
Stanford University

11/7/96

1

©1996 Mendel Rosenblum and Steve Herrod

The SimOS Machine Simulation Environment

Mendel Rosenblum
Steve Herrod

Computer Systems Lab
Stanford University ABabcdfghiejkl

2

©1996 Mendel Rosenblum and Steve Herrod

SimOS Tutorial Part 1

SimOS Introduction and Overview

Stanford University

11/7/96

3

©1996 Mendel Rosenblum and Steve Herrod

What is SimOS?

• A bad name

– Simulation including OS behavior

– Does not actually simulate an operating system

• A complete computer system simulator

– Models machine hardware to run OS & Apps

– High speed simulation/emulation techniques

• A powerful tool for studying computer systems

– Exploits visablity afforded by simulation

– Flexible data collection and classification

4

©1996 Mendel Rosenblum and Steve Herrod

SimOS: Compete Machine Simulation

Host

SimOS

Workloads

Disks

RAM

Console

Ethernet

Memory System

CPU/MMU

Pmake VCS

Target OS (IRIX version 5.3)

Sybase

UNIX workstation

Stanford University

11/7/96

5

©1996 Mendel Rosenblum and Steve Herrod

Using SimOS

Disks

RAM

Console

Ethernet

Memory System

CPU/MMU

Target OS (IRIX version 5.3)

Sybase Client programs
1) Select workload

2) Configure machine & stats collection

Cpu: # & ISA
Memory: Size
Devices: # Disks

Collect: Mem stall by PC

3) Run & study behavior of interest

6

©1996 Mendel Rosenblum and Steve Herrod

SimOS Advantages

• Realistic workloads
– SimOS can study almost any workload

– Develop workloads on real machine
– Copy workloads on to SimOS’s disks

• Great visibility
– Observe all behavior: application, OS, hardware

• Non-intrusive
– Observation does not perturb system

• Consider alternatives
– Hardware/software instrumentation
– Application-level simulation

Stanford University

11/7/96

7

©1996 Mendel Rosenblum and Steve Herrod

SimOS Uses

• Computer Architectural Investigations

– How does hardware behave under full workload?

– Example: FLASH design

• Operating System Study & Development

– How does OS behave with hardware & workload?

– Example: Hive debugging & performance tuning

• Application Studies

– How does app behave with hardware and OS?

– Example: Relational database server tuning

8

©1996 Mendel Rosenblum and Steve Herrod

Tutorial Overview

• Complete machine simulation

– Simulating the hardware of modern computers

– Exploitation of the speed/detail tradeoff

• Statistic collection and reporting

– Map low-level machine behavior to higher-level
abstractions

– Tcl scripting language interpreter

• Experiences with SimOS

– Case studies

– Future plans

Stanford University

11/7/96

9

©1996 Mendel Rosenblum and Steve Herrod

Complete Machine Simulation

• Hardware of modern computer systems
– CPUs, MMU/TLB, caches
– Memory controller, busses, DRAM
– I/O Devices

– Disks
– Console
– Networks
– Timers
– Framebuffers
– etc.

10

©1996 Mendel Rosenblum and Steve Herrod

Challenge for Machine Simulators

• Modern computers are highly complex machines

– A cycle-accurate model of the entire machine
would take millions of lines of code.

– Too slow to be useful

– Unable to even boot operating system

• Much of a machine’s execution is uninteresting

– Booting the machine, OS idle loop

– Don’t waste simulation time on these sections

Stanford University

11/7/96

11

©1996 Mendel Rosenblum and Steve Herrod

Simulation Speed/Detail Tradeoff

• Can build:
– Very fast simulators
– Very detailed, accurate simulators

• Can not build:
– Very fast and detailed simulators

S
p

ee
d

Detail
Less More

S
lo

w
F

as
t

12

©1996 Mendel Rosenblum and Steve Herrod

SimOS Approach

• Exploit trade-off between speed and detail

– Support multiple simulation models with different
speed and detailed tradeoffs

– Ranging from fast to detailed.

– All detailed enough to run software

• Provide dynamic switching ability

– Switch between models in middle of simulation

– Provide flexibility in exploiting this trade-off

Stanford University

11/7/96

13

©1996 Mendel Rosenblum and Steve Herrod

SimOS Speed/Detail Tradeoff Modes

• Emulation mode
– Run workload as fast as possible

– No concern for timing accuracy
– Simulation slowdown < 10x

• Rough Characterization mode
– Keep speed of emulation but add timing model

– Capture first-order effects
– Instruction execution, memory stall, I/O, etc.

– Simulation slowdown < 25x
• Detailed Characterization mode

– Arbitrary accuracy and simulation slowdown

14

©1996 Mendel Rosenblum and Steve Herrod

Use of Different Modes

• Use speed to setup detailed simulators for study
• Emulation mode

– Positioning a workload
– Example: Boot OS and startup database system

• Rough characterization mode
– Examine workload quickly
– Locate targets for detailed mode

• Sampling
– Switch between modes to get statistical coverage

of a workload’s execution

Stanford University

11/7/96

15

©1996 Mendel Rosenblum and Steve Herrod

Emulation Mode

• Only requires a functional model of execution
– Instruction execution must be simulated
– CPU caches/memory system timings unneeded
– I/O devices only need to “work”

• Requires no accurate timing model
– Tracking execution time slows down a simulator

• SimOS solution
– Embra CPU simulator
– Functional device model

16

©1996 Mendel Rosenblum and Steve Herrod

Embra CPU Simulator

• Uses on-the-fly binary translation (Like Shade)

Binary Code

load r3, 16(r1)

add r4, r3, r2

jump 0x48071

Translated Code

load t1, simRegs[1]
load t2, 16(t1)
store t2, simRegs[3]

load t1, simRegs[2]
load r2, simRegs[3]
add t3, t1, t2
store t3, simRegs[4]

store 0x48074, simPC
jump dispatch_loop

Need MMU relocation on all data and instruction accesses

Stanford University

11/7/96

17

©1996 Mendel Rosenblum and Steve Herrod

Embra: Techniques for Speed

• Caching of basic block translations

– Avoids translation overlead

• Chaining translations

– Connect basic-blocks likely to follow each other

• MP on an MP
– Interleaving tradeoff

• Speed
– SPEC benchmarks: 4x-8x slowdown
– Database system: ~10x slowdown

18

©1996 Mendel Rosenblum and Steve Herrod

Rough Characterization Mode

• Add a timing model to emulation mode
– Keep speed

– Extend Embra with simple timing model
– Track instructions execution, cache misses
– Add I/O device timing

• Speed
– SPEC benchmarks: 15x-20x
– Database system: ~25x

Stanford University

11/7/96

19

©1996 Mendel Rosenblum and Steve Herrod

• Customize translations for desired detail

Binary Code

...

load r3, 16(r1)

add r4, r3, r2

Minimal Translation

load t1, simRegs[1]
load t2, 16(t1)
store t2, simRegs[3]

load t1, simRegs[2]
load r2, simRegs[3]
add t3, t1, t2
store t3, simRegs[4]

- Simulation slowdown proportional to desired detail

- Detail is chosen dynamically

MMU Data Address
Translations

(8 instr on hit)

Customized Translations

MMU Instr Address
Translations

(4 instr on hit)

Cache Simulation
(2 instr on hit)

Inst Cycle Counter
(2 instructions)

Embra: Flexible Code Augmentation

20

©1996 Mendel Rosenblum and Steve Herrod

• Incorporate accurate timing modes
– Multiple different models
– Vary in detail down to gate-level models

• Value software engineering over speed
– Clean, modular interfaces for different:

– CPU, cache, memory system simulators

Detailed Characterization Mode

Stanford University

11/7/96

21

©1996 Mendel Rosenblum and Steve Herrod

Mipsy CPU Simulator

• Easier to understand and extend than Embra
• MIPS instruction set

• Simple MIPS R4000-like pipeline
• Flexible caches

– Multiple levels

– Instruction, data, unified
– Can attach to any memory system

• Cycle-by-cycle multiprocessor interleaving
• 200 times slowdown

22

©1996 Mendel Rosenblum and Steve Herrod

MXS CPU Simulator

• MIPS R10000-like
– Complete pipeline and cache contention

• Dynamically-scheduled
– Register renaming
– Branch prediction
– Speculative execution

• Over 10,000 times slowdown

Stanford University

11/7/96

23

©1996 Mendel Rosenblum and Steve Herrod

Memory System Simulators

• BusUMA
– Bus contention
– Snoopy caches
– Writeback buffers
– Out-of-order split transaction bus.

• NUMA
– Like BusUMA, but with non-uniform access time

• FlashLite
– Accurate model of the FLASH memory system
– Verilog components can be “plugged-in”

24

©1996 Mendel Rosenblum and Steve Herrod

I/O Device Simulators

• Less critical to simulator performance
• Important issues

– Functionality
– Timing accuracy
– Usability

• Allow SimOS to get to the “outside” world

Stanford University

11/7/96

25

©1996 Mendel Rosenblum and Steve Herrod

I/O Devices - Disks

• Implement as a file accessed by SimOS
– Generate via mkfs
– Create a root disk from existing installation

• Timing models
– HP disk model with seek time
– Fixed latency model

• Copy-on-write
– Allows many users to share same disks
– Saves much disk space

• Remote disk servers

26

©1996 Mendel Rosenblum and Steve Herrod

I/O Devices - Ethernet

• Implement with SimEther
– SimEther supports communication between

SimOS simulations
– Acts as IP gateway between real and simulated

networks
• Easy way to copy files into simulated world

– ftp files from existing machine
– Mount on local machine from SimOS NFS server

• Allows NFS, web server studies
– Server/clients can be on either real or simulated

machines

Stanford University

11/7/96

27

©1996 Mendel Rosenblum and Steve Herrod

I/O Devices - Other

• Console
– Provides interactive SimOS session
– Supports “expect”-like session scripting

• Hardware timer & real time clocks
– Need for proper kernel execution

• Framebuffer
– Permits studies of X-based applications

28

©1996 Mendel Rosenblum and Steve Herrod

Checkpoints

• Contain the entire state of the machine
– Registers, memory
– Device status
– Extensible - include Tcl, cache status, etc.

• Save at any time during execution
• Reload to start simulation at point in execution
• Useful in hardware studies

– Run same workload on multiple platforms
• Allows speed and determinism for bug tracking

Stanford University

11/7/96

29

©1996 Mendel Rosenblum and Steve Herrod

Gdb Interface

• Modified gdb to talk to SimOS
• Permits source-level debugging of kernel

– Including “difficult” sections
• Deterministic execution

– Essential for some bugs

30

©1996 Mendel Rosenblum and Steve Herrod

SimOS Tutorial Part 2

Data Collection and Classification

Stanford University

11/7/96

31

©1996 Mendel Rosenblum and Steve Herrod

SimOS Data Challenges

• Too much statistic data
– SimOS detailed models heavily instrumented

– Counters, timings, histograms, etc.
– Many megabytes of data, too much to write out

frequently.
• Data at too low of level

– Application and OS investigators want data
mapped back to their abstractions.

– Computer architects want to attribute behavior to
OS or application behavior. (e.g. Idle loop)

32

©1996 Mendel Rosenblum and Steve Herrod

SimOS data collection framework
User-defined

Data
Collection
Buckets

SimOS Models
Mapping
Function

State

Events

Visualization and analysis

Key challenge: Fast and flexible implementation

Stanford University

11/7/96

33

©1996 Mendel Rosenblum and Steve Herrod

SimOS data mapping

• Need application-specific knowledge of execution
in SimOS to control:

– Classification - who to “charge” for events

– Reporting - what information to output

• Implementation: Embed Tcl interpret in SimOS

– Tcl scripts have full access to machine state

– Control stats collection and classification

– Powerful mechanism for controlling simulation

34

©1996 Mendel Rosenblum and Steve Herrod

SimOS data collection mechanisms

• Buckets: Places where events can be stored

– Defined by the user of SimOS

• Annotations: Tcl scripts that run on events

– Allows user to control the processing of events

• Selectors & Detail Tables: Control event
recording into Buckets

– Supports efficient and flexible recording of events

Stanford University

11/7/96

35

©1996 Mendel Rosenblum and Steve Herrod

Mechanism: Annotations

• Tcl scripts triggered by events:
– PC virtual address
– Data reference virtual address
– Traps or interrupts
– Instruction opcodes (e.g. eret, rfe)
– Cache misses
– Cycle count

• Annotations have:

– Complete, non-intrusive access to machine state

– Access to symbols from object files

36

©1996 Mendel Rosenblum and Steve Herrod

Simple Annotation Examples

• Print a message & count every TLB read miss:
annotation set exc rmiss {

log “TLB miss at $epc on address $badvaddr\n”
inc tlbRmissCount

}

• Track barrier latencies in radix program:
symbol load /usr/local/bin/radix

annotation set pc radix:barrier:START {

set barStart($CPU) $CYCLES

}
annotation set pc radix:barrier:END {

log “Barrier: [expr $CYCLES-$barStart($CPU)]\n”
}

Stanford University

11/7/96

37

©1996 Mendel Rosenblum and Steve Herrod

Higher-level Annotations

• Annotations can trigger new annotations
– New annotations can represent higher level events
– Allows building upon packages of annotations

• Example: Tracking process scheduling
Define a new annotation for process events
annotation type process enum {switchOut switchIn}

annotation set pc kernel::resume:END {

Execute higher-level annotation
annotation exec process switchOut
Update pid
set PID [symbol read kernel:u.u_procp->pid]
annotation exec process switchIn

}

38

©1996 Mendel Rosenblum and Steve Herrod

Event Classification - Selectors

• Too efficient and inconvenient to record all
events using annotations

• Selectors for event classification:

SimOS Models

Events

Annotation scripts

Selector
User-defined

 Buckets

Stanford University

11/7/96

39

©1996 Mendel Rosenblum and Steve Herrod

Simple Selector Example

• Breakdown execution into user, kernel, and idle
selector create modes

annotation set exc {
selector set modes “kernel”

}

annotation set inst rfe {
selector set modes “user”

}

annotation set pc kernel:idle:START {
selector set modes “idle”

}

– Note: Doesn’t handle nested exceptions

40

©1996 Mendel Rosenblum and Steve Herrod

Event Classification - Detail Tables

• Detail tables: Like selectors except bucket is
computed using PC or data virtual address
– Allows mapping back to address

SimOS Models

Events

Event PC or data address

Detail table
Addr Range

 Buckets

Stanford University

11/7/96

41

©1996 Mendel Rosenblum and Steve Herrod

The Tcl-SimOS Interface

• init.simos is read at SimOS startup
– Specifies machine configuration
– Simulation parameters

• Libraries of common annotations
– Sourced from init.simos
– Example: Track OS behavior

42

©1996 Mendel Rosenblum and Steve Herrod

Tcl Parameterization

• Describe machine
set MACHINE(CACHE.Model) 2Level

set MACHINE(CACHE.2Level.Isize) 32k

• Describe simulator
set PARAM(STATS.FalseSharing) yes

set PARAM(FILES.CptCompress) yes

Stanford University

11/7/96

43

©1996 Mendel Rosenblum and Steve Herrod

Tcl Simulator Control

• expect/type - interface with console
expect {SimOS (1)\# } {

type “gcc -O2 -c foo.c\n”

}

• Switch between models
annotation set load kernel::Runq.do_affinity {

cpuEnter MIPSY

}

• Take checkpoints
annotation set cycle 1000000 {

doCheckpoint

}

44

©1996 Mendel Rosenblum and Steve Herrod

SimOS Tutorial Part 3

Experiences and Case Studies

Stanford University

11/7/96

45

©1996 Mendel Rosenblum and Steve Herrod

Case Study: Hive Development

• Goal: Create a fault-containing operating system
for shared-memory multiprocessors

• Simulation needs
– Help with debugging
– Simulation of faults
– Performance information

• SimOS satisfies all of these needs

46

©1996 Mendel Rosenblum and Steve Herrod

Case Study: Hive Development

• Debugging
– Gdb provides source-level debugging of all code
– Deterministic execution
– Checkpoints

• Simulation of faults
– Hardware failure, network packet corruption, etc.
– Add randomness to stress design

• Performance information
– Target tuning on time-critical sections

Stanford University

11/7/96

47

©1996 Mendel Rosenblum and Steve Herrod

Case Study - Effect of Arch. Trends

• Question: How will current operating systems
behave on future architectures?

• Simulation needs
– Model computers that do not exist yet

– Run realistic workloads
– Speed, speed, speed!
– Complete and flexible data collection

48

©1996 Mendel Rosenblum and Steve Herrod

Hardware Configurations

• 1994 Model
– 200 MHz MIPS R4600 (200 MIPS)
– single-issue, statically scheduled
– 16K on-chip caches, 1M off-chip cache

• 1998 Model
– 500 MHz MIPS R10000+ (2,000 MIPS)
– superscalar, dynamically scheduled
– 64K on-chip caches, 4M off-chip cache

• Impossible without simulation

Stanford University

11/7/96

49

©1996 Mendel Rosenblum and Steve Herrod

Realistic Workloads

• In order to understand OS behavior, we must
drive it in “realistic” ways.
– Program development

– Compile phase of Modified Andrew Benchmark
– Database transaction processing

– Sybase running TPC-B
– Engineering

– Verilog and FlashLite (self-hosting!)
• Methodology

– Develop and fine-tune on SGI workstation
– Copy onto SimOS disk

50

©1996 Mendel Rosenblum and Steve Herrod

Speed, Speed, Speed!

• Use emulation mode on uninteresting sections
– Booting OS
– Initializing workloads

• Initially use “rough characterization” mode
– Quickly see if workload is well-configured
– Find good starting point for investigation

• Take a checkpoint
– Provide all configurations with same workload
– Don’t have to boot and initialize again

• Detailed characterization starts with checkpoint
– Remote server allows use of several machines

Stanford University

11/7/96

51

©1996 Mendel Rosenblum and Steve Herrod

Rough Characterization

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Time (seconds)

%
 o

f
E

xe
cu

ti
o

n
 T

im
e

Idle (8%)
User (77%)
Kernel (15%)

• Program development workload
– Use selectors to separate out modes

52

©1996 Mendel Rosenblum and Steve Herrod

Data Collection Needs

• Detailed characterization modes provide
– Instruction counts
– Cache miss counts
– Device behavior

• Need to map these low-level events into higher
level abstractions
– What OS service was running?
– What type of cache misses are occurring?
– What data structures experience the misses?

Stanford University

11/7/96

53

©1996 Mendel Rosenblum and Steve Herrod

Data Classification

• Annotations in context switch code
– Track which process is executing
– Track how much time is spent descheduled

• Annotations at the start and end of services
– Control a selector that charges events

• Cache miss classification
– Charge misses to data structures
– Charge misses to OS service

• A higher level of abstraction would help...

54

©1996 Mendel Rosenblum and Steve Herrod

SimOS’s “Timing” Mechanism

• Uses Tcl to create a higher level of abstraction
– Indicate start and end points of a “phase”
– Timing maintains a tree of nested phases
– Selector charges events to nodes of the tree

– Latencies, including descheduled time
– Cache misses

Stanford University

11/7/96

55

©1996 Mendel Rosenblum and Steve Herrod

SimOS’s “Timing” Mechanism

Events Selector

gcc

sync

fork

Phase
StackAnnotations

gcc

fork read

sync

sync

CLK INT Desched DISK

All events are currently charged to the
synchronization phase of the fork
operating system service

Desched

56

©1996 Mendel Rosenblum and Steve Herrod

SimOS’s “Timing” Mechanism

• Flexibility in parsing of the timing tree
– How many cache misses in gcc’s use of bcopy?
– Is there more synchronization time in fork or wait?
– What is the average time gcc spends descheduled

as a result of disk requests?
• Easy to apply to applications

Stanford University

11/7/96

57

©1996 Mendel Rosenblum and Steve Herrod

Results of Study

• SOSP ‘95 paper
– Indicates which services will cause performance

problems in the future
– Reports why these services perform poorly
– Suggests operating system modifications
– Establishes complete machine simulation as an

effective platform for operating system
investigations

58

©1996 Mendel Rosenblum and Steve Herrod

SimOS Tutorial Part 4

Extending SimOS

Stanford University

11/7/96

59

©1996 Mendel Rosenblum and Steve Herrod

Extending SimOS

• Collaborative effort!
– periodic releases with latest additions

• Current SimOS status
• Porting operating systems to SimOS
• Adding new hardware to SimOS
• Conclusions

60

©1996 Mendel Rosenblum and Steve Herrod

SimOS Status (Oct. ‘97)

• Operating systems
– IRIX 5.x
– Linux-MIPS is close

• Hardware
– MIPS R3000, R4000, and R10000 families
– Moving to 64 bits

Stanford University

11/7/96

61

©1996 Mendel Rosenblum and Steve Herrod

Porting Operating Systems to SimOS

• Most code just works
– only 7 files change in Linux-MIPS

• Device-specific code must be connected
– Boot PROM
– Console input and output (UART)
– Disks (SCSI)
– Hardware timer

• SimOS registry eases this effort
– Loads or stores to registered addresses invoke a

SimOS procedure
• Future plans - Windows NT

62

©1996 Mendel Rosenblum and Steve Herrod

Adding New Hardware to SimOS

• New CPU models
– Annotation calls must be inserted

– At simulator entry and exit
– After each instruction completion
– At loads and stores
– At exceptions/interrupts

– Incorporate cache-access interface
• New caches and memory systems

– We provide standard interfaces
• Future plans - Intel, Alpha

Stanford University

11/7/96

63

©1996 Mendel Rosenblum and Steve Herrod

Conclusions

• Large effort to build SimOS, but worth it

– Necessary infrastructure for systems research

• Changed the way that we evaluate ideas:

– Workloads are more representative

– Visibility into previously invisible areas

• Public distribution of SimOS available now.

http://www-flash.Stanford.EDU/SimOS

