to, the operating system itself. The project may involve
writing a new device driver, a database management system, or an enhance
ment to the UNIX System kernel. In addition to knowing their way around
the operating system source code and how to make changes and enhance
ments to it, they need to be thoroughly familiar with all the topics covered in
Chapters 2 and 3 .

1-8 PROGRAMMER'S GUIDE

Summary

In this overview chapter we have described the way that the UNIX Sys
tem developed and the effect that has on the way programmers now work
with it. We have described what is and is not to be found in the other
chapters of this guide to help programmers. We have also suggested that in
many cases programming problems may be easily solved by taking advantage
of the UNIX System interactive command interpreter known as the shell .
Finally, we identified three programming environments, in the hope that it
will help orient the reader to the organization of the text in the remaining
chapters .

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1 -9

2 Programming Basics

Introduction 2-1

Choosing a Programming
Language 2-2
Supported Languages in a UNIX System

Environment 2-2
• C Language 2-3
• Assembly Language 2-4

Special Purpose Languages 2-4
• awk 2-4
• lex 2-5
• yacc 2-5
• m4 2-6
• be and de 2-6
• curses 2-6

After Your Code Is Written 2-7
Compiling and link Editing 2-8

• Compiling C Programs 2-8
• Compiler Diagnostic Messages 2-9
• Link Editing 2-9

The Interface Between a
Programming Language and the
UNIX System 2-11
Why C Is Used to Illustrate the Interface 2-11

PROGRAMMING BASICS

Programming Basics ---------------------

How Arguments Are Passed to a Program 2-12

System Calls and Subroutines 2-15

• Categories of System Calls and Subroutines 2-15

• Where the Manual Pages Can Be Found 2-21

• How System Calls and Subroutines Are Used in

C Programs 2-21

Header Files and Libraries 2-27

Object File Libraries 2-28

Input/Output 2-29

• Three Files You Always Have 2-29

• Named Files 2-30

• Low-Level 1/0 and Why You Should Not Use It 2-32
System Calls for Environment or Status Information 2-32

Processes 2-33

• system(3S) 2-35

• exec(2) 2-35

• fork(2) 2-36

• Pipes 2-38

Error Handling 2-40

Signals and Interrupts 2-40

Analysis/Debugging 2-43
Sample Program 2-43
cflow 2-48

ctrace 2-51

cxref 2-55
lint 2-61

prof 2-62

size 2-64

strip 2-64
sdb 2-64

Program Organizing Utilities 2-66

The make Command 2-66

The Archive 2-68
Use of SCCS by Single-User Programmers 2-74

ii PROGRAMMER'S GUIDE

Introduction

The information in this chapter is for anyone just learning to write pro
grams to run in a UNIX System environment. In Chapter 1 we identified one
group of UNIX System users as single-user programmers. People in that
category, particularly those who are not deeply interested in programming,
may find that this chapter (plus related reference manuals) tells them as much
as they need to know about coding and running programs on a UNIX System
computer.

Programmers whose interest does run deeper, who are part of an applica
tion development project, or who are producing programs on one UNIX Sys
tem computer that are being ported to another, should view this chapter as a
starter package.

PROGRAMMING BASICS 2·1

Choosing a Programming Language

How do you decide which programming language to use in a given situa
tion? One answer could be, " I always code in HAIRBOL, because that's the
language I know best. " Actually, in some circumstances that is a legitimate
answer. But, assuming more than one programming language is available to
you, that different programming languages have their strengths and
weaknesses, and assuming that once you have learned to use one program
ming language it becomes relatively easy to learn to use another, you might
approach the problem of language selection by asking yourself questions like
the following:

• What is the nature of the task this program is to do?

Does the task call for the development of a complex algorithm, or is
this a simple procedure that has to be done on a lot of records?

• Does the programming task have many separate parts?

Can the program be subdivided into separately compilable functions,
or is it one module?

• How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out the most
efficient process possible?

• What is the scope of its use?

Am I the only person who will use this program, or is it going to be
distributed to the whole world?

• Is there a possibility the program will be ported to other systems?

• What is the life expectancy of the program?

Is it going to be used just a few times, or will it still be going strong
five years from now?

Supported Languages in a UNIX System
Environment

By " supported languages " we mean those offered by AT&T for use on
your computer running UNIX System V /386 Release 3.2. Since these are
separately purchasable items, not all of them will necessarily be installed on

2-2 PROGRAMMER'S GUIDE

Language Selection

your machine. On the other hand, you may have languages available on your
machine that came from another source and are not mentioned in this discus
sion. Be that as it may, in this section and the one to follow we give brief
descriptions of the nature of (a) the C programming language, and (b) a
number of special purpose languages.

C Language

The C language is intimately associated with the UNIX System, since it
was originally developed for use in recoding the UNIX System kernel. H you
need to use a lot of UNIX System function calls for low-level IfO, memory or
device management, or inter-process communication, C language is a logical
first choice. Most programs, however, do not require such direct interfaces
with the operating system, so the decision to choose C might better be based
on one or more of the following characteristics:

• a variety of data types: character, integer, long integer, float, and
double

• low-level constructs (most of the UNIX System kernel is written in C)

• derived data types such as arrays, functions, pointers, structures, and
unions

• multi-dimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bit-wise operators

• a variety of flow-of-control statements: if, if-else, switch, while, do
while, and for

• a high degree of portability

C is a language that lends itself readily to structured programming. It is
natural in C to think in terms of functions. The next logical step is to view
each function as a separately compilable unit. This approach (coding a pro
gram in small pieces) eases the job of making changes andfor improvements.
If this begins to sound like the UNIX System philosophy of building new pro
grams from existing tools, it is not just coincidence. As you create functions
for one program, you will surely find that many can be picked up or quickly
revised for another program.

PROGRAMMING BASICS 2-3

Language Selection

A difficulty with C is that it takes a fairly concentrated use of the language
over a period of several months to reach your full potential as a C program
mer. If you are a casual programmer, you might make life easier for yourself
if you choose a less demanding language.

Assembly Language

The closest approach to machine language, assembly language is specific
to the particular computer on which your program is to run. High-level
languages are translated into the assembly language for a specific processor as
one step of the compilation. The most common need to work in assembly
language arises when you want to do some task that is not within the scope
of a high-level language. Since assembly language is machine-specific, pro
grams written in it are not portable.

Special Purpose Languages

In addition to the above formal programming languages, the UNIX System
environment frequently offers one or more of the special purpose languages
listed below.

awk

Since UNIX System utilities and commands are packaged in functional
groupings, it is possible that not all the facilities mentioned will be available
on all systems.

awk (its name is an acronym constructed from the initials of its develop
ers) scans an input file for lines that match pattem(s) described in a specifica
tion file. On finding a line that matches a pattern, awk performs actions also
described in the specification. It is not uncommon that an awk program can
be written in a couple of lines to do functions that would take a couple of
pages to describe in a programming language like FORTRAN or C. For exam
ple, consider a case where you have a set of records that consist of a key field
and a second field that represents a quantity. You have sorted the records by
the key field, and you now want to add the quantities for records with dupli
cate keys and output a file in which no keys are duplicated.

2-4 PROGRAMMER'S GUIDE

Language Selection

The pseudo-code for such a program might look like this:

Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;

If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;
}

At EOF, write out the last record from the hold area.

An awk program to accomplish this task would look like this:

{ �[$ 1] += $2 }
END { for (key in �) print key, �[key] }

This illustrates only one characteristic of awk; its ability to work with associa
tive arrays. With awk, the input file does not have to be sorted, which is a
requirement of the pseudo-program.

lex
lex is a lexical analyzer that can be added to C programs. A lexical

analyzer is interested in the vocabulary of a language rather than its grammar,
which is a system of rules defining the structure of a language. lex can pro
duce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass
the output stream on to the next program.

yacc

yacc (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yacc produces a C language subroutine that
parses an input stream according to rules laid down in a specification file.
The yacc specification file establishes a set of grammar rules together with
actions to be taken when tokens in the input match the rules. lex may be
used with yacc to control the input process and pass tokens to the parser that
applies the grammar rules.

PROGRAMMING BASICS 2·5

Language Selection

m4
m4 is a macro processor that can be used as a preprocessor for assembly

language and C programs. It is described in Section (1) of the Programmer's
Reference Manual.

be and de
be enables you to use a computer terminal as you would a programmable

calculator. You can edit a file of mathematical computations and call be to
execute them. The be program uses de. You can use de directly if you want,
but it takes a little getting used to since it works with reverse Polish notation.
That means you enter numbers into a stack followed by the operator. be and
de are described in Section (1) of the User'sjSystem Administrator's Reference
Manual.

curses
Actually a library of C functions, curses is included in this list because the

set of functions just about amounts to a sub-language for dealing with termi
nal screens. If you are writing programs that include interactive user screens,
you will want to become familiar with this group of functions.

In addition to all the foregoing, do not overlook the possibility of using
shell procedures.

2-8 PROGRAMMER'S GUIDE

After Your Coda Is WriHan

The last two steps in most compilation systems in the UNIX System
environment are the assembler and the link editor. The compilation system
produces assembly language code. The assembler translates that code into the
machine language of the computer the program is to run on. The link editor
resolves all undefined references and makes the object module executable.
With most languages on the UNIX System the assembler and link editor pro
duce files in what is known as the Common Object File Format (COFF). A
common format makes it easier for utilities that depend on information in the
object file to work on different machines running different versions of the
UNIX System.

In the Common Object File Format an object file contains the following:

• a file header

• optional secondary header

• a table of section headers

• data corresponding to the section header(s)

• relocation information

• line numbers

• a symbol table

• a string table

An object file is made up of sections. Usually, there are at least two:
.text, and .data. Some object files contain a section called .bss. (.bss is an
assembly language pseudo-op that originally stood for " block started by sym
bol. ") Options of the compilers cause different items of information to be
included in the Common Object File Format. For example, compiling a
program with the -g option adds line numbers and other symbolic informa
tion that is needed for the sdb (Symbolic Debugger) command to be fully
effective. You can spend many years programming without having to worry
too much about the contents and organization of the Common Object File
Format, so we are not going into any further depth of detail at this point.
Detailed information is available in Chapter 1 1 of this guide.

PROGRAMMING BASICS 2·7

Compiling and Link Editing -----------------

Compiling and Link Editing

The command used for compiling depends on the language used; for C
programs, cc both compiles and link edits.

Compiling C Programs

To use the C compilation system you must have your source code in a file
with a file name that ends in the characters .c, as in mycode.c. The command
to invoke the compiler is

cc mycode.c

If the compilation is successful, the process proceeds through the link edit
stage, and the result will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation.
The most used options are:

-c causes the compilation system to suppress the link edit
phase. This produces an object file (mycode.o) that can be
link edited at a later time with a cc command without the
-c option.

-g causes the compilation system to generate special informa-
tion about variables and language statements used by the
symbolic debugger sdb. If you are going through the stage
of debugging your program, use this option.

-0 causes the inclusion of an additional optimization phase.
This option is logically incompatible with the -g option.
You would normally use -0 after the program has been
debugged, to reduce the size of the object file and increase
execution speed.

-p causes the compilation system to produce code that works
in conjunction with the prof(l) command to produce a
runtime profile of where the program is spending its time.
See the Programmer's Reference Manual for the prof(l)
manual page. This is useful in identifying which routines
are candidates for improved code.

2·8 PROGRAMMER'S GUIDE

-o outfile

Compiling and Link Editing

tells cc to tell the link editor to use the specified name for
the executable file, rather than the default a.out.

Other options can be used with cc. Check the Programmer's Reference
Manual.

If you enter the cc command using a file name that ends in .s, the compi
lation system treats it as assembly language source code and bypasses all the
steps ahead of the assembly step.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that do not com
pile. The messages are generally quite understandable, but in common with
most language compilers they sometimes point several statements beyond
where the actual error occurred. For example, if you inadvertently put an
extra ; at the end of an if statement, a subsequent else will be flagged as a
syntax error. In the case where a block of several statements follows the if,
the line number of the syntax error caused by the else will start you looking
for the error well past where it is. Unbalanced curly braces, { } , are another
common producer of syntax errors.

Link Editing

The ld command invokes the link editor directly. The typical user, how
ever, seldom invokes ld directly. A more common practice is to use a
language compilation control command (such as cc) that invokes ld. The link
editor combines several object files into one, performs relocation, resolves
external symbols, incorporates startup routines, and supports symbol table
information used by sdb. You may, of course, start with a single object file
rather than several. The resulting executable module is left in a file named
a. out.

Any file named on the ld command line that is not an object file (typi
cally, a name ending in o) is assumed to be an archive library or a file of link
editor directives. The ld command has some 1 6 options. We are going to
describe four of them. These options should be fed to the link editor by speci
fying them on the cc command line if you are doing both jobs with the single
command, which is the usual case.

-o outfile provides a name to be used to replace a.out as the name of
the output file. Obviously, the name a.out is of only tem
porary usefulness. If you know the name you want to use
to invoke your program, you can provide it here. Of

PROGRAMMING BASICS 2-9

Compiling and Link Editing

-Ix

-L dir

-u symname

course, it may be equally convenient to do this:

mv a.out progname

when you want to give your program a less temporary
name.

directs the link editor to search a library libx.a, where x is
up to nine characters. For C programs, libc.a is automati
cally searched if the cc command is used. The -lx option is
used to bring in libraries not normally in the search path
such as libm.a, the math library. The -lx option can occur
more than once on a command line, with different values
for the x. A library is searched when its name is encoun
tered, so the placement of the option on the command line
is important. The safest place to put it is at the end of the
command line. The -lx option is related to the -L option.

changes the libx.a search sequence to search in the speci
fied directory before looking in the default library direc
tories, usually /lib or jusrflib. This is useful if you have
different versions of a library, and you want to point the
link editor to the correct one. It works on the assumption
that once a library has been found no further searching for
that library is necessary. Because -L diverts the search for
the libraries specified by -lx options, it must precede such
options on the command line.

enters symname as an undefined symbol in the symbol
table. This is useful if you are loading entirely from an
archive library, because initially the symbol table is empty
and needs an unresolved reference to force the loading of
the first routine.

When the link editor is called through cc, a startup routine (typically
flibfcrtO.o for C programs) is linked with your program. This routine calls
exit(2) after execution of the main program.

The link editor accepts a file containing link editor directives. The details
of the link editor command language can be found in Chapter 12 .

2-1 0 PROGRAMMER'S GUIDE

The Interface Between a Programming
Language and the UNIX System

When a program is run in a computer, it depends on the operating system
for a variety of services. Some of the services, such as bringing the program
into main memory and starting the execution, are completely transparent to
the program. They are, in effect, arranged for in advance by the link editor
when it marks an object module as executable. As a programmer you seldom
need to be concerned about such matters.

Other services, however, such as inputjoutput (I/0), file management,
and storage allocation require work on the part of the programmer. These
connections between a program and the UNIX Operating System are what is
meant by the term UNIX System/language interface. The following topics are
included in this section:

• why C is used to illustrate the interface

• how arguments are passed to a program

• system calls and subroutines

• header files and libraries

• object file libraries

• inputj output

• system calls for environment or status information

• processes

• error handling, signals, and interrupts

Why C Is Used to Illustrate the Interface

Throughout this section C programs are used to illustrate the interface
between the UNIX System and programming languages, because C programs
make more use of the interface mechanisms than other high-level languages.
What is really being covered in this section then is the UNIX SystemjC
Language interface. The way that other languages deal with these topics is
described in the user's guides for those languages.

PROGRAMMING BASICS 2-1 1

The Interface Between a Programming Language and the UNIX System .

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on
the command line. When the program is run as a command, arguments on
the command line are made available to the function main in two parameters,
an argument count and an array of pointers to character strings. (Every C
program is required to have an entry module by the name of main.) Since
the argument count is always given, the program does not have to know in
advance how many arguments to expect. The character strings pointed at by
elements of the array of pointers contain the argument information.

The arguments are presented to the program traditionally as argc and
argv, although any names you choose will work. argc is an integer that gives
the count of the number of arguments. Since the command itself is con
sidered to be the first argument, argv[O], the count is always at least one.
argv is an array of pointers to character strings (arrays of characters ter
minated by the null character \0).

If you plan to pass runtime parameters to your program, you need to
include code to deal with the information. Two possible uses of runtime
parameters are the following:

• as control data. Use the information to set internal flags that control
the operation of the program.

• to provide a variable file name to the program.

Figures 2- 1 and 2-2 show program fragments that illustrate these uses.

2·1 2 PROGRAMMER'S GUIDE

. The Interface Between a Programming Language and the UNIX System

#illclude <stdio.h>

main(a%9'C. argv)
int a%g'C;
char *argv[l ;

{
void exit() ;
int oflaq = FALSE;
int pflaq = FALSE;
int rflaq = FALSE;
int ch;

/* Functian Flags * /

while ((ch = getopt(a%g'C,argv, "opr")) I= DJF)
{

/* Far options present, set flaq to '1RIJE */
/* If no options present, print error messaqe */

SWl.'tC!l \ C..:UJ

case 'o' :
oflaq = 1 ;
break;

case 'p' :
pflaq = 1 ;
break;

case 'r ' :
rflaq = 1 ;
break;

default:
(void) fprintf (stderr,
"Usaqe : %s [-opr]\n" , argv[O]) ;
exit(2) ;

Figure 2-1 : Using Command Line Arguments to Set Flags

PROGRAMMING BASICS 2·1 3

The Interface Between a Programming Language and the UNIX System ·

#include <stdio.h>

main(argc' argv)
int argc ;
char *argv[] ;

{
FILE *fopen() , *fin;
void perror() , exit() ;

if (argc > 1)
{

if ((fin = fopen(argv[1] , •r•)) == NULL)
{

I* First string (Xs) is program name (argv[O]) *I
I* Seoarr:i string (%&) is name of file that cool.d *I
I* not be opened (argv[1]) *I

(void)fprintf (stderr'
"%& : c:aJIDOt open Xs: n '
argv[O] , argv[1]) ;

perror(" ") ;
exit(2) ;

Figure 2-2: Using argv[n] Pointers to Pass a File Name

The shell, which makes arguments available to your program, considers
an argument to be any non-blank characters separated by blanks or tabs.
Characters enclosed in double quotes (" abc def ") are passed to the program
as one argument, even if blanks or tabs are among the characters. It goes
without saying that you are responsible for error checking and otherwise mak
ing sure the argument received is what your program expects it to be.

2·1 4 PROGRAMMER'S GUIDE

The Interface Between a Programming Language and the UNIX Srstem

A third argument is also present, in addition to argc and argv. The third
argument, known as envp, is an array of pointers to environment variables.
You can find more information on envp in the Programmer's Reference Manual
under exec(2) and environ(S).

System Calls and Subroutines

System calls are requests from a program for an action to be performed by
the UNIX System kernel. Subroutines are precoded modules used to supple
ment the functionality of a programming language.

Both system calls and subroutines look like functions such as those you
might code for the individual parts of your program. There are, however,
differences between thein;

• At link edit time, the code for subroutines is copied into the object file
for your program; the code invoked by a system call remains in the
kernel.

• At execution time, subroutine code is executed as if it was code you
had written yourself; a system function call is executed by switching
from your process area to the kernel.

This means that while subroutines make your executable object file larger,
runtime overhead for context switching may be less and execution may be
faster.

Categories of System Calls and Subroutines

System calls divide fairly neatly into the following categories:

• file access

• file and directory manipulation

• process control

• environment control and status information

You can generally tell the category of a subroutine by the section of the
Programmer's Reference Manual in which you find its manual page. However,
the first part of Section 3 (3C and 3S) covers such a variety of subroutines it
might be helpful to classify them further.

PROGRAMMING BASICS 2-t 5

The Interface Between a Programming Language and the UNIX System

• The subroutines of sub-class 3S constitute the UNIX SystemfC
Language standard 1/0, an efficient lfO buffering scheme for C.

• The subroutines of sub-class 3C do a variety of tasks. They have in
common the fact that their object code is stored in libc.a. They can be
divided into the following categories:

D string manipulation

D character conversion

[j character classification

D environment management

D memory management

Figure 2-3 lists the functions that compose the standard 1/0 subroutines.
Frequently, one manual page describes several related functions. The left
hand column contains the name that appears at the top of the manual page;
the other names in the same row are related functions described on the same
manual page.

Figure 2-4 lists string-handling functions that are grouped under the head
ing string(3C) in the Pro�rammer's Reference Manual.

Figure 2-5 lists macros that classify ASCII character-coded integer values.
These macros are described under the heading ctype(3C) in Section 3 of the
Programmer's Reference Manual.

Figure 2-6 lists functions and macros that are used to convert characters,
integers, or strings from one representation to another.

2·1 8 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

Function Name(s) Purpose

ferror feof dearerr fileno stream status inquiries
fop en freopen fdopen open a stream
fread fwrite binary inputjoutput

fseek rewind ftell reposition a file pointer in a
stream

getc getchar fgetc getw get a character or word from a
stream

gets fgets get a string from a stream

pop en pdose begin or end a pipe to/from a
process

print£ fprintf sprint£ print formatted output

putc putchar fputc putw put a character or word on a
stream

puts fputs put a string on a stream

scan£ fscanf sscanf convert formatted input

setbuf setvbuf assign buffering to a stream

system issue a command through the
shell

tmpfile create a temporary file

tmpnam tempnam create a name for a temporary
file

ungetc push character back into input
stream

vprintf vfprintf vsprintf print formatted output of a
ment list

For all functions: #include <stdio.h>

The function name shown in column 1 (for example,
ferror) gives the location in
the Programmer's Reference Manual, Section 3.

Figure 2-3 : C Language Standard IJO Subroutines

PROGRAMMING BASICS 2·1 7

The Interface Between a Programming Language and the UNIX System .

strcat(sl, s2)

stmcat(sl, s2, n)

strcmp(sl, s2)

strncmp(sl, s2, n)

strcpy(sl, s2)

stmcpy(sl, s2, n)

strdup(s)

strchr(s, c)

strrchr(s, c)

strlen(s)

strpbrk(sl, s2)

strspn(sl, s2)

strcspn(sl, s2)

String Operations

append a copy of s2 to the end of sl .

append n characters from s2 to the end of s 1 .

compare two strings. Returns an integer less than,
greater than, or equal to 0 to show that sl is lexico-
graphically less than, greater than, or equal to s2.

compare n characters from the two strings. Results are
otherwise identical to strcmp.

copy s2 to sl, stopping after the null character (\0) has
been copied.

copy n characters from s2 to s l . s2 will be truncated if
it is longer than n, or padded with null characters if it is
shorter than n.

returns a pointer to a new string that is a duplicate of
the string pointed to by s.

returns a pointer to the first occurrence of character c in
string s, or a NULL pointer if c is not in s.

returns a pointer to the last occurrence of character c in
string s, or a NULL pointer if c is not in s.

returns the number of characters in s up to the first null
character.

returns a pointer to the first occurrence in sl of any
character from s2, or a NULL pointer if no character
from s2 occurs in s 1 .

returns the length of the initial segment of s l , which
consists entirely of characters from s2.

returns the length of the initial segment of sl, which
consists entirely of characters not from s2.

strtok(sl, s2) look for occurrences of s2 within s 1 .

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations

2-1 8 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isxdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

isgraph(c)

iscntrl(c)

isascii(c)

Classify Characters

is c a letter

is c an uppercase letter

is c a lowercase letter

is c a digit [0-9]

is c a hexadecimal digit (0-9], [A-F] or [a-f]

is c an alphanumeric (letter or digit)

is c a space, tab, carriage return, new-line, vertical tab,
or form-feed

is c a punctuation character (neither control nor
alphanumeric)

is c a printing character, code 040 (space) through 0 1 76
(tilde)

same as isprint except false for 040 (space)

is c a control character (less than 040) or a delete char
acter (01 77)

is c an ASCII character code less than 0200

For all functions: #include <ctype.h>
Nonzero return == true; zero return == false

Figure 2-5 : Classifying ASCII Character-Coded Integer Values

PROGRAMMING BASICS 2·1 8

The Interface Between a Programmine Language and the UNIX System ·

Function Name(s) Purpose

a64l

ecvt

l3tol

strtod

strtol

conv(3C) :

toupper

_toupper

to lower

_to lower

toasdi

l64a convert between long integer and
base-64 ASCII string

fcvt gcvt convert floating-point number to string

ltol3 convert between 3-byte integer and
long integer

atof convert string to double-precision
number

atol atoi convert string to integer

Translate Characters

lowercase to uppercase

macro version of toupper

uppercase to lowercase

macro version of tolower

tum off all bits that are not part of a standard ASCII character;
intended for com atibilit with other s stems

For all conv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

2·20 PROGRAMMER•$ GUIDE

. The Interface Between a Programming Language and the UNIX Srstem

Where the Manual Pages Can Be Found

System calls are listed alphabetically in Section 2 of the Programmer's
Reference Manual. Subroutines are listed in Section 3. We have described ear
lier what is in the first subsection of Section 3. The remaining subsections of
Section 3 are:

• 3M-functions that make up the Math Ubrary, libm

• 3X-various specialized functions

• 3N-Networking Support Utilities

How System Calls and Subroutines Are Used in C
Programs

Information about the proper way to use system calls and subroutines is
given on the manual page, but you have to know what you are looking for
before it begins to make sense. To illustrate, a typical manual page [for
gets(3S)] is shown in Figure 2-7.

PROGRAMMING BASICS 2-21

The Interface Between a Programming Language and the UNIX System

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char
char

*gets (s)
•s;

char •£gets (s, n, stream)
char •s;
int n;
FILE •stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the
array pointed to by s, until a new-line character is read, or an end-of
file condition is encountered. The new-line character is discarded, and
the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s,
until n-1 characters are read, or a new-line character is read and
transferred to s, or an end-of-file condition is encountered. The string
is then terminated with a null character.

SEE ALSO
ferror(3S),
fopen(3S),
fread(3S),
getc(3S),
scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no
characters are transferred to s, and a NULL pointer is returned. If a
read error occurs, such as trying to use these functions on a file that
has not been opened for reading, a NULL pointer is returned. Other
wise s is returned.

Figure 2-7: Manual Page for gets(3S)

2-22 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

As you can see from the illustration, two related functions are described
on this page: gets and fgets. Each function gets a string from a stream in a
slightly different way. The DESCRIPTION section tells how each operates.

It is the SYNOPSIS section, however, that contains the critical information
about how the function (or macro) is used in your program. Notice in
Figure 2-7 that the first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/0 header
file into your program (generally right at the top of the file). There is some
thing in stdio.h that is needed when you use the described functions.
Figure 2-9 shows a version of stdio.h. Check it to see if you can understand
what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a manual page that
documents system calls or subroutines is the formal declaration of the func
tion. The formal declaration tells you:

• the type of object returned by the function

In our example, both gets and fgets return a character pointer.

• the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. gets
expects a character pointer. (The DESCRIPTION section describes
what the tokens of the formal declaration stand for.)

• how the function is going to treat those objects

The declaration

char *s ;

in gets means that the token s enclosed in the parentheses will be con
sidered to be a pointer to a character string. Bear in mind that in the C
language, when passed as an argument, the name of an array is con
verted to a pointer to the beginning of the array.

PROGRAMMING BASICS 2·23

The Interface Between a Programming Language and the UNIX System ·

We have chosen a simple example here in gets. If you want to test your
self on something a little more complex, try working out the meaning of the
elements of the £gets declaration.

While we are on the subject of £gets, there is another piece of C esoterica
that we will explain. Notice that the third parameter in the £gets declaration
is referred to as stream. A stream, in this context, is a file with its associated
buffering. It is declared to be a pointer to a defined type FILE. Where is FILE
defined? Right! In stdio.h.

To finish off this discussion of the way you use functions described in the
Programmer's Reference Manual in your own code, in Figure 2-8 we show a
program fragment in which gets is used.

#include <stdio.h>

main()
{

char sarray[SO 1 ;

for(; ;)
{

if (gets (sarray) I = NULL)

I* Do sc:met:biD] with the st:rillg *I

Figure 2-8: How gets Is Used in a Program

You might ask, " Where is gets reading from? " The answer is, " From the
standard input. " That generally means from something being keyed in from
the keyboard or output from another command that was piped to gets. How
do we know that? The DESCRIPTION section of the gets manual page says,
" gets reads characters from the standard input. . .. " Where is the standard
input defined? In stdio.h.

2-24 PROGRAMMER'S GUIDE

. The Interface Between a Programming Language and the UNIX System

#ifndef _NFILE
#defille _NFILE20

#defille Im'SIZ 1024
ldefille _SBFSIZ 8

typedef sttuct {
:int _c:nt;
unsigned char *__ptr;
unsigned char *_base ;
char _flag;
char _file;

} FILE;

#defille _IOFBF 0000
#defille _I<m'.AD 000 1
#defille _ICMRT 0002
#defille _ICIIBF 0004
#defille _ICMY.BUF 00 1 0
#defille _IOIDF 0020
#defille _IOmR 0040
#defille _IOIBF 0 100
#defille _IOOW 0200

#ifndef NULL
ldefille NULL 0
#eM!.f
#ifndef :EDF
#defille :EDF (- 1)
.temif

I* _IOIBF means that a file' s oo.tp1t *I
I* will be buffered lille by lille . *I
I* In addition to being flags , _ICH!F, *I
I* _IOIBF and IOFBF are possible *I
I* values for •type• in setvblf . *I

Figure 2-9: A Version of stdio.h (Sheet 1 of 2)

PROGRAMMING BASICS 2·25

The Interface Between a Programming Language and the UNIX System .

#define stdin
#define stdrut
#define stderr

#define _bufmn(p 1
#define _bufsiz(p)

#iflldef lint
#define getc(p)
#define pxt:c(x, p)

#define getcbar()
#define p!ltchar(X)
#define clearerr(p)
#define feof(p)
#define ferror(p)
#define fileno(p)
#eOO.if

ext:en:1 m.E _iobLNFILEl ;

(&._iob[O])
(&._iob[1])
(&._iob[2])

_bufemtab[(p) -> _file]
(_bufi!Di(p) - (p) -> _base)

(-- (p) -> _cnt < 0 ? _filbuf (p) : (int) *(p) -> _Jltr++)
(-- (p)->_cnt < 0 ?

_flsbuf((unsigned char) (x) , (p)) :
(int) (* (p) -> _ptr++ = (unsigned char) (x)))
getc(stdin)
prt:c((X) , stdrut)
((void) ((p) -> _flag &.= (_IOERR I _IOI!m'l l l
((p)-> Jlaq &. _IOJ!m')
((p)-> Jlaq &. _IOERR)
(p)->_file

ext:en:l Fn.E *fopen(l , *fdopen() , *freopen() , *popen() , *tmpfile() ;
ext:en:l lang ftell () ;
ext:en:l void rew:illd() ' setb1f () ;
ext:en:l char *cteJ:mid() ' *cuserid() ' *fqets() ' *gets() ' *tempnam() ' *t:mplam() ;
ext:en:1 unsigned char * _bufemtab[] ;

#define L_cteJ:mid
#define L_cuserid
#define P_blrpdir
#define L_ 'b1Jpnam
#eOO.if

9
9
n /Usr/bl;l/"
(sizeof(P_tmpdir) + 15)

Figure 2-9: A Version of stdio.h (Sheet 2 of 2)

2·26 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

Header Files and Libraries

In the earlier parts of this chapter there have been frequent references to
stdio.h, and a version of the file itself is shown in Figure 2-9. stdio.h is the
most commonly used header file in the UNIX System/C environment, but
there are many others.

Header files carry definitions and declarations that are used by more than
one function. Header file names traditionally have the suffix .h, and are
brought into a program at compile time by the C-preprocessor. The prepro
cessor does this because it interprets the #include statement in your program
as a directive; as indeed it is. All keywords preceded by a pound sign (#) at
the beginning of the line are treated as preprocessor directives. The two most
commonly used directives are #include and #define. We have already seen
that the #include directive is used to call in (and process) the contents of the
named file. The #define directive is used to replace a name with a token
string. For example,

#define JlFILE 20

sets to 20 the number of files a program can have open at one time. See
cpp(l) for the complete list.

In the pages of the Programmer's Reference Manual there are about 45 dif
ferent .h files named. The format of the #include statement for all these
shows the file name enclosed in angle brackets (<>), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places
for the file. In most systems the standard place is in the jusrjinclude direc
tory. If you have some definitions or external declarations that you want to
make available in several files, you can create a .h file with any editor, store it
in a convenient directory and make it the subject of a #include statement
such as the following:

#include " . . 1 defsjrec.h "

PROGRAMMING BASICS 2·27

The Interface Between a Programming Language and the UNIX System

It is necessary, in this case, to provide the relative path name of the file
and enclose it in quotation marks (11 11) . Fully-qualified path names (those that
begin with /) can create portability and organizational problems. An alterna
tive to long or fully-qualified path names is to use the -Idir preprocessor
option when you compile the program. This option directs the preprocessor
to search for #include files whose names are enclosed in 11 11 , first in the
directory of the file being compiled, then in the directories named in the -1
option(s), and finally in directories on the standard list. In addition, all
#include files whose names are enclosed in angle brackets (< >) are first
searched for in the list of directories named in the -I option and finally in the
directories on the standard list.

Object File Libraries

It is common practice in UNIX System computers to keep modules of
compiled code (object files) in archives; by convention, designated by a .a suf
fix. System calls from Section 2 and the subroutines in Section 3,
subsections 3C and 3S of the Programmer's Reference Manual that are functions
(as distinct from macros), are kept in an archive file by the name of libc.a. In
most systems, libc.a is found in the directory /lib. Many systems also have a
directory jusrjlib. Where both /lib and jusrjlib occur, jusrjlib is apt to be
used to hold archives that are related to specific applications.

During the link edit phase of the compilation and link edit process, copies
of some of the object modules in an archive file are loaded with your execut
able code. By default, the cc command that invokes the C compilation system
causes the link editor to search libc.a. If you need to point the link editor to
other libraries that are not searched by default, you do it by naming them
explicitly on the command line with the -1 option. The format of the -1 option
is -lx, where x is the library name, and can be up to nine characters. For
example, if your program includes functions from the curses screen control
package, the option

-1curses

will cause the link editor to search for /lib flibcurses.a or
jusrjlib/libcurses.a and use the first one it finds to resolve references in your
program.

2·28 PROGRAMMER'S GUIDE

The Interface Between a Programming Language and the UNIX System

In cases where you want to direct the order in which archive libraries are
searched, you may use the -L dir option. Assuming the -L option appears on
the command line ahead of the -1 option, it directs the link editor to search
the named directory for libx.a before looking in /lib and jusrflib. This is
particularly useful if you are testing out a new version of a function that
already exists in an archive in a standard directory. Its success is due to the
fact that once having resolved a reference, the link editor stops looking. That
is why the -L option, if used, should appear on the command line ahead of
any -1 specification.

Input/Output

We talked some about IfO earlier in this chapter in connection with sys
tem calls and subroutines. A whole set of subroutines constitutes the C
language standard I/0 package, and there are several system calls that deal
with the same area. In this section we want to get into the subject in a little
more detail and describe for you how to deal with input and output concerns
in your C programs. First off, let us briefly define what the subject of I/0
encompasses. It has to do with

• creating and sometimes removing files

• opening and closing files used by your program

• transferring information from a file to your program (reading)

• transferring information from your program to a file (writing).

In this section we will describe some of the subroutines you might choose
for transferring information, but the heaviest emphasis will be on dealing with
files.

Three Files You Always Have

Programs are permitted to have several files open simultaneously. The
number may vary from system to system; the most common maximum is 20.
_NFILE in stdio.h specifies the number of standard I/0 FILEs a program is
permitted to have open.

Any program automatically starts off with three files. If you will look
again at Figure 2-9, about midway through you will see that stdio.h contains
three #define directives that equate stdin, stdout, and stderr to the address
of _i.ob[O], _i.ob[l], and _i.ob[2], respectively. The array _i.ob holds informa
tion dealing with the way standard I/0 handles streams. It is a

PROGRAMMING BASICS 2·29

The Interface Between a Programming Language and the UNIX System

representation of the open file table in the control block for your program.
The position in the array is a number that is also known as the file descriptor.
The default in UNIX Systems is to associate all three of these files with your
terminal.

The real significance is that functions and macros that deal with stdin or
stdout can be used in your program with no further need to open or close
files. For example, gets, cited above, reads a string from stdin; puts writes a
null-terminated string to stdout. There are others that do the same thing (in
slightly different ways: character at a time, formatted, etc.). You can specify
that output be directed to stderr by using a function such as fprintf. £print£
works the same as print£ except that it delivers its formatted output to a
named stream, such as stderr. You can use the shell's redirection feature on
the command line to read from or write into a named file. If you want to
separate error messages from ordinary output being sent to stdout, and thence
possibly piped by the shell to a succeeding program, you can do it by using
one function to handle the ordinary output and a variation of the same func
tion that names the stream to handle error messages.

Named Files

Any files other than stdin, stdout, and stderr that are to be used by your
program must be explicitly connected by you before the file can be read from
or written to. This can be done using the standard library routine fopen.
fopen takes a path name (which is the name by which the file is known to the
UNIX System file system), asks the system to keep track of the connection,
and returns a pointer that you then use in functions that do the reads and
writes.

A structure is defined in stdio.h with a type of FILE. In your program
you need to have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE . You can then assign the
name of a particular me to the pointer with a statement in your program like
the following:

fin = fopen("filename" , "r") ;

where filename is the path name to open. The " r " means that the file is to
be opened for reading. This argument is known as the mode. As you might
suspect, there are modes for reading, writing, and both reading and writing.
Actually, the file open function is often included in an if statement that takes

2·30 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

advantage of the fact that £open returns a NULL pointer if it cannot open the
file. An example is

if ((fin = fopen("filename" , "r")) == NOLL)
(void)fprintf(stderr, "%8 : Unable to open :inplt file %8\n" ,argv[O] , "filename") ;

Once the file has been successfully opened, the pointer fin is used in
functions (or macros) to refer to the file. For example,

int c ;
c = getc (fin) ;

brings in a character at a time from the file into an integer variable called c.
The variable c is declared as an integer even though we are reading characters
because the function getc() returns an integer. Getting a character is often
incorporated into some flow-of-control mechanism such as,

while ((c = getc (fin)) I = EDF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc are all defined in stdio.h. getc and others that make up the standard 1/0
package keep advancing a pointer through the buffer associated with the file;
the UNIX System and the standard 1/0 subroutines are responsible for seeing
that the buffer is refilled (or written to the output file if you are producing
output) when the pointer reaches the end of the buffer. All these mechanics
are mercifully invisible to the program and the programmer.

The function £dose is used to break the connection between the pointer in
your program and the path name. The pointer may then be associated with
another file by another call to £open. This re-use of a file descriptor for a dif
ferent stream may be necessary if your program has many files to open. For
output files it is good to issue an £dose call, because the call makes sure that
all output has been sent from the output buffer before disconnecting the file.
The system call exit closes all open files for you. It also gets you completely

PROGRAMMING BASICS 2·31

The Interface Between a Programming Language and the UNIX System

out of your process, however, so it is safe to use only when you are sure you
are completely finished.

Low-Levea 1/0 and Why You Should Not Use It

The term low-level 1/0 is used to refer to the process of using system
calls from Section 2 of the Programmer's Reference Manual rather than the
functions and subroutines of the standard 1/0 package. We are going to post
pone until Chapter 3 any discussion of when this might be advantageous. If
you find as you go through the information in this chapter that it is a good fit
with the objectives you have as a programmer, it is a safe assumption that
you can work with C language programs in the UNIX System for a good
many years without ever having a real need to use system calls to handle
your 1/0 and file accessing problems. The reason low-level 1/0 is perilous is
because it is more system-dependent. Your programs are less portable and
probably no more efficient.

System Calls for Environment or Status
Information

Under some circumstances you might want to be able to monitor or con
trol the environment in your computer. There are system calls that can be
used for this purpose. Some of them are shown in Figure 2-10 .

2·32 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

Function Name(s)

chdir

chmod

chown

getpid getpgrp getppid

getuid geteuid getgid

ioctl

link unlink

mount umount

nice

stat fstat

time

ulimit

uname

Purpose

change working directory

change access permission of a ftle

change owner and group of a file

get process IDs

get user IDs

control device

add or remove a directory entry

mount or unmount a file system

change priority of a process

get file status

get time

get and set user limits

get name of current UNIX System

Figure 2-10: Environment and Status System Calls

As you can see, many of the functions shown in Figure 2-10 have
equivalent UNIX System shell commands. Shell commands can easily be
incorporated into shell scripts to accomplish the monitoring and control tasks
you may need to do. The functions are available, however, and may be used
in C programs as part of the UNIX System/C Language interface. They are
documented in Section 2 of the Programmer's Reference Manual.

Processes

Whenever you execute a command in the UNIX System you are initiating
a process that is numbered and tracked by the operating system. A flexible
feature of the UNIX System is that processes can be generated by other
processes. This happens more than you might ever be aware of. For exam
ple, when you log in to your system, you are running a process, very probably
the shell. If you then use an editor such as vi, take the option of invoking the

PROGRAMMING BASICS 2·33

The Interface Between a Programming Language and the UNIX System

shell from vi and execute the ps command; you will see a display something
like that in Figure 2-1 1 (which shows the results of a ps -f command):

UID PID PPID c STIME TTY TIME COMMAND
abc 24210 1 0 06: 13 : 14 tty29 0 :05 -sh
abc 24631 24210 0 06:59:07 tty29 0 : 13 vi c2.uli
abc 28441 28358 80 09 :1 7:22 ·tty29 0:01 ps -f
abc 28358 2463 1 2 09: 15 : 14 tty29 0:01 sh -i

Figure 2-1 1 : Process Status

As you can see, user abc (who went through the steps described above)
now has four processes active. It is an interesting exercise to trace the chain
that is shown in the Process ID (PID) and Parent Process ID (PPID) columns.
The shell that was started when user abc logged on is Process 242 1 0; its
parent is the initialization process (Process ID 1) . Process 242 1 0 is the parent
of Process 24631, and so on.

The four processes in the example above are all UNIX System shell level
commands, but you can spawn new processes from your own program.
(Actually, when you issue the command from your terminal to execute a pro
gram you are asking the shell to start another process, the process being your
executable object module with all the functions and subroutines that were
made a part of it by the link editor.)

You might think, " Well, it's one thing to switch from one program to
another when I'm at my terminal working interactively with the computer; but
why would a program want to run other programs, and if one does, why
wouldn't I just put everything together into one big executable module? "

Overlooking the case where your program is itself an interactive applica
tion with diverse choices for the user, your program may need to run one or
more other programs based on conditions it encounters in its own processing.
(If it is the end of the month, go do a trial balance, for example.) The usual
reasons why it might not be practical to create one large executable module
follow:

• The load module may get too big to fit in the maximum process size
for your system.

2·34 PROGRAMMER'S GUIDE

The Interface Between a Programming Language and the UNIX System

• You may not have control over the object code of all the other
modules you want to include.

Suffice it to say, there are legitimate reasons why this creation of new
processes might need to be done. There are three ways to do it:

• system(3S)-requests the shell to execute a command

• exec(2)-stops this process and starts another

• fork(2)-starts an additional copy of this process

system(3S)
The formal declaration of the system function looks like the following:

#include <stdio.h>

int system(string)
char *string;

The function asks the shell to treat the string as a command line. The string
can, therefore, be the name and arguments of any executable program or
UNIX System shell command. If the exact arguments vary from one execution
to the next, you may want to use sprint£ to format the string before issuing
the system command. When the command has finished running, system
returns the shell exit status to your program. Execution of your program waits
for the completion of the command initiated by system and then picks up
again at the next executable statement.

exec(2)
exec is the name of a family of functions that includes execv, execle,

execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide
different ways of pulling together and presenting the arguments of the func
tion. An example of one version (execl) might be:

execl ("lbin/prog2" , "prog" , progarg1 , proga%92, (char *) 0) ;

PROGRAMMING BASICS 2-35

The Interface Between a Programming Language and the UNIX System

For execl the argument list is

Jbin/prog2 path name of the new process file

prog the name the new process gets in its argv[O]

progargl, arguments to prog2 as char •'s
progarg2

(char •)O a null char pointer to mark the end of the arguments

Check the exec(2) manual page in the Programmer's Reference Manual for
the rest of the details. The key point of the exec family is that there is no
return from a successful execution: the calling process is finished, the new
process overlays the . old. The new process also takes over the Process ID and
other attributes of the old process. If the call to exec is unsuccessful, control
is returned to your program with a return value of -1 . You can check errno
(see below) to learn why it failed.

fork(2)
The fork system call creates a new process that is an exact copy of the cal

ling process. The new process is known as the child process; the caller is
known as the parent process. The one major difference between the two
processes is that the child gets its own unique process 10. When the fork pro
cess has completed successfully, it returns a 0 to the child process and the
child's process ID to the parent. If the idea of having two identical processes
seems a little funny, consider this:

• Because the return value is different between the child process and the
parent, the program can contain the logic to determine different paths.

• The child process could say, " Okay, I'm the child. I'm supposed to
issue an exec for an entirely different program. "

• The parent process could say, " My child is going to be execing a new
process. I'll issue a wait until I get word that that process is finished. "

To take this out of the storybook world where programs talk like people and
into the world of C programming (where people talk like programs), your
code might include statements like this:

2-38 PROGRAMMER'S GUIDE

. The Interface Between a Programming Language and the UNIX System

#illclude <ezrno.h>

int ch_stat, ch_pid, status ;
char *progarg1 ;
char *progarg2 ;
void exit() ;
extern int erroo;

if ((ch_pid = fork()) < 0)
{

}

/* Coold not fork . • •

check errJX)
*/

else if (ch_pid == 0)
{

/* child */

(void)execl ("/bin/prcg2" , "pr:og" ,pr:ogarg1 ,pr:ogarg2 , (char *) 0) ;
exit(2) ; /* execl() failed */

else /* parent */

while ((status = wait(&ch_stat)) I= ch_pid)
{

if (status < 0 &&. erroo == EOIIID)
break;

errJX) = 0 ;

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec' d process, the
parent knows the ID. What this boils down to is a way of leaving one pro
gram to run another, returning to the point in the first program where pro
cessing left off. This is exactly what the system(3S) function does. As a
matter of fact, system accomplishes it through this same procedure of forking
and execing, with a wait in the parent.

PROGRAMMING BASICS 2·37

The Interface Between a Programming Language and the UNIX System

Keep in mind that the fragment of code above includes a minimum
amount of checking for error conditions. There is also potential confusion
about open files and about which program is writing to a file. Leaving out the
possibility of named files, the new process created by the fork or exec has the
three standard files that are automatically opened: stdin, stdout, and stderr.
If the parent has buffered output that should appear before output from the
child, the buffers must be flushed before the fork. Also, if the parent and the
child process both read input from a stream, whatever is read by one process
will be lost to the other. That is, once something has been delivered from the
input buffer to a process the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of one program
and the input of another, when working with commands executed by the shell
is well established in the UNIX System environment. For example, to learn
the number of archive files in your system you might enter a command like

echo /libf*.a fusrflibf*.a I we -w

that first echoes all the files in /lib and Jusrflib that end in .a, then pipes the
results to the we command, which counts their number.

A feature of the UNIX SystemjC Language interface is the ability to
establish pipe connections between your process and a command to be exe
cuted by the shell, or between two cooperating processes. The first uses the
popen(3S) subroutine that is part of the standard 1/0 package; the second
requires the system call pipe(2).

popen is similar in concept to the system subroutine in that it causes the
shell to execute a command. The difference is that once having invoked
popen from your program, you have established an open line to a con
currently running process through a stream. You can send characters or
strings to this stream with standard 1/0 subroutines just as you would to
stdout or to a named file. The connection remains open until your program
invokes the companion pdose subroutine.

2-38 PROGRAMMER'S GUIDE

. The Interface Between a Programming Language and the UNIX System

A common application of this technique might be a pipe to a printer spooler.
For example,

#iiiclude <stdio.h>

mrln()
{

if ((pptr = popen("lp0 , "w")) I= NllLL)
{

far(; ;)
{

I* Otganize OIItplt */

(VOid)fprlntf(pptr , 0Xe\nn , rutst:r.ing) ;

pclose(wt;r) ;
}

Figure 2-13 : Example of a popen pipe

PROGRAMMING BASICS 2-39

The Interface Between a Programming Language and the UNIX System

Error Handling

Within your C programs you must determine the appropriate level of
checking for valid data and for acceptable return codes from functions and
subroutines. If you use any of the system calls described in Section 2 of the
Programmer's Reference Manual, you have a way in which you can find out the
probable cause of a bad return value.

UNIX System calls that are not able to complete successfully almost
always return a value of -1 to your program. (If you look through the system
calls in Section 2, you will see that there are a few calls for which no return
value is defined, but they are the exceptions.) In addition to the -1 that is
returned to the program, the unsuccessful system call places an integer in an
externally declared variable, errno. You can determine the value in errno if
your program contains the statement

#include <errno .h>

The value in errno is not cleared on successful calls, so your program
should check it only if the system call returned a - 1 . Errors are described in
intro(2) of the Programmer's Reference Manual.

The subroutine perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words refer
to messages passed by the UNIX System to running processes. Generally, the
effect is to cause the process to stop running. Some signals are generated if
the process attempts to do something illegal; others can be initiated by a user
against his or her own processes, or by the super-user against any process.

There is a system call, kill, that you can include in your program to send
signals to other processes running under your user-id. The format for the kill
call is

kill (pid, sig)

where pid is the process number against which the call is directed, and sig is
an integer from 1 to 19 that shows the intent of the message. The name
" kill " is something of an overstatement; not all the messages have a " drop

2·40 PROGRAMMER'S GUIDE

· The Interface Between a Programming Language and the UNIX System

dead " meaning. Some of the available signals are shown in Figure 2-14 as
they are defined in <sysjsignal.h>.

#define SIGBDP /* hangup */
#define SIGINl' 2 /* interJ:upt (rulxlut) */
#define smcmT 3 /* quit (MCII FS) */
#define SlGILL 4 /* illegal instructian (not reset 'ldlen caught)*/
#define SJlmWI 5 /* trace trap (not reset 'ldlen caught) */
#define SlGIOl' 6 /* It:Jr instructian */
#define SlGABRT 6 /* used � abart, replace SlGIOl' in the future */
#define SlGIMl' 7 /* I!Ml' instruction */
#define SlGii'PE 8 /* floatin;J point exception */
#define Sl.GKILL 9 /* Jd.ll (cannot be caught or igmred) */
#define SIGIIJS 10 /* bus error */
#define Sl.GSI!GV 1 1 /* segmentation violation */
#define SIGS!S 12 /* bad argument to system call */
#define SIGPIPE 13 /* write an a pipe with no one to read it */
#define Sl.GAUIM 14 /* al.azm clock * /
#define SICmal 15 /* software tezm:imtion signal £%an Jd.ll */
#define SlG!lSR1 16 /* user defined signal 1 */
#define SlG!lSR2 17 /* user defined signal 2 */
#define smcw 18 /* death of a child */
#define SI:GRiR 19 /* power-fail restart */

/* SIGWIND and S:J:GPII:NE only used in tlNIXIPC * /
/*#define S1GWIND 20*/ /* win:bf change */
/*#define S:J:GPli:NE 21*/ /* :tlamset: , line status change */

#define SIGPOLL 22 /* pollable event occur.red * /

#define NSIG
#define MAXS1G

23 /* 'D1e valid signal 1llllllber is f:aJJ� 1 to NSJ:G-1 * /
32 /* size of u_signal [] , NSIG-1 <= MAXS1G*/

/* MAXSIG is larger than we need now. */
/* In the future, we can add DDre signal */
I* 1llllllber without changi:nq user .h */

Figure 2-14: Signal Numbers Defined in fusrfincludefsysjsignal.h

PROGRAMMING BASICS 2-41

The Interface Between a Programming Language and the UNIX System

The signal(2) system call is designed to let you code methods of dealing
with incoming signals. You have a three-way choice. You can (a) accept
whatever the default action is for the signal, (b) have your program ignore the
signal, or (c) write a function of your own to deal with it.

2-42 PROGRAMMER'S GUIDE

Analysis/Debugging

The UNIX System provides several commands designed to help you dis
cover the causes of problems in programs and to learn about potential prob
lems.

Sample Program

To illustrate how these commands are used and the type of output they
produce, we have constructed a sample program that opens and reads an
input file and performs one to three subroutines, according to options speci
fied on the command line. This program does not do anything you could not
do quite easily on your pocket calculator, but it does serve to illustrate some
points. The source code is shown in Figure 2-15 . The header file, recdef.h, is
shown at the end of the source code.

The output produced by the various analysis and debugging tools illus
trated in this section may vary slightly from one installation to another. The
Programmer's Reference Manual is a good source of additional information
about the contents of the reports.

PROGRAMMING BASICS 2-43

Analysis/Debugging

/* Main m:Xlule - restate.c * /

#include <stdio.h>
#include "reodef .h"

#define TRUE
#define FALSE 0

ma:in(argc, argv)
int argo;
char *argv[] ;

{
FILE *fopen() , *fin;
void exit() ;
int getopt() ;
int oflaq = FALSE;
int pflaq = FALSE;
int rflaq = FALSE;
int ch;
stzuct rec first ;
ext:e= int opterr;
ext:e= float oppty() , pft() , rfe() ;

/* restate.c is continued em the next page * /

Figure 2-15: Source Code for Sample Program (Sheet 1 of 4)

2-44 PROGRAMMER'S GUIDE

Analysis/Debugging

/* restate.c ocnt:inued * /

if (argc < 2)

{
(void) fprintf (stderr, "%s : fobst specify optian\n" ,argv[O]) ;
(void) fprintf (stderr, "Usage : %a -rpo\n" , argv[O] l ;
exit(2) ;

opterr = FAI.'3E;
11dl:ile ((ch = getopt(argc,argv, "opr")) I= I!DF)
{

}

switch(ch)

{
case 'o' :

of1ag = TR!JE;
break;

case 'p ' :
pflag = TR!lE;
break;

case 'r ' :
rflag = TR!JE ;
break;

default:
(void) fprintf (stderr , "Usage : %s -rpo\n" ,argv[O]) ;
exit(2) ;

if ((fin = fopen("info" , "r")) == NULL)
{

(void) fprintf(stderr , "%s: cannot open inpit file %6\n" ,argv[O] , "info") ;
exit(2) ;

Figure 2-15 : Source Code for Sample Program (Sheet 2 of 4)

PROGRAMMING BASICS 2·45

Analysis/Debugging

I* restate.c cxmtinued * 1

if (fscanf (fin, "%s%£%f%f%£%f%f" ,first.pname,&first. PIJK,
&first.dp,&first.i ,&first.c,&first . t,&first.spx) I = 7)

(
(void) fprintf (stderr, "%6 : cannot read first reocxrd f%011 %6\n" ,

argv[O] , "info") ;
exit(2) ;

}

print£("Property: %6\n" ,first.pname) ;

if(oflag)
print£ (n Opportunity Cost: �5 , 2f\n" ,oppty(&first)) ;

if(pflag)
print£ (" Anticipated Profit(loss) : �7 , 2f\n" ,pft(&first)) ;

if (rflag)
printf (" Retmn an Funds Employed: �3 . 2£*\n" ,rfe(&first)) ;

I* Elld of Main M:ldule -- restate.c * 1

I* Opportunity Cost -- oppty.c *I
#:include "recdef .h"

float

owtY(ps)
struct rec *ps;
{

return(ps->i/12 * ps->t * ps->dp) ;

Figure 2-15 : Source Code for Sample Program (Sheet 3 of 4)

2-46 PROGRAMMER'S GUIDE

I* Profit -- pft.c *I

#include "reodef .h"

float
pft(ps)
st:ruct rec *ps;
{

return(ps->spx - ps->,Rllt + ps->c) ;

I* RebD:n an Fums Employed -- rfe.c *I

#include "reodef .h"

float
rfe(ps)
st:ruct rec *ps;
{

re'blm(100 * (ps->spx - ps->c) I ps->spx) ;

I* Header File -- recdef.h * 1

st:ruct rec { I* To hold :input *I
char }Dallle[25] ;
float ,Rllt;
float dp;
float i;
float c ;
float t;
float spx;

Analysis/Debugging

Figure 2-15 : Source Code for Sample Program (Sheet 4 of 4)

PROGRAMMING BASICS 2-47

Analysis/Debugging

cflow
cflow produces a chart of the external references in C, yacc, lex, and

assembly language files. Using the modules of our sample program, the com
mand

cflow restate.c oppty .c pft.c rfe.c

produces the output shown in Figure 2-16.

main: int() , <restate . c 1 1>
2 fprintf : <>
3 exit: <>
4 getopt: <>
5 fopen: <>
6 fscanf : <>
7 print£: <>
8 oppty: float() , <oppty. c 7>
9 pft: float() , <pft. c 7>
10 rfe : float() , <rfe . c 8>

Figure 2-16 : cflow Output, No Options

2-48 PROGRAMMER'S GUIDE

Analysis/Debugging

The -r option looks at the caller:callee relationship from the other side. It
produces the output shown in Figure 2-17.

exit: <>
2 main : <>
3 fopen: <>
4 main : 2
5 fprintf : <>
6 main : 2
7 fscanf : <>
8 main : 2
9 getopt: <>
10 main : 2
1 1 main : int() , <restate . c 1 1>
12 oppty: float() , <oppty. c 7>
13 main : 2
14 pft: float() , <pft. c 7>
15 main : 2
16 print£ : <>
17 main : 2
18 rfe : float() , <rfe . c 8>
19 main : 2

Figure 2-1 7: cflow Output, Using -r Option

PROGRAMMING BASICS 2-48

Analysis/Debugging

The -ix option causes external and static data symbols to be included.
Our sample program has only one such symbol, opterr. The output is shown
in Figure 2-18.

main: int() , <restate . c 1 1>
2 fprintf: <>
3 exit: <>
4 opt:err: <>
5 getopt: <>
6 fopen: <>
7 fscanf : <>
8 print£ : <>
9 oppty: float() , <oppty.c 7>
10 pft: float() , <pft.c 7>
1 1 rfe : float() , <rfe.c 8>

Figure 2-18 : cflow Output, Using -ix Option

2·50 PROGRAMMER'S GUIDE

Analysis/Debugging

Combining the -r and the -ix options produces the output shown in
Figure 2-19 .

exit: <>
2 main : <>
3 fopen: <>
4 main : 2
5 fprintf : <>
6 main : 2
7 fscanf : <>
8 main : 2
9 getopt: <>
10 main : 2
1 1 main : int() , <restate .c 1 1>
12 oppty: float() , <oppt;y. c 7>
13 main : 2
14 opterr: <>
15 main : 2
16 pft: float() , <pft. c 7>
17 main : 2
18 printf: <>
19 main : 2
20 rfe : float() , <rfe . c 8>
21 main : 2

Figure 2-19 : cflow Output, Using -r and -ix Options

ctrace
ctrace lets you follow the execution of a C program statement by state

ment. ctrace takes a .c file as input and inserts statements in the source code
to print out variables as each program statement is executed. You must direct
the output of this process to a temporary .c file. The temporary file is then
used as input to cc. When the resulting a.out file is executed, it produces out
put that can tell you a lot abo\lt what is going on in your program.

PROGRAMMING BASICS 2·51

Analysis/Debugging

Options give you the ability to limit the number of times through loops.
You can also include functions in your source file that tum the trace off and
on so that you can limit the output to portions of the program that are of par
ticular interest.

ctrace accepts only one source code file as input. To use our sample pro-
gram to illustrate, it is necessary to execute the following four commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c
ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names
that are convenient for you. The names must end in .c, since the files are
used as input to the C compilation system.

cc -o ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command

ct.run -opr

produces the output shown in Figure 2-20. The command above will cause
the output to be directed to your terminal (stdout). It is probably a good idea
to direct it to a file or to a printer so that you. can refer to it.

2·52 PROGRAMMER'S GUIDE

8 main(argc, argv)
23 if (argc < 2)

I* argc == 2 *I
30 opterr = FALSE ;

I* FALSE == 0 *I
I* opterr = 0 *I

31 while ((ch = getopt(argc,argv, "opr")) I = EDF)
I* argc = 2 *I
I* argv == 157293 16 *I
I* ch == 1 1 1 or 'o' or "t" *I

32
33 switch(ch)

/* ch = 1 1 1 or 'o ' or "t" */
35 case 'o ' :
36 oflag = TRIJE;

37
48

/* TRilE == 1 or "h" */
/* oflag == 1 or "h" */
break;

3 1 while ((ch = getopt(argc ,argv, "opr")) I = EDF)
I* argc == 2 *I
I* argv == 157293 16 */
/* ch == 1 12 or 'p' */

32 {
33 switch(ch)

/* ch == 1 12 or 'p' */
38 case 'p' :
39

40
48

pflag = TRIJE;
I* TRIJE == 1 or "h" */
/* pflag == 1 or "h" *I
break;

Figure 2-20: ctrace Output (Sheet 1 of 3)

Analysis/Debugging

PROGRAMMING BASICS 2-53

Analysis/Debugging

31 while ((ch = getopt(argc,<n:gV, "opr")) I = EOF)
/* argc = 2 */

32

/* aJ:gV = 15729316 */
/* ch == 1 14 or 'r ' */

33 switch(ch)
/* ch == 1 14 or 'r ' */

41 case 'r ' :
42 rflag = 'lmJE;

43
48

/* 'lmJE = 1 or "h" */
/* rflag = 1 or "h" */
break· •

31 while ((ch = getopt(argc,<n:gV, "opr")) I = EOF)
/* argc = 2 */
/* aJ:gV = 15729316 */
/* ch == -1 */

49 if ((fin = fopen("info" , "r")) = = NULL)
/* fin = 140200 */

54 if (fscanf (fin, •%s%f%f%f%f%f%f• ,first.pname ,&first . ppx:,
&first.dp,&first . i ,&first . c,&first.t,&first. spx:J I = 7)
/* fin == 140200 */
/* first.pname == 15729528 */

61 printf ("Property: %sO , first.pname) ;
/* first.pname == 15729528 or "Linden_Place• */ Property: Linden_Place

63 if(oflag)
/* oflag == 1 or ''h" */

64 printf(" Opportunity Cost : $%#5 . 2fO ,owcy(&first)) ;
5 owty(ps)
8 retum(ps->i/12 * ps->t * ps->dp) ;

/* ps->i == 1069044203 */
/* ps->t == 1076494336 */
/* ps->dp = 1088765312 */ OpJ:ortunity Cost: $4476.87

Figure 2-20: ctrace Output (Sheet 2 of 3)

2·54 PROGRAMMER'S GUIDE

Analysis/Debugging

66 if (pflaq)
I* pflaq = 1 or "h" *I

67 printf (" Anticipated Profit(loss) : �7 .2fO ,pft(&first)) ;
5 pft(ps)
8 return(ps->Bplt - ps->PPK + ps->c) ;

I* ps->Bplt == 1091649040 *I
I* ps->PPK = 109 1 178464 *I
I* ps->c == 1087409536 *I Anticipated Profit(loss) : $85950 . 00

69 if (rflaq)
I* rflaq = 1 or "h" *I

70 printf (" Retum an Flmis &llpl.oyed: �3 . 2fXI(D ,rfe(&first)) ;
6 rfe(ps)
9 return(100 * (ps->Bplt - ps->c) 1 ps->SJlK) ;

I* ps->Bplt = 1091649040 *I
I* ps->c = 1087409536 *I Return an Flmis &llpl.oyed: 94 . 00%

I* return *I

Figure 2-20: ctrace Output (Sheet 3 of 3)

Using a program that runs successfully is not the optimal way to demon
strate ctrace. It would be more helpful to have an error in the operation that
could be detected by ctrace. This utility might be most useful in cases where
the program runs to completion, but the output is not as expected.

cxref
cxre£ analyzes a group of C source code files and builds a cross-reference

table of the automatic, static, and global symbols in each file. The command

cxre£ -c -o cx.op restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-21 in a file named, in this case, cx.op.
The -c option causes the reports for the four .c files to be combined in one
cross-reference file.

PROGRAMMING BASICS 2·55

Analysis/Debugging

restate . c :

qpt:y . c :

pft . c :

rfe. c :

Sl!IBlL FlLE :roiCl'ICiil LINE

BU!'SIZ /Usr/incl.ude/stdio .h *9
I!DF /Usr/includelstdio .h 49 *50

restate .c 31
FALSE restate .c *6 15 16 17 30
FILE /Usr/incl.ude/stdio .h *29 73 74

restate .c main 12
L_cteJ:mid /Usr/incl.ude/stdio .h *80
L_CWH!rid /Usr/includelstdio.h *81
L_tmpnam /Usr/include/stdio .h *83
NULL /Usr/include/stdio .h 46 *47

restate .c 49
P_tmpdir /Usr/incl.ude/stdio .h *82
'lKlE restate .c *5 36 39 42
_rtJFTJF /Usr/incl.udelstdio .h *41
_:ICERR /Usr/includelstdio .h *42
_IOFBF! /Usr/incl.ude/stdio.h *36
_ras /Usr/incl.ude/stdio .h *43
_ICIMIJF /Usr/include/stdio .h *40
_Ia&' /Usr/includelstdio .h *39
_ICBEAD /Usr/includelstdio .h *37
_'II'B'A /Usr/includelstdio .h *44
_ICMR!' /Usr/include/stdio .h *38
_NFILE /Usr/incl.ude/stdio .h 2 *3 73
_SBFSIZ /Usr/incl.udelstdio .h *16

Figure 2-21 : cxref Output, Using -c Option (Sheet 1 of 5)

2·58 PROGRAMMER'S GUIDE

Analysis/Debugging

SYMB:lL FILE E'IJlCI'IQ;I LINE
_base /usr/:i.nclude/stdio .h *26
_bufend()

/Usr/:i.nclude/stdio.h *57
_bufendtab /Usr/include/stdio.h *78
_bufsiz()

/Usr/:i.ncludelstdio.h *58
_c:nt /Usr/:i.nclude/stdio.h *20
_file /Usr/include/stdio.h *28
_flaq /Usr/include/stdio.h *27
_id:l /Usr/:i.nclude/stdio.h *73

restate . c main 25 26 45 51 57

_ptr /Usr/:i.ncludelstdio.h *21

argo restate . c 8
restate . c main *9 23 31

argv restate . c 8
restate . c main *10 25 26 31 45 51 57

c . /reodef .h *6
pft. c pft 8
restate . c main 55
rfe. c rfe 9

ch restate . c main *18 31 33
clearerr()

/Usr/include/stdio. h *67
ctel:m:id()

/Usr/:i.nclude/stdio.h *77
cuserid()

/Usr/includelstdio.h *77
dp . /reodef .h --*4

oppty. c oppty 8
restate . c main 55

exit()
restate . c main *13 27 46 52 58

fdc:p!:n()
/Usr/includelstdio.h *74

Figure 2-21 : cxref Output, Using -c Option (Sheet 2 of 5)

PROGRAMMING BASICS 2-57

Analysis/Debugging

SYMB)L FILE JruliPI'IC!l'
feof ()

/usr/include/stdio .h
ferzor()

/usr/include/stdio .h
fgets()

/usr/include/stdio.h
fileno()

/usr/include/stdio .h
fin restate . c main
first restate .c main
fopen()

lusr/include/stdio.h
restate . c main

fprintf restate .c main
freopen()

/usr/include/stdio .h
fscanf restate . c main
ftell()

/usr/include/stdio .h
getc()

/usr/include/stdio .h
getchar()

/usr/include/stdio .h
getopt()

restate . c main
gets()

/usr/include/stdio .h
i ./reodef . h

oppty.c oppty
restate. c main

lint /usr/include/stdio .h
main()

restate . c

Figure 2-2 1 : cxref Output, Using -c Option (Sheet 3 of 5)

2·58 PROGRAMMER'S GUIDE

LINE

*68

*69

*77

*70
*12 49 54
*19 54 55 61 64 67 70

*74
12 49
25 26 45 51 57

*74
54

*75

*61

*65

*14 31

*77
*5
8
55
60

*8

Analysis/Debugging

SYMIDL FILE :roNC!'IGl LINE
oflag restate . c main *15 36 63
oppty()

oppty. c *5
restate . c main *21 64

opterr restate . c main *20 30
p /usr/include/stdio.h *57 *58 *61 62
*62 63 64 67 *67 68 *68 69 *69 70 *70
pdp1 1 /usr/includelstdio.h 1 1
pflag restate . c main *16 39 66
pft()

pft . c *5
restate. c main *21 67

p!allll! . lrecdef.h *2
restate . c main 54 61

popen()
/Usr/include/stdio.h *74

ppx: . /recdef .h *3
pft . c pft 8
restate . c main 54

print:f restate . c main 61 64 67 70
ps oppty.c 5

oppty.c oppty *6 8
pft. c 5
pft . c pft *6 8
rfe . c 6
rfe. c rfe *7 9

pate()
/usr/include/stdio.h *62

putchar()
/Usr/includelstdio.h *66

rec . /recdef .h * 1
oppty.c oppty 6
pft . c pft 6
restate . c main 19
rfe. c rfe 7

Figure 2-2 1 : cxref Output, Using -c Option (Sheet 4 of 5)

PROGRAMMING BASICS 2·58

Analysis/Debugging

Sl!M8L FILE EUtCI'I� LINE
rew:ini()

lusr/include/stdio.h *76
rfe()

restate . c main *21 70
rfe . c *6

rflag restate . c main *17 42 69
set:huf()

lusr/includelstdio.h *76

spx: ./reodef .h *8
pft .c pft 8
restate . c main 55
rfe . c rfe 9

stderr /usr/include/stdio . h *55
restate . c 25 26 45 51 57

stdin lusr/include/stdio.h *53
stdcut lusr/include/stdio .h *54
t , /reodef.h *7

q:pty.c owtY 8
restate . c main 55

teuplam()
lusr/include/stdio .h *77

t:Dpfile()
lusr/include/stdio .h *74

blplam()
/usr/include/stdio .h *77

u370 /usr/include/stdio .h 5
u3b /usr/include/stdio .h 8 19
u3b5 /usr/include/stdio .h 8 19
vax /usr/include/stdio .h 8 19
X /usr/include/stdio .h *62 63 64 66 *66

Figure 2-21 : cxref Output, Using -c Option (Sheet 5 of 5)

2·80 PROGRAMMER'S GUIDE

Analysis/Debugging

lint
lint looks for features in a C program that are apt to cause execution

errors, that are wasteful of resources, or that create problems of portability.
The following command produces the output shown in Figure 2-22:

lint restate.c oppty.c pft.c rfe.c

restate . c :

restate . c

(7 1) waxnilq: mrin() retuzns raman value to invocation envirorJDent
oppty. c :
pft. c :
rfe . c :

function returns value whi ch is always igrored
printf

Figure 2-22: lint Output

lint has options that will produce additional information. Check the
Programmer's Reference Manual. The error messages give you the line numbers
of some items you may want to review.

PROGRAMMING BASICS 2·61

Analysis/Debugging

prof
prof produces a report on the amount of execution time spent in various

portions of your program and the number of times each function is called.
The program must be compiled with the -p option. When a program that was
compiled with that option is run, a file called mon.out is produced. mon.out
and a.out (or whatever name identifies your executable file) are input to the
prof command.

The sequence of steps needed to produce a profile report for our sample
program is as follows:

Step 1 : Compile the programs with the -p option:

cc -p restate.c oppty .c pft.c rfe.c

Step 2: Run the program to produce a file mon.out.

a.out -opr

Step 3 : Execute the prof command:

prof a.out

The example of the output of this last step is shown in Figure 2-23 . The
figures may vary from one run to another. You will also notice that programs
of very small size, like that used in the example, produce statistics that are not
overly helpful.

2-62 PROGRAMMER'S GUIDE

%TfuJe Seconds CUmsecs
50 . 0 0 . 03 0 . 03
20 . 0 0 . 0 1 0 . 04
20 . 0 0 . 0 1 0 . 05
10 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05
0 . 0 0 . 00 0 . 05

Figure 2-23: prof Output

Analysis/Debugging

#Calls msec/call Name
3 8 . fcvt
6 2 . atof
5 2 . write
1 5 . £write
1 o . m::mitar
1 0 . creat
4 0 . print£
2 0 . profil
1 o . fscanf
1 o . _doscan
1 o . oppty
1 o . _fil.buf
3 o . strchr
1 0 . straop
1 o . ldexp
1 o . getenv
1 0 . fopen
1 0 . _f:i.ndiop
1 0 . open
1 0 . main
1 o . read
1 0 . strcpy

14 0 . ungetc

4 o . _doprnt
1 o . pft

1 o . rfe
4 o . _xflsl:uf
1 o . _wrtchk
2 o . _findbuf
2 o . isatty
2 0 . ioctl
1 o . malloc
1 0 . lt1eliChr
1 0 . mem::py
2 0 . sb:rk
4 o . getopt

PROGRAMMING BASICS 2·83

Analysis/Debugging

size
size produces information on the number of bytes occupied by the three

sections (text, data, and bss) of a common object file when the program is
brought into main memory to be run. Here are the results of one invocation
of the size command with our object file as an argument.

1 1832 + 3872 + 2240 = 17944

Do not confuse this number with the number of characters in the object
file that appears when you do an Is -I command. That figure includes the
symbol table and other header information that is not used at run time.

strip
strip removes the symbol and line number information from a common

object file. When you issue this command, the number of characters shown
by the Is -I command approaches the figure shown by the size command, but
still includes some header information that is not counted as part of the .text,
.data, or .bss section. After the strip command has been executed, it is no
longer possible to use the file with the sdb command.

sdb
sdb stands for Symbolic Debugger, which means you can use the sym

bolic names in your program to pinpoint where a problem has occurred. You
can use sdb to debug C programs. There are two basic ways to use sdb: by
running your program under control of sdb, or by using sdb to rummage
through a core image file left by a program that failed. The first way lets you
see what the program is doing up to the point at which it fails (or to skip
around the failure point and proceed with the run). The second method lets
you check the status at the moment of failure, which may or may not disclose
the reason the program failed.

2·84 PROGRAMMER'S GUIDE

Analysis/Debugging

Chapter 15 contains a tutorial on sdb that describes the interactive com
mands you can use to work your way through your program. For the time
being we want to tell you just a couple of key things you need to do when
using it.

1 . Compile your program(s) with the -g option, which causes additional
information to be generated for use by sdb.

2 . Run your program under sdb with the following command:

sdb myprog - srcdir

where myprog is the name of your executable file (a.out is the
default), and srcdir is an optional list of the directories where source
code for your modules may be found. The dash between the two
arguments keeps sdb from looking for a core image file.

PROGRAMMING BASICS 2·85

Program Organizing Utilities

The following three utilities are helpful in keeping your programming
work organized effectively.

The make Command

When you have a program that is made up of more than one module of
code you begin to run into problems of keeping track of which modules are
up-to-date and which need to be recompiled when changes are made in
another module. The make command is used to ensure that dependencies
between modules are recorded so that changes in one module results in the
re-compilation of dependent programs. Even control of a program as simple
as the one shown in Figure 2-15 is made easier through the use of make.

The make utility requires a description file that you create with an editor.
The description file (also referred to by its default name: makefile) contains
the information used by make to keep a target file current. The target file is
typically an executable program. A description file contains three types of
information:

dependency information tells the make utility the relationship between
the modules that comprise the target program.

executable commands

macro definitions

are needed to generate the target program. make
uses the dependency information to determine
which executable commands should be passed to
the shell for execution.

provide a shorthand notation within the descrip
tion file to make maintenance easier. Macro
definitions can be overridden by information
from the command line when the make com
mand is entered.

The make command works by checking the 11 last changed 11 time of the
modules named in the description file. When make finds a component that
has been changed more recently than modules that depend on it, the specified
commands (usually compilations) are passed to the shell for execution.

2·M PROGRAMMER'S GUIDE

Program Organizing Utilities

The make command takes three kinds of arguments: options, macro
definitions, and target file names. If no description file name is given as an
option on the command line, make searches the current directory for a file
named makefile or Makefile. Figure 2-24 shows a makefile for our sample
program.

ClaJ!mS = restate .o oppty.o pft.o rfe.o
all : restate
restate: $(ClaJ!mS)

$(CX:) $ (CFLAGS) ${IDFLAGS) $(CJB.Jrl'S) -o restate

$ (ClaJ!mS) : ./recdef .h

clean:
%Ill -f $ (CJB.Jrl'S)

clobber: clean
= -f restate

Figure 2-24: make Description File

The following things are worth noticing in this description file:

• It identifies the target, restate, as being dependent on the four object
modules. Each of the object modules in tum is defined as being depen
dent on the header file, recdef.h, and by default, on its corresponding
source file.

• A macro, OBJECTS, is defined as a convenient shorthand for referring
to all of the component modules.

Whenever testing or debugging results in a change to one of the com
ponents of restate, for example, a command such as the following should be
entered:

make CFLAGS=-g restate

PROGRAMMING BASICS 2-87

Program Organizing Utilities

This has been a very brief overview of the make utility. There is more on
make in Chapter 3, and a detailed description of make can be found in
Chapter 13 .

The Archive

The most common use of an archive file, although not the only one, is to
hold object modules that make up a library. The library can be named on the
link editor command line (or with a link editor option on the cc command
line). This causes the link editor to search the symbol tabl� of the archive file
when attempting to resolve references.

The ar command is used to create an archive file, to manipulate its con
tents, and to maintain its symbol table. The structure of the ar command is a
little different from the normal UNIX System arrangement of command line
options. When you enter the ar command you include a one-character key
from the set drqtpmx that defines the type of action you intend. The key
may be combined with one or more additional characters from the set
vuaibcls that modify the way the requested operation is performed. The
makeup of the command line is

ar -keyl [posname) afile [name] . . .

where posname is the name of a member of the archive and may be used with
some optional key characters to make sure that the files in your archive are in
a particular order. The afile argument is the name of your archive file. By
convention, the suffix .a is used to indicate that the named file is an archive
file. (libc.a, for example, is the archive file that contains many of the object
files of the standard C subroutines.) One or more names may be furnished.
These identify files that are subjected to the action specified in the key.

We can make an archive file to contain the modules used in our sample
program, restate. The command to do this is

ar -rv rste.a restate.o oppty.o pft.o rfe.o

If these are the only .o files in the current directory, you can use shell
metacharacters as follows:

ar -rv rste.a • .o

2-88 PROGRAMMER'S GUIDE

Either command will produce this feedback:

a - restate .o
a - oppty.o
a - pft. o
a - rfe .o
ar : creating rste .a

Program Organizing Utilities

The nm command is used to get a variety of information from the symbol
table of common object files. The object fl.les can be, but do not have to be,
in an archive file. Figure 2-25 shows the output of this command when exe
cuted with the -f (for full) option on the archive we just created. The object
files were compiled with the -g option.

PROGRAMMING IIASICS 2·0

Program Organizing Utilities ----------�-----

Symbols from rste.a[restate.o]

Name Value Class Type Size

.Ofake strtag struct
restate.c file
-<:nt 0 strmem int
_ptr 4 strmem "'Uchar
_base 8 strmem "'Uchar
_flag 12 strmem char
_file 13 strmem char
.eos endstr 16
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
main 0 extern int() 520
.bf 10 fen
argc 0 argm't int

argv 4 argm't "'"'char
fin 0 auto "'struct-.Ofake 1 6
oflag 4 auto int
pflag 8 auto int
rflag 1 2 auto int
ch 1 6 auto int

Figure 2-25: nm Output, with -f Option (Sheet 1 of 5)

2-70 PROGRAMMER'S GUIDE

Line Section

1 6

.text
1 1 .text

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size Line Section

first 20 auto struct-rec 52
.ef 5 1 8 fen 61 .text
FILE typdef struct-.Ofake 16
.text 0 static 31 39 .text
.data 520 static 4 .data
.bss 824 static .bss
_iob 0 extern
fprintf 0 extern
exit 0 extern
opterr 0 extern
getopt 0 extern
fop en 0 extern
fscanf 0 extern
printf 0 extern
oppty 0 extern
pft 0 extern
rfe 0 extern

Figure 2-25: nm Output, with -f Option (Sheet 2 of 5)

PROGRAMMING BASICS 2-71

Program Organizing Utilities

Symbols from rste.a[oppty.o]

Name Value Class Type Size Line Section

oppty.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
oppty 0 extern float() 64 .text
.bf 10 fen 7 .text
ps 0 argm't *struct-rec 52
:ef 62 fen 3 .text
.text 0 static 4 1 .text
.data 64 static .data
.bss 72 static .bss

Figure 2-25: nm Output, with -£ Option (Sheet 3 of 5)

2·72 PROGRAMMER'S GUIDE

Program Organizing Utilities

Symbols from rste.a[pft.o]

Name Value Class Type Size Line Section

pft.c file
rec strtag struct 5 2
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
. . eos endstr 52
pft 0 extern float() 60 .text
. . bf 1 0 fen 7 .text
ps 0 argm't •struct-rec 52
. . ef 58 fen 3 .text
. . text 0 static 4 .text
. . data 60 static .data
. . bss 60 static .bss

Figure 2-25 : nm Output, with -f Option (Sheet 4 of 5)

PROGRAMMING BASICS 2-73

Program Organizing Utilities

Symbols from rste.a[rfe.o]

Name Value Class Type Size Une Section

rfe.c file
rec strtag struct 52
pname 0 strmem char[25] 25
ppx 28 strmem float
dp 32 strmem float
i 36 strmem float
c 40 strmem float
t 44 strmem float
spx 48 strmem float
.eos endstr 52
rfe 0 extern float() 68 .text
.bf 10 fen 8 .text
ps 0 argm't *struct-rec 52
.ef 64 fen 3 .text
.text 0 static 4 1 .text
.data 68 static .data
.bss 76 st.atic .bss

Figure 2-25 : nm Output, wtth -f Option (Sheet 5 of 5)

For nm to work on an archive file all of the contents of the archive have
to be object modules. If you have stored other things in the archive, you will
get the message

m: rste . a bad magic
when you try to execute the command.

Use of sees by Single-User Programmers

The UNIX System Source Code Control System (SCCS) is a set of pro
grams designed to keep track of different versions of programs. When a pro
gram has been placed under control of sees, only a single copy of any one
version of the code can be retrieved for editing at a given time. When

2·74 PROGRAMMER'S GUIDE

Program Organizing Utilities

program code is changed and the program returned to sees, only the
changes are recorded. Each version of the code is identified by its SID, or
SCCS IDentifying number. By specifying the SID when the code is extracted
from the sees file, it is possible to return to an earlier version. If an early
version is extracted with the intent of editing it and returning it to sees, a
new branch of the development tree is started. The set of programs that make
up SCCS appear as UNIX System commands. The commands are as follows:

admin
get
delta
prs
rmdel
cdc
what
sccsdiff
comb
val

It is most common to think of sees as a tool for project control of large
programming projects. It is, however, entirely possible for any individual user
of the UNIX System to set up a private SCCS system. Chapter 14 is an SCCS
user's guide.

PROGRAMMING BASICS 2·75

. ,_ .
·.· ·. · !:.

.f.c"- _ . . . , .

·· : ·.".J... .•

. :· . ·-�·--

-
· . . -:: . .

. :

.,.· .

...:. ._ : .

3 Application Programming

Introduction

Application Programming
Numbers
Portability
Documentation
Project Management

Language Selection
Influences
Special Purpose Languages

• What awk Is Like

• How awk Is Used

• Where to Find More Information

• What lex and yacc Are Like

• How lex Is Used

• Where to Find More Information

• How yacc Is Used

• Where to Find More Information

Advanced Programming Tools
Memory Management
File and Record Locking

• How File and Record Locking Works

• lock£

• Where to Find More Information

3-1

3-2

3-2

3-2

3-3

3-4

3-5
3-5

3-6

3-6
3-7

3-7

3-7
3-8

3-10

3-10
3-12

3-13
3-13
3-14

3-15
3-17
3-17

APPLICATION PROGRAMMING

Application Programming

Interprocess Communications
• IPC get Calls

• IPC ctl Calls

• IPC op Calls

• Where to Find More Information

Programming Terminal Screens
• curses

• Where to Find More Information

Programming Support Tools
Link Editor Command Language

• Where to Find More Information

Common Object File Format
• Where to Find More Information

Libraries
• The Object File Library

• Common Object File Interface Macros (ldfcn.h)

• The Math Library

• Shared Libraries

• WherE! to Find More Information

Symbolic Debugger
• Where to Find More Information

lint as a Portability Tool
• Where to Find More Information

Project Control Tools
make

• Where to Find More Information

sees
• Where to Find More Information

liber, A Library System

ii PROGRAMMER'S GUIDE

3-17
3-18
3- 19
3-19
3-19
3-19
3-20
3-20

3-2 1
3-2 1
3-22
3-22
3-22
3-23
3-23
3-27
3-27
3-30
3-32
3-32
3-32
3-32
3-33

3-34
3-34
3-35
3-35
3-37

3-38

Introduction

This chapter deals with programming where the objective is to produce
sets of programs (applications) that will run on a UNIX System computer.

The chapter begins with a discussion of how the ground rules change as
you move up the scale from writing programs that are essentially for your
own private use (we have called this single-user programming), to working as
a member of a programming team developing an application that is to be
turned over to others to use.

There is a section on how the criteria for selecting appropriate program
ming languages may be influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely
related topics that are of importance to programmers working in the applica
tion development environment. Most of these mirror topics that were dis
cussed in Chapter 2, Programming Basics, but here we try to point out aspects
of the subject that are particularly pertinent to application programming.
They are covered under the following headings:

• Advanced Programming Tools
deals with such topics as File and Record Locking, lnterprocess Com
munication, and programming terminal screens.

• Programming Support Tools
covers the Common Object File Format, link editor directives, shared
libraries, Symbolic Debugger (sdb), and lint.

• Project Control Tools
includes some discussion of make and sees.

The chapter concludes with a description of a sample application called
liber that uses several of the components described in earlier portions of the
chapter.

APPLICATION PROGRAMMING 3·1

Application Programming

The characteristics of the application programming environment that make
it different from single-user programming have at their base the need for
interaction and for sharing of information.

Numbers

Perhaps the most obvious difference between application programming
and single-user programming is in the quantities of the components . Not only
are applications generally developed by teams of programmers, but the
number of separate modules of code can grow into the hundreds on even a
fairly simple application.

When more than one programmer works on a project, there is a need to
share such information as follows:

• the operation of each function

• the number, identity, and type of arguments expected by a function

• if pointers are passed to a function, are the objects being pointed to
modified by the called function, and what is the lifetime of the
pointed-to object

• the data type returned by a function

In an application, there is an odds-on possibility that the same function
can be used in many different programs, by many different programmers.
The object code needs to be kept in a library accessible to anyone on the pro
j ect who needs it.

Portability

When you are working on a program to be used on a single model of a
computer, your concerns about portability are minimal. In application
development, on the other hand, a desirable objective often is to produce code
that will run on many different UNIX System computers. Some of the things
that affect portability will be touched on later in this chapter.

3-2 PROGRAMMER'S GUIDE

Application Programming

Documentation

A single-user program has modest needs for documentation. There
should be enough to remind the program's creator how to use it and what the
intent was in portions of the code.

On an application development project there is a significant need for two
types of internal documentation:

• comments throughout the source code that enable successor program
mers to understand easily what is happening in the code. Applications
can be expected to have a useful life of 5 or more years and frequently
need to be modified during that time. It is not realistic to expect that
the same person who wrote the program will always be available to
make modifications. Even if that does happen, the comments will
make the maintenance job a lot easier.

• hard-copy descriptions of functions should be available to all members
of an application development team. Without them, it is difficult to
keep track of available modules, which can result in the same function
being written over again.

Unless end-users have clear, readily-available instructions in how to
install and use an application, they either will not do it at all (if that is an
option) or do it improperly.

The microcomputer software industry has become ever more keenly aware
of the importance of good end-user documentation. There are cases on record
where the success of a software package has been attributed in large part to
the fact that it had exceptionally good documentation. There are also cases
where a pretty good piece of software was not widely used due to the inacces
sibility of its manuals. There appears to be no truth to the rumor that in one
or two cases, end-users have thrown the software away and just read the
manual.

APPLICATION PROGRAMMING 3-3

Application Programming

Project Management

Without effective project management, an application development project
is in trouble. This subject will not be dealt with in this guide, except to men
tion the following three things that are vital functions of project management:

• tracking dependencies between modules of code

• dealing with change requests in a controlled way

• seeing that milestone dates are met.

3-4 PROGRAMMER'S GUIDE

Language Selection

In this section we talk about some of the considerations that influence the
selection of programming languages and describe three of the special purpose
languages that are part of the UNIX System environment.

Influences

In single-user programming the choice of language is often a matter of
personal preference; a language is chosen because it is the one the program
mer feels most comfortable with.

An additional set of considerations comes into play when making the
same decision for an application development project.

Is there an existing standard within the organization that should be
observed?

A firm may decide to emphasize one language because a good sup
ply of programmers is available who are familiar with it.

Does one language have better facilities for handling the particular
algorithm?

One would like to see all language selection based on such objec
tive criteria, but it is often necessary to balance this against the
skills of the organization.

Is there an inherent compatibility between the language and the lTNIX
Operating System?

This is sometimes the impetus behind selecting C for programs
destined for a UNIX System machine.

Are there existing tools that can be used?

If parsing of input lines is an important phase of the application,
perhaps a parser generator such as yacc should be employed to
develop what the application needs.

APPLICATION PROGRAMMING 3-5

Language Selection

Does the application integrate other software into the whole package?

If, for example, a package is to be built around an existing database
management system, there may be constraints on the variety of
languages the database management system can accommodate.

Special Purpose Languages

The UNIX System contains a number of tools that can be included in the
category of special purpose languages . Three that are especially interesting
are awk, lex, and yacc.

What awk Is Like

The awk utility scans an ASCII input file record by record, looking for
matches to specific patterns. When a match is found, an action is taken. Pat
terns and their accompanying actions are contained in a specification file
referred to as the program. The program can be made up of a number of
statements. However, since each statement has the potential for causing a
complex action, most awk programs consist of only a few. The set of state
ments may include definitions of the pattern that separates one record from
another (a newline character, for example) and definitions of what separates
one field of a record from the next (white space, for example). It may also
include actions to be performed before the first record of the input file is read,
and other actions to be performed after the final record has been read. All
statements in between are evaluated in order, for each record in the input file.
To paraphrase the action of a simple awk program, it would go something
like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.
Then, look through the input file.
Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, _ do these final things.

3·6 PROGRAMMER'S GUIDE

Language Selection

The directions for finding the patterns and for describing the actions can
get pretty complicated, but the essential idea is as simple as the two sets of
statements above.

One of the strong points of awk is that once you are familiar with the
language syntax, programs can be written very quickly. They do not always
run very fast, however, so they are seldom appropriate if you want to run the
same program repeatedly on a large quantities of records. In such a case, it is
likely to be better to translate the program to a compiled language.

How awk Is Used

One typical use of awk would be to extract information from a file and
print it out in a report. Another might be to pull fields from records in an
input file, arrange them in a different order, and pass the resulting rearranged
data to a function that adds records to your database. There is an example of
a use of awk in the sample application at the end of this chapter.

Where to Find More Information

The manual page for awk is in Section (1) of the User'sjSystem
Administrator's Reference Manual . Chapter 4 of this guide contains a descrip
tion of the awk syntax and a number of examples showing ways in which
awk may be used.

What lex and yacc Are Like

The utilities lex and yacc are often mentioned in the same breath because
they perform complementary parts of what can be viewed as a single task,
making sense out of input. The two utilities also share the common charac
teristic of producing source code for C language subroutines from specifica
tions that appear on the surface to be quite similar.

Recognizing input is a recurring problem in programming. Input can be
from various sources. In a language compiler, for example, the input is nor
mally contained in a file of source language statements. The UNIX System
shell language most often receives its input from a person keying in com
mands from a terminal. Frequently, information coming out of one program is
fed into another where it must be evaluated.

The process of input recognition can be subdivided into two tasks, lexical
analysis and parsing, and that is where lex and yacc come in. In both utili
ties, the specifications cause the generation of C language subroutines that
deal with streams of characters; lex generates subroutines that do lexical
analysis, while yacc generates subroutines that do parsing.

APPLICATION PROGRAMMING 3-7

Language Selection

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabulary of
a language as distinguished from its grammar or structure.

Parsing is the act of describing units of the language grammatically.
Students in elementary school are often taught to do this with sen
tence diagrams.

Of course, the important thing to remember here is that in each case the
rules for our lexical analysis or parsing are those we set down ourselves in the
lex or yacc specifications. Because of this, the dividing line between lexical
analysis and parsing sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that
these parts of what may be a large programming project can be separately
maintained. The generated source code is processed by the C compiler to pro
duce an object file. The object file can be link edited with others to produce
programs that then perform whatever process follows from the recognition of
the input.

H ow lex Is Used

A lex subroutine scans a stream of input characters and waves a flag each
time it identifies something that matches one or another of its rules. The
waved flag is referred to as a token. The rules are stated in a format that
closely resembles the one used by the UNIX System text editor for regular
expressions. For example,

[\t] +

describes a rule that recognizes a string of one or more blanks or tabs (without
mentioning any action to be taken) . A more complete statement of that rule
might have the following notation:

[\t] + ;

which, in effect, says to ignore white space. It carries this meaning because
no action is specified when a string of one or more blanks or tabs is recog
nized. The semicolon marks the end of the statement.

3-8 PROGRAMMER'S GUIDE

Language Selection

Another rule, one that does take some action, could be stated like this:

[0-9] + {
i = atoi (yytext) ;

retlll:n(NBR) ;
}

This rule depends on several things:

NBR must have been defined as a token in an earlier part of the lex
source code called the declaration section. (It may be in a header file
which is #indude'd in the declaration section.)

i is declared as an extern int in the declaration section.

It is a characteristic of lex that things it finds are made available in a
character string called yytext.

Actions can make use of standard C syntax. Here, the standard C
subroutine, atoi, is used to convert the string to an integer.

What this rule boils down to is lex saying, 11 Hey, I found the kind of
token we call NBR, and its value is now in i. 11

To review the steps of the process:

1 . The lex specification statements are processed by the lex utility to
produce a file called lex.yy.c. (This is the standard name for a file
generated by lex, just as a.out is the standard name for the executable
file generated by the link editor.)

2 . lex.yy.c is transformed by the C compiler (with a -c option) into an
object file called lex.yy.o that contains a subroutine called yylex() .

3 . lex.yy.o is link edited with other subroutines. Presumably one of
those subroutines will call yylex() with a statement such as

while ((token = yylex()) ! = 0)

and other subroutines (or even main) will deal with what comes back.

APPLICATION PROGRAMMING 3·9

Language Selection

Where to Find More Information

The manual page for lex is in Section (1) of the Programmer's Reference
Manual . A tutorial on lex is contained in Chapter 5 of this guide.

How yacc Is Used

The yacc subroutines are produced by pretty much the same series of
steps as lex.

1 . The yacc specification is processed by the yacc utility to produce a file
called y.tab.c.

2 . y.tab.c is compiled by the C compiler producing an object file, y.tab.o,
that contains the subroutine yyparse(). A significant difference is that
yyparse() calls a subroutine called yylex() to perform lexical analysis.

3 . The object file y.tab.o may be link edited with other subroutines, one
of which will be called yylex().

There are two things worth noting about this sequence:

1 . The parser generated by the yacc specifications calls a lexical analyzer
to scan the input stream and return tokens.

2 . While the lexical analyzer is called by the same name as one produced
by lex, it does not have to be the product of a lex specification. It can
be any subroutine that does the lexical analysis.

What really differentiates these two utilities is the format for their rules .
As noted above, lex rules are regular expressions like those used by UNIX
System editors. yacc rules are chains of definitions and alternative definitions,
written in Backus-Naur form, accompanied by actions. The rules may refer to
other rules defined further down the specification. Actions are sequences of C
language statements enclosed in braces. They frequently contain numbered
variables that enable you to reference values associated with parts of the rules.

3·1 0 PROGRAMMER'S GUIDE

Language Selection

An example might make that easier to understand.

%token NUMBER
�
expr : :numb { $$ = $ 1 ; }

I expr ' + ' expr { $$ = $1 + $3 ;
I expr ' - ' expr { $$ = $1 - $3 ;
I expr ' * ' expr { $$ = $ 1 * $3 ;
I expr I/ ' expr { $$ = $ 1 / $3 ;
I ' (' expr ') ' { $$ = $2 ; }

:numb : NUMBER { $$ = $ 1 ; }

This fragment of a yacc specification shows

• NUMBER identified as a token in the declaration section

• the start of the rules section indicated by the pair of percent signs

• a number of alternate definitions for expr separated by the I sign and
terminated by the semicolon

• actions to be taken when a rule is matched

• within actions, numbered variables used to represent components of
the rule:

$$ means the value to be returned as the value of the whole rule

$n means the value associated with the nth component of the rule,
counting from the left

• numb defined as meaning the token NUMBER. This is a trivial exam
ple that illustrates that one rule can be referenced within another, as
well as within itself.

As with lex, the compiled yacc object file will generally be link edited with
other subroutines that handle processing that takes place after the parsing-or
even ahead of it.

APPLICATION PROGRAMMING 3·1 1

Language Selection

Where to Find More Information

The manual page for yacc is in Section (1) of the Programmer's Reference
Manual . A detailed description of yacc may be found in Chapter 6 of this
guide.

3-1 2 PROGRAMMER'S GUIDE

Advanced Programming Tools

In Chapter 2 we described the use of such basic elements of programming
in the UNIX System environment as the standard I/0 library, header files,
system calls, and subroutines. In this section we introduce tools that are more
apt to be used by members of an application development team than by a
single-user programmer. The section contains material on the following
topics :

• memory management

• file and record locking

• interprocess communication

• programming terminal screens.

Memory Management

There are situations where a program needs to ask the operating system
for blocks of memory. It may be, for example, that a number of records have
been extracted from a database and need to be held for some further process
ing. Rather than writing them out to a file on secondary storage and then
reading them back in again, it is likely to be a great deal more efficient to hold
them in memory for the duration of the process. (This is not to ignore the
possibility that portions of memory may be paged out before the program is
finished; but such an occurrence is not pertinent to this discussion.) There are
two C language subroutines available for acquiring blocks of memory, and
they are both called malloc. One of them is malloc(3C), the other is
malloc(3X) . Each has several related functions that do specialized tasks in the
same area. They are

• free-to inform the system that space is being relinquished

• realloc-to change the size and possibly move the block

• calloc-to allocate space for an array and initialize it to zeros

In addition, malloc(3X) has a function, mallopt, that provides for control
over the space allocation algorithm, and a structure, mallinfo, from which the
program can get information about the usage of the allocated space.

APPLICATION PROGRAMMING 3· 1 3

Advanced Programming Tools

malloc(3X) runs faster than the other version. It is loaded by specifying

-lmalloc

on the cc(l) or ld(l) command line to direct the link editor to the proper
library. When you use malloc(3X), your program should contain the state
ment

#include <malloc .h>

where the values for mallopt options are defined.

See the Programmer's Reference Manual for the formal definitions of the
two mallocs.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to
prevent the sort of error that can occur when two or more users of a file try to
update information at the same time. The classic example is the airlines reser
vation system where two ticket agents each assign a passenger to Seat A,
Row 5 on the 5 o'clock flight to Detroit. A locking mechanism is designed to
prevent such mishaps by blocking Agent B from even seeing the seat assign
ment file until Agent A's transaction is complete.

File locking and record locking are really the same thing, except that file
locking implies the whole file is affected, and record locking means that only
a specified portion of the file is locked. (Remember, in the UNIX System, file
structure is undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process
places a read lock on a file, other processes can also read the file, but all are
prevented from writing to it, that is, changing any of the data . If a process
places a write lock on a file, no other processes can read or write in the file
until the lock is removed. Write locks are also known as exclusive locks. The
term shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and advisory
locking. Mandatory locking means that the discipline is enforced automati
cally for the system calls that read, write, or create files. This is done through
a permission flag established by the file's owner (or the super-user) . Advisory
locking means that the processes that use the file take the responsibility for
setting and removing locks as needed. Thus mandatory may sound like a
simpler and better deal, but it is not so. The mandatory locking capability is

3· 1 4 PROGRAMMER'S GUIDE

Advanced Programming Tools

included in the system to comply with an agreement with jusrjgroup, an
organization that represents the interests of UNIX System users. The principal
weakness in the mandatory method is that the lock is in place only while the
single system call is being made. It is extremely common for a single transac
tion to require a series of reads and writes before it can be considered com
plete. In cases like this, the term atomic is used to describe a transaction that
must be viewed as an indivisible unit. The preferred way to manage locking
in such a circumstance is to make certain the lock is in place before any I/0
starts, and that it is not removed until the transaction is done. That calls for
locking of the advisory variety.

How File and Record Locking Works

The system call for file and record locking is fcntl(2). Programs should
include the line

#include <fc:ntl .h>

to bring in the header file shown in Figure 3- 1 .

APPLICATION PROGRAMMING 3·1 5

Advanced Programming Tools

/* Flag values accessible to open(2) and fcnt1 (2) */

/* (The first three can only be set by open) */

#define O_RimLY 0
#define O_WROOLY

#define O_RmR 2

#define O_NDELAY 04
#define O_APPEND 010
#define O_SYNC

/* Nan-blocking I/0 */

/* append (writes guaranteed at the end)
020/* synchronous write option */

/* Flag values accessible only to open (2) */

*/

#define O_CREAT 00400 /* open with file =eate (uses third open arg) */

#define o_TRIH:: 0 1 000 /* open with truncation */

#define O_EXCL 02000 /* exclusive open */

/* fcntl (2) requests */

#define F_IXlPHl

#define F_GEI'ID

#define F_SETID

#define F_GE:l'FL

#define F_SEI'FL

#define F_GETLK

#define F_SETIK

#define F_SEI'LKW

#define F_CIIKFL

0

2

3
4
5
6
7
8

/* Duplicate fildes */

/* Get fildes flags */

/* Set fildes flags */

/* Get file flags */

/* Set file flags */

/* Get file lock */

/* Set file lock */

/* Set file lock and wait */

/* Check legality of file flag changes */

/* file segment 1ock:ing set data type - information passed to system by user */

struct flock {

} ;

short 1_ type ;

short

lang

lang

short

short

l_whence;

l_start ;

l_len; /* len = 0 means until end of file */

l_sysid;

l_pid;

/* file segment locking types */

/* Read lock * /

#define F_RDI..Cl< 0 1
/ * write lock */

#define F_WRLCK 02
/* Remove lock(s) */

#define F_UNLCK 03

Figure 3- 1 : The fcntl.h Header File

3- 1 6 PROGRAMMER'S GUIDE

The format of the fcntl(2) system call is

int fcntl (fildes , Clld, arg)
int fildes , cmd, arg;

Advanced Programming Tools

fildes is the file descriptor returned by the open system call . In addition to
defining tags that are used as the commands on fcntl system calls, fcntl.h
includes the declaration for a struct flock that is used to pass values that con
trol where locks are to be placed.

lock£

A subroutine, lockf(3), can also be used to lock sections of a file or an
entire file. The format of lockf is

#include <unistd.h>

int lockf (fildes , function, size)
int fildes , function;
lang size ;

fildes is the file descriptor; function is one of four control values defined in
unistd.h that let you lock, unlock, test and lock, or simply test to see if a lock
is already in place. size is the number of contiguous bytes to be locked or
unlocked. The section of contiguous bytes can be either forward or backward
from the current offset in the file. [You can arrange to be somewhere in the
middle of the file by using the lseek(2) system call .]

Where to Find More Information

There is an example of file and record locking in the sample application at
the end of this chapter. The manual pages that apply to this facility are
fcntl(2), fcntl(S), lockf(3), and chmod(2) in the Programmer's Reference
Manual. Chapter 7 of this guide is a detailed discussion of the subject with a
number of examples.

lnterprocess Communications

In Chapter 2 we described forking and execing as methods of communi
cating between processes. Business applications running on a UNIX System
computer often need more sophisticated methods. In applications, for exam
ple, where fast response is critical, a number of processes may be brought up
at the start of a business day to be constantly available to handle transactions

APPLICATION PROGRAMMING 3- 1 7

Advanced Programming Tools

on demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation
example again for a moment, if a customer calls to reserve a seat on the
5 o'clock flight to Detroit, you do not want to have to say, " Yes, sir. Just
hang on a minute while I start up the reservations program. " In transaction
driven systems, the normal mode of processing is to have all the components
of the application standing by waiting for some sort of an indication that there
is work to do.

To meet requirements of this type the UNIX System offers a set of nine
system calls and their accompanying header files, all under the umbrella name
of Interprocess Communications (IPC) .

The IPC system calls come in sets of three; one set each for messages,
semaphores, and shared memory. These three terms define three different
styles of communication between processes:

messages communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con
tained in an array the size of which is determined by the
system administrator. The default maximum size for the
array is 25.

shared memory communication takes place through a common area of
main memory. One or more processes can attach a seg
ment of memory and as a consequence can share what
ever data is placed there .

The sets of IPC system calls are

I PC get Calls

msgget
msgctl
msgop

semget
semctl
semop

shmget
shmctl
shmop

The get calls each return to the calling program an identifier for the type
of IPC facility that is being requested.

3-1 8 PROGRAMMER'S GUIDE

Advanced Programming Tools

I PC ctl Calls

The ctl calls provide a variety of control operations that include obtaining
(IPC_ST AT), setting (IPc_sET), and removing (IPC_RMID) the values in
data structures associated with the identifiers picked up by the get calls.

I PC op Calls

The op manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop has
calls that send or receive messages. semop (the only one of the three that is
actually the name of a system call) is used to increment or decrement the
value of a semaphore, among other functions. shmop has calls that attach or
detach shared memory segments.

Where to Find More Information

An example of the use of some IPC features is included in the sample
application at the end of this chapter. The system calls are all located in Sec
tion (2) of the Programmer's Reference Manual. Do not overlook intro(2). It
includes descriptions of the data structures that are used by IPC facilities. A
detailed description of IPC, with many code examples that use the IPC system
calls, is contained in Chapter 9 of this guide.

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your
application is provided by two parts of the UNIX System. The first of these,
terminfo, is a database of compiled entries that describe the capabilities of ter
minals and the way they perform various operations.

The terminfo database normally begins at the jusrjlibjterminfo direc
tory. Members of this directory are themselves directories, generally with
single-character names that are the first character in the name of the terminal.
The compiled files of operating characteristics are at the next level down the
hierarchy. For example, the entry for a Teletype 5425 is located in both the
file jusrjlibjterminfo/5/5425 and the file jusrflibjterminfojtjtty5425.

Describing the capabilities of a terminal can be a painstaking task. Quite
a good selection of terminal entries is included in the terminfo database that
comes with your computer. However, if you have a type of terminal that is
not described in the database, the best way to proceed is to find a description
of one that comes close to having the same capabilities as yours and building

APPLICATION PROGRAMMING 3-1 9

Advanced Programming Tools

on that one. There is a routine (setupterm) in curses(3X) that can be used to
print out descriptions from the database. Once you have worked out the code
that describes the capabilities of your terminal, the tic(lM) command is used
to compile the entry and add it to the database.

curses

After you have made sure that the operating capabilities of your terminal
are a part of the terminfo database, you can then proceed to use the routines
that make up the curses(3X) package to create and manage screens for your
application.

The curses library includes functions to do the following:

• define portions of your terminal screen as windows

• define pads that extend beyond the borders of your physical terminal
screen and let you see portions of the pad on your terminal

• read input from a terminal screen into a program

• write output from a program to your terminal screen

• manipulate the information in a window in a virtual screen area and
then send it to your physical screen

Where to Find More Information

In the sample application at the end of this chapter, we show how you
might use curses routines. Chapter 10 of this guide contains a tutorial on the
subject. The manual pages for curses are in Section (3X}, and those for ter
minfo are in Section (4) of the Programmer's Reference Manual.

3-20 PROGRAMMER'S GUIDE

Programming Support Tools

This section covers UNIX System components that are part of the pro
gramming environment, but that have a highly specialized use. We refer to
such things as the following:

• link edit command language

• Common Object File Format

• libraries

• Symbolic Debugger

• lint as a portability tool

Link Editor Command Language

The link editor command language is for use when the default arrange
ment of the ld output will not do the job. The default locations for the stan
dard Common Object File Format sections are described in a.out(4) in the
Programmer's Reference Manual .

On an 80386 Computer, when an a.out file is loaded into memory for
execution, the text segment starts at location OxO, and the data section starts at
the next segment boundary after the end of the text. The stack begins at
OxBFFFFFFF and grows to lower memory addresses.

The link editor command language provides directives for describing dif
ferent arrangements. The two major types of link editor directives are
MEMORY and SECTIONS. MEMORY directives can be used to define the
boundaries of configured and unconfigured sections of memory within a
machine, to name sections, and to assign specific attributes (read, write, exe
cute, and initialize) to portions of memory. SECTIONS directives, among a lot
of other functions, can be used to bind sections of the object file to specific
addresses within the configured portions of memory.

APPLICATION PROGRAMMING 3-2 1

Programming Support Tools

The need to control the link editor output becomes more urgent under
two, possibly related, sets of circumstances.

1 . Your application is large and consists of a lot of object files.

2 . The hardware your application is to run on is tight for space.

Where to Find More Information

Chapter 12 of this guide gives a detailed description of the subject.

Common Object File Format

A knowledge of COFF is fundamental to using the link editor command
language. It is also good background knowledge for tasks such as the follow
ing:

• setting up archive libraries or shared libraries

• using the Symbolic Debugger

The following system header files contain definitions of data structures of
parts of the Common Object File Format:

<syms.h>
<linenum.h>
<ldfcn.h>
<filehdr.h>
<,a.out.h>
<scnhdr.h>
<reloc.h>
<stordass.h>

symbol table format
line number entries
COFF access routines
file header for a common object file
common assembler and link editor output
section header for a common object file
relocation information for a common object file
storage classes for common object files

The object file access routines are described below under the heading
11 The Object File Library. 11

Where to Find More Information

Chapter 11 of this guide gives a detailed description of COFF.

3·22 PROGRAMMER'S GUIDE

Programming Support Tools

Libraries

A library is a collection of related object files andjor declarations that sim
plify programming effort. Programming groups involved in the development
of applications often find it convenient to establish private libraries. For
example, an application with a number of programs using a common database
can keep the I/0 routines in a library that is searched at link edit time.

Prior to Release 3.0 of the UNIX System V, the libraries, whether system
supplied or application developed, were collections of common object format
files stored in an archive (filename.a) file that was searched by the link editor
to resolve references. Files in the archive that were needed to satisfy
unresolved references became a part of the resulting executable.

Beginning with Release 3 .0, shared libraries are supported. Shared
libraries are similar to archive libraries in that they are collections of object
files that are acted upon by the link editor. The difference, however, is that
shared libraries perform a static linking between the file in the library and the
executable that is the output of ld. The result is a saving of space because all
executables that need a file from the library share a single copy. We go into
shared libraries later in this section.

In Chapter 2 we described many of the functions that are found in the
standard C library, libc.a. The next two sections describe two other libraries,
the object file library and the math library.

The Object File Library

The object file library provides functions for the access and manipulation
of object files. Some functions locate portions of an object file such as the
symbol table, the file header, sections, and line number entries associated with
a function. Other functions read these types of entries into memory. The
need to work at this level of detail with object files occurs most often in the
development of new tools that manipulate object files. For a description of
the format of an object file, see 11 The Common Object File Format 11 in
Chapter 1 1 . This library consists of several portions.

APPLICATION PROGRAMMING 3-23

Programming Support Tools

The functions (see Figure 3-2) reside in jlibjlibld.a and are loaded during the
compilation of a C language program by the -1 command line option

cc file -lid

which causes the link editor to search the object file library. The argument
-lld must appear after all files that reference functions in libld.a.

The following header files must be included in the source code.

#include <stdio .h>
#include <a .out.h>
#include <ldfcn.h>

3·24 PROGRAMMER'S GUIDE

Programming Support Tools

Function Reference Brief Description

ldaclose ldclose(3X) doses object file being processed

ldahread ldahread(3X) reads archive header

ldaopen ldopen(3X) opens object file for reading

ldclose ldclose(3X) closes object file being processed

ldfhread ldfhread(3X) reads file header of object file being
processed

ldgetname ldgetname(3X) retrieves the name of an object file
symbol table entry

ldlinit ldlread(3X) prepares object file for reading line
number entries via ldlitem

ldlitem ldlread(3X) reads line number entry from object file
after ldlinit

ldlread ldlread(3X) reads line number entry from object file

ldlseek ldlseek(3X) seeks to the line number entries of the
object file being processed

ldnlseek ldlseek(3X) seeks to the line number entries of the
object file being processed given the
name of a section

ldnrseek ldrseek(3X) seeks to the relocation entries of the
obj�ct file being processed given the
name of a section

ldnshread ldshread(3X) reads section header of the named sec-
tion of the object file being processed

Figure 3-2: Object File Library Functions (Sheet 1 of 2)

APPLICATION PROGRAMMING 3·25

Programming Support Tools

Function Reference

ldnsseek ldsseek(3X)

ldohseek ldohseek(3X)

ldopen ldopen(3X)

ldrseek ldrseek(3X)

ldshread ldshread(3X)

ldsseek ldsseek(3X)

ldtbindex ldtbindex(3X)

ldtbread ldtbread(3X)

ldtbseek ldtbseek(3X)

sgetl sputl(3X)

sputl sputl(3X)

Brief Description

seeks to the section of the object file
being processed given the name of a
section

seeks to the optional file header of the
object file being processed

opens object file for reading

seeks to the relocation entries of the
object file being processed

reads section header of an object file
being processed

seeks to the section of the object file
being processed

returns the long index of the symbol
table entry at the current position of the
object file being processed

reads a specific symbol table entry of
the object file being processed

seeks to the symbol table of the object
file being processed

accesses long integer data in a
machine-independent format

translates a long integer into a
machine-independent format

Figure 3-2: Object File Library Functions (Sheet 2 of 2)

3·26 PROGRAMMER'S GUIDE

Programming Support Tools

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file access rou
tines is based on the defined type LDFILE, which is in the header file ldfcn.h
[see ldfcn(4)] . The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure. The fields of the LDFILE structure can be
accessed individually through the following macros:

• TYPE-returns the magic number of the file, which is used to distin
guish between archive files and object files that are not part of an
archive.

• IOPTR-returns the file pointer, which was opened by ldopen(3X) and
is used by the input/output functions of the C library.

• OFFSET -returns the file address of the beginning of the object file.
This value is non-zero only if the object file is a member of the archive
file.

• HEADER-accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros
parallel the inputjoutput functions in the C library; each macro translates a
reference to an LDFILE structure into a reference to its file descriptor field.
The available macros are described in ldfcn(4) in the Programmer's Reference
Manual.

The Math Library

The math library package consists of functions and a header file. The
functions are located and loaded during the compilation of a C language pro
gram by the -1 option on a command line, as follows:

cc file -lm

This option causes the link editor to search the math library, libm.a. In
addition to the request to load the functions, the header file of the math
library should be included in the program being compiled. This is accom
plished by including the line

#mclude <math.h>

APPLICATION PROGRAMMING 3-27

Programming Support Tools

near the beginning of each file that uses the routines.

The functions are grouped into the following categories:

• trigonometric functions

• Bessel functions

• hyperbolic functions

• miscellaneous functions

Trigonometric Functions

These functions are used to compute angles (in radian measure), sines,
cosines, and tangents. All of these values are expressed in double-precision.

Function Reference Brief Description

a cos trig(3M) returns arc cosine

as in trig(3M) returns arc sine

a tan trig(3M) returns arc tangent

atan2 trig(3M) returns arc tangent of a ratio

cos trig(3M) returns cosine

sin trig(3M) returns sine

tan trig(3M) returns tangent

Bessel Functions

These functions calculate Bessel functions of the first and second kinds of
several orders for real values. The Bessel functions are jO, jl, jn, yO, yl, and
yn. The functions are described in section 3 [bessel(3M)) of the Programmer's
Reference Manual.

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

3·28 PROGRAMMER'S GUIDE

Programming Support Tools

Function Reference Brief Description

cosh sinh(3M) returns hyperbolic cosine

sinh sinh(3M) returns hyperbolic sine

tanh sinh(3M) returns hyperbolic tangent

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural loga
rithm, exponential, and absolute value. In addition, several are provided to
truncate the integer portion of double-precision numbers.

APPLICATION PROGRAMMING 3-29

Programming Support Tools

Function Reference

ceil floor(3M)

exp exp{3M)

fabs floor(3M)

floor floor(3M)

fmod floor(3M)

gamma gamma(3M)

hypot hypot(3M)

log exp(3M)

loglO exp(3M)

math err matherr(3M)

pow exp(3M)

sqrt exp{3M)

Shared Libraries

Brief Description

returns the smallest integer not less
than a given value

returns the exponential function of a
given value

returns the absolute value of a given
value

returns the largest integer not greater
than a given value

returns the remainder produced by the
division of two given values

returns the natural log of the absolute
value of the result of applying the
gamma function to a given value

returns the square root of the sum of
the squares of two numbers

returns the natural logarithm of a given
value

returns the logarithm base ten of a
given value

Error-handling function

returns the result of a given value
raised to another given value

returns the square root of a given value

As noted above, beginning with UNIX System V Release 3 .0, shared
libraries are supported. Not only are some system libraries (libc and the net
working library) available in both archive and shared library form, but also
applications have the option of creating private application shared libraries.

3·30 PROGRAMMER'S GUIDE

Programming Support Tools

The reason why shared libraries are desirable is that they save space, both
on disk and in memory. With an archive library, when the link editor goes to
the archive to resolve a reference, it takes a copy of the object file that it
needs for the resolution and binds it into the a.out file. From that point on
the copied file is a part of the executable, whether it is in memory to be run or
sitting in secondary storage. If you have a lot of executables that use, say,
print£ (which just happens to require much of the standard 1/0 library) you
can be talking about a sizeable amount of space.

With a shared library, the link editor does not copy code into the execut
able files. When the operating system starts a process that uses a shared
library, it maps the shared library contents into the address space of the pro
cess. Only one copy of the shared code exists, and many processes can use it
at the same time.

This fundamental difference between archives and shared libraries has
another significant aspect. When code in an archive library is modified, all
existing executables are uneffected. They continue using the older version
until they are re-link edited. When code in a shared library is modified, all
programs that share that code use the new version the next time they are exe
cuted.

All this may sound like a really terrific deal, but as with most things in
life there are complications. To begin with, in the paragraphs above we did
not give you quite all the facts. For example, each process that uses shared
library code gets its own copy of the entire data region of the library. It is
actually only the text region that is really shared. So the truth is that shared
libraries can add space to executing a.out's, even though the chances are good
that they will cause more shrinkage than expansion. What this means is that
when there is a choice between using a shared library and an archive, you
should not use the shared library unless it saves space. If you were using a
shared libc to access only strcmp, for example, you would pick up more in
shared library data than you would save by sharing the text.

The answer to this problem, and to others that are somewhat more com
plex, is to assign the responsibility for shared libraries to a central person or
group within the application. The shared library developer should be the one
to resolve questions of when to use shared and when to use archive system
libraries. If a private library is to be built for your application, one person or
organization should be responsible for its development and maintenance.

APPLICATION PROGRAMMING 3·3 1

Programming Support Tools

Where to Find More Information

The sample application at the end of this chapter includes an example of
the use of a shared library. Chapter 8 of this guide describes how shared
libraries are built and maintained.

Symbolic Debugger

The use of sdb was mentioned briefly in Chapter 2 . In this section we
want to say a few words about sdb within the context of an application
development project.

sdb works on a process, and enables a programmer to find errors in the
code. It is a tool a programmer might use while coding and unit testing a pro
gram, to make sure it runs according to its design. sdb would normally be
.used prior to the time the program is turned over, along with the rest of the
application, to testers . During this phase of the application development
cycle, programs are compiled with the -g option of cc to facilitate the use of
the debugger. The symbol table should not be stripped from the object file.
Once the programmer is satisfied that the program is error-free, strip(1) can
be used to reduce the file storage overhead taken by the file.

If the application uses a private shared library, the possibility arises that a
program bug may be located in a file that resides in the shared library. Deal
ing with a problem of this sort calls for coordination by the administrator of
the shared library. Any change to an object file that is part of a shared library
means the change affects all processes that use that file. One program's bug
may be another program's feature.

Where to Find More Information

Chapter 15 of this guide contains information on how to use sdb. The
manual page is in Section (1) of the Programmer's Reference Manual .

lint as a Portability Tool

It is a characteristic of the UNIX System that language compilation sys
tems are somewhat permissive. Generally speaking, it is a design objective
that a compiler should run fast. Most C compilers, therefore, let some things
go unflagged as long as the language syntax is observed statement by state
ment. This sometimes means that while your program may run, the output

3·32 PROGRAMMER'S GUIDE

Programming Support Tools

will have some surprises. It also sometimes means that while the program
may run on the machine on which the compilation system runs, there may be
real difficulties in running it on some other machine.

That is where lint comes in. lint produces comments about inconsisten
cies in the code. The types of anomalies flagged by lint are as follows:

• cases of disagreement between the type of value expected from a
called function and what the function actually returns

• disagreement between the types and number of arguments expected by
functions and what the function receives

• inconsistencies that might prove to be bugs

• things that might cause portability problems

Here is an example of a portability problem that would be caught by lint.

Code such as this,

int i = lseek(fdes , offset , whence)

would get by most compilers. However, lseek returns a long integer
representing the address of a location in the file. On a machine with a 1 6-bit
integer and a bigger long int, it would produce incorrect results, because i
would contain only the last 16 bits of the value returned.

Since it is reasonable to expect that an application written for a UNIX Sys
tem machine will be able to run on a variety of computers, it is important that
the use of lint be a regular part of the application development.

Where to Find More Information

Chapter 16 of this guide contains a description of lint with examples of
the kinds of conditions it uncovers. The manual page is in Section (1) of the
Programmer's Reference Manual .

APPLICATION PROGRAMMING 3·33

Project Control Tools

Volumes have been written on the subject o f project control. I t i s an item
of top priority for the managers of any application development team. Two
UNIX System tools that can play a role in this area are described in this sec
tion.

make
The make command is extremely useful in an application development

project for keeping track of object files that need to be recompiled as changes
are made to source code files. One of the characteristics of programs in a
UNIX System environment is that they are made up of many small pieces,
each in its own object file, that are link edited together to form the executable
file. Quite a few of the UNIX System tools are devoted to supporting that
style of program architecture. For example, archive libraries, shared libraries,
and the fact that the cc command accepts .o files as well as .c files and that it
can stop short of the ld step and produce .o files instead of an a.out, are all
important elements of modular architecture. The two main advantages of this
type of programming are that

• A file that performs one function can be re-used in any program that
needs it.

• When one function is changed, the whole program does not have to be
recompiled.

On the flip side, however, a consequence of the proliferation of object files
is an increased difficulty in keeping track of what does need to be recompiled
and what does not. make is designed to help deal with this problem. You
use make by describing in a specification file, called makefile, the relationship
(that is, the dependencies) between the different files of your program. Once
having done that, you conclude a session in which possibly a number of your
source code files have been changed by running the make command. make
takes care of generating a new a.out, by comparing the time-last-changed of
your source code files with the dependency rules you have given it.

make has the ability to work with files in archive libraries or under con
trol of the Source Code Control System (SCCS).

3-34 PROGRAMMER'S GUIDE

Project Control Tools

Where to Find More Information

The make(1) manual page is contained in the Programmer's Reference
Manual. Chapter 13 of this guide gives a complete description of how to use
make.

sees
SCCS is an abbreviation for Source Code Control System. It consists of a

set of 14 commands used to track evolving versions of files. Its use is not lim
ited to source code; any text files can be handled, so an application's docu
mentation can also be put under control of sees. sees can do the follow
ing:

• store and retrieve files under its control

• allow no more than a single copy of a file to be edited at one time

• provide an audit trail of changes to files

• reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through commands
that are part of the sees package can files be made available in a user's
directory for editing, compiling, etc. From the point at which a file is first
placed under sees control, only changes to the original version are stored.
For example, let us say that the program, restate, that was used in several
examples in Chapter 2, was controlled by SCCS.

APPLICATION PROGRAMMING 3·35

Project Control Tools

One of the original pieces of that program is a file called oppty.c that looks
like the following:

#include "reodef .h"

float
oppty(ps)
struct rec *ps ;
{

/* Opportunity Cost -- oppty. c */

return(ps->i/12 * ps->t * ps->dp) ;

If you decide to add a message to this function, you might change the file
like the following:

#include "reodef .h"
#include <stdio.h>

float
oppty(ps)
struct rec *ps ;
{

/* Opportunity Cost -- oppty.c */

(void) fprintf (stderr , "Opportunity calling\JJ.") ;
return(ps->i/12 * ps->t * ps->dp) ;

3-36 PROGRAMMER'S GUIDE

Project Control Tools

sees saves only the two new lines from the second version, with a coded
notation that shows where in the text the two lines belong. It also includes a
note of the version number, lines deleted, lines inserted, total lines in the file,
the date and time of the change, and the login id of the person making the
change.

Where to Find More Information

Chapter 14 of this guide is an SCCS user's guide. SCCS commands are in
Section (1) of the Programmer's Reference Manual.

APPLICATION PROGRAMMING 3·37

liber, A Library System

To illustrate the use of UNIX System programming tools in the develop
ment of an application, we are going to pretend we are engaged in the
development of a computer system for a library. The system is known as
liber. The early stages of system development, we assume, have already been
completed; feasibility studies have been done and the preliminary design is
described in the coming paragraphs. We are going to stop short of producing
a complete detailed design and module specifications for our system. You will
have to accept that these exist. In using portions of the system for examples
of the topics covered in this chapter, we will work from these virtual specifica
tions.

We make no claim as to the efficacy of this design. It is the way it is,
only in order to provide some passably realistic examples of UNIX System
programming tools in use.

liber is a system for keeping track of the books in a library. The
hardware consists of a single computer with terminals throughout the library.
One terminal is used for adding new books to the database. Others are used
for checking out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of
the day and remain running while the library is in operation. The system has
one master index that contains the unique identifier of each title in the library.
When the system is running, the index resides in memory. Semaphores are
used to control access to the index. In the pages that follow, fragments of
some of the system's programs are shown to illustrate the way they work
together. The startup program performs the system initialization: opening the
semaphores and shared memory, reading the index into the shared memory,
and kicking off the other programs. The id numbers for the shared memory
and semaphores (shmid, wrtsem, and rdsem) are read from a file during ini
tialization. The programs all share the in-memory index. They attach it with
the following code:

3·38. PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

I* attach shared memacy for index * 1
if ((:int) (index = (INDEX *) shmat(slmid, NULL , 0)) == - 1)
{

(void) fprintf(stderr , "shmat failed : %d\n" , ernx>) ;
exit(1) ;

Of the programs shown, add-books is the only one that alters the index.
The semaphores are used to ensure that no other programs will try to read the
index while add-books is altering it. The checkout program locks the file
record for the book so that each copy being checked out is recorded
separately, and the copy cannot be checked out at two different checkout sta
tions at the same time.

The program fragments do not provide any details on the structure of the
index or the book records in the database.

I* li.ber .h - header file for the
* library system.
*I

typedef • • • INDEX; I* data stzucture for book file index *I
typedef struct { I* type of records in book file *I

char title[30] ;
char authar[30] ;

} HJa<;
:int slmid;
int wrtsem;
int :rdsem;
INDEK *index;

int book_file ;
HJa(book_buf;

APPLICATION PROGRAMMING 3-39

SAMPLE APPLICATION: liber

3-40

I* startup program *I

I*
Open shared llii!IID%y far file index and read it in.

continued

* 1 .
* 2 .
* 3 .
*

Open two semaphores far providi.n:J exclusive write access to index .
stash id' s far shared llii!IID%y segment and semaphores in a file
where they can be accessed by the programs .

* 4 .
*

start programs : add-books , card-cataloq, and checkout running
an the varioos terminals throuqhcut the li.brazy.

*I

#include <stdio.h>
#include <sys/types .h>
#include <syslip:: .h>
#include <syslshm.h>
#include <syslsem.h>
#include "liber .h11

void exit() ;
extenl int enn::o ;

key_t key;
int shmid;
int wrtsem;
int :r:dsem;
FILE *ip::_file ;

main()
{

if ((shmid = slmget (key, sizeof (INDEX) , IPC_CllEAT I 0666)) == - 1)
{

(void) fprintf (stderr , "startup: shnget failed: errno--%d\n" , enn::o) ;
exit(1) ;

if ((wrtsem = senget(key, 1 , IPC_CllEAT I 0666)) == - 1)

(void) fprintf (stderr , "startup: senget failed: errno--%d\n" , enn::o) ;
exit(1) ;

PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

if ((msem = seoget(key, 1 , IPC_� 1 0666)) = - 1)
{

continued

(void) fprintf(stderr , "startup: semget failed: enno--%d\n" , erzno) ;
exit(1) ;

}
(void) fprintf (ipc_file , "�\n%d\n%d\n" , shmid, wrtsem, :J:dsem) ;

I*
* start the add-books program running an the teDoinal. in the
* basement . start the checkout and card-catalog programs
* running an the various other teDoinal.s t:hmugbJut the library.
*I

I* card-catalog program* I

I*
* 1 . Read screen for author and title .
* 2. Use semaphores to prevent reading' iDiex while it is being written .
* 3 . Use iDiex to get position of book record in book file .
* 4. Print book record an screen or indicate book was nat found.
* 5 . Go to 1 .
*I

#:include <stdio . h>
#:include <sys/t;ypes .h>
#:include <syslipc . h>
#:include <syslsem.h>
#:include <fcntl . h>
#:include "liber .h"

void exit() ;
exten1 int erzno;
struct SE!IIi:luf sop[1] ;

main() {

APPLICATION PROGRAMMING 3-4 1

SAMPLE APPLICATION: liber

while (1)
{

I*
* Read author/title/subject information fran screen.
*I

I*

continued

* wait f= write semaphore to reach 0 (index not being written) .
*I

sop[O] . sem_op = 1 ;
if (senop(wrtsem, sop, 1) == - 1)

I*

(void) fprintf (stderr , "senop failed: %d\n" , en:no) ;
exit(1) ;

* Increment read semaphore so potential writer will wait
* for us to finish reading the index.
*I

sop[O] . sem_op = 0 ;
if (senop(rdsem, sop, 1) == - 1)
{

(void) fprintf (stderr , "senop failed: %d\n" , en:no) ;
exit(1) ;

/* Use index to find file p:dnter (s) f= book(s) */

I* Decrement read semaphore *I
sop[O] . sem_op = - 1 ;
if (senop(rdsem, sop , 1) == - 1)

I*

(void) fprintf (stderr , "senop failed : %d\n" , en:no) ;
exit(1) ;

* Now we use the file p:>inters found in the index to
* read the book file . Then we print the i.nfarnatian
* on the book(s) to the screen.
*I

I* while */

I* checkout program*/

3-42 PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

continued

I*
* 1 . Read screen for De\oley Decimal number of book to be checked out .
* 2 . Use semaphores to prevent reading index while it is being written.
* 3 . Use index to get position of book reoord in book file .
* 4 . If book not found print message an screen, othe:tWise lock
* book reoord and read .
* 5 . If book already checked out, print message an screen, othe:tWise
* nark reoord "checked out" and write back to book file .
* 6 . Unlock book record.
* 7 . Go to 1 .
*I

<stdio. h>
<sysltypes .h>
<syslipc . h>
<syslsem.h>

#include
#include
#include
#include
#include
#include

<fcntl .h>
"liber .h"

void exit() ;
lang lseek() ;
extenl int errno;
struct flock flk;
struct sembuf sop[1] ;
lang bookpos ;

main()

{

while (1)
{

I*
* Read De\oley Decimal number fran screen.
*I

APPLICATION PROGRAMMING 3-43

SAMPLE APPLICATION: liber

3-44

continued

I*
* wait far write senaphore to reach 0 (index not being written) .
*I

sop[O] . sem __ flg = 0 ;
sop[O] . sem __ op = 0 ;
if (SE!IIDP(wrtsem, sop , 1) == - 1)
{

I*

(void) fprintf (stderr , " SE!IIDP failed: %d\n" , errno) ;
exit(1) ;

* Increment read semaphore so that potential writer will
* wait far us to finish reading the index.
*I

sop[O J . sem __ op = 1 ;
if (SE!ODp(rdsem, sop , 1) == - 1)
{

I*

(void) fprintf (stderr , "sE!IIDP failed : %d\n" , errno) ;
exit (1) ;

* Now we can use the index to find the book' s rec:=d position.
* Assign this value to "bookpos" .
*I

I* Decrement read semaphore *I
sop[O J . sem __ op = - 1 ;
if (SE!ODp(rdsem, sop , 1) == - 1)
{

(void) fprintf (stderr , " SE!IIDP failed : %d\n" , errno) ;
exit(1) ;

I* IDck the book' s record :in book file , read the record. *I
flk . l __ type = F __ WRI.a<: ;
flk . l __ whence = 0 ;
flk . l __ start = bookpos ;
flk . l __ len = sizeof (:oca<:) ;
if (fcntl (book __ file , F __ SE'l'LKW, &flk) == - 1)

PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

continued

(void) fJ;n"intf (stderr , "trouble locking : %d\n" , en:no) ;
exit (1) ;

if (lseek(book_file , bookpos , 0) == - 1)

Error processing for lseek ;

:j.f (read(book_file , &book_buf , sizeof(BCXJK)) == - 1)

Error processing for read ;

/*
* If the book is checked out infonn the client, othel:w:i.se
* m:rrk the book' s record as checked out and write it
* back into the book file .
*/

/* Unlock the book' s record in book file . */
flk . l_type = F_UNLCK;
if (fcntl (book_file , F_SETLK, &flk) == - 1)

(void) fprintf (stderr , "trouble unlocking: %d\n" , en:no) ;
exit (1) ;

/* while */

/* add-books program*/

/*
* 1 . Read a new book entry fran s=een.
* 2 . Insert book in book file .
* 3 . Use sanaphore "wrtsem" to block new readers .
* 4 . wait for semaphore "rdsem" to reach 0 .
* 5 . Insert book into index.
* 6. Decrement wrtsen.
* 7 . Go to 1 .
*I

APPLICATION PROGRAMMING 3-45

SAMPLE APPLICATION: liber

3-46

#:illclude <stdio. h>
#:illclude <sys/types . h>
#:illclude <sys/ipc .h>
#:illclude <sys/san.h>
#:illclude "l:iber .h"

void exit() ;
extern int en:no ;
struct sembuf sop[1] ;
BXlK lxlokbuf ;

main()
{

for (; ;)

/*
* Read infat:natian an new bxlk fran screen.
*/

addsc:r (&.bookl:uf) ;

/* write new record at the end of the bxlkfile .
* Code oot shown , but
* addsc:r() returns a 1 if title infat:natian has
* been entered, 0 if not .
*/

I*
* Increment write semaphore , block:iilg new readers fran
* accessing the index.
*I

sop[O] . sem __ flg = 0 ;
sop[O] . sem __ op = 1 ;
if { semop{wrtsem, sop, 1) == - 1)
{

continued

(void) fprintf (stderr , "semop failed: %d\n" , en:no) ;
exit(1) ;

PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

continued

/*
* wait for read semaphore 1:o reach 0 (all readers 1:o finish
* using the i.ndelt) •

*/
sop[O] . sem __ qp = 0 ;
if (sencp(msem, sop, 1 > == - 1 >

/*

(void) fprintf (stderr , "Set!Dp failed: %d\n" , erzno) ;
exit(1) ;

* Now' that we have exclusive access 1:o the i.ndelt we
* insert our new book with its file pointer .
*/

/* Decrement write semaphore , permitting readers 1:o read i.ndelt. */
sop[O] . sem __ qp = - 1 ;
i f (sencp(wrtsem, sop , 1) = = - 1)
{

} /* far */

(void) fprintf (stderr , "senop failed: %d\n" , en:no) ;
exit (1) ;

The example following, addscr(), illustrates two significant points about
curses screens:

1 . Information read in from a curses window can be stored in fields that
are part of a structure defined in the header file for the application.

2 . The address of the structure can be passed from another function
where the record is processed.

APPLICATION PROGRAMMING 3-47

SAMPLE APPLICATION: liber

3-48

#:include <curses . h>

WIND:M *cmiwin;

addscr (bb)
struct B:OK *bb;

int c ;

initscr () ;
nanl () ;
noecho() ;
cbreak() ;

/* addscr is called fran add-books .
* '!he user is pralpted for title
* infonnatian.
*/

cmiwin = newwin(6 , 40 , 3 , 20) ;
mvprintw(0 , 0 , '"lhis screen is for adding titles to the database") ;
mvprintw(1 , 0 , "Enter a to add; q to quit : ") ;
refresh() ;
for (; ;)

refresh() ;
c = getch() ;
switch (C) {

case 'a ' :
werase (cmiwin) ;
bax(cmiwin, ' I ' , ' - ') ;
mvwprintw(cmiwin , 1 , 1 , "Enter title : ") ;
'IIIIIIDVe (cmiwin , 2 , 1) ;
echo() ;
wrefresh(cmiwin) ;
wgetstr(cmiwin , bb->title) ;
noecho() ;
werase (cmiwin) ;
bax (cmiwin , ' 1 ' , ' - ') ;
mvwprintw(cmiwin , 1 , 1 , "Enter author: ") ;
'IIIIIIDVe (cmiwin , 2 , 1) ;
echo() ;
wrefresh(cmiwin) ;
wgetstr (cmiwin , bb->author) ;
ncecho() ;
werase (cmiwin) ;

PROGRAMMER'S GUIDE

SAMPLE APPLICATION: liber

case 'q ' :

wrefresh (cmdwin) ;
erxiwin() ;
return(1) ;

erase () ;
erxiwin() ;
return(0) ;

Makefile for liber library system

CC = cc
CFLI\GS = -o
all : startup add-books checkout card-catalog

startup: liber .h startup . c
$ (CC) $ (CFLI\GS) -o startup startup. c

add-books : add-books .o addscr . o
$ (CC) $ (CFLI\GS) -o add-books add-books .o addscr . o

add-books . o : liber .h

checkout : liber .h checkout . c
$ (CC) $ (CFLI\GS) -o checkout checkout . c

card-catalog : liber . h card-catalog . c
$ (CC) $ (CFLI\GS) -o card-catalog card-catalog . c

continued

APPLICATION PROGRAMMING 3-49

. . ·�.· · · ·· . . .

·-�··

; ·

. . :�

. . � ::.
· · ,.·. ·.

� - · · .

·: · -�·

·- - ·-·

. : --�� ·· I. " .

·__ .. _ · ·,_ - · · · -

·:..:.::: - ·

. � . � �:

- �, . ' . � � - .

. �: · .
: •. - 1 "

.. !

4 awk

Introduction 4-1

Basic awk 4-2

Progrann Structure 4-2

Usage 4-3

Fields 4-4

Printing 4-5

Formatted Printing 4-6

Sinnple Patterns 4-7

Sinnple Actions 4-8

• Built-in Variables 4-8

• User-defined Variables 4-9

• Functions 4-9

A Handful of Useful One-liners 4-10

Error Messages 4-11

Patterns 4-12

BEGIN and END 4-12

Relational Expressions 4-13

Regular Expressions 4-15
Connbinations of Patterns 4-18
Pattern Ranges 4-19

Actions 4-20
Built-in Variables 4-20

Arithnnetic 4-20

awk

awk

Strings and String Functions
Field Variables
Number or String?
Control Flow Statements
Arrays
User-Defined Functions
Some Lexical Conventions

Output
The print Statement
Output Separators
The print£ Statement
Output into Files
Output into Pipes

Input
Files and Pipes
Input Separators
Multi-line Records
The getline Function
Command-line Arguments

Using awk with Other Commands
and the Shell
The system Function
Cooperation with the Shell

Example Applications
Generating Reports
Additional Examples

• Word Frequencies

• Accumulation

ii PROGRAMMER'S GUIDE

4-23
4-28
4-29
4-30
4-33
4-36
4-37

4-38
4-38
4-38
4-39
4-40
4-41

4-43
4-43
4-43
4-44
4-44
4-47

4-49
4-49
4-49

4-52
4-52
4-54
4-54
4-55

awk

• Random Choice 4-55
• Shell Facility 4-56

• Form-letter Generation 4-57

awk Summary 4-58

Command Line 4-58

Patterns 4-58

Control Flow Statements 4-58

Input-output 4-59

Functions 4-59

String Functions 4-60

Arithmetic Functions 4-60

Operators (Increasing Precedence) 4-61

Regular Expressions (Increasing Precedence) 4-61

Built-in Variables 4-62

Limits 4-62
Initialization, Comparison, and Type Coercion 4-63

awk iii

Introduction

This chapter describes the new version of awk released in UNIX System
V Release 3.1 and described in nawk(l) in the User'sjSystem
Administrator's Reference Manual. An earlier version is described in
awk(l) . The new version will become the default in the next major
UNIX System release. Until then, you should read nawk for awk in this
chapter.

Suppose you want to tabulate some survey results stored in a file, print
various reports summarizing these results, generate form letters, reformat a
data file for one application package to use with another package, or count the
occurrences of a string in a file. awk is a programming language that makes it
easy to handle these and many other tasks of information retrieval and data
processing. The name awk is an acronym constructed from the initials of its
developers; it denotes the language and also the UNIX System command you
use to run an awk program.

awk is an easy language to learn. It automatically does quite a few things
that you have to program for yourself in other languages. As a result, many
useful awk programs are only one or two lines long. Because awk programs
are usually smaller than equivalent programs in other languages, and because
they are interpreted, not compiled, awk is also a good language for prototyp
ing.

The first part of this chapter introduces you to the basics of awk and is
intended to make it easy for you to start writing and running your own awk
programs. The rest of the chapter describes the complete language and is
somewhat less tutorial. For the experienced awk user, there's a summary of
the language at the end of the chapter.

You should be familiar with the UNIX System and shell programming to
use this chapter. Although you don't need other programming experience,
some knowledge of the C programming language is beneficial, because many
constructs found in awk are also found in C.

awk 4-1

Basic awk

This section provides enough information for you to write and run some
of your own programs. Each topic presented is discussed in more detail in
later sections.

Program Structure

The basic operation of awk(l) is to scan a set of input lines one after
another, searching for lines that match any of a set of patterns or conditions
you specify. For each pattern, you can specify an action; this action is per
formed on each line that matches the pattern. Accordingly, an awk program
is a sequence of pattern-action statements, as Figure 4-1 shows.

Structure:
pattern
pattern

Example:

{ action }
{ action }

$1 == "address" { print $2, $3 }

Figure 4-1 : awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one
pattern-action statement. The program prints the second and third fields of
each input line whose first field is address. In general, awk programs work
by matching each line of input against each of the patterns in tum. For each
pattern that matches, the associated action (which may involve multiple steps)
is executed. Then the next line is read, and the matching starts over. This
process typically continues until all the input has been read.

4-2 PROGRAMMER'S GUIDE

Basic awk

Either the pattern or the action in a pattern-action statement may be omit
ted. If there is no action with a pattern, as in

$ 1 == "name"

the matching line is printed. If there is no pattern with an action, as in

{ print $1 . $2 }

the action is performed for every input line. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from pat
terns.

Usage

There are two ways to run an awk program. First, you can type the com
mand line

awk 'pattern-action statements' optional list of input files

to execute the pattern-action statements on the set of named input files. For
example, you could say

awk ' { print $t, $2 } ' filet file2

Notice that the pattern-action statements are enclosed in single quotes. This
protects characters like $ from being interpreted by the shell and also allows
the program to be longer than one line.

If no files are mentioned on the command line, awk(l) reads from the
standard input. You can also specify that input comes from the standard
input by using the hyphen (-) as one of the input files. For example,

awk ' { print $3, $4 } ' filet -

says to read input first from filet and then from the standard input.

The arrangement above is convenient when the awk program is short (a
few lines) . If the program is long, it is often more convenient to put it into a
separate file and use the -£ option to fetch it:

awk -£ program file optional list of input files

For example, the following command line says to fetch and execute mypro
gram on input from the file filet :

awk -f myprogram filet

awk 4-3

Basic awk

Fields

awk normally reads its input one line, or record, at a time; a record is, by
default, a sequence of characters ending with a newline character. awk then
splits each record into fields, where, by default, a field is a string of non
blank, non-tab characters.

As input for many of the awk programs in this chapter, we use the file
countries, which contains information about the ten largest countries in the
world. Each record contains the name of a country, its area in thousands of
square miles, its population in millions, and the continent on which it is
found. (Data are from 1978; the U.S.S.R. has been arbitrarily placed in Asia .)
The white space between fields is a tab in the original input; a single blank
separates North and South from America .

USSR 8650 262 Asia
canada 3852 24 North America
China 3692 866 Asia
llSA 361 5 2 19 North America
Brazil 3286 1 16 South America
Australia 2968 14 Australia
Inlla 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa

Algeria 920 18 Africa

Figure 4-2: The Sample Input File countries

This file is typical of the kind of data awk is good at processing - a mixture
of words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator.
Fields are normally separated by sequences of blanks andjor tabs, so the first
record of countries would have four fields, the second five, and so on. It's
possible to set the field separator to just tab, so each line would have four
fields, matching the meaning of the data . We'll show how to do this shortly.
For the time being, we'll use the default: fields separated by blanks and/or

4·4 PROGRAMMER'S GUIDE

Basic awk

tabs. The first field within a line is called $1, the second $2, and so forth.
The entire record is called $0.

Printing

If the pattern in a pattern-action statement is omitted, the action is exe
cuted for all input lines. The simplest action is to print each line; you can
accomplish this with an awk program consisting of a single print statement

{ pr:int }

so the command line

awk ' { print } ' countries

prints each line of countries, copying the file to the standard output. The
print statement can also be used to print parts of a record; for instance, the
program

{ print $ 1 , $3 }

prints the first and third fields of each record. Thus,

awk ' { print $1, $3 } ' countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 2 19
Brazil 1 16
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

awk 4-5

Basic awk

When printed, items separated by a comma in the print statement are
separated by the output field separator, which, by default, is a single blank.
Each line printed is terminated by the output record separator, which by
default is a newline.

In the remainder of this chapter, we only show awk programs, without the
command line that invokes them. Each complete program can be run,
either by enclosing it in quotes as the first argument of the awk command,
or by putting it in a file and invoking awk with the -£ flag, as discussed in
11 awk Command Usage. 11 In an example, if no input is mentioned, the
input is assumed to be the file countries.

Formatted Printing

For more carefully formatted output, awk provides a C-like printf state
ment

printf format, expr v expr2 , • • . , exprn

which prints the exprn 's according to the specification in the string format. For
example, the awk program

{ print£ "%10s %6d\n" , $ 1 , $3 }

prints the first field ($ 1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character field,
then a newline (\n). With input from the file countries, this program prints
an aligned table:

4-6 PROGRAMMER'S GUIDE

Basic awk

USSR 262
Canada 24

China 866
USA 2 19

Brazil 1 16
Australia 14

India 637
Argentina 26

Sudan 19
Algeria 18

With print£, no output separators or newlines are produced automatically;
you must create them yourself by using \n in the format specification. " The
print£ Statement " in this chapter contains a full description of print£.

Simple Patterns

You can select specific records for printing or other processing by using
simple patterns. awk has three kinds of patterns. First, you can use patterns
called relational expressions that make comparisons. For example, the opera
tor == tests for equality. To print the lines for which the fourth field equals
the string Asia, we can use the program consisting of the single pattern

$4 == "Asia"

With the file countries as input, this program yields

USSR
China
India

8650
3692
1269

262
866
637

Asia
Asia
Asia

The complete set of comparisons is >, >=, <, <=, == (equal to) and I=
(not equal to) . These comparisons can be used to test both numbers and
strings. For example, suppose we want to print only countries with a popula
tion greater than 100 million. The program

$3 > 100

awk 4·7

Basic awk

is all that is needed. (Remember that the third field in the file countries is the
population in millions.) It prints all lines in which the third field exceeds 100.

Second, you can use patterns called regular expressions that search for
specified characters to select records. The simplest form of a regular expres
sion is a string of characters enclosed in slashes:

IUS/

This program prints each line that contains the (adjacent) letters us anywhere;
with the file countries as input, it prints

USSR 8650 262
USA 3615 2 1 9

Asia
North America

We will have a lot more to say about regular expressions later in this chapter.

Third, you can use two special patterns, BEGIN and END, that match
before the first record has been read and after the last record has been pro
cessed. This program uses BEGIN to print a title:

:BEX;IN { pdnt 11Camtries of Asia : 11 }
/Asia/ { pdllt II II ' $ 1 }

The output is

Cotmtries of Asia :
USSR
China
India

Simple Actions

We have already seen the simplest action of an awk program: printing
each input line. Now let's consider how you can use built-in and user-defined
variables and functions for other simple actions in a program.

Built-in Variables

Besides reading the input and splitting it into fields, awk(l) counts the
number of records read and the number of fields within the current record;
you can use these counts in your awk programs. The variable NR is the
number of the current record, and NF is the number of fields in the record.
So the program

4·8 PROGRAMMER'S GUIDE

{ print NR, NF }

prints the number of each line and how many fields it has, while

{ print NR, $ 0 }

prints each record preceded by its record number.

User-defined Variables

Basic awk

Besides providing built-in variables like NF and NR, awk lets you define
your own variables, which you can use for storing data, doing arithmetic, and
the like . To illustrate, consider computing the total population and the aver
age population represented by the data in the file countries.

{ sum = sum + $3 }
END { print '"Ibtal population is" , sum, "million"

print "Average population of" , NR, "COlliltries is" , sum/NR }

awk initializes smn to zero before it is used.

The first action accumulates the population from the third field; the second
action, which is executed after the last input, prints the sum and average:

Total population is 220 1 million
Average population of 10 COlliltries is 220 . 1

Functions

awk has built-in functions that handle common arithmetic and string
operations for you. For example, there's an arithmetic function that computes
square roots. There is also a string function that substitutes one string for
another. awk also lets you define your own functions. Functions are
described in detail in the section " Actions " in this chapter.

awk 4-9

Basic awk

A Handful of Useful One-liners

Although awk can be used to write large programs of some complexity,
many programs are not much more complicated than what we've seen so far.
Here is a collection of other short programs that you may find useful and
instructive. They are not explained here, but any new constructs do appear
later in this chapter.

Print last field of each input line:
{ p:dnt $NF }

Print lOth input line:
NR == 10

Print last input line:
{ line = $0 }

END { print line }

Print input lines that don't have four fields:
NF I = 4 { print $ 0 , "does not have 4 fields"

Print input lines with more than four fields:
NF > 4

Print input lines with last field more than 4:
$NF > 4

Print total number of input lines:
END { print NR }

Print total number of fields:
{ nf = nf + NF }

END { print nf }

Print total number of input characters:
{ nc = nc + length($ 0) }

END { print nc + NR }
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
/Asia/ { nlines++ }
END { print nlines }

(The statement nlines++ has the same effect as nlines = nlines
+ 1 . }

4·1 0 PROGRAMMER'S GUIDE

Basic awk

Error Messages

If you make an error in your awk program, you generally get an error
message. For example, trying to run the program

$3 < 200 { print ($ 1 }

generates the error messages

awk: syntax erzor at source line 1
context is

$3 < 200 { print (>>> $ 1 } <<<
awk: illegal statement at source line 1

1 extra (

Some errors may be detected while your program is running. For example, if
you try to divide a number by zero, awk stops processing and reports the
input record number (NR) and the line number in the program.

awk 4-1 1

Patterns

In a pattern-action statement, the pattern is an expression that selects the
records for which the associated action is executed. This section describes the
kinds of expressions that may be used as patterns.

BEGIN and END
BEGIN and END are two special patterns that give you a way to control

initialization and wrap-up in an awk program. BEGIN matches before the
first input record is read, so any statements in the action part of a BEGIN are
done once, before the awk command starts to read its first input record. The
pattern END matches the end of the input, after the last record has been pro
cessed.

The following awk program uses BEGIN to set the field separator to tab
(\t) and to put column headings on the output. The field separator is stored
in a built-in variable called FS. Although FS can be reset at any time, usually
the only sensible place is in a BEGIN section, before any input has been read.
The program's second print£ statement, which is executed for each input line,
formats the output into a table, neatly aligned under the column headings.
The END action prints the totals. (Notice that a long line can be continued
after a comma.)

BEGIN { FS = "\t"
print£ "%10s %6s %5s %s\n" ,

"CXXJNrRY" , "AREA" , nropn , n�u }
{ print£ "%10s %&l. %5d %s\n" , $ 1 , $2, $3 , $4

area = area + $2 ; pop = pop + $3 }
END { print£ ''\n%10s %6d %5d\.n'' , "'!OrAL'' , area , p:>p }

With the file countries as input, this program produces

4-1 2 PROGRAMMER'S GUIDE

Patterns

CXXJNl'RY ARFA roP CXNI'INENl'
USSR 8650 262 Asia

Canada 3852 24 North America

China 3692 866 Asia

USA 3615 2 19 North .America

Brazil 3286 1 16 South .America

Australia 2968 14 Australia

India 1269 637 Asia

Argentina 1072 26 South .America

SUdan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 220 1

Relational Expressions

An awk pattern can be any expression involving comparisons between
strings of characters or numbers. awk has six relational operators and two
regular expression matching operators, - (tilde) and I - , which are discussed
in the next section, for making comparisons. Figure 4-3 shows these operators
and their meanings.

awk 4- 1 3

PaHerns

0 era tor Meanin

< less than
<= less than or equal to

equal to
!= not equal to
>= greater than or equal to

> greater than
matches

,_ does not match

Figure 4-3: awk Comparison Operators

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value might
be either a number or a string; usually awk can tell what is intended. The
section " Number or String? " contains more information about this.) Thus,
the pattern $3> 1 00 selects lines where the third field exceeds 1 00, and the
program

$1 >= "S"

selects lines that begin with the letters S through Z, namely,

USSR
USA
Sudan

8650
36 15
968

262
2 19
19

Asia
North America
Africa

In the absence of any other information, awk treats fields as strings, so
the program

$ 1 == $4

compares the first and fourth fields as strings of characters, and with the file
countries as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

4·1 4 PROGRAMMER'S GUIDE

Patterns

Regular Expressions

awk provides more powerful patterns for searching for strings of charac
ters than the comparisons illustrated in the previous section. These patterns
are called regular expressions, and are like those in egrep(l) in the
User'sjSystem Administrator's Reference Manual and lex(l) in the Programmer's
Reference Manual . The simplest regular expression is a string of characters
enclosed in slashes, like

/Asia/

This program prints all input records that contain the substring Asia. (If a
record contains Asia as part of a larger string like Asian or Pan-Asiatic, it is
also printed.) In general, if re is a regular expression, then the pattern

jrej

matches any line that contains a substring specified by the regular expression
re.

To restrict a match to a specific field, you use the matching operators -
(matches) and ! - (does not match). The program

$4 - I Asia/ { pr:int $ 1 }

prints the first field of all lines in which the fourth field matches Asia, while
the program

$4 1 - /Asia/ { pr:int $ 1 }

prints the first field of all lines in which the fourth field does not match Asia .

In regular expressions, the symbols

\ " $. [] • + ? 0 1
are metacharacters with special meanings like the metacharacters in the UNIX
System shell. For example, the metacharacters " and $ match the beginning
and end, respectively, of a string, and the metacharacter . (" dot ") matches
any single character. Thus,

/" . $/

matches all records that contain exactly one character.

awk 4·1 5

Patterns

A group of characters enclosed in brackets matches any one of the
enclosed characters; for example, I [ABC] I matches records containing any
one of A, B, or C anywhere. Ranges of letters or digits can be abbreviated
within brackets : I [a-zA-Z) 1 matches any single letter.

If the first character after the left bracket ([) is a carat (A), this comple
ments the class so it matches any character not in the set: I ["a-zA-Z) I
matches any non-letter. The program

$2 ! - /" [0-9] + $/

prints all records in which the second field is not a string of one or more digits
(" for beginning of string, [0-9] + for one or more digits, and $ for end of
string) . Programs of this nature are often used for data validation.

Parentheses () are used for grouping and the symbol 1 is used for alterna
tives. The program

/(apple l cherry) (pie l tart) /

matches lines containing any one of the four substrings apple pie , apple
tart , cherry pie , or cherry tart .

To tum off the special meaning of a metacharacter, precede it by a \
(backslash) . Thus, the program

/b\$/

prints all lines containing b followed by a dollar sign .

In addition to recognizing metacharacters, the awk command recognizes
the following C programming language escape sequences within regular
expressions and strings:

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ddd octal value ddd
\ " quotation mark
\C any other character c literally

For example, to print all lines containing a tab, use the program

/\t/

4- 1 6 PROGRAMMER'S GUIDE

PaHerns

awk interprets any string or variable on the right side of a - or !- as a
regular expression. For example, we could have written the program

$2 ! - /" [0-9] + $/

as

BEGIN { digits 11 " [0-9] + $ 11 }
$2 1 - digits

Suppose you wanted to search for a string of characters like " [0-9] + $
When a literal quoted string like 11 " [0-9] + $ 11 is used as a regular expression,
one extra level of backslashes is needed to protect regular expression meta
characters . This is because one level of backslashes is removed when a string
is originally parsed. If a backslash is needed in front of a character to turn off
its special meaning in a regular expression, then that backslash needs a
preceding backslash to protect it in a string.

For example, suppose we want to match strings containing b followed by
a dollar sign. The regular expression for this pattern is b\$. If we want to
create a string to represent this regular expression, we must add one more
backslash: 11 b\ \$ 11 • The two regular expressions on each of the following
lines are equivalent:

X - 11b\\$11

X - 11b\$ 11

X - llb$ 11

X - 11\\t11

X - /b\$/
X - /b$/
X - /b$/
X - /\t/

The precise form of regular expressions and the substrings they match is
given in Figure 4-4. The unary operators *, +, and ? have the highest pre
cedence, with concatenation next, and then alternation 1 . All operators are
left associative. r stands for any regular expression.

awk 4- 1 7

PaHerns

Ex ression Matches

c any non-metacharacter c
\C character c literally
II beginning of string
$ end of string

any character but newline
[s] any character in set s
[As] any character not in set s
T* zero or more r' s
r+ one or more r' s
r? zero or one r
(r) r

Y t Y 2 r 1 then r 2 (concatenation)
r 1 1 r2 r 1 or r 2 (alternation)

Figure 4-4: awk Regular Expressions

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the
logical operators I I (or), && (and), and ! (not) . For example, suppose we
want to print all countries in Asia with a population of more than 500 million.
The following program does this by selecting all lines in which the fourth field
Is Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500

The program

$4 == "Asia" I I $4 == "Africa"

selects lines with Asia or Africa as the fourth field. Another way to write
the latter query is to use a regular expression with the alternation operator

$4 - /11 (Asia 1Africa) $/

4-1 8 PROGRAMMER'S GUIDE

Patterns

The negation operator ! has the highest precedence, then &&, and finally
1 1 . The operators && and I I evaluate their operands from left to right;
evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges

A pattern range consists of two patterns separated by a comma, as in

{ . . . }
In this case, the action is performed for each line between an occurrence of
pat 1 and the next occurrence of pat 2 (inclusive) . As an example, the pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string Canada, up
through the next occurrence of the string Brazil:

Canada
China
USA
Brazil

3852
3692
3615
3286

24
866
219
1 16

North America
Asia
North America
South America

Similarly, since FNR is the number of the current record in the current input
file (and FILENAME is the name of the current input file), the program

FNR == 1 , FNR == 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the current
input file prepended.

awk 4- 1 9

Actions

In a pattern-action statement, the action determines what is to be done
with the input records that the pattern selects. Actions frequently are simple
printing or assignment statements, but they may also be a combination of one
or more statements. This section describes the statements that can make up
actions.

Built-in Variables

Figure 4-5 lists the built-in variables that awk maintains. Some of these
we have already met; others are used in this and later sections.

Variable

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Meanin

number of command-line arguments
array of command-line arguments
name of current input file
record number in current file
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator
index of first character matched by match()
length of string matched by match()
subscript separator

Figure 4-5 : awk Built-in Variables

Arithmetic

Default

blank&tab

% . 6g
blank

newline
newline

II \034 II

Actions can use conventional arithmetic expressions to compute numeric
values. As a simple example, suppose we want to print the population den
sity for each country in the file countries. Since the second field is the area in
thousands of square miles, and the third field is the population in millions,

4·20 PROGRAMMER'S GUIDE

Actions

the expression 1000 * $3 / $2 gives the population density in people per
square mile. The program

{ printf "%10s %6 . 1f\n" , $ 1 , 1000 * $3 / $2 }

applied to the file countries prints the name of each country and its popula
tion density:

USSR 30 . 3
Canada 6 . 2

China 234 . 6
USA 60 . 6

Brazil 35 . 3
Australia 4 . 7

India 502 . 0
Argentina 24 . 3

Sudan 19 . 6
Algeria 19 . 6

Arithmetic i s done internally in floating point. The arithmetic operators
are +, -, *, j, % (remainder) and " (exponentiation; ** is a synonym). Arith
metic expressions can be created by applying these operators to constants,
variables, field names, array elements, functions, and other expressions, all of
which are discussed later. Note that awk recognizes and produces scientific
(exponential) notation: 1e6 , 1E6 , 1 0e5 , and 1000000 are numerically equal.

awk has assignment statements like those found in the C programming
language. The simplest form is the assignment statement

v = e

where v is a variable or field name, and e is an expression. For example, to
compute the number of Asian countries and their total population, we could
write

$4 == "Asia" { pop = pop + $3 ; n = n + 1 }
END { print "population of" , n,

"Asian countries in millions is" , pop }

awk 4-2 1

Actions

Applied to countries, this program produces

population of 3 Asian oountries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two assignment
statements, one to accumulate population and the other to count countries.
The variables are not explicitly initialized, yet everything works properly
because awk initializes each variable with the string value " " and the
numeric value 0.

The assignments in the previous program can be written more concisely
using the operators += and ++ as follows:

$4 == "Asia" { pop += $3 ; ++n }

The operator += is borrowed from the C programming language:

pop += $3

It has the same effect as

pop = pop + $3

but the += operator is shorter and runs faster. The same is true of the ++
operator, which adds one to a variable.

The abbreviated assignment operators are +=, -=, *=, f=, %=, and " = .
Their meanings are similar:

v op= e

has the same effect as

v = v op e.

The increment operators are ++ and -. As in C, they may be used as pre
fix (++x) or postfix (x++) operators. If x is 1, then i=++x increments x, then
sets i to 2, while i=x++ sets i to 1, th�n increments x. An analogous
interpretation applies to prefix and postfix -.

Assignment and increment and decrement operators may all be used in
arithmetic expressions.

We use default initialization to advantage in the following program, which
finds the country with the largest population:

maxpop < $3
END

{ maxpop = $3 ; oountry = $ 1 }

{ print oountry, maxpop }

4·22 PROGRAMMER'S GUIDE

Actions

Note, however, that this program would not be correct if all values of $3 were
negative.

awk provides the built-in arithmetic functions shown in Figure 4-6.

Function

atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
randO
sin(x)
sqrt(x)
srand(x)

Value Returned

arctangent of y / x in the range -1r to 1r
cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for rand()

Figure 4-6: awk Built-in Arithmetic Functions

x and y are arbitrary expressions. The function rand() returns a pseudo
random floating point number in the range (0, 1), and srand(x) can be used to
set the seed of the generator. If srandO has no argument, the seed is derived
from the time of day.

Strings and String Functions

A string constant is created by enclosing a sequence of characters inside
quotation marks, as in " abc " or " hello, everyone " . String constants may
contain the C programming language escape sequences for special characters
listed in " Regular Expressions " in this chapter.

String expressions are created by concatenating constants, variables, field
names, array elements, functions, and other expressions. The program

{ pdnt NR " : " $ 0 }

prints each record preceded by its record number and a colon, with no blanks.
The three strings representing the record number, the colon, and the record
are concatenated, and the resulting string is printed. The concatenation opera
tor has no explicit representation other than juxtaposition.

awk 4-23

Actions

awk provides the built-in string functions shown in Figure 4-7. In this
table, r represents a regular expression (either as a string or as jrj), s and t
string expressions, and n and p integers.

Function

gsub(r, s)

gsub(r, s, t)

index(s, t)
length(5)
match(5, r)
split(s, a)
split(s, a, r)
sprintf(fmt, expr-lis t)

sub(r, 5)

sub(r, s, t)

substr(s, p)
substr(5, p, n)

Descri tion

substitutes s for r globally in current record,
returns number of substitutions

substitutes s for r globally in string t,
returns number of substitutions

returns position of string t in s, 0 if not present
returns length of s
returns the position in s where r occurs, 0 if not present
splits s into array a on FS, returns number of fields
splits s into array a on r, returns number of fields
returns expr-list formatted according to format

string fmt
substitutes s for first r in current record, returns

number of substitutions
substitutes s for first r in t, returns number of

substitutions
returns suffix of 5 starting at position p
returns substring of 5 of length n starting at

position p

Figure 4-7: awk Built-in String Functions

The functions sub and gsub are patterned after the substitute command in
the text editor ed{l), which can be found in the User'sjSystem Admin istrator's
Reference Manual. The function gsub(r, 5, t) replaces successive occurrences of
substrings matched by the regular expression r with the replacement string s
in the target string t. (As in ed, the leftmost match is used, and is made as
long as possible .) It returns the number of substitutions made. The function
gsub(r, 5) is a synonym for gsub(r, 5, $0). For example, the program

{ gsub(IUSA/ , "United States") ; print }

transcribes its input, replacing occurrences of USA by United States. The sub
functions are similar, except that they only replace the first matching substring
in the target string.

4-24 PROGRAMMER'S GUIDE

Actions

The function index(s, t) returns the leftmost position where the string t
begins in s, or zero if t does not occur in s. The first character in a string is at
position 1. For example,

index("banana" , "an" > .

returns 2.

The length function returns the number of characters in its argument
string; thus,

{ print length($ 0) ' $ 0 }

prints each record, preceded by its length. ($0 does not include the input
record separator.) The program

length($ 1) > max { max = length($ 1) ; name = $ 1 }

END { print name }

applied to the file countries prints the longest country name: Australia.

The match(s, r) function returns the position in string s where regular
expression r occurs, or 0 if it does not occur. This function also sets two
built-in variables RST ART and RLENGTH. RST ART is set to the starting
position of the match in the string; this is the same value as the returned
value. RLENGTH is set to the length of the matched string. (If a match does
not occur, RSTART is 0, and RLENGTH is -1 .) For example, the following
program finds the first occurrence of the letter i, followed by at most one
character, followed by the letter a in a record:

{ if (match($0 , /i . ?al))
print RSTARl' ' RLENml, $0 }

It produces the following output on the file countries:

awk 4-25

Actions

17 2 USSR 8650 262 Asia

26 3 Canada 3852 24 North .America

3 3 China 3692 866 Asia

24 3 USA 36 15 2 19 North .America

27 3 Brazil 3286 1 16 South America

8 2 Australia 2968 14 Australia

4 2 Illdia 1269 637 Asia

7 3 Al:gent:ina. 1072 26 South America

17 3 SUdan 968 19 Africa

6 2 Algeria 920 18 Africa

match() matches the left-most longest matching string. For example, with
the record

AsiaaaAsiaaaaan

as input, the program

{ if (match($0 , /a+/)) print �. :RLEtCTH, $0 }

matches the first string of a's and sets � to 4 and � to 3.

The function sprintf(format, expr 1 , expr2 , • • • , exprn) returns (without
printing) a string containing expr 1 , expr2 , • . . , exprn formatted according to
the print£ specifications in the string format. " The print£ Statement " in this
chapter contains a complete specification of the format conventions. The
statement

x = sprintf ("%10s %6d" , $1 , $2)

assigns to x the string produced by formatting the values of $ 1 and $2 as a
ten-character string and a decimal number in a field of width at least six; x

may be used in any subsequent computation.

4-26 PROGRAMMER'S GUIDE

Actions

The function substr(s, p, n) returns the substring of s that begins at posi
tion p and is at most n characters long. If substr(s, p) is used, the substring
goes to the end of s; that is, it consists of the suffix of s beginning at position
p. For example, we could abbreviate the country names in countries to their
first three characters by invoking the program

{ $1 = substr ($ 1 , 1 , 3) ; print }

on this file to produce

uss 8650 262 Asia
Can 3852 24 North America
au. 3692 866 Asia
USA 3615 219 North America
Bra 3286 1 16 South America
Ails 2968 14 Australia
Ind 1269 637 Asia
Arg 1 072 26 South America
SUd 968 19 Africa
Al.g 920 18 Africa

Note that setting $1 in the program forces awk to recompute $0 and, there
fore, the fields are separated by blanks (the default value of OFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after
another in an expression. For example, when invoked on file countries,

prints

{ S : S substr ($ 1 , 1 , 3) II II }
END { print s }

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up, a piece at a time, from an initially empty string.

awk 4-27

Actions

Field Variables

The fields of the current record can be referred to by the field variables $1,
$2, . . . , $NF. Field variables share all of the properties of other variables:
they may be used in arithmetic or string operations, and they may have
values assigned to them. So, for example, you can divide the second field of
the file countries by 1000 to convert the area from thousands to millions of
square miles

{ $2 /= 1000 ; print }

or assign a new string to a field:

BI!GIN
$4 == "North America"
$4 == "South America"

{ FS = OFS = "'\t" }
{ $4 = "NA" }
{ $4 = "SA" }
{ pdnt }

The BI!GIN action in this program resets the input field separator FS and the
output field separator OFS to a tab. Notice that the print in the fourth line of
the program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-1) is the second
to last field of the current record. The parentheses are needed to show that
the value of $NF-1 is 1 less than the value in the last field.

A field variable referring to a nonexistent field, for example, $(NF+l), has
as its initial value the empty string. A new field can be created, however, by
assigning a value to it. For example, the following program invoked on the
file countries creates a fifth field giving the population density:

BI!GIN { FS = OFS = "'\t" }
{ $5 = 1 000 * $3 / $2 ; print }

The number of fields can vary from record to record, but there is usually
an implementation limit of 100 fields per record.

4·28 PROGRAMMER'S GUIDE

Actions

Number or String?

Variables, fields and expressions can have both a numeric value and a
string value. They take on numeric or string values according to context. For
example, in the context of an arithmetic expression like

JX>P += $3

pop and $3 must be treated numerically, so their values will be coerced to
numeric type if necessary.

In a string context like

print $ 1 II : II $2

$1 and $2 must be strings to be concatenated, so they will be coerced if neces
sary.

In an assignment v = e or v op = e, the type of v becomes the type of e.
In an ambiguous context like

$1 == $2

the type of the comparison depends on whether the fields are numeric or
string, and this can only be determined when the program runs; it may well
differ from record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on the
string values. All field variables are of type string; in addition, each field that
contains only a number is also considered numeric. This determination is
done at run time. For example, the comparison 11 $ 1 == $2" will succeed on
any pair of the inputs

1 . 0 + 1

but fail on the inputs

(null)
(null)
Oa
1e50

0 . 1e+ 1

0
0 . 0
0
1 . 0e50

10E- 1 00 1

awk 4·29

Actions

There are two idioms for coercing an expression of one type to the other:

number 1 1 11

string + 0

concatenate a null string to a number to coerce it
to type string
add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, say

$1 1 1 1 1 == $2 1 1 1 1

The numeric value of a string is the value of any prefix of the string that
looks numeric; thus the value of 12.34x is 12 .34, while the value of x12.34 is
zero. The string value of an arithmetic expression is computed by formatting
the string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value 11 11
• Nonex

istent fields and fields that are explicitly null have only the string value 11 11 ;
they are not numeric.

Control Flow Statements

awk provides if-else, while, do-while, and for statements, and statement
grouping with braces, as in the C programming language.

The if statement syntax is

if (expression) statement 1 else statement 2

The expression acting as the conditional has no restrictions; it can include the
relational operators <, <=, >, >=, ==, and !=; the regular expression match
ing operators - and 1 - ; the logical operators 1 1 , &&, and !; juxtaposition for
concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and
non-null, statement 1 is executed; otherwise statement 2 is executed. The else
part is optional.

A single statement can always be replaced by a statement list enclosed in
braces. The statements in the statement list are terminated by newlines or
semicolons.

4-30 PROGRAMMER'S GUIDE

Actions

Rewriting the maximum population program from 11 Arithmetic Functions 11
with an if statement results in

if (maxpop < $3) {
maxpop = $3
countey = $ 1

EW { print countey, maxpop }

The while statement is exactly that of the C programming language:

while (expression) statement

The expression is evaluated; if it is non-zero and non-null, the statement is exe
cuted, and the expression is tested again. The cycle repeats as long as the
expression is non-zero. For example, to print all input fields one per line,

i = 1
while (i <= NF)

print $i
i++

The for statement is like that of the C programming language:

for (expression 1 ; expression; expression 2) statement

It has the same effect as

awk 4-31

Actions

so

expression 1
while (expression) {

statement
expression 2

{ far (i = 1 ; i <= NF ; i++) print $i }

does the same job as the while example above. An alternate version of the
for statement is described in the next section.

The do statement has the form

do statement while (expression)

The statement is executed repeatedly until the value of the expression becomes
zero. Because the test takes place after the execution of the statement (at the
bottom of the loop}, it is always executed at least once. As a result, the do
statement is used much less often than while or for, which test for completion
at the top of the loop.

The following example of a do statement prints all lines except those
between start and stop.

/start/ {
do {

getline X
} while (x 1 - /stop/)

{ print }

4·32 PROGRAMMER'S GUIDE

Actions

The break statement causes an immediate exit from an enclosing while or
for; the continue statement causes the next iteration to begin. The next state
ment causes awk to skip immediately to the next record and begin matching
patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the
input had occurred; no more input is read, and the END action, if any, is exe
cuted. Within the END action,

exit expr

causes the program to return the value of expr as its exit status. If there is no
expr, the exit status is zero.

Arrays

awk provides one-dimensional arrays. Arrays and array elements need
not be declared; like variables, they spring into existence by being mentioned.
An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement

x[NR) = $0

assigns the current input line to the NRth element of the array x . In fact, it is
possible in principle (though perhaps slow) to read the entire input into an
array with the awk program

{ x[NR] = $0 }
END { . • • processing . . . }

The first action merely records each input line in the array x, indexed by line
number; processing is done in the END statement.

Array elements may also be named by nonnumeric values. For example,
the following program accumulates the total population of Asia and Africa
into the associative array pop. The END action prints the total population of
these two continents.

awk 4·33

Actions

/Asia/
/Africa/
END

{ pop["Asia"] += $3 }
{ pop["Africa"] += $3 }
{ print "Asian popllation in millions is" , pop("Asia"]

print "African population in millions is" ,
pop("Africa"] }

On the file countries, this program generates

Asian population in millions is 1765
African population in millions is 37

In this program if we had used pop[Asia] instead of pop["Asia"] , the expres
sion would have used the value of the variable Asia as the subscript, and
since the variable is uninitialized, the values would have been accumulated in
pop[11 11] •

Suppose our task is to determine the total area in each continent of the
file countries. Any expression can be used as a subscript in an array refer
ence. Thus,

area[$4] += $2

uses the string in the fourth field of the current input record to index the array
area and in that entry accumulates the value of the second field:

BffiiN { FS = "'\t" }
{ area[$4] += $2 }
{ for (name in area)

print name , area[name] }

Invoked on the file countries, this program produces

4-34 PROGRAMMER'S GUIDE

Africa 1888
North .America 7467
South .America 4358
Asia 1 36 1 1
Australia 2968

Actions

This program uses a form of the for statement that iterates over all
defined subscripts of an array:

for (i in array) statement

executes statement with the variable i set in turn to each value of i for which
array[i] has been defined. The loop is executed once for each defined sub
script, which are chosen in a random order. Results are unpredictable when i
or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a list of
subscripts. They are combined into a single subscript with the values
separated by an unlikely string (stored in the variable SUBSEP). For example,

far (i = 1 ; i <= 10 ; i++)
far (j = 1 ; j <= 10 ; j++)

arr[i , j] = • • •

creates an array which behaves like a two-dimensional array; the subscript is
the concatenation of i, SUBSEP, and j.

You can determine whether a particular subscript i occurs in an array arr
by testing the condition i in arr, as in

if ("Africa" in area) . . .

This condition performs the test without the side effect of creating
area["Africa"] , which would happen if we used

if (area["Africa"] I = '"') • • •

Note that neither is a test of whether the array area contains an element with
value "Africa" .

awk 4-35

Actions

It is also possible to split any string into fields in the elements of an array
using the built-in function split. The function

split ("s1 : s2 : s3" , a, " : ")

splits the string s1 : s2 : s3 into three fields, using the separator : , and stores
s 1 in a[1] , s2 in a[2] , and s3 in a[3] . The number of fields found, here
three, is returned as the value of split. The third argument of split is a regu
lar expression to be used as the field separator. If the third argument is miss
ing, FS is used as the field separator.

An array element may be deleted with the delete statement:

delete arrayname[subscript]

User-Defined Functions

awk provides user-defined functions. A function is defined as

function name(argument-list) {
statements

}
The definition can occur anywhere a pattern-action statement can. The argu
ment list is a list of variable names separated by commas; within the body of
the function, these variables refer to the actual parameters when the function
is called. There must be no space between the function name and the left
parenthesis of the argument list when the function is called; otherwise it looks
like a concatenation. For example, the following program defines and tests
the usual recursive factorial function (of course, using some input other than
the file countries) :

4·36 PROGRAMMER'S GUIDE

function fact (n) {
if (n <= 1)

return 1
else

return n * fact(n- 1)

{ print $ 1 " I is " fact ($ 1) }

Actions

Array arguments are passed by reference, as in C, so it is possible for the
function to alter array elements or create new ones . Scalar arguments are
passed by value, however, so the function cannot affect their values outside.
Within a function, formal parameters are local variables, but all other variables
are global. (You can have any number of extra formal parameters that are
used purely as local variables .) The return statement is optional, but the
returned value is undefined if it is not included.

Some Lexical Conventions

Comments may be placed in awk programs: they begin with the charac
ter # and end at the end of the line, as in

print x, y # this is a cx:mnent

Statements in an awk program normally occupy a single line. Several
statements may occur on a single line if they are separated by semicolons. A
long statement may be continued over several lines by terminating each con
tinued line by a backslash . (It is not possible to continue a " . . . " string.) This
explicit continuation is rarely necessary, however, since statements continue
automatically after the operators && and I I or if the line ends with a comma
(for example, as might occur in a print or print£ statement).

Several pattern-action statements may appear on a single line if separated
by semicolons.

awk 4-37

Output

The print and print£ statements are the two primary constructs that gen
erate output. The print statement is used to generate simple output; print£ is
used for more carefully formatted output. Like the shell, awk lets you redirect
output so that output from print and print£ can be directed to files and pipes.
This section describes the use of these two statements.

The print Statement

The statement

print expr 1 , expr2, • • • , exprn
prints the string value of each expression separated by the output field separa
tor followed by the output record separator. The statement

print

is an abbreviation for

print $0

To print an empty line use

print 11 1 1

Output Separators

The output field separator and record separator are held in the built-in
variables OFS and ORS. Initially, OFS is set to a single blank and ORS to a
single newline, but these values can be changed at any time. For example, the
following program prints the first and second fields of each record with a
colon between the fields and two newlines after the second field:

BEGIN { OFS = II : II ; ORS = 11\n\n11 }
{ print $ 1 , $2 }

Notice that

{ print $1 $2 }

prints the first and second fields with no intervening output field separator,
because $1 $2 is a string consisting of the concatenation of the first two fields.

4-38 PROGRAMMER'S GUIDE

Output

The print£ Statement

awk's print£ statement is the same as that in C except that the * format
specifier is not supported. The print£ statement has the general form

print£ format, expr 1 , expr2 , • • • , exprn

where format is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions in
the argument list, as in Figure 4-8. Each specification begins with a %, ends
with a letter that determines the conversion, and may include

left-justify expression in its field
width pad field to this width as needed; fields that begin

with a leading 0 are padded with zeros
• prec maximum string width or digits to right of

decimal point

Character Prints Ex ression as

c single character
d decimal number
e [-) d.ddddddE [+-)dd
f [-) ddd.dddddd
g e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
o unsigned octal number
s string
x unsigned hexadecimal number
% print a %; no argument is converted

Figure 4-8: awk print£ Conversion Characters

awk 4-39

Output

Here are some examples of print£ statements with the corresponding out
put:

print£ "%d" ' 99/2
print£ "%e" ' 99/2
print£ "%£" ' 99/2
print£ "%6 . 2£ " , 99/2
print£ "%g" ' 99/2
print£ IIYcQ II t 99
print£ "%06o" ' 99
print£ "%x" ' 99
print£ " i %s l " ' "January"
print£ " i %10s l " , "January"
print£ " l %-10s l " , "January"
print£ " 1 % . 3s l " , "January"
print£ " i %10 . 3s l " , "January"
print£ " 1 %- 10 . 3s l " , "January"
print£ 11�11

49
4 . 950000e+0 1
49 . 500000
49 . 50
49 . 5
143
000 143
63

I January I
I January !
! January I
I Jan I
I Jan l
I Jan I

%

The default output format of numbers is %.6g; this can be changed by assign
ing a new value to OFMT. OFMT also controls the conversion of numeric
values to strings for concatenation and creation of array subscripts.

Output into Files

It is possible to print output into files instead of to the standard output, by
using the > and >> redirection operators. For example, the following pro
gram invoked on the file countries prints all lines where the population (third
field) is bigger than 100 into a file called bigpop, and all other lines into
snallpop:

$3 > 100 { print $ 1 , $3 > "bigpop" }

$3 <= 100 { print $ 1 , $3 > " smallpop" }

Notice that the file names have to be quoted; without quotes, bigpop and
snallpop are merely uninitialized variables. If the output file names were
created by an expression, they would also have to be enclosed in parentheses :

$4 - /North America/ { print $ 1 > ("tnp" FILENAME) }

4-40 PROGRAMMER'S GUIDE

Output

This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of 1::np and FILENAME would not work.

Files are opened once in an awk program. If > is used to open a file, its
original contents are overwritten. But if > > is used to open a file, its
contents are preserved and the output is appended to the flle. Once the
file has been opened, the two operators have the same effect.

Output into Pipes

It is also possible to direct printing into a pipe with a command on the
other end, instead of into a file. The statement

print 1 "command-line "

causes the output of print to be piped into the command-line.

Although we have shown them here as literal strings enclosed in quotes,
the command-line and file names can come from variables, and the return
values from functions, for instance.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates the popula
tion values in the third field for each of the distinct continent names in the
fourth field in an array called pop. Then it prints each continent and its popu
lation, and pipes this output into the sort command.

BEGIN { FS = "\t" }
{ pop[$4] += $3 }

END { for (c in pop)
print c " : " pop[c] I "sort" }

Invoked on the file countries, this program yields

awk 4-4 1

Output

Africa : 37
Asia : 1765
Australia : 14
North America : 243
South America : 142

In all of these print statements involving redirection of output, the files or
pipes are identified by their names (that is, the pipe above is literally named
sort), but they are created and opened only once in the entire run. So, in the
last example, for all c in p:>p, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously.
The statement close(file) closes a file or pipe; file is the string used to create it
in the first place, as in

close ("sort")

When opening or closing a file, different strings are different commands.

4-42 PROGRAMMER'S GUIDE

Input

The most common way to give input to an awk program is to name on
the command line the file(s) that contains the input. This is the method we've
been using in this chapter. However, there are several other methods we
could use, each of which this section describes.

Files and Pipes

You can provide input to an awk program by putting the input data into a
file, say awkdata, and then executing

awk 'program' awkdata

awk reads its standard input if no file names are given (see " Usage " in this
chapter); thus, a second common arrangement is to have another program
pipe its output into awk. For example, egrep(l), in the User'sjSystem
Administrator's Reference Manual, selects input lines containing a specified reg
ular expression, but it can do so faster than awk, since this is the only thing it
does. We could, therefore, invoke the pipe

egrep 'Asia' countries 1 awk ' . . . '

egrep quickly finds the lines containing Asia and passes them on to the awk
program for subsequent processing.

Input Separators

With the default setting of the field separator FS, input fields are
separated by blanks or tabs, and leading blanks are discarded, so each of these
lines has the same first field:

field 1 field2
field1

field1

When the field separator is a tab, however, leading blanks are not discarded.

awk 4-43

Input

The field separator can be set to any regular expression by assigning a
value to the built-in variable FS. For example,

BmlN { FS = " (, [\\t] *) l ([\\t] +) " }

sets it to an optional comma followed by any number of blanks and tabs. FS
can also be set on the command line with the -F argument:

awk -F ' (, [\l]*) 1 ([\t] +)' ' . . . '
behaves the same as the previous example. Regular expressions used as field
separators match the left-most longest occurrences (as in sub()), but do not
match null strings.

Multi-line Records

Records are normally separated by newlines, so that each line is a record,
but this too can be changed, though only in a limited way. If the built-in
record separator variable RS is set to the empty string, as in

BmlN { RS = " " }

then input records can be several lines long; a sequence of empty lines
separates records. A common way to process multiple-line records is to use

BmlN { RS = 11 11 ; FS = "\n" }

to set the record separator to an empty line and the field separator to a new
line. There is a limit, however, on how long a record can be; it is usually
about 2500 characters. " The getline Function " and " Cooperation with the
Shell " in this chapter show other examples of processing multi-line records.

The getline Function

awk's facility for automatically breaking its input into records that are
more than one line long is not adequate for some tasks. For example, if
records are not separated by blank lines, but by something more complicated,
merely setting RS to null doesn't work. In such cases, it is necessary to
manage the splitting of each record into fields in the program. Here are some
suggestions.

4-44 PROGRAMMER'S GUIDE

Input

The function getline can be used to read input either from the current
input or from a file or pipe, by using redirection in a manner analogous to
print£. By itself, getline fetches the next input record and performs the nor
mal field-splitting operations on it. It sets NF, NR, and FNR. getline returns
1 if there was a record present, 0 if the end-of-file was encountered, and -1 if
some error occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records,
each of which begins with a line beginning with STAR!' and ends with a line
beginning with S'roP . The following awk program processes these multi-line
records, a line at a time, putting the lines of the record into consecutive entries
of an array

f [1] f [2] . • . f[nf]

Once the line containing S'IDP is encountered, the record can be processed
from the data in the f azray:

/"�/ {
f [n£=1] = $0
while (getline &&. $0 I " /"S'IDP/)

f (+"nf] = $ 0
DCM process the data in f [1] • • • f[nf]

Notice that this code uses the fact that && evaluates its operands left to right
and stops as soon as one is true.

awk 4-45

Input

The same job can also be done by the following program:

/'srliRr/ &&. nf==O
nf > 1
/'m.'OP/

The statement

getline x

{ f[nf=1] = $0 }
{ f [++nf] = $0 }
{ # now process the data in f[1] . • . f [nf]

nf = 0

reads the next record into the variable x. No splitting is done; NF is not set.
The statement

getline <"file"

reads from file instead of the current input. It has no effect on NR or FNR,
but field splitting is performed, and NF is set. The statement

getline x <"file"

gets the next record from file into x; no splitting is done, and NF, NR and
FNR are untouched.

If a filename is an expression, it should be in parentheses for evaluation:

while (getline x < (ARGV[1] ARGV[2])) { . . . }

This is because the < has precedence over concatenation. Without
parentheses, a statement such as

getline X < "tmp" FILENAME

sets x to read the file tmp and not tmp <value of FILENAME>. Also, if you
use this getline statement form, a statement like

while (getline x < file) { . . . }

loops forever if the file cannot be read, because getline returns -1, not
zero, if an error occurs. A better way to write this test is

4-46 PROGRAMMER'S GUIDE

Input

while (getline x < file > 0) { . . • }

It is also possible to pipe the output of another command directly into get
line. For example, the statement

while ("who" 1 getline)
n++

executes who and pipes its output into getline . Each iteration of the while
loop reads one more line and increments the variable n, so after the while
loop terminates, n contains a count of the number of users. Similarly, the
statement

"date" 1 getline d

pipes the output of date into the variable d, thus setting d to the current
date. Figure 4-9 summarizes the getline function.

Form

getline
getline var
getline <file
getline var <file
cmd 1 getline
cmd 1 getline var

Figure 4-9: getline Function

Sets
$0, NF, NR, FNR
var, NR, FNR
$0, NF
var
$0, NF
var

Command-line Arguments

The command-line arguments are available to an awk program: the array
ARGV contains the elements ARGV[O], . . . , ARGV[ARGC-1]; as in C,
ARGC is the count. ARGV[O] is the name of the program (generally awk);
the remaining arguments are whatever was provided (excluding the program
and any optional arguments).

awk 4-47

Input

The following command line contains an awk program that echoes the argu
ments that appear after the program name:

awk '
BEGIN {

far (i = 1 ; i < ARGC; i++)
print£ "%s " , ARGV[i]

printf 11 \n II

} ' $ •

The arguments may be modified or added to; ARGC may be altered. As each
input file ends, awk treats the next non-null element of ARGV (up to the
current value of ARGC-1) as the name of the next input file.

There is one exception to the rule that an argument is a file name: if it is
of the form

var=value

then the variable var is set to the value value as if by assignment. Such an
argument is not treated as a file name. If value is a string, no quotes are
needed.

4-48 PROGRAMMER'S GUIDE

Using awk with Other Commands and
the Shell

awk gains its greatest power when it is used in conjunction with other
programs. Here we describe some of the ways in which awk programs
cooperate with other commands.

The system Function

The built-in function system(command-line) executes the command
command-line, which may well be a string computed by, for example, the
built-in function sprint£. The value returned by system is the return status of
the command executed.

For example, the program

$ 1 == "#include" { gsub(/[<>"]/ , " " , $2) ; system("cat " $2) }

calls the command cat to print the file named in the second field of every
input record whose first field is #include , after stripping any < , > , or " that
might be present.

Cooperation with the Shell

In all the examples thus far, the awk program was in a file and fetched
from there using the -f flag, or it appeared on the command line enclosed in
single quotes, as in

awk ' { print $1 } ' . . .
Since awk uses many of the same characters as the shell does, such as $ and
" , surrounding the awk program with single quotes ensures that the shell will
pass the entire program unchanged to the awk interpreter.

Now, consider writing a command addr that will search a file addresslist
for name, address, and telephone information. Suppose that addresslist con
tains names and addresses in which a typical entry is a multi-line record such
as

awk 4-49

Using awk with Other Commands and the Shell

G. R. D:nl:in
600 .flbunta:in Avenue
Mlrray Hill , NJ 07974
20 1-555- 1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like

addr Emlin

That is easily done by a program of the form

awk 1

BI!GIN
/Emlinl
1 addresslist

{ RS = I"I }

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr
that contains

awk 1

BI!GIN
j l $ 1 1 /
1 addresslist

{ RS = 11 11 }

The quotes are critical here: the awk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $ 1 is
outside the quotes, visible to the shell, which therefore replaces it by the pat
tern D:nl:in when the command addr Emlin is invoked. On a UNIX System,
addr can be made executable by changing its mode with the following com
mand: chmod +x addr.

A second way to implement addr relies on the fact that the shell substi
tutes for $ parameters within double quotes:

awk 11

BI!GIN
/$1/
1 1 addresslist

{ RS = \11'\'1 }

Here we must protect the quotes defining RS with backslashes so that the
shell passes them on to awk, uninterpreted by the shell . $ 1 is recognized as

4-50 PROGRAMMER'S GUIDE

Using awk with Other Commands and the Shell

a parameter, however, so the shell replaces it by the pattern when the com
mand addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an awk program that explicitly reads through the address list
with getline:

awk '
BEGIN { RS = " "

} ' $*

while (getline < "addresslist")
if ($0 - AmV[1])

print $0

All processing is done in the BmiN action.

Notice that any regular expression can be passed to addr; in particular, it
is possible to retrieve by parts of an address or telephone number, as well as
by name.

awk 4·51

Example Applications

awk has been used in surprising ways. We have seen awk programs that
implement database systems and a variety of compilers and assemblers, in
addition to the more traditional tasks of information retrieval, data manipula
tion, and report generation. Invariably, the awk programs are significantly
shorter than equivalent programs written in more conventional programming
languages, such as Pascal or C. In this section, we will present a few more
examples to illustrate some additional awk programs.

Generating Reports

awk is especially useful for producing reports that summarize and format
information. Suppose we wish to produce a report from the file countries in
which we list the continents alphabetically, and after each continent its coun
tries in decreasing order of population:

Mrica:
SUdan
Algeria

Asia :
China
India
USSR

Australia :
Australia

North America :
USA
Canada

South America :
Brazil
Al:g'entina

4·52 PROGRAMMER'S GUIDE

19
18

866
637
262

14

2 19
24

1 16
26

Example Applications

As with many data processing tasks, it is much easier to produce this
report in several stages. First, we create a list of continent-country-population
triples, in which each field is separated by a colon. This can be done with the
following program, triples, which uses an array pop, indexed by subscripts of
the form 'continent:country' to store the population of a given country. The
print statement in the END section of the program creates the list of continent
country-population triples that are piped to the sort routine.

BmiN { FS = "\t" }
{ pop[$4 " : " $ 1] += $3 }

END { for (cc m pop)
prmt cc " : " pop[cc] 1 "sort -t : +O - 1 +2nr" }

The arguments for sort deserve special mention. The -t : argument tells
sort to use : as its field separator. The +0 -1 arguments make the first field
the primary sort key. In general, +i -j makes fields i+1 , i+2 , . . . , j the sort
key. If -j is omitted, the fields from i+1 to the end of the record are used.
The +2nr argument makes the third field, numerically decreasing, the secon
dary sort key (n is for numeric, r for reverse order) . Invoked on the file coun
tries, this program produces as output:

Africa : SUdan : 19
Africa :Algeria : 18
Asia : China : 866
Asia : Illdia : 637
Asia : USSR: 262
Australia :Australia : 14
North America : USA : 2 19
North America : Canada : 24
South America : Brazi1 : 1 16
South America :Arqent:ina : 26

This output is in the right order but the wrong format. To transform the
output into the desired form we run it through a second awk program, for
mat.

awk 4-53

Example Applications

BEGIN { FS = " : " }
{ if ($ 1 I = prev)

print 11\n11 $ 1 " : "
prev = $ 1

print£ "\t%-10s %6d\n" , $2 , $3

This is a control-break program that prints only the first occurrence of a con
tinent name and formats the country-population lines associated with that
continent in the desired manner. The command line

awk -f triples countries 1 awk -f format

gives us our desired report. As this example suggests, complex data transfor
mation and formatting tasks can often be reduced to a few simple awks and
sorts.

As an exercise, add to the population report subtotals for each continent
and a grand total.

Additional Examples

Word Frequencies

Our first example illustrates associative arrays for counting. Suppose we
want to count the number of times eal:h word appears in the input, where a
word equals any contiguous sequence of non-blank, non-tab characters. The
following program prints the word frequencies, sorted in decreasing order.

{ far (w = 1 ; w <= NF; w++) count[$w] ++ }
END { far (w in count) print count[w] , w 1 " sort -nr" }

The first statement uses the array count to accumulate the number of times
each word is used. Once the input has been read, the second far loop pipes
the final count, along with each word, into the sort command.

4-54 PROGRAMMER'S GUIDE

Example Applications

Accumulation

Suppose we have two files, deposits and withdrawals, of records con
taining a name field and an amount field. For each name we want to print
the net balance determined by subtracting the total withdrawals from the total
deposits for each name. The net balance can be computed by the following
program:

awk '
FILENAME == "deposits• { balance [$ 1] += $2 }
FILENAME == "witl!dra\\'al.s" { balance [$ 1] -= $2 }
»>D { for (name in balance)

print name , balance[name]
} ' deposits wi tl!dra\\'al.s

The first statement uses the array balance to accumulate the total amount for
each name in the file deposits. The second statement subtracts associated
withdrawals from each total. If there are only withdrawals associated with a
name, an entry for that name will be created by the second statement. The
END action prints each name with its net balance.

Random Choice

The following function prints (in order) k random elements from the first
n elements of the array A. In the program, k is the number of entries that
still need to be printed, and n is the number of elements yet to be examined.
The decision of whether to print the ith element is determined by the test
rand() < k/n.

awk 4-55

Example Applications

function chcose (A, k, n) {
far (i = 1 ; n > 0 ; i++)

if (rand() < k/n--)
print A[i]
k--

Shell Facility

The following awk program simulates (crudely) the history facility of the
UNIX System shell. A line containing only = re-executes the last command
executed. A line beginning with = cmd re-executes the last command whose
invocation included the string cmd. Otherwise, the current line is executed.

$ 1 == "=" { if (NF == 1)
systan(x[NR] = x[NR- 1])

else
for (i = NR- 1 ; i > 0; i--)

next }

if (x[i] - $2) {
system(x[NR] = x[i])
break

I . I { system(x[NR] = $0)

4-56 PROGRAMMER'S GUIDE

Example Applications

Form-leHer Generation

The following program generates form letters, using a template stored in a
file called fonn. letter :

This is a fonn letter .
The first field is $ 1 , the seoand $2 , the third $3 .
The third is $3 , seoand is $2 , and first is $ 1 .

and replacement text of this form:

field 1 1 field 2 1 field 3
one I tJ..u I three
a l b i c

The BroiN action stores the template in the array template ; the remaining
action cycles through the input data, using gsub to replace template fields of
the form $n with the corresponding data fields.

:BEX;IN { FS = .. , ..

while (getline <"fonn. letter")
line [++n] = $0

far (i = 1 ; i <= n; i++) {
s = line [i]
far (j = 1 ; j < = NF ; j++)

gsub("\\$" j , $ j , S)
print s

In all such examples, a prudent strategy is to start with a small version
and expand it, trying out each aspect before moving on to the next.

awk 4·57

awk Summary

Command Line

awk program filenames
awk -f program-file filenames
awk -Fs sets field separator to string s; -Ft sets separator to tab

Patterns

:BID IN
END

/regular expression/
relational expression
pattern && pattern
pattern I I pattern
(pattern)
!pattern
pattern, pattern

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var in array) statement
do statement while (expr)
break
continue
next
exit [expr)
return [expr)

4-58 PROGRAMMER'S GUIDE

Input-output

dose(filename)
getline
getline <file
getline var
getline var <file
print
print expr-list
print expr-list >file
print£ fmt, expr-list
print£ fmt, expr-list >file
system(cmd-line)

awk Summary

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record of file; set NF
set var from next input record; set NR, FNR
set var from next record of file
print current record
print expressions
print expressions on file
format and print
format and print on file
execute command cmd-line, return status

In print and print£ above, >>file appends to the file, and 1 command
writes on a pipe. Similarly, command 1 getline pipes into getline. getline
returns 0 on end of file, and -1 on error.

Functions

func name(parameter list) { statement }
function name(parameter l ist) { statement }
function-name(expr, expr, • • .)

awk 4-58

awk Summary

String Functions

gsub(r, s, t)

index(s, t)

length(s)
match{s, r)

split(s, a, r)

substitute string s for each substring matching
regular expression r in string t, return number
of substitutions; if t omitted, use $0
return index of string t in string s , or 0 if not
present
return length of string s
return position in s where regular expression r
occurs, or 0 if r is not present
split string s into array a on regular expression
r, return number of fields; if r omitted, FS is
used in its place

sprintf(/mt, expr-list) print expr-list according to fmt, return resulting
string

sub(r, s, t)

substr(s, i, n)

like gsub except only the first matching sub
string is replaced
return n-char substring of s starting at i ; if n
omitted, use rest of s

Arithmetic Functions

atan2(y, x)
cos(expr)
exp(expr)
int(expr)
log(expr)
rand()
sin(expr)
sqrt(expr)
srand(expr)

arctangent of y / x in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and 1
sine (angle in radians)
square root
new seed for random number generator;
use time of day if no expr

4·80 PROGRAMMER'S GUIDE

awk Summary

Operators (Increasing Precedence)

+= -= *= /= Yo= " = assignment
conditional expression
logical OR

? :
I I

&.&
- r

logical AND

< <= > >= ! = --
regular expression match, negated match
relationals

blank
+ -
* I %
+ -
"
++
$

string concatenation
add, subtract
multiply, divide, mod
unary plus, unary minus, logical negation
exponentiation (** is a synonym)
increment, decrement (prefix and postfix)
field

Regular Expressions (Increasing Precedence)

c
\C

"
$
[abc . . .]
[" abc . . .]
r1 1 r2
r1 r2
r+
T*
r?
(r)

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc .. .
negated class matches any but abc . . . and newline
matches either r1 or r2
concatenation: matches r1 , then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

awk 4-61

awk Summary

Built-in Variables

ARGC
ARGV
FILENAME
FNR

number of command-line arguments
array of command-line arguments (O . . ARGC- 1)
name of current input file
input record number in current file

FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default % . 6g)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)
index of first character matched by match(); 0 if no match
length of string matched by match(); -1 if no match
separates multiple subscripts in array elements; default " \034 "

Limits

Any particular implementation of awk enforces some limits. Here are typ
ical values:

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per printf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the local

machine, e.g., 1e-38 .. 1e+38

4-62 PROGRAMMER'S GUIDE

awk Summary

Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or both at
any time. When a variable is set by the assignment

var = expr
its type is set to that of the expression. (Assignment includes +=, -=, etc.)
An arithmetic expression is of type number, a concatenation is of type string,
and so on. If the assignment is a simple copy, as in

v1 = v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced to
numeric by subterfuges such as

expr + 0

and to string by

expr 11 11

(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value 11 11 •
Accordingly, if x is uninitialized,

if (X)
i s false, and

if (lx)
if (X == 0)
if (x == 11 11) • • •

are all true. But the following is false:

if (x == 11 0 11) • • •

awk 4-63

awk Summary

The type of a field is determined by context when possible; for example,

$ 1++

clearly implies that $1 is to be numeric, and

$1 = $1 11 , 11 $2

implies that $ 1 and $2 are both to be strings. Coercion is done as needed.

In contexts where types cannot be reliably determined, for example,

if ($ 1 == $2) • • •

the type of each field is determined on input. All fields are strings; in addi
tion, each field that contains only a number is also considered numeric.

Fields that are explicitly null have the string value 11 11 ; they are not
numeric. Non-existent fields (i.e., fields past NF) are treated this way, too.

As it is for fields, so it is for array elements created by split().

Mentioning a variable in an expression causes it to exist, with the value
11 11 as described above. Thus, if a:rr[i] does not currently exist,

if (a:rr[i] == 11 11)
• • •

causes it to exist with the value 11 11 so the if is satisfied. The special construc
tion

if (i in a:rr) • • .

determines if a:rr[i] exists without the side effect of creating it if it does not.

4-64 PROGRAMMER'S GUIDE

5 lex

An Overview of lex Programming 5- 1

Writing lex Programs 5-3
The Fundamentals of lex Rules 5-3

• Specifications 5-3
• Actions 5-6

Advanced lex Usage 5-7
• Some Special Features 5-8
• Definitions 5-12
• Subroutines 5- 13

Using lex with yacc 5-14

Running lex under the UNIX
System 5- 18

lex

.� ·.>

·L: - · - : :-.

. : .:.. :

� : � . ;.�.

. . · � .

. . . _::.

· .f. · .

•r, • •;.. - •
. /· · ·>:

. : . · �

· -· : . .

-: · '·

An Overview of lex Programming

The software tool lex lets you solve a wide class of problems drawn from
text processing, code enciphering, compiler writing, and other areas. In text
processing, you may check the spelling of words for errors; in code encipher
ing, you may translate certain patterns of characters into others; and in com
piler writing, you may determine what the tokens (smallest meaningful
sequences of characters) are in the program to be compiled. The problem
common to all of these tasks is recognizing different sirings of characters that
satisfy certain characteristics. In the compiler writing case, creating the ability
to solve the problem requires implementing the compiler's lexical analyzer;
hence the name lex.

It is not essential to use lex to handle problems of this kind. You could
write programs in a standard language like C to handle them, too. In fact,
what lex does is produce such C programs. (lex is therefore called a program
generator.) What lex offers you, once you acquire a facility with it, is typically
a faster, easier way to create programs that perform these tasks. Its weakness
is that it often produces C programs that are longer than necessary for the
task at hand and that execute more slowly than they otherwise might. In
many applications this is a minor consideration, and the advantages of using
lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1 . We begin
with the lex source (often called the lex specification) that you, the program
mer, write to solve the problem at hand. This lex source consists of a list of
rules specifying sequences of characters (expressions) to be searched for in an
input text, and the actions to take when an expression is found. The source is
read by the lex program generator. The output of the program generator is a
C program that, in turn, must be compiled by a host language C compiler in
order to generate the executable object program that does the lexical analysis.
Note that this procedure is not typically automatic-user intervention is
required. Finally, the lexical analyzer program produced by this process takes
as input any source file and produces the desired output, such as altered text
or a list of tokens.

lex 5-1

An Overview of lex Programming

lex can also be used to collect statistical data on features of the input, such
as character count, word length, number of occurrences of a word, and so
forth. In later sections of this chapter, we will see

• how to write lex source to do some of these tasks

• how to translate lex source

• how to compile, link, and execute the lexical analyzer in C

• how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex provides.

lex
lex

Source
lex Analyzer

in C

c
Compiler

Input
lex

Text
Analyzer
Program

Figure 5-l : Creation and Use of a Lexical Analyzer with lex

5-2 PROGRAMMER'S GUIDE

Output:
Tokens,

Text, etc.

Writing lex Programs

A lex specification consists of at most three sections: definitions, rules,
and user subroutines. The rules section is mandatory. Sections for definitions
and user subroutines are optional, but if present, must appear in the indicated
order.

The Fundamentals of lex Rules

The mandatory rules section opens with the delimiter %%. If a subrou
tines section follows, another %% delimiter ends the rules section. If there is
no second delimiter, the rules section is presumed to continue to the end of
the program.

Each rule consists of a specification of the pattern sought and the action(s)
to take on finding it. (Note the dual meaning of the term specification-it
may mean either the entire lex source itself or, within it, a representation of a
particular pattern to be recognized.) Whenever the input consists of patterns
not sought, lex writes out the input exactly as it finds it. So, the simplest lex
program is just the beginning rules delimiter, %%. It writes out the entire
input to the output with no changes at all . Typically, the rules are more ela
borate than that.

Specifications

You specify the patterns you are interested in with a notation called regu
lar expressions. A regular expression is formed by stringing together charac
ters with or without operators. The simplest regular expressions are strings of
text characters with no operators at all . For example,

apple
orange
pluto

These three regular expressions match any occurrences of those character
strings in an input text. If you want to have your lexical analyzer, a.out,
remove every occurrence of orange from the input text, you could specify the
rule

orange ;

lex 5-3

Writing lex Programs

Because you did not specify an action on the right (before the semicolon),
lex does nothing but print out the original input text with every occurrence of
this regular expression removed, that is, without any occurrence of the string
orange at all .

Unlike orange above, most of the expressions that we want to search for
cannot be specified so easily . The expression itself might simply be too long.
More commonly, the class of desired expressions is too large; it may, in fact,
be infinite. Thanks to the use of operators, we can form regular expressions
signifying any expression of a certain class. The + operator, for instance,
means one or more occurrences of the preceding expression, the ? means 0 or
1 occurrence of the preceding expression (this is equivalent, of course, to say
ing that the preceding expression is optional), and * means 0 or more
occurrences of the preceding expression. (It may at first seem odd to speak of
0 occurrences of an expression and to need an operator to capture the idea,
but it is often quite helpful. We will see an example in a moment.) There
fore, m+ is a regular expression matching any string of ms such as each of the
following:

lllllll
m
mmmn
mn

In like manner, 7* is a regular expression matching any string of zero or more
7s:

77
77777

777

The string of blanks on the third line matches simply because it has no 7s in it
at all.

Brackets, [), indicate any one character from the string of characters speci
fied between the brackets . Thus, [dgka] matches a single d, g, k, or a. Note
that commas are not included within the brackets. Any comma within the
brackets would be taken as a character to be recognized in the input text.
Ranges within a standard alphabetic or numeric order are indicated with a
hyphen, -. The sequence [a-z], for instance, indicates any lowercase letter.
Somewhat more interestingly,

[A-Za-z0-9*&#]

5-4 PROGRAMMER'S GUIDE

Writing lex Programs

is a regular expression that matches any letter (whether uppercase or lower
case), any digit, an asterisk, an ampersand, or a sharp character. Given the
input text

$$$$?? ???? I l l *$$ $$$$$$&+====r--# ((

the lexical analyzer with the previous specification in one of its rules will
recognize the *, &, r, and #, perform on each recognition whatever action the
rule specifies (we have not indicated an action here), and print out the rest of
the text as it stands.

The operators become especially powerful in combination. For example,
the regular expression to recognize an identifier in many programming
languages is

[a-zA-Z] [0-9a-zA-Z] *

An identifier in these languages is defined to be a letter followed b y zero
or more letters or digits. That is just what the regular expression says. The
first pair of brackets matches any letter. The second pair, if it were not fol
lowed by a *, would match any digit or letter. The two pairs of brackets with
their enclosed characters would then match any letter followed by a digit or a
letter. But with the asterisk, *, the example matches any letter followed by
any number of letters or digits. In particular, it would recognize the following
as identifiers:

e

pay
distance

pH
ED;PneNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFER
Stimes
$hello

because noUdenTIFER has an embedded underscore; 5times starts with a
digit, not a letter; and $hello starts with a special character. Of course, you
may want to write the specifications for these three examples as an exercise.

lex 8-S

Writing lex Programs

A potential problem with operator characters is how we can refer to them,
as characters to look for, in our search pattern. The last example, for instance,
will not recognize text with an * in it. lex solves the problem in one of two
ways: a character enclosed in quotation marks or a character preceded by a \
is taken literally, that is, as part of the text to be searched for. To use the
backslash method to recognize, say, an * followed by any number of digits,
we can use the pattern

*[1-9] *

To recognize a \ itself, we need two backslashes: \\.

Actions

Once lex recognizes a string matching the regular expression at the start
of a rule, it looks to the right of the rule for the action to be performed. Kinds
of actions include recording the token type found and its value, if any, replac
ing one token with another, and counting the number of instances of a token
or token type. What you want to do is write these actions as program frag
ments in the host language C. An action may consist of as many statements
as are needed for the job at hand. You may want to print out a message not
ing that the text has been found or a message transforming the text in some
way. Thus, to recognize the expression Amelia Earhart and to note such
recognition, the rule

"Amelia Farhart" printf ("found Amelia") ;

would do. And to replace in a text lengthy medical terms with their
equivalent acronyms, a rule such as

Electroencephalogram printf ("EEX;") ;
would be called for. To count the lines in a text, we need to recognize end
of-lines and increment a linecQunter. lex uses the standard escape sequences
from C like \n for end-of-line. To count lines we might have

\n lineno++ ;

where lineno, like other C variables, is declared in the dehnitions section that
we will discuss later.

lex stores every character string that it recognizes in a character array
called yytext[J. You can print or manipulate the contents of this array as you
want. Sometimes your action may consist of two or more C statements and
you must (or for style and clarity, you may choose to) write it on several lines.
To inform lex that the action is for one rule only, simply en�lose the C code

5-6 PROGRAMMER'S GUIDE

Writing lex Programs

in braces. For example, to count the total number of all digit strings in an
input text, print the running total of the number of digit strings (not their
sum), and print out each one as soon as it is found, your lex code might be

+? [1-9] + { digstr.ngoount++ ;
printf("red" ,digstr.ngoount) ;
printf("%9" , yytext) ; }

This specification matches digit strings whether they are preceded by a plus
sign or not, because the ? indicates that the preceding plus sign is optional. In
addition, it will catch negative digit strings, because that portion following the
minus sign, -, will match the specification. The next section explains how to
distinguish negative from positive integers.

Advanced lex Usage

The lex command provides a suite of features that lets you process input
text riddled with quite complicated patterns. These include rules that decide
what specification is relevant, when more than one seems so at first; functions
that transform one matching pattern into another; and the use of definitions
and subroutines. Before considering these features, you may want to affirm
your understanding thus far by examining an example drawing together
several of the points already covered.

%1%
-[0-9]+
+? [0-9]+
-o . [0-9] +
rail [] +road
crook
function
G[a-zA-Z]*

printf ("negative integer") ;

printf ("positive integer") ;
printf ("negative fraction, no wb::>le number part") ;
printf ("railroad is one word") ;
printf ("Here ' s a crook") ;
subprogoount++ ;

{ printf ("may have a G word here: " , yytext) ;
Gstringoount++ ; }

The first three rules recognize negative integers, positive integers, and
negative fractions between 0 and -1 . Use of the terminating + in each specifi
cation ensures that one or more digits compose the number in question. Each
of the next three rules recognizes a specific pattern. The specification for rail
road matches cases where one or more blanks intervene between the two syll
ables of the word. In the cases of railroad and crook, you may have simply
printed a synonym rather than the messages stated. The rule recognizing a
function increments a counter. The last rule illustrates several points:

lex 5·7

Writing lex Programs

• The braces specify an action sequence extending over several lines.

• Its action uses the lex array yytext[), which stores the recognized char
acter string.

• Its specification uses the • to indicate that zero or more letters may fol
low the G.

Some Special Features

Besides storing the recognized character string in yytext[), lex automati
cally counts the number of characters in a match and stores it in the variable
yyleng. You may use this variable to refer to any specific character just
placed in the array yytext[) . Remember that C numbers locations in an array
starting with 0, so to print out the third digit (if there is one) in a just recog
nized integer, you might write

[1-9] + {if (yylenq > 2)
print£ ("%c" . yytext [2]) ; }

lex follows a number of high-level rules to resolve ambiguities that may
arise from the set of rules that you write. Prima facie, any reserved word, for
instance, could match two rules . In the lexical analyzer example developed
later in the section on lex and yacc, the reserved word end could match the
second rule as well as the seventh, the one for identifiers.

lex follows the rule that where there is a match with two or more rules in a
specification, the first rule is the one whose action will be executed.

By placing the rule for end and the other reserved words before the rule for
identifiers, we ensure that our reserved words will be duly recognized.

Another potential problem arises from cases where one pattern you are
searching for is the prefix of another. For instance, the last two rules in the
lexical analyzer example above are designed to recognize > and > = . If the
text has the string >= at one point, you might worry that the lexical analyzer
would stop as soon as it recognized the > character to execute the rule for >
rather than read the next character and execute the rule for > = .

5-8 PROGRAMMER'S GUIDE

Writing lex Programs

lex follows the rule that it matches the longest character string possible
and executes the rule for that.

Here it would recognize the >= and act accordingly. As a further example,
the rule would enable you to distinguish + from ++ in a program in C.

Still another potential problem exists when the analyzer must read charac
ters beyond the string you are seeking because you cannot be sure you have
in fact found the string until you have read the additional characters . These
cases reveal the importance of trailing context. The classic example here is the
DO statement in FORTRAN. In the statement

DO 50 k = 1 , 20 , 1

we cannot be sure that the first 1 is the initial value of the index k until we
read the first comma. Until then, we might have the assignment statement

D050k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle this is to
use the forward-looking slash, f (not the backslash, \), which signifies that
what follows is trailing context, something not to be stored in yytext[],
because it is not part of the token itself. So the rule to recognize the FOR
TRAN DO statement could be

30/[] * [0-9] [] * [a-z A-Z0-9] += [a-z A-Z0-9] + , printf ("found DO") ;
Different versions of FORTRAN have limits on the size of identifiers, here the
index name. To simplify the example, the rule accepts an index name of any
length.

lex uses the $ as an operator to mark a special trailing context-the end of
line. (It is therefore equivalent to \n.) An example would be a rule to ignore
all blanks and tabs at the end of a line:

\t] +$

On the other hand, if you want to match a pattern only when it starts a line,
lex offers you the circumflex, � , as the operator. The formatter nroff, for
example, demands that you never start a line with a blank, so you might want
to check input to nroff with some such rule as:

lex 5-9

Writing lex Programs

" [] pdntf (" error : renove leading blank") ;

Finally, some of your action statements themselves may require your read
ing another character, putting one back to be read again a moment later, or
writing a character on an output device. lex supplies three functions to han
dle these tasks-input(), unput(c}, and output(c}, respectively. One way to
ignore all characters between two special characters, say between a pair of
double quotation marks, would be to use input(), thus:

\" while (input() I = 1 " 1) ;

Upon finding the first double quotation mark, the generated a.out will simply
continue reading all subsequent characters, so long as none is a quotation
mark, and not again look for a match until it finds a second double quotation
mark.

To handle special I/0 needs, such as writing to several files, you may use
standard IjO routines in C to rewrite the functions input(), unput(c), and out
put. These and other programmer-defined functions should be placed in your
subroutine section. Your new routines will then replace the standard ones.
The standard input(), in fact, is equivalent to getchar(), and the standard
output(c) is equivalent to putchar(c).

There are a number of lex routines that let you handle sequences of char
acters to be processed in more than one way. These include yymore(),
yyless(n), and REJECT. Recall that the text matching a given specification is
stored in the array yytext[] . In general, once the action is performed for the
specification, the characters in yytext[] are overwritten with succeeding char
acters in the input stream to form the next match. The function yymore(), by
contrast, ensures that the succeeding characters recognized are appended to
those already in yytext[] . This lets you do one thing and then another, when
one string of characters is significant and a longer one, which includes the
first, is significant as well . Consider a character string bound by Bs and inter
spersed with one at an arbitrary location .

B • • • B • • • B

In a simple code-deciphering situation, you may want to count the
number of characters between the first and second B's and add it to the
number of characters between the second and third B. (Only the last B is not
to be counted.) The code to do this is

5-1 0 PROGRAMMER'S GUIDE

B["B] * { if (flag = 0)
save = yyleng;
flag = 1 ;
yynore () ;

else {

Writing lex Programs

importan'b'lo = save + yyleng;
flag = 0 ; }

}

where flag, save, and importantno are declared (and at least flag initialized
to 0) in the definitions section. The flag distinguishes the character sequence
terminating just before the second B from that terminating just before the
third.

The function yyless(n) lets you reset the end point of the string to be con
sidered to the nth character in the original yytext(] . Suppose you are again in
the code-deciphering business, and the gimmick here is to work with only half
the characters in a sequence ending with a certain one, say upper- or lower
case Z. The code you want might be

[a-yA-Y] + [Zz] { yyless (yyleng/2) ;
• . . process first half of string. . . }

Finally, the function REJECT lets you more easily process strings of char
acters REJECT does this by immediately jumping to the next rule and its
specification without changing the contents of yytext[) . If you want to count
the number of occurrences both of the regular expression snapdragon and of
its subexpression dragon in an input text, the following will do:

'

snapdragon
dragon

{ countflowers++ ; R&Jn:T; }
countm::msters++ ;

As an example of one pattern overlapping another, the following counts
the number of occurrences of the expressions comedian and diana, even
where the input text has sequences such as comediana . . :

oc:median
diana

{canicoount++ ; R&Jn:'I'; }
princesscount++ ;

lex 5·1 1

Writing lex Programs

Note that the actions here may be considerably more complicated than
simply incrementing a counter. In all cases, the counters and other necessary
variables are declared in the definitions section commencing the lex specifica
tion.

Definitions

The lex definitions section may contain any of several classes of items.
The most critical are external definitions, #include statements, and abbrevia
tions. Recall that for legal lex source this section is optional, but in most cases
some of these items are necessary. External definitions have the form and
function that they do in C. They declare that variables globally defined else
where (perhaps in another source file) will be accessed in your lex-generated
a.out. Consider a declaration from an example to be developed later:

extern int tokval ;

When you store an integer value in a variable declared in this way, it will
be accessible in the routine, say a parser, that calls it. If, on the other hand,
you want to define a local variable for use within the action sequence of one
rule (as you might for the index variable for a loop}, you can declare the vari
able at the start of the action itself, right after the left brace, { .

The purpose of the #include statement is the same as in C: to include
files of importance for your program. Some variable declarations and lex
definitions might be needed in more than one lex source file. It is then
advantageous to place them all in one file, to be included in every file that
needs them. One example occurs in using lex with yacc, which generates
parsers that call a lexical analyzer. In this context, you should include the file
y.tab.h, which may contain #defines for token names. Like the declarations,
#include statements should come between o/o { and } o/o, thus:

%{
#include "Y. tab.h"
extern int tokval ;
int lineno;
%}

In the definitions section, after the o/o } that ends your #include's and
declarations, place your abbreviations for regular expressions to be used in the
rules section. The abbreviation appears on the left of the line and, separated
by one or more spaces, its definition or translation appears on the right.
When you use abbreviations in your rules, enclose them within braces .

5- 1 2 PROGRAMMER'S GUIDE

Writing lex Programs

The purpose of abbreviations is to avoid needless repetition in writing
your specifications and to provide clarity in reading them.

As an example, reconsider the lex source reviewed at the beginning of this
section on advanced lex usage. The use of definitions simplifies our later
reference to digits, letters, and blanks. This is especially true if the specifica
tions appear several times:

D
L
B
�
-{D} +
+? {D}+
-{) . {D}+
G{L}*
rail{B} +:road
crook

\"\ . /{B}+

[0-9]
[a-zA-Z]
[]

printf("negative integer") ;
printf ("positive integer") ;
printf ("negative fraction") ;
printf ("may have a G \I!Ord here") ;

printf ("rail:road is one word") ;
printf < "criminal" l ;
printf (" . \" " l ;

The last rule, newly added to the example and somewhat more complex
than the others, ensures that a period always precedes a quotation mark at the
end of a sentence. It would change example " . to example . "

Subroutines

You may want to use subroutines in lex for much the same reason that
you do so in other programming languages. Action code that is to be used for
several rules can be written once and called when needed. As with defini
tions, this can simplify the writing and reading of programs. The function
puUn_tabl(), to be discussed in the next section on lex and yacc, is a good
candidate for a subroutine.

Another reason to place a routine in this section is to highlight some code
of interest or to simplify the rules section, even if the code is to be used for
one rule only. As an example, consider the following routine to ignore com
ments in a language like C where comments occur between /* and */ :

lex 5- 1 3

Writing lex Programs

"I*"

�
skipcmnts ()
{

for (; ;)
{

skipcmnts () ;

I* rest of rules *I

While (input() I = ' * ') ;

}
}

if (input() ! = ' I ') {
Ullp.lt(yytext[yylezq---1]) ;

else return;

There are three points of interest in this example. First, the unput(c) func
tion (putting back the last character read) is necessary to avoid missing the
final 1 if the comment ends unusually with a **I . In this case, eventually
having read an *, the analyzer finds that the next character is not the terminal
1 and must read some more. Second, the expression yytext[yyleng-1) picks
out that last character read. Third, this routine assumes that the comments
are not nested. (This is indeed the case with the C language.) If, unlike C,
they are nested in the source text, after input()ing the first *I ending the inner
group of comments, the a.out will read the rest of the comments as if they
were part of the input to be searched for patterns.

Other examples of subroutines would be programmer-defined versions of
the IJO routines input(), unput(c), and output(), discussed above. Subrou
tines such as these that may be exploited by many different programs would
probably do best to be stored in their own individual file or library to be
called as needed. The appropriate #include statements would then be neces
sary in the definitions section.

Using lex with yacc
If you work on a compiler project or develop a program to check the vali

dity of an input language, you may want to use the UNIX System program
tool yacc. yacc generates parsers, programs that analyze input to ensure that
it is syntactically correct. (yacc is discussed in detail in Chapter 6 of this
guide.) lex often forms a fruitful union with yacc in the compiler

5- 1 4 PROGRAMMER'S GUIDE

Writing lex Programs

development context. Whether or not you plan to use lex with yacc, be sure
to read this section because it covers information of interest to all lex pro
grammers.

The lexical analyzer that lex generates (not the file that stores it) takes the
name yylex() . This name is convenient because yacc calls its lexical analyzer
by this very name. To use lex to create the lexical analyzer for the parser of a
compiler, you want to end each lex action with the statement return token,
where token is a defined term whose value is an integer. The integer value of
the token returned indicates to the parser what the lexical analyzer has found.
The parser, whose file is called y.tab.c by yacc, then resumes control and
makes another call to the lexical analyzer when it needs another token.

In a compiler, the different values of the token indicate what, if any,
reserved word of the language has been found or whether an identifier, con
stant, arithmetic operand, or relational operator has been found. In the latter
cases, the analyzer must also specify the exact value of the token: what the
identifier is, whether the constant, say, is 9 or 888, whether the operand is +
or * (multiply), and whether the relational operator is = or > . Consider the
following portion of lex source for a lexical analyzer for some programming
language perhaps slightly reminiscent of Ada:

begin
end
while
if

package
reverse
loop
[a-zA-Z] [a-zA-Z0-9] *

[0-9] +

\+

\-

>

>=

retum(BmiN) ;
retum(END) ;
retum(WHILE) ;
retum(IF) ;
retum(PACKAGE) ;
retum(REVERSE) ;
retum(I.OOP) ;

{ tokval = put_in_tabl () ;
retum(IDENI'IFIER) ; }

{ tokval = put_in_tabl () ;
retum(INTBGER) ; }

{ tokva1 = PI1JS ;
retum(ARITHOP) ;

{ tokval = MINUS ;
retum(ARITHOP) ;

{ tokval = GRFATER;
retum(REIDP) ; }

{ tokval = GREA'J.'EREX;lL ;
retum(REIDP) ; }

lex 5·1 5

Writing lex Programs

Despite appearances, the tokens returned and the values assigned to
tokval, are indeed integers . Good programming style dictates that we use
informative terms such as BEGIN, END, WHILE, and so forth to signify the
integers the parser understands, rather than use the integers themselves. You
establish the association by using #define statements in your parser calling
routine in C. For example,

#define BroiN
#define END 2

#define PLUS 7

If the need arises to change the integer for some token type, you then
change the #define statement in the parser rather than hunt through the
entire program, changing every occurrence of the particular integer. In using
yacc to generate your parser, it is helpful to insert the statement

#include y . tab . h

into the definitions section o f your lex source. The file y.tab.h provides
#define statements that associate token names such as BEGIN, END, and so
on with the integers of significance to the generated parser.

To indicate the reserved words in the example, the returned integer values
suffice. For the other token types, the integer value of the token type is stored
in the programmer-defined variable tokval. This variable, whose definition
was an example in the definitions section, is globally defined so that the
parser as well as the lexical analyzer can access it. yacc provides the variable
yylval for the same purpose.

Note that the example shows two ways to assign a value to tokval. First,
a function put_in_tabl() places the name and type of the identifier or con
stant in a symbol table so that the compiler can refer to it in this or a later
stage of the compilation process. More to the present point, puUn_tabl()
assigns a type value to tokval so that the parser can use the information
immediately to determine the syntactic correctness of the input text. The
function puUn_tabl() would be a routine that the compiler writer might
place in the subroutines section discussed later. Second, in the last few
actions of the example, tokval is assigned a specific integer indicating which
operand or relational operator the analyzer recognized. If the variable PLUS,
for instance, is associated with the integer 7 by means of the #define state
ment above, then when a + sign is recognized, the action assigns to tokval

5- 1 6 PROGRAMMER'S GUIDE

Writing lex Programs

the value 7, which indicates the +. The analyzer indicates the general class of
operator by the value it returns to the parser (in the example, the integer sig
nified by ARITHOP or RELOP).

lex 5-1 7

Running lex under the UNIX System

As you review the following few steps, you might recall Figure 5-l at the
start of the chapter. To produce the lexical analyzer in C, run

lex lex.l

where lex.l is the file containing your lex specification. The name lex.l is
conventionally the favorite, but you may use whatever name you want. The
output file that lex produces is automatically called lex.yy.c; this is the lexical
analyzer program that you created with lex. You then compile and link this
as you would any C program, making sure that you invoke the lex library
with the -11 option:

cc lex.yy.c -11

The lex library provides a default main() program that calls the lexical
analyzer under the name yylex(}, so you need not supply your own main().

If you have the lex specification spread across several files, you can run
lex with each of them individually, but be sure to rename or move each
lex.yy.c file (with mv) before you run lex on the next one. Otherwise, each
will overwrite the previous one. Once you have all the generated .c files, you
can compile all of them, of course, in one command line.

With the executable a.out produced, you are ready to analyze any desired
input text. Suppose that the text is stored under the file name textin (this
name is arbitrary). The lexical analyzer a.out by default takes input from your
terminal. To have it take the file textin as input, use redirection, thus:

a.out < textin

By default, output will appear on your terminal. You can redirect this as well:

a.out < textin > textout

In running lex with yacc, either may be run first.

yacc -d grammar.y
lex lex.l

spawns a parser in the file y.tab.c. (The -d option creates the file y.tab.h,
which contains the #define statements that associate the yacc-assigned
integer token values with the user-defined token names.) To compile and link
the output files produced, run

5-1 8 PROGRAMMER'S GUIDE

Running lex under the UNIX System

cc lex.yy.c y.tab.c -ly -11

Note that the yacc library is loaded (with the -ly option) before the lex library
(with the -11 option) to ensure that the main() program supplied will call the
yacc parser.

There are several options available with the lex command. If you use one
or more of them, place them between the command name lex and the file
name argument. If you care to see the C program, lex.yy.c, that lex generates
on your terminal (the default output device), use the -t option.

lex -t lex.l

The -v option prints out for you a small set of statistics describing the so
called finite automata that lex produces with the C program lex.yy.c. (For a
detailed account of finite automata and their importance for lex, see the Aho,
Sethi, and Ullman text, Compilers: Principles, Techniques, and Tools, Addison
Wesley, 1986.)

lex uses a table (a two-dimensional array in C) to represent its finite auto
maton. The maximum number of states that the finite automaton requires is
set by default to 500. If your lex source has a large number of rules or the
rules are very complex, this default value may be too small. You can enlarge
the value by placing the following entry in the definitions section of your lex
source;

%n 700

This entry tells lex to make the table large enough to handle as many as
700 states. (The -v option will indicate how large a number you should
choose.) If you have need to increase the maximum number of state transi
tions beyond 2000, the designated parameter is a, thus:

%a 2800

Finally, check the Programmer's Reference Manual page on lex for a list of
all the options available with the lex command. In addition, review the paper
by Lesk (the originator of lex) and Schmidt, " Lex-A Lexical Analyzer Gen
erator, " in volume 5 of the UNIX Programmer's Manual, Holt, Rinehart, and
Winston, 1986. It is somewhat dated, but offers several interesting examples.

lex 5- 1 9

Running lex under the UNIX System

This tutorial has introduced you to lex programming. As with any pro
gramming language, the way to master it is to write programs and then write
some more.

5·20 PROGRAMMER'S GUIDE

6 yacc

Introduction 6-1

Basic Specifications 6-4

Actions 6-6
Lexical Analysis 6-10

Parser Operation 6-13

Ambiguity and Conflicts 6-18

Precedence 6-24

Error Handling 6-28

The yacc Environment 6-32

Hints for Preparing Specifications 6-34

Input Style 6-34

Left Recursion 6-34

Lexical Tie-Ins 6-36

yacc

yacc

Reserved Words

Advanced Topics
Simulating error and accept in Actions
Accessing Values in Enclosing Rules
Support for Arbitrary Value Types
yacc Input Syntax

Examples
1 . A Simple Example
2. An Advanced Example

li PROGRAMMER'S GUIDE

6-37

6-38
6-38
6-38
6-40
6-42

6-45
6-45
6-48

Introduction

The yacc program provides a general tool for imposing structure on the
input to a computer program. The yacc user prepares a specification that
includes the following:

• a set of rules to describe the elements of the input

• code to be invoked when a rule is recognized

• either a definition or declaration of a low-level routine to examine the
input

yacc then turns the specification into a C language function that examines
the input stream. This function, called a parser, works by calling the low
level input scanner. The low-level input scanner, called a lexical analyzer,
picks up items from the input stream. The selected items are known as
tokens. Tokens are compared to the input construct rules, called grammar
rules . When one of the rules is recognized, the user code supplied for this
rule, (an action) is invoked. Actions are fragments of C language code. They
can return values and make use of values returned by other actions.

The heart of the yacc specification is the collection of grammar rules.
Each rule describes a construct and gives it a name. For example, one gram
mar rule might be

date m:mth_name day I I
' year

where date, month_name, day, and year represent constructs of interest;
presumably, montb_name, day, and year are defined in greater detail else
where. In the example, the comma is enclosed in single quotes. This means
that the comma is to appear literally in the input. · The colon and semicolon
merely serve as punctuation in the rule and have no significance in evaluating
the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This
user-supplied routine reads the input stream, recognizes the lower-level con
structs, and communicates these as tokens to the parser. The lexical analyzer
recognizes constructs of the input stream as terminal symbols; the parser
recognizes constructs as nonterminal symbols. To avoid confusion, we will
refer to terminal symbols as tokens.

yacc 6-1

Introduction

There is considerable leeway in deciding whether to recognize constructs
using the lexical analyzer or grammar rules . For example, the rules

month __ name : 'J ' ' a ' 'n '
manth_name : ' F ' ' e ' 'b '

manth_name : 'D ' ' e ' ' c '

might be used in the above example. While the lexical analyzer only needs to
recognize individual letters, such low-level rules tend to waste time and space,
and may complicate the specification beyond the ability of yacc to deal with
it. Usually, the lexical analyzer recognizes the month names and returns an
indication that a montb_name is seen. In this case, month_name is a token
and the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date m:mth I / I day I / I year

allowing

7/4/1776

as a synonym for

July 4 , 1776

on input. In most cases, this new rule could be slipped into a working system
with minimal effort and little danger of disrupting existing input.

6-2 PROGRAMMER'S GUIDE

Introduction

The input being read may not conform to the specifications. With a left
to-right scan, input errors are detected as early as is theoretically possible.
Thus, not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data usually can be found quickly. Error
handling, provided as part of the input specifications, permits the reentry of
bad data or the continuation of the input process after skipping over the bad
data .

In some cases, yacc fails to produce a parser when given a set of specifica
tions. For example, the specifications may be self-contradictory, or they may
require a more powerful recognition mechanism than that available to yacc.
The former cases represent design errors; the latter cases often can be
corrected by making the lexical analyzer more powerful or by rewriting some
of the grammar rules. While yacc cannot handle all possible specifications, its
power compares favorably with similar systems. Moreover, the constructs that
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid
yacc specifications for their input revealed errors of conception or design early
in the program development.

The remainder of this chapter describes the following subjects:

• the basic process of preparing a yacc specification

• the parser operation

• how to handle ambiguities

• how to handle operator precedences in arithmetic expressions

• error detection and recovery

• the operating environment and special features of the parsers yacc pro
duces

• suggestions to improve the style and efficiency of the specifications

• advanced topics

In addition, there are two examples and a summary of the yacc input syn
tax.

yacc 6-3

Basic Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such . While the lexical analyzer may be included as
part of the specification file, it is perhaps more in keeping with modular
design to keep it as a separate file. Like the lexical analyzer, other subroutines
may be included as well . Thus, every specification file theoretically consists of
three sections: the declarations, (grammar) rules, and subroutines. Sections
are separated by double percent signs, % % (the single percent sign is gen
erally used in yacc specifications as an escape character) .

A full specification file looks like this:

declarations
%%
rules
%%
subroutines

when all sections are used. The declarations and subroutines sections are
optional. The smallest legal yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored, but they may not appear in names
or multicharacter reserved symbols. Comments may appear wherever a name
is legal. They are enclosed in /* . . . *f, as in the C language.

The rules section is made up of one or more grammar rules. A grammar
rule has the form

A BJDY

where A represents a nonterminal symbol, and BODY represents a sequence
of zero or more names and literals . The colon and the semicolon are yacc
punctuation.

Names may be of any length and may be made up of letters, dots, under
scores, and digits, although a digit may not be the first character of a name.
Uppercase and lowercase letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols .

6-4 PROGRAMMER'S GUIDE

Basic Specifications

A literal consists of a character enclosed in single quotes, ' . As in the C
language, the backslash, \, is an escape character within literals, and all the C
language escapes are recognized. Thus:

' \n' newline
' \r' return
' \" single quote (')
' \ \' backslash (\)
' \t' tab
' \b' backspace
' \f' form feed
' \XXX' xxx in octal notation

are understood by yacc. For a number of technical reasons, the NULL chprac
ter (\0 or 0) should never be used in grammar rules .

If there are several grammar rules with the same left-hand side, the verti
cal bar, I, can be used to avoid rewriting the left-hand side. In addition, the
semicolon at the end of a rule is dropped before a vertical bar. Thus the
grammar rules

A B c D
A E F
A G

can be given to yacc as

A B c D
E F
G

by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section, although it makes
the input more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated
by

epsilon :

The blank space following the colon is understood by yacc to be a nontermi
nal symbol named epsilon.

yacc 6·5

Basic Specifications

Names representing tokens must be declared. This is most simply done
by writing

%token name1 name2 • • •

in the declarations section. Every name not defined in the declarations section
is assumed to represent a nonterminal symbol. Every nonterminal symbol
must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular impor
tance. By default, the start symbol is taken to be the left-hand side of the first
grammar rule in the rules section. It is possible and desirable to explicitly
declare the start symbol in the declarations section using the %start keyword.

%start symbol

The end of the input to the parser is signaled by a special token, called
the end-marker. The end-marker is represented by either a zero or a negative
number. If the tokens up to, but not including, the end-marker form a con
struct that matches the start symbol, the parser function returns to its caller
after the end-marker is seen and accepts the input. If the end-marker is seen
in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably obvi
ous 1/0 status, such as end of file or end of record.

Actions

With each grammar rule, the user may associate actions to be performed
when the rule is recognized. Actions may return values and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return
values for tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subroutines, and alter arrays and variables. An action is
specified by one or more statements enclosed in curly braces, {, and } . For
example:

A I (I B I) I

{
hello(1 , "abc") ;

}

&·& PROGRAMMER'S GUIDE

and

XXX YYY ZZZ
{

}

(void) pdntf ("a message\n") ;
flag = 25 ;

are grammar rules with actions.

Basic Specifications

The dollar sign symbol, $, is used to facilitate communication between the
actions and the parser. The pseudo-variable $$ represents the value returned
by the complete action. For example, the action

{ $$ = 1 ; }

returns the value of one; in fact, that is all it does.

To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudo-variables $1, $2, . . . $n . These refer to the
values returned by components 1 through n of the right side of a rule, with
the components being numbered from left to right. If the rule is

A : B C D

then $2 has the value returned by C, and $3 the value returned by D. The
rule

expr ' (' expr ') '
provides a common example. One would expect the value returned by this
rule to be the value of the expr within the parentheses. Since the first com
ponent of the action is the literal left parenthesis, the desired logical result can
be indicated by

expr ' (' expr ') '
{

$$ = $2 ;
}

yacc 6-7

Basic Specifications

By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the form

A B

frequently need not have an explicit action. In previous examples, all the
actions came at the end of rules. Sometimes, it is desirable to get control
before a rule is fully parsed. yacc permits an action to be written in the mid
dle of a rule as well as at the end. This action is assumed to return a value
accessible through the usual $ mechanism by the actions to the right of it. In
tum, it may access the values returned by the symbols to its left . Thus, in the
rule below the effect is to set x to 1 and y to the value returned by C.

A B

$$ = 1 ;

c

X = $2 ;
y = $3 ;

Actions that do not terminate a rule are handled by yacc by manufactur
ing a new nonterminal symbol name and a new rule matching this name to
the empty string. The interior action is the action triggered by recognizing
this added rule. yacc treats the above example as if it had been written as fol
lows (where $ACT is an empty action):

6·8 PROGRAMMER'S GUIDE

$.ACT /* empty */

$$ = 1 ;

A B $.ACT C

X = $2 ;
y = $3 ;

Basic Specifications

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory, and transformations
are applied to it before output is generated. Parse trees are particularly easy
to construct given routines to build and maintain the tree structure desired.
For example, suppose there is a C function node written so that the call

node (L, n1 , n2)

creates a node with label L and descendants nl and n2 and returns the index
of the newly created node. Then a parse tree can be built by supplying
actions such as

expr expr I + I expr
{

$$ = node(1 + 1 , $ 1 , $3) ;
}

in the specification.

The user may define other variables to be used by the actions. Declara
tions and definitions can appear in the declarations section enclosed in the
marks % { and %} . These declarations and definitions have global scope, so
they are known to the action statements and can be made known to the lexi
cal analyzer. For example:

%{ int variable = 0 ; %}

yacc 6-9

Basic Specifications

could be placed in the declarations section, making variable accessible to all
of the actions. Users should avoid names beginning with yy because the yacc
parser uses only such names. In the examples shown thus far, all the values
are integers . A discussion of values of other types is found in the section
11 Advanced Topics. 11

Lexical Analysis

The user must supply a lexical analyzer to read the input stream and com
municate tokens (with values, if desired) to the parser. The lexical analyzer is
an integer-valued function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there is a value associ
ated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers symbol
ically. For example, suppose that the token name DIGIT has been defined in
the declarations section of the yacc specification file . The relevant portion of
the lexical analyzer might look like

6- 1 0 PROGRAMMER'S GUIDE

int yylex()
{

extern int yylval ;
int c ;

c = getchar () ;

switch (C)
{

case ' 0 ' :
case ' 1 ' :

case ' 9 ' :
yylval = c - ' 0 ' ;
return (DIGIT) ;

to return the appropriate token.

Basic Specifications

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed
in the subroutines section of the specification file, the identifier DIGIT is
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is using any token names in the grammar that are reserved or
significant in C language or the parser. For example, the use of token names
if or while will almost certainly cause severe difficulties when the lexical
analyzer is compiled. The token name error is reserved for error handling
and should not be used naively.

In the default situation, token numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in
the local character set. Other names are assigned token numbers starting at
257. If the yacc command is invoked with the -d option, a file called y.tab.h
is generated. y.tab.h contains #define statements for the tokens.

yacc 6-1 1

Basic Specifications

If the user prefers to assign the token numbers, the first appearance of the
token name or literal in the declarations section must be followed immediately
by a nonnegative integer. This integer is taken to be the token number of the
name or literal . Names and literals not defined this way are assigned default
definitions by yacc. The potential for duplication exists here. Care must be
taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or nega
tive . This token number cannot be redefined by the user. Thus, all lexical
analyzers should be prepared to return 0 or a negative number as a token
upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex utility . Lexi
cal analyzers produced by lex are designed to work in close harmony with
yacc parsers. The specifications for these lexical analyzers use regular expres
sions instead of grammar rules. lex can be easily used to produce quite com
plicated lexical analyzers, but there remain some languages (such as FOR
TRAN), which do not fit any theoretical framework and whose lexical
analyzers must be crafted by hand.

6- 1 2 PROGRAMMER'S GUIDE

Parser Operation

The yacc command turns the specification file into a C language pro
cedure, which parses the input according to the specification given. The algo
rithm which is used to go from the specification to the parser is complex and
will not be discussed here. The parser itself, though, is relatively simple and
understanding its usage will make treatment of error recovery and ambiguities
easier.

The parser produced by yacc consists of a finite-state machine with a
stack. The parser is also capable of reading and remembering the next input
token (called the look-ahead token) . The current state is always the one on
the top of the stack. The states of the finite-state machine are given small
integer labels. Initially, the machine is in state 0 (the stack contains only state
0) and no look-ahead token has been read.

The machine has only four actions available-shift, reduce, accept, and
error. The parser does a step in the following manner:

1 . Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not
have one, it calls yylex to obtain the next token.

2 . Using the current state and the look-ahead token if needed, the parser
decides on its next action and carries it out. This may result in states
being pushed on the stack or popped off the stack and in the look
ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token. For example, in
state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top
of the stack) . The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. The
reduce actions are appropriate when the parser has seen the right-hand side
of a grammar rule and is prepared to announce that it has seen an instance of
the rule replacing the right side by the left side. It may be necessary to con
sult the look-ahead token to decide whether or not to reduce (usually it is not

yacc 6· 1 3

Parser Operation

necessary). In fact, the default action (represented by a dot) is often a reduce
action.

The reduce actions are associated with individual grammar rules. Gram
mar rules are also given small integer numbers, and this leads to some confu
sion. The action

reduce 18

refers to grammar rule 1 8, while the action

IF shift 34

refers to state 34.

Suppose the rule

A X y z

is being reduced. The reduce action depends on the left-hand symbol (A in
this case) and the number of symbols on the right-hand side (three in this
case). To reduce, first pop off the top three states from the stack. (In general,
the number of states popped equals the number of symbols on the right side
of the rule.) In effect, these states were the ones put on the stack while recog
nizing x, y, and z and no longer serve any useful purpose. After popping
these states, a state is uncovered, which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the symbol on
the left side of the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There are significant
differences between the processing of the left-hand symbol and an ordinary
shift of a token, however, so this action is called a goto action. In particular,
the look-ahead token is cleared by a shift but is not affected by a goto. In any
case, the uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the current state .

In effect, the reduce action turns back the clock in the parse, popping the
states off the stack to go back to the state where the right side of the rule was
first seen. The parser then behaves as if it had seen the left side at that time.
If the right-hand side of the rule is empty, no states are popped off of the
stacks. The uncovered state is in fact the current state.

6·1 4 PROGRAMMER'S GUIDE

Parser Operation

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted. In addition to the stack holding the
states, another stack running in parallel with it holds the values returned from
the lexical analyzer and the actions. When a shift takes place, the external
variable yylval is copied onto the value stack. After the return from the user
code, the reduction is carried out. When the goto action is done, the external
variable yyval is copied onto the value stack. The pseudo-variables $1 , $2 ,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the look-ahead token is the
end-marker and indicates- that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen {together with the look-ahead token) cannot be followed by anything
that would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing. The error recovery {as opposed to
the detection of error) will be discussed later.

Consider the following as a yacc specification:

%token Dim J:JC:tG DELL
�
rhyme sound place

place DELL

When yacc is invoked with the -v option, a file called y.output is pro
duced with a human-readable description of the parser. The y.output file
corresponding to the above grammar {with some statistics stripped off the
end) follows.

yacc 6-1 5

Parser Operation

state 0

state 1

state 2

state 3

state 4

state 5

state 6

$accept : Jhyme $end

DIN; shift 3
o error

rhyme goto 1
sourxi goto 2

$accept : ri:IymiLJend

$end accept
o error

rhyme SOUIXI_place

DELL shift 5
o error

place goto 4

r:x:N3 shift 6
error

rhyme SOUirl

reduce 1

place DELI.L....

reduce 3

SOUirl DIN;

reduce 2

place_

(3)

r:x:N3_

6·1 6 PROGRAMMER'S GUIDE

(1)

(2)

Parser Operation

The actions for each state are specified, and there is a description of the pars
ing rules being processed in each state. The _ character is used to indicate
what has been seen and what is yet to come in each rule. The following
input

DnG J:XN; DELL

can be used to track the operations of the parser. Initially, the current state is
state 0. The parser needs to refer to the input in order to decide between the
actions available in state 0, so the first token, DING, is read and becomes the
look-ahead token. The action in state 0 on DING is shift 3, state 3 is pushed
onto the stack, and the look-ahead token is cleared. State 3 becomes the
current state. The next token, DONG, is read and becomes the look-ahead
token. The action in state 3 on the token DONG is shift 6, state 6 is pushed
onto the stack, and the look-ahead is cleared. The stack now contains 0, 3,
and 6. In state 6, without even consulting the look-ahead, the parser reduces
by

sound : DnG J:XN;

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering
state 0. Consulting the description of state 0 (looking for a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current state .

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
look-ahead token is cleared. In state 5, the only action is to reduce by rule 3 .
This has one symbol on the right-hand side, so one state, 5 , is popped off,
and state 2 is uncovered. The goto in state 2 on place (the left side of rule 3)
is state 4. Now, the stack contains 0, 2, and 4 . In state 4, the only action is to
reduce by rule 1 . There are two symbols on the right, so the top two states
are popped off, uncovering state 0 again. In state 0, there is a goto on rhyme
causing the parser to enter state 1 . In state 1, the input is read and the end
marker is obtained indicated by $end in the y.output file. The action in
state 1 (when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG, DING
DONG DELL DELL, etc. A few minutes spent with this and other simple
examples is repaid when problems arise in more complicated contexts.

yacc 6-1 7

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can
be structured in two or more different ways. For example, the grammar rule

expr expr , _ , expr
is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately; this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input is

expr - expr - expr
the rule allows this input to be structured as either

(expr - expr) - expr
or as

expr - (expr - expr)
(The first is called left association, the second right association.)

yacc detects such ambiguities when it is attempting to build the parser.
Given the input

expr - expr - expr
consider the problem that confronts the parser. When the parser has read the
second expr, the input seen

expr - expr
matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is reduced
to expr (the left side of the rule). The parser would then read the final part of
the input

- expr
and again reduce. The effect of this is to take the left associative interpreta
tion.

Alternatively, if the parser sees

expr - expr
it could defer the immediate application of the rule and continue reading the
input until

&-1 8 PROGRAMMER'S GUIDE

Ambiguity and Conflicts

expr - expr - expr
is seen. It could then apply the rule to the rightmost three symbols reducing
them to expr, which results in

expr - expr
being left. Now the rule can be reduced once more. The effect is to take the
right associative interpretation. Thus, having read

expr - expr
the parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a shift-reduce conflict. It may
also happen that the parser has a choice of two legal reductions. This is
called a reduce-reduce conflict. Note that there are never any shift-shift con
flicts.

When there are shift-reduce or reduce-reduce conflicts, yacc still pro
duces a parser. It does this by selecting one of the valid steps wherever it has
a choice. A rule describing the choice to make in a given situation is called a
disambiguating rule .

yacc invokes two default disambiguating rules:

1 . In a shift-reduce conflict, the default is to do the shift.

2 . In a reduce-reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is
a choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce-reduce conflicts should be avoided when
possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift-reduce and reduce-reduce conflicts resolved by Rule 1 and Rule 2.

yac:c: 8-1 9

Ambiguity and Conflicts

In general, whenever it is possible to apply disambiguating rules to pro
duce a correct parser, it is also possible to rewrite the grammar rules so that
the same inputs are read but there are no conflicts . For this reason, most pre
vious parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural and pro
duces slower parsers. Thus, yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider

stat IF 1 (1 cand 1) 1 stat
IF 1 (1 cand 1) 1 stat ELSE stat

which is a fragment from a programming language involving an if-then-else
statement. In these rules, IF and ELSE are tokens, cond is a nonterminal sym
bol describing conditional (logical) expressions, and stat is a nonterminal sym
bol describing statements. The first rule will be called the simple if rule and
the second, the if-else rule.

These two rules form an ambiguous construction because input of the
form

IF C1 IF C2 S1 ELSE S2

can be structured according to these rules in two ways

IF C1
{

IF C2
S1

}
ELSE

S2

or

IF C1
{

IF C2
S1

ELSE
S2

}

6-20 PROGRAMMER'S GUIDE

Ambiguity and Conflicts

where the second interpretation is the one given in most programming
languages having this construct; each ELSE is associated with the last preced
ing un-ELSE'd IF. In this example, consider the situation where the parser
has seen

IF (C1) IF (C2) S 1

and is looking a t the ELSE. I t can immediately reduce by the simple if rule to
get

IF (C1 stat

and then read the remaining input

ELSE S2

and reduce

IF (C1 stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, 52 read, and then the right
hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1 stat

which can be reduced by the simple if rule. This leads to the second of the
above groupings of the input which is usually desired.

Once again, the parser can do two valid things-there is a shift-reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift-reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as

IF (C1) IF (C2 S 1

have already been seen. In general, there may be many conflicts, and each
one will be associated with an input symbol and a set of previously read
inputs. The previously read inputs are characterized by the state of the
parser.

yacc 6·2 1

Ambiguity and Conflicts

The conflict messages of yacc are best understood by examining the ver
bose (-v) option output file. For example, the output corresponding to the
above conflict state might be

23 : shift-reduce cxmflict (shift 45 , reduce 18) on EISE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat_ (18)
stat...]:I.SE stat

where the first line describes the conflict-giving the state and the input sym
bol. The ordinary state description gives the grammar rules active in the state
and the parser actions. Recall that the underline marks the portion of the
grammar rules, which has been seen. Thus in the example, in state 23 the
parser has seen input corresponding to

IF (oand) stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45. State 45 will have, as part of its description, the line

stat : IF (oand) stat ELSE....§t:at

because the ELSE will have been shifted in this state. In state 23, the alterna
tive action (describing a dot, .) is to be done if the input symbol is not men
tioned explicitly in the actions. In this case, if the input symbol is not ELSE,
the parser reduces to

stat : IF ' (' oand ') ' stat

by grammar rule 18 .

6-22 PROGRAMMER'S GUIDE

Ambiguity and Conflicts

Once again, notice that the numbers following shift commands refer to
other states, while the numbers following reduce commands refer to grammar
rule numbers. In the y.output file, the rule numbers are printed in
parentheses after those rules, which can be reduced. In most states, there is a
reduce action possible in the state, and this is the default command. The user
who encounters unexpected shift-reduce conflicts will probably want to look
at the verbose output to decide whether the default actions are appropriate.

yacc 6-23

Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient. This is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for operators, together
with information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notion is to write grammar rules of the form

and

expr expr OP expr

expr UNARY expr
for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts. To avoid ambiguity, the user specifies
the precedence or binding strength of all the operators and the associates of
the binary operators. This information is sufficient to allow yacc to resolve
the parsing conflicts in accordance with these rules and construct a parser that
realizes the desired precedences and associates.

The precedences and associativities are attached to tokens in the declara
tions section. This is done by a series of lines beginning with a yacc keyword:
%left, %right, or %nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and associa
tivity; the lines are listed in order of increasing precedence or binding
strength. Thus:

%left I + I l _ l

%left 1 * 1 1 / 1

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves. Thus:

A .LT. B .LT. C

6·24 PROGRAMMER'S GUIDE

Precedence

is illegal in FORTRAN and such an operator would be described with the key
word o/ononassoc in yacc. As an example of the behavior of these declara
tions, the description

%right ' = '
%left ' + ' ,_,

%left ' * ' ' I '

""

expr expr · - · expr
expr ' + ' expr
expr , _ , expr
expr . • . expr
expr 'I ' expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows

a = (b = (((c*d)-e) - (f*g)))

in order to perform the correct precedence of operators. When this mechan
ism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary
minus, -.

Unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The key
word, o/oprec, changes the precedence level associated with a particular gram
mar rule. The keyword o/oprec appears immediately after the body of the
grammar rule, before the action or closing semicolon, and is followed by a
token name or literal . It causes the precedence of the grammar rule to become
that of the following token name or literal. For example, the rules

yacc 6·25

Precedence

%left ' + ' ,_,

%left ' * ' ' / '

%%

expr expr ' + ' expr
expr ,_, expr
expr ' * ' expr
expr ' / ' expr
, _, expr � ' * '
NAME

might be used to give unary minus the same precedence as multiplication.

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing con
flicts. They give rise to the following disambiguating rules:

1 . Precedences and associativities are recorded for those tokens and
literals that have them.

2 . A precedence and associativity is associated with each grammar rule.
It is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and associa
tivity associated with them.

3 . When there is a reduce-reduce conflict or there is a shift-reduce con
flict and either the input symbol or the grammar rule has no pre
cedence and associativity, then the two default disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

6·26 PROGRAMMER'S GUIDE

Precedence

4 . I f there is a shift-reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action-shift or
reduce-associated with the higher precedence. If precedences are
equal, then associativity is used. Left associative implies reduce; right
associative implies shift; nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift
reduce and reduce-reduce conflicts reported by yacc. This means that mis
takes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in a
cookbook fashion until some experience has been gained. The y.output file is
very useful in deciding whether the parser is actually doing what was
intended.

yacc 6-27

Error Handling

Error handling is an extremely difficult area, and many of the problems
are semantic ones. When an error is found, for example, it may be necessary
to reclaim parse tree storage, delete or alter symbol table entries, andjor, typi
cally, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is
more useful to continue scanning the input to find further syntax errors. This
leads to the problem of getting the parser restarted after an error. A general
class of algorithms to do this involves discarding a number of tokens from the
input string and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides the token
name error. This name can be used in grammar rules. In effect, it suggests
places where errors are expected and recovery might take place. The parser
pops its stack until it enters a state where the token error is legal. It then
behaves as if the token error were the current look-ahead token and performs
the action encountered. The look-ahead token is then reset to the token that
caused the error. If no special error rules have been specified, the processing
halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting
an error, remains in error state until three tokens have been successfully read
and shifted. If an error is detected when the parser is already in error state,
no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat error

means that on a syntax error the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for
three tokens that might legally follow a statement and start processing at the
first of these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

6·28 PROGRAMMER'S GUIDE

Error Handling

Error rules such as these mentioned are very general but difficult to con
trol. Rules such as

stat error . . . '
are somewhat easier. Here, when there is an error, the parser attempts to skip
over the statement but does so by skipping to the next semicolon. All tokens
after the error and before the next semicolon cannot be shifted and are dis
carded. When the semicolon is seen, this rule will be reduced and any
cleanup action associated with it performed.

Another form of error rule arises in interactive applications where it may
be desirable to permit a line to be reentered after an error. The following
example

:inplt error ' \n '

(void) print£ ("Reenter last line : ") ;
}
input

$$ = $4 ;

is one way to do this. There is one potential difficulty with this approach.
The parser must correctly process three input tokens before it admits that it
has correctly resynchronized after the error. If the reentered line contains an
error in the first two tokens, the parser deletes the offending tokens and gives
no message. This is clearly unacceptable. For this reason, there is a mechan
ism that can force the parser to believe that error recovery has been accom
plished. The statement

yyerrok ;
in an action resets the parser to its normal mode. The last example can be
rewritten as follows:

yacc 6-29

Error Handling

i.npJ.t enor ' \n '

yyerralt;
(void) print£ ("Reenter last line : ") ;

}
i.npJ.t

$$ = $4;

As previously mentioned, the token seen immediately after the error sym
bol is the input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
look-ahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine (supplied by the
user) that attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by yylex is
presumably the first token in a legal statement. The old illegal token must be
discarded and the error state reset. A rule similar to the following example
could perform this.

6·30 PROGRAMMER'S GUIDE

stat err=

resynch() ;

yyerrok ;
yyclearin;

Error Handling

These mechanisms are admittedly crude but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the pro
gram.

yacc 6-31

The yacc Environment

When the user inputs a specification to yacc, the output is a file of C
language subroutines, called y.tab.c. The function produced by yacc is called
yyparse(); it is an integer-valued function. When it is called, it in turn repeat
edly calls yylex(), the lexical analyzer supplied by the user (see " Lexical
Analysis "), to obtain input tokens. Eventually, an error is detected, yyparse()
returns the value 1, and no error recovery is possible, or the lexical analyzer
returns the end-marker token and the parser accepts. In this case, yyparse()
returns the value 0 .

The user must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C language
program, a routine called main() must be defined that eventually calls
yparse(). In addition, a routine called yyerror() is needed to print a message
when a syntax error is detected.

·

These two routines must be supplied in one form or another by the user.
To ease the initial effort of using yacc, a library has been provided with
default versions of main() and yerror(). The library is accessed by a -ly argu
ment to the cc(l) command or to the loader. The source codes

and

mrin()
{

retu.m (yyparse ()) ;
}

include <stdio.�

yyerror(s)
char *s ;

{
(void) fprintf (stderr , "%s\n" , s) ;

}

show the triviality of these default programs. The argument to yerror() is a
string containing an error message, usually the string syntax error. The aver
age application wants to do better than this. Ordinarily, the program should
keep track of the input line number and print it along with the message when
a syntax error is detected. The external integer variable yychar contains the
look-ahead token number at the time the error was detected. This may be of
some interest in giving better diagnostics . Since the main() routine is

&-32 PROGRAMMER'S GUIDE

The yacc Environment

probably supplied by the user (to read arguments, etc.}, the yacc library is
useful only in small projects or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of the input symbols read and what the parser actions
are. It is possible to set this variable by using sdb.

yacc 6·33

Hints for Preparing Specifications

This part contains miscellaneous hints on preparing efficient, easily
changeable, and clear specifications. The individual subsections are more or
less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a read
able specification file. The following are a few style hints.

1 . Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This is useful in debugging.

2 . Put grammar rules and actions on separate lines. It makes editing
easier.

3 . Put all rules with the same left side together. Put the left side in only
once and let all following rules begin with a vertical bar.

4 . Put a semicolon only after the last rule with a given left-hand side
and put the semicolon on a separate line. This allows new rules to be
easily added.

5 . Indent rule bodies by one tab stop and action bodies by two tab stops.

6 . Put complicated actions into subroutines defined in separate files.

Example 1 is written following this style, as are the examples in this sec
tion (where space permits). The user must decide about these stylistic ques
tions. The central problem, however, is to make the rules visible through the
morass of action code.

Left Recursion

The algorithm used by the yacc parser encourages so called left recursive
grammar rules. Rules of the form

name name rest_of_rule ;

match this algorithm. These rules such as

&·34 PROGRAMMER'S GUIDE

and

list item
list

seq item

I I
•

seq item

Hints for Preparing Specifications

item

frequently arise when writing specifications of sequences and lists. In each of
these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser is a bit bigger, and the items are seen and reduced from right to
left. More seriously, an internal stack in the parser is in danger of overflowing
if a very long sequence is read. Thus, the user should use left recursion wher
ever reasonable.

It is worth considering if a sequence with zero elements has any meaning,
and if so, consider writing the sequence specification as

seq /* enpt:y * /
seq item

using an empty rule. Once again, the first rule would always be reduced
exactly once before the first item was read, and then the second rule would be
reduced once for each item read. Permitting empty sequences often leads to
i:qcreased generality. However, conflicts might arise if yacc is asked to decide
which empty sequence it has seen when it has not seen enough to know!

yacc 6-35

Hints for Preparing Specifications

Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally, but not within quoted strings,
or names might be entered into a symbol table in declarations but not in
expressions. One way of handling these situations is to create a global flag
that is examined by the lexical analyzer and set by actions. For example,

%{
int dflaq;

%}
other declarations • . .

prog decls stats

decls I* empty *I

dflaq = 1 ;

decls declaration

stats I* empty *I

dflaq = 0 ;

stats statement

. . . other rules . . .

specifies a program that consists of zero or more declarations followed by zero
or more statements. The flag dflag is now 0 when reading statements and 1
when reading declarations, except for the first token in the first statement.

6·36 PROGRAMMER'S GUIDE

Hints tor Preparing Specifications

This token must be seen by the parser before it can tell that the declaration
section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of back-door approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not
impossible, to do otherwise.

Reserved Words

Some programming languages permit you to use words like if, which are
normally reserved as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This
is extremely hard to do in the framework of yacc. It is difficult to pass infor
mation to the lexical analyzer telling it this instance of if is a keyword and
that instance is a variable. The user can make a stab at it using the mechan
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved, i .e. , forbidden for use as vari
able names. There are powerful stylistic reasons for preferring this.

yacc 6·37

Advanced Topics

This part discusses a number of advanced features of yacc.

Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in an action by
use of macros YYACCEPT and YYERROR. The YYACCEPT macro causes
yyparse() to return the value 0; YYERROR causes the parser to behave as if the
current input symbol had been a syntax error; yyerror() is called, and error
recovery takes place. These mechanisms can be used to simulate parsers with
multiple end-markers or context sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current
rule. The mechanism is simply the same as with ordinary actions, a dollar
sign followed by a digit.

6·38 PROGRAMMER'S GUIDE

sent adj noun verb adj noun

look at the sentence

adj THE

$$ = THE ;

$ $ = YQlJN:; ;

$ $ = DOO;

if($0 == YQlJN:;)
{

(void) print£ ("what?\n") ;

$$ = c:::RCNE ;

Advanced Topics

In this case, the digit may be 0 or negative. In the action following the
word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about
what might precede the symbol noun in the input. There is also a distinctly
unstructured flavor about this. Nevertheless, at times this mechanism
prevents a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

yacc 6-39

Advanced Topics

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers. yacc can also support values of other types, including structures. In
addition, yacc keeps track of the types and inserts appropriate union member
names so that the resulting parser is strictly type checked. yacc value stack is
declared to be a union of the various types of values desired. The user
declares the union and associates union member names with each token and
nonterminal symbol having a value. When the value is referenced through a
$$ or $n construction, yacc will automatically insert the appropriate union
name so that no unwanted conversions take place. In addition, type checking
commands such as lint are far more silent.

There are three mechanisms used to provide for this typing. First, there is
a way of defining the union. This must be done by the user since other sub
routines, notably the lexical analyzer, must know about the union member
names. Second, there is a way of associating a union member name with
tokens and nonterminals. Finally, there is a mechanism for describing the
type of those few values where yacc cannot easily determine the type.

To declare the union, the user includes

�an

{
body of union

}

in the declaration section. This declares the yacc value stack and the external
variables yylval and yyval to have type equal to this union. If yacc was
invoked with the -d option, the union declaration is copied onto the y.tab.h
file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated
with the various terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, or %nonassoc, the union member name is associated
with the tokens listed. Thus, saying

%left <optype> ' + ' , _ ,

- 6-40 PROGRAMMER'S GUIDE

Advanced Topics

causes any reference to values returned by these two tokens to be tagged with
the union member name optype. Another keyword, %type, is used to associ
ate union member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal symbols expr
and stat.

There remain a couple of cases where these mechanisms are insufficient.
If there is an action within a rule, the value returned by this action has no a
priori type. Similarly, reference to left context values (such as $0) leaves yacc
with no easy way of knowing the type. In this case, a type can be imposed
on the reference by inserting a union member name between < and >
immediately after the first $. The example

rule aaa

$<intval>$ = 3 ;

bbb

fun($<intva1>2 , $<other>O) ;

shows this usage. This syntax has little to recommend it, but the situation
arises rarely.

A sample specification is given in Example 2 . The facilities in this subsec
tion are not triggered until they are used. In particular, the use of %type will
turn on these mechanisms. When they are used, there is a fairly strict level of
checking. For example, use of $n or $$ to refer to something with no defined
type is diagnosed. If these facilities are not triggered, the yacc value stack is
used to hold ints.

yacc 6-41

Advanced Topics

yacc Input Syntax

This section has a description of the yacc input syntax as a yacc specifica
tion. Context dependencies, etc. are not considered. Ironically, although yacc
accepts an LALR(l) grammar, the yacc input specification language is most
naturally specified as an LR(2) grammar; the sticky part comes when an iden
tifier is seen in a rule immediately following an action. If this identifier is fol
lowed by a colon, it is the start of the next rule; otherwise, it is a continuation
of the current rule, which just happens to have an action embedded in it. As
implemented, the lexical analyzer looks ahead after seeing an identifier and
decides whether the next token (skipping blanks, newlines, and comments,
etc.) is a colon. If so, it returns the token C_IDENTIFIER. Otherwise, it
returns IDENTIFIER. literals (quoted strings) are also returned as IDENTIF
IERs but never as part of C_IDENTIFIERs.

I* granmar far the :inplt to yacc *I

I* basic entries *I
%token ID!Nl'IFil!R I* includes identifiers and literals *I
%token C_IDENTIFIER I* identifier (rut nat literal) followed by a : *I
%token NUMBER I* [0-9]+ *I

I* reserved words : %type=>nPE %left=>LEFr, etc . *I

%token
%token
%token

MARK . I* the * mark *I
LCURL I* the %{ mark *I
RCORL I* the %} mark *I

I* ASCJ:J: character literals stand far themselves *I

%token spec

*

spec defs MARK rules tail

6-42 PROGRAMMER'S GUIDE

tail MARK

In this action, eat up the rest of the file

/* enpt:y: the second MARK is optional */

defs /* enpt:y */
defs de£

de£ STARr IDENI'IFIER
UNIOO

rword

Copy union definition to output

LCURL

Copy c code to output file

RCtJIU,
rword tag nlist

'IOKEN
LEFl'
RIGHT
N:NASSOC
TYPE

tag /* enpt:y: union tag is optional */
I < I IDENI'IFIER I > I

nlist IlilU'lO
nlist IlilU'lO
nlist ' , ' IllMlO

Advanced Topics

continued

yacc 6·43

Advanced Topics

6-44

continued

nmno IDENI'IFIER I* Note : literal illegal w:i.th % type *I
IDENI'IFIER NUMBER I* Note : illegal w:i.th % type *I

I* rule section *I

rules C_IDENl'IFIER rbody prec
rules rule

rule C_IDENI'IFIER rbody prec
' I ' rbody prec

rbody

act

I* enq:>ty *I
rbody IDENI'IFIER
rbody act

' { '
{

Copy action translate $$ etc .

' } '

prec I* enq:>ty * 1
PREX:: IDENl'IFIER
PREX:: IDENl'IFIER act
prec ' ; '

PROGRAMMER'S GUIDE

Examples

1 . A Simple Example

This example gives the complete yacc applications for a small desk calcu
lator; the calculator has 26 registers labeled a through z and accepts arithmetic
expressions made up of the operators

+ , -, * • I , % (m:xl operator) , & (bitwise and) , I (bitwise or) ,
and assignments .

If an expression at the top level is an assignment, only the assignment is done;
otherwise, the expression is printed. As in the C language, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reason
able job of showing how precedence and ambiguities are used and demon
strates simple recovery. The major oversimplifications are that the lexical
analyzer is much simpler than for most applications, and the output is pro
duced immediately line by line. Note the way that decimal and octal integers
are read in by grammar rules. This job is probably better done by the lexical
analyzer.

%{
include <stdio . h>
include <ctype . h>

int regs [26] ;
int base ;

%}

%start list

%token DIGIT LEI'l'ER

%left ' I '
%left '& '
%left ' + ' '- '
%left ' * ' ' I ' '% '

yacc 6-45

Examples

%left UMINUS I* supplies precedence far unazy minus *I

%% I* beginninq of :rules section *I

list I* enpty *I
list stat '\n'
list error ' \n'

yyerrok;

stat expr

(void) printf ("l(d\n" , $ 1 J ;

LE1'T.ER ' = ' expr

regs [$ 1] = $3;

expr ' (' expr ') '

$$ = $2 ;

expr ' + ' expr

$$ = $ 1 + $3 ;

expr '_, expr

$$ = $ 1 - $3 ;

eJqlr I * I expr

$$ = $ 1 * $3 ;

expr ' I ' expr

$$ = $1 I $3 ;

exp '%' expr

6·46 IPIR@GIRIAillliiMlEilll'$ Gli.BHIIl>IE

continued

number

int yylex(
{

$$ = $ 1 % $3 ;

expr '&.' expr

$$ = $1 &. $3 ;

expr ' I ' expr

$$ = $ 1 I $3 ;

'-' expr Xprec tMINUS

$$ = --$2 ;

$$ = reg[$ 1] ;

number

DIGIT

$$ = $ 1 ; base = ($ 1==0) ? 8 10 ;

number DIGIT

$$ = base * $ 1 + $2 ;

/* beginning of sul:lroiitines section */

/* lexical analysis routine */
I* return LmTER far lowercase letter, * /
/* yylval = 0 through 25 */
I* returns DIGIT far digit, yylval = 0 through 9 */
/* all other characters are retmned imnediately */

Examples

continued

yacc 6-47

Examples

int c;
/*skip blanks*/

while ((C : getchar ()) :: 1 1)

I* c is IlDW' :nonblank *I

if (islower (c) J
{

yylval = c - 'a ' ;
return (LETl'ER) ;

if (isdigit (c))
}

return (c) ;

yylval = c - ' 0 ' ;
return (DIGIT) ;

2. An Advanced Example

continued

This section gives an example of a grammar using some of the advanced
features. The desk calculator example in Example 1 is modified to provide a
desk calculator that does floating point interval arithmetic. The calculator
understands floating point constants; the arithmetic operations +, -, "', f, and
unary - a through z . Moreover, it also understands intervals written

(X ,Y)

where X is less than or equal to Y. There are 26 interval valued variables A
through Z that may also be used. The usage is similar to that in Example 1 ;
assignments return no value and print nothing while expressions print the
(floating or interval) value.

6-48 PROGRAMMER'S GUIDE

Examples

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure consisting of the left and right end
point values stored as doubles. This structure is given a type name, INTER
VAL, by using typedef. The yacc value stack can also contain floating point
scalars and integers (used to index into the arrays holding the variable values).
Notice that the entire strategy depends strongly on being able to assign struc
tures and unions in C language. In fact, many of the actions call functions
that return structures as well .

It is also worth noting the use of YYERROR to handle error conditions
division by an interval containing 0 and an interval presented in the wrong
order. The error recovery mechanism of yacc is used to throw away the rest
of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (for exam
ple, scalar or interval) of intermediate expressions. Note that scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 1 8 shift-reduce and 26 reduce-reduce. The problem can be
seen by looking at the two input lines.

2 . 5 + (3 . 5 - 4 .)

and

2 . 5 + (3 . 5 , 4)

Notice that the 2 . 5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read. By this
time, 2.5 is finished, and the parser cannot go back and change its mind.
More generally, it might be necessary to look ahead an arbitrary number of
tokens to decide whether to convert a scalar to an interval . This problem is
evaded by having two rules for each binary interval valued operator-one
when the left operand is a scalar and one when the left operand is an interval.
In the second case, the right operand must be an interval, so the conversion
will be applied automatically. Despite this evasion, there are still many cases
where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification
file; in this way, the conflict will be resolved in the direction of keeping scalar
valued expressions scalar valued, until they are forced to become intervals.

yacc 6-49

Examples

This way of handling multiple types is very instructive. If there were
many kinds of expression types instead of just two, the number of rules
needed would increase dramatically and the conflicts even more dramatically.
Thus, while this example is instructive, it is better practice in a more normal
programming language environment to keep the type information as part of
the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C language library routine atof() is
used to do the actual conversion from a character string to a double-precision
value. If the lexical analyzer detects an error, it responds by returning a token
that is illegal in the grammar provoking a syntax error in the parser and
thence error recovery.

%{

#include <stdio.h>
#include <ctype.h>

typedef st:ruct interval
{

double lo, hi ;
nm:RVAL;

nm:RVAL Vlllll () , vdiv() ;

dalbl.e atof() ;

double dreg[26] ;
nm:RVAL vreg[26] ;

%}

�
{

int ival ;
dollble dval ;
nm:RVAL vval;

%token <ival> mEG VRm / * indices into dreg, vreg arrays */

&-50 PROGRAMMER'S GUIDE

%taken <dval> cnqgr /* floating point constant * /

%type <dval> dexp /* expression * /

%type <vval> vexp /* :interval expression * /

/* precedence :infcmnati.an abwt the operators */

%left ' + ' , _ ,

%left ' * ' ' / '
%left tMINUS /* precedence far unazy minus * /

� /* :t:legjnn:iDJ of :rules section */

lines /* empty */
l:ines l:ine

l:ine dexp '\n'

(void) printf ("%15 . 8£\n" , $1) ;

vexp '\n'

Examples

continued

(void) pr:intf (" (%15 .8f , %15 . 8£) \n" , $ 1 . 1o, $ 1 .hi) ;

mn; ' = ' dexp '\n'

dreg[$ 1] = $3 ;

VRm ' = ' vexp '\n'

vreg[$ 1] = $3;

error '\n'

yyenok;

yacc 6-St

Examples

$$ = dreg[$ 1] ;

dexp ' + ' dexp

$$ = $1 + $3;

dexp ' - · dexp

$$ = $1 - $3 ;

dexp ' * ' dexp

$$ = $1 * $3 ;

dexp ' I ' dexp

$$ = $1 I $3 ;

'-' dexp j(prec UMINUS

$$ = --$2 ;

' (' dexp') '

$$ = $2 ;

vexp dexp

$$.hi = $$. lo = $ 1 ;

' (' dexp • • • dexp ') '

$$. lo = $2 ;
$$.hi = $4 ;
if ($$. lo > $$.hi

6;.52 PROGRAMMER'S GUIDE

continued

(void) print£ ("interval out of order \n" J ;
YYERRCR;

$$ = vreg [$ 1] ;

vexp ' + ' vexp

$$.hi = $ 1 .hi + $3 .hi ;
$$. lo = $ 1 . lo + $3 . lo;

dexp ' + ' vexp

$$.hi = $ 1 + $3 . hi ;
$$. lo = $ 1 + $3 . lo;

vexp ,_, vexp

$ $. hi = $ 1 .hi - $3 . lo ;
$$. lo = $ 1 . lo - $3 . hi ;

dvep ,_, vdep

$$.hi = $1 - $3 . lo;
$$. lo = $ 1 - $3 .hi

vexp I * I vexp

$$ = vmul($ 1 . lo , $. hi , $3 J

dexp ' * ' vexp

$$ = vmul ($ 1 , $ 1 , $3)

vexp ' I ' vexp

Examples

continued

yacc 6-53

Examples

if(dcheck($3)) YYEmO.;
$$ = vdi.v($ 1 . lo , $ 1 . hi , $3

dexp , I ' vexp

if (dcheck($3)) YYEmO.;
$$ = vdi.v($ 1 . lo, $ 1 .hi , $3

,_, vexp � UMINUS

$$. hi = --$2 . 1o ; $$. lo = --$2 .hi

' (' vexp ') '

$$ = $2

:u:% I* beginning of subroutines section *I

define BSZ 50 I* buffer size for floatillg point number * 1

I* lexical analysis *I

int yylex()
{

register int c ;

I* skip over b lanks *I
while ((c = getchar()) = ' ')

if (isupper (c))
{

yylval . ival = c - 'A'
retum (VREC) ;

if (islower (c))

6·54 PROGRAMMER'S GUIDE

continued

Examples

continued

yylval . ival = c - ' a ' ,
return(IlRl!G) ;

I* gobble up digits . points , exponents *I

if (isdigit(c) I I c == ' . ' l
{

char bof[BSZ+ 1] , *cp = bof ;
int dot = o , exp = 0 ;

for(; (cp - bof) < BSZ ++cp, c = getchar())
{

*cp = c ;

{

if (isdi.git(c))
continue;

if (c = ' . ')

if (dot++ I I exp)

return (' • ') ; I* will cause syntax error *I
continue ;

if (c == ' e ')
{

if (exp++)
return (' e ') ; I* will cause syntax error *I

cant:inue ;

I* end of number *I
break;

*cp = I ' ;
if (cp - bof >= BSZ)

(void) print£ ("CXliiStant too 1anq - t:runcated\n") ;
else

ungetc(c , std:in) ; I* pJSb. back last char read *I
yylval .dval = atof (bof) ;
return (CXIIST) ;

yacc 6·55

Examples

continued

retuzn (c) ;

INI'ERITAL
hilo(a, b, c , d)

double a , b , c , d ;

/ * retuzns the smallest interval containing a , b , c , and d */

6-56

/* used by * ,/ routine */
INI'ERITAL v;

if (a > b)
{

else

v.hi = a ;
v . lo = b;

v .hi = b ;
v . lo = a ;

if (c > d)

else

if (c > v . hi)
v.hi = c ;

i f (d < v . lo)
v . lo = d ;

if (d > v .hi)
v .hi = d;

if (c < v. lo)
v . lo = c ;

retuzn (v) ;

PROGRAMMER'S GUIDE

IN'I'mVAL
vmul. (a , b, v)

double a, b;
IN'l'mVAL v;

retu:r:n (hilo (a * v.hi , a * v , lo, b * v.hi , b * v . lo)) ;

dcheck(v)
IN'I'mVAL v;

if (v.hi >= 0 . && v . lo <= 0 .)
{

(void) print£ ("divisor interval oantains 0. \n") ;
return (1) ;

return (0) ;

IN'l'mVAL
vdiv (a , b, v)

double a , b;
IN'I'mVAL v;

return (hilo(a I v.hi , a I v, lo, b I v.hi, b I v . lo)) ;

Examples

continued

yacc 6·57

. - .- : -.:,

·: . ,:

. . : . .

' "'"" · ·

· _ : ,... . . .

�- · . . .
-. · . ·

7 File and Record Locking

Introduction 1-1

Terminology 1-2

File Protection 7-4
Opening a File for Record Locking 7-4
Setting a File Lock 7-6
Setting and Removing Record Locks 7-1 0
Getting Lock Information 7-14
Deadlock Handling 7-17

Selecting Advisory or Mandatory
Locking 1-1a
Caveat Emptor-Mandatory Locking 7-19
Record Locking and Future Releases of the UNIX

System 7-20

FILE AND RECORD LOCKING

� � - · _ , .

- . .. , ·

· :.: -

· ; .;. :

- �

Introduction

Both mandatory and advisory file and record locking are available on
current releases of the UNIX System. This capability is intended to provide a
synchronization mechanism for programs accessing the same stores of data
simultaneously. Such processing is characteristic of many multiuser applica
tions, and the need for a standard method of dealing with the problem has
been recognized by standards advocates like jusrjgroup, an organization of
UNIX System users from businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self
synchronizing processes. In mandatory locking, the standard I/0 subroutines
and 1/0 system calls enforce the locking protocol. In this way, at the cost of
a little efficiency, mandatory locking double-checks the programs against
accessing the data out of sequence.

The remainder of this chapter describes how file and record locking capa
bilities can be used. Examples are given for the correct use of record locking.
Misconceptions about the amount of protection that record locking affords are
dispelled. Record locking should be viewed as a synchronization mechanism,
not a security mechanism.

The manual pages for the fcnt1(2) system call, the lock£(3C) library func
tion, and fcntl(5) data structures and commands are referred to throughout
this section. You should read them in the Programmer's Reference Manual
before continuing.

FILE AND RECORD LOCKING 7·1

Terminology

Before discussing how record locking should be used, let us first define a
few terms.

Record
This is a contiguous set of bytes in a file. The UNIX Operating Sys
tem does not impose any record structure on files. This may be done
by the programs that use the files.

Cooperating Processes
These are processes that work together in some well-defmed fashion
to accomplish the tasks at hand. Processes that share files must
request permission to access the files before using them. File access
permissions must be carefully set to restrict non-cooperating processes
from accessing those files. The term process will be used interchange
ably with cooperating process to refer to a task obeying such proto
cols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a read
lock is in place on a record, other processes may also read lock that
record, in whole or in part. No other process, however, may have or
obtain a write lock on an overlapping section of the file. If a process
holds a read lock, it may assume that no other process will be writing
or updating that record at the same time. This access method also
permits many processes to read the given record. This might be
necessary when searching a file, without the contention involved if a
write or exclusive lock were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is in place on a record, no other process may read or write
lock that record, in whole or in part. If a process holds a write lock, it
may assume that no other process will be reading or writing that
record at the same time.

Advisory Locking
This is a form of record locking that does not interact with the 1/0
subsystem (that is, creat(2), open(2), read(2), and write(2)] . The con
trol over records is accomplished by requiring an appropriate record
lock request before 1/0 operations. If appropriate requests are always
made by all processes accessing the file, then the accessibility of the

7·2 PROGRAMMER'S GUIDE

Terminology

file will be controlled by the interaction of these requests. Advisory
locking depends on the individual processes to enforce the record
locking protocol; it does not require an accessibility check at the time
of each 1/0 request.

Mandatory Locking
This is a form of record locking that does interact with the 1/0 sub
system. Access to locked records is enforced by the creat(2), open(2),
read(2), and write(2) system calls . If a record is locked, then access of
that record by any other process is restricted according to the type of
lock on the record. The control over records should still be performed
explicitly by requesting an appropriate record lock before 1/0 opera
tions, but an additional check is made by the system before each 1/0
operation to ensure the record locking protocol is being honored.
Mandatory locking offers an extra synchronization check, but at the
cost of some additional system overhead.

FILE AND RECORD LOCKING 7-3

File Protection

There are access permissions for UNIX System files to control who may
read, write, or execute such a file. These access permissions may only be set
by the owner of the flle or by the super-user. The permissions of the direc
tory in which the flle resides can also affect the ultimate disposition of a flle.
Note that if the directory permissions allow anyone to write in it, then flles
within the directory may be removed, even if those files do not have read,
write, or execute permission for that user. Any information that is worth pro
tecting is worth protecting properly. If your application warrants the use of
record locking, make sure that the permissions on your flles and directories
are set properly. A record lock, even a mandatory record lock, will only pro
tect the portions of the flles that are locked. Other parts of these flles might
be corrupted if proper precautions are not taken.

Only a known set of programs and/ or administrators should be able to
read or write a database. This can be done easily by setting the set-group-ID
bit [see chmod(l) in the User'sjSystem Administrator's Reference Manual] of the
database accessing programs. The files can then be accessed by a known set
of programs that obey the record locking protocol. An example of such flle
protection, although record locking is not used, is the mail(l) command. In
that command only the particular user and the mail command can read and
write in the unread mail flles.

Opening a File for Record Locking

The first requirement for locking a flle or segment of a flle is having a
valid open file descriptor. If read locks are to be done, then the file must be
opened with at least read accessibility, and the same is true for write locks and
write accessibility. For our example we will open our file for both read and
write access:

7-4 PROGRAMMER'S GUIDE

#include <stdio.h>
#include <ermo.h>
#include <fart:J. .h>

int fd; I* file desc:riptar *I
cbar *filename ;

IIBln(azgc, ugv)
int azgc ;
cbar *ugv[] ;
{

extem void exit(l ' penor(l ;

File Protection

I* get database file name fJ:aD CCIIIIIillld line am open tbe
* file for read am write access .
*I

if (azgc < 2) {
(void) fprintf(stdeEr, "uSage: %a filename\n" , ugv[O]) ;
exit(2) ;

}
filename = ugv[1] ;
fd = open(filename , O_III:MR) ;
if (fd < 0) {
penor(filename) ;
exit(2) ;
}

The file is now open for us to perform both locking and 1/0 functions.
We then proceed with the task of setting a lock.

FILE AND RECORD LOCKING 7-5

File Protection

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these
methods depend upon how the lock interacts with the rest of the program.
There are also questions of performance as well as portability. Two methods
will be given here, one using the fcnt1(2) system call, the other using the
jusrjgroup standards compatible lock£(3) library function call.

Locking an entire file is just a special case of record locking. For both
these methods the concept and the effect of the lock are the same. The file is
locked starting at a byte offset of zero (0) and ending at the maximum file
size. This point extends beyond any real end of the file so that no lock can be
placed on this file beyond this point. To do this the value of the size of the
lock is set to zero. The code using the fcntl(2) system call is as follows:

7·6 PROGRAMMER'S GUIDE

#include <fcntl .h>
#define MAX_'mY10
int t:cy;
struct flock lck;

t:cy = 0;

File Protection

I* set up the record l.oc:king st:rucblre , the address of which
* is passed to the fcntl system call .
*I

lck. l_type = F_WRLCK;I* sett:illg a write lock *I
lck. l_l<ihence = 0 ; 1* offset l_start fran beg:imrlng of file *I
lck. l_start = OL;
lck. l_len = OL;I* until the end of the file address space *I

I* Atteupt lock:inq MAX_'mY times before giving up.
*I

while (fcntl(fd, F_SETI.K, &lck) < 0) {
if (ernx> = EAGAIN I I ernx> == ENXES l
I* there might be other e=ars cases in which

* :you might t:cy again.
*I

if (++t:cy < MAX_'mY)
(void) sleep(2) ;
ocntinue;

(void) fprintf(stde:rr , "File busy t:cy again later l\n") ;
retmn;

perror("fcntl") ;
exit(2) ;
}

FILE AND RECORD LOCKING 7-7

File Protection

This portion of code tries to lock a file. This task is attempted several
times until one of the following things happens:

• the file is locked

• an error occurs

• it gives up trying because M.AX_TRY has been exceeded.

To perform the same task using the lockf(3C) function, the code is as fol
lows:

7-8 PROGRAMMER'S GUIDE

#include <unistd.h>
#define MAX_TRY10

:int tey;
tey = 0 ;

I* DEike sure the file pointer

* is at the begiml:inq of the file.

*I
lseek(fd, OL, 0) ;

I* Attempt lock:iD] MAX_TRY times before giviD;J up.
*I

While (lodkf(fd, F_TtOCK, OL) < 0) {
if (enn:> = EAGAIN I I enn:> == Ettl:nS) {
I* there might be other errors cases in Which

* you might tey again.

*I

if (++tey < MAX_ TRY) {
sleep(2) ;
ocmtinue;
}
(void) fprintf (stdez:r, "File blsy tey again later 1\n") ;
retum;
}
perrar("lodkf") ;
exit(2) ;

}

File Protection

It should be noted that the lockf(3C) example appears to be simpler, but
the fcntl(2) example exhibits additional flexibility. Using the fcntl(2) method,
it is possible to set the type and start of the lock request simply by setting a
few structure variables. lockf(3C) merely sets write (exclusive) locks; an addi
tional system call [Iseek(2)] is required to specify the start of the lock.

FILE AND RECORD LOCKING 7·9

u:'lle Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the
differing starting point and length of the lock. We will now try to solve an
interesting and real problem. There are two records (these records may be in
the same or different file) that must be updated simultaneously so that other
processes get a consistent view of this information. (This type of problem
comes up, for example, when updating the interrecord pointers in a doubly
linked list.) To do this you must decide the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if one cannot
obtain all the required locks. It is because of contention for these records that
we have decided to use record locking in the fll"St place. Different programs
might do the following:

• wait a certain amount of time and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above.

Let us now look at our example of inserting an entry into a doubly linked
list. For the example, we will assume that the record after which the new
record is to be inserted has a read lock on it already. The lock on this record
must be changed or promoted to a write lock so that the record may be
edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of
the file, the lock promotion succeeds and the other (sleeping) locks wait. Pro
moting (or demoting) a write lock to a read lock carries no restrictions. In
either case, the lock is merely reset with the new lock type. Because the

7·1 0 PROGRAMMER'S GUIDE

File Protection

jusr jgroup locld function does not have read locks, lock promotion is not
applicable to that call. An example of record locking with lock promotion fol
lows:

struct reoam {

. /* data portion of reoam */

lang prev;/* index to previous reoam in the list */
lang next;/* index to next reoam in the list */

} ;

/* � pa:IIDti.on usiDI fc:ntl (2)
* When thi s rrutille i s entered it is assumed that there are read
* locks an "here" and •next• .
* If write locks an "here" and "next" are Clbt:irllled:
* Set a write lock an "this" .
* Ret1ml index to "this" reoam.
* If any write lock is not Clbt:irllled:
* Restore read locks an "here" and •next• .
* Rem:Jye all other locks .

* Ret1ml a -1 .
*/

lcmg
set3lock (this , here , next)
lcmg this , here, next;
{

struct flock lck;

lck. l_type = F_WRUX;/* set:t:iJlq a write lock */
lck. l_'llbmce = 0 ;/* offset l_start f%011 l:leginn:illq of file */
lck. l_start = here ;
lck. l_len = sizeaf (struct reoam) ;

/* pmg:Jte lock en "here" to write lock */
if (fc:ntl (fd, F_smu<W, &lck) < 0) {
return (-1) ;

}
/* lock •this• with write lock */
lck. l_start = this ;
if (fc:ntl(fd, F_smu<W, &lck) < 0)
/* � an •this" failed;

* demote lock an "here" to read lock.
*/

lck. l_type = F_RDLCK;

FILE AND RECORD LOCKING 7-1 1

File Protection

lck. l_start = here ;
(void) fc:ntl(fd, F_SE1'U<W, &lck) ;
:return (- 1) ;
}
/* pra!Dte lcx:k an •nert• to write lcx:k */
lck. l_start = next;
if (fc:ntl(fd, F_SEl'LIGI, &lck) < 0) {
/* IDck an "next" failed;

* dellote lock an "here" to read lcx:k,

*/
lck. l_type = F_RDIJ:K;
lck. l_start = here ;
(void) fc:ntl(fd, F_SETLK, &lck) ;
/* and rE!IDIIe lcx:k an "this" •

*/
lck. l_type = F_tJN[Q{;
lck. l_start = this ;
(void) fc:ntl(fd, F_SETLK, &lck) ;
:return (- 1) ;/* canoot set lcx:k, try again ar quit */
}

return (this) ;

continued

The locks on these three records were all set to wait (sleep) if another pro
cess was blocking them from being set. This was done with the F_SETLKW
command. If the F _SETLK command was used instead, the fcntl system calls
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error return sections.

Let us now look at a similar example using the lock£ function. Since there
are no read locks, all (write) locks will be referenced generically as locks.

7·1 2 PROGRAMMER'S GUIDE

I* Lock praiDti.cn using lockf(3C)
* When this :rcutiiie is entered, it is asSiliiiSd tbat there axe
* JlO l.oc'ks an ''here" and "next" .
* If l.oc'ks axe obtained:
* Set a lock an "this" .

* Return index to •this" record.
* If � lock is not obtained:
* RaiDve all ather l.oc'ks .

* Return a -1 .
*I

#illclude <mlistd.h>

l.onq
set3lock (this , here, next)
l.onq this , here, next;

I* lock "here" *I
(void) lseek(fd, here , 0) ;
if (lockf(fd, F_UlClC, sizeof(st:rw::t record)) < 0) {
reblr.n (- 1) ;

}
I* lock •this• *I
(void) lseek(fd, this , 0) ;
if (lockf (fd, F_UXX, sizeof(struct record)) < 0) {
I* Lock an "this" failed.

* Clear lock an "here" .

*I
(void) lseek(fd, here , 0) ;
(void) lockf (fd, F_'!liJJCK, sizeof(struct rea:mi)) ;
reblr.n (-1) ;

I* lock •next• *I
(void) lseek(fd, next, 0) ;
if (lockf (fd, F_UXX, sizeof (struct rea:mi)) < 0)

I* Lock an •next• failed.
* Clear lock an "here• ,
*I

(void) lseek(fd, here, 0) ;

File Protection

FILE AND RECORD LOCKING 7-1 3

File Protection

(void) lockf (fd, F_UUX:X, sizeof (st:ruct record)) ;

/* and raJDVe lock an •this• .
*/

(void) lseek(fd, this, 0) ;
(void) lockf(fd, F_UUX:X, sizeof(st:ruct record)) ;
return (-1) ;/* cannot set lock, tzy aqain or quit */

return (this) ;

continued

Locks are removed in the same manner as they are set, only the lock type
is different (F_UNLCK or F_ULOCK). An unlock cannot be blocked by
another process and will only affect locks that were placed by this process.
The unlock only affects the section of the file defined in the previous example
by lc:k. It is possible to unlock or change the type of lock on a subsection of a
previously set lock. This may cause an additional lock (two locks for one sys
tem call) to be used by the operating system. This occurs if the subsection is
from the middle of the previously set lock.

Getting Lock Information

One can determine which processes, if any, are blocking a lock from being
set. This can be used as a simple test or as a means to find locks on a file. A
lock is set up as in the previous examples and the F _GETLK command is used
in the fc:ntl call. If the lock passed to fcntl would be blocked, the first block
ing lock is returned to the process through the structure passed to fc:ntl. That
is, the lock data passed to fcntl is overwritten by blocking lock information.
This information includes two pieces of data that have not been discussed yet,
Lpid and Lsysid, that are only used by F_GETLK. (For systems that do not
support a distributed architecture, the value in Lsysid should be ignored.)
These fields uniquely identify the process holding the lock.

7-1 4 PROGRAMMER'S GUIDE

File Protection

If a lock passed to fcntl using the F _GETLK command would not be
blocked by another process' lock, then the Ltype field is changed to
F_UNLCK, and the remaining fields in the structure are unaffected. Let us
use this capability to print all the segments locked by other processes. Note
that if there are several read locks over the same segment, only one of these
will be found.

struct flock lck;

I* Find and pdnt ''write lock" bl.ocked segments of this file . *I
(void) printf("sysid pid type start lED;Jth\n") ;
lck. l_111bence = 0 ;
lck. l_start = OL;

lck. l_len = OL;

do {
lck. l_type = F_WRLCK;
(void) fcntl (fd, F_Gm'IK, &lck) ;
if (lck. l_type I = F_t.INICK) {
(void) printf ("%Sd %Sci %c %8d %8d\n" ,
lck.l_sysid,
lck. l_pid,
(lck. l_type = F_WRLCK) ? 'W' : 'R' ,
lck. l_start,
lck. l_len) ;
I* if this lock goes to the end of the address

* space, no need to look further, so break out.
*I

if (lck. l_len == 0)
break;
I* othezw.ise , look far new lock after the one

* just found.
*I

lck. l_start += lck. l_len;
}
} while (lck . l_type I = F_UNLCK) ;

FILE AND RECORD LOCKING 7·1 5

File Protection

The fcntl function with the F_GETLK command will always return
correctly (that is, it will not sleep or fail) if the values passed to it as argu
ments are valid.

The lock£ function with the F_TEST command can also be used to test if
there is a process blocking a lock. This function does not, however, return the
information about where the lock actually is and which process owns the lock.
A routine using lock£ to test for a lock on a file follows:

I* find a blocked record . *I

I* seek to begiim:inq of file *I
(void) lseek(fd, 0 , OL) ;
I* set the size of the test region to zero (0)

* to test until the end of the file address space .
*I

if (lockf(fd, F_TEST, OL) < 0)
switch (errno) {
case EltCCES :
case EttGAIN:
(void) printf("file is locked by another process\n") ;
break· '
case EBADF:
I* bad argument passed to lockf *I
perror("lockf") ;
break· '
default:
(void) printf("lockf : 1lllknown error <%d>\n" , errno) ;
break· '
}
}

When a process forks, the child receives a copy of the file descriptors that
the parent has opened. The parent and child also share a common file pointer
for each file. If the parent were to seek to a point in the file, the child's file
pointer would also be at that location. This feature has important implications
when using record locking. The current value of the file pointer is used as the
reference for the offset of the beginning of the lock, as described by Lstart,

7·1 8 PROGRAMMER'S GUIDE

File Protection

when using an Lwhence value of 1 . If both the parent process and child
process set locks on the same file, there is a possibility that a lock will be set
using a file pointer that was reset by the other process. This problem appears
in the lockf(3C) function call as well and is a result of the jusrjgroup require
ments for record locking. If forking is used in a record locking program, the
child process should close and reopen the file if either locking method is used.
This will result in the creation of a new and separate file pointer that can be
manipulated without this problem occurring. Another solution is to use the
fcntl system call with a Lwhence value of 0 or 2. This makes the locking
function atomic, so even processes sharing file pointers can be locked without
difficulty.

Deadlock Handling
There is a certain level of deadlock detection/avoidance built into the

record locking facility. This deadlock handling provides the same level of pro
tection granted by the jusrjgroup standard lock£ call. This deadlock detection
is only valid for processes that are locking files or records on a single system.
Deadlocks can only potentially occur when the system is about to put a record
locking system call to sleep. A search is made for constraint loops of
processes that would cause the system call to sleep indefinitely. If such a
situation is found, the locking system call will fail and set errno to the
deadlock error number. If a process wishes to avoid the use of the systems
deadlock detection, it should set its locks using F _GETLK instead of
F_GETLI<W.

FILE AND RECORD LOCKING 7·1 7

Selecting Advisory or Mandatory Lock
ing

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the
1/0 system calls is determined at the time the calls are made and by the state
of the permissions on the file [see chmod(2)] . For locks to be under manda
tory enforcement, the file must be a regular file with the set-group-ID bit on
and the group-execute permission off. If either condition fails, all record locks
are advisory. Mandatory enforcement can be assured by the following code:

#illclude <sys/types .lP
#illclude <sys/stat.lP

int mode;
struct stat l::Rlf ;

if (stat(filename , Sblf) < 0) {
pen-or(•program•) ;
exit (2) ;
}
I* ·get currently set mode *I
mode = bof . st_mode ;
I* reDDVe 9Z0JP execute pezmission fran mode *I
mode &= - c s_n:x:s>>3) ;
I* set ' set 9Z0JP id bit' in mode *I
mode (= S_ISGm;
if (chnDd(filename , m:Xle) < 0) {
pen-or(•program•) ;
exit(2) ;
}

7·1 8 PROGRAMMER'S GUIDE

Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type of execute
permission set on them. This is because the operating system does not obey
the record locking protocol when executing a file.

The chmod(l) command can also be easily used to set a ftle to have man
datory locking. This can be done with the command,

chmod + 1 filename

The ls(l) command was also changed to show this setting when you ask for
the long listing format:

Is -1 filename

causes the following to be printed:

-�- -1--- 1 abc other 1048576 Dec 3 1 1 : 44 filename

Caveat Emptor-Mandatory Locking

• Mandatory locking only protects those portions of a ftle that are
locked. Other portions of the ftle that are not locked may be accessed
according to normal UNIX System file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all such pieces before any 1/0 begins.
Thus advisory enforcement is sufficient for all programs that perform in
this way.

• As stated earlier, arbitrary programs should not have unrestricted
access permission to ftles that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every 1/0 request.

FILE AND RECORD LOCKING 7·1 1

Selecting Advisory or Mandatory Locking

Record Locking and Future Releases of the
UNIX System

Provisions have been made for file and record locking in a UNIX System
environment. In such an environment the system on which the locking pro
cess resides may be remote from the system on which the file and record locks
reside. In this way multiple processes on different systems may put locks
upon a single file that resides on one of these or yet another system. The
record locks for a file reside on the system that maintains the file. It is also
important to note that deadlock detectionfavoidance is only determined by
the record locks being held by and for a single system. Therefore, it is neces
sary that a process only hold record locks on a single system at any given
time for the deadlock mechanism to be effective. If a process needs to main
tain locks over several systems, it is suggested that the process avoid the
sleep-when-blocked features of fcntl or lock£ and that the process maintain
its own deadlock detection. If the process uses the sleep-when-blocked
feature, then a timeout mechanism should be provided by the process so that
it does not hang waiting for a lock to be cleared.

7·20 PROGRAMMER'S GUIDE

8 Shared Libraries

Introduction

Using a Shared Library
What is a Shared Library?
The UNIX System Shared Libraries
Building an a.out File
Coding an Application
Deciding Whether to Use a Shared Library
More About Saving Space

• How Shared Libraries Save Space

• How Shared Libraries Are Implemented

• How Shared Libraries Might Increase Space

Usage

Identifying a.out Files that Use Shared Libraries
Debugging a.out Files that Use Shared Libraries

Building a Shared Library
The Building Process

• Step 1 : Choosing Region Addresses

• Step 2: Choosing the Target Library Pathname

• Step 3: Selecting Library Contents

• Step 4: Rewriting Existing Library Code

• Step 5: Writing the Library Specification File

• Step 6: Using mkshlib to Build the Host and

Target

Guidelines for Writing Shared Library Code
• Choosing Library Members

• Changing Existing Code for the Shared Library

8-1

8-2
8-2
8-3
8-4
8-5
8-5
8-6
8-6
8-9

8- 12
8-13
8-14

8-15
8-15
8-15
8-1 8
8-18
8-19
8-19

8-22
8-23
8-25
8-27

SHARED LIBRARIES

Shared Libraries

• Using the Specification File for Compatibility

• Importing Symbols

• Referencing Symbols in a Shared Library from

Another Shared Library

• Providing Archive Library Compatibility

• Tuning the Shared Library Code

• Checking for Compatibility

• Checking Versions of Shared Libraries Using

chkshlib(l)

An Example
• The Original Source

• Choosing Region Addresses and the Target

Pathname

• Selecting Library Contents

• Rewriting Existing Code

• Writing the Specification File

• Building the Shared Library

• Using the Shared Library

Summary

i i PROGRAMMER'S GUIDE

8-30
8-3 1

8-38
8-40
8-41
8-44

8-44
8-48
8-48

8-53
8-53
8-54
8-55
8-57
8-57

8-59

Introduction

Efficient use of disk storage space, memory, and computing power is
becoming increasingly important. A shared library can offer savings in all
three areas. For example, if constructed properly, a shared library can make
a.out files (executable object files) smaller on disk storage and processes (a.out
files that are executing) smaller in memory.

The first part of this chapter, " Using a Shared Library, " is designed to
help you use UNIX System V shared libraries. It describes what a shared
library is and how to use one to build a.out files. It also offers advice about
when and when not to use a shared library and how to determine whether an
a.out uses a shared library.

The second part in this chapter, " Building a Shared Library, " describes
how to build a shared library. You do not need to read this part to use shared
libraries. It addresses library developers, advanced programmers who are
expected to build their own shared libraries. Specifically, this part describes
how to use the UNIX System tool mkshlib(l) (documented in the
Programmer's Reference Manual) and how to write C code for shared libraries
on a UNIX System. An example is included. This part also describes how to
use the tool chkshlib(l), which helps you check the compatibility of versions
of shared libraries. Read this part of the chapter only if you have to build a
shared library.

Shared libraries are a new feature of UNIX System V Release 3 .0 and
later. An executable object file that needs shared libraries will not run on
previous releases of UNIX System V.

SHARED LIBRARIES 8- 1

Using a Shared Library

If you are accustomed to using libraries to build your applications pro
grams, shared libraries should blend into your work easily. This part of the
chapter explains what shared libraries are and how and when to use them on
the UNIX System.

What is a Shared Library?

A shared library is a file containing object code that several a.out files
may use simultaneously while executing. When a program is compiled or link
edited with a shared library, the library code that defines the program's exter
nal references is not copied into the program's object file. Instead, a special
section called .lib that identifies the library code is created in the object file.
When the UNIX System executes the resulting a.out file, it uses the informa
tion in this section to bring the required shared library code into the address
space of the process.

The implementation behind these concepts is a shared library with two
pieces. The first, called the host shared library, is an archive that the link edi
tor searches to resolve user references and to create the .lib section in a.out
files. The structure and operation of this archive is the same as any archive
without shared library members. For simplicity, however, in this chapter
references to archives mean archive libraries without shared library members .

The second part of a shared library is the target shared library. This is the
file that the UNIX System uses when running a.out files built with the host
shared library. It contains the actual code for the routines in the library.
Naturally, it must be present on the the system where the a.out files will be
run.

A shared library offers several benefits by not copying code into a.out
files. It can

• save disk storage space

Because shared library code is not copied into all the a.out files that use
the code, these files are smaller and use less disk space.

• save memory

By sharing library code at run time, the dynamic memory needs of
processes are reduced.

8-2 PROGRAMMER'S GUIDE

Using a Shared Library

• make executable ftles using library code easier to maintain

As mentioned above, shared library code is brought into a process'
address space at run time. Updating a shared library effectively
updates all executable ftles that use the library, because the operating
system brings the updated version into new processes. If an error in
shared library code is fixed, all processes automatically use the
corrected code.

Archive libraries cannot, of course, offer this benefit: changes to
archive libraries do not affect executable files, because code from the
libraries is copied to the files during link editing, not during execution.

" Deciding Whether to Use a Shared Library " in this chapter describes shared
libraries in more detail.

The UNIX System Shared Libraries

Shared libraries are part of the SDS core. The networking library included
with the Networking Support Utilities is also a shared library. Other shared
libraries may be available now from software vendors and in the future from
AT&T.

Shared
Library

C Library

Networking Library

Host Library
Command Line Option

-lc_s

-lnsLs

Target Library
Pathname

/shlib /libc_s

fshlib /libnsLs

Notice thes suffix on the library names; we use it to identify both host
and target shared libraries. For example, it distinguishes the standard relocat
able C library libc from the shared C library libc_s. Thes also indicates
that the libraries are statically linked.

The relocatable C library is still available with releases of the C Program
ming Language Utilities; this library is searched by default during the compila
tion or link editing of C programs. All other archive libraries from previous
releases of the system are also available. Just as you use the archive libraries'
names, you must use a shared library's name when you want to use it to build

SHARED LIBRARIES 8·3

Using a Shared Library

your a.out files. You tell the link editor its name with the -1 option, as shown
below.

Building an a.out File

You direct the link editor to search a shared library the same way you
direct a search of an archive library on the UNIX System:

cc file.c -o file -llibrary-file

To direct a search of the networking library, for example, you use the fol
lowing command line.

cc file.c -o file -1nsLs . . .

And to link all the flles in your current directory together with the shared
C library you'd use the following command line:

cc •.c -1c_s

Normally, you should include the -1c_s argument after all other -1 argu
ments on a command line. The shared C library will then be treated like the
relocatable C library, which is searched by default after all other libraries
specified on a command line are searched.

A shared library might be built with references to other shared libraries.
That is, the first shared library might contain references to symbols that are
resolved in a second shared library. In this case, both libraries must be given
on the cc command line, in the order of the dependencies.

For example, if the library libX.a references symbols in the shared C
library, the command line would be as follows:

cc •.c -1X-s -1c_s

Notice that the shared library containing the references to symbols must
be listed on the command line before the shared library needed to resolve
those references. For more information on inter-library dependencies, see the
section " Referencing Symbols in a Shared Library from Another Shared
Library " later in this chapter.

8·4 PROGRAMMER'S GUIDE

Using a Shared Library

Coding an Application

Application source code in C or assembly language is compatible with
both archive libraries and shared libraries. As a result, you should not have to
change the code in any applications you already have when you use a shared
library with them. When coding a new application for use with a shared
library, you should just observe your standard coding conventions.

However, do keep the following two points in mind, which apply when
using either an archive or a shared library:

• Don't define symbols in your application with the same names as
those in a library.

Although there are exceptions, you should avoid redefining standard
library routines, such as printf(3S) and strcmp(3C). Replacements that
are incompatibly defined can cause any library, shared or unshared, to
behave incorrectly.

• Don't use undocumented archive routines.

Use only the functions and data mentioned on the manual pages
describing the routines in Section 3 of the Programmer's Reference
Manual .

Deciding Whether to Use a Shared Library

You should base your decision to use a shared library on whether it saves
space in disk storage and memory for your program. A well-designed shared
library almost always saves space. So, as a general rule, use a shared library
when it is available.

To determine what savings are gained from using a shared library, you
might build the same application with both an archive and a shared library,
assuming both kinds are available. Remember, that you may do this because
source code is compatible between shared libraries and archive libraries. (See
the above section, 11 Coding an Application. 11) Then compare the two versions
of the application for size and performance. For example,

SHARED LIBRARIES 8·5

Using a Shared Library

$ cat hello . c
main()
{

printf ("Hello\n") ;

$ cc -o unshared hello . c
$ cc -o shared hello . c -lc_s
$ size unshared shared
unshared: 8680 + 1388 + 2248 = 123 16
shared: 300 + 680 + 2248 = 3228

If the application calls only a few library members, it is possible that using
a shared library could take more disk storage or memory. The following sec
tion gives a more detailed discussion about when a shared library does and
does not save space.

When making your decision about using shared libraries, also remember
that they are not available on UNIX System V releases prior to Release 3.0 . If
your program must run on previous releases, you will need to use archive
libraries.

More About Saving Space

This section is designed to help you better understand why your programs
will usually benefit from using a shared library. It explains

• how shared libraries save space that archive libraries cannot

• how shared libraries are implemented on the UNIX System

• how shared libraries might increase space usage

How Shared Libraries Save Space

To better understand how a shared library saves space, we need to com
pare it to an archive library.

8-6 PROGRAMMER'S GUIDE

Using a Shared Library

A host shared library resembles an archive library in three ways. First, as
noted earlier, both are archive files. Second, the object code in the library
typically defines commonly used text symbols and data symbols. The sym
bols defined inside, and made visible outside, the library are external symbols.
Note that the library may also have imported symbols, symbols that it uses
but usually does not define. Third, the link editor searches the library for
these symbols when linking a program to resolve its external references. By
resolving the references, the link editor produces an executable version of the
program, the a.out file.

Note that the link editor on the UNIX System is a static linking tool;
static linking requires that all symbolic references in a program be
resolved before the program may be executed. The link editor uses static
linking with both an archive library and a shared library.

Although these similarities exist, a shared library differs significantly from
an archive library. The major differences are related to how the libraries are
handled to resolve symbolic references, a topic already discussed briefly.

Consider how the UNIX System handles both types of libraries during
link editing. To produce an a.out file using an archive library, the link editor
copies the library code that defines a program's unresolved external reference
from the library into appropriate .text and .data sections in the program's
object file. In contrast, to produce an a.out file using a shared library, the link
editor copies from the shared library into the program's object file only a
small amount of code for initialization of imported symbols. (See the section
" Importing Symbols " later in the chapter for more details on imported sym
bols.) For the bulk of the library code, it creates a special section called .lib in
the file that identifies the library code needed at run time and resolves the
external references to shared library symbols with their correct values. When
the UNIX System executes the resulting a.out file, it uses the information in
the .lib section to bring the required shared library code into the address
space of the process.

Figure 8-1 depicts the a.out files produced using a regular archive version
and a shared version of the standard C library to compile the following pro
gram:

SHARED LIBRARIES 8-7

Using a Shared Library

mam< >
{

print£ ("Haw do you like this manual?\n" } ;

result = stranp("I do . " , answer } ;

Notice that the shared version is smaller. Figure 8-2 depicts the process
images in memory of these two files when they are executed.

a.out Using

Archive Ubrary

FILE HEADER

program .text

library .text

for printf(3S) and

strcmp(3C)

program .data

library .data

for printf(3S) and
strcmp(3C)

SYMBOL TABLE

STRING TABLE

Created by the link editor.
Refers to library code for

print and strcmp(3C)

�

Copied to file by
the link editor

a.out Using

Shared Library

FILE HEADER

program .text

program .data

.lib

SYMBOL TABLE

STRING TABLE

Figure 8-1 : a.out Files Created Using an Archive Library and a Shared Library

8·8 PROGRAMMER'S GUIDE

Using a Shared Library

Now consider what happens when several a.out files need the same code
from a library. When using an archive library, each file gets its own copy of
the code. This results in duplication of the same code on the disk and in
memory when the a.out files are run as processes. In contrast, when a shared
library is used, the library code remains separate from the code in the a.out
files, as indicated in Figure 8-2. This separation enables all processes using
the same shared library to reference a single copy of the code.

Address

Space

Archive

Version

Shared

Version

.. : . · ·

May be brought
to other processes

simultaneously

,.,.

: � · Brought into process'

: 4 : address space
" ' ' ' ' ! ' ' ' ' " '

I
I

library code referred

to by .lib

Figure 8-2: Processes Using an Archive and a Shared Library

How Shared Libraries Are Implemented

Now that you have a better understanding of how shared libraries save
space, you need to consider their implementation on the UNIX System to

·

understand how they might increase space usage (this happens seldomly).
The following paragraphs describe host and target shared libraries, the branch
table, and then, how shared libraries might increase space usage.

The Host Library and Target Library

As previously mentioned, every shared library has two parts: the host
library used for linking that resides on the host machine and the target library
used for execution that resides on the target machine. The host machine is
the machine on which you build an a.out file; the target machine is the
machine on which you run the file. Of course, the host and target may be the
same machine, but they don't have to be.

SHARED LIBRARIES 8-9

Using a Shared Library

The host library is just like an archive library. Each of its members (typi
cally a complete object file) defines text and data symbols in its symbol table.
The link editor searches this file when a shared library is used during the
compilation or link editing of a program.

The search is for definitions of symbols referenced in the program but not
defined there. However, as mentioned earlier, the link editor does not copy
the library code defining the symbols into the program's object file. Instead, it
uses the library members to locate the definitions and then places symbols in
the file that tell where the library code is. The result is the special section in
the a.out file mentioned earlier (see the section 11 What is a Shared Library? 11)
and shown in Figure 8-1 as .lib.

The target library used for execution resembles an a.out file. The UNIX
Operating System reads this file during execution if a process needs a shared
library. The special .lib section in the a.out file tells which shared libraries
are needed. When the UNIX System executes the a.out file, it uses this sec
tion to bring the appropriate library code into the address space of the pro
cess. In this way, before the process starts to run, all required library code has
been made available.

Shared libraries enable the sharing of .text sections in the target library,
which is where text symbols are defined. Although pmcesses that use the
shared library have their own virtual address spaces, they share a single phy
sical copy of the library's text among them. That is, the UNIX System uses
the same physical code for each process that attaches a shared library's text.

The target library cannot share its .data sections. Each process using data
from the library has its own private data region (contiguous area of virtual
address space that mirrors the .data section of the target library) . Processes
that share text do not share data and stack area in order that they do not
interfere with one another.

As suggested above, the target library is a lot like an a.out file, which can
also share its text, but not its data. Processes must have execute permission
before a target library can execute an a.out file that uses the library.

The Branch Table

When the link editor resolves an external reference in a program, it gets
the address of the referenced symbol from the host library. This is because a
static linking loader like ld binds symbols to addresses during link editing. In
this way, the a.out file for the program has an address for each referenced
symbol.

8·1 0 PROGRAMMER'S GUIDE

Using a Shared Library

What happens if library code is updated and the address of a symbol
changes? Nothing happens to an a.out file built with an archive library,
because that file already has a copy of the code defining the symbol. (Even
though it isn't the updated copy, the a.out file will still run.) However, the
change can adversely affect an a.out file built with a shared library. This file
has only a symbol telling where the required library code is. If the library
code were updated, the location of that code might change. Therefore, if the
a.out file ran after the change took place, the operating system could bring in
the wrong code. To keep the a.out file current, you might have to recompile a
program that uses a shared library after each library update.

To prevent the need to recompile, a shared library is implemented with a
branch table on the UNIX System. A branch table associates text symbols
with absolute addresses that do not change even when library code is
changed. Each address labels a jump instruction to the address of the code
that defines a symbol. Instead of being directly associated with the addresses
of code, text symbols have addresses in the branch table.

Figure 8-3 shows two a.out files executing a call to print£(35). The pro
cess on the left was built using an archive library. It already has a copy of the
library code defining the printf(3S) symbol. The process on the right was
built using a shared library. This file references an absolute address (10) in
the branch table of the shared library at run time; at this address, a jump
instruction references the needed code.

SHARED LIBRARIES 8-1 1

Using a Shared Library

A shared library uses

a branch table.

An archive library does

not use a branch table.

call print£(35

Figure 8-3: A Branch Table in a Shared Library

.7
Branch

Table 300

Shared
Library

Data symbols do not have a mechanism to prevent a change of address
between shared libraries. The tool chkshlib(l) compares a.out files with a
shared library to check compatibility and help you decide if the files need to
be recompiled. See " Checking Versions of Shared Libraries Using
chkshlib(l) . "

How Shared Libraries Might Increase Space Usage

A target library might add space to a process. Recall from " How Shared
Libraries are Implemented " in this chapter that a shared library's target file
may have both text and data regions connected to a process. While the text
region is shared by all processes that use the library, the data region is not.
Every process that uses the library gets its own private copy of the entire
library data region. Naturally, this region adds to the process's memory

8-1 2 PROGRAMMER'S GUIDE

Using a Shared Library

requirements. As a result, if an application uses only a small part of a shared
library's text and data, executing the application might require more memory
with a shared library than without one. For example, it would be unwise to
use the shared C library to access only strcmp(3C). Although sharing
strcmp(3C) saves disk storage and memory, the memory cost for sharing all
the shared C library's private data region outweighs the savings. The archive
version of the library would be more appropriate.

A host library might add space to an a.out ffie. Recall that UNIX System
V Release 3.0 uses static linking, which requires that all external references in
a program be resolved before it is executed. Also recall that a shared library
may have imported symbols, which are used but not defined by the library.
To resolve these references, the link editor has to add to the a.out initializa
tion code defining the referenced imported symbols ffie. This code increases
the size of the a.out ffie.

Identifying a.out Files that Use Shared
Libraries

Suppose you have an executable file and you want to know whether it
uses a shared library. You can use the dump(l) command (documented in the
Programmer's Reference Manual) to look at the section headers for the file:

dump -hv a.out

If the ffie has a .lib section, a shared library is needed. If the a.out does
not have a .lib section, it does not use shared libraries.

To display the libraries used by a.out, use the -L option as shown in the
following example:

dump -L a.out

SHARED LIBRARIES 8-1 3

Using a Shared Library

Debugging a.out Files that Use Shared
Libraries

sdb reads the shared libraries' symbol tables and performs as documented
(in the Programmer's Reference Manual) using the available debugging informa
tion. The branch table is hidden so that functions in shared libraries can be
referenced by their names, and the M command lists the names of shared
libraries' target files used by the executable file, among other information.

Shared library data are not dumped to core files, however. So, if you
encounter an error that results in a core dump and does not appear to be in
your application code, you may find debugging easier if you rebuild the appli
cation with the archive version of the library used.

8-1 4 PROGRAMMER'S GUIDE

Building a Shared Library

This part of the chapter explains how to build a shared library. It covers
the major steps in the building process, the use of the UNIX System tool
mkshlib(l) that builds the host and target libraries, and some guidelines for
writing shared library code. There is an example at the end of this part which
demonstrates the major features of mkshlib and the steps in the building pro
cess.

This part assumes that you are an advanced C programmer faced with the
task of building a shared library. It also assumes you are familiar with the
archive library building process. You do not need to read this part of the
chapter if you only plan to use the UNIX System shared libraries or other
shared libraries that have already been built.

The Building Process

To build a shared library on the UNIX System, you have to complete six
major tasks:

• choosing region addresses

• choosing the pathname for the shared library target file

• selecting the library contents

• rewriting existing library code to be included in the shared library

• writing the library specification file

• using the mkshlib tool to build the host and target libraries

Here each of these tasks is discussed.

Step 1: Choosing Region Addresses

The first thing you need to do is choose region addresses for your shared
library.

Shared library regions on the 386-based computer correspond to memory
management unit (MMU) segment size, each of which is 4 MB. The following
table gives a list of the segment assignments on the 386-based computer (as of
the copyright date for this guide) and shows what virtual addresses are avail
able for libraries you might build.

SHARED LIBRARIES 8- 1 5

Building a Shared Library ------------------

Start
Address Contents

OxAOOOOOOO Reserved for AT & T

UNIX System Shared C Library
AT&T Networking Library

OxA3COOOOO

OxA4000000 Generic Database Library
OxA4400000
OxA4800000
OxA4COOOOO

OxASOOOOOO Generic Statistical Library
OxA5400000
OxA5800000
OxASCOOOOO

OxA6000000 Generic User Interface Library
OxA6400000
OxA6800000
OxA6COOOOO

OxA7000000 Generic Screen Handling Library
OxA7400000
OxA7800000
OxA7COOOOO

OxA8000000 Generic Graphics Library
OxA8400000
OxA8800000
OxABCOOOOO

OxA9000000 Generic Networking Library
OxA9400000
OxA9800000
OxA9COOOOO

8-1 6 PROGRAMMER'S GUIDE

Target
Pathname

jshlib flibc_s
Jshlib JlibnsLs

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Start
Address

OxAAOOOOOO

OxAFCOOOOO

OxBOOOOOOO

OxBFCOOOOO

Building a Shared Library

Contents

Generic - to be defined

For private use

Target
Pathname

Unassigned

Unassigned

What does this table tell you? First, the UNIX System shared C library
and the networking library reside at the pathnames given above and use
addresses in the reserved range. If you build a shared library that uses
reserved addresses you run the risk of conflicting with future products.

Second, a number of segments are allocated for shared libraries that pro
vide various services such as graphics, database access, and so on. These
categories are intended to reduce the chance of address conflicts among com
mercially available libraries. Although two libraries of the same type may
conflict, that doesn't matter. A single process should not usually need to use
two shared libraries of the same type. If the need arises, a program can use
one shared library and one archive library.

Any number of libraries can use the same virtual addresses, even on the
same machine. Conflicts occur only within a single process, not among
separate processes. Thus two shared libraries can have the same region
addresses without causing problems, as long as a single a.out file doesn't
need to use both libraries.

Third, several segments are reserved for private use. If you are building a
large system with many a.out files and processes, shared libraries might
improve its performance. As long as you don't intend to release the shared
libraries as separate products, you should use the private region addresses.
You can put your shared libraries into these segments and avoid conflicting
with commercial shared libraries. You should also use these segments when

SHARED LIBRARIES 8·1 7

Building a Shared Library

you will own all the a.out files that access your shared library. Don't risk
address conflicts .

If you plan to build a commercial shared library, you are strongly
encouraged to provide a compatible, relocatable archive as well. Some of
your customers might not find the shared library appropriate for their appli
cations. Others might want their applications to run on versions of the
UNIX System without shared library support.

Step 2: Choosing the Target Library Pathname

After you choose the region addresses for your shared library, you should
choose the pathname for the target library. We chose jshlibflibc_s for the
shared C library and jshlibflibnsLs for the networking library. (As men
tioned earlier, we use the _s suffix in the pathnames of all statically linked
shared libraries.) To choose a pathname for your shared library, consult the
established list of names for your computer or see your system administrator.
Also keep in mind that shared libraries needed to boot a UNIX System should
normally be located in jshlib; other application libraries normally reside in
jusrjlib or in private application directories. Of course, if your shared library
is for personal use, you can choose any convenient pathname for the target
library.

Step 3: Selecting Library Contents

Selecting the contents for your shared library is the most important task in
the building process. Some routines are prime candidates for sharing; others
are not. For example, it's a good idea to include large, frequently used rou
tines in a shared library but to exclude smaller routines that aren't used as
much. What you include will depend on the individual needs of the program
mers and other users for whom you are building the library. There are some
general guidelines you should follow, however. They are discussed in the
section " Choosing Library Members " in this chapter. Also see the guidelines
in the following sections: " Importing Symbols, " " Referencing Symbols in a
Shared Library from Another Shared Library, " and " Tuning the Shared
Library Code. "

8- 1 8 PROGRAMMER'S GUIDE

Building a Shared Library

Step 4: Rewriting Existing Library Code

If you choose to include some existing code from an archive library in a
shared library, changing some of the code will make the shared code easier to
maintain. See the section " Changing Existing Code for the Shared Library "
in this chapter.

Step 5: Writing the Library Specification File

After you select and edit all the code for your shared library, you have to
build the shared library specification file. The library specification file con
tains all the information that mkshlib needs to build both the host and target
libraries. An example specification file is given in the section towards the end
of the chapter, " An Example. " Also, see the section " Using the Specification
File for Compatibility " in this chapter. The contents and format of the specif
ication file are given by the following directives (see also the mkshlib(l)
manual page).

All directives that are followed by multi-line specifications are valid until
the next directive or the end of file.

#address sectname address
Specifies the start address, address, of section sectname for
the target file. This directive is typically used to specify
the start addresses of the .text and .data sections.

#target pathname

#branch

Specifies the pathname, pathname, of the target shared
library on the target machine. This is the location where
the operating system looks for the shared library during
execution. Normally, pathname will be an absolute path
name, but it does not have to be.

This directive must be specified exactly once per specifica
tion file.

Starts the branch table specifications. The lines following
this directive are taken to be branch table specification
lines.

Branch table specification lines have the following format:

funcname <white space> position

funcname is the name of the symbol given a branch table
entry and position specifies the position of funcname's

SHARED LIBRARIES 8-1 9

Building a Shared Library

#objects

branch table entry. position may be a single integer or a
range of integers of the form position1 -position2. Each
position must be greater than or equal to one. The same
position cannot be specified more than once, and every
position from one to the highest given position must be
accounted for.

If a symbol is given more than one branch table entry by
associating a range of positions with the symbol or by
specifying the same symbol on more than one branch
table specification line, then the symbol is defined to have
the address of the highest associated branch table entry.
All other branch table entries for the symbol can be
thought of as empty slots and can be replaced by new
entries in future versions of the shared library.

Finally, only functions should be given branch table
entries, and those functions must be external.

This directive must be specified exactly once per shared
library specification file .

Specifies the names of the object files constituting the tar
get shared library. The lines following this directive are
taken to be the list of input object files in the order they
are to be loaded into the target. The list simply consists
of each filename followed by a newline character. This
list of objects will be used to build the shared library.

This directive must be specified exactly once per shared
library specification file.

#objects noload
Specifies the ordered list of host shared libraries to be
searched to resolve references to symbols not defined in
the library being built and not imported. Resolution of a
reference in this way requires a version of the symbol
with an absolute address to be found in one of the listed
libraries. It is considered an error if a non-shared version
of a symbol is found during the search for a shared ver
sion of the symbol.

Each name specified is assumed to be a pathname to a
host or an argument of the form -IX, where libX.a is the
name of a file in the default library locations. This

8·20 PROGRAMMER'S GUIDE

#init object

Building a Shared Library

behavior is identical to that of ld, and the -L option can
be used on the command line to specify other directories
in which to locate these archives.

Specifies that the object file, object, requires initialization
code. The lines following this directive are taken to be
initialization specification lines.

Initialization specification lines have the following format:

ptr <white space> import

ptr is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file,
object. The initialization code generated for each such line
is of the form:

ptr = &import ;

All initializations for a particular object file must l: given
once, and multiple specifications of the same objec. file
are not allowed.

#hide linker [*]
This directive changes symbols that are normally external
into static symbols, local to the library being created. A
regular expression may be given [sh(l), egrep(l) in the
User'sjSystem Administrator's Reference], in which case all
external symbols matching the regular expression are hid
den; the #export directive can be used to counter this
effect for specified symbols.

The optional 11 '" 11 is equivalent to the directive

#hide linker
*

and causes all external symbols to be made into static
symbols.

All symbols specified in #init and #branch directives are
assumed to be external symbols, and cannot be changed
into static symbols using the #hide directive.

#export linker [*]
Specifies those symbols that a regular expression in a
#hide directive would normally cause to be hidden but

SHARED LIBRARIES 8-21

Building a Shared Library

that should nevertheless remain external . For example,

#hide linker *
#export linker

one
blo

causes all symbols except one, two, and those used in
#branch and #init entries to be tagged as static.

#ident string Specifies a string, string, to be included in the .comment
section of the target shared library and the .comment sec
tions of every member of the host shared library.

Specifies a comment. The rest of the line is ignored.

Step 6: Using mkshlib to Build the Host and Target

The UNIX System command mkshlib(l) builds both the host and target
libraries. mkshlib invokes other tools such as the assembler, as(l }, and link
editor, ld(l) . Tools are invoked through the use of execvp [see exec(2)],
which searches directories in a user's $PATH environment variable. Also,
prefixes to mkshlib are parsed in much the same manner as prefixes to the
cc(l) command and invoked tools are given the prefix, where appropriate. For
example, 3bmkshlib invokes 3bld. These commands all are documented in
the Programmer's Reference Manual.

The user input to mkshlib consists of the library specification file and
command line options. The shared library build tool has the following syntax:

mkshlib -s specfil -t target [-h host] [-L dir . . .] [-n] [-q]

-s specfil Specifies the shared library specification file, specfil. This file
contains all the information necessary to build a shared
library.

-t target Specifies the name, target, of the target shared library pro
duced on the host machine. When target is moved to the tar
get machine, it should be installed at the location given in the
specification file (see the #target directive in the section
" Writing the Library Specification File ") . If the -n option is
given, then a new target shared library will not be generated.

8·22 PROGRAMMER'S GUIDE

-h host

-n

-L dir

-q

Building a Shared Library

Specifies the name of the host shared library, host. If this
option is not given, then the host shared library will not be
produced.

Prevents a new target shared library from being generated.
This option is useful when producing only a new host shared
library. The -t option must still be supplied since a version of
the target shared library is needed to build the host shared
library.

Changes the algorithm of searching for the host shared
libraries specified with the #objects noload directive to cause
the directories in dir to be searched before the default direc
tories. The -L option can be specified multiple times on the
command line, in which case the directories given with the -L
options are searched in the order given on the command line,
before the default directories.

Suppresses the printing of warning messages.

Guidelines for Writing Shared Library Code

Because the main advantage of a shared library over an archive library is
sharing and the space it saves, these guidelines stress ways to increase sharing
while avoiding the disadvantages of a shared library. The guidelines also
stress upward compatibility. When appropriate, we describe our experience
with building the shared C library to illustrate the ways that following a par
ticular guideline helped us.

We recommend that you read these guidelines once from beginning to
end to get a perspective of the things you need to consider when building a
shared library, then use it as a checklist to guide your planning and decision
making.

Before we consider these guidelines, let's consider the restrictions to build
ing a shared library common to all the guidelines. These restrictions involve
static linking. Here's a summary of them, some of which are discussed in
more detail later. Keep them in mind when reading the guidelines in this sec
tion.

SHARED LIBRARIES 8-23

Building a Shared Library

• External symbols have fixed addresses.

If an external symbol moves, you have to re-link all a.out files that use
the library. This restriction applies both to text and data symbols.

Use of the #hide directive to limit externally visible symbols can help
avoid problems in this area. (See " Use #hide and #export to Limit
Externally Visible Symbols " in the " Using the Specification File for
Compatibility " section for more details).

• If the library's text changes for one process at run time, it changes for
all processes.

• If the library uses a symbol directly, that symbol's run time value
(address) must be known when the library is built.

• Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library, and they
can be different for different processes. You can use imported symbols
by adding an indirection through a pointer in the library's data.

8-24 PROGRAMMER'S GUIDE

Building a Shared Library

Choosing Library Members

Include Large, Frequently Used Routines

Large, frequently used routines are prime candidates for sharing. Placing
them in a shared library saves code space for individual a.out files and saves
memory, too, when several concurrent processes need the same code.
printf(3S) and related C library routines (which are documented in the
Programmer's Reference Manual) are good examples.

When we built the shared .C library

The printf(3S) family of routines is used frequently. Con
sequently, we included printf(3S) and related routines in
the shared C library.

Exclude Infrequently Used Routines

Putting infrequently used routines in a shared library can degrade perfor
mance, particularly on paging systems. Traditional a.out files contain all code
they need at run ·time. By definition, the code in an a.out file is (at least dis
tantly) related to the process. Therefore, if a process calls a function, it may
already be in memory because of its proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to
occur, because the surrounding library code may be unrelated to the calling
process. Only rarely will any single a.out file use everything in the shared C
library. If a shared library has unrelated functions, and unrelated processes
make random calls to those functions, the locality of reference may be
decreased. The decreased locality may cause more paging activity and,
thereby, decrease performance. See also " Organize to Improve Locality " in
the " Tuning the Shared Library Code " section.

Exclude Routines that Use Much Static Data

Routines that use much static data increase the size of processes. As
" How Shared Libraries are Implemented " and " Deciding Whether to Use a
Shared Library " have explained, every process that uses a shared library gets
its own private copy of the library's data, regardless of how much of the data
is needed. Library data is static: it is not shared and cannot be loaded selec
tively with the provision that unreferenced pages may be removed from the
working set.

SHARED LIBRARIES 8-25

Building a Shared Library

For example, getgrent(3C), which is documented in the Programmer's
Reference Manual, is not used by many standard UNIX System commands.
Some versions of the module define over 1400 bytes of unshared, static data.
It probably should not be included in a shared library. You can import global
data, if necessary, but not local, static data .

Exclude Routines that Complicate Maintenance

All external symbols must remain at constant addresses. The branch table
makes this easy for text symbols, but data symbols don't have an equivalent
mechanism. The more data a library has, the more likely some of them will
have to change size. Any change in the size of external data may affect sym
bol addresses and break compatibility.

Include Routines the Library Itself Needs

It usually pays to make the library self-contained. For example, printf(3S)
requires much of the standard 1/0 library. A shared library containing
printf(3S) should contain the rest of the standard IJO routines, too.

8-26 PROGRAMMER'S GUIDE

Building a Shared Library

This guideline should not take priority over the others in this section. If
you exclude some routine that the library itself needs based on a previ
ous guideline, consider leaving the symbol out of the library and import
ing it.

Changing Existing Code for the Shared Library

All C code that works in a shared library will also work in an archive
library. However, the reverse is not true because a shared library must expli
citly handle imported symbols. The following guidelines are meant to help
you produce shared library code that is still valid for archive libraries
(although it may be slightly bigger and slower) . The guidelines explain how
to structure data for ease of maintenance, since most compatibility problems
involve restructuring data .

Minimize Global Data

All external data symbols are, of course, visible to applications. This can
make maintenance difficult. You should try to reduce global data, as
described below.

First, try to use automatic (stack) variables. Don't use permanent storage
if automatic variables work. Using automatic variables saves static data space
and reduces the number of symbols visible to application processes.

Second, see whether variables really must be external. Static symbols are
not visible outside the library, so they may change addresses between library
versions. Only external variables must remain constant. See 11 Use #hide and
#export to Limit Externally Visible Symbols 11 in the section 11 Using the
Specification File for Compatibility 11 later in this chapter for further tips.

Third, allocate buffers at run time instead of defining them at compile
time. This does two important things. It reduces the size of the library's data
region for all processes and, therefore, saves memory; only the processes that
actually need the buffers get them. It also allows the size of the buffer to
change from one release to the next without affecting compatibility. Statically
allocated buffers cannot change size without affecting the addresses of other
symbols and, perhaps, breaking compatibility.

SHARED LIBRARIES 8-27

Building a Shared Library

Define Text and Global Data in Separate Source Files

Separating text from global data makes it easier to prevent data symbols
from moving. If new external variables are needed, they can be added at the
end of the old definitions to preserve the old symbols' addresses.

Archive libraries let the link editor extract individual members. This
sometimes encourages programmers to define related variables and text in the
same source file. This works fine for relocatable files, but shared libraries
have a different set of restrictions. Suppose external variables were scattered
throughout the library modules. Then external and static data would be inter
mixed. Changing static data, such as a string, like hello in the following
example, moves subsequent data symbols, even the external symbols:

Before

int head = 0 ;

func ()
{

p = ''bello" ;

int tail = 0 ;

Broken Successor

int head = 0 ;

func()
{

p = "hello, �ld" ;

int tail = 0 ;

Assume the relative virtual address of head is 0 for both examples. The
string literals will have the same address too, but they have different lengths.
The old and new addresses of tail thus might be 12 and 20, respectively. If
tail is supposed to be visible outside the library, the two versions will not be
compatible.

8-28 PROGRAMMER'S GUIDE

Building a Shared Library

The compilation system sometimes defines and uses static data invisibly
to the user (e.g. tables for switch statements). Therefore, it is a mistake
to assume that because you declare no static data in your shared library
that you can ignore the guideline in this section.

Adding new external variables to a shared library may change the
addresses of static symbols, but this doesn't affect compatibility. An a.out file
has no way to reference static library symbols directly, so it cannot depend on
their values. Thus it pays to group all external data symbols and place them
at lower addresses than the static (hidden) data. You can write the specifica
tion file to control this. In the list of object ftles, make the global data files
first.

#objects
data1 . o

lastdata .o
text1 . o
text2 . o

I f the data modules are not first, a seemingly harmless change (such as a
new string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless of the
source file organization. Consequently, you can put all external variables'
definitions in a single source file without a space penalty.

Initialize Global Data

Initialize external variables, including the pointers for imported symbols .
Although this uses more disk space in the target shared library, the expansion
is limited to a single file. mkshlib will give a fatal error if it finds an unini
tialized external symbol.

SHARED LIBRARIES 8-29

Building a Shared Library

Using the Specification File for Compatibility

The way in which you use the directives in the specification file can affect
compatibility across versions of a shared library. This section gives some
guidelines on how to use the directives #branch, #hide, and #export.

Preserve Branch Table Order

You should add new functions only at the end of the branch table. After
you have a specification file for the library, try to maintain compatibility with
previous versions. You may add new functions without breaking old a.out
files as long as previous assignments are not changed. This lets you distribute
a new library without having to re-link all of the a.out files that used a previ
ous version of the library.

Use #hide and #export to Limit Externally Visible Symbols

Sometimes variables (or functions) must be referenced from several object
files to be included in the shared library and yet are not intended to be avail
able to users of the shared library. That is, they must be external so that the
link editor can properly resolve all references to symbols and create the target
shared library, but should be hidden from the user's view to prevent their use.
Such unintended and unwanted use can result in compatibility problems if the
symbols move or are removed between versions of the shared library.

The #hide and #export directives are the key to resolving this dilemma.
The #hide directive causes mkshlib, after resolving all references within the
shared library, to alter the symbol tables of the shared library so that all speci
fied external symbols are made static and unaccessible from user code. You
can specify the symbols to be so treated either individually and/or through
the use of regular expressions.

The #export directive allows you to specify those symbols in the range of
an accompanying #hide directive regular expression which should remain
external. It is simply a convenience.

It is a fatal error to try to explicitly name the same symbol in a #hide and
an #export directive. For example, the following would result in a fatal
error.

#hide linker
one

#export linker
one

8-30 PROGRAMMER'S GUIDE

Building a Shared Library

#export may seem like an unnecessary feature since you could avoid
specifying in the #hide directive those symbols that you do not want to be
made static. However, its usefulness becomes apparent when the shared
library to be built is complicated, and there are many symbols to be made
static. In these cases, it is more efficient to use regular expressions to make all
external variables static and individually list those symbols you need to be
external. The simple example in the section 11 Writing the Library Specification
File 11 demonstrates this point.

Symbols mentioned in the #branch and #init directives are services of
the shared library, must be external symbols, and cannot be made static
through the use of these directives.

When we built the shared C library

Our approach for the shared C library was to hide all data
symbols by default, and then explicitly export symbols
that we knew were needed. The advantage of this
approach is that future changes to the libraries won't
introduce new external symbols (possibly causing name
collisions), unless we explicitly export the new symbols.

We chose the symbols to export by looking at a list of all
the current external symbols in the shared C library and
finding out what each symbol was used for. The symbols
that were global but were only used in the shared C
library were not exported; these symbols will be hidden
from applications code. All other symbols were explicitly
exported.

Importing Symbols

Normally, shared library code cannot directly use symbols defined outside
a library, but an escape hatch exists. You can define pointers in the data area
and arrange for those pointers to be initialized to the addresses of imported
symbols. Library code then accesses imported symbols indirectly, delaying
symbol binding until run time. Libraries can import both text and data

SHARED LIBRARIES 8-3 1

Building a Shared Library

symbols. Moreover, imported symbols can come from the user's code,
another library, or even the library itself. In Figure 8-4, the symbols
_libc.ptrl and _libc.ptr2 are imported from user's code and the symbol
_libc_malloc from the library itself.

Shared Library a.out File

Addresses

ptr 1

ptr2

Figure 8-4: Imported Symbols in a Shared Library

The following guidelines describe when and how to use imported sym
bols.

Imported Symbols that the Library Does Not Define

Archive libraries typically contain relocatable files, which allow undefined
references. Although the host shared library is an archive, too, that archive is
constructed to mirror the target library, which more closely resembles an a.out
file. Neither target shared libraries nor a.out files can have unresolved refer
ences to symbols.

Consequently, shared libraries must import any symbols they use but do
not define. Some shared libraries will derive from existing archive libraries.
For the reasons stated above, it may not be appropriate to include all the
archive's modules in the target shared library. Remember though that if you
exclude a symbol from the target shared library that is referenced from the
target shared library, you will have to import the excluded symbol.

8-32 PROGRAMMER'S GUIDE

Building a Shared Library

Imported Symbols that Users Must Be Able to Redefine

Optionally, shared libraries can import their own symbols. At first this
might appear to be an unnecessary complication, but consider the following.
Two standard libraries, libc and libmalloc, provide a malloc family. Even
though most UNIX System commands use the malloc from the C library, they
can choose either library or define their own.

When we built the shared C library

Three possible strategies existed for the shared C library.
First, we could have excluded the malloc(3C) family.
Other library members would have needed it, and so it
would have been an imported symbol. This would have
worked, but it would have meant less savings.

Second, we could have included the malloc family and
not imported it. This would have given us more savings
for typical commands, but it had a price. Other library
routines call malloc directly, and those calls could not
have been overridden. If an application tried to redefine
malloc, the library calls would not have used the alternate
version. Furthermore, the link editor would have found
multiple definitions of malloc while building the applica
tion. To resolve this the library developer would have to
change source code to remove the custom malloc, or the
developer would have to refrain from using the shared
library.

Finally, we could have included malloc in the shared
library, treating it as an imported symbol. This is what we
did. Even though malloc is in the library, nothing else
there refers to it directly; all references are through an
imported symbol pointer. If the application does not rede
fine malloc, both application and library calls are routed
to the library version. All calls are mapped to the alter
nate, if present.

You might want to permit redefinition of all library symbols in some libraries.
You can do this by importing all symbols the library defines, in addition to
those it uses but does not define. Although this adds a little space and time
overhead to the library, the technique allows a shared library to be one

SHARED LIBRARIES 8-33

Building a Shared Library

hundred percent compatible with an existing archive at link time and run
time.

Mechanics of Importing Symbols

Let's assume a shared library wants to import the symbol malloc. The
original archive code and the shared library code appear below.

Archive Code

extem char *malloc () ;

export()
{

p = malloc(n) ;

Shared Library Code

/* See pointers . c an next page *I

extem char * (*_libc_malloc) () ;

export()
{

p = (*_libc_malloc) (n) ;

Making this transformation is straightforward, but two sets of source code
would be necessary to support both an archive and a shared library. Some
simple macro definitions can hide the transformations and allow source code
compatibility. A header file defines the macros, and a different version of this
header file would exist for each type of library. The -1 flag to cc(l), docu
mented in the Programmer's Reference Manual, would direct the C preprocessor
to look in the appropriate directory to find the desired file.

8-34 PROGRAMMER'S GUIDE

Archive import.h

I* empty *I

Building a Shared Library

Shared import.h

I*
* Macros f= inq:Jorting
* symbols . One #define
* per symbol .
*I

#define malloc (*_libc_malloc)

extern char *malloc () ;

These header files allow one source both to serve the original archive
source and to serve a shared library, too, because they supply the indirections
for imported symbols. The declaration of malloc in import.h actually declares
the pointer _libc_malloc.

Common Source

#include ":inq:x:>rt . h"

extern char *malloc () ;

export()
{

p = malloc(n) ;

SHARED LIBRARIES 8-35

Building a Shared Library

Alternatively, one can hide the #include with #ifdef:

Common Source

#ifdef SIILIB
include ":import . h"

#endif

extem char *malloc() ;

export ()

{

p = IIBlloc(n) ;

Of course the transformation is not complete. You must define the
pointer _Iibc_malloc.

File pointers.c

char * (*_libc_malloc) () = 0 ;

Note that _Iibc_malloc is initialized to zero, because it is an external data
symbol.

Special initialization code sets the pointers. Shared library code should
not use the pointer before it contains the correct value. In the example the
address of malloc must be assigned to _libc_malloc. Tools that build the
shared library generate the initialization code according to the library specifi
cation file.

Pointer Initialization Fragments

A host shared library archive member can define one or many imported
symbol pointers. Regardless of the number, every imported symbol pointer
should have initialization code.

8-36 PROGRAMMER'S GUIDE

Building a Shared Library

This code goes into the a.out file and does two things. First, it creates an
unresolved reference to make sure the symbol being imported gets resolved.
Second, initialization fragments set the imported symbol pointers to their
values before the process reaches main. If the imported symbol pointer can
be used at run time, the imported symbol will be present, and the imported
symbol pointer will be set properly.

Initialization fragments reside in the host, not the target, shared library.
The link editor copies initialization code into a.out files to set imported
pointers to their correct values.

Library specification files describe how to initialize the imported symbol
pointers. For example, the following specification line would set
_Iibc_malloc to the address of malloc:

#init pnalloc . o
libc malloc malloc

When mkshlib builds the host library, it modifies the file pmalloc.o,
adding relocatable code to perform the following assignment statement:

libc malloc = &malloc ;

When the link editor extracts pmalloc.o from the host library, the relocat
able code goes into the a.out file. As the link editor builds the final a.out file,
it resolves the unresolved references and collects all initialization fragments.
When the a.out file is executed, the run time startup routines execute the ini
tialization fragments to set the library pointers.

Selectively Loading Imported Symbols

Defining fewer pointers in each archive member increases the granularity
of symbol selection and can prevent unnecessary objects and initialization
code from being linked into the a.out file. For example, if an archive member
defines three pointers to imported symbols, the link editor will require defini
tions for all three symbols, even though only one might be needed.

You can reduce unnecessary loading by writing C source files that define
imported symbol pointers singly or in related groups. If an imported symbol
must be individually selectable, put its pointer in its own source file (and
archive member) . This will give the link editor a finer granularity to use
when it resolves the reference to the symbol .

SHARED LIBRARIES 8-37

Building a Shared Library

Let's look at an example. In the coarse method, a single source file might
define all pointers to imported symbols:

Old pointers.c

int (*_l:i.bc_ptr1) () = 0 ;
char * (*_l:i.bc_malloc) () = 0 ;
int (* _l:i.bc _ptr2) () = 0 ;

Allowing the loader to resolve only those references that are needed
requires multiple source files and archive members. Each of the new files
defines a single pointer:

File Contents

ptrl.c mt (*_libc_ptr1) () = o ;

pmalloc.c char * (*_libc_malloc) () = 0 ;

ptr2.c mt (*_libc_ptr2) () = 0 ;

Using the three files ensures that the link editor will only look for definitions
for imported symbols and load in the corresponding initialization code in
cases where the symbols are actually used.

Referencing Symbols in a Shared Library from Another
Shared Library

At the beginning of the section " Importing Symbols, " there was a state
ment that " normally, shared libraries cannot directly use symbols defined
outside the shared library. " This is true in general, and you should import all
symbols defined outside the shared library whenever possible.

8·38 PROGRAMMER'S GUIDE

Building a Shared Library

Unfortunately, this is not always possible, as for example when floating
point operations are performed in a shared library to be built. When such
operations are encountered in any C code, the standard C compiler generates
calls to functions to perform the actual operations. These functions are
defined in the C library and are normally resolved in a manner invisible to the
user when an a.out is created, since the cc command automatically causes the
relocatable version of the C library to be searched. These floating-point rou
tine references must be resolved at the time the shared library is being built.
But, the symbols cannot be imported, because their names and usage are
invisible.

The #objects noload directive has been provided to allow symbol refer
ences such as these to be resolved at the time the shared library is built, pro
vided that the symbols are defined in another shared library. If there are
unresolved references to symbols after the object files listed with the #objects
directive have been link edited, the host shared libraries specified with the
#objects noload directive are searched for absolute definitions of the symbols.
The normal use of the directive would be to search the shared version of the
C library to resolve references to floating-point routines.

For this use, the syntax in the specification file would be

#Objects noload
-lc_s

This would cause mkshlib to search for the host shared library libc_s.a in the
default library locations and to use it to resolve references to any symbols left
unresolved in the shared library being built. The -L option can be used to
cause mkshlib to look for the specified library in other than the default loca
tions.

A few notes on usage are in order. When building a shared library using
#objects noload, you must make sure that for each symbol with an
unresolved reference there is a version of the symbol with an absolute defini
tion in the searched host shared libraries, before any relocatable version of
that symbol. mkshlib will give a fatal error if this is not the case, because
relocatable definitions do not have absolute addresses and therefore do not
allow complete resolution of the target shared library.

When using a shared library built with references to symbols resolved
from another shared library, both libraries must be specified on the cc com
mand line. The dependent library must be specified on the command line
before the libraries on which it depends. (See the section 11 Building an a.out
File 11 for more details.) If you provide a shared library which references

SHARED LIBRARIES 8-39

Building a Shared Library

symbols in another shared library, you should make sure that your documen
tation clearly states that users must specify both libraries when building a.out
files.

Finally, as some of the text above hints, it is possible to use #objects
noload to resolve references to any symbols not defined in a shared library, as
long as they are defined in some other shared library. We strongly encourage
you to import as many symbols as possible and to use #objects noload only
when absolutely necessary. Probably you will only need to use this feature to
resolve references to floating-point routines generated by the C compiler.

Importing symbols has several important benefits over resolving refer
ences through #objects noload. First, importing symbols is more flexible in
that it allows you to define your own version of library routines. You can
define your own versions with archive versions of a library. Preserving this
ability with the shared versions helps maintain compatibility.

Importing symbols also helps prevent unexpected name space collisions.
The link editor will complain about multiple definitions of a symbol, refer
ences to which are resolved through the #objects noload mechanism, if a
user of the shared library also has an external definition of the symbol.

Finally, #objects noload has the drawback that both the library you build
and all the libraries on which it depends must be available on all the systems.
Anyone who wishes to create a.out files using your shared library will need to
use the host shared libraries. Also, the targets of all the libraries must be
available on all systems on which the a.out files are to be run.

Providing Archive Library Compatibility

Having compatible libraries makes it easy to substitute one for the other.
In almost all cases, this can be done without makefile or source file changes.
Perhaps the best way to explain this guideline is by example:

8-40 PROGRAMMER'S GUIDE

Building a Shared Library

When we built the shared C library

We had an existing archive library to use as the base. This
obviously gave us code for individual routines, and the
archive library also gave us a model to use for the shared
library itself.

We wanted the host library archive file to be compatible
with the relocatable archive C library. However, we did
not want the shared library target file to include all rou
tines from the archive, because including them all would
have hurt performance.

Reaching these goals was, perhaps, easier than you might
think. We did it by building the host library in two steps.
First, we used the available shared library tools to create
the host library to match exactly the target. The resulting
archive file was not compatible with the archive C library
at this point. Second, we added to the host library the set
of relocatable objects residing in the archive C library that
were missing from the host library. Although this set is
not in the shared library target, its inclusion in the host
library makes the relocatable and shared C libraries com
patible.

Tuning the Shared Library Code

Some suggestions for how to organize shared library code to improve per
formance are presented here. They apply to paging systems, such as UNIX
System V Release 3.0. The suggestions come from the experience of building
the shared C library.

The archive C library contains several diverse groups of functions. Many
processes use different combinations of these groups, making the paging
behavior of any shared C library difficult to predict. A shared library should
offer greater benefits for more homogeneous collections of code. For example,
a database library probably could be organized to reduce system paging sub
stantially, if its static and dynamic calling dependencies were more predict
able.

SHARED LIBRARIES 8·41

Building a Shared Library

Profile the Code

To begin, profile the code that might go into the shared library (see the
pro£(1) command in the Programmer's Reference Manual).

Choose Library Contents

Based on profiling information, make some decisions about what to
include in the shared library. a.out file size is a static property, and paging is
a dynamic property. These static and dynamic characteristics may conflict, so
you have to decide whether the performance lost is worth the disk space
gained. See 11 Choosing Library Members 11 in this chapter for more informa
tion.

Organize to Improve Locality

When a function is in an a.out file(s), it probably resides in a page with
other code that is used more often (see 11 Exclude Infrequently Used Routines 1 1

in the section 11 Choosing Library Members 11) . Try to improve locality of refer
ence by grouping dynamically related functions. If every call of funcA gen
erates calls to funcB and funcC, try to put them in the same page. cflow(l)
(documented in the Programmer's Reference Manual) generates this static
dependency information. Combine it with profiling to see what things actu
ally are called, as opposed to what things might be called.

Align for Paging

The key is to arrange the shared library target's object files so that fre
quently used functions do not unnecessarily cross page boundaries. When
arranging object files within the target library, be sure to keep the text and
data files separate. You can reorder text object files without breaking compati
bility; the same is not true for object files that define global data. Once again,
an example might best explain this guideline:

8-42 PROGRAMMER'S GUIDE

Building a Shared Library

When we built the shared C library

Using name lists and disassemblies of the shared library
target file, we determined where the page boundaries fell.

After grouping related functions, we broke them into
page-sized chunks. Although some object files and func
tions are larger than a single page, most of them are
smaller. Then we used the infrequently called functions as
glue between the chunks. Because the glue between pages
is referenced less frequently than the page contents, the
probability of a page fault decreased.

After determining the branch table, we rearranged the
library's object files without breaking compatibility. We
put frequently used, unrelated functions together because
we figured they would be called randomly enough to keep
the pages in memory. System calls went into another
page as a group, and so on. The following example shows
how to change the order of the library's object files:

Before

#Objects

printf .o
fopen . o
malloc .o
strc:np.o

Avoid Hardware Thrashing

After

#Objects

strc:np.o
malloc . o
printf . o
fopen.o

You get better performance by arranging the typical process to avoid
cache entry conflicts . If a heavily used library had both its text and its data
segment mapped to the same cache entry, the performance penalty would be
particularly severe. Every library instruction would bring the text segment
information into the cache. Instructions that referenced data would flush the

SHARED LIBRARIES 8·43

Building a Shared Library

entry to load the data segment. Of course, the next instruction would refer
ence text and flush the cache entry, again.

Checking for Compatibility

The following guidelines explain how to check for upwardly compatible
shared libraries. Note, however, that upward compatibility may not always be
an issue. Consider the case in which a shared library is one piece of a larger
system and is not delivered as a separate product. In this restricted case, you
can identify all a.out files that use a particular library. As long as you rebuild
all the a.out flles every time the library changes, the a.out flles will run suc
cessfully, even though versions of the library are not compatible. This may
complicate development, but it is possible.

Checking Versions of Shared Libraries Using chkshlib(1)

Shared library developers normally want newer versions of a library to be
compatible with previous ones. As mentioned before, a.out flles will not exe
cute properly otherwise.

If you use shared libraries, you might need to find out if different versions
of a shared library are compatible, or if executable flles could have been built
with a particular host shared library or can run with a particular target shared
library. For example, you might have a new version of a target shared library,
and you need to know if all the executable flles that ran with the older ver
sion will run with the new one. You might need to find out if a particular tar
get shared library can reference symbols in another shared library. A com
mand, chkshlib(l) (documented in the Programmer's Reference Manual}, has
been provided to allow you to do these and other comparisons.

chkshlib takes names of target shared libraries, host shared libraries, and
executable files as input, and checks to see if those flles satisfy the compatibil
ity criteria. chkshlib checks to see if every library symbol in the first flle that
needs to be matched exists in the second flle and has the same address. The
following table shows what types of files and how many of them chkshlib
accepts as input.

The rows listed down represent the first input given, and the columns
listed across represent any more inputs given. For example, if the first input
file you give chkshlib is a target shared library, you must give another input
file that is a target or host shared library.

8-44 PROGRAMMER'S GUIDE

Building a Shared Library

Nothing Executable Target

Executable OK No OK•

Target No No OK

Host OK No OK

* The executable file must be one that was built using a host shared library.

A useful way to confirm this is to use dump -L to find out which

target file(s) gets loaded when the program is run. See dump(l),

documented in the Programmer's Reference Manual.
* You can also have executable targetl . . . targetn and executable hostl . . . hostn .

Host

OK•

OK

OK

An example of a chkshlib command line is shown below:

chkshlib jshlib jlibc_s jlib jlibc_s.a

In this example, jshlibflibc_s is a target shared library and jlibjlibc_s.a is a
host shared library. chkshlib will check to see if executable files built with
jshlibflibc_s would be able to run with jlibflibc_s.a.

Depending on the input it receives, chkshlib checks to find out if the fol
lowing is true:

• an executable file will run with the given target shared library

• an executable file could have been built using the given host shared
library

• an executable file produced with a given host shared library will run
with a given target shared library

• an executable file that ran with an old version of a target shared
library will run with a new version

• a new host shared library can replace the old host shared library; that
is, executable files built with the new host shared library will run with
the old target shared library

• a target shared library can reference symbols in another target shared
library

SHARED LIBRARIES 8·45

Building a Shared Library

To determine if files are compatible, you have to determine which library
symbols in the first file need to be matched in the second file.

• For target shared libraries, the symbols of concern are all external,
defmed symbols with non-zero values, except for branch labels (branch
labels always start with .bt), and the special symbols etext, edata, and
end.

• For host shared libraries, the symbols of concern are all external, abso
lute symbols with a non-zero value.

• For executable files, the symbols of concern are all external, absolute
symbols with a non-zero value, except for the special symbols etext,
edata, and end.

For two files to be compatible, the target pathnames must be identical in both
files (unless the -i option has been specified).

The following table displays the output you will receive when you use
chkshlib to check different combinations of files for compatibility. In this
table filet represents the name of the first file given, and file2,3, ... represents
the names of any more files given as input.

Input

filet is executable

file2,3, . . . (if any) are targets

filet is executable

file2,3 are hosts

filet is host

file2 (if any) is target

filet is target

file2 is host

both files are targets or
both files are hosts

both files are targets and

-n option is specified•

Output

filet can [may not] execute using file2

filet can [may not] execute using file3

filet may [may not] have been produced using file2

filet may [may not] have been produced using file3

filet can [may not] produce executables which

will run with file2

file2 can [may not] produce executables which

will run with filet

filet can [may not] replace file2

file2 can [may not] replace filet

filet can [may not] include file2

* The -n option tells chkshlib that the two files are target shared libraries,

8-46 PROGRAMMER'S GUIDE

Building a Shared Library

the first of which can reference (include) symbols in the other. See

" Referencing Symbols in a Shared Library from Another Shared Library " for details.

For more information on chkshlib, see chkshlib(l), documented in the
Programmer's Reference Manual.

When we built the shared C library

When we built the second version of the shared C library
and checked it against the ft.rst version, chkshlib re12orted
that many external symbols had different values and,
therefore, the second version could not replace the first.
Here is a list of these symbols:

_bigpow
_litpow
_infl .double
_infl .single
_inf2.double
_inf2.single
_invalid.double
_invalid.single
_qnan l .double

_qnan l .single
_qnan2.double
_qnan2 .single
_round. double
_round.single
_trap.single
_type.double
_type.single

Since these text symbols were not intended to be user
entry points, they were not put in the branch table. So
when new code was added to the shared library the
addresses of these text symbols changed, and hence their
values changed.

We devised the #hide and #export directives to allow
us to explicitly hide the symbols we did not want to be
user entry points. In fact, in the latest C Shared Library we
hid all the symbols, and exported just the ones we want to
be user entry points.

You cannot directly reference these functions, and
these symbols will not be considered incompatible by
chkshlib in checking the latest version of the shared C
library with any subsequent version.

SHARED LIBRARIES 8·47

Building a Shared Library

Dealing with Incompatible Libraries

When you determine that a newer version of a library can't replace the
older version, you have to deal with the incompatibility. You can deal with it
in one of two ways. First, you can rebuild all the a.out files that use your
library. If feasible, this is probably the best choice. Unfortunately, you might
not be able to find those a.out files, let alone force their owners to rebuild
them with your new library.

So your second choice is to give a different target pathname to the new
version of the library. The host and target pathnames are independent; so
you don't have to change the host library pathname. New a.out files will use
your new target library, but old a.out files will continue to access the old
library.

As the library developer, it is your responsibility to check for compatibility
and, probably, to provide a new target library pathname for a new version of
a library that is incompatible with older versions. If you fail to resolve com
patibility problems, a.out files that use your library will not work properly.

You should try to avoid multiple library versions. If too many copies of the
same shared library exist, they might actually use more disk space and more
memory than the equivalent relocatable version would have.

An Example

This section contains the process by which a small specialized shared
library is created and built. We refer to the guidelines given earlier in this
chapter.

The Original Source

The name of the library to be built is libmaux (for math auxiliary library).
The interface consists of three functions, an external variable, and a header
file.

The three functions:

logd floating-point logarithm to a given base; defined in the file
log.c

8-48 PROGRAMMER'S GUIDE

Building a Shared Library

polyd evaluate a polynomial; defined in the file poly.c

maux_stat return usage counts for the other two routines in a structure;
defined in stats.c,

The external variable:

mauxerr set to non-zero if there is an error in the processing of any of
the functions in the library and set to zero if there is no error
(unlike errno in the C library),

And the header file:

maux.h declares the return types of the function and the structure
returned by maux_stat.

The source files before any modifications for inclusion in a shared library
are given below.

SHARED LIBRARIES 8-49

Building a Shared Library

I* log . c *I
#include "maux.h"
#include <math. h>

I*
* Retw:n the log of "x" relative to the base "a" .
*
* logd(base , x) : = log(x) I log(base) ;
* where "log" is "log to the base E" .
*I

double logd(base , x)
double base , x;

extern int stats_logd;
extern int total_calls ;

double logbase ;
double logx;

total_calls++ ;
stats_logd++ ;

logbase = log((double)base) ;
logx = log((double)x) ;
if (logbase == -HOOE I I logx == -HOOE)

mauxerr = 1 ;
retw:n(O) ;

else
mauxerr = 0 ;

retw:n(logx/logbase) ;

Figure 8-5 : File log.c

8-50 PROGRAMMER'S GUIDE

I* }:Oly . c *I

#include "maux.h"
#include <rrath.h>

I* Evaluate the }:Olynanial

Building a Shared Library

* f (x) : = a [O] * (x " n) + a [1] * (x " (n- 1)) + • • • + a[n] ;
* Note that there are N+ 1 ooefficients !
" This uses Hal:ner ' s Method, which is :
* f (x) : = (((((a[O] *x) + a [1]) *x) + a [2]) + • • •) + a[n] ;
* It ' s equivalent , but uses m:my less operations and is nore precise . *I

double }:Olyd(a, n, x)
double a [] ;
int n ;
double x;

extern int stats_polyd;
extern int total_calls ;
double result;
int i ;

total_calls++ ;
stats _polyd++ ;
if (n < 0) {

mauxerr = 1 ;
return(O) ;

result = a[O] ;
for (i = 1 ; i <= n; i++)

result *= (double)x;
result += (double) a [i) ;

mauxerr = 0 ;
return(result) ;

Figure 8-6: File poly.c

SHARED LIBRARIES 8-51

Building a Shared Library

/* stats . c */
#include "maux.h11

int total_calls = 0 ;
int stats_logd = 0 ;
int stats_polyd = 0 ;

int mauxerr ;

/* Return structure with usage stats for functions in lihracy
* or 0 if space cannot be allocated for the structure * /

struct mstats *
maux_stat()

{
extern char * malloc () ;
struct mstats * st ;

if ((st = (struct mstats *) malloc (sizeof (struct mstats))) == 0)
return(O) ;

st->st_polyd = stats_polyd ;
st->st_logd = stats_logd;
st->st_total = total_calls ;
return(st) ;

Figure 8-7: File stats.c

8-52 PROGRAMMER'S GUIDE

/* maux. h */

struct: mst:ats {

} ;

int st_polyd;
int st_logd;
int st_ total ;

exte%n double polyd() ;
extezn double logd() ;
extezn struct mst:ats * maux_stat() ;

exte%n int mauxerr;

Figure 8-8: Header File maux.h

Building a Shared Library

Choosing Region Addresses and the Target Pathname

To begin, we choose the region addresses for the library's .text and .data
sections from the segments reserved for private use on the 80386 Computer.
Note that the region addresses must be on a segment boundary (4 MB):

. text

. data
Ox80600000
OxBOaOOOO

Also we choose the pathname for our target library:

/my /d:i.rect:my /li1::maux _ s

Selecting Library Contents

This example is for illustration purposes, and so we will include every
thing in the shared library. In a real case, it is unlikely that you would make
a shared library with these three small routines, unless you had many pro
grammers using them frequently.

SHARED LIBRARIES 8-53

Building a Shared Library

Rewriting Existing Code

According to the guidelines given earlier in the chapter, we need to first
minimize the global data . We realize that totaLcalls, stats_Iogd, and
stats_polyd do not need to be visible outside the library, but are needed in
multiple files within the library. Hence, we will use the #hide directive in
our specification file to make these variables static after the shared library is
built.

We need to define text and global data in separate source files. The only
piece of global data we have left is mauxerr, which we will remove from
stats.c and put in a new file maux_defs.c. We will also have to initialize it to
zero, since shared libraries cannot have any uninitialized variables.

Next, we notice that there are some references to symbols that we do not
define in our shared library (i.e. log and malloc). We can import these sym
bols. To do so, we create a new header file, import.h, which will be included
in each of log.c, poly.c, and stats.c. The header file defines C preprocessor
macros for these symbols to make transparent the use of indirection in the
actual C source files. We use the _Iibmaux_ prefixes on the pointers to the
symbols because those pointers are made external, and the use of the library
name as a prefix helps prevent name conflicts.

/* New header file irnpart . h */
#define malloc (*_libnaux_malloc)
#define log (*_libnaux_log)

extezn char * malloc () ;
extezn double log() ;

Now, we need to define the imported symbol pointers somewhere. We
have already created a file for global data maux_defs.c, so we will add the
definitions to it.

8·54 PROGRAMMER'S GUIDE

I* Data file maux __ defs . c */

int mauxerr = 0 ;
double (* __ libtaux __ log) () = 0 ;
char * (* __ libtaux __ malloc) () = 0 ;

Building a Shared Library

Finally, we observe that there are floating-point operations in the code,
and we remember that the routines for these cannot be imported. (If we tried
to write the specification file and build the shared library without taking this
into account, mkshlib would give us errors about unresolved references.)
This means we will have to use the #objects noload directive in our specifica
tion file to search the C host shared library to resolve the references.

Writing the Specification File

This is the specification file for libmaux:

SHARED LIBRARIES 8-55

B;.aiading a Shared Library

1 ##
2 ## l:il::maux. sl - l:il::maux specification lfile
3 #address • text Ox80680000
4 #address .data Ox806a0000
5 #tazget ID!Y/di.rectacy/l:il::maux_s
6 #branch
7 polyd
8 logd 2
9 maux_stat 3

1 0 #objects
1 1 maux_defs .o
12 poly.o
1 3 log. o
14 stats .o
1 5 #objects noload
16 -lc_s
17 #hide linker *
18 #export linker
19 liiCI.'llXel:r
20 #init maux_defs . o
2 1 _l:il::maux _ nalloc nalloc
22 _libnaux_log log

Figure 8-9: Specification File

Briefly, here is what the specification file does. Lines 1 and 2 are com
ment lines. Lines 3 and 4 give the virtual addresses for the shared library text
and data regions, respectively. Line 5 gives the pathname of the shared
library on the target machine. The target shared library must be installed
there for a.out files that use it to work correctly. Line 6 contains the #branch
directive. Line 7 through 9 specify the branch table. They assign the func
tions polyd(), logd(), and maux_stat() to branch table entries 1, 2, and 3 .
Only external text symbols, such as C functions, should be placed in the
branch table.

8·56 PROGRAMMER'S GUIDE

lllllliBdill'llg a Shared LDbraay

line 10 contains the #objects directive. lines 1 1 through 14 give the list
of object files that will be used to construct the host and target shared
libraries. When building the host shared library archive, each file listed here
will reside in its own archive member. When building the target library, the
order of object files will be preserved. The data files must be first. Otherwise,
an addition of static data to poly.o, for example, would move external data
symbols and break compatibility.

line 15 contains the #objects noload directive, and line 16 gives informa
tion about where to resolve the references to the floating-point routines.

lines 1 7 through 19 contain the #hide linker and #export linker direc
tives, which tell what external symbols are to be left external after the shared
library is built. Together, these #hide and #export directives say that only
mauxerr will remain external. The symbols in the branch table and those
specified in the #init directive will remain external by definition.

line 20 contains the #init directive. lines 21 and 22 give imported sym
bol information for the object file maux_defs.o. You can imagine assign
ments of the symbol values on the right to the symbols on the left. Thus
_Iibmaux will hold a pointer to malloc, and so on.

Building the Shared Library

Now, we have to compile the .o files as we would for any other library:

cc -c maux_defs.c poly.c log.c stats.c

Next, we need to invoke mkshlib to build our host and target libraries:

mkshlib -s libmaux.sl -t libmaux_s -h libmaux_s.a

Presuming all of the source files have been compiled appropriately, the
mkshlib command line shown above will create both the host library,
libmaux_s.a, and the target library, libmaux_s. Before any a.out files built
with libmaux_s.a can be executed, the target shared library libmaux_s will
have to be moved to fmy /directory flibmaux_s as specified in the specifica
tion file.

Using the Shared Library

To use the shared library with a file, x.c, which contains a reference to
one or more of the routines in libmaux, you would issue the following com
mand line:

cc x.c libmaux_s.a -lm -lc._s

SHARED LIBRARIES 8-57

Building a Shared Library

This command line causes the following:

• the imported symbol pointer reference to log is resolved from libm

• the imported symbol pointer reference to malloc is resolved with the
shared version from libc_s.

The most important thing to note from the command line, however, is that
you have to specify the C host shared library (in this case with the -lc_s) on
the command line, since libmaux was built with direct references to the
floating-point routines in that library.

8·58 PROGRAMMER'S GUIDE

Summary

This chapter describes the UNIX System shared libraries and explains how
to use them. It also explains how to build your own shared libraries . Using
any shared library almost always saves disk storage space, memory, and com
puter power; and running the UNIX System on smaller machines makes the
efficient use of these resources increasingly important. Therefore, you should
normally use a shared li�rary whenever it's available.

SHARED LIBRARIES 8-59

' " - . �

9 lnterprocess Communication

Introduction 9-1

Messages 9-2

Getting Message Queues 9-7

• Using msgget 9-7

• Example Program 9-11

Controlling Message Queues 9-15
• Using msgctl 9-15

• Example Program 9-17
Operations for Messages 9-24

• Using msgop 9-24

• Example Program 9-26

Semaphores 9-38

Using Semaphores 9-40

Getting Semaphores 9-44

• Using semget 9-44

• Example Program 9-48

Controlling Semaphores 9-52

• Using semctl 9-53

• Example Program 9-55

Operations on Semaphores 9-67

• Using semop 9-67

• Example Program 9-69

Shared Memory 9-75

I NTERPROCESS COMMUNICATION

lnterprocess Communication

Using Shared Memory
Getting Shared Memory Segments

• Using shmget

• Example Program

Controlling Shared Memory
• Using shmctl

• Example Program

Operations for Shared Memory
• Using shmop

• Example Program

ii PROGRAMMER'S GUIDE

9-76
9-80
9-80
9-84
9-88
9-89
9-90
9-99
9-99

9- 10 1

Introduction

The UNIX System supports three types of Inter-Process Communication
(IPC):

• messages

• semaphores

• shared memory

This chapter describes the system calls for each type of IPC. Included are
several example programs that show the use of the IPC system calls .

Since there are many ways in the C Programming Language to accomplish
the same task or requirement, keep in mind that the example programs were
written for clarity and not for program efficiency. Usually, system calls are
embedded within a larger, user-written program that makes use of a particular
function that the calls provide.

INTERPROCESS COMMUNICATION 9- 1

Messages

The message type of IPC allows processes (executing programs) to com
municate through the exchange of data stored in buffers. This data is
transmitted between processes in discrete portions called messages. Processes
using this type of IPC can perform two operations:

• sending

• receiving

Before a message can be sent or received by a process, a process must have
the UNIX System generate the necessary software mechanisms to handle these
operations. A process does this by using the msgget(2) system call. While
doing this, the process becomes the owner/creator of the message facility and
specifies the initial operation permissions for all other processes, including
itself. Subsequently, the owner/creator can relinquish ownership or change
the operation permissions using the msgctl(2) system call. However, the crea
tor remains the creator as long as the facility exists. Other processes with per
mission can use msgctl() to perform various other control functions.

Processes which have permission and are attempting to send or receive a
message can suspend execution if they are unsuccessful at performing their
operation . That is, a process which is attempting to send a message can wait
until the process which is to receive the message is ready and vice versa. A
process which specifies that execution is to be suspended is performing a
11 blocking message operation. 11 A process which does not allow its execution
to be suspended is performing a 11 non blocking message operation. 11

A process performing a blocking message operation can be suspended
until one of three conditions occurs :

• It is successful.

• It receives a signal .

• The facility is removed.

System calls make these message capabilities available to processes . The
calling process passes arguments to a system call, and the system call either
successfully or unsuccessfully performs its function. If the system call is suc
cessful, it performs its function and returns applicable information . Other
wise, a known error code (-1) is returned to the process, and an external error
number variable errno is set accordingly.

9-2 PROGRAMMER'S GUIDE

Messages

Before a message can be sent or received, a uniquely identified message
queue and data structure must be created. The unique identifier created is
called the message queue identifier (msqid); it is used to identify or reference
the associated message queue and data structure.

The message queue is used to store (header) information about each mes
sage that is being sent or received. This information includes the following
for each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to the
message queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the qpeue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

All include files discussed in this chapter are located in the jusrjinclude
or jusrjincludejsys directories.

INTERPROCESS COMMUNICATION 9·3

Massa gas

The C Programming Language data structure definition for message infor
mation contained in the message queue is located in the header file #include
<sysjmsg.h> and is as follows:

st%Uct msg
{

} ;

st%Uct msg
larg
short
short

msq_next; I ptr to next message an q *I

IDS!Ltype; I* message type *I

IDS!Lts ; I* message text size *I
IDS!Lspot; I* message text map address *I

Likewise, the structure definition for the associated data structure is
located in the #include <sysjmsg.h> header file and is as follows:

st%Uct msqid_ds
{

} ;

st%Uct ipc.Jli!Dll
st%Uct msg
st%Uct msg
ushart
ushart
ushart
ushart
ushart
time_t
time_t
time_t

IIIS\l_j)l!m;
*msq_first;
*msq_last;

IDS!Lcbytes ;

IDS!LqtlUID;

IDS!Lqbytes ;
IDS!Llspid;
IDS!L ll:pid;
IDS!Lstime;
IDS!L rtime;
IDS!Lctime ;

9-4 PROGRAMMER'S GUIDE

I* operation pem::i.ssian st%Uct *I
I* ptr to first message an q *I
I* ptr to last message an q *I
I* current # bytes an q *I
I* # of messages an q *I
I* max # of bytes an q *I
I* pid of last msgsnd *I
I* pid of last msgrcv *I
I* last msgSI1d time *I

. I* last msgrcv time *I
I* last change time *I

Messages

Note that the msg_perm member of this structure uses ipc_perm as a tem
plate. The breakout for the operation permissions data structure is shown in
Figure 9-1 .

The definition of the ipc_perm data structure is located in the header file
#include <sysjipc.h> and is as follows:

struct ipc_:pe:rm

{
ushort
ushort
ushort
ushort
ushort
ushort
key_t

} ;

uid;
gid;
cuid;
cgid;
m::de ;

seq;
key;

/* owner' s us er id *I
I* owner' s group id */
/* creator' s user id *I
/* creator' s group id */
/* access m::des */
/* slot usage sequence lll.mlber * /
I* key *I

Figure 9-1 : ipc_perm Data Structure

The structure is common for all IPC facilities.

The msgget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

• to get a new msqid and create an associated message queue and data
structure for it

• to return an existing msqid that already has an associated message
queue and data structure

The task performed is determined by the value of the key argument
passed to the msgget() system call . For the first task, if the key is not already
in use for an existing msqid, a new msqid is returned with an associated mes
sage queue and data structure created for the key. This occurs provided no
system tunable parameters would be exceeded.

INTERPROCESS COMMUNICATION 9-5

Messages

There is also a provision for specifying a key of value zero which is
known as the private key (IPC_pRIV ATE = 0); when specified, a new msqid
is always returned with an associated message queue and data structure
created for it, unless a system tunable parameter would be exceeded. When
the ipcs command is performed, for security reasons the KEY field for the
msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value of
the existing msqid is returned. If you do not desire to have an existing msqid
returned, a control command (IPC_EXCL) can be specified (set) in the msgflg
argument passed to the system call. The details of using this system call are
discussed in the " Using msgget " section of this chapter.

When performing the first task, the process which calls msgget becomes
the owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always
remains the creator; see the " Controlling Message Queues " section in this
chapter. The creator of the message queue also determines the initial opera
tion permissions for it.

Once a uniquely identified message queue and data structure are created,
message operations [msgop()] and message control [msgctl()] can be used.

Message operations, as mentioned previously, consist of sending and
receiving messages. System calls are provided for each of these operations;
they are msgsnd() and msgrcv() . Refer to the " Operations for Messages " sec
tion in this chapter for details of these system calls.

Message control is done by using the msgctl(2) system call. It permits
you to control the message facility in the following ways:

• to determine the associated data structure status for a message queue
identifier (msqid)

• to change operation permissions for a message queue

• to change the size (msrr.qbytes) of the message queue for a particular
msqid

• to remove a particular msqid from the UNIX Operating System along
with its associated message queue and data structure

9·6 PROGRAMMER'S GUIDE

Messages

Refer to the " Controlling Message Queues " section in this chapter for
details of the msgctl() system call.

Getting Message Queues

This section gives a detailed description of using the msgget(2) system call
along with an example program illustrating its use.

Using msgget
The synopsis found in the msgget(2) entry in the Programmer's Reference

Manual is as follows:

#include <sys/t;ypes .h>
#include . <sys/ipc .h>
#include <sys/msg.h>

int msgget (key. msgflg)
key_t key;
int msgflg;

All of these include files are located in the jusrjincludejsys directory of
the UNIX Operating System.

The following line in the synopsis informs you that msgget() is a function
with two formal arguments that returns an integer type value upon successful
completion (msqid).

int msgget (key, msgflg)

The next two lines declare the types of the formal arguments. key_t is
declared by a typedef in the types.h header file to be an integer.

key_t key;
int msgflg;

INTERPROCESS COMMUNICATION 9·7

Messages

The integer returned from this function upon successful completion is the
message queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msgget() system call must supply two
arguments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is pro
vided if one of the following conditions exists:

• key is equal to JPc__pRJV ATE

• key is passed a unique hexadecimal integer, and msgflg ANDed with
Jpc_cREAT is TRUE.

The value passed to the msgflg argument must be an integer type octal
value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes, and execution
modes determine the userjgroupjother attributes of the msgflg argument.
They are collectively referred to as " operation permissions. " Figure 9-2
reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 9-2: Operation Permissions Codes

9-8 PROGRAMMER'S GUIDE

Octal Value

00400
00200
00040
00020
00004
00002

Messages

A specific octal value is derived by adding the octal values for the opera
tion permissions desired. That is, if read by user and read/write by others is
desired, the code value would be 00406 (00400 plus 00006). There are con
stants located in the msg.h header file which can be used for the user
(OWNER).

Control commands are predefined constants (represented by all uppercase
letters). Figure 9-3 contains the names of the constants which apply to the
msgget() system call along with their values. They are also referred to as
flags and are defined in the ipc:.h header file.

Control Command

IPC_CREAT
IPC_EXCL

Value

0001000
0002000

Figure 9-3: Control Commands (Flags)

The value for the msgflg argument is, therefore, a combination of opera
tion permissions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can be speci
fied. This specification is accomplished by bitwise ORing (I) them with the
operation permissions; bit positions and values for the control commands in
relation to those of the operation permissions make this possible. An example
of determining the msgflg argument follows.

IP<:_CREAT
1 ORed by User

msgflg

Octal Value

0 1 0 0 0
0 0 4 0 0

0 1 4 0 0

Binary Value

0 000 001 000 000 000
0 000 000 100 000 000

0 000 001 100 000 000

The msgflg value can easily be set by using the names of the flags in con
junction with the octal operation permissions value:

msqid = msgget (key, (IPC_CREAT I 0400)) ;

msqid = msgget (key, (IPC_CREAT I IPC_EKCL I 0400)) ;

INTERPROCESS COMMUNICATION 9·9

Messages

As specified by the msgget(2) page in the Programmer's Reference Manual,
success or failure of this system call depends upon the argument values for
key and msgflg or system tunable parameters . The system call will attempt
to return a new msqid if one of the following conditions exists:

or

• key is equal to IPCJRIV ATE (0)

• key does not already have a msqid associated with it, and (msgflg &
IPc_CREAT) is TRUE (not zero).

The key argument can be set to IPCJRIV ATE in the following ways:

msqid = msgget (IPC_PRIVATE, msgflg) ;

msqid = msgget (0 ' msgflg) ;

This alone will cause the system call to be attempted because it satisfies the
first condition specified. Exceeding the MSGMNI system tunable parameter
always causes a failure. The MSGMNI system tunable parameter determines
the maximum number of unique message queues (msqid's) in the UNIX
Operating System.

The second condition is satisfied if the value for key is not already associ
ated with a msqid and the bitwise ANDing of msgflg and IPC_CREAT is
TRUE (not zero). This means that the key is unique (not in use) within the
UNIX Operating System for this facility type and that the IPC_CREAT flag is
set (msgflg I IPC_CREAT). The bitwise ANDing (&), which is the logical way
of testing if a flag is set, is illustrated as follows:

msgflg = X 1 X X X (X = imnaterial)
& IPC_CREAT = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or TRUE.

IPC_EXCL is another control command used in conjunction with
IPC_CREA T to exclusively have the system call fail if, and only if, a msqid
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) msqid when it has not. In
other words, when both IPc_CREA T and IPC_EXCL are specified, a new
msqid is returned if the system call is ·successful.

9-1 0 PROGRAMMER'S GUIDE

Messages

Refer to the msgget(2) page in the Programmer's Reference Manual for
specific, associated data structure initialization for successful completion. The
specific failure conditions with error names are contained there also.

Example Program

The example program in this section (Figure 9-4) is a menu-driven pro
gram which allows all possible combinations of using the msgget(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the Programmer's Reference Manual. Note
that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call . Their declarations are self-explanatory. These
names make the program more readable, and are perfectly legal since they are
local to the program. Variables declared for this program and their purposes
are as follows:

• key-is used to pass the value for the desired key.

• opperm-is used to store the desired operation permissions.

• flags-is used to store the desired control commands (flags) .

• opperm._flags-is used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the system
call to pass the msgflg argument .

• msqid-is used for returning the message queue identification number
for a successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal opera
tion permissions code, and the control command combinations (flags) which
are selected from a menu (lines 15-32). All possible combinations are allowed
even though they might not be viable . This allows observing the errors for
illegal combinations.

I NTERPROCESS COMMUNICATION 9·1 1

Messages

Next, the menu selection for the flags is combined with the operation per
missions, and the result is stored at the address of the opperm_flags variable
(lines 36-5 1) .

The system call is made next, and the result is stored at the address of the
msqid variable (line 53).

Since the msqid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 55). If msqid
equals - 1 , a message indicates that an error resulted, and the external errno
variable is displayed (lines 57 and 58).

If no error occurred, the returned message queue identifier is displayed
(line 62) .

The example program for the msgget(2) system call follows. It is sug
gested that the source program file be named msgget.c and that the executable
file be named msgget.

When compiling C programs that use floating point operations, the -£
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed, it will
fail.

9·1 2 PROGRAMMER'S GUIDE

1 /*'lbis is a program to illustrate
2 **the message get, nagget() ,
3 **system call capabilities . */

4 #:blcl.ude
5 #illclude
6 #illclude
7 #illclude
8 #:blcl.ude

<stdio.h>
<sys/types .h>
<sys/ipc .h>
<sys/Disq .h>
<eano.h>

9 /*Start of main c � program*/
10 main()
1 1 {
12 key_t key;
13 :int oppeDII, flags ;

/*declare as 1anq integer* I

14 :int msqid , oppe%DI_flags ;
15 /*<er the desired key*/
16 print£ ("<er the desired key in hex = ") ;
17 scan£(·�· ' &key) ;

18 /*<er the desired octal operation
19 pezmissians . *I
20 print£ ("\n<er the operatian\n" l ;
2 1 print£ (•pemissians in octal = •) ;
22 scan£(�· . &oppexm) ;

Figure 9-4: msgget() System Call Example (Sheet 1 of 3)

Messages

I NTERPROCESS COMMUNICATION 9-1 3

Messages

23 /*Set the desired flags . * I
24 printf("\nEnter correspand:inq Illllllber to\n") ;
25 printf ("set the desired flags : \n") ;
26 printf ("No flags = 0\n") ;
'Z1 printf ("IPC_CREAT = 1\n" l ;
28 printf ("IPC_EX.CL = 2\n") ;
29 printf("IPC_CREAT and IPC_EXCL = 3\n") ;
30 printf (" Flags = ") ;

31 /*Get the flag (s) to be set . */
32 scanf("l'li" , &flags) ;

33 /*Check the values . */
34 printf ("\nkey =Ox%x, oppenn = O%o, flags = O%o\n" ,
35 key, opperm, flags) ;

36 /*Incarparate the o:mt:rol fields (flags) with
37 the operation pezmi.ssions* I
38 switch (flags)
39 {
40 case 0 : /*No flags are to be set . */
41 oppenn_flags = (oppenn I 0 l ;
42 break;
43 case 1 : /*Set the IPC_CRFAT flag . */
44 oppenn_flags = (oppenn I IPC_CREAT) ;
45 break;
46 case 2: /*Set the IPC_EXCL flag . * I
47 oppenn_flags = (oppenn I IPC_EXCL) ;
48 break;
49 case 3: /*Set the IPC_CRFAT and IPC_EXCL flags . *I
50 oppenn_flags = (oppenn I IPC_CRFAT I IPC_EXCL) ;
51

Figure 9-4: msgget() System Call Example (Sheet 2 of 3)

9·1 4 PROGRAMMER'S GUIDE

52 /*Call the msgqet system call . */
53 msqid = msgqet (key, opperm_flags) ;

54 /*Pe:rfODD the foll� if the call is unsuccessful . */
55 if(msqid = -1)
56 {
57 printf ("\nThe msgget system call failed I \n") ;
58 printf ("The e= :number = %d\n" , erxno) ;
59

60 /*Retm:n the msqid upon successful oc:mpletian . */
6 1 else
62 printf ("\nThe msqid = %d\n" ' msqid) ;
63 exit(O) ;
64

Figure 9-4: msgget() System Call Example (Sheet 3 of 3)

Controlling Message Queues

Messages

This section gives a detailed description of using the msgctl system call. It
also provides an example program which allows all of its capabilities to be
exercised.

Using msgctl

The synopsis found in the msgctl(2) entry in the Programmer's Reference
Manual is as follows:

INTERPROCESS COMMUNICATION 9- 1 5

Messages

#illclude <sys/types .h>
#illclude <sys/ipc. h>
#illclude <sys/msg. h>

int msgct1 (msqid, ami, buf l
int msqid, ami;
struct msqid_ds *buf ;

The msgctl() system call requires three arguments to be passed to it, and it
returns an integer value. Upon successful completion, a zero value is
returned. When unsuccessful, a -1 is returned.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The cmd argument can be replaced by one of the following control com
mands (flags):

IPC_STAT returns the status information contained in the associated data
structure for the specified msqid, and places it in the data
structure pointed to by the •buf pointer in the user memory
area.

IP<:_SET for the specified msqid, sets the effective user and group iden
tification, operation permissions, and the number of bytes for
the message queue.

IPCJMID removes the specified msqid along with its associated mes
sage queue and data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IP<:_SET or IP<:_RMID con
trol command. Read permission is required to perform the IPC_STAT control
command.

9·1 6 PROGRAMMER'S GUIDE

Messages

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program,
read the 11 Using msgget 11 section of this chapter; it goes into more detail than
would be practical to do for every system call.

Example Program

The example program in this section (Figure 9-5) is a menu-driven pro
gram which allows all possible combinations of using the msgctl(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) entry in the Programmer's Reference Manual. Note
in this program that ermo is declared as an external variable, and therefore,
the ermo.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self
explanatory. These names make the program more readable, and are perfectly
legal since they are local to the program. Variables declared for this program
and their purpose are as follows:

• uid-used to store the IPC-SET value for the effective user identifica
tion

• gid-used to store the IPc_SET value for the effective group identifi
cation

• mode-used to store the IPc_sET value for the operation permissions

• bytes-used to store the IPc_SET value for the number of bytes in
the message queue (msg....qbytes)

• rtm-used to store the return integer value from the system call

• msqid-used to store and pass the message queue identifier to the
system call

• command-used to store the code for the desired control command so
that subsequent processing can be performed on it

INTERPROCESS COMMUNICATION 9·1 7

Messages

• choice-used to determine which member is to be changed for the
IPC-SET control command

• msqiLds-used to receive the specified message queue identifier's
data structure when an Jpc_sT AT control command is performed

• •buf-a pointer passed to the system call which locates the data struc
ture in the user memor}r area where the Jpc_sT AT control command is
to place its return values or where the Jpc_sET command gets the
values to set

·

Note that the msqiLds data structure in this program (line 1 6) uses the
data structure located in the msg.h header file of the same name as a template
for its declaration. This is a perfect example of the advantage of local vari
ables.

The next important thing to observe is that, although the •buf pointer is
declared to be a pointer to a data structure of the msqiLds type, it must also
be initialized to contain the address of the user memory area data structure
(line 1 7). Now that all of the required declarations have been explained for
this program, this is how it works.

First, the program prompts for a valid message queue identifier which is
stored at the address of the msqid variable (lines 1 9 and 20). This is required
for every msgctl system call.

Then the code for the desired control command must be entered (lines
21 -27), and it is stored at the address of the command variable. The code is
tested to determine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37 and 38) and the status information returned is printed out
(lines 39-46); only the members that can be set are printed out in this pro
gram. Note that if the system call is unsuccessful (line 1 06), the status infor
mation of the last successful call is printed out. In addition, an error message
is displayed and the errno variable is printed out (lines 108 and 109). If the
system call is successful, a message indicates this, along with the message
queue identifier used (lines 1 1 1 - 1 14).

If the Jpc_sET control command is selected (code 2), the first thing done
is to get the current status information for the message queue identifier speci
fied (lines 50-52). This is necessary because this example program provides
for changing only one member at a time, and the system call changes all of
them. Also, if an invalid value happened to be stored in the user memory

9- 1 8 PROGRAMMER'S GUIDE

Messages

area for one of these members, it would cause repetitive failures for this con
trol command until corrected. The next thing the program does is to prompt
for a code corresponding to the member to be changed (lines 53-59). This
code is stored at the address of the choice variable (line 60). Now, depending
upon the member picked, the program prompts for the new value (lines 66-
95). The value is placed at the address of the appropriate member in the user
memory area data structure, and the system call is made (lines 96-98).
Depending upon success or failure, the program returns the same messages as
for IPL_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated message
queue and data structure are removed from the UNIX Operating System.
Note that the •buf pointer is not required as an argument to perform this con
trol command, and its value can be zero or NULL. Depending upon the suc
cess or failure, the program returns the same messages as for the other control
commands.

The example program for the msgctl() system call follows. It is suggested
that the source program file be named msgctl.c and that the executable file be
named msgdl.

When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed, it will
fail.

INTERPROCESS COMMUNICATION 9- 1 9

Messages

/*This is a program to illustrate
2 **the message cant:J:ol , msgctl () ,
3 **system call capabilities .
4 */

5 /*Include necessazy header files . * 1
6 #include <stdio .h>

7 #Ulclude <sys/types .h>
8 #include <sys/ipc .h>
9 #include <sys/msg .h>

10 /*Start of main C language program* I
1 1 main()
12 {
13 ertezn int enno ;
14 int uid, gid, m:xie, bytes ;
15 :i.nt rtm , msqid, OCillliBJld, choice ;
16 struct msqid_ds msqid_ds , *blf ;
17 blf = &msqid_ds ;

18 /*Get the msqid, and cx:muand. */
19 printf ("Enter the msqid = n) ;
20 scanf ("%ci" . &msqid) ;
21 printf ("\nEnter the :number for\n") ;
22 printf("the desired cx:muand : \n") ;
23 printf ("IFC_STAT 1\n") ;
24 printf ("IFC_SET 2\n") ;
25 printf ("IFC_BMID 3\n") ;
26 printf ("Entry ..) ;
71 scanf("""'" . &cc:mnain) ;

Figure 9-5: msgctl() System Call Example (Sheet 1 of 4)

9·20 PROGRAMMER'S GUIDE

28 /*Oleck the values . */
29 printf ("\:nmsq:i.d =%d, c:amand = %d\n" '
30 msqid, c:amand) ;

3 1 switch (c:amand)
32 {
33 case 1 : /*Use msgctl () to duplicate
34 the data structure for
35 msqid in the msqid_ds area pointed
36 to by buf and then print it out . */
37 rtrn = msgctl(msqid, IPC_STAT,
38 buf) ;
39 printf ("\n'nle USER ID = %d\n" ,
40 buf->msq_penn.uid) ;
4 1 printf ("'file GRaJP ID = %d\n" ,
42 buf->msq_perm.gid) ;
43 printf ("The operation pennissians = or.o\n" '
44 buf->msq_penn.nr:xie) ;
45 printf ("'file msq_qbytes = %d\n" ,
46 buf->msq_qbytes) ;
47 break;
48
49
50
5 1
52
53
54
55
56
57
58
59

case 2 : /*Select and change the desired
member(s) of the data structure . */

/*Get the original data for this msqid
data structure first . */

rtrn = msgctl (msqid , IPC_STAT, buf) ;
printf ("\nEnter the number for the\n") ;
printf ("member to be changed: \n") ;
printf ("msg_penn.uid = 1\n") ;
printf ("msg_penn. gid = 2\n") ;
printf ("msq_penn.m:de = 3\n") ;
printf ("msq_qbytes = 4\n") ;
printf ("Entzy = ") ;

Figure 9-5 : msgctl() System Call Example (Sheet 2 of 4)

Messages

INTERPROCESS COMMUNICATION 9·21

Messages

60
61
62
63
64
65

66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87

scant ("%d" , &choice) ;
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

usqid_ds is updated with
Il'C_STAT. * /

switch(choice) {
case 1 :

print£ < "\nEnter USER m = " > ;
scant ("%d" ' &uid) ;
bu£->msq_penn.uid = uid;
printf ("\niJSER m = %d\n" ,

bu£->msq_penn. uid) ;
break;

case 2 :
print£ ("\nEnter GRall' m = n) ;
scant ("%d" , &gid) ;
bu£->msq_penn.gid = gid;
printf ("\IG<alP m = %d\n" ,

bu£->msq_penn. gid) ;
break;

case 3 :
print£ ("\nEnter MJDE = ") ;
scant ("%o" , &nDde) ;
bu£->msq_penn.mcde = mode ;
print£ ("\DM:DE = O%o\n" '

bu£->msq_penn. mcde) ;
break ;

Figure 9-5 : msgctl{) System Call Example (Sheet 3 of 4)

9-22 PROGRAMMER'S GUIDE

88
89
90
9 1
92
93
94
95

case 4 :
print£("\nEnter msq_bytes = ") ;
scanf ("%d" , &bytes) ;
buf->msq_qbytes = bytes ;
print£("\nmsg_qbytes = %d\n" '

buf->msg_qbytes) ;
break;

/*Do the change . */
rtzn = msgctl(msqid, IPC_SEI',

buf) ;

96
97
98
99 break · '

100
1 0 1
102
103
104

case 3 : /*Renove the msqid a1anq with its
associated message queue
and data structure . */

rtzn = msgctl(msqid, IPC_RMID, NULL) ;

105 /*Perfcmn the following if the call is unsuccessful . */
106 if(rtzn == -1)
107 {
1 08 print£ ("\n'l'he msgctl system call failed l \n") ;
109 print£ ("The error number = %d\n" , ernx>) ;
1 10
1 1 1 /*Retmn the msqid upon successful ccupletian . */
1 12 else
1 13 print£ ("\nMsgctl was successful for msqid = %d\n" ,
1 14 msqid) ;
1 1 5 exit (0) ;
1 16

Figure 9-5: msgctl() System Call Example (Sheet 4 of 4)

Messages

INTERPROCESS COMMUNICATION 9-23

Messages

Operations for Messages

This section gives a detailed description of using the msgsnd(2) and
msgrcv(2) system calls, along with an example program which allows all of
their capabilities to be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the Programmer's Reference
Manual is as follows:

#:include <sys/types .h>
#:include <sys/ipc .h>
#:include <sysllnsg .h>

int msqsnd (msqid , msgp, msgsz , msgflg)
int msqid;
struct: msgbuf "msgp;
int msgsz , msgflg;

int msgrcv (msqid, msgp, msgsz , m;gtyp, msgflg)
int msqid;

struct: msgbuf *msgp;
int msgsz ;
1CID1 msgtyp;
int msgflg;

Sending a Message

The msgsnd system call requires four arguments to be passed to it, and it
returns an integer value. Upon successful completion, a zero value is
returned. When unsuccessful, a -1 is returned.

The msqid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msgget() system
call .

9·24 PROGRAMMER'S GUIDE

Messages

The msgp argument is a pointer to a structure in the user memory area
that contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system tun
able parameter.

The msg_qbytes data structure member can be lowered from MSGMNB
by using the msgctl() IPC_SET control command, but only the super-user can
raise it afterwards.

The msgflg argument allows the " blocking message operation " to be per
formed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0);
this would occur if the total number of bytes allowed on the specified message
queue are in use (msg_qbytes or MSGMNB), or the total system-wide
number of messages on all queues is equal to the system imposed limit
(MSGTQL). If the IPC_NOW AIT flag is set, the system call will fail and
return a -1 .

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the " Using msgget " section of this chapter; it goes into more
detail than would be practical to do for every system call .

Receiving Messages

The msgrcv() system call requires five arguments to be passed to it, and it
returns an integer value. Upon successful completion, a value equal to the
number of bytes received is returned. When unsuccessful, a -1 is returned.

The msqid argument must be a valid, non-negative, integer value; that is,
it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area
that will receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If
its value is less than the message in the array, an error can be returned if
desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the message
queue of the particular type specified. If it is equal to zero, the first message
on the queue is received; if it is greater than zero, the first message of the
same type is received; if it is less than zero, the lowest type that is less than or
equal to its absolute value is received.

INTERPROCESS COMMUNICATION 9·25

Messages

The msgflg argument allows the " blocking message operation " to be per
formed if the IP<=-NOWAIT flag is not set (msgflg & IPC_NOW AIT = 0);
this would occur if there is not a message on the message queue of the desired
type (msgtyp) to be received. If the IPC.-NOWAIT flag is set, the system call
will fail immediately when there is not a message of the desired type on the
queue. msgflg can also specify that the system call fail if the message is
longer than the size to be received; this is done by not setting the
MSG.-NOERROR flag in the msgflg argument (msgflg & MSG_NOERROR =

0). If the MSG.-NOERROR flag is set, the message is truncated to the length
specified by the msgsz argument of msgrcv().

Further details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in this
program, read the " Using msgget " section of this chapter; it goes into more
detail than would be practical to do for every system call.

Example Program

The example program in this section (Figure 9-6) is a menu-driven pro
gram which allows all possible combinations of using the msgsnd() and
msgrcv(2) system calls to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self
explanatory. These names make the program more readable, and are perfectly
legal since they are local to the program. Variables declared for this program
and their purposes are:

• sndbuf-is used as a buffer to contain a message to be sent (line 13);
it uses the msgbufl data structure as a template (lines 10-1 3). The
msgbufl structure (lines 10-13) is almost an exact duplicate of the
msgbuf structure contained in the msg.h header file. The only differ
ence is that the character array for msgbufl contains the maximum
message size (MSGMAX) for your computer, where in msgbuf it is set
to one (1) to satisfy the compiler. For this reason msgbuf cannot be

9·26 PROGRAMMER'S GUIDE

Messages

used directly as a template for the user-written program. It is there so
you can determine its members.

• rcvbuf-is used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13).

• •msgp-is used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers.

• i-is used as a counter to input characters from the keyboard, to store
them in the array, and to keep track of the message length for the
msgsnd() system call; it is also used as a counter to output the received
message for the msgrcv() system call.

• c-is used to receive the input character from the getchar() function
(line 50).

• flag-is used to store the code of IPC_NOWAIT for the msgsnd() sys
tem call (line 61) .

• flags-is used to store the code of the IPC_NOW AIT or
MSG-NOERROR flags for the msgrcv() system call (line 1 1 7).

• choice-is used to store the code for sending or receiving (line 30).

• rtrn-is used to store the return values from all system calls .

• msqid-is used to store and pass the desired message queue identifier
for both system calls.

• msgsz-is used to store and pass the size of the message to be sent or
received.

• msgflg-is used to pass the value of flag for sending or the value of
flags for receiving.

• msgtyp-is used for specifying the message type for sending, or used
to pick a message type for receiving.

Note that a msqicLds data structure is set up in the program (line 21)
with a pointer which i s initialized to point to i t (line 22); this will allow the
data structure members that are affected by message operations to be
observed. They are observed by using the msgctl() (IPc__sr AT) system call
to get them for the program to print them out (lines 80-92 and lines 16 1 - 168).

INTERPROCESS COMMUNICATION 9-27

Messages

The first thing the program prompts for is whether to send or receive a
message. A corresponding code must be entered for the desired operation,
and it is stored at the address of the choice variable (lines 23-30). Depending
upon the code, the program proceeds as in the following msgsnd or msgrcv
sections.

msgsnd

When the code is to send a message, the msgp pointer is initialized (line
33) to the address of the send data structure, sndbuf. Next, a message type
must be entered for the message; it is stored at the address of the variable
msgtyp (line 42), and then (line 43) it is put into the mtype member of the
data structure pointed to by msgp.

The program now prompts for a message to be entered from the keyboard
and enters a loop of getting and storing into the mtext array of the data struc
ture (lines 48-5 1) . This will continue until an end of file is recognized, which
for the getchar() function is a control-d (CTRL-D) immediately following a
carriage return (<CR>) . When this happens, the size of the message is deter
mined by adding one to the i counter (lines 52 and 53), as it stored the mes
sage beginning in the zero array element of mtext. Keep in mind that the
message also contains the terminating characters, and the message will there
fore appear to be three characters short of msgsz.

The message is immediately echoed from the mtext array of the sndbu£
data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1
be entered for yes or anything else for no (lines 57-65). It is stored at the
address of the flag variable. If a 1 is entered, IPC_NOWAIT is logically ORed
with msgflg; otherwise, msgflg is set to zero.

The msgsnd() system call is performed (line 69). If it is unsuccessful, a
failure message is displayed along with the error number (lines 70-72). If it is
successful, the returned value is printed, which should be zero (lines 73-76).

Every time a message is successfully sent, there are three members of the
associated data structure which are updated. They are described as follows:

msg._qnum represents the total number of messages on the message
queue; it is incremented by one.

msg_lspid contains the Process Identification (PID) number of the last
process sending a message; it is set accordingly.

9·28 PROGRAMMER'S GUIDE

Messages

msg_stime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message sent; it is
set accordingly.

These members are displayed after every successful message send opera
tion (lines 79-92).

msgrcv

If the code specifies that a message is to be received, the program contin
ues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which you
will receive the message is requested, and it is stored at the address of msqid
(lines 100-103).

The message type is requested, and it is stored at the address of msgtyp
(lines 104-1 07).

The code for the desired combination of control flags is requested next,
and it is stored at the address of flags (lines 108- 1 1 7) . Depending upon the
selected combination, msgflg is set accordingly (lines 1 1 8-133).

Finally, the number of bytes to be received is requested, and it is stored at
the address of msgsz (lines 134- 137) .

The msgrcv() system call is performed (line 144). If i t is unsuccessful, a
message and error number is displayed (lines 145-148). If successful, a mes
sage indicates so, and the number of bytes returned is displayed followed by
the received message (lines 153-159).

When a message is successfully received, there are three members of the
associated data structure which are updated; they are described as follows:

msg_qnum contains the number of messages on the message queue; it is
decremented by one.

msg_lrpid contains the process identification (PID) of the last process
receiving a message; it is set accordingly.

msg_rtime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) that the last process received
a message; it is set accordingly.

INTERPROCESS COMMUNICATION 9·29

Messages

The example program for the msgop() system calls follows. It is sug
gested that the program be put into a source file called msgop.c and then into
an executable file called msgop.

When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed it will
fail . The -f option is not required, however, for your computer.

9-30 PROGRAMMER'S GUIDE

/*This is a program to illustrate
2 **the message operations , msgop() ,
3 **system call capabilities .
4 */

5 /*Include necessaxy header files . */
6 #include <stdio.h>
7 #include <sys/types .h>
8 #include <sys/ipc .h>
9 #include <sys/msg .h>

10 struct mggblf1 {
1 1 lang mtype ;
12 char mtext[8 192] ;
13 sndl::uf ' rcvi:Juf ' *msgp;

14 /*start of main C language program*/
15 main()
16 {
17 extern int enno;
18 int i, c, flag, flags , choice ;
19 int rtrn, msqid, msgsz , msgflg;
20 long mtype , msgtyp;
2 1 struct msqid_ds msqid_ds , *buf ;
22 buf = &msqid-ds ;

Figure 9-6 : msgop() System Call Example (Sheet 1 of 7)

Messages

INTERPROCESS COMMUNICATION 9·3 1

Messages

23 /*Select the desired operation. */
24 printf ("Enter the oorresparrling\n") ;
25 printf ("code to send or\n") ;
26 printf("receive a message : \n") ;
27 printf ("send 1\n") ;
28
29

printf("Receive
printf ("Entl:y

30 scanf ("%d" , &choice) ;

2\n") ;
") ;

3 1 if (choice = = 1) /*send a message . */
32 {
33 msgp = &sndbuf; /*Point to user send structure . */

34 printf("\nEnter the msqid of\n") ;
35 printf ("the message queue to\n") ;
36 printf ("handle the message = ") ;
37 scanf ("%d" , &.msqid) ;

38 /*Set the message type . */
39 printf ("\nEnter a positive integer\n") ;
40 printf ("message type (lang) for the\n") ;
4 1 printf ("message = ") ;
42 scanf ("%d" , &msgtyp) ;
43 msgp->mtype = nsgtyp;

44 /*Enter the message to send. */
45 printf ("\nEnter a message : \n") ;

46 /*A oantrol-d ('d) tenninates as
47 EOF. */

Figure 9-6: msgop() System Call Example (Sheet 2 of 7)

9-32 PROGRAMMER'S GUIDE

48
49
50
5 1

52
53

54
55
56

57
58
59
60
6 1
62
63
64
65

66
67

68
69
70
7 1
72
73
74
75
76

/*Get each character of the message
and put it in the mtext array. */

for (i = 0 ; ((c = getchar()) ! = EOF) ; i++)
sOObuf .mtext[i] = c ;

/*Determine the message size . */
111S9SZ = i + 1 ;

/*Echo the message to send . */
for (i = 0 ; i < msgsz ; i++)

putchar(sndbuf .mtext[i]) ;

/*Set the II'C_N::MAIT flag if
desired. */

printf ("\nEnter a 1 if you want the\n") ;
printf ("the II'C_ N::MAIT flag set: ") ;
scanf ("%d" , &flag) ;
if (flag == 1)

msgflg I = II'C_N::MAIT;
else

msgflg = 0 ;

/*Check the msgflg. * /
printf("\nmsgflg = O%o\n" , 111Sgflg) ;

/*Send the message . */
rtzn = msgsnd(msqid, 111Sgp, msgsz , msgflg) ;
if (rtrn = -1)
printf ("'\nMsgsnd failed. Error = %d\n" '

errno) ;
else {

/*Print the value of test which
should be zero for successful . */

printf("\nValue retm:ned = %d\n" , rtrn) ;

Messages

Figure 9-6: msgop{) System Call Example (Sheet 3 of 7)

INTERPROCESS COMMUNICATION 9-33

Messages

77
78
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93
94

/*Print the size of the message
sent . */

printf ("\IJ!olsgsz = :l{d\n" , msgsz) ;

/*Check the data structure update . */
msgctl (msqid, IFC_STAT, rut) ;

/*Print out the affected members . */

/*Print the incremented 1li.IIDber of
messages an the queue . */

printf ("\n'Ibe rosq_qnum = j{d\n" '
�>msq_qnum) ;

/*Print the process id of the last sender . */
printf ("The rosq_lspid = j{d\n" '

�>msg_lspid) ;
/*Print the last send time . */
printf ("The msq_stime = j{d\n" ,

�>msg_stime) ;

95 if (choice == 2) /*Receive a message . */
% {
97
98
99

100
1 0 1
102
1 03

/*Initialize the message pointer
to the receive ruffer . * /

msgp = &rcvblf ;

/*Specify the message queue whi ch oontains
the desired message . */

printf ("\DEnter the msqid = •) ;
scanf("j(d" ' &m!qid) ;

Figure 9-6: msgop() System Call Example (Sheet 4 of 7)

9-34 PROGRAMMER'S GUIDE

104
105
106
107

108
109
1 1 0
1 1 1
1 12
1 13
1 14
1 15
1 16
1 17

1 18
1 19
120
121
122
123
124
125
126
127
128
129
130
1 3 1
132
133

/*Specify the specific message on the queue
by us:in;J its type . */

printf ("\nEnter the msgtyp = n) ;
scanf ("%d" , &msgtyp) ;

/*Configure the cont=l flags for the
desired actions . */

printf ("\nEnter the oarrespcnd:ing ccde\n") ;
printf("to select the desired flags : \n") ;
printf("No flags 0\n") j
printf ("llm_�
printf ("!PC_�
printf("lim_� and IPC_�
printf (" Flags
scanf ("%d" , &flags) ;

switch(flags) {

1\n") ;
2\n") j
3\n") j
") ;

/*Set msgflg by Citing it with the appropriate
flags (OClllSt:ants) . */

case 0 :
msgflg = 0 ;
break;

case 1 :
msgflg 1 = lim_�;
break;

case 2:
msgflg I = IPC_�;
break;

case 3 :
msgflg 1 = llm_WmBCR I IPC_tn-lAIT;
break;

Messages

Figure 9-6: msgop() System Call Example (Sheet 5 of 7)

INTERPROCESS COMMUNICATION 9-35

Messages

134
135
136
137

138
139
140
141
142

143
144

145
146
147
148
149
150
151
152

153
1 54
155
156

/*Specify the 1'llllllber of bytes to receive . */
printf ("\nEnter the IlUIIIber of bytes\n") ;
printf ("to receive (msgsz) = ") ;
scanf ("%Ci" , &msgsz) ;

/*Check the values for the azguments . */
printf ("\Jlm;qid =%d\n" , msqid) ;
printf ("\nmsgtyp = M\n" , msgtyp) ;
printf ("'\nmsgsz = M\n" , msgsz l ;
printf ("'\nmsgflg = 0%:>\n" ' nEgflg) ;

/*Call msgrcv to receive the message . */
rtzn = msgrcv(msqid, msgp , msgsz , msgtyp , msgflg) ;

if(rtzn == -1)
printf ("\nMsgrcv failed. ") ;
printf ("Er:ror = %d\n" , emJO) ;

else {
print£ ("\nMsgctl was successful\n") ;
printf ("far msqid = M\n" ,

msqid) ;

/*Print the IlUIIIber of bytes received ,
it is equal to the retm:n
value . */

printf ("Bytes received = %d\n" , rtzn) ;

Figure 9-6: msgop() System Call Example (Sheet 6 of 7)

9-36 PROGRAMMER'S GUIDE

157
158
159
160
161
162
163
164
165
166
167
168
169
170

/*Print the received message . */
for(i = 0 ; i<=rtrn; i++)

putdhar (rcvbuf.mtext[i]) ;

/*Oleck the associated data structure . * I
msgctl (msqid, IPC_STAT, but) ;
/*Print the decremented l1UII1ber of messages . * I
pr:intf ("\n'nle msg_qnum = :J((i\n" ' bl.lf->msg:_qnum) ;
/*Print the process id of the last receiver . */
printf ("'Dle msg_ll:pid = :J((i\Jin , bl.lf->msg:_ll:pid) ;
/*Pr:int the last message receive time*/
pr:intf ("'Dle msg_rtime = :J((i\n" ' bl.lf->msg:_rtime) ;

Messages

Figure 9-6: msgop() System Call Example (Sheet 7 of 7)

INTERPROCESS COMMUNICATION 9-37

Semaphores

The semaphore type of IPC allows processes to communicate through the
exchange of semaphore values. A semaphore is a positive integer (0 through
32,767). Since many applications require the use of more than one sema
phore, the UNIX Operating System has the ability to create sets or arrays of
semaphores. A semaphore set can contain one or more semaphores up to a
limit set by the system administrator. The tunable parameter, SEMMSL has a
default value of 25. Semaphore sets are created by using the semget(2) sys
tem call.

The process performing the semget(2) system call becomes the
owner/creator, determines how many semaphores are in the set, and sets the
operation permissions for the set, including itself. This process can subse
quently relinquish ownership of the set or change the operation permissions
using the semctl(), semaphore control, system call. The creating process
always remains the creator as long as the facility exists. Other processes with
permission can use semctl() to perform other control functions.

Provided a process has alter permission, it can manipulate the
semaphore(s) . Each semaphore within a set can be manipulated in two ways
with the semop(2) system call (which is documented in the Programmer's
Reference Manual):

• incremented

• decremented

To increment a semaphore, an integer value of the desired magnitude is
passed to the semop{2) system call. To decrement a semaphore, a minus (-)
value of the desired magnitude is passed.

The UNIX Operating System ensures that only one process can manipu
late a semaphore set at any given time. Simultaneous requests are performed
sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value
by attempting to decrement the semaphore by one more than that value. If
the process is successful, then the semaphore value is greater than that certain
value. Otherwise, the semaphore value is not. While doing this, the process
can have its execution suspended (IPC_NOWAIT flag not set) until the sema
phore value would permit the operation (other processes increment the sema
phore), or the semaphore facility is removed.

9·38 PROGRAMMER'S GUIDE

Semaphores

The ability to suspend execution is called a " blocking semaphore opera
tion. " This ability is also available for a process which is testing for a sema
phore to become zero or equal to zero; only read permission is required for
this test, and it is accomplished by passing a value of zero to the semop(2)
system call .

On the other hand, if the process is not successful and the process does
not request to have its execution suspended, it is called a " nonblocking sema
phore operation. " In this case, the process is returned a known error code
(-1). and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based
on the values of semaphores at different points in time. Remember also that
IPC facilities remain in the UNIX Operating System until removed by a per
mitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop(2), semaphore
operation, system call .

When a set of semaphores is created, the first semaphore in the set is
semaphore number zero. The last semaphore number in the set is one less
than the total in the set.

An array of these " blockingjnonblocking operations " can be performed
on a set containing more than one semaphore. When performing an array of
operations, the " blockingjnonblocking operations " can be applied to any or
all of the semaphores in the set. Also, the operations can be applied in any
order of semaphore number. However, no operations are done until they can
all be done successfully. This requirement means that preceding changes
made to semaphore values in the set must be undone when a " blocking
semaphore operation " on a semaphore in the set cannot be completed suc
cessfully; no changes are made until they can all be made. For example, if a
process has successfully completed three of six operations on a set of ten
semaphores but is " blocked " from performing the fourth operation, no
changes are made to the set until the fourth and remaining operations are suc
cessfully performed. Additionally, any operation preceding or succeeding the
" blocked " operation, including the blocked operation, can specify that at such
time that all operations can be performed successfully, that the operation be
undone. Otherwise, the operations are performed and the semaphores are
changed, or one " nonblocking operation " is unsuccessful and none are
changed. All of this is commonly referred to as being " atomically per
formed. "

INTERPROCESS COMMUNICATION 9-39

Semaphores

The ability to undo operations requires the UNIX Operating System to
maintain an array of " undo structures " corresponding to the array of sema
phore operations to be performed. Each semaphore operation which is to be
undone has an associated adjust variable used for undoing the operation, if
necessary.

Remember, any unsuccessful " nonblocking operation " for a single sema
phore or a set of semaphores causes immediate return with no operations per
formed at all. When this occurs, a known error code (-1) is returned to the
process, and the external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes.
The calling process passes arguments to a system call, and the system call
either successfully or unsuccessfully performs its function. If the system call is
successful, it performs its function and returns the appropriate information.
Otherwise, a known error code (- 1) is returned to the process, and the external
variable errno is set accordingly.

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely
identified data structure and semaphore set (array) must be created. The
unique identifier is called the semaphore identifier (semid); it is used to iden
tify or reference a particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array,
one structure for each semaphore in the set. The number of semaphores
(nsems) in a semaphore set is user-selectable. The following members are in
each structure within a semaphore set:

• semaphore text map address

• process identification (PID) performing last operation

• number of processes awaiting the semaphore value to become greater
than its current value

• number of processes awaiting the semaphore value to equal zero

There is one associated data structure for the uniquely identified sema
phore set. This data structure contains information related to the semaphore
set as follows:

9-40 PROGRAMMER'S GUIDE

Semaphores

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C Programming Language data structure definition for the semaphore
set (array member) is located in the #include <sysfsem.h> header file and is
as follows:

struct sem

ushort
short
ushort
ushort

} ;

semval ;
senpid;
sernncnt ;
semzc:nt ;

I* semaphore text map address *I
I* pid of last operation *I
I* # awaiting semval > cva1 *I
I* # awaiting semval = 0 *I

Likewise, the structure definition for the associated semaphore data struc
ture is also located in the #include <sysjsem.h> header file and is as fol
lows:

INTERPROCESS COMMUNICATION 9-41

Semaphores

st:ruct semid _ds

stl:uct ipc_;perm sem_;perm;

} ;

stl:uct sem
ushort
time_t
time_t

*san_ base ;
sem_nsems ;
sem_otime ;
sem_ctime ;

I* operation permission st:ruct *I
I* ptr to first semaphore in set *I
I* # of semaphores in set *I
I* last seaop time *I
I* last change time *I

Note that the sem_perm member of this structure uses ipc_perm as a
template. The breakout for the operation permissions data structure is shown
in Figure 9-1 .

The ipc_perm data structure is the same for all IPC facilities, and i t is
located in the #include <sysjipc.h> header file. It is shown in the " Mes
sages " section.

The semget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the semflg argument that it receives:

• to get a new semid and create an associated data structure and sema
phore set for it

• to return an existing semid that already has an associated data struc
ture and semaphore set

The task performed is determined by the value of the key argument passed to
the semget(2) system call. For the first task, if the key is not already in use
for an existing semid, a new semid is returned with an associated data struc
ture and semaphore set created for it, provided no system tunable parameter
would be exceeded.

There is also a provision for specifying a key of value zero (0), which is
known as the private key (IPC_FRIV ATE = 0); when specified, a new semid
is always returned with an associated data structure and semaphore set
created for it, unless a system tunable parameter would be exceeded. When
the ipcs command is performed, the KEY field for the semid is all zeros .

9-42 PROGRAMMER'S GUIDE

Semaphores

When performing the first task, the process which calls semget() becomes
the owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see the " Controlling Semaphores " section in this chapter.
The creator of the semaphore set also determines the initial operation permis
sions for the facility.

For the second task, if a semid exists for the key specified, the value of
the existing semid is returned. If it is not desired to have an existing semid
returned, a control command (IPC_EXCL) can be specified (set) in the semflg
argument passed to the system call. The system call will fail if it is passed a
value for the number of semaphores (nsems) that is greater than the number
actually in the set; if you do not know how many semaphores are in the set,
use 0 for nsems. The details of using this system call are discussed in the
" Using semget " section of this chapter.

Once a uniquely identified semaphore set and data structure are created,
semaphore operations [semop(2)] and semaphore control [semctl()] can be
used.

Semaphore operations consist of incrementing, decrementing, and testing
for zero. A single system call is used to perform these operations. It is called
semop(). Refer to the " Operations on Semaphores " section in this chapter
for details of this system call .

Semaphore control is done by using the semctl(2) system call. These con
trol operations permit you to control the semaphore facility in the following
ways:

• to return the value of a semaphore

• to set the value of a semaphore

• to return the process identification (PID) of the last process performing
an operation on a semaphore set

• to return the number of processes waiting for a semaphore value to
become greater than its current value

• to return the number of processes waiting for a semaphore value to
equal zero

• to get all semaphore values in a set and place them in an array in user
memory

INTERPROCESS COMMUNICATION 9·43

Semaphores

• to set all semaphore values in a semaphore set from an array of values
in user memory

• to place all data structure member values, status, of a semaphore set
into user memory area

• to change operation permissions for a semaphore set

• to remove a particular semid from the UNIX Operating System along
with its associated data structure and semaphore set.

Refer to the 11 Controlling Semaphores 11 section in this chapter for details
of the semctl(2) system call.

Getting Semaphores

This section contains a detailed description of using the semget(2) system
call along with an example program illustrating its use.

Using semget

The synopsis found in the semget(2) entry in the Programmer's Reference
Manual is as follows:

#:include <sys/types .h>
#:include <sys/ipc .h>
#:include <sys/sem.h>

int seDgE!'t (key, nsems , seog)
key_t key;
int nsems , seog;

The following line in the synopsis informs you that semget() is a function
with three formal arguments that returns an integer type value upon success
ful completion (semid).

mt senget (key' nsems ' semflg)

9·44 PROGRAMMER'S GUIDE

Semaphores

The next two lines declare the types of the formal arguments. key_t is
declared by a typedef in the types.h header file to be an integer.

key_t key;
int nsems , semflg ;

The integer returned from this system call upon successful completion is
the semaphore set identifier (semid) that was discussed earlier.

As declared, the process calling the semget() system call must supply
three arguments to be passed to the formal key, nsems, and semflg argu
ments.

A new semid with an associated semaphore set and data structure is pro
vided if one of the following conditions exists:

• key is equal to IPCJRIV ATE

• key is passed a unique hexadecimal integer, and semflg ANDed with
IPC_CREAT is TRUE.

The value passed to the sentflg argument must be an integer type octal
value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes, and execution
modes determine the userjgroupjother attributes of the semflg argument.
They are collectively referred to as " operation permissions. " Figure 9-7
reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

INTERPRO.CESS COMMUNICATION 9-45

Semaphores

Operation Permissions

Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Figure 9-7: Operation Permissions Codes

Octal Value

00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding the octal values for the opera
tion permissions desired. That is, if read by user and readjalter by others is
desired, the code value would be 00406 (00400 plus 00006). There are con
stants #define' d in the sem.h header file which can be used for the user
(OWNER) . They are:

SEM_A
SEM_R

0200
0400

I* alter permission by owner *I
I* read permission by owner *I

Control commands are predefined constants (represented by all uppercase
letters). Figure 9-8 contains the names of the constants which apply to the
semget(2) system call along with their values . They are also referred to as
flags and are defined in the ipc.h header file.

Control Command

IPC_CREAT
IPC_EXCL

Figure 9-8: Control Commands (Flags)

Value

0001000
0002000

The value for the semflg argument is, therefore, a combination of opera
tion permissions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can be speci
fied. This specification is accomplished by bitwise DRing (I) them with the
operation permissions; bit positions and values for the control commands in
relation to those of the operation permissions make this possible. An example
of determining the semflg argument follows.

9-46 PROGRAMMER'S GUIDE

IP<:_CREAT
CWl ORed by User

semflg

Octal Value

0 1 0 0 0
0 0 4 0 0

0 1 4 0 0

Semaphores

Binary Value

0 000 001 000 000 000
0 000 000 100 000 000

0 000 001 100 000 000

The semflg value can easily be set by using the names of the flags in con
junction with the octal operation permissions value:

semid = senqet (key, nsems , (Il?C_CREAT 1 0400)) ;

semid = senget (key, nsems , (Il?C_CREAT I Il?C_EXCL I 0400)) ;

As specified by the semget(2) entry in the Programmer's Reference Manual,
success or failure of this system call depends upon the actual argument values
for key, nsems, semflg or system tunable parameters. The system call will
attempt to return a new semid if one of the following conditions exists:

or

• key is equal to IPCJRIV ATE (0)

• key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is TRUE (not zero) .

The key argument can be set to IPCJRIV ATE in the following ways:

semid = senget (IFC_PRIVATE, nsems , semflg) ;

semid = senget (0 , nsems , semflg) ;

This alone will cause the system call to be attempted because it satisfies the
first condition specified. Exceeding the SEMMNI, SEMMNS, or SEMMSL
system-tunable parameters will always cause a failure. The SEMMNI system
tunable parameter determines the maximum number of unique semaphore sets
(semid's) in the UNIX Operating System. The SEMMNS system-tunable
parameter determines the maximum number of semaphores in all semaphore
sets systemwide. The SEMMSL system-tunable parameter determines the
maximum number of semaphores in each semaphore set.

INTERPROCESS COMMUNICATION 9-47

Semaphores ---

The second condition is satisfied if the value for key is not already associ
ated with a semid and the bitwise ANDing of semflg and IPC_CREAT is
TRUE (not zero). This means that the key is unique (not in use) within the
UNIX Operating System for this facility type and that the IPc_CREAT flag is
set (semflg I IPc_CREAT). The bitwise ANDing (&), which is the logical way
of testing if a flag is set, is illustrated as follows:

Semflg = X 1 X X X (X = imnaterial)
&. IK:_amta' = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or TRUE. SEMMNI, SEMMNS, and
SEMMSL apply here also, just as for condition one.

IP�XCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a semid
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) semid when it has not. In
other words, when both IPC_CREAT and IPC_EXCL are specified, a new
semid is returned if the system call is successful. Any value for semflg
returns a new semid if the key equals zero (IPC_pRIV ATE) and no system
tunable parameters are exceeded.

Refer to the semget(2) manual page for specific, associated data structure
initialization for successful completion.

Example Program

The example program in this section (Figure 9-9) is a menu-driven pro
gram which allows all possible combinations of using the semget(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the Programmer's Reference Manual . Note
that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

9-48 PROGRAMMER'S GUIDE

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and are perfectly legal since they are
local to the program. Variables declared for this program and their purpose
are as follows:

• key-is used to pass the value for the desired key.

• opperm-is used to store the desired operation permissions.

• flags-is used to store the desired control commands (flags).

• opperm_flags-is used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the system
call to pass the semflg argument.

·

• semid-is used for returning the semaphore set identification number
for a successful system call or the error code (-1) for an unsuccessful
one.

The program begins by prompting for a hexadecimal key, an octal opera
tion permissions code, and the control command combinations (flags) which
are selected from a menu (lines 15-32). All possible combinations are allowed
even though they might not be viable. This allows observing the errors for
illegal combinations.

Next, the menu selection for the flags is combined with the operation per
missions, and the result is stored at the address of the opperm_flags variable
(lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57), and
its value is stored at the address of nsems.

The system call is made next, and the result is stored at the address of the
semid variable (lines 60 and 61) .

Since the semid variable now contains a valid semaphore set identifier or
the error code (-1), it is tested to see if an error occurred (line 63). If semid
equals -1, a message indicates that an error resulted and the external errno
variable is displayed (lines 65 and 66). Remember that the external errno
variable is only set when a system call fails; it should only be tested immedi
ately following system calls.

INTERPROCESS COMMUNICATION 9-49

Semaphores

If no error occurred, the returned semaphore set identifier is displayed
(line 70).

The example program for the semget(2) system call follows. It is sug
gested that the source program file be named semget.c and that the executable
file be named semget.

/"'!.'his is a program to illustrate
2 **the semaphore get, seuget () ,
3 **system call capabilities . * I

4 #include <stdio.h>
<sys/types .h>
<sys/ip:: . h>
<sys/sem.h>
<errno .h>

5 #include
6 #include
7 #include
8 #include

9
10
1 1
12
13
14

15
16
17

18
19
20
21
22

/*Start of main C language program* I
main()
{

key_t key; /*declare as lang integer* I
int oppenn, flags , nsems ;
int semid, oppenn_flags ;

/*Enter the desired key* I
printf ("\DEnter the desired key in hex = ") ;
scanf ("%x" , &key) ;

/*Enter the desired octal operation
pennissians . *I

printf("\nEnter the operatian\n") ;
printf ("pennissians in octal = ") ;
scanf ("%o" ' &oppenn) ;

Figure 9-9: semget() System Call Example (Sheet 1 of 3)

9-50 PROGRAMMER'S GUIDE

23 /*Set the desired flags . */
24 printf { "\nEnter oarrespcmd:in;J number to\n") ;
25 printf { "set the desired flags : \n") ;
26 printf { "No flags = 0\n") ;
27
28
29
30
3 1
32

33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52

printf { "IFC_CREAT
printf { "IFC_EXCL
printf { "IFC_CREAT and IFC_EXCL
printf { " Flags
/"Get the flags to be set . */
scanf { "%d" , &flags) ;

/*Error checking { debugg:in]) */

= 1\n") ;
= 2\n") ;
= 3\n") ;
: II) ;

printf { "\nkey =�. oppenn = O%o, flags = O%o\n" '
key, oppenn, flags) ;

/*I:nc:la%porate the control fields { flags) with
the operation pennissians . */

switch { flags)
{
case 0 : /*No flags are to be set . */

opperm_flags = { oppenn I 0) ;
break;

case 1 : /*Set the IFC_CREAT flag . */
oppenn_flags = {oppenn I IFC_CREAT) ;
break;

case 2 : /*Set the IFC_EXCL flag . */
opperm_flags = { oppenn I IPC_EXCL) ;
break;

case 3 : /*Set the IFC_CRFAT and IFC_EXCL
flags . */

opperm_flags = {oppenn I IPC_CRFAT I IFC_EXCL) ;

Figure 9-9: semget() System Call Example (Sheet 2 of 3)

Semaphores

INTERPROCESS COMMUNICATION 9-5 1

Semaphores

53 /*Get the number of semaphores far this set . *I
54 print£("\nEnter the number of\n") ;
55 printf (''desired semaphores for\n") ;
56 printf ("this set (25 max) = ") ;
57 scanf ("%d." , &nsems) ;

58 /*Oleck the entzy. */
59 printf ("\nNsems = %d\n" , nsems) ;

60 /*Call the senget system call . * I
61 semid = senget(key, nsems , oppenn_flags) ;

62 /*Perfor:m the following if the call is unsuccessful . * I
63 if (semid = -1)
64 {
65 printf("The senget system call failed l \n") ;
66 printf ("The e= number = %d\n" , errno) ;
67
68 /*Retuzn the semid upon successful oc:u;>letian . *I
69 else
70 printf ("\nThe semid = %d\n" ' semid) ;
7 1 exit(O) ;
72

Figure 9-9: semget() System Call Example (Sheet 3 of 3)

Controlling Semaphores

This section contains a detailed description of using the semctl(2) system
call along with an example program which allows all of its capabilities to be
exercised.

9-52 PROGRAMMER'S GUIDE

Semaphores

Using semctl

The synopsis found in the semctl(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types . h>
#include <sys/ipc: .h>
#include <sys/sem.h>

int sem::rt:l (semid, semnum, atrl, arg)
int semid, atrl ;
int semnum;
l.Dlian semm

} arg;

int val ;
struct semid_ds *bu;
ushort array[] ;

The semctl(2) system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget(2) system call .

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set. When a set of
semaphores is created, the first semaphore is number 0, and the last sema
phore has the number of one less than the total in the set.

The cmd argument can be replaced by one of the following control com
mands (flags) :

• GETV AL-retums the value of a single semaphore within a sema
phore set.

• SETV AL-sets the value of a single semaphore within a semaphore
set.

INTERPROCESS COMMUNICATION 9-53

Semaphores

• GETPID-returns the Process Identifier (PID) of the process that per
formed the last operation on the semaphore within a semaphore set.

• GETNCNT -returns the number of processes waiting for the value of
a particular semaphore to become greater than its current value.

• GETZCNT -returns the number of processes waiting for the value of a
particular semaphore to be equal to zero.

• GET ALL-returns the values for all semaphores in a semaphore set.

• SETALL-sets all semaphore values in a semaphore set.

• IPC_STAT-returns the status information contained in the associated
data structure for the specified semid, and places it in the data structure
pointed to by the •buf pointer in the user memory area; arg.buf is the
union member that contains the value of buf.

• IPC_SET -for the specified semaphore set (semid), sets the effective
userjgroup identification and operation permissions.

• IPC_RMID-removes the specified (semid) semaphore set along with
its associated data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID con
trol command. Readjalter permission is required as applicable for the other
control commands.

The arg argument is used to pass the system call the appropriate union
member for the control command to be performed:

• arg.val

• arg.buf

• arg.array

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program,
read the 11 Using semget 11 section of this chapter; it goes into more detail than
would be practical to do for every system call.

9·54 PROGRAMMER'S GUIDE

Semaphores

Example Program

The example program in this section (Figure 9-10) is a menu-driven pro
gram which allows all possible combinations of using the semctl(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore
the errno.h header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as
possible to those in the synopsis for the system call. Their declarations are
self-explanatory. These names make the program more readable, and are per
fectly legal since they are local to the program. Variables declared for this
program and their purpose are as follows:

• semiLds-is used to receive the specified semaphore set identifier's
data structure when an IPC_ST AT control command is performed.

• c-is used to receive the input values from the scan£(35) function
(line 1 1 7) when performing a SET ALL control command.

• i-is used as a counter to increment through the union arg.array when
displaying the semaphore values for a GETALL (lines 97-99) control
command, and when initializing the arg.array when performing a
SETALL (lines 1 15-1 19) control command.

• length-is used as a variable to test for the number of semaphores in
a set against the i counter variable (lines 97 and 1 15).

• uid-is used to store the IPc_SET value for the effective user identifi
cation.

• gid-is used to store the IPC_SET value for the effective group iden
tification.

• mode-is used to store the IPc_sET value for the operation permis
sions.

INTERPROCESS COMMUNICATION 9·55

Semaphores

• rtm-is used to store the return integer from the system call which
depends upon the control command or a -1 when unsuccessful.

• semid-is used to store and pass the semaphore set identifier to the
system call .

• semnum-is used to store and pass the semaphore number to the sys
tem call.

• cmd-is used to store the code for the desired control command so
that subsequent processing can be performed on it.

• choice-is used to determine which member (uid, gid, mode) for the
IPC-SET control command is to be changed.

• arg.val-is used to pass the system call a value to set (SETV AL) or to
store (GETV AL) a value returned from the system call for a single
semaphore (union member).

• arg.buf-is a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control com
mand is to place its return values, or where the IPC_SET command
gets the values to set (union member) .

• arg.array-is used to store the set of semaphore values when getting
(GETALL) or initializing (SET ALL) (union member).

Note that the semicLds data structure in this program (line 1 4) uses the
data structure located in the sem.h header file of the same name as a template
for its declaration. This is a perfect example of the advantage of local vari
ables.

The arg union (lines 1 8-22) serves three purposes in one. The compiler
allocates enough storage to hold its largest member. The program can then
use the union as any member by referencing union members as if they were
regular structure members. Note that the array is declared to have 25 ele
ments (0 through 24).This number corresponds to the maximum number of
semaphores allowed per set (SEMMSL), a system tunable parameter.

The next important program aspect to observe is that, although the •buf
pointer member (arg.buf) of the union is declared to be a pointer to a data
structure of the semicLds type, it must also be initialized to contain the
address of the user memory area data structure (line 24). Because of the way
this program is written, the pointer does not need to be reinitialized later.

9·58 PROGRAMMER'S GUIDE

Semaphores

If it was used to increment through the array, it would need to be reinitialized
just before calling the system call.

Now that all of the required declarations have been presented for this pro
gram, this is how it works.

First, the program prompts for a valid semaphore set identifier, which is
stored at the address of the semid variable (lines 25-27). This is required for
all semct1(2) system calls.

Then, the code for the desired control command must be entered (lines
28-42), and the code is stored at the address of the cmd variable. The code is
tested to determine the control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompt
ing for a semaphore number is displayed (lines 49 and 50). When it is
entered, it is stored at the address of the semnum variable (line 5 1). Then,
the system call is performed, and the semaphore value is displayed (lines 52-
55). If the system call is successful, a message indicates this along with the
semaphore set identifier used (lines 1 95, 196); if the system call is unsuccess
ful, an error message is displayed along with the value of the external errno
variable (lines 191 - 193).

If the SETVAL control command is selected (code 2), a message prompting
for a semaphore number is displayed (lines 56 and 5 7). When it is entered, it
is stored at the address of the semnum variable (line 58). Next, a message
prompts for the value to which the semaphore is to be set, and it is stored as
the arg.val member of the union (lines 59 and 60). Then, the system call is
performed (lines 61 , 63). Depending upon success or failure, the program
returns the same messages as for GETV AL above.

If the GETPID control command is selected (code 3), the system call is
made immediately since all required arguments are known (lines 64-67}, and
the PID of the process performing the last operation is displayed. Depending
upon success or failure, the program returns the same messages as for GET
VAL above.

If the GETNCNT control command is selected (code 4}, a message
prompting for a semaphore number is displayed (lines 68-72). When entered,
it is stored at the address of the semnum variable (line 73). Then, the system
call is performed, and the number of processes waiting for the semaphore to
become greater than its current value is displayed (lines 74-77). Depending
upon success or failure, the program returns the same messages as for GET
VAL above.

INTERPROCESS COMMUNICATION . 9·57

Semaphores

If the GETZCNT control command is selected (code 5}, a message prompt
ing for a semaphore number is displayed (lines 78-81) . When it is entered, it
is stored at the address of the semnum variable (line 82). Then the system
call is performed, and the number of processes waiting for the semaphore
value to become equal to zero is displayed (lines 83-86). Depending upon
success or failure, the program returns the same messages as for GETV AL
above.

If the GET ALL control command is selected (code 6), the program first
performs an IPC_STAT control command to determine the number of sema
phores in the set (lines 88-93). The length variable is set to the number of
semaphores in the set (line 91). Next, the system call is made and, upon suc
cess, the arg.array union member contains the values of the semaphore set
(line 96). Now, a loop is entered which displays each element of the
arg.array from zero to one less than the value of length (lines 97-103). The
semaphores in the set are displayed on a single line, separated by a space.
Depending upon success or failure, the program returns the same messages as
for GETV AL above.

If the SETALL control command is selected (code 7), the program first
performs an IPc_sT AT control command to determine the number of sema
phores in the set (lines 1 06-108). The length variable is set to the number of
semaphores in the set (line 109). Next, the program prompts for the values to
be set and enters a loop which takes values from the keyboard and initializes
the arg.array union member to contain the desired values of the semaphore
set (lines 1 13- 1 1 9) . The loop puts the first entry into the array position for
semaphore number zero and ends when the semaphore number that is filled
in the array equals one less than the value of length. The system call is then
made (lines 1 20-1 22). Depending upon success or failure, the program returns
the same messages as for GETV AL above.

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127}, and the status information returned is printed out (lines
1 28-139); only the members that can be set are printed out in this program.
Note that if the system call is unsuccessful, the status information of the last
successful one is printed out. In addition, an error message is displayed, and
the errno variable is printed out (lines 19 1 and 192).

If the IPC_SET control command is selected (code 9), the program gets
the current status information for the semaphore set identifier specified (lines
143-146). This is necessary because this example program provides for chang
ing only one member at a time, and the semctl(2) system call changes all of
them. Also, if an invalid value happened to be stored in the user memory

9-58 PROGRAMMER'S GUIDE

Semaphores

area for one of these members, it would cause repetitive failures for this con
trol command until corrected. The next thing the program does is to prompt
for a code corresponding to the member to be changed (lines 147-153). This
code is stored at the address of the choice variable (line 154). Now, depend
ing upon the member picked, the program prompts for the new value (lines
155-1 78). The value is placed at the address of the appropriate member in the
user memory area data structure, and the system call is made (line 1 81) .
Depending upon success or failure, the program returns the same messages as
for GETV AL above.

If the IPC_RMID control command (code 1 0) is selected, the system call is
performed (lines 1 83-1 85). The semid along with its associated data structure
and semaphore set is removed from the UNIX Operating System. Depending
upon success or failure, the program returns the same messages as for the
other control commands.

The example program for the semctl(2) system call follows. It is sug
gested that the source program file be named semctl.c and that the executable
file be named semctl.

I NTERPROCESS COMMUNICATION 9-59

Semaphores

/*This is a program to illustrate
2 **the semaphore cx:mtrol , seoct1 () ,
3 **system call capabilities .
4 */

5 /*Include necessary header files . */
6 #include <stdio.h>
7 #include <sys/types .h>
8 #include <sys/ipc .h>
9 #include <sys/sem.h>

10 /*Start of main C language program*/
1 1 main()
12 {
1 3 eKtern int erma ;
14 struct semid_ds semid_ds ;
1 5 int c , i , 1�;
16 int uid, gid, m:x:J.e ;
17 int retrn, semid, semnum, cmi, choice ;
18 union sermm {
19 int val ;
20 struct semid_ds *buf ;
2 1 us00rt array[25] ;
22 arg;

23 /*Initialize the data structure pointer . */
24 arg.buf = &semid_ds ;

Figure 9-10 : semctl() System Call Example (Sheet 1 of 7)

9-60 PROGRAMMER'S GUIDE

Semaphores

25 /*Enter the semaphore m. */
26 print£ ("Enter the semid = ") ;
27 scanf("%d." . &semid) ;

28 /*Choose the desired oc:nmand . */
29 printf ("\nEnter the number far\n") ;
30 printf ("the desired ani:\n") ;
3 1 print£ ("GE:lVAL 1\n" J ;
32 print£ ("SEIVAL 2\n") ;
33 print£ ("GEl'PID 3\n" J ;
34 printf ("GE:lN:N.r 4\n" J ;
35 printf ("GE:l'ZCNI' 5\n") ;
36 print£ ("GE:rALL 6\n") ;
37 print£ ("SE:rALl. 7\n") ;
38 print£ ("IFC_STAT 8\n" J ;
39 print£ ("IFC_SE:l' 9\n" J ;
40 printf ("IFC_RMID 1 0\n") ;
4 1 print£ ("Entzy ••) ;
42 scanf("%d." . &ani) ;

43 /*Check entries . */
44 printf ("\nsemid =%d., ani = %d\n\n" .
45 seni.d, ani) ;

46 /*Set the oc:nmand and do the call . */
47 switch (ani)
48 {

Figure 9-10 : semctl() System Call Example (Sheet 2 of 7)

INTERPROCESS COMMUNICATION 9-61

Semaphores

49 case 1 : /*Get a specified value . */
50 print£ ("\nEnter the semrmm = ") ;
5 1 scanf ("%:1" , &semnum) ;
52 /*Do the systen call . * I
53 retnl = sem::tl (senid, semrmm, GEIVAL, 0) ;
54 print£ ("\n'l'he semval = %:1\n" , retrn) ;
55 break;
56 case 2 : /*Set a specified value . *I
57 print£ ("\nEnter the semrrum = ") ;
58 scanf ("%:1" ' &semnum) ;
59 print£ ("\nEnter the value = ") ;
60 scanf ("%:1" ' &arg. val) ;
61 /*Do the systen call . *I
62 retnl = serctl (senid, semrmm, SEIVAL, arg.val) ;
63 break;
64 case 3 : /*Get the process m. *I
65 retrn = sem::tl (senid, 0 , GEI'PID, 0) ;
66 print£("\n'l'he sempid = %:1\n" , retrn) ;
67 break;
68 case 4: /*Get the nmnber of processes
69 waiting for the senaphore to
70 becx:me greater than its current
71 value . */
72 print£ ("\nEnter the semrrum = ") ;
73 scanf("%:1" , &semnum) ;
74 /*Do the systen call . */
75 retnl = serctl (senid, semrmm, GE:INCNl' , 0) ;
76 printf ("\n'l'he semnc:nt = %:1" , retrn) ;
77 break;

Figure 9-10: semctl() System Call Example (Sheet 3 of 7)

9-62 PROGRAMMER'S GUIDE

78 case 5 : /*Get the number of processes
79 waiting far the seoapbore
80 value to beoaDe zero . */
8 1 printf("\nEnter the semrmm = ") ;
82 scanf("%d." ' &semum) ;
83 /*Do the system call . */
84 retxn = seuctl. (semi.d , semnum, GE'l'701T, 0) ;
85 printf ("\Jtl'he SEII1ZCilt = %d.• ' re'b:n) ;
86 break;

87 case 6 : /*Get all of the seoapbores . * /
88 /*Get the number of seoapbores in
89 the semaplxxre set . *I
90 retxn = seuctl. (semi.d , O , IFC_STAT , arq . buf) ;
9 1 l ength = arq.buf->sen_nsems ;
92 if (retxn = - 1)
93 goto :mlRJR;
94 /*Get and print all seoapbores in the
95 specified set . */
96 retxn = seuctl. (senid, 0 , GErALL , arq.a=ay) ;
97 far (i = 0 ; i < length; i++)
98 {
99 printf ("%d" , arq.a=ay[i]) ;

100 /*Separate each
10 1 semaplxxre . * /
102 printf("%c" ' • •) ;
103
104 break;

Figure 9-10 : semctl() System Call Example (Sheet 4 of 7)

Semaphores

INTERPROCESS COMMUNICATION 9·63

Semaphores

105 case 7: /*Set all senaphores in the set . */
1 06 /*Get the number of senaphores in
107 the set . */
1 08 retrn = semctl (sernid, 0 , IPC_STAT, arg.buf) ;
1 09 length = arg. b.lf->sem_nsems ;
1 10 printf ("Length = M\n" , length) ;
1 1 1 if (retrn == -1)
1 12 goto ERROR;
1 13 /*Set the semaphore set values . */
1 14 printf("\nEnter each value : \n") ;
1 15 for(i = 0 ; i < length ; i++)
1 16 {
1 17 scan£ ("%d" , &c) ;
1 18 arg. array[i] = c ;
1 19
120 /*Do the system call . */
1 2 1 retrn = semctl (sernid, 0 , SE:l'ALL , arg. array) ;
122 break;

123 case 8 : /*Get the status for the senaphore set . */
125 /*Get and print the current status values . */
127 retrn = semctl (sernid, 0 , IPC_STAT, arg.buf) ;
128 printf ("\rfflle USER ID = %d\n" ,
1 29 arg.b.lf->sem_penn.uid) ;
130 printf ("The GROUP ID = M\n" ,
1 3 1 arg .b.lf->sem_penn. gid) ;
132 printf ("The operation pennissians = OO{o\n" ,
133 arg.b.lf->sem_penn.m:de) ;
134 printf ("The rn.nnber of senaphores in set = %d\n" ,
135 arg.b.lf->sem_nsems) ;
136 printf ("The last senop time = %d\n" ,
137 arg.b.lf->sem_otime) ;

Figure 9-10 : semctl() System Call Example (Sheet 5 of 7)

9-64 PROGRAMMER'S GUIDE

138
139
140

141
142
143
144
145
146
147
148
149
150
1 5 1
152
153
154
155

156
157
158
159
160
161
162

163
164
165
166
167
168
169

printf ("The last change time = �\n" '
arg .J::uf-<>sem_ctime) ;

break;

case 9 : /*Select and change the desired
member of the data structure . */

/*Get the current status values . */
retzn = semctl (semid, 0 , Il?C_STAT, azg.l:uf) ;
if (retzn == -1)

goto Em<CR;
/*Select the member to change . */
printf("\nEnter the number for the\n") ;
print£ ("member to be chan:;Jed: \n") ;
print£("sein.JlE!XIIl. uid = 1\n") ;
printf("sem_penn.gid = 2\n") ;
printf (• sem _JlE!XIIl.IIDCie = 3\n") ;
printf("Enb:y = ") ;
scan£ ("�" , &choice) ;
switch(choice) {

case 1 : /*Change the user ID . */
printf ("\nEnter USER m = " l ;
scan£ ("�" , &.uid) ;
arg .l::uf->sem.JlE!XIIl. uid = uid;
printf ("\nUSER m = �\n" ,

azg .l::uf->sem_JlE!XIIl. uid) ;
break;

case 2 : /*Change the group m . * /
print£ ("\DEnter GROUP m = •) ;
scan£("�" ' &.gid) ;
arg .l::uf->sem_penn. gid = gid;
print£(·� m = %d\n" '

arg .l::uf->sem.JlE!XIIl.gid) ;
break;

Semaphores

Figure 9- 10 : semdl() System Call Example (Sheet 6 of 7)

INTERPROCESS COMMUNICATION 9·65

Semaphores

case 3 : /*Change the nx:xie portion of
the operation

permissicms . * /
printf ("\nEnter IDDE = ") ;
scanf ("l€o" . &mode) ;
<n:g .buf->sem_penn.m:xie = m:xie ;
printf ("\nM)!)E = Ol€o\n" ,

<n:g.buf->sem_penn.nx:xie) ;
break;

/*ll:> the change . */
reb:n = seuct:l (semid, 0 , IPC _ SE:l', <n:g. J:uf) ;
break;

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

case 1 0 : /*Remove the semid along with its
data structure . */

185 reb:n = semctl (semid, 0 , IPC_RMID, 0) ;
186
187 /*Perfarm the follc:Ming if the call is unsuccessful . */
188 if (r�b:n == -1)
189 {
190 ERROR:
191 pr:intf ("\n\nThe semctl system call failed l \n") ;
192 pr:intf ("The error number = J(d\n" , errno) ;
193 exit(O J ;
1 94
195 printf ("\n\nThe semc:tl system call was successful\n") ;
196 printf ("for semid = :V.d\n" , semid) ;
197 exit (0) ;
198

Figure 9-10 : semctl() System Call Example (Sheet 7 of 7)

9-66 PROGRAMMER'S GUIDE

Semaphores

Operations on Semaphores

This section contains a detailed description of using the semop(2) system
call along with an example program which allows all of its capabilities to be
exercised.

Using semop

The synopsis found in the semop(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types .h>
#include <sys/ipc .h>
#include <sys/sem.h>

int senop (semid, sops , nsops)
int semid;
struct sembu£ **sops ;
unsigned nsops ;

The semop(2) system call requires three arguments to be passed to it, and
it returns an integer value. Upon successful completion, a zero value is
returned. When unsuccessful, a -1 is returned.

The semid argument must be a valid, non-negative, integer value; that is,
it must have already been created by using the semget(2) system call .

The sops argument is a pointer to an array of structures in the user
memory area that contains the following for each semaphore to be changed:

• the semaphore number

• the operation to be performed

• the control command (flags)

INTERPROCESS COMMUNICATION 9-67

Semaphores

The **sops declaration means that a pointer can be initialized to the
address of the array, or the array name can be used since it is the address of
the first element of the array. Sembuf is the tag name of the data structure
used as the template for the structure members in the array; it is located in the
#include <sysfsem.h> header file.

The nsops argument specifies the length of the array (the number of struc
tures in the array). The maximum size of this array is determined by the
SEMOPM system tunable parameter. Therefore, a maximum of SEMOPM
operations can be performed for each semop{2) system call .

The semaphore number determines the particular semaphore within the
set on which the operation is to be performed.

The operation to be performed is determined by the following:

B a positive integer value means to increment the semaphore value by its
value

• a negative integer value means to decrement the semaphore value by
its value

• a value of zero means to test if the semaphore is equal to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT -this operation command can be set for any operations
in the array. The system call will return unsuccessfully without chang
ing any semaphore values at all if any operation for which
IPC_NOWAIT is set cannot be performed successfully. The system call
will be unsuccessful when trying to decrement a semaphore more than
its current value, or when testing for a semaphore to be equal to zero
when it is not.

• SEM_UNDO-this operation command allows any operations in the
array to be undone when any operation in the array is unsuccessful and
does not have the IPC_NOWAIT flag set. That is, the blocked opera
tion waits until it can perform its operation; and when it and all
succeeding operations are successful, all operations with the
SEM_UNDO flag set are undone. Remember, no operations are per
formed on any semaphores in a set until all operations are successful.
Undoing is accomplished by using an array of adjust values for the
operations that are to be undone when the blocked operation and all
subsequent operations are successful.

9-68 PROGRAMMER'S GUIDE

Semaphores

Example Program

The example program in this section (Figure 9- 1 1) is a menu-driven pro
gram which allows all possible combinations of using the semop(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual . Note
that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call . Their declarations are self
explanatory. These names make the program more readable, and are perfectly
legal since they are local to the program. Variables declared for this program
and their purpose are as follows:

• sembu£(1 0]-is used as an array buffer (line 14) to contain a maximum
of ten sembuf type structures; ten equals SEMOPM, the maximum
number of operations on a semaphore set for each semop(2) system
call.

• *Sops-is used as a pointer (line 14) to sembuf[lO] for the system call
and for accessing the structure members within the array.

• rtrn-is used to store the return values from the system call.

• flags-is used to store the code of the IPc=_NOW AIT or SEM_UNDO
flags for the semop(2) system call (line 60).

• i-is used as a counter (line 32) for initializing the structure members
in the array, and used to print out each structure in the array (line 79).

• nsops-is used to specify the number of semaphore operations for the
system call-must be less than or equal to SEMOPM.

• semid-is used to store the desired semaphore set identifier for the
system call .

INTERPROCESS COMMUNICATION 9-69

Semaphores

First, the program prompts for a semaphore set identifier that the system
call is to perform operations on (lines 19-22). Semid is stored at the address
of the semid variable (line 23).

A message is displayed requesting the number of operations to be per
formed on this set (lines 25-27). The number of operations is stored at the
address of the nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77).
The semaphore number, operation, and operation command (flags) are entered
for each structure in the array. The number of structures equals the number
of semaphore operations (nsops) to be performed for the system call, so nsops
is tested against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incremented just
like i. sops is then used to point to each member in the structure for setting
them.

After the array is initialized, all of its elements are printed out for feed
back (lines 78-85).

The sops pointer is set to the address of the array (lines 86 and 87). Sem
buf could be used directly, if desired, instead of sops in the system call .

The system call is made (line 89), and depending upon success or failure,
a corresponding message is displayed. The results of the operation(s) can be
viewed by using the semctl() GET ALL control command.

The example program for the semop(2) system call follows. It is sug
gested that the source program file be named semop.c and that the executable
file be named semop.

9-70 PROGRAMMER'S GUIDE

/*This is a program to illustrate
2 **the senaplx>re operaticms , SaiOp() ,
3 **system call capabilities .
4 */

5 /*Include necessary header files . */
6 #include <stdio.h>
7 #include <sys/types .h>
8 #include <sys/ipc . h>
9 #include <sys/sem. h>

1 0 /*Start of ma in C language program*/
1 1 main()
12 {
1 3 extern int errno;
14 struct sembuf sembuf[10] , *sops ;
15 char string[1 ;
16 int retrn, flags , sem_num, i , semid;
17 unsigned nsops ;
18 sops = sembuf ; /*Pointer to array sembuf . * /

19 /*Enter the semaphore ID . */
20 printf ("\nEnter the semid of\n") ;
2 1 printf ("the senaplx>re set to\n") ;
22 printf ("be operated on = ") ;
23 scanf ("')(d" , &semid) ;
24 printf ("\nsemid = ')(d" , semid) ;

Figure 9-1 1 : semop(2) System Call Example (Sheet 1 of 4)

Semaphores

INTERPROCESS COMMUNICATION 9-7 1

Semaphores

25 /*Enter the number of operations . * I
26 pr:intf ("\DEnter the rmmber of semaphore\n") ;
27 pr:intf ("operations far this set = ") ;
28 scanf ("%d." . &nsops) ;
29 pr:intf ("\nnosops = %d." , nsops) ;

30 /*Initialize the array far the
3 1 rmmber of operations to be perfonoed . */
32 for(i = 0 ; i < nsops ; i++ , sops++)
33 {

34 /*This dete=ines the semaiilare in
35 the semaphore set . * I
36 printf ("\nEnter the semaphore\n") ;
37 printf("rmmber (sem_rmm) = ") ;
38 scanf ("%d." , &sem_rmm) ;
39 sops->sem_num = sem_rmm;
40 printf ("\n'Ihe sem_rmm = %d." , sops->sem_num) ;

41 /*Enter a (-)rmmber to decrement,
42 an unsigned rmmber (no +) to increment ,
43 or zero to test for zero. These values
44 are entered into a string and converted
45 to integer values . * I
46 printf ("\nEnter the operation far\n") ;
47 printf("the semaphore (sem_op) = ") ;
48 scanf ("%s" , string) ;
49 sops->sem_op = atoi (strinq) ;
50 printf ("\nsem_op = %d\n" , sops->sem_op) ;

Figure 9-1 1 : semop(2) System Call Example (Sheet 2 of 4)

9-72 PROGRAMMER'S GUIDE

5 1
52
53
54
55
56
57
58
59
60

6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77

/*Specify the desired flags . */
printf ("\nEnter the =esponding\n") ;
printf ("rrumber f= the desired\n") ;
printf ("flags : \n") ;
printf ("No flags
printf ("IFC_I!DiAIT
printf ("SEM_l.JNIX)
printf("IFC_I!DiAIT and SEM_l.JNIX)
printf (" Flags
scanf ("%d" , &flags) ;

switch(flags)
{
case 0 :

sops->sem_flg = 0 ;
break;

case 1 :
sops->sem_flg = IFC_I!DiAIT;
break;

case 2 :
sops->sem_flg = SEM_l.JNIX);
break;

case 3 :

= 0\n") ;
"" 1\n") ;
= 2\n") ;
= 3\n") ;
= ") ;

sops->sem_flg = IFC_N:MAIT I SEM_l.JNIX);
break;

printf ("\nFlags = OO(o\n" , sops->sem_flg) ;

Figure 9-1 1 : semop(2) System Call Example (Sheet 3 of 4)

Semaphores

INTERPROCESS COMMUNICATION 9-73

Semaphores

78 /*Print out each structure in the array. * I
79 far(i = 0 ; i < nsqps ; i++)
80 {
81 printf ("\nsem_IIlllll = %d\n" , sembuf[i] . sem_IIlllll) ;
82 printf ("sem_op = %d\n" , sembuf [i] . sem_op) ;
83 printf ("sem_flg = %o\n" , sembuf [i] . semJlg) ;
84 printf("%c" , • ') ;
85

86 sops = sembuf ; /*Reset the pointer to
87 sembuf [O] . */

88 /*Do the se1!DP system call . * I
89 reb:n = sem:Jp(semid, sops , nsqps) ;
90 if(retzn == -1) (
91 printf ("\nSenDp failed. ") ;
92 printf ("Error = %d\n" ' ernx>) ;
93
94 else {
95 printf ("\nSem:lp was successful\n") ;
96 printf ("far semid = %d\n" , semid) ;

97 printf (''Value retlnned = %d\n" , retzn) ;
98
99

Figure 9-1 1 : semop(2) System Call Example (Sheet 4 of 4)

9-74 PROGRAMMER'S GUIDE

Shared Memory

The shared memory type of IPC allows two or more processes (executing
programs) to share memory and, consequently, the data contained there. This
is done by allowing processes to set up access to a common virtual memory
address space. This sharing occurs on a segment basis, which is memory
management hardware dependent.

This sharing of memory provides the fastest means of exchanging data
between processes.

A process initially creates a shared memory segment facility using the
shmget(2) system call. Upon creation, this process sets the overall operation
permissions for the shared memory segment facility, sets its size in bytes, and
can specify that the shared memory segment is for reference only (read-only)
upon attachment. If the memory segment is not specified to be for reference
only, all other processes with appropriate operation permissions can read from
or write to the memory segment.

There are two operations that can be performed on a shared memory seg
ment:

• shmat(2) - shared memory attach

• shmdt(2) - shared memory detach

Shared memory attach allows processes to associate themselves with the
shared memory segment if they have permission. They can then read or write
as allowed.

Shared memory detach allows processes to disassociate themselves from a
shared memory segment. Therefore, they lose the ability to read from or
write to the shared memory segment.

The original owner/creator of a shared memory segment can relinquish
ownership to another process using the shmctl(2) system call. However, the
creating process remains the creator until the facility is removed, or the system
is reinitialized. Other processes with permission can perform other functions
on the shared memory segment using the shmctl(2) system call.

INTERPROCESS COMMUNICATION 9-75

Shared Memory

System calls, which are documented in the Programmer's Reference Manual,
make these shared memory capabilities available to processes. The calling
process passes arguments to a system call, and the system call either success
fully or unsuccessfully performs its function. If the system call is successful, it
performs its function and returns the appropriate information. Otherwise, a
known error code (-1) is returned to the process, and the external variable
errno is set accordingly.

Using Shared Memory

The sharing of memory between processes occurs on a virtual segment
basis. There is one and only one instance of an individual shared memory
segment existing in the UNIX Operating System at any point in time.

Before sharing of memory can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique identifier
created is called the shared memory identifier (shmid); it is used to identify or
reference the associated data structure. The data structure includes the follow
ing for each shared memory segment:

• operation permissions

• segment size

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

The C Programming Language data structure definition for the shared
memory segment data structure is located in the fusrfincludefsysfshm.h
header file. It is as follows:

9·7& PROGRAMMER'S GUIDE

I*
**
**
*I

There is a shared mem id data structure far
each segment in the system.

Shared Memory

struct shmid_ds {
struct ipc_perm sbm_perm; I* operation pezmissian struct *I
:i.nt sbm_segsz ; I* segment size *I
struct region *sbm_reg; I* ptr to region structure *I
char pad[4] ; I* far swap caupatibility *I
usOOrt sbm_lpid; I* pid of last slmDp *I
usOOrt sbm_cpid; I* pid of creator *I
usOOrt sbm_nattch; I* used only far shminfo *I
usOOrt sbm_cnattch; I* used only far shminfo *I
time_t sbm_atime ; I* last sbmat time *I
time_t sbm_dtime ; I* last slmdt time *I
time_t sbm_ctime ; I* last cbang'e time *I

} ;

Note that the shm_perm member of this structure uses ipc_perm as a
template. The breakout for the operation permissions data structure is shown
in Figure 9-1 .

The ipc_perm data structure is the same for all IPC facilities, and it is
located in the #include <sysjipc.h> header file. It is shown in the introduc
tion section of " Messages. "

INTERPROCESS COMMUNICATION 9-77

Shared Memory

Figure 9-1 2 is a table that shows the shared memory state information.

Shared Memory States

Lock Bit Swap Bit Allocated Bit Implied State

0 0 0 Unallocated Segment

0 0 1 In core

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked Incore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

Figure 9-12 : Shared Memory State Information

The implied states of Figure 9-12 are as follows:

• Unallocated Segment-the segment associated with this segment
descriptor has not been allocated for use.

• Incore-the shared segment associated with this descriptor has been
allocated for use. Therefore, the segment does exist and is currently
resident in memory.

• On Disk-the shared segment associated with this segment descriptor
is currently resident on the swap device.

• Locked Incore-the shared segment associated with this segment
descriptor is currently locked in memory and will not be a candidate for
swapping until the segment is unlocked. Only the super-user may lock
and unlock a shared segment.

• Unused-this state is currently unused and should never be encoun
tered by the normal user in shared memory handling.

9-78 PROGRAMMER'S GUIDE

Shared Memory

The shmget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the shmflg argument that it receives:

• to get a new shmid and create an associated shared memory segment
data structure for it

• to return an existing shmid that already has an associated shared
memory segment data structure

The task performed is determined by the value of the key argument
passed to the shmget(2) system call. For the first task, if the key is not
already in use for an existing shmid, a new shmid is returned with an associ
ated shared memory segment data structure created for it, provided no system
tunable parameters would be exceeded.

There is also a provision for specifying a key of value zero which is
known as the private key (IPC_pRIVATE = 0); when specified, a new shmid
is always returned with an associated shared memory segment data structure
created for it, unless a system tunable parameter would be exceeded. When
the ipcs command is performed, the KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value of
the existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the shmflg
argument passed to the system call. The details for using this system call are
discussed in the " Using shmget " section of this chapter.

When performing the first task, the process that calls shmget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see the " Controlling Shared Memory " section in this
chapter. The creator of the shared memory segment also determines the ini
tial operation permissions for it.

Once a uniquely identified shared memory segment data structure is
created, shared memory segment operations [shmop()] and control [shmctl(2))
can be used.

Shared memory segment operations consist of attaching and detaching
shared memory segments. System calls are provided for each of these opera
tions; they are shmat(2) and shmdt(2). Refer to the " Operations for Shared
Memory " section in this chapter for details of these system calls.

INTERPROCESS COMMUNICATION 9-79

Shared Memory

Shared memory segment control is done by using the shmctl(2) system
call. It permits you to control the shared memory facility in the following
ways:

• by determining the associated data structure status for a shared
memory segment (shmid)

• by changing operation permissions for a shared memory segment

• by removing a particular shmid from the UNIX Operating System
along with its associated shared memory segment data structure

• by locking a shared memory segment in memory

• by unlocking a shared memory segment.

Refer to the 11 Controlling Shared Memory 11 section in this chapter for
details of the shmctl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the shmget(2) system
call along with an example program illustrating its use.

Using shmget

The synopsis found in the shmget(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types .h>
#include <sys/ipc .h>
#include <sys/shm.h>

int s1mget (key, size , sllmflg)
key_t key;
int size , sllmflg;

9·80 PROGRAMMER'S GUIDE

Shared Memory

All of these include files are located in the jusrjindudejsys directory of
the UNIX Operating System. The following line in the synopsis informs you
that shmget(2) is a function with three formal arguments that returns an
integer type value, upon successful completion (shmid).

int shrlget (key, size , slunflg)

The next two lines declare the types of the formal arguments. The variable
key_t is declared by a typedef in the types.h header file to be an integer.

key_t key;
int size , slunflg;

The integer returned from this function upon successful completion is the
shared memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget(2) system call must supply
three arguments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is pro
vided if one of the following conditions exists:

• key is equal to IPCJRIV ATE

• key is passed a unique hexadecimal integer, and shmflg ANDed with
IPc_CREAT is TRUE.

The value passed to the shmflg argument must be an integer type octal
value and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes, and execution
modes determine the userjgroupjother attributes of the shmflg argument.
They are collectively referred to as " operation permissions. " Figure 9-13
reflects the numeric values (expressed in octal notation) for the valid operation
permissions codes.

INTERPROCESS COMMUNICATION 9-81

Shared Memory

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 9-13 : Operation Permissions Codes

Octal Value

00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding the octal values for the opera
tion permissions desired. That is, if read by user and readfwrite by others is
desired, the code value would be 00406 (00400 plus 00006). There are con
stants located in the shm.h header file which can be used for the user
(OWNER). They are as follows:

SHM_R 0400
SHM_W 0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 9-14 contains the names of the constants that apply to the
shmget() system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

Control Command

IPC_CREAT
IPC_EXCL

Figure 9-14 : Control Commands (Flags)

Value

000 1000
0002000

The value for the shmflg argument is, therefore, a combination of opera
tion permissions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can be speci
fied. This specification is accomplished by bitwise ORing (I) them with the
operation permissions; bit positions and values for the control commands in
relation to those of the operation permissions make this possible. An example
of determining the shmflg argument follows.

9·82 PROGRAMMER'S GUIDE

IPC_CREAT
I ORed by User

shmflg

Octal Value

0 1 0 0 0
0 0 4 0 0

0 1 4 0 0

Shared Memory

Binary Value

0 000 001 000 000 000
0 000 000 1 00 000 000

0 000 001 100 000 000

The shmflg value can easily be set by using the names of the flags in con
junction with the octal operation permissions value:

shmid = slmget (key, size , (IPC CREAT 0400)) ;

shmid = slmget (key, size , (IPC CREAT IPC_EKCL I 0400)) ;

As specified by the shmget(2) entry in the Programmer's Reference Manual,
success or failure of this system call depends upon the argument values for
key, size, and shmflg or system tunable parameters. The system call will
attempt to return a new shmid if one of the following conditions exists:

or

• key is equal to IPCJRIV ATE (0).

• key does not already have a shmid associated with it, and (shmflg &
IPC_CREAT) is TRUE (not zero) .

The key argument can be set to IPC_pRIV ATE in the following ways:

shmid = slmget (IFC_PRIVATE, size , shmflg) ;

shmid = shmget (0 , size , shmflg) ;

This alone will cause the system call to be attempted because it satisfies the
first condition specified. Exceeding the SHMMNI system tunable parameter
always causes a failure. The SHMMNI system tunable paramete� determines
the maximum number of unique shared memory segments (shmids) in the
UNIX Operating System.

The second condition is satisfied if the value for key is not already associ
ated with a shmid and the bitwise ANDing of shmflg and IPC_CREAT is
TRUE (not zero). This means that the key is unique (not in use) within the
UNIX Operating System for this facility type and that the IPC_CREA T flag is
set (shmflg I IPC_CREAT). The bitwise ANDing (&), which is the logical way
of testing if a flag is set, is illustrated as follows:

INTERPROCESS COMMUNICATION 9·83

Shared Memory

shmflg = X 1 X X X (X = imnaterial)
& IPC __ � = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Because the result is not zero, the flag is set or TRUE. SHMMNI applies here
also, just as for condition one.

IPC .. .EXCL is another control command used in conjunction with
IPc__cREAT to exclusively have the system call fail if, and only if, a shmid
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) shmid when it has not. In
other words, when both IPC __ CREA T and IPC_EXCL are specified, a unique
shmid is returned if the system call is successful. Any value for shmflg
returns a new shmid if the key equals zero (IPC_pRIV ATE).

The system call will fail if the value for the size argument is less than
SHMMIN or greater than SHMMAX. These tunable parameters specify the
minimum and maximum shared memory segment sizes.

Refer to the shmget(2) manual page for specific, associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained there also.

Example Program

The example program in this section (Figure 9-15) is a menu-driven pro
gram which allows all possible combinations of using the shmget(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) entry in the Programmer's Reference Manual . Note
that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and are perfectly legal since they are
local to the program. Variables declared for this program and their purposes
are as follows:

9·84 PROGRAMMER'S GUIDE

Shared Memory

• key-is used to pass the value for the desired key.

• opperm-is used to store the desired operation permissions.

• flags-is used to store the desired control commands (flags) .

• opperm_flags-is used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the system
call to pass the shmflg argument.

• shmid-is used for returning the message queue identification number
for a successful system call or the error code (-1) for an unsuccessful
one.

• size-is used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal opera
tion permissions code, and the control command combinations (flags) which
are selected from a menu (lines 14-31) . All possible combinations are allowed
even though they might not be viable. This allows observing the errors for
illegal combinations.

Next, the menu selection for the flags is combined with the operation per
missions, and the result is stored at the address of the opperm_flags variable
(lines 35-50).

A display then prompts for the size of the shared memory segment, and it
is stored at the address of the size variable (lines 5 1 -54).

The system call is made next, and the result is stored at the address of the
shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or
the error code (-1), it is tested to see if an error occurred (line 58). If shmid
equals -1, a message indicates that an error resulted and the external errno
variable is displayed (lines 60 and 61) .

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

The example program for the shmget(2) system call follows. It is sug
gested that the source program file be named shmget.c and that the execut
able file be named shmget.

INTERPROCESS COMMUNICATION 9·85

Shared Memory

When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed, it will
fail.

/*This is a program to illustrate
2 **the shared menory get , shnget() ,
3 **system call capabilities . */

4 #include
5 #include
6 #include
7 #include

<sys/types .h>
<sys/ipc .h>
<sys/shm.h>
<errno . h>

8
9

10
1 1
12
13
14
15
16

/*start of main C language program*/
main()

17
18
19
20
2 1

{
key_t key; /*declare as long integer*/
int oppenn, flags ;
int shmid , size , oppenn_flags ;
/*Enter the desired key*/
printf ("Enter the desired key in hex = ") ;
scant ("%x" , &key) ;

/*Enter the desired octal operation
permissions . */

printf ("\nEnter the operation\n") ;
printf ("permissions in octal = ") ;
scant ("%o" , &oppenn) ;

Figure 9- 15 : shmget(2) System Call Example (Sheet 1 of 3)

9-86 PROGRAMMER'S GUIDE

Shared Memory

22 /*Set the desired flags . * 1
23 print£ { "\nEnter correS}lC!lXiinJ number to\n") ;
24 print£ { "set the desired flags : \n") ;
25
26
27
28
29
30

print£ { "No flags
print£ { "IPC_CREAT
print£ { "IPC_EXCL
printf { "IPC_CREAT and IPC_EXCL
print£ { " Flags
/*Get the flag{ s) to be set . */

3 1 scan£ { "Y.d" , &flags) ;

32 /*Check the values . * I

= 0\n") ;
= 1\n") ;
= 2\n") ;
= 3\n") ;
= ") ;

33 print£ { "\nkey =Ox%x, opperm = O%o, flags = O%o\n" ,
34 key, oppenn, flags) ;

35 /*Incorporate the cx:mtrol fields { flags) with
36 the operation pennissians* I
37 switch { flags)
38 {
39 case 0 : /*No flags are to be set . */
40 oppenn_flags = {oppenn 1 0) ;
4 1 break;
42 case 1 : /*Set the IPC_CREAT flag . */
43 oppenn_flags = { oppenn I IPC_CREAT) ;
44 break ;
45 case 2 : /*Set the IPC_EXCL flag . */
46 oppenn_flags = { oppenn I IPC_EXCL) ;
47 break;
48 case 3 : /*Set the IPC_CREAT and IPC_EXCL flags . *I
49 oppenn_flags = {oppenn I IPC_CREAT I IPC_EXCL) ;
50

Figure 9-15 : shmget(2) System Call Example (Sheet 2 of 3)

INTERPROCESS COMMUNICATION 9-87

Shared Memory

5 1 / *Get the size of the s egment in bytes . *I
52 print£ ("\nEnter the segment") ;
53 print£ ("\nsize in bytes = ") ;
54 scanf ("%d." , &size) ;

55 /*Call the shDget system call . * I
56 shmid = shDget (key, size , opperm_flags) ;

57 /*Perform the followi.nq if the call is unsuccessful . * I
58 if (shmid = -1)
59 {
60 print£ ("\Iil'he shllget system call failed 1 \n") ;
6 1 print£ ("The error :number = %d\n" , erzno) ;
62
63 /*Retunl the shmid upon successful oc:mpletian. */
64 else
65 print£ ("\Iil'he shmid = %d\n" ' shmid) ;
66 exit(O) ;
67

Figure 9-15 : shmget(2) System Call Example (Sheet 3 of 3)

Controlling Shared Memory

This section gives a detailed description of using the shmctl(2) system call
along with an example program which allows all of its capabilities to be exer
cised.

9-88 PROGRAMMER'S GUIDE

Shared Memory

Using shmctl

The synopsis found in the shmctl(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types .h>
#include <sys/ipc .h>
#include <sys/shm.h>

:int shmctl (shmid, aid, buf)
:int shmid, aid;
st:ruct shmid_ds *buf ;

The shmctl(2) system call requires three arguments to be passed to it, and it
returns an integer value. Upon successful completion, a zero value is
returned. When unsuccessful, a -1 is returned.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget(2) system call.

The cmd argument can be replaced by one of the following control com
mands (flags) :

• IPC_STAT-returns the status information contained in the associated
data structure for the specified shmid and places it in the data structure
pointed to by the •buf pointer in the user memory area

• IPC_SET -for the specified shmid, sets the effective user and group
identification, and operation permissions

• IP<=-RMID-removes the specified shmid along with its associated
shared memory segment data structure

• SHM__LOCK-locks the specified shared memory segment in memory;
must be super-user

• SHM__UNLOCK-unlocks the shared memory segment from memory;
must be super-user.

INTERPROCESS COMMUNICATION 9·89

Shared Memory

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC_SET or IPC-RMID con
trol command. Only the super-user can perform a SHM_LOCK or
SHM_UNLOCK control command. A process must have read permission to
perform the IPC_ST AT control command.

The details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program,
read the " Using shmget " section of this chapter; it goes into more detail than
would be practical to do for every system call .

Example Program

The example program in this section (Figure 9 - 16) is a menu-driven pro
gram which allows all possible combinations of using the shmctl(2) system
call to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmctl(2) entry in the Programmer's Reference Manual . Note
in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self
explanatory. These names make the program more readable, and are perfectly
legal, since they are local to the program. Variables declared for this program
and their purposes are as follows:

• uid-is used to store the IPC_SET value for the effective user identifi
cation.

• gid-is used to store the IPC_SET value for the effective group iden
tification.

• mode-is used to store the IPC_SET value for the operation permis
sions.

• rtrn-is used to store the return integer value from the system call.

9·90 PROGRAMMER'S GUIDE

Shared Memory

• shmid-is used to store and pass the shared memory segment identif
ier to the system call.

• command-is used to store the code for the desired control command
so that subsequent processing can be performed on it.

• choice-is used to determine which member for the IPC_SET control
command is to be changed.

• shmiLds-is used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control command is per
formed.

• •buf-is a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_ST AT control com
mand is to place its return values, or where the IPC_SET command
gets the values to set.

Note that the shmid__ds data structure in this program (line 1 6) uses the
data structure located in the shm.h header file of the same name as a template
for its declaration. This is an example of the advantage of local variables.

The next important thing to observe is that although the •buf pointer is
declared to be a pointer to a data structure of the shmiLds type, it must also
be initialized to contain the address of the user memory area data structure
(line 1 7).

Now that all of the required declarations have been explained for this pro
gram, this is how it works.

First, the program prompts for a valid shared memory segment identifier
which is stored at the address of the shmid variable (lines 1 8-20) . This is
required for every shmctl(2) system call.

Then, the code for the desired control command must be entered (lines
2 1 -29), and it is stored at the address of the command variable. The code is
tested to determine the control command for subsequent processing.

If the IPc_sTAT control command is selected (code 1), the system call is
performed (lines 39 and 40), and the status information returned is printed out
(lines 41 -71) . Note that if the system call is unsuccessful (line 146), the status
information of the last successful call is printed out. In addition, an error mes
sage is displayed and the errno variable is printed out (lines 148 and 149). If
the system call is successful, a message indicates this along with the shared
memory segment identifier used (lines 151 - 154).

INTERPROCESS COMMUNICATION 9-91

Shared Memory

If the Jpc_sET control command is selected (code 2), the first thing to do
is get the current status information for the message queue identifier specified
(lines 90-92) . This is necessary because this example program provides for
changing only one member at a time, and the system call changes all of them.
Also, if an invalid value happened to be stored in the user memory area for
one of these members, it would cause repetitive failures for this control com
mand until corrected. The next thing the program does is to prompt for a
code corresponding to the member to be changed (lines 93-98) . This code is
stored at the address of the choice variable (line 99). Now, depending upon
the member picked, the program prompts for the new value (lines 1 05-127).
The value is placed at the address of the appropriate member in the user
memory area data structure, and the system call is made (lines 1 28-130).
Depending upon success or failure, the program returns the same messages as
for Jpc_sTAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132- 135), and the shmid along with its associated message
queue and data structure are removed from the UNIX Operating System.
Note that the •buf pointer is not required as an argument to perform this con
trol command and its value can be zero or NULL. Depending upon success or
failure, the program returns the same messages as for the other control com
mands.

If the SHM_LOCK control command (code 4) is selected, the system call
is performed (lines 137 and 138). Depending upon success or failure, the pro
gram returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system
call is performed (lines 1 40-142). Depending upon success or failure, the pro
gram returns the same messages as for the other control commands.

The example program for the shmctl(2) system call follows. It is sug
gested that the source program file be named shmctl.c and that the executable
file be named shmctl.

When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed it will
fail. The -f option is not required, however, on your computer.

9-92 PROGRAMMER'S GUIDE

/*This is a program to illustrate
2 **the shared liii!IOXy oont:rol, slmctl() •

3 **system call capabilities .
4 *I

5 /*Include necessazy header files . * I
6 #include <stdio.h>
7 #include <sys/types .h>
8 #include
9 #include

<sys/ipc .h>
<sys/shm.h>

1 0 /*Start ot: main c language program*/
1 1 main()
1 2 {
1 3 extern int errno;
14 int uid, gid, mode;
1 5 int rtrn, shmid, ocmoand , choice;
16 struct shmid_ds shmid_ds , *buf ;
17 buf = &shmid_ds ;

18 /*Get the shmid , arXi ocmoand. */
19 printf ("Enter the shmid = ") ;
20 scanf (•!l(d• . &shmid) ;
2 1 printf ("\nEnter the number far\n") ;
22 printf ("the desired ocmoand:\n") ;

Figure 9-16 : shmctl(2) System Call Example (Sheet 1 of 6)

Shared Memory

INTERPROCESS COMMUNICATION 9·93

Shared Memory

23
24
25
26
v
28

printf ("IFC_STAT
printf ("IFC_SE:I'
printf ("IFC_:RMID
printf ("SHM_IDCK
printf ("SHM_UNUJCK
printf ("Ent:zy

1\n") ;
2\n") ;
3\n") ;
4\n") ;
5\n") ;
II) ;

29 scan£ ("%d" . &oc:mnand) ;

30 /*Olec:k the values . */
31 printf ("\nshmid :%d , cxmnand = %d\n" .
32 shmid, cxmnand) ;

33 switch (cxmnand)
34 {
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1

case 1 : /*Use shmct1 () to duplicate
the data structure far

shmid in the shmid _ds area pointed
to by buf and then print it out . */

r1:n!. = shmctl (shmid , IFC_STAT,
buf) ;

printf ("\nThe USER ID = %d\n" ,
buf->shm_perm.uid) ;

printf ("The GROUP ID = %d\n" ,
buf->shm_perm.gid) ;

printf ("The creator ' s ID = %d\n" ,
buf->shm_perm.cuid) ;

printf ("The creator' s group ID = %d\n" ,
buf->shm_perm.cgid) ;

printf ("The operation pennissions = O%o\n" ,
buf->shm_perm.m:lde) ;

printf ("The slot usage sequence\n") ;

Figure 9-16 : shmctl(2) System Call Example (Sheet 2 of 6)

9-94 PROGRAMMER'S GUIDE

52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72

pr:int:f ("number = O%x\n" '
buf->shm_penn. seq) ;

pr:intf ("'!he key= O%x\n" '
buf->shm_penn.key) ;

pr:int:f ("'!he segment size = %d\n" ,
buf->shm_segsz) ;

pr:intf ("'!he pid of last shrop = %d\n" '
buf->shm_lpid) ;

pr:intf ("'!he pid of creator = %d\n" ,
buf->shm_cpid) ;

pr:intf ("'!he current # attached = %d\n" ,
buf->shm_nattch) ;

pr:intf("'!he :in JDe11DrY # attached = %d\n" ,
buf->shm_c:nattach) ;

pr:intf("'!he last shmat time = %d\n" '
buf->shm_atime) ;

pr:int:f ("The last shodt time = %d\n" '
buf->shm_dtime) ;

pr:intf ("'!he last cllan;Je time = %d\n" '
buf->shm_ctime) ;

break;

/* Lines 73 - 87 deleted */

Shared Memory

Figure 9-16 : shmctl(2) System Call Example (Sheet 3 of 6)

INTERPROCESS COMMUNICATION 9-95

Shared Memory

88
89

90
91
92

93
94
95
96
97
98
99

100
1 0 1
1 02
103
1 04

case 2 : /*Select and � the desired
member(s) of the data structure . */

/*Get the original data for this shmid
data structure first . */

rtm = shmctl (shmid, II'C_STAT, buf) ;

pr:intf("\nEnter the number far the\n") ;
pr:intf ("member to be changed:\n") ;
pr:intf("shm__peDII.uid = 1\n") ;
print£ ("shm__peDII.gid
pr:intf ("shm__peDII.DDde
pr:intf("Entzy
scanf ("%d" , &choice) ;

= 2\n") ;
= 3\n") ;
= 11) ;

/*Only one choice is al.l.owed per
pass as an illegal entzy will

cause repetitive failures until
shmid_ds is updated with

II'C_STAT. * /

Figure 9-16 : shmctl(2) System Call Example (Sheet 4 of 6)

9-96 PROGRAMMER'S GUIDE

105
106
107
108
109
1 10
1 1 1
1 12

1 1 3
1 14
1 15
1 16
1 17
1 18
1 19

120
121
122
123
124
125
126
127
128
129
130
1 3 1

switch(choice) {
case 1 :

print£("\JlEnter USER ID = ") ;
scanf ("%d" , &uid) ;
buf->shm_penn.uid = uid;
print£("\nUSER ID = %d\n" ,

buf->shm_penn .uid) ;
break;

case 2 :
print£ ("\JlEnter GROUP ID = ") ;
scanf("%d" , &.gid) ;
buf->shm_penn.gid = gid;
print£ ("� ID = %d\n" ,

buf->shm_penn.gid) ;
break;

case 3 :
print£ ("\DEnter M:DE = ") ;
scanf("%o" , &m:rle) ;
buf->shm_penn.m:Jde = mode ;
print£("\nM:DE = O%o\n" ,

buf->shm_penn.m:Jde) ;
break;

/*Do the change . */
rtrn = shmctl (shmid, IPC_SET,

buf) ;
break;

Shared Memory

Figure 9-16 : shmctl() System Call Example (Sheet 5 of 6)

INTERPROCESS COMMUNICATION 9-97

Shared Memory

1 32 case 3 : /*RenDve the slmrl.d alanq with its
1 33 associated
1 34 data strucblre . */
1 35 rb:n = shmctl (slmrl.d , II'C_RMID, NULL) ;
136 break;

1 37 case 4: /*IDCk the shared IIIE!IIDcy segment*/
1 38 rb:n = shmctl (slmrl.d , SHM_I.OCK, NULL) ;
1 39 break;
140 case 5: /*Unlock the shared IIIE!IIDcy
141 segment . */
142 rb:n = shmctl (shmid , SHM_UNUJCK, NULL) ;
143 break;
144
145 /*Perfcmn the follcwillq if the call is unsuccessful . */
146 if (rb:n = -1)
147 {
148 printf ("\n'l'he shmctl system call failed 1\n") ;
149 printf ("The error number = %d\n" , errno) ;
1 50
151 /*Retmn the slmrl.d upon successful oatpletian. */
1 52 else
1 53 printf ("\nShmctl. was successful for slmrl.d = %d\n" ,
154 slmri.d) ;
1 55 exit (0) ;
1 56

Figure 9-16 : shmctl(2) System Call Example (Sheet 6 of 6)

9·98 PROGRAMMER'S GUIDE

Shared Memory

Operations for Shared Memory

This section gives a detailed description of using the shmat(2) and
shmdt(2) system calls. It also provides an example program which allows all
of their capabilities to be exercised.

Using shmop

The synopsis found in the shmop(2) entry in the Programmer's Reference
Manual is as follows:

#include <sys/types . h>
#include <sys/ipc .h>
#include <sys/shm.h>

char *shmat { slmdd, shmaddr ' shmflg)
int shmid;
char *shmaddr ;
int shmflg;

int shndt { shmaddr)
char *shmaddr ;

AHaching a Shared Memory Segment

The shmat(2) system call requires three arguments to be passed to it, and
it returns a character pointer value.

The system call can be cast to return an integer value. Upon successful
completion, this value will be the address in core memory where the process
is attached to the shared memory segment. When unsuccessful the value will
be a -1 .

INTERPROCESS COMMUNICATION 9-99

Shared Memory

The shmid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the shmget(2) system
call.

The shmaddr argument can be zero or user-supplied when passed to the
shmat(2) system call. If it is zero, the UNIX Operating System picks the
address of where the shared memory segment will be attached. If it is user
supplied, the address must be a valid address that the UNIX Operating Sys
tem would pick. The following table illustrates some typical address ranges
for your computer:

80286

Ox01F70000
Ox02070000
Ox020FOOOO
Ox021 70000

80386

Ox80400000
Ox80800000
Ox80COOOOO
Ox81000000

Note that these addresses are in chunks of Ox80000 hexadecimal (for the
80286 Computer) and OxlOOO hexadecimal (for the 80386 Computer) . It
would be wise to let the operating system pick addresses so as to improve
portability.

The shmflg argument is used to pass the SHM_RND and
SHM_RDONLY flags to the shmat() system call.

Further details are discussed in the example program for shmop() . If you
have problems understanding the logic manipulations in this program, read
the 11 Using shmget 11 section of this chapter; it goes into more detail than
would be practical to do for every system call.

Detaching Shared Memory Segments

The shmdt(2) system call requires one argument to be passed to it, and it
returns an integer value. Upon successful completion, zero is returned. When
unsuccessful, a -1 is returned.

Further details of this system call are discussed in the example program.
If you have problems understanding the logic manipulations in this program,
read the 11 Using shmget 11 section of this chapter; it goes into more detail than
would be practical to do for every system call.

9·1 00 PROGRAMMER'S GUIDE

Shared Memory

Example Program

The example program in this section (Figure 9-1 7) is a menu-driven pro
gram which allows all possible combinations of using the shmat(2) and
shmdt(2) system calls to be exercised.

From studying this program, you can observe the method of passing argu
ments and receiving return values. The user-written program requirements
are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the Programmer's Reference Manual. Note
that in this program errno is declared as an external variable, and therefore
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible
to those in the synopsis for the system call. Their declarations are self
explanatory. These names make the program more readable, and are perfectly
legal since they are local to the program. Variables declared for this program
and their purposes are as follows:

• flags-is used to store the codes of SHM_RND or SHM_RDONL Y for
the shmat(2) system call.

• addr-is used to store the address of the shared memory segment for
the shmat(2) and shmdt(2) system calls.

• i-is used as a loop counter for attaching and detaching.

• attach-is used to store the desired number of attach operations.

• shmid-is used to store and pass the desired shared memory segment
identifier.

• shmflg-is used to pass the value of flags to the shmat(2) system call.

• retrn-is used to store the return values from both system calls.

• detach-is used to store the desired number of detach operations.

This example program combines both the shmat(2) and shmdt(2) system
calls. The program prompts for the number of attachments and enters a loop
until they are done for the specified shared memory identifiers. Then, the
program prompts for the number of detachments to be performed and enters a
loop until they are done for the specified shared memory segment addresses.

INTERPROCESS COMMUNICATION 9·1 0 1

Shared Memory

shmat
The program prompts for the number of attachments to be performed, and

the value is stored at the address of the attach variable (lines 1 7-21) .

A loop is entered using the attach variable and the i counter (lines 23-70)
to perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier
(lines 24-27) and it is stored at the address of the shmid variable (line 28).
Next, the program prompts for the address where the segment is to be
attached (lines 30-34}, and it is stored at the address of the addr variable (line
35). Then, the program prompts for the desired flags to be used for the
attachment (lines 37-44}, and the code representing the flags is stored at the
address of the flags variable (line 45). The flags variable is tested to deter
mine the code to be stored for the shmflg variable used to pass them to the
shmat(2) system call (lines 46-5 7) . The system call is made (line 60). If suc
cessful, a message so stating is displayed along with the attach address (lines
66-68). If unsuccessful, a message so stating is displayed and the error code is
displayed (lines 62, 63). The loop then continues until it finishes .

shmdt

After the attach loop completes, the program prompts for the number of
detach operations to be performed (lines 71-75), and the value is stored at the
address of the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95)
to perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory
segment to be detached (lines 79-83), and it is stored at the address of the
addr variable (line 84). Then, the shmdt(2) system call is performed (line 87) .
If successful, a message so stating is displayed along with the address that the
segment was detached from (lines 92 and 93). If unsuccessful, the error
number is displayed (line 89). The loop continues until it finishes.

The example program for the shmop(2) system calls follows. It is sug
gested that the program be put into a source file called shmop.c and then into
an executable file called shmop.

When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully, but when the program is executed, it will
fail. The -f option is not required, however, on your computer.

9-1 02 PROGRAMMER'S GUIDE

/*'Ibis is a program to illustrate
2 **the shared IllE!I101:Y operations , sfmop() ,
3 **system call capabilities .
4 */

5 /*Include necessary header files . */
6 #include <stdio.h>
7 #include <sys/types .h>
8 #include <sys/ipc .h>
9 #include <sys/shm.h>

1 0 /*Start of ma in C language program*/
1 1 main()
12 {
1 3 extezn int errno;
14 int flags , addr , i , attach;
15 int shmid, shmflg , retrn, detach;

16 /*Loop f= attachments by this process . */
17 printf ("Enter the number of\n") ;
18 printf ("attachments f= this\n") ;
19 printf ("process (1-4) . \n") ;
20 printf (" Attachments = ") ;

2 1 scanf ("%d" , &attach) ;
22 printf ("Number of attaches = %d\n" , attach) ;

Figure 9-1 7: shmop() System Call Example (Sheet 1 of 4)

Shared Memory

INTERPROCESS COMMUNICATION 9-1 03

Shared Memory

23 for(i = 1 ; i <= attach; i++) {
24 /*Enter the shared lllE!IIICcy m. *I
25 printf ("\nEnter the shmid of\n") ;
26 print£("the shared lllE!IIICcy segment to\n") ;
27 print£ ("l:le operated an = ") ;
28 scan£ ("%d" , &shmi.d) ;
29 print£ ("\nshmid = %d\n" ' shmid) ;

30 /*Enter the value for slunaddr . *I
3 1 printf ("\nEnter the value for\n") ;
32 print£ ("the shared lllE!IIICcy address\n") ;
33 print£("in hexadecimal : \n") ;
34 print£ (" Slmaddr = ") ;
35 scan£ ("%x" , &addr) ;
36 print£ ("The desired address = Ox%x\n" , addr) ;

37 /*Specify the desired flags . * I
38 print£ ("\nEnter the oorrespondinq\n") ;
39 print£ ("number for the desired\n") ;
40 print£ ("flags :\n") ;
4 1 print£ ("SIIM_RND = 1\n") ;
42 print£ ("SIIM_RIJCM.Y = 2\n") ;
43 print£ ("SIIM_RND and SIIM_RIJCM.Y = 3\n") ;
44 print£ (" Flags = ") ;
45 scanf ("%d" , &flags) ;

Figure 9-1 7: shmop() System Call Example (Sheet 2 of 4)

9-1 04 PROGRAMMER'S GUIDE

46
47
48
49
50
5 1
52
53
54
55
56
57
58

59
60
6 1
62
63
64
65
66
67
68
69
70

switch(flags)
{
case 1 :

shmflg = SHM_RND;
break;

case 2 :
shmflg = SliM_RiniLY;
break;

case 3:
shmflg = SHM_RND I SIIM_RDCNLY;
break;

printf ("\nFlags = O%o\n" , shmflg) ;

/*Do the shmat system call . * I
ret=. = (int) shmat(shmid, addr , shmflg) ;
if (retnJ. == -1) {

printf ("\nShmat failed. ") ;
printf ("Error = %d\n" . erniO) ;

else {
printf ("\nShmat was successful 'In") ;
printf("f= shm:i.d = %d\n" . shm:i.d) ;
printf ("The address = Ox%x\n" , retn!.) ;

7 1 /*Loop f= detachments by thi s process . */
72 printf ("Enter the number of\n") ;
73 printf ("detachments f= this\n") ;
74 printf ("process (1-4) . \n") ;
75 printf (" Detachments = ") ;

Figure 9-1 7: shmop() System Call Example (Sheet 3 of 4)

Shared Memory

INTERPROCESS COMMUNICATION 9·1 05

Shared Memory

76 scan£ ("%d" , &detach) ;
77 pdntf ("Number of attaches = %d\n" , detach) ;
78 for(i = 1 ; i <= detach; i++) {

79 /*Enter the value for shmaddr . *I
80 pdntf ("\nEnte:r the value for\n") ;
8 1 print£ ("the shar ed lllei'IIOcy address\n" l ;
82 print£ ("in hexadec:iJnal : \n") ;
83 print£ (" Shrnaddr = ") ;
84 scanf ("%x" , &addr) ;
85 print£ ("'!be desired address = Ol!%x\n" , addr) ;

86 /*Do the slmdt system call . * I
87 ret:m = (int) shndt(addr) ;
88 if (ret:m == - 1) {
89 print£ ("EE:zor = %d\n" , errno) ;
90
91
92
93

94
95
96

else {
print£ ("\nShndt was successful\n") ;
print£ ("for address = O%x\n" , addr) ;

Figure 9-1 7: shmop() System Call Example (Sheet 4 of 4)

9-1 06 PROGRAMMER'S GUIDE

Glossary
Ada

ANSI standard

a.out file

application program

archive

Named after the Countess of Lovelace, the nineteenth
century mathematician and computer pioneer, Ada is
a high-level general-purpose programming language
developed under the sponsorship of the U.S. Depart
ment of Defense. Ada was developed to provide con
sistency among programs originating in different
branches of the military. Ada features include pack
ages that make data objects visible only to the
modules that need them, task objects that facilitate
parallel processing, and an exception-handling
mechanism that encourages well-structured error pro
cessing.

ANSI is the acronym for the American National
Standards Institute. ANSI establishes guidelines in
the computing industry, from the definition of ASCII
to the determination of overall datacom system perfor
mance. ANSI standards have been established for
both the Ada and FORTRAN programming languages,
and a standard for C has been proposed.

a.out is the default file name used by the link editor
when it outputs a successfully compiled, executable
file. a.out contains object files that are combined to
create a complete working program. Object file for
mat is described in Chapter 1 1 , 11 The Common Object
File Format, 11 and in a.out(4) in the Programmer's
Reference Manual.

An application program is a working program in a
system. Such programs are usually unique to one
type of user's work, although some application pro
grams can be used in a variety of business situations.
An accounting application, for example, may well be
applicable to many different businesses.

An archive file or archive library is a collection of data
gathered from several files. Each of the files within
an archive is called a member. The command ar{l)
collects data for use as a library.

GLOSSARY G-1

Glossary

argument An argument is additional information that is passed
to a command or a function. On a command line, an
argument is a character string or number that follows
the command name and is separated from it by a
space. There are two types of command-line argu
ments: options and operands. Options are immedi
ately preceded by a minus sign (-) and change the
execution or output of the command. Some options
can themselves take arguments. Operands are pre
ceded by a space and specify files or directories that
will be operated on by the command. For example, in
the command

pr -t -h Heading file

all elements after the pr are arguments. -t and -h are
options, Heading is an argument to the -h option,
and file is an operand.

For a function, arguments are enclosed within a pair
of parentheses immediately following the function
name. The number of arguments can be zero or
more; if more than two are present, they are separated
by commas and the whole list enclosed by the
parentheses. The formal definition of a function, such
as might be found on a page in Section 3 of the
Programmer's Reference Manual, describes the number
and data type of argument(s) expected by the func
tion.

ASCII ASCII is an acronym for American Standard Code for
Information Interchange, a standard for data represen
tation that is followed in the UNIX System. ASCII
code represents alphanumeric characters as binary
numbers. The code includes 128 upper- and lower
case letters, numerals, and special characters . Each
alphanumeric and special character has an ASCII code
(binary) equivalent that is one byte long.

G-2 PROGRAMMER'S GUIDE

assembler

assembly language

BASIC

branch table

buffer

byte

Glossary

The assembler is a translating program that accepts
instructions written in the assembly language of. the
computer and translates them into the binary
representation of machine instructions. In many
cases, the assembly language instructions map 1 to 1
with the binary machine instructions.

A programming language that uses the instruction set
that applies to a particular computer.

BASIC is a high-level conversational programming
language that allows a computer to be used much like
a complex electronic calculating machine. The name
is an acronym for Beginner's All-purpose Symbolic
Instruction Code.

A branch table is an implementation technique for fix
ing the addresses of text symbols, without forfeiting
the ability to update code. Instead of being directly
associated with function code, text symbols label jump
instructions that transfer control to the real code.
Branch table addresses do not change, even when one
changes the code of a routine. Jump table is another
name for branch table.

A buffer is a storage space in computer memory
where data are stored temporarily into convenient
units for system operations. Buffers are often used by
programs, such as editors, that access and alter text or
data frequently. When you edit a file, a copy of its
contents is read into a buffer where you make changes
to the text. For the changes to become part of the
permanent file, you must write the buffer contents
back into the permanent file. This replaces the con
tents of the file with the contents of the buffer. When
you quit the editor, the contents of the buffer are
flushed.

A byte is a unit of storage in the computer. On many
UNIX Systems, a byte is eight bits (binary digits), the
equivalent of one character of text.

GLOSSARY G-3

Glossary

byte order

c

C compiler

C preprocessor

ccs

Byte order refers to the order in which data are stored
in computer memory.

The C programming language is a general-purpose
programming language that features economy of
expression, control flow, data structures, and a variety
of operators. It can be used to perform both high
level and low-level tasks. Although it has been called
a system programming language, because it is useful
for writing operating systems, it has been used equally
effectively to write major numerical, text-processing,
and database programs. The C programming
language was designed for and implemented on the
UNIX System; however, the language is not limited to
any one operating system or machine.

The C compiler converts C programs into assembly
language programs that are eventually translated into
object files by the assembler.

The C preprocessor is a component of the C Compila
tion System. In C source code, statements preceded
with a pound sign (#) are directives to the preproces
sor. Command line options of the cc(l) command
may also be used to control the actions of the prepro
cessor. The main work of the preprocessor is to per
form file inclusions and macro substitution.

CCS is an abbreviation for C Compilation System,
which is a set of programming language utilities used
to produce object code from C source code. The
major components of a C Compilation System are a C
preprocessor, C compiler, assembler, and link editor.
The C preprocessor accepts C source code as input,
performs any preprocessing required, and passes the
processed code to the C compiler. The C compiler
produces assembly language code that it passes to the
assembler. The assembler, in tum, produces object
code that can be linked to other object files by the
link editor. The object files produced are in the Com
mon Object File Format (COFF). Other components
of CCS include a symbolic debugger, an

G·4 PROGRAMMER'S GUIDE

COBOL

COFF

command

Glossary

optimizer that makes the code produced as efficient as
possible, productivity tools that are used to read and
manipulate object files, and libraries that provide run
time support, access to system calls, inputjoutput,
string manipulation, mathematical functions, and
other code-processing functions.

COBOL is an acronym for COmmon Business
Oriented Language. COBOL is a high-level program
ming language designed for business and commercial
applications. The English-language statements of
COBOL provide a relatively machine-independent
method of expressing a business-oriented problem to
the computer.

COFF is an acronym for Common Object File Format.
COFF refers to the format of the output file produced
on some UNIX Systems by the assembler and the link
editor. This format is also used by other operating
systems. The following are some of its key features:

D Applications may add system-dependent informa
tion to the object file without causing access utili
ties to become obsolete.

D Space is -provided for symbolic information used
by debuggers and other applications.

D Users may make some modifications in the object
file construction at compile time.

A command is the term commonly used to refer to an
instruction that a user types at a computer terminal
keyboard. It can be the name of a file that contains
an executable program or a shell script that can be
processed or executed by the computer on request. A
command is composed of a word or string of letters
andjor special characters that can continue for several
(terminal) lines, up to 256 characters. A command
name is sometimes used interchangeably with a pro
gram name.

GLOSSARY G-5

Glossary

command line

compiler

core

core file

core image

curses

A command line is composed of the command name
followed by any argument(s) required by the com
mand or optionally included by the user. The manual
page for a command includes a command line
synopsis in a notation designed to show the correct
way to type in a command, with or without options
and arguments .

A compiler transforms the high-level language instruc
tions in a program (the source code) into object code
or assembly language. Assembly language code may
then be passed to the assembler for further translation
into machine instructions.

Core is a (mostly archaic) synonym for primary
memory.

A core file is an image of a terminated process saved
for debugging. A core file is created under the name

11 core 11 in the current directory of the process when
an abnormal event occurs resulting in the process' ter
mination. A list of these events is found in the sig
nal(2) manual page in Section 2 of the Programmer's
Reference Manual .

Core image is a copy of all the segments of a running
or terminated program. The copy may exist in main
storage, in the swap area, or in a core file.

curses(3X) is a library of C routines that are designed
to handle input, output, and other operations in
screen management programs. The name curses
comes from the cursor optimization that the routines
provide. When a screen management program is run,
cursor optimization minimizes the amount of time a
cursor has to move about a screen to update its con
tents. The program refers to the terminfo(4) database
at run time to obtain the information that it needs
about the screen (terminal) being used. See ter
minfo(4) in the Programmer's Reference Manual.

G-6 PROGRAMMER'S GUIDE

data symbol

database

debug

default

delimiter

directory

Glossary

A data symbol names a variable that may or may not
be initialized. Normally, these variables reside in
read/write memory during execution. See text sym
bol.

A database is a bank of information on a particular
subject or subjects. On-line databases are designed so
that by using subject headings, key words, or key
phrases you can search for, analyze, update, and print
out data.

Debugging is the process of locating and correcting
errors in computer programs.

A default is the way a computer will perform a task in
the absence of other instructions.

A delimiter is an initial character that identifies the
next character or character string as a particular kind
of argument. Delimiters are typically used for option
names on a command line; they identify the associ
ated word as an option (or as a string of several
options if the options are bundled). In the UNIX Sys
tem command syntax, a minus sign (-) is most often
the delimiter for option names, for example, -s or -n,
although some commands also use a plus sign (+).

A directory is a type of file used to group and organ
ize other files or directories. A directory consists of
entries that specify further files (including directories)
and constitutes a node of the file system. A subdirec
tory is a directory that is pointed to by a directory one
level above it in the file system organization.

The ls(l) command is used to list the contents of a
directory. When you first log onto the system, you
are in your home directory ($HOME). You can move
to another directory by using the cd(l) command and
you can print the name of the current directory by
using the pwd(l) command. You can also create new
directories with the mkdir(l) command and remove
empty directories with rmdir(l) .

GLOSSARY G-7

Glossary

dynamic linking

environment

A directory name is a string of characters that identi
fies a directory. It can be a simple directory name, the
relative path name or the full path name of a direc
tory.

Dynamic linking refers to the ability to resolve sym
bolic references at run time. Systems that use
dynamic linking can execute processes without resolv
ing unused references. See static linking.

An environment is a collection of resources used to
support a function. In the UNIX System, the shell
environment is composed of variables whose values
define the way you interact with the system. For
example, your environment includes your shell
prompt string, specifics for backspace and erase char
acters, and commands for sending output from your
terminal to the computer.

An environment variable is a shell variable such as
$HOME (which stands for your login directory) or
$PATH (which is a list of directories the shell will
search through for executable commands) that is part
of your environment. When you log in, the system
executes programs that create most of the environ
mental variables that you need for the commands to
work. These variables come from jete/profile, a file
that defines a general working environment for all
users when they log onto a system. In addition, you
can define and set variables in your personal .profile
file, which you create in your login directory to tailor
your own working environment. You can also tem
porarily set variables at the shell level.

G-8 PROGRAMMER'S GUIDE

executable file

exit

Glossary

An executable file is a file that can be processed or
executed by the computer without any further transla
tion. That is, when you type in the file name, the
commands in the file are executed. An object file that
is ready to run (ready to be copied into the address
space of a process to run as the code of that process)
is an executable file. Files containing shell commands
are also executable. A file may be given execute per
mission by using the chmod(l) command. In addition
to being ready to run, a file in the UNIX System needs
to have execute permission.

Exit is a specific system call that causes the termina
tion of a process. The exit(2) call will close any open
files and clean up most other information and
memory which was used by the process.

exit status: return code

exported symbol

expression

file

An exit status or return code is a code number
returned to the shell when a command is terminated
that indicates the cause of termination.

An exported symbol is a symbol that a shared library
defines and makes available outside the library. See
imported symbol.

An expression is a mathematical or logical symbol or
meaningful combination of symbols. See regular
expression.

A file is an identifiable collection of information that,
in the UNIX System, is a member of a file system. A
file is known to the UNIX System as an inode plus
the information the inode contains that tells whether
the file is a plain file, a special file, or a directory. A
plain file may contain text, data, programs, or other
information that forms a coherent unit. A special file
is a hardware device or portion thereof, such as a disk
partition. A directory is a type of file that contains the
names and inode addresses of other plain, special, or
directory files.

GLOSSARY G-9

Glossary

file and record locking

file descriptor

file system

filter

The phrase 11 file and record locking 11 refers to
software that protects records in a data file against the
possibility of being changed by two users at the same
time. Records (or the entire file) may be locked by
one authorized user while changes are made. Other
users are thus prevented from working with the same
record until the changes are completed.

A file descriptor is a number assigned by the operat
ing system to a file when the file is opened by a pro
cess. File descriptors 0, 1, and 2 are reserved; 0 is
reserved for standard input (stdin), 1 is reserved for
standard output (stdout), and 2 is reserved for stand
ard error output (stderr) .

A UNIX System file system is a hierarchical collection
of directories and other files that are organized in a
tree structure. The base of the structure is the root (/)
directory; other directories, all subordinate to the root,
are branches. The collection of files can be mounted
on a block special file. Each file of a file system
appears exactly once in the inode list of the file sys
tem and is accessible via a single, unique path from
the root directory of the file system.

A filter is a program that reads information from
standard input, acts on it in some way, and sends its
results to standard output. It is called a filter because
it can be used as a data transformer in a pipeline.
Filters are different from editors and other commands
because filters do not change the contents of a file.
Examples of filters are grep(1) and tail(1), which
select and output part of the input; sort(1), which
sorts the input; and wc(1), which counts the number
of words, characters, and lines in the input. sed(1)
and awk(1) are also filters but they are called pro
grammable filters or data transformers because, in
addition to the data to be transformed, a program
must be supplied as input.

G-1 0 PROGRAMMER'S GUIDE

flag

fork

FORTRAN

function

header file

high-level language

Glossary

A flag or option is used on a command line to signal a
specific condition to a command or to request particu
lar processing. UNIX System flags are usually indi
cated by a leading hyphen (-). The word option is
sometimes used interchangeably with flag. Flag is
also used as a verb to mean 11 to point out 11 or 11 to
draw attention to 11 • See option.

fork(2) is a system call that divides a new process into
two processes, the parent process and the child
processes, with separate, but initially identical, text,
data, and stack segments. After duplication, the child
(created) process is given a return code of 0 and the
parent process is given the process id of the newly
created child as the return code.

FORTRAN is an acronym for FORmula TRANslator.
It is a high-level programming language originally
designed for scientific and engineering calculations but
is now widely adapted for many business uses also.

A function is a task done by a computer. In most
modern programming languages, programs are made
up of functions and procedures which perform small
parts of the total job to be done.

A header file is used in programming and in docu
ment formatting. In a programming context, a header
file is a file that usually contains shared data declara
tions that are to be copied into source programs as
they are compiled. A header file includes symbolic
names for constants, macro definitions, external vari
able references and inclusion of other header files .
The name of a header file customarily ends with ' .h'
(dot-h). Similarly, in a document formatting context,
header files contain general formatting macros that
describe a common document type and can be used
with many different document bodies.

A high-level language is a computer programming
language such as C, FORTRAN, COBOL, or PASCAL
that uses symbols and command statements

GLOSSARY G-1 1

Glossary

representing actions the computer is to perform, the
exact steps for a machine to follow. A high-level
language must be translated into machine language by
a compilation system before a computer can execute it.
A characteristic of a high-level language is that each
statement usually translates into a series of machine
language instructions. Low-level details of the
computer's internal organization are left to the compi
lation system.

host machine A host machine is the machine on which an a.out file
is built.

imported symbol An imported symbol is a symbol used but not defined
by a shared library. See exported symbol.

interpreted language An interpreted language is a high-level language that
is not either translated by a compilation system or
stored in an executable object file. The statements of
a program in an interpreted language are translated
each time the program is executed.

Interprocess Communication

interrupt

1/0 (Input/Output)

Interprocess Communication describes software that
enables independent processes running at the same
time to exchange information through messages,
semaphores, or shared memory.

An interrupt is a break in the normal flow of a system
or program. Interrupts are initiated by signals that are
generated by a hardware condition or a peripheral
device indicating that a certain event has happened.
When the interrupt is recognized by the hardware, an
interrupt handling routine is executed. An interrupt
character is a character (normally ASCII) that, when
typed on a terminal, causes an interrupt. You can
usually interrupt UNIX System programs by pressing
the delete or break keys, by typing CTRL-D, or by
using the kill(l) command.

IJO is the process by which information enters (input)
and leaves (output) the computer system.

G-1 2 PROGRAMMER'S GUIDE

kernel

lexical analysis

library

Glossary

The kernel (comprising 5 to 10 percent of the operat
ing system software) is the basic resident software on
which the UNIX System relies. It is responsible for
most operating system functions. It schedules and
manages work done by the computer and maintains
the file system. The kernel has its own text, data, and
stack areas .

Lexical analysis is the process by which a stream of
characters (often comprising a source program) is sub
divided into its elementary words and symbols (called
tokens). The tokens include the reserved words of the
language, its identifiers and constants, and special
symbols such as =, :=, and ;. Lexical analysis enables
you to recognize, for example, that the stream of char
acters 'print(" hello, universe ")' is to be analyzed into
a series of tokens beginning with the word 'print' [not
with the string 'print(" h. '). In compilers, a lexical
analyzer is often called by the compiler's syntactic
analyzer or parser, which determines the statements
of the program (that is, the proper arrangements of its
tokens).

A library is an archive file that contains object code
andjor files for programs that perform common tasks .
The library provides a common source for object code,
thus saving space by providing one copy of the code
instead of requiring every program that wants to
incorporate the functions in the code to have its own
copy. The link editor may select functions and data
as needed.

GLOSSARY G-1 3

Glossary

link editor

magic number

make file

manual page

null pointer

object code

optimizer

A link editor, or loader, collects and merges separately
compiled object files by linking together object files
and the libraries that are referenced into executable
load modules. The result is an a.out file. Link editing
may be done automatically when you use the compi
lation system to process your programs on the UNIX
System. You can also link edit previously compiled
files by using the ld(l) command.

The magic number is contained in the header of an
a.out file. It indicates what the type of the file is,
whether it is made up of shared or non-shared text,
and on which processor the file is executable.

A makefile is a file that lists dependencies among the
source-code files of a software product and methods
for updating them, usually by recompilation. The
make(l) command uses the makefile to maintain self
consistent software.

A manual page, or " man page " in UNIX System jar
gon, is the repository for the detailed description of a
command, a system call, a subroutine, or some other
UNIX System component.

A null pointer is a C pointer with a value of 0.

Object code is executable machine-language code pro
duced from source code or from other object files by
an assembler or a compilation system. An object file
is a file of object code and associated data. An object
file that is ready to run is an executable file.

An optimizer, an optional step in the compilation pro
cess, improves the efficiency of the assembly language
code. The optimizer reduces the space used by, and
speeds the execution time of, the code.

G-1 4 PROGRAMMER'S GUIDE

option

parent process

parse

PASCAL

path name

Glossary

An option is an argument used in a command line to
modify program output by modifying the execution of
a command. It is usually one character preceded by a
hyphen (-). When you do not specify any options, the
command will execute according to its default options.
For example, in the command line

Is -a -1 directory

-a and -1 are the options that modify the ls(l) com
mand to list all directory entries, including entries
whose names begin with a period (.), in the long for
mat (including permissions, size, and date) .

A parent process occurs when a process is split into
two, a parent process and a child process, with
separate, but initially identical text, data, and stack
segments.

To parse is to analyze a sentence in order to identify
its components and to determine their grammatical
relationship. In computer terminology the word has a
similar meaning, but instead of sentences, program
statements or commands are analyzed.

PASCAL is a multipurpose high-level programming
language often used to teach programming. It is
based on the ALGOL programming language and
emphasizes structured programming.

A path name is a way of designating the exact loca
tion of a file in a file system. It is made up of a series
of directory names that proceed down the hierarchical
path of the file system. The directory names are
separated by a slash character (/). The last name in
the path is either a file or another directory. If the
path name begins with a slash, it is called a full path
name; the initial slash means that the path begins at
the root directory.

GLOSSARY G-1 5

Glossary

permissions

pipe

A path name that does not begin with a slash is
known as a relative path name, meaning relative to
the present working directory. A relative path name
may begin either with a directory name or with two
dots followed by a slash (. • f). One that begins with a
directory name indicates that the ultimate file or direc
tory is below the present working directory in the
hierarchy. One that begins with • • f indicates that the
path first proceeds up the hierarchy; • • f is the parent
of the present working directory.

Permissions are a means of defining a right to access a
file or directory in the UNIX System file system. They
are granted separately to you, the owner of the file or
directory, your group, and all others. There are three
basic permissions:

D Read permission (r) includes permission to cat,
pg, lp, and cp a file.

D Write permission (w) is the permission to change
a file.

D Execute permission (x) is the permission to run an
executable file.

Permissions can be changed with the chmod(l) com
mand (see the User'sjSystem Administrator's Reference
Manual).

A pipe causes the output of one command to be used
as the input for the next command so that the two run
in sequence. You can do this by preceding each com
mand after the first command with the pipe symbol
(I), which indicates that the output from the process
on the left should be routed to the process on the
right. For example, in the command

who l wc -1

the output from the who(l) command, which lists the
users who are logged on to the system, is used as
input for the word-count command, wc(l), with the I
option. The result of this pipeline (succession of com
mands connected by pipes) is the number of people

G-t & PROGRAMMER'S GUIDE

portability

preprocessor

process

program

regular expression

Glossary

who are currently logged on to the system.

Portability describes the degree of ease with which a
program or a library can be moved or ported from one
system to another. Portability is desirable because
once a program is developed it is used on many sys
tems. If the program writer must change the program
in many different ways before it can be distributed to
the other systems, time is wasted, and each modifica
tion increases the chances for an error.

Preprocessor is a generic name for a program that
prepares an input file for another program. For exam
ple, neqn and tbl are preprocessors for nroff. grap is
a preprocessor for pic. cpp(l) is a preprocessor for
the C compiler.

A process is a program that is at some stage of execu
tion. In the UNIX System, it also refers to the execu
tion of a computer environment, including contents of
me:n;10ry, register values, name of the current working
directory, status of files, information recorded at login
time, etc. Every time you type the name of a file that
contains an executable program, you initiate a new
process. Shell programs can cause the initiation of
many processes because they can contain many com
mand lines.

The process id is a unique system-wide identification
number that identifies an active process. The process
status command, ps(l), prints the process ids of the
processes that belong to you.

A program is a sequence of instructions or commands
that cause the computer to perform a specific task, for
example, changing text, making a calculation, or
reporting system status. A subprogram is part of a
larger program and can be compiled independently.

A regular expression is a string of alphanumeric char
acters and special characters that describe a character
string. It is a shorthand way of describing a pattern to

GLOSSARY G·1 7

Glossary

routine

semaphore

shared library

shared memory

shell

signal: signal number

be searched for in a file. The pattern-matching func
tions of ed(l) and grep(l), for example, use regular
expressions.

A routine is a discrete section of a program to accom
plish a set of related tasks

In the UNIX System, a semaphore is a sharable short
unsigned integer maintained through a family of sys
tem calls which include calls for increasing the value
of the semaphore, setting its value, and for blocking
waiting for its value to reach some value. Sema
phores are part of the UNIX System IPC facility.

Shared libraries include object modules that may be
shared among several processes at execution time.

Shared memory is an IPC (interprocess communica
tion) facility in which two or more processes can share
the same data space.

The shell is the UNIX System program-sh(l)
responsible for handling all interaction between you
and the system. It is a command language interpreter
that understands your commands and causes the com
puter to act on them. The shell also establishes the
environment at your terminal. A shell normally is
started for you as part of the login process. Three
shells, the Bourne shell, the Korn shell, and the C
shell, are popular. The shell can also be used as a
programming language to write procedures for a
variety of tasks .

A signal is a message that you send to processes or
processes send to one another. The most common
signals you might send to a process are ones that
would cause the process to stop: for example, inter
rupt, quit, or kill. A signal sent by a running process
is usually a sign of an exceptional occurrence that has
caused the process to terminate or divert from the
normal flow of control .

G- 1 8 PROGRAMMER'S GUIDE

source code

standard error

standard input

standard output

Glossary

Source code is the programming-language version of a
program. Before the computer can execute the pro
gram, the source code must be translated to machine
language by a compilation system or an interpreter.

Standard error is an output stream from a program. It
is normally used to convey error messages . In the
UNIX System, the default case is to associate standard
error with the user's terminal.

Standard input is an input stream to a program. In
the UNIX System, the default case is to associate
standard input with the user's terminal.

Standard output is an output stream from a program.
In the UNIX System, the default case is to associate
standard output with the user's terminal.

stdio: standard input-output

static linking

stream

string

strip

stdio(3S) is a collection of functions for formatted and
character-by-character inputjoutput at a higher level
than the basic read, write, and open operations .

Static linking refers to the requirement that symbolic
references be resolved before run time. See dynamic
linking.

D A stream is an open file with buffering provided
by the stdio package.

D A stream is a full duplex, processing and data
transfer path in the kernel. It implements a con
nection between a driver in kernel space and a
process in user space, providing a general charac
ter inputjoutput interface for user processes.

A string is a contiguous sequence of characters treated
as a unit. Strings are normally bounded by white
space(s), tab(s), or a character designated as a separa
tor. A string value is a specified group of characters
symbolized to the shell by a variable.

strip(l) is a command that removes the symbol table
and relocation bits from an executable file.

GLOSSARY G- 1 9

Glossary

subroutine

symbol table

symbol value

syntax

system call

A subroutine is a program that defines desired opera
tions and may be used in another program to produce
the desired operations. A subroutine can be arranged
so that control may be transferred to it from a master
routine and so that, at the conclusion of the subrou
tine, control reverts to the master routine. Such a
subroutine is usually called a closed subroutine. A
single routine may be simultaneously a subroutine
with respect to another routine and a master routine
with respect to a third.

A symbol table describes information in an object file
about the names and functions in that file. The sym
bol table and relocation bits are used by the link edi
tor and by the debuggers.

The value of a symbol, typically its virtual address, is
used to resolve references.

D Com.mand syntax is the order in which command
names, options, option arguments, and operands
are put together to form a command line. The
command name is first, followed by options and
operands. The order of the options and the
operands varies from command to command.

D Language syntax is the set of rules that describes
how the elements of a programming language
may legally be used.

A system call is a request by an active process for a
service performed by the UNIX System kernel, such as
IfO, process creation, etc. All system operations are
allocated, initiated, monitored, manipulated, and ter
minated through system calls. System calls allow you
to request the operating system to do some work that
the program would not normally be able to do. For
example, the getuid(2) system call allows you to
inspect information that is not normally available,
since it resides in the operating system's address
space.

G-20 PROGRAMMER'S GUIDE

Glossary

target machine A target machine is the machine on which an a.out
ffie is run. While it may be the same machine on
which the a.out ffie was produced, the term implies
that it may be a different machine.

TCP fiP (Transmission Control Protocoljlntemetwork Protocol)

terminal definition

terminfo

text symbol

TCP fiP is a connection-oriented, end-to-end reliable
protocol designed to fit into a layered hierarchy of
protocols that support multi-network applications. It
is the Department of Defense standard in packet net
works.

A terminal definition is an entry in the terminfo(4)
database that describes the characteristics of a termi
nal. See terminfo(4) and curses(3X) in the
Programmer's Reference Manual.

0 terminfo is a group of routines within the curses
library that handle certain terminal capabilities.
For example, if your terminal has programmable
function keys, you can use these routines to pro
gram the keys.

0 terminfo is a database containing the compiled
descriptions of many terminals that can be used
with curses(3X) screen management programs.
These descriptions specify the capabilities of a ter
minal and how it performs various operations (
for example), how many lines and columns it has,
and how its control characters are interpreted. A
curses(3X) program refers to the database at run
time to obtain information it needs about the ter
minal being used.

See curses(3X) in the Programmer's Reference Manual.
terminfo(4) routines can be used in shell programs, as
well as C programs.

A text symbol is a symbol, usually a function name,
that is defined in the .text portion of an a.out ffie.

GLOSSARY G-21

Glossary

tool

trap

A tool is a program, or package of programs, that per
forms a given task.

A trap is a condition caused by an error where a pro
cess state transition occurs and a signal is sent to the
currently running process.

·

UNIX Operating System
The UNIX Operating System is a general-purpose,
multiuser, interactive, time-sharing operating system
developed by AT&T. An operating system is the
software on the computer under which all other
software runs. The UNIX Operating System has two
basic parts:

D The kernel is the program that is responsible for
most operating system functions. It schedules
and manages all the work done by the computer
and maintains the file system. It is always run
ning and is invisible to users.

D The shell is the program responsible for handling
all interaction between users and the computer.
It includes a powerful command language called
shell language.

The utility programs or UNIX System commands are
executed using the shell, and allow users to communi
cate with each other, edit and manipulate files, and
write and execute programs in several programming
languages.

userid A userid is an integer value, usually associated with a
login name, used by the system to identify owners of
files and directories. The userid of a process becomes
the owner of files created by the process and descen
dent (forked) processes.

utility A utility is a standard, permanently available program
used to perform routine functions or to assist a pro
grammer in the diagnosis of hardware and software
errors, for example, a loader, editor, debugging, or
diagnostics package.

G-22 PROGRAMMER'S GUIDE

variable

white space

window

word

Glossary

0 A variable in a computer program is an object
whose value may change during the execution of
the program, or from one execution to the next.

0 A variable in the shell is a name representing a
string of characters (a string value).

0 A variable normally set only on a command line
is called a parameter (positional parameter and
keyword parameter) .

0 A variable may be simply a name to which the
user \user-defined variable) or the shell itself may
assign string values.

White space is one or more spaces, tabs, or newline
characters. White space is normally used to separate
strings of characters and is required to separate the
command from its arguments on a command line.

A window is a screen within your terminal screen that
is set off from the rest of the screen. If you have two
windows on your screen, they are independent of
each other and the rest of the screen.

The most common way to create windows on a UNIX
System is by using the layers capability of the
TELETYPE 5620 Dot-Mapped Display. Each window
you create with this program has a separate shell run
ning it. Each one of these shells is called a layer.

If you do not have this facility, the shl(1) command,
which stands for shell layer, offers a function similar
to the layers program. You cannot create windows
using shl(l }, but you can start different shells that are
independent of each other. Each of the shells you
create with shl(1) is called a layer.

A word is a unit of storage in a computer that is com
posed of bytes of information. The number of bytes
in a word depends on the computer you are using.
The 80286 Computer has 16 bits or 2 bytes per word.
The 80386 Computer has 32 bits or 4 bytes per word,
and 1 6 bits or 2 bytes per half word.

GLOSSARY G-23

·- "":-'�' ..

Index

Access Routines . . . 11-44
Accessing Values in Enclosing Rules

. . . 6-38
Accumulation . . . 4-55
Actions . . . 4-20
Actions . . . 5-6
Actions . . . 6-6
addch() . . . 10-19
Additional Examples . . . 4-54
Additional get Options . . . 14-17
Additional Information about get . . .

14-5
Additive Operators . . . 17- 17
Addresses . . . 12-2
addstr() . . . 10-2 1
admin Command . . . 14-26
Advanced lex Usage . . . 5-7
Advanced Programming Tools . . .

3-13
Advanced Topics . . . 6-38
After Your Code Is Written . . . 2-7
Aligning an Output Section . . . 12-12
Allocating a Section Into Named

�emory . . . 12-19
Allocation Algorithm . . . 12-26
Ambiguity and Conflicts . . . 6-1 8
Analysis/Debugging . . . 2-43
Appendix A: Index to Utilities A-1
Application Programming . . . 1-8
Application Programming . . . 3-2
Application-Defined Commands . . .

10-136
Application-Defined Commands . . .

10-223
Archive . . . 2-68
Archive Libraries . . . 13-14
Argument Support for Field Types

. . . 10-25 1
Arithmetic . . . 4-20

Arithmetic Conversions . . . 17-10
Arithmetic Functions . . . 4-60
Arrays . . . 4-33
Arrays, Pointers, and Subscripting . . .

17-54
Assembly Language . . . 2-4
Assignment Operators . . . 17-21
Assignment Statements . . . 12-5
Assignments of longs to ints . . . 16-9
Associating Windows and Subwin-

dows with a Form . . . 10-207
Associating Windows and Subwin

dows with �enus . . . 10-1 19
attron(), attrset(), and attroff() . . .

10-41
Audience and Prerequisite

Knowledge . . . xxiii
Auditing . . . 14-39
Auxiliary Table Entries . . . 11-36
awk . . . 2-4
awk Summary . . . 4-58
Basic awk . . . 4-2
Basic ETI Programming . . . 10-9
Basic Features . . . 13-2
Basic Specifications . . . 6-4
be and de . . . 2-6
BEGIN and END . . . 4-12
Bells, Whistles, and Flashing Lights:

beep() and flash() . . . 10-52
Binding . . . 12-2
Bitwise Exclusive OR Operator . . .

17-19
Bitwise Inclusive OR Operator . . .

17-20
Bitwise AND Operator . . . 17-19
break Statement . . . 17-40
Building a Field Type from Two

Other Field Types . . . 10-246
Building a Shared Library . . . 8-15

INDEX 1·1

Index ---

Building an a.out File . . . 8-4
Building Process . . . 8-15
Building the Shared library . . . 8-57
Built-in Variables . . . 4-20
Built-in Variables . . . 4-62
Built-in Variables . . . 4-8
C Connection . . . xxili
C Language . . . 2-3
Calling Functions . . . 15-10
Calling the Form Driver ... 10-224
Calling the Menu Driver . . . 10-136
Categories of System Calls and Sub-

routines . . . 2-15
Cautionary Notes on Using cscope

. . . 18-26
Cautionary Notes on Using lprof . . .

18-42
Caveat Emptor-Mandatory Locking

. . . 7-19
cbreak() and nocbreak() . . . 10-57
cdc Command . . . 14-32
cflow . . . 2-48
Changing and Fetching the Fields

on an Existing Form . . . 10-203
Changing and Fetching the Pattern

Buffer . . . 10-150
Changing ETI Form Default Attri

butes . . . 10-205
Changing Existing Code for the

Shared library . . . 8-27
Changing Panel Windows . . . 10-72
Changing the Current Default

Values for Field Attributes . . .
10-1 75

Changing the Current Default
Values for Item Attributes . . .
10-100

Changing the Current Default
Values for Menu Attributes . . .
10-110

Changing the Current Une in the

1-2 Programmer's Guide

Source File . . . 15-7
Changing the Current Source File or

Function . . . 15-7
Changing the Entry Point . . . 12-22
Changing the Form Page . . . · 10-237
Changing Your Menu's Mark String

. . . 10-1 1 7
Character Constants . . . 17-3
Characters and Integers . . . 17-9
Checking an Item's Visibility . . .

10-100
Checking for Compatibility . . . 8-44
Checking If Panels are Hidden . . .

10-79
Checking Versions of Shared

libraries Using chkshlib(1) . . .
8-44

Choice Requests . . . 10-223
Choosing a Programming Language

. . . 2-2
Choosing library Members . . . 8-25
Choosing Region Addresses and the

Target Pathname . . . 8-53
clear() and erase() . . . 1D-26
clrtoeol() and clrtobot() . . . 10-27
Coding an Application . . . 8-5
Color Manipulation . . . 10-43
colors Program . . . 10-314
comb Command . . . 14-34
Combinations of Patterns . . . 4-18
Comma Operator . . . 17-22
Command Line . . . 4-58
Command References . . . XXV
Command Usage . . . 13-21
Command-line Arguments . . . 4-47
Comments . . . 13-7, 17-12
Common Object File Format (COFF)

. . . 3-22, 11-1
Common Object File Interface Mac

ros (ldfcn.h) . . . 3-27
Comparing or Printing terminfo

--- Index

Descriptions . . . 10-282
Compile the Description ... 10-280
Compiler Control lines ... 17-47
Compiler Diagnostic Messages . . .

2-9
Compiling an ETI Program . . . 10-12
Compiling and link Editing . . . 2-8
Compiling and linking Form Pro-

grams . . . 10-161
Compiling and linking Menu Pro

grams . . . 10-87
Compiling and linking Panel Pro

grams . . . 10-70
Compiling and Running a terminfo

Program . . . 10-268
Compiling and Running TAM

Applications under ETI . . .
10-285

Compiling C Programs . . . 2-8
Compound Statement or Block . . .

17-37
Concurrent Edits of Different SID . . .

14-18
Concurrent Edits of Same SID . . .

14-21
Conditional Compilation . . . 17-49
Conditional Operator . . . 17-21
Conditional Statement . . . 17-38
Constant Expressions . . . 17-57
Constants . . . 17-3
Continuation Lines . . . 13-7
continue Statement ... 17-41
Control Flow Statements . . . 4-30,

4-58
Controlled Environment for Pro-

gram Testing . . . 15-8
Controlling Message Queues . . . 9-15
Controlling Semaphores . . . 9-52
Controlling Shared Memory . . . 9-88
Conventions Used in this Chapter . . .

10-3

Converting a termcap Description to
a terminfo Description . . . 10-282

Cooperation with the Shell ... 4-49
Counting the Number of Fields . . .

10-204
Counting the Number of Menu

Items . . . 10-1 10
Creating a Field Type with Valida

tion Functions . . . 10-247
Creating a Profiled Version of a Pro

gram . . . 18-30
Creating an SCCS File by means of

admin . . . 14-2
Creating and Defining Symbols at

Link-Edit Time . . . 12-1 7
Creating and Freeing Fields . . .

10-169
Creating and Freeing Forms . . .

10-199
Creating and Freeing Menu Items . . .

10-92
Creating and Freeing Menus . . .

10-105
Creating and Manipulating

Programmer-Defmed Field
Types . . . 10-246

Creating Holes Within Output Sec-
tions . . . 12-15

Creating Panels . . . 10-71
Creation of SCCS Files . . . 14-27
cscope ... 18-3
ctrace . . . 2-5 1
curses . . . 2-6, 3-20
cxref . . . 2-55
Data File Cannot Be Found . . . 18-45
Deadlock Handling . . . 7-1 7
Dealing With Holes in Physical

Memory . . . 12-24
Debugging a.out Files that Use

Shared Libraries . . . 8-14
Deciding Whether to Use a Shared

INDEX 1-3

Index ---

library . . . 8-5
Declarations . . . 17-23, 17-61
Declarators . . . 17-25
Defining the Key Virtualization

Correspondence . . . 10-130
Defining the Virtual Key Mapping . . .

10-214
Definitions . . . 5-1 2
Definitions and Conventions . . . 11-3
Deleting Panels . . . 10-85
delta Command . . . 14-23
Delta Numbering . . . 14-7
Dependency Information . . . 13-8
Description Files and Substitutions

. . . 13-7
Determining the Dimensions of

Forms . . . 10-206
Determining the Dimensions of

Menus . . . 10-112
Directional Item Navigation

Requests . . . 10-133
Displaying Forms . . . 10-206
Displaying Machine Language State-

ments . . . 15- 1 1
Displaying Menus . . . 10- 1 1 2
Displaying the Source File . . . 15-6
do Statement . . . 17-38
Documentation . . . 3-3
DSECT, COPY, NOLOAD, INFO,

and OVERLAY Sections . . .
12-28

Dynamic Dependency Parameters . . .
13-19

Early Days . . . 1-1
echo() and noecho() . . . 10-56
editor Program . . . 10-296
Elementary Panel Window Opera-

tions . . . 10-72
Enumeration Constants . . . 17-4
Enumeration Declarations . . . 17-3 1
Environment Variables . . . 13-22

1-4 Programmer's Guide

Equality Operators . . . 17-19
Error Handling . . . 2-40, 6-28
Error Messages . . . 4-1 1 , 14-1 1
Establishing Field and Form Initiali-

zation and Termination Rou
tines . . . 10-230

Establishing Item and Menu Initiali
zation and Termination Rou
tines . . . 10-142

ETI Form Requests . . . 10-218
ETI libraries . . . 10-5
ETI Low-Level Interface (curses) to

High-Level Functions . . . 10-66
ETI Menu Requests . . . 10-132
ETijterminfo Connection . . . 10-7
Examining Variables . . . 15-3
Examples . . . 6-45, 8-48
Example 1 : Searching for Undocu

mented Options . . . 18-58
Example 2: Functions That Are

Never Called . . . 18-60
Example 3 : Hard to Produce Error

Conditions . . . 18-60
Example Applications . . . 4-52
Example Program . . . 9-101, 9-1 1, 9-

1 7, 9-26, 9-48, 9-55, 9-69, 9-84,
9-90

Example terminfo Program . . .
10-268

Examples of Using cscope . . . 18-19
Examples of Using PROFOPTS . . .

18-32
exec(2) . . . 2-35
Executable Commands . . . 13-8
Explicit Long Constants . . . 17-3
Explicit Pointer Conversions . . .

17-55
Expression Statement . . . 17-37
Expressions . . . 12-4
Expressions . . . 17-59
Expressions and Operators . . . 17-12

Extensions of $•, $@, and $< . . .
13-9

External Data Definitions . . . 17-44
External Definitions . . . 17-43, 17-65
External Function Definitions . . .

17-43
Failure of Data to Merge . . . 18-43
Fetching and Changing A Menu's

Display Attributes . . . 10-123
Fetching and Changing Menu Items

. . . 10-108
Fetching and Changing the Current

Item . . . 10-146
Fetching and Changing the Top

Row . . . 10-148
Fetching Item Names and Descrip

tions . . . 10-97
Fetching Panels Above or Below

Given Panels . . . 10-80
Fetching Pointers to Panel Windows

. . . 10-72
Field Editing Requests . . . 10-221
Field Validation Requests . . . 10-222
Field Variables . . . 4-28
Fields . . . 4-4
File and Record Locking . . . 3-14
File Header . . . 11-4
File Header Declaration . . . 11-5
File Inclusion . . . 17-48
File Protection . . . 7-4
File Specifications . . . 12-9 ·

Files and Pipes . . . 4-43
Flags . . . 11-4, 11-10
Float and Double . . . 17-9
Floating and Integral . . . 17-9
Floating Constants . . . 17-4
Flow of Control . . . 16-5
for Statement . . . 17-38
fork(2) . . . 2-36
Form Driver Processing . . . 10-2 14
Form-letter Generation . . . 4-57

Formatted Printing . . . 4-6
Formatting . . . 14-38
Forms . . . 10-160

Index

Freeing Programmer-Defined Field
Types . . . 10-250

Function seLfield-init() . . . 10-231
Function seLfielcLterm() . . . 10-231
Function seLfoi'IILinit() . . . 10-231
Function seLform_term() . . . 10-231
Function seLitellLi.nit() . . . 10-143
Function seLitem_term() . . . 10-143
Function seLm.en\Linit() . . . 10-143
Function seLm.enu_term() . . . 10-144
Function Values . . . 16-6
Functions . . . 4-9, 4-59, 17-53
Fundamentals of lex Rules . . . 5-3
General Form . . . 13-8
Generating Reports . . . 4-52
get Command . . . 14-12
getch() . . . 10-3 1
getline Function . . . 4-44
getstr() . . . 10-34
Getting Lock Information . . . 7-14
Getting Message Queues . . . 9-7
Getting Semaphores . . . 9-44
Getting Shared Memory Segments

. . . 9-80
Glossary . . . G-1
goto Statement . . . 17-42
Grouping Sections Together . . . 12-12
Guidelines for Writing Shared

Library Code . . . 8-23
Handful of Useful One-liners . . .

4-1 0
Hardware/Software Dependencies

. . . xxiv
Header File <curses.h> . . . 10-9
Header Files and Libraries . . . 2-27
help Command . . . 14-6
Hiding Panels . . . 10-78
highlight Program . . . 10-303

INDEX 1-5

Index ---

Hints for Preparing Specifications . . .
6-34

How Arguments Are Passed to a
Program . . . 2-12

How awk Is Used . . . 3-7
How cscope Works ... 18-3
How File and Record Locking

Works . . . 3-15
How lex Is Used .. . 3-8
How Shared Libraries Are Imple

mented . . . 8-9
Bow Shared Libraries Might

Increase Space Usage . . . 8-12
How Shared Libraries Save Space . . .

8-6
How System Calls and Subroutines

Are Used in C Programs . . . 2-21
How the TAM Transition Library

Works . . . 10-287
How this Chapter is Organized . . .

10-1
How yacc Is Used . . . 3-1 0
I D Keywords . . . 14-13
Identifiers (Names) . . . 17-2
Identifying a.out Files that Use

Shared Libraries . . . 8-13
Implicit Declarations . . . 17-35
Implicit Rules . . . 13-12
Importing Symbols . . . 8-3 1
Improving Performance with prof

and lprof . . . 18-47
Improving Test Coverage with lprof

. . . 18-56
include Files . . . 13-19
Incremental Link Editing . . . 12-26
Influences . . . 3-5
Information in the Examples . . . xxv
Initialization . . . 17-32
Initialization and Modification of

SCCS File Parameters . . . 14-28
Initialization, Comparison, and Type

1-8 Programmer's Guida

Coercion . . . 4-63
Initialized Section Holes or .bss Sec-

tions . . . 12-19
Inner Blocks . . . 11-20
Input . . . 4-43, 10-30
Input Options . . . 10-53
Input Separators . . . 4-43
Input Style . .. 6-34
Input-output . . . 2-29, 4-59
Inserting Commentary for the Initial

Delta . . . 14-27
Integer Constants . . . 17-3
Inter-Field Navigation Requests on

the Current Page . . . 10-21 8
Interface Between a Programming

Language and the UNIX System
. . . 2-1 1

Internal Rules . . . 13-25
Interpreting Profiling Output . . .

18-35
Interprocess Communications . . .

3-1 7
Intra-Field Navigation Requests . . .

10-219
Introducing the C Programmer's

Productivity Tools . . . 18-1
IPC ctl Calls . . . 3-19
IPC get Calls . . . 3-1 8
IPC o p Calls . . . 3-19
Item Navigation Requests . . . 10-133
Justifying Data in a Field . . . 10-183
Keeping Data Files in a Separate

Directory . . . 18-33
Key Letters That Affect Output . . .

14-22
Keywords . . . 17-2
Labeled Statement . . . 17-42
Language Selection . . . 3-5
Learn About the Capabilities . . .

10-273
Left Recursion . . . 6-34

lex . . . 2-5
Lexical Analysis . . . 6-10
Lexical Conventions . . . 17-2
Lexical Scope . . . 17-45
Lexical Tie-Ins . . . 6-36
liber, A Library System . . . 3-38
Libraries . . . 3-23
Limits . . . 4-62
Line Control . . . 17-5 1
Line Number Declaration . . . 11-16
Line Numbers . . . 11-15
Link Editor . . . 12-1, 2-9
Link Editor Command Language . . .

12-4
Link Editor Command Language . . .

3-21
lint . . . 2-61
lint as a Portability Tool . . . 3-32
lint Message Types . . . 16-4
Load a Section at a Specified

Address . . . 12-1 1
lock£ . . . 3-1 7
Logical AND Operator . . . 17-20
Logical OR Operator . . . 17-20
Low-Level I/0 and Why You

Should Not Use It . . . 2-32
lprof . . . 18-29
lprof on lprof . . . 18-48
m4 . . . 2-6
Machine Language Debugging . . .

15-1 1
Macro Definitions . . . 13-7
Magic Numbers . . . 11-4
make . . . 3-34
make Command . . . 2-66, 13-2 1
Making Panels Invisible . . . 10-78
Manipulating an Item's Select Value

in a Multi-Valued Menu . . .
10-95

Manipulating Field Attributes . . .
10- 1 73

Manipulating Field Options . . .

10-195

Index

Manipulating Form Attributes . . .

10-203
Manipulating Item Attributes . . .

10-97
Manipulating Menu Attributes . . .

10-108
Manipulating Registers . . . 15-12
Manipulating the Current Field . . .

10-235
Manipulating the Menu User

Pointer . . . 10-153
Math Library . . . 3-27
Meaning of Declarators . . . 17.:.25
Memory Configuration . . . 12-1
Memory Management . . . 3-13
Menu Driver Processing . . . 10-130
Menu Scrolling Requests . . . 10-134
Menus . . . 10-86
Merging Data Files . . . 18-33
Merging Option . . . 18-41
Messages . . . 9-2
More about initscr() and Lines and

Columns . . . 10-13
More about refresh() and Windows

. . . 10-14
More About Saving Space . . . 8-6
move() . . . 10-24
Moving a Field . . . 10-174
Moving Panel Windows on the

Screen . . . 10-73
Moving Panels to the Top or Bottom

of the Deck . . . 10-75
Multi-line Records . . . 4-44
Multi-Valued Menu Selection

Request . . . 10-134
Multiple Uses and Side Effects . . .

16-12
Multiplicative Operators . . . 17-16
Name the Terminal . . . 10-272

INDEX 1·7

Index ---

Named Files . . . 2-30
New Windows . . . 10-64
newwin() . . . 10-64
No Data Are Collected . . . 18-45
Non-Terminating Programs . . . 18-43
Nonportable Character Use . . . 16-9
Nonrelocatable Input Files . . . 12-30
Notational Conventions . . . xxiv
Notes and Special Considerations . . .

12-22
Null Statement . . . 17-42
Null Suffix . . . 13-18
Number or String? . . . 4-29
Numbers . . . 3-2
Object File . . . 12-3
Object File libraries . . . 2-28, 3-23
Objects and lvalues . . . 17-8
Obtaining Field Size and Location

Information . . . 10-173
Old Syntax . . . 16-1 1
Opening a File for Record Locking

. . . 7-4
Operations for Messages . . . 9-24
Operations for Shared Memory . . .

9-99
Operations on Semaphores . . . 9-67
Operator Conversions . . . 17-9
Operators (Increasing Precedence) . . .

4-61
Optional Features . . . 18-18
Optional Header Declaration . . . 11-8
Optional Header Information . . . 11-6
Original Source . . . 8-48
Other Command Une Options . . .

18-17
Other Commands . . . 15-12
Other ETI Routines . . . 10-259
Output . . . 4-38, 10-18
Output and Input . . . 10-58
Output Attributes . . . 10-38
Output File Blocking . . . 12-30

1-8 Programmer's Guide

Output into Files . . . 4-40
Output into Pipes . . . 4-41
Output Separators . . . 4-38
Output Translations . . . 13-10
Overview of lex Programming . . . 5-1
Overview: Writing Form Programs

in ETI . . . 10-162
Overview: Writing Menu Programs

in ETI . . . 10-88
Packing Structure Members . . . 17-50
Pads . . . 10-17
Page Navigation Requests . . . 10-21 8
Panels . . . 10-69
Parser Operation . . . 6-13
Pattern Buffer Requests . . . 10-134
Pattern Ranges . . . 4-19
Patterns . . . 4-12, 4-58
Physical and Virtual Addresses . . .

11-3
Pipes . . . 2-38
Pointer Alignment . . . 16-12
Pointers and Integers . . . 17-10
Portability . . . 3-2
Portability Considerations . . . 17-58
Positioning the Form Cursor . . .

10-238
Positioning the Menu Cursor . . .

10-149
Posting and Unposting Forms . . .

10-21 1
Posting and Unposting Menus . . .

10-126
Precedence . . . 6-24
Preprocessor . . . 17-66
Primary Expressions . . . 17-12
print Statement . . . 4-38
printf Statement . . . 4-39
Printing . . . 4-5
Printing a Stack Trace . . . 15-3
printw() . . . 10-22
Processes . . . 2-33

prof . . . 2-62
Profiling Examples . . . 18-47
Profiling Programs that Fork . . .

18-34
Profiling within a Shell Script . . .

18-34
PROFOPTS Environment Variable

. . . 18-31
Program Examples . . . 10-296
Program Organizing Utilities . . . 2-66
Program Structure . . . 4-2
Programming Support Tools . . . 3-21
Programming Terminal Screens . . .

3-19
Project Control Tools . . . 3-34
Project Management . . . 3-4
Protection . . . 14-37
Providing Archive Library Compati-

bility . . . 8-40
prs Command . . . 14-29
Purpose . . . xxiii
Querying the Menu Dimensions . . .

10-1 1 8
Random Choice . . . 4-55
Record Locking and Future Releases

of the UNIX System . . . 7-20
Recording Changes by means of

delta . . . 14-4
Recursive Makefiles . . . 13-1 1
Referencing Symbols in a Shared

Library from Another Shared
Library . . . 8-38

Regular Expressions (Increasing Pre-
cedence) . . . 4-61

Regular Expressions . . . 4-15
Reinstating Panels . . . 10-79
Relational Expressions . . . 4-13
Relational Operators . . . 17-18
Relocation Entry Declaration . . .

11-14
Relocation Information . . . 11-13

Index

Reserved Words . . . 6-37
Retrieval of Different Versions . . .

14-14
Retrieval With Intent to Make a

Delta . . . 14-16
Retrieving a File by means of get . . .

14-3
return Statement . . . 17-41
Rewriting Existing Code . . . 8-54
rmdel Command . . . 14-3 1
Routines for Drawing Lines and

Other Graphics . . . 10-260
Routines for Using Soft Labels . . .

10-262
Routines initscr(}, refresh(), endwin()

. . . 10-10
Routines wnoutrefresh() and doup

date() . . . 10-59
Running an ETI Program . . . 10-13
Running lex under the UNIX System

. . . 5-1 8
Running the Profiled Program . . .

18-3 1
Running the Program . . . 15-9
sact Command . . . 14-31
Sample Form Application Program

. . . 10-163
Sample Menu Program . . . 10-89
Sample Program . . . 2-43
Scaling the Form . . . 10-206
scanw() . . . 10-36
scatter Program . . . 10-305
sees . . . 3-35
SCCS Command Conventions . . .

14-10
SCCS Commands . . . 14-12
sees Files . . . 14-37
SCCS For Beginners . . . 14-2
SCCS Makefiles . . . 13-19
sccsdiff Command . . . 14-34
Scope of Externals . . . 17-46

INDEX 1·9

Index

Scope Rules . . . 17-45
Scrolling Requests . . . 10-222
sdb . . . 2-64
sdb Session . . . 15-12
Section Definition Directives . . . 12-8
Section Header Declaration . . . 11-1 1
Section Headers . . . 11-9
Sections . . . 11-3, 11-13, 12-2
Selecting Advisory or Mandatory

Locking . . . 7-1 8
Selecting library Contents . . . 8-53
Semaphores . . . 9-38
Set/Used Information . . . 16-5
Setting a File Lock . . . 1-·6
Setting and Deleting Breakpoints . . .

15-8
Setting and Fetching Form Options

. . . 10-243
Setting and Fetching Menu Options

. . . 10-156
Setting and Fetching the Field User

Pointer . . . 10-191
Setting and Fetching the Form User

Pointer • . . 10-241
Setting and Fetching the Panel User

Pointer . . . 10-82
Setting and Reading Field Buffers . . .

1o-187
Setting and Reading the Field Status

. . . 10-189
Setting and Removing Record Locks

. . . 7-1 0
Setting Item Options . . . 10-97
Setting the Field Foreground, Back

ground, and Pad Character . . .

10-185
Setting the Field Type To Ensure

Validation . . . 10-176
Setting the Item User Pointer . . .

10-102
Shared libraries . . . 3-30

1·1 0 Programmer's Guide

Shared Memory . . . 9-75
Shell as a Prototyping Tool . . . 1-5
Shell Facility . . . 4-56
Shift Operators . . . 17-18
show Program . . . 10-307
Signals and Interrupts . . . 2-40
Simple Actions . . . 4-8
Simple Input and Output . . . 10-18
Simple Patterns . . . 4-7
Simulating error and accept in

Actions . . . 6-38
Single-User Programmer . . . 1-7
size . . . 2-64
Some Helpful Features of Fields . . .

10-187
Some Important Form Terminology

. . . 10-162
Some Important Menu Terminology

. . . 10-88
Some Lexical Conventions . . . 4-37
Some Special Features . . . 5-8
Source Code Control System File

Names: the Tilde . . . 13-1 7
Source File Display and Manipula

tion . . . 15-6
Source listing Option . . . 18-36
Special Purpose Languages . . . 2-4,

3-6
Special Symbols . . . 11-18
Specifications . . . 5-3
Specify Capabilities . . . 10-274
Specifying a Memory Configuration

. . . 12-7
Specifying a Program and Data File

to lprof . . . 18-35
Specifying Program Names to lprof

. . . 18-43
Specifying the Menu Format . . .

10- 1 1 3
Standard UNIX System a.out

Header . . . 11-7

--- Index

standout() and standend() . . . 10-42
Statements . . . 17-37, 17-64
Storage Class . . . 17-6
Storage Class and Type . . . 17-6
Storage Class Specifiers . . . 17-23
Strange Constructions . . . 16-10
String Functions . . . 4-60
String literals . . . 17-5
String Table . . . 11-44
Strings and String Functions . . . 4-23
strip . . . 2-64
Structure and Union Declarations . . .

17-27
Structures and Unions . . . 17-52
Subroutines . . . 5-13
subwin() . . . 10-65
Suffixes and Transformation Rules

. . . 13-1 1
Suggestions and Warnings . . . 13-24
Summary Option . . . 18-40
Support for Arbitrary Value Types

. . . 6-40
Supported Languages in a UNIX

System Environment . . . 2-2
Supporting Next and Previous

Choice Functions . . . 10-255
Supporting Programmer-Defined

Field Types . . . 10-25 1
switch Statement . . . 17-39
Symbol Table . . . 11- 1 7
Symbol Table Entries . . . 11-23
Symbolic Debugger . . . 3-32
Symbols and Functions . . . 11-22
Syntax Diagram for Input Directives

. . . 12-32
Syntax Notation . . . 17-5
Syntax Summary . . . 17-59
System Calls and Subroutines . . .

2-15
System Calls for Environment or

Status Information . . . 2-32

system Function . . . 4-49
system(3S) . . . 2-35
Systems Programmers . . . 1-8
TAM Transition Keyboard Subsys-

tem10-291
TAM Transition library . . . 10-284
Target Machine ... 11-3
Terminology ... 14-2
Terminology . . . 7-2
Test the Description . . . 10-28 1
Three Files You Always Have . . .

2-29
Three Programming Environments

. . . 1-7
Tips for Polishing TAM Application

Programs Running under ETI . . .
10-286

Token Replacement . . . 17-47
Tools Covered and Not Covered in

this Guide . . . 1-4
Translations from TAM Calls to ETI

Calls . . . 10-287
Trouble at Compile Time . . . 18-42
Trouble at the End of Execution . . .

18-45
Tuning the Shared library Code . . .

8-41
Turning Off Profiling . . . 18-32
Two Kinds of Menus: Single- and

Multi-Valued . . . 10-95
two Program . . . 10-309
Type . . . 17-6
Type Casts . . . 16-8
Type Checking . . . 16-7
Type Names . . . 17-34
Type Specifiers . . . 17-24
typedef . . . 17-36
Types Revisited . . . 17-52
TYPE_ALNUM . . . 10-178
TYPE_ALPHA . . . 10-178
TYPE_ENUM . . . 1o- 1 79

INDEX 1-1 1

Index ---

TYP:LINTEGER . . . 10-1 80
TYPE-NUMERIC . . . 10-181
TYPE-REGEXP . . . 10-182
Unary Operators . . . 17-15
Undoing a get -e . . . 14-1 7
UNIX System Philosophy Simply

Stated . . . 1-3
UNIX System Shared libraries . . .

8-3
UNIX System Tools and Where You

Can Read About Them . . . 1-4
Unsigned . . . 17-10
Unused Variables and Functions . . .

16-4
Updating Panels on the Screen . . .

10-76
Usage . . . 4-3, 16-2
Use of Archive libraries . . . 12-22
Use of SCCS by Single-User Pro-

grammers . . . 2-74
User-Defmed Functions . . . 4-36
User-defined Variables . . . 4-9
Using a Shared library . . . 8-2
Using awk with Other Commands

and the Shell . . . 4-49
Using lex with yacc . . . 5-.14
Using lprof with Shared libraries . . .

18-46
Using msgctl . . . 9-15
Using msgget . . . 9-7
Using msgop . . . 9-24
Using sdb . . . 15-2
Using Semaphores . . . 9-40
Using semctl . . . 9-53
Using semget . . . 9-44
Using semop . . . 9-67
Using Shared Memory . . . 9-76
Using shmctl . . . 9-89
Using shmget . . . 9-80
Using shmop . . . 9-99
Using the Shared library . . . 8-57

1·1 2 Programmer's Guide

Using the Specification File for
Compatibility . . . 8-30

Using the TAM Transition library . . .
10-12

val Command . . . 14-35
vc Command . . . 14-36
Version Control . . . 17-5 1
Void . . . 17-1 1
What a Menu Application Program

Does . . . 10-89
What a Typical Form Application

Program Does . . . 10-163
What awk Is like . . . 3-6
what Command . . . 14-33
What Every ETI Program Needs . . .

10-9
What Every terminfo Prograll\

Needs . . . 10-266
What is a Shared library? . . . 8-2
What is ETI? . . . 10-5
What lex and yacc Are like . . . 3-7
Where the Manual Pages Can Be

Found . . . 2-21
Where to Find More Information . . .

3-7, 3-10, 3-12, 3-1 7, 3-19, 3-20,
3-22, 3-32, 3-33, 3-35, 3-37

while Statement . . . 17-38
Why C Is Used to Illustrate the

Interface . . . 2-1 1
window Program . . . 10-312
Windows . . . 10-58
Word Frequencies . . . 4-54
Working with More than One Ter

minal . . . 10-264
Working with terminfo Routines . . .

10-266
Working with the terminfo Database

. . . 10-272
Writing lex Programs . . . S-3
Writing Terminal Descriptions . . .

10-272

Writing the Specification File 0 0 0 8-55
x.files and z.files O o o 14- 1 1
yacc 0 0 0 2-5
yacc Environment 0 0 0 6-32
yacc Input Syntax 0 0 0 6-42

Index

INDEX 1·1 3

DOC0038-2Y

