
pro

INTERACTIVE X11
Development System Guide

INTERACTIVE
• • • • • • • • • • • • • •

First printing (October 1991)

No part of this manual may be reproduced in any form or by any means without
written permission of:

INTERACTIVE Systems Corporation
240 1 Colorado Avenue
Santa Monica, California 90404

©Copyright INTERACTIVE Systems Corporation 1985- 1991
© Copyright Massachusetts Institute of Technology, Cambridge, Massachusetts,
and Digital Equipment Corporation, Maynard, Massachusetts 1984, 1985, 1986,
1987, 1988
©Copyright Massachusetts Institute of Technology 1989
©Copyright Sun Microsystems, Inc. 1987, 1988, 1989

The INTERACTIVE Xll Development System Guide is based on reference
materials distributed by MIT with Xll, Release 4, which are copyright © 1984,
1985, 1986, 1987, 1988, 1989 Massachusetts Institute of Technology, Cambridge,
Massachusetts, and Digital Equipment Corporation, Maynard, Massachusetts.
Permission to use, copy, modify, and distribute the "Inter-Client Communication
Conventions Manual" for any purpose and without fee is hereby granted, provided
that the Massachusetts Institute of Technology (MIT) and Sun Microsystems, Inc.
copyright notices and this permission notice appear in all copies. INTERACTIVE
Systems Corporation, MIT, and Sun Microsystems, Inc. make no representations
about the suitability for any purpose of the information in this document. This
documentation is provided "as is" without express or implied warranty.
Revisions are copyright® 1989-1991 INTERACTIVE Systems Corporation and as l
such may not be reproduced by any means without written permission from
INTERACTIVE Systems Corporation.
RESTRICTED RIGHTS:
For non-U.S. Government use:
These programs are supplied under a license. They may be used, disclosed, and/or
copied only as permitted under such license agreement. Any copy must contain
the above copyright notice and this restricted rights notice. Use, copying, and/or
disclosure of the programs is strictly prohibited unless otherwise provided in the
license agreement.

For U.S. Government use:
Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in FAR Section 52.227- 1 4 (Alternate III) or subparagraph (c)(l)(ii) of the
clause at DFARS 252.227-70 1 3, Rights in Technical Data and Computer
Software.

All rights reserved. Printed in the U.S.A.

INTERACTIVE Systems Corporation cannot assume responsibility for any conse-
quences resulting from this publication's use. The information contained herein is �
subject to change.. Revisions to this publication or new editions of it may be issued

· .
)

to incorporate such changes.

Copyright - Con't.

The following trademarks shown as registered are registered in the United States
and other countries:
UNIX is a registered trademark of UNIX System Laboratories, Inc.
Intel is a registered trademark of Intel Corporation.
80386 is a trademark of Intel Corporation.
X Window System is a trademark of the Massachusetts Institute of Technology.

INTERACTIVE X11
Development System Guide

CONTENTS

Inter-Client Communication Conventions Manual

INTERACTIVE TCP /IP Programmer's Supplement

f1iii"' \

Inter-Client Communication Conventions Manual
Version 1.0

MIT X Consortium Standard

CONTENTS

1. INTRODUCTION • • . . . • • • •

1.1 Evolution of the Conventions . • •

1.2 Atoms

1.2.1 What Are Atoms? • . • . • • • • • •

1.2.2 Predefined Atoms . . . • • • • •

1.2.3 Naming Conventions • • • • • • .

1.2.4 Semantics • • • • • • • • • • •

1.2.5 Name Spaces • • • • • • • • • • •

2. PEER-TO-PEER COMMUNICATION VIA
SELECTIONS • • . . • • . • • • • • • • •

2.1 Acquiring Selection Ownership
2.2 Responsibilities of the Selection Owner
2.3 Giving Up Selection Ownership • • • • • • • •

2. 3.1 Voluntarily • • • • • • • .

2.3.2 Forcibly • • • . • • . • •

2.4 Requesting a Selection . • • • • • • • •

2.5 Large Data Transfers . • • • • • •

2.6 Usage of Selection Atoms • • • • • • • • • •

2.6.1 Selection Atoms • • • • • • • • •

2.6.2 Target Atoms • • • . • • • • • • .
2.6.3 Selection With Side Effects • • • • • • •

2. 7 Usage of Selection Properties • • • • •

2. 7.1 TEXT Properties • • • • • • • •

2.7.2 INCR Properties • • • •

2.7.3 DRAWABLE Properties • • • •

2. 7.4 SPAN Properties • • • • • .

3. PEER-TO-PEER COMMUNICATION VIA
CUT-BUFFERS • . • • • • . •

4. CLIENT TO WINDOW MANAGER
COMMUNICATION . • • • • .
4.1 Client's Actions • . . • • • •

4.1.1 Creating a Top-Level Window

- 1 -

2
2
3
3
4
4
4
5

6
7
8

10
10
11
11
13
14
14
16
19
20
21
22
23
23

24

25
26
26

4.1.2 Client Properties 0 0 0 0 0 0 0 0 0 0 27
4.1.3 Window Manager Properties 0 0 0 36
4.1.4 Changing Window State o 0 0 0 37
4.1.5 Configuring the Window o 0 0 0 0 0 40
4.1.6 Changing Window Attributes 0 0 0 0 42 � 4.1.7 Input Focus 0 0 0 0 0 0 0 0 0 0 43
4.1.8 Colormaps 0 0 0 0 0 0 47
4.1.9 Icons 0 0 0 0 0 0 0 0 0 0 0 0 49
4.1.10 Pop-up Windows 0 0 0 0 0 0 0 0 51
4.1.11 Window Groups 0 0 0 0 0 0 0 0 0 0 0 51

4.2 Client Responses to Window Manager
Actions 0 0 0 0 0 0 0 0 0 0 0 0 52
4.2.1 Reparenting 0 0 0 0 0 0 0 0 0 0 52
4.2.2 Redirection of Operations o 0 0 0 53
4.2.3 Window Move 0 0 0 0 0 0 0 0 0 55
4.2.4 Window Resize 0 0 0 0 0 0 0 0 0 0 0 55
4.2.5 (De)Iconify 0 0 0 0 0 0 0 0 55
4.2.6 Colormap Change 0 0 0 0 0 0 56
4.2.7 Input Focus 0 0 0 0 0 0 0 0 0 0 0 0 56
4.2.8 ClientMessage Events 0 57
4.2.9 Redirecting Requests 0 0 0 0 0 0 0 0 0 58

4.3 Summary of Window Manager Property '
Types 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58

5. CLIENT TO SESSION MANAGER
COMMUNICATION 0 0 0 0 0 0 60
5.l Client Actions 0 0 0 0 0 0 0 0 0 0 0 0 60

5.1.1 Properties o 0 0 0 0 0 0 0 0 0 0 60
5.1.2 Termination 0 0 0 0 0 0 0 0 0 0 63

5.2 Client Responses to Session Manager Actions 0 0 0 0 63
5.2.1 Saving Client State o 0 0 0 0 0 0 0 0 0 63
5.2.2 Window Deletion 0 0 0 0 0 0 0 0 0 0 64

5.3 Summary of Session Manager Property Types 0 0 0 65

6. MANIPULATION OF SHARED RESOURCES 0 0 0 67
6.1 The Input Focus 0 0 0 0 0 0 0 67
6.2 The Pointer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67
6.3 Grabs 0 0 0 0 0 0 0 0 0 0 0 0 67
6.4 Colormaps 0 0 0 0 0 0 0 0 0 0 0 0 0 69 l 6.5 The Keyboard Mapping o 0 0 0 0 0 0 0 0 71
6.6 The Modifier Mapping 0 0 0 0 0 0 0 0 0 0 0 72

7. RESOURCE MANAGER CONVENTIONS 0 74

- ii -

8. CONCLUSION

9. ACKNOWLEDGMENTS

Appendix A: COMPATIBILITY WITH EARLIER
� DRAFTS

1. Al: The R2 Draft

2. A2: The 27th July 1988 Draft

3. A3: The Public Review Drafts .

Appendix B: SUGGESTED PROTOCOL
REVISIONS

- iii -

75

76

77
77

78
79

81

Inter-Client Communication Conventions Manual

Version 1.0

MIT X Consortium Standard

David S. H. Rosenthal

Sun Microsystems, Inc.

ABSTRACT

It was an explicit design goal of the X Window System*, Version 11 to

specify mechanism, not policy. As a result, a client that converses with

the server using the protocol defined by the X Window System Protocol,

Version 11 may operate "correctly" in isolation, but may not coexist prop­

erly with others sharing the same server. Conventions are proposed to
allow clients to cooperate in the areas of selections, cut-buffers, window
management, session management, and resources.

""Gentlemen." said Lord Chancellor Thurlow to the
deputation of Nonconformists which waited on him in
1788 to ask for a repeal of the Corporation and Test Acts,
"I'm against you, by God! I am for the Established
Church, damme! Not that I have any more regard for the
Established Church than for any other religion, but
because it is established. And if you can get your damned
religion established, I'll be for that too!'"'

-Years of Endurance, Arthur Bryant

This document is reprinted (with editorial changes) with the permission of MIT
and Sun Microsystems, Inc.

2 Inter-Client Communication Conventions Manual

1. INTRODUCTION

It was an explicit design goal of X 11 to specify mechanism, not pol­
icy. As a result, a client that converses with the server using the
protocol defined by the X Window System Protocol, Version II may ""'
operate "correctly" in isolation, but may not coexist properly with 1
others sharing the same server.

Being a good citizen in the X 11 world involves adhering to conven­
tions governing inter-client communications in a number of areas:

• The selection mechanism

• The cut-buffers

• The window manager

• The session manager

• The manipulation of shared resources

• The resource database

In the following sections we propose suitable conventions for each
area, in so far as it is possible to do so without enforcing a particu-
lar user interface. In order to permit clients written in different �
languages to communicate, the conventions are expressed solely in
terms of the protocol operations, not in the {probably more familiar)
Xlib interface. The binding of these operations to the Xlib interface
for C, and to the equivalent interfaces for other languages, is the
subject of other documents.

1.1 Evolution of the Conventions

In the interests of timely acceptance, this first edition of the manual
covers only a minimal set of required conventions. It is expected
that as experience is gained, these conventions will be added to, and
conventions governing other, optional areas will be agreed upon.
The X Consortium is expected to develop mechanisms for doing
this.

As far as possible, these conventions are upwards-compatible with
those in the 25th February 1988 draft of this manual distributed
with the X 11 R2 release. In some areas, semantic problems were �
discovered with those conventions and thus complete upwards com­
patibility could not be assured. Areas of incompatibility are noted
in the text and summarized in Appendix A.

Inter-Client Communication Conventions Manual 3

In the course of developing these conventions, a number of minor
changes to the protocol have been identified as desirable. They are
identified in the text, and summarized in Appendix B, as input to a
future protocol revision process. If and when a protocol revision
incorporating them is undertaken, this document will need some
revision. Since it is difficult to ensure that clients and servers are
upgraded simultaneously, clients using the revised conventions
should examine the minor protocol revision number and be prepared
to use the older conventions when communicating with an older
server.

It is expected that the conventions will be revised in such a way as
to ensure that clients using the conventions appropriate to protocol
minor revision n will inter-operate correctly with those using con­
ventions appropriate to protocol minor revision n+ 1 if the server
supports both.

1.2 Atoms

Many of the conventions described below use Atoms. The following
sections amplify the description of Atoms in the protocol
specification, to assist the reader.

1 .2. 1 What Are Atoms?

At the conceptual level, Atoms are unique names. Clients can use
them to communicate information to each other. They can be
thought of as a bundle of octets, like a string, but without an encod­
ing being specified. The elements are not necessarily ASCII charac­
ters, and no case folding happens. 1

The protocol designers felt that passing these sequences of bytes
back and forth across the wire would be too costly. Further, it is
important that events as they appear "on the wire" have a fixed size
(in fact, 32 bytes), and since some events contain Atoms, a fixed­
size representation for them was needed.

To provide a fixed-size representation, a protocol request (Intern­
Atom) was provided to register a byte sequence with the server,

1. The comment in the protocol specification for InternAtom that ISO Latin-l
encoding should be used is in the nature of a convention; the server treats the
string as a byte sequence.

4 Inter-Client Communication Conventions Manual

which returns a 32-bit value (with the top three bits zero) that maps
to the byte sequence. The inverse operator is also available
(GetAtomName).

1 .2.2 Predefined Atoms

The protocol specifies a number of Atoms as being predefined:

"Predefined atoms are not strictly necessary, and
may not be useful in all environments, but will elim­
inate many InternAtom requests in most applications.
Note that "predefined" is only in the sense of having
numeric values, not in the sense of having required
semantics."

They are an implementation trick to avoid the cost of Interning
many atoms that are expected to be used during the startup phase
of all applications. The results of the InternAtom requests (which
require a handshake) can be assumed a priori.

Language interfaces should probably cache the Atom-name map­
pings and get them only when required. The CLX interface, for
instance, makes no distinction between predefined atoms and other
atoms; all atoms are viewed as symbols at the interface. However, a
CLX implementation will typically keep a symbol/atom cache and l
will typically prefill this cache with the predefined atoms.

1 .2.3 Naming Conventions

The built-in atoms are composed of uppercase ASCII characters
with the logical words separated by an underscore "-" (for exam­
ple, "WM_ICON_NAME") . The protocol specification recommends
that Atoms used for private vendor specific reasons should begin
with an underscore. To prevent conflicts among organizations, addi­
tional prefixes should be chosen (for example,
"__I)EC_ WM__I)ECORATION_GEOMETRY") .

The names were chosen in this fashion to make it easy to use them
in a "natural" way within LISP. Keyword constructors allow the
programmer to specify the atoms as LISP atoms. If the atoms were
not all uppercase, then special quoting conventions would have to be
used.

1 .2.4 Semantics

The core protocol imposes no semantics on atoms except as they are
used in FONTPROP structures. See the definition of QueryFont in

Inter-client Communication Conventions Manual 5

the protocol specification for more information on FONTPROP
semantics.

1 .2.5 Name Spaces

The protocol defines six distinct spaces in which Atoms are inter­
preted, as shown in Table 1. Any particular Atom may or may not
have some valid interpretation with respect to each of these name
spaces.

Table 1. Atom Name Spaces

Space aka Examples

Property name name (WM_HINTS, WM_NAME,
RGB_BEST__MAP, etc.)

Property type type (WM_HINTS, CURSOR,
RGB_COLOR__MAP, etc.)

Selection name selection (PRIMARY, SECONDARY,
CLIPBOARD)

Selection target target (FILLNAME, POSTSCRIPT,
PIXMAP, etc.)

Font property (QUAD_ WIDTH, POINT__8IZE,
etc.)

ClientMessage (WM__8A VE_ YOURSELF,
type _I)EC__8A VLEDITS, etc.)

6 Inter-Client Communication Conventions Manual

2. PEER-TO-PEER COMMUNICATION VIA SELECTIONS

The primary mechanism Xll defines for clients that want to
exchange information, for example by cutting and pasting between
windows, is selections. There can be an arbitrary number of selec-
tions, each named by an atom, and they are global to the server. �
The choice of an atom to be used is discussed in section 2.6. Each
selection is owned by a client and is attached to a window.

Selections communicate between an owner and a requestor. The
owner has the data representing the value of its selection, and the
requestor receives it. A requestor wishing to obtain the value of a
selection provides:

• The name of the selection

• The name of a property

• A window

• An atom representing the datatype required

If the selection is currently owned, the owner receives an event and
is expected to:

• Convert the contents of the selection to the requested datatype

• Place this data in the named property on the named window

• Send the requestor an event to let it know the property is
available

Clients are strongly encouraged to use this mechanism. In particu­
lar, displaying text in a permanent window without providing the
ability to select it and convert it into a string is definitely antisocial.

Note that, in the Xll environment, all data transferred between an
owner and a requestor must normally go via the server. An Xll
client cannot assume that another client can open the same files, or
even communicate directly. The other client may be talking to the
server via a completely different networking mechanism (for exam­
ple, one client might be DECnet* and the other TCP fiP). Thus,
passing indirect references to data such as file names, hostnames
and port numbers, and so on, is permitted only if both clients 1
specifically agree.

Inter-Client Communication Conventions Manual 7

2.1 Acquiring Selection Ownership

A client wishing to acquire ownership of a particular selection
should call SetSelectionOwner:

S e t Se l e c t i onOwner
s e l e c t i on :
owner :
t i me :

ATOM
WINDOW or None
TIMESTAMP or CurrentTime

The client should set "selection" to the Atom representing the selec­
tion, set "owner" to some window that it created, and set "time" to
some time between the current last-change time of the selection con­
cerned and the current server time. This time value will normally
be obtained from the timestamp of the event triggering the acquisi­
tion of the selection. Clients should not set the time value to
CurrentTime, since if they do so they have no way of finding when
they gained ownership of the selection. Clients must use a window
they created in order for requestors to be able to route events to the
owner of the selection. 2

Convention: Clients attempting to acquire a selection must set the
time value of the SetSelectionOwner request to the
timestamp of the event triggering the acquisition
attempt, not to CurrentTime. A zero-length append to
a property is a way to obtain a timestamp for this pur­
pose; the timestamp is in the corresponding Property­
Notify event.

Note that if the time in the SetSelectionOwner request is in the
future relative to the server's current time, or if it is in the past
relative to the last time the selection concerned changed hands, the
SetSelectionOwner request appears to the client to succeed, but own­
ership is not actually transferred.

2. There is at present no part of the protocol that requires requestors to send
events to the owner of a selection. This restriction is imposed in order to
prepare for possible future extensions.

8 Inter-Client Communication Conventions Manual

Since clients cannot name other clients directly, the "owner" win­
dow is used to refer to the owning client in the replies to GetSelec­
tionOwner, and in SelectionRequest and SelectionOear events, and
possibly as a place to put properties describing the selection in ques-
tion. To discover the owner of a particular selection, a client should �
invoke:

Get S e l e c t i onOwner
s e l e c t i on : ATOM

=>
owne r : WINDOW or None

Convention: Clients are normally expected to provide some visible
confirmation of selection ownership. To make this
feedback reliable, a client must perform a sequence
like:

S e t S e l e c t i onOwner (s e l e c t i on=PRIMARY , owner=Window ,
t i me = t imestamp)

owner = GetS e l e c t i onOwner (s e l e c t i on =PRIMARY)
i f (owner I= Wi ndow) Fai lure

If the SetSelectionOwner request succeeds (not merely appears to
succeed), the client issuing it is recorded by the server as being the
owner of the selection for the time period starting at "time."

Problem: There is no way for anyone to find out the last-change �
time of a selection. At the next protocol revision, Get­
SelectionOwner should be changed to return the last­
change time as well as the owner.

2.2 Responsibilities of the Selection Owner

When a requestor wants the value of a selection, the owner receives
a SelectionRequest event:

S e l e c t i onRequ e s t
owne r :
s e l e c t i on :
targe t :
property :
r eque stor :
t i me :

WINDOW
ATOM
ATOM
ATOM or None
WINDOW
TIMESTAMP or CurrentTime

The owner and the selection fields will be the values specified in the
SetSelectionOwner request. The owner should compare the time-
stamp with the period it has owned the selection and, if the time is
outside, refuse the SelectionRequest by sending the requestor win- l
dow a SelectionNotify event with the "property" set to None, using
SendEvent with an empty event-mask.

Inter-Client Communication Conventions Manual 9

More advanced selection owners are free to maintain a history of
the value of the selection, and to respond to requests for the value of
the selection during periods they owned it even though they do not
own it now.

If the "property" field is None, the requestor is an obsolete client.
Owners are encouraged to support these clients by using the "tar­
get" atom as the property name to be used for the reply. Other­
wise, the owner should use the "target" field to decide the form to
convert the selection into, and if the selection cannot be converted
into that form, refuse the SelectionRequest similarly.

If the "property" field is not None, the owner should place the data
resulting from converting the selection into the specified property on
the requestor window, setting the property's type to some appropri­
ate value (which need not be the same as "target").

Convention: All properties used to reply to SelectionRequest events
must be placed on the requestor window.

In either case, if the data comprising the selection cannot be stored
on the requestor window (for example, because the server cannot
provide sufficient memory), the owner must refuse the Selection­
Request as above. See the section on "Large Data Transfers"
below.

If the property is successfully stored, the owner should acknowledge
the successful conversion by sending the requestor window a Selec­
tionNotify event, using SendEvent with an empty mask:

S e l e c t i onNot i fy
r eque s tor:
s e l e c t i on:
target:
property:
t i me:

WINDOW
ATOM
ATOM
ATOM or None
TIMESTAMP or CurrentT ime

The "selection," "target," "time," and "property" fields of the
SelectionNotify event should be set to the values received in the
SelectionRequest event (setting the "property" field to None indi­
cates that the conversion requested could not be made).

Convention: The "selection," "target," "time," and "property"
fields in the SelectionNotify event should be set to the
values received in the SelectionRequest event.

The data stored in the property must eventually be deleted. A con­
vention is needed to assign the responsibility for doing so.

10 Inter-Client Communication Conventions Manual

Convention: Selection requestors are responsible for deleting prop­
erties whose names they receive in SelectionNotify
events (see section 2.4) or in properties with type
MULTIPLE.

A selection owner will often need confirmation that the data
comprising the selection has actually been transferred (for example,
if the operation has side effects on the owner's internal data struc­
tures, these should not take place until the requestor has indicated
that it has successfully received the data). They should express
interest in PropertyNotify events for the "requestor" window and
wait until the property in the SelectionNotify event has been deleted
before assuming that the selection data has been transferred.

When some other client acquires a selection, the previous owner
receives a SelectionOear event:

S e l e c t i onC l e ar
owner :
s e l e c t i on :
t ime :

WINDOW
ATOM
T IMESTAMP

The "timestamp" field is the time at which the ownership changed
hands, and the "owner" field is the window the new owner specified
in its SetSelectionOwner request. 'l
If an owner loses ownership while it has a transfer in progress, that
is to say, before it receives notification that the requestor has
received all the data, it must continue to service the ongoing
transfer until it is complete.

2.3 Giving Up Selection Ownership

Clients may give up selection ownership voluntarily, or they may
lose it forcibly as the result of some other client's actions.

2.3. 1 Voluntarily

To relinquish ownership of a selection voluntarily, a client should
execute a SetSelectionOwner request for that selection atom, with
"owner" specified as None, and "time" the timestamp that was used
to acquire the selection.

Alternatively, the client may destroy the window used as the
"owner" value of the SetSelectionOwner request, or it may ter­
minate. In both cases the ownership of the selection involved will
revert to None.

Inter-Client Communication Conventions Manual 1 1

2.3.2 Forcibly

If a client gives up ownership of a selection, or if some other client
executes a SetSelectionOwner for it and thus reassigns it forcibly,
the previous owner will receive a SelectionOear event:

S e l e c t i onCl e a r
owner :
s e l e c t i on :
t ime :

WINDOW
ATOM
TIMESTAMP

The timestamp is the time the selection changed hands. The
"owner" argument is the window that was specified by the current
owner in its SetSelectionOwner request.

2.4 Requesting a Selection

A client wishing to obtain the value of a selection in a particular
form issues a ConvertSelection request:

Conve r tS e l e c t i on
s e l e ct i on :
target :
property :
requestor :
t ime :

ATOM
ATOM
ATOM or None
WINDOW
TIMESTAMP or CurrentT ime

The selection field specifies the particular selection involved, and the
target specifies the required form of the information. The choice of
suitable atoms to use is discussed in section 2.6. The requestor field
should be set to a window the requestor created; the owner will
place the reply property on it. The time field should be set to the
timestamp on the event triggering the request for the selection
value; clients should not use CurrentTime for this field.

Convention: Clients should not use CurrentTime for the time field of
ConvertSelection requests. They should use the time­
stamp of the event that caused the request to be made.

The property field should be set to the name of a property that the
owner can use to report the value of the selection. Note that the
requestor of a selection needs to know neither the client owning the
selection nor the window it is attached to.

Although the protocol allows the property field to be set to None (in
which case the owner is supposed to choose a property name), it is
difficult for the owner to do so safely.

Convention: Requestors should not use None for the property field
of ConvertSelection requests.

12 Inter-Client Communication Conventions Manual

Convention: Owners receiving ConvertSelection requests with prop­
erty field None are talking to an obsolete client. They
should choose the target atom as the property name to
be used for the reply.

The result of the ConvertSelection request is that a SelectionNotify �
event will be received:

S e l e c t i onNot i fy
reque stor :
s e l ec t i on :
targe t :
property :
t ime :

WINDOW
ATOM
ATOM
ATOM or None
TIMESTAMP or CurrentTime

The "requestor," "selection," "time," and "target" fields will be
the same as those on the ConvertSelection request.

If the "property" field is None, the conversion has been refused.
This can mean that there is no owner for the selection, that the
owner does not support the conversion implied by "target," or that
the server did not have sufficient space to accommodate the data.

If the "property" field is not None, then that property will exist on
the "requestor" window. The value of the selection can be retrieved
from this property by using the GetProperty request: �

GetProperty

=>

w i ndow :
property :
type :
l ong - o f f s e t :
l ong- l ength :
d e l e t e :

type :
format :
byte s - a f t e r :
value :

WINDOW
ATOM
ATOM or AnyPropertyType
CARD32
CARD32
BOOL

ATOM or None
(O , 8 , 1 6 , 32 }

CARD32
LI STofiNTB or LI STofiNT 1 6 or LI STofiNT32

When using GetProperty to retrieve the value of a selection, the
"property" field should be set to the corresponding value in the
SelectionNotify event. The "type" field should be set to AnyProper­
tyType, because the requestor has no way of knowing beforehand
what type the selection owner will use. Several GetProperty
requests may be needed to retrieve all the data in the selection; each
should set the "long-offset" field to the amount of data received so
far, and the "size" field to some reasonable buffer size (see the sec- 1
tion on "Large Data Transfers") . If the returned value of "bytes-
after" is zero, the whole property has been transferred.

Inter-Client Communication Conventions Manual 13

Once all the data in the selection has been retrieved, which may
require getting the values of several properties (see the section on
"Selection Properties"), the property in the SelectionNotify should
be deleted by invoking GetProperty with the "delete" field set True.
As discussed above, the owner has no way of knowing when the data
has been transferred to the requestor unless the property is removed.

Convention: The requestor must delete the property named in the
SelectionNotify once all the data has been retrieved.
They should invoke either DeleteProperty or
GetWindowProperty(delete--TRUE) after they have
successfully retrieved all data comprising the selection.
See the next section.

2.5 Large Data Transfers

Selections can get large, and this poses two problems:

• Transferring large amounts of data to the server is expensive.

• All servers will have limits on the amount of data that can be
stored in properties. Exceeding this limit will result in an Alloc
error on the ChangeProperty request that the selection owner
uses to store the data.

The problem of limited server resources is addressed by the follow­
ing conventions:

Convention: Selection owners should transfer the data describing a
selection large compared with maximum-request-size in
the connection handshake using the INCR property
mechanism (see below).

Convention: Any client using SetSelectionOwner to acquire selection
ownership should arrange to process Alloc errors in
property change requests. For clients using Xlib, this
involves using XSetErrorHandler() to override the
default handler.

Convention: A selection owner must confirm that no Alloc error
occurred while storing the properties for a selection
before replying with a confirming SelectionNotify event.

Convention: When storing large amounts (relative to max-request­
size) of data, clients should use a sequence of
ChangeProperty(mode--Append) requests for reason­
able quantities of data. This is to avoid locking-up

14 Inter-Client Communication Conventions Manual

servers, and to limit the waste of data transfer caused
by an Alloc error.

Convention: If an Alloc error occurs during storing the selection
data, all properties stored for this selection should be �
deleted, and the ConvertSelection request refused by)
replying with a SelectionNotify event with "property"
set to None.

Convention: In order to avoid locking-up servers for inordinate
lengths of time, requestors retrieving large quantities of
data from a property should perform a series of Get­
Property requests, each asking for a reasonable amount
of data.

Problem: Single-threaded servers should be changed to avoid
locking-up during large data transfers.

2.6 Usage of Selection Atoms

It is important to observe that defining a new atom consumes
resources in the server, and they are not released until the server
reinitializes. Thus, it must be a goal to reduce the need for newly
minted atoms.

2. 6. 1 Selection Atoms

There can be an arbitrary number of selections, each named by an
atom. To conform with the inter-client conventions, however,
clients need deal with only these three selections:

• PRIMARY

• SECONDARY

• CLIPBOARD

Other selections may be used freely for private communication
among related groups of clients.

Problem: How does a client find out which selection atoms are
valid?

2. 6. 1 . 1 The PRIMARY Selection. The selection named by the atom � PRIMARY is used for all commands that take only a single argu- J
ment. It is the principal means of communication between clients
that use the selection mechanism.

Inter-Client Communication Conventions Manual 15

2.6. 1 .2 The SECONDARY Selection. The selection named by the
atom SECONDARY is used:

• As the second argument to commands taking two arguments, for

,-.,. example "exchange primary and secondary selections. "
!

• As a means of obtaining data when there is a primary selection
and the user does not wish to disturb it.

2. 6. 1 .3 The CLIPBOARD Selection. The selection named by the
atom CLIPBOARD is used to hold data being transferred between
clients, normally being "cut" or "copied," and then "pasted."
Whenever a client wants to transfer data to the clipboard, it should:

• Assert ownership of the CLIPBOARD.

• If it succeeds in acquiring ownership, it should be prepared to
respond to a request for the contents of the CLIPBOARD in the
normal way, retaining the data in order to be able to return it.
The request may be generated by the clipboard client described
below.

• If it fails to acquire ownership, a cutting client should not actu­
ally perform the cut nor provide feedback suggesting that it has
actually transferred data to the clipboard.

This process should be repeated whenever the data to be transferred
would change.

Clients wishing to "paste" data from the clipboard should request
the contents of the CLIPBOARD selection in the usual way.

Except while a client is actually deleting data, the owner of the
CLIPBOARD selection may be a single, special client implemented
for the purpose. It should:

• Assert ownership of the CLIPBOARD selection, and reassert it
any time the clipboard data changes.

• If it loses the selection (which will occur because someone has
some new data for the clipboard):

- Obtain the contents of the selection from the new owner,
using the timestamp in the SelectionOear event.

- Attempt to reassert ownership of the CLIPBOARD selection,
using the same timestamp.

16 Inter-Client Communication Conventions Manual

- If the attempt fails, restart the process using a newly
acquired timestamp. This timestamp should be obtained by
asking the current owner of the CLIPBOARD selection to
convert it to a TIMESTAMP. If this conversion is refused, or
if the same timestamp is received twice, the clipboard client
should acquire a fresh timestamp in the normal way, for
example by a zero-length append to a property.

• Respond to requests for the CLIPBOARD contents in the normal
way.

A special CLIPBOARD client is not necessary. The protocol used by
the "cutting" client and the "pasting" client is the same whether
the CLIPBOARD client is running or not. The reasons for running
the special client include:

• Stability - if the "cutting" client were to crash or terminate, the
clipboard value would still be available.

• Feedback - the clipboard client can display the contents of the
clipboard.

• Simplicity - a client deleting data does not have to retain it for
so long, reducing the chance of race conditions causing �
problems.

The reasons not to run the clipboard client include:

• Performance - data is only transferred if it is actually required
(when some client actually wants the data).

• Flexibility - the clipboard data may be available as more than
one target.

2.6.2 Target Atoms

The atom that a requestor supplies as the "target" of a
ConvertSelection request determines the form of the data supplied.
The set of such atoms is extensible, but a generally accepted base
set of target atoms is needed. As a starting point for this, Table 2
contains those that have been suggested so far.

Inter-Client Communication Conventions Manual 17

Table 2. Initial Set of Target Atoms and Their Meaoings
Atom Type (see Table 3) Meaning

TARGETS ATOM List of valid target atoms
MULTIPLE ATOM-PAIR Look in the ConvertSelection

property
TIMESTAMP INTEGER Timestamp used to acquire

selection
STRING STRING ISO Latin I (+TAB+NEWLINE)

text
TEXT TEXT Text in owner's encoding
LIST _LENGTH INTEGER Number of disjoint parts of

selection
PIX MAP DRAWABLE Pixmap ID

DRAWABLE DRAWABLE Drawable ID

BITMAP BITMAP Bitmap ID

FOREGROUND PIXEL Pixel value

BACKGROUND PIXEL Pixel value
COLORMAP COLORMAP Colormap ID

ODIF TEXT ISO Office Document

Interchange Format
OWNEILOS TEXT Operating system of owner
FILE-NAME TEXT Full path name of a file
HOST_NAME TEXT See WM_CLIENT_MACHINE

CHARACTEILPOSITION SPAN Start and end of selection

in bytes
LINLNUMBER SPAN Start and end line numbers

COLUMN_NUMBER SPAN

LENGTH INTEGER Number of bytes in selection
USER TEXT Name of user running owner
PROCEDURE TEXT Name of selected procedure
MODULE TEXT Name of selected module
PROCESS INTEGER, TEXT Process ID of owner
TASK INTEGER, TEXT Task ID of owner
CLASS TEXT Class of owner - see WM-CLASS
NAME TEXT Name of owner- see

WM_NAME

CLIENT_ WINDOW WINDOW Top-level window of owner
DELETE NULL True if owner deleted

selection
INSERT....SELECTION NULL Insert specified selection
INSERL.PROPERTY NULL Insert specified property

This table will grow.

Selection owners are required to support the following targets:

TARGETS The owner should return a list of Atoms
representing the targets for which an attempt
to convert the current selection will succeed

18

MULTIPLE

TIMESTAMP

Inter-Client Communication Conventions Manual

(barring unforseeable problems such as Alloc
errors). This list should include all the
required Atoms.

The MULTIPLE target atom is valid only when � a property is specified on the ConvertSelection 1
request. If the property field in the Selection­
Request event is None and the target is MUL­
TIPLE, it should be refused.

When a selection owner receives a
SelectionRequest(target-MULTIPLE) request,
the contents of the property named in the
request will be a list of atom pairs, the first
atom naming a target, and the second naming
a property (None is not valid here). The effect
should be as if the owner had received a
sequence of SelectionRequest events, one for
each atom pair, except that:

- The owner should reply with a SelectionNo­
tify only when all the requested conversions
have been performed. l

- The owner should replace in the MULTI-
PLE property any property atoms for tar-
gets it failed to convert with None.

Convention: The entries in a MULTIPLE prop­
erty must be processed in the
order they appear in the property.
See section 2.6.3.

To avoid some race conditions, it is important
that requestors be able to discover the time­
stamp the owner used to acquire ownership.
Until and unless the protocol is changed so that
GetSelectionOwner returns the timestamp used
to acquire ownership, selection owners must
support conversion to TIM EST AMP, returning
the timestamp they used to obtain the selection.

Problem: The protocol should be changed to
return, in response to a GetSelec­
tionOwner, the timestamp used to
acquire the selection.

Inter-Client Communication Conventions Manual

All other targets are optional.

2. 6.3 Selection With Side Effects

19

Some targets (DELETE is an example) have side effects. To render
them unambiguous, the entries in a MULTIPLE property must be
processed in the order they appear in the property.

In general, targets with side effects will return no information (i.e. ,
a zero-length property of type NULL). In all cases, the requested
side effect must be performed before the conversion is accepted. If
the requested side effect cannot be performed, the corresponding
conversion request must be refused.

Convention: Targets with side effects should return no information
(i.e. , a zero-length property of type NULL).

Convention: The side effect of a target must be performed before
the conversion is accepted.

Convention: If the side effect of a target cannot be performed, the
corresponding conversion request must be refused.

Problem: The need to delay responding to the ConvertSelection
request until a further conversion has succeeded poses
problems for the Intrinsics interface that need to be
addressed.

These side-effect targets are used to implement operations such as
"exchange PRIMARY and SECONDARY selections."

2. 6.3. 1 DELETE. When the owner of a selection receives a request
to convert it to DELETE, it should delete the corresponding selection
(whatever doing so means for its internal data structures), and
return a zero-length property of type NULL if the deletion was
successful.

2. 6.3.2 INSERT _BELECTION. When the owner of a selection
receives a request to convert it to INSERT_8ELECTION, the prop­
erty named will be of type ATQM_p AIR. The first atom will name
a selection, and the second will name a target. The owner should
use the selection mechanism to convert the named selection into the
named target and insert it at the location of the selection for which
it got the INSERT_8ELECTION request (whatever doing so means
for its internal data structures).

20 Inter-Client Communication Conventions Manual

2.6.3.3 INSERL.PROPERTY. When the owner of a selection
receives a request to convert it to INSERT_pRQPERTY, it should
insert the property named in the request at the location of the selec­
tion for which it got the INSERT_8ELECTION request (whatever
doing so means for its internal data structures). �
2. 7 Usage of Selection Properties

The names of the properties used in selection data transfer are
chosen by the requestor. The use of None property fields in Coo­
vertSelection requests, which request the selection owner to choose a
name, is not permitted by these conventions.

The type of the property involved is always chosen by the selection
owner and can involve some types with special semantics assigned
by convention. These special types are reviewed in the following
sections.

In all cases, a request for conversion to a target should return a
property of one of the types listed in Table 2 for that property, or a
property of type INCR and then a property of one of the listed
types.

The selection owner will return a list of zero or more items of the
type indicated by the property type. In general, the number of
items in the list will correspond to the number of disjoint parts of
the selection. Some targets, side-effect targets are examples, will be
of length 0 irrespective of the number of disjoint selection parts. In
the case of fixed-size items, the requestor may determine the
number of items by the property size; for variable length items such
as text, the separators are listed in Table 3.

Inter-client Communication Conventions Manual 21

Table 3- Property Types, Formats, and Separators

Type Atom Format Separator

STRING 8 Null
ATOM 32 Fixed-size
ATOM_pAIR 32 Fixed-size
BITMAP 32 Fixed-size
PIXMAP 32 Fixed-size
DRAWABLE 32 Fixed-size
SPAN 32 Fixed-size
INTEGER 32 Fixed-size
WINDOW 32 Fixed-size
INCR 32 Fixed-size

This table will grow.

2. 7. 1 TEXT Properties

In general, the encoding for the characters in a text string property
is specified by its type. It is highly desirable for there to be a sim­
ple, invertible mapping between string property types and any char­
acter set names embedded within font names in any font naming
standard adopted by the Consortium.

The atom TEXT is a polymorphic target. Requesting conversion
into TEXT will convert into whatever encoding is convenient for the
owner. The encoding chosen will be indicated by the type of the
property returned. TEXT is not defined as a type; it will never be
the returned type from a selection conversion request.

If the requestor wants the owner to return the contents of the selec­
tion in a specific encoding, it should request conversion into the
name of that encoding.

In Table 2, the word TEXT is used to indicate one of the registered
encoding names. The type would not actually be TEXT, it would be
STRING or some other ATOM naming the encoding chosen by the
owner.

STRING as a type or a target specifies the ISO Latin- 1 character set
plus the "control" characters TAB (octal 1 1) and NEWLINE (octal
1 2) . The spacing interpretation of TAB is context dependent.
Other ASCII control characters are explicitly not included in
STRING at the present time.

22 Inter-Client Communication Conventions Manual

Type STRING properties will consist of a list of elements separated
by NULL characters; other encodings will need to specify an
appropriate list format.

2.7.2 /NCR Properties

Requestors may receive a property of type INCR3 in response to any
target that results in selection data. This indicates that the owner
will send the actual data incrementally. The contents of the INCR
property will be an integer, representing a lower bound on the
number of bytes of data in the selection. The requestor and the
selection owner transfer the data comprising the selection in the fol­
lowing manner.

The selection requestor starts the transfer process by deleting the
(type=-INCR) property forming the reply to the selection.

The selection owner then:

e Appends the data in suitable-size chunks to the same property
on the same window as the selection reply, with a type
corresponding to the actual type of the converted selection. The
size should be less than the maximum-request-size in the connec­
tion handshake.

• Between each append, waits for a
PropertyNotify(state--Deleted) event showing that the requestor
has read the data. The reason for doing this is to limit the con­
sumption of space in the server.

e When the entire data has been transferred to the server, waits
until a PropertyNotify(state--Deleted) showing that the data
has been read by the requestor, and then writes zero-length data
to the property.

The selection requestor:

• Waits for the SelectionNotify event

• Loops:

3. These properties were called INCREMENTAL in an earlier draft. The protocol
for using them has changed, and so the name has changed to avoid confusion.

Inter-client Communication Conventions Manual 23

- Retrieving data using GetProperty with "delete" True

- Waiting for a PropertyNotify with state==NewValue

• Until a zero-length property is obtained

• Deletes the zero-length property

The type of the converted selection is the type of the first partial
property. The remaining partial properties must have the same
type.

2. 7.3 DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP,
ORA W ABLE, or WINDOW, containing an appropriate ID. Some
information about these drawables is available from the server via
the GetGeometry request, but the following items are not:

e Foreground pixel

• Background pixel

e Colormap ID

In general, requestors converting into targets whose returned type in
Table 2 is one of the DRAW ABLE types should expect to convert
also into the following targets (using the MULTIPLE mechanism):

• FOREGROUND returns a PIXEL value

e BACKGROUND returns a PIXEL value

• COLORMAP returns a colormap ID

2. 7.4 SPAN Properties

Properties with type SPAN contain a list of cardinal-pairs, with the
length of the cardinals determined by the format. The first specifies
the starting position, and the second the ending position plus one.
The base is zero. If they are the same, the span is zero length, and
before the specified position. The units are implied by the target
atom, such as LINE_NUMBER or CHARACTER_POSITION.

24 Inter-client Communication Conventions Manual

3. PEER-TO-PEER COMMUNICATION VIA CUT -BUFFERS

Communication via cut-buffers is much simpler, but much less
powerful than via the selection mechanism. The selection mechan­
ism is active, in that it provides a link between the owner and
requestor clients. The cut-buffer mechanism is passive; an owner
places data in a cut-buffer, where a requestor retrieves it at some
later time.

The cut-buffers consist of eight properties on the root of screen 0,
named by the predefined atoms CUT_BUFFERO to CUT_BUFFER7.
These properties must (at present) have type STRING and format 8 .
A client using the cut-buffer mechanism must initially ensure that
all eight exist, using ChangeProperty to append zero-length data to
each.

A client storing data in the cut-buffers (an owner) must first rotate
the ring of buffers by + 1 , using RotateProperties to rename
CUT_BUFFERO to CUT_BUFFERl to to CUT_BUFFER7 to
CUT_BUFFERO. It must then store the data into CUT_BUFFERO,
using ChangeProperty in mode Replace.

A client obtaining data from the cut-buffers should use GetProperty
to retrieve the contents of CUT_BUFFERO.

A client may, in response to a specific user request, rotate the cut­
buffers by - 1 , using RotateProperties to rename CUT_BUFFER7 to
CUT_BUFFER6 to to CUT_BUFFERO to CUT_BUFFER7.

Data should be stored to the cut-buffers and the ring rotated only
when requested by explicit user action. Users depend on their men­
tal model of cut-buffer operation and need to be able to identify
operations that transfer data to and fro.

Inter-Client Communication Conventions Manual 25

4. CLIENT TO WINDOW MANAGER COMMUNICATION

To permit window managers to perform their role of mediating the
competing demands for resources such as screen space, the clients
being managed must adhere to certain conventions and must expect
the window managers to do likewise. These conventions are covered
here from the client's point of view and again from the window
manager's point of view in the Window and Session Manager Con­
ventions Manual . 4

In general, these conventions are somewhat complex and will
undoubtedly change over time as new window management para­
digms are developed. Thus there is a strong bias towards defining
only those conventions that are essential and that apply generally to
all window management paradigms. Clients designed to run with a
particular window manager can easily define private protocols to
add to these conventions, but must be aware that their users may
decide to run some other window manager no matter how much the
designers of the private protocol are convinced that they have seen
the "one true light" of user interfaces.

It is a principle of these conventions that a general client should nei­
ther know nor care which window manager is running, or indeed if
one is running at all. The conventions do not support all client
functions without a window manager running - for example, the
concept of Iconic is not directly supported by clients. If no window
manager is running, the concept of Iconic does not apply. A goal of
the conventions is to make it possible to kill and restart window
managers without loss of functionality.

Each window manager will implement a particular window manage­
ment policy; the choice of an appropriate window management pol­
icy for the user's circumstances is not one for an individual client to
make, but will be made by the user or the user's system administra­
tor. This does not exclude the possibility of writing clients that use
a private protocol to restrict themselves to operating only under a
specific window manager; it merely ensures that no claim of general
utility is made for such programs.

� 4. The Window and Session Manager Conventions Manual will be prepared after
this manual is finalized.

26 Inter-Client Communication Conventions Manual

For example, the claim is often made "the client I'm writing is
important, and it needs to be on top." Perhaps it is important when
it is being run in earnest, and it should then be run under the con­
trol of a window manager that recognizes "important" windows
through some private protocol and ensures that they are on top. � However, imagine for example that the "important" client is being
debugged. Then, ensuring that it is always on top is no longer the
appropriate window management policy, and it should be run under
a window manager that allows other windows (e.g. , the debugger) to
appear on top.

4.1 Client's Actions

In general, the object of the Xll design is that clients should, as far
as possible, do exactly what they would do in the absence of a win­
dow manager, except for:

• Hinting to the window manager about the resources they would
like to obtain.

• Cooperating with the window manager by accepting the
resources they are allocated, even if they are not those ·requested.

• Being prepared for resource allocations to change at any time. �
4. 1 . 1 Creating a Top-Level Window

A client would normally expect to create its top-level windows as
children of one or more of the root windows, using some boilerplate
like:

w i n = XCreat e S i mpleWindow (dpy , DefaultRootWi ndow (dpy) ,
xsh . x , xsh . y , xsh . wi dth , xsh . he i ght ,
bw , bd , bg) ;

or, if a particular one of the roots was required, like:
w i n = XCreate S impleWindow (dpy , RootWi ndow (dpy , s c r e en) ,

xsh . x , xsh . y , xsh . wi dth , xsh . he i ght ,
bw , bd , bg) ;

Inter-client Communication Conventions Manual 27

Ideally, it should be possible to override the choice of a root window
and allow clients (including window managers) to treat a nonroot
window as a pseudo-root. This would allow, for example, testing of
window managers and the use of application-specific window
managers to control the subwindows owned by the members of a
related suite of clients. Doing so properly requires an extension, the
design of which is under study. 5

From the client's point of view, the window manager will regard its
top-level window as being in one of three states:

• Normal

• Iconic

• Withdrawn

Newly created windows start in the Withdrawn state. Transitions
between states occur when the top-level window is mapped and
unmapped and when the window manager receives certain messages.
For details, see sections 4. 1 .2.4 and 4. 1 .4.

4. 1 .2 Client Properties

� Once the client has one or more top-level windows, it should place
properties on those windows to inform the window manager of its
desired behavior. Window managers will assume values they find
convenient for any of these properties that are not · supplied; clients
that depend on particular values must explicitly supply them. Prop­
erties written by the client will not be changed by the window
manager.

The window manager will examine the contents of these properties
when the window makes the transition from Withdrawn state, and
will monitor some for changes while the window is in Iconic or Nor­
mal state. When the client changes one of these properties, it must
use Replace mode to overwrite the entire property with new data;
the window manager will retain no memory of the old value of the
property. All fields of the property must be set to suitable values in
a single Replace-mode ChangeProperty request. This is to ensure

5. The mechanism proposed in the earlier drafts turned out to be inadequate to
support all the proposed uses of the pseudo-root facility.

28 Inter-client Communication Conventions Manual

that the full contents of the property will be available to a new win­
dow manager if the existing one crashes, or is shut down and res­
tarted, or if the session needs to be shut down and restarted by the
session manager.

Convention: Clients writing or rewriting window manager properties �
must ensure that the entire content of the property
remains valid at all times.

If these properties are longer than expected, clients should ignore
the remainder of the property. Extending these properties is
reserved to the X Consortium; private extensions to them are forbid­
den. Private additional communication between clients and window
managers should take place using separate properties. The follow­
ing sections describe each of the properties the clients need to set in
turn. They are summarized in Table 1 3 in section 4.3 .

4. 1 .2. 1 WM....NAME. The WM_NAME property is an uninterj>reted
string that the client wishes the window manager to display in asso­
ciation with the window (for example, in a window headline bar) .

The encoding used for this string (and all other uninterpreted string
properties) is implied by the type of the property. The ATOMS to
be used for this purpose are described in section 2. 7 . 1 . l
Window managers are expected to make an effort to display this
information; simply ignoring WM_NAME is not acceptable
behavior. Clients can assume that at least the first part of this
string is visible to the user, and that if the information is not visible
to the user, it is because the user has made an explicit decision to
make it invisible.

On the other hand, there is no guarantee that the user can see the
WM_NAME string even if the window manager supports window
headlines. The user may have placed the headline offscreen, or have
covered it by other windows. WM_NAME should not be used for
application-critical information, nor to announce asynchronous
changes of application state that require timely user response. The
expected uses are:

• To permit the user to identify one of a number of instances of
the same client �

• To provide the user with noncritical state information

�
I

Inter-Client Communication Conventions Manual 29

Note that even window managers that support headline bars will
place some limit on the length of string that can be visible; brevity
here will pay dividends.

Problem: A change to XFetchName and similar Xlib routines is
needed to allow for multiple encodings.

4. 1 .2.2 WM_lCON_NAME. The WM_ICQN_NAME property is an
uninterpreted string that the client wishes displayed in association
with the window when it is iconified (for example, in an icon label) .
In other respects, including the type, it is similar to WM_NAME.
Fewer characters will normally be visible in WM_ICQN_NAME
than WM_NAME, for obvious geometric reasons.

Clients should not attempt to display this string in their icon pix­
maps or windows; they should rely on the window manager to do so.

4. 1 .2.3 WM_NORMAL...HINTS. The type of the
WM_NORMALHINTS property is WM_8IZE_HINTS. Its con­
tents are shown in Table 4.

Table 4. WM.....SIZE.....HINTS Type Property Contents

Field Type Comments

flags CARD32 See Table 5 below
pad 4*CARD32 For backwards compatibility
min_ width INT32 If missing, assume base_width
min_beight INT32 If missing, assume base_height
max_ width INT32
max_beight INT32
widtlLJ.nc INT32
heighLinc INT32
min_aspect (INT32,INT32)
max_aspect (INT32,INT32)
base_ width INT32 If missing, assume min-width
base_height INT32 If missing, assume min_beight
win_gravity INT32 If missing, assume North West

30 Inter-Client Communication Conventions Manual

Table 5. WM_SIZE_HINTS.ftags Bit Definitions

Name Value Field

USPosition 1 User specified x, y
USSize 2 User specified width, height
PPosition 4 Program specified position
PSize 8 Program specified size
PMinSize 1 6 Program specified minimum size
PMaxSize 32 Program specified maximum size
PResizelnc 64 Program specified resize increments
PAspect 1 28 Program specified min and max aspect

ratios
PBaseSize 256 Program specified base size
PWinGravity 5 1 2 Program specified window gravity

To indicate that the size and position of the window (when mapped
from Withdrawn state) was specified by the user, the client should
set the USPosition and USSize flags. To indicate that it was specified
by the client without any user involvement, the client should set
PPosition and PSize. USPosition and USSize allow a window
manager to know that the user specifically asked where the window l
should be placed or how the window should be sized and that
further interaction is superfluous.

The size specifiers refer to the width and height of the client's win­
dow excluding borders. The window manager will interpret the
position of the window, and its border width, to position the point of
the outer rectangle of the overall window specified by the
win_gravity in the size hints. The outer rectangle of the window
includes any borders or decorations supplied by the window
manager. In other words, if the window manager decides to place
the window where the client asked, the position on the parent
window's border named by the win_gravity will be placed where the
client window would have been placed in the absence of a window
manager.

The defined values for win_gravity are those specified for
WINGRA VITY in the core X protocol, with the exception of Unmap

� and Static: NorthWest (1 }, North (2}, NorthEast (3 }, West (4), l
Center (5 }, East (6}, SouthWest (7), South (8}, and SouthEast (9).
The min_width and miiLheight elements specify the minimum size
that the window can be for the client to be useful. The max__width

Inter-Client Communication Conventions Manual 31

and max_height elements specify the maximum size. The
base_width and base_height elements in conjunction with
widtLinc and heighLinc define an arithmetic progression of pre­
ferred window widths and heights:

w i dth = b a s e w i dth + (i * wi dth i nc)
h e i ght = b a s e _he i ght + (j * he i ght _ inc)

for non-negative integers i and j. Window managers are encouraged
to use i and j instead of width and height in reporting window sizes
to users. If a base size is not provided, the minimum size is to be
used in its place, and vice versa.

The min_aspect and max.__aspect fields are fractions, with the
numerator first and the denominator second, and they allow a client
to specify the range of aspect ratios it prefers.

Problem: The "base" and "win_gravity" fields need a change to
Xlib.

4. 1 .2.4 WM.J-1/NTS. The WM_HINTS property, whose type is
WM_HINTS, is used to communicate to the window manager the
information it needs other than the window geometry, which is
available from the window itself, the constraints on that geometry,
which are available from the WM_NORMAL_HINTS structure, and
various strings, which need separate properties such as WM_NAME.
The contents of these properties are shown in Table 6.

Table 6. WM__HINTS Type Property Contents

Field Type Comments

flags CARD32 See Table 7 below
input CARD32 Client's input model
initiaLstate CARD32 State when first mapped
icon_pixmap PIXMAP Pixmap for icon image
icon_ window WINDOW Window for icon image
icon_x INT32 Icon location
icon_y INT32
icon_mask PIXMAP Mask for icon shape
window_group WINDOW ID of group leader window

32 Inter-Client Communication Conventions Manual

Table 7. WMJllNTS.ftags Bit Definitions

Name Value Field

lnputHint 1 input
StateHint 2 initiaLstate
IconPixmapHint 4 icon_pixmap
Icon Window Hint 8 icon_ window
IconPositionHint 1 6 icon__x and icon_y
IconMaskHint 32 icon_mask
WindowGroupHint 64 window_group
Message Hint 1 28 This bit is obsolete

Window managers are free to assume convenient values for all fields
of the WM_HINTS property if a window is mapped without one.

The input field is used to communicate to the window manager the
input focus model used by the client (see section 4. 1 .7 .).

Clients with the Globally Active and No Input models should set
the "input" flag to False. Clients with the Passive and Locally
Active models should set the "input" flag to True.

From the client's point of view, the window manager will regard the
client's top-level window as being in one of three states:

• Normal

• Iconic

• Withdrawn

The semantics of these states are described in section 4. 1 .4. Newly
created windows start in the Withdrawn state. Transitions between
states happen when a non-override-redirect top-level window is
mapped and unmapped, and when the window manager receives cer­
tain messages.

The value of the initiaLstate field determines the state the client
wishes to be in at the time the top-level window is mapped from
Withdrawn state, as shown in Table 8 .

Inter-Client Communication Conventions Manual 33

Table 8. WM__HINTS.initiaLstate Values

State Value Comments

NormalState 1 Window is visible
IconicState 3 Icon is visible

The icon_pixmap field may specify a pixmap to be used as an icon.
This pixmap should be:

• One of the sizes specified in the WM__ICON_8IZE property on
the root, if it exists (see section 4. 1 . 3.2) .

• 1 -bit deep. The window manager will select, through the
defaults database, suitable background (for the 0 bits) and fore­
ground (for the 1 bits) colors. These defaults can, of course,
specify different colors for the icons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be
used as the icon, allowing for icons to appear nonrectangular.

The icon_window field is the ID of a window the client wants used
as its icon. Most, but not all window managers will support icon
windows; those that do not are likely to have a user interface in
which small windows that behave like icons are completely inap­
propriate, so that clients should not attempt to remedy the omission
by working around it.

Clients needing more capabilities from the icons than a simple two­
color bitmap should use icon windows. Rules for clients that do are
set out in section 4. 1 .9.

The (icon__x,icon_y) coordinate is a hint to the window manager as
to where it should position the icon. The policies of the window
manager control the positioning of icons, so clients should not
depend on attention being paid to this hint.

The window_group field lets the client specify that this window
belongs to a group of windows. An example is a single client mani­
pulating multiple children of the root window.

Convention: The window_group field should be set to the ID of the
group leader. The window group leader may be a win­
dow which exists only for that purpose; a placeholder
group leader of this kind would never be mapped,
either by the client or by the window manager.

34 Inter-Client Communication Conventions Manual

Convention: The properties of the window group leader are those for
the group as a whole (for example, the icon to be
shown when the entire group is iconified).

Window managers may provide facilities for manipulating the group
as a whole. Clients, at present, have no way to operate on the group
as a whole.

The "messages" bit, if set in the flags field, indicates that the client
is using an obsolete window manager communication protocol,6

rather than the WM_pRQTOCOLS mechanism of section 4. 1 .2 .7 .

4. 1 .2.5 WM_CLASS. The WM_CLASS property, of type STRING
(without control characters), contains two consecutive null­
terminated strings specifying the Instance and Class names to be
used by both the client and the window manager for looking up
resources for the application or as identifying information. This
property must be present when the window leaves Withdrawn state,
and may be changed only while the window is in Withdrawn state.
Window managers may examine the property only when they start
up and when the Window leaves Withdrawn state, but there should
be no need for a client to change its state dynamically.

The two strings are, respectively:

• A string naming the particular instance of the application to
which the client owning this window belongs. Resources that are
specified by instance name override any resources that are
specified by class name. Instance names may be specified by the
user in an operating system-specific manner. Under the UNIX*
System, the following conventions are used:

- If "-name NAME" is given on the command line, NAME is
used as the instance name.

- Otherwise, if the environment variable RESOURCE._NAME
is set, its value will be used as the instance name.

6. This obsolete protocol was described in the 271b July 1988 draft of this manual.
Windows using it can also be detected because their WM_HINTS properties are
4 bytes longer than expected. Window managers are free to support clients
using the obsolete protocol in a "backwards compatibility" mode.

Inter-Client Communication Conventions Manual 35

- Otherwise, the trailing part of the name used to invoke the
program (argv [O] stripped of any directory names) is used as
the instance name.

� • A string naming the general class of applications to which the
client owning this window belongs. Resources that are specified
by class apply to all applications that have the same class name.
Class names are specified by the application writer. Examples of
commonly used class names include "Emacs," "XTerm,"
"XClock," "XLoad," etc.

Note that WM_CLASS strings, being null-terminated, differ from
the general conventions that STRING properties are null-separated.
This inconsistency is necessary for backwards compatibility.

4. 1 .2. 6 WM_TRANSIENL.FOR. The WM_TRANSIENT_FOR
property, of type WINDOW, contains the ID of another top-level
window. The implication is that this window is a pop-up on behalf
of the named window, and window managers may decide not to
decorate transient windows, or treat them differently in other ways.
In particular, window managers should present newly-mapped
WM_TRANSIENTJOR windows without requiring any user
interaction, even if mapping top-level windows normally does
require interaction. Dialogue boxes, for example, are an example of
windows that should have WM_TRANSIENT_FOR set.

It is important not to confuse WM_TRANSIENT_FOR with
override-redirect. WM_TRANSIENT_FOR should be used in those
cases where the pointer is not grabbed while the window is mapped,
in other words if other windows are allowed to be active while the
transient is up. If other windows must be prevented from processing
input (for example, when implementing popup menus), use
override-redirect and grab the pointer while the window is mapped.

4. 1 .2. 7 WM_pRQTOCOLS. The WM_pROTOCOLS property, of
type ATOM, is a list of atoms. Each atom identifies a communica­
tion protocol between the client and the window manager in which
the client is willing to participate. Atoms can identify both stan­
dard protocols, as well as private protocols specific to individual
window managers.

36 Inter-Client Communication Conventions Manual

All the protocols in which a client can volunteer to take part involve
the window manager sending the client a ClientMessage event, and
the client taking appropriate action. For details of the contents of
the event, see section 4.2. 8 . In each case the protocol transactions
are initiated by the window manager. �
The WM_pROTOCOLS property is not required. If it is not
present, the client does not wish to participate in any window
manager protocols.

The X Consortium will maintain a registry of protocols to avoid col­
lisions in the name space. Table 9 contains the protocols that have
been defined to date.

Table 9. Current WM-PROTOCOLS

Protocol Section Purpose

WM_TAKEJ'OCUS 4. 1 .7 Assignment of input focus
WM_8AVE_ YOURSELF 5 .2. 1 Save client state warning
WM_DELETE_ WINDOW 5.2.2 Request to delete top-level

window

This table will grow.

4. 1 .2.8 WM_COLORMAP _WINDOWS. The
WM_COLORMAP_WINDOWS property, of type WINDOW, on a
top-level window is a list of the IDs of windows that may need
colormaps installed that differ from the colormap of the top-level
window. The window manager will watch this list of windows for
changes in their colormap attributes. The top-level window is
always (implicitly or explicitly) on the watch list.

See section 4. 1 . 8 for the details of this mechanism.

4. 1 .3 Window Manager Properties

The properties described above are those which the client is respon­
sible for maintaining on its top-level windows. This section
describes the properties that the window manager places on client's
top-level windows and on the root. �
4. 1 .3. 1 WM......STATE. The window manager will place a
WM_8TATE property, of type WM_8TATE, on each top-level client
window. In general, clients should not need to examine the contents

lnter-Giient Communication Conventions Manual 37

of this property; it is intended for communication between window
and session managers. See section 5 . 1 . 1 . 3 for more details.

4. 1 .3.2 WM_JCON....SIZE. A window manager that wishes to place
constraints on the sizes of icon pixmaps andjor windows should
place a property called WM_ICON_8IZE on the root. The contents
of this property are shown in Table 10.

Table 10. WM._ICON_8IZE Type Property Contents

Field Type Comments

min_ width CARD32 Data for icon size series
min_height CARD32
max_ width CARD32
max_height CARD32
widtLinc CARD32
height_inc CARD32

For more details see the Xlib Programming Manual, Volume One
and the Xlib Reference Manual, Volume Two.

4. 1 .4 Changing Window State

From the client's point of view, the window manager will regard
each of the client's top-level non-override-redirect windows as being
in one of three states. The semantics of the states are:

• NormalState
The client's top-level window is visible.

• IconicState
The client's top-level window is iconic, whatever that means for
this window manager. The client can assume that its
icon_window (if any) will be visible, and failing that, its
icon_pixmap (if any) or its WM_ICON_NAME will be visible.

• WithdrawnState
Neither the client's top-level window nor its icon is visible.

In fact the window manager may implement states with semantics
other than those described above. For example, a window manager
might implement a concept of InactiveState in which an infrequently
used client's window would be represented as a string in a menu.
But this state is invisible to the client, which would see itself merely
as being in IconicState.

38 Inter-client Communication Conventions Manual

Newly created top-level windows are in Withdrawn state. Once the
window has been provided with suitable properties, the client is free
to change its state as follows:7

• Withdrawn - Normal
The client should map the window with
WM_HINTS.initiaLstate being NormalState.

• Withdrawn - Iconic
The client should map the window with
WM_HINTS.initiaLstate being IconicState.

• Normal - Iconic
The client should send a client message event as described
below.

• Normal - Withdrawn
The client should unmap the window and follow it with a syn­
thetic UnmapNotify event as described below. 8

• Iconic - Normal
The client should map the window. The contents of
WM_HINTS.initiaLstate are irrelevant in this case.

• Iconic - Withdrawn
The client should unmap the window and follow it with a syn­
thetic UnmapNotify event as described below.

Once a client's non-override-redirect top-level window has left With­
drawn state, the client will know that the window is in Normal state
if it is mapped, and that the window is in Iconic state if it is not
mapped. It may select for StructureNotify on the top-level window,
and it will receive an UnmapNotify event when it moves to Iconic
state and a MapNotify when it moves to Normal state. This implies

7. The conventions described in earlier drafts of this manual had some serious
semantic problems. These new conventions are designed to be compatible with
clients using earlier conventions, except in areas where the earlier conventions
would not actually have worked.

8. For compatibility with obsolete clients, window managers should trigger the
transition on the real UnmapNotify rather than wait for the synthetic one.
They should also trigger the transition if they receive a synthetic UnmapNotify 'l
on a window for which they have not yet received a real UnmapNotify.

Inter-client Communication Conventions Manual 39

that a reparenting window manager will unmap the top-level win­
dow as well as the parent window when going Iconic.

Convention: Reparenting window managers must unmap the client's
top-level window whenever they unmap the window to
which they have reparented it.

If the transition is to Withdrawn state, in addition to unmapping the
window itself, a synthetic Unm.apNotify event must be sent using
SendEvent with the following parameters:

d e s t i na t i on : the root
propagat e : F a l s e
event -mask : (SubstructureRed i r e c t i Substruc tureNot i fy)
event : an UnmapNot i fy w i th :

event : the root
wi ndow : the w i ndow i t s e l f
from- conf i gure : F a l s e

The reason for doing this is to ensure that the window manager gets
some notification of the desire to change state, even though the win­
dow may already be unmapped when the desire is expressed.

If the transition is from Normal to Iconic state, the client should
send a ClientMessage event to the root with:

• "window" = = the window to be iconified

• "type" == the atom WM_CHANGE._STATE9

• "format" = = 32

• "data [O]" = = IconicState

Other values of data [O] are reserved for future extensions to these
conventions. 10 The parameters of the SendEvent should be as above.

Clients can also select for VisibilityChange on their (top-level or
icon) windows. They will then receive a
VisibilityNotify(state-FullyObscured) event when the window

9. The "type" field of the OientMessage event (called the "message-type" field
by Xlib) should not be confused with the "code" field of the event itself, which
will have the value 33 (OientMessage).

I 0. The format of this OientMessage event does not match the format of
OientMessages in section 4.2.8. This is because they are sent by the window
manager to clients, and this is sent by clients to the window manager.

40 Inter-Client Communication Conventions Manual

concerned becomes completely obscured even though mapped (and
thus perhaps a waste of time to update), and a
VisibilityNotify(state!=FullyObscured) when it becomes even partly
viewable.

4. 1 .5 Configuring the Window

Clients can resize and reposition their top-level windows using the
ConftgureWindow request. The attributes of the window that can be
altered with this request are:

• The [x,y] location of the window's upper left outer corner

• The [width,height] of the inner region of the window (excluding
borders)

• The border-width of the window

• The window's position in the stack

The coordinate system in which the location is expressed is that of
the root, irrespective of any reparenting that may have occurred,
and the border width to be used and win_gravity position hint to be
used are those most recently requested by the client. Client
configure requests are interpreted by the window manager in the �
same manner as the initial window geometry mapped from With-
drawn state, as described in section 4. 1 .2.3 . Clients must be aware
that there is no guarantee that the window manager will allocate
them the requested size or location and must be prepared to deal
with any size and location. If the window manager decides to
respond to a ConftgureRequest by:

• Not changing the size or location of the window at all, a client
will receive a synthetic ConftgureNotify event describing the
(unchanged) state of the window. The (x,y) coordinates will be
in the root coordinate system, adjusted for the border width the
client requested, irrespective of any reparenting that has taken
place. The border_width will be the border width the client
requested. The client will not receive a real ConftgureNotify,
since no change has actually taken place.

• Moving the window without resizing it, a client will receive a
synthetic ConftgureNotify event following the move describing l
the new state of the window, whose (x,y) coordinates will be in
the root coordinate system adjusted for the border width the
client requested. The border_width will be the border width the
client requested. The client may not receive a real

Inter-Client Communication Conventions Manual 4 1

ConftgureNotify event describing this change, since the window
manager may have re-parented the top-level window. If it does
receive a real event, the synthetic event will follow the real one.

• Resizing the window (whether or not it is moved) , a client which
has selected for StructureNotify will receive a ConftgureNotify
event. Note that the coordinates in this event are relative to the
parent, which may not be the root if the window has been
reparented, and will reflect the actual border width of the win­
dow, which the window manager may have changed. The
TranslateCoordinates request can be used to convert the coordi­
nates if required.

The general rule is, coordinates in real ConftgureNotify events are in
the parent's space, whereas in synthetic events they are in the root
space.

Clients should be aware that their borders may not be visible. Win­
dow managers are free to use reparenting techniques to decorate
client's top-level windows with "borders" containing titles, controls,
and other details to maintain a consistent look-and-feel. If they do,
they are likely to override the client's attempts to set the border
width, and set it to zero. Clients should, therefore, not depend on
the top-level window's border being visible nor use it to display any
critical information. Other window managers will allow the top­
level windows border to be visible.

Convention: Clients should set their desired border-width on all
ConftgureWindow requests, to avoid a race condition.

Clients changing their position in the stack must be aware that they
may have been reparented, which means that windows that used to
be siblings no longer are. Using a nonsibling as the sibling parame­
ter on a ConftgureWindow request will cause an error.

Convention: Clients using ConftgureWindow to request a change in
their position in the stack should do so using None in
the sibling field.

Clients that must position themselves in the stack relative to some
window that was originally a sibling must do the ConftgureWindow
request (in case they are running under a nonreparenting window
manager), be prepared to deal with a resulting error, and then fol­
low with a synthetic ConftgureRequest event by invoking SendEvent
with:

42

d e s t i nat i on : the root
propagate : F a l s e

Inter-Client Communication Conventions Manual

event-mask : (Subs tructureRedi rect i SubstructureNot i fy)
event : a Conf i gureReque s t w i th :

event : the root
w i ndow : the wi ndow i t s e l f

other parameters from t h e Conf i gureWi ndow

Doing this is deprecated, and window managers are in any case free
to position windows in the stack as they see fit. Clients should
ignore the "above" fields of both real and synthetic ConfigureNotify
events that they receive on their non-override-redirect top-level win­
dows since they cannot be guaranteed to contain useful information.

4. 1. 6 Changing Window Attributes

The attributes that may be supplied when a window is created may
be changed using the ChangeWindowAttributes request. They are
shown in Table 1 1 .

Table 11. Window Attributes

Attribute Private to Client

Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No
Event mask No
Do-Not-propagate mask Yes
Override-redirect flag No
Colormap Yes
Cursor Yes

Most are private to the client and will never be interfered with by
the window manager. As regards the attributes that are not private
to the client:

• The window manager is free to override the window gravity; a
reparenting window manager may want to set the top-level
window's window gravity for its own purposes.

Inter-Client Communication Conventions Manual 43

• Clients are free to set the save-under hint on their top-level win­
dows, but they must be aware that the hint may be overridden
by the window manager.

(!II'
• Windows, in effect, have per-client event masks, so clients may

select for whatever events are convenient, irrespective of any
events the window manager is selecting for. There are some
events for which only one client at a time may select, but the
window manager should not select for them on any of the
client's windows.

I

• Clients can set override-redirect on top-level windows but are
encouraged not to do so except as described in sections 4. 1 . 1 0
and 4.2.9.

4. 1 . 7 Input Focus

There are four models of input handling:

• No Input
The client never expects keyboard input.

An example would be xload or another output-only client.

� • Passive Input
The client expects keyboard input but never explicitly sets the
input focus.

An example would be a simple client with no subwindows, which
will accept input in PointerRoot mode, or when the window
manager sets the input focus to its top-level window (in click-to­
type mode).

• Locally Active Input
The client expects keyboard input and explicitly sets the input
focus, but only does so when one of its windows already has the
focus.

An example would be a client with subwindows defining various
data entry fields that uses Next and Prev keys to move the input
focus between the fields, once its top-level window has acquired
the focus in PointerRoot mode, or when the window manager
sets the input focus to its top-level window (in click-to-type
mode).

• Globally Active Input
The client expects keyboard input and explicitly sets the input
focus even when it is in windows the client does not own.

44 Inter-Client Communication Conventions Manual

An example would be a client with a scroll bar that wants to
allow users to scroll the window without disturbing the input
focus even if it is in some other window. It wants to acquire the
input focus when the user clicks in the scrolled region, but not
when the user clicks in the scroll bar itself. Thus, it wants to � prevent the window manager from setting the input focus to any
of its windows.

The four input models and the corresponding values of the "input"
field and the presence or absence of the WM_TAKLFOCUS atom
in the WM_pRQTOCOLS property are shown in Table 1 2.

Table 12. Input Models

Input Model Input Field WM_TAKEJ'OCUS

No Input False Absent
Passive True Absent
Locally Active True Present
Globally Active False Present

Passive and Locally Active clients set the "input" field of �
WM_HINTS True to indicate that they require window manager J
assistance in acquiring the input focus. No Input and Globally
Active clients set the "input" field False to request that the window
manager not set the input focus to their top-level windows.

Clients using SetlnputFocus must set the "time" field to the time­
stamp of the event that caused them to make the attempt. Note
that this cannot be a Focusln event, since they do not have time­
stamps, and that clients may acquire the focus without a
corresponding EnterNotify. Clients must not use CurrentTime in the
"time" field.

Clients using the Globally Active model can only use SetlnputFocus
to acquire the input focus when they do not already have it on
receipt of one of the following events:

• ButtonPress

• ButtonRelease

• Passive-grabbed KeyPress

• Passive-grabbed KeyRelease

Inter-Client Communication Conventions Manual 45

In general, clients should avoid using passive-grabbed Key events
for this purpose except when they are unavoidable (as, for example,
a selection tool that establishes a passive grab on the keys that cut,
copy, or paste) .

The method by which the user commands the window manager to
set the focus to a window is up to the window manager. For exam­
ple, clients cannot determine whether they will see the click that
transfers the focus.

Windows with the atom WM_TAKEJOCUS in their
WM_pRQTOCOLS property may receive a OientMessage from the
window manager as described in section 4.2. 8 with
WM_TAKE_FOCUS in their data [O] field. If they want the focus,
they should respond with a SetlnputFocus request with its "window"
field set to the window of theirs that last had the input focus, or to
their "default input window," and the "time" field set to the time­
stamp in the message. See section 4.2.7.

A client could receive WM_TAKE_FOCUS when opening from an
icon or when the user has clicked outside the top-level window in an
area that indicates to the window manager that it should assign the
focus (for example, clicking in the headline bar can be used to
assign the focus).

The goal is to support window managers that want to assign the
input focus to a top-level window in such a way that the top-level
window can either assign it to one of its subwindows or decline the
offer of the focus. A clock, for example, or a text editor with no
currently open frames, might not want to take focus even though the
window manager generally believes that clients should take the
input focus after being deiconified or raised.

Problem: There would be no need for WM_TAKEJOCUS if the
Focusln event contained a timestamp and a previous-focus
field. This could avoid the potential race condition.
There is space in the event for this information; it should
be added at the next protocol revision.

Clients that set the input focus need to decide a value for the
"revert-to" field of the SetlnputFocus request. This determines the
behavior of the input focus if the window the focus has been set to
becomes not viewable. It can be any of:

46 Inter-Client Communication Conventions Manual

• Parent
In general, clients should use this value when assigning focus to
one of their subwindows. Unmapping the subwindow will cause
focus to revert to the parent, which is probably what you want.

• PointerRoot l
Using this value with a click-to-type focus management policy
leads to race conditions, since the window becoming unviewable
may coincide with the window manager deciding to move the
focus elsewhere.

• None
Using this value causes problems if the window manager
reparents the window (most window managers will) and then
crashes. The input focus will be None, and there will probably
be no way to change it.

The convention is:

Convention: Clients invoking SetlnputFocus should set "revert-to"
to Parent.

A convention is also required for clients that want to give up the
input focus.

Convention: Clients should not give up the input focus of their own
volition. They should ignore input that they receive
instead.

Inter-Client Communication Conventions Manual 47

4. 1 .8 Colormaps

The window manager is responsible for installing and uninstalling
colormaps. 1 1 Clients provide the window manager with hints on
which colormaps to install and uninstall, but must not install or
uninstall colormaps themselves. When a client's top-level window
gets the colormap focus (as a result of whatever colormap focus pol­
icy is implemented by the window manager) the window manager
will insure that one or more of the client's colormaps are installed.
The reason for this convention is that there is no safe way for multi­
ple clients to install and uninstall Colormaps.

Convention: Clients must not
UninstaiiColormap.

use InstaiiColormap or

There are two possible ways in which clients could hint to the win­
dow manager about the Colormaps they want installed. Using a
property, they could tell the window manager:

• a priority ordered list of the Colormaps they want installed

• or a priority ordered list of the Windows whose Colormaps they
want installed.

The second of these alternatives has been selected because:

• It allows window managers to know the Visuals for the Color­
maps, permitting Visual-dependent colormap installation policies.

• It allows window managers to select for VisibDityChange on the
windows concerned and ensure that maps are only installed if the
windows that need them are visible.

Clients whose top-level windows and subwindows all use the same
colormap should set their IDs in the colormap field of the window's
attributes. They should not set a WM_COLORMAP _WINDOWS
property on the top-level window. If they want to change the color­
map, they should change the window attribute, and the window
manager will install the colormap for them.

I I . The conventions described in earlier drafts by which clients and window
managers shared responsibility for installing Colormaps suffered from semantic
problems.

48 Inter-Client Communication Conventions Manual

Clients creating windows may use the value CopyFromParent to
inherit the parent's colormap. Window managers will ensure that
the root window's colormap field contains a colormap that is suitable
for clients to inherit; in particular the colormap will provide distin-
guishable colors for BlackPixel and WhitePixel. �
Top-level windows that have subwindows or override-redirect pop-up
windows whose colormap requirements differ from the top-level win-
dow should have a WM_COLORMAP _WINDOWS property. This
property contains a list of window IDs of windows whose colormaps
the window manager should attempt to have installed when, in the
course of its individual colormap focus policy, it assigns the color-
map focus to the top-level window (see section 4. 1 .2 .8) . The list is
ordered by the importance to the client of having the colormaps
installed. If this order changes, the property should be updated.
The window manager will track changes to this property, and will
track changes to the colormap attribute of the windows in the
property.

WM_TRANSIENT_FOR windows can either have their own
WM_COLORMAP _WINDOWS property or appear in the property
of the window they are transient for, as appropriate.

Clients should be aware of the min-installed-maps and max­
installed-maps fields of the connection startup information, and the
effect that the minimum value has on the "required list" :

"At any time, there is a subset of the installed maps,
viewed as an ordered list, called the "required list". The
length of the required list is at most M, where M is the
min-installed-maps specified for the screen in the con­
nection setup. The required list is maintained as fol­
lows. When a colormap is an explicit argument to
InstallColormap, it is added to the head of the list, and
the list is truncated at the tail if necessary to keep the
length of the list to at most M. When a colormap is an
explicit argument to UninstallColormap and it is in the
required list, it is removed from the list. A colormap is
not added to the required list when it is installed impli­
citly by the server, and the server cannot implicitly
uninstall a colormap that is in the required list."

In other words, the min-installed-maps most recently installed maps
are guaranteed to be installed. This number will often be one;
clients needing multiple colormaps should beware.

Inter-Client Communication Conventions Manual 49

The window manager will identify and track changes to the color­
map attribute of the windows identified by the
WM_COLORMAP_WINDOWS property, and the top-level window
if it does not appear in the list. If the top-level window does not

� appear in the list, it will be assumed to be a higher priority than any
window in the list. It will also track changes in the contents of the
WM_COLORMAP _WINDOWS property, in case the set of windows
or their relative priority changes. The window manager will define
some colormap focus policy, and whenever the top-level window has
the colormap focus, it will attempt to maximize the number of
colormaps from the head of the WM_COLORMAP _WINDOWS list
that are installed.

4. 1 .9 Icons

A client can hint to the window manager about the desired appear­
ance of its icon in several ways:

• Set a string in WM__ICON_NAME. All clients should do this,
as it provides a fallback for window managers whose ideas about
icons differ widely from those of the client.

• Set a Pixmap into the "icon_pixmap" field of the WM_HINTS
property, and possibly another into the "icon_mask" field. The
window manager is expected to display the pixmap masked by
the mask. The pixmap should be one of the sizes found in the
WM__ICON__8IZE property on the root. If this property is not
found, the window manager is unlikely to display icon pixmaps.
Window managers will normally clip or tile pixmaps which do
not match WM__ICON__8IZE.

• Set a window into the "icon_window" field of the WM_HINTS
property. The window manager is expected to map that window
whenever the client is in Iconic state. In general, the size of the
icon window should be one of those specified in
WM__ICON__8IZE on the root, if it exists. Window managers
are free to resize icon windows.

In Iconic state, the window manager will normally ensure that:

50 Inter-Client Communication Conventions Manual

• If the window's WM_HINTS.icon_window is set, the window it
names is visible.

• If not, if the window's WM_HINTS.icon_pixmap is set, the pix­
map it names is visible.

• Otherwise, the windows WM_NAME string is visible.

Clients should observe the following conventions about their icon
windows:

Convention: The icon window should be an InputOutput child of the
root.

Convention: The icon window should be one of the sizes specified in
the WM_ICON_8IZE property on the root.

Convention: The icon window should use the root visual and default
colormap for the screen in question.

Convention: Clients should not map their icon windows.

Convention: Clients should not unmap their icon windows.

Convention: Clients should not configure their icon windows.

Convention: Clients should not set override-redirect on their icon �
windows, nor select for ResizeRedirect on them.

Convention: Clients must not depend on being able to receive input
events via their icon windows.

Convention: Clients must not manipulate the borders of their icon
windows.

Convention: Clients must select for Exposure on their icon window,
and repaint it when requested.

Window managers will differ as to whether they support input
events to client's icon windows; most will allow some subset of the
keys and buttons though.

Window managers will ignore any WM_NAME,
WM_ICQN_NAME, WM_NORMALJIINTS, WM_HINTS,
WM_CLASS, WM_TRANSIENT_FOR, WM_pRQTOCOLS, or
WM_COLORMAP _WINDOWS properties they find on icon win- ,
dows. Session managers will ignore any WM_COMMAND or
WM_CLIENT_MACHINE properties they find on icon windows.

Inter-Client Communication Conventions Manual 51

4. 1. 10 Pop-Up Windows

Clients wishing to pop up a window can do one of three things:

• They can create and map another normal top-level window,
which will get decorated and managed as normal by the window
manager. See the discussion of window groups below.

• If the window will be visible for a relatively short time, and
deserves a somewhat lighter treatment, they can set the
WM_TRANSIENTJOR property. They can expect less decora­
tion, but can set all the normal window manager properties on
the window. An example would be a dialog box.

• If the window will be visible for a very short time, and should
not be decorated at all, the client can set override-redirect on the
window. In general, this should be done only if the pointer is
grabbed while the window is mapped. The window manager will
never interfere with these windows, which should be used with
caution. An example of an appropriate use is a pop-up menu.

Window managers are free to decide if WM_TRANSIENTJOR
windows should be iconified when the window they are transient for

� is. Clients displaying WM_TRANSIENTJOR windows that have
(or request to have) the window they are transient for iconified do
not need to request that the same operation be performed on the
WM_TRANSIENTJOR window; the window manager will change
its state if that is the policy it wishes to enforce.

4. 1 . 1 1 Window Groups

A set of top-level windows that should be treated from the user's
point of view as related (even though they may belong to a number
of clients) should be linked together using the "window_group" field
of the WM_HINTS structure.

One of the windows (the one the others point to) will be the group
leader and will carry the group as opposed to the individual prop­
erties. Window managers may treat the group leader differently
from other windows in the group. For example, group leaders may
have the full set of decorations, and other group members a
restricted set.

It is not necessary that the client ever map the group leader; it may
be a window that exists solely as a placeholder.

52 Inter-Client Communication Conventions Manual

It is up to the window manager to determine the policy for treating
the windows in a group. There is, at present, no way for a client to
request a group, as opposed to an individual, operation.

4.2 Client Responses to Window Manager Actions

The window manager performs a number of operations on client
resources, primarily on their top-level windows. Clients must not
try to fight this, but may elect to receive notification of the window
manager's operations.

4.2. 1 Reparenting

Clients must be aware that some window managers will reparent
their non-override-redirect top-level windows, so that a window that
was created as a child of the root will be displayed as a child of
some window belonging to the window manager. The effects that
this reparenting will have on the client are:

• The parent value returned by a QueryTree request will no longer
be the value supplied to the CreateWindow request that created
the reparented window. There should normally be no need for
the client to be aware of the identity of the window to which the
top-level window has been reparented. In particular, a client �
wishing to create further top-level windows should continue to
use the root as the parent for these new windows.

• The server will interpret the (x,y) coordinates in a
ConfigureWindow request in the new parent's coordinate space.
They will, in fact, normally not be interpreted by the server
because a reparenting window manager will normally have inter­
cepted these operations (see below). Clients should use the root
coordinate space for these requests (see section 4. 1 . 5).

• ConfigureWindow requests that name a specific sibling window
may fail because the window named, which used to be a sibling,
no longer is after the reparenting operation (see section 4. 1 . 5) .

• The (x,y) coordinates returned by a GetGeometry request are in
the parent's coordinate space and are thus not directly useful
after a reparent operation.

• A background of ParentRelative will have unpredictable results. l
• A cursor of None will have unpredictable results.

Inter-client Communication Conventions Manual 53

Clients wishing to be notified when they are reparented can select
for StructureNotify on their top-level window. They will receive a
ReparentNotify event if and when reparenting takes place.

If the window manager reparents a client's window, the reparented
window will be placed in the "save set" of the parent window. This
means that if the window manager terminates, the reparented win­
dow will not be destroyed, and will be remapped if it was
unmapped. Note that this applies to all client windows the window
manager reparents, including transient windows and client icon
windows.

When the window manager gives up control over a client's top-level
window, it will reparent it (and any associated windows, such as
WM_TRANSIENTJOR windows) back to the root.

There is a potential race condition here. A client might wish to
reuse the top-level window, reparenting it somewhere else.

Convention: Clients wishing to reparent their top-level windows
should do so only when they have their original parents.
They may select for StructureNotify on their top-level
windows, and will receive ReparentNotify events
informing them when this is true.

4.2.2 Redirection of Operations

Clients must be aware that some window managers will arrange for
some client requests to be intercepted and redirected. Redirected
requests are not executed; they result instead in events being sent to
the window manager, which may decide to do nothing, to alter the
arguments, or to perform the request on behalf of the client.

The possibility that a request may be redirected means that a client
may not assume that any redirectable request is actually performed
when the request is issued, or at all. For example, the sequence:

54 Inter-Client Communication Conventions Manual

MapW i ndow A
PolyL i ne A GC <po i nt> <po i nt> • • • •

is incorrect, since the MapWindow request may be intercepted and
the PolyLine output made to an unmapped window. The client
must wait for an Expose event before drawing in the window. 1 2

� Another example is:
Conf i gureW i ndow w i dth=N he i ght=M
<output a s sum i ng w i ndow is N by M>

which incorrectly assumes that the ConfigureWindow request is
actually executed with the arguments supplied.

The requests which may be redirected are:

• MapWindow

• ConfigureWindow

• OrculateWindow

A window with the override-redirect bit set is immune from redirec­
tion, but the bit should be set on top-level windows only in cases
where other windows should be prevented from processing input
while the override-redirect window is mapped (see section 4. 1 . 1 0)
and while responding to ResizeRequest events (see section 4.2.9) . l
Clients that have no non- Withdrawn top-level windows and that
map an override-redirect top-level window are taking over total
responsibility for the state of the system. It is their responsibility to:

• Prevent any pre-existing window manager from interfering with
their activities.

• Restore the status quo exactly after they unmap the window, so
that any pre-existing window manager does not get confused.

In effect, clients of this kind are acting as temporary window
managers. Doing so is strongly discouraged, since these clients will
be unaware of the user interface policies the window manager is try­
ing to maintain, and their user interface behavior is likely to conflict
with that of less demanding clients;

1 2. This is true even if the client set backing-store to Always. The backing-store l
value is only a hint, and the server may stop maintaining backing-store
contents at any time.

Inter-client Communication Conventions Manual 55

4.2.3 Window Move

If the window manager moves a top-level window without changing
its size, the client will receive a synthetic ConfigureNotify event
describing the new location, in terms of the root coordinate space.
Clients must not respond to being moved by attempting to move
themselves to a better location.

Any real ConfigureNotify event on a top-level window implies that
the window's position on the root may have changed, even though
the event reports that the window's position in its parent is
unchanged, because the window may have been reparented. And
note that the coordinates in the event will not, in this case, be
directly useful.

The window manager will send these events using SendEvent with:
d e s t i nat i on :
propaga t e :
event -mask :

the c l i ent ' s wi ndow
F a l s e
StructureNo t i fy

4.2.4 Window Resize

The client can elect to receive notification of being resized by select­
ing for StructureNotify on its top-level window(s) . It will receive a
ConfigureNotify event. The size information in the event will be
correct, but the location will be in the parent window (which may
not be the root) .

The response of the client to being resized should be to accept the
size it has been given, and to do its best with it. Clients must not
respond to being resized by attempting to resize themselves to a
better size. If the size is impossible to work with, clients are free to
request to change to Iconic state.

4.2. 5 (De)lconify

A non-override-redirect window that is not Withdrawn will be in
Normal state if it is mapped, and in Iconic state if it is unmapped.
This will be true even if the window has been reparented; the win­
dow manager will unmap the window as well as its parent when
switching to Iconic state.

The client can elect to be notified of these state changes by selecting
for StructureNotify on the top-level window. It will receive
UnmapNotify when it goes Iconic, and MapNotify when it goes
Normal.

56 Inter-client Communication Conventions Manual

4.2. 6 Colormap Change

Clients that wish to be notified of their colormaps being installed or
uninstalled should select for ColormapNotify on their top-level win-
dows, and on any windows they have named in
WM_COLORMAP _WINDOWS properties on their top-level win- �
dows. They will receive ColormapNotify events with the "new" field
FALSE when the colormap for that window is installed or
uninstalled.

Problem: There is an inadequacy in the protocol. At the next revi­
sion, the InstaUColormap request should be changed to
include a timestamp to avoid the possibility of race condi­
tions if more than one client attempts to install and unin­
stall colormaps. These conventions attempt to avoid the
problem by restricting use of these requests to the window
manager.

4.2. 7 Input Focus

Clients can request notification that they have the input focus by
selecting for FocusChange on their top-level windows; they will
receive Focusln and FocusOut events. Clients that need to set the
input focus to one of their subwindows should not do so unless they l
have set WM_TAKE.J'OCUS in their WM_pRQTOCOLS property
and:

• have set the "input" field of WM_HINTS to True and actually
have the input focus in (one of) their top-level windows,

• or have set the "input" field of WM_HINTS to False and have
received a suitable event as described in section 4. 1 . 7,

• or have received a WM_TAKE.J'OCUS message as described in
section 4. 1 . 7 .

Clients should not warp the pointer in an attempt to transfer the
focus; they should set the focus and leave the pointer alone. See
section 6.2.

Once a client satisfies these conditions, it may transfer the focus to
another of its windows using the SetlnputFocus request:

Set:tnputFocus
focus :
revert- to :
t im e :

WXNDOW or Poi nterRoot or None
(Parent , Po i nterRoot , None }
TXMESTAMP or CurrentTime

Inter-client Communication Conventions Manual 57

Convention: Clients using SetlnputFocus must set the "time" field to
the timestamp of the event that caused them to make
the attempt. Note that this cannot be a Focusln event
(since they do not have timestamps) and that clients
may acquire the focus without a corresponding Enter­
Notify. Clients must not use CurrentTime in the
"time" field.

Convention: Clients using SetlnputFocus to set the focus to one of
their windows must set the revert-to field to Parent.

4.2.8 ClientMessage Events

There is no way for clients to prevent themselves being sent
OientMessage events.

Top-level windows with a WM_pRQTOCOLS property may be sent
OientMessage events specific to the protocols named by the atoms
in the property (see section 4. 1 .2. 7). For all protocols, the
OientMessage events:

• Have WMJROTOCOLS as the type field1 3

• Have format 32

• Have the atom naming their protocol in the data [O] field14

• Have a timestamp in their data [l] field

The remaining fields, including the "window" field, of the event are
determined by the protocol.

These events will be sent using SendEvent with:
d e s t i na t i on :
propagate :
event -mask :
event :

the c l i ent ' s window
F a l s e
() empty
as spec i f i ed by the protocol

1 3. The "type" field of the OientMessage event (called the "message_type" field
by Xlib) should not be confused with the "code" field of the event itself, which
will have the value 33 (OientMessage).

14. We use the notation data[n] to indicate the nth element of the LISTofiNT8,
LISTofiNT16, or LISTofiNT32 in the data field of the OientMessage,
according to the format field. The list is indexed from zero.

58 Inter-Client Communication Conventions Manual

4.2. 9 Redirecting Requests

Normal clients can use the redirection mechanism just as window
managers do, by selecting for SubstructureRedirect on a parent win­
dow, or ResizeRedirect on a window itself. However, at most one
client per window can select for these events, and a convention is �
needed to avoid clashes:

Convention: Clients (including window managers) should select for
SubstructureRedirect and ResizeRedirect only on win­
dows that they own.

In particular, clients that need to take some special action if they
are resized can select for ResizeRedirect on their top-level windows.
They will receive a ResizeRequest event if the window manager
resizes their window, and the resize will not actually take place.
Clients are free to make what use they like of the information that
the window manager wants to change their size, but they must
configure the window to the width and height specified in the event
in a timely fashion. To ensure that the resize will actually happen
at this stage, instead of being intercepted and executed by the win­
dow manager (and thus restarting the process), the client needs
temporarily to set override-redirect on the window. l
Convention: Clients receiving ResizeRequest events must respond

by: (a) setting override-redirect on the window
specified in the event, (b) configuring the window
specified in the event to the width and height specified
in the event as soon as possible, and before making any
other geometry requests, and then (c) clearing
override-redirect on the window specified in the event.

If a window manager detects that a client is not obeying this con­
vention, it is free to take whatever measures it deems appropriate to
deal with the client.

4.3 Summary of Window Manager Property Types

The window manager properties are summarized in Table 13.

Inter-client Communication Conventions Manual 59

Table 13. Window Manager Properties

Name Type Format See Section

WM_CLASS STRING 8 4. 1 .2.5
WM_COLORMAP _WINDOWS WINDOW 32 4. 1 .2.8
WM_HINTS WM_HINTS 32 4. 1 .2.4
WM_ICON__NAME TEXT 4. 1 .2.2
WM_ICON....SIZE WM_ICON....SIZE 32 4. 1 .3.2
WM_NAME TEXT 4. 1 .2. 1
WM_NORMALHINTS WM....siZILHINTS 32 4. 1 .2.3
WM_PROTOCOLS ATOM 32 4. 1 .2.7
WM....8TATE WM....sTATE 32 4. 1 .3. 1
WM_TRANSIENT__FOR WINDOW 32 4. 1 .2.6

60 Inter-Client Communication Conventions Manual

5. CLIENT TO SESSION MANAGER COMMUNICATION

The role of the session manager is to manage a collection of clients.
It should be capable of:

• Starting a collection of clients as a group.

• Remembering the state of a collection of clients so that they can
be

·
restarted in the same state.

• Stopping a collection of clients in a controlled way.

It may also provide a user interface to these capabilities.

5.1 Client Actions

There are two ways in which clients should cooperate with the ses­
sion manager:

• Stateful clients should cooperate with the session manager by
providing it with information it can use to restart them if it
should become necessary.

• Clients whose server connection needs to survive the deletion of
their top-level window (typically those with more than one top-
level window) should take part in the WM__DELETL WINDOW l
protocol (see section 5.2.2) .

5. 1 . 1 Properties

The client communicates with the session manager by placing two
properties (WM_COMMAND and WM_CLIENT__MACHINE) on its
top-level window. If the client has a group of top-level windows,
these properties should be placed on the group leader window.

The window manager is responsible for placing a WM__8T ATE prop­
erty on each top-level client window for use by session managers
and other clients that need to be able to identify top-level client
windows and their state.

5. 1 . 1 . 1 WM_COMMAND. The WM_COMMAND property
represents the command used to (re)start the client. Clients should
ensure, by resetting this property, that it always reflects a command
that will restart them in their current state. The content and type
of the property depends on the operating system of the machine run- l
ning the client. In UNIX Systems using ISO Latin 1 characters for
their command lines, the property should:

Inter-Client Communication Conventions Manual 61

• be of type STRING,

• contain a list of NULL-terminated strings, and

• be initialized from argv. Other systems will need to set
appropriate conventions for the type and contents and type of
WM_COMMAND properties. Window and session managers
should not assume that STRING is the type of
WM_COMMAND, nor assume that they will be able to under­
stand or display its contents.

Note that WM_COMMAND strings, being null-terminated, differ
from the general conventions that STRING properties are null­
separated. This inconsistency is necessary for backwards
compatibility.

A client with multiple top-level windows should ensure that exactly
one of them has a WM_CQMMAND with nonzero length. Zero­
length WM_CQMMAND properties can be used to reply to
WM_SA VL YOURSELF messages on other top-level windows, but
will otherwise be ignored (see section 5.2. 1).

5. 1 . 1 .2 WM_CL/ENL.MACHINE. The client should set the
WM_CLIENT_MACHINE property, of one of the TEXT types, to a
string forming the name of the machine running the client, as seen
from the machine running the server.

5. 1 . 1 .3 WM.....STATE. The window manager will place a
WM_8TATE property, of type WM_8TATE, on each top-level client
window.

Programs like xprop that want to operate on a client's top-level win­
dows can use this property to identify them. A client's top-level
window is one that:

• has override-redirect False,

• and has a WM_8TATE property,

• or a mapped child of the root that ha� no descendant with a
WM_8TATE property.

Recursion is necessary to cover all window manager reparenting
possibilities. Note that clients other than window and session
managers should not need to examine the contents of WM_STATE
properties, which are not formally defined by this document. The
presence or absence of the property is all they need to know.

62 Inter-Client Communication Conventions Manual

The suggested contents of the WM_5T ATE property are shown in
Table 1 4.

Table 14. WM_STA TE Type Property Contents

Field Type Comments

state CARD32 See Table 15 below
icon WINDOW ID of icon window

Table 15. WM_STA TE.state Values

State Value Comments

WithdrawnState 0
NormalS tate 1
IconicState 3

Adding other fields to this property is reserved to the X Consortium.

The icon field should contain the window ID of the window that the
window manager uses as the icon window for the window on which
this property is set, if any; otherwise None. Note that this window l
may not be the same as the icon window that the client may have
specified. It may be:

• the client's icon window,

• or a window that the window manager supplied that contains the
client's icon pixmap,

• or the least ancestor of the client's icon window (or of the win­
dow which contains the client's icon pixmap) that contains no
other icons.

The state field describes the window manager's idea of the state the
window is in, which may not match the client's idea as expressed in
the initiaLstate field of the WM_HINTS property (for example, if
the user has asked the window manager to iconify the window). If
it is NormaiState, the window manager believes the client should be
animating its window; if it is lconicState, that it should animate its l
icon window. Note that in either state clients should be prepared to
handle exposure events from either window.

Inter-Client Communication Conventions Manual 63

The contents of WM_8T ATE properties and other aspects of the
communication between window and session managers will be
specified in the Window and Session Manager Conventions Manual .

5. 1 .2 Termination

Since they communicate via unreliable network connections, Xl l
clients must be prepared for their connection to the server to be ter­
minated at any time without warning. They cannot depend on get­
ting notification that termination is imminent, nor on being able to
use the server to negotiate with the user (for example, using dialog
boxes for confirmation) about their fate.

Equally, clients may terminate at any time without notice to the ses­
sion manager. When a client terminates itself, rather than being
terminated by the session manager, it is viewed as having resigned
from the session in question, and it will not be revived if the session
is revived.

5.2 Client Responses to Session Manager Actions

Clients may need to respond to session manager actions in two ways:

• Saving their internal state

• Deleting a window

5.2. 1 Saving Client State

Clients that wish to be warned when the session manager feels that
they should save their internal state (for example, when termination
impends) should include the atom WM_8A VB-YOURSELF in the
WMJROTOCOLS property on their top-level windows to partici­
pate in the WM_8A VB-YOURSELF protocol. They will receive a
ClientMessage as described in section 4.2. 8 . with the atom
WM_8AVE-YOURSELF in its data [O] field.

Clients receiving WM_8A VB-YOURSELF should place themselves
in a state from which they can be restarted, and should update
WM_COMMAND to be a command that will restart them in this
state. The session manager will be waiting for a PropertyNotify on
WM_COMMAND as a confirmation that the client has saved its
state, so that WM_COMMAND should be updated {perhaps with a
zero-length append) even if its contents are correct. No interactions
with the user are permitted during this process.

64 Inter-Client Communication Conventions Manual

Once it has received this confirmation, the session manager will feel
free to terminate the client if that is what the user asked for. Oth­
erwise, if the user asked for the session to be put to sleep, the ses­
sion manager will ensure that the client does not receive any mouse
or keyboard events. �
After receiving a WM_8AVLYOURSELF, saving its state, and
updating WM_COMMAND, the client should not change its state
(in the sense of doing anything that would require a change to
WM_COMMAND) until it receives a mouse or keyboard event.
Once it does so, it can assume that the danger is over. The session
manager will ensure that these events do not reach clients until the
danger is over, or until the clients have been killed.

Clients with multiple top-level windows should ensure that, irrespec­
tive of how they are arranged in window groups:

• Only one of their top-level windows has a nonzero-length
WM_COMMAND property.

• They respond to a WM_8A VL YOURSELF message by (in this
order):

1 . updating the nonzero-length WM_COMMAND property if
necessary,

2. updating the WM_COMMAND property on the window
for which they received the WM_8A VL YOURSELF mes­
sage if it was not updated in step 1 .

Receiving WM_8A VL YOURSELF on a window is (conceptually) a
command to save the entire client state. 1 5

5.2.2 Window Deletion

Clients, normally those with multiple top-level windows, whose
server connection must survive the deletion of some of their top-level

1 5. This convention has changed since earlier drafts because of the introduction of
the protocol in the next section. In the public review draft, there was
ambiguity as to whether WM_SA VIL YOURSELF was a checkpoint or a
shutdown facility. It is now unambiguously a checkpoint facility; if a shutdown

�. facility is judged to be necessary, a separate WM_PROTOCOLS protocol will be 1
developed and registered with the X Consortium.

Inter-Client Communication Conventions Manual 65

windows should include the atom WM_DELETL WINDOW in the
WM_pROTOCOLS property on each such window. They will
receive a ClientMessage as described in section 4.2.8 whose data [O]
field is WM_DELETL WINDOW.

Clients receiving a WM_DELETL WINDOW message should
behave as if the user selected "delete window" from a (hypothetical)
menu. They should perform any confirmation dialogue with the
user, and if they decide to complete the deletion:

• Either change the window's state to Withdrawn (as described in
section 4. 1 .4) or destroy the window.

• Destroy any internal state associated with the window.

If the user aborts the deletion during the confirmation dialogue, the
client should ignore the message.

Clients are permitted to interact with the user and ask (for exam­
ple) whether a file associated with the window to be deleted should
be saved, or the window deletion should be cancelled. Clients are
not required to destroy the window itself; the resource may be
reused, but all associated states (backing store, for example) should
be released.

If the client aborts a destroy, and the user then selects DELETE
WINDOW again, the window manager should start the
WM_DELETL WINDOW protocol again. Window managers
should not use DestroyWindow on a window that has
WM_DELET.E_ WINDOW in its WM_pROTOCOLS property.

Clients that choose not to include WM_DELETL WINDOW in the
WM_pROTOCOLS property may be disconnected from the server if
the user asks for one of the client's top-level windows to be deleted.

Note that the WM_8A V.E_ YOURSELF and
WM_DELETL WINDOW protocols are orthogonal to each other
and may be selected independently.

5.3 Summary of Session Manager Property Types

The session manager properties are summarized in Table 1 6.

66 Inter-Client Communication Conventions Manual

Table 16. Window Manager Properties

See
Name Type Format Section

WM_CLIENT_MACHINE TEXT 5 . 1 . 1 . 2
WM_COMMAND TEXT 5 . 1 . 1 . 1
WM__8TATE WM__8TATE 32 5 . 1 . 1 . 3

Inter-Client Communication Conventions Manual 67

6. MANIPULATION OF SHARED RESOURCES

X 1 1 permits clients to manipulate a number of shared resources,
among them the input focus, the pointer, and colormaps. Conven­
tions are required so that clients do so in an orderly fashion.

6.1 The Input Focus

Clients that explicitly set the input focus can do so in one of two
modes:

Convention: Locally Active clients should set the input focus to one
of their windows only when it is already in one of their
windows, or when they receive a WM_TAKLFOCUS
message. They should set the "input" field of the
WM_HINTS structure TRUE.

Convention: Globally Active clients should set the input focus to one
of their windows only when they receive a button event,
a passive-grabbed key event, or when they receive a
WM_TAKLFOCUS message. They should set the
"input" field of the WM_HINTS structure FALSE.

Convention: Clients should use the timestamp of the event that
caused them to attempt to set the input focus as the
"time" field on the SetlnputFocus request, not
CurrentTime.

6.2 The Pointer

In general, clients should not warp the pointer. Window managers
may do so, for example to maintain the invariant that the pointer is
always in the window with the input focus. Other window managers
may wish to preserve the illusion that the user is in sole control of
the pointer.

Convention: Clients should not warp the pointer.

Convention: Clients that insist on warping the pointer should do so
only with the "src-window" field of the WarpPointer
request set to one of their windows.

6.3 Grabs

A client's attempt to establish a Button or a Key grab on a window
will fail if some other client has already established a conflicting
grab on the same window. The grabs are, therefore, shared
resources and their use requires conventions.

68 Inter-Client Communication Conventions Manual

In conformance with the principle that clients should behave as far
as possible when a window manager is running as they would when
it is not, a client that has the input focus may assume that it can
receive all the available Keys and Buttons.

Convention: Window managers should ensure that they provide �
some mechanism for their clients to receive events from
all keys and all buttons, except events involving keys
whose keysyms are registered as being for window
management functions (e.g. , a hypothetical WINDOW
keysym).

In other words, window managers must provide some mechanism by
which a client can receive events from every key and button
(regardless of modifiers) unless and until the X Consortium registers
some keysyms as being reserved for window management functions.
No keysyms are currently registered for window management
functions.

Even so, clients are well-advised to allow the key and button combi­
nations used to elicit program actions to be modified since some
window managers may choose not to observe this convention or may
not provide a convenient method for the user to transmit events l from some keys.

·

Convention: Clients should establish Button and Key grabs only on
windows that they own.

In particular, this means that a window manager wishing to estab­
lish a grab over the client's top-level window should either establish
the grab on the root or reparent the window and establish the grab
on a proper ancestor. In some cases, a window manager may want
to consume the event received, placing the window in a state where
a subsequent such event will go to the client. Examples are clicking
in a window to set focus, with the click not being offered to the
client, or clicking in a buried window to raise it, again with the click
not offered to the client. More typically, a window manager should
add to rather than replace the client's semantics for key+button
combinations by allowing the event to be used by the client after the
window manager is done with it. To ensure this, the window
manager should establish the grab on . the parent using: l

po inter/keyboard-mode = Synchronous

and release the grab using AllowEvents with:

Inter-Client Communication Conventions Manual 69

mode = Repl ayPo i nter/Keyboard

In this way, the client will receive the events as if they had not been
intercepted.

Obviously, these conventions place some constraints on possible user
interface policies. There is a tradeoff here between freedom for
window managers to implement their user interface policies and
freedom for clients to implement theirs. We resolve this dilemma
by:

• Allowing window managers to decide if and when a client will
receive an event from any given Key or Button.

• Placing a requirement on the window manager to provide some
mechanism, perhaps a "Quote" key, by which the user can send
an event from any key or button to the client.

6.4 Colormaps

Convention: If a client has a top-level window that has sub­
windows, or override-redirect pop-up windows, whose
colormap requirements differ from the top-level window
should set a WM_COLORMAP _WINDOWS property
on the top-level window. The
WM_COLORMAP _WINDOWS property contains a list
of the window IDs of windows that the window
manager should track for colormap changes.

Convention: When a client's colormap requirements change, the
client should change the colormap window attribute of
a top-level window or one of the windows indicated by
a WM_COLORMAP _WINDOWS property.

Convention: Clients must not use InstaUColormap or
UninstaiiColormap.

Clients with DirectColor-type applications should consult the Xlib
Programming Manual, Volume One and the Xlib Reference
Manual, Volume Two for conventions connected with sharing stan­
dard colormaps. They should look for, and create, the properties
described there on the root window of the appropriate Screen.

Note, however, that the conventions described there are not ade­
quate if the server supports multiple Visuals and are not adequate if
standard colormaps need to be deleted. To address this, two addi­
tional fields (visuaLid and kilLid) are required in

70 Inter-Client Communication Conventions Manual

RGB_CQLOR_MAP-type properties, as shown in Table 1 7. The
Colormap described by the property is one appropriate for the
Screen on whose root the property is found.

Table 17. RGB_COLOL.MAP Type Property Contents

Field Type Comments

colormap COLORMAP ID of the Colormap described
red_max CARD32 Values for pixel calculations
red_mult CARD32
green_max CARD32
green_mult CARD32
blue_max CARD32
blue_mult CARD32
base_pixel CARD32
visuaLid VISUALID Visual to which Colormap belongs
kilLid CARD32 ID for destroying the resources

When deleting or replacing an RGB_COLOR_MAP, it is not
sufficient to delete the property; it is important to free the associated
colormap resources as well. If "kilLid" is greater than one, then
the resources should be freed by issuing a KiiiCiient protocol request
with "kilLid" as the argument. If "kilLid" is one, then the
resources should be freed by issuing a FreeColormap protocol
request with "colormap" as the Colormap argument. If "kilLid" is
zero, then no attempt should be made to free the resources. A
client creating an RGB_CQLOR._MAP for which the "colormap"
resource is created specifically for this purpose should set "kilLid"
to one (and can create more than one such standard colormap using
a single connection). A client creating an RGB_CQLOR_MAP for
which the "colormap" resource is shared in some way (e.g., is the
default colormap for the root window) should create an arbitrary
resource and use its resource id for "kilLid" (and should create no
other standard colormaps on the connection).

Convention: If an RGB_COLOR._MAP property is too short to con-
tain the "visuaLid" field, it can be assumed that the
visuaLid is the root Visual of the appropriate screen. �
If an RGB_COLOR._MAP property is too short to con-
tain the "kilLid" field, a value of zero can be assumed.

Inter-Client Communication Conventions Manual 71

During the connection handshake, the server informs the client of
the default Colormap for each screen. This is a Colormap for the
root Visual, and clients can use it to improve the extent of Color­
map sharing if they use the root Visual.

r:-"' A similar capability is desirable for other Visuals and can be sup­
ported by changing the definition of the RGB_DEFAULT_MAP
property to read:

"This atom names a property. The value of the prop­
erty is an array of XStandardColormap structures (as
extended to include visuaLid and kilLid fields) ."

"Each entry in the array describes an RGB subset of the
default color map for the Visual specified by visuaLid."

6 . 5 The Keyboard Mapping

The X server contains a table, read by GetKeyboardMapping, that
describes, for each keycode generated by the server, the set of sym­
bols appearing on the corresponding key. This table does not affect
the server's operations in any way; it is simply a database used by
clients attempting to understand the keycodes they receive.
Nevertheless, it is a shared resource and requires conventions.

It is possible for clients to modify this table, using
ChangeKeyboardMapping. In general, clients should not do this. In
particular, this is not the way in which clients should implement key
bindings or key remapping. The conversion between a sequence of
keycodes received from the server and a string in a particular encod­
ing is a private matter for each client, as it must be in ' a world
where applications may be using different encodings to support
different languages and fonts. This conversion for ISO Latin 1 is
implemented by the Xlib XLookupString() function; there will
presumably be equivalent functions for other encodings.

The only valid reason for using ChangeKeyboardMapping is when
the symbols written on the keys have changed, as, for example,
when a Dvorak key conversion kit or a set of APL keycaps has been
installed. Of course, a client may have to take the change to the
keycap on trust.

It is permissible for a client to interact with a user in the following
manner:

72 Inter-Client Communication Conventions Manual

• "You just started me on a server without a PAUSE key. Please
choose a key to be the PAUSE key and press it now."

• < User presses the SCROLL LOCK key>

• "Adding PAUSE to the symbols on the SCROLL LOCK key:
Confirm or Abort."

• < User confirms >

• Client uses CbangeKeyboardMapping to add PAUSE to the key­
code that already contains SCROLL LOCK.

• "Please paint PAUSE on the SCROLL LOCK key."

Convention: Clients should not use ChangeKeyboardMapping.

If a client succeeds in changing the keyboard mapping table, all
clients will receive MappingNotify(request-Keyboard) events. There
is no mechanism to avoid receiving these events.

Convention: Clients recetvmg MappingNotify(request-Keyboard)
events should update any internal keycode translation
tables they are using.

6.6 The Modifier Mapping

X 1 1 supports 8 modifier bits, of which 3 are preassigned to Shift,
Lock, and Control. Each modifier bit is controlled by the state of a
set of keys, and these sets are specified in a table accessed by
GetModifierMapping and SetModifierMapping. This table is a
shared resource and requires conventions.

A client needing to use one of the preassigned modifiers should
assume that the modifier table has been set up correctly to control
these modifiers. The Lock modifier should be interpreted as Caps
Lock or Shift Lock according to the keycodes in its controlling set,
including XK_Caps_Lock or XK...._Shift_Lock.

Convention: Clients should determine the meaning of a modifier bit
from the keysyms being used to control it.

A client needing to use an extra modifier, for example META,
should:

• Scan the existing modifier mappings. If it finds a modifier that
contains a keycode whose set of keysyms includes XK_Meta_L
or XK_Meta_R, it should use that modifier bit.

Inter-Client Communication Conventions Manual 73

• If there is no existing modifier controlled by XK_Meta_L or
XK_Meta_R, it should select an unused modifier bit (one with
an empty controlling set) and:

- If there is a keycode with XL_Meta_L in its set of keysyms,
add that keycode to the set for the chosen modifier, then

- if there is a keycode with XL_Meta_R in its set of keysyms,
add that keycode to the set for the chosen modifier, then

- if the controlling set is still empty, interact with the user to
select one or more keys to be MET A.

• If there are no unused modifier bits, ask the user to take correc­
tive action.

Convention: Clients needing a modifier not currently in use should
assign keycodes carrying suitable keysyms to an unused
modifier bit.

Convention: Clients assigning their own modifier bits should ask the
user politely to remove his or her hands from the key in
question if their SetModifierMapping request returns a
Busy status.

There is no good solution to the problem of reclaiming assignments
to the five nonpreassigned modifiers when they are no longer being
used.

Convention: The user has to use xmodmap or some other utility to
deassign obsolete modifier mappings by hand.

Problem: This is rather "low tech."

When a client succeeds in performing a SetModifierMapping, all
clients will receive MappingNotify(request-Modifier) events. There
is no mechanism for preventing these events being received. A
client using one of the nonpreassigned modifiers which receives one
of these events should do a GetModifierMapping to discover the new
mapping, and if the modifier it is using has been cleared, it should
reinstall the modifier.

Note that GrabServer must be used to make the
GetModifierMapping, SetModifierMapping pair in these transactions
atomic.

74 Inter-client Communication Conventions Manual

7. RESOURCE MANAGER CONVENTIONS

This section has yet to be generated.

Inter-Client Communication Conventions Manual 75

8. CONCLUSION

This document provides the protocol level specification of the
minimal conventions needed to ensure that X 1 1 clients can inter­
operate properly. Further documents are required:

• A Window and Session Manager Conventions Manual to cover
these conventions from the opposite point of view and to add
extra conventions of interest to window and session manager
implementors.

• A addendum to the Xlib Reference Manual, Volume Two cover­
ing the additional routines (XIconifyO would be an example)
needed to ensure that adhering to these conventions is convenient
for the C programmer.

76 Inter-Client Communication Conventions Manual

9. ACKNOWLEDGMENTS

David Rosenthal had overall architectural responsibility for the con­
ventions defined in this document, wrote most of the text, and edited
t
T
h
h
e d

d
ocument, but the development has been a communal effort. � e etails were thrashed out in meetings at the January 1 988 MIT

X Conference and at the 1 988 Summer Usenix conference, and
through months (and megabytes) of argument on the wmtalk mail
alias. Thanks are due to everyone who contributed, and especially
to the following:

• For the Selection section: Jerry Farrell, Phil Karlton, Loretta
Guarino Reid, Mark Manasse, and Bob Scheifler.

• For the Cut-Buffer section: Andrew Palay.

• For the Window and Session Manager sections: Todd Brunhoff,
Ellis Cohen, Jim Fulton, Hania Gajewska, Jordan Hubbard,
Kerry Kimbrough, Audrey Ishizaki, Matt Landau, Mark
Manasse, Bob Scheifler, Ralph Swick, Mike Wexler, and Glenn
Widener.

Thanks are also due to those who contributed to the public review,
including: Gary Combs, Errol Crary, Nancy Cyprych, John �
Diamant, Clive Feather, Burns Fisher, Richard Greco, Tim Green-
wood, Kee Hinckley, Brian Holt, John Interrante, John Irwin, Vania
Joloboff, John Laporta, Ken Lee, Stuart Marks, Allan Mimms,
Colas Nahaboo, Mark Patrick, Steve Pitschke, Brad Reed, and John
Thomas.

Inter-Client Communication Conventions Manual 77

Appendix A: COMPATIBILITY WITH EARLIER DRAFTS

This appendix summarizes the incompatibilities between this docu­
ment and earlier drafts.

t:" 1 . A1 : The R2 Draft

The 25 February 1 988 draft that was distributed as part of X 1 1 R2
was clearly labeled as such, and many areas were explicitly labeled
as liable to change. Nevertheless, in the revision work since then we
have been very careful not to introduce gratuitous incompatibility.
As far as possible, we have tried to ensure that clients obeying the
conventions in the earlier draft would still work.

The areas in which incompatibilities have become necessary are:

• The use of property None in ConvertSelection requests is no
longer allowed. Owners receiving them are free to use the target
atom as the property to respond with, which will work in most
cases.

• The protocol for INCREMENTAL-type properties as selection
replies has changed, and the name has been changed to INCR.
Selection requestors are free to implement the earlier protocol if
they receive properties of type INCREMENTAL.

• The protocol for INDIRECT-type properties as selection replies
has changed, and the name has been changed to MULTIPLE.
Selection requestors are free to implement the earlier protocol if
they receive properties of type INDIRECT.

• The protocol for the special CLIPBOARD client has changed.
The earlier protocol is subject to race conditions and should not
be used.

• The set of state values in WM_HINTS.initiaL..state has been
reduced, but the values that are still valid are unchanged. Win­
dow managers should treat the other values sensibly.

• The methods an application uses to change the state of its top­
level window have changed, but in such a way that cases that
used to work will still work.

78 Inter-Client Communication Conventions Manual

• The "x," "y," "width," and "height" fields have been removed
from the WM_NORMAL_HINTS property and replaced by pad
fields. Values set into these fields will be ignored. The position
and size of the window should be set by setting the appropriate
window attributes. l

• A pair of "base" fields and a "win_gravity" field have been
added to the WM_NORMALHINTS property. Window
managers will assume values for these fields if the client sets a
short property.

2. A2: The 27th July 1 988 Draft

The Consortium review was based on a draft dated 27th July 1 988 .
Incompatibilities have been introduced in the following areas:

• The "messages" field of the WM_HINTS property was found to
be unwieldy and difficult to evolve. It has been replaced by the
WM...:.PROTOCOLS property, but clients using the earlier
mechanism can be detected because they set the "messages" bit
in the flags field of the WM_HINTS property and window
managers can provide a backwards-compatibility mode.

• The mechanism described in the earlier draft by which clients
installed their own subwindow colormaps could not be made to
work reliably and mandated some features of the look-and-feel.
It has been replaced by the WM_COLORMAP _WINDOWS
property. Clients using the earlier mechanism can be detected
by the WM_COLORMAPS property they set on their top-level
window, but providing a reliable backwards compatibility mode
is not possible.

• The recommendations for window manager treatment of top­
level window borders have been changed as those in the earlier
draft produced problems with Visibility events. For
nonwindow-manager clients, there is no incompatibility.

• The pseudo-root facility in the earlier draft has been removed.
Although it has been successfully implemented, it turns out to be
inadequate to support the uses envisaged. An extension will be
required to support these uses fully, and it was felt that the max­
imum freedom should be left to the designers of the extension.
In general, the previous mechanism was invisible to clients and
no incompatibility should result.

Inter-Client Communication Conventions Manual 79

• The addition of the WM_DELETE_ WINDOW protocol (which
prevents the danger that multi-window clients may be terminated
unexpectedly) has meant some changes in the
WM_8A VE_ YOURSELF protocol, to ensure that the two proto­
cols are orthogonal. Clients using the earlier protocol can be
detected (see wM_pROTOCOLS above) and supported in a
backwards-compatibility mode.

• The conventions in Section 7 of the Xlib Programming Manual,
Volume 1 regarding properties of type RGB_COLOR._MAP have
been changed, but clients using the earlier conventions can be
detected because their properties are 4 bytes shorter. These
clients will work correctly if the server supports only a single
Visual or if they use only the Visual of the root. These are the
only cases in which they would have worked anyway.

3. A3: The Public Review Drafts

The public review resulted in a set of mostly editorial changes. The
changes that introduced some degree of incompatibility are:

• A new section (6. 3) was added covering the window manager's
use of Grabs. The restrictions it imposes should affect only win­
dow managers.

• The TARGETS selection target has been clarified, and it may be
necessary for clients to add some entries to their replies.

• A selection owner using INCR transfer should no longer replace
targets in a MULTIPLE property with the atom INCR.

• The contents of the ClientMessage sent by a client to iconify
itself has been clarified, but there should be no incompatibility
since the earlier contents would not in fact have worked.

• The border-width in synthetic ConfigureNotify events is now
specified, but this should not cause any incompatibility.

• Clients are now asked to set a border_width on all
ConfigureWindow requests.

• Window manager properties on icon windows will now be
ignored, but there should be no incompatibility since there was
no specification that they be obeyed previously.

80 Inter-Client Communication Conventions Manual

• The ordering of real and synthetic ConfigureNotify events is now
specified, but any incompatibility should affect only window
managers.

• The semantics of WM__8A VE_ YOURSELF have been clarified
and restricted to be a checkpoint operation only. Clients which
were using it as part of a shutdown sequence may need to be
modified, especially if they were interacting with the user during
the shutdown.

• A kilUd field has been added to RGB_COLOILMAP prop­
erties. Clients using earlier conventions can be detected by the
size of their RGB_COLOILMAP properties, and the cases that
would have worked will still work.

Inter-client Communication Conventions Manual 81

Appendix 8: SUGGESTED PROTOCOL REVISIONS

During the development of these conventions, a number of inade­
quacies have been discovered in the protocol. They are summarized
here as input to an eventual protocol revision design process.

• There is no way for anyone to find out the last-change time of a
selection. At the next protocol revision, GetSelectionOwner
should be changed to return the last-change time as well as the
owner.

• How does a client find out which selection atoms are valid?

• The protocol should be changed to return in response to a
GetSelectionOwner the timestamp used to acquire the selection.

• There would be no need for WM_TAKEJOCUS if the Focusln
event contained a timestamp and a previous-focus field. This
could avoid the potential race condition. There is space in the
event for this information; it should be added at the next proto­
col revision.

• There is a race condition in InstaUColormap; the request does
not take a timestamp, and it may be executed after the top-level
colormap has been uninstalled. The next protocol revision
should provide the timestamp in InstallColormap,
UninstallColormap, ListlnstaUedColormaps, and the
ColormapNotify event. The timestamp should be used in a simi­
lar way to the last-focus-change time for the input focus.

• The protocol needs to be changed to provide some way of identi­
fying the visual and the screen of a colormap.

• There should be some way to reclaim assignments to the five
nonpreassigned modifiers when they are no longer needed.

INTERACTIVE TCP/IP
Programmer's Supplement

CONTENTS

1 . INTRODUCTION • . • .

1 . 1 The TCP /IP Interfaces • •

1 .2 Prerequisites •
1 . 3 Overview of This Document

1
1
1
2

2. THE TRANSPORT LAYER INTERFACE . • • 3
2. 1 Connection-Mode Service • . • • • • • • • • 3

2. 1 . 1 Local Management . . . • . • • • 3
2. 1 .2 Connection Establishment • • • • 7
2. 1 . 3 Data Transfer • • . • 10
2. 1 .4 Connection Release • • • • • . • • 1 1

2.2 Connectionless-Mode Service • . • • • • . • • 1 2
2.2. 1 Local Management . • . • • • • • • • 1 2
2.2.2 Data Transfer • • • • 1 2

2 . 3 Advanced Topics • • • • • • • • • • . • . 1 3

3 . THE SOCKET INTERFACE • . • • • . 1 5
3 . 1 Introduction • • • . . • . . . • • • • . 1 5

3 . 1 . 1 S OCK _ S TREAM/TCP Socket Use • • . 1 5
3 . 1 .2 S OCK DGRAM/UDP Socket Use . • • 1 9

3 .2 Advanced Topics . • . • • 20
3.2. 1 Options . . . • • . • • . • 20
3.2 .2 Using s e l e c t 2 1

4 . REFERENCES . • • • . • . . . • • • 22

- i -

INTERACTIVE TCP /IP

Programmer's Supplement

1 . INTRODUCTION

This document presents supplemental information about how to
program two interfaces of the Transmission Control Protocol and
Internet Protocol (TCP /IP) product under the INTERACTIVE
UNIX* Operating System, enhanced by INTERACTIVE Systems
Corporation. The Internet Protocol (IP) is not described here.
Refer to ip(1) in the INTERACTIVE TCP/IP Guide for more infor­
mation about the Internet Protocol. This supplement specifically
describes the INTERACTIVE TCP /IP product, but it is generally
applicable to the NP622 product as well.

1 .1 The TCP/IP Interfaces

TCP /IP supports two programming interfaces: the USL Transport
Layer Interface (also referred to as TLI or the Transport Interface)
and the Berkeley Software Distribution (BSD) socket interface. The
TLI is a library of routines and state transition rules that provides
the basic data transfer service required by higher layer protocols, as
supported by TCP /IP. For more information about TLI, refer to the
Network Programmer's Guide . The socket interface is a program
interface mechanism that provides endpoints for communication
between processes. For more information about the socket inter­
face, refer to Section 3i of the UNIX Programmer's Reference
Manual [l].

Both of these interfaces provide similar access to the data transfer
services of the underlying network protocols but differ in
programming techniques. Because of their equivalence, the use of
one interface rather than the other is largely a matter of preference,
based on the user's programming experience or on the requirements
of the environment in which an application is to run. Further com­
parison is not made here, but more details about each interface may
be obtained from the reference manuals listed in the next section.

1 .2 Prerequisites

For the Transport Interface, users must have a working knowledge
of the networking support functions described in the INTERACTIVE
SDS Guide and Programmer's Reference Manual , Section 3N,

2 INTERACTIVE TCP/IP Programmer's Supplement - Version 1.3

including all functions except t r c vr e l . In addition, users
should be well acquainted with the corresponding version of the
Network Programmer's Guide , which this guide is designed to sup­
plement. In the Network Programmer's Guide, examples are based
on a client-server paradigm; familiarity with this paradigm is �
assumed. For more information about this and other reference
documentation, see the "Documentation Roadmap" in the
INTERACTIVE UNIX Operating System Guide and section 4 of this
document.

The TCP /IP socket interface is similar to the Release 4.3BSD socket
mechanism, as documented in socket (2) of the 4. 3BSD UNIX

Programmer's Reference M anua/. Section 3i provides documenta­
tion for the INTERACTIVE TCP /IP version of the 4.3BSD socket
mechanism. Readers should have working knowledge of this
material.

1 .3 Overview of This Document

This document has four main sections:

1 . INTRODUCTION
This section introduces the interfaces, specifies the prerequisite �
knowledge necessary, lists reference documentation, and 1
describes the organization of this guide.

2. THE TRANSPORT LAYER INTERFACE
This section presents supplemental details about the Transport
Layer Interface and provides examples of how to use this
interface. It also provides an explanation of the two types of
services available: connection mode and connectionless mode.

3. THE SOCKET INTERFACE
This section describes how to program the socket interface. It
provides instructions for using two types of sockets,
SOCLSTREAM and SOCK_DGRAM, that correspond to the
connection-mode and connectionless-mode services of the
Transport Interface.

4. REFERENCES
This section provides information on related documents.

INTERACTIVE TCP fiP Programmer's Supplement - Version 1 .3 3

2. THE TRANSPORT LAYER INTERFACE

The TCP /IP Transport Layer Interface supports two types of ser­
vices: connection mode and connectionless mode. Connection-mode

r-' service reliably transfers data in proper sequence through a single,
two-way data stream. This type of service is provided by the
Transmission Control Protocol (TCP) module of TCP /IP, which runs
on top of the Internet Protocol (IP) layer. Connectionless mode
provides a message-passing mechanism in which a transport end­
point can independently address each message sent. In this mode,
delivery of messages may not be reliable. In the TCP /IP product,
the User Datagram Protocol (UDP) and IP modules are such unre­
liable services. UDP also runs on top of the IP layer.

2.1 Connection-Mode Service

The connection-mode service provided by the TCP module has four
phases as described in Chapter 3 of the Network Programmer's
Guide : local management, connection establishment, data transfer,
and connection release. The following sections present supplemental
details about these phases.

2. 1. 1 Local Management

This section supplements "Local Management" in Chapter 3 of the
Network Programmer's Guide .

2. 1 . 1 . 1 t open. t open establishes a TCP transport endpoint ­
a local channel to the transport provider. For example, a transport
provider with connection-mode service could be opened by specify­
ing / d e v/ t c p as the path to the transport provider (the first
argument to t open) and 0 RDWR as the open flag (the second
argument to t �ope n). -

If a t i n f o structure is specified as the third argument of the
t 0 p en call, t 0 p e n sets the fields of the t i n f 0 structure
with the following

-
values, which characterize this protocol:

4 INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

Field Value Comment

addr 8
opt i on s - 1 Although the option size has no set

limit, the number of options possible
defines a practical limit.

t s du 0
e t s du 0
c onne c t - 1
d i s c on - 1
s e rvtyp e T_COTS

Otherwise, if these values are not needed by the user, i n f o may be
set to N U L L so no values are returned. Refer to Chapter 3 of the
Network Programmer's Guide for more information about these
fields.

2. 1 . 1 .2 t b i nd. t b i nd is called to bind a transport provider
stream (address) to a transport endpoint. The TCP provider uses
the following structure in the addr . buf field of the req
parameter:

s truct s o ckaddr in {

J ;

short - s i n fami ly ;
u short s i n-port ;
struct i n addr s i n-addr ;
char - s i n:zero [B] ;

This structure is defined in < ne t i n e t I i n • h > . Only the first
eight bytes of the structure are relevant to TCP. The
s i n f am i 1 y field must be set to the value AF IN E T as defined
in < s y s / s o ck e t . h > . The s i n port and s i n addr fields
must be in network byte order, which on the Intel* 80386*
microprocessor is the exact reverse of native byte order. (For infor­
mation about library routines that manipulate byte order, see sec­
tion 3 . 1 . 1 . 1 of this document.) The last member of the structure,
s i n z e ro, is a filler that is not required by the Transport
Interface.

If the programmer specifies the req parameter as NULL or the port
and address values as zero, the TCP provider assigns an address to �
the transport endpoint. TCP assigns the port or the address value if
either of these is unspecified.

If a r e t field is provided, the TCP provider returns the address
bound to the transport endpoint. The addr field of r e t will

INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3 5

normally return a zero value unless a nonzero address value was
provided in the r e q parameter. The reason for the zero value is
that TCP defers choosing an endpoint address until a connection is
established, at which point the address of the interface the connec­
tion will use becomes the bound address. If there was only one pos­
sible address, this would not be necessary, but many TCP jiP imple­
mentations, including INTERACTIVE TCP /IP, have at least two: the
LAN interface and the loopback interface.

Some restrictions affect the port number to which an endpoint can
bind; for example, only a privileged process can bind to a port
number less than 1 024. In general, only a server process must bind
to a particular port number. Client processes and other uses
commonly allow the system to assign the port.

2. 1 . 1 .3 t optmgmt. Usually, local management of the TCP tran­
sport endpoint does not require setting any protocol options; how­
ever, the t optmgmt function is available to change some of the
options and

-
operating parameters that TCP and IP use. Because

these options are specific both to the protocols and to their imple­
mentations, setting options reduces portability.

� For the INTERACTIVE TCP jiP product, the protocol options are
classified in these categories:

• Socket: program-interface related

• TCP: TCP-specific

• UPD: UDP-specific

• IP: IP-related

The option values used by TCP are identical to those used by the
socket interface. Socket options are defined in
< s y s / s o c k e t . h > . The TCP, UDP, and IP options are found
in the files < s y s / t c p . h > , < s ys /udp . h > , and
< s y s / i p . h > , respectively. For information about these options,
see tcp(1), udp(1), and ip(7) in the INTERACTWE TCPj/P Guide .

Protocol options are specified as a sequence of structures in the opt
field of the req parameter in the t _ optmgmt call:

6 INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

struct i n e topt {

} ;

short len ;
ushort name ;
ushort leve l ;
short f i l l ;
uni on ine toptval

short
i nt
long
c addr t
unchar
value ;

sval ;
ival ;
lval ;

• cval ;
vva l [1] ;

/ • l ength of opt ion (i nc lud i ng l ead - i n) • /
/ • opt i on i dent i f i er • /
/ • socket TCP , UDP , o r I P , etc . • /
/ • f i l l er t o a l i gn word • /

/ • short i nt value • /
/ • i nt value • /
/ • long i nt value • /
/ • byte s t r i ng va lue • /
/ • arbi trary l ength d a t a • /

Boolean values are represented . by a nonzero i va l for true and by
a zero i v a l for false. Variable-length data is an arbitrary number
of bytes referenced by the vva l field. The length of the data in
the vv a 1 field is determined by the 1 en field of the structure
minus the size of the structure, excluding the size of the union. All
current options use either the i v a l or the vva l data forms.

For TCP, the most useful options are s o S N D BUF and
S O RCVBUF, which change the size of the send and receive
buffers, and the value of the TCP flow-control window. The option
T C P N O D E LAY, a Boolean, can modify the algorithm used to
delay

-
sending small packets in an attempt to improve performance.

2. 1. 1 .4 Client Example. This example indicates how a client creates
a transport endpoint before connection is established:

#i nc lude <t i u s e r . h>
#i n c l ude <f cntl . h>
#inc lude <s tropt s . h>
#i n c lude <sys/type s . h>
#i n c lude <sys / b sdtype s . h>
#i nc lude <n e t i n e t/ i n . h>
#i n c lude <sy s / socket . h>

m a i n ()
{

int f d ;

/ • open a TCP stream •/
if ((fd = t open (" /dev/tcp " , O_RDWR , NULL)) <O) {

t error (" t open ") ;
return - 1 ;

-

/ • b i nd to whatever TCP a s s i gns by default • /
i f (t b i nd (fd , NULL , NULL) <O l {

t error (" t b i nd ") ;
t - c l o s e (fdl ;
return - 1 ;

Refer to the Network Programmer's Guide for more information.

INTERACTIVE TCP jiP Programmer's Supplement - Version 1 .3 7

2. 1 . 1 .5 Server Example. This example indicates how a server
creates a transport endpoint before connection is established:

#inc lude <t i u s e r . h>
#inc lude <f cnt l . h>
#inc lude <stropt s . h>
#include <sysltype s . h>
#inc lude <syslbsdtype s . h>
i n c l ude <ne t inetl i n . h>
#inc lude <sy s l socket . h>

s truct t b i nd • b i nd ;
s truct t - c a l l • c a l l ;
#de f i ne ADDRES S struct sockaddr _ i n *

m a in ()
{

i nt fd , newfd ;

I • open a TCP stream • I
i f ((fd = t open (" ldevltcp " , O_RDWR , NULL)) <O) {

t error (• t open ") ;
I ; s ome type of error recovery •I

I • a l l ocate data structure for a b i nd to spe c i f i c addr e s s • I
I • t h e n f i l l i n t h e informat i on requ i r e d •I
if ((b i nd = (s truct t b i nd • l t a l l o c (fd , T_BIND , T _ADDR))

NULL) {
- -

t error (" t a l loc " l ;
I ; s ome type of error recovery • I

b i nd ->qlen = 5 ;
b i nd ->addr . l en = ADDRES S S I Z E ;
((ADDRES S) b i nd ->addr . bu f i ->s i n port = LOCAL PORT ;
((ADDRES S) b i nd ->addr . buf) ->s i n=addr . s _ addr ; LOCAL _ADDRES S ;

I • b i nd to the spec i f i ed addr e s s • I
I • re turn v a l u e of " b i nd " i s addr e s s that w a s a s s i gned • I
i f (t b i nd (fd , b i nd , b i nd) <O) {

t error (" t b i nd ") ;
e i i t (1) ; -

In this example, ADDRE S S _ S I Z E,
L O C A L ADDRE S S represent appropriate
obtained

-
as described in section 3. 1 . 1 . 1 .

2. 1 .2 Connection Establishment

L OCAL PORT, and
values, which can be

This section supplements "Connection Establishment" in Chapter 3
of the Network Programmer's Guide .

� TCP, a connection-oriented protocol, establishes transport endpoints
that take one of two forms:

• Active: performs a t _ c onn e c t operation.

8 INTERACTIVE TCP /IP Programmer's Supplement - Version 1.3

• Passive: waits for a connection request through t 1 i s t e n
and acts upon the request with t _ a c c e pt.

-

Active endpoints are typically used in network client applications,
and passive endpoints are typically used in network server �
applications.

2. 1 .2. 1 Client. A network client application uses an active endpoint.
As noted in the Network Programmer's Guide , t c onne c t
requires a sndca/1 argument that is a pointer to a t c a 1 1 struc­
ture. For TCP, this t c a l l structure must have, at a minimum, a
T ADDR field. (In t- c a l l , the buf field of the addr n e tbuf
structure must provide

-
the address of the remote TCP server in the

form of a s o ckaddr i n structure.) The s i n addr field of
the s o c kaddr i n structure must contain the network-byte-order
representation of the remote system's internet address. The
s i n p o r t field of the structure must contain the network-byte­
order

-
representation of the remote server's well-known port address.

The s i n family field must contain AF _ I N E T .

If the connection request i s rejected or the remote system is
unreachable, t c onne c t will fail and set t e r rno to T L OOK.
In this case, the t l ook routine can be usCd to determine the �
event causing the failure. The T D I S C ONN E C T event indicates
connection failure. To determine

-
the exact cause of failure, the

programmer can use the t r c vd i s function and examine the
r e a s on field. Possible reasons for failure include:

ETIMEDOUT Connection not established before the
time-out limit.

ECONNREFUSED Connection refused by the remote system
(which may not support the service or
may have restricted access to the service) .

ENETUNREACH The network specified in the destination
address cannot be reached from this
system.

Additional events that may set t e r rno to T L O O K are described �
in the Network Programmer's Guide . Exceptions are T ORDR E L . J
and T _ U D E RR, which are not supported in INTERACTIVE TCP /IP.

INTERACTIVE TCP jiP Programmer's Supplement - Version 1 .3 9

2. 1 .2.2 Client Connection Example. In the following example, the
client requests a connection:

/* a l locate data structure for conne c t addr e s s * /
/ * then f i l l i n the ne c e s s ary informa t i on * /
i f ((c a l l ; (s truct t c a l l * } t a l l oc (fd , T CALL , T _ADDR } }

NULL } { - - -
t error (" t a l l oc ") ;
t - c l o s e (f d l ;
r e turn - 1 ;

c a l l ->addr . l en = ADDRES S S I Z E ;
((ADDRES S } ca l l ->addr . bufl ->s i n fam i ly = AF INET ;
((ADDRE S S } ca l l ->addr . buf } ->s in-port = REMOTE PORT ;
((ADDRES S } c a l l ->addr . buf } ->s i n- addr . s addr -REMOTE ADDRESS ;

/ * attempt the conne c t i on * /
i f (t conne ct (fd , ca l l , NULL } < 0 } {

t error (" connect ") ;
t - c l o s e (fd } ;
r e turn - 1 ;

r e turn f d ;

In this example, ADDRE S S S I Z E , REMO T E PORT, and
R E MO T E ADDRE S S represent appropriate values, which can be
obtained as described in section 3 . 1 . 1 . 1 . ADDRE S S S I Z E is the
same size as s o ckaddr - i n, which is described in section 2. 1 . 1 . 2

2. 1 .2.3 Server. Typically, a network server application uses a pas­
sive endpoint, accepting on a new stream any incoming connect
requests received by the t 1 i s t e n function. After a new stream
is opened by the t a c c e pt function, the server can accept
another connect requeSt.

The server must allocate a t c a 1 1 structure including, at a
minimum, a T ADDR field. Tiie t l i s t e n function normally
waits for an event and returns with success on receipt of a connect
request from another endpoint. The t 1 i s t e n function also
returns the t c a 1 1 structure which specifies the address of the
requesting system. The s o ckaddr i n structure contained in the
address buffer of the t c a 1 1 structure will provide both the port
and the internet addresses of the remote system. When a connect
request is received, the application either accepts the connection
with a t _ a c c e pt or rejects it with a t _ sndd i s call.

2. 1 .2. 4 Server Connection Example. In the following example, a
server calls t 1 i s t e n to listen for an incoming connection
request, and t _-a c c ept to accept a request for connection:

10 INTERACTIVE TCP /IP Programmer's Supplement - Version 1 .3

/ * a l locate d a t a s tructure f o r t h e accept addr e s s * /
i f ((c a l l = (s truct t c a l l *) t a l l o c (fd , T CALL , T ADDR))

t error (" t a l loc " l i
NULL) I

/ ; some type of error recovery */

/ * l i sten for a connect i on * /
/ * " ca l l " w i l l have t h e reque s t i ng addr e s s * /
i f (t l i s t en (fd , ca l l) <O l (

t error (" l i sten ") ;
/ ; s ome type of error recovery * /

/ * o p e n n e w T C P stream to a s s o c i ate the connect i on w i th * /
i f ((newfd = t open (" /dev/tcp " , 0 RDWR , NULL)) <O) (

t error (" t open ") ; -
ei i t (1) ; -

/ * b i nd i t to any addr e s s * /
i f (t b i nd (newfd , NULL , NULL) <O) (

t error (" t b i nd ") ;
t- c l o s e (newfd) ;
/ ; probably a fatal error * /
ex i t (1) ;

/ * a c c ept the reque sted conne c t i on on the new stream • /
/ * d e s c r i ptor i f pos s i ble •/
if (t a c c ept (fd , newfd , cal l) < 0) (

t error (" a c c e pt ") ;
i f (t e rrno = = TLOOK) (

/ • -there i s s ome pos s i b i l i ty of a d i s connect • /
/ • reque s t to th i s addr e s s •/
if (t rcvd i s (fd , NULL) < 0) (

t error (" rcvd i s ") ;
ei i t (1) ; / • fatal error •/

t _ c l o s e (newfd) ;
newfd - 1 ;

/ • newfd i s e i ther an error i nd i cat i on or the acc epted conne c t i on • /

A connection can be accepted on the same transport endpoint that
receives it. If this occurs, the stream so opened must disconnect
before the endpoint can accept additional connection requests.

2. 1 .3 Data Transfer

This section supplements "Data Transfer" in Chapter 3 of the
Network Programmer's Guide.

After a connection is established, data can be transferred by using
the t s nd and t r ev calls, which function as the r e a d and
wr i te system callS, respectively. This example shows how normal
data is sent:

�'

INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

if (t s nd (fd , buf f , len , 0) <0)
t _ error (" t _ snd " l ;

1 1

The TCP transport provider does not support transfer of expedited
data, which has priority over other data. Instead, TCP supports
urgent data . Urgent data is sent as part of the data stream, along
with any other data queued but not yet sent. Urgent data has an
indication of its end but not of its quantity (unlike expedited data).
Accepted usage assumes one byte of data. To transfer urgent data,
the programmer should use the T E X P E D I T E D flag to set the TCP
URG E N T pointer. If multiple URGENT pointers are sent close
together, they can be lost or overwritten by a receiving TCP.

TCP supports data transfer in byte stream mode, but not in
Transport Service Data Units (TSDUs). Consequently, the
T _ MORE flag is ignored on send and is always zero on receive.

2. 1 .4 Connection Release

This section supplements "Connection Release" in Chapter 3 of the
Network Programmer's Guide .

A connection can be terminated by either user at any point during
data transfer. Currently, TCP provides only an abortive disconnect,
initiated by the t s ndd i s call. Data may be sent with the
disconnect request, but its delivery is not guaranteed.

rr Note that the INTERACTIVE TCP /IP product will guarantee
the delivery of data accompanying the disconnect request when
connected to a host running the INTERACTIVE TCP /IP pro­
duct. When connected to a host with a different TCP /IP imple­
mentation, however, the delivery of data accompanying a
disconnect request may not be supported. It is safe to assume,
in general, that the delivery of data sent with the disconnect
request is not guaranteed.

If the remote endpoint requests the disconnection, the local endpoint
receives an error that causes TLOOK to notify the application of the
event. The T L O O K is a T D I S C ONN E C T event. t r cvd i s can
be used to return the disconnect request and the associated reason.
Commonly, the reason is zero, which indicates a normal disconnect.

12 INTERACTIVE TCP /IP Programmer's Supplement - Version 1.3

2.2 Connectionless-Mode Service

Connectionless-mode service is provided by the User Datagram
Protocol (UDP) module of the TCP/IP product. This mode has two
phases: local management and data transfer.

2.2. 1 Local Management

This section supplements "Local Management" in Chapter 4 of the
Network Programmer's Guide .

2.2. 1 . 1 t open. t open is called to create a UDP transport
endpoint.

-
Specify the file /de v/udp as the STREAMS clone

device node and 0 _ RDWR as the open flag.

If the third parameter of t open, the i nfo field, is supplied, the
t _ i n f o structure has the following characteristic values:

Field Value Comment
a d d r 8
opt i on s - 1 Although no limit is set on the option

size, the number of options possible
defines a practical limit.

t s du 0
e t s du 0
c onne c t - 1
d i s c on - 1
s e rvtype T_CLTS

2.2. 1 .2 t b i nd. The transport endpoint must be bound to an
address usmg the same conventions as for TCP, described in section
2. 1 . 1 . 2.

2.2.2 Data Transfer

This section supplements "Data Transfer" in Chapter 4 of the
Network Programmer's Guide.

UDP data transfer uses the t s ndudata and the t r cvuda t a
calls. A T UN I T DATA structure must be alloeated. Each
datagram sent must specify the destination address of the data and
reference the data. Operational values may be specified in the l
opt i on s field.

One important option is the Boolean s o BROAD CAS T , which is
required to send a message to the broadcast address. IP options

INTERACTIVE TCP jiP Programmer's Supplement - Version 1 .3 1 3

may also be used with UDP datagrams. For more information about
protocol options, see section 2. 1 . 1 . 3 in this document and udp(7) in
the INTERACTIVE TCP/IP Guide .

2.3 Advanced Topics

The Transport Interface has additional features that are useful in
some applications. Of particular interest are those that support
asynchronous processing. All of the examples in Chapter 6 of the
Network Programmer's Guide apply to the TCP/IP product. In
addition, this section describes how to prevent blocking for asyn­
chronous processing by using the the STREAMS po 1 1 system call.

The po 1 1 system call can be used to determine which stream file
descriptors have data available for receiving and which are not
blocked from sending. po 1 1 , a relatively easy-to-use
asynchronous-event interface, allows the programmer to multiplex
input/output over a set of stream file descriptors without blocking
on any stream. Refer to the INTERACTIVE SDS Guide and
Programmer's Reference Manual .

p o 1 1 takes an array whose elements are po 1 1 f d structures of the
following form:

s t ruct po l l f d (

} ;

i nt f d ; /* f i l e d e s c r i ptor * /
short event s ; / * events of intere s t on f d * /
short r event s ; / * events that occurred o n fd * /

For a specified file descriptor, f d, the above structure i s used to
define the events of interest.

Two strategies enable an application to perform tasks rather than to
remain in the po 1 1 call. One is to specify the po 1 1 time-out
value as zero, which immediately returns the system call instead of
allowing it to wait for an event that might otherwise block. Alter­
natively, the programmer can use the I S E T S I G i o c t 1
command with a signal handler set to catch S I GP O L L signals. The
S I G P O L L signal is sent only when a condition specified in the
I _ S E T S I G command is satisfied. Usually, this condition is a
message arriving at the stream head.

14 INTERACTIVE TCPjiP Programmer's Supplement - Version 1.3

In addition to using po l l , the programmer can prevent blocking by
using the 0 N D E LAY flag on the t open call when creating a file
descriptor, so that the system calls will return errors of TN ODATA
when a receive would otherwise block, or T F LOW when a send
would otherwise block. �

INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

3. THE SOCKET INTERFACE

3. 1 Introduction

15

A socket is an abstraction of a communications endpoint that
functions as a program interface. The TCP /IP socket interface is
identical to the Release 4.3BSD socket mechanism, except as noted
in this guide. For information about the 4. 3BSD-compatible inter­
face and the -linet library, refer to Section 3I of the manual entries
included in the INTERACTIVE TCPfiP Guide .

The TCP/IP socket interface requires these i n c lude files:

File Description

< s y s / s o c k e t . h > Socket-addressing information
< ne t i ne t / i n . h > Socket-addressing information
< s y s / b s d typ e s . h > 4.3BSD data types used to define

various data structures
< n e t / e r rno . h > Network-specific errno values

The first two files in this list are familiar to programmers
experienced with the 4.3BSD socket. The other files listed are addi­
tional files required for the present implementation of TCP /IP.

A socket is created with the s o c k e t call. The socket descriptor is
created in a specified communications domain conforming to a par­
ticular protocol model. This TCP fiP implementation supports the
AF I NE T (internet protocol family) domain with the protocol
models S O C K S TR EAM and S O C K DGRAM.

- -

S OC K S T R E AM is a reliable, connection-based, byte stream model
that does not preserve any records of wr i t e boundaries. In con­
trast, S O C K DGRAM is an unreliable datagram, or message, model.
In function and use, S O C K S T R EAM corresponds to the TCP inter­
face, and S O C K _ DGRAM, to the UDP interface.

A third model, S O C K RAW, provides direct access to the IP layer.
Because of the infrequency of its use and its similarity to
S O C K _ D GRAM, S O C K _ RAW is not documented here.

3. 1 . 1 S O C K _ S TR E AM/TCP Socket Use

S O C K S TR E AM sockets can exist in two forms: active, in which
the socket actively establishes connections, and passive, in which the
socket passively waits for an incoming connection request. In both

1 6 INTERACTIVE TCP/IP Programmer's Supplement - Version 1 . 3

forms, a connection must be established before data can be
transferred.

3. 1 . 1 . 1 Creating a TCP Socket. A TCP socket is created in this
way:

s = socket (AF _ INET , SOCK_ STREAM , 0) ;

After the socket is created, it should be bound to an address.
Addresses are defined in the s o ckaddr i n structure, docu­
mented in <n e t i n e t / i n . h>, which has tliis definition:

struct sockaddr in {

I ;

short - s i n f am i ly ;
u short s i n-port ;
s truct i n addr s i n addr ;
char s i n _ z e ro [B l i

s truct i n addr

I ;
uns i qned l onq s _ addr ;

In this structure, the s i n f am i ly field is always AF ! NE T .
The s i n addr field is a n Internet address in network b yte order.
The s i n

-
port field is a TCP port address in network byte order.

The value-of the s i n _ z e ro field is ignored.

"" Note that the s o ckaddr i n structure is used to pass socket
address information to the -socket interface routines. The pro­
grammer who is not familiar with these routines, which are
described in Section 3I of the manual entries, will notice that
another structure, the s o c kaddr structure, is expected.
Although these are two separately defined structures, the data
they contain are the same.

Network byte order specifies that byte zero is the most significant in
a word. On the Intel 80386 microprocessor, network byte order is
the exact reverse of native byte order. Although the examples in
this guide use a symbolic constant to represent the host and port
addresses (assumed in network byte order), these values are usually
determined dynamically.

The -linet library provides several functions for manipulating byte
order, as well as for determining host and port addresses from their
symbolic names. For more information about these functions,
consult the following manual entries in the INTERACTIVE TCP/IP
Guide.

INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3 17

Function Manual Entry Description
ntohs byteorder(31) Convert short int from network

to host order.
ntohl byteorder{31) Convert long int from network

to host order.
htons byteorder(31) Convert short int from host to

network order.
htonl byteorder{31) Convert long int from host to

network order.
gethostbyname gethostent(31) Get host address by name.
getservbyname getservent(31) Get service (Q_ort) by name.

Section 31 of the manual entries in the INTERACTIVE TCP/IP
Guide describes additional utility functions of interest.

To bind an address to the socket, a s o c kaddr i n structure is set
up with appropriate values, and a call is made to

-
b i nd:

s t r u c t s ockaddr _ i n myaddr ;

myaddr . s i n f am i l y = AF INET ;
myaddr . s i n- port = LOCAL PORT ;
myaddr . s i n- addr . s addr ; 0 ;
i f (b i nd (s : &myaddr , s i zeof myaddr) <O) {

perror (" b i nd •) ;
e x i t (1) ;

In this example, s is a descriptor returned by a socket(31) call and
L O CAL P O R T represents an appropriate value. If the value of
L O C A L - P ORT is zero, b i nd will select an unused port with a
value or 1 024 or greater. Typically, only a server must bind to a
specific port address. If either the port or internet address is
nonzero, it must be valid for the system on which the bind is done.
Refer to section 2. 1 . 1 .2 in this document and to the socket(31)
manual entry in the INTERACTIVE TCPfiP Guide for more
information.

3. 1 . 1 .2 Connection Establishment. The client uses an active socket
to establish a connection through the c onne c t call. The remote
address must be specified fully (that is, the port and addr values
must be nonzero). The following example illustrates a client estab­
lishing connection:

18 INTERACTIVE TCP /IP Programmer's Supplement - Version 1 .3

struct s ockaddr _ i n r emote ;

r emote . s i n f am i ly = AF INET ;
r emote . s i n-port = REMOTE PORT ;
r emote . s i n- addr . s addr = -REMOTE ADDRESS ;
i f (connec t (s , &remote , s i zeof (remote } } <O l (

perror (" connect " l ;
exi t (1 } ;

In this example, s is a descriptor returned by a socket(31) call and
REMO T E P OR T and REMO T E ADDRE S S represent appropriate
values, which can be obtained by making calls such as the
g e th o s tbyname and g e t s e rvbyname calls, as described in
section 3 . 1 . 1 . 1 . TLI does not provide a standard mechanism for
determining these values.

The server uses a passive socket to listen for a client's request for a
connection. A passive socket must wait for a connection request
from a remote system. To do this, the socket first enters the passive
mode with a 1 i s t e n call, then waits in an a c c e pt call. When a
connect request arrives, the a c c ept call accepts the connection
and returns a new socket descriptor that is connected to the remote
system. a c c e pt also returns the requestor's address. The original l socket descriptor can then listen for a new connection request.

This example demonstrates the server listening for a request and
then waiting in the a c c e pt call:

struct sockaddr in remote ;
i nt addr l en ; -
i nt newsocke t ;

l i s t e n (a , 5 } ;
r emote . s i n f am i ly = AF INET ;
i f ((newsocket = a c c ept (s , &r emote , &addr len l l <O l (

perror (" a c c e pt " } ;
e x i t (1 } ;

}

3. 1 . 1 .3 Data Transfer. After a connection is established, the pro­
grammer simply uses the r e ad and wr i t e system calls to
exchange data. TCP does not preserve record boundaries, so it is
unwise to assume, for example, that when an application does 5 1 2- � byte wr i t e s , the remote system receives data 5 1 2 bytes at a time.
The remote system may receive the data in smaller or larger quanti-
ties, depending upon timing and various network

INTERACTIVE TCP jiP Programmer's Supplement - Version 1 .3 1 9

parameters. (Note that the size of the buffer used in the s e nd to
call i s completely arbitrary.)

3. 1 .2 S O C K _ D GRAM/UDP Socket Use

S O C K D GRAM sockets differ from S O CK S T R EAM sockets in that
they lack active and passive forms. In

-
general, S O C K DGRAM

sockets do not establish connections; therefore, each
-
outgoing

message must have an associated destination address provided, and
each incoming message, an associated source address. The
c onne c t call can be used to associate a destination address with a
S O C K D GRAM socket permanently, relieving the application of the
need to provide an address with each message. Permanent associa­
tion of an address enables use of the wr i t e call on a
S O C K DGRAM socket.

3. 1 .2. 1 Creating a UDP Socket. A UDP socket is created in this
way:

s = socket (AF _ INET , SOCK_DGRAM , 0) ;

After the socket is created, it should be bound to an address.
Addresses are specified in a struct s o ckaddr i n, as described
for TCP in section 2. 1 . 1 .2.

-

3. 1 .2.2 Connection Establishment and Data Transfer. The UDP
does not establish connections. Each datagram sent has an explicit
destination address associated with it, and each datagram received
has a source address associated with it.

To send a datagram, the programmer commonly uses the s e ndto
call:

s truct sockaddr in remote ;
char buf f e r [S 1 2 l ;

r emot e . s i n f am i ly = AF INET ;
remote . s i n- port = REMOTE PORT ;
r emote . s i n- addr . s addr = -REMOTE ADDRESS ;
c c = s endto (s , buf fer , s i zeof (buf f er) , 0 , &remote , s i zeof (r emote)) ;

In this example, REMO T E P ORT and REMO T E ADDRE S S
represent appropriate values, which can be obtained as described in
section 3 . 1 . 1 . 1 .

Typically, a datagram is received by using the r e c v f rom call:

20 INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

struct s o ckaddr i n remote ;
c har buf f e r [5 1 2 l ;
i nt addr l en ;

addr l e n = s i zeof (r emote } ;
c c = recvfrom (s , buf f e r , s i zeof (buffer } , 0 , &remote , &addr l e n } ;

In this example, remote will contain the source address of the
datagram on return from rcvfrom. Note that the address of the
addrlen variable is passed to r e cvf rom. The actual length of the
address is returned; the original value is the size of the buffer that
stores the address. The value c c returned by r e cvf r om is the
amount of data received.

3.2 Advanced Topics

The socket interface provides additional features for the experienced
programmer. Some of these are described here, and additional
details are found in the relevant manual entries.

3.2. 1 Options

In the socket model, options can be set on a socket descriptor. An
option may affect the socket interface or a protocol below the socket
interface. All options are set by the s e t s o c kopt call, which has l
this form:

int buf l en ;

buf l en = 8 1 9 2 ;
s e t sockopt (s , SOL _ S OCKET , SO_ SNDBOF , &buf len , s i zeof buf l en } ;

The example adjusts the buffersize allocated for output buffers to
8 1 92 bytes (the default is 4096). A possible use for this is in high­
volume connections.

For TCP, the T C P N O D E LAY option may be useful, especially in
applications that send data but get no echo. Refer to tcp(1) in the
INTERACTIVE TCP/IP Guide for more information.

Current option values are obtained with the g e t s o ckopt call.
The option values used by the socket interface are identical to those
used by TLI. Socket options are defined in < sys / s o c k e t . h > .
For more information on the g e t s o c kopt and s e t s o c kopt
calls and for a list of the socket level options, refer to
getsockopt(3I) in the INTERACTWE TCP/IP Guide .

INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3 21

3.2.2 Using s e l e c t

The s e 1 e c t call is used to determine whether a socket can be
read or written without blocking. s e 1 e c t takes bitmasks that
specify the file descriptor(s) of interest. Three bitmasks can be used
to check input, output, and urgent conditions. A time-out value is
also specified. Normally, s e l e c t blocks until one of the condi­
tions being checked comes true. Blocking occurs when the time-out
pointer is NUL L. If the time-out pointer is non-null, the call blocks
for the time specified in the t i meva l structure. A time-out value
of zero causes s e l e c t to return immediately.

In the INTERACTIVE UNIX System, s e l e c t essentially provides
the same functions as the po 1 1 system call but uses a different
syntax. s e l e c t has the same restrictions as po l l , but under the
INTERACTIVE UNIX System, po l l has been extended to support
non-STREAMS file descriptors. In particular, p i p e s , pty, and
t t y devices are supported.

22 INTERACTIVE TCP/IP Programmer's Supplement - Version 1 .3

4. REFERENCES

[1] UNIX Programmer's Reference Manual, 4. 3 Berkeley
Software Distribution Virtual VAX - 1 Version. Berkeley:
University of California, 1 986.

In addition, the following documents are recommended:

Defense Communications Agency. DDN Protocol Handbook, Vol I:
DOD Military Standard Protocols . "Military Standard Internet
Protocol," U.S. Department of Defense MIL-STD- 1 777. Menlo
Park, CA: DDN Network Information Center, 1985 .

Defense Communications Agency. DDN Protocol Handbook, Vol I:
DOD Military Standard Protocols . "Military Standard Transmis­
sion Control Protocol," U.S. Department of Defense MIL-STD-
1 778 . Menlo Park, CA: DDN Network Information Center, 1 985:

Defense Communications Agency. DDN Protocol Handbook, Vol
II: DARPA Internet Protocols . "Internet Protocol - DARPA
Internet Program Protocol Specification" by J. Postel, RFC 79 1 .
Menlo Park, CA: DDN Network Information Center, 1 985.

Defense Communications Agency. DDN Protocol Handbook, Vol
IL· DARPA Internet Protocols . "Transmission Control Protocol -

DARPA Internet Program Protocol Specification" by J. Postel, RFC
793. Menlo Park, CA: DDN Network Information Center, 1 985.

INTERACTIVE TCP /IP Programmer's Supplement - Version 1 .3 23

INDEX

abortive release, TCP TLI I I
accept 1 8
addresses of remote system 4
addresses of remote system,

SOCK....STREAM 1 7
addresses of remote system, TCP 9
addresses of remote system, TCP TLI 8
addresses of remote systems,

SOCK....STREAM 1 6
asynchronous processing 1 3
binding SOCK......DGRAM socket 1 9
binding SOCK....STREAM socket 1 6, 1 7
binding transport endpoint, TCP 4 , 5
blocking 2 1
byte order, network 4 , 8, 1 6
byte-order manipulation 1 6
clone open, UDP TLI 1 2
connect 1 7
connection establishment, SOCK....STREAM 1 5,

1 7
connection establishment, TCP client 8
connection establishment, TCP TLI 7
connection failure, TCP TLI 8
connection mode 3
connection mode, description of 3
connection release, TCP TLI I I
connection request acceptance, TCP server 9
connection request, SOCK....STREAM server 1 8
connection request, TCP TLI client 9
connectionless mode 1 2
connectionless mode, description o f 3
data transfer, expedited TCP TLI I I
data transfer, in TDSUs I I
data transfer, SOCIL.DGRAM datagrams 1 9
data transfer, TCP TLI 1 0, I I
data transfer through SOCK....STREAM

socket 1 8
data transfer, UDP TLI datagrams 1 2
data transfer, urgent TCP TLI I I
datagram addressing, SOCK......DGRAM 1 9
datagram addressing, U D P TLI 1 2
datagram model, socket 1 5
datagram, SOCK......DGRAM transfer o f 1 9
expedited data I I
getsockopt 20
Internet Protocol 3
IP layer 3, 1 5
LSETSIG 1 3
listen 1 8
local management, TCP TLI 3
local management, UDP Transport Interface 1 2
netbuf 8
network byte order 4, 8, 1 6
options for UDP datagram transfer 1 2
poll 1 3
pollfd 1 3
port, binding t o 5
protocol options 5
read 1 8
recvfrom 1 9
remote system addresses 4

remote system addresses, SOCK....STREAM 1 6
remote system addresses, TCP TLI 8 , 9
select 2 1
sendto 1 9
setsockopt 20
SO-BROADCAST 1 2
sockaddr_in, SOCK......DGRAM use of 1 9
sockaddr_in, SOCK....STREAM use o f 1 6, 1 7
sockaddr_in, TCP TLI use of 4, 8 , 9
SOCIL.DGRAM socket creation 1 9
SOCIL.DGRAM socket model 1 5, 1 9
socket, active SOCK....STREAM 1 7
socket creation 1 5
socket creation, SOCK......DGRAM 1 9
socket creation, SOCK....STREAM 1 6
socket forms, SOCK....STREAM 1 5
socket interface, definition of I
socket interface, description of 1 5
socket options 5 , 20
socket, passive SOCK....STREAM 1 8
socket, SOCIL.DGRAM model 1 5, 1 9
socket, SOCILRA W model 1 5
socket, SOCK....STREAM model 1 5
SOCILRA W socket model 1 5
SOCK....STREAM socket creation 1 6
SOCK....STREAM socket model 1 5
SO-RCVBUF 6
SO-SNDBUF 6
Lbind, TCP TLI use of 4
Lbind, UPD use of 1 2
LeaD, TCP TLI use of 8 , 9
Lconnect 8
Lconnect, SOCIL.DGRAM use of 1 9
Lconnect, TCP TLI use o f 8
TCP module 3
TCP _NODELA Y 6, 20
L.DISCONNECT 8
Lerrno 8
timeval 2 1
t_info, TCP TLI use o f 3
t_info, UDP TLI use of 1 2
LJistcn, TCP TLI use o f 9
TLOOK 8
Lopen, TCP TLI use of 3
Lopen, UDP Transport Interface use of 1 2
Lopen, use t o prevent blocking 1 4
Loptmgmt 5
Transmission Control Protocol' 3
transport endpoint, active TCP TLI 7
transport endpoint, binding a TCP TLI 4
transport endpoint, creating a UDP TLI 1 2
transport endpoint creation, by TCP TLI

client 6
transport endpoint creation, by TCP TLI

server 7
transport endpoint, passive TCP TLI 9
transport endpoint, TCP TLI I 0
transport endpoints, forms of TCP TLI 7
Transport Layer Interface 3
Transport Layer Interface, definition of
Transport Service Data Units I I

24

Lrcv 10
Lrcvdis 8
Lrcvudata 1 2
Lrecvdis 1 1
L.snd 1 0
L.snddis I I
L.sndudata 1 2
T_UNITDATA 1 2
UDP module 3 , 1 2
urgent data I I

INTERACTIVE TCPfiP Programmer's Supplement - Version 1 .3

User Datagram Protocol 3, 1 2
write 1 8, 1 9

I NTERACTIVE
• • • • • • • • • • • • • •

DC00213-2Z

