
New C*

Reference Manual

pro

INTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

COPYRIGHT c 1989, by Language Processors, Inc.

All rights reserved. Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of Language
Processors, Inc.

The information in this document is subject to change without prior notice.
INTERACTIVE Systems Corporation and Language Processors, Inc. shall
not be responsible for any damage (including consequential) caused by any
errors that may appear in this document.

THIS NOTIFICATION DESCRffiES THE GOVERNMENT'S RIGHTS IN
TECHNICAL DATA AND COMPUTER SOFTWARE PROVIDED WITH
THE EQUIPMENT DELIVERED.

Unless otherwise specified, any Technical Data and Computer Software is
supplied to the government with Restricted rights as dermed in the Defense
FAR supplement 52.227-7013. All software and related documentation has

been developed at private expense and is not in the public domain. This

notification is provided in addition to the marking of specific software or data

items with the following legend:

RESTRICTED RIGHTS LEGEND

'Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b) (3) (ii) of the Rights in Technical Data and
Computer Software clause at 62.227-7013.1

Component Architecture, Language Processors, Inc., LPI, LPI-BASIC, LPI-C,
LPI-COBOL, Code Watch, LPI-FORTRAN, LPI-P ASCAL, LPI-PL/I, New C,
LPI-RPG IT, and the logo of Language Processors, Inc. are trademarks of

Language Processors, Inc.
959 Concord Street

Framingham, MA 01701

The following trademarks shown as registered are registered in the
United States and other countries:

UNIX is a registered trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
80386 is a trademark of Intel Corporation.
AIX is a trademark of International Business Machines Corporation.
MS-DOS and XENIX are registered trademarks of Microsoft Corporation.

LPI-C*

User's Guide

This guide provides specific information for using LPI-C
Version 1 on an Intel*80386*System under
UN1X/XENIX/ AlX�

Contents

Preface: Using This Guide vii

Chapter 1: Using LPI-C

Installing the LPI-C Compiler • 1-1
The lpiadmin Utility • . . • . . . • • . . • . . . • • . . . 1-1

Entering a Source Program • 1-2
Compiling a Program • • . . . • • . . • . • . • • . • • • . • . . • . 1-2

LPI-C Compiler Implementation Limits . . • . • . • • . . . • • . • • • • . 1-3
Compiler Options List • • . . . • • . . • . . • • • • • • . . • . • • • . 1-4

Compatibility Options • . . . • . . . • . • • • • • • • • . • . . • • • • • • 1-8
Temporary Files • • • • • • • • • . • • • • • • • • • . . • • • • • • • . . • . • • 1-1 1
Optimization • . . . • • • • • . • • . . • • . • • • • . • • • • • • • . . . 1-1 1
Compiler Listings • • • • • • • • . • • • . • • . . • • • • • • . • • • • • . • • • 1-12

The -1 Option . 1-12
The -map Option • • . . • • • • . . • . . 1-13
The -xref Option • • • . • . . . • . . • . • • • • • • • . . • . • • . 1-15
The -exp Option • • . . . • . • • . • • . . • . • . . • . . . 1-17

Compilation Statistics . . • . . • • • . • • • • • • • • • • • • . 1-17
Linking a Program • . . • • . • • . . . • . . • • • • • . • . . • • • 1-19

Using lpild . 1-19
Using Ide • • • • • • . • • • • • . . • . . • • • . • • . • • 1-19
Link Options List • • • • . . • • • • • . • • • . • . • . • • • • . • . 1-20
Using LPI-C ANSI Libraries vs. System Libraries . • • • . • • . • • . 1-21

Running a Program . 1-22
CodeWatch . 1-22

Other Debugging Options . • . . • . . . • • • • • . . • . . • • • . • . 1-23

iii

Chapter 2: LPI-C Language Specifics

Data Types • 2-1
pointer (type *) • • . . • • . . . • • . • • • • . . • . . . • . . • . • . • . • . • . 2-2
char • 2-3
unsigned char • . • • • • • 2-3
double . 2-4
long double • . • 2-4
enum • . • • • • 2-4
noat . 2-5
int and long . 2-5
unsigned int and unsigned long • • • • • • • • • • • • • • • • . • • • • • • • • 2-6
short 2-6
unsigned short • 2-7

Implementation Specifics • 2-7
Length of Identifiers • . • • • • • • • • • • 2-7
Integer Constants • . • 2-8
Character Constants • . • • • • • • • • • • • • • • • • • . . . • • • . . • • . • • 2-8
Sign Extension of char Type • . . • • • . • • • • • • • • • • . • • • • . • . • 2-8
Bit-fields in Structures • • • • • • • • • • • • • • . • • • • • • • • • • • • . • . 2-8
Right Shift Operator • • • • • • . • • • • . • • • • • • • • . • . • • . • • • • • 2-8
Truncation on Integer Divide • • . • • • • . • • • • • • • • • • • • • • • . • • 2-9
Mod Operator With Negatives . • • • • • • • • . • • • • • • • • • • • 2-9
Pointer Casts • . • • • • • • • • • • 2-9
Directories Searched for #include • 2-9
Data Type Boundaries Within Structures • • • • • • • • • • • • • • • • • 2-10

External Procedures • 2-1 1
External Names 2-1 1

Name Length • • • • • • • • • • . • • • • • • . • • • • • • . • . • • • • • • 2-11
Lowercase Names • • • . • • • • • • • • • • • • • • • . • • • • • • . • . . 2-1 1

Calling Conventions • • • • • • • • • • . . • • • . . • . . • • • . • • 2-12
Register Save Conventions • • • . • • • • . • • . . • • • . • . • • • • • . . . 2-12
Function Result Conventions • • • • • • • • • • • • • • . . • • • • • • • . . 2-13

Returns in Register eax • • • • • • • • • . • • • • • • • • • • • • • • . • 2-14
Returns in Temporary Storage Area • • • • • . • • • • • • • • • • • 2-14
Returns on Top of Floating Point Coprocessor Stack • • • • • • 2-14

C Conventions . 2-15
LPI Equivalent Data Types • 2-15

iv

Appendices

Appendix A: Installing, Listing, and Removing LPI Software • • • • • • A-1
Appendix B: Interpreting LPI-C Compiler Error Messages • • • • • • • • B-1
Appendix C: LPI-C Implementation-Defined Behavior • • • . • • . • • • • C-1
Appendix D: LPI-C Compatibility Issues • • . . • • • • • • • • • • • • • • • • D-1

Index

v

Preface: Using This Guide

Product Description

LPI-C is a fully conforming implementation of the C language as defmed
by the ANSI Committee X3Jll in Draft Proposed American National
Standard for Information Systems- -Programming Language C, (Document
No X9.159-1989, Dec 7, 1988}. It passes the Plum Hall ANSI C
Validation Test Suite and incorporates preprocessor improvements and
an array of new features.

The LPI-0 Use r 's Guide describes how to compile, link, and run LPI-C
programs on your system. LPI extensions to the C language are also
explained in this guide.

Related Documentation

For additional information on LPI-0, refer to the following manuals in
the LPI-C documentation set:

• The LPI-0 Language Reference Manual, which describes the LPI-C
language.

For information on using CodeWatch, refer to the OodeWatch. Reference
Manual.

LPI-C Features

The following LPI-C features enhance performance and productivity:

• Standard libraries and header flies are packaged with LPI-C.

vii

• Function prototypes are incorporated. These form the basis for
descriptive diagnostics concerning the number and types of arguments
in a function call.

• Compile-time string concatenation is provided as a convenient means
of using long string literals.

• New preprocessing directives and operatives are available, including
stringize, token-paste, #elif, #error, and defined () .

• Execution is improved by in-line code generation of many standard
library, math string/memory, and copy/compare functions.

• The const. type qualifier designates data objects as non-modifiable,
further enhancing reliability and maintainability of code. LPI-C will
reliably generate diagnostics if attempts are made to modify such
objects.

• The volatile type qualifier designates references to variables that
should not be "optimized-out. " This is useful, for example, when
writing a hardware driver or multitasking applications.

• Automatic initialization of aggregate types (structures, unions, and
arrays) within blocks is an additional feature of LPI-C, as is union
initialization.

• A standard generic pointer type, void * , is supported.

• Cross-language calling allows you to incorporate subprograms written
in other LPI languages into your LPI-C program, and vice versa.
This means that you target the best language to the programming
task. Also, subroutines do not have to be rewritten, thus saving
developers' time for new programming tasks.

• Informative error messages flag errors by placing a pointer at the
exact location of the programming error within a line.

• A full set of listing options provides annotated listings of the source
program, user symbols and their attributes, a cross-reference, and a
summary of compilation statistics. These all improve development
efficiency.

• LPI-C is fully supported by CodeWatch, the interactive source-level
debugger, which allows testing and debugging in the C language,
without dependence on the machine language of the computer.

viii

Intended Audience

This guide is intended for experienced C programmers, rather than for
beginners. A working knowledge of the UNIX operating system is
assumed.

Organization of Information

Chapter 1, "Using LPI-C," explains how to use LPI-C on your system.

Chapter 2 , "LPI-C Language Specifics, 11 describes the LPI-C language
implementation for your system.

Appendix A provides information on installing, listing, and removing LPI
software.

Appendix B describes the LPI-C compiler error messages.

Appendix C provides information on implementation-defmed behavior.

Appendix D discusses compatibility issues.

The index provides a quick reference for finding important LPI-C terms.

Syntax Conventions

The following syntax conventions are used in this guide:

1 . Brackets enclose optional command line entries. For example,

lpild [option] • • • object_Jile [object_Jile] •..

2 . Variable information is printed in italics. For example,

lpiadmin install [option] . . . product_name

ix

3. Typewriter font is used for keywords, reserved words, and where
identifiers from programming examples are referred to in the text.

#include <stdio . h>
main ()
{
print£ (" This is typewriter £ont ")
}

4. Optional repetition is indicated with ellipses (..•). For example,

lpicc [option] • • • fikname [option]

X

Chapter 1: Using LPI-C

Installing the LPI-C Compiler • . . . • . • . . • . . . • • • • 1-1
The lpiadmin Utility • • • . . • • . . • • . . . • • • • . • • • • • • . • • 1-1

Entering a Source Program • . . • • . . . • • . . . • • • • . • . • . . • • • • . . . 1-2
Compiling a Program • • • . • • . . . • • • . . . • • . • • . . . 1-2

LPI-C Compiler Implementation Limits • . • . . • • • . . • • . 1-3
Compiler Options List . . . • . . • • • • . • • . • . • • . • • . 1-4

Compatibility Options . • • • • . • • . • • . • . . . • • • . . 1-8
Temporary Files • . . . • • • • . • • • • . . • . 1-11
Optimization . • • • • • • . . . 1-11
Compiler Listings . 1-12

The -1 Option . 1-12
The -map Option . 1-13
The -xref Option • . • . • 1-15
The -exp Option . 1-17

Compilation Statistics • • • • • 1-17
Linking a Program . • • 1-19

Using lpild • . • • • . • • • • • . . . • • • . • • . 1-19
Using Ide • • . • • • • • • • • . . . • • • . . . • • . • • • 1-19
Link Options List • . . . • • . . . • • • . . 1-20
Using LPI-C ANSI Libraries vs. System Libraries 1-20

Running a Program 1-21
CodeWatch • • • 1-21

Other Debugging Options . . . • . 1-22

Chapter 1: Using LPI-C

Installing the LPI-C Compiler

To install LPI-C, you must first transfer the contents of the release
media to a temporary directory. Your product Release Notes list the
necessary steps. When the release media files reside in a temporary
directory, you can begin the installation procedure, moving the files to
their permanent location on your system. See Appendix A for complete
details.

Note
An online copy of the Release Notes for this product can be found after installation in
the directory /usr/lib/LPI in the file c_=.info, where= is the version
number of the release.

The lpiadmin Utility

The lpiadmin utility installs LPI-C and the necessary files (components)
in the appropriate directories on your system.

The lpiadmin utility keeps track of all versions of LPI products and
components currently on your system and allows you to easily install,
update, list , and remove LPI products. By default, the permanent
location of lpiadmin is in the LPI administrative directory, fusr/lib/LPI,
where it is referenced when invoking lpiadmin check, lpiadmin help,
lpiadmin list, and lpiadmin remove after installation is complete. Refer
to Appendix A for further information on these commands and available
options.

If you have more than one LPI product on your system, different
versions of the same product component (file) may exist. The runtime
libraries and the compiler itself are examples of product components.
The lpiadmin utility organizes LPI products on your system, allowing
you to access either the latest versions of LPI components on your system
or specific versions delivered with a particular product. Refer to the
"Linking a Program" section in this chapter for further information.

Using LPI-C 1-1

Entering a Source Program

To enter an LPI-C source program, use any standard text editor, such as
vi. For an explanation of vi commands, refer to the description of vi in
your UNIX documentation.

Compiling a Program

LPI-C consists of two executable programs: the compiler, named newc,
which includes an integrated macro preprocessor, and a command line
processor, named lpicc.

newc allows only one filename, only LPI compiler options, and requires a
separate lpild/ldc step . lpicc allows multiple filenames and accepts both
cc and lpcc compiler options. The purpose of lpicc is to provide
compatibility with existing make files, although lpicc may be used
directly from the command line.

lpicc processes most cc options in one or the following three ways:

• lpicc executes the option in a way similar to the way cc executes it

• lpicc translates the option to an equivalent newc option

• lpicc ignores the option

The -warn option to the lpicc command line produces information on
how lpicc processes each specified cc option. IC an option is unknown to
lpicc, then an error occurs and the option should not be used. Refer to
your UNIX documentation Cor descriptions of the cc options.

lpicc automatically invokes newc Cor each specified file having a .c sufrlX
in its filename. Likewise, it invokes the system assembler Cor filenames
having an .s sufrlX, and it passes all .o files, .a files, and all specified files
with unknown sufriXes to Ide. Note that Ide is not automatically invoked
if you have used the -c option.

1-2 Using LP/-0

There are two valid formats for the lpicc command:

lpicc aource_Jilename [aource_Jilename] ... [option] . . .

or

lpicc [option] ••• aource_Jilename [aource_Jilename] •..

whereas there is one valid format for the newc command:

where,

newc [option] .•. aource_Jilename [option] . . .

option represents the compiler options. See the "Compiler
Options List" section for the name and description of each LPI
option. With lpicc, most compiler options can be placed either
before or after aource_Jilename. However, an error will result if
the -1 or the -o option appears before aource_Jilename.

aource_Jilename represents the name of the source rlle. By
convention, C source programs usually have .c as a sufrlx to their
filenames.

Note that error messages are directed to the stdout rlle instead of stderr.

LPI-C Compiler Implementation Limits

The compiler generates error messages if your source program exceeds
certain LPI-C compiler implementation limits. Table 1-1 lists these error
messages and the corresponding implementation limits.

Using LPI-C 1-3

TABLE 1-1 Compiler Implementation Limits

MESSAGE :!::!.:LIM�IT�--

Length of line (physical or logical)
Length of token
Length of identifier
Length of a string constant

(after concatenation)
Number of errors
#inc1ude nesting
Conditional inclusion nesting
Number of parameters in macro function

defmition
Number of arguments in macro

function invocation
Number of macro defintion
Number of arguments in function call
Number of (pointer, array, function)

declarator modifiers

Compiler Options List

No limit
256 characters
256 characters
32767

100
No limit
No limit
256

256

No limit
63
15

The following list names and describes each of the compiler options and
its default setting, where applicable. Compiling a program using the
default settings enables the compiler to generate the most efficient code.

1-4 Uaing LPI-0

OPTION

-deb

EXPLANATION

Produces debugging information for CodeWatch,
the LPI source-level debugger. This option
must be selected iC you intend to use
CodeWatch. The default is -nodeb.

The -deb option automatically sets the
optimization level to 2. When using -deb, you
can override the level 2 default by including -opt
1, which sets optimization to Ievell, or -noopt,
which turns off optimization. You cannot set
the optimization level to 3 when using -deb.

-define name [=tezt] Defines name, where name is a reserved symbol
that is predefined by the preprocessor, as if by a
#def ine directive. For example, -define
VERSION=5 is equivalent to #define
VERSION 5. IC no string is given, name is
defined as 1 . Note that no spaces are allowed
between name, the equal sign (=) , and tezt.

-E
!

-e

-exp

Using LPI-0

When using lpicc you can derme a function-line
macro with the following command line.

-derme name ([arg[, arg] •••])= tezt

where arg is an argument and tezt is the body of
the name definition.

Runs the source file through the preprocessor
phase only. The output is sent to standard
output. The output of -E is suitable for
compilation and may be redirected to a me for
later use.

Same as the preceeding -E option.

Produces an expanded listing, including
assembly language statements, at the end of the
listing me. See the section "The -exp Option n
for more information.

1-5

OPTION

-f'3 87

-riles

-include file

-ipath dir[: dir] ...

-istring

-1 [fn1]

-macros

1-6

EXPLANATION

Generates Intel 80387 floating point instructions
where possible. See also the description of the
-nof387 compiler option.

Runs the source me through the preprocessing
phase only and prints an indented list of all the
include riles referenced.

Includes (as if by the #include directive) , the
indicated me specified before preprocessing
begins. No directory searching is done if the
specified me does not exist.

Changes the algorithm for searching for
#include riles (whose names are surrounded
by quotes and do not begin with /) to look in dir
before looking in the directories in the standard
list.

Generates in-line code for the LPI-C ANSI
library string handling functions where possible.

Produces a compiler listing, where fn1 is the
name of the me to which the listing is output.
If fn1 is not supplied, make sure that -1 is placed
after the source rllename; otherwise an error
message appears if you are using newc. The
default name of the file containing the listing is
zzz.list, where zzz stands for the source rllename
up to, but not including, the last " · " (if any) in
the name. For example, if the source rllename is
prog.c, the default output is prog.list. A
compiler listing is produced by default whenever
-exp, -1, -map, or -xref are specified. See the
section "The -1 Option" for more information.

Dumps all of the macro definitions at the end of
the preprocessing phase of compilation to the
standard output.

Using LPI-0

OPTION

-map

-no£387

-noobj

-noopt

-nowarn

-o filename

-opt [lv�

-predeC

Using LPI-0

EXPLANATION

Produces an LPI-C storage allocation map at the
end oC the listing file. See the section "The
-map Option" Cor more information.

Only Intel 80287 floating point instructions are
generated. This is the default. See also the
description or the -£387 compiler option.

Does not produce an object file. Compiles Cor
syntax and semantic checking only. The default
is -o.

Disables the optimization phase of the C
compiler. See the "Optimization n section Cor
more information.

Suppresses level 0 (Note) or level 1 (Warning)
error messages. lpicc automatically sets this
option when invoking newc. See Appendix B,
"Interpreting LPI-C Compiler Error Messages, "
Cor more information.

Names the object file filename. U -o is not
specified, the default name or the me is zzz.o,
where zzz stands Cor the source filename up to,
but not including, the last n . n (if any) in the
name. For example, if the source filename is
prog.c, then the default object filename is
prog.o.

Invokes the optimization phase of the LPI-C
compiler, where lvl stands Cor the level (1-3) of
the optimization. The default is -opt 3 . See the
"Optimization n section Cor more information.

Causes the compiler to print out predefmed
system names.

1-7

OPTION

-stat

-stddef

-stdpath dirname

-sys

-syspath

-undef name

-warn

-xref

EXPLANATION

Prints statistics on the standard output as each
compiler phase runs. See the "Compilation
Statistics" section for more information.

Causes the compiler to predefine system macro
names. The -syspath option invokes this option
automatically.

Changes the default header directory from the
default /usr /include/LPI to dirname.

Same as -syspath.

Changes the default header directory from
/usr/include/LPI to the standard system header
directory. This option may be used as a
shorthand equivalent to 11-stdpath /usr /include, 11

except that this option automatically invokes
-stddef.

Removes any initial definition of name, where
name is a reserved symbol that is predefined by
the preprocessor.

Does not suppress level 0 (Note) messages. This
is the default for newc.

Produces cross-reference information in the
listing file. See the description of the -I option
for more information.

Compatibility Options

For compatibility with older pre-ANSI C implementations (most notably
PCC based compilers) , the following compatibility options are supported.

1-8 Using LPI- C

OPTION EXPLANATION

-xall Causes all of the following compatibility options except
-xnc, -xws, and -xwc to be turned on.

-xbf Additionally allows the integral types char, short, and
long (signed or unsigned) , to be declared as bit-fields, with
appropriate maximum widths, without a warning.

-xc Causes the old-style C formal macro parameter substitution
within character constants to be performed. rr the -xwc
option is also specified, then a diagnostic note will be
emitted at each point where this is done.

-xcp Causes the type char * to be accepted as equivalent to the
generic pointer type void * without a warning.

-xea Allows the expansion of function-like macro invocations with
empty arguments as if the (empty) arguments consisted of no
tokens, without a warning.

-xes Causes the old-style C (pre-ANSI C implementation) file
scoping rules to be used for functions and data objects
declared as extern with an inner block scope.

-xic Causes types to be assigned to integer constants by old-style
C rules rather than ANSI C rules. Refer to Appendix D for
a summary of the integer constant typing rules for old-style
C and ANSI C.

-xid Causes (non-ANSI) #indent preprocessing directives to be
completely ignored without warning.

-xlf Causes long float to be accepted as a synonym for
double in a declarator.

-xmi Allows innocuous redefinitions of function-like macros which
differ only in the spelling of formal macro parameter
identifiers, without a warning.

-xmp Allows the pernicious (destructive) redefmitions of macros,
with a warning.

Using LPI-0 1-9

OPTION EXPLANATION

-xmr Allows macros to be redefined by turning on both the -xmp
and the -xmi options described earlier in this section.

-xnc Causes _STDC_ to be undefined (intending to indicate a
non-conforming ANSI C implementation).

-xnt Causes trigraph sequences to be ignored (That is, no trigraph
sequence mapping will be performed) .

-xoe Causes only old-style C escape sequences to be recognized
within string literals and character constants (that is, the
\a. \v. \x hexadecimal-digits, and \?escape sequences
will not be recognized). When any unrecognized escape
sequences are encountered, a warning will be given, and
compilation will continue as if the backslash in the escape
sequence was not present.

-xpg Causes a warning to be emitted for each unrecognized
#pragma; by default, the unrecognized #pragma are
completely ignored.

-xs Causes old-style C formal macro parameter substitution
within string literals to be performed. If the -xws option is
also specified, then a diagnostic note will be emitted at each
point where this is done.

-xtt Allows trailing text on a #el se or #endif preprocessing
directive, without a warning.

-xup Causes the integral promotions of integral types in
expressions to be applied according to the old-style C
"unsigned-preserving" rather than ANSI C "value
preserving" rules. Refer to Appendix D for a summary of
the integral promotions for old-style C and ANSI C.

-xwc Causes warnings to be emitted wherever a function-like
macro is dermed such that old-style C formal macro
parameter substitution within character constants could be
performed.

1-10 Using LPI- C

OPTION EXPLANATION

-xws Causes warnings to be emitted wherever a function-like
macro is defined such that old-style C formal macro
parameter substitution within string literals could be
performed.

Temporary Files

Compiler-generated temporary files are normally placed in the /tmp
directory. Use the following command to change the directory where
compiler-generated temporary files are placed:

BOURNE SHELL USERS C-SHELL USERS

TMPDIR=pathname; export TMPDIR

TMPDIR=. ; export TMPDIR

setenv TMPDIR pathname

setenv TMPDIR .

The second form places the temporary files in the current working
directory.

Optimization

Programs are optimized at level 3 unless you change the optimization
level at compile time. You can do this by specifying one of the following
options:

• the -noopt option, which turns off optimization

• a lower optimization level (-opt 1 or -opt 2)

• the -deb option, which sets optimization to level 2

A brief description of the optimizations performed at levels 1, 2 , and 3
follows.

LEVEL

1

Using LPI-0

DESCRIPTION

Operator pattern replacement and Boolean conditional
expression optimizations.

1-11

LEVEL DESCRIPTION

2

3

Common subexpression elimination; all level 1
optimizations.

Branch chaining; dead code elimination; flow analysis;
loop induction; loop invariant code motion; and all level
1 and level 2 optimizations.

Compiler Listings

The compiler listing options are -1 (list), -map (storage allocation map) ,
-xref (cross-reference) , and -exp (expanded code) . All listing information
is directed to the listing file; when any of the listing options are specified,
the -1 option is invoked by default.

The -1 Option

The -1 option produces a listing file, which is named by default with the
source program name (up to but not including the last " . ") and the suffix
.list. You can change the name of the listing file by specifying a name
after the -1 option, in this format: -1 filename.

The listing file contains a program listing, which consists of a copy of the
program with line numbers beginning at 1 in the leftmost column.
Included source files are also printed, unless the -noincludes option,
which suppresses this output, is specified.

The name of the source file and include file(s) both precede and follow
the source text of each file in the listing. Information is provided in three
columns preceding each source line, as follows:

• Conditional exclusion of source text is indicated by an x.

• Continuing comment lines are preceded by an asterisk.

• The include nesting level is indicated in brackets.

• The line number in the containing source file is indicated to the left
of the source line.

1-12 UBing LPI-0

For example,

MAIN-FILE: " example.c "

1: main 0
2 : {
3 : I * This is the first line

* 4 : of a continuing
* 5 : comment.
* 6 : *I

7 :
8 : #include " hello.h "

INCLUDE-FILE: " hello.h "

1: #if 1 [1]
[1]
[1]

2 : printf (" Hello World ");

X (1]
X (1]

3 : #else
4 : This is excluded text.
5 : #endif

END-INCLUDE-FILE: " hello.h "

9 :
10: }

END-MAIN-FILE: " example.c "

The -map Option

The -map option produces a storage allocation map, which displays the
location and allocation size of each program entity. The map categorizes
this information by name, class, size, location, and attributes.

This information is presented in five columns:

NAME

U8ing LPI- C

Indicates the name of each variable, function,
argument, and other program entities.

1-13

CLASS

SIZE

LOCATION

ATTRIDUTES

Indicates the storage class of each program entity;
for example, whether a variable is static, register,
extern, or automatic.

Where applicable, indicates the size of the entity, in
bytes. Does not indicate the size of externally
defined entities.

Gives the location of the entity in hexadecimal
notation.

- For automatic variables, the location column
gives the memory offset from the frame pointer.

- For static variables, it gives the memory offset
from the beginning of static data.

- For members of structures, it gives the memory
offset from the beginning of the containing
structure.

- For enumeration constants, it shows the internal
value assigned by the compiler.

- For register variables, it shows the name of a
register.

The location column does not list locations for labels
and external functions and variables, since these are
not known until the program is linked.

Provides more information on some program
entities; for example, for a variable, indicates its
type.

The map lists external functions and variables first. These externals are
listed in order of definition, with name, class, and attributes. A d in
brackets, (<d>) after the word "extern" in the class column indicates a
defining instance of the external procedure or variable, rather than a
reference to an external variable or procedure defined elsewhere.

The map then lists functions and their entities within the program, by
line number.

1-14 Using LPI-0

The -xref Option

The -xref option provides cross-reference information for each program
entity: the line number on which the entity was declared and the line
numbers of all references to it, in the following format:

Declared on line_number
[line_number line_number . . .]

An equals sign (=) following a line number indicates a program line
that changes the value of the entity via an assignment statement.

The -xref listing for a program is added to the map listing; when you
specify the -xref option, you receive a data storage allocation map by
default. The cross-reference information appears on the map in the
ATTRffiUTES column for each entity, after the line of map attributes
information.

If the program entity is defined in an included file, both the included
filename and line number references are given. If references occur in a
file other than the included file (such as the source file) , that filename is
also given. If the program entity is defined in the source file itself, no
filename is given.

A sample map listing with the -xref option follows.

Using LPI-C 1-15

EXTERNAL ENTRY POINTS

NAME CLASS SIZE LOCATION ATTRIBUTES

main extern <d> int ()
Declared on 3

Ident1 <constant> 0 anum {}
Declared on 20
21 23 36 46

Ident2 <constant> 1 anum{}
Declared on 20
24 26 37 49

Arra:yDim t:ypedef 10404 int [61] [61]
Declared on 70
74 80

printf extern int ()
Declared on 76
76 77

PROCEDURE main ON LINE 3
NAME CLASS SIZE LOCATION ATTRIBUTES

lower auto 4 00000014 int =
Declared on 6
include.h
6=
mainprog.c
10= 14

upper auto 4 00000018 int
Declared on 6
11= 16

step auto 8 0000001C double
Declared on 6
12= 19

newnumb auto 2 00000024 short int.
Declared on 7
17 18=

fd_set. <tag> 4 00000032 st.ruct. fd_set.
Declared on 30
46= 67= 66= 72=

fds_bits1 <member> 4 00000000 long int.
Declared on 32
67 72

fds_bits2 <member> 4 00000004 long int
Declared on 34
46 67 66

1-16 Uaing LPI-0

The -exp Option

The -exp option produces an expanded code listing for each program,
providing the location and low-level language translation for each
instruction and label in the program. Each program statement is
referenced by line number, with the following information displayed
below in four columns.

• The rust column displays the offset location of each statement.

• The second column displays the hexadecimal opcode of each
instruction.

• The third column displays the instructions in pseudo-assembly code
dialect.

• The fourth column displays information about the operands used by
each instruction.

Compilation Statistics

The -stat compiler option provides a listing of statistics for each phase of
the compile. The statistics are displayed at the terminal by default or
can be redirected to a file. The following figure depicts a sample
terminal display.

Uaing LPI-0 1-17

PHASE DISK SECONDS SPACE SYSTEM CPU

LEX 16 8 6 .26 6.12 16:10:22
ED PARSE 2 0 6 .06 .03 16:10:22
DD PARSE 4 a 76 .07 3.46 16:10 26
PD PARSE 27 13 119 .06 13.86 16:10:38
OPTIMIZER 36 4 119 .12 3.42 16:10:42
ALLOCATOR 0 1 124 .08 .91 16:10:43
PASS3 208 21 160 1.90 16.42 16:11:04
TOTAL 270 39 160 2.16 34.60 16:11:04

Code size 6498
Static size 3162
Source lines 696
Lines/minute 716

FIGURE 1-1 Compilation Statistics

The following list names and describes each of the columns displayed in
the printout.

• PHASE defines the various phases of the compile. Each phase and its
corresponding statistics are displayed upon completion.

• DISK defines the number of intermediate and error message file reads
and writes completed during the corresponding phase.

• SECONDS defines the number of seconds elapsed during the
corresponding phase.

• SPACE defines the highest page number of the symbol table
temporary file used by the compiler during the corresponding phase.

• SYSTEM defines the CPU time used by the operating system while
executing the corresponding phase.

• CPU defines the CPU time used by the compiler while executing the
corresponding phase.

• The final column provides the current time of day in 24-hour
notation.

1-18 Using LPI-C

Linking a Program

To link an LPI-C program, use either the lpild or the Ide command.

• lpild references the latest version of the LPI components installed on
your system.

• Ide references the components that were installed with this version of
LPI-C.

Refer to Appendix A Cor details on LPI products and components.

Using lpild

lpild generates executable files (a.out files) from relocatable object files.
The lpild command line syntax is as follows:

where,

lpild [option] . . . object-file [object-file] ••• [optional-libraries]

lpild is the command that invokes the linker. option represents
any of the options described in the "Link Options List" section
later in this chapter, or any appropriate UNIX linker option. See
the description of the ld command in your UNIX documentation.

objec t-file specifies object files that are to be linked. Program
execution begins at the entry point named main, if one exists.
Otherwise, execution begins at the rll'st function in the rll'st object
file specified on the link command line.

optional-libraries represent file pathnames for libraries that are
required for your special application. The standard libraries,
libc.a, for example, are always included in the link.

Using Ide

Ipild and Ide both generate executable files (a.out mes) from relocatabie
object m.es. Ide references components, such as librarie!J, that were
installed specifically with LPI-C. On systems with more than one LPI
product, lpild references the most recent revision of each component.

Using LPI- 0 1-19

The Ide command line syntax is as follows:

Ide (option] ••• object-file (object-file] ••• (optional-libraries]

See the "Using lpild" and "Link Options List" sections for a description
of the command options that are acceptable to both lpild and Ide.

Link Options List

The lpild and Ide commands accept any options that are valid for the
UNIX ld command. For an explanation of these options, see the
description of the ld command in your UNIX documentation. In
addition, the following LPI options are acceptable to Ide. (Note that the
-verbose option is also accepted by lpild.)

OPTION

-sys

-syslib

-verbose

EXPLANATION

Same as -syslib.

Specifies that the standard system library (that is,
libc.2) will be used to link the program, rather than
the LPI-C ANSI library. This option is the default
for lpild.

Echoes the link line used by lpild to link the
program.

Using LPI-C ANSI Libraries vs. System Libraries

When linking C programs, either the LPI-C ANSI library or the system
libraries may be linked with object modules to produce an executable
program.

When using Ide, the default library to be loaded is the LPI-C library,
which is fully ANSI-conformant. Ide is typically used to link object riles
produced by LPI-C, the system assembler, and possibly other C
compilers. The LPI-C library may be deselected by using the -syslib
option, which will cause the System libraries (such as libc.a) to be linked
in place of the LPI-C library. Note that the system libraries may not be
ANSI conformant.

1-20 Using LPI-0

lpild is typically used to produce multi-language programs generated
from various LPI compilers. In this case, the system libraries will always
be loaded rather than the LPI-C ANSI library.

When linking with the LPI-C ANSI library 1 all source riles should have
been compiled in a consistent manner by using the header riles residing in
the LPI header directory /usr/include/LPI.

Conversely, when -syslib is used to deselect the LPI-C library, all object
riles to be linked should have been compiled in a consistent manner by
using the system include riles. The -syspath and -stdpath compiler
options change the default #include path options from the LPI-C
header directory to the system header directory, or to an alternate
directory, if desired. See descriptions of these options for more
information.

When using either lpild or Ide, attempting to mix the LPI-C library with
the system libraries (particularly libc.a) may produce unexpected results
at both link time and execution time.

Running a Program

The user program is run by invoking the executable object module
produced by the lpild or Ide command. This is done by giving the name
of the executable object module as a command. The name of the
executable module generated by lpild or Ide is normally a.out unless the
-o filename option was specified in the link command.

Code Watch

CodeWatch is a source-level, interactive debugger that enables you to
debug LPI-C programs. CodeWatch enables you to control program
execution to set breakpoints, monitor what is happening, modify values,
and evaluate results. Code Watch keeps track of variables, subprograms,
subroutines, and data types in terms of the symbols used in the source
language. You can use this debugger to access the source text of the
program, to identify and reference program entities, and to detect errors
in the program's logic.

UBing LPI-0 1-21

Note
Your programs must be compiled using the -deb option before they can be run under
the control of the debugger. When called with the -deb option, the compiler
generates a separate symbol table file, filename.stb, in the current directory .
.ft1ename.stb contains symbolic information that the debugger uses to reference and
manipulate source program symbols and entities, set breakpoints and tracepoints, and
control program execution.

For detailed information on CodeWatch, refer to the Code Watch
Reference Manual.

Other Debugging Options

A more primitive technique for debugging C programs involves using the
UNIX adb or sdb debugger. For a description of the adb or sdb
command and options, refer to your UNIX documentation.

1-22 U1Jing LPI-0

Chapter 2: LPI-C Language Specifics

• • • • 2-1 Data Types • • • • • • •

pointer (type *) . 2-2
char
unsigned char •

double

long double
enum .
float . •

int and long
unsigned int and unsigned long • •

short
unsigned short

Implementation Specifics •

Length of Identifiers
Integer Constants • • •

Character Constants
Sign Extension of char Type
Bit-fields in Structures
Right Shift Operator
Truncation on Integer Divide
Mod Operator With Negatives
Pointer Casts . • • • • • . . . • • •

Directories Searched for #include •

• • • 2-3
. 2-3
. 2-4

• • 2-4
. 2-4

. 2-5
. 2-5
. 2-6
. 2-6
. 2-7
• 2-7

• • • 2-7
• • • 2-8
• • • 2-8

. 2-8
. 2-8
. 2-8

• . 2-9
• • • 2-9

. 2-9

. 2-9
Data Type Boundaries Within Structures • •

External Procedures
• • • • • 2-10

• • 2-11
. 2-11 External Names

Name Length
Lowercase Names

Calling Conventions • • • • •

Register Save Conventions
Function Result Conventions

Returns in Register eax •

Returns in Temporary Storage Area

• • • • 2-11
• • 2-11

. 2-12

. 2-12
• . 2-13
• • 2-14

Returns on Top of Floating Point Coprocessor Stack .
• 2-14

• • • 2-14
. 2-15 C Conventions • • • • • . . • •

LPI Equivalent Data Types • • • • • 2-15

Chapter 2 : LPI-C Language Specifics

This chapter describes the LPI-C language implementation for your
system.

Data Types

Table 2-1 lists the data types supported by this implementation along
with the alignment and size or their machine representations.
Subsequent sections provide additional information about the internal
representation, size, alignment, and range, where applicable.

TABLE 2-1 Data Types and Sizes

DATA TYPE ALIGNMENT SIZE

pointer (type *) 32-bit word 4 bytes
char 8-bit byte 1 bytes
unsigned char 8-bit byte 1 bytes
double 32-bit word 8 bytes
long double 32-bit word 8 bytes
enum 32-bit word 4 bytes
float 32-bit word 4 bytes
int 32-bit word 4 bytes
uns i gned int 32-bit word 4 bytes
long 32-bit word 4 bytes
unsigned long 32-bit word 4 bytes
short 16-bit word 2 bytes
unsigned short 16-bit word 2 bytes

LPI-C Language Specifics 2-1

In addition to these types, the following combinations of type specifiers
are allowed and have the meaning shown in Table 2-2.

TABLE 2-2 Type Specifiers

TYPE

signed short
short int
signed short int

unsigned short int

signed
signed int
no type specifiers

unsigned

signed long
long int
signed long int

unsigned long int

Note

MEANING

short

unsigned short

int

unsigned int

long

unsigned long

The code generated to support the data type double as the value returned from a
function may not be compatible with other C compilers. If you use this feature, be
sure that all modules in the program are compiled using LPI-C.

The size of an aggregate (array, struct, or union) is rounded up to an
integral multiple of the aggregate's boundary requirement. See the
"Data Type Boundaries Within Structures" section later in this chapter
for more information on boundary requirements.

pointer (type *)

pointer (type *) is a 4-byte, 32-bit word variable capable of holding the
address of any variable.

2-2 LPI-0 Language Specific8

(byte 3) (byte 0)

Variable Address

31 0

Size Alignment

4 bytes 32-bit word

char

char is an 8-bit, signed, 2's complement binary integer. Bits 0-6
contain the integer, bit 7 contains the sign. The sign bit (S) is 1 if the
value is negative, 0 if the value is positive or zero.

(byte 0)

IS I 2's comp

7 6 0

Alignment

1 byte 8-bit byte

unsigned char

Range

-128 to 127

unsigned char is an 8-bit, unsigned, binary integer. Bits 0-7 contain
the integer.

(byte 0)

7 0

Alignment Range

1 byte 8-bit byte 0 to 255

LPI-0 Language Specifies 2-3

double

double is an IEEE draft standard, double precision, basic format,
binary floating point number. It consists of a 1-bit sign, 11-bit biased
exponent (bias = 1023) , and 52+ (1)-bit binary fraction (hidden bit). An
exponent of 2047 represents +/- infmity or not-a-number. +/- infmity
is represented by an exponent of 2047 and zero as the fraction part; the
sign bit denotes the + or - infinity. Not-a-number is represented by an
exponent of 2047 and any non-zero value in the fraction part; the sign
bit or not-a-number is not significant. An exponent of 0 denotes a
denormalized small value of reduced precision. Both +0 and -0 are
possible. Note that the range is approximate and indicates representable
values which include zero and both negative and positive numbers.

(byte 7) (byte 0)

I S I exp fraction

63 62 52 51 0

Size Alignment Approximate Absolute Value of Range

8 bytes 32-bit word 4.94E-324 to 8.99E+307

long double

long double is implemented as double.

en urn

enum has the same representation as int.; it is a 32-bit, signed, 2's
complement binary integer. Bits 0-30 contain the integer, bit 31 contains
the sign. The sign bit (S) is 1 if the value represented is negative. See
the "Enumeration Types" section later in this chapter for further
information.

2-4 LPI-C Language Specifics

(byte 3) (byte 0)

Is I 2's comp

31 30 0

Size Alignment Range

4 bytes 32-bit word -2,147 ,483,648 to 2,147 ,483,647

float

f loat is an IEEE draft standard, single precision, basic format, binary
floating point number. It contains a 1-bit sign, 8-bit biased exponent
(bias= 127) , and 23+(1)-bit binary fraction (hidden bit) . An exponent
of 255 represents +/- infinity or not-a-number. +/- infinity is
represented by an exponent of 255 and zero as the fraction part; the sign
bit denotes the + or - inrmity. Not-a-number is represented by an
exponent of 255 and any non-zero value in the fraction part; the sign bit
of not-a-number is not significant. An exponent of 0 denotes a
denormalized small value of reduced precision. Both +0 and -0 are
possible. Note that the range is approximate and indicates representable
values which include zero and both negative and positive numbers.

(byte 3) (byte 0)

I S I exp fraction

31 30 23 22 0

Size Alignment Approximate Range of Values

4 bytes 32-bit word 1 .40E-45 to 3 .40E+38

int and long

int. and long are 32-bit, signed, 2's complement binary integers. Bits
0-30 contain the integer, bit 31 contains the sign. The sign bit (S) is 1 if
the value represented is negative.

LPI-0 Language Specifics 2-5

(byte 3) . (byte 0)

I s I 2 's comp

31 30 0

Size Alignment Range or Values

4 bytes 32-bit word -2,147,483,648 to 2 ,147,483,647

unsigned int and unsigned long

uns i gned int and unsigned long are 32-bit, unsigned, binary
integers. Bits 0-31 contain the integer.

(byte 3) (byte 0)

31 0

Size Alignment Range or Values

4 bytes 32-bit word 0 to 4,292,967,293

short

short is a 16-bit, signed, 2's complement binary integer. Bits 0-14
contain the integer, bit 15 contains the sign. The sign bit (S) is 1 iC the
value is negative, 0 iC the value is positive or zero.

2-6 LPI-0 Language Specifics

(byte 1) (byte 0)

I s I 2's comp

15 14 0

Size Alignment Range of Values

2 bytes 16-bit word -32768 to 32767

unsigned short

unsigned short. is a 16-bit, unsigned, binary integer. Bits 0-15
contain the integer.

(byte 1) (byte 0)

15 0

Size Alignment Range of Values

2 bytes 16-bit word 0 to 65535

Implementation Specifics

This section describes elements of LPI-C that may differ from other
implementations of C. For a full description of implementation-defmed
features, see Appendix C.

Length of Identifiers

LPI-C allows identifiers up to 256 characters long.

LPI-0 Language Specifies 2-7

Integer Constants

Integer constants with values that cannot be represented in 32-bit
(4-byte) 2's complement format are not supported.

Character Constants

A character constant of the form ddd is sign extended, where ddd stands
for octal digits representing the value of the character. For example, the
character represented by '\377 ' is equivalent to -1 . This
implementation supports multi-character character constants. The
characters right-to-left in such a constant are assigned to integers from
the least significant byte to the most significant byte.

Sign Extension of char Type

Conversions of (signed) char type to integer type will sign-extend. The
range of values representable by the type char is -128 to 127. The
ASCll character set is represented by the integers in the range of
0 to 127.

Bit-fields in Structures

Only an integer type can be declared as a bit-field in a structure. The
value of a bit-field is treated as an unsigned data item in computations
regardless of the actual type specified in the declaration.

Bit-fields are packed into 4-byte integers, which are aligned on 2-byte
boundaries and are packed left-to-right. Unused bits occupy the least
significant positions in the 4-byte integers.

Right Shift Operator

The right shift operator performs a logical shift if the left operand is
unsigned; otherwise, an arithmetic shift is performed. In a logical shirt,
the high-order bits vacated by the shift are filled with zero-bits. An
arithmetic shift fills vacated bits with a copy of the sign bit (1 if
negative, 0 otherwise.)

2-8 LPI-0 Language Specifics

Truncation on Integer Divide

The sign of the result of an integer divide operation is determined by the
rules of algebra. The fractional part of a remainder is truncated, and the
result of the truncation is always toward zero. For example, -5/2 yields
-2.

Mod Operator With Negatives

The result of mod operator x % y is defined to be x-y(x/y) , where x/y is
the quotient of an integer divide with any fractional part truncated.

Pointer Casts

Pointer casts that specify a change from a pointer to one type into a
pointer to another type do not actually change the representation. In the
following example:

int i , * ip ;
char c , * cp ;

ip = .t:i ;
cp = (char *) ip ;

the value of the pointer cp is the address of the most significant byte of
the variable i .

Directories Searched for #include

The following list explains the method for locating includable source files.
An include preprocessing directive of the form:

#include <name>

specifies that name is a source f:tle that will be searched for in the
following manner:

LPI-0 Language Spet!ifics 2-9

• First, if name is a fully qualified path name (that is, it begins with a
I character) , then it will be searched for only in the specified place
which begins at the root directory.

• Otherwise (if not found and not fully qualified), then name will be
searched for within each directory name specified on the command
line (in order from left to right) by way of the -ipath compiler option.

• Otherwise (if not found) , then name will be searched for within the
LPI-0 standard header directory /usr /include/LPI. This directory
can be changed either to the standard system directory /usr /include
via the -syspath compiler option, or to any other directory via the
-stdpath compiler option.

An include preprocessing directive of the form:

#include " name "

specifies that name is a source me that will be searched for in the
following manner:

• First, if name is a fully qualified path name (that is, it begins with a
I character) , then it will be searched for only in the specified place
which begins at the root directory.

• Otherwise (if not found and not fully qualified), then name will be
searched for in the same directory in which the including source me
resides.

• Otherwise (if the me is not found) , then name will be searched for
exactly as if it had been included via the rust method (that is,
#include <name>).

Data Type Boundaries Within Structures

Within a structure, each (non-field) member is allocated at a byte offset
which is an integral multiple of the boundary requirement for its data
type. The boundary requirement for each elementary data type is
summarized earlier in Table 2-1 . The boundary requirement for an
aggregate (array, struct, or union) is de(med to be the most stringent
boundary requirement of any of its members.

2-10 LPI- C Language Specifics

External Procedures

A program can be written in assembler or any available programming
language as long as the program observes the same calling conventions as
LPI-C. All LPI languages meet this requirement. Also, except where
noted in the following sections, the UNIX C compiler, cc, meets these
requirements.

Programs compiled by LPI-C can be linked with object modules
produced by other languages and the resulting object program will run if
the following conditions are met:

• The calling conventions used by other languages must be compatible
with the conventions of LPI-C. Other LPI products support these
conventions.

• Declarations for formal and actual parameters in the calling and
called programs must be written in their respective languages so that
the data representations assumed in the declarations agree with each
other.

External Names

Certain rules apply with regard to name length and the use of lowercase
letters when specifying a name.

Name Length

LPI-C allows names up to 256 characters in length. Some linkers have
different length limitations.

Lowercase Names

LPI-C preserves the case of all external names.

LPI-0 Language Specifics 2-11

Calling Conventions

External procedures are called using the CALL instruction and are
returned using the RET instruction. All LPI language compilers use the
following calling conventions and are compatible with LPI-C. See the
"C Conventions" section at the end of this chapter for additional details
concerning the use of LPI-C with other languages.

• The calling procedure pushes the actual arguments onto the stack in
the opposite order of their appearance in an argument list. In other
words, the last argument is pushed first and the rust argument is
pushed last.

• A call to a function returning one of the data types that requires a
return temporary must load register edx with the address of the
temporary.

• The external procedure is called by executing a CALL instruction.

Register Save Conventions

The called procedure is expected to save and restore values in registers
esi, edi, and ebx. The calling program can assume that all registers are
preserved across the call except for eax, ecx, edx, and the flag registers.
The function result is in eax or the result temporary provided by the
caller depending on the result data type. See the following "Function
Result Conventions" section for more information.

A called procedure is responsible for establishing a new stack frame for
itself and saving and restoring all registers except eax, ecx, edx, and the
flag registers. The procedure establishes the stack frame by following the
following sequence:

pushl ebp
movl esp, ebp
subl #framesize, esp
pushl ebx
pushl esi
pushl edi

A return must store any function result value, restore registers modified
(other than eax, ecx, edx, and the flags register), pop its stack frame, and

2-12 LPI-0 Language Specifics

return to the caller. The return accomplishes this by a load of eax (or a
store to the result temporary) , restoring the values of ebx, esi, edi,
LEAVE and RET.

Function Result Conventions

A function procedure returns its result value to the calling procedure in
one of three ways, depending upon the data type: in register eax, on top
of the floating point coprocessor stack, or in the temporary storage area
provided by the caller.

Returns in Register eax

The following lists the LPI-C data types returned in register eax.

int
uns i gned int
long
unsigned long
short
unsigned short
char
unsigned char
pointer to . . .

Returns in Temporary Storage Area

The struct data type is returned in a temporary storage area. The
calling procedure provides the temporary area and loads edx with its
address prior to the call.

Returns on Top of Floating Point Coprocessor Stack

The f loat and double data types are returned on top of the
floating point coprocessor stack.

LPI-0 Language Specifics 2-13

C Conventions

All LPI language compilers use the calling conventions previously
described, but there are two treatments of arguments by LPI-C that
require special attention. The first is that C functions expect argument
values on the stack, whereas other languages expect the stack to contain
pointers to the arguments. The second is that the declaration of
arguments in C specifies the data type of the value on the stack.

When interfacing with LPI-C or the UNIX C compiler, cc, with other
LPI languages, the C function arguments must be declared as ptr to t'gpe,
where t'Vpe is a C data type that is equivalent to the other data type
declared in the calling procedure for the corresponding argument. The
only exception to the ptr to t'gpe rule is that character string arguments
can be optionally declared in C as array of ehar instead of ptr to ehar.
This is almost equivalent and both indicate that the stack contains a ptr
to ehar for the corresponding argument.

The UNIX C compiler, cc, also uses the same compatible calling
conventions and argument passing as discussed previously for LPI-C, but
with the following exception:

A C function that returns a structure result (struet { . . . }) when compiled
with the UNIX cc compiler may expect the caller to supply a temporary
area for the result. The caller is then expected to push a pointer to this
area onto the stack immediately after pushing the arguments.

LPI-C uses a slightly different convention. The caller places the pointer
to the result into the edx register prior to the call, rather than pushing it
onto the stack. In general, when interfacing to subroutines written in
another LPI language, you should use LPI-C rather than the UNIX cc
compiler.

LPI Equivalent Data Types

The following table lists compatible data types of all LPI languages for
determining equivalent argument type correspondence.

2-14 LPI-C Language Specifics

TABLE 2-3 LPI Equivalent Data Types

R P O I I P L / 1 C O B O L c P O R T R A N B A B I C P A. S C A. L
B I N A R Y P I X B D C O M P P I C • • • I N T B O B R • f. . JN TBOBR t
(fo • b 7 \ 0 •) B J N . p > l l 8 0 (5)- 8 0 (0) o r l o n 1

B I N A R Y P J X B D O O M P P I O • h o r\ I N T B O B R • • I N T B O B R (") J N T B O B R

(• - b 7 \ e a) B I N , p5 1 5 8 0 (1)· 8 0 (•)

. . . c h a r I N T B O B R • t .
A L P H A O H A R A O D I S P L A Y A (n) c: h a r f n) O R A R A O . P A C K E D

· M E R l O · T B R (n) o r P I C X (n) - T B R • n A R R A Y (l • • • n)

O P' O H A R

. O H A R A O • \ r u e \ . . .
· T B R (n) { • h o r \ • J

V A R Y I N G c h a r c J n] J }

. O H A R A O . c h a r O H A R A O . C H A R

· T B R (l) - T B R • t

. O H A R A O . c h a r i J tt O H A R A O .
· T B R (0)# - T B R • (•)t�

P A O K B D F I X E D O O M P - a . . .
D B O I M A L D B O I M A L P I O B V (n)

Z O N E D . D I B P L A Y P I C 8 V (n)
D E C I M A L B I O N T R A I L I N G

L B A D I N O . D I S P L A Y P I O S V (n) . . .
Il i O N S I Q N L B A D I N O

B B P A R A T B

T R A I L I N G . D I S P L A Y P I C 8 V (n) . .
& I O N S I Q N T R A I L I N O

B B P A R A T B

J N D I O A B I T (l)
- T O R

. B I T (l) c h a r . B O O L E A N

A L I O N B D

. B I T (n) . . 8 B T

A L I G N E D

. . . I n \ o r l O R I L O Q I O A L • f.

. . . a b o r \ L O O I O A L • I .

. . . c h a r L O O I O A L • I .
/ B Y T B

. F L O A T O O M P - a + d o u b l o R B A L • a R B A L (*) .
B I N , p > B B (M B A 8 1 0)

. F L O A T O O M P · l + fl o a \ R B A L • t R B A L (I) R B A L

B J N (p) , p!! I U: (M B A B I O)

. . s l r u e l 0 0 114 .
{ f l o n l r e a l , - P L B X • a

l m a cr l n a r ;r 1)

. P O I N T B R p \ r l o • • • . . P O I N T B R

. L A B B L . . o. U o r n o. l o .
r o l u r n

. B N T R Y . . D u m m 7 .
p r o e o d u r a

. . . . R B A L .
(O B A 8 1 0)

. . . . 8 T R I N 0 (8) + + .

LPI-0 Language Specifica 2-15

The symbols used in Table 2-3 have the following meaning:

:t When compiled with the -longint option.

:t:t Use only when calling from PL/1 to C or from FORTRAN to C,
and not from C nor between PL/1 and FORTRAN.

+ Standard COBOL representation.

++ Stored as 8-bytes: a 2-byte length, followed by a 4-byte address,
followed by a 1-bit flag, followed by 15-bits reserved.

2-16 LPI-0 Language Specifics

Appendix A: Installing, Listing, and Removing

LPI Software

This appendix describes the lpiadmin utility commands and options for
installing, updating, listing, checking, and removing LPI software.

The lpiadmin Utility

The lpiadmin utility is a tool that allows you to perform specific
administrative tasks. The utility assists you during the initial
installation of LPI products, when you are updating LPI software, when
you remove LPI software from your system, and during LPI product
checks. The lpiadmin utility provides five procedures that simplify these
administrative tasks; each procedure is invoked with a specific lpiadmin
command.

TABLE A-1 lpiadmin Commands

CO� �R=ES�UL�T�-------------------------

· lpiadmin install Installs your product components. See the
"Installing LPI Products" section for the command
syntax and information.

lpiadmin help Lists the lpiadmin program commands and the
syntax for each.

lpiadmin list Provides a listing of all LPI product components
currently installed on your system. See the "Listing
LPI Products" section for the command syntax and
information.

lpiadmin remove Removes a specified LPI product from your system.
See the "Removing LPI Products" section for the
command syntax and information.

Appendiz A A-1

TABLE A-1 lpiadmin Commands (Cont.)

CO� �R=ES=UL�T�-------------------------

lpiadmin check Checks the consistency of LPI products. See the
"Checking LPI Products" section for the command
syntax and information.

Mter installation, lpiadmin resides by default in the LPI administration
directory, /usr/lib/LPI, where it is referenced to invoke the lpiadmin
help, lpiadmin list, lpiadmin remove, and lpiadmin check procedures.

Invoking lpiadmin Procedures

There are two methods for invoking the majority of lpiadmin procedures.
See the Note within the "Invoking lpiadmin install" section for details on
the exception.

1 . From the /usr/lib/LPI directory, invoke the procedure by entering
the command name and, if desired, the command options. For
example:

lpiadmin list [option] •••

2. From another directory, invoke the procedure by entering the full
command pathname and, if desired, the command options. For
example:

/usr/lib/LPI/lpiadmin list [option] ..•

The following sections describe each procedure, its command name and
options, and a sample of the terminal display, where relevant.

Installing LPI Products

Your product Release Notes contain a listing of the product components
to be installed. The listing includes the name of each product (file), its
default directory, and the release number.

A-2 Appendiz A

Preparation

There are certain procedures that you must follow before installing the
product components. See your product Release Notes for these step-by
step instructions. When you complete these procedures, the components
reside in a temporary directory on your system, and you can begin the
installation procedure.

Comparing lpiadmin Revision Numbers

If you already have LPI products installed at your site, we recommend
that you compare the version number of the current lpiadmin utility (the
one bound with the current release) with the version number of the
lpiadmin utility that resides in your administration directory. By
comparing these two numbers, you can determine which is the latest
version of the utility. This information is important when upgrading or
supplementing your LPI products and components. Using the latest
version of lpiadmin ensures that all installed product components,
particularly shared components, can be easily accessed by lpiadmin
procedures.

Although it is likely that the contents of the release media contain the
latest version of lpiadmin along with your new products and components,
it is wise to conrum this before beginning the installation. To make the
comparison, go to the administration directory and invoke the lpiadmin
list procedure, using the following command:

lpiadmin list -q -1 I grep lpiadmin

The lpiadmin utility list displays a quick listing of the lpiadmin versions
installed on your system. For example:

lp 1.adm1.n 01 . 09 . 00 L /us r / 1 1.b/LP I / lp 1. adm1.n
lp 1.adm1.n 01 . 09 . 00 L /us r / 1 1.b/LP I / lp 1. adm1.n

lp 1.adm1.n 01 . 09 . 00 L /usr/ 1 1.b /LP I / lp 1. adm1.n

lp 1.adm1.n 01 . 09 . 00 L /us r / 1 1.b/LP I / lp 1. adm1.n

lp 1. adm1.n 01 . 09 . 00 L /us r / 1 1.b/LP I / lp 1. adm1.n

lp1.adm1.n 01 . 09 . 00 L /us r / 1 1.b/LP I / lp 1. adm1.n

Compare the listed version numbers with the version number specified in
your Release Notes.

Appendiz A A-3

• H the version that is bound with the release media is the most
current, return to the temporary directory which contains the
contents of the release media and begin the installation as described
in the "Invoking lpiadmin install" section.

• H the version bound with the release media is not the most current,
stay in the administration directory and copy the most current
version to the temporary directory. To copy lpiadmin from the
administration directory, you must log in as super-user (su) or root,
be in the administration directory, and use the cp command.

The following command shows the syntax; you must specify the
actual pathname of the temporary directory where the contents of the
release media reside:

cp lpiadmin /temporary_directory_pathname

Once the copied version resides in the temporary directory, you can
begin the installation.

The lpiadmin install Procedure

By default, the lpiadmin install procedure moves the component files
from the temporary directory to a specific destination directory. In
general, accepting the default directory satisfies the disk space
requirements of most installations. However, if your site has unique
requirements, you can tailor the installation procedure to meet these
requirements. See the "Installing Software Interactively" section for
details.

Invoking lpiadmin install

To invoke the lpiadmin install procedure, you must log in as super-user
(su) or root and be in the temporary directory that contains the contents
of the release media.

The lpiadmin install command has the following format:

lpiadmin install [-c] [-i] [-v] [-q]

A-4 Appendiz A

where,

Note

lpiadmin install is the command that invokes the installation
procedure.

-c (copy) allows you to copy the files to their destination
directory. By default, the installation procedure moves rather
than copies files. At the end of the install procedure all product
components reside in the destination directory. You can retain a
copy of the files in the temporary directory by performing the
installation with the -c option.

-i (interactive) allows you to perform the installation interactively.
See the "Installing Software Interactively" section for details.

-v (verbose) produces a printout of the lpiadmin activities at each
stage of the installation.

-q (quick) suppresses consistency checking of previously installed
LPI products. Using this option reduces the amount of time
required for the installation. See the "Checking LPI Products"
section for more information.

To ensure that the version of lpiadmin residing in the temporary directory is being
referenced, precede the command with the pathname ./ as shown in the following
example:

.flpiadmin install

Installing Software Interactively

Using lpiadmin install interactively allows you to tailor the installation
to meet the unique needs of your site. To install product components
interactively, include the -i option on the lpiadmin install command line.
For example:

.flpiadmin install -i

Appendi:r: A A-5

When you perform the insta.llation interactively, the procedure identifies
its activity and, where relevant, prompts you for a response. For
example, lpiadmin install identifies components that can be installed at a
location o£ your choice. For such components, the procedure first
specifies the default destination and prompts you to specify a non-default
destination, i£ desired. You can accept the default location or specify an
alternative location. I£ you are specifying an alternative, enter the full
pathname o£ that directory. The system confirms your selection, and
moves the file to that directory.

Command Examples

The following examples demonstrate how to use the lpiadmin install
command and options.

1 . To move components from the temporary directory to the default
destination directories and get a printout o£ lpiadmin activity, use
the following command:

.flpiadmin install -v

2. To move components interactively from the temporary directory to
the default (or other) destination directories and get a printout o£
the interaction, use the following command:

.flpiadmin install -i -v

3. To move components from the temporary directory to the default
destination directories, suppress consistency checking or already
installed LPI products, and get a printout o£ lpiadmin activity, use
the following command:

.flpiadmin install -q -v

4. To copy components from the temporary directory to the default
destination directories, use the following command:

A-6

.flpiadmin install -c

The components reside in two locations after this command is
executed.

Appendiz A

Listing LPI Products

Prior to installation, you used your Release Notes to get a listing of the
product components contained on the release media. Mter installation,
you can get a complete listing of all LPI products installed on your
system by using the lpiadmin list procedure. The listing includes the
product name, version, installation date, and similar information. For
example:

LP I-COBOL 06 . 61 . 00 (9 . 28 . 88/12 : 03 : 36)
LP I -FORTRAN 03 . 01 . 00 (10 . 3 . 88/14 : 47 : 67)
LP I-PL1 03 . 06 . 20 (10 . 17 . 88/17 : 47 : 66)
LP I -RPG 02 . 60 . 00 (12 . 14 . 88/13 : 67 : 3 1)
LP I-PASCAL 02 . 10 . 00 (7 . 13 . 88/13 : 48 : 43)
LP I-BAB I C 02 . 06 . 00 (4 . 14 . 87/14 : 46 : 24)
LP I-C 03 . 01 . 00 (10 . 17 . 88/09 : 3 1 : 16)
Code Watch 04 . 06 . 00 (1 1 . 2 1 . 88/10 : 37 : 31)

Invoking lpiadmin list

The lpiadmin list command has the following format:

where,

lpiadmin list [-1] [-q]

lpiadmin list is the command that invokes the listing procedure.

-1 {long) produces a listing of all files {components) associated with
each product that has been installed to date. If the -q option is
not specified, the system performs a consistency check on each
component before it displays the listing. This operation may take
several minutes before the listing appears on your screen.

-q (quick) suppresses consistency checks on installed LPI products.
Since consistency checks are suppressed, the listing appears on
your screen shortly after the command is invoked.

Appendix A A-7

Command Examples

The following command examples demonstrate how to use the lpiadmin
list command and its options.

1 . To get a quick listing of products installed on your system and
suppress consistency checking of installed product components, use
the following command:

lpiadmin list -q

2. To get a long listing of all components associated with each
product installed on your system and to allow consistency checking,
use the following command:

lpiadmin list -l

The previous display shows a sample listing produced by the
lpiadmin list -l command. The output from this command is
particularly useful when working with the lpiadmin check
procedure. You can examine this listing for specific component
names.

Checking LPI Products

The lpiadmin check procedure provides a consistency check on
component files. The procedure searches for component files, examines
them, generates data on particular items, and identifies whether the
current version differs from the installed version. By default, lpiadmin
check automatically performs a consistency check during the installation,
listing, and remove procedures. Note that you can suppress the check by
including the -q option in any of the corresponding command lines.

When the lpiadmin check procedure detects an error, it responds as
follows:

• If the procedure is operating non-interactively (that is, performing a
consistency check during another lpiadmin procedure), it informs you
that an error exists and prompts you to invoke lpiadmin check for
more information.

A-8 Appendix A

• If the procedure is operating interactively (that is, performing a
consistency check in response to the lpiadmin check command) , it
prompts you to decide whether or not you want the inconsistency
corrected.

It is particularly useful to check your components when there is a
question of rile corruption. The procedure checks the riles and, when
relevant, works interactively with you to correct the problem.

Invoking lpiadmin check

To invoke the lpiadmin check procedure, you must log in as super-user
(su) or root.

The lpiadmin check command has the following format:

where,

lpiadmin check [-v] [component_name] . . .

lpiadmin check is the command that invokes the checking
procedure.

-v (verbose) produces a full printout or the lpiadmin activities
during the checking procedure.

component_name represents the name or the product component
to be checked. There are two types of components. Regular
components are riles that have a standard rilename, such as
lpibasic. Indirect components are riles that have a shell
environment variable name, such as LIDJ.PI. You can identify
the component type by examining the second field of the lpiadmin
list -1 output. See the "Command Examples" section for details
on specifying each type or component.

By default, the procedure checks all installed components.

Appendiz A A-9

Command Examples

1 . To perform a consistency check on all installed LPI products, and
get a printout of lpiadmin activities, use the following command:

lpiadmin check -v

2. To perform a consistency check on a regular product component
and get a printout of lpiadmin activities, use the following
command:

lpiadmin check -v lpibasic

In this case, the consistency check and printout is performed on
lpibasic.

3. To perform a consistency check on an indirect product component
use the following command:

lpiadmin check LffiJ.,PI

Note that in this case, lpiadmin checks all versions of the
component identified in the lpiadmin list output by the shell
environment variable name LffiJ.,PI which exist on the system.
Multiple versions of indirect components may exist.

Removing LPI Products

The lpiadmin remove procedure allows you to remove an LPI product
from your system. An LPI product may have several components. Some
of these components are used exclusively by that product. For example,
the lpibasic compiler is used exclusively by the LPI-BASIC product.
Other components, such as the lpild linker, are used by several products.

The lpiadmin remove procedure does not necessarily remove a component
that is used by other products if these other products still exist on the
system. Consequently, after you remove a product, certain (shared)
components may remain.

A-10 Appendix A

There are only two cases when the system removes a shared component
associated with a product:

• IC the shared component that is associated with the product being
removed is not the latest version of that component on the system.

• IC the specified product is the last LPI product on your system.

Invoking lpiadmin remove

To invoke the lpiadmin remove procedure, you must log in as super-user
(su) or root. The lpiadmin remove command has the following format:

where,

lpiadmin remove [-n] [-v] [-q] product_name

lpiadmin remove is the command that invokes the remove
procedure.

-n (no action) gives a list of actions which would be performed if
the product were to be removed. Nothing is actually removed
from your system if you include this option on the command line.

-v (verbose) prints the lpiadmin activities at each stage of the
removal procedure.

-q (quick) produces a faster remove procedure by suppressing
consistency checking of installed LPI products.

product_name represents the name of the product that you want
removed. Use the lpiadmin list command to identify the exact
name of the product. The lpiadmin remove procedure is not
case-sensitive; you can use either uppercase or lowercase when
specifying the product name.

Appendiz A A-ll

Command Examples

1 . Assume that you want to test a situation before actually removing
a product. You can get a listing of the lpiadmin activity that
would occur if you removed a particular product by using the
following command:

lpiadmin remove -n lpi-cobol

In this case, the listing is produced of the lpiadmin activities that
would occur if LPI-COBOL were removed.

2 . To remove a product, suppress consistency checking, and get a
printout of the lpiadmin activity, use the following command:

lpiadmin remove -q -v lpi-pascal

In this case, LPI-P AS CAL is removed, consistency checking is
suppressed, and a printout of lpiadmin activity is generated.

3. To remove a product, allow consistency checking, and get a
printout of the lpiadmin activity, use the following command:

A-12

lpiadmin remove -v LPI-C

In this case, the command line contains the product name LPI-C in
uppercase letters. The remove procedure is not case-sensitive; you
can enter the name in either uppercase or lowercase.

Appendix A

Appendix B: LPI- C Compiler Error Messages

A compilation error message is in the following format:

List-of-tokens-surrounding-the-offending-token-pointed-to- by-a-caret-below

* * phase error (code) : line line_number, " file_name"
Description-of-the-error-consisting-of-one-or-more-lines

where,

phase

error

code

line_number

file_name

is the compilation phase in which the error
occured. The phases are listed and described in
Table B-1.

is a brief statement of the error. The error
messages are listed and described in Table B-2.

is the error code.

is the physical line number on which the error
was encountered (taking into account any
#line directives which may have been
specified).

is the name of the me in which the error was
encountered (taking into account any #line
directives which may have been specified).

The following is an example of an LPI-C compiler error message.

<bof > s�a�ic in� i [2] = { 1 , 2 , 3 } ; <eof >

* * SYNTAX ERRDR-2 (74) : line 1 , " example . c "
Too many ini�ial value s for �his array .

1 error de�ec�ed

Appendiz B B-1

The following table lists and describes the compilation phases.

TABLE B-1 Compilation Phases

PHASE �D�ES�CR�W�T�I�O�N�-----------------

SCANNER Indicates that an error was encountered within
the lowest lexical scanning/ analysis phase of
compilation (that is, translation phases 1
through 3). Note that in this case, the list or
tokens and the caret will not be printed.

PREPROCESSOR Indicates that an error was encountered within
the preprocessng phase or compilation (that is,
translation phase 4). Note that in this case, the
list or tokens and the caret will not be printed.

LEXICAL Indicates that an error was encountered within
the phase or compilation which translates
character constants, string literals, and converts
preprocessing tokens into tokens (that is,
translation phases 5, 6, and part or 7).

SYNTAX Indicates that an error was encountered within
the syntactic analysis phase or compilation (that
is, translation phase 7).

SEMANTIC Indicates that an error was encountered within
the semantic analysis phase or compilation (that
is, translation phase 7).

The following table lists the level, class, and description of the possible
compiler error messages.

B-2 Appendiz B

TABLE B-2 Compiler Error Messages

SEVERITY ERROR
LEVEL CLASS DESCRIPTION

0 NOTE Compiler detected a questionable but
legal construct; compilation will
continue unhindered. The NOTE error
message may be suppressed with the
-nowarn option. (See the "Compiler
Option List" in Chapter 1 for more
information.)

1 WARNING Compiler detected a technically illegal,
unusual, or non-portable source
language construct; if this was intended,
the message can be ignored. WARNING
messages can be suppressed by the
-nowarn compiler option.

2 ERROR-2 Compiler detected an invalid source
language construct which the compiler
attempts to ignore and continues with
compilation. Errors with this level of
severity do not prevent the generation of
an object me, but the generated code for
statements with errors of this severity is
not correct. The source program should
be corrected and recompiled.

3 ERROR-3 Compiler detected an invalid source
language construct. Compilation of the
statement containing the error is
abandoned and no compilation can
continue. No object me is generated.
The source program must be corrected
and recompiled.

Appendix B B-3

TABLE B-3 Compiler Error Messages (Cont.)

SEVERITY
LEVEL

4

B-4

ERROR
CLASS

ABORT

DESCRIPTION

Compiler detected an uncorrectable
error, and compilation cannot continue;
all previously detected ERRORs must be
corrected and the source program must
be recompiled.

Appendix B

Appendix C: LPI-C Implementation-Defined

Behavior

Implementation-Defined Behavior

Implementation-defined behavior (for a correct program construct)
depends upon the characteristics of the implementation. Every
implementation of ANSI C is required to supply a description of each of
these characteristics.

The following is a description of all of the implementation-defined
features of ANSI C and (following the "r' symbol) the corresponding
dermed behavior for this version of the LPI-C on your system.

1. Translation

i. How a diagnostic is identified:

o.- See Appendix B.

ii. Whether each nonempty sequence of white-space characters other
than new-line is retained or replaced by one space character that is
implementation-dermed:

o.- Nonempty sequences of white-space characters will be
(conceptually) replaced by one space character (in translation phase
3). Note that the only circumstance in which this is important is
within the argument list of the invocation of a function-like macro
that uses the preprocessing stringize (#) operator.

2. Environment

i. The semantics of the arguments to main:

o.- If defined as

main (argc , argv) int argc ; char * argv [] ;

Appendi:s: 0 C-1

• argc will set to the total number of command-line arguments
with which the program was invoked (including the program
name itself).

• argv will represent an array of pointers to null-terminated
strings such that argv [0] represents the name of the
program itself, and argv [1] thru argv [argc - 1]
represent the argc command-line arguments available to the
program.

Note that it is not required that argc and argv be the
parameter names.

ii. What constitutes an interactive device:

DF An interactive device is one for which the system library
function i s a tty () returns a non-zero value. (See section
ttyname (3) in your UNIX documentation.)

a. Identifiers

i. The number of significant initial characters in an identifier without
external linkage (at least 31 guaranteed by any ANSI C
implementation):

DF The first 256 characters of an identifier with internal linkage
will be regarded as significant.

ii. The number of significant initial characters in an identifier with
external linkage (at least 6 are guaranteed by any ANSI C
implementation):

DF The first 256 characters of an identifier with external linkage
will be regarded as significant.

iii. Whether case distinctions are significant in an identifier with
external linkage:

DF Case distinctions are significant.

4. Charaeters

i. The members of the source and execution character sets, except as
explicitly specified in the Standard:

C-2

DF The source and execution character sets are identical, and uses
the 7-bit ASCII character set stored in an 8-bit byte. (See section
ascii (7) in your UNIX documentation.)

Appendix C

ii. The shift states used for the encoding of multibyte characters:

r.- There are no shift states used in encoding multibyte characters,
and there are no recognized multibyte characters.

iii. The value of each escape sequence:

r.- The escape sequence values are defmed as follows:

ASCII ASCII ASCII ASCII
ACRO- OCTAL DECIMAL HEX

ESCAPE NYM VALUE VALUE VALUE

\a (alert) BEL 007 7 Ox07
\ b (backspace) BS 010 8 Ox08
\f (form feed) FF 014 12 Ox12
\n (new line) LF 012 10 OxOA
\r (carriage return) CR 015 13 OxOD
\ t. {horizontal tab) HT 011 9 Ox09
\ v (vertical tab) VT 013 11 OxOB

iv. The number of bits in a character in the execution character set:

r.- There are 8 bits per character in the execution character set.

v. The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set:

r.- Each character in the source character set (in character
constants and string literals) is mapped to the corresponding
character in the ASCII character set.

vi. The value of an integer character constant that contains a
character or escape sequence not represented in the basic execution
character set or the extended character set for a wide character
constant:

r.- H the value of an integer character constant is less than or equal
to UINT_MAX, then the value is that of the least significant byte.
Otherwise, the value is unpredictable.

vii. The value of an integer character constant that contains more than
one character or a wide character constant that contains more than
one multibyte character:

Appendiz 0 C-3

IJF The characters (or escape sequence values) in a character
constant are stored, one (ASCII) character value per byte, in order
from right to left into a 32-bit integer from the least significant to
the most significant byte. That is, the value of the right most
character in the character constant is stored in the least significant
byte of the 32-bit integer, the value of the next character to the left
in the character constant is placed in the next least significant, and
so on. However, if there are more than 4 characters in the
character constant (that is, corresponding to 4 bytes per 32-bit
integer), then the right most excess characters will be discarded. If
there are fewer than 4 characters in the character constant, then
the unused most significant bytes are set will be set to zero. For
example, · abcdef • is effectively equivalent to Ox61626364;
and · ab • is effectively equivalent to Ox000061 62 .

viii. The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character
constant:

rJr The only locale supported is the " C " locale.

ix. Whether a "plain" char has the same range of values as
s igned char or unsigned char:

rJr A "plain" char has the same range of values as a s igned
char.

6. Integers

i. The representations and sets of values of the various types of
integers:

rJr Integers are stored in two's-complement binary format. The
ranges for the various integer types are given in the standard
include rue <limits . h> .

ii. The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of
equal length, if the value cannot be represented:

C-4

rJr When an integer is converted to a shorter signed integer, the low
order (that is, least significant) bits of the longer integer are used;
the most significants bits are ignored. Note that a negative value
may result. For example, the result of converting the long (4-byte)
integer Oxabcd1234 to a short (2-byte) integer would be Ox1234.

Appendiz 0

When an unsigned integer is converted to a signed integer of equal
size, there is no change in the representation. Note that a negative
value may result.

iii. The sign of the remainder on integer division:

�:r The sign of the result of an integer divide is determined by the
normal rules of algebra. The fractional part of a remainder is
truncated, and the result of the truncation is always toward zero.
For example, -5/2 would yield -2.

iv. The results of bitwise operations on signed integers:

�:r When used with signed operands, the AND () , OR (I) , XOR
(•), complement (), and the left shift (<<) bitwise operators, the
sign bit (that is, the most significant bit) is treated simply as any
other bit in the integer. See below for the result of the right shift
(> >) operation on signed integers.

v. The result of a right shift of a negative-valued signed integral type:

lW When a signed integral type is right-shifted, vacated bits are
filled with a copy of the sign bit (that is, the shift is arithmetic
rather than logical).

6. Floating point

i. The representations and sets of values of the various types of
floating-point numbers:

lW Type float is represented according to the ANSI/IEEE
standard 754-1985 for single precision. Type double is
represented according to the same standard for double precision.
The representation of type long double is the same as that of
type double.

ii. The direction of truncation when an integral number is converted
to a floating point number that cannot exactly represent the
original value:

lW Truncation is always toward nearest.

iii. The direction of truncation or rounding when a floating point
number is converted to a narrower floating point number:

�:r Truncation is always toward nearest.

Appendix C C-5

'1. Arrays and pointers

i. The type of integer required to hold the maximum size of an array;
that is, the type of the sizeof operator (size_t.) :
r:6 The type s i ze_t. is unsigned int..

ii. The result of casting a pointer to an integer or vice versa:

r:6 When casting back and forth between pointers and integers (a
generally bad/non-portable practice), there is no actual change in
the value or representation, since both pointers and integers (of
type int. and long) are represented in 32-bit machine integers.

iii. The type of integer required to hold the difference between two
pointers to members of the same array (that is, pt.rdiff_t.):
r:6 The type pt.rdiff_t. is int..

8. Registers

i. The extent to which objects can actually be placed in registers by
use of the register storage-class specifier:

[)IF" The register storage class specific is ignored.

9. Structures, unions, enumerations, and bit-fields

i. Whether a member of a union object can be accessed using a
member of a different type:

r:6 This is strictly forbidden; the compiler will emit an appropriate
diagnostic.

ii. The padding and alignment of members of structures (this should
present no problem unless binary data written by one
implementation are read by another):

cw Within a structure, each non-bit-field member is allocated at a
byte offset (from the beginning of the structure) which is an

integral multiple of the boundary requirement for its data type.
The boundary requirements for each scalar type were summarized
earlier in Table 2-1 . The boundary requirement for an aggregate
(that is, array, structure, or union) type is defined to be the most
stringent boundary requirement of any of its member types.

iii. Whether a "plain" int. bit-field is treated as a signed int.
bit-field or as an unsigned int. bit-field:

cw A "plain" int. bit-field is treated as an uns i gned int..

C-6 Appendix 0

iv. The order of allocation or bit-fields within an int.:

1r Bit-fields are packed into 4-byte integers, which are aligned on
2-byte boundaries. The bits are allocated within the bit-field
storage unit order starting from the most significant bit toward the
least significant bit.

v . Whether a bit-field can straddle a storage-unit boundary:

lr A bit-field may not straddle a storage-unit (that is, int.)
boundary.

vi. The integer type chosen to represent the values of an enumeration
type:

1r An int. is used to represent enumeration types.

10. Type qualifiers

i. What constitutes an access to an object that has volatile-qualified
type:

1r Any reference (read or write) to the actual memory location
corresponding to a volatile qualified object constitutes an access.

11. Deelarators

i. The maximum number of (pointer, array, and function) declarators
that may modify an arithmetic, structure, or union type:

1r Fifteen (this implies that there are 11 ,352,234 legal basic derived
declarator types) .

12. Statements

i. The maximum number of cas e values in a swi t.ch statement:

�r No limit.

13. Preproeessing direetives

i. Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set.
Whether such a character constant may have a negative value:

1r A single-character constant used within the preprocessor
expression to control a conditional inclusion (that is, with a #if
or #e1if directive) does match the value of the same character

Appendix 0 0-7

constant in the execution character set. Such a value may have a
negative value.

ii. The method for locating includable source mes:

� For information on locating includable source mes, see the
"Directories Searched for #include" section in Chapter 2.

iii. The support of quoted names for includable source mes:

� Includable source me-names quoted with a pair of double quotes
(") are taken verbatim. Includable source me-names quoted with a
left and right angle bracket pair (< >), on the other hand, are
created by concatenating the preprocessing tokens between the
angle brackets in order (from left to right) while condensing any
sequence of white-space to one space.

iv. The mapping of source me character sequences:

� Source file characters are mapped to their corresponding ASCII
values.

v. The behavior on each recognized #pragma directive:

� Each #pragma directive will be ignored.

vi. The definitions for _ _pATE __ and _ _ TIME _ _ when,
respectively, the date and time of translation are not available:

� Not applicable; these are defmed for this implementation.

vii. The maximum nesting level for #include mes:

� There is no explicitly imposed limit on the number of nesting
levels for #included mes. This implementation will handle
cases in which the maximum number of open mes (a restriction
imposed by the operating system) has been reached, by closing
previously opened #include mes when necessary.

14. Library funetions

i. The null pointer constant to which the macro NULL expands:

� The null pointer constant macro NULL (defmed in
<stddef . h> , <locale . h> , <stdio . h> , <stdlib . h> ,
<string . h> , and <time . h>) expands to : ((void •) 0) .

ii. The diagnostic printed by and the termination behavior of the
as s ert function:

C-8

� The behavior of the as s ert macro is given in standard
include me as s ert . h.

Appendi:z: 0

iii. The sets of characters tested for by the i sa.lnum, i sa.lpha.,
i scntrl, i s lower, isprint, and isupper functions:

OlliV" The function i s a.lnum tests for the ASCII characters 'A'
through 'Z' , 'a' through 'z' , and '0' through '9' .

tw' The function is alpha. tests for the ASCII characters 'A'
through 'Z' and 'a' through 'z' .

tw' The function i scntrl tests for the ASCII characters with
decimal values in the range 0 through 31 and also 127.

tw' The function is lower tests for the ASCII characters 'a'
through 'z ' .

tw' The function isprint tests for the ASCII characters with
decimal values in the range 32 through 126; that is, blank through

(tilde) .
tw' The function isupper tests for the ASCII characters 'A'
through 'Z' .

iv. The values returned by the mathematics functions on domain
errors:

tw' On domain errors, the mathematical functions return values as
follows:

FUNCTION

acos
as in
atan2
cos
log
log10
pow
sin
sqrt

RETURN VALUE

0.0
0.0
0.0
0.0
-HUGE_ VAL
-HUGE_ VAL
1.0 if base = 0, else 0.0
o.o
0.0

v. Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range
errors:

tw' Mathematical functions do not set errno on underflow.

vi. Whether a domain error occurs or zero is returned when the :fmod
function has a second argument of zero:

Appendi:r: 0 C-9

OF If the second argument to function fmod is zero, a domain
error occurs, and the return value is not meaningful.

vii. The set of signals for the signal function:

OF See the LPI-C header me < signal . h > .

viii. The semantics for each signal recognized by the s ignal function:

OF The set of signals for the signal function and their meanings
is given in the include me signal . h.

ix. The default handling and the handling at program startup for each
signal recognized by the signal function:

OF The default handling for all signals is set to SIG....DFL, except
SIGFPE, which is set to SIGJGN. (See your UNIX documentation
for more information.)

x. If the equivalent of "signal (sig , SIGJ>FL) ; " is not
executed prior to the call of a signal handler, the blocking of the
signal that is performed:

OF The equivalent of " s ignal (sig , SIGJ>FL) ; " is
performed for all signals except SIGILL.

xi. Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the s ignal function:

OF No, default handling is not reset in SIGILL.

xii. Whether the last line of a text stream requires a terminating
new-line character:

OF The last line of a text stream read by Standard 1/0 need not
end in a new-line.

xiii. Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in:

OF All characters written to a text stream will appear when the
stream is read.

xiv. The number of null characters that may be appended to data
written to a binary stream:

OF No nulls are necessarily appended to a binary stream.

XV . Whether the me position indicator of an append mode stream is
initially positioned at the beginning or end of the me:

C-10

OF When a stream is opened using any append mode, the me
position indicator is initially at the end of the me.

Appendix C

xvi. Whether a write on a text stream causes the associated me to be
truncated beyond that point:

� Writing to a text stream does not cause truncation of the me.

xvii. The characteristics of file buffering:

t:Jr Fully buffered files: Input characters are read a block at a time
and doled out upon request. Output characters are accumulated in
a block and flushed (written out) when: the block is full, ff1ush
is called, or input is requested on a stream that is not fully
buffered.

Line buffered files: On input, characters are read until a new-line
is found, upon which the entire line is made available. On output,
characters are buffered in a block and flushed (written out) when:
the block is full, ff1ush is called, a new-line is written, or input
is requested on a stream that is not fully buffered.

xviii. Whether a zero-length file can actually exist:

� Files of zero length can exist.

xix. The rules for composing valid filenames:

� Filenames may be up to 255 characters in length and may be
composed of any printable characters other than backslash (\). If a
path name is included in the file name, each component of the path
name follows the same rules, and the components are separated by
the '\' character.

xx. Whether the same file can be open multiple times:

� A given file may be open multiple times. If it is open multiple
times for writing, it should be opened in append mode in all cases.

xxi. The effect of the remove function on an open file:

� An open file may be removed, but it is still accessible until it
is no longer open.

xxii. The effect if a file with the new name exists prior to a call to the
rename function:

� If a file already exists with the new name prior to a call to the
rename function, the function returns failure, and sets errno to
EEXIST.

xxiii. The output for "p conversion in the fprintf function:

Appendix 0 C-11

� The lp conversion for fprint.f and f s eanf is equivalent
to the l1x conversion.

xxiv. The input for lp conversion in the fseanf function:

� The lp conversion for fprint.f and f seanf is equivalent
to the l1x conversion.

xxv. The interpretation of a hyphen (-) character that is neither the fll'st
nor the last character in the scanlist for I [conversion in the
f s e anf function:

� In the f s e anf function, a hyphen (-) character that is neither
the fll'st nor the last character for the I [conversion indicates an
inclusive character range. That is, I [-a-d] and I [-abed]
are equivalent, as are I [a-d-] and I [abed-] . Exception:
The leading ' "' ' character, indicating excluded characters, is never
taken as part or a character range. Thus, " [A - ab] means all
characters except '-' , 'a', and 'b'.

xxvi. The value to which the macro errno is set by the f get.pos or
ft.e11 function on failure:

� errno is set to the value EIO on errors in ft.e11 and
f get.pos .

xxvii. The messages generated by the perror function:

C-12

� The various values of errno cause perror to print the
following messages, or the message "no error" if errno is zero.

VALUE MESSAGE

EACCES "Permission denied n

EBADF " Operation not possible on this rlle"

EBOUNDS "Bounds check (index or subrange error)"

EDIVO "Divide by Zero"

EDOM "Input value not in function domain"

EINVAL "Invalid argument"

EIO "I/0 error"

EMFILE "Too many open flies"

EOVFLO "Overflow"

ERANGE "Return value not in function range"

Appendiz 0

Other various values of errno cause perror to print the
message contained in the system vector of message strings
sys_errlist. (see sections perror(3) and intro(2) in your UNIX
documentation).

xxviii. The behavior of the calloc, malloc, or realloc function
if the size requested is zero:

Dr Functions calloc and malloc return a null pointer if the
size requested is zero and take no further action. Function
realloc always frees the returned space, but returns a null
pointer if the size requested is zero.

xxix. The behavior of the abort. function with regard to open and
temporary riles:

Dr The abort. function leaves buffered riles unfiushed but closes
all riles; temporary riles are not deleted.

:xxx. The status returned by the exit. function if the value of the
argument is other than zero, EXIT_6UCCESS, or
EXIT ...FAILURE:

Dr The status sent to the operating system by exit. is the
parameter of the argument.

:xxxi. The set of environment names and the method for altering the
environment list used by the get.env function:

Dr The set of environment names provided to a program are the
same as those in the environment of the process that spawns the
program. (There are not necessarily any such names.) The
environment list may be altered by declaring the variable
extern char * *environ and assigning the address of a new
null-terminated array of string pointers to environ.
Alternatively, individual string pointers within the original array
may be replaced. Each string in the environment array must have
the format given earlier. Neither the original array at environ
nor any of its original strings may be freed by way of the function
free.

:xxxii. The contents and mode of execution of the string by the system
function:

Dr The system command takes a string suitable for presentation
to the Bourne shell as a command. A copy of the shell (/bin/sh) is
spawned, and the string is given to it to execute (by way of the
shell's -c fiag).

Appendiz 0 C-13

xxxiii. The contents of the error message strings returned by the
atrerror function:

� The contents of the error messages returned by the atrerror
function are the same as for the perror function described
previously.

xxxiv. The local time zone and Daylight Saving Time:

!llr The host operating system is queried for the local time zone and
daylight savings time status, and the returned result is used.

xxxv . The era for the clock function:

Clr The host operating system is queried for the execution time used
by the program, and the function clock uses that value. The era
normally begins at program startup as defined by the host
operating system.

Locale-Specific Behavior

This section defines the locale-specific behaviors of LPI-C ANSI library,
as listed in section A.6.4 of the ANSI C standard.

• The only defined locale is the " 0 " locale.

• There are no assumed extensions to the execution character set.

• Printing is from left to right.

• The decimal point character is ' . ' (dot).
• The collation sequence of the execution character set is the ASCII

collation sequence.

• For function atrftime , the time and date formats are as given
follows.

C-14

- Abbreviated weekday names: "Mon" , "Tue" , "Wed" , "Thu " ,
"Fri " , "Sat " , "Sun" .

- Full weekday names: "Monday" , "Tuesday" , "Wednesday" ,
"Thursday" , "Friday" , "Saturday" , "Sunday" .

- Abbreviated month names: "Jan" , "Feb" , "Mar" , "Apr" , "May " ,
" Jun" , "Jul" , "Aug" , "Sep" , "Oct" , "Nov" , "Dec " .

Appendix 0

- Full month names: "January" , "February" , "March" , "April" ,
"May" , "June" , "July" , "August" , "September" , "October" ,
"November" , "December" .

- Format for "%c" conversion: Same as for function as ctime .

- Format for "%x" conversion: "dd Mon yyyy"

- Format for "%X" conversion: "hh:mm:ss" :

- Format for "%Z" conversion, given hours west of Greenwich,
half-hour increments:

0 GMT" , "GMT-0:30 " , "GMT-1 " , "GMT-1:30 " ,
2 "GMT-2" , "GMT-2:30 " , "GMT-3" , "NST" ,
4 "AST" , "GMT-4:30" , "EST" , "GMT-5:30" ,
6 "CST" , "GMT-6:30" , "MST" , "GMT-7:30 " ,
8 "PST" , "GMT-8:30" , "YST" , "GMT-9:30 " ,
10 : "HST" , "GMT-10:30" , "GMT-11 " , "GMT-11 :30 " ,
12 : " GMT-12" , "GMT-12:30 " , "GMT-13 " , "GMT-13:30 " ,
14 : "GMT-14" , "GMT-14:30 " , "GMT-15 " , "GMT-15:30 " ,
16 : "GMT-16" , "GMT-16:30" , "GMT-17 " , "GMT-17:30" ,
18 : "GMT-18 " , "GMT-18:30" , "GMT-19" , "GMT-19:30 " ,
20 : "GMT-20" , "GMT-20:30" , "GMT-21 " , "GMT-21:30 " ,
22 : "GMT-22" , "GMT-22:30 " , "GMT-23 " , "GMT-23:30"

Reference

ANSI Committee X3J11 , Draft Proposed American National Standard
for Information Systems -- Programming Language C, Document No
X3J11/88-159, Dec 7, 1988.

Appendix C C-15

Appendix D: LPI-C Compatibility Issues

This appendix describes LPI-C's extensions to support old-style C
constructs.

LPI-C Extensions

In order for LPI-C to be able to correctly compile and execute the vast
amounts of C code that exist with minimal change, and to be compatible
with older pre-ANSI C implementations (most notably, PCC based
compilers) , a number of compatibility modes are supported. Listed
below are some of the key non-ANSI or undermed-ANSI extensions that
are supported by LPI's conforming ANSI C implementation. These
extensions are provided by way of the compiler options for non-ANSI
items, or as default behavior for undermed-ANSI items.

• Accept long f loat as a synonym for double in a declarator.

• Assign integer constants their types by old K&R rules [K&R Section
1 2.4.1] rather than ANSI rules.

• Perform the integral promotions according to "unsigned-preserving"
rather than "value-preserving" rules.

• Accept the type char * as equivalent to the generic pointer type
void * , without warning.

• Allow integral types other the int (signed or unsigned) to be
declared as bit-fields, with appropriate maximum widths.

• Allow pernicious redermitions of macros, with a warning.

• Allow innocuous redermitions of function-like macros, which differ
only in the spelling of of formal macro parameters. For example,

#def ine min (q , r) (((q) <= (r)) ? (q)
: (r))
#def ine min (x , y) (((x) <= (y)) ? (x)
: (y))

would be silently accepted, without warning.

Appendi:z: D D-1

• Allow trailing text on a #else or #endif preprocessing directive,
without warning [Standard Section 3.8.1] .

• Expand function-like macro invocations with empty arguments as if
the (empty) arguments consisted of no tokens. For example,

#def ine minus (x , y)
minus (, 123)

(x-y)

would yield " (- 1 23) " . ANSI C leaves the behavior of such a
construct undefined.

• Perform formal macro parameter substitution within string literals
[Rationale Section 3.8.3.2] . For example,

#define str (a) " a : apple "
#define alpha A
str (alpha)

would yield " " alpha : apple " " rather than " " a : appl.e " ",
which is required by ANSI C. ANSI C provides a "stringize"
operator (#) to accomplish this.

• Perform formal macro parameter substitution within character
constants (exactly analogous to string literals).

• Use alternate scoping rules (that is, rile scope) for functions and data
objects declared as extern within an inner block scope.

Compatibility Options

For compatibility options with older pre-ANSI implementations (most
notably PCC based compilers), refer to the "Compatibility Options"
section in Chapter 1 .

Old-Style C vs. ANSI C Integral Typing Rules and
Promotions

The following tables summarize the integer constant typing rules for
old-style C and ANSI C.

D-2 Appendi:z: D

TABLE D-1 ANSI C Integral Constant Typing Rules

INTEGRAL CONSTANT

Unsufrlxed decimal:
UnsufriXed octal/hex:

L sufriXed:
U sufriXed:
L & U sufriXed:

ASSIGNED TYPE (first in list in which
they fit)

int, long, uns i gned long
int, unsigned int, long ,
unsigned long
long, unsigned long
unsigned, unsigned long
unsigned long

TABLE D-2 Old-Style C Integral Constant Typing Rules

INTEGRAL CONSTANT

UnsufriXed decimal:
UnsufriXed octal/hex:
L sufriXed:

ASSIGNED TYPE (first in list in which
they fit)

int, long
int, unsigned int, long
long

The following tables summarize the integral promotions for old-style C
and ANSI C.

TABLE D-3 ANSI C Integral Promotions - Value-Preserving

OPERAND TYPE OPERAND SIZE PROMOTED TYPE

char any int
short any int
int any int
uns i gned char smaller than int int
uns i gned char same as int unsigned int
uns i gned short smaller than int int
uns i gned short same as int uns i gned int
uns i gned int smaller than in t int
uns i gned int same as int uns i gned int

Appendiz D D-3

TABLE D-4 Old-Style C Integral Promotions - Unsigned
Preserving

OPERAND TYPE OPERAND SIZE PROMOTED TYPE

char any int.
short. any int.
int. any int.
unsigned char any unsigned int.
uns igned short. any uns igned int.
uns igned int. any unsigned int.

D-4 Appendix D

Index

#else, D-2
#endi!, D-2
#include, 1-6

A
abort, C-13
ABORT, B-4
adb debugger, 1-23
Administration directory, A-2
ANSI C integral constant typing rules, D-3
ANSI C integral promotions, D-4
argc, C-2
argv, C-2

B
Bit-fields in structures, 2-8

c
C conventions, 2-15
CALL instruction, 2-12
Calling conventions, 2-1 1 , 2-12
calloc, C-13
cc , 1-2, 2-1 1 , 2-15
char, 2-1 , 2-9
char * , D-1
Character constant, 2-8
Characters, C-2
Checking LPI products, A-8
clock, C-14
code, B-1
CodeWatch, 1-22

lndex-1

Compatibility options, D-2
Compiler

limits, 1-4
Compiling a program, 1-2

with cc compatibility, 1-2
Components

product, 1-1 , 1-19

D

Data types, 2-1 , 2-16
pointer (type *), 2-2
alignment, 2-1
boundaries, 2-10
char, 2-3
double , 2-4
enum, 2-4
equivalent, 2-14
int, 2-5
long, 2-5
long double, 2-4
short, 2-6 , 2-7
size, 2-1
sizes, 2-1
unsigned, 2-6
unsigned int, 2-6
unsigned long, 2-6

deb option, 1-5, 1-1 1
Debugging a program, 1-22
define option, 1-5
Defining macros, 1-5
Directory search, 2-9
domain errors, C-9
double, 2-1 , D-1

E
e option, 1-5
E option, 1-5
EEXIST, C-11

lndex-2

Entering a source program, 1-2
enum, 2-1
environ, C-13
Environment, C-1
ERANGE, C-9
errno, C-12
error, B-1
Error messages, C-12
ERROR-2, B-3
ERROR-3, B-3
Escape sequence, C-3
EXITJ' AlLURE, C-13
EXIT_8UCCESS, C-13
exp option, 1-5
extern, D-2
External

F

names, 2-1 1
symbols, 2-1 1

£387 option, 1-6
File buffering, C-1 1
files option, 1-6
Files

temporary, 1-1 1
float, 2-1
Floating point, C-5
free, C-13
Function results, 2-13

I
Identifiers, 2-7 , 2-1 1 , C-2
include option, 1-6
Infinity (+ /-) , 2-4, 2-5
Installation procedure

interactive, A-5
Installing the compiler, 1-1
int, 2-1 , 2-9 , D-1

lndex-3

Integer constants, 2-8
ipath option, 1-6
isalnum, C-9
isalpha, C-9
iscntrl, C-9
islower, C-9
isprint, C-9
istring option, 1-6
isupper, C-9

L
1 option, 1-6
ldc, 1-19
Length or identifiers, 2-7 , 2-11
LEXICAL, B-2
libAc option, 1-21
Library functions, C-8
Link options, 1-20
Linking a program, 1-19
Listing a program, 1-6
Locale-specific behavior, C-14
lock, C-14
long, 2-1
long fioat, D-1
long int, 2-2
Lowercase names, 2-11
lpc, 1-5
lpiadmin

check, A-2
help, A-1
install, A-1

procedure, A-4
list, A-1
remove, A-1

LPI-C
ANSI libraries, 1-21
compatibility issues, D-1
compiler error messages, B-1
extensions, D-1

Index-4

implementation-defined behavior, C-1
lpild, 1-19

M
Macro dermition, 1-5
macros option, 1-6
main, C-1
malloc, C-13
map option, 1-6
Messages

error, C-12
Mod operator, 2-9

N
noobj option, 1-5
noopt option, 1-7, 1-11
Not-a-number, 2-4, 2-5
NOTE, B-3
nowarn option, 1-7
NULL, C-8

0
o option, 1-7
Old-style C

integral constant typing rules, D-2
integral promotions, D-3

opt option, 1-7
Optimisation, 1-1 1

levels, 1-1 1
Options, 1-5

p
perror, C-12, C-14
Pointer casts, 2-9
predef option, 1-7
Preprocessor, 1-5, 2-9

lndex-5

PREPROCESSOR, B-2
Product components, 1-1 , 1-19

indirect, A-10
regular, A-10

R
realloc, C-13
Removing an LPI product, A-10
RET instruction, 2-12
Right shift operator, 2-8
Running a program, 1-22

s
SCANNER, B-2
sdb debugger, 1-23
SEMANTIC, B-2
short, 2-1

fioat, 2-2
int, 2-2

Sign extension or char type, 2-8
Stack frame, 2-12
stat option, 1-7
stddeC option, 1-8
stdpath option, 1-8, 1-22
strerro, C-14
strftime, C-14
SYNTAX, B-2
sypath option, 1-8
sys option, 1-8, 1-21
syslib option, 1-21
syspath option, 1-22
System libraries, 1-21

T
Temporary files, 1-11
Translation, C-1
Truncation, 2-9 , C-5

Index-6

Type specifiers, 2-2

u
undef option, 1-8
unsigned

v

char, 2-1
int, 2-1
long, 2-1
long int, 2-2
short, 2-1
short int, 2-2

verbose option, 1-21
void * , D-1

w
warn option, 1-8
WARNING, B-3

X
xall option, 1-8
xbf option, 1-8
xc option, 1-8
xcp option, 1-8
xea option, 1-8
xes option, 1-8
xic option, 1-8
xlf option, 1-8
xmi option, 1-8
xmp option, 1-8
xmr option, 1-9
xnc option, 1-8
xnt option, 1-10
xoe option, 1-10
xpg option, 1-10

lndex-7

xre£ option, 1-8
xs option, 1-8
xtt option, 1-8
xup option, 1-10
xwc option, 1-8
xws option, 1-8

Index-8

LPI- C *

Language Reference
Manual

This manual describes the implementation of LPI-C
Version 1 .

Contents

Preface: Using This Manual xiii

Chapter 1 : Translation Environment

Overview . 1-1
Translation Units • . • • • • • • • • • • • • • • • • 1-1
Translation Phases . • . • 1-1

Translation Phases Examples • • • • • . • • • . • . . • • • • • • • • • • • • • 1-5

Chapter 2: Execution Environment

Overview • • • • • • • . • . • • • • • . . • • . • • • • • • • • • • • • • • • • • • • . • • • 2-1
Program Startup • • • • . • • • • • . • • . • . 2-1
Program Execution • • • • • • • • • • • • . • • • • • • . • . . • • • • • • • • • • • • • 2-3

Implementation Semantics • • • • • • • • • . • • • • • • • . • • • • • • • • • • 2-3
Signals and Interrupts . • • • • • • • . . • • • • . • • • . • • • . • . • • • • • 2-4
Program Termination • . • • • • • • . . • • • • . • • • • • • • • • • . • • . 2-4

Chapter 3: Lexical Elements

Overview • • • • . • . • • • • • • • • • • • • • . . • • • • • • . • • • • • • • • • • 3-1
Source and Execution Character Sets • • • • • • . • • . • • . . . • . . . 3-1

iii

Chapter 3: Lexical Elements (Cont.)

Characters Included in Both Sets • • • •

Additional Characters in the Execution Set
Trigraph Sequences • •

Comments • • •

White Space •

White Space Examples
Tokens

Token Syntax .
Keywords
Identifiers
Identifier Names • •

Identifier Syntax .
Constants • • • • • • • • •

Constant Syntax •

Floating Constants • •

Floating Constant Syntax
Integer Constants • • • • . • • • • •

Integer Constant Types •

Integer Constant Syntax
Character Constants • • • • • • •

Escape Sequences
Octal and Hexadecimal Escape Sequences •

Nongraphic Display Characters • •

Character Constant Syntax • •

Character Constant Examples
Enumeration Constants • • • • • • • •

Enumeration Constant Syntax
String Literals • • • • • • • • •

String Literal Syntax • •
String Literal Example

Operators • • • • • • • • •
Operator Syntax

Punctuators • • • • • •

Punctuator Syntax • • • • • • • •

Header Names •

iv

. 3-1
• • • 3-2

. 3-3
• . 3-3

• • • 3-4
• • • 3-4

• • 3-5
. 3-5
. 3-6

• • 3-6
. 3-6

• • • 3-7
• • • 3-7

. 3-8
• • • 3-8

. 3-9
• • 3-9
. 3-10
. 3- 1 1
• 3-12

• • 3-13
• • • • • 3-14

. .. .

• • • 3-14
• . 3-15

. 3-16
• • • • 3-16

• • 3-16
• 3-17
. 3-18
. 3-18

• . 3-18
• • • 3-19

. 3-19

. 3-19

. 3-19

Chapter 4: Preprocessing Directives

Overview . 4-1
Preprocessing Tokens • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 4-1
Preprocessing Directives • • • • • • . . . • . • • • . • • • • • • • • • • • • • • • • • 4-2

Preprocessing Syntax • . • • • . • • • . • • . . • • . . • • . • • • • • • . • • • 4-4
Source File Inclusion • • • • • • • . • . • . • . . • . . . • . • • • • . • • • • • • . . • 4-6
Header Names • • • • • . • • • • . • • • . . • • 4-8

Header Syntax . • . • • • • • • • • • • . • • • • • • • 4-8
Macro Definitions • • • . • • • • . • . . . • • • • . • • . • • • • . • • 4-10

Object-Like Macros . . • • . . . • • • • • • • . • . . • . • • . • . • • . . . • • 4-10
Function-Like Macros • • • • • • • • • • • • . • • • • • • . • • • • • • • . • • 4-11
Macro Argument Substitution • 4-12
Macro Rescanning • . • • • • • • • • • • 4-13

Function-Like Macro Examples • 4-13
The # Operator • • • • • • . . • . • • • • • • • • . . • • • • • • • • • • • • • • • • • 4-14
The ## Operator • . • • • • • • • . • . • . • • • . • . . • • • • • • • • . . . • • • • 4-15

Removing a Macro Definition • • • • • • • • . • • • • • • • • • • • • • • • • 4-16
Conditional Compilation • • • • . • • • . . • . . • . • • • • • • • • • . • • • • . • 4-18
Conditional Inclusion Directives . . • • • . • • • . . . • • . • . • • . . . • . . . 4-19
Controlling Expressions • • • • . . . • . . • . . . • • • • • . . . • . • . • • . • . • 4-20

Evaluation of the Controlling Expression • . • • • • • • • • • • • • • . . 4-21
Line Numbering • • • • • • • • • • • • • • . . • • . • • • • • • • • • • • • • • • 4-22
Error Directive • . . • • • • 4-23
Pragma Directive • 4-23
Null Directive • . . • • • • • • • • • • • • • • 4-24
Predefined Macro Names • 4-24

Chapter 5: Types

Overview • . • • • • • • • • 5-1
Type Category • . • • . • • • • . • • 5-1
Character Types • 5-3
Signed Integer Types • 5-3
Floating Types • 5-4
Enumeration Types . 5-4

v

Chapter 5 : Types (Cont.)

Other Type Classifications • • •

Basic Types
A.rithmetic Types • • • • • • • • • • • • • • • •
Scalar Types
Aggregate Types • •

Void Types
Type Derivations

Structure Types • • • • • • • •

Union Types
A.rray Types •

Function Types
Pointer Types

Qualified Types • • •

Qualified Types Examples • • • • • • • • • • • • • •

Compatible Types • • • • • • • •

Composite Type • . • • • • • • • . •

Composite Type Example

Chapter 6: Scope

Overview
Scopes of Identifiers

Function Scope • •

File Scope • • • •

Block Scope • • • •
Function Prototype Scope

Name Spaces of Identifiers • • •

Linkages of Identifiers • • • • • •
Storage Durations of Objects

Static Storage Duration •
Automatic Storage Duration

External Defmitions . • • • • •
Translation Unit Syntax

vi

. 5-5
• . 5-5
• • 5-5

. 5-5
• • 5-5

• • • • 5-6
. 5-6

• • • 5-6
• • 5-6

. . . . 5-6
. 5-7

. . . . 5-7
• • 5-7

. 5-8
. . 5-9
. 5-10
. 5-10

• • • 6-1
• • 6-1

. 6-2
• • 6-2

• 6-2
• • • • 6-2

. 6-2

. 6-3
• • 6-5
• • 6-5

• 6-6
. 6-6

• • 6-7

Chapter 6: Scope (Cont.)

Function Defmitions • 6-7
Function Defmition Syntax • 6-9
Function Defmition Examples • 6-9

External Object Defmitions • 6-10
External Object Examples • 6-1 1

Chapter 7: Declarations

Overview . 7-1
Declaration Syntax . • 7-1

Declaration Components • 7-1
Storage-Class Specifiers • 7-2

t.ypedef • . • • • • . . • • • • • . . • • • • . 7-2
extern . 7-3
st.at.ic • . • • • • 7-3
auto . 7-3
regist.er • . . . • • • . • • . . • . . • • • • • • . • . • . • . 7-3
Storage-Class Syntax • • • • • • • • • . • • • • • • • • • • . • • • • 7-4

Type Specifiers • • • • • • • • • • • • • • • . • • . . • . • • . • • • • • . • • • • • • • • 7-4
Type Specifier Syntax • . . . • 7-5
Structure and Union Specifiers • 7-5

Bit-Fields • • • • • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • . • • 7-6
Structure and Union Syntax • 7-9
Enumeration Specifiers • 7-9
Enumeration Specifier Syntax • 7-10
Enumeration Constant Example • . . • • • • • • . • • • • • • • • • • • • . 7-10
Tags • . • • • • • • . • • • • • • • . . • . • • • 7-1 1
Tag Declaration Examples . . . • • . . . • • • • . . • . • • • . . 7-12

Type Qualifiers • • • • • . • • • • • . • • • . . • • • • • • • • • . . • • • . . • • • • • 7-13
Type Qualifier Syntax • • . • . . • • • . . . • . • • . . . • • • • • • • • • • • 7-14
Type Qualifier Examples . • • • • • . • • . • • • . • • . • . • • • 7-14

Declarators • • • • • • • • • • • • . • • • • . . • . • • • • • . . . • • • . • • . . • • • . 7-15
Declarator Syntax • • • • • • • • • . • • • • • • . • • • • • • • • • • • • • • . • 7-16
Pointer Declarators • • • • • • • • • • . • • • • • • • • • • . . • • . • • 7-17
Pointer Examples • • • • • • • • • • • • • • • . • • . 7-18
kray Declarators • • • • • • • • • . . • . • . • • • . • . . • . . • • 7-18

vii

Chapter 7: Declarations (Cont.)

A:rray Examples . . • • • 7-19
Function Declarators . • • . • • • . . • • • • • . . . • • • . • • • • . . . • . 7-19
Compatible Function Types • • . . • • • • . . 7-21
Function Declarator Examples • • • • . 7-22

Type Names . • . • • • • • 7-23
Type Name Syntax • • . • . • • • • . . . • • 7-24
Type Name Examples . 7-24

Type Defmitions . . . • • • • . . • • 7-25
typedef Declaration Syntax • • • 7-25
typedef Declaration Examples . 7-26

Initialization • • . . • . • . . . • • . 7-29
Aggregate Initialization . . • • • . . • . • . . . • • • • • . . • • • 7-29
Aggregate or Union lnitializers . • . . . • • • . . . • . . • • . . • . . • . • 7-30
Initialization Syntax • . . • • • • . . • 7-31
Initialization Examples • • • . . • • • . • . . . • • • . . . • . . . 7-31

Chapter 8: Conversions

Overview . 8-1
A:rithmetic Operands • • • . . . • . . • . • . . • . . • 8-1

Integral Promotions • • . • • • • . . • • • • • • • • • • . . . • . . • • • 8-1
Signed and Unsigned Integers • • . . • . • • • • . • • • . . 8-2
Floating and Integral Types • • . . . • • • • . • • • . • • • . . • • • • • • • . 8-3
Float to Double Promotions • . • • • . . • • • • . • • . • • • • . • • • • • • • 8-3
A:rithmetic Conversions • . . • • • . . . • • • • . . • . . . • • • • . • • 8-4

Other Operands • • . • • . . . • • . . • • • • 8-5
!values and Function Designators • 8-5
void . 8-6
Pointers • • • • . . • . • . • . • . . . • . • 8-7

Null Pointer . 8-7

viii

Chapter 9: Expressions

Overview • • • • . • • • . • • • . • • • • • • • . • • . . • • • . . • • • . • • • • • • • • • 9-1
Side Effects and Sequence Points . • • • . • • • • • • • • • • • • • . . . • • • . . 9-1
Evaluation of an Expression • 9-3
Precedence and Associativity of Operators • • • • • • • • • • • • . • • • • • . • 9-4
Primary Expressions • 9-6

Primary Expression Syntax • • • • • • • • . • • . • • • • • • • • • • • • • • • 9-6
PostriX Expressions • • • • • • • • • • • . • 9-6

PostriX Expression Syntax • • • • • • • • • • • • . • • • • • • • • • • • • • • • 9-6
Axray Subscripting • • • • • • • • . . . • . . • . • • • • . • • • • • . • • • • • • 9-7
Axray Object Example . • • • • . . . • • • • . . • . . . • • • • . • • • . • . • 9-8

Function Calls • • • • . . • • • • • • • • • • . • • • • . • • • • • . • . • . . • . . • . . 9-8
Function Prototypes . • • . . . • • • . . . • . • • • 9-9

Function Expression Example • • • • . • . • • • . • • • • • • • • • • • . • • 9-1 1
Structure and Union Members • . • . • • • . . • . • • • • . • . • • . • . . 9-1 1
Structure and Union Examples . . • • • • • • • • • • • • . • • . • 9-12
PostriX Increment and Decrement Operators . • • • • • • • • • • • • • • 9-13

Unary Operators • • • • • • • • • • • • . • • • • • . • . . • • • • • • . • . • • . • • . 9-13
Prefix Increment and Decrement Operators • • • • • • • • • • 9-13
Address and Indirection Operators • • . . . • . . • . • • . . • 9-14
Unary Axithmetic Operators • • . • • . . • • • • • . • • . • • • . • 9-15
The s i z eof Operator • • • • • . • • • • • • . • • • . . • . • . . 9-16
Cast Operators • • • • • • • • • • • • • . . • . . • • 9-17

Cast Conversion of Pointers • • • . . • • • . . • • • • • • • • . 9-17
Cast Syntax • • • • • • • • • • • . • • • • • . • • . • • • • • . • • 9-18

Multiplicative Operators . • • • • • • • • • • • • • . . • . . . • . • . 9-18
Multiplicative Syntax • • • • . . • . • • • • • . • • • • • • • • • • • • . • 9-20

Additive Operators • • • • . . • • • • • • • • • • . • . • • • • . • • • . • • • • 9-20
Pointer Axithmetic • . • . • 9-21

Additive Syntax • . . • • • • . • • . • • • • • • • • • • • • • • • • • . • • 9-22
Bitwise Shift Operators . . . • • • • • • • • • • • . • • • • • • . • . • . • . . 9-22

Bitwise Shift Syntax • . 9-23
Relational Operators . • • • • . . • . . • . • • • • 9-23

Relational Pointers • • • • • • . . • . . . • . • . • . . . 9-24
Relational Syntax • • 9-24

Equality Operators • • • • . . • • 9-24
Equality Operators and Pointers • • . . . • • . • 9-25
Equality Syntax . • 9-25

Bitwise AND Operator • 9-25
Bitwise AND Syntax • . • • • • • • . • • • • • 9-26

ix

Chapter 9: Expressions (Cont.)

Bitwise exclusive OR Operator • . • • • • • . • • • • • • • • • • • • • • • • 9-26
Bitwise exclusive OR Syntax • • • • • • . • • • • • • • • • • • • • • • • 9-26

Bitwise inclusive OR operator • 9-26
Bitwise inclusive OR Syntax • • • • . • • • • • • • • • • • • • • • • • • 9-26

Logical AND operator • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • 9-27
Logical AND Syntax • 9-27

Logical OR Operator • 9-27
Logical OR Syntax • 9-28

Conditional Operator • • • • • • • • . • • • • • • . • • • . • • • • • . • • • • 9-28
Conditional Syntax • • • • • • • • . • . • • . . • • • • • • . • • • • . • • 9-29

Assignment Operators • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • 9-29
Simple Assignment • 9-30
Compound Assignment • . • • . 9-30
Assignment Syntax • • • • • • . • 9-31

Comma Operator • 9-31
Comma Syntax • 9-32
Comma Operator Example • • • • • • . • • • • • • • • • • • • • • . • • 9-32

Chapter 10: Constant Expressions

Overview . 10-1
Constant Expression Syntax • • • • • . • • • • • • • . • • • • • • • • • . • • 10-1

Integral Constant Expressions • 10-1
Initializer Constant Expressions • • • • • • . • • • • • • • . • • • • • . • • • . • 10-2
Arithmetic Constant Expressions . • . . . • • • • • . • • • • . • • • • . • • • . 10-2
Address Constants • • • • • • • • • • • . • • • • . • • • • • • • • • • . • • • • • • • 10-2
Constant Expressions Constraints . • • • • • • • . • • . . • • • . • • • • • . • • 10-3

X

Chapter 1 1 : Statements

Overview • • • • . • • • • • • • • . . • • • • • • . . . • • . . • • • • 1 1-1
Statement Syntax • • . • • • • . . • . • . . . • • • 1 1-1

Full Expressions • • • • • • • • • • • • • • . • • . . . • • • • • • • • • • • • • • • . • 1 1-1
Labeled Statements • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • 1 1-2

Labeled Statement Syntax • • • • • . • . • • • • • . • • • • • • • • • • • • . 1 1-2
Compound Statement • • • • • • • • • • • • . • • . • • • • • • • • • • • • • • • • • 1 1-2

Compound Statement Syntax • • • • • • • • • . • • • • • • • • • • • • • • • 11-2
Expression Statements • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • 1 1-3

Expression Syntax • . • • • • • . . . • . • . . . • • • • • • • • • • • • • • • • • 1 1-3
Null Statement Example • . • • • • • • • • • • • • • • • . • • . • • • • • • • 1 1-3

Selection Statements • • • • • • • • • • • . . • 1 1-3
Selection Statement Syntax • • . . • . • . . • • • • • • • • • • • • • . • • • 1 1-3
The if Statement • • . . . • • • • . • . • • • • . • • • • • • • • . . • • . • • • 1 1-4
The switch Statement • . • . • . . . • • . • • • • . • • . • . • . . • . • . 1 1-4
switch Statement Example • • . • . • . • • • • • . • • • . . • • . 1 1-5

Iteration Statements • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • 1 1-6
Iteration Syntax • 1 1-6
The while Statement • 1 1-6
The do Statement • 1 1-6
The f or Statement • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • . • 1 1-6

Jump Statements • 1 1-7
Jump Statement Syntax • • • • • • • • • • • • • . . • • . . . • . . • • • • . • 1 1-7
Jump Statement Example • . . • • • . . • • • • • • • • • • . • . • • . . • . 1 1-8
The goto Statement • . . . • • • • • . • • • • . . . • • • . • • • . • • • • • 1 1-8
The continue Statement • • • • • • • • • . . . • • • • . • . • • • . • . • 1 1-8
The break Statement • • • • . • • • • • • . . • • • . . 1 1-9
The return Statement • • • • • • • • • • • • • . • • • • . . . • • . . • . . 1 1-9

Chapter 12: ANSI C Compatibility Issues

Overview • • . . . • . . • • • • . • . . 12-1
ANSI C Changes • • • . • • • • . . • • • • . • • 12-1
Integral Promotions • • • • • 12-5

Integral Constant Typing • • . . . • • • • . 12-8
LPI-C Extensions • • • • . • • • • • • . • . . . • • • . • • • . • • • . . . • . . . • 12-10

Compatibility Options • • • • • . • • . • • • . • . • • . . • 12-12

xi

Glossary

Appendices

Appendix A: Language Syntax Summary • • • • • . . • • • • • • • • • . • • • A-1
Appendix B: Identifier List • • • • • • • • • • • • . . • • • • • • • • • • • • • • • • B-1
Appendix C: ANSI C Implementation-Defined Behavior . • • • • • • • • C-1
Appendix D: Compilation and Numerical Limits • • • • • • • • . . . • • • D-1
Appendix E: Unspecified and Undermed Behavior • . . • E-1

Index

xii

Preface: Using This Manual

Product Description

LPI-C is a fully conforming implementation of the C language as defmed
by the ANSI Committee X3Jll in Draft Proposed American National
Standard for Information Systems - Programming Language C,
(Document No X9.159-1989, Dec 71 1988). It passes the Plum Hall ANSI
C Validation Test Suite.

The LPI-C Language Reference Manual describes the ANSI C language
as implemented by Language Processors, Inc.

All LPI-C features adhere to this Standard. Implementation-defined
behavior is explicitly noted; in cases where this behavior is machine
dependent, the user is referred to the LPI- C User 's Guide Cor more
information.

In addition, LPI-C contains several extensions for compatibility with
earlier implementations of C, which are discussed in Chapter 12 . There
are several " compatibility modes" which may be selected at compile time
to accomplish this. See your LPI-C User 's Guide Cor additional
information.

Related Documentation

For additional information on LPI-C, refer to the following manuals in
the LPI-C documentation set:

• The LPI-C User 's Guide describes how to compile, link, and run
LPI-C programs. It also provides specific implementation
information for use with your particular machine.

xiii

Intended Audience

This manual is written Cor experienced C programmers. It is not a
tutorial, nor is it recommended Cor beginners.

Organization of Information

This manual consists of the following:

Chapter 1 describes the LPI-C translation environment.

Chapter 2 describes the LPI-C execution environment.

Chapter 3 describes lexical elements such as identifiers and constants.

Chapter 4 describes tokens and preprocessing directives.

Chapter 5 describes types and type derivations.

Chapter 6 describes the different scopes or identifiers, as well as function
defmitions.

Chapter 7 describes declarations and type specifiers.

Chapter 8 describes conversions and operands.

Chapter 9 describes expressions, operators, and function prototypes.

Chapter 10 describes constant expressions.

Chapter 11 describes statements.

Chapter 12 describes differences between ANSI C and earlier
implementations or Kernighan and Ritchie C.

A glossary is provided Cor LPI-C specific terms.

Appendix A summarizes the language syntax.

Appendix B provides a list of identifiers, functions, and macros.

Appendix C describes implementation limits.

xiv

Appendix D describes compilation and numerical limits.

Appendix E describes unspecified and undermed behavior.

The index provides a quick reference Cor rmding important LPI-C terms.

Syntax Conventions

The following syntax conventions are used in this manual.

1. Typewriter font is used Cor keywords, reserved words, and instances
in which identifiers from programming examples are referred to in
the text.

#include <stdio . h>
main 0
{
printf ("Thia is typewriter font")
}

2. User-supplied information is indicated by italic type. For example:

eo,..,tant-ezpreuion:
eonditional-ezpreaaion

3. Alternative dermitions are listed on separate lines, except when
prefaced by the words "one or."

inelTUive-OR-ezpreuion :
ezelusive-OR-ezpreuion
inelusive-OR-ezpreuion I ezeluaive-OR-ezpreuion

4. An optional symbol is indicated by the subscript " opt," so that
{ l ezpreuion aub opt!} indicates an optional expression enclosed in
braces.

XV

-.\ .

Chapter 1: Translation Environment

Overview • • • • • •

Translation Units
Translation Phases

Translation Phases Examples

• . 1-1
• • 1-1
. 1-1
. 1-5

Chapter 1 : Translation Environment

Overview

This chapter describes the units and phases of the translation
environment.

Translation Units

A translation unit consists of a source file, which contains the program
text, along with any headers and source files that may be included by
way of the preprocessing directive #include. The compilation units
(that is, the resulting source text to be compiled) do not include any lines
that were excluded by way of conditional inclusion preprocessing
directives (for example, #if; see Chapter 4 for further discussion of
preprocessing directives) .

Translation units may be compiled separately, then saved individually or
in libraries and later linked to produce an executable program.
Previously compiled translation units are also referred to as object
modules.

Separate translation units of a program can communicate at execution
time through the following means:

• calls to functions whose identifiers have external linkage

• manipulation of objects whose identifiers have external linkage

• manipulation of data files

Translation Phases

The translation of a source file into an executable program is
conceptually divided into a sequence of eight phases that are described in
this section. Each phase performs, in order, a portion of the translation.

This is a conceptual model only; in actual practice, many of the phases

are combined. For example, in many implementations, including LPI-0,

Translation Environment 1-1

phases 1 through 3 are grouped together into what is referred to as
scanning or lexical analysis; Phase 4 represents preprocessing; phases 5
through 7 are grouped into parsing or semantic analysis; and Phase 8
represents linking.

Note that this section makes reference to material that is fully described
in later chapters of the book, especially the chapters covering lexical
elements and preprocessing.

1 . End-of- line Recognition and Trigraph Mapping

A new-line character is placed at the end of each physical line in
the source me. On most UNIX-based systems, this is not relevant
since the end-of-line is already represented by a single (ASCIT)
line-feed character. On most MS-DOS�based systems, this
placement of the new line character simply involves replacing each
(ASCIT) carriage-return/line-feed pair with one new-line character.

Next, each trigraph sequence in the source me is converted to its
corresponding single character equivalent. (Trigraphs are
three-character sequences that begin with two question marks (??)
and are discussed fully in Chapter 3.)

2. Line-splicing

Each occurrence of a backslash (\) character that is immediately
followed by a new-line character is deleted, thereby splicing two
physical source lines into one logical source line. (In diagnostic
messages, LPI-C will always refer to the physical rather than the
logical source line number.)

A non-empty source me must end in a new-line character, which
itself is not immediately preceded by a backslash character.

Line-splicing is used primarily (but not exclusively) to write
preprocessing macro dermitions that cannot easily fit onto one
physical line.

3. Decomposition into Preprocessing Tokens

1-2

The source me is broken down into a sequence of preprocessing
tokens, new-lines, and other sequences of white-space, including
comments.

Translation Environment

Preprocessing tokens may consist of identifiers, string literals,
character constants, preprocessing numbers, operators, punctuators,
and header names, and are discussed fully in Chapter 4.

Other sequences of white-space may consist of spaces; horizontal
tabs; form-feeds or vertical tabs (but not within preprocessing
directives); or comments, each of which is replaced by one space
character. Note that comments are not recognized within string
literals, character constants, or comments (that is, comments do
not nest).

LPI-C will convert sequences of white-space characters to one space
character; other implementations may choose to retain the exact
spelling of the white-space character sequence. (This distinction in
conversions can only make a difference in the case of the macro
expansion of a function-like macro invocation that uses the
stringize (#) preprocessing operator.)

This decomposition of the source file into preprocessing tokens is
context-dependent. For example, the recognition of a header name
preprocessing token occurs only within a #include preprocessing
directive. (See Chapter 4 for further discussion of preprocessing
tokens and Chapter 3 for further discussion of white space.)

A source file may not end in a partial preprocessing token and may
not end within a comment.

4. Preproeessing

Each preprocessing directive is processed and each macro
invocatiun is fully expanded. Text inside conditionally excluded
groups (that is, groups that are excluded by way of #if ,
#ifdef , or #ifndef directives) is ignored. A #include
preprocessing directive will cause the named source file to be
processed from Phase 1 through Phase 4 recursively, which, in
effect, causes the named source file to be included as a part of the
translation unit at the point at which the #include directive
appeared. (See Chapter 4 for a complete discussion of
preprocessing.)

Trarulation Environment 1-3

5. Eseape Sequenee Mapping

Each escape sequence within each string literal and character
constant is converted to its corresponding single character in the
execution character set. (See Chapter 3 for more on escape
sequences.)

6. String Literal Coneatenation

Each sequence of adjacent string literals is concatenated to form a
single string literal token. Terminating null characters from each
adjacent string are not included, except at the end of the resulting
string.)

7. Syntaetie and Seman tie Analysis

At this point in the translation, white-space characters, which
served to separate preprocessing tokens in phases 1 through 4, are
no longer significant and are discarded.

Preprocessing tokens are converted to tokens. In this conversion,
keyword identifiers are recognized and preprocessing numbers are
converted to integer or floating point constants. If any
preprocessing tokens remain (for example, preprocessing numbers
that are not converted to integer or floating point constants), an
error will result and LPI-C produces an appropriate diagnostic.
What remains after the conversion is simply a sequence of tokens,
each of which has the lexical form of a keyword, an identifier, a
string literal, a character constant, an integer constant, a floating
point constant, an operator, or a punctuator.

Syntactic and semantic analysis will be performed upon the
sequence of tokens; if no fatal errors are encountered, compilation
will be done and an object module will be produced.

8. Linking

1-4

Any number of object modules may be linked (that is, combined)
to form one final executable program. The linker program, usually
provided by the system (for example, the ld program on UNIX
systems), is responsible for resolving all external data object and/or
function references and linking in appropriate library modules. To
simplify the invocation of the system linker program, LPI-C
provides a link script appropriate for each target system. (See your
LPI- C Use r 's Guide for further information.)

Translation Environment

Translation Phases Examples

The specification of translation phases may be useful in resolving
complex questions that can arise when coding in C. The following list
addresses some of those questions, using the rules specified in the
translation phases as described in the preceding section.

• A preprocessing directive (for example, a #define line) may be
continued on the next physical line by preceding the end-of-line with
a backslash, since Phase 2 effectively deletes occurrences of
backslash/new-line, thus splicing physical source lines into one logical
line before the preprocessing directive is recognized in Phase 4.

• A string literal token may also be continued onto the next physical
line by preceding the end-of-line with a backslash, again since line
splicing is done in Phase 2 before token recognition in Phase 3 .
However, using the adjacent string literal concatenation feature is
usually the preferred way of writing long string literals.

• Trigraph sequences are recognized and translated within string literals
and character constants, since trigraph mapping in Phase 1 is done
before token recognition in Phase 3.

• Since comments are replaced by one space character in Phase 3 before
preprocessing directives are preprocessed in Phase 4, a preprocessing
directive (for example, a #def ine line) may be continued onto the
next physical line by using comments as in the following example:

#define MAX I * continued to the next line
. . . * I HEADRO OM

• Again, since comments are replaced by one space character in Phase
3, the following construct:

a/* comment */b

produces the two tokens, a and b, rather than the one token ab.

Tranalation Environment 1-5

fi A comment is not recognized as a comment (that is, it is not skipped)
when it is within a string literal or character constant, since string
literals and character constants are tokens themselves and their
contents are not examined for comments.

For example, the following string literal token:

"a/* comment •/b"

would remain the same throughout translation and would not be
translated as "a b" .

This is actually a result of the dermition o f a comment given in
Chapter 3, and not a result of the rules of translation phases, since
comment and token recognition both occur in Phase 3 .

• Since token decomposition is performed in Phase 3 before processing
occurs in Phase 4, the following construct:

#define APLUS +a
+APLUS

yields the following three tokens: + , + , and a, rather than yielding
two tokens: ++ and a..

• Since tokens are recognized in Phase 3 before macro expansion in
Phase 4, dermed macro names are not expanded within string literals
or character constants. For example:

#define MYSTRING string
printf ("MYSTRING ")

would not print string , but rather MYSTRING.

• Macros are expanded in #include lines. For example:

#define MY_DEF_aEADER "mydef s . h "
#include MY_DEF_aEADER

1-6 Tranalation Environment

is equivalent to:

#include "mydef s . h "

• Adjacent strings are not concatenated in #include directives, since
adjacent string literal concatenation occurs in Phase 5, whereas
#include directives are processed earlier in Phase 4. For example,
the following construct is illegal:

#define MY_DEF_aEADER " def s "
#define EXTENSION " . h "
#include MY_DEF_aEADER EXTENSION

• During preprocessing in Phase 4, there is no notion of keywords since
keywords are not recognized until Phase 7. Therefore, keywords may
be redermed just as any other identifier. For example, the following
construct is legal:

#define int unsigned int

• Macros may not be dermed to represent opening and closing comment
delimiters, since all comments are mapped to one space character in
Phase 3, which occurs before preprocessing (and #define
processing) in Phase 4. The characters I* will serve to open a
comment and the characters *I will serve to close a comment. For
example,

#def ine START_COMMENT I*
#define END_COMMENT *I

is equivalent to the following:

#define START_COMMENT

Translation Environment 1-7

Chapter 2 : Execution Environment

Overview
Program Startup
Program Execution . • • • • • • • •

Implementation Semantics
Signals and Interrupts .
Program Termination •

. 2-1
• • 2-1

. 2-3

. 2-3
• • 2-4

. 2-4

Chapter 2 : Execution Environment

Overview

This chapter describes the execution environment: program startup,
execution, and termination.

Program Startup

All objects with initial values that are in static storage are initialized
before program startup. The function named main is called at program
startup. There is no function prototype for main. Therefore,
parameters are not necessary when derming the main function, as in the
following examples:

or

in� main (void) { }

main () { }

Alternatively, two parameters may be used when derming main, as in
the following example, which uses the parameters named argc and
argv.

in� main (in� argc , char •argv []) { }

Parameters are local to the function in which they are declared;
therefore, any names can be given to the parameters.

The dermed parameters to the main function in the preceding example
(argc and argv) must adhere to the following constraints:

• argc will have a nonnegative value representing the size of the
argv array.

• If the value of arg c is zero, then the value of the argv is
undefined and should not be referenced.

Ezecv.tion Environment 2-1

• If argc has a value that is greater than zero, the array members
argv [0] through argv [argc-1] will contain pointers to
null-terminated strings. The implementation provides the program
with information that has been determined before program startup by
predefming values for those strings. Command-line arguments before
program startup allow the program to access information that was
determined from elsewhere in the host environment.

• argv [argc] will be a null pointer .

• If the value or argc is greater than zero, the program name is
represented by the string pointed to by argv [0] .

• If the value or argc is greater than one, the strings pointed to by
argv [1] through a.rgv [a.rgc- 1] represent the program
parameters.

• The program can modify the parameters a.rgc and a.rgv, as well
as the strings pointed to by the argv array during program
execution, and rely on the most recent modifications that were
properly saved.

For example, on a typical UNIX system, your program called
progna.me can be invoked with the strings argone and argtwo
with the command:

progna.me argone a.rgtwo

When the program is invoked, the array of pointers will appear as in the
following figure:

2-2 Execution Environment

argc = 3

argv: [a] "progname"

[1] "argone"

" argtwo"

null
pointer

argc

FIGURE 2-1 Array of Pointers

Program Execution

To complete execution, a program may use any of the functions, macros,
type definitions, and objects described in the LPI-C Library Reference
Manual.

Implementation Semantics

ANSI C allows the implementation to derme a one-to-one correspondence
between abstract and actual semantics. That is, at each sequence point,
the values of the actual objects would agree with those values specified
by the abstract semantics. (See Chapter 9 for further discussion of
sequence points.)

If the abstract and actual semantics agree, then the keyword
volatil e would be unnecessary. (See Chapter 7 for further discussion
of volatile .) ANSI C also allows an implementation to perform
optimizations such that the actual semantics agree with the abstract
semantics only when function calls are made across translation unit

Execution Environment 2-3

boundaries. If the called functions and calling functions are in different
translation units, the values of the following would agree with the
abstract semantics at the time of function entry or function return:

• all externally linked objects

• all objects accessible by way of pointers

At the time of function entry, the values of the following would agree
with the abstract semantics:

• the values of the parameters of the called function

• all objects accessible by way of pointers

Note that explicit specification of volatile storage would be required
when objects that are referred to by interrupt service routines are
activated by the signal function.

Signals and Interrupts

A function can be interrupted at any time by a signal and can be called
by a signal handler. If either a signal or a signal handler (or both)
interrupts a function, there will be no modification in whatever
processing had already been completed prior to the interruption, such as
active function invocations and associated automatic data.

Static data may be modified by such interruptions , as library functions
may not necessarily be reentrant.

Program Termination

A program is terminated in one of two ways:

• when the standard library exit function is called (see the LPI-0
Library Reference ManuaQ

• when the main function returns (that is, upon the initial call to the
main function)

2-4 Execution Environment

Chapter 3: Lexical Elements

Overview • • • • • • • • • . • • • . . . • . • • • • . • 3-1
Source and Execution Character Sets • 3-1

Characters Included in Both Sets • • • • • • • • • . • • • • • • • • • • • • • 3-1
Additional Characters in the Execution Set • • • . • • • • • • • • • • • . 3-2

Trigraph Sequences • • . • • . • . • • • • • • • • • . • • • • • . 3-3
Comments • • • • • • • • • • • . • • . . . • • • • • • • . . • • • • • • • • . • • • • • • . 3-3
White Space • • . • . • • . • . . • • • • . . • • • • • • . • • • • • • • • . . • • • 3-4

White Space Examples • • . • • • . • • • • . . • • • . • • • • • . • • 3-4
Tokens • • • • • • . • • . . . • • . • • • . • • • • • • . . • • . • • . • . • • 3-5

Token Syntax • • • • • • • • • • • • • • • . • . . • • . • • . . • . • • • . . 3-5
Keywords • • • • • . • . • • • • • • • • • • . • . • • • • • • • • • • . • • • • . • • • • • 3-6
Identifiers • 3-6
Identifier Names • . 3-6

Identifier Syntax • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • • . • • 3-7
Constants . 3-7

Constant Syntax • • • • • • • • • • • • . • • • • • • • . • • . . • . . • • . • • • . 3-8
Floating Constants • • • • • . • • • • • • • • • • • • • . . • • • • • • • • . • • • • • • 3-8

Floating Constant Syntax • • • • • • • • . . • . • • • • • • • • • • • • • . . . 3-9
Integer Constants • • • • • • • • • . • • . . . • • • • . . • • . • • . • . • . • • • • . • 3-9

Integer Constant Types . . • • • • • • • • . . . • • . . • • . • . . • . • . • • 3-10
Integer Constant Syntax • • • • • • • . • • . • • . • • • • 3-1 1

Character Constants . . . • . • • . • • • • . 3-12
Escape Sequences • 3-13

Octal and Hexadecimal Escape Sequences • • • • • • . • • • • • • . • • • 3-14
Nongraphic Display Characters • . . . • • • • • • • • • • • • . • • • • • • • 3-14
Character Constant Syntax • . . • • • . . • • • • • • • • • • • • • . • . • • 3-15
Character Constant Examples • . . . • . • • • • • • • • . • • • • • • • • • 3-16

Enumeration Constants • . • • • • . . • . • • • • • • • • • • • • • • . • • . • • • • 3-16
Enumeration Constant Syntax • • • . . • • • . • . • . • 3-16

String Literals • • . • • • . • • • • • • • • . • • • . • • • • • . • • • • 3-17
String Literal Syntax • • . • . . . • 3-18
String Literal Example . • . . • • • • • . • • • 3-18

Operators • • • • • . • • . • • • • • • . • . . . • • . . 3-18
Operator Syntax . . . • • • • • • • . • . • . • • . . • • 3-19

Punctuators • • • • . . . • • . . • • • • • • • . . . • . . . • . . • • • • • . . • 3-19
Punctuator Syntax • • • • • • . • • . • . . • 3-19

Header Names • • • • • • . . • • . . • • • . . • . • . • . • • . . . • 3-19

Chapter 3: Lexical Elements

Overview

This chapter describes the following lexical elements from which a
program is constructed: characters, tokens, keywords, identifiers,
constants, string literals, operators, and punctuators.

Source and Execution Character Sets

There are two sets of program characters in LPI-C:

• the set in which source riles are written

• the set interpreted in the execution environment

In most implementations of LPI-C, both the source and the execution
character sets are the ASCII character set. (See Appendix C, item 4.i, in
the LPI-0 Use r 's Guide.)

Characters Included in Both Sets

Each of these character sets has the following members:

• the 52 upper- and lowercase letters of the English alphabet:

A B c D E F G H I J K L M
N 0 p Q R s T u v w X y z
a b c d e f 9 h i j k 1 m

n 0 p q r B t. u v w X y z

• the 10 decimal digits:

0 1 2 3 4 5 6 7 8 g

Lezical Elements 3-1

• the 29 graphic characters:

exclamation point
number sign
I; ampersand
I slash
(left parenthesis
* asterisk

comma
period
semicolon

= equal
? question mark
] right bracket

underscore
vertical bar

"

\
)
+

<
>
[

{
}

double quote
percent
single quote
backslash
right parenthesis
plus
hyphen or minus
colon
less than
greater than
left bracket
caret
tilde
left curly brace
right curly brace

In addition, both the source and execution character sets contain the
following:

• The space character.

• The control characters representing the horizontal tab , the vertical
tab , and form feed.

• The end of line indicator, which will be treated as a single new-line
character. (For example, on most UNIX systems, the end of line
indicator is represented by the ASCII value OxA, or line-feed.
However, on many MS-DOS systems, the end-of-line is indicated by
the sequence OxODOA, or carriage return/line feed.)

Additional Characters in the Execution Set

In addition to the preceding list of characters, the execution character set
contains the following control characters: alert, backspace, carriage
return, and new line (see the "Escape Sequences" section later in this
chapter) .

When a member of the execution character set appears in a character
constant or string literal, it can be represented by its corresponding
member of the source character set, or it can be represented by one of
the escape sequences that contains the backslash (\), followed by one or
more characters. If characters that are not in the execution character set
are found in a source file, the behavior is undefined.

3-2 Lexical Elements

The null character terminates a character string literal. The null
character has all bits set to 0.

Trigraph Sequences

When any of the following sets of three characters, called trigraph
sequences, appears in the source file, that set is then replaced with a
single character. This allows the user to input characters that are not
defined in the ISO 646-1983 Invariant Code Set, which is a subset of the
seven-bit ASCIT code set.

TRIGRAPH
SEQUENCE

??=
??(
??f
??)
??'
?? <
??!
??>
??-

SINGLE-CHARACTER
REPLACEMENT

[
\
J

{
I
}

If a program contains a question mark (?) that does not begin one of the
trigraphs in the preceding table, that question mark is not affected.

For example, the following source line

printf (" Thi s i s not two question marks : ? ? ? ln ") ;

becomes (after replacement of the trigraph sequence ??/)

printf (" This i s not two que s tion marks : ?\n ") ;

Comments

A comment is introduced by the characters I * , except within a
character constant, a string literal, or a comment. During processing, a
comment is examined only to identify any multibyte characters and to
find the characters * I at the end of the comment.

Lexical Elements 3-3

White Space

White space is generally used to separate preprocessing tokens so that
individual preprocessing tokens will not be parsed as one token. AB an

exception, white space may only be included as part of a header name or
as part of a string literal or a character constant.

White space consists of any of the following:

• one or more of the following characters: space, horizontal tab ,
new-line, vertical tab , and form-feed

• a comment (each comment is replaced by one white space character in
translation phase 3)

• a combination of comments and white-space characters

Note that all white space characters can be regarded as the same except
in the preprocessing phase, where new-lines are significant, and form-feed
and vertical tabs are not allowed in preprocessor directives.

White Space Examples

To avoid unexpected results that may be produced by parsing individual
preprocessing number tokens as if they were one complete token, it is
recommended that white space be used liberally. When, for example, the
program fragment Bfx is parsed, it is parsed as one single preprocessing
number token, which is not a valid floating or integer constant token and
will result in an error in translation phase 7.

If, on the other hand, the pair of preprocessing tokens 8 and fx are
parsed, a valid expression might be produced (for example, if fx were a
macro defmed as + 1).

When the program fragment x+++++y is parsed, it is parsed as
x + + + + + y, (with white space before the final +) which violates a
constraint on increment operators. The parse x ++ + ++ y (with
white space before the final two ++), however, might yield a correct
expression.

3-4 Lexical Elements

Unexpected results can be produced by lack of white space in certain
preprocessing number token constructs. For example, the program
fragment Ox1 23E+abcde is not parsed as the three tokens Ox1 23E
+ abcde as might be expected. Instead, it is parsed as one
preprocessing number token, which is not a valid token and will result in
an error in phase 7 . Placing a white space in front of the + will yield
the expected result.

Tokens

A token is dermed as the minimal lexical element of the language in
translation phases 7 and 8. (Preprocessing tokens are discussed in
Chapter 4. See Chapter 1 for discussion of translation phases.)

A token is one of the following:

• keyword

• identifier

• constant

• string literal

• operator

• punctuator

Token Syntax

token:
keyword
identifier
constant
string-literal
operator
punctuator

Lexical Elements 3-5

Keywords

The following is a list of words, which are used entirely in lowercase,
that are reserved for use in LPI-C in translation phases 7 and 8 as
described in Chapter 1 .

auto double int struct
break e l s e long switch
case anum register typedef
char extern return union
const f loat short unsigned
continue for signed void
def ault go to sizeof volatile
do if static while

Identifiers

An identifier consists of a sequence of nondigit characters and digits,
with the rust character a nondigit character. (Nondigit characters
include the underscore (_) as well as lowercase and uppercase letters.)

An identifier refers to one of the following:

• object

• function

• tag

• member of a structure, union, or enumeration

• typedef name

• label name

• macro name

• macro parameter

• enumeration constant

Identifier Names

Identifier names that differ in a significant character constitute different
identifiers. LPI-C assumes identifier names that differ in an insignificant
character to be the same identifier.

3-6 Lexical Elements

An identifier name must not have the same sequence of characters as a
keyword; identifiers are also case-sensitive.

LPI-C defines the first 256 characters of an internal name (that is, a
macro name or an identifier that does not have external linkage) to be
significant, exceeding the minimum of 31 required by the ANSI C
Standard.

ANSI C allows the implementation to restrict the length of an external
name (an identifier that has external linkage) to six significant
characters. Distinctions of uppercase and lowercase for external names
may also be ignored. (See Appendix C, item 3 .iii, in the LPI- C User 's
Guide for further information on LPI-C's implementation of this
feature.)

Identifier Syntax

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one or
a b c d e f 9 h i j k 1 m
n 0 p q r 8 t u v w X y z
A B c D E F G H I J K L M
N 0 p Q R s T u v w X y z

digit: one or
0 1 2 3 4 5 6 7 8 g

Constants

This section describes the forms and values of the following constants:

• floating constants

• integer constants

• enumeration constants

• character constants

Lexical Elements 3-7

Constant Syntax

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

Floating Constants

A floating constant contains the following components:

• a significand in a floating constant, which is a decimal rational
number

• an optional exponent part

• an optional suffiX that specifies the constant type

• either the whole-number part or the fraction part of the constant

• either the period or the exponent part of the constant

The significand may consist of the following:

• a digit sequence representing the whole-number part

• a period (.) following the digit sequence

• a digit sequence representing the fraction part, following the period

The optional exponent part of the floating constant consists of the
following:

• e or E

• an exponent that can consist of a signed digit sequence, which is a

decimal integer, following the e or E

The following table describes optional integer suffiXes that specify the
constant type.

3-8 Lexical Elements

SUFFIX INTEGER TYPE

unsufrlxed floating constant double

suffixed by the letter f or F f loat

suffiXed by the letter 1 or L long double

Floating Constant Syntax

floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suflixopt

fractional-constant:
digit-sequenceopt • digit-sequence
digit-sequence

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f 1 F L

Integer Constants

An integer constant has the following characteristics:

• begins with a digit

• has no period or exponent part (unlike a floating constant)

• may have a prefiX to specify the base

Lexical Elements 3-9

• may have a suffiX to specify the type of the integer constant

The following table describes the components of specific integer
constants.

INTEGER CONSTANT CHARACTERISTICS

decimal Begins with a nonzero digit
Consists of a sequence of decimal digits
Is computed base 10

octal Consists of the prefiX 0
PrefiX 0 may be followed by a sequence of

the digits 0 through 7
Is computed base 8

hexadecimal Consists of the prefiX Ox or OX
PrefiX may be followed by

a sequence of the decimal
digits and the letters a {or A)
through f {or F) with
values 10 through 15

Is computed base 16

Integer Constant Types

The following table shows the possible types that may be attributed to
an integer constant.

The attributed type is the rust type in which its value can be represented
that appears in the corresponding list on the right.

SUFFIX

unsufflXed decimal

unsuffiXed octal or hexadecimal

3-10

INTEGER TYPE

int , long int , uns i gned
long int

int , uns i gned int ,
long int , unsigned long
int

Lexical Elements

SUFFIX INTEGER TYPE

suffiXed by the letter u or U unsigned int , uns i gned
long int

suffiXed by the letter I or L long int , uns i gned long
int

suffiXed by both the letters u or U unsigned long int
and I or L

Integer Constant Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
OX hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 6 6 7 8 g

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 6 6 7 8 g
a. b c d e f
A B C D E F

Lexical Elements 3-11

integer-au/liz:
unaigned-aufliz long-auflizopt
long-au/liz unaigned-auflizopt

unaigned-aufliz: one of
u u

long-au/liz: one of
1 L

Character Constants

A character constant has the following characteristics:

• It has type int.

• It has a numerical value: the character is interpreted as an integer of
the execution character set (for example, in ASCIT, 'A' is interpreted
as 65).

• It is a sequence of one or more multibyte characters enclosed in
single-quotes, as in 'a' or 'xz' .

• The elements of a sequence of integer character constants are any
members of the source character set, which are in turn mapped by the
compiler in an implementation-dermed manner to the members of the
execution character set. (See Appendix C, item 4.v, in the LPI-C
Uaer 'a Guide.) There are a few exceptions with escape sequences
detailed later in this chapter.

• If an integer character constant contains more than one character,
then its corresponding value is implementation-dermed. LPI-C, for
example, will give the multibyte character • ab • a value of
Ox3132, assuming an ASCIT execution character set.

• If an integer character constant contains a character (or an escape
sequence) that is not represented in the basic execution character set,
then its corresponding value is implementation-dermed. LPI-C will
ignore the \ for undermed escape sequences. For example, ' \z • is
translated to • z • .

• If an integer character constant contains a single character or escape
sequence, its value is the same as it would be if an object with type

3-12 Lezical Elementa

char were converted to type int, assuming that the object has the
same value as the integer character constant's single character or
escape sequence.

• A wide character constant has the same characteristics as an integer
character constant, but has the letter L as a prefiX.

• A wide character constant has the integral type wchar _t, as
defined in the <stddef . h> header.

• If a wide character constant contains a single multibyte character
that maps into a member of the extended execution character set, the
value is the wide character (code) corresponding to that multibyte
character, as defmed by the mbtowc function. (See the LPI-0
Library Reference Manual for more information on this function.)
LPI-C defines the current locale as the "C" locale.

• If a wide character constant contains more than one multibyte
character, or if it contains a multibyte character or escape sequence
that is not represented in the extended execution character set, its
value is implementation-defined. (See Appendix C, item 4.vii, in the
LPI-0 Use r 's Guide.)

Escape Sequences

LPI-C supports the escape sequences shown in the following table:

TABLE 3-1 Eseape Sequenees

ESCAPE SEQUENCES

\ '
\ " or "
\ ? or ?
\\
octal digits
hexadecimal digits

REPRESENTATION

single-quote '
double-quote "
question-mark ?
backslash \
octal integer
hexadecimal integer

Octal and hexadecimal escape sequences are both terminated by the first
non-octal or first non-hexadecimal digit, respectively, except that an
octal escape sequence is comprised of at most three digits. (See the
following section, "Octal and Hexadecimal Escape Sequences. ")

Lexical Elements 3-13

There are also escape sequences that consist of the backslash \ followed
by a lower-case letter: \a, \b, \f , \n, \r, \t, and \v. (See the
section "Nongraphic Display Characters" later in this chapter.)

Any other escape sequence will produce undefined behavior.

Octal and Hexadecimal Escape Sequences

The value of an octal or hexadecimal escape sequence must meet the
following constraints:

• For an integer character constant, the value must be in the range of
representable values for the type unsigned char.

• For a wide character constant, the value must be in the range of
representable values for the unsigned type corresponding to
wchar_t.

In an octal escape sequence, all octal digits following the backslash
together specify the value of a single character for an integer character
constant (or a single wide character for a wide character constant) .

In a hexadecimal escape sequence, all hexadecimal digits following the
backslash and the letter x together specify the value of a single
character for an integer character constant (or a single wide character for
a wide character constant).

Nongraphic Display Characters

Nongraphic characters in the execution character set are represented by a
corresponding set of alphabetic escape sequences.

These escape sequences can be used, with printf , for example, to
affect display devices as follows:

\a

\b

\f

3-14

(alert) Does not change the current display position.
Sounds an audible alert or produces a visible alert.

(backspace) Moves the current position to the previous
position on the current line.

(form feed) Moves the current display position to the
first position at the beginning of the next logical page.

Lexical Elements

\n

\r

\t

\v

(new line) Moves the current display position to the first
position of the next line.

(carriage return) Moves the current display position to
the first position of the current line.

(horizontal tab) Moves the current display position to
the next horizontal tab position on the current line.

(vertical tab) Moves the current display position to the
rust position of the next vertical tab position.

Character Constant Syntax

ch.arac te r-constant:
• c-ch.ar-sequence •

L • c-ch.ar-aequence •

c-ch.ar-sequence:
c-ch.ar
c-ch.ar-sequence c -ch.ar

c-ch.ar:
any member of the source character set except

the single-quote · , backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-aequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\' \ " \? \\
\a \b \f \n \r \t \v

octal-escape-aequence:
\ octal-digit
\ octal-digit oc tal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

Lexical Elements 3-15

Character Constant Examples

The null character is generally represented by the construction • \0 • .

LPI-C uses a two's-complement representation for integers and eight bits
for objects that have type char. In LPI-C, since type char has the
same range of values as signed char, the integer character constant
• \xFF • has the value -1.

The integer character constant with the following hexadecimal
construction:

· \x1 1 3 .

will specify only one character instead or two, regardless or whether or
not an object with type char is represented in eight bits.

Ir, however, the programmer intended to specify an integer character
constant containing two characters with the following values:

Ox1 1 and · a ·

then, because only a non-hexadecimal character terminates a hexadecimal
escape sequence, the following construction must be written:

. \0213 .

which is equivalent to • \021 • • 3 · , since octal escape sequences are
comprised of at most three digits. Likewise, L • \ 1 254 • will result in a
wide character constant having the values · 125 • • 4 • for the reasons
described above.

Enumeration Constants

An enumeration constant in C has the same lexical structure as an
identifier but has type int. (See Chapter 5 for further information.)

Enumeration Constant Syntax

3-16

enumeration-constant:
identifier

Lezieal Elements

String Literals

A string literal is one or the following:

• a character string literal, which is a sequence or zero or more
multibyte characters enclosed in double-quotes, as in "xyz "

• a wide string literal, which is the same, except prefiXed by the letter
L

For each element oC the sequence in a character string literal or a wide
string literal, the same constraints must be met as if it were in an integer
character constant or a wide character constant. The only exceptions to
this rule are that single-quote • can be represented in two different
ways, by itselC or by the escape sequence \ • , and that double-quote "
can only be represented by the escape sequence \ " .

If sequences or adjacent character string literal tokens (or adjacent wide
string literal tokens) specify multibyte character sequences, then those
multibyte character sequences are concatenated into a single multibyte
character sequence in translation phase 6. (A character string literal
adjacent to a wide string literal token will produce undefmed behavior.)

The multi byte character sequences, as described previously, will have a
• \0 • byte appended in translation phase 7 , which, in turn, will be used
to initialize an array. That array is or static storage duration and is
just long enough to contain the multibyte character sequence.

Individual bytes of the multibyte character sequence can be used to
initialize the array elements Cor character string literals, which have type
char. Note that string literals are also allowed to have embedded
• \0 • escape sequences.

A sequence of wide characters that corresponds to a multibyte character
sequence is used to initialize the array elements or wide string literals,
which have type wchar _t.

Lezical Elements 3-17

String Literal Syntax

a tring-literal:
11 11-ch.ar-sequenceopt 11

L 11 11-ch.ar-sequenceopt 11

11-ch.ar-11equence:
11-ch.ar
11-ch.ar-11equence 11-ch.ar

11-ch.ar:
any member or the source character set except
the double-quote 11 , backslash \, or new-line character
e11cape-11equence

String Literal Example

Just prior to concatenation or adjacent string literals, escape sequences
are converted into single members of the execution character set. For
example, the following pair or adjacent character string literals,

11 \:x:24 11 11 7 11

produces a single character string literal that consists or the two
characters whose values are \x24 and '7 ' .

Operators

Each of the operators listed in the following syntax evaluates an operand
to produce a value.

The following operators only occur in pairs, although each pair may be
separated by other expressions.

[]

()

? :

Only macro-derming preprocessing directives use the operators # and
##. (See Chapter 4 Cor further discussion or preprocessing directives.)

3-18 Lezical Elements

Operator Syntax

operator: one of
[] ()
++ .t;

s ize of:
<< >> <

u
= •= /=
<<= >>=
• # ##

Punctuators

...

I
>

I I
"=

.It=

- >
+
"
<= >= - - ! =

?
+= -=

-= I =

Although a punctuator sometimes represents an operator, generally a
punctuator does not evaluate an operand.

The following punctuators only occur in pairs, although they can be
separated from each other by expressions, declarations and statements:

[]

()

{ }

Only preprocessing directives use the punctuator #.

Punctuator Syntax

punctuator: one of
(] () { } •

Header Names

=

Header name preprocessing tokens only appear within a #include
preprocessing directive. (See Chapter 4 for further discussion of
preprocessing directives.)

Lexical Elements

3-19

Chapter 4: Preprocessing Directives

Overview
Preprocessing Tokens
Preprocessing Directives

Preprocessing Syntax
Source File Inclusion
Header Names

Header Syntax • • • • • • •

Macro Dermitions • . . .

Object-Like Macros
Function-Like Macros
Macro Argument Substitution
Macro Rescanning • • • • • • . • •

Function-Like Macro Examples • • • • • • •
The # Operator • • • • • • • • • • • • •

The ## Operator • • • • • • • • • • •

Removing a Macro Definition • • • • • • •

Conditional Compilation • • • • .

Conditional Inclusion Directives
Controlling Expressions • •

Evaluation of the Controlling Expression
Line Numbering • •

Error Directive • • •

Pragma Directive
Null Directive • • •

Predermed Macro Names

• • • 4-1
• • 4-1
• • 4-2

. 4-4
. 4-6

. 4-8
. 4-8

. 4-10

. 4-10

. 4-11
• • • • • • 4-12

• . 4-13
. 4-13

• • • • 4-14
. 4-15

• • • • • 4-16
. 4-18
. 4-19

• . 4-20
. 4-21

• • • 4-22
• • • • 4-23

. 4-23
• • • • 4-24

• • • 4-24

Chapter 4: Preprocessing Directives

Overview

This chapter describes preprocessing tokens and preprocessing directives.

Preprocessing tokens are the minimal set of lexical elements, in
translation phases 3 through 6, from which a program is constructed.
(Tokens are the minimal lexical elements of the language in translation
phases 7 and 8.)

Preprocessing directives are used to direct the compiler to include certain
rues or to substitute specific macros, and to include or exclude specific
lines from source rues.

Preprocessing Tokens

A preprocessing token is one of the following:

• header name

• identifier

• preprocessing number

• character constant

• string literal

• operator

• punctuator

• single non-white-space character that differs from the other
preprocessing token categories in this list, with the exception of a
single quote (') or a double quote (") character

Preprocessing Directives 4-1

Preprocessing Directives

ANSI C preprocessing directives and operators are listed in Table 4-1
and Table 4-2.

By using preprocessing directives, the compiler can be directed to include
named flies and substitute macros, as well as to include or exclude
specific sections, of source flies as needed.

Because preprocessing occurs during the first four phases of the
translation phases described in Chapter 1, it can be thought of as a
completely separate phase of translation. In fact, with LPI-C, it is
possible to obtain the source output or the preprocessing phase (that is,
with all macros expanded and flies included) . This procedure can be
useful for debugging purposes. (The source output from the
preprocessing phase can be subsequently compiled.)

A preprocessing directive consists of a sequence of preprocessing tokens.
That sequence begins with a # preprocessing token, which is either the
rust character in the source me (and may also be preceded by white
space) , or which follows a white space containing at least one new-line
character.

A preprocessing directive is ended by the rust new-line character that
appears after the introductory # preprocessing directive.

Form-feed and vertical tab white-space characters may not appear in a
preprocessing directive. However, space and horizontal-tab white-space
characters may appear within a preprocessing directive, and trailing
white space is ignored. This means that preprocessing directives may be
simply thought or as lines in which the first non-white space character is
the # preprocessing token.

The following table summarizes the preprocessing directives and
operators.

4-2 Preprocessing Direc tives

TABLE 4-1 Preprocessing Directives

DffiECTNE �D=E=SC=R=W�T=IO=N�-----------------------

#define Defines an object-like macro or a function-like macro.

#undef Undermes (that is, removes) a macro name dermition.

#include Includes the text or a specified source me or header me.

#if Conditionally includes or excludes subsequent source
text, based on whether or not a specified expression is
true or false.

#ifdef Conditionally includes or excludes subsequent source
text, based on whether or not a specified name is dermed
as a macro.

#ifndef

#elif

#else

#endif

#line

#error

Conditionally includes or excludes subsequent source
text, based on whether or not a specified name is not
defined as a macro.

Alternatively includes or excludes subsequent source text,
based on whether or not a specified expression is true or
false.

Alternatively includes or excludes subsequent source text,
based on whether or not a previous matching #if ,
#ifdef, #ifndef, or #elif directive, is true or
false.

Terminates a conditionally included or excluded group
that began with a matching preceding #if, #ifdef,
or #ifndef directive.

Forces the translator to behave as if the current line
number and, optionally, the source me name, are those
specified in the directive (for diagnostic purposes) .

Causes the translator to produce an error message
containing the specified text.

Preprocessing Directives 4-3

TABLE 4-1 Preprocessing Directives (Cont.)

DffiECTNE =D=E�SC=R=W�T=IO=N�-----------------------

#pragma Causes the translation to perform some implementation
defined task.

TABLE 4-2 Preprocessing Operators

OPERATOR �D=E=SC=R=W�T=IO=N�-----------------------

defined Evaluates to true or false, based on whether or not a
specified name is defined as a macro (for use within a
#if or #elif directive).

Concatenates tokens in a macro definition (token-paste).

Creates a string-literal consisting of the tokens in a
macro function argument (stringize).

Preprocessing Syntax

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

4-4

preprocessing-file:
group opt

group:
group-part
group group-part

Preprocessing Directives

group-part:
pp-tokens0P' new-line
if-section
control-line

if-section:
if-group elif-groups0P' else-groupopt endif-line

if-group:
if
ifdef
ifndef

elif-groups:
elif-group

constant-expression new-line group0P'
identifier new-line group0P'
identifier new-line group0P'

elif-groups elif-group

elif-group:
elif constant-expression new-line group0P'

else-group:
e l s e new-line group0P'

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-lis t0P,)

undef
line
error

replacement-list new-line
identifier new-line
pp-tokens new-line
pp- tokens0P' new-line

pragma pp-tokens0P' new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

Preprocessing Directives 4-5

replacement-liat:
pp-tokens opt

pp-tokens:
preprocessing-token
pp-tokena preprocessing-token

new-line:
the new-line character

Source File Inclusion

One of the most common preprocessing directives is the #include
directive. This directive specifies that the contents of a designated source
me (or standard header) should be included in the source me at the point
where the directive appeared. Typically, the designated source me to be
included contains declarations, t.ypedefs, and macro definitions to be
used by a number of source flies in a program, thereby reducing
duplication of code and increasing program modularity.

The following three forms of the #include preprocessing directives
may be used:

1 . The following #include preprocessing directive form will search
for a header that is uniquely identified by the name appearing
between the < and > delimiters:

4-6

include <h-char-sequence> new-line

For example:

#include <at.dio . h>

Once found, the entire contents of the header will be substituted
for the directive itself.

In general, LPI-C will search in the following sequence of places:

.- First, if the source me name specified is fully qualified by a
directory path name {for example, if it begins with a slash (/)
on UNIX systems), then the file will be searched for in the
specified directory only.

Preprocessing Directives

• Otherwise, if not found in the specified directory, the file will be
searched for within the directories specified on the command
line by way of the -ipath option.

e Otherwise, if not found, then the file will be searched for within
the standard LPI-C include file directory (which contains the
ANSI C standard header riles) , or, if the -syspath option
was given on the command line, within the standard system
include me directory (for example, /usr/include on most UNIX
systems) .

• Otherwise, the search has failed and a diagnostic message will
be issued.

2. A #include preprocessing directive of the following form will be
replaced by the contents of the source file that is identified by the
name between the " and " delimiters.

include " q-char-sequence " new-line

For example:

include " data . h"

Once found, the entire contents of the source me will be substituted
for the directive itself.

In general, LPI-C will search in the following sequence of places:

• First, if the source me name specified is fully qualified by a
directory path name (for example, if it begins with a slash (/)
on UNIX systems). Then the me will be searched for in the
specified directory only.

• Otherwise, the me will be searched for in the same directory in
which the including me resides.

• Then, if not found, it will be searched for as if it had been
included by way of the rust method.

3. In the following form of the #include preprocessing directive,
the preprocessing tokens after include in the directive are
processed just as in normal text. That is, macros are fully

Preprocessing Directives 4-7

expanded. Mter macro expansion, the resulting directive must
match one of the two previously described #include directive
forms.

include pp-tolcena new-line

For example:

if defined (M68_TARGET)
define TARGET_lN "M68 . in "
elif defined (I386_TARGET)
define TARGET_lN " I386 . in "
e l i f defined (M88_TARGET)
define TARGET_lN "M88 . in "
e l i f defined (SPARC_TARGET)
define TARGET_lN " sparc . in "
endif

include TARGET_lN

For further information concerning methods of source file search, see
Appendix C, item 13 .ii, in the LPI- 0 User 's Guide for full details.

Header Names

Header name preprocessing tokens are recognized only within a
#include preprocessing directive. This section describes the structure
and syntax of header names. (The interpretation of header names is
discussed in the previous section.)

The two forms of header names are shown in the following syntax.

Header Syntax

4-8

header-name:
< h.-char-sequence>
11 q-char-sequence"

h.-char-sequence :
h.-char
h.-char-sequence h.-char

Preprocessing DirectiveB

h-char:
any member of the source character set except
the new-line character and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except
the new-line character and "

The manner in which the sequences in both forms of header names are
mapped to headers or external source files is implementation-defined, as
is the way in which the preprocessing tokens between a < and a >
preprocessing token, or two " characters, are combined into a header
name preprocessing token. (See Appendix C, item 13.iv, in the LPI-C
User 's Guide.)

LPI-C does the following:

• A source filename specified within double quotes is taken exactly as it
is written. For example, the following expression:

#include " f / * hi* / ile\ 'x ' . h "

specifies the following file name:

• • f / * hi * / ile\ 'x ' . h ' '

• A source header name specified between a < and > is created by
concatenation of the individual preprocessing tokens that appear
between the < and >.

For example, the following expression:

#include < f / * hi * / ile\ 'x ' . h>

specifies the header with the following name:

• • file . h • •

The behavior is undefined in the following cases:

Preprocessing Directives 4-9

• if the characters • \ " or I * occur in the sequence between the <
and > delimiters

• if the characters • \ or I * occur in the sequence between the "
delimiters

• if the characters correspond to escape sequences (since \ causes
undefmed behavior)

Macro Definitions

This section describes how to defme object-like and function-like macros,
as well as the method by which they are invoked and expanded.

A name may he defmed to he an object-like or function-like macro
through the use of the #define preprocessing directive. A macro
name may be redefmed as long as the following holds true:

o The second definition is the same kind of macro as the first (that is,
either object-like or function-like).

• The defmition of the two replacement lists in each macro definition
are identical. Two replacement lists are identical if they consist of
exactly the same sequence of preprocessing tokens and white space
separation (where all non-empty sequences of white space within a
replacement-list are considered identical).

• The number and names of macro parameters (for function-like
macros) are the same.

Object-Like Macros

An object-like macro is defined using the following form of preprocessing
directive:

#def ine identifier replacement-list new-line

Once such a definition is made, subsequent occurrences (that is ,
invocations) of the named identifier will he replaced by the sequence of
preprocessing tokens that constitute the replacement-list (which may
consist of no tokens) , after any token-pasting takes place, as described
below. This process is called macro expansion.

4-10 Preprocessing Directives

One of the more common uses of an object-like macro is to defme
manifest constants, and thereby avoid the generally poor practice of
using hard coded constants throughout the source code, as illustrated in
the following example:

#define MAX_EASH_TABLE_$IZE 1031

char *HaahTable [MAX_RASH_TABLE_$I ZE] ;

Note that occurrences of a named identifier within a string-literal will
not be substituted since the string-literal is itself a token and its contents
are not examined for macro expansion. The same is true for character
constants.

Function-Like Macros

A function-like macro is defmed using the following form of
preprocessing directive:

#def ins identifier (identifier-lid) replacement-list new-line

Note
No white space may occur between the identifier and the left parenthesis token.

The identifier list specifies zero or more comma-separated macro
parameters that may be used in the replacement list and will be
substituted by the actual macro argument upon invocation as described
in the following section. The scope of each macro parameter extends
from its appearance in the identifier list until the closing right
parenthesis. There may be no duplicate macro parameter names in the
identifier list.

After such a definition, subsequent occurrences of the named identifier
that are followed by a parenthesis as the next unexpanded preprocessing
token constitute an invocation of the function-like macro. The
invocation will be substituted by the replacement list, after any
argument substitution and token-pasting takes place, as described in the
following section.

The tokens following the left parenthesis of the macro invocation, up to
a matching terminating (unexpanded) right parenthesis constitute the
macro argument list. Matching pairs of left and right parentheses may
occur within a macro argument list.

Preprocessing Direc tives 4-11

Each argument within the macro argument list is separated by an
unexpanded comma preprocessing token. Any commas that appear
within string-literals, character-constants, or matching pairs of
parentheses do not serve to separate macro arguments.

Within a macro argument list, all white space (including a new-line) is
considered the same. This implies that preprocessing directives will not
be recognized if they occur within a macro argument list. LPI-C will
abide by this rule, although, strictly, the behavior in this situation is
undefined and should not be relied upon.

If a macro argument consists of no preprocessing tokens (that it, if the
macro argument is empty) , then the behavior is undefined and should
not be relied upon, although LPI-C will properly treat it as a null token
and will issue a warning message.

If the number of macro arguments in the macro invocation does not
agree with the number of macro parameters in the function-like macro
definition, then the behavior is undefined and should not be relied upon.
However, if too many arguments are given, LPI-C will discard any extra
ones. If too few arguments are given, LPI-C will supply a null token for
each missing argument.

Macro Argument Substitution

Mter each of the macro arguments of a function-like macro invocation
has been collected, it is substituted for each occurrence of the
corresponding macro parameter in the replacement list according to the
following rules:

• If a macro parameter is preceded by a # preprocessing token, then
the corresponding macro argument is the operand of the stringize
operator. (The macro argument will first be expanded as described in
the following section.)

• If a macro parameter is preceded or followed by a ## preprocessing
token, then the corresponding macro argument is an operand of the
token-paste operator and will first be expanded as described in the
following section.

• Next, the macro argument corresponding to the macro parameter in
the replacement list is itself fully expanded as if it formed the rest of
the source flle (that is, no other preprocessing tokens are available) .
Note that macro expansion can be a recursive process.

4-12 Preprocessing Directives

,. Finally, the fully expanded macro argument is substituted for the
corresponding macro parameter in the replacement list.

Macro Rescanning

Macro expansion is not yet finished after any token-pasting, stringizing,
and argument substitution within the replacement list has taken place.
The resulting sequence o£ preprocessing tokens is then rescanned £or more
object-like or £unction-like macro invocations to expand. In addition, the
preprocessing tokens that make up the rest o£ the source file are available
£or expansion, unlike the case o£ macro expansion o£ macro arguments.

During the rescanning, i£ the name o£ the macro being replaced is found,
it is not replaced and is no longer available £or further replacement.
Thus, " recursive death" is prevented and the kind of definition that
follows is possible:

#define exit (status) exit (s tatus + l)

The preceding example will expand to the following:

exit (l + l)

1£ the final resulting sequence of preprocessing tokens has the same
appearance as a preprocessing directive, it is not processed as though it
were a preprocessing directive.

Function-Like Macro Examples

Function-like macros are generally used in the same way that functions
are used. That is, they are used as a way of encapsulating some amount
of computation, and, optionally, taking parameters or returning a value,
or both.

The primary advantage £unction-like macros have over functions is
speed. Because the macros are expanded at compile time to the specified
code, they do not incur the extra overhead and processing associated with
£unction calls.

Preprocessing Directives 4-13

A disadvantage of using function-like macros is that more code is
produced if the macro is called more than once than would have been if a
function were used. Also, function-like macros can be time-consuming to
debug, while being very susceptible to programming errors. For
example, if a macro parameter is referenced more than once, then the
corresponding macro argument will be evaluated more than once. H the
expression has a side-effect, then it is likely it will not be what was
intended, as illustrated in the following example:

#define MIN (x , y) (((x) <= (y)) ? (x) : (y))

c = MIN (a , b) ;
c = MIN (a+ + , b++) I* DANGER ! (a or b wi11 be

incremented twice) * I

Attention should also be given to properly parenthesizing macro
parameters within the replacement list so that expressions are evaluated
as they were intended. For example, the following expression

#define MUL (a , b) a * b
MUL (1 +2 , 3) ;

will evaluate to " 1 + 2 * 3 " which is probably not what was intended.
The following defmition should be used instead to ensure the correct
result:

#def ine MUL (a , b) ((a) * (b))

The # Operator

The # operator is known as the stringize operator, since it turns a
sequence or tokens into a string-literal.

H a replacement list of a function-like macro definition contains a #
preprocessing token that is immediately followed by a parameter, both
the # preprocessing token and the corresponding macro argument are
replaced by a single character string literal preprocessing token, whose
spelling is identical to the spelling or the preprocessing token sequence for
the corresponding argument.

4-14 Preprocessing Direc tives

The spelling of each preprocessing token in the argument prior to its
replacement remains the same in the character string literal, with the
following exceptions:

• white space that appears between preprocessing tokens in an
argument becomes a single space character in the character string
literal

• white space before the first preprocessing token is ignored

• white space after the last preprocessing token is ignored

• a \ character is inserted before each " and \ character of a
character constant or string literal (including the delimiting "
characters)

The ## Operator

The ## operator is known as the token-paste operator, since it pastes
two tokens into one.

If a replacement list of a macro definition contains a ## preprocessing
token that is immediately followed or preceded by a parameter, the
parameter is replaced by the preprocessing token sequence of the
corresponding unexpanded macro argument.

Neither the object-like nor the function-like form of a macro definition
may contain a ## preprocessing token at the beginning or the end of a
replacement list.

Before the replacement list of either an object-like or a function-like
macro invocation is re-examined for more macro names to replace, all
preprocessing tokens in the replacement list are deleted.

Next, the preprocessing token that had preceded the ## preprocessing
token is concatenated with the preprocessing token that followed it.

The result must be one and only one valid preprocessing token;
otherwise, the behavior is undermed. ftuly resulting preprocessing token
that is not valid will produce undefined behavior.

Preprocessing Directives 4-15

Removing a Macro Definition

The scope of a macro definition is in effect until a corresponding
#undef directive. If there is no corresponding #undef directive, the
macro dermition scope will hold until the end of the compilation unit. (A
macro dermition scope is not affected by the beginning or end of a block,
since the preprocessing phase has no notion of blocks.)

In the following expression, the preprocessing directive causes the
identifier to be undermed (that is, removed) as a macro name.

undef identifier new-line

If the identifier is not currently defined, the #undef directive is
ignored. The following sequence illustrates the rules for redefinition and
reexamination:

#def ine A
#def ine Q (x)
#undef A
#def ine A
#def ine R
#def ine B
#def ine s
#def ine T (f)
#def ine c
#def ine U (a)
#def ine LP
#def ine RP
#define X

Q (x - 1) ;
Q (Q (B)) ;

2
Q (A +

3
Q
B [9]
S (!
f (C)
4 , 5
a
(
)

U (U (R) (- 1) I U) (-2) ;
R (A - Q + C) S 86) ;
T (Q) ;
T (T) ;
Q LP U (-9) RP ;
Q (T LP A X B RP) ;

(x))

Yields:

4-1 6

Q (3 + (x - 1)) ;
Q (3 + (Q (3 + (B [9])))) ;
Q (3 + (- 1)) I U (-2) ;

Preprocessing Directives

Q (3 + (3 - Q + 4 , 5)) S (! 86) ;
Q (3 + (4 , 5)) ;
T (4 , 5) ;
Q (-9) ;
Q (3 + (T (3 , B [9]))) ;

To illustrate the rules for creating character string literals and
concatenating tokens, the following sequence:

#def ine NST (s) # s I * non-expanding
#def ine NTP (a , b) a##b I * non-expanding
#define ST (s) NST (s)
#define TP (a , b) NTP (a , b)

• I
* I

#def ine XPR (d) pr (ST (TP (X , d)) " : %d\n" , TP (X , d))
#def ine EX h
#def ine H (s , v) TP (TP (TP (TP (s , _) , v) , _) , EX)
#def ine ZORBA " Carpe "
#def ine BA BA " diem"

#include ST (H (def , 01))

pr (NST (H (def , 01)) "= %s\n" , ST (H (def , 01))) ;
XPR (of f s et) ;
pr (NST (f (" Q\O ; " , " Q" , ' \6 ') I • hi * I

! =0) NST (: G\n) , z) ;
pr (NTP (ZOR , BA) " \n ") ;
pr (TP (ZOR , BA) " \n") ;

Yields:

#include " def_01_A" I * before file inclus ion • I

pr (" H (def , 01) " "= �s\n" , " def_01_A") ;
pr ("Xof f s et " " : �d\n" , Xoff s et) ;
pr (" f (\ " Q\\0 ; \ " , \ " Q\ " , ' \\6 ') ! =0 " " : C\n " , z) ;
pr (" Carpe " " \n ") ;
pr (" Carpe " " diem" " \n") ;

Space around the # and ## tokens in the macro definition is optional.

Finally , to demonstrate the redefinition rules, the following sequence is

valid.

Preprocessing Directives 4-17

#def ine MAX_SIZE (1024 -1)
#def ine MAX_SIZE (1024 - 1)

#define MIN (a , b) ((a) <= (b) ? (a.) : (b))
#define MIN (a , b) 1* *1 ((a) <= (b) / * * / ? / *

* / (a) (b)) / * * 1

#define MAX (a , b) ((a) >= (b) ? (a) : (b))
#define MAX (a , b) ((a) <= (b) ? I * then * I

(a) I * e l s e * I
(b))

The following redefinitions are invalid:

#def ine MAX.JHZE 1024
#def ine MAX_SIZE (1024)

#def ine MIN (a , b) ((a) <= (b) ? (a) : (b))
#def ine MIN (a , b) ((a) <= (b) ? (a) (b))

#define MAX (a , b) ((a) >= (b) ? (a) (b))
#define MAX (m , n) ((m) >= (n) ? (m) (n))

Conditional Compilation

This section deals with the manner in which specific sections of source
files are selected to be included or excluded from processing, as
determined by the chosen preprocessing directive.

\
\

In the case of the #if and #elif directives, the conditional inclusion
or exclusion is based on whether a given controlling expression, which is
an integral constant expression, evaluates to a non-zero value (true) or to
a zero value (false). In the case of the #ifdef and #ifndef
directives, the inclusion or exclusion is based on whether or not a
specified name is dermed or undefined as a macro.

4-18 Preprocessing Direc tives

Conditional Inclusion Directives

In the following preprocessing directives, #if and #elif test whether
the controlling constant expression evaluates to nonzero.

#if constant-expression new-line groupopt
#elif constant-expression new-line groupopt

In the following preprocessing directives, #ifdef and #ifndef test
whether or not the identifier is currently dermed as a macro name.

#ifdef identifier new-line groupopt
#ifndef identifier new-line groupopt

In the case above, the first directive is equivalent to:

#if defined identifier

and the second directive is equivalent to:

#if ! def ined identifier

H the controlling expression of the directive evaluates to true (that is,
non-zero) , the associated section of source code will he included in the
compilation. Only the first such group will he included (that is, in the
case of #elif alternatives).

H the controlling expression is false (that is, zero) , the associated section
of source code will not he included in the compilation (that is, it will he
excluded and will not he compiled).

H none of the conditions evaluates to true, and there is a #el s e
directive, the #else is included in the compilation; if there is no
#else directive, all the groups until the matching #endif are
skipped.

Preprocessing tokens are not allowed between a #el s e or #endif
directive and a terminating new-line character. That is, preprocessing
tokens must appear by themselves on a line, although comments are
allowed. For example:

#if XYZZY
#else XYZZY
#endif I * XYZZY *I

Preprocessing Directives

I* wrong * I
I * okay • I

4-19

Also, since comments are processed in Phase 3 before the execution of
preprocessing directives in Phase 4, they are significant within a skipped
group. For example:

#if 0
thi s text i s skipped
I* this is a comment ; the following #else is . . .
#else
. . . commented out *I
#end if

This example demonstrates the basic principle that preprocessing
directives may be commented out.

Controlling Expressions

The expression that controls the inclusion or exclusion of specific sections
of source code (that is , in a #if or #elif directive) must be an
integral constant expression (as defined in Chapter 9). Note the following
constraints:

• only integral constants or character constants may be used (no
floating constants)

• the controlling expression may not contain a cast

• the controlling expression may contain unary operator expressions of
one of the following forms:

def ined identifier

or

def ined (identifier)

These expression would then evaluate to 1 if the identifier is currently
dermed as a macro name, and 0 if it is not.

(To be currently defined as a macro name, the identifier must be
predefined, or be currently defined as a macro name by way of a
#def ine preprocessing directive, as long as there is no intervening
#undef directive.)

s Constants having type int act as if they had the same
representation as long.

4-20 Preprocessing Direc tives

• Constants having type unsigned int. act as if they had the same
representation as unsigned long.

• Since all operands in the expression are either long or uns i gned
long integral constants, only operations that are allowed on these
types are allowed.

• Since all operands in the expression are integral constants, the
following operators cannot be used:

s izeof operator

increment (++) operators

decrement (- -) opera tors

address of (&) operator

- indirection (*) operator

structure/ union pointer (- >)

member (.) operator

array subscript ([]) operator

function call (()) operator

Before the controlling expression of a #if or #elif directive is
actually evaluated, any macro invocations are fully expanded. Macro
names modified by the defined unary operator, however, are not
expanded. Any identifiers remaining after macro expansion are replaced
with the token 0 (zero).

Note
If the macro expansion process generates the defined token, the behavior is
undefined. The behavior is also undefined if the defined unary operator was not
used in one of the two specified ways.

Evaluation of the Controlling Expression

The controlling expression, consisting of the tokens resulting from macro
expansion, is evaluated as an integral constant expression. This
evaluation is performed according to the rules of constant expressions as
described in Chapter 9.

When interpreting character constants in these constant expressions,
escape sequences may be converted into execution character set members.

Preproceaaing Directivea 4-21

It is implementation-defmed whether the numeric value for any character
constant matches the value obtained when an identical character
constant occurs in an expression that is not part of a #if or #elif
directive.

For example, since there are distinct translation and execution
environments, the constant expreBBion in the following #if directive
and if statement is not guaranteed to evaluate to the same value in
both environments.

#if · z · -
if (• z •

· a .
a

26
26)

This behavior should not be relied upon. However, in LPI-C the
evaluation of these two expressions is identical.

Line Numbering

When an error message is issued, LPI-C specifies the number of the line
on which an error was encountered. That number is determined by
presuming that the fllst line of the me is line 1 and incrementing the line
numbers until the end of the me.

There are times when it may be useful to control the line number in a
me by arbitrarily setting it to a particular line number.

For example, if the UNIX utility such as lex or yacc is used, the output
may be a c source me which then may be included in the me.

If there is an error within that source me that was produced by lex or
yacc, the error message would ascribe the error to a line number that is
from that lex-generated source me, rather than to a line number from
the original me.

To avoid this confusion, a # line preprocessing directive can be used
to set a line number in the me being processed to the same number as in
the lex-generated c source me.

The following preprocessing directive sets the line of a translation unit to
a new number that is greater than zero and less than 32767.

line digit-sequence new-line

4-22 Preproceaaing Direc tives

The following preprocessing directive also sets the line number and
changes the presumed name of the current source rlle to be the contents
of the character string literal:

l ine digit-sequence n s-char-sequenceopt" new-line

The following preprocessing directive causes a replacement list to be
replaced and then processes line numbering as in the two previously
mentioned forms.

line pp-tokens new-line

Error Directive

Use of the following preprocessing directive form will produce a specific
error message:

error pp-tokensopt new-line

This directive is commonly used to indicate an undermed conditional
inclusion alternative. For example:

if defined (m68_TARGET)
define TARGET_lN "M68 . in"
elif defined (i386_TARGET)
defined TARGET_lN " i386 . in"
else
error " Only M68 or !386 targets supported "
endif

Pragma Directive

Use of the following form of preprocessing directive will produce an
implementation-dermed result. (See Appendix C, item 13.v, in your
LPI-0 User 's Guide.)

pragma pp-tokensopt new-line

Unknown # pragmas will be ignored.

Preprocessing Directives 4-23

Null Directive

Use of the following form of preprocessing directive has no effect.

new-line

Predefined Macro Names

The following macro names are predefined by ANSI C:

_ _J.INE _ _

_JILE _ _

_ _])ATE _ _

_ _ TIME _ _

_ _8TDC _ _

4-24

Represents the line number of the source file the
translator is currently processing. The line number is a
decimal constant.

Represents the presumed name of the current source file
as a character string literal.

Represents the date when translation of the source file
occurred.

The translation date must be a character string literal
of the following form:

Mmm dd 'V'V'V'V

The names of the months are the same as those
generated by the asctime function. If the day of the
month is less than 10, then the first character of dd is a
space character.

Represents the time when the source file translation
occurred. The translation time is a character string
literal of the following form:

hh:mm:ss

as generated by the asctime function.

LPI-C sets this to the decimal constant 1 , which
indicates a conforming implementation.

Preprocessing Directives

Predefmed macros have values that stay constant until the end of the
translation unit, with the exception of _J..INE __ and _JILE _ _.

These predefined macro names, as well as the def ined identifier,
cannot be the subject of a #def ine or a #undef preprocessing
directive.

Preprocessing Directives 4-25

Chapter 5: Types

Overview • . 5-1
Type Category • • • • • • • • • • • • • . . . • • • . • • • • . • • • • • • • • . • • • . . 5-1
Character Types • • • • • • • • • • • • • • • • . • • • • . • • • • • • • • • . • • • • . • 5-3
Signed Integer Types • . • • • • • . • . • 5-3
Floating Types • • • • • • . • • • . • • • • • . • . • • . • • • • • • • • • • • • • • • • • 5-4
Enumeration Types • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • . . • • • 5-4
Other. Type Classifications • 5-5

Basic Types • . • • • • • • • . • • • • • • • • • 5-5
Arithmetic Types • • • • . • • . . • • • • . • . . • • • • • • • • • . • • • 5-5
Scalar Types • • • • • • • . . • • • . . . • • • • • • • • • • • • • • • . • • • • • • 5-5
Aggregate Types • • • • • • • • • . • . • • • • • • . • • • • • • • • • • • • • • • • 5-5
Void Types • • • • . • • • • • • • • • • • • • • . • • • • . • • • • • • • . • . . • • 5-6

Type Derivations • • • • • • • . • • • • • • • • • • • • • • . • . • • • • • . • • • • . • 5-6
Structure Types . . • • • • • • . . • 5-6
Union Types • • . . • • . • • • • • • • • • • • • . • • • • • • • • • • • • • . • • • 5-6
Array Types • • • . • • • . . . • • • • • . . • • • . • • • • • . • . . • • • • 5-6
Function Types . . . • • • • • • • • • • . . • • • • • • • • • • • • • • • 5-7
Pointer Types . • . . • • • • • • • • • • . . • . • • • • • • . • • • • • • 5-7

Qualified Types • • • • • • • • . • . • . . . • • . • • . • • • • • • • • • • • • 5-7
Qualified Types Examples . . • . . • • . • . . • • • • . • • . • • . • • • . • • 5-8

Compatible Types • • • • • • • • • • • • • . . • • • • • • . . . • • • . • . • . . • • . 5-9
Composite Type • . • • • • • • • • • • • 5-10

Composite Type Example • 5-10

Chapter 5 : Types

Overview

This chapter describes the data types supported by LPI-C. The type of
the expression used to access a value from an object or a function
determines the meaning of that value.

AB described in Chapter 3, the simplest expression is an identifier . The
particular type of the identifier is specified in the identifier's declaration.

Type Category

The broadest categories of types are the following:

• object types, which describe data objects

• function types, which describe functions

• incomplete types, which describe objects but do not contain the
information needed to determine the object sizes

The type category of a derived type is its outermost derivation (see the
section "Type Derivations" later in this chapter). The type category of a
simple type is the type itself.

The following figure depicts the C data types and their relationships to
each other.

T11pea 5-1

{ Types

I
f Function l r Incomplete r Object l

I I
I Aggregate

Incomplete Structure I
Incomplete Union -Structure
Incomplete Array Union

Array
r

Scalar I
I

r Pointer

:Arithmetic i

r
Basic I

I Floating

Basic
I Integral

f Character I
I Signed

char Integer
signed char -,

unsigned char
signed char

short

int

long

FIGURE 6- 1 Types

5-2

I Integral I 1 r I

jEnum�rated I I Bit-field

I I
Unsigned plain

Integer int

I signed int

signed char
unsigned int

unsigned short

unsigned int

unsigned long

Types

Character Types

Character types include:

• char

• s i gned char

• uns i gned char

.AJJ.y object that has type char has enough space to store any member
of the basic execution character set •

.AJJ. object that has type signed char or uns i gned char has the
same amount of space as an object with type char. The way in which
values outside the basic execution character set are stored in a character
is implementation-defined. LPI-C will store the least significant part of
the given value, as space provides {for example, the low order eight bits
on most architectures).

LPI-C treats values stored in a "plain" char object as s igned.

Signed Integer Types

There are four signed integer types:

• signed char

• short. int.

• int.

• long int.

A "plain" int. object has sufficient space to contain a value that is in
the range INTJ.UN to INT..)dAX, as specified in the header
<limi t.s . h>. {See Appendix D for more information.)

Of the signed integer types in the preceding list, s i gned char
contains a subrange of the values of type short. int.; short. int.
contains a subrange of the values of type int.; and int. contains a
subrange of values contained in type long int.. Note that in this
case, the subrange may consist of the entire range of values of the next
type in the list.

Types 5-3

In addition, each of the signed integer types in the preceding list has a
corresponding unsigned integer type that is designated with the keyword
uns i gned. Unsigned integer types use the same amount of space as
signed integer types. Values of a signed integer type constitute a subset
of the corresponding unsigned integer type, but still have the same
alignment requirements.

There are several other ways in which the signed integer type, as well as
other types, may be designated, as described in the section "Type
Specifiers" in Chapter 7.

Floating Types

The three floating types are:

• float.

• double

• long double

or the floating types in the preceding list, f loat. contains a subrange
of the values of type double, and double contains a subrange of the
values of type long double.

Enumeration Types

An enumeration consists of a list of identifier names, each of which has a
distinct integer value. Each occurrence of an enumeration declares a
distinct enumerated type.

In the following example, colorl and color2 are distinct
enumerated types.

5-4

enum colorl {red , blue , white}
enum color2 {black , green , yellow}

Types

Other Type Classifications

This section describes the other type classifications.

Basic Types

Basic types include:

- type char

- signed and unsigned integer types

- floating types

Although one of the basic types in the preceding list may be represented
in the same way as another basic type, each distinct basic type is
considered to be different from the others.

Arithmetic Types

Arithmetic types include the following:

- integral types

- floating types

Scalar Types

Scalar types include the following:

- arithmetic types

- pointer types

Aggregate Types

Aggregate types include the following:

- array types

- structure types

Because an object that has union type can only contain one member at a
time, union types cannot be aggregate types.

T71pes 5-5

Void Types

The type void is an incomplete type, containing no values, and cannot
be completed.

Type Derivations

This section describes derived types, which are constructed from object,
function, or incomplete types. kray, function, and pointer types are
collectively called derived declarator types.

Structure Types

A structure type is a sequence of member objects. Those member objects
may have different types and must have specified names (except for
unnamed bit-fields).

Union Types

A union type is a sequence of member objects that overlap. Those
member objects may have different types and must have specified names.

A structure or union type that has unknown content (as described in the
section "Tags" in Chapter 7) is called an incomplete type. That
structure or union type can be completed by declaring, later in the same
scope, the same structure or union tag and defining the content.

Array Types

An array type is an ordered sequence of consecutively stored data
objects. Each of those data objects has a specific type, called the
element type. The number of objects in the sequence and the specific
element type characterize an array type.

An array type is derived from the element type of the particular array.
That is, the array type derivation is from its original type. If the
element type of an array type is int, for example, then the array type
is referred to as "array of in t."

5-6 Types

If an array type contains unknown size (for example, char * av []) ,
then it is called an incomplete type. That array type can be completed
by specifying the size in a later declaration, which may have either
internal or external linkage.

Function Types

A function is used to encapsulate the sequence of expressions and/ or
statements used to construct a program. Parameters may be passed to a
function (by value) and a value may be returned from a function. The
return type and the type and number of parameters characterize a
function type.

A function type is derived from its return type and is referred to as the
" function type derivation. " If, for example, the return type is int., the
function type can be referred to as "function returning int.."

Pointer Types

A pointer type is an object that contains a value providing a reference to
another type, called the referenced type. The derivation of a pointer
type is from a referenced type and is referred to as "pointer type
derivation. " If, for example, a pointer type is derived from the
referenced type int., it can be referred to as "pointer to int.."

A pointer to void and a pointer to a character type have the same
requirements for representation and alignment. Also, pointers to
qualified versions of compatible types have the same requirements for
representation and alignment as pointers to unqualified versions of the
same compatible types.

However, pointers to other types do not need to have the same
requirements for representation or alignment.

Qualified Types

All types described prior to this section are classified as unqualified
types. Each unqualified type can be qualified in one of the following
three ways:

Types 5-7

• const-qualified

• volatile-qualified

• const-qualified and volatile-qualified

For example, the int is an unqualified type that has the three following
corresponding qualified versions, each of which belongs to the same type
category:

• const int

• volatile int

• const volatile int

Each of the qualified types also has the same requirements for
representation and alignment, so that the types are interchangeable as
function arguments, function return values, or union members. Even if a
derived type is derived from a qualified type, that derived type is not
itself qualified. For example, if a pointer type is derived from the type
const int, then the resulting type const int * is itself not
const-qualified; instead, it is a pointer to a const-qualified type.

Qualified Types Examples

The type "pointer to int" is designated as follows:

int *

The type category of the preceding example is not integer type but
pointer type.

The const-qualified version of this type is designated as follows and is
called 11 cons t pointer to int.11

int * const

However, the type designated as follows is not a qualified type:

const int *

The type category of preceding example is a pointer to a qualified type
and is called "pointer to const int. 11

5-8 Types

The array type shown in the following example has a length of 10 and a
function that has a single parameter or type in t.

struct s l (• [10]) (int)

The type in the preceding example is called "array of pointer to function
returning struct s 1 . n

Compatible Types

Two types that have the same type are compatible types.

Note
Even if two types have the same representation, or even if two types are defined (by
way of typede:f) to be the same type, they are still not the same type and are thus
not compatible. On the other hand, two types need not be identical to be compatible
{for example, one type could be an incomplete version of the other type) .

H two structure, union, or enumeration types declared in separate
compilation units have the same number of members, as well as the same
member names and compatible member types, then they are compatible.

Two structures must also have members in the same order to be
compatible.

H two structures or unions have bit-fields, then they are compatible iC
the bit-fields have the same widths.

H two enumerations have members with the same values, then they are
compatible.

H two or more declarations referring to the same object or function do
not have compatible types, then the behavior is undefined. (See Chapter
7 Cor additional type compatibility rules relating to declarators, type
specifiers, and type qualifiers.)

Type8 5-9

Composite Type

A composite type is a type constructed from two compatible types.

A composite type has the following characteristics:

• It is compatible with both of the types from which it is constructed.

• If one of the two types is an array of known size, then the composite
type is an array of that size.

• If one of the two types is a function prototype (that is, a function
type with a parameter type list) and the other is a function with an
empty identifier list, then the composite type is a function prototype
with the parameter type list.

• If, however, both of the two types are function prototypes (that is,
function types with parameter type lists), then the composite type of
the corresponding parameters in each parameter type list is used to
construct the resulting composite parameter type list.

Any of the above-mentioned rules apply recursively to the types from
which the composite type is constructed.

If an identifier in the same scope is redeclared with a compatible type,
then the type of the identifier becomes the composite type of each
declaration.

Composite Type Example

Given the following two declarations with the same scope:

int func {float {*) [2] , char {•) {)) ;
int func {float {*) [] , char { *) {int *)) ;

The resulting composite type for the function is:

int func {float [•] [2] , char {*) int { •)) ;

5-10 Types

Chapter 6: Scope

Overview • • • • • • • • • • . • • • • . . . • . • • . • . • . . . • • • • . • • • • . • • • • 6-1
Scopes of Identifiers • • • • • • • • • • • . . . • • • • • • • • • . • • • • 6-1

Function Scope . • . . • . . . • . . • . . • • • • . • • • • . . • • • • • • • 6-2
File Scope • • • • • • . • • • • • • • • • • • • • • • • • • . • • • • 6-2
Block Scope • • • • • • • • • • • . • . • . • • • . • • • • • • • • • • • . . . • • • • 6-2
Function Prototype Scope • • . • • • • • • • . . • • • • • • • • • • • • • • • • 6-2

Name Spaces of Identifiers • • • • • . • • • • . . . • • • • • • • • • • • • • • . . . • 6-2
Linkages of Identifiers • • • . . • . • . • . • • • • • • . • • . • • • • • • • • • • • • • 6-3
Storage Durations of Objects . . • • • • • • • • • • • • • • • . • • • • • • • • . • • 6-5

Static Storage Duration • • • • . . . • • • . • • • • • • . • • • • • • • • • • • • 6-5
Automatic Storage Duration • 6-6

External Dermitions • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • 6-6
Translation Unit Syntax . • • . . • • • • • • . . • • • • • • . • • • • • • • • . 6-7

Function Definitions • • • • • . . • . . • • . . • • • • • . . • • • . • • • • . • 6-7
Function Definition Syntax • . . . • . . • • • • • • • • . • • . • • • • • . • . 6-9
Function Dermition Examples • • • • • • . • • • • • . • . • • . • • • 6-9

External Object Dermitions • • . • • . • • • • • • • • • • • • • • • • • • . • • • • 6-10
External Object Examples • • • • . • • • • • • . • • • • • • • 6-1 1

•

Chapter 6: Scope

Overview

This chapter describes the different scopes, name spaces, and linkages or
identifiers, as well as the storage durations or objects and external object
dermitions.

In addition, this chapter describes external and function dermitions.

Scopes of Identifiers

The scope of a program is the region of program text in which an
identifier is visible. Outside or the scope, the identifier is not recognized.

If two identifiers with the same name exist in the same name space, then
the outer declaration or that identifier is superseded by the inner
declaration until the inner scope terminates. (That is, the outer
declaration is effectively "masked out" within the inner scope
declaration.)

There are four kinds of scope:

• function

• me

• block

• function prototype

If the scopes or two identifiers end at the same point, then those
identifiers have the same scope.

The scope or an identifier begins just after its declarator is completed,
with the following exceptions:

• the scopes of structure, union, and enumeration tags begin just after
the tag in the type specifier in which the tag is declared

Scope 6-1

• the scope of an enumeration constant begins just after its derming
enumerator in an enumerator list

Function Scope

Only a label name, followed by a colon (:) and a statement, has
function scope. The label name must be unique within a function and
can be used (in a goto statement) anywhere within that function.

File Scope

An identifier has file scope if its declaration is outside any block and is
not part of a parameter declaration. File scope ends at the end of the
me.

Block Scope

An identifier has block scope if its declaration is inside a block or within
an old-style function dermition's list of parameters. Block scope ends at
the right brace (}) that terminates the block.

Function Prototype Scope

An identifier has function prototype scope if its declaration is within the
list of parameter declarations in a function prototype declaration which
is not part of a function dermition. Function prototype scope ends at the
end of the function declarator.

Name Spaces of Identifiers

At any point in the translation unit, an identifier may be encountered
that has more than one visible declaration associated with it. Although
this may at r1rst seem to present an ambiguous situation, it does not; the
syntactic context in which the identifier appears is used to determine
which particular declaration (and thus which entity) the reference refers
to. This process of disambiguation leads naturally to the formation of a
number of categories of identifiers, called "name spaces. n

6-2 Scope

The following list outlines name spaces for the different identifier
categories:

• Label names, distinguished by the syntax of the label declaration and
use.

• Tags of structures, unions, and enumerations (there is one name space
for all three entities) ; these identifiers are distinguished from other
identifiers by the tags following any of the keywords struct,
union., or enum, respectively) .

• Members of structures or unions; they are distinguished by the type
of the expression used to access the member by way of the • or ->
operator.

• Ordinary identifiers, which are all other identifers. These identifiers
can be declared in ordinary declarators or as enumeration constants.

Linkages of Identifiers

By the use of linkage, an identifier that is declared in more than one
scope, or in the same scope more than once, can be forced to refer to the
same object or function.

The three kinds of linkage are as follows:

• external

• internal

• none

The kind of linkage an identifier has depends on one or more of the
following:

• the storage class with which the declaration was made

• the scope in which the declaration was made (that is, where the
declaration was made)

• whether the identifier is an object or a function type

Within an entire program, each time an identifier with external linkage
appears, that identifier refers to the same object or function. Within a
single translation unit, each time an identifier with internal linkage
appears, that identifier refers to the same object or function. An

Scope 6-3

identifer with no linkage refers to a single object or function. (Within a
translation unit, an identifier that appears with both internal and
external linkage will result in undefined behavior.)

The linkage of an object or a function declared with the static
storage-class specifier at me scope is internal (but if i t i s declared at
block scope, it has no linkage).

The linkage of an object or a function declared with the storage-class
specifier extern is the same as any visible me scope declaration of that
identifier. In the absence of a visible me scope declaration, the object or
function has external linkage.

The linkage of a function declared with no storage-class specifier is the
same as if it were declared with the extern storage-class specifier.
The linkage of an object (as opposed to a function) declared with no
storage-class specifier at me scope is external.

An identifier has no linkage if it is declared to be one of the following:

• anything other than an object or a function (for example, a
typedef name; structure, union, or enum tag; enumeration
constant; or label name)

• a function parameter

• a block scope identifier, declared for an object that does not have the
storage-class specifier extern

The following table summarizes linkage of file and block identifiers.

6-4 Scope

TABLE 6-1 Seope Linkage

STORAGE-CLASS =-FIL=E'-=S=-=C:....;:O=P=E ___ _

None If the identifier
being declared is or
type £unction
then same as extern
with me scope (below)
otherwise, external
linkage

BLOCK SCOPE

No linkage

extern Same linkage as any visible
me scope declaration

Same as extern
me scope

or the identifier;
iC none, then
external linkage

static Internal linkage No linkage

Note that:

• Function scope identifiers (that is, label names) have no linkage.

• Prototype scope identifiers (that is, parameters; structure, union, or
enum tags; or enumeration constants) have no linkage.

Storage Durations of Objects

The storage duration oC an object determines that object's liCetime.
Storage duration can be static or automatic.

Static Storage Duration

An object has static storage duration when its identifier is declared with
external or internal linkage or is declared with the storage-class specifier
static .

An object with static storage duration has its storage reserved and its
stored value initialized prior to program startup. The last-stored value

Scope 6-5

of that object will be retained until the end of the execution of the
program. (The last-stored value of a volatile object may not be
explicit in the program; see Chapter 7.)

Automatic Storage Duration

An object with automatic storage duration is an object whose identifier
is declared without the storage-class specifier static , and with no
linkage (this implies block scope). An object with automatic storage
duration is guaranteed to have memory allocated to it each time the
block in which the object is declared is entered normally. Alternatively,
that object will have memory allocated to it each time the block is
entered by a jump to a labelled statement within the block (or an
enclosed block) from outside the block.

If the value stored in the object is to be initialized upon entry into the
block, then that initialization is performed on each normal entry.
However, that initialization is not performed if the block is entered by a
jump to a labeled statement within the block.

When execution of the block ends, even if not normally {for example, by
way of goto or break) , the reserved storage for the object is no
longer guaranteed. (The value of a pointer that referred to an object
whose reserved storage block has gone out of scope is undefined.)

The process of entering an enclosed block and calling a function from
within the block will suspend but not end the execution of the enclosing
block.

External Definitions

A compilation unit is the unit of program text that results after
preprocessing {see Chapter 1). A compilation unit is a sequence of
external declarations (note that they are called external because they
appear outside any function, not because of anything related to the
extern storage-class specifier) . External declarations therefore have
file scope. (The declaration specifiers of an external declaration cannot
contain the storage-class specifiers auto and register.)

A defmition is a kind of declaration that also causes storage to be
reserved for the object or a function named by the identifier.

6-6 Scope

When an identifier declared with external linkage is part of an expression
(unless that identifier is part or the operand or a s izeof operator), at
some location in the program there must be one and only one external
dermition for the identifier. Otherwise, the behavior is undermed. There
does not need to be a corresponding external dermition for an identifier
that is declared with external linkage and is not used in an expression (or
is used only within a s izeof expression).

Only one external dermition may appear for each identifier in the
translation unit with internal linkage. In addition, if an expression
contains an identifier declared with internal linkage (unless the identifier
is part or the operand or a sizeof operator), there must be one and
only one external dermition in the translation unit for the identifier.

Translation Unit Syntax

tranalation-unit:
e:dernal-deelaration
tranalation-unit ezternal-declaration

ezternal-deelaration:
function-definition
declaration

Function Definitions

A function dermition contains a function declarator, which provides both
the name or the function and its parameter identifiers and types, if any.

The declarator may include a parameter type list, which provides
information describing the number, types, and possibly the names or the
function parameters. A function declarator that includes a parameter
type list is said to be a "prototyped" function declarator.

A declarator that does not include a parameter type list (that is, is not
prototyped) may include an identifier list that may be empty. H that
identifier list is not empty, then the following declaration list will specify
the types or the parameters named in the identifier list, which may be
used in the function body that must follow. An undeclared parameter is
assumed to have type in t. Such a function declarator is said to be an
"old-style" function declarator.

Scope 6-7

When a prototyped function is entered (after being called), each of its
arguments is converted, as if by assignment, to the type of the
corresponding parameter.

If a parameter is declared as array of type, it is adjusted to pointer to
type. If a parameter is declared as function returning type, it is adjusted
to pointer to function returning type (see the section " !values and
Function Designators" in Chapter 8).

All parameters have automatic storage duration; their storage layout is
unspecified.

Because the effect of the parameter declaration is to define the parameter
at the head of the compound statement that constitutes the function
body, a parameter cannot be redeclared in the function body (unless it is
enclosed within an inner block.)

A function may return type void, or any object type, except an array
type.

The only storage-class specifiers allowed to be used in a function
declarator (or definition) are extern or static.

The only storage-class specifier allowed to be used in a function
parameter declaration (either in a prototyped parameter type list or an
old-style declaration list) is register.

For a prototyped function definition, each parameter declaration must
include an identifier and must not be followed by an "old-style"
declaration list. The exception to this rule is the special case of a
parameter list containing a single parameter of type void; no identifier
should be specified for void.

For an old-style function definition, the parameter declaration list may
declare only identifiers named in the identifier list.

The identifier in a function definition (that is, the function name) cannot
inherit its type information from a typedef . For example,

typedef int F (char) ;
F function { } ;

is illegal, but

6-8 Scope

F func ;
int func (char) { } ;

is correct since F and func have compatible types.

H an identifier has been declared as a typedef name, then it may not
be redeclared as a parameter.

Function Definition Syntax

function-definition:
declaration-specifierBopt declarator declaration-listopt

compound-statement

Function Definition Examples

In the following function definition, the storage-class specifier is
extern and the type specifier is in t. Both extern and in t are
the defaults and could thus be omitted.

extern int sum (int i , int j)
{

return (i + j) ;
}

In the preceding prototyped definition, the function declarator is
sum (int i , int j) and the function body is the following:

{ return (i + j } ;

In the following old-style definition, the definition declares its parameters
by way of the identifier-list and a following declaration list. The
declaration list for the parameters is int i , j ; • Because i and j
are both or type int, their declaration may be omitted, since that is the
default type.

Scope

extern int sum (i , j)
int i , j ;
{

return (i + j) ;
}

6-9

A prototyped function definition forces conversion of the arguments of
subsequent calls to the function, as if by assignment to the type of the
corresponding parameter. Old style function definitions, on the other
hand, do not force argument conversions (the default argument
promotions are simply performed on each argument).

The following example illustrates the passing of one function to another.

int. f (char) ;
I * . . . * 1
g (f) ;

A prototyped definition of g might then follow as:

g (int. (*fp) (char))
{ char c ;

(*fp) (c)
fp (c) ;

}

External Object Definitions

An external object definition is the declaration or an identifier for a data
object, when that declaration has file scope and an initializer.

A tentative external object definition is a declaration of an identifier for
an object, when that declaration has file scope but does not have an
initializer; furthermore, it may not have a storage-class specifier other
than st.at.ic.

If there are one or more tentative definitions for an identifier in the
translation unit and there is no external defmition for that identifier,
then the compiler will behave as if the following were true:

• a file scope declaration is present

• as of the end of the compilation, the identifier has composite type

• the declaration contains an initializer that is equal to 0

The declared type cannot be an incomplete type if the declaration is a
tentative defmition and has internal linkage.

6-10 Scope

External Object Examples

In the following examples, assume external and internal dermitions as
noted.

int e 1 = 1 ; /* external definition *I

e:x:tern int e2 = 2 ; /* external definition *I

int e3 ; /* external tentative dermition *I

static int i 1 = 1 ; /* internal definition *I

static int i2 ; /* internal tentative dermition *I

Then, the following are valid tentative dermitions, each referring to its
corresponding previous definition:

int e 1 ;

int e2 ;

int e3 ;

/* valid tentative dermitions *I

/* valid tentative definitions *I

/* valid tentative definitions *I

but the following have a linkage conflict between external and static:

int i l ;

int i2 ;

Scope

/* extern: previously declared internal *I

/* extern: previously declared internal *I

6-11

Chapter 7: Declarations

Overview . 7-1
Declaration Syntax • 7-1

Declaration Components . 7-1
Storage-Class Specifiers . 7-2

typedef . 7-2
extern • . . . • . . • . 7-3
static • . • . • • 7-3
auto . � 7-3
regi s ter . • • • 7-3
Storage-Class Syntax • 7-4

Type Specifiers • 7-4
Type Specifier Syntax • 7-5
Structure and Union Specifiers • 7-5

Bit-Fields • 7-6
Structure and Union Syntax • • • • • • • • • • • • • • • • • • • . . • • • • • • 7-9
Enumeration Specifiers • • • • • • . • • • • • • • • • . • • • • • • • • • • • • • 7-9
Enumeration Specifier Syntax • 7-10
Enumeration Constant Example • 7-10
Tags . 7-1 1
Tag Declaration Examples • 7-12

Type Qualifiers . 7-13
Type Qualifier Syntax • 7-14
Type Qualifier Examples • 7-14

Declarators • 7-15
Declarator Syntax • 7-16
Pointer Declarators • • • • • • • • • • • . . • • • • • • • • • • • • • • • • • • • 7-17
Pointer Examples • • • • • • • • • . • • . • 7-18
.A:Lray Declarators • . • • • . • . • • • • • . • • . • • • • • • • • • • • • • • • • 7-18
.A:Lray Examples • 7-19
Function Declarators • 7-1 9
Compatible Function Types . • • • • • • • • . • • • • • • • • • • • • • • • • 7-21
Function Declarator Examples • 7-22

Type Names • 7-23
Type Name Syntax • 7-24
Type Name Examples • 7-24

Type Definitions • 7-25
typedef Declaration Syntax . 7-25
typedef Declaration Examples . 7-26

Initialization • . • • • . • • • • • • • . . . • • • • . • . • • • . . • • . • • • • • . . • • 7-29

Chapter 7: Declarations (Cont.)

Aggregate Initialization • • • • • • • . • • • • • • . . • • . • . . . • . . • . • 7-29
Aggregate or Union Initializers • • • • • . • • . . . • • • • • . 7-30
Initialization Syntax • • . • • • • • . • . • • • • • . . • • • . • . • . • • • • • 7-31
Initialization Examples . • • • • • . • • . . • • . • • . • . . 7-31

Chapter 7: Declarations

Overview

This chapter describes declarations, which specify the interpretation of
identifiers.

A declaration does not necessarily reserve storage for an object or
function named by an identifier. A declaration that also reserves storage
is called a defmition.

Declaration Syntax

declaration:
declaration-specifiers init-declarator-list t ; op

declaration-specifiers:
s torage-class-specifier declaration-specifiers t

·t.· d l · "f:"
op

type-spec111er ec arat1on-spec1 1ers t
l ·t.· d l t • •t.•

op
type-qua 111er ec ara 1on-specs1sera t op

init-declarator-list:
init-declarator
init-declarator-list 1 init-declarator

init-declarator:
declarator
declarator = initializer

Declaration Components

A declaration must consist of at least one of the following:

• a declarator

• a tag (structure, union, or enumeration)
• the members of an enumeration

Declarations 7-1

An init-declarator-list is a sequence of declarators that are separated by
commas. Those declarator& contain the identifiers being declared.

A declarator in the init-declarator-list may have the following:

• an initializer

• additional type information

• both an initializer and additional type information

A declaration specifier contains a sequence of specifiers that interpret the
linkage, storage duration, and type of the identifier.

If an identifier has no linkage, then there can only be one declaration of
that identifier that has the same scope and the same name space. The
only exception to this rule is the case of tags (see the section "Tags" later
in this chapter).

If an identifier has no linkage for an object, then by the end of its
declarator, the type of that object must be complete. If that identifier
has an initializer, then its type must be complete by the end of its
init-declarator.

If two or more declarations refer to the same object or function in the
same scope, then they must have compatible types.

Storage-Class Specifiers

Storage-class specifiers (as listed in the section "Storage-Class Syntax")
give storage class attributes to declared objects. No more than one
storage-class specifier may be given in a declaration.

Although not required, it is general practice to place the storage-class
specifier at the beginning of the declaration specifiers.

typ e d e f

For discussion on use of the typedef specifier, see the section "Type
Defmitions" later in this chapter.

7-2 Declarations

ext ern

When the storage-class specifier ext.ern is used within a block, it
specifies that the object is defined elsewhere; that is, it is defmed
elsewhere in the same compilation unit or in another compilation unit.

For a description of how ext.ern is used outside a function, see
Chapter 6.

If an identifier is declared for a function with block scope, then the only
storage-class specifier that can be used is ext.ern. If no storage-class
specifier is used, then ext.ern is assumed.

s t at i c

When the at.at.ic storage-class specifier is used inside a block, it
defmes the storage of the given identifier to be local to that block. (That
is, its scope is restricted to that block.)

When at.at.ic is used at file scope level, it represents a declaration or
the defmition of a function and has internal linkage. (See Chapter 6 for
further discussion of file scope.)

The duration of a static object remains active throughout execution of
the entire program.

auto

The aut.o storage-class specifier gives automatic storage class to
declared objects and can only be used in functions.

The duration of such an object is limited to the active invocations of its
containing function.

r e g i s t e r

The regiat.er specifier can only be used in functions, like the aut.o
storage-class specifier. The regiat.er specifier is used when access to
the object will be frequent and needs to be done quickly.

Declarations 7-3

The compiler may ignore a register declaration and treat it simply
as an auto declaration. The actual number or declarations Cor which
this request is honored by the compiler is implementation-defined. (See
Appendix C, item 8.i, in the LPI-0 User 's Guide.)

The contents or a register variable are not addressable, even iC the
compiler chooses to treat a register declaration as an auto
declaration. Thus, the address-or operator may not be applied to a
register variable, nor may an array with a register specifier be
converted to a pointer. The only operator that may be applied to such
an array is sizeof .

Storage-Class Syntax

s torage-class-specifier:
typedef
extern
static
auto
register

Type Specifiers

Type specifiers may occur in any order and can be separated from each
other by other declaration specifiers, such as storage-class specifiers.

Within a declaration specifier, all type specifiers must be from one or the
sets or specifiers in the following list, in which each set or type specifiers
is delimited by commas to indicate alternative ways or specifying the
same type. (As an exception, Cor bit-field declarations, whether the type
signed int or signed differs from int is implementation-defined.
LPI-C treats a "plain" int bit-field as an unsigned int.)

• void

• char

• s i gned char

• uns i gned char

• short, s i gned short, short int, or signed short
int

7-4 Declarations

• uns i gned short., or unsigned short. int.

• int., signed, signed int., or no type specifiers

• unsigned, or unsigned int.

• long, s i gned long, long int., or signed long int.

• uns i gned long, or unsigned long int.

• f loat.

• double

• long double

• Btruct-or-union specifier

• enum-spec:ifier

• typedef-name

Type Specifier Syntax

type-specifier:
void
char
short.
int.
long
f loat.
double
signed
unsigned

struct-or-union-specifier
enum-specifier
typedef-name

Structure and Union Specifiers

Structure and union specifiers have the same form. However, a structure
and a union are distinguished in the following ways:

Declarations 7-5

• A structure is an object that consists of a sequence of named
members, each of which can be of any type. The members of a
structure are stored in an ordered sequence.

• A union is a type consisting of a sequence of named members.
Members in a union have overlapping storage.

The structure or union may contain a druct-declaration-liat, which is a
sequence of declarations for the members of that structure or union.

H a atruct-declaration-liat appears in a atruct-or-union-apecifier, then
within the translation unit a new type is declared. The list terminates
with a right brace (}) , and until that brace is reached, the type is
incomplete.

The behavior is undermed when there are no named members for the
atruct-declaration-liat.

Bit-Fields

A bit-field is a member of a structure or union whose field width consists
of a specified number of bits, one of which can be a sign bit. A bit-field
must have type int, unsigned int, or signed int.

The width of a bit-field is represented in the structure or union syntax
by the constant expression following the colon, as shown in the following
example:

struct {
int i s_l_bit 1 ;
uns i gned int is_2_bits 2 ;
s i gned int is_3_bits 3 ;

} flag s ;

The number of bits in a bit-field may not exceed the number of bits in
an int. Whether the high-order bit position of a "plain" int bit-field
is treated as a sign bit is implementation-defined. LPI-C will treat
"plain" int bit-fields as unsigned. A bit-field is interpreted as an
integral type consisting of the specified number of bits.

7-6 Declarations

ANSI C allows the implementation to allocate any storage unit large
enough to contain the bit-field. (See Appendix C, item 9 .v, in the LPI- C
Use r 's Guide.) Extra storage space that is not needed for the bit-field
can then be used by an immediately following bit-field, if there is one.

If, however, there is not enough space remaining for the next bit-field,
then ANSI C allows the implementation either to place any superfluous
bit-field members into the following units, or to put the entire bit-field
into the following unit. LPI-C will do the latter; that is, LPI-C will not
allow a bit-field to straddle a storage unit boundary; a bit-field will
always be combined completely within its storage-unit.

The order of allocation of bit-fields within a unit (high-order to low
order or low-order to high-order) is implementation-defined. LPI-C will
pack bit-fields into int.s from the most significant bit toward the least
significant bit.

rr a bit-field declaration has only a colon and a width, but no declarator,
then the bit-field is unnamed.

rr, however, a bit-field dermes its field width to be o, then no further
bit-field members can be packed into the storage unit in which the
previous bit-field, if any, was placed; that is, a zero length bit-field
specifies that the next bit-field members (if any) should start at the
beginning of the next storage-unit.

ANSI C allows the implementation to define how to align a member of a
structure or union object that is not a bit-field. (See Appendix C, item
9 .ii, in the LPI- C User 's Guide for further information.)

LPI-C will place each member at a byte offset (from the beginning of the
structure or union) which is an integral multiple of the alignment
requirements for its data type; the alignment for an aggregate type is
dermed to be the most stringent alignment requirement of any of its
members or elements.

The address-of operator (&) cannot be used with bit-field objects.
Therefore, there can be no pointers to or arrays of bit-field objects (an
array of structures containing bit-fields can, of course, be defined) .

Within a structure object, non-bit-field members and the storage units in
which bit-fields reside have addresses which increase in the order in

Declarations 7-7

which they are declared. A pointer to a structure object, converted to a
pointer to the type of its initial member (that is, by way of a cast), will
point to its initial member and vice versa.

There may be unnamed holes within a structure object, to achieve the
appropriate alignment, but not at the beginning of the structure.

The size of a union is large enough to contain the largest of its members.
The value of no more than one of the members of a union may be stored
in a union object at any time. A pointer to a union object, converted to
a pointer to the type of any of its members (that is, by way of a cast),
will point to that member and vice versa.

There may be unnamed padding at the end of a structure or union, to
achieve the appropriate alignment if the structure or union is an element
of an array.

A structure or union may not contain a member with incomplete or
function type. It may, therefore, not contain an instance of itself. (It
may, however, contain a pointer to an instance of itself.)

The expression that specifies the width of a bit-field must be an integral
constant expression that has nonnegative value that does not exceed the
number of bits in an ordinary object of compatible type. If the value is
zero, the declaration has no declarator.

7-8 Declarations

Structure and Union Syntax

struet-or-union-speeifier:
struet-or-union identifier t { struet-declaration-list }
t t

·
"d t "f: "

op
s rue -or-un1on ' en 1 1er

struet-or-union:
st.ruct.
union

struet-deelaration-list:
struet-deelaration
struet-deelaration-list struet-deelaration

struet-declaration:
specifier-qualifier-list struet-declarator-list ;

specifier-qualifier-list:
tvpe-speeifier specifier-qualifier-list t
tvpe-qualifier specifier-qualifier-list

op
t op

s truet-deelarator-list:
s truet-deelarator
struet-deelarator-list 1 struet-deelarator

struet-de elarator:
declarator
declarator t : constant-expression op

Enumeration Specifiers

An enumeration list contains identifiers that are declared as constants
with type in t.. Within the same scope, each enumeration constant is
different from other enumeration constants and is also different from
other identifiers.

AB shown in the following example, an enumerator (also known as a
member of an enumeration) containing the symbol = gives its
enumeration constant the value of the constant expression that follows.

enumeration-constant = eonstant-ezpreBBion

Declarations 7-9

However, if the first enumerator in the declaration does not contain the
symbol =, then the enumeration constant is assigned the value of 0.

If any of the enumerators that follow the first enumerator do not contain
the symbol =, then each enumeration constant is defined by adding 1 to
the value of the previous enumeration constant.

Note that when the symbol = is used within an enumerator, the
resulting values of some enumeration constants may be the same as other
values in the same enumeration.

This constant expression must be an integral constant expression with
type int.. ANSI C allows the implementation to define the enumerated
type, but it must be compatible with an integer type. LPI-C defines each
enumerated type to be type int..

Enumeration Specifier Syntax

enum-specifier:
enum identifier t { enumerator-list } op
enum identifier

enumerator-list:
enumerator
enumerator-list 1 enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Enumeration Constant Example

In the following example, the tag of the enumeration is days. (See the
following section "Tags. ")

The enumeration constant then declares that the object work_day is
of type days and that wd is. a pointer to an object with type days .
The following set contains the enumerated values: { 0, 1 , 18 , 19 , 20}.

7-10 Declarations

enum days { mon , tues , wed=18 , thurs , fri } :

Tags

I * . . . * I
enum days work_day , *wd ;
I * . . . * I
work_day = tue s :
wd = &workday :
I * . . . * I
1 * · · · * 1 (*wd ! = fri) 1* · · · * 1

A tag is a type specifier that can b e used to mark a structure, union, or
enumeration for later use.

In the following form, the identifier serves as the tag. A subsequent
declaration can then refer to the tag and omit the bracketed list, as long
as the declaration is contained in the same scope.

struct-or-union identifier { struct-declaration-list }
or

enum identifier { enumerator-list }

A structure or union declaration with a tag may appear anywhere in a
compilation unit, as follows:

struct-or-union identifier

However, if the tag appears before the contents of the structure or union
are defined, then the structure or union is an incomplete type. To
complete the type, the tag must be later defined within the same scope.

The tag of an incomplete type, as above, may be used only when the size
of an object of the specified type is not needed. The size of the object is
not needed, for example, when a typedef specifier is declared for a
structure or union, or when declaring a pointer to or a function returning
a structure or union. (See the section "Incomplete Types" in Chapter 5.)

The following construct declares a structure or union and associated tag
that is local to its own scope and specifies a type that is different from
other types having the same tag in the enclosing scope. Both the type
and the tag are in effect only within the scope of the declaration.

struct-or-union identifier ;

Declarations 7-11

The following construct specifies a new structure, union or enumeration.

atruct-or-u.nion { struct-deelaration-liat }
or

anum { enumerator-list }

Since a tag is not part of the declaration, the type cannot be referred to
outside of its own declaration (except when it is the declaration of a
typedef name).

Tag Declaration Examples

In the following example, a tag allows the declaration of a self-referential
structure.

The structure specified is called link; link contains an integer and
two pointers to objects of link type. (Because the pointers within the
declaration also point to the type that is specified by the declaration , it
is a self-referential structure.)

struct link {
int info ;
struct link •next , *prev ;

} ;

Now that the structure type link has been declared, it can be referred
to elsewhere in the program in the following way:

struct link 1 , *lp ;

In this example, 1 is declared as an object of link type and lp as a

pointer to an object of link type.

Alternatively, the typedef mechanism can be used to produce the
same results, as in the following example:

7-12

typedef struct link LINK ;
s truct link {

int info ;
LINK •next , *prev ;

} ;
LINK 1 , *lp ;

Declarations

Tag declaration can also be used to declare two mutually-referential
structures. The following example contains two structures that contain
pointers to each other.

s�ruc� s 1 { s�ruc� s2 *p2 ; } ;
s�ruc� s2 { s�ruc� s 1 *p1 ; } ;

However, if, in the preceding example, the tag s2 had already been
declared within the same scope, then the rust declaration of s 1 would
refer to it rather than to its forward declaration as shown above.

To avoid the possibility of confusion, the incomplete declaration

s�ruc� s2;

should be used before the declaration of s�ruc� s l .

This declaration will override any earlier versions of the tag s2 in a
containing scope and serve to properly complete the declaration of s 1 .

Type Qualifiers

The unqualified type of an lvalue can be qualified as cons�,
vola�ile, or as both cons� and vola�ile. (For further
discussion of qualified types, see Chapter 5.)

LPI-C will always provide storage for a cons�qualified type,
regardless of whether it is actually referred to in the program. LPI-C
will, in most cases, detect direct modifications of const-qualified types at
compile time.

Behavior is undefmed in the following circumstances:

• when an lvalue with non-cons�qualified type is used to modify an
object that is defmed with a cons�qualified type

• when an lvalue with non-volatile-qualified type is used to refer to an
object defined with a volatile-qualified type

An object with vola�ile-qualified type may be modified by factors
unknown to the compiler (for example, an object at a memory-mapped
input/output address may be affected by external programs) . The
compiler will evaluate an expression containing a vola�ile-qualified
type according to the rules of the abstract machine. (See Chapter 2.)

Declarations 7-13

Except for those modifications unknown to the compiler, the value stored
in the volatile-qualified object at any given sequence point will be the
same as the value required by the semantics of the abstract machine.
LPI-C will not perform optimizations on a volat.ile object which
violates these rules.

In an array type that contains type qualifiers, it is the element type that
is qualified, not the array type.

Type qualifiers can only be present in a function type or an array type
through the use of t.ypede:fs. In the case of a function type, however,
the behavior is undermed.

Qualified types are compatible when they have the identically qualified
version of a compatible type. Within a list of specifiers or qualifiers, the
order in which type qualifiers appear will not affect the specified type.

Type Qualifier Syntax

type-qualifier:
con s t.
volat.ile

Type Qualifier Examples

The object declared in the following example is a nread-onlyn external
variable and cannot be modified in any way except by the hardware
(that is, it cannot be assigned to, incremented, or decremented) .

ext.ern const. volat.ile int. read_only_ext.ern ;

When type qualifiers modify an aggregate type, the resulting behavior is
as shown in the following examples:

7-14 Declarations

canst struct s { short i ; } cs =
struct s me a ; I • the obj ect me a
typedef long int A [2] [3] ;
canst A a = {{ 1 , 2 , 3} , {4 , 6 , 6}} ;

short *pi ;
canst short *pci ;

me a = c s ; I * okay •I

c s = me a ; I • wrong : cs is

pi = bc s . i ; I • okay * I
pi = &c s . i ; I * wrong : &c s . i

{ 10 } ;
i s modifiable • I

I • array of array
of canst long * I

canst *I

is ptr-to-const-
short * I

pci = &c s . i ; I • okay *I

pi = a [O] ; I• wrong : a [O] is ptr-to-const-
int • I

Declarators

A declarator declares an identifier, which, when used as an operand
within an expression, designates an object (or function) having the same
specifications as appearing in the declaration (that is, scope, storage
duration, and type).

Declarations 7-15

Declarator Syntax

declarator:
pointer t direc t-declarator op

direc t-declarator:
identifier

(declarator)
direc t-declarator [conatant-e:z:preaaion t] op
direct-declarator
direct-declarator

(parameter-type-lid)
(identifier-liat t) op

pointer:
* type-qualifier-liat t
* type-qualifier-liat

0P
t pointer op

type-qualifier-lid:
type-qualifier
type-qualifier-liat type-qualifier

parameter-type-lid:
parameter-lid
parameter-lid 1 • • •

parameter-liat:
parameter-declaration
parameter-lid 1 parameter-declaration

para meter-declaration:
declaration-apecifiera declarator
declaration-apecifiera abdract-declarator t op

identifier-liat:
identifier
identifier-lid 1 identifier

In the following declaration:

T 01

e T contains the declaration specifiers that specify what the type T is
(such as int)

7-16 Declarationa

,. D l is a declarator that contains an identifier x

The following illustrates the type specified for the identifier x in the
different forms of declarator:

• Assume that in the declaration "T D1," D1 has the following form:

identifier

Then, the type specified for x is T.

• Assume that in the declaration "T D1," D1 has the following form:

(D)

Then, x has the type specified by the declaration "T D."

Although a declarator in parentheses is the same as the unparenthesized
declarator, complex declarators may have their meanings altered by the
presence of parentheses.

ANSI C requires that the implementation allow types to be specified with
at least 12 pointer, array, and function declarators, combined in valid
ways, that will either directly modify an arithmetic, structure, union, or
incomplete type, or will modify those types by way of one or more
t.ypedefs. LPI-C allows up to 15 such combinations.

Pointer Dedarators

Assume that in the following declaration

T D1

T represents the type, D represents the declarator, and D1 has the
following form:

* type-qualifier-list t D op

In the declaration "T D," the type specified for x is

"derived-declarator- type-list T"

Declarations 7-17

and the type specified for x is:

"derived-declarator-type-list type-qualifier-list pointer to T."

Then, x is a pointer, qualified by each type qualifier in the list.

Two pointer types are compatible only when they are pointers to
compatible types and when they are qualified in the same way.

Pointer Examples

The following declaration illustrates a variable pointer to a constant
value, in which the contents of an object pointed to by
ptr _to_constant cannot be changed through that pointer.
However, the pointer itself may be modified to point to another object.

const int *ptr_to_constant ;

The following declaration illustrates a constant pointer to a variable
value. The contents of the int pointed to by constant_ptr may
be changed. However, constant_ptr will always be a pointer to the
same object.

int * const constant_ptr ;

In the following example, a definition for the type "pointer to int" is
added in order to further clarify the declaration of constant_ptr.

typedef int *int_ptr ;
const int_ptr constant_ptr ;

Array Declarators

In the following declaration,

T Dl

assume T represents the type, Dl represents the declarator, and Dl has
the following form:

7-18

D[constant-expression tl op

Declarations

H, in the declaration T D, the type specified for :x: is:

derived-declarator-type-list T

Then, the type specified for x is:

derived-declarator-type-list array of T.

An array may be constructed from an arithmetic type, a pointer, a
structure or union, or from another array. (H an array is constructed
from another array, a multi-dimensional array will be generated.)

The size of the array is specified by an integral constant expression
delimited by [and) ; that expression has a value greater than zero.

H the size of the array is not given, then the array type is an incomplete
type. H the sizes are specified for both array types, then they must be of
the same value.

H two array types are compatible, then their element types must be
compatible.

Array Examples

The following expression declares an array of doubles, followed by an
array of pointers to doubles, and a pointer to an array of doubles.

double da [lO) , *adp [lO) , * (*padp) [lO) ;

The following example declares x as an array of int of unspecified
size, and therefore an incomplete type. The storage for :x: must be
defmed elsewhere, possibly in another translation unit.

extern int :x: [) ;

Function Declarator&

If we consider the following declaration

T Dl

where D l has one of the two following forms

Declarations 7-19

or

D(identifier-list t) op

D(parameter-type-list)

and the type specified for f in the declaration T D is the following:

deritJed-declarator-type-list T

then the type specified for f is

deritJed-declarator-type-list function returning T

The rust of the preceding forms specifies an old-style function declarator.
This function form, still supported by ANSI C, can contain an optional
identifier list (if part of an old-style function definition) , or can consist of
simply an empty set of matching parentheses (if it is part of an old-style
function declaration, or an old-style function definition taking no
arguments) .

If the function declarator is part of a function defmition, then the
identifier list declares only the names of the function parameters. An
empty list in a function declarator that is part of a function definition
specifies that the function has no parameters.

If the function declarator is not part of a function definition, the empty
identifier list specifies that the number or types of the parameters is
unknown.

In the second of the preceding forms, the prototyped function declarator
includes a parameter type list, which specifies the number and types of
arguments of a function. It must also declare the names of the function
parameters if it is part of a function definition. Otherwise, if it is only a
function declaration, then it may declare the names of the function
parameters, but is not required to. If present, those parameter names
will be ignored.

A parameter list ending with an ellipsis (, . . .) indicates that the
function may take a variable number of arguments and provides no
information about the number or types of the parameters that appear
after the comma in the list. (However, the macros defined in the

7-20 Declarations

< st.darg . h> header may be used to access arguments that correspond
to the ellipsis in a portable manner. See your LPI-C Library Reference
Manual.)

The presence of void as the only item in the parameter list specifies
that the function has no parameters. Note that the parameter type list
(voi d , . . .) specifies zero or more arguments.

When a parameter declaration has a single t.ypedef name in
parentheses, it is not interpreted as redundant parentheses around the
identifier for a declarator. Instead, it is interpreted as an abstract
declarator that specifies a function with a single parameter.

H a parameter declaration contains a storage-class specifier in the
declaration specifiers, then that storage-class specifier is ignored, except
in the case in which the parameter declaration is one of the members of
the parameter type list.

regi s ter is the only storage-class specifier that a parameter
declaration can contain.

A function declarator may not return a function type or an array type.

Compatible Function Types

Two functions are compatible if the following are true:

• They both specify compatible return types.

• IT both function types are prototyped (that is, if the parameter type
lists are present in both) , then they must have the same number of
parameters and the same use of the ellipsis terminator.
Corresponding parameters must have compatible types.

However, if both function types are "old style," then the parameter
types are not compared.

• If one function type is prototyped (that is, it contains a parameter
list) and the other is old-style declaration that is not part of a
definition (that is, it contains an empty identifier list) , then there
may be no ellipsis terminator in the parameter list, and the type of
each parameter must be compatible with the resulting type after the
execution of the default argument promotions.

Declarations 7-21

• H one function type is prototyped (that is, it contains parameter type
lists) and the other is old-style dermition that contains an identifier
list which may be empty 1 then they each have the same number of
parameters. Also, the type of each prototyped parameter is
compatible with the resulting type from the execution of the default
argument promotions to the type of the corresponding identifier.

H a parameter is declared with qualified type, then its type for these
comparisons is the unqualified version of its declared type.

In general, it is not advisable to mix old style function definitions and
prototype function declarations of the same function. The following is
an example of the old-style function definition followed by a prototype:

in� f (a) I• old-a�yle defini�ion • I
char a ;
{

}

in� f (char) ; I • incompa�ible pro�o�yped
declara�ion •I

These two types are not compatible because the parameter of the
old-style function dermition will result, after integral promotion, in type
in� instead of char in the second example.

Function Declarator Examples

In the following declaration

in� f 1 (void) , •f2 (char) , (•f3) (f loa�) ;

• f 1 is declared as a function with no parameters returning in�

• f2 is declared as a function with one parameter of type char
returning a pointer to an in�

• a pointer pfi to a function with one parameter of type floa�
returning an in�

7-22 Declarationa

The extra parentheses are necessary in the declarator (*f3) () to
indicate that indirection through a pointer to a function yields a function
designator. That function designator is then used to call the function,
which returns an in t.

A declaration occurring outside of a function has identifiers with me
scope and external linkage. A declaration in the form of f l or f2
occurring inside a function has block scope and either internal o r external
linkage (depending on what me scope declarations for these identifiers
are visible), and a declaration of the form of f 3 has block scope and no
linkage.

In the following declaration, an array apfi is declared of four pointers
to functions returning in t.

int (* arr [4]) (char *pl , char *p2) ;

Each of the functions returning in t has two parameters that are
pointers to char. (The identifiers pl and p2 are declared only for
clarification; those identifiers are out of the scope at the end of the
declaration of arr.)

The following declaration declares a function func that returns a
pointer to a function returning an in t.

int (*func (int (*) (long) , char)) (short , . . .) ;

The function func has two parameters:

• a pointer to a function returning an int, which has one parameter
of type long

• a char

func returns a pointer that points to a function with one short
parameter. That function accepts a non-negative number of additional
arguments of any type.

Type Names

A type name is used to specify a type without declaring an identifier.

Declarations 7-23

A type name has the same syntax as either a function declaration or an
object of that type without the identifier.

If a type name contains empty parentheses, the compiler will not treat
them as unnecessary parentheses, surrounding an absent identifier, but
instead as a function that does not specify parameters.

Type Name Syntax

type-name:
specifier-qualifier-list abstract-declarator t op

abstract-declarator:
pointer
pointer t direc t-abatract-declarator op

direc t-abstrac t-declarator :
(abstrac t-declarator)

direc t-abstract-declarator t [constant-ezpression t] op op
direct-abstract-declarator t (parameter-type-list t) op op

Type Name Examples

The following table illustrates the representation of each type.

TYPE REPRESENTATION

int int

pointer to int int *

array of four pointers to int int * [4]

pointer to an array of four ints int (��c) [4]

function with no parameter in t * 0
specifications returning a pointer int

pointer to function with no parameters int (*) (void)
returning i.n t

const-pointer to array of pointer to i.nt (* (•const) []) 0
function returning i.n t

7-24 Declarations

The following example,

unsigned int (*const []) (char , . . •)

declares an incomplete array of constant pointers to functions, each with
one parameter that has type char and an unspecified number of other
parameters, returning an unsigned int.

Type Definitions

If a declaration has typedef as its storage-class specifier, each
declarator in that declaration defines an identifier to be a typedef
name. That typedef name provides an alias or synonym of the
specified type rather than a new type (see the discussion earlier in this
chapter). typedefs may be useful to create synonyms for complicated
types.

For example, in the following declaration:

typedef T type�dent ;
type�dent D ;

• the typedef name is type�dent

• type�dent has a type specified by the specifiers in T

• the identifier in D has the type 1 1derived-declarator-type-list T"

• D specifies the derived-declarator-type-list

A typedef name shares the same name space as other ordinary
identifiers. If the identifier is to be redeclared in an inner scope or is to
be declared as a member of a structure or union in the same or an inner
scope, the type specifiers must be given in the inner declaration.

typ e d e f Declaration Syntax

typedef-name:
identifie r

Declarations 7-25

typ e de f Declaration Examples

The following example declares three typedef names:

typedef int TIME , TIMEF () ;
typedef struct { int hour , sec ; } time ;

Once the typedef name is declared, the following constructions are
possible:

TIME t ;
extern TIMEF *tpfi ;
time t1 ;
time t2 , *tp ;

In the preceding example,

• int is the type or t

• "pointer to function with no parameter specification returning int"
is the type or tpf i

• the type of t1 is the specified structure

• the type of t2 is the specified structure

• tp is a pointer to the specified structure

• the type or t is compatible with any other object with type int

Assume the following declarations:

typedef struct s 1 { char a ; } struct1 , * s tructp 1 ;
typedef struct s2 { char a ; } struct2 , * s tructp2 ;

Then,

• The type struct1 and the type pointed to by structp1 are
compatible.

• The type struct1 is compatible with type struct s 1 .

• The type struct1 is not compatible with any of the following
types:

7-26 Declarations

- struct s2, struct2

- the type pointed to by structp2

- the type in t

In the following constructions:

typedef signed int x ;
typedef int ordinal ;
struct tag {

} ;

uns igned x : 4 ;
const x : 5 ;
ordinal y : 5 ;

the following are true:

• A typedef name x is declared with type signed int.

• A typedef name ordinal is declared with type int.

• A structure is declared with three bit-field members.

- One of the bit-field members is named x and may contain values
in the range [0, 15] .

- Another of the bit-field members is an unnamed const-qualified
bit-field and could contain values in at least the range [-15 ,+15]
{if it could be accessed) .

- The third of the bit-field members is named y and may contain
values in either the range [0,31] or [-15 ,+15] , depending on
whether a plain int bit-field is treated by the implementation as
uns i gned or s igned; LPI-C will treat it as uns i gned.

One difference between the first two of these bit-field members is that
unsigned is a type specifier but const is a type qualifier. The
uns i gned type specifier forces x to be the name of a structure
member. The const bit-field member modifies x, which is still in
scope as a typedef name.

If the preceding declaration were followed by the following declaration in
an inner scope:

x f (x (x)) ;
long x ;

Declarations 7-27

then the function f would be declared with the type "function returning
s i gned int. with one unnamed parameter with type pointer to
function returning signed int. with one unnamed parameter with
type signed int.." That is:

s i gned int. f (s igned int. (•) (signed int.)) ;

The identifier x would be declared with type long.

t.ypedef names can be used to make code more readable. In the
following example, all of the declarations of the s ignal function are of
exactly the same type.

t.ypedef void f (int) ;

t.ypedef void (•pf) (int.) ;

void (• s i gnal (int. , void (•) (int.))) (int.) ;
f • s i gnal (int. , f •) ;
pf s ignal (int. , pf) ;

-
The following illustrates that type specifiers may not be used in
conjunction with t.ypedef names.

t.ypedef
uns i gned
t.ypedef

short. int. small ;
small obj ect. ;
unsigned small ;

I • INVAL ID • I
I • INVAL ID • I

The following illustrates some valid and invalid uses of type qualifiers to
qualify t.ypedef names.

t.ypedef con st. int. CI ; I • const.-int. • I

t.ypedef int. •PI ; I • pt.r-to-int. • I

t.ypedef con st. CPI •PCI ; I • pt.r-t.o-const-int. • I
con st. CI a ; I • WRONG ; dupl . t.ype • I
con st. volatile PI b ; I • const.-volat.il e-pt.r-

t.o-int. • I
con st. volatil e PCI c ; I • const.-volat.il e-ptr-

t.o-const.-int. • I
con st. CPI d ; I • WRONG ; dupl . t.ype • I

7-28 Declarations

Initialization

Initialization provides the initial value that will be stored in a static or
automatic duration object, prior to any subsequent modification by the
program.

An object with automatic storage duration has indeterminate value, if it
is not initialized explicitly.

An initializer for an object with static storage duration must be a
constant expression. The entity being initialized must be an object type
or be an array of unknown size.

A block scope declaration with internal or external linkage may not have
an initializer.

All of the values in the initializer list for a structure or union object
must be constant expressions.

Aggregate Initialization

The initializer for an object with aggregate type is a comma-separated
list of initializers, enclosed in braces, for the aggregate members. Those
aggregate members are presented in increasing order of subscript or
member.

A character string literal, with or without braces, can be used to
initialize an array of character type.

Each element of the array is initialized by each subsequent character of
the character string literal, including the terminating null character, if
the size of the array is not specified, or if there is enough room (as
indicated by the specified array dimensions) .

A wide string literal, with or without braces, can be used to initialize an
array that has an element type compatible with char _t. Each
member of the array may be initialized by each subsequent code of the
wide string literal, including the terminating zero-valued code if the size
of the array is unknown or if there is enough room.

If an initializer for a union object is enclosed by braces, it initializes the
member that is present fll'st in the declaration list of the union type. All
unnamed structure or union members are ignored during initialization.

Deelarationa 7-29

An initializer for a structure or union object with automatic storage
duration is one of the following:

• an initializer list (as described in the following section)

• a single expression with compatible structure or union type

H the initializer contains a single expression, then the object will have as
its initial value the same value as that of the expression.

Aggregate or Union Initializers

These rules apply recursively to any subaggregates or unions within the
aggregate, or to an aggregate or union that is the first member of a
union.

Brace-enclosed initializers of a subaggregate or contained union will
initialize the members of the subaggregate or the member of the
contained union that appears first.

Alternatively, the exact number of initializers from the list will be used
to initialize the members of the rust sub aggregate or the . member of the
contained union that appears first. (Ir there are any unused initializers,
they will be later used to initialize the next aggregate member that is a
part of this subaggregate or contained union.)

H there are more members of an aggregate than there are initializers in a
brace-enclosed list, then the unused members of the aggregate are
initialized as though they were objects with static storage duration.

The size of an array of unknown size is determined by the number of
initializers required by the array element. The array no longer has
incomplete type when the end of its initializer list is reached.

Initialization of an object with static storage duration, if not achieved
explicitly, is achieved implicitly as if each member with arithmetic type
had the value 0 and each member with pointer type had the value of a
null pointer constant.

An initializer list cannot contain more initializers than there are objects
to be initialized.

7-30 DeclarationB

Initialization Syntax

initializer:
a8aignment-expre88ion
{ initializer-liBt }
{ initializer-li8t 1 }

initializer-liBt:
initializer
initializer-li8t 1 initializer

Initialization Examples

In the following declaration, no size is specified and there are three
initializers. a is therefore defined and initialized as a one-dimensional
array object with three elements.

int a [] = { 2 , 3 , 5 } ;

The following example illustrates a definition with an initialization that
is fully bracketed.

The rust line (2, 3, 5) initializes the first column of the array object
b [0] , that is, b [0] [0] , b [0] [1] , and b [0] [2] .

The second line initializes b [1] .

The third line initializes b [2] . (Because the initializer ends early, zeros
are used to initialize b [3] .)

long b [4] [3] = {
{ 2 , 3 , 5 } •

} ;

{ 8 , 13 , 21 } •

{ 34 , 55 , 89 } ,

The following example illustrates another way of achieving the same
effect.

long b [4] [3] = {
2 , 3 , 5 , 8 , 1 3 , 21 , 34 , 55 , 89

} ;

Declaration8 7-31

Because a left brace does not appear at the beginning of the initializer Cor
b [0] , three items from the list are used Cor initialization. Similarly, the
next three items are used for b [1] , and then the next three items are
used Cor b [2] .

The following example initializes the rust column of c as the declaration
specifies. The remaining columns are initialized with zeros.

long c [4] [3] = {
{ 1 } , { 2 } , { 3 } , { 4 }

} ;

The following example is a defmition that contains an initialization that
is not consistently bracketed.

This example defmes an array in which all the elements are zero with the
exception of two element structures: a [0] . :x: [0] is 1 and
B [1] , :X: [0] is 2.

atruct { int x [3] , y; } a [] = { { 1 } , 2 } ;

The following declaration contains an initialization that is consistently
but incompletely bracketed.

short m [4] [3] [2] = {
{ 2 } ,
{ 3 , 6 } ,
{ 8 , 1 3 , 21 }

} ;

The preceding declaration defines a three-dimensional array object as
follows:

• m [O] [0] [0] is 2

• m [1] [0] [0] is 3

• m [1] [0] [1] is 5

• 8, 13, and 21 initialize m [2] [0] [0] , m [2] [0] [1] , and
m [2] [1] [0] , respectively

• all remaining intializers are zero

7-32 Declarationa

Because a left brace does not begin the initializer for m [0] [0] , as
many as six items may be used from the current list. However, because
there is only one item in the list, the remaining five elements have their
value initialized with zero.

-

Similarly, because a left brace does not begin the initializers for
m [1] [0] and m [2] [0] , each can use as many as six items; thus each
aggregate can initialize its two-dimensional subaggregates.

An error message would appear iC there were more than six items in any
of these lists.

The following two examples illustrate how the same initialization result
could be achieved.

short. m [4] [3] [2] = {
2 , 0 , 0 , 0 , 0 , 0 ,
3 , 6 , 0 , 0 , 0 , 0 ,
8 , 13 , 21

} ;

The following example illustrates a fully-bracketed form that achieves
the same initialization result:

short. m [4] [3] [2] = {
{

{ 2 } ,
} ,
{

{ 3 , 6 } ,
} ,
{

{ 8 , 13 } ,
{ 21 } ,

}
} ;

(Either the fully-bracketed or the minimally-bracketed initialization
forms will generally cause less confusion.)

Declarations 7-33

In the following example, the declaration defmes "plain" cha.r array
objects q and r; character string literals have initialized the elements
or those array objects.

cha.r q [] = " xyz " , r [3] = "xyz " ;

The result of the preceding declaration is the same as is achieved by the
following declaration, in which the contents or the arrays are modifiable.

cha.r q [] = { ·x · , ·y · , • z · , · o · } ,
r [] = { x·, y-·. z· } ;

Alternatively, the following example shows that the declaration defines
p with type "pointer to char." p is initialized to point to an object
with type "array or char" that has a length or 4 and has elements that
are initialized with a character string literal. (Any attempt to use p to
modify the contents of the array will result in undefined behavior.)

cha.r *P = "xyz " ;

7-34 Declarations

Chapter 8: Conversions

Overview • • • . • • • • • • . . • • . . • • • • • • • . . . • • • • . • 8-1
Arithmetic Operands • • • • • • • • • • . . • • • . . • 8-1

Integral Promotions . . . • • • • . • . • • . • • • . • • • . . • • 8-1
Signed and Unsigned Integers . • • • • • 8-2
Floating and Integral Types • • • . . . • 8-3
Float to Double Promotions • • • • • • • . 8-3
Arithmetic Conversions • • . • • . • . . . • . . • . • • . • • • • • . • . • • • • 8-4

Other Operands • • • • • . • • • • • • • • • • • . . • . • . • • • • . . . 8-5
lvalues and Function Designators • . . • . • • . • • • • • • • . . • 8-5
void • • . • . 8-6
Pointers • • . • • • . . . • . • • • . . • . • • . . • • • • • . . • 8-7

Null Pointer • . • • . • • • • • . . • . • . • . • . • • . . . 8-7

Chapter 8: Conversions

Overview

Conversion refers to the implicit or explicit changing or values from one
type to another. Implicit conversion occurs when a operator converts
operand values automatically. Explicit conversion results from a cast
operation.

This chapter describes the results or such conversions.

The value and the representation do not change as the result or a
conversion or a value to a compatible type.

Arithmetic Operands

This section describes arithmetic operands, which include characters and
integers , as well as floating and integral types.

Integral Promotions

Integral promotions convert operands or the types listed below to either
an int or unsigned int value when used in any expression where
an int or uns i gned int may be used:

• signed or unsigned char

• signed or unsigned short int

• signed or unsigned int bit-field

• object with enumeration type

The value is converted to an int, iC all values o£ the original type can
be so represented. Otherwise, the value is converted to an uns igned
int.

Oonveraiona 8-1

These promotions occur as part of the nusual arithmetic conversionsn in
certain argument expressions to the operands of the unary +, - , and
(tilde) - operators and to both operands of the shift operators. The
preserved value of an integral promotion also includes the sign. Whether
"plain" char is treated as signed or unsigned is
implementation-defmed; note that LPI-C always treats a "plain" char
as signed. Integral promotions do not change other arithmetic types.

Note
ANSI C uses what is referred to a& "value-preserving" rules for the integral
promotions. Some older C compiler implementations used "unsigned-preserving"
rules. Refer to Chapter 12 for details.

Signed and Unsigned Integers

The value of an integral type that is converted to another integral type is
unchanged, if the new type can represent its value.

A non-negative value of a signed integer that is converted to an unsigned
integer with equal or greater size is unchanged. However, if the value of
the signed integer is negative, the following occurs:

1 . The signed integer is promoted to the signed integer corresponding
to the unsigned integer.

2 . The value is converted to unsigned. This conversion occurs using
the following formula:

i + (n+l)

where, i is the value and n is the largest number that can be
represented in the unsigned integer type.

Note
In a two's-complement representation, this is equivalent to filling the
high-order bits with copies of the sign bit .

The result of a conversion of a value with integral type to an unsigned
integer with smaller size is represented by the nonnegative remainder in
the following formula:

i/(n+l)

8-2 Conversions

where, i is the value and n is the the largest unsigned number that can
be represented in the type with smaller size.

The results of the following conversions and conditions are
implementation-defmed if the value cannot be represented. (See
Appendix C, item 5 .ii, in the LPI-0 Uaer 'a Guide.)

• a value with integral type is changed to a smaller-sized signed integer

• an unsigned integer is converted to its corresponding signed integer

Floating and Integral Types

The fractional part of a fioating type value is discarded when the value is
converted to an integral type. The behavior is undefmed if the
remaining value of the integral part of the fioating type cannot be
represented by the integral type.

Note that the range of portable fioating values used in fioating type
conversions to unsigned type is 0 to the maximum value of that unsigned
type.

For integral to fioating type conversions, if the value being converted can
be represented but not exactly, the result is implementation-defmed to be
either the nearest higher or nearest lower value. (See Appendix C, item
6.ii, in the LPI-0 Uaer 'a Guide.)

Float to Double Promotions

The following promotions result in unchanged values:

• :f loat to double

• :f loat to long double

• double to long double

The following conversions also result in unchanged values, except if the
value being converted is outside the range of representable values, in
which case the behavior is undefmed, or if the value being converted can
be represented but not exactly, in which case the result is
implementation-defmed to be either the nearest higher or nearest lower
value (see Appendix C, item 6.iii, in the LPI-0 Uae r 'a Guide).

Oonveraiona 8-3

• double to f loat.

• long double to double

• long double to float.

Arithmetic Conversions

Many operators that use arithmetic type operands create conversions and
yield result types similarly. The goal is to produce common types,
including the result type. This conversion pattern is referred to as the
"usual arithmetic conversions. " The conversions are as follows and are
applied in the given order.

H either operand is:

long double

double

float.

The other is converted to:

long double

double

float.

Otherwise, the integral promotions are performed on both operands and
the following is applied to the resultant operands:

H either operand is: The other is converted to:

unsigned long int. unsigned long int.

Otherwise, if one operand is a long int. and the other is an
unsigned int. and if a long int. can represent all values of an
uns i gned int., the unsigned int. is converted to long int..
H not, both operands are converted to unsigned long int..

Otherwise,

H either operand is:

long int.

uns i gned int.

The other is converted to:

long int.

unsigned int.

H none of the previous conditions are true, both operands have type
int..

8-4 Oonveraiona

Other Operands

This section describes non-arithmetic operands.

!values and Function Designators

An lvalue designates an object. An lvalue expression has an object type
or an incomplete type other than void. The term "lvalue" stems from
the left operand of an assignment expression which must be a modifiable
value.

An identifier of an object is a simple example of an lvalue. Another
example is *p, where p is a unary expression that is a pointer to an
object. *P is an lvalue that designates the object pointed to by p .

An lvalue specifies the particular type used to designate an object, when
an object has a particular type. lvalues that do not have the following
type are known as modifiable lvalues:

• an array type

• an incomplete type

• a const-qualified type

• if the lvalue is a structure or union, does not have any member that
has a const-qualified type including, recursively, any member of all
contained structures or unions

An lvalue that does not have array type is converted to the value stored
in the designated object and is no longer an lvalue, except when it is the
operand of one of the following:

• the s iz eof operator

• the unary .!t operator

• the + + operator

• the -- operator

• the left operand of the . operator

• the left operand of an assignment operator

Oonveraions 8-5

The value of an lvalue with qualified type has the unqualified version of
the type of the lvalue. H the lvalue does not have qualified type, the
value has the type of the lvalue. The behavior is undefined if the lvalue
has an incomplete type and does not have array type.

An lvalue that has type "array of type" is converted to an expression
that has type "pointer to type. n The converted expression points to the
initial element of the array object and is not an lvalue, except when it is
one of the following:

• the operand of the s izeof operator

• the operand of the unary & operator

• a character string literal used to initialize an array of character type

• a wide string literal used to initialize an array with element type
compatible with wchar _t

An expression with function type is referred to as a function designator.
A function designator with type "function returning type" is always
converted to an expression that has type "pointer to function returning
type" except when the following is true:

• it is the operand of the sizeof operator

• it is the operand of the unary & operator

vo i d

A void expression refers to an expression that has type void. The
value of a void expression is by definition nonexistent, and implicit or
explicit conversions (except to void) are not applied to such an
expression. The value or designator of an expression of any other type
that occurs in a context where a void expression is required is
discarded.

void expressions are evaluated for possible side effects.

8-6 Conversions

Pointers

A pointer to void may be converted to a pointer to any incomplete or
object type or from a pointer to any incomplete or object type and back
again. The value of the result of such a conversion is equal to the value
of the original pointer.

For any qualifier type, a pointer to a non-qualified type may be
converted to a pointer to the qualified version of type. Again, the value
of the result of such a conversion is equal to the value of the original
pointer.

Null Pointer

A null pointer constant is the same as an integral constant expression
with the value 0, or such an expression cast to type void * · The
constant is converted to a pointer of the type it is assigned to or
compared for equality to. A null pointer (as it is referred to) will always
compare unequal to a pointer to any object or function.

Two null pointers compare equal even though they may have been
converted through different sequences of casts to pointer types.

Conversions 8-7

Chapter 9: Expressions

Overview . 9-1
Side Effects and Sequence Points • • • • . • . • • • • . • • • • • • . • . 9-1
Evaluation of an Expression • • • • • • • • • • • • • • • . • • • • • • • • • • • • • 9-3
Precedence and Associativity of Operators • • . • • • • • • • • • • • • • • • • • 9-4
Primary Expressions . 9-6

Primary Expression Syntax • • • • . • . 9-6
PostrJX Expressions . 9-6

PostfiX Expression Syntax • • • • • • • • • • . • • • • • • • • • • • • • • • . • 9-6
kray Subscripting • • • • • • • • • • • • • . • • • • • • • • • 9-7
kray Object Example • • • • • • • • . . • • • • • • • • • • • • • • • • • • . • 9-8

Function Calls . 9-8
Function Prototypes . 9-9

Function Expression Example . • • • • • • • • • . . • • • . • . • • • . • . • 9-1 1
Structure and Union Members • • • • • • • . • • . • • • • • • • • • • • • • 9-1 1
Structure and Union Examples • • . • • • • • . • • • • • • • . • • 9-12
PostfiX Increment and Decrement Operators . • • • • • • • • • • • • • • 9-13

Unary Operators . 9-13
PrefiX Increment and Decrement Operators • • • . . • . • . • . . . • • 9-13
Address and Indirection Operators • . • • . . • • • . • • . • • • • • • • . 9-14
Unary kithmetic Operators • • • • • • • • • • . • • • . . • . • • • • • • • . 9-15
The sizeof Operator • • • • • • • • • • • . . • • • . . • • • • • • • • • • 9-16
Cast Operators . 9-17

Cast Conversion of Pointers . . • . . . • • • • • • • • • • . • . • • • • 9-17
Cast Syntax • • • • . • • • . • . • • • • . • • . • . • . • • . 9-18

Multiplicative Operators • • . . • • . • • • • • • • • • • . • • . • • . 9-18
Multiplicative Syntax • • • • • . . • • • • • • • • 9-20

Additive Operators . • • • • • • . • • • . • • • • . . . • • . 9-20
Pointer Arithmetic . 9-21

Additive Syntax • • • • . • • • • • • . • • • • • • . . • • • • • . . • • . . 9-22
Bitwise Shift Operators • • • . • • • • • . • • • • . • . • • . . • . • 9-22

Bitwise Shift Syntax • • • • • • • • • . • . . • . . • • • . 9-23
Relational Operators • • • • • • • . • . • . . • . . • . . • . • . • . • . • . • . 9-23

Relational Pointers • • . . • . . • • • • • • . • . • . • • . • 9-24
Relational Syntax • • • . • • . • . • . . . • • • • . . • • • • • • 9-24

Equality Operators • • • • . . . • 9-24
Equality Operators and Pointers . . • • • . • 9-25
Equality Syntax • • • . • • . . • • . • . • • . 9-25

Bitwise AND Operator • • • • . . • 9-25
Bitwise AND Syntax . • . . 9-26

Chapter 9: Expressions (Cont.)

Bitwise exclusive OR Operator • • • • . • • • • • • • • • . • . • • . • • • • 9-26
Bitwise exclusive OR Syntax • • . • • • . • . . • • . . • . . • . . . • • 9-26

Bitwise inclusive OR operator . • • • • . . . • . . • . • • • . . • • 9-26
Bitwise inclusive OR Syntax . • • • • . • • . . . • . . • . . • • . . • • 9-26

Logical AND operator • • • • . . . • . . . • • • • . . • • . • • • • . . • . • . 9-27
Logical AND Syntax • • • • . . • • • • • • • • . • . • . • • • • • 9-27

Logical OR Operator • • • • • • . • • • • • • . • • . • • • • • • • • • . • • • • 9-27
Logical OR Syntax . • . • • • • . • • • • . . • • • • • • • • • • • • • • • 9-28

Conditional Operator • • • • • • . . • • • . • • • . • • • . • • • • • • • • • • 9-28
Conditional Syntax . • • • • • • . • • • • • • • • • • • . • • • • • . • • • 9-29

Assignment Operators • • • • • • . • • • • . . • • . . • • . • • . • • . • • • • 9-29
Simple Assignment • • • • • • • • . • • • • • • • • • . . • • • • • • • • • 9-30
Compound Assignment • . • . • . • • • • . . • . . • • • • • • . • . . • 9-30
Assignment Syntax • • . • . • • • • . . • . • • . • • . • • • • • . • • . . 9-31

Comma Operator . • • • • • • • • • • . • • . • • . • • 9-31
Comma Syntax • • • . . • • • • • • . • • . . • . . • . . • . • . • . 9-32
Comma Operator Example . . . • • . . • • . . . • • • . 9-32

Chapter 9: Expressions

Overview

An expression is a sequence or operators and operands that performs one
or more or the following:

• computation or a value

• designation or an object or a function

• generation or a side effect

Side Effects and Sequence Points

Evaluation of an expression may produce side effects, which are changes
in the state or the execution environment. Side effects are any of the
following:

• accessing a volatile object

• modifying an object

• modifying a me

• calling a function that does any or these operations

Sequence points are those specified points in the execution sequence
where all side effects or previous evaluations are complete and the side
effects or any subsequent evaluations have not yet taken place.

Places where sequence points exist include:

• immediately after all the arguments have been evaluated and before a
function call

• after the evaluation of the first operand of a logical AND (U)
expression

• after the evaluation or the first operand or a logical OR (I I)
expression

• after the evaluation or the first operand or a conditional (? :)
expression

Ezpreasions 9-1

• after the evaluation of the rust operand of a comma (.) expression

• at the end of a full expression (that is, an expression that is not part
of another expression), including the following:

- an initializer

- an expression statement

- the expression controlling an if or swi t.ch statement

- the expression controlling a do or while statement

- each of the three expressions in a for statement

- the expression in a return statement

The stored value of an object may be modified only once by the
evaluation of an expression between the previous and next sequence
point. In addition, the previous value is only accessed to determine a
new value that will be stored.

Thus, the following statement expression is undermed:

i = ++i + 1 ;

The order of evaluation of subexpressions is unspecified, as is the order in
which side effects take place, except as indicated by the syntax or when
the following operators are used, each of which is discussed later in this
chapter:

• the function-call operator (())

• the logical AND (&&) operator

• the logical OR (I I) operator

• the conditional (?:) operator

• and the comma (,) operator

An expression in the abstract machine is evaluated as specified by the
semantics. The implementation may eliminate the evaluation of a
subexpression if it can determine that the value or side effects of that
subexpression will not be used.

H a signal interrupts the processing between two sequence points, there
may be objects whose values are currently being modified. In this ease,
the values of objects can only be relied upon as of the previous sequence
point.

9-2 Expressions

Each time the program enters a block, any object with automatic storage
duration will have its last-stored value retained until the end of the
execution of the block, as well as while the block is suspended by a call
of a function or receipt of a signal.

The rules regarding sequence points guarantee the following:

• Volatile objects are stable at sequence points. That is, at sequence
points, all previous evaluations have been completed and all
subsequent evaluations have not yet occurred.

• All data written into flies at program termination are the same as if
that data had been produced by execution of the program according
to the abstract semantics.

An evaluation is only partly determined by its grouping. For example,
in the following program fragment:

#include <stdio . h>
int sum ; char *p ;
1 * . . . * I
sum = sum * 10 - · o · + (*p++ = getchar ()) ;

the expression statement is grouped as if it were written as follows:

sum = (((sum * 10) - · o ·) + ((*p++)) =
(getchar ()))) ;

However, the call to getcha.r can occur at any point before its
returned value is needed.

Also, the actual increment of p can occur at any time between the
previous sequence point and the next sequence point.

Evaluation of an Expression

When an expression is evaluated, the precedence of operators is specified
by the syntax. Table 9-1 outlines the precedence of operators in the
evaluation of an expression in C.

Ezpreaaiona 9-3

The order in which the operators are described in this chapter also
reflects their order of precedence; the operator with highest precedence is
described first.

Exceptions to the rules of precedence are cast expressions as operands of
unary operator, and operands which are contained between any of the
following pairs of operators:

• grouping parentheses ()

• subscripting brackets []

• function-call parentheses ()

• the conditional operator ? :

The following operators have operands with integral types:

• unary operator (-)
• binary (or bitwise) operators (<< , >> , &, A)
• vertical bar (I)

Values returned by the operators in the preceding list will depend on the
internal representations of integers. Those values, therefore, will have
implementation-defined aspects for signed types.

The behavior of the evaluation of an expression is undefined if the
resulting value is not mathematically defined or not representable for its
type.

Precedence and Associativity of Operators

The following table shows the C operators in descending order of
precedence by operator group. Operator groups are delineated by
horizontal lines. Operators within each group have equal precedence.

TABLE 9-1 Preeedenee and Assoeiativity of Operators

OPERATOR

0
[]

9-4

DESCRIPTION

Function call
Reference to array

element
Reference to structure

member

ASSOCIATIVITY

Left to right

Ezpressions

OPERATOR DESCRIPTION ASSOCIATMTY
- > Structure or union

member reference
+ Unary plus Right to left

Unary minus Right to left
+ + Increment (pre/post)

Decrement (pre/post)
Logical negation
Bitwise complement

* Pointer indirection
� Address
s izeof Object size in bytes
(type} Type coercion (cast}
* Multiply Left to right
I Divide
" Remainder
+ Add Left to right

Subtract
<< Left shift Left to right
> > Right shift
< Less than Left to right
<= Less than or equal to
> Greater than
>= Greater than or equal to
-- Equality Left to right
! = Inequality

,It Bitwise AND Left to right
Bitwise XOR Left to right
Bitwise OR Left to right

� Logical AND Left to right
I I Logical OR Left to right
? : Conditional expression Right to left
- Assignment operators Right to left
*= I= "=
+= -= �

- I = < <=
>>=

Comma Left to right

Ezpressio'l&l 9-5

Primary Expressions

A primary expression can be one of the following:

• an identifier that is an lvalue (that is, an identifier that has been
declared as designating an object)

• an identifier that is a function (that is, a function designator)

• a constant (see the section "Constants" in Chapter 3}

• a string literal (see the section "String Literals" in Chapter 3}

• a parenthesized expression (the type and value of a parenthesized
expression are the same as the type and value of an unparenthesized
expression)

Primary Expression Syntax

primary-expreasion:
identifier
constant
string-literal

(expression)

Postfix Expressions

This section describes postrJX operators, including the following:

• array subscripting

• function calls

• structure and union members

• postrJX increment and decrement operators

PostilX Expression Syntax

postfix-expression:
primary-expression
postfix-expression [expression]

postfix-expression (argument -expression -listopt)
postfix-expression • identifier
postfix-expression -> identifier

9-6 Expressions

poatfiz-ezpreaaion ++
poatfiz-ezpreaaion --

argument-ezpreaaion-liat:
aaaignment-ezpreaaion
argument-ezpreaaion-liat 1 auignment-ezpreaaion

Array Subscripting

A subscripted element of an array is represented by a postfiX expression
that is followed by an expression in square brackets [] .

The subscript operator [] is defmed so that the following expression:

E1 [E2]

is equivalent to the following expression:

(* (E1 + (E2)))

H E1 is an array object, or a pointer to the rust member of an array
object, and E2 is an integer, then E1 [E2] will designate the E2-th
element of E1 starting at zero.

An element of a multi-dimensional array object is designated by
successive subscript operators. For example, if E is an n-dimensional
array (n � 2) that has the following dimensions:

i X j X . . . X k

and if E is not an lvalue, it is converted to a pointer to an (n-1)
dimensional array with the following dimensions:

j X . . . X k

In this example, if the unary * operator is then applied to this pointer
explicitly (or if it is applied implicitly as a result of subscripting), the
result is the pointed-to (n-1)-dimensional array. H that array is not an
lvalue, it is itself converted into a pointer. Arrays are stored in row
major order (the last subscript varies fastest).

The types of the operands in an array subscript operation must be as
follows:

Ezpreuiona 9-7

• one must be an expression of type "pointer to object type"

• the other must be an expression of integral type

The result will have type " type."

Array Object Example

The following declaration defines an array object:

int. x [3] [5] ;

where x is a 3X 5 array of int.s. That is, x is an array of three
element objects and each element object is an array of five int.s.

The following expression:

x [i]

is equivalent to the following:

(* (x+ (i)))

and x is converted to a pointer to the initial array of five int.s.

Then i is adjusted according to the type of x. This adjustment
involves multiplying i by the size of the pointed-to object (that is, an
array of five int. objects).

The results of this multiplication are added and indirection is applied to
yield an array of five in t.s.

When that array is used in the expression x [i] [j] , that expression is
in turn converted to a pointer to the first of the int.s, and x [i] [j]
yields an int..

Function Calls

A function call is represented by either of the following:

• A postriX expression that specifies the called function.

9-8 Ezpreaaiona

• Parentheses following the postfix expression; those parentheses can be
empty or can contain a comma-separated list of expressions. The list
of expressions specllies the arguments to the function. Each of the
arguments may be of any object type.

If the postfiX expression contains only an identmer, and if there is no
current declaration for that identmer, then the identmer is implicitly
declared exactly as if it were declared in the innermost block containing
the function call as follows:

extern int identifier() ;

Before a function is called, all arguments are evaluated. Each parameter
is assigned the value of its corresponding argument.

The values of the parameters may be changed by the function. These
changes will not affect the values of the arguments; this is known as
"pass-by-value. " 1£, on the other hand, a pointer to an object is passed
as an argument, it is possible for the called function to change the value
of the object to which the argument points.

Function Prototypes

A function prototype is a function declaration which declares its
parameter types.

If a called function has been declared without a prototype, then it is
referred to as an old-style function declaration; in this case, the integral
promotions are performed on each argument. Arguments with type
f loat are promoted to double; these are referred to as the default
argument promotions.

The behavior is undefmed in the following circumstances:

• when the number of arguments and the number of parameters are not
the same

• when the function is defined with a type that does not include a
prototype and the types of the arguments after promotion are not
compatible with the types of the parameters after promotion

EzpreBBions 9-9

• when the function is defmed with a type that includes a prototype
and the types of the arguments after promotion are not compatible
with the types of the parameters

• when the function is defmed with a type that includes a prototype
and the prototype ends with an ellipsis (. . .)

In an expression that calls a function that was previously declared with a
prototype,

• The number of arguments must be the same as the number of
parameters.

• The type of each argument must be compatible with the unqualified
version of the type of the corresponding parameter.

• Arguments are implicitly converted to the types of the parameters to
which they correspond; that is, they are converted as if by
assignment.

• The presence of a trailing ellipsis in a prototyped declaration causes
argument type conversion to be terminated after the last declared
parameter. Trailing arguments are subjected to the default argument
promotions.

The behavior is undefined if the return type of the function definition is
not compatible with the return type of the expression pointed to by the
expression that calls the function.

In an old-style function definition (that is, one that does not include a
function prototype declarator), the number and types of arguments are
not compared with the number and types of the corresponding
parameters.

All arguments are completely evaluated before the function call.
However, the order of evaluation is unspecified for the function
designator, the arguments, and subexpressions within the arguments.

A recursive function call can be executed as the result of any chain of
other functions.

9-10 Expressions

The expression that calls a function (usually resulting from the
conversion of a function designator) will have one of the following types:

• pointer to function returning void

• pointer to function returning some object type that is not array type

Function Expression Example

In this example, the functions f l , f2, f3, and f4 may be called in
any order:

(*pf [f l ()]) (f2 0 , f3 () + f4 0)

Before the function pointed to by pf [f 1 ()] is entered, all side effects
are completed.

Structure and Union Members

A structure or union object is designated by one of the following forms:

• A postriX expression that is followed by a dot (.) and an identifier.
Its value is that of the named member and it is an lvalue if the first
expression is also an lvalue.

H the first expression of the structure or union object has qualified
type, then the result will have the type of the designated member
that is qualified in the same way.

The rust operand of the . operator must have a structure or union
type that is either qualified or unqualified; the second operand must
name a member of that type.

• A postriX expression that is followed by an arrow - > and an
identifier, in which the value (an lvalue) is the same as the value of
the named member of the object pointed to by the first expression.

For example, if .t;E is a valid pointer expression, in which .t;
represents the "address-or' operator and generates a pointer to the
operand, then the expression (.t;E) ->MOS is the same as E . MOS.

Expressions 9-11

rr the first expression or the structure or union object is a pointer to a
qualified type, then the result will have the type or the designated
member that is qualified in the same way.

The first operand of the -> operator must have a type that is a
pointer to a structure or a union, either qualified or unqualified; the
second operand names a member of the type pointed to by the first
operand.

The behavior is implementation-dermed if the value of a member of a
union object is accessed after the value has been stored in a different
member of the object. For example, byte ordering of different types may
be dependent upon externally generated data, but otherwise would be
consistent within self-contained programs.

An exception to this rule is made to simplify the use of unions: a union
object can inspect the common initial part of the union structures that
share a common initial sequence.

To share a common initial sequence, two or more structures must have a
sequence of one or more initial corresponding members with compatible
types or initial corresponding bit-fields with the same widths.

Structure and Union Examples

• f () . x is a valid postfix expression (but is not an lvalue) if:

f is a function returning a structure or union

x is a member of that structure or union

• The following is a valid fragment:

9-1 2

union {
struct {

int
} n ;

s truct {

} nf ;
} u ;

int
char

key ;

keynum. ;
name ;

Expressions

I * . . . *I
u . nf . type = 1 ;
u . nf . name = " Grendel " ;
I * . . . * I
if (u . n . key == 1)

1 • . . . * 1 search (u . nf . name) 1 * · · · * 1

PostriX Increment and Decrement Operators

The postfiX ++ operator will add the value 1 of the appropriate type to
the operand after the value has been obtained. That operand must be an
lvalue that can be modified and must be of qualified or unqualified scalar
type.

The postfiX -- operator will subtract the value 1 of the appropriate
type from the operand after the value has been obtained.

The side effect of postfiX incrementing or decrementing occurs between
the prior and the subsequent sequence points.

Unary Operators

The syntax of unary operators follows:

unary-expresston:
postfix-expression
+ + unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
s izeof (type-name)

unary-operator: one of
.t; * +

Prefix Increment and Decrement Operators

The prefiX ++ operator adds the value 1 of the appropriate type to the
operand before the value has been obtained. That operand must be an
lvalue that can be modified and must have qualified or unqualified scalar
type.

Expressions 9-1 3

The incremented value will become the new value of the operand. Thus,
the expression ++E is equivalent to (E+=1) .

Likewise, the prerlX -- operator subtracts the value 1 of the appropriate
type from the operand before the value has been obtained. Thus, the
expression - -E is equivalent to (E-=1).

Address and Indirection Operators

The unary & (address-of) operator yields a pointer to the object or
function that the operand designates. An operand with type " type," will
yield a result with type "pointer to type."

The operand of the unary * operator must have pointer type and yields
the following:

• a. function designator, if the operand points to a. function

• an lva.lue that designates an object, if it points to an object

• a. result with type " type," if the operand has type "pointer to type"

The behavior of the unary * operator is undefined if the value assigned
to the pointer is invalid.

The following values are invalid for de-referencing a. pointer by the unary
* operator:

• a. null pointer

• an address that is not properly aligned for the type of object pointed
to

• the address of an object with automatic storage duration, if the
execution has terminated of the block with which the object is
associated

The operand of the unary & operator must be one of the following:

• a. function designator

• an lva.lue that designates an object that is neither a. bit-field nor is
declared with the register storage-class specifier.

9-14 Expressions

If E is one of the following:

• a function designator

• an lvalue that is a valid operand of the unary & operator

then •&E is equivalent to E and is a function designator or an lvalue,
respectively.

Unary Arithmetic Operators

Each unary arithmetic operator modifies its operand as shown in the
following table.

TABLE 9-2 Unary Arithmetic Operators

UNARY OPERATOR =R=E�SUL==T�------------------
+ the value of its operand after the

integral promotions have been performed

the negative of its operand after the
integral promotions have been performed

bitwise complement of its operand
after the integral promotions
have been performed

if the value of the operand is 0,
then the result is 1;
otherwise, the result is 0
Thus, the expression ! E
is equivalent to (E==O)

If E is promoted to type unsigned long , then -E is the same as
(ULONG...}lAX - E) .

If E is promoted to type unsigned int, then E is equivalent to
(UINT...}lAX - E) . (ULONG_]dAX and UINT..JlAX are defmed in the
header < l imits . h> .)

Ezpre88ions 9-15

Operands associated with the unary operators must have specific types,
as shown in the following table.

UNARY OPERATOR OPERAND TYPE
+ arithmetic

arithmetic
integral
scalar

The s i z e of Operator

The s izeof operator is used to yield the size of an operand, with the
result (in bytes) as an integer constant.

The s izeof operator may be applied to an operand that is one of the
following:

• an expression that does not have function type or incomplete type

• the parenthesized name of a type that is not function or incomplete
type

The sizeof operator may not be applied to an lvalue denoting a
bit-field object.

The type of the operand is evaluated, not the operand itself, and it is the
operand type that will determine the size.

The result is 1 if the evaluated operand has one of the following types (or
a qualified version or one or these types), including the following:

• char

• uns i gned char

• s i gned char

If the operand has array type, then the result is the total number or
bytes in the array. If the operand is a parameter with array or function
type, then the result is the size of the pointer obtained after conversion.

9-16 EzpreBBions

If an operand has structure or union type, the result or the application or
the sizeof operator is the total number of bytes in that object. This
includes all internal and trailing padding for alignment purposes, which
is implementation-defined. (See Appendix C, item 7.i, in the LPI-0
Uaer 's Guide.) The type of that result is size_t., which is dermed in
the header <st.ddef . h> .

The s izeof operator is typically used when computing the number of
elements in an array, as in the following example:

sizeof (array) I sizeof (array [O])

Cast Operators

A cast is an expression preceded by a type name enclosed in parentheses.
The value of that expression is converted or coerced to the named type.
If a cast does not specify a conversion, then the type or value of the
expression is not modified.

The type name must specify a qualified or unqualified scalar type, or a
void type. Whether a cast is applied to a qualified or to an unqualified
version of a type, the result will be the same. An lvalue cannot result
from a cast.

The associated operand must have scalar type.

Cast Conversion of Pointers

Applying a cast to convert a pointer has certain implementation-defined
and undefined characteristics, as follows:

• The result of a cast and the size of the integer required for the cast
are implementation-de(med when a pointer is converted to an integral
type. (See Appendix C, item 7.ii, in the LPI- 0 User 's Guide.)

The behavior is undefined if there is insufficient space for the
conversion.

• The result of a cast is implementation-defined when an arbitrary
integer is converted to a pointer. (See Appendix C, item 7 .ii, in the
LPI- 0 Use r 's Guide.)

Ezpreasions 9-17

Note that conversion of a pointer to an integer and vice versa should
be consistent with the addressing architecture of the machine.

• The result of a east is undermed when a pointer to an object or an
incomplete type is converted to a pointer to a different object or
incomplete type. The resulting pointer may, for example, be
improperly aligned for the type that is pointed to.

However, a pointer to an object can be converted to a pointer to
another object that has the same alignment (or a less strict
alignment), and then can be converted back again, and the result will
have a value that is the same as the original pointer. The object with
the least strict alignment is the object with character type.

Likewise, a pointer to a function of one type may be converted to a
pointer to a function of another type and then converted back to its
original type; the result will have the same value as the original
pointer. However, the behavior is undermed if a converted pointer is
used to call a function with a type that is not compatible with the
type of the called function.

Cast Syntax

cad-e:r;preaaion:
unar71-e:r:preasion
(t71pe-name) caat-e:r:preaaion

Multiplicative Operators

Operands associated with the multiplicative operators must have specific
types, as shown in the following table.

MULTIPLICATIVE OPERATOR OPERAND TYPES
* arithmetic
I arithmetic
I integral

9-1 8 E:r:preaaiona

When multiplicative operators are used, the usual arithmetic conversions
are performed on the operands and the results are as presented in the
following table.

OPERATOR R=E=S=UL==T�--------------

* the product of the operands
I the quotient from the division

of the first operand by the second
I the remainder of the first operand

modulo the second operand

For both the I operator and the I operator, the behavior is undefined
if the second operand has a value of zero. The sign of the result of the
I operator is implementation-defmed. (See Appendix C, item S.iii, in the
LPI-0 Uae r 'a Guide.)

If the division of two positive integers yields an inexact result, the results
are as follows:

• The result of the I operator is the largest integer that is less than
the algebraic quotient.

• The result of the I operator is positive.

If the division of two negative integers yields an inexact result, the result
of the I operator is implementation-defmed (see Appendix C, item S.v,
in the LPI-0 Uaer 'a Guide) and is one of the following:

• the largest integer that is less than the algebraic quotient

• the smallest integer that is greater than the algebraic quotient

For example, the following expression is equivalent to a, unless the
result of alb is not representable:

(alb) *b + alb

Ezpreaaiona 9-19

Multiplieative Syntax

multiplieative-expression:
east-expression
multiplieative-expression * east-expression
multiplieative-expression I east-expression
multiplieative-expression " east-expression

Additive Operators

Operands associated with the additive operators must have specific types,
as shown in the following table.

ADDITIVE OPERATOR �0.!.-PE�R�AND��T�YP.!....!::::E�S --------

+ both operands must have arithmetic type
or
one operand must have integral type
and one operand must be a pointer
to an object type

both operands must have arithmetic type
or
both operands must be pointers to qualified or
unqualified versions or compatible
object types
or
the left operand must be a pointer to an
object type and the right operand
must have integral type

When additive operators are used, arithmetic conversions are performed
on the operands and the results are as presented in the following table.

(Using the ++ operator to increment is equivalent to adding 1 . Using
the -- operator to decrement is equivalent to subtracting 1 .)

9-20 Expressions

OPERATOR RE�S�UL�T�----------------
+ the sum or the operands

the remainder after the second operand
is subtracted from the first operand

Pointer Arithmetic

Ir an expression with integral type is added to or subtracted from a
pointer, then the result will have the same type as the pointer operand.

Ir that pointer operand points to an element or an array object, and i£
the array object is large enough, then the result will point to an element
that differs from the original element in such a way that the difference
between the subscripts or the original and resulting array elements is
equal to the integral expression.

For example, i£ the pointer expression p points to the �th element of an
array object, then the following expression points to the i+n-th element
of the array object (ir that object exists):

(p) +n (or n+ (p))

Likewise, the following expression points to the i-n-th element of the
array object, i£ that object exists:

(p) -n

Also, when the expression p points to the last element or an array
object, then the expression (p) + 1 points to one past the last element or
the array object.

When the expression q points to an element that is one past the last
element or the array object, then the expression (q) - 1 points to the
last element or the array object.

Ir the result does not point to an element within the array, and it is
dereferenced using the indirection operator, then the behavior is
undermed.

Ezpreuions 9-21

Subtraction of one pointer from another, where both pointers point to
elements of the same array object, results in the difference between the
subscripts of the two array elements. The type of the result is
pt.rdiff_t., as defmed in the <st.ddef . h> header.

For example, if the expression p points to the �th element of an array
object and q points to the j-th element of an array object and if the
resulting value fits in an object that has type pt.rdiff_t., then the
following expression has the value �j:

(p) - (q)

The behavior is undefmed if both pointers do not point to elements
within the same array.

Additive Syntax

additive-e:z:preBBion:
multiplicative-e:z:pression
additive-ezpression + multiplicative-e:z:pression
additive-ezpreBBion - multiplicative-e:z:pression

Bitwise Shift Operators

Mter the integral promotions are performed on both operands, the result
has a type that is the same as the type of the promoted left operand.
The behavior is undefmed if the right operand has a negative value or
the right operand has a value that is greater than or equal to the width
(measured in bits) of the promoted left operand.

The expression E1 << E2 yields the following results:

E1 left-shifted E2 bit positions zero-filling vacated bits

IC E1 has an unsigned type, then the value of the result is determined as
follows:

• E1 is multiplied by the quantity, 2 raised to the E2 power

• if E1 has type unsigned long, the result is reduced modulo
ULONG.J(AX+ 1

9-22 Ezpressions

H El does not have type unsigned long , the result is reduced
modulo UINTJAX+ l . (The constants ULONGJU,X and UINTJU,X
are dermed in the header <limits . h>.)

The expression El >> E2 yields the following result:

• El right-shifted E2 bit positions

H El is either an unsigned type or a signed type and a negative
value, the value of the result is determined by:

• the integral part of the quotient of El divided by the quantity, 2
raised to the E2 power

The result is implementation-defined if El has a signed type and a
negative value. (See Appendix C, item 5.iv, in the LPI-0 User 's Guide.)

Bitwise Shirt Syntax

shift-ezpression:
additive-ezpression
shift-ezpression < < additive-ezpression
shift-ezpression > > additive-ezpression

Relational Operators

Relational operators compare two operands.

Operands associated with relational operators must be one of the
following:

• two operands with arithmetic type

• two operands that are pointers to qualified or unqualified versions of
object types that are compatible

• two operands that are pointers to qualified or unqualified versions of
incomplete types that are compatible

Relational operators yield results with type int and compare equal to 1
if the specified relation is true and 0 if it is false.

Ezpressions 9-23

Relational Pointers

The result of the relational comparison of two pointers will express the
relative locations of the objects pointed to within the address space.

A pointer to an object that is not part of an array behaves in the same
way as a pointer to the rust element of an array that has a length of one
and an element type which is the same type as the object.

When the objects pointed to are members of the same aggregate object,
then the pointers to structure members that are declared later in the
structure will compare higher than pointers to members declared earlier
in the structure.

Pointers to array elements that have larger subscript values will compare
higher than pointers to elements of the same array that have lower
subscript values.

Pointers to members of the same union object will compare equal.

The result is undefined if the objects pointed to are not members of the
same aggregate or union object.

Relational Syntax

relational-expreaaion:
ahift-expreaaion
relational-expreaaion < ahift-expresaion
relational-expreuion > ahift-expreuion
relational-expreaaion <= ahift-expresaion
relational-expression >= ahift-expresaion

Equality Operators

Equality operators compare two operands and behave in much the same
manner as relational operators. Equality operators, however, have lower
precedence than relational operators.

Operands used by the equality operators are under the following
constraints:

9-24 Ezpreaaiona

• both operands must have arithmetic type

• both operands must be pointers to qualified or unqualified versions of
compatible types

• one operand must be a pointer to an object or incomplete type and
the other must be a qualified or unqualified version of void

• one operand must be a pointer and the other must be a null pointer
constant

(See the section "Relational Operators" for information concerning the
appropriate types and values or associated operands.)

Equality Operators and Pointers

Two pointers compare equal if and only if one or the following conditions
is true:

• they both point to the same object or incomplete types

• they both point to the same element, which is located one after the
last element or the same array

A pointer to an object or incomplete type is converted to the type of the
other operand if the other operand has type pointer to a qualified or
unqualified version or void.

Equality Syntax

equality-expression:
relational-expression
equality-expreBBion == relational-expression
equality-expression ! = relational-expression

Bitwise AND Operator

The bitwise AND or the operands, which must have integral type, is the
result when the bitwise .!t operator is applied, after the usual arithmetic
conversions are performed on the operands.

Each or the resulting bits is set if and only if the corresponding bit in the
converted operand is set.

ExpreBBions 9-25

Bitwise AND Syntax

bitwise-AND-expression:
equalitv-expression
bitwise-AND-expression & equ.alitv-expression

Bitwise exclusive OR Operator

The bitwise exclusive OR (also called XOR) of the operands, which must
have integral type, is the result of the - operator, after the usual
arithmetic conversions have been performed on the operands.

Each of the resulting bits is set if and only if exactly one of the
corresponding bits in the converted operands is set.

Bitwise exclusive OR Syntax

bitwise-XOR-expression:
bitwise-AND-expression
bitwise-XOR-expression A bitwise-AND-expression

Bitwise inclusive OR operator

The bitwise inclusive OR of the operands, which must have integral type,
is the result of the I operator, after the usual arithmetic conversions
have been performed on the operands.

Each of the resulting bits is set if and only if at least one of the
corresponding bits in the converted operands is set.

Bitwise inclusive OR Syntax

bitwise -OR-expression:
bitwise-XOR-expression
bitwise-OR-expression I bitwise-OR-expression

9-26 Expressions

Logical AND operator

The result of the U operator is 1 and type int. if neither of the
operands, which must have scalar type, is equal to 0; otherwise, the
result is 0. The resulting type is in t..

The U operator always evaluates from left to right, unlike the bitwise
binary & operator. After the first operand is evaluated, there is a
sequence point. The second operand is not evaluated if the first operand
is equal to 0.

This guarantee of logical expression "short-circuit" can be extremely
useful. For example, in the following statement

while (! feof (f) && ((c = get.c (f)) == ' \n '))

the function g et.c will not be called if the expression ! f eof (f) is
false {that is, the expression feof is true) , thereby ensuring that no
attempt to read past the end-of-file is made.

Logical AND Syntax

logical-AND-ezpression:
bitwise-OR-ezpression
logical-AND-ezpression U bitwise-OR-expression

Logical OR Operator

The result of the I I operator is 1 and type in t. if either one or both of
the operands, which must have scalar type, is not equal to 0; otherwise,
the result is 0. The resulting type is in t..

This guarantee of logical expression "short-circuit" can be extremely
useful. For example, in the following statement:

while (feof (f) I I ((c = get.c (f)) == ' 0))

the function g et.c will not be called if the expression f eof (f) is
true, thereby ensuring that no attempt to read past the end-of-file is
made.

Ezpressions 9-27

Logieal OR Syntax

logical-OR-ezpression:
logical-AND-ezpre88ion
logical- OR-ezpression I I logical-AND-ezpre88ion

Conditional Operator

The conditional operator is used to evaluate three operands.

The first of the three operands must have scalar type. For the second
and third operands, one of the following must be true:

• both operands have arithmetic type

• both operands have compatible structure or union types

• both operands have void type

o both operands are pointers to qualified or unqualified versions of
compatible types

• one operand is a pointer and the other is a null pointer constant

• one operand is a pointer to an object or incomplete type and the
other is a pointer to a qualified or unqualified version of void

The conditional expression evaluation proceeds as follows:

• the first operand is evaluated (there is a sequence point after its
evaluation)

G if the rust operand is not equal to 0, then the second operand is
evaluated

• if the first operand is equal to 0, then the third operand is evaluated

The result is the value of the operand that is evaluated (either the second
or third operand) . The result is not an lvalue.

In cases where both the second and third operands have arithmetic type,
the usual arithmetic conversions are performed to bring them to a
common type. The result will have that type.

In cases where both the operands have structure or union type, the result
will have that type.

9-28 Ezpressions

In cases where both operands have void type, the result will have
void type.

In cases where both the second and third operands are pointers, or one is
a null pointer constant and the other is a pointer, the type of the result
is a pointer to a type qualified with all the type qualifiers of the types
pointed-to by both the second and third operands.

In cases where both operands are pointers to compatible types or are
differently qualified versions of a compatible type, the type of the result
is the composite of the types.

In cases where one operand is a null pointer constant, the type of the
result is the type of the other operand.

In cases where one operand is a pointer to void or is a qualified version
of void, then the other operand is converted to type pointer to void
and the result will have that type.

Conditional Syntax

conditional-ezpression:
logical-OR-ezpression
logical- OR-ezpreBBion ? ezpression : conditional-ezpression

Assignment Operators

An assignment operator stores the value of the right expression into the
object designated by the left operand, which must be a modifiable lvalue.
The resulting assignment expression has the value of the left operand.
The result is not an lvalue. Operands can be evaluated in any order.

The type of an assignment expression is the same as the type of its left
operand. However, if the left operand has qualified type, then the
assignment expression will have the type of the unqualified version of the
type of the left operand.

There is a sequence point before and after the left operand is updated.

Ezpressions 9-29

Simple Assignment

The simple assignment (=) operator will perform the following:

• convert the value of the right operand to the same type as the
assignment expression (see the preceding section)

• store that value in the object designated by the left operand

IC an object accesses the value stored in another object and the storage of
the two objects overlaps at any location, then both of the following must
be true, or the behavior is undermed:

• the overlap must be exact

• the two objects must have qualified or unqualified versions of a
compatible type

The operands must meet one of the following conditions:

• The left operand must have qualified or unqualified arithmetic type
and the right must have arithmetic type.

• The left operand must have a qualified or unqualified version of a
structure or union type compatible with the type of the right.

• Both operands must be pointers to qualified or unqualified versions of
compatible types; the type pointed to by the left must have all the
qualifiers or the type pointed to by the right.

• One operand must be a pointer to an object or incomplete type and
the other must be a pointer to a qualified or unqualified version of
void; the type pointed to by the left must have all the qualifiers of
the type pointed to by the right.

• The left operand must be a pointer and the right must be a null
pointer constant.

Compound Assignment

In the following example of a compound assignment expression, the
lvalue El is evaluated only once:

El op = E2

9-30 Expressions

whereas, in the corresponding simple assignment expression,

E1 = E1 op (E2)

the lvalue E1 is evaluated twice.

The following compound assignment operators

+=

and

-=

require that the operands meet one of the following conditions:

• The left operand must be a pointer to an object type and the right
must be an integral type.

• The left operand must have qualified or unqualified arithmetic type
and the right must have an arithmetic type.

All other compound assignment operators require that the operand have
the arithmetic type that is allowed by the corresponding binary operator.

Assignment Syntax

assignment-ezpression:
conditional-ezpression
unary-ezpression assignment-operator assignment-ezpression

assignment-operator: one or
= •= /= I= += -= <<= >>= a= -= =

Comma Operator

When the comma operator is used, the evaluation takes place in the
following order:

• the left operand is first evaluated as a void expression

• a sequence point is encountered

• the right operand is evaluated

Ezpressions 9-31

The result is not an lvalue and has the same type and value as the right
operand.

Comma Syntax

expression:
assignment-expression
expression 1 assignment-expression

Comma Operator Example

The comma can be used as a punctuator instead of an operator; for
example, to separate arguments or initializers within a list. In those
cases, the features of the comma that are described in the preceding
section do not apply.

However, the comma can also be used within a parenthesized expression
or within the second expression of a conditional operator.

For example, in the following function call, the function has three
arguments and the second argument has a value of 5 .

f (a , (t=3 , t+2) , c)

The comma operator is very useful when used in conjunction with the
conditional operator. For example:

#define igetc (f)

9-32

((f) -> chars_left > 0 ?
((f) -> chars_left -- ;
* (f) -> current_char++) :

ifilup (f))

Expressions

Chapter 10: Constant Expressions

Overview . 10-1
Constant Expression Syntax • . • • • • • • • . • • . • • • • • • . . • • • • • 10-1

Integral Constant Expressions • . • . . • • • • • • • • • • • • . 10-1
Initializer Constant Expressions . . . • • • • • . • • • • • • • • • • • 10-2
Arithmetic Constant Expressions . • • . . • . • • • • . . • • • . • • . • • • • • 10-2
Address Constants • • . . . • • • • • • • . . . • • • • • • . . • . . • • • • . . • • • 10-2
Constant Expressions Constraints • • • • . . • • • • • • • • • • • • • • • • • • • 10-3

Chapter 10: Constant Expressions

Overview

A constant expression can be used in the same way as a constant because
it is an expression that can be evaluated at compile time rather than at
execution time. The arithmetic precision and range is at least as great
when the expression is evaluated in the translation phase as it would be
if evaluated at run time.

Constant expressions evaluate to a constant (within the range of
representable values for that constant type) using the same semantic
rules as for non-constant expressions. For example, the following
initialization contains a valid integral constant expression that evaluates
to 16:

static int i = 3 * 5 + sizeof (char) ;

The following circumstances require a valid integral constant expression:

• the specification of the size of a bit-field member of a structure

• an enumeration constant value

• an array size

• a case constant value

Constant Expression Syntax

constant-expression:
conditional-expression

Integral Constant Expressions

An integral constant expression is of integral type and can have the
following kinds of operands:

• integer constants

Constant Expressions 10-1

• enumeration constants

• character constants

• sizeof expressions

• fioating constants that are cast operands

Cast operators must convert arithmetic types to integral types when they
are used in integral constant expressions. The exception to this rule is
when the cast operator is used as part of an operand to the sizeof
operator.

Initializer Constant Expressions

Constant expressions in initializers must evaluate to one of the following:

• an arithmetic constant expression

• a null pointer constant

• an address constant

• an object type address constant plus or minus an integral constant
expression

Arithmetic Constant Expressions

Arithmetic constant expressions are of arithmetic type and can have the
following kinds of operands:

• integer constants

• fioating constants

• enumeration constants

• character constants

• sizeof expressions

Address Constants

An address constant is a pointer. It points to either an lvalue
designating a static object or a function designator. The address
constant must be created explicitly by using the unary & operator or
implicitly by the use of an array or function type expression.

10-2 Constant Expressions

The following operators may be used to create an address constant, but
these operators cannot be used to access the value of an object.

• array-subscript []

• member-access . and -> operators

• the address lit; and indirection * unary operators

• pointer casts

Constant Expressions Constraints

The following operators are not allowed in constant expressions:

• assignment

• increment

• decrement

• function-call

• comma operators

However, these operators may be used when they are contained within
the operand of a s izeof operator because such operands are not
evaluated. (For example, the evaluation of sizeof (i ++) does not
result in i being incremented.)

Constant Ezpreaaiona 10-3

Chapter 11: Statements

Overview • . • • • • . • . • • • . . • • . 1 1-1
Statement Syntax . . . • . . . • • . • • . 1 1-1

Full Expressions • . . • . • • • . . . • • • . • 1 1-1
Labeled Statements • • • • • 1 1-2

Labeled Statement Syntax • . • • 1 1-2
Compound Statement • . . . • . • • • . • • • • . • • . . 1 1-2

Compound Statement Syntax . . . • • . • • • • • • . • • • . • . . • 1 1-2
Expression Statements . . • . . • • • • • • . . • . • . • . . • . 1 1-3

Expression Syntax • • . • . . . • . . . • • • • • . • • • • 1 1-3
Null Statement Example . . . • • • • . . 1 1-3

Selection Statements . . • . • • . • . . 1 1-3
Selection Statement Syntax • • • . . 1 1-3
The if Statement . • • . . • • • 1 1-4
The switch Statement . • . . • 1 1-4
switch Statement Example . 1 1-5

Iteration Statements • . • . • • . • . . 1 1-6
Iteration Syntax . . • • • . . . • . • . . . • . • . . • . . . • . • 1 1-6
The while Statement . . • . . . • • . • • . • • . . . • 1 1-6
The do Statement . . . • • • . . . • • • . • • • . . • • • . • . . • 1 1-6
The for Statement . • • • • . . • 1 1-6

Jump Statements • • . . • • . . • • • • . 1 1-7
Jump Statement Syntax • • . • • • . . • • . • • • . • • • . . • . . . • 1 1-7
Jump Statement Example • • • . . . • • . . • . . . • • . 1 1-8
The goto Statement • • • • . . . • • • . . . 1 1-8
The continue Statement . 1 1-8
The break Statement . • • • • . • 1 1-9
The return Statement . . • . • . . . 1 1-9

Chapter 11: Statements

Overview

Unlike an expression, a statement does not have a value, but rather
specifies an action that will be executed. These actions, Cor the most
part, are used to affect the flow or control or a program. Statements are
generally executed in sequence, with exceptions as described in this
chapter.

Statement Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Full Expressions

A Cull expression is defined as an expression that is not part or another
expression. There is a sequence point at the end oC a Cull expression.

A Cull expression can be any or the following:

• an initializer

• the expression in an expression statement

• the controlling expression or a selection statement (if or switch)

• the controlling expression or a while or do statement

• each or the three expressions (which are optional) in a for statement

• the expression (which is optional) in a return statement

Statements 1 1-1

Labeled Statements

A labeled statement can be any statement that is preceded by a label
name, which is an identifier followed by a colon. The label names
themselves do not affect processing.

The special case or de.f aul t labels, as illustrated in the following
syntax, may appear only in a switch statement (see the section "The
switch Statement" later in this chapter).

Labeled Statement Syntax

labeled-statement:
identifier : statement
case constant-expression : statement
de.faul t : statement

Compound Statement

A compound statement, usually referred to as a block, is used to group a
set or statements into one syntactic unit.

That syntactic unit may have its own set o£ declarations and
initializations. (See the section "Storage Durations o£ Objects" in
Chapter 6.)

Objects that have automatic storage duration will have their initializers
evaluated. The resulting values are then stored in those objects in the
same order in which their declarators appear.

Compound Statement Syntax

1 1-2

compound-statement:
{ declaration-list t statement-list t } op op

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

Statements

Expression Statements

Expression statements are evaluated for their side effects, which may
include assignments and function calls.

Expression Syntax

expression-statement:
expression t ; op

Null Statement Example

A null statement consists only of a semicolon and performs no
operations.

For example, in the following program fragment, an empty loop body is
supplied to the iteration statement by way of a null statement.

char * s ;
I * . . · * I
while (* s + + ! = · \o ·)

Selection Statements

A selection statement conditionally selects among a set of statements.
The value specified by a controlling expression will determine the
particular statement(s) selected.

Selection Statement Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Statements 1 1-3

The if Statement

The controlling expression of an if statement must have scalar type.

AB illustrated in the preceding syntax, there are two forms of the
selection statement that use the if statement.

In both forms, if the expression is not equal to 0 (that is, is true) , then
the first substatement is executed.

In the form that uses both if and else , the second substatement is
executed if the expression compares equal to 0 (that is, is false) . However,
the second substatement is not executed if the first substatement is
reached by way of a label.

The e l s e in a selection statement is associated with the closest
preceding if , as long as there is no other corresponding e l s e for that
if in the same block, which is not an enclosed block.

The swi t c h Statement

A switch statement causes control to jump to, into, or past the
statement called the switch body.

The controlling expression of a switch statement must have integral
type. The controlling expression will have the integral promotions
performed on it.

Each case label has its expression, which must be an integral constant
expression, converted to the controlling expression's promoted type.

The particular action of the switch statement is specified by one or
more of the following conditions:

• The value of the switch controlling expression, which must have
integral type.

• The presence or absence of the def ault label. There can be no
more than one def ault label in a switch statement. However,
a switch statement that is enclosed within another switch
statement may have a def ault label, or may have case constant
expressions whose values duplicate any cas e constant expressions
contained by the enclosing switch statement.

1 1-4 Statements

e The values o£ any case labels on or in the swi t.ch body.

(A case or defa.ul t. label can be only located within the nearest
enclosing swi t.ch statement.)

When the value o£ the converted cas e constant expression matches the
value or the promoted controlling expression, control jumps to the
statement following the matched cas e label. 1£ the values do not
match and there is a def ault. label, control jumps to the labeled
statement.

1£ the values do not match and there is no def ault. label, then no part
or the swi t.ch body is executed.

Mter conversion, each cas e constant expression in the same swi t.ch
statement must have a unique value.

The implementation may place limits on the number o£ case values
that can appear in a swi t.ch statement, as discussed in Chapter 1 .
(See Appendix C, item 12.i, in the LPI-0 User 's Guide.)

swi tch Statement Example

In the following program fragment, the object whose identifier is d is
never initialized, although it exists with automatic storage duration
within the block. Thus, i£ the value o£ the controlling expression is
nonzero, the call to the £unction f will access an indeterminate value.

switch (int.egral_expr)
{

}

Statements

double d = 0 . 0 ;
case 0 :

d = 1 . 2 ;
break ;

c as e -1 ;
d = 3 . 4 ; / * f all through

t.o def ault.* /
def ault. :

f (d) ;

11-5

1 1-6

Iteration Statements

An iteration statement causes a statement (the loop body) to be
executed repeatedly as long as the resulting value of the
controlling expression is not equal to 0 (that is, true). The
controlling expression must have scalar type.

Iteration Syntax

iteration-statement:
while (ezpr) statement
do statement while (ezpr) ;
for (ezpr t ; ezpr t ; ezpr t) statement op op op

The whi l e Statement

When the while statement is used for iteration, the evaluation
of the controlling expression takes place before each execution of
the loop body.

The do Statement

When the do statement is used for iteration, the evaluation of
the controlling expression takes place after each execution of the
loop body.

That is, the loop is always executed at least once.

The f or Statement

Statement 1 is exactly equivalent to the subsequent sequence of
statements (Statements 2), as long as a continue is not present
within the loop body:

Statements

Statement 1

:for (ezpression-1 ezpression-e ezpression-9) statement

Statement 2

ezpression-1
while (ezpreuion-t) {

statement
ezpression-9 ;

}

Thus, in a :for statement:

ezpression-1 specifies initialization for the loop

ezpression-e is the controlling expression and specifies an
evaluation made before each iteration, with the result that
execution of the loop terminates when the expression compares
equal to 0 (that is, false)

ezpression-9 specifies an operation (for example, decrementing)
that is performed after each iteration

Neither ezpression-1 nor ezpression-9 is required to be present.

If ezpression-e is omitted, it is replaced by a nonzero constant.

Jump Statements

A jump statement transfers control unconditionally. (That is, it causes
an unconditional jump to elsewhere in the translation unit.)

Jump Statement Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return ezpression t ; op

Statements 1 1-7

Jump Statement Example

The user may fmd it necessary to jump into a set of statements. The
following example presents one possible approach to a situation such as
this, based on the following assumptions:

• The general initialization code accesses objects whose scope is limited
to the current function.

• The general initialization code is too large to be duplicated.

• The code that determines the subsequent operation (for example, a
continue statement) must be located at the head of the loop.

I • . . . • 1
goto f irst_time ;
for (; ;) {

I • determine next operation • I
if (need t o reinitialize) {

I • reinitialize-only code • I
f irst_time :

I • general initialization code • I
continue ;

}
I • handle other operations • I
}

The goto Statement

A goto statement transfers control to the labeled statement in the
enclosing function. That label is named by the identifier in the goto
statement.

The c ont inue Statement

A continue statement, which may only appear as part of the loop
body for the while , do, or for statements, transfers control to the
end of that loop body to terminate the current iteration and initiate the
next one.

For example, in each of the following statements, the continue is
equivalent to goto end_loop ; . (A null statement follows the
end_l.oop : label.)

1 1-8 Statementa

H the continue statement shown is in an enclosed iteration statement,
it is interpreted within that statement.

while (e:x:pr) { do { for (; e:x:pr ;) {
/ * code * / /*code*/ / * code * /
continue ; continue ; continue ;
/ *code * / / *code* / / * code* /
end....l.oop : end...J.oop : end...J.oop :

} } while (expr) ; }

The br e ak Statement

A break statement may appear as a part oC a switch body or
while , do, or for loop body and is used to terminate execution oC
the smallest enclosing switch, while , do, or for statement.

The r e turn Statement

A return statement is used to terminate the execution oC a £unction
and return control (and, optionally, a value) to the £unction's caller.

A return statement can contain expressions, and there can be more
than one return statement in a £unction. (However, a return
statement with an expression may not appear in a function whose return
type is void.)

Mter the execution oC a return statement that contains an expression,
the value or that expression is returned to the caller as the value or the
£unction call expression. (IC the expression type is diCCerent Crom the type
or the £unction, the expression type is converted as ir by assignment to
the type or the £unction.)

The behavior is undefined iC, after the execution oC a return statement
that does not contain an expression, the caller uses the return value or
the £unction call.

In a case in which the compilation reaches the right bracket (}) that
terminates a £unction, the result is the same as though the return
statement without an expression were executed.

Statements 11-9

Chapter 12: ANSI C Compatibility Issues

Overview . . • . • • • • . . • 12-1
ANSI C Changes • • . • • . . . • • • • . . . • • 12-1
Integral Promotions . • . • 12-5

Integral Constant Typing • . . . • • . . . • • . • • • • . . • • . . . 12-8
LPI-C Extensions . . • • • • . • • • • . . . • . . 12-10

Compatibility Options . • • • • • . • • • • . • • . • . • • • 12-12

Chapter 12: ANSI C Compatibility Issues

Overview

This chapter describes changes introduced to the C language by the new
ANSI standard and LPI extensions to ANSI C.

ANSI C Changes

In developing the new ANSI standard for C, the ANSI committee took
into consideration the fact that considerable amounts of C code have
been written since the c language was rust introduced as part of the
development of the UNIX operating system. Some of these changes could
cause valid " old-style" programs (Kernighan and Ritchie or other
implementations) to perform differently. The committee attempted,
wherever possible, to avoid "quiet changes" that would cause a valid
program to perform differently without notice. In the interest of
maintaining maximum compatibility and portability, the programmer
should be aware of the degree to which software written in pre-ANSI C
code can be moved from one computer system to another.

The following is an overall summary of some of the major differences
between the old K&R definition of C and the new ANSI C.

• The "integral promotion" rules have changed from the old-style
"unsigned-preserving" method to the ANSI "value-preserving"
method. The ANSI committee considered this to be the most serious
change made to C. (See the following "Integral Promotions" section.)

• A standard run-time library and associated header files have been
dermed.

• Preprocessing is much more carefully dermed in ANSI C. This has
been an area in which many older K&R-based C implementations
differed significantly. Some of the more notable ANSI C
preprocessing features are:

- A hierarchy of translation phases is specified and preprocessing is
explicitly token-based. This clarifies a number of previous
ambiguities in preprocessing and lexical analysis.

Compatibility 12-1

- White-space is forbidden within tokens; for example, "+ =" (note
the white-space) is now illegal.

- A new and powerful "stringize" preprocessing operator # has
been added for the creation of string literals from a token
sequence in a macro function argument.

- A new and powerful "token-paste" preprocessing operator ## has
been added to concatenate two tokens into a single token.

- A new and much-needed preprocessing control directive #elif
has been added to help simplify complicated #if/#els e/#if
conditional compilation constructs.

- A new preprocessing unary operator defined (id) has been
added which evaluates to 1 if the specified identifier id is
currently defmed; otherwise it evaluates to 0. This is primarily
to be used within the controlling expression of an #if/#elif
conditional compilation directive.

- A new #pragma preprocessing directive has been added to
provide a standard way of communicating implementation-defined
directives to the compiler.

- A new #error preprocessing directive has been added to
provide a way to explicitly generate a preprocessing error message.

- Macros are now expanded within #include and #line
directives.

- Macros may now be undefmed using the #undefined directive.

- Macros may be redefined only if the definitions are identical.

- Macro parameter substitution is not performed within character
constants and string literals.

The rules for macro expansion have been greatly clarified and
tightened up; recursive macro definitions are now well-defined.

- Trailing text on #el se and #endif directives is not
permitted.

- The pre-defined macros _ _,STDC __ _ J.INE __

12-2

_ JILE__ _J>ATE __ and __ TIME __ have been defmed.

Comments are replaced by one space character during lexical
analysis.

Compatibility

• Trigra.ph sequences (introduced by a. ??) have been added to allow
for the representation of characters that are lacking in some character
sets. Trigraphs for #, \, A , [,] , { , }, I , and - have been
defmed.

• The new escape sequences \a, \ ? , and \xh.ez-digita have been
added for use within character constants and string literals.

• The integer constant suffrxes U (or u) and F (or f) have been
added for unsigned and float type coercion and may be used in
conjunction with the L (or 1) suffrx.

• For internationalization purposes, syntax and semantics have been
added to deal with "wide" character constants and string literals (for
example, string literals containing Kanji characters).

• The antiquated "=+" style compound assignment operators (that is,
rather than "+=") are now truly illegal.

• The minimum number of significant characters that must be
recognized for internal identifiers has been extended from 6 to 3 1 .

• Structures and unions may be assigned to each other, passed as
arguments to functions, and returned by functions.

• Unions may now be initialized (the initializer refers to the first
member).

• Automatic structures, unions, and arrays may now be initialized.

• Character arrays with an explicit size may be initialized with a string
literal with exactly that many characters, thereby allowing the null
byte (\ 0) not to be included.

• Modifying the contents of string literals is now illegal and yields
undefmed behavior.

• A const type qualifier has been added to specify that a data object
(and/or a pointer to a data object) is constant and should not be
modified by the program (it may of course be initialized in its
declaration). All obvious attempts to do so will be detected and
diagnosed by the compiler, and such objects could even be placed in a

read-only area of memory.

• A volatil e type qualifier has been added. The use of this
qualifier is not as obvious as the use of the qualifier const.
volatil e specifies that a data object may be modified by some
entity not known to the compiler and outside direct control of the

Compatibility 12-3

program; for example, a hardware device or an alternate thread of a
multi-tasking program. References to objects declared as
volat.ile will never be "optimized-out."

• A signed type specifier has been added, primarily to be used to
guarantee a char data type is signed (that is, signed char).

• Restrictions on type (especially pointer type) compatibility have been
tightened up and added. As with function prototypes, these changes
should greatly increase the maintainability and portability of
programs.

• Structure and union member names are in their own name space and
need to be unique only within the structure or union, rather than
across the entire compilation unit.

• Labels are now in their own name space.

• Proper scoping rules for extern declarations within block scope are
now enforced.

• A declaration of only a structure or union tag redeclares that tag
even if it was declared in an outer scope.

• Adjacent string literals are now concatenated at compile time, thus
providing a way to neatly use very long string literals.

• The enumerated data type enum has been added (similar to Pascal
enumerated types).

• A void data type has been added, which can be used to defme a
function which returns no value, to define a (prototyped) function
which accepts no arguments, or as a generic pointer type.

• Perhaps the most important and certainly the most visible change in
ANSI C is the addition of function "prototype" declarations, and a
new syntax for function definition declarator&. This allows a function
to be declared along with the type of each of its arguments; the
number of arguments is also implicitly specified. This will aid the
compiler immensely in detecting and providing helpful diagnostics
when the number or type, or both, of arguments in functions calls are
not correct (that is, when they do not match the function prototype
declaration). Also, the notion of a "prototype scope" has been
introduced. Old-style (K&R) function declarations and function
dermitions are still supported by ANSI C, with some restrictions
concerning their use.

12-4 Compatibility

In addition, a standard method of declaring and derming functions
accepting a variable number of arguments has been added. These
additions should significantly decrease development time, and increase
program reliability, maintainability, and portability.

• Integral constant typing rules have been clarified and changed
slightly.

• Within expressions, float types are no longer required to be
promoted to type double.

• A unary + operator has been added (for symmetry with the unary -
operator).

• A pointer to a function may be used as a function designator without
an explicit de-reference (*) operation.

• Creating a pointer to just beyond the end of an array has been
legalized.

• The address of an array may now be properly taken using the &
operator.

• The address of an object with register storage class may not be
taken.

• The controlling expression {and the case labels) of a switch
statement may have any integral type (not just int) .

• The sizeof operator now returns a value (representing the size in
bytes of its operand) of type size_t rather than of type int; the
type s i ze_t is implementation-dermed in a standard header file
(<stddef . h>).

• Minimum/maximum compilation and numerical limits have been
dermed.

Integral Promotions

Probably the most serious semantic change introduced into ANSI C
involves the way in which shorter unsigned integral types (that is,
uns igned char, unsigned short, or small unsigned int
bit-fields) are promoted when used in expressions. These "integral
promotions" are applied to the operands of nearly all operations
involving shorter unsigned integral types {either directly or in the process
of applying the "default argument promotions" or the "usual arithmetic
conversions").

Compatibility 12-5

The problem arises from the fact that many older C implementations
used different rules in applying the integral promotions; they used what
is referred to as "unsigned-preserving" rules, whereas ANSI C uses what
is referred to as "value-preserving" rules. The unsigned-preserving rules
specify that a shorter unsigned integral type should be promoted to
uns i gned int.. The value-preserving rules specify that a shorter
unsigned integral type should be promoted to int. if it will fit (that is,
if its size in bits is less than or equal to that or the size in bits or an
int.) and to unsigned int. if not.

The two tables below summarize the integral promotions Cor old-style C
and ANSI C:

TABLE 12-1 Old C Unsigned-Preserving Integral Promotions

OPERAND TYPE OPERAND SIZE PROMOTED TYPE

char any int.
short. any int.
int. any int.
uns i gned char any unsigned int.
unsigned short. any unsigned int.
uns i gned int. any unsigned int.

TABLE 12-2 ANSI C Value-Preserving Integral Promotions

OPERAND TYPE OPERAND SIZE PROMOTED TYPE

char any int.
short. any int.
int. any int.
uns i gned char smaller than in t, int.
uns i gned char same as int. unsigned int.
uns i gned short. smaller than in t. int.
uns i gned short. same as int. unsigned int.
uns i gned int. smaller than in t. int.
uns i gned int. same as int. unsigned int.

1 2-6 Compatibility

Note
The size of an unsigned int. could be smaller than that of an int. when it is a
bit-field. For example:

st.ruct. { unsigned int. x : 3; } ;

(Note that you may not apply the size o f operator to a bit-field.)

The difference in these rules may be somewhat subtle, and fortunately, in
the vast majority of cases it will cause no problem. But the differences
can create ambiguities in the semantics of certain kinds of expressions,
thereby creating the possibility for a "quiet change," which can lead to
insidious and hard-to-fmd bugs.

Note
The remainder of this discussion assumes a "typical " two's complement
implementation.

When an expression possesses all of the following attributes, the result
will be an ambiguous, "questionably signed" value:

• The expression involves a shorter unsigned integral type operand
(that is, uns i gned char or unsigned short) .

• The expression produces an int-wide result (that is, the integral
promotions are performed on the operand because of a unary or
binary operation in which the other operand is an in t or shorter
type).

• The sign bit of the result is set.

The result is a questionably signed value, because if the unsigned
preserving integral promotion rules were applied, then the result would
be of type unsigned int and would contain a very large positive
value. But if the value-preserving integral promotion rules were applied,
then the result would be of type int and would contain a negative
value.

A questionably signed value does not always cause problems; it will cause
problems when at least one of the following is true:

• It is the left operand of a right-shift operator (>>), in an
implementation where a right-shift is arithmetic rather than logical.

• It is an operand of a divide (/), a remainder ("), or a relational (< ,
<=, > , >=) operator.

Compatibility 12-7

For example, the following could be used as a test to determine which
method of integral promotions an implementation uses:

int. i = -9 ;
unsigned short. us = 3 ;

i f ((i I us) < 0)
print.f ("Value-preserving (ANSI C) \n ") ;

e l s e print.f ("Unsigned-preserving (old C) \n ") ;

Here, us is a shorter unsigned integral type, which is promoted to an
int.-wide result. It is promoted because it is an operand of a division
operator (/) which specifies that the usual arithmetic conversions (which
include the integral promotions) be performed on its operands.
Specifically, it is promoted either to int. (if value-preserving rules are
applied) or to uns i gned int. (if unsigned-preserving rules are
applied). I£ the value-preserving rules are applied and us is promoted
to int., then since i is also an int., a signed integer division will be
performed, and a signed negative integer will result (that is, -9/3 giving
-3). But, i£ the unsigned-preserving rules are applied and us is
promoted to uns i gned int., then by the rules of the arithmetic
conversions, i is also promoted to unsigned int., an unsigned
integer division will be performed, and a large unsigned value will result
(that is, 4294967287/3 giving 1431655762, assuming an int. is 32 bits).

In conclusion, mixing signed and unsigned integral types can be confusing
and dangerous, and it should be done only with great care and
appropriate use of casts. Such an important change would warrant a
compile-time switch on any ANSI C implementation, which would cause
the integral promotions to be performed using the old-style C unsigned
preserving rules rather than the ANSI C value-preserving rules. LPI-C
does provide such a capability as well as other compatibility switches.
Refer to your LPI-0 User 's Guide for more information.

Integral Constant Typing

Another problem, very much related to the unsigned-preserving versus
value-preserving conflict discussed above, may arise when assigning types
to integral constants.

The problem arises from the fact that many older C implementations
essentially will not assign the type unsigned long to integral

12-8 Compatibility

constants, whereas ANSI C will, if necessary. Thus, in certain
circumstances an integral constant could be questionably signed, and
when used in certain kinds of expressions could be semantically
ambiguous, thereby creating the possibility for a " quiet change. " The
two tables below summarize the integral constant typing rules for old
style C and ANSI C:

TABLE 12-3 Old C Integral Constant Typing Rules

INTEGRAL CONSTANT ASSIGNED TYPE (first in list which fits)

Unsufrlxed decimal:
UnsufriXed octal/hex:
L sufriXed:

int, long
int, unsigned int, long
long

TABLE 12-4 ANSI C Integral Constant Typing Rules

INTEGRAL CONSTANT ASSIGNED TYPE (first in list which fits)

UnsufriXed decimal:
UnsufriXed octal/hex:

L sufriXed:
U sufriXed:
L & u sufriXed:

int, long , unsigned long
int, unsigned int, long,
unsigned long
long, unsigned long
unsigned, unsigned long
unsigned long

For example, the following could be used as a test to determine which
method of integral constant typing rules an implementation uses
(assuming a two's complement 32-bit implementation) .

if (2147483648 > 0)
printf (" ANSI C integral constant

typing rules\n ") ;
e l s e printf (" Old C integral constant

typing rules\n") ;

In addition to the possibility of this kind of compatibility problem,
portability problems may crop up when using integral constants, even

Compatibility 12-9

when using solely an older C or ANSI C implementation. For example,
consider the function call "f (65000) ; " with the function f dermed as
taking an int. argument. In implementations in which an int. is 32
bits, 65000 will be of type int. and all is well. In implementations in
which an int. is 16 bits, however, 65000 will be of type long, 4
bytes will be passed (assuming a long is 32 bits), f will be expecting 2
bytes, and an insidious bug will probably result.

In conclusion, great care should be taken when using integral constants
when the size or type, or both, of the constant is important, and should
explicitly be typed either by the U and/or L sufrlx or by appropriate
use of casts.

Again, such a change would warrant a compile-time switch on an ANSI
C implementation, which would cause the integral constant typing to be
performed according to old C rules rather than the ANSI C rules. LPI-C
does provide such a capability, as well as other compatibility switches.
Refer to your LPI- C User 'a Guide for more information.

LPI-C Extensions

In order for LPI-C to be able to compile and execute correctly, with
minimal change, the vast amounts of C code that exist, and to be
compatible with older pre-ANSI C implementations, a number of
compatibility modes are supported. Listed below are some of the key
non-ANSI or undermed-ANSI extensions that are supported by LPI's
conforming ANSI C implementation. These extensions are provided by
way of compiler options for non-ANSI items, or as default behavior for
undermed-ANSI items. Refer to your LPI- C User 's Guide for details on
how to turn on these options.

• Optionally undermes _ _8TDC _ _ (intending to indicate a non
conforming ANSI C implementation).

• Optionally ignores trigraph sequences (that is, no trigraph sequence
mapping will be performed).

• Optionally accepts long float. as a synonym for double in a
declarator.

• Optionally promotes all float. types to type double in
expressions.

1 2-10 Compatibility

• Optionally recognizes only old-style C escape sequences within string
literals and character constants (that is, the \a, \? , and
\xhezadecimal-digits escape sequences will not be recognized). When
any unrecognized escape sequences are encountered, a warning will be
given, and compilation will continue as if the backslash in the escape
sequence were not present.

• Optionally uses old-style C file scoping rules for functions and data
objects declared as extern within an inner block scope. That is,
functions and data objects declared as extern within an inner
block will actually be declared as if the declaration had appeared
outside of any block (that is, at file scope).

• Optionally assigns types to integer constants by old-style C rules
rather than ANSI C rules. (See Tables 12-3 and 12-4.)

• Optionally applies the integral promotions of integral types in
expressions according to the old-style C "unsigned-preserving" rather
than ANSI C "value-preserving" rules. (See Tables 12-1 and 12-2.)

• Optionally accepts the type char * as equivalent to the generic
pointer type void * , without a warning.

• Optionally allows additionally the integral types char, short.,
and long (signed or unsigned) to be declared as bit-fields, with
appropriate maximum widths, without a warning.

• Optionally allows the destructive redermition of macros, with a
warning. The default ANSI C behavior in this situation is to emit a
warning and ignore the redermition.

• Optionally allows innocuous redefinitions of function-like macros,
which differ only in the spelling of formal macro parameter
identifiers, without a warning. For example:

#define min (q , r)
#define min (x , y)

(((q) <=
(((x) <=

(r)) ?
(y)) ?

would be silently accepted, without warning.

(q)
(x)

• Optionally allows trailing text on a #els e or #endif
preprocessing directive, without a warning.

Compatibility

(r))
(y))

12-11

• Optionally allows the expansion of function-like macro invocations
with empty arguments as iC the (empty) arguments consisted of no
tokens, without a warning. For example,

#def ine minus {x , y)
minus { , 1 23)

{x-y)

would yield n { - 1 23) . n ANSI C leaves the behavior of such a
construct undefined.

• Optionally emits warnings wherever a function-like macro is dermed
such that old-style C formal macro parameter substitution within
string literals could be performed.

• Optionally causes old-style C formal macro parameter substitution
within string literals to be performed.

• Optionally emits warnings wherever a function-like macro is dermed
such that old-style C formal macro parameter substitution within
character constants could be performed.

• Optionally causes old-style C formal macro parameter substitution
within character constants to be performed.

• Optionally emits a warning for each unrecognized #pragma
preprocessing directive; by default they are completely ignored.

• Optionally ignores non-ANSI #ident preprocessing directives
completely without warning.

Compatibility Options

For a list of compatibility options with older pre-ANSI implementations
(most notably PCC-based compilers) , refer to your LPI-0 User 's Guide.

12-12 Compatibility

Glossary

ANSI

ASCll

abstraet semanties

aetual semanties

address

alignment requirements

argument

array

American National Standards
Institute, which dermes standards for
programming languages.

American National Standard Code for
Information Interchange, which is the
standard for derming the
representation of character data.

Conceptual steps to be taken in the
program's execution.

Steps as they are taken in executing a
compiled program. Actual semantics
may differ from abstract semantics
and produce the same result.

The storage location of a value in
memory.

lmplementation-dermed restrictions on
addresses of specified data types so
that the addresses are divisible by
specified integers.

An expression derming a value to be
passed to a called function.

An ordered set of values, each having
the same data types.

Glossary-1

behavior

bit

bit-field

byte

character

comment

compilation

compilation unit

compiler

constraints

Glossary-2

The manner in which an
implementation reacts to a certain
construction. (See implementation
defined behavior, locale-specific
behavior, undefined behavior, and
unspecified behavior.)

The storage unit in the execution
environment that is able to hold an
object with one of two values.

A data object that consists of a
specified number of bits. A bit-field
must be no larger than an int; it is
treated as an uns i gned int or
signed int.

A group of adjacent bits, the number
of which is implementation-defined
{although typically eight), constituting
a storage unit that is able to hold any
member of the basic character set of
the execution environment.

The basic indivisible data unit of the
language. See byte.

Any part of a source line in a
program, command, or file that serves
as documentation instead of as an
instruction.

Translation of a source program into
an executable program.

See translation unit.

A program that translates a source
program into an executable program.

Restrictions that language syntax and
semantics place upon the
interpretation of language elements.

default argument

promotions

diagnostic message

external linkage

function

hexadecimal

identifier

implementation

implementation- defined
behavior

Data type conversions that take place
when arguments are passed to a
function without a function prototype.

A message identifying some error
condition that has been encountered.

Connection that instances of an
identifier have across multiple
translation units.

A routine defined to calculate or to
transform variable sets of data within
given parameters. A function is called
by its name and (optionally) a list of
values (arguments) upon which it is to
operate.

Pertaining to a numbering system with
a base of 16 , in which digits 0 through
9 and the characters A through F and
a through f (representing 10 through
15) are valid digits.

A combination of letters, digits, and
underscores (_) that constitutes a data
name.

A set of software that, in a specific
translation environment, translates
programs for a specific execution
environment and supports the
execution of functions in that
environment.

Response that a translation program
itself determines (and needs to
document) . An example of
implementation-defined behavior is the
propagation of high-order bit when a
signed integer is shifted right.

Glossary-3

implementation limits

integral promotion

internal linkage

keyword

label

least significant bit

linkage

locale-specific behavior

most significant bit

Glossary-4

Restrictions that a specific
implementation imposes upon
programs.

Conversion of a smaller data type to
int. or unsigned int. when it is
used as an operand in an expression.

Connection that instances of an
identifier have within one translation
unit.

A token that is reserved for use by the
language for syntactic and semantic
purposes; keywords must not be used
as variable names.

An identifier that designates a specific
statement in an LPI-C program.

The low-order bit in a data object.

The connection between multiple
instances of an identifier across blocks
of code and among source files, object
modules, and libraries.

Computer response that an
implementation makes dependent upon
local conventions of nationality,
culture, and language. An example of
locale-specific behavior is the return
value for the i s lower function
when the arguments are characters
other than the 26 lower-case English
letters.

The high-order bit in a data object.

multibyte eharaeter

objeet

oetal

old-style funetion

parameter

pointer

portability

program

prototyped function

A member of the extended character
set or either the source or the
execution environment, including
characters that need more than one
byte for their representation.

A storage unit that contains one or
more values in the execution
environment and, except in the case of
bit-fields, consists or a byte or group
or adjacent bytes whose number,
order, and encoding are either
explicitly specified or implementation
defined. Referenced objects are
interpreted according to their data
types.

Pertaining to a numbering system with
a base of 8, in which the digits 0
through 7 are the only valid numbers.

Function definition that lists the
parameter names and parameter types
separately.

An object that is declared in a
function declaration or dermition and
acquires a value on entry to the
function.

A variable whose value is an address.

The ability of software to be compiled
and run in more than one
environment.

A set of instructions that directs the
computer to perform a series of tasks
in a specified order.

Function definition that specifies the
number and types of parameters it
accepts, as well as its return types.

Glossary-5

qualified type

reserved word

seope

sequence point

source code

translation

translation unit

undefined behavior

Glossary-6

Identifier that has special properties
added to its type, indicated by one of
the following qualifiers: const
(object is not modifiable by the
program) , or volatil e (object may
be changed by an entity that the
implementation does not know or does
not control.) Qualifiers must be the
same for data types to be compatible.

See keyword.

The region of the program text in
which a name can be referenced.

A point within program execution at
which the results of the actual
semantics must match those of the
abstract semantics.

The original form of a program, before
translation by a compiler.

The process of converting the source
code of the program into executable
code.

The basic piece of a source program
that is compiled into executable form;
it consists of the source file, its headers
(source text inserted by the
#include directive) , excluding
source lines omitted by any of the
conditional inclusion preprocessing
directives.

Behavior that applies to the use of
incorrect program constructs or data,
for which ANSI C imposes no
requirements. An example of undefined
behavior is the behavior on integer
overflow.

unqualified type

unspecified behavior

usual arithmetic
conversions

A type that is not qualified by the
keywords con1111t or volatile .
(See qualified type.)

Behavior, for a correct program
construct and correct data, upon which
ANSI C imposes no requirements. An
example of unspecified behavior is the
order in which the arguments to a
function are evaluated.

Process by which the operands of
an operator in an arithmetic expression
are converted to the same data type.

Glossary-7

Appendix A: Language Syntax Summary

This appendix summarizes LPI-C language syntax.

Tokens

token:
ke'llword
identifier
constant
string-literal
operator
punctuator

pre proc eaaing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one or the above

Keywords

ke'I/WOrd: one or
auto double int struct
bre ak else long switch
case enum register typedef
char e:x:tern return union
const f loat short uns i gned
continue for signed void
def ault go to sizeof volati le
do if static while

Appendiz A A- 1

Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
a. b c d e f
n 0 p q r B
A B c D E F
N 0 p Q R s

digit: one of
0 1 2 3 4 5 6 7 8 9

Constants

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:

g h i j k
t u v w X

G H I J K
T u v w X

fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence •

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

A-2

1 m
y z
L M
y z

Appendix A

floating-av.f/ix: one of
f 1 F L

integer-eonlltant:
deeimal-eonlltant integer-av.ffizopt
oetal-eonlltant integer-av.ffizopt
h.ezadeeimal-eonlltant integer-av.f/izopt

deeimal-eonlltant:
nonzero-digit
deeimal-eonlltant digit

oetal-eonlltant:
0
oetal-eonlltant oetal-digit

h.ezadeeimal-eonatant:
Ox h.exadeeimal-digit
OX h.ezadeeimal-digit
h.ezadeeimal-eonatant h.ezadeeimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 g

oe tal-digit: one of
0 1 2 3 4 5 6

h.ezadeeimal-digit: one of
0 1 2 3 4 5 6
a b c d e f
A B c D E F

integer-av.ffiz:
v.naigned-av.ffiz long-av.ffizopt
long-av.f/iz v.naigned-av.ffizopt

v.naigned-av.ffiz: one of
u u

long-av.fliz: one of
1 L

Appendix A

7

7 8 g

A-3

enumeration-constant:
identifier

character-constant:
• c-char-sequence •
L • c-char-SJequence •

c-char-SJequence:
c-char
c -char-sequence c-char

c-char:
any member of the source character set except

the single-quote · , backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
,. \ " \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit oc tal-digit
\ octal-digit oc tal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

String literals

string-literal:
" s-char-SJequenceopt "
L " s-char-sequenceopt "

s -char-sequence:
s-char
a-char-sequence a- char

A-4 Appendix A

s-char:
any member of the source character set except

the double-quote " , backslash \, or new-line character
escape-sequence

Operators

operator: one of

[] () -> ++ i; * + s i z e o£
I I << > >
? = *=

Punctuators

punctuator: one of

< > <=
I= I= +=

[] () { } *

Header names

header-name:
<h.-char-sequence>
" q-char-sequence "

h.-char-sequence:
h.-char
h.-char-sequence h.-char

h.-char:

>= - - ! =
-= < <= >>=

=

any member of the source character set except
the new-line character and >

q-char-sequence:
q-char

q-char:

q-char-sequence q-char

any member of the source character set except
the new-line character and "

Appendiz A

i;i; I I
i;= A= I =

A-5

Preprocessing numbers

pp-number:
digit

. digit
pp-number digit
pp-number nondigit
pp-number a sign
pp-number E stgn
pp-number

Expressions

primar11-expression
identifier
constant
string-literal
(expression)

postfix-expression
primar11-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

unar11-expression:
postfix-expression
++ unar11-expression
- - unar11-expression
unar11-operator cast-expression
sizeof unar11-expression
sizeof (t11pe-name)

unar11-operator: one of
.t; * +

A-6 Appendix A

cast-expression:
unary-expression
(type -name) cast-expression

multiplicative-expression:
c ast-expression
multiplicative-expression *

multiplicative-expression I
multiplicative-expression %

cast-expression
cast- expression
cast-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression multiplicative-expression

shift-expression:
additive-expression
shift-expression < < additive-expression
shift-expression > > additive-expression

relational-expression:
shift-expression
relational-expression <
relational-expression >
relational-expression <=
relational-expression >=

equality-expression:
relational-expression
equality-expression = =
equality-expression =

bitwise -AND-expression:
equality-expression

shift-expression
shift-expression
shift- expression
shift-expression

relational-expression
relational-expression

bitwise -AND-expression It equality-expression

bitwise-XOR-expression:
bitwise-AND-expression
bitwise -XOR-expression - bitwise-AND-expression

bitwise-OR-expression:
exclusive-OR-expression
bitwise- OR-expression bitwise-XOR-expression

Appendix A A-7

logical-AND-expression:
bitwise- OR-expression
logical-AND-expression

logical- OR-expression:
logical-AND-expression

bitwise- OR-expression

logical- OR-expression logical-AND-expression

conditional-expression:
logical-OR-expression
logical- OR-expression ? expression conditional-expression

assignment-expression:
conditional-expression
unary- expression assignment-operator assignment-expression

assignment-operator: one or
= •= I= �= += -= <<= > >= &= - = =

expression:
assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

Declarations

declaration:
declaration-specifiers init-declarator-listopt

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

A-8 Appendix A

storage-elass-speeifier:
typedef
extern
static
auto
register

type-speeifier:
void
char
short
int
long
float
double
signed
uns i gned
druet-or-union-apeeifier
enum-speeifier
typedef-name

atruet-or-union-apeeifier:
druet-or-union identifier opt { atruet-deelaration-liat }
atruet-or-union identifier

atruet-or-union:
struct
union

atruet-deelaration-liat:
Btruet-deelaration
Btruet-deelaration-liat Btruet-deelaration

Btruet-deelaration:
speeifier-qualifier-liat atruet-deelarator-liat ;

speeifier-qualifier-liat:
type-apeeifier speeifier-qualifier-liat
type-qualifier apeeifier-qualifier-liat

atruet-deelarator-liat:
atruet-deelarator
atruet-deelarator-lia t , Btruet-deelarator

Appendiz A A-9

atruct-declarator:
declarator
declarator ope

enum-Bpecifier:

condant-ezpresBion

anum identifier opt { enumerator-lid }
anum identifier

enumerator-lid:
enumerator
enumerator-lid , enumerator

enumerator:
enumeration-con.Btant
enumeration-conBtant = condant-ezpreBsion

type-qualifier:
con at
volati.la

declarator: pointer ope direct-declarator

direc t-declarator:
identifier
(declarator)
direc t-declarator [condant-ezpreBBion0pe]
direct-declarator (parameter-type-lid)
direc t-declarator (identifier-lidope)

pointer:
• type-qualifier-lid0,e
• type-qualifier-liBtope pointer

type-qualifier-lid:
type-qualifier
type-qualifier-lut type-qualifier

parameter-type-lut:
parameter-list
parameter-lid ,

A-10 Appendiz A

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

identifier-list:
identifier
identifier-list 1 identifier

tupe-name:
specifier-qualifier-list abstract-declarator opt

abstract-declarator:
pointer
pointer opt direct-abstract-declarator

direc t-abstract-declarator:
(abstract-declarator)
direc t-abstract-declarator opt [constant-expressionopt]
direc t-abstract-declarator opt (parameter-tupe-listopt)

tupedef-name:
identifier

initializer:
assignment-expression
{ initializer-list }
{ initializer-list 1 }

initializer-list:
initializer
initializer-list 1 initializer

Appendix A A-11

Statements

datement:
labeled-atatement
compound-atatement
ezpreuion-atatement
�election-statement
iteration-statement
jump-atatement

labeled-atatement:
identifier : atatement
case constant-ezpression
default : atatement

compound-�tatement:

statement

{ deelaration-listopt statement-listopt }

declaration-list:
declaration
declaration-list declaration

statement-lid:
atatement
atatement-liat atatement

ezpression-�tatement:
ezpresa�onopt

selection-statement:
if (ezpreasion) statement
if (ezpression) statement else statement
switch (ezpression) �tatement

iteration-statement:
while (ezpreasion) statement
do atatement while (ezpression)
for (ezpressionopt ; ezpressionopt e:z:pressionopt) statement

jump-statement:

A-12

goto identifier
continue ;
break ;
return ezpressionopt

Appendiz A

External Definitions

translation-unit:
ezternal-declaration
translation-unit ezternal-declaration

ezternal-declaration:
function-definition
declaration

function-definition:
declaration-apecifierBopt declarator
declaration-liBtopt

Preprocessing Directives

preproceaBing-file:
group opt

group:
group-part
group group-part

group-part:
pp-tokenB0pt new-line
if-aection
control-line

if-aection:
if-group elif-groupa0pt else-groupopt endif-line

if-group:
if constant-ezpreuion new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groupa:
elif-group
elif-groupa elif-group

elif-group:
e1if constant-ezpression new-line groupopt

Appendiz A A-13

elae-group:
else new-linegroupopt

endif-line:
endif new-line

control-line:
#include
#define
#define

lparen:

#undef
#line
#error
#pragma

pp-to/cena new-line
identifier replacement-lid new-line
identifier lparen identifier-liatopt)
replacement-liat new-line
identifier new-line
pp-tolcena new-line
pp-tokenaopt new-line
pp-tolcenaopt new-line
new-line

the left-parenthesis character without preceding white space

replacement-list:
pp-tolcena0pt

pp-tolcena:
pre proc eaaing-token
pp-tolcena preproceaaing-token

new-line:
the new-line character

A-14 Appendiz A

Appendix B : Identifier List

This appendix provides an alphabetical listing of all reserved ANSI C
identifiers, as well as a list of identifiers that may be reserved for hidden
internal use, may be reserved by the implementation, or may be reserved
by the ANSI C Standard in the future.

ANSI C reserves many identifiers for its own use. Reserved identifiers,
when in scope, should not be dermed by the programmer (in the same
name space); otherwise the identifiers may collide and the behavior will
be undermed.

The following section contains an alphabetical listing of all of the
identifiers reserved by ANSI C and where each is dermed (if dermed in a
standard header file), as well as what kind of entity each identifier
represents.

The second section contains a listing of the hidden and optional
identifiers.

If an identifier is dermed in a standard header me and it represents
either a macro or a type, then the identifier is reserved if and only if that
standard header file is explicitly included within the compilation unit.
The programmer may derme any of these reserved identifiers as long as
it is in a different name space, but care should be taken not to
compromise readability.

Note
Note that preprocessing directive keywords (for example, inclucl e), preproceBBing
operator names (for example, cl e f inecl), and structure/union member names (for
example, tJ1L..7ear) are not included in this list because they pose no potential
problema, since the compiler can unambiguously determine to which entity they refer,
from the context in which they are used.

Appendiz B B-1

IDENTIFIER HEADER DESCRIPTION

�ATE_ N/A Predefined macro (string
literal)

Ji'ILE N/A Predefined macro (string
literal)

J.INE N/A Predefined macro (integral
constant)

TIME N/A Predefined macro (string
literal)

__BTDC_ N/A Predefined macro (integral
constant)

_IOFBF <stdio . h> Macro (integral constant)
_IOLBF <stdio . h> Macro (integral constant)
_IONBF <stdio . h> Macro (integral constant)
BUFSIZ <stdio . h> Macro (integral constant)
CHAR.JHT <limits . h> Macro (preprocessor integral

constant)
CHAR _)lAX <limits . h> Macro (preprocessor integral

constant)
CHAR...JHN <limits . h> Macro (preprocessor integral

constant)
CLOCKS....PER_8EC <time . h> Macro (arithmetic expression)
DBLJ>IG <float . h> Macro (integral expression)
DBL_.EPSILON <float . h> Macro (double expression)
DBL...J(ANTJ>IG <float . h> Macro (integral expression)
DBLJlAX <float . h> Macro (double expression)
DBL....llAX_10_.EXP <float . h> Macro (integral expression)
DBL..JlA)CJ:XP <float . h> Macro (integral expression)
DBL...JliN_.EXP <float . h> Macro (integral expression)
EDOM <errno . h> Macro (integral constant)
EOF <stdio . h> Macro (negative integral

constant)
ERANGE <errno . h> Macro (integral constant)
EXIT ...:FAILURE <stdlib . h> Macro (integral expression)
EXIT _.SUCCESS <stdlib . h> Macro (integral expression)
FILE <stdio . h> Type
FILENAMEJlAX <stdio . h> Macro (integral constant)
FLTJ>IG <float . h> Macro (integral expression)
FLT_.EPSILON <float . h> Macro (f loat expression)
FLT...J(ANTJ>IG <float . h> Macro (integral expression)
FLTJlAX <float . h> Macro (f loat expression)
FLT....llAX_1 0_.EXP <float . h> Macro (integral expression)
FL T ..JlA)CJ:XP <float . h> Macro (integral expression)

B-2 Appendix B

IDENTIFIER HEADER DESCRIPTION

FLT_RADIX <float. . h> Macro (preprocessor integral
constant)

FLTJOUNDS <float. . h> Macro (integral expression)
FOPEN_JU.X <st.dio . h> Macro (integral constant)
HUGE_ VAL <mat.h . h> Macro (double expression)
I NT _)lAX <limit.s . h> Macro (preprocessor integral

constant)
INTJHN <limit.s . h> Macro (preprocessor integral

constant)
LC_.ALL <locale . h> Macro (integral constant)
LC_COLLATE <locale . h> Macro (integral constant)
LC_CTYPE <locale . h> Macro (integral constant)
LC.J(ONETARY <locale . h> Macro (integral constant)
LC...,.NUMERIC <locale . h> Macro (integral constant)
LC_TIME <locale . h> Macro (integral constant)
LDBL.J)IG <float. . h> Macro (integral expression)
LDBL...,EPSILON <float. . h> Macro {long double

expression)
LDBL...J(ANT.J)IG <float. . h> Macro (integral expression)
LDBLJlAX <f loat. . h> Macro (long double

expression)
LDBL.J(AX_10.....EXP <float. . h> Macro (integral expression)
LDBLJlAX.....EXP <float. . h> Macro (integral expression)
LDBL.J(IN <float. . h> Macro (long double

expression)
LDBL.J(IN_10.....EXP <float. . h> Macro (integral expression)
LDBL.J(IN.....EXP <float. . h> Macro (integral expression)
LONG _)lAX <limit.s . h> Macro (preprocessor integral

constant)
LONG.J(IN <limit.s . h> Macro (preprocessor integral

constant)
L_t.mpnam <st.dio . h> Macro (integral constant)
MB_CUR_JU.X <st.dlib . h> Macro {integral expression)
MBJ,.EN_JU.X <limit.s . h> Macro (preprocessor integral

constant)
NDEBUG <as s ert. . h> Macro reference (user defined)
NULL <locale . h> Macro (null pointer constant)
NULL <st.ddef . h> Macro (null pointer constant)
NULL <st.dio . h> Macro (null pointer constant)
NULL < s t.dlib . h> Macro (null pointer constant)
NULL <st.ring . h> Macro (null pointer constant)
NULL <t.ime . h> Macro (null pointer constant)

Appendix B B-3

IDENTIFIER HEADER DESCRIPTION

RANDJlAX <st.dlib . h> Macro (integral constant)
SCHARJlAX <limit.s . h> Macro (preprocessor integral

constant)
SCHAR.JHN <limit.s . h> Macro (preprocessor integral

constant)
SEEK_ CUR <st.dio . h> Macro (integral constant)
SEEK....END <st.dio . h> Macro (integral constant)
SEEK....SET <st.dio . h> Macro (integral constant)
SHRTJlAX <limit.s . h> Macro (preprocessor integral

constant)
SHRT.JHN <limit.s . h> Macro (preprocessor integral

constant)
SIGABT < signal . h> Macro (positive integral

constant)
SIGFPE <signal . h> Macro (positive integral

constant)
SIGILL <signal . h> Macro (positive integral

constant)
SIGHT < signal . h> Macro (positive integral

constant)
SIGSEGV <signal . h> Macro (positive integral

constant)
SIGTERM <signal . h> Macro (positive integral

constant)
SIG....DFL <signal . h> Macro ("void (*) (int.) "

constant)
SIG....ERR <signal . h> Macro ("void (*) (int.) "

constant)
SIG_IGN <signal . h> Macro ("void (*) (int.) "

constant)
TMPJlAX <st.dio . h> Macro (integral constant)
UCHARJlAX <limit.s . h> Macro (preprocessor integral

constant)
UINTJlAX <limit.s . h> Macro (preprocessor integral

constant)
ULONGJlAX <limit.s . h> Macro (preprocessor integral

constant)
USHRTJlAX <limit.s . h> Macro (preprocessor integral

constant)
abort. <st.dlib . h> Function or macro function
ab s <st.dlib . h> Function or macro function
acos <mat.h . h> Function or macro function

B-4 Appendix B

IDENTIFIER HEADER DESCRIPTION

ascti•e <ti•e . h> Function or macro function
as in <•ath . h> Function or macro function
as s ert <as s ert . h> Macro function (void)
a tan <•ath . h> Function or macro function
atan2 <•ath . h> Function or macro function
atexit <stdlib . h> Function or macro function
atof <stdlib . h> Function or macro function
atoi <stdlib . h> Function or macro function
atol <stdlib . h> Function or macro function
auto N/A Keyword
break N/A Keyword
bsearch <stdlib . h> Function or macro function
calloc <stdlib . h> Function or macro function
case N/A Keyword
ceil <•ath . h> Function or macro function
char N/A Keyword
clearerr <stdio . h> Function or macro function
clock <ti•e . h> Function or macro function
clock_t <ti•e . h> Type (arithmetic)
con at N/A Keyword
continue N/A Keyword
COB <•ath . h> Function or macro function
cosh <•ath . h> Function or macro function
cti•e <time . h> Function or macro function
default N/A Keyword
diffti•e <time . h> Function or macro function
div <stdlib . h> Function or macro function
div_t <stdlib . h> Type (structure)
do N/A Keyword
double N/A Keyword
else N/A Keyword
enum N/A Keyword
errno <errno . h> Macro (int modifiable lvalue)
exit <stdlib . h> Function or macro function
exp <math . h> Function or macro function
extern N/A Keyword
f abs <•ath . h> Function or macro function
f close <stdio . h> Function or macro function
f eof <stdio . h> Function or macro function
f error <stdio . h> Function or macro function
fflush <stdio . h> Function or macro function
f getc <stdio . h> Function or macro function

Appendiz B B-5

IDENTlFIER HEADER DESCRIPTION

:f getpos <stdio . h> Function or macro function
:fgets <stdio . h> Function or macro function
:float N/A Keyword
:floor <math . h> Function or macro function
:fmod <math . h> Function or macro function
:fopen <stdio . h> Function or macro function
:for N/A Keyword
:fpos_t <stdio . h> Type
:fprint:f <stdio . h> Function or macro function
:fputc <stdio . h> Function or macro function
:fputs <stdio . h> Function or macro function
:fread <stdio . h> Function or macro function
:free <stdlib . h> Function or macro function
:freopen <stdio . h> Function or macro function
:frexp <math . h> Function or macro function
:f s c an:f <stdio . h> Function or macro function
:f seek <stdio . h> Function or macro function
:f setpos <stdio . h> Function or macro function
:ftell <stdio . h> Function or macro function
:fwrite <stdio . h> Function or macro function
gate <stdio . h> Function or macro function
getchar <stdio . h> Function or macro function
getenv <stdlib . h> Function or macro function
gets <stdio . h> Function or macro function
gmtime <time . h> Function or macro function
go to N/A Keyword
i:f N/A Keyword
int N/A Keyword
i salnum <ctype . h> Function or macro function
i s alpha <ctype . h> Function or macro function
i scntrl <ctype . h> Function or macro function
i sdigit <ctype . h> Function or macro function
i s graph <ctype . h> Function or macro function
i s lower <ctype . h> Function or macro function
! sprint <ctype . h> Function or macro function
i spunct <ctype . h> Function or macro function
i s space <ctype . h> Function or macro function
! supper <ctype . h> Function or macro function
i sxdigit <ctype . h> Function or macro function
j mp_bu:f <s etj mp . h> Type (array)
labs <stdlib . h> Function or macro function
lconv <locale . h> Structure tag

B-6 Appendix B

IDENTIFIER HEADER DESCRIPTION

ldexp <math . h> Function or macro function
ldiv <stdlib . h> Function or macro function
ldiv_t <stdlib . h> Type (structure)
localeconv <locale . h> Function or macro function
local time <time . h> Function or macro function
log <math . h> Function or macro function
log 1 0 <math . h> Function or macro function
long N/A Keyword
longj mp <setj mp . h> Function or macro function
main N/A Function reference (user

defined)
malloc <stdlib . h> Function or macro function
mblen <stdlib . h> Function or macro function
mbstowcs <stdlib . h> Function or macro function
mbtowc <stdlib . h> Function or macro function
memchr <string . h> Function or macro function
memcmp <string . h> Function or macro function
memcpy <string . h> Function or macro function
memmove <string . h> Function or macro function
mems et <string . h> Function or macro function
mktime <time . h> Function or macro function
modf <math . h> Function or macro function
offsetof <stddef . h> Macro function (size_t)
perror <stdio . h> Function or macro function
pow <math . h> Function or macro function
printf <stdio . h> Function or macro function
ptrdiff_t <stddef . h> Type (signed integral)
putc <stdio . h> Function or macro function
putchar <stdio . h> Function or macro function
puts <stdio . h> Function or macro function
qsort <stdlib . h> Function or macro function
rai s e <signal . h> Function or macro function
rand <stdlib . h> Function or macro function
realloc <stdlib . h> Function or macro function
register N/A Keyword
remove <stdio . h> Function or macro function
rename <stdio . h> Function or macro function
return N/A Keyword
rewind <stdio . h> Function or macro function
scanf <stdio . h> Function or macro function
s etbuf <stdio . h> Function or macro function
s etj mp < setj mp . h> Function or macro function

Appendiz B B-7

IDENTIFIER HEADER DESCRIPTION

s etlocale <locale . h> Function or macro function
setvbuf <stdio . h> Function or macro function
short N/A Keyword
s i g_atomic_t < signal . h> Type (integral)
s ignal <signal . h> Function or macro function
signed N/A Keyword
s in <math . h> Function or macro function
s inh <math . h> Function or macro function
size_t <stddef . h> Type (unsigned integral)
size_t <stdio . h> Type (unsigned integral)
size_t <stdlib . h> Type (unsigned integral)
size_t <string . h> Type (unsigned integral)
size_t <time . h> Type (unsigned integral)
sizeof N/A Keyword
sprintf <stdio . h> Function or macro function
sqrt <math . h> Function or macro function
srand <stdlib . h> Function or macro function
s scanf <stdio . h> Function or macro function
s tatic N/A Keyword
stderr <stdio . h> Macro ("FILE * , expression)
stdin <stdio . h> Macro ("FILE * , expression)
stdout < stdio . h> Macro ("FILE * , expression)
strcat <string . h> Function or macro function
strchr <string . h> Function or macro function
strcmp <string . h> Function or macro function
strcoll <string . h> Function or macro function
strcpy <string . h> Function or macro function
strcspn <string . h> Function or macro function
strerror <string . h> Function or macro function
strftime <time . h> Function or macro function
strlen <string . h> Function or macro function
s trncat <string . h> Function or macro function
strncmp <string . h> Function or macro function
s trncpy <string . h> Function or macro function
strpbrk <string . h> Function or macro function
s trrchr <string . h> Function or macro function
strspn <string . h> Function or macro function
s trstr <string . h> Function or macro function
s trtod <stdlib . h> Function or macro function
s trtok <string . h> Function or macro function
s trtol <stdlib . h> Function or macro function
s trtoul <stdlib . h> Function or macro function

B-8 Appendix B

IDENTIFIER HEADER DESCRIPTION
struct N/A Keyword
s trxfrm <string . h> Function or macro function
switch N/A Keyword
system <stdlib . h> Function or macro function
tan <math . h> Function or macro function
tanh <math . h> Function or macro function
time <time . h> Function or macro function
time_t <time . h> Type (arithmetic)
tm <time . h> Structure tag
tmpfile <stdio . h> Function or macro function
tmpnam <stdio . h> Function or macro function
to lower <ctype . h> Function or macro function
toupper <ctype . h> Function or macro function
typedef N/A Keyword
ungetc <stdio . h> Function or macro function
union N/A Keyword
uns i gned N/A Keyword
va_arg <stdarg . h> Macro function (parameter)
va_end < stdarg . h> Macro function (void)
va....list <stdarg . h> Type
va_start <stdarg . h> Macro function (void)
vfprintf <stdio . h> Function or macro function
void N/A Keyword
volatile N/A Keyword
vprintf <stdio . h> Function or macro function
vsprintf <stdio . h> Function or macro function
wchar_t <stddef . h> Type (integral)
wcstombs <stdlib . h> Function or macro function
we tomb <stdlib . h> Function or macro function
while N/A Keyword

Appendi:z: B B-9

This section contains another list of identifiers, which may be reserved
either for internal use (hidden) within an implementation, or for
additional (optional) functionality that an implementation may provide,
or for possible future functionality that may be adopted by the ANSI C
standard. The specification for these identifiers uses a UNIX-like regular
expression notation; " [A-Z]*" means "zero or more uppercase letters" ;
" [a-z]*" means "zero or more lowercase letters"; and " [0-9]*" means
"zero or more digits" . For maximal portability and maintainability, the
programmer should avoid using these identifiers.

IDENTIFIER HEADER DESCRIPTION

-* NfA Hidden macros
_[A-Z]* N/A Hidden macros
-* N/A Hidden external names
E[0-9]* < errno . h> Additional macros
E[A-Z]* < errno . h> Additional macros
LC_[A-Z]* <locale . h> Additional macros
SIG_* < s i gnal . h> Additional macros
SIG [A-Z]* < s igna.l . h> Additional macros
acosf <math . h> Future function or macro function
acos l <math . h> Future function or macro function
asinf <math . h> Future function or macro function
asinl <math . h> Future function or macro function
atanf <math . h> Future function or macro function
atanl <math . h> Future function or macro function
atan2f <math . h> Future function or macro function
atan21 <math . h> Future function or macro function
ceilf <math . h> Future function or macro function
ceill <math . h> Future function or macro function
co sf <math . h> Future function or macro function
cosl <math . h> Future function or macro function
coshf <math . h> Future function or macro function
coshl <math . h> Future function or macro function
e:xpf <math . h> Future function or macro function
e:xpl <math . h> Future function or macro function
f absf <math . h> Future function or macro function
f ab s l <math . h> Future function or macro function
f loorf <math . h> Future function or macro function
floorl <math . h> Future function or macro function
fmodf <math . h> Future function or macro function
fmodl <math . h> Future function or macro function
fre:xpf <math . h> Future function or macro function

B-10 Appendix B

IDENTIFIER HEADER DESCRIPTION

frexpl <math . h> Future function or macro function
i s [a-z]* <ctype . h> Future functions or macro functions
ldexpf <math . h> Future function or macro function
ldexpl <math . h> Future function or macro function
logf <math . h> Future function or macro function
logl <math . h> Future function or macro function
log1 0f <math . h> Future function or macro function
log10l <math . h> Future function or macro function
mem[a-z]* <string . h> Future functions or macro functions
modff <math . h> Future function or macro function
modfl <math . h> Future function or macro function
powf <math . h> Future function or macro function
powl <math . h> Future function or macro function
s inf <math . h> Future function or macro function
s inl <math . h> Future function or macro function
s inhf <math . h> Future function or macro function
s inhl <math . h> Future function or macro function
sqrtf <math . h> Future function or macro function
str [a-z]* <stdlib . h> Future functions or macro functions
str [a-z]* <string . h> Future functions or macro functions
tanf <math . h> Future function or macro function
tanl <math . h> Future function or macro function
tanhf <math . h> Future function or macro function
tanhl <math . h> Future function or macro function
to[a-z]* <ctype . h> Future functions or macro functions
wcs [a-z]* < s tring . h> Future functions or macro functions

Appendiz B B-11

Appendix C: ANSI C Implementation-Defined

Behavior

This chapter lists ANSI C implementation-dermed behavior and
locale-specific behavior.

Implementation-Defined Behavior

The following is a list of all ANSI C implementation-dermed behavior.

lmplementation-dermed behavior (which applies to a correct program
construct and correct data) depends upon the characteristics of the
implementation.

Every implementation of ANSI C is required to supply a description of
each of these characteristics. See your LPI-0 UIJer 'IJ Guide Cor further
information concerning specific behavior for your machine.

1. Translation

i. how a diagnostic is identified

ii. whether each nonempty sequence of white-space characters other
than new-line is retained or replaced by one space character that is
implementation-dermed

2. Environment

i. the semantics of the arguments to main

ii. what constitutes an interactive device

3. Identifiers

i. the number of significant initial characters in an identifier without
external linkage (at least 31 guaranteed by any ANSI C
implementation)

Appendix 0 C-1

ii. the number of significant initial characters in an identifier with
external linkage (at least 6 are guaranteed by any ANSI C
implementation)

iii. whether case distinctions are significant in an identifier with
external linkage

4. Characters

i. the members of the source and execution character sets, except as
explicitly specified by the ANSI C Standard

ii. the shift states used for the encoding of multibyte characters

iii. the value of each escape sequence

iv. the number of bits in a character in the execution character set

v. the mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set

vi. the value of an integer character constant that contains a character
or escape sequence not represented in the basic execution character
set or the extended character set for a wide character constant

vii. the value of an integer character constant that contains more than
one character or a wide character constant that contains more than
one multibyte character

viii. the current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant

ix. whether a "plain" char has the same range of values as
s i gned char or unsigned char

6. Integers

i. the representations and sets of values of the various types of
integers

ii. the result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of
equal length, if the value cannot be represented

iii. the sign of the remainder on integer division

iv. the results of bitwise operations on signed integers

v. the result of a right shift of a negative-valued signed integral type

C-2 Appendix C

6. Floating point

i. the representations and sets of values of the various types of
floating-point numbers

ii. the direction of truncation when an integral number is converted to
a floating-point number that cannot exactly represent the original
value

iii. the direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number

'1. Arrays and pointers

i. the type of integer required to hold the maximum size of an array;
that is, the type of the sizeof operator (size_t)

ii. the result of casting a pointer to an integer or vice versa

iii. the type of integer required to hold the difference between two
pointers to members of the same array (that is, ptrdiff_t)

8. Registers

i. the extent to which objects can actually be placed in registers by
use of the register storage-class specifier

9. Struetures, unions, enumerations, and bit-fields

i. a member of a union object is accessed using a member of a
different type

ii. the padding and alignment of members of structures (this should
present no problem unless binary data written by one
implementation are read by another)

iii. whether a "plain" int bit-field is treated as a s i gned int
bit-field or as an unsigned int bit-field

iv. the order of allocation of bit-fields within an int

v. whether a bit-field can straddle a storage-unit boundary

vi. the integer type chosen to represent the values of an enumeration
type

10. Type qualifiers

i. what constitutes an access to an object that has volatile-qualified
type

Appendiz C C-3

11. Deelarators

i. the maximum number of pointer, array, and function declarators
that may modify an arithmetic, structure, or union type

12. Statements

i. the maximum number of case values in a switch statement

13. Preproeessing direetives

i. whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set,
and whether such a character constant may have a negative value

ii. the method for locating includable source rues

iii. the support of quoted names for includable source rues

iv. the mapping of source me character sequences

v. the behavior on each recognized #pragma directive

vi. the definitions for _ _))ATE __ and __ TIME _ _ when,
respectively, the date and time of translation are not available

vii. the maximum nesting level for #included rues

14. Library funetions

i . the null pointer constant to which the macro NULL expands

ii. the diagnostic printed by, and the termination behavior of, the
as s ert function

iii. the sets of characters tested for by the isalnum, i salpha,
i scntrl, i s lower, isprint, and i supper functions

iv. the values returned by the mathematics functions on domain errors

v. whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range
errors

vi. whether a domain error occurs or zero is returned when the :fmod
function has a second argument of zero

vii. the set of signals for the signal function

viii. the semantics for each signal recognized by the s ignal function

C-4 Appendiz 0

ix. the default handling and the handling at program startup for each
signal recognized by the signal function

x. if the equivalent of "signal (sig , SIGJ>FL) ; " is not
executed prior to the call or a signal handler, the blocking or the
signal that is performed

xi. whether the default handling is reset if the SIGILL signal is
received by a handler specified to the s ignal function

xii. whether the last line or a text stream requires a terminating
new-line character

xiii. whether space characters that are written out to a text stream
immediately before a new-line character appear when read in

xiv. the number or null characters that may be appended to data
written to a binary stream

XV. whether the me position indicator of an append mode stream is
initially positioned at the beginning or end or the me

xvi. whether a write on a text stream causes the associated me to be
truncated beyond that point

xvii. the characteristics or me buffering

xviii. whether a zero-length me actually exists

xix. the rules for composing valid me names

xx. whether the same me can be open multiple times

xxi. the effect or the remove function on an open me

xxii. the effect if a me with the new name exists prior to a call to the
rename function

xxiii. the output for "p conversion in the fprint.f function

xxiv. the input for "p conversion in the f scanf function

XXV. the interpretation of a hyphen (-) character that is neither the fust

nor the last character in the scanlist for " [conversion in the
f s c anf function

xxvi. the value to which the macro errno is set by the f get.pos or
ft.ell function on failure

xxvii. the messages generated by the perror function

Appendiz 0 C-5

xxviii. the behavior of the abort function with regard to open and
temporary riles

xxix. the status returned by the e:x:i t function if the value of the
argument is other than zero, EXIT_8UCCESS, or
EXIT _FAILURE

xxx. the set of environment names and the method for altering the
environment list used by the getenv function

xxxi. the contents and mode of execution of the string by the system
function

xxxii. the contents of the error message strings returned by the
strerror function

xxxiii. the local time zone and Daylight Saving Time

xxxiv. the era for the clock function

Locale-specific behavior

The following characteristics of a hosted environment are locale-specific:

• the content of the execution character set, in addition to the required
members

• the direction of printing

• the decimal-point character

• the implementation-dermed aspects of character testing and case
mapping functions

• the collation sequence of the execution character set

• the formats of time and date

C-6 Appendix 0

Appendix D : Compilation and Numerical

Limits

This chapter lists the compilation and numerical limits of LPI-C.

Compilation Limits

The following lists the minimum compilation limits which the ANSI C
Standard imposes on implementation. The values enclosed in < >
correspond to the maximum LPI-C limit.

Note
"No limit• implies no specific compiler limit, but may be limited or restricted by
system resources, etc.

• 15 nesting levels of compound statements, iteration control structures,
and selection control structures < 100 >

• 8 nesting levels of conditional inclusion < No limit >

• 12 pointer, array, and function declarators (in any combinations)
modifying an arithmetic, a structure, a union, or an incomplete type
in a declaration < 15 >

• 31 nesting levels of parenthesized declarators within a full declarator
< No limit >

• 32 nesting levels of parenthesized expressions within a full expression
< 100 >

• 31 significant initial characters in an internal identifier or a macro
name

• 6 significant initial characters in an external identifier
< System dependent >

• 511 external identifiers in one translation unit < No limit >

• 127 identifiers with block scope declared in one block < No limit >

• 1024 macro identifiers simultaneously defined in one translation unit
< No limit >

Appendiz D D-1

• 31 parameters in one function definition < No limit >

• 31 arguments in one function call < 63 >

• 31 parameters in one macro definition < 256 >

• 31 arguments in one macro invocation < 256 >

• 509 characters in a logical source line < No limit >

• 509 characters in a character string literal or wide string literal (after
concatenation) < 32767 >

• 32767 bytes in an object < 2147483647 >

• 8 nesting levels for #included files < No limit >

• 257 case labels for a switch statement (excluding those for any nested
switch statements) < Unlimited >

• 127 members in a single structure or union < No limit >

• 127 enumeration constants in a single enumeration < No limit >

• 15 levels or nested structure or union definitions in a single
struct-declaration-list < No limit >

Numerical Limits

This section lists the minimum numerical limits of the values specified in
the headers <limits . h> and <.float . h>.

Sizes of Integral Types < limits.h >

The values given below are replaced by constant expressions suitable for
use in #i.f preprocessing directives. Morever, except for CHAR__l3IT
and MBJ.EN...J4AX, the following are replaced by expressions that have
the same type as would an expression that is an object of the
corresponding type converted according to the integral promotions.
Their values are equal or greater in magnitude (absolute value) to those
shown, with the same sign.

CONSTANT

CHAR__l3IT

D-2

VALUE

8

DESCRIPTION

maximum number or bits for smallest
object that is not a bit-field (byte)

Appendix D

CONSTANT VALUE DESCRIPTION

SCHARJHN -127 minimum value for an object of type
signed char

SCHAR.JIAX +127 maximum value for an object of type
signed char

UCHAR.J(AX 255 maximum value for an object of type
unsigned char

CHAR_J4IN -127 minimum value for an object of type
char

CHAR.J(AX +127 maximum value for an object of type
char

MBJ.EN.JIAX 1 maximum number of bytes in a
multibyte character, for any supported
locale

SHRT..J4IN -32767 minimum value for an object of type
short. int.

SHRT.J(AX +32767 maximum value for an object of type
short. int.

USHRT.J(AX 65535 maximum value for an object of type
unsigned short. in t.

INT..J4IN -32767 minimum value for an object of type
int.

INT.JIAX +32767 maximum value for an object of type
int.

UINT.JIAX 65535 maximum value for an object of type
unsigned int.

LONG..J4IN -2147483647 minimum value for an object of type
long int.

Appendiz D D-3

CONSTANT

LONG...).{AX

ULONG...).{AX

VALUE �D�ES�C�R�W�TI�O�N�--------------
+2147483647 maximum value for an object of type

long int.

4294967295 maximum value for an object of type
unsigned long int.

Characteristics of Floating Types < float.h >

The characteristics of floating types are dermed in terms of a model that
describes a representation of floating-point numbers and values that
provide information about the implementation's floating-point
arithmetic.

The following parameters are used to define the model for each
floating-point type:

a sign (+ -1)

b base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimum emin and a maximum
em ax)

p precision (the number of base-b digits in the significand)

I 1c nonnegative integers less than b (the significand digits)

A normalized floating-point number (! 1 > 0 if 1= 0) is defined by the
following model:

p
z = 8 X b e X � I 1c X b-lc , emin :5 e :5 emax

lc=l

Note
This model precludes floating-point representations other than sign-magnitude.

Of the values in the <float. . h> header, FLT_RADIX is a constant
expression suitable for use in #if preprocessing directives; all other
values need not be constant expressions. All except FLT_RADIX and
FLT_ROUNDS have separate names for all three floating-point types.
The floating-point model representation is provided for all values except
FLT_ROUNDS.

D-4 Appendiz D

The rounding mode for floating-point addition is characterized by the
value of FLT_llOUNDS:

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infmity

All other values for FLTJOUNDS characterize implementation-defined
rounding behavior.

The values given in the following list are replaced by
implementation-defined expressions that are equal or greater in
magnitude (absolute value) to those shown, with the same sign .

• radix or exponent representation, b

FLTJADIX 2

• number of base- FLTJADIX digits in the floating-point significand,
p

FLT_J,{ANTJ>IG
DBL_J,{ANTJ)IG
LDBL_J,{ANTJ>IG

• number of decimal digits, q , such that any floating-point number
with q decimal digits can be rounded into a floating-point number
with p radix b digits and back again without change to the q decimal
digits,

l j [1 if b is a power or 10
(p - 1) x log10 6 + \o otherwise

FLTJ)IG

DBLJ>IG

LDBLJ>IG

Appendiz D

6

10

10

D-5

• minimum negative integer such that FLT_JL\DIX raised to that
power minus 1 is a normalized floating-point number, emin

FLTJHN_EXP
DBLJHN_EXP
LDBLJHN_EXP

• minimum negative integer such that 10 raised to that power is in the

range or normalized floating-point numbers, r loglo b " m l n-1 l
FLTJHN_10_EXP
DBL }HN_10_EXP
LDBLJHN_10_EXP

-37
-37
-37

• maximum integer such that FLTJL\DIX raised to that power minus
1 is a representable fmite floating-point number, emax

FLT....JdAX.....EX
DBL..JlAX....EXP
LDBL..JlAX....EXP

• maximum integer such that 10 raised to that power is in the range of
representable fmite floating-point numbers,

l log10 ((1 - b -P) X b e rn ••) J
FLT...J4AX_1 0_EXP
DBL...J4AX_1 O_EXP
LDBL....}dAX_10_EXP

+37
+37
+37

The values given in the following list are replaced by
implementation-defmed expressions with values that are equal to or
greater than those shown.

• maximum representable finite floating-point number,

(1 - b-P) X b e m ax

D-6

FLT....}dAX
DBL....}dAX
LDBL....}dAX

1E+37
1E+37
1E+37

Appendix D

The values given in the following list are replaced by
implementation-defined expressions with values that are equal to or less
than those shown.

• the difference between 1 .0 and the least value greater than 1 .0 that is
representable in the given fioating pont type, b1-P

FLT__l:PSILON
DBL...,EPSILON
LDBL...,EPSILON

1E-5
1E-9
1E-9

• minimum normalized positive fioating-point number, b e m , .-t

FLTJHN
DBLJHN
LDBL..)diN

Examples

1E-37
lE-37
lE-37

The following describes an artificial fioating-point representation that
meets the minimum requirements of the Standard, and the appropriate
values in a <float. . h> header for type float.:

6
z = 3 X 16e X � / 1c X 16-lc 1 -31 ::5 e ::5 +32

lc=l

FLT_.RADIX 16

FL T...J.!ANT .JHG 6

FLT...,EPSILON 9.5367 4316E-07F

FLT_DIG 6

FLT..)diN...J:XP -31

FLT..JdiN 2.93873588E-39F

FLT..)diN_10...,EXP -38

FL T .JlAX.....EXP +32

FLT_J,{AX 3.40282347E+38F

FLT_J,{AX_10...,EXP +38

Appendix D D-7

The following describes floating-point representations that also meet the
requirements for single-precision and double-precision normalized
numbers in the "IEEE Standard for Binary Floating-Point Arithmetic"
(ANSI/IEEE Std 754-1985), and the appropriate values in a < float.h >
header for types float and double :

u
x1 = 8 X 2e X L f1c X 2-Jc , -125 ::5 e ::5 +128

lc = l

6 3
Xa = 8 X 2e X L fJc X 2-lc , -1021 ::5 e ::5 +1024

lc = l

LTJADIX 2

FLT...J.!ANT...J)IG 24

FLT......EPSILON 1 . 1 9209290E-07F

FLT...J)I G 6

FLT.JHN......EXP -125

FLTJHN 1 . 17549435E-38F

FLTJHN_lO......EXP -37

FLT....W.X......EXP +128

FLT...).{AX 3.40282347E+38F

FLT...).{AX_l O......EXP +38

DBLJ{ANT...J)IG 53

DBL......EPSILON 2.2204460492503131E-16

DBL...J)IG 1 5

DBL.JHN......EXP -1021

DBL.JHN 2.2250738585072016E-308

DBL...)4IN_1 0......EXP -307

DBL....W.X......EXP +1024

DBL....W.X 1 .79769313486231 57E+308

DBL....W.X_lO......EXP +308

D-8 Appendix D

Note
The floating-point model in that standard sums powers of b from zero, so the values
of the exponent limits are one less than shown here.

The values shown above for FLT.....EPSILON and DBL.....EPSILON are
appropriate for the ANSI/IEEE Std 754-1985 default rounding mode (to
nearest). Their values may differ for other rounding modes. See
Chapter 4 for information concerning conditional inclusion.

Appendix D D-9

Appendix E: Unspecified and Undefined

Behavior

This chapter lists unspecified and undermed behavior.

Unspecified Behavior

Unspecified behavior applies to a correct construct and correct data for
which the Standard imposes no requirements.

The following behavior is unspecified:

• the manner and timing of static initialization

• the behavior if a printable character is written when the active
position is at the rmal position of a line

• the behavior if a backspace character is written when the active
position is at the initial position of a line

• the behavior if a horizontal tab character is written when the active
position is at or past the last dermed horizontal tabulation position

• the behavior if a vertical tab character is written when the active
position is at or past the last defined vertical tabulation position

• the representations of floating types

• the order in which expressions are evaluated in any order conforming
to the precedence rules, even in the presence of parentheses

• the order in which side effects take place

• the order in which the function designator and the arguments in a
function call are evaluated

• the alignment of the addressable storage unit allocated to hold a
bit-field

• the layout of storage for parameters

• the order in which # and ## operations are evaluated during macro
substitution

Appendiz E E- 1

• whether errno is a macro or an external identifier

• whether s et:. j mp is a macro or an external identifier

• whether va_end is a macro or an external identifier

• the value or the file position indicator after a successful call to the
unget:.c function for a text stream, until all pushed-back characters
are read or discarded

• the details of the value stored by the fget:.pos function on success

• the details or the value returned by the ft:.ell function for a text
stream on success

• the order and contiguity or storage allocated by the calloc,
malloc, and realloc functions

• which of two members that compare as equal is returned by the
bsearch function

• the order in an array sorted by the qsort:. function of two members
that compare as equal

• the encoding or the calendar time returned by the t:.ime function

Undefined Behavior

Undermed behavior applies to erroneous and/or nonportable program
constructs for which the Standard imposes no requirements.

The following behavior is undefined:

• a nonempty source file does not end in a new-line character, ends in
new-line character immediately preceded by a backslash character, or
ends in a partial preprocessing token or comment

• a character not in the required character set is encountered in a
source file, except in a preprocessing token that is never converted to
a token, a character constant, a string literal, or a comment

• a comment, string literal, character constant, or header name
contains an invalid multibyte character or does not begin and end in
the initial shift state

• an unmatched ' or " character is encountered on a logical source
line during tokenization

• the same identifier is used more than once as a label in the same
function

E-2 Appendix E

• an identifier is used that is not visible in the current scope

• identifiers that are intended to denote the same entity differ in a
character beyond the minimal significant characters

• the same identifier has both internal and external linkage in the same
translation unit

• an identifier with external linkage is used but there does not exist
exactly one external dermition in the program for the identifier

• the value stored in a pointer that referred to an object with
automatic storage duration is used

• two declarations of the same object or function specify types that are
not compatible

• an unspecified escape sequence is encountered in a character constant
or a string literal

• an attempt is made to modify a string literal of either form

• a character string literal token is adjacent to a wide string literal
token

• the characters '/, , n, or /* are encountered between the < and >
delimiters or the characters � \ , or /* are encountered between the n

delimiters in the two forms of a header name preprocessing token

• an arithmetic conversion produces a result that cannot be represented
in the space provided

• an lvalue with an incomplete type is used in a context that requires
the value of the designated object

• the value of a void expression is used or an implicit conversion
(except to void) is applied to a void expression

• an object is modified more than once, or is modified and accessed
other than to determine the new value, between two sequence points

• an arithmetic operation is invalid (such as division or modulus by 0)
or produces a result that cannot be represented in the space provided
(such as overflow or underflow)

• an object has its stored value accessed by an }value that does not
have one of the following types: the declared type of the object, a
qualified version of the declared type of the object, the signed or
unsigned type corresponding to the declared type of the object, the
signed or unsigned type corresponding to a qualified version of the
declared type of the object, an aggregate or union type that

Appendix E E-3

(recursively) includes one of the aforementioned types among its
members, or a character type

• an argument to a function is a void expression

• for a function call without a function prototype, the number of
arguments does not agree with the number of parameters

• for a function call without a function prototype, if the function is
defmed without a function prototype, and the types of the arguments
after promotion do not agree with those of the parameters after
promotion

• if a function is called with a function prototype and the function is
not defmed with a compatible type

• a function that accepts a variable number of arguments is called
without a function prototype that ends with an ellipsis

• an invalid array reference, null pointer reference, or reference to an
object declared with automatic storage duration in a terminated
block occurs

• a pointer to a function is converted to point to a function of a
different type and used to call a function of a type not compatible
with the original type

• a pointer to a function is converted to a pointer to an object or a
pointer to an object is converted to a pointer to a function

• a pointer is converted to other than an integral or pointer type

• a pointer that is not to a member of an array object is added to or
subtracted from

• pointers that are not to the same array object are subtracted

• an expression is shifted by a negative number or by an amount
greater than or equal to the width in bits of the expression being
shifted

• pointers are compared using a relational operator that do not point to
the same aggregate or union

• an object is assigned to an overlapping object

• an identifier for an object is declared with no linkage and the type of
the object is incomplete after its declarator, or after its init-declarator
if it has an initializer

E-4 Appendix E

• a function is declared at block scope with a storage-class specifier
other than extern

• a bit-field is declared with a type other than int, signed int, or
unsigned int

• an attempt is made to modify an object with const-qualified type by
means of an lvalue with non-const-qualified type

• an attempt is made to refer to an object with volatile-qualified type
by means of an lvalue with non-volatile-qualified type

• the value of an uninitialised object that has automatic storage
duration is used before a value is assigned

• an object with aggregate or union type with static storage duration
has a non-brace-enclosed initializer, or an object with aggregate or
union type with automatic storage duration has either a single
expression initializer with a type other than that of the object or a
non-brace-enclosed initializer

• the value of a function is used, but no value was returned

• a function that accepts a variable number of arguments is defmed
without a parameter type list that ends with the ellipsis notation

• an identifier for an object with internal linkage and an incomplete
type is declared with a tentative definition

• the token defmed is generated during the expansion of a #if or
#elif preprocessing directive

• the #include preprocessing directive that results after expansion
does not match one of the two header name forms

• a macro argument consists of no preprocessing tokens

• there are sequences of preprocessing tokens within the list of macro
arguments that would otherwise act as preprocessing directive lines

• the result of the preprocessing concatenation operator ## is not a
valid preprocessing token

• the #line preprocessing directive that results after expansion does
not match one of the two well-defined forms

• one of the following identifiers is the subject of a #define or
#undef preprocessing directive: defmed, _.....LINE __
_ J'ILE __ _ _DATE __ _ _ TIME __ or _ _8TDC _ _

Appendi:e E E-5

• an attempt is made to copy an object to an overlapping object by use
or a library function other than memmove

• the errect iC the program redefines a reserved external identifier

• the effect iC a standard header is included within an external
dermition; is included Cor the rust time after the rust reference to any
or the functions or objects it declares, or to any or the types or
macros it defines; or is included while a macro is defined with a name
the same as a keyword

• a macro dermition or errno is suppressed to obtain access to an
actual object

• the parameter member-designator or an off s etof macro is an
invalid right operand or the operator Cor the type parameter or
designates bit-field member or a structure

• a library function argument has an invalid value, unless the behavior
is specified explicitly

• a library function that accepts a variable number or arguments is not
declared

• the macro dermition or as s ert is suppressed to obtain access to an
actual function

• the argument to a character handling function is out or the domain

• a macro definition or s etj mp is suppressed to obtain access to an
actual function

• an invocation or the s etj mp macro occurs in a context other than
as the controlling expression in a selection or iteration statement, or
in a comparison with an integral constant expression (possibly as
implied by the unary ! operator) as the controlling expression or a
selection or iteration statement, or as an expression statement
(possibly east to void)

• an object or automatic storage class that does not have
volatile-qualified type has been changed between a setj mp
invocation and a long j mp call and then has its value accessed

• the long j mp function is invoked from a nested signal routine

E-6 Appendix E

• a signal occurs other than as the result of calling the abort or
rai s e function, and the signal handler calls any function in the
standard library other than the signal function itself or refers to any
object with static storage duration other than by assigning a value to
a static storage duration variable or type volatile sig_a.tomic_t

• the value of errno is referred to after a signal occurs other than as
the result of calling the abort or rai s e function and the
corresponding signal handler calls the signal function such that it
returns the value SIGJRR

• the macro va_a.rg is invoked with the parameter ap that was
passed to a function that invoked the macro va_arg with the same
parameter

• a macro defmition of va_start, va_a.rg, or va_end or a
combination thereof is suppressed to obtain access to an actual
function

• the parameter parmN of a va_start macro is declared with the
register storage class, or with a function or array type, or with a type
that is not compatible with the type that results after application of
the default argument promotions

• there is no actual next argument for a va_arg macro invocation

• the type or the actual next argument in a variable argument list
disagrees with the type specified by the va_a.rg macro

• the va_end macro is invoked without a corresponding invocation of
the va_start macro

• a return occurs from a function with a variable argument list
initialized by the va_start macro before the va_end macro is
invoked

• the stream for the fflush function points to an input stream or to
an update stream in which the most recent operation was input

• an output operation on an update stream is followed by an input
operation without an intervening call to the fflush function or a
flle positioning function, or an input operation on an update stream is
followed by an output operation without an intervening call to a flle
positioning function

• the format for the fprintf or fscan:f function does not match
the argument list

Appendiz E E-7

• an invalid conversion specification is found in the format for the
fpri.ntf or f s canf function

• a '"' conversion specification for the fpri.nt.f or f s c anf
function contains characters between the pair of " characters

• a conversion specification for the fpri.nt.f function contains an h
or I with a conversion specifier other than d, i. , n, o , u, :x:, or X,
or an L with a conversion specifier other than e, E, f, g, or G

• a conversion specification for the fpri.nt.f function contains a #
fiag with a conversion specifier other than o, :x:, X, e , E, f , g , or
G

• a conversion specification for the fpri.nt.f function contains a 0
fiag with a conversion specifier other than d, i. , o , u, :x:, X, e ,
E , f , g, or G

• an aggregate or union, or a pointer to an aggregate or union, is an
argument to the fpri.nt.f function, except for the conversion
specifiers "• (for an array of character type) or "p (for a pointer to
voi.d)

• a single conversion by the fpri.nt.f function produces more than
509 characters of output

• a conversion specification for the fscanf function contains an h or
I with a conversion specifier other than d, i, n, o, u, or x, or an L
with a conversion specifier other than e, f, or g

• a pointer value printed by "p conversion by the fpri.nt.f function
during a previous program execution is the argument for "p
conversion by the f a canf function

• the result of a conversion by the facanf function cannot be
represented in the space provided, or the receiving object does not
have an appropriate type

• the result of converting a string to a number by the at.of , at.oi. ,
or at.ol function cannot be represented

• the value of a pointer that refers to space deallocated by a call to the
free or realloc function is referred to

• the pointer argument to the free or realloc function does not
match a pointer earlier returned by calloc, malloc, or
realloc, or the object pointed to has been deallocated by a call to
free or realloc

E-8 Appendix E

• a program executes more than one call to the exit function

• the result of an integer arithmetic function (abs , div, labs , or
ldi v) cannot be represented

• the shift states for the mblen, mbtowc, and wctomb functions
are not explicitly reset to the initial state when the LC_CTYPE
category of the current locale is changed

• an array written to by a copying or concatenation function is too
small

• an invalid conversion specification is found in the format for the
strftime function

Appendix E E-9

Index

-- decrement operator, 9-7 , 9-13 , 9-14
- subtraction operator, 9-22
- unary minus operator, 9-13 , 9-15
I logical negation operator, 9-13, 9-15
I= inequality operator, 9-25
#, 4-4
line, 4-22
operator, 1-3, 4-14
##, 4-4
operator, 4-1 5
#defme, 4-3 , A-14
#elil, 4-3, 4-19 , 4-20, 4-2 1 , 12-2
#else, 4-3
#endif, 4-3
#error, 4-3 , 12-2, A-14
#ident, 12-12
#if, 4-3, 4-1 9 , 4-20, 4-2 1
#if #elil, 12-2
#ifdef, 4-3, 4-1 9
#ifndef, 4-3 , 4-1 9
#include, 3-1 9 , 4-3 , 4-6 , 12-2, A-14
#line, 4-3 , 1 2-2, A-14
#pragma, 4-4, 12-2, A-14
#undef, 4-3 , 4-1 6 , 4-20, 12-2, A-14
#undef directive, 4-16, 4-25
% modulus operator, 9-20
& escape character, 3-13
& address operator, 9-13
& bitwise AND operator, 9-26
&& logical AND operator, 9-27
* indirection operator, 9-1 3
* multiplication operator, 9-20
+ addition operator, 9-22
+ unary plus operator, 9-13 , 9-1 5

Index-1

++ increment operator, 9-7, 9-13
I backslash character, 3-13
I division operator, 9-20
< less than operator, 9-24
< < left shift operator, 9-23
< = less than or equal to operator, 9-24
= simple assignment, 9-30
="= equality operator, 9-25
> greater than operator, 9-24
- > structure pointer operator, 9-7
> = greater than or equal to operator, 9-24
> > right shift operator, 9-23
?: conditional expression, 9-29
5TDC 12-10

A

abort, C-6
Abstract declarator, 7-24
Abstract semantics, 2-3
Actual semantics, 2-3
Additive operators, 9-22
Address constants, 10-2
Aggregate initialization, 7-30
Aggregate types, 5-5
Alignment, 5-7 , 5-8 , 9-18
Argument, 9-9

command-line, 2-2
macro, 4-12

Arithmetic
constant expressions, 10-2
conversions, 8-4
operand, 8-1
operators, 9-20
types, 5-5

Array
address, 12-5
argument, 6-9
declaration, 7-19
declarator, 7-18

lndex-2

explanation or subscripting, 9-7
initialization, 7-30
or pointers, 2-3
types, 5-6

ASCII, 3-1 , 3-3
asctime function, 4-24
Assignment

expression, 9-29
operators, 9-31

Associativity or operators, 9-4
auto storage class, 7-3 , 7-4
Automatic

B

array, 12-3
storage, 6-6, 1 1-5
structure, 12-3
union, 12-3

Basic types, 5-5
Bit-field, 5-9 , 7-4, 7-6 , 7-27 , 12-7

declaration, 7-6
Bitwise complement operator, 9-13 , 9-15
Bitwise exclusive OR operator, 9-26
Bitwise inclusive OR operator, 9-26
Bitwise operators, 9-4
Block, 1 1-2

scope, 6-2, 6-6
structure, 6-2, 1 1-2

break statement, 1 1-9
Byte, 9-16

c
Call by value, 9-9
case label, 1 1-2, 1 1-5, 12-5
Case-sensitive, 3-7
Cast, 8-7

expression, 9-18
operation, 8-1

lndex-3

operator, 9-1 7 , 9-1 8 , 10-2
char, 12-11
char array initialization, 7-29
char type, 5-3, 7-5
Character array initialization, 7-29
Character, C-2

array, 12-3
constant, 3-12 , 3-15 , 3-16
multibyte, 3-17
set, 3-1
string, 3-17
wide, 1 2-3

clock, C-6
Comma operator, 9-32
Command-line arguments, 2-2
Comment, 1-3, 1-5, 3-3 , 3-4, 4-19 , 12-2
Commenting out, 4-20
Common initial sequence, 9-12
Compatibility, 12- 1 , 1 2-9

options, 1 2-12
Compatible types, 5-9

function, 7-21
Compilation

conditional, 4-1 8
limits, D-1
phases, 1-1
separate, 1-1
unit, 6-6

Compiler options, 12-8, 12-10
Composite type, 5-10, 6-10
Compound assignment, 9-30, 12-3
Compound statement, 1 1-2
Concatenation, 1-4, 1-7
Conditional compilation, 4-18
Conditional exclusion, 4-18
Conditional inclusion, 4-18

directives, 4-1 8
const, 1 2-3
const type qualifier, 7-14
Constant, 3-7 , A-2

Index-4

character, 3-1 2
enumeration, 3-16
integer, 3-9 , 3-10
manifest, 4-10

Constant expressions, 1 0-1
arithmetic, 10-2
initializer, 10-2
integral, 10-1

Continuation, 1-5
continue statement, 1 1-8
Controlling

expression, 4-19 , 4-20, 4-2 1 , 1 1-1 , 1 1-4, 12-2, 12-5
Conversion, 8-1

D

by assignment, 9-30
by return, 1 1-9
explicit, 8-1
implicit, 8-1
or array' 8-6
or function

name, 8-6

Data types, 5-1
Decimal constant, 3-1 1
Declaration, 5-9 , 7-1 , 7-2 , 12-4, A-8

or function, 7-20
or pointer, 7-1 8
specifier, 7-2

Declarator, 7-1 , 7-1 6
array, 7-1 8
function, 7-19 , 7-21

Default
argument promotions, 1 2-5
initialization, 7-30
label, 1 1-2, 1 1-4

defined, 4-4
Dermition, 7-1

external, A-1 3
function, 7-20, A-13

Index-5

macro, 4-10, 4-1 6
type, 7-25

Derived types, 5-6
Designator function, 8-5
Directive

error, 4-23
null, 4-24
pragma, 4-23
preprocessing, 4-1 , A-13

Directory
include rue, 4-7
path, 4-6, 4-7

Display characters
nongraphic, 3-14

do statement, 1 1-6
Domain errors, C-4
double constant, 3-8
double fioat conversion, 8-3
double type, 5-4, 7-5 , 12-10

E
EEXIST, C-5
Element

lexical, 3-5 , 4-1
eliC, A-13
ellipsis, 7-20
else, A-14
Empty statement, 1 1-3
endiC, A-14
End-of-line, 1-2, 3-2
enum, 12-4
Enumeration, 7-1 , 7-9

constant, 3-1 6
content, 7-1 1
tag, 6-3, 7-1 1
types, 5-4

Enumerator, 7-9 , 7-10
enum-specitier, 7-10
Environment, 1-1 , 2-1 , 4-22, C-1 , C-6

Index-6

Equality operators, 9-25
ERANGE, C-4
errno, C-5
Error directive, 4-23
Error message, 1-4, 4-22, 4-23, 7-33, C-5
Escape sequence, 1-4, 3-12, 3-13 , 12-3, 12-1 1 , A-4

hexadecimal, 3-13 , 3-14
octal, 3-13 , 3-14

Evaluation, 3-18
Execution character set, 3-1
Execution environment, 2-1
exit function, 2-4
EXIT_FAILURE, C-6
EXIT_8UCCESS, C-6
Expansion

macro, 4-10
Explicit conversion operator, 9-18
Expression, A-6

additive, A-7
assignment, A-8
bitwise, A-7
cast, A-7
conditional, A-8
constant, 10-1, A-8
controlling, 4-20
equality, A-7
logical, A-8
multiplicative, A-7
relational, A-7
shirt, A-7
statement, 1 1-3

Extensions, 12-10
extern, 12-4, 1 2- 1 1
extern storage class, 6-4, 7-3, 7-4
External

declarations, 6-6
dermitions, 6-6 , A-1 3
linkage, 6-4
name length or, 3-7
object dermition, 6-10

Index-7

F
File buffering, C-5
File scope, 6-2, 12- 1 1
fioat, 12-5, 12-10
fioat double conversion, 8-3
fioat type, 5-4, 7-5
Floating

constant, 3-8
integer conversion, 8-3
point, C-3
types, 5-4

for statement, 1 1-6
Full expression, 1 1-1
Function, B-1
Function declarator, 7- 1 9 , 7-21

old-style, 7-20
prototyped, 7-20

Function name
argument, 6-9
length or, 3-7

Function
argument, 9-9
call, 9-6, 9-8
declaration, 12-4
dermition, 6-7, 7-20, 1 2-4, A-13
designator, 8-5
entry, 2-4
library, 2-4
prototype, 2-1 , 5-10, 1 2-4
prototype scope, 6-2
return, 2-4
scope, 6-2
signal, 2-4
type, 7-21
types, 5-7

Function-like macros, 4- 10, 4- 1 1 , 4-13

G

goto statement, 1 1-8

Index-8

H
Handler

signal, 2-4
Header, 1-1

names, 3-19 , 4-8 , A-5
Hexadecimal constant, 3-11
Hexadecimal escape sequences, 3-13, 3-14

I
id, 12-2
Identifier, 3-8, 7-1 , A-2 , B-1, C-1

names, 3-8
if, A-13
ifdef, A-13
if-else statement, 1 1-4
ifndef, A-13
Implementation dermed, C-1
Implementation dermed behavior, C-1
Implicit declaration of function, 9-9
Implicit initialUation, 7-30
Include rile directory, 4-7
Inclusion

source rue, 4-8
Initial values, 2-1
Initialization, 7-29, 7-31

aggregate, 7-29
in blocks, 1 1-3
of statics, 7-30

Initializer, 8-10, 7-2 , 12-3, A-l l
constant expreuions, 10-2

int type, 7-5
Integer constant, 3-9 , 3-10, 3-11 , 12-11

sufru:, 12-3
types, 3-10

Integer
fioating conversion, 8-3
pointer conversion, 8-7, 9-17
signed, 5-3
unsigned conversion, 8-2

lndex-9

Integral constant, 12-5, 12-8
expressions, 10-1

Integral promotions, 8-1 , 8-4, 12-1 , 12-5
Integral types, 12-8, 12-11
Internal

linkage, 6-4
name, 3-7, 12-3
name length of, 3-7

Interrupts, 2-4
Invocation, 4-1 1
ipath, 4-7
isalnum, C-4
isalpha, C-4
iscntrl, C-4
islower, C-4
isprint, C-4
isupper, C-4
Iteration statement, 11-6

J
Jump statement, 1 1-7

K
Keywords, 1-7, 3-6 , A-1

L

Label name, 6-2, 1 1-2
Labeled statement, 1 1-2
Labels, 12-4
Language syntax summary, A-1
ld, 1-4, 8-7
Lexical element, 3-1 , 3-5, 4-1 , 5-1
Library functions, 2-4, C-4
Line numbering, 4-22
Line splicing, 1-2
Linkage, 6-3, 7-2, 7-23

external, 1-1

lndex-10

Linker, 1-4, 6-7
List

macro argument, 4-12
replacement, 4-10

Literal
wide string, 3-1 7

Locale specific behavior, C-1
logical OR operator, 9-28
Logical source line, 1-2
long, 1 2-11

constant, 3-1 2
double type, 5-4
fioat, 12-10
integer conversion, 8-3
type, 5-3, 7-5
unsigned conversion, 8-2

Loop body, 1 1-6
lparen, A-14
LPI-C extensions, 12-10
lvalue, 7-13, 8-5

M
Macro, 1-7, 4-18, 4-24, 1 2-2, 12- 1 1 , B-1

argument, 4-12
argument list, 4-12
argument substitution, 4-12
defmition, 4-10, 4-1 6
defmition scope, 4-16
expansion, 4-10, 12-2
function-like, 1-3, 4-10, 4- 13, 12-11
name, 4-10, 4-24
object-like, 4-10
parameter, 4-1 1 , 12-2
parameter substitution, 12-12
preprocessor, 4-1
rescanning, 4-13

main function, 2-1 , 2-4, C-1
Manifest constants, 4-10
mbtowc function, 3-1 3

lndex-11

Member alignment, 7-7
Message

error, 4-22, C-5
Multibyte character sequence, 3-17
Multidimensional array, 9-7
Multiplicative operators, 9-20

N
Name

header, 3-19, 4-8
identifier, 3-6
internal, 3-7
macro, 4-10
spaces, 6-3

Named label, 6-3, 11-2
No linkage, 6-4
Nongraphic display characters, 3-14
NULL, C-4
Null

directive, 4-24
pointer, 8-7
statement, 11-3, 1 1-8

Numerical limits, 12-5, D-2

0
Object

address, 12-5
dermitions, 6-10
modules, 1-1 , 1-4

Object-like macros, 4-10
Octal

constant, 3-1 1
escape sequences, 3-13 , 3-14

Old-style, 12-1
Old-style function

declarator, 6-7 , 7-20
dermition, 6-9, 7-22

Operand, 3-18

Index-12

Operator, 3-18, 3-19 , A-5
cast, 10-2
preprocessing, 4-4
stringize, 4-14
token-paste, 4-15

Optimization, 7-14
Order of evaluation, 9-2, E-1

p
Parameter, 6-7

macro, 4-11
type list, A-10

Parenthesized expression, 9-6
Parsing, 3-4
Pass by value, 5-7
Path

directory, 4-6
perror, C-5 , C-6
Phases

compilation, 1-1
translation, 1-1 , 4-2

Physical source line, 1-2
Plain char, 8-2
Plain int, 5-3
Pointer, 10-2, 12-4, 12-5, A-10

arithmetic, 9-21
array of, 2-3
comparison, 9-24
integer conversion, 9-17
null, 8-7
pointer conversion, 8-7
to function, 6-8
type, 5-7
type derivation, 5-7

PostfiX, 9-13, A-6
Pragma, 12-12
Pragma directive, 4-23
Precedence of operators, 9-3
Predefmed macro names, 4-24

lndex-13

Predermed values, 2-2
PrerJX, 9-1 3
Preprocessing, 1-3, 4-4, 12-1 ,
directive, 1-5, 3-19, 4-1 , 4-2, 4-6, A-13
directive lines, 4-2
header name, 4-8
number, A-6
operator, 4-4
token, 1-2, 4-1 , 4-8, A-1 , A-14

Primary expression, 9-6
Program

execution, 2-3
startup, 2-1
termination, 2-4

Promotions
integral, 8-1 , 8-4

Prototype, 12-4
Prototyped function, 2-1 , 5-10

declaration, 7-22
declarator, 6-7, 7-20
dermition, 6-9

Punctuator, 3-19 , A-5

Q
Qualified type, 5-7
Quiet changes, 12-1 , 12-7

R

Recursion, 9-10
Referenced type, 5-7
register storage class, 7-3, 7-4, 7-21
Relational operators, 9-24
Replacement list, 4-10
Representation, 5-7, 5-8
Rescanning

macro, 4-1 3
Reserved words, 3-6, A-1
return statement, 1 1-9

lndex-14

return type, 5-7

s
Scalar types, 5-5
Scope, 5-10, 6-1

linkage, 6-5
or externals, 6-10

Selection statement, 1 1-3
Self-referential structure, 7-12
Semantic analysis, 1-4
Semantics

abstract, 2-3
actual, 2-3
implementation, 2-3

Sequence
escape, 3-12, 3-13
or statements, 1 1-1
point, 9-1 , 1 1-1
trigraph, 3-3

Set
execution character, 3-1
source character, 3-1

Shift operators, 9-23
short, 12-11
short type, 5-3, 7-5
Side effects, 9-1 , 1 1-3
Signal, 2-4, 7-28

function, 2-4
handler, 2-4

signed, 12-4
signed char type, 5-3
signed type, 7-5
Signed

character, 5-3, 8-2
integer, 5-3

Simple assignment, 9-30
sizeo£ operator, 9-1 3 , 12-5
Source

character set, 3-1

Index-15

rue, 1-1
me inclusion, 4-6

Space, 5-4
storage, 5-3
white, 3-4

St&Ttup, 2-1
Statement, 1 1-1 , A-12

compound, 1 1-2, A-12
continue, 1 1-8
expression, 1 1-3
goto, 1 1-8
iteration, 1 1-6, A-12
jump, 1 1-7, A-12
labeled, 1 1-2, A-12
null, 1 1-3, 1 1-8
return, 1 1-9
selection, 1 1-3, A-12
switch, 1 1-4

static storage class, 3-17, 6-5, 7-3 , 7-4
Storage, 5-3 , 7-1 , 7-2
storage class

declaration, 7-4
specifier, 7-2 , 7-3, 7-4, 7-21 , A-9

Storage
duration, 6-5
order of array, 9-7

strerro, C-6
String literal, 1-4, 1-5, 3-17 , 12-3, A-4

wide, 3-17
Stringise operator, 4-12 , 4-14, 12-2
struct-declaration-list, 7-6
struct-or-union specifier, A-9
Structure, 7-1 , 12-3

content, 7-1 1
declaration, 7-9
initialisation, 7-30
member name, 6-3, 12-4
reference, 9-1 1
self-referential, 7-12
specifiers, 7-5

lndex-16

tag, 6-3 , 7-1 1
types, 5-6

Subscript
operator, 9-6

Subscripting
explanation or, 9-7

Substitution
macro argument, 4-12

SurrlX, 3-8
switch, 12-5

body, 1 1-4
statement, 1 1-4

Syntactic analysis, 1-4
syspath, 4-7
System, C-6

T
Tag, 7-10, 7-1 1
Tentative dermition, 6-10
Token, 3-5, A-1

decomposition, 1-2, 1-6
preprocessing, 1-2, 4- 1 , A-1 , A-14

Token-pasting, 4-10, 4-12, 4-1 5 , 12-2
Trailing text, 12-2, 12-11
Trailing white space, 4-2
Translation, 10-1, C-1

environment, 1-1
phases, 1-1 , 4-2
separate, 1-1
unit, 1-1

Trigraph
mapping, 1-2
sequences, 1-5, 3-3 , 12-3, 1 2-10

Truncation, C-3
Two's complement, 8-2, 12-7
Type, 5-1

aggregate, 5-5
arithmetic, 5-5, 1 0-2
array, 5-6

Index-17

basic, 5-5
common, 8-4
compatible, 5-9
composite, 5-10
conversion by return, 11-9
conversion rules, 8-4
data, 5-1
declaration, 7-15
dermition, 7-25
derived, 5-6
enumeration, 5-4
fioating, 5-4, D-4
function, 5-1 , 5-7 , 7-21
incomplete, 5-1 , 7-1 1
integer constant, 3-10
integral, 12-8, D-2
names, 7-23, 7-24
object, 5-1
of string, 9-6
pointer, 5-7, 7-18
qualified, 5-7, 8-5
qualifier, 7-13, 7-14
referenced, 5-7
representation, 7-24
return, 5-7
scalar, 5-5 , 11-4
specifier, 7-5 , A-9
specifiers, 7-4
structure, 5-6 , 7-6
union, 5-5 , 5-6 , 7-6
unqualified, 5-7, 8-5
void, 5-6 , 8-6

typedef, 7-2 , 7-12 , 7-17 , 7-21
typedef declaration, 7-4, 7-25

u
unary, 9-13, 12-5
Undermed behavior, E-2
Underscore character, 3-6

lndex-18

Union, 7-1 , 12-3
content, 7-1 1
declaration, 7-9
member name, 6-3 , 12-4
reference, 9-1 1
specifiers, 7-5
tag, 6-3, 7-1 1
type, 5-5
types, 5-6

Unqualified type, 5-7
Unsigned

constant, 3-12
integer conversion, 8-2
preserving, 8-2 , 12-1 , 12-6
type, 5-4, 7-5

Unspecified behavior, E-1
Usual arithmetic conversions, 12-5

v
Value preserving, 12-1
Value

initial, 2-1
pass by, 5-7
predefmed, 2-2
preserving, 8-2, 12-6

void, 12-4, 12-11
type, 5-6, 7-5 , 7-21 , 8-6

volatile, 2-3 , 12-3
qualified type, 7-14

w
while statement, 1 1-6
White space, 1-3, 1-4, 3-4, 12-2

trailing, 4-2
Wide string literal, 3-17

lndex-19

. '

I NTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

· ' '

. '

DOC0113-2Z

