
Product Information

Messenger implements a message-based com-
munication protocol for intelligent devices to
cooperatively process information. The archi-
tecture is designed to facilitate intelligent I/O
processor cards (IOP), and increase system
scalability and availability. Peer-to-peer com-
munications allow developers to flexibly inte-
grate different I/O resources, enable direct
communications between these I/O devices,
and deploy split device drivers running in a
High Availability system. Applications and split
device drivers communicate to each other
over the underlying I/O bus using the services
defined by Messenger’s APIs.

Messenger is an essential part of systems that
are distributed across processors and must
interact with one another in a High Availability
distributed software/hardware architecture
with N+1 redundancy.

By abstracting the system architecture and bus
topology, Messenger allows applications to view
their distributed environment as a single “virtual
computer.” High Availability processes execute
without regard to processor location and do not
need to address other processes/CPUs with ref-
erence to platform specifics. Such abstraction
fosters the generality needed to deploy applications
in a High Availability CompactPCI environment.
Moreover, the abstraction eases prototyping
while facilitating system monitoring and
dynamic fault management.

Messenger is designed to work in a heteroge-
neous computing and operating systems envi-
ronment. A distributed High Availability system
may be made up of different kinds of comput-
ing nodes running different operating systems.
LynxOS may run on nodes with real-time require-
ments, while other nodes run on Linux applica-
tions. The OS Abstraction Layer of Messenger is
portable and can be ported to run on different
operating systems.

Toolkit Capabilities
Messenger includes object forms of the follow-
ing components:

● Messenger—Message communications 
facilities and software

● I/O Processor Manager—A software com-
ponent that manages subordinate intelligent 
devices in a PCI domain. IOP Manager pro-
vides an interface between its clients and the
host OS Hot Swap/High Availability Support 
subsystem. IOP management functions include:
—Configuration of intelligent devices on 

the PCI bus
—Boot and reset of intelligent devices
—Detection and handling of failures that 

occur at the intelligent devices
● MINET network driver—Messenger Interface

Network, or MINET, is a data-link driver, imple-
menting TCP/IP connectivity across the Mess-
enger domain. MINET supports the familiar 
LynxOS TCP/IP APIs to implement communica-
tions between intelligent devices in a distributed
IP environment

● Utilities, debug facilities, and management 
statistics

Enables Node-to-Node Communications
and Full Mesh Connectivity
Messenger implements peer-to-peer and host-
to-IOP models of communication. The concepts
of Communications Paths and Messages allow a
full mesh connectivity of Logical Devices: One to
Many: Many to One: from logical module to
logical module.

Integrated with LynxOS Hot Swap and
High Availability
Messenger provides the most flexible approach
to fault-tolerant real-time distributed systems in
the industry. Split processing applications and
IOPs can be mixed and matched for specific
configuration requirements. In a High Availability
and Hot Swap environment, the system’s capa-

bilities can be re-provisioned dynamically and
expanded without interruption, or downtime.

In addition to loading LynxOS onto subordinate
IOPs at the system initialization time, the IOP
Manager is responsible for recovering IOPs from
failures, including the Hot Swap Extraction/
Insertion events.

Scalable and Dynamic Applications
Messenger supports the dynamic configuration
of distributed applications and IOPs. The Logical
Device Module naming scheme uses C-style char-
acter string object handles that allow InterProcess
communications to be based on object types and
properties, rather than on static addresses.

Designed for Performance
Support for message-passing among multiple
independent processors greatly improves I/O
performance in high-bandwidth applications
such as layered communications protocol pro-
cessing, VoIP, routing, and networked video
applications by off-loading I/O intensive tasks
from a single host processor onto specialized
IOPs. Messenger implements a fast and slim
asynchronous data-link messaging model.

For more robust communications and dis-
tributed applications, MINET interfaces directly
with the LynxOS TCP/IP stack for IP network
addressing and routing. MINET makes Messenger
nodes appear like nodes on an Ethernet network,
allowing programmers to use standard, off-the-
shelf network development tools and applications.

Designed for Portability
The communications model for Messenger
architecture is a message-passing system. The
communication model is analogous to a con-
nection-oriented networking protocol or the OSI
layered model, in which two entities exchange
messages by using the message layer to set up
a connection and exchange data and control.

Messenger
Advanced messaging for distributed and high availability architectures



The Messenger architecture is written specifi-
cally to be I/O processor-independent, allowing
maximum flexibility in choosing an IOP that best
suits a particular performance and cost objec-
tive. Messenger imposes no restriction on where
layered modules execute, providing support for
multi-processor and clustered systems. Messenger
is designed to support different types of trans-
port media, including: serial, TDM I/O buses,
intelligent switch fabric chip interfaces, and
network-facilitated clustered systems.

Messenger APIs
Messenger includes a well-defined set of
APIs to support all aspects of split application,
or driver development. The Messenger APIs for
distributed InterProcess Communications (IPC)
complements a rich selection of POSIX APIs avail-
able in the LynxOS real-time operating system.

Message passing is one type of InterProcess

Communication used in distributed, parallel
systems. The messages consist of a very small
header and the information to be transferred
(payload). When a process is ready to send a
message, it calls the Messenger Logical Device
Module by submitting the name of the destina-
tion logical device and the payload information.

A message passing protocol is the logical
model for building high-performance, fault-
tolerant distributed systems.

● Object Hierarchy 
● Message Instance 
● Logical Device 
● Path Pattern 
● Communication Path 
● Communication Path State 
● Message Sending 
● Message Receiving 
● Message Frame 

● List of Waitable Objects 
● Static Message 
● Scatter Gather Lists 
● Service Status 

Additional Messenger Services
Messenger includes several additional facilities
and utilities that simplify debugging, testing
and managing distributed applications, these
include:

● Messenger Debug Services 
● Messenger Statistics 
● IOP Configuration and Booting 
● IOP Manager Control Utility 
● IOP Health Heartbeat

©2001 LynuxWorks, Inc., LynuxWorks and the LynuxWorks logo are trademarks and LynxOS and BlueCat Linux is a registered trademark of
LynuxWorks, Inc. Linux is a registered trademark of Linus Torvalds. All other trademarks are the trademarks and registered trademarks of their
respective owners. All rights reserved. Printed in the USA.

1.800.255.5969 LynuxWorks, Inc.
855 Branham Lane East
San Jose, CA 95138-1018
408.979.3900
408.979.3920 fax
www.lynuxworks.com

LynuxWorks Europe
2 Allee de la Fresnerie
78330 Fontenay Le Fleury 
France
+33 1 30 85 06 00
+33 1 30 85 06 06 fax


