
3

High Availability Platform
User�s Guide

Release 2.0

DOC-0398-01

Product names mentioned in High Availability Platform User�s Guide are trademarks of their respective manufacturers
and are used here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of High Availability Platform User�s Guide may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise,
without the prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

3

 Contents
PREFACE .. V

For More Information .. v
Typographical Conventions .. vi
Special Notes ...vii
Technical Support ..vii

LynuxWorks U.S. Headquarters ...viii
LynuxWorks Europe ...viii
World Wide Web ...viii

CHAPTER 1 INTRODUCTION.. 1

High Availability Platform for LynxOS .. 1
Product Overview .. 1
About High Availability .. 2

System Availability .. 3
Availability Impacting Events .. 4
Hot Swap .. 4
System Models ... 7
High Availability Frameworks ... 11
Domain Switchover .. 13

CHAPTER 2 INSTALLING THE HIGH AVAILABILITY PLATFORM 17

System Requirements .. 17
Installing the High Availability Platform .. 17

Uninstalling .. 18
Post-Installation Tasks ... 19

Install.HAP Configuration Specifications ... 19
High Availablility Package User’s Guide i

Contents

CHAPTER 3 HIGH AVAILABILITY TOOLS .. 21

Introduction ... 21
cpxload - cpxunload ... 21
cpxtool ... 21
drm_stat - Display all device nodes in a system .. 21

Synopsis ... 21
Description ... 22

ha_sim - HA System Initialization Manager ... 24
Synopsis ... 24
Description ... 25
Dependencies ... 25
Initialization ... 26
Shutdown .. 26
Default .. 27
Options ... 27

hscmd - Hot Swap Command Utility .. 28
Synopsis ... 28
Description ... 28

hsem - Hot Swap Event Manager .. 28
Synopsis ... 28
Description ... 29
Options ... 29

hsi - Hot Swap Insert ... 29
Synopsis ... 29
Description ... 29
Sample Session ... 30

hsls - List Non-Bridge Devices ... 30
Synopsis ... 30
Description ... 30
Sample Session ... 30

hsx - Hot Swap Extract .. 31
Synopsis ... 31
Description ... 31
Sample Session ... 31

mdd - Message Distributor Daemon .. 31
Synopsis ... 31
Description ... 31
Options ... 32
ii High Availablility Package User’s Guide

stmd - State Transition Management Daemon .. 32

Synopsis .. 32
Description ... 32
Options ... 33

tm - Topology Manager Script .. 33
Synopsis .. 33
Description ... 33
Options ... 34
Error Handling .. 34

CHAPTER 4 WRITING HIGH AVAILABILITY PLATFORM APPLICATIONS 37

Overview .. 37
Client Application .. 40
hsem .. 40
mdd ... 40
stmd .. 40
enum ... 41
hscd ... 41
LynxOS Elements Used ... 41
The Device Driver Model ... 44
STMD Driver Model .. 47

Writing Hot Swap Applications .. 47
Initialization and Registration .. 47
Operation .. 49
Bottom Up Hot Insertion .. 50
Hot Extraction .. 52

Writing Warm Domain Switchover Applications ... 54
Initialization and Registration .. 54
 .. 57
Operation .. 58
State Transitions ... 66

APPENDIX A BASIC TERMINOLOGY .. 83

Back End Logic .. 83
Back End Power ... 83
Dynamic Configuration .. 83
Enumeration ... 83
Fault Tolerance ... 84
High Availability .. 85
High Availablility Package User’s Guide iii

Contents

Hot Swap .. 85
PCI Extended Capabilities Pointer (ECP) .. 85
PCI Mezzanine Card (PMC) .. 86
Quiesced ... 86
Warm Domain Switchover ... 86

APPENDIX B MOTOROLA HOT SWAP CONTROLLER/ BRIDGE API 87

Introduction ... 87
Definitions .. 87
CPX82xx HA Programmable Resource Management 88
Appendix1: Changes in Version 2 ... 161
Appendix 2: Programming Information & Considerations 166

APPENDIX C STMD.CONF FILE EXAMPLE ... 171

INDEX .. 175
iv High Availablility Package User’s Guide

Preface
The High Availability Platform User�s Guide contains information about
LynuxWorks� High Availability Platform (HAP), including installation
information, diagnostic tools, programmer�s reference and supported hardware.

This manual assumes a basic understanding of Hot Swap and Domain Failover
principles. It also assumes a basic familiarity with using, administering, and
programming in a UNIX environment.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

� HAP Release Notes

This document contains late-breaking information about this release,
including additional installation notes.

� LynxOS Installation Guide

This manual describes the initial installation and configuration of
LynxOS and the X Windows System.

� LynxOS User�s Guide

This document contains information about basic system administration
and kernel-level specifics of LynxOS. It contains a �Getting Started�
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

� Writing Device Drivers for LynxOS

This document describes writing device drivers for the LynxOS kernel.
High Availablility Package User’s Guide v

Preface

� LynxOS Hardware Support Guide

This document describes the hardware supported by LynxOS. Hardware
supported by HAP 2.0 is detailed in the HAP Release Notes.

� Online information

The complete LynxOS documentation set is available on the
Documentation CD-ROM. Books are provided in both HTML and PDF
formats.

Updates to these documents are available online at the LynuxWorks
Website: http://www.lynuxworks.com.

Additional information about commands and utilities is provided online
with the man command. For example, to find information about the GNU
gcc compiler, use the following syntax:

man gcc

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by
the user

cat filename
mv file1 file2
vi High Availablility Package User’s Guide

Special Notes
Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products.

Blocks of text that appear on the display
screen after entering instructions
or commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and
menu sequences

Enter, Ctrl-C

Kind of Text Examples

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
High Availablility Package User’s Guide vii

Preface

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com
viii High Availablility Package User’s Guide

CHAPTER 1 Introduction
High Availability Platform for LynxOS

The LynxOS High Availability Platform (HAP) 2.0 allows users to create highly
available system and application services. HAP 2.0 provides support for both Hot
Swap and Warm Domain Switchover applications.

This High Availability Platform User�s Guide describes:

� Introduction to High Availability

� Supported Hardware

� Installation

� High Availability Tools

� Writing Applications for HAP

� Basic Terminology

Product Overview

The High Availability Platform for LynxOS provides the following basic
functionality:

� Response to ENUM signals

� Dynamically loads or unloads device drivers

� Appends or prunes the Device Resource Manager (DRM) resource tree,
which represents the system topology
High Availablility Package User’s Guide 1

Chapter 1 - Introduction

� Response to application commands to transition domain states in a

multiple domain system

In addition, the following major features are available in HAP 2.0:

� Full Hot Swap application support (both Hot Insertion and Hot
Extraction) for Motorola PowerPC and Intel x86 Processors in standard
Hot Swap-capable chassis (including Motorola 82xx, 22xx and 12xx
families). HAP 2.0 informs applications of all connection states if they
use the HAP 2.0 driver model.

� Warm Domain Switchover application support; HAP 2.0 allows
applications to perform Warm Domain Switchover, provided they use the
HAP 2.0 driver model. For more information, please see �Warm Domain
Switchover� on page 14.

� Tool utilities and libraries to assist manual intervention in diagnosing and
facilitating Hot Swap and Warm Domain Switchover events; for more
information, please see Chapter 3, �High Availability Tools�

This release runs on the Motorola MCP750 PowerPC and Motorola CPV5350 Intel
Pentium CompactPCI system controllers in 82xx, 22xx, and 12xx chassis.

About High Availability

High Availability is the term used to describe systems built with reliable
components, redundant elements, and the means to communicate system and
application states.

Problem detection and system recovery in High Availability systems can be either
manual or automatic. Manual detection and recovery requires an operator to detect
or anticipate a failure and replace the failing component. Automatic detection and
recovery is controlled by system hardware, software extensions, and in some cases,
the applications themselves.

It is possible to build systems with commercial hardware components and Open
System software extensions. By providing redundant elements and switchover
applications, the system can remain in service for a high percentage of time. The
components involved are assumed to be only moderately reliable, so there must be
a heavy reliance on software and manual intervention to anticipate and handle
failures.
2 High Availablility Package User’s Guide

System Availability

System Availability

Availability is defined as the duration of time a computer system provides services
to applications in proportion to the duration of time the system is unavailable. A
highly available system provides services to applications most of the time.

The downtime of a computer system can be predicted from the mean time to failure
(MTTF) of the components and the mean time to repair (MTTR) those components.
The following is the formula for Computing System Availability. In a system of n
components, each having a mean time to failure and a mean time to repair, the
availability is calculated as such:

For example, a computer system of five components has these MTTF and MTTR
specifications:

Component availability for this configuration is calculated as:

In this example, the system is expected to be up 99.79% of the time. Some
computer applications require an availability of 99.999%. This is referred to as
Five-Nines Availability.

Table 1-1: MTTF/MTTR Specifications

Component MTTF MTTR

Chassis 1000 days 2 days

Processor 500 days 1 day

Board A 800 days 1 day

Board B 300 days 1 day

Board C 750 days 2 days

Availability
MTTFii 1=

n
∑

MTTFi MTTRi+()
i 1=
n

∑
---=

Availability 1000 500 800 300 750+ + + +()
1002 501 801 301 752+ + + +()

---=
High Availablility Package User’s Guide 3

Chapter 1 - Introduction

Availability Impacting Events

In a system that supports application intervention on a live system, there are two
different types of events that require the platform to change its component
topology:

� An operator decides that a device in the system needs to be exchanged

� A device fails

The first event is characterized as a maintenance operation, and the second as a
fault. Support for these different modes are discussed below.

Hot Swap

In this and following sections, all references are to CompactPCI system
architecture.

Hot Swap is described in terms of three processes:

� Physical Connection Process

Includes:

- Hot Insertion (installing a board in a live system)

- Hot Extraction (removing a board from a live system)

� Hardware Connection Process

Describes the electrical connection and disconnection of hardware to a
live system

� Software Connection Process

Describes the connection and disconnection of the software layer(s) to a
live system
4 High Availablility Package User’s Guide

Hot Swap

These processes are a set of states and transitions. These states depend on the
transitions and prior states for their characteristics. The following figure details
these states and transitions:

Figure 1-1: Hot Swap States

The following are descriptions of Hot Swap States in Figure 1-1:

� P0 �The board is physically separate from the system.

� P1 / H0 � The board is fully seated, but not powered and not active on the
PCI bus. Note that at this point, the physical layer is in P1 and the
hardware layer is in H0.

� H1 � The board is powered up and is sufficiently initialized to connect to
the PCI bus.

� H1F � The board is commanded to power up and initialize and has failed,
or the board detected an error and disconnects itself from the PCI bus.
The board is not suitable for connection to the PCI bus.

� H2 / S0 � The board is powered and enabled for access by the PCI bus in
configuration space only. The board�s configuration space is not yet
initialized. Here, the hardware layer is in H2 and the software layer is in
S0.

� S1 � The board is configured by the system.

� S2 � The necessary supporting software (drivers, etc.) are loaded. The
board is ready for use by the operating system and applications, but no
operations involving the board are active.

� S2Q � This state is the same as state S2, but no new operations are
allowed to start. The board is quiesced.

PhysicalPhysicalPhysicalPhysical
ConnectionConnectionConnectionConnection

StatesStatesStatesStates

HardwareHardwareHardwareHardware
ConnectionConnectionConnectionConnection

StatesStatesStatesStates

SoftwareSoftwareSoftwareSoftware
ConnectionConnectionConnectionConnection

StatesStatesStatesStates

P0P0P0P0 P1P1P1P1

H1H1H1H1H0H0H0H0 H2H2H2H2
H1FH1FH1FH1F S0S0S0S0 S1S1S1S1 S2S2S2S2 S3S3S3S3

S2QS2QS2QS2Q S3QS3QS3QS3Q
High Availablility Package User’s Guide 5

Chapter 1 - Introduction

� S3 � The board is engaged in software operations.

� S3Q � The software is completing current operations, but is not allowed
to start new ones.

The following are components of a Hot Swap system in the CompactPCI
environment.

� Board

A circuit board in the system (other than the system host)

� System Host

The central resource that provides configuration of the CompactPCI bus;
it may also provide arbitration and clocking for the CompactPCI bus.

� Platform

The platform providing infrastructure for the boards; this includes (but is
not limited to) the backplane, system host, cooling, and power supplies.

The diagram below depicts the functional elements and their relationship in Hot
Swap architecture. Bold areas indicate the unique components for Hot Swap that
are a superset of conventional CompactPCI systems.

H/W Connection LayerH/W Connection LayerH/W Connection LayerH/W Connection Layer

CompactPCI BusCompactPCI BusCompactPCI BusCompactPCI Bus

Hot Swap Event ManagerHot Swap Event ManagerHot Swap Event ManagerHot Swap Event Manager

ENUM DriverENUM DriverENUM DriverENUM DriverHot SwapHot SwapHot SwapHot Swap
Controller DriverController DriverController DriverController Driver

DeviceDeviceDeviceDevice
ResourceResourceResourceResource
ManagerManagerManagerManager

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

H/W Connection ControlH/W Connection ControlH/W Connection ControlH/W Connection Control

S/W Connection ControlS/W Connection ControlS/W Connection ControlS/W Connection Control

Conventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI Hardware

APIAPIAPIAPI

SoftwareSoftwareSoftwareSoftware
LayersLayersLayersLayers

DriversDriversDriversDrivers

PlatformPlatformPlatformPlatform
HardwareHardwareHardwareHardware

BoardBoardBoardBoard
HardwareHardwareHardwareHardware

OperatingOperatingOperatingOperating
SystemSystemSystemSystem

Posix Message QueuesPosix Message QueuesPosix Message QueuesPosix Message Queues
6 High Availablility Package User’s Guide

System Models

Figure 1-2: CompactPCI Hot Swap Architecture

At the lowest level, a Hot Swap board contains a Hardware Connection Layer,
which supports the Physical Connection Process to the CompactPCI bus.
Controlled by the platform, the Hardware Connection Layer performs the
Hardware Connection Process. This layer can optionally contain special hardware
resources to facilitate the Software Connection Process.

The Hot Swap architecture facilitates dynamic configuration of a users�s system by
interacting with the OS and user supplied device drivers.

System Models

There are four different degrees of Hot Swap capability:

� Non-Hot Swap

Systems that do not have Hot Swap capabilities

� Basic Hot Swap

Systems meeting the basic requirements for Hot Swap

� Full Hot Swap

Systems utilizing the features of Full Hot Swap boards

� High Availability

Systems utilizing features of High Availability platforms for greater
hardware control

There are several ways for applications to implement High Availability. Depending
on the system configuration, it is not always advisable to take advantage of High
Availability capabilities. In the following table, various possibilities are shown in
order of increasing complexity.

Table 1-2: System Models

System Type
Hardware

Connection
Software Connection

Basic Hot Swap Automatic in
hardware

Manually by operator
High Availablility Package User’s Guide 7

Chapter 1 - Introduction
Fault detection and recovery requires either the Full Hot Swap or High Availability
models. The Manual operator maintenance function is the only capability
supported by Basic Hot Swap.

Basic Hot Swap System
Basic Hot Swap consists of board hardware with the Hot Swap additions to the
Hardware Connection Layer, and the Event Management Service. The Basic Hot
Swap Model does not support software access to the Hardware and Software
Connection Processes.

Figure 1-3: Basic Hot Swap System

Full Hot Swap Automatic in
hardware

Controlled automatically by
software

High Availability Hot
Swap

Controlled by
software

Controlled automatically by
software

NOTE: HAP 2.0 supports the High Availability Hot Swap model.

Table 1-2: System Models

System Type
Hardware

Connection
Software Connection

Hardware Connection LayerHardware Connection LayerHardware Connection LayerHardware Connection Layer

Conventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI Hardware

CompactPCI BusCompactPCI BusCompactPCI BusCompactPCI Bus

Hot Swap Event ManagerHot Swap Event ManagerHot Swap Event ManagerHot Swap Event Manager

DeviceDeviceDeviceDevice
ResourceResourceResourceResource
ManagerManagerManagerManager

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

APIAPIAPIAPI
SoftwareSoftwareSoftwareSoftware
LayersLayersLayersLayers

DriversDriversDriversDrivers

PlatformPlatformPlatformPlatform
HardwareHardwareHardwareHardware

Board HardwareBoard HardwareBoard HardwareBoard Hardware

OperatingOperatingOperatingOperating
SystemSystemSystemSystem

Posix Message QueuesPosix Message QueuesPosix Message QueuesPosix Message Queues

ENUM DriverENUM DriverENUM DriverENUM Driver

Minimal HWMinimal HWMinimal HWMinimal HW

Conn ControlConn ControlConn ControlConn Control
8 High Availablility Package User’s Guide

Full Hot Swap System

The Hardware Connection Layer automatically brings a board to the H2 / S0 state
upon insertion (see Figure 1-3). The Event Management Service interacts with the
operating system to load drivers and configures the operating system to enable
applications to access the new hardware. The Event Management Service performs
the reverse function on an attempt to extract a board.

All Hot Swap actions must be initiated by an operator and performed in the correct
sequence for proper system operation.

Full Hot Swap System
In addition to the Basic Hot Swap functionality, Full Hot Swap provides resources
for controlling the Software Connection Process. These resources include Software
Connection Control resources on the board, and the ability for the operating system
to dynamically load drivers and configure new devices on a running system.

The Software Connection Control function on the board provides an electrical
signal (ENUM) that notifies the system host of a service request, as well as other
board state transitions. A Hot Swap board is expected to have a Hot Swap Switch.
When pulled, the switch notifies the system that an extraction is desired. When set,
the switch notifies the system that a new board has been inserted. There is also an
LED indicator for the state of the board; if illuminated, it is safe to extract the
High Availablility Package User’s Guide 9

Chapter 1 - Introduction

board. This mechanism makes it possible to perform the necessary steps in the
software to allow access to the board.

Figure 1-4: Full Hot Swap System

Full Hot Swap boards drive the ENUM signal to the system host to indicate a
service request. The system host responds to the ENUM signal by adding software
drivers for newly inserted boards, or unloading drivers for boards to be extracted.
An operator action indicating a need to extract a board allows the system to quiesce
and unload any drivers associated with the board. The board can then be safely
removed from the system.

High Availability System
High Availability requires even more control than simply handling insertion and
extraction. HA systems are able to control the Hardware Connection Process. This

H/W Connection LayerH/W Connection LayerH/W Connection LayerH/W Connection Layer

CompactPCI BusCompactPCI BusCompactPCI BusCompactPCI Bus

Hot Swap Event ManagerHot Swap Event ManagerHot Swap Event ManagerHot Swap Event Manager

ENUM DriverENUM DriverENUM DriverENUM DriverMinimal Hot SwapMinimal Hot SwapMinimal Hot SwapMinimal Hot Swap
Controller DriverController DriverController DriverController Driver

DeviceDeviceDeviceDevice
ResourceResourceResourceResource
ManagerManagerManagerManager

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

S/W Connection ControlS/W Connection ControlS/W Connection ControlS/W Connection Control

Conventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI Hardware

APIAPIAPIAPI

SoftwareSoftwareSoftwareSoftware
LayersLayersLayersLayers

DriversDriversDriversDrivers

PlatformPlatformPlatformPlatform
HardwareHardwareHardwareHardware

Board HardwareBoard HardwareBoard HardwareBoard Hardware

OperatingOperatingOperatingOperating
SystemSystemSystemSystem

Posix Message QueuesPosix Message QueuesPosix Message QueuesPosix Message Queues

Minimal HWMinimal HWMinimal HWMinimal HW

Conn ControlConn ControlConn ControlConn Control
10 High Availablility Package User’s Guide

High Availability Frameworks

is accomplished by adding support for additional electrical signals, namely
PRESENT and HEALTHY.

Figure 1-5: High Availability Hot Swap Mode

In this model, the system performs additional services to ensure more than just the
inserted or extracted state of the board. In particular, prior to applying power, it
detects the board�s presence and whether or not the board is reporting that it is
working properly.

High Availability Frameworks

For High Availability, a system must be able to be reconfigured (in the event of
maintenance requirements or active faults) with minimal system impact. While
reconfiguration does have some impact, it must still meet the given availability
specification for Highly Available systems.

In order to design a system that accommodates a number of different architectures
for High Availability, frameworks that provide High Availability benefits are
required. As a rule, more specialized (and hence weaker) frameworks provide the
maximum benefit.

H/W Connection LayerH/W Connection LayerH/W Connection LayerH/W Connection Layer

CompactPCI BusCompactPCI BusCompactPCI BusCompactPCI Bus

Hot Swap & Domain Event ManagerHot Swap & Domain Event ManagerHot Swap & Domain Event ManagerHot Swap & Domain Event Manager

ENUM DriverENUM DriverENUM DriverENUM DriverFull Hot SwapFull Hot SwapFull Hot SwapFull Hot Swap
Controller DriverController DriverController DriverController Driver

DeviceDeviceDeviceDevice
ResourceResourceResourceResource
ManagerManagerManagerManager

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

DeviceDeviceDeviceDevice
DriverDriverDriverDriver

H/W Connection ControlH/W Connection ControlH/W Connection ControlH/W Connection Control

S/W Connection ControlS/W Connection ControlS/W Connection ControlS/W Connection Control

Conventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI HardwareConventional CompactPCI Hardware

APIAPIAPIAPI

SoftwareSoftwareSoftwareSoftware
LayersLayersLayersLayers

DriversDriversDriversDrivers

PlatformPlatformPlatformPlatform
HardwareHardwareHardwareHardware

Board HardwareBoard HardwareBoard HardwareBoard Hardware

OperatingOperatingOperatingOperating
SystemSystemSystemSystem

Posix Message QueuesPosix Message QueuesPosix Message QueuesPosix Message Queues
High Availablility Package User’s Guide 11

Chapter 1 - Introduction

For High Availability systems, there are two basic models for which the common
framework is, as yet, undeveloped: The first model for High Availability is
network based (what may be called interchassis redundancy). In this model, there
are two or more duplications of complete platforms, and system hosts processors
with the full complement of the necessary boards. Application software monitors
the health and reliability of each platform and shifts responsibilities accordingly.

Figure 1-6: Network-Based Redundancy

In this case, availability is guaranteed by ensuring that one complete system is
functional at all times using an ethernet network to share application and device
states. In a more sophisticated setting, three or more systems running the same
applications use an election mechanism to determine the most likely correct result.

The second model is a common backplane (or intrachassis redundancy). One such
backplane is Compact PCI. Compact PCI is a commercial bus, backplane, and card
specification with many features making it ideal for High Availability systems. The
Compact PCI bus is electrically and logically the same as the motherboard based
PCI bus. Interface chips, CPU, and I/O card designs are inexpensive and readily
available. Compact PCI supports Hot Swap of I/O cards and Hot Swap of system
controllers.

Like PCI, Compact PCI supports the dynamic assignment of I/O space, interrupt
lines, and peripheral memory space. Boards are identified by the physical slot they
occupy and are not operational until they are initialized. This is in contrast with the
VME bus, where boards are not identified by their slot, but rather I/O space is
configured with jumpers on the I/O boards themselves.

Compact PCI extends the PCI specification by adding an enumeration signal
(ENUM#) and status bits to indicate insertion (INS) and extraction (EXT). These
additional signals, along with support for applying power before any signal lines

Ethernet IEthernet IEthernet IEthernet I

Ethernet IIEthernet IIEthernet IIEthernet II

Processor BProcessor BProcessor BProcessor BProcessor AProcessor AProcessor AProcessor A
AdditionalAdditionalAdditionalAdditional

ProcessorsProcessorsProcessorsProcessors
12 High Availablility Package User’s Guide

Domain Switchover

make contact, make it possible to Hot Swap Compact PCI boards. Compact PCI
boards can be extracted and inserted while the system is on and operational,
allowing replacement of a failed board without interrupting service. Also,
additional boards can be added to the computer while it is operational, to upgrade
the system without interrupting service. A PCI bus must be re-enumerated to make
room for new boards. This changes the hardware topology of the system. It is not a
simple task, because a board may contain more than one PCI device and even may
contain bridge chips that introduce new PCI buses to the system.

Figure 1-7: Compact PCI Bus Conceptual Diagram

Due to electrical characteristics, only eight devices can be plugged into a single
Compact PCI bus. Through the use of PCI bridge chips, a computer can have
multiple Compact PCI buses, and extend the number of PCI devices the CPU can
access. Although Compact PCI allows only for one system board, Compact PCI
buses (each with its own system board) can be connected through bus bridges. One
way to make use of a bus bridge is to create a dual Compact PCI system with one
CPU card/system controller for each half of the system. In case of failure of an I/O
card, a redundant card plugged into the other Compact PCI bus can be used. In the
case of a CPU/system card failure, the PCI bridge can be used to allow the working
CPU card to take over control of the I/O cards that the failed. This allows for great
flexibility in reconfiguring the system.

Today, the Compact PCI specification leaves the definition of the second set of
connectors on 6U Compact PCI boards to the vendor. These can be used to bring
signals to I/O transition boards or for other auxiliary buses. These signals can also
be used for additional Hot Swap and HA support.

Domain Switchover

In Domain Switchover, an active domain on one side may have its application and
driver states moved to the second domain. As with individual cards, a domain can

Domain A Domain B

CP
U

A
CP

U
A

CP
U

A
CP

U
A

Br
id

ge
 A

Br
id

ge
 A

Br
id

ge
 A

Br
id

ge
 A

PCI Bus

CP
U

B
CP

U
B

CP
U

B
CP

U
B

Br
id

ge
 B

Br
id

ge
 B

Br
id

ge
 B

Br
id

ge
 B

PCI Bus

PCI Bridge
High Availablility Package User’s Guide 13

Chapter 1 - Introduction

be transitioned because of an operator-initiated act, or as a direct result of the
failure of the system host. As with cards, the application may be responsible for
controlling the transition.

Warm Domain Switchover
HAP 2.0 includes limited Domain Switchover support. At system startup, both
Domains enter a Cold Stand-By state. Upon application commands, HAP will:

� change from Cold Stand-By state to Active state.

� change from Cold Stand-By state to Warm Stand-By state.

� change from Active state to Warm Stand-By state.

� change from Warm Stand-By to Active state.

Driver Model

In order for HAP 2.0 to respond correctly to the above, each driver of interest to a
Warm Domain Switchover application must implement the following states and
provide scripts to perform the necessary driver state transitions as shown in the
following figure:
14 High Availablility Package User’s Guide

Warm Domain Switchover
Figure 1-8: Driver Model

 <<<<<<< <<<<<<< <<<<<<< <<<<<<< State: State: State: State: InactiveInactiveInactiveInactive >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
enabled:enabled:enabled:enabled: dev_installdev_installdev_installdev_install

dev_opendev_opendev_opendev_open
dev_ioctldev_ioctldev_ioctldev_ioctl

 <<<<<<<< <<<<<<<< <<<<<<<< <<<<<<<< State: StandbyState: StandbyState: StandbyState: Standby >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
enabled:enabled:enabled:enabled: dev_selectdev_selectdev_selectdev_select

dev_readdev_readdev_readdev_read
dev_writedev_writedev_writedev_write

not enabled:not enabled:not enabled:not enabled: S/W contact with H/WS/W contact with H/WS/W contact with H/WS/W contact with H/W

 <<<<<<<< <<<<<<<< <<<<<<<< <<<<<<<< State: ActiveState: ActiveState: ActiveState: Active >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
enabled:enabled:enabled:enabled: dev_selectdev_selectdev_selectdev_select

dev_readdev_readdev_readdev_read
dev_writedev_writedev_writedev_write
S/W contact with H/WS/W contact with H/WS/W contact with H/WS/W contact with H/W
Device errors reportedDevice errors reportedDevice errors reportedDevice errors reported

HS_IA_SBYHS_IA_SBYHS_IA_SBYHS_IA_SBY

State
Transitions

HS_SBY_ACTHS_SBY_ACTHS_SBY_ACTHS_SBY_ACT
HS_ACT_SBYHS_ACT_SBYHS_ACT_SBYHS_ACT_SBY

Driver writer must supply script to change the driverDriver writer must supply script to change the driverDriver writer must supply script to change the driverDriver writer must supply script to change the driver
from thefrom thefrom thefrom the

<<<Inactive >>> state to the<<<Inactive >>> state to the<<<Inactive >>> state to the<<<Inactive >>> state to the
<<< Standby >>> state<<< Standby >>> state<<< Standby >>> state<<< Standby >>> state

Driver writer must supply script toDriver writer must supply script toDriver writer must supply script toDriver writer must supply script to
change the driver from thechange the driver from thechange the driver from thechange the driver from the

<<<Standby >>> state to the<<<Standby >>> state to the<<<Standby >>> state to the<<<Standby >>> state to the
<<< Active >>> state<<< Active >>> state<<< Active >>> state<<< Active >>> state

Driver writer must supply script to change the driverDriver writer must supply script to change the driverDriver writer must supply script to change the driverDriver writer must supply script to change the driver
from thefrom thefrom thefrom the

<<<Active >>> state to the<<<Active >>> state to the<<<Active >>> state to the<<<Active >>> state to the
<<< Standby >>> state<<< Standby >>> state<<< Standby >>> state<<< Standby >>> state

State
Transitions

Driver writer must supply anDriver writer must supply anDriver writer must supply anDriver writer must supply an
installation scriptinstallation scriptinstallation scriptinstallation script

which leaves the driver in thewhich leaves the driver in thewhich leaves the driver in thewhich leaves the driver in the
<<<Inactive >>> state<<<Inactive >>> state<<<Inactive >>> state<<<Inactive >>> state

Driver writer must supply anDriver writer must supply anDriver writer must supply anDriver writer must supply an
uninstall scriptuninstall scriptuninstall scriptuninstall script
High Availablility Package User’s Guide 15

Chapter 1 - Introduction
16 High Availablility Package User’s Guide

CHAPTER 2 Installing the High Availability

Platform
This chapter describes the steps and prerequisites required to install the High
Availability Platform (HAP) 2.0 package.

System Requirements

HAP 2.0 must be installed on a Compact PCI system with either a PowerPC or
Intel x86 system controller.

Installing the High Availability Platform

Follow these steps to install HAP 2.0:

1. Mount the installation CD-ROM media to an available mount point on
the system. For example,

mount /dev/cdrom /mnt/cdrom

2. Change directory to the mount point. For example,

cd /mnt/cdrom

3. Install HAP 2.0 by executing this script:

sh> Install.HAP

Detailed configuration and system changes made by this script are
described in �Install.HAP Configuration Specifications� on page 19.
High Availablility Package User’s Guide 17

Chapter 2 - Installing the High Availability Platform

4. When prompted, specify the HAP installation location. This directory

must have a complete kernel build environment in a /sys tree. The
installation does not use ENV_PREFIX.

5. When prompted, supply the correct chassis type for your system. Several
configurations are installed on the system. In addition to different
configuration files, a single domain system (CPV12xx or CPX22xx) must
be configured to run the Hot Swap Event Manager from ha_sim. For
more information, see See �ha_sim - HA System Initialization Manager�
on page 24.. For a multiple domain system (CPX 82xx) stmd is
configured to run by default.

6. When prompted, select to reconfigure the driver library automatically or
manually. If manual is selected, the driver library must be updated by the
user, and the kernel rebuilt before HAP will function.

7. After the driver library is rebuilt, the system must be restarted as follows:

reboot -aN

Previous kernel, nodetab, device and driver libraries are saved in this directory:
$INSTALL_ROOT/usr/local/kits/HAP.

The following scripts and files are saved in /usr/local/kits/HAP:

• Install.HAP

• Uninstall.HAP

• binary.filelist

• Distribution_HAP20.tar.gz

Uninstalling

To uninstall, or revert to a previous installation of HAP, follow these instructions:

1. Change to the HAP script directory as follows:

cd /usr/local/kits/HAP

2. Execute the uninstall script as follows:

sh> Uninstall.HAP

NOTE: Old kernel and device libraries can be restored from this directory
should the system need to be restored to its previous state. This directory
should not be deleted.
18 High Availablility Package User’s Guide

Post-Installation Tasks

Post-Installation Tasks

If not already completed by the installation script, device drivers must be added
and the kernel rebuilt before HAP can be enabled.

Install.HAP Configuration Specifications

When the installation script runs, these changes are made to the system:

1. A directory is created for the installation scripts and working files in:
$INSTALL_ROOT/usr/local/kits/HAP.

If this directory already exists, it is renamed:
$INSTALL_ROOT/usr/local/kits/HAP.prev.

2. The installation files are copied to
$INSTALL_ROOT/usr/local/kits/HAP.

These files include:

- Distribution_HAP20.tar.gz

- binary.filelist

- Install.HAP

- Uninstall.HAP

3. The following files are saved in
$INSTALL_ROOT/usr/local/kits/HAP/HAP_pre_

install.tar.gz:

- $INSTALL_ROOT/lynx.os

- $INSTALL_ROOT/etc/nodetab

- $INSTALL_ROOT/sys/lib/libdevices_cpci_<platform>.a

- $INSTALL_ROOT/sys/lib/libdevices_cpci_<platform>_d.a

- $INSTALL_ROOT/sys/lib/libdevices_cpci_<platform>_uk.a

- $INSTALL_ROOT/sys/lib/libdrivers_cpci_<platform>.a

- $INSTALL_ROOT/sys/lib/libdrivers_cpci_<platform>_d.a

- $INSTALL_ROOT/sys/lib/libdrivers_cpci_<platform>_uk.a

- any file in binary.filelist if it exists

Where <platform> is drm for PowerPC and x86 for Intel.
High Availablility Package User’s Guide 19

Chapter 2 - Installing the High Availability Platform

4. The following files, if they exist, are saved in the

$INSTALL_ROOT/usr/local/kits/HAP/save directory, so they can
be restored after the HAP 2.0 Installation:

- $INSTALL_ROOT/etc/hasw/ha_sim.con

- $INSTALL_ROOT/sys/cfg/enum.cfg

- $INSTALL_ROOT/etc/hasw/hsem.conf

- $INSTALL_ROOT/etc/hasw/tm.conf

5. The distribution is copied to the installation location. The files copied are
those listed in binary.filelist. The following directories are created
if they do not already exist:

- $INSTALL_ROOT/usr/sbin/hasw

- $INSTALL_ROOT/etc/hasw

- $INSTALL_ROOT/usr/include/hasw

- $INSTALL_ROOT/usr/lib/hasw

- $INSTALL_ROOT/usr/man/cat1

- $INSTALL_ROOT/usr/man/cat5

- $INSTALL_ROOT/sys/drivers.cpci_<platform>

- $INSTALL_ROOT/sys/devices.cpci_<platform>

- $INSTALL_ROOT/usr/src/hasw/util

where <platform> is drm for PowerPC and x86 for Intel.

6. Chassis type configuration files (tm, hsem, and ha_sim) are added to the
system.

7. The files saved in step 4 are restored to their original location.

8. $INSTALL_ROOT/sys/bsp.cpci_<platform>/CONFIG.TBL is
checked to ensure that the I:enum.cfg is present and uncommented.

9. The driver library is rebuilt if the user requests it.
20 High Availablility Package User’s Guide

CHAPTER 3 High Availability Tools
Introduction

The High Availability Platform 2.0 includes a set of tools that provide command
line interaction with Compact PCI and board hardware. This chapter details these
commands.

cpxload - cpxunload

Scripts for loading and unloading the Hot Swap Controller Driver.

cpxtool

An interactive tool for accessing Hot Swap Controller Driver statistics.

drm_stat - Display all device nodes in a system

Synopsis

drm_stat
High Availablility Package User’s Guide 21

Chapter 3 - High Availability Tools

Description

This command uses no arguments. A status of all the devices in the DRM tree and
Internal Address Allocation information is displayed.

Table 0-1: Sample Session

bash# drm_stat
Device Resource Manager
Device ID = 1
Vendor ID = 1
Primary Buslayer ID = -1
Secondary Buslayer ID = 0
Node type = 5
State = 5
Interrupt Controller = -1
Interrupt Line = -1
Device ID = 2
Vendor ID = 1
Primary Buslayer ID = 0
Secondary Buslayer ID = 1
Node type = 5
State = 4
Interrupt Controller = -1
Interrupt Line = -1
Device ID = 4801
Vendor ID = 1057
Primary Buslayer ID = 1
Secondary Buslayer ID = 0
Node type = 10
State = 5
Interrupt Controller = 0
Interrupt Line = -5
BusNo = 0
DevNo = 0
FuncNo = 0
0: Vaddr = 0, Paddr = 80040000, Baddr = 40000, Size = 40000, Al = 40000
1: Vaddr = c0000000, Paddr = c2000000, Baddr = 2000000, Size = 40000, Al =
40000
2: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
3: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
4: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
22 High Availablility Package User’s Guide

Description

Device ID = 586
Vendor ID = 1106
Primary Buslayer ID = 1
Secondary Buslayer ID = 2
Node type = 6
State = 5
Interrupt Controller = 0
Interrupt Line = 0

Device ID = 571
Vendor ID = 1106
Primary Buslayer ID = 1
Secondary Buslayer ID = 0
Node type = 10
State = 4
Interrupt Controller = 0
Interrupt Line = 0
BusNo = 0
DevNo = 11
FuncNo = 1
0: Vaddr = 0, Paddr = 80004000, Baddr = 4000, Size = 8, Al = 1000
1: Vaddr = 0, Paddr = 80005000, Baddr = 5000, Size = 4, Al = 1000
2: Vaddr = 0, Paddr = 80006000, Baddr = 6000, Size = 8, Al = 1000
3: Vaddr = 0, Paddr = 80007000, Baddr = 7000, Size = 4, Al = 1000
4: Vaddr = 0, Paddr = 80008000, Baddr = 8000, Size = 10, Al = 1000
5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
Device ID = 9
Vendor ID = 1011
Primary Buslayer ID = 1
Secondary Buslayer ID = 0
Node type = 10
State = 5
Interrupt Controller = 0
Interrupt Line = 2
BusNo = 0
DevNo = 14
FuncNo = 0
0: Vaddr = 0, Paddr = 80009000, Baddr = 9000, Size = 80, Al = 1000
1: Vaddr = c0040000, Paddr = c2040000, Baddr = 2040000, Size = 80, Al = 1000
2: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
3: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
4: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0

Table 0-1: Sample Session (Continued)
High Availablility Package User’s Guide 23

Chapter 3 - High Availability Tools
ha_sim - HA System Initialization Manager

Synopsis

ha_sim -i | -s [-d -n <mddPublicQueueName> -q
<PrivateQueueName> -f <ConfigFileName>]

Device ID = 3
Vendor ID = 1000
Primary Buslayer ID = 1
Secondary Buslayer ID = 0
Node type = 10
State = 5
Interrupt Controller = 0
Interrupt Line = 3
BusNo = 0
DevNo = 16
FuncNo = 0
0: Vaddr = 0, Paddr = 8000a000, Baddr = a000, Size = 100, Al = 1000
1: Vaddr = c0041000, Paddr = c2041000, Baddr = 2041000, Size = 100, Al = 1000
2: Vaddr = 0, Paddr = c2042000, Baddr = 2042000, Size = 1000, Al = 1000
3: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
4: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0

Device ID = 26
Vendor ID = 1011
Primary Buslayer ID = 1
Secondary Buslayer ID = 1
Node type = 6
State = 4
Interrupt Controller = 0
Interrupt Line = 0
BusNo = 0
DevNo = 20
FuncNo = 0
SecBusNo = 1
SubBusNo = 41
0: Vaddr = 0, Paddr = 80080000, Baddr = 80000, Size = 1200000, Al = 1000
1: Vaddr = 0, Paddr = c2100000, Baddr = 2100000, Size = 6000000, Al = 100000
2: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
3: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
4: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0
5: Vaddr = 0, Paddr = 0, Baddr = 0, Size = 0, Al = 0

Table 0-1: Sample Session (Continued)
24 High Availablility Package User’s Guide

Description

Description

ha_sim is responsible for starting (at system init time) HA processes and stopping
(at system shut down time) HA sub-systems. ha_sim is started with a command
line argument indicating the mode as init or shutdown. ha_sim starts during
system initialization from the /bin/rc file run by LynxOS init. When started,
ha_sim reads a configuration file to determine the HA processes or sub-systems to
start or to stop. ha_sim can also be started at any time from the command line.

Dependencies

To receive the SHUTDOWN message, processes must register with hsem/stmd to
receive notification of these messages:

type = SIM
class = SYS_CLASS_1

There is no response to the SHUTDOWN message.

 The SIM, SYS_CLASS_1 messages are not targeted to a single named process, but
rather, are broadcast to all processes registered to receive such messages.
Therefore, a process must filter received messages and shut down only if specific
messages are received:

type = SIM
class = SYS_CLASS_1
event = SHUTDOWN

In addition, the process must also test the first two bytes of the attached data field
to determine if the shutdown message refers to its own sub-system. It is a matter of
convention that two characters are used. Any sequence of characters may be used
as long as they do not conflict with other sub-system designations. For example,
AP refers to the Application sub-system, and HS refers to the Hot Swap Event
Manager sub-system. These characters come from the SubSystemName portion of
the SHUTDOWN line in ha_sim.conf. As necessary, new letter combinations can
be used, and the only coding change needed is localized to the process supporting
the new SubSystemName.

SubSystemName is (optionally) followed by a single space and then by
SubSystemArguments, if present. SubSystemArguments can be any
High Availablility Package User’s Guide 25

Chapter 3 - High Availability Tools

combination of characters that has meaning to the receiving process. The data field
is NULL terminated. The data field of a SHUTDOWN message has the following form:

Initialization

At init time, ha_sim starts all processes referenced in the configuration file.
Processes are started via fork and execv. ha_sim cannot determine if a process
starts successfully. The only means of determining the health of a started process is
the SIGCHLD signal generated when the child process either forks itself to become
a daemon, or dies. If the SIGCHLD signal is caught by ha_sim before the timeout
period, the process is assumed to be running OK. If the timeout occurs before the
SIGCHLD signal is caught by ha_sim, an error is assumed and ha_sim logs an
error and continues to the next line in the config file. After all processes start,
ha_sim logs a success message and exits.

ha_sim does not send or receive any messages when running in init mode.

Shutdown

At shut down time, ha_sim runs until all appropriate sub-systems referenced in the
config file are sent a SHUTDOWN message. If a timeout period is specified, ha_sim
waits the specified timeout period after sending the SHUTDOWN message and before
processing the next config file entry.

ha_sim sends and receives messages only when running in SHUTDOWN mode.

Table 3-1: Shutdown Message Data Field

Field Element Description

SubSystemName (2 bytes by convention).

Space char (only if SubSystemArguments is present).
SubSystemArguments (optional, variable length - can
be used to pass sub-system specific information to the
SubSystemName process.

NULL char.
26 High Availablility Package User’s Guide

Default

Default

The default ha.sim.conf file contains commands to start the appropriate
components of HAP 2.0. In most circumstances, users should not need to modify
this file.

Options

Table 3-2: ha_sim Options

Token Meaning

-i Either -i or -s must be specified, but not both. This option
instructs ha_sim to run in init mode: Start process entries in the
config file with INIT entries, and start the associated HA
processes.

-s Either -i or -s must be specified, but not both. This option tells
ha_sim to run in shutdown mode: Stop processes in the config file
with SHUTDOWN entries, and terminate the associated HA sub-
systems.

-d Optional. Run with Debug mode ON. Function calls are traced and
internal variables are displayed. Useful for unit testing. Output is
sent to STDOUT. Default is OFF.

-n Optional. Use mddPublicQueueName as the queue name to send
messages to mdd. Useful if mdd specifies a non-default public
queue name with its -n argument. Default is
/mdd_public_queue.

-q Optional. Use PrivateQueueName as the queue name on which
to receive messages from mdd. Default is /sim_queue.

-f Optional. Use ConfigFileName as the full path name of the
configuration file. Default is /etc/hasw/ha_sim.confg.
High Availablility Package User’s Guide 27

Chapter 3 - High Availability Tools

hscmd - Hot Swap Command Utility

Synopsis

hscmd [-t timeout] [-q queue_name] [-p public_queue] action
slot

Description

The Hot Swap Command utility, hscmd, issues an ENUM message to the Hot
Swap Event Manager containing the action to occur and the slot number to which it
applies.

Timeout, provided with the -t option, indicates the time to wait for a response
from the Hot Swap Event Manager. The default is 5 seconds, the minimum 1
second, and maximum of 60 seconds.

The -q option is used to override the default message queue name,
/hscmd_queue, used by hscmd with queue_name.

The -p option is used to override the default public message queue name,
/mdd_public_queue, provided by mdd and used by hscmd with public_queue.

Action may be either insert or extract.

slot is the slot number of the affected slot and must identify a valid slot in the
domain in which hscmd is executed.

hscmd waits for an acknowledgement from the Hot Swap Event Manager
indicating that the action completed or an error occurred. If the action succeeded,
hscmd exits with a status of 0. In the case of an error or timeout, the error is
reported to stderr and hscmd exits with a non-zero status.

hsem - Hot Swap Event Manager

Synopsis

hsem -f <config file> <options>
28 High Availablility Package User’s Guide

Description

Description

The Hot Swap Event Manager provides basic support for Hot Swap events, for
example, Hot Insertion and Hot Extraction. Running as a daemon, it communicates
information about these events to applications via message queues.

Options

hsi - Hot Swap Insert

Synopsis

hsi <slot>

Description

This command uses slot numbers as arguments. This command inserts a recently
inserted board in slot <slot> of a CPX8216 chassis (Domain A Side Only). Insert
the board into the slot, and execute the command hsi <slotnumber>, for example:
hsi 3, if slot 3 is used for the new board. This command probes the slot and adds

Table 3-3: hsem Options

Token Meaning

-x Dump the current slot table and exit.

-f Use the following argument as the comfiguration file.

-i If the following arg is �on� run with enum interrupts enables, and if the arg is
�off� run with them disabled.

-d Debug mode.

-l Use the config file to download Compact PCI slot table to enum.

-r Read the Compact PCI slot table from enum.

-q Register with mdd and accept messages from queues.

-t Use the arg for the select time out (poll) value (otherwise 2 secs).
High Availablility Package User’s Guide 29

Chapter 3 - High Availability Tools

the device to the DRM device tree. All devices are selected, and resources are
allocated and made ready for use.

Sample Session

bash# hsi 5

Hotswap Insert in slot 5
HotSwap Insert Board
HotSwap insert of board successful

hsls - List Non-Bridge Devices

Synopsis

hsls

Description

This command uses no arguments. hsls probes all the nodes below the Domain A
bridge and extrapolates the slot occupancy on a CPX8216 chassis. This program
prints the occupied status of slots. hsls works only with the Domain A backplane.

Sample Session

bash# hsls

Slot# State
0001 empty
0002 empty
0003 empty
0004 empty
0005 empty
0006 empty
0007 System Controller
0008 Not Present
0009 System Controller
0010 Not Present
0011 empty
0012 empty
0013 empty
0014 empty
0015 empty
0016 empty
30 High Availablility Package User’s Guide

hsx - Hot Swap Extract

hsx - Hot Swap Extract

Synopsis

hsx <slot>

Description

This command is similar to hsi, except that the devices in a particular slot are
removed. Once this command runs, the board in the slot can be physically
removed. If any of the devices are in use (ACTIVE), then this command prints a
message, and the extraction should be done after releasing the device.

Sample Session

bash# hsx 5

Hotswap Extract in slot 5
Hot Swap Extract Board
HotSwap extract of board successful

mdd - Message Distributor Daemon

Synopsis

mdd <options>

Description

The message distributor sets up a public queue and waits for applications and
daemons to register. Part of the registration is the identification of a private
message queue by which mdd and others pass information to the registered process.
Applications also express interest in message classes during registration. mdd runs
as a daemon.
High Availablility Package User’s Guide 31

Chapter 3 - High Availability Tools

Options

stmd - State Transition Management Daemon

Synopsis

stmd <options>

Description

STMD is the State Transition Management Daemon. It assists Warm Domain
Switchover applications in managing a multiple domain system and provides a
means of transitioning a domain from Active to Standby and vice versa.

Table 3-4: mdd Options

Token Meaning

-a The maximum applications allowed to connect

-c The maximum number of message classes

-l The maximum data length

-d Run as daemon

-q Queue depth

-m Queue id

-o Output file

-t Trace on

-n Queue name

-p Queue permissions
32 High Availablility Package User’s Guide

Options

Options

tm - Topology Manager Script

Synopsis

tm [-d device_name] [-f filename]

include <tm.h>

Description

The topology manager script is invoked to configure the topology of the High
Availability chassis. The configuration process is accomplished by reading in the
topology configuration file, processing it and setting up the High Availability
hardware accordingly.

Table 3-5: stmd Options

Token Meaning

-x Dump the current slot table and exit.

-f Use the following argument as the configuration file.

-i If the following argument is used, run with enum interrupts enables. If off, run
with them disabled.

-d Debug mode

-r Read the Compact PCI slot table from enum.

-q Register with mdd and accept messages from queues.

-t Use the argument for the select time out (poll) value (otherwise 2 secs).

-o Usr argument as logfile name.

-b Variable to indicate whether busno, devno, funcno should be separated
with blank spaces or underscores when passed to the driver install/uninstall
scripts.
High Availablility Package User’s Guide 33

Chapter 3 - High Availability Tools

The topology manager runs until it has finished configuring the hardware, or
encounters an error. Any error condition is treated as fatal, causing the manager to
halt processing and log the error message.

The default topology manager file is located in /etc/hasw and is described by
manpage /usr/man/cat5/tm.conf.5. The file is specified by the user, and
more than one can be used when initializing the HSC hardware. The default
filename is tm.conf, but any name (and path) can be specified using the -f
option.

The topology manager configuration file describes host processors, non-host slots,
peripheral bays, and power supplies. The topology manager reads this file in and
initializes a data structure. After reading in the file, the data structure is then used
to configure the hardware by initializing the relevant Hot Swap controller registers
via calls to the device driver.

Options

tm requires no options to be specified, however, the following options modify the
behavior of tm.

Error Handling

Two types of errors can occur with the topology manager: The first is associated
with the host swap controller device, and the second type is associated with the
topology file.

 The Hot Swap controller device driver can cause errors by returning an error status
when opening or closing the device. Any device driver call (to set a bit, take
control of a domain, etc.) can return an error status if the hardware does not
respond correctly to the requested action.

Table 3-6: Topology Manager Options

Token Meaning

-d device_name
Specify the full path name of the Hot Swap controller device to open,
read/write to, and close. The default is /dev/hsc0.

-f filename
Specify the full path name of the topology configuration file to be read in. The
topology configuration can be changed at any time by invoking the topology
manager script. The default file is /etc/hasw/tm.conf.
34 High Availablility Package User’s Guide

Error Handling

The topology configuration file can also cause errors when opening or closing the
file. In addition, if the format of the topology file is incorrect, then errors will
occur.

When either type of error occurs, the topology manager cleans up by optionally
closing the Hot Swap controller device and the topology file before writing out an
error message and exiting with a non-zero value.
High Availablility Package User’s Guide 35

Chapter 3 - High Availability Tools
36 High Availablility Package User’s Guide

CHAPTER 4 Writing High Availability

Platform Applications
Overview

The High Availability Platform enables application writers to develop highly
available applications. The High Availability Platform does not itself provide high
availability. Application developers are responsible for a number of components of
the High Availability model, including:

� Drivers conforming to the HAP 2.0 driver model. See Figure 1-8, �Driver
Model,� on page 15

� Applications that respond to Hot Swap events, such as insertion and
extraction

� Applications transitioning the HAP 2.0 state from Cold Standby to Active
on startup of a single system host system, or one side of a dual system
host system bringing the inactive side to Warm Standby

� Applications responsible for all error recovery, including driver state
change failures, DRM failures and card unhealthy failures

� Detecting and managing hardware problems

� Managing a specific message IPC interface with hsem/STMD

In addition, if an application requires Warm Domain Switchover, the application
must:

� Develop the overall Warm Domain Switchover policy

� Communicate all DRM information from the Active to the Standby domain

� Command Domain state transitions. For example, the system commands
one Domain to Active and the other to Warm Standby

� Manage Domain state transition failures
High Availablility Package User’s Guide 37

Chapter 4 - Writing High Availability Platform Applications

The application interface to HAP 2.0 consists of standard Message Queue IPC.
Applications must connect to this queue and retrieve messages from it. This
interface allows applications to command state transitions.

There are three types of messages that occur on this interface:

� Application commands to HAP 2.0

� HAP 2.0 responses to application commands

� HAP 2.0 asynchronous notifications of system events related to High
Availability

The following diagram details the generalized command, status and state flow in
the system. It also shows which elements (i.e. application, HAP 2.0 or the kernel)
are responsible for which functions.
38 High Availablility Package User’s Guide

Overview

Figure 4-1: HAP 2.0 (Warm Domain Switchover) State and Information Flow

hsem / STMDhsem / STMDhsem / STMDhsem / STMD

Hot Swap Chassis

Config
Data

Command
to hsem/STMD

Response
from hsem/STMD

Asynchronous
notification

from hsem/STMD

HSC
Events

ClientClientClientClient
ApplicationApplicationApplicationApplication

HSCHSCHSCHSC
DriverDriverDriverDriver

ENUMENUMENUMENUM
DriverDriverDriverDriver

HSC
Event

Registration

Signal
to hsem/

STMD

ioctl
from

hsem/
STMD

Configuration
for hsem/

STMD

Chassis
Info

Chassis
Info

Chassis
info

Chassis
Info

ProcessesProcessesProcessesProcesses

KernelKernelKernelKernel

HardwareHardwareHardwareHardware

DRMDRMDRMDRMSTMDSTMDSTMDSTMD
awareawareawareaware
driverdriverdriverdriver

Insert / prune
node

into / from
DRM tree

DRM
insert / prune

return
status

State
Change
Status

Driver
State

Change
Script

Legend

Part of
Lynx OS
kernel

User
Applica-

tion
Part of HAP

2.0

Information/
State Change

Token

mddmddmddmdd

HSC
actions

HSC
actionsHSC

responses

HSC
responses
High Availablility Package User’s Guide 39

Chapter 4 - Writing High Availability Platform Applications

Client Application

A client application can range from simple Hot Swap Controller actions (register
accesses) to a full Warm Domain Switchover application. HAP enables
applications running on a dual domain system to make one domain Action the
other Standby, and to reverse the roles as needed.

An application can be a Hot Swap application on a single domain using hsem or a
Warm Domain Switchover application using stmd.

hsem

Basic Hot Swap actions such as card extraction and card insertion are supported by
a Hot Swap Event Manager (hsem). It informs a registered application when a
Card Insert or a Card Extract takes place. It also enables an application to read and
write Hot Swap Controller registers.

mdd

The Message Distributor Daemon (mdd) is the mechanism by which Hot Swap
applications interact with hsem and hscd. mdd is also available to Warm Domain
Switchover applications.

stmd

For HAP 2.0, hsem (Hot Swap Event Manager) enables application Warm Domain
Switchover. stmd (State Transition Management Daemon) allows applications
greater control of domain states than was previously possible.

stmd is the only interface to the HAP 2.0 platform a Warm Domain Switchover
application is required to support. All state transitions and Hot Swap events are
managed by this module. Tasks include:

� Transitioning internal state to Cold Standby on startup

NOTE: A client application must not attempt to use hsem and stmd
simultaneously.

NOTE: Application developers must be aware that application intervention is
required on a dual domain system (CPX8216). Without it, the system comes up and
remains in Cold Standby state.
40 High Availablility Package User’s Guide

enum

� Receiving application commands on a message queue, determining the

correct type of action to be taken and initiate the necessary state
transitions to satisfy the application request

� Responding to signals from enum or hsc drivers, determining next
function (either an ioctl to enum driver), device adding or deleting to
drm, changing state of a driver or responding to a notification from an
application

� Responding to drm failures by returning the appropriate error
notification to the application

� Responding to driver state change failures by returning the appropriate
error notification to the application

enum

The enum driver is responsible for taking appropriate action when the hardware
generates an ENUM# interrupt.

hscd

The Hot Swap Controller driver (hscd) is responsible for reporting basic Compact
PCI events to the application. It also provides applications direct access to slot
registers.

LynxOS Elements Used

In addition to the standard POSIX system calls, applications that use High
Availability Platform must provide drivers for each card supported in the Hot Swap
scenarios (i.e, Hot Extraction and Hot Insertion). The drivers must conform to the
standard LynxOS driver model, as well as the special state and transition
requirements set by HAP 2.0 as illustrated in �Driver Model� on page 15 and in
�The Device Driver Model� on page 44.

As indicated in Figure 4-1, �HAP 2.0 (Warm Domain Switchover) State and
Information Flow,� on page 39, the main elements of High Availability Platform
are the application drivers located in kernel space: the enum driver and the hsc
driver. In addition, the Device Resource Manager (DRM) is an important part of
activating slot devices.
High Availablility Package User’s Guide 41

Chapter 4 - Writing High Availability Platform Applications

The following example provides a basic stmd.conf configuration file. For more
information, please see the stmd.conf(5) man page, orAppendix C, �stmd.conf
file example�.

; stmd.conf
;
; For more detailed information, see the man page.
;
; Copyright (c) 1998,1999 MOTOROLA
; and
; Copyright (c) 2000 LynuxWorks
; All Rights Reserved
;

; The "slots" entry defines the slot table for the specific chassis.
; Field 1 = Physical Slot number
; Field 2 = Bus Number
; Field 3 = Device Number
; Field 4 = Function Number
;
; The slot table below is for the domain A side of an 8216 Chassis.
; It should not be modified.
;
slots
slot 1,1,14,0
slot 2,1,13,0
slot 3,1,12,0
slot 4,1,11,0
slot 5,1,10,0
slot 6,1,9,0
slot 7,0,0,0
slot 8,0,0,0
slot 9,0,0,0
slot 10,0,0,0
slot 11,42,14,0
slot 12,42,13,0
slot 13,42,12,0
slot 14,42,11,0
slot 15,42,10,0
slot 16,42,9,0
end_slots

; This is the drivers section of the config file. In it will be
; sections for each driver.
drivers

driver

; This prefix will be used when the device is created.

device_name_prefix /dev/wan

Figure 4-2: stmd.conf file Exampe
42 High Availablility Package User’s Guide

LynxOS Elements Used
The bus number in this example depends on the DRM bus number allocator. For
stmd, bus and slot numbers can be described the same for either side A or B. Slots
1-6 are mapped via Bus number 1, while slots 11-16 are mapped via bus number
42.

If a processor has a PMC card containing a bridge, then 41 should be added to the
above bus numbers.

Device numbers are given by (15 - slot) for 0 < slot < 7 and by (25 - slot) for 10 <
slot < 17 for the CPX8216 chassis.

Function numbers are always 0.

For additional information, please see the stmd.conf(5) man page.

; This signature is used during device parsing.
; It corresponds to the PCI device specific vendor ID.

signature
vendor 0x10b59080,0,255
end_signature

; The script invoked during device insertion transition.

device_install
system /etc/hasw/install.scr
end_device_install

; The script invoked during device removal transition.

device_uninstall
system /etc/hasw/uninstall.scr
end_device_uninstall
; The script invoked during domain transition to active.

active_command /etc/hasw/active.scr

; The script invoked during domain transition to standby.

standby_command /etc/hasw/standby.scr

end_driver

end_drivers

Figure 4-3: stmd.conf file Example (Continued)
High Availablility Package User’s Guide 43

Chapter 4 - Writing High Availability Platform Applications

Device Resource Manager
Device Resource Manager (DRM) is a LynxOS module that manages device
resources. DRM assists device drivers in identifying, setting up, and managing
devices and device address space. Using DRM services, device drivers can use
devices without requiring information about board-specific configurations. DRM is
enhanced to support Basic Hot Swap services.

The Device Driver Model

Previous releases of HSP provided a model for Hot Swap-aware drivers. Previous
states and transitions are reorganized to draw parallels with the new HAP 2.0
model.

The Inactive Driver state is a superset of:

� No Driver

� Loaded

� Idle

� Software Init

� Offline

� Software Closing

� Zombie

� Released

The Standby state consists of:

� Software Quiesce

� Hardware Stop

The Active state consists of:

� Software Ready

� Hardware Init

� Hardware Ready

� Hardware Standby

The device driver writer supplies scripts that transition the driver from one superset
state to another. These are:
44 High Availablility Package User’s Guide

The Device Driver Model

1. I-S, which must include the following legacy state changes:

- Software Init to Quiesce

- Idle to Hardware Stop (dev_open part1)

2. S-A, which must include the following legacy state changes:

- Software Quiesce to Software Ready (hs_enable)

- Hardware Stop to Hardware Init (dev_open part 2)

- Hardware Stop to Hardware Standby (hs_standby)

3. A-S, which must include the following legacy state changes:

- Software Ready to Software Quiesce (hs_quiesce)

- Hardware Ready to Hardware Stop (hs_stop)

Figure 4-4 shows the correspondence between that model and the one required by
the HAP 2.0 release.
High Availablility Package User’s Guide 45

Chapter 4 - Writing High Availability Platform Applications
Figure 4-4: HSAD Driver Model with corresponding HAP 2.0 states

LoadedLoadedLoadedLoaded No Driver

IdleIdleIdleIdle

S/WS/WS/WS/W
InitInitInitInit

H/WH/WH/WH/W
InitInitInitInit

H/WH/WH/WH/W
ReadyReadyReadyReady

H/WH/WH/WH/W
StandbyStandbyStandbyStandby

S/WS/WS/WS/W
ReadyReadyReadyReady

S/WS/WS/WS/W
QuiesceQuiesceQuiesceQuiesce

Offline

S/W
Closing

Zombie
Device

H/W
Released

H/WH/WH/WH/W
StopStopStopStop

dr_install

dr_uninstall

dev_install
dev_uninstall

dev_open

dev_opendev_opendev_opendev_open

standbystandbystandbystandby

hs_quiescehs_quiescehs_quiescehs_quiescehs_enablehs_enablehs_enablehs_enable

hs_offline

hs_reinit

activeactiveactiveactive

hs_activitate

active

hs_stophs_stophs_stophs_stop

hs_release

InactiveInactiveInactiveInactive

ActiveActiveActiveActive

StandbyStandbyStandbyStandby

hs_die

hs_standbyhs_standbyhs_standbyhs_standby

hs_die

A-SA-SA-SA-S
standby

QuiesceQuiesceQuiesceQuiesce

I-SI-SI-SI-S

I-SI-SI-SI-S

S-AS-AS-AS-A
S-AS-AS-AS-A S-AS-AS-AS-A

S-AS-AS-AS-A

A-SA-SA-SA-S dev_opendev_opendev_opendev_open

I-SI-SI-SI-S

StopStopStopStop
46 High Availablility Package User’s Guide

STMD Driver Model

STMD Driver Model

Drivers must be written to accommodate these states: Inactive, Standby and Active
(see Figure 1-8, �Driver Model,� on page 15). The new driver model does not
attempt to label actual IOCTL calls to a driver. Only the notion of state is used.

� Inactive = Does nothing

� Standby = Ready to perform function, but not accessing hardware

� Active = Ready to perform function, accessing hardware

Entry points for these transitions must be filled by user-defined code, which is
called during stmd operation. See �stmd - State Transition Management Daemon�
on page 32.

Writing Hot Swap Applications

Hot Swap-only applications are hosted on single bus CompactPCI systems
(CPV1204 and CPX2208), or on dual bus systems (CPX8216), where Domain
Switchover is not implemented. In this case, it is necessary to use hsem (See �hsem
- Hot Swap Event Manager� on page 28. for usage) as well as mdd (See �mdd -
Message Distributor Daemon� on page 31.).

During installation, the user is queried for the chassis type, whether CPX 8216 or
CPX2208/CPV1204. If the user specifies a single domain chassis, then hsem is set
as the daemon. It is not required that the user to know how to start hsem or mdd.
The daemon appropriate for the chassis is installed in the ha_sim.conf
configuration file and ha_sim starts the correct daemon when invoked.

Initialization and Registration

Hot Swap applications uses the following header files to facilitate the interface to
hsem:

include <ha_msg.h>
include <hsem.h>

In addition to providing device drivers that conform to the HAP 2.0 model,
applications need to open the mdd message queue and establish a command
message queue to mdd. In order to receive notification of Hot Insertion and Hot
Extraction events, as well as issue other commands to hscd, the application must
register with mdd.
High Availablility Package User’s Guide 47

Chapter 4 - Writing High Availability Platform Applications

The following shows the call to open the correct message queues:

mdd_q = mq_open (MDD_QUEUE, O_WRONLY);
mq_getattr (mdd_q, &attr);
app_q = mq_open (“/myQ”,
 O_CREAT|O_RDONLY,
 creat_mod,
 mq_attr,);

The application must then send a message registering with mdd. This also allows
mdd to be aware of the application�s private message queue.

Msg smsg;
ReqData *data_p;
unsigned charlen= aizeof(Msg)
- MAX_DATA_LEN
+ sizeof(ReqData);
smsg.class = SYS_CLASS_1;
smsg.type = DISTR;
smsg.event = REGISTER;
data_p = (ReqData *) smsg.data;
strcpy(data_p->queue_name, “/myQ”);
mq_send(app_q, (char *) smsg, len, 1);
The message structure is
typedef struct Msg
{
unsigned charorigin_id;
unsigned charmd_id;
unsigned charlen;
unsigned charclass;
unsigned longtype;
unsigned shortevent;
unsigned chardata[MAX_DATA_LEN];
} Msg;
The data field (ReqData) structure is
typedef struct RegData
{
unsigned charqueue_name[MAX_QUEUE_NAME_LEN];
unsigned charclass;
unsigned longtype;
unsigned shortstatus;
} RegData;
48 High Availablility Package User’s Guide

Operation

Operation

The following table details Hot Swap-related message types and the actions
required:

The following table displays the various error notifications and their causes:

Table 4-1: Hot Swap Messages

Message

Type

Data

Actions

Field Contents Possible Results

HS_INSERT

origin_id SUCCESS Open
(application) the
device and
perform needed
operations

class SYS_CLASS_1 FAILURE_INVALID_SLOT

type HS_UTIL FAILURE_UNHEALTHY_CARD

event USER_ENUM FAILURE_DRM_DEVICE_CONFIG

EnumData.action HS_INSERT

FAILURE_DRIVER_STATE_CHANGEEnumData.slot <slot no.>

EnumData.result <see below>

HS_EXTRAC
T

origin_id SUCCESS Complete
pending
operations and
close
(application) the
device

class SYS_CLASS_1 FAILURE_INVALID_SLOT

type HS_UTIL FAILURE_DRM_DEVICE_CONFIG

event USER_ENUM

FAILURE_DRIVER_STATE_CHANGE
EnumData.action HS_EXTRACT

EnumData.slot <slot no.>

EnumData.result <see below>

Table 4-2: Hot Swap-Related Error Notifications

Error Name
Error

Num
Meaning

SUCCESS 0 The action completed successfully

FAILURE_INVALID_ACTION 1 Invalid action requested

FAILURE_INVALID_SLOT 2 Action requested for invalid slot

FAILURE_UNHEALTHY_CARD 3 Inserted Card sets its unhealthy bit
High Availablility Package User’s Guide 49

Chapter 4 - Writing High Availability Platform Applications
Bottom Up Hot Insertion

The following figure details the state transitions that take place in a Hot Insertion
event.

Figure 4-5 part 1: Successful Hot Insertion State

FAILURE_DRM_DEVICE_CONFIG 4 DRM failure on Insert/Prune Device

FAILURE_DRIVER_STATE_CHANGE 5 Driver failed to change to requested state

Table 4-2: Hot Swap-Related Error Notifications (Continued)

Error Name
Error

Num
Meaning

Slot
Present
Event

ENUM#
PRESENT

Power on
slot and
connect

ENUM
Driver

Slot Power
CMD

Slot
Power

Bit
Slot
Power

Card
Power

hsem/
stmd
Slot

Present

ENUM#
HEALTHY

HEALTHY

Bit

ENUM
Driver

Slot
Healthy

Slot
Inserted
Signal

DRM
Device
Node

Inserted

Insert
Device

Node

hsem/
stmd

Device
Configured

Insert
Device
Status

Install
Driver

hsem/
stmd
Slot

Inserted

HSC
Driver

Slot
Present

DRM
Device
Config
Error

HS
App

Error
Notify

Card
Slot
Unhealthy

Error

HS
App

Error
Notify

Error

Error

Card
Handle

Engaged

PRESENT
Bit

HS
App

Error
Notify

Failure
Invalid
Slot

hsem
/stm

d
error

logging

Error

Present
Event

Sl
ot

Po
w

er
on

 E
ve

nt

EN
UM

Healthy

EN
UM

dr
iv

er
io

ct
l

Slot
Inserted

In
se

rt
No

de
Ev

en
t

Device
Insert
status

Dr
iv

er
sc

rip
ts

HSC Slot
Present
Event

hsem
/stm

d
error

logging

hsem
/stm

d
error

logging

See Next FigureSee Next FigureSee Next FigureSee Next Figure
50 High Availablility Package User’s Guide

Bottom Up Hot Insertion
Figure 4-5 part 2: Successful Hot Insertion State

Error conditions are reported:

� After power is applied to the card

� After DRM is requested to configure the device information

HS
Aware
Driver

Installed
Driver
State
Change
Status

hsem/
stmd
Driver
Active

Card
Successful
Insert
Notify

Error

Driver
State

Change
Status

stm
d read

m
sg

queue

Success

hsem/
stmd
Driver

Quiesced
Change
state to

Active

HS
Aware
Driver
Active

Enable
ISRs
status

Dr
iv

er
sc

rip
ts

Driver
script
status

Driver
Install
Error

HS
App
Error
Notify

Error

hsem
/stm

d
error

logging

HS App
Device

accessible

hsem/
stmd
Driver

installed
Change
State to
Standby

HS
Aware
Driver

Standby
Driver
State
Change
Status

D
river

State
Change
Status

Dr
iv

er
sc

rip
ts

Driver
Inactive

to
Standby
State
Change
Error

HS
App
Error
Notify

hsem
/stm

d
error

logging

Driver
Standby

to
Active
State
Change
Error

hsem
/stm

d
error

logging

HS
App
Error
Notify

See PreviousSee PreviousSee PreviousSee Previous
FigureFigureFigureFigure
High Availablility Package User’s Guide 51

Chapter 4 - Writing High Availability Platform Applications

� After the device driver is commanded to transition from Inactive to

standby and from Standby to Active

� The types of messages that an application can receive are detailed above.
In this example, the message received would be HS_INSERT.

Hot Extraction

The following diagram shows the state transitions for a card extraction:

Figure 4-6 part 1: Card Extraction State

ErrorAll Drivers
in tree

transition
to standby

Failure
Invalid
Slot

Failure
Dev info
Failure

ENUM#
Interrupt

Slot
Extraction
Event

ENUM#
EXTRACT

ENUM
Driver

Extraction
Request

hsem/
stmd
Slot

Extraction
Request

HS
Aware
Driver
Standby

Request
device info
for parent
& children

Driver
State
Change
Status

DRM
device
info

request

Device
Heirarchy

hsem/
stmd

Device tree
known

Card
Handle

Disengaged

HS
App
Error
Notify

Error
Notification

HS
App
Error
Notify

Error

Error
Notification

ErrorAll Drivers
in tree

uninstalled

Failure
Bad
Driver
Active to
Standby
State
Change

HS
Aware
Driver

Uninstalled
Driver
State
Change
Status

hsem/
stmd
Driver

Quiesced

Error
Notification

HS
App
Error
Notify

See Next FigureSee Next FigureSee Next FigureSee Next Figure

Extraction Event

ENUM driver
signal

DRM device
tree request

Driver state
change status

Device info

Dr
ive

r S
ta

nd
by

Dr
ive

r S
ta

nd
by
52 High Availablility Package User’s Guide

Hot Extraction
Figure 4-6 part 2: Card Extraction State

Error conditions are reported:

� After Extract interrupt (with invalid slot)

� After DRM is requested to return the device information

� After the device driver is commanded to transition from active to standby

� After DRM returns an error condition on a Device prune operation

Error

Error

Card
Extract
Notify

Prune
Device

tree

Failure
Bad DRM
Prune
Operation

Failure
Bad
Driver
State
Change

Pr
un

e t
re

e

DRM
Device
Node

Pruned

Device Prune
status

Prune
Device
Status

hsem/
stmd
Driver

uninstalled

hsem/
stmd
Device
pruned

OK to
remove

card

ENUM
Driver

Extraction
Request

Set Blue Light

Blue
Light

Set
Register

Register
Status

Set Register
Status

ENUM
Driver

Extraction
Request

Register
Status

Device Prune
status

hsem/
stmd

Device &
Driver

extraction
complete

Error
Notification

HS
App
Error
Notify

Error
Notification

HS
App
Error
Notify

Device Prune
status

Success

Driver state
change status

Driver
State
Change
Status

HS
Application

Card Extract
Event

See Previous FigureSee Previous FigureSee Previous FigureSee Previous Figure
High Availablility Package User’s Guide 53

Chapter 4 - Writing High Availability Platform Applications

Writing Warm Domain Switchover Applications

Warm Domain Switchover extends the types of messages that are sent and
received, and changes nomenclature. Warm Domain Switchover can only be run on
a dual domain chassis (Motorola CPX8216).

In this case, it is necessary to use stmd (See �stmd - State Transition Management
Daemon� on page 32. for usage) as well as mdd (See �mdd - Message Distributor
Daemon� on page 31.).

During installation, the user is queried for the chassis type, whether CPX82xx or
CPX22xx/CPV12xx. If the user specifies a multiple domain chassis, stmd is the
default daemon. It is not necessary for the user to know how to start stmd or mdd.
The daemon appropriate for the chassis is installed in the ha_sim.conf
configuration file and ha_sim starts the correct daemon when invoked.

Warm Domain Switchover framework in HAP 2.0 provides only a framework for
developers to create High Availability software. The following are responsibilities
of the system designer to develop a Highly Available system:

� Selection algorithm for Active/Standby state assignment on startup

� Detection algorithm for initiation of failover

� Checkpoint and reliable communication of slot and chassis information
across domains

� Error resolution and recovery (HAP halts transitions on errors, and
provides all available information to the user for resolution

� Scripts/applications to execute during driver state transition period

� Driver code following stateful driver model (conceptual, no forced syntax

� PICMG non-compliance issues (typical here are non-standard enum or
non-standard Hot Swap model issues)

Initialization and Registration

Initialization proceeds in similar fashion as Hot Swap applications, except there are
additional queues for talking to stmd. There is an additional header file to be
included as well.

include <ha_msg.h>
include <hsem.h>
include <stmd.h>
54 High Availablility Package User’s Guide

Initialization and Registration

Setting up the message queues must take this form:

mdd_q= mq_open(MDD_QUEUE, O_WRONLY);
app_q= mq_open(“/myQ”,
O_CREAT|O_RDONLY,
creat_mod,
mq_attr,);
stmd_wr_q= mq_open(STMD_MSGQ_WR, O_RDONLY);
stmd_rd_q= mq_open(STMD_MSGQ_RD, O_WRONLY);

The message structures are the same as Hot Swap applications and it is necessary
to register with the Message Distributor (mdd).

The following state transition diagram shows how, upon startup, STMD transitions
to Cold Standby:
High Availablility Package User’s Guide 55

Chapter 4 - Writing High Availability Platform Applications
Figure 4-7: STMD Initialization (Transition to Cold Standby)

open
ENUM
device

ENUMENUMENUMENUM
DriverDriverDriverDriver

openedopenedopenedopened

Enable
ENUM
device

interrupt
s

stmdstmdstmdstmd
Initialization

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

stmdstmdstmdstmd
ENUM
device

opened

EN
UM

 device
EN

UM
 device

EN
UM

 device
EN

UM
 device

file descriptor
file descriptor
file descriptor
file descriptor

ENUM
File
Descripto
r

ENUM
interrupt
enable
status

EN
UM

EN
UM

EN
UM

EN
UM

response
response
response
response

EN
UM

 io
ct

l
EN

UM
 io

ct
l

EN
UM

 io
ct

l
EN

UM
 io

ct
l

op
en

op
en

op
en

op
en

EN
UM

 d
ri

ve
r

EN
UM

 d
ri

ve
r

EN
UM

 d
ri

ve
r

EN
UM

 d
ri

ve
r

ENUM
Device
open
failure

exitexitexitexit

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

ENUM
Interrupt
enable
failure

exitexitexitexit

DRMDRMDRMDRM
device

tree

Find
Domain
Bridge

s

DRM
node
info

Ge
t

Ge
t

Ge
t

Ge
t

DR
M

 n
od

es
DR

M
 n

od
es

DR
M

 n
od

es
DR

M
 n

od
es

DRM
DRM
DRM
DRM

response
response
response
response DRM

either
root or
domain
bridge
falilure

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

Prune
below
bridge

sPr
un

e
Pr

un
e

Pr
un

e
Pr

un
e

DR
M

 n
od

es
DR

M
 n

od
es

DR
M

 n
od

es
DR

M
 n

od
es

DRMDRMDRMDRM
Prune
tree

DRM
node
info

DRM
DRM
DRM
DRM

response
response
response
response DRM

prune
below
bridge
s
failed

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

Read/
Load

ENUM
slot

tableEN
UM

 io
ct

l
EN

UM
 io

ct
l

EN
UM

 io
ct

l
EN

UM
 io

ct
l

ENUMENUMENUMENUM
DriverDriverDriverDriver

interrupts
enabled

stmdstmdstmdstmd
ENUM
device

interrupts
enabled

stmdstmdstmdstmd
domain
bridges
known

stmdstmdstmdstmd
domain
bridges
isolated

ENUMENUMENUMENUM
DriverDriverDriverDriver

slot table

See Next FigureSee Next FigureSee Next FigureSee Next Figure
56 High Availablility Package User’s Guide

Figure 4-7 part 2 : STMD Initialization (Transition to Cold Standby)

EN
U

M
EN

U
M

EN
U

M
EN

U
M

response
response
response
response ENUM

slot
table
read/
load
failed

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

H
SC device

H
SC device

H
SC device

H
SC device

file descriptor
file descriptor
file descriptor
file descriptor

HSC
File
Descriptor

op
en

op
en

op
en

op
en

H
SC

 d
riv

er
H

SC
 d

riv
er

H
SC

 d
riv

er
H

SC
 d

riv
er open

HSC
device

HSC
device
open
failed

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

stmdstmdstmdstmd
ENUM slot

table
known

HSCHSCHSCHSC
DriverDriverDriverDriver
opened

stmdstmdstmdstmd
HSC driver

opened
Adjust

B Domain
slot

entries

ENUM
slot
table

EN
U

M
EN

U
M

EN
U

M
EN

U
M

response
response
response
response

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

ENUMENUMENUMENUM
DriverDriverDriverDriver

adjusted slot
table

stmdstmdstmdstmd
ENUM slot

table
adjusted

ENUM
slot
table
load
failed

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

H
SC

H
SC

H
SC

H
SC

Response
Response
Response
Response

Power
off
status

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

Power off
all

I/O
slots

HSCHSCHSCHSC
DriverDriverDriverDriver

Power off
slots

CardCardCardCard
PowerPowerPowerPower

offoffoffoff
ENUM#
PRESENT
for each
slot

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

Slot Pow
er

Slot Pow
er

Slot Pow
er

Slot Pow
er

off Events
off Events
off Events
off Events

Power
off
all

slots

HSCHSCHSCHSC
DriverDriverDriverDriver

slots
Powered

off

stmdstmdstmdstmd
Cold

Standby
state

Unable to
disconnect
or power
off slots

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

exitexitexitexit

See Previous FigureSee Previous FigureSee Previous FigureSee Previous Figure
High Availablility Package User’s Guide 57

Chapter 4 - Writing High Availability Platform Applications

Operation

The following table denotes STMD-related message types and the actions required.
Note that in most cases the actual names begin with STMD:

Table 4-1: State Transition Messages

Message Type Data Field Data Content Possible Results Actions

CS_TO_ACTIVE_CMD

msg CS_TO_ACTIVE SUCCESS (E_NOERR) Transition the domain
from Cold Standby to
Active; on errors, switch
other domain to active,
correct problem, and
restart system controller.

type COMMAND E_ENABLE_ENUM

msg_data none E_TAKE_BUS_SLOTS

CS_TO_ACTIVE_RESP

msg CS_TO_ACTIVE E_PWRON

type RESPONSE E_GET_DRM_INFO

msg_tag E_HSC_REGISTER

status E_ENUM_REGISTER

errnum E_PWROFF

errstr E_DRM_INSERT

slot_mask

num_cards

CS_TO_WS_CMD

msg CS_TO_WS

SUCCESS (E_NOERR)

Domain state is changed
but no error conditions
are possible (errors, if
any, come on insert
actions).

type COMMAND

msg_data none

CS_TO_WS_RESP

msg CS_TO_WS

type RESPONSE

msg_tag

status

errnum

errstr
58 High Availablility Package User’s Guide

Operation
WS_TO_ACTIVE_CMD

msg WS_TO_ACTIVE SUCCESS (E_NOERR) Domain state is changed;
on error, correct problem
and reset system
controller.

type COMMAND E_ENABLE_ENUM

msg_data none E_DISABLE_ARBITRATION

WS_TO_ACTIVE_RESP

msg WS_TO_ACTIVE E_HSC_REGISTER

type RESPONSE E_ENUM_REGISTER

msg_tag E_TAKE_BUS_SLOTS

status E_SYSCTL

errnum E_DRIVER_ENABLE

errstr E_ENABLE_ARBITRATION

E_DRIVER_ENABLE_ISR

ACTIVE_TO_WS_CMD

msg ACTIVE_TO_WS SUCCESS (E_NOERR) Domain state is changed;
on error correct problem
and or reset system
controller, in either case,
accompany with other
side transitioning from
Warm Standby to Active.

type COMMAND E_HSC_DEREGISTER

msg_data none E_ENUM_DEREGISTER

ACTIVE_TO_WS_RESP

msg WS_TO_ACTIVE E_DRIVER_STANDBY

type RESPONSE E_DRIVER_DISABLE_ISR

msg_tag E_DISABLE_ARBITRATION

status E_ENUM_DISABLE

errnum

errstr

GET_SYSTEM_STATE_
CMD

msg
GET_SYSTEM_ST
ATE

SUCCESS (E_NOERR)
Application use
information

type COMMAND

msg data is
STATE_COLD, STATE_WS,
or STATE_ACTIVE

msg_data none

GET_SYSTEM_STATE_
RESP

msg
GET_SYSTEM_ST
ATE

type RESPONSE

msg_data

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content Possible Results Actions
High Availablility Package User’s Guide 59

Chapter 4 - Writing High Availability Platform Applications
CARD_INSERT_CMD

msg CARD_INSERT SUCCESS (E_NOERR) Open (application) the
device and perform
needed operations; on
error, extract card,
correct problem, and re-
insert. Switch to backup
domain if operation is
critical.

type COMMAND E_INVALID_SLOT

msg_data
card_inserted
_s

E_UNHEALTHY_CARD

slot_num <slot no.> E_PUSH_DRM_INFO

vendor_id E_SYSCTL

device_id E_DRIVER_NOT_FOUND

CARD_INSERT_RESP

 msg CARD_INSERT E_DRIVER_INSTALL

type RESPONSE E_DRIVER_STANDBY

msg_data card_id_s E_PWRON

slot_num <slot no.>

CARD_REMOVE_CMD

msg CARD_REMOVE SUCCESS (E_NOERR) Complete pending
operations and close
(application) the device.type COMMAND E_INVALID_SLOT

msg_data <slot no.> E_DRIVER_STANDBY

CARD_REMOVE_RESP

msg CARD_REMOVE E_DRIVER_DISABLE_ISR

type RESPONSE E_DRIVER_NOT_FOUND

msg_data card_id_s E_DRIVER_UNINSTALL

slot_num <slot no.> E_DRM_PRUNE

GET_SLOT_ENTRY_CM
D

msg
GET_SLOT_ENTR
Y

SUCCESS (E_NOERR)

Application use
information

type COMMAND

msg_data <slot no.>

GET_SLOT_ENTRY_RE
SP

msg
GET_SLOT_ENTR
Y

type RESPONSE

msg_data slot_entry_s

device_ident
[16]

device_ident_
s

busno

funcno

vendor_id

device_id

drm_info char*

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content Possible Results Actions
60 High Availablility Package User’s Guide

Operation
GET_VERSION_CMD

msg GET_VERSION

SUCCESS (E_NOERR)

Application use
information

type COMMAND

msg_data none

GET_VERSION_RESP

msg GET_VERSION

type RESPONSE

msg_data version_s

unused char

major_versio
n

char

minor_versio
n

char

maint_versio
n

char

TRACE_CMD

msg TRACE

SUCCESS (E_NOERR)

Application gets
messages tracing STMD
operationstype COMMAND

msg_data
=1 trace on,
0, off

TRACE_RESP

msg TRACE

type RESPONSE

msg_data none

FAILURE_NOTIFY msg FAILURE
event can be one of
the following:

Application may handle
the conditions listed in
Table on page 44.

type NOTIFICATION ASYNC_INSERTION

msg_data consists of ASYNC_EXTRACTION

event int CS_TO_ACTIVE_TRANS

INIT

PROCESS_MSGQ

ERROR_INTERNAL

E_ENUM_COMPLETE_EVENT

E_ENUM_READ_SLOT_TABL
E

ERROR_GET_DRM_INFO

CATCHALL

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content Possible Results Actions
High Availablility Package User’s Guide 61

Chapter 4 - Writing High Availability Platform Applications

The following table shows the various error notifications and their causes:

Table 4-2: State Transition Management Error Notifications

Error Name Error Strings Meaning

SUCCESS (E_NOERR) none
The action completed successfully (no error
occurred).

E_PWROFF
“Unable to power off slot”
“Unable to disconnect slot”

During initialization, CS_TO_ACTIVE state
transition, hot insert or extract , if STMD is
unable to power off or disconnect a slot, this
message error is issued.

E_PWRON
“Unable to power on slot”
“Unable to connect slot”

In CS_TO_ACTIVE or CARD_INSERT,
STMD returns this status if it is unable to
power on or connect.

E_RELEASE_BUS_SLOTS none Unused

E_TAKE_BUS_SLOTS none
In CS_TO_ACTIVE and HS_TO_ACTIVE,
if STMD is unable to command hsc to take
control of given bus slots.

E_HSC_OPEN

“stmd_wds_init: Unable to
open /dev/hsc0. Possible
problems: permissions, non-
root user, HSC driver not
loaded”

See error string.

E_DRM_TRAVERSE none Unused

E_DRIVER_INSTALL
"install_drivers_for_slot_no
des: error installing driver
for vid nn did nn slot nn”

The driver installation script returned an
error.

E_DRIVER_ENABLE
The character special file
name

The driver enable script returned an error.

E_DRIVER_NOT_FOUND none
The STMD tables did not contain driver
quiesce and/or uninstall scripts.

E_MKNOD none Unused

E_DRIVER_OPEN none Unused

E_ENABLE_ARBITRATION
“Error clearing LOCK bit in
HSC”

STMD failed to enable arbitration in
HS_TO_ACTIVE state change.

E_DISABLE_ARBITRATION
“Error setting LOCK bit in
HSC”

In HS_TO_ACTIVE and ACTIVE_TO_HS
state changes, STMD failed to disable
arbitration.

E_DRIVER_QUIESCE none Unused

E_FLUSH_FIFOS

“Error from get_drm_root()
call”
“Error from read_pci_node()
call”

In ACTIVE_TO_HS, there was an error in
flushing bridge FIFOs.
62 High Availablility Package User’s Guide

Operation
E_SYSCTL

"process_insertion:
get_drm_root returned error"
"process_insertion:
probe_drm_node returned
error"
"process_insertion: Unable to
select DRM subtree"
"process_insertion: Unable to
alloc DRM subtree"
"process_insertion:
pci_get_complete_node for
slot node returned error"
"find_new_node: get_drm_root
returned error"
"find_new_node:
get_next_drm_node returned
error"
"find_new_node:
pci_get_complete_node
returned error"
"find_new_node: domain bridge
has no child"
"find_new_node: get_drm_child
returned error"
"find_new_node:
pci_get_complete_ node
returned error"
"install_drivers_for_slot_no
des: pci_get_complete_node
returned error"
"main: prune domainA returned
error"
"main: prune domainB returned
error"
find_domain_bridges:
get_drm_root returned error”
"drm_program_pci_bridges:
get_drm_root returned error"
"drm_program_pci_bridges:
get_next_drm_node returned
error"
"drm_program_pci_bridges:
pci_get_complete_node
returned error"
"drm_program_pci_bridges:
PCI_PROGRAM_BUSNODE returned
error"

process_insertion:
find_new_node:
install_drivers_for_slot_nodes
:
main:
find_domain_bridges:
drm_program_pci_bridges:
error return from a sysctl()
(DRM) call

E_DRIVER_BOOT none Unused

E_GET_DRM_INFO
“process_st_insertion:
get_drm_partial_tree call
failed”

process_insertion: Failed to get DRM
information about the inserted line card.

E_PUSH_DRM_INFO
“Possible problem: wrong
length”

stmd_hs_card_insert: Failed to push
DRM information about a line card into the
standby.

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name Error Strings Meaning
High Availablility Package User’s Guide 63

Chapter 4 - Writing High Availability Platform Applications
E_DISABLE_CPCI_INTR
"Possible cause: sysctl not
up to date"

stmd_wds_hs_to_active: unable to
disable cPCI interrupts.

E_ENABLE_CPCI_INTR
"Possible cause: sysctl not
up to date"

stmd_wds_hs_to_active: unable to
enable cPCI interrupts.

E_RESET_CPU none Unused

E_ERROR_LEVEL none Unused

E_DISABLE_ENUM

“Unable to turn off PROP
ENUM”
“Unable to turn off ENUM A
MASK”
“Unable to turn off ENUM B
MASK”

Initialization:
stmd_wds_active_to_hs:
Failed to turn off ENUM interrupts in the
HSC.

E_ENABLE_ENUM

“Unable to turn on PROP ENUM”
“Unable to turn on ENUM A
MASK”
“Unable to turn on ENUM B
MASK”

stmd_wds_cs_to_active:
stmd_wds_hs_to_active:
Reason - Failed to turn on ENUM interrupts
in the HSC.

E_DRIVER_UNINSTALL
command line of the driver
uninstall script

uninstall_drivers_in_slot: Driver
uninstall script returned error.

E_DRM_PRUNE slot number DRM PRUNE operation failed.

E_DRM_INSERT

“Error inserting local domain
bridge”
“Error inserting remote
domain bridge”

stmd_wds_cs_to_active:
Inserting either the local or the remote
domain bridge failed during
CS_TO_ACTIVE.

E_HSC_REGISTER none
In CS_TO_ACTIVE & HS_TO_ACTIVE,
the call to hsc_SetEventFunction()
to set an event handler failed.

E_HSC_DEREGISTER none
In ACTIVE_TO_HS, the call to
hsc_SetEventFunction() to clear the
event handler failed.

E_INSERT_CARD none Unused

E_NEW_CARD
“find_new_node: Unable to
find node”

STMD was unable to find in DRM and nodes
that corresponded to the inserted line card.

E_UNKNOWN_MESSAGE none Unused

E_NOT_CMD none
The msg_type field in the received
message was not STMD_CMD.

E_SYSTEM_STATE
“active state”
“cold state”
“warm standby state”

The requested operation is not possible in the
state STMD is in.

E_WRONG_SLOT none A wrong slot number is passed in.

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name Error Strings Meaning
64 High Availablility Package User’s Guide

Operation
E_DOMAIN_BRIDGE
“find_new_node: could not
find domain bridge”

STMD failed to find the correct domain
bridge while traversing the DRM tree after a
line card insertion.

E_MQ_NOTIFY
“Unable to set up message
queue notification signal:
errno = <errno>"

The call to mq_notify() to set up
message queue notification failed.

E_SIGACTION output of strerror The call to sigaction() failed.

E_SYNC_SIGNAL “Received signal <signo>”
STMD received a SIGILL, SIGFPE,
SIGBUS, or SIGSEGV.

E_CFG_OPEN none
stmd_hs_init: Failed to open the STMD
config file

E_GET_SLOT_TBL none
stmd_hs_init: Failed to read the slot
table from the STMD config file.

E_GET_DRV_TBL none
stmd_hs_init: Failed to read the drivers
table from the STMD config file.

E_MQ_RECEIVE none
process_stmd_msg: The call to
mq_receive() failed.

E_HSC_GET_DOMAIN_ID none Unused

E_ENUM_SCAN none
Unable to scan for ENUM event after
receiving SIGALRM.

E_ENUM_GET_EVENT none
ioctl to get ENUM event in the ENUM
event handler returns error.

E_DRIVER_STANDBY
Special device file name of
driver

Driver standby script returned error.

E_DRIVER_ENABLE_ISR
Special device file name of
driver

Driver enable ISR script returned error.(no
longer used).

E_DRIVER_DISABLE_ISR
Special device file name of
driver

Driver disable ISR script returned error.(no
longer used).

E_ENUM_REGISTER none

stmd_wds_cs_to_active:
stmd_wds_hs_to_active
attempt to register for ENUM interrupts
failed.

E_ENUM_DEREGISTER none
stmd_wds_active_to_hs:
Attempt to deregister for ENUM interrupts
failed.

E_ENUM_READ_SLOT_TABLE none
Initialization: unable to read slot table from
enum driver.

E_ENUM_LOAD_SLOT_TABLE none
Initialization:
stmd_hs_card_insert:
unable to download slot table to enum driver.

E_ENUM_COMPLETE_EVENT none ENUM ioclt failed during insertion.

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name Error Strings Meaning
High Availablility Package User’s Guide 65

Chapter 4 - Writing High Availability Platform Applications

State Transitions

This section details various state transitions used.

Cold Standby to Active
The following state diagram describes the Cold Standby to Active domain state
transition:
66 High Availablility Package User’s Guide

Cold Standby to Active
Figure 4-8 part 2: Cold Standby to Active State Transition Diagram

ErrorErrorErrorError

ErrorErrorErrorError

Reset
PCI

Bridge
locks

CS to
Active

Com-
mand

HSCHSCHSCHSC
DriverDriverDriverDriver

Reset Bridge
locks

stmdstmdstmdstmd
CS to Active
Command

Set
Interrupt
mask
status

Turn on
PROP_ENUM,PROP_ENUM,PROP_ENUM,PROP_ENUM,

ENUM_A_MASKENUM_A_MASKENUM_A_MASKENUM_A_MASK

and
ENUM_B_MASKENUM_B_MASKENUM_B_MASKENUM_B_MASK

HSHSHSHS
AppAppAppApp

Initiate
CS to

Active

HSHSHSHS
AppAppAppApp
Error
Notify

Bridge
A or B
lock
reset
fails

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 d

riv
er

EN
U

M
 d

riv
er

EN
U

M
 d

riv
er

EN
U

M
 d

riv
er

si
gn

al
si

gn
al

si
gn

al
si

gn
al

Write
Status

W
rit

e
W

rit
e

W
rit

e
W

rit
e

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

I/OI/O I/O
I/O

status
status
status
status

HSCHSCHSCHSC
DriverDriverDriverDriver
Bridge
locks
reset

Lock
reset
status

Slot info read
Slot info read
Slot info read
Slot info read

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC status

H
SC status

H
SC status

H
SC status

Error N
otification

Error N
otification

Error N
otification

Error N
otification

HSC Set
Interrupt
mask
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otificationRegister

for HSC
eventsH

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l

HSC
Interrupt
registration
status

H
SC status

H
SC status

H
SC status

H
SC status

ErrorErrorErrorError

HSC
Interrupt
register
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otificationRegister

for ENUM
events

ENUM
Interrupt
registration
status

EN
U

M
 status

EN
U

M
 status

EN
U

M
 status

EN
U

M
 status

ErrorErrorErrorError

ENUM
Interrupt
register
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otification

stmdstmdstmdstmd
Bridge locks

reset

HSCHSCHSCHSC
DriverDriverDriverDriver

Interrupt mask
set

stmdstmdstmdstmd
HSC interrupt

masks set

HSCHSCHSCHSC
DriverDriverDriverDriver
stmd

registered for
interrupts

stmdstmdstmdstmd
HSC interrupts

registered

ENUMENUMENUMENUM
DriverDriverDriverDriver
stmd

registered for
interrupts

stmdstmdstmdstmd
ENUM

interrupts
registered

HSCHSCHSCHSC
Bridges A

& B

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

Power off
all

I/O
slots

HSCHSCHSCHSC
DriverDriverDriverDriver

Power off
slots

CardCardCardCard
PowerPowerPowerPower

offoffoffoff

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

Power
off
all

slots

ST
M

D
 w

ri
te

ST
M

D
 w

ri
te

ST
M

D
 w

ri
te

ST
M

D
 w

ri
te

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

Write directly to
bridges

A & B resetting
locks

See Next FigureSee Next FigureSee Next FigureSee Next Figure
High Availablility Package User’s Guide 67

Chapter 4 - Writing High Availability Platform Applications
Figure 4-8 part 2: Cold Standby to Active State Transition Diagram

On receiving a STMD_CS_TO_ACTIVE message, the system:

� Enables arbitration

� Enables CompactPCI interrupts

� Sets PROP_ENUM, ENUM_A_MASK, and ENUM_B_MASK to 1

� Takes control of both domains

� Powers all slots on

H
SC Response

H
SC Response

H
SC Response

H
SC Response

Power
off
status

ENUM#
PRESENT
for each
slot

Slot Pow
er

Slot Pow
er

Slot Pow
er

Slot Pow
er

off Events
off Events
off Events
off Events

HSCHSCHSCHSC
DriverDriverDriverDriver

slot table
filled

stmdstmdstmdstmd
slots

powered off

Unable to
disconnect
or power
off slots

ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otification

Scan
HSC
slot

tableH
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

HSCHSCHSCHSC
DriverDriverDriverDriver

slot
table HSC

slot
table
entries

H
SC status

H
SC status

H
SC status

H
SC status

stmdstmdstmdstmd
slot table

filled

Unable to
retrieve
slot table
from HSC

ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otification

Insert
Domain
bridges
in DRMD

RM
 s

ys
ct

l
D

RM
 s

ys
ct

l
D

RM
 s

ys
ct

l
D

RM
 s

ys
ct

l

DRMDRMDRMDRM
device info

tree
DRM
return
status

D
RM

 status
D

RM
 status

D
RM

 status
D

RM
 status

stmdstmdstmdstmd
domain
bridges

configured

Unable to
configure
Domain
Bridge
in DRM ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error N
otification

Error N
otification

Error N
otification

Error N
otification

CS to Active
Success
(includes
slot count)

SuccessSuccessSuccessSuccess

Get card
info for
bridges

from DRMD
RM

 s
ys

ct
l

D
RM

 s
ys

ct
l

D
RM

 s
ys

ct
l

D
RM

 s
ys

ct
l

DRMDRMDRMDRM
device info

tree DRM
return
info
&
status

D
RM

 status
D

RM
 status

D
RM

 status
D

RM
 status

stmdstmdstmdstmd
domain bridge

data

Card
insert
notify
for
bridges

Error N
otification

Error N
otification

Error N
otification

Error N
otification

HSHSHSHS
appappappapp

Bridges
configured

HSHSHSHS
AppAppAppApp

Active
state

STM
D

 read
STM

D
 read

STM
D

 read
STM

D
 read

m
sg queue

m
sg queue

m
sg queue

m
sg queue

CardCardCardCard
PowerPowerPowerPower

offoffoffoff

See Previous FigureSee Previous FigureSee Previous FigureSee Previous Figure
68 High Availablility Package User’s Guide

Cold Standby to Warm Standby

� Registers for HSC events

� Registers with the ENUM driver

� Adds the enum driver signal and the HSC driver signal to the signal list

� Powers all slots off. Since the slots were previously powered on, this
causes the PRESENT bit to raise an interrupt

� Scans all slots for the PRESENT bit. Builds slot mask and number of
cards. This is sent with the return status in the STMD_CS_TO_ACTIVE
response message

� Inserts nodes into the DRM tree for the local and remote domain bridges

� Sends the STMD_CS_TO_ACTIVE response message

� Sends STMD_CARD_INSERT messages for the domain bridges, if unable
to get DRM node, sends STMD_ERROR_GET_DRM_INFO notification

Cold Standby to Warm Standby
The following state diagram describes the Cold Standby to Warm Standby domain
state transition:

Figure 4-9: Cold Standby to Warm Standby State Transition Diagram

This is completed on receiving a STMD_CS_TO_WS message.

There is no explicit Cold to Warm Standby transition. Slot and DRM information is
passed in parts from Active to Standby. The Active side notifies the Standby side
that it has the entire static configuration and that it must now transition into the
Standby state. It uses the message STMD_CS_TO_WS to do this. The Standby STMD

Cold
Standby

 to Warm
Standby

Command

HSHSHSHS
AppAppAppApp

Initiate
CS to

Active

Cold
Standby
to Warm
Standby
Success

STM
D read

STM
D read

STM
D read

STM
D read

m
sg queue

m
sg queue

m
sg queue

m
sg queue

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

HSHSHSHS
AppAppAppApp

Warm Standby
state

stmdstmdstmdstmd
Set state to

Warm
Standby
High Availablility Package User’s Guide 69

Chapter 4 - Writing High Availability Platform Applications

then sets an internal variable to indicate that it is in Warm Standby state and sends
a STMD_CS_TO_WS response with the return status.

Active to Warm Standby
Figure 4-10 part 1 describes the Active to Warm Standby domain state transition:

Figure 4-10 part 1 : Active to Warm Standby State Transition

ErrorErrorErrorError

ErrorErrorErrorError

Deregister
for HSC
events

Active
to

Warm
Standby

Command
HSCHSCHSCHSC

DriverDriverDriverDriver
Deregister

STMD

stmdstmdstmdstmd
Active to

Warm
Standby

Command

ENUM
Deregister
status

Deregister
for ENUM

events

HSHSHSHS
AppAppAppApp

Initiate
Active to Warm

Standby

HSHSHSHS
AppAppAppApp
Error
Notify

Failure
to
Deregister
HSC

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

HSC
Deregister
status

H
SC status

H
SC status

H
SC status

H
SC status

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

EN
U

M
 io

ct
l

H
SC status

H
SC status

H
SC status

H
SC status

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Failure
to
Deregister
ENUM

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Transition
all drivers

to standby

D
riv

er
 s

cr
ip

t
D

riv
er

 s
cr

ip
t

D
riv

er
 s

cr
ip

t
D

riv
er

 s
cr

ip
t

Driver
state
transition
script
status

D
river Script

D
river Script

D
river Script

D
river Script

ErrorErrorErrorError

Driver(s)
failed to
transition
from active
to standby

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

stmdstmdstmdstmd
HSC events

deregist-
ered

ENUMENUMENUMENUM
DriverDriverDriverDriver

Deregister
STMD

stmdstmdstmdstmd
ENUM
events

Deregist-
ered

STMDSTMDSTMDSTMD
awareawareawareaware
DriverDriverDriverDriver
standby

state

stmdstmdstmdstmd
Drivers in
standby

state

ST
M

D
 w

rit
e

ST
M

D
 w

rit
e

ST
M

D
 w

rit
e

ST
M

D
 w

rit
e

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

HSCHSCHSCHSC
DriverDriverDriverDriver

SSSSet Bridge
locks

W
rit

e
W

rit
e

W
rit

e
W

rit
e

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Write
directly

to bridges
A & B

setting
locks

HSCHSCHSCHSC
Bridges A

& B

Disable
arbitration

H
SC

 io
ct

l
H

SC
 io

ct
l

H
SC

 io
ct

l
H

SC
 io

ct
l

See Next FigureSee Next FigureSee Next FigureSee Next Figure
Write
Status
70 High Availablility Package User’s Guide

Active to Warm Standby
Figure 4-10 part 2 : Active to Warm Standby State Transition

The system performs the following on receipt of STMD_ACTIVE_TO_WS message:

1. Deregisters for HSC events

2. Deregisters for ENUM events

3. Removes the HSC driver signal and the ENUM driver signal from the signal
list

4. Quiesces the list of installed drivers by calling the standby script for each
driver

5. Disables arbitration

6. Flushes the FIFOs in all the PCI-to-PCI bridges by traversing the DRM
tree and reading the bridge's config space

7. Sends a STMD_ACTIVE_TO_WS response with the return status

8. Sets PROP_ENUM, ENUM_A_MASK, and ENUM_B_MASK to 0

Unable to
clear
HSC
mask bits Error

HS
App
Error
Notify

E
rro

r
N

o
tifica

tio
n

Active to
Warm
Standby
Success

Success

S
T

M
D

re
a
d

 m
sg

q
u

e
u

e
Write
Status

Lock
set
status

stmd
arbitration
disabled Error

HSC
Set
bridge
locks
fails

HS
App
Error
Notify

E
rro

r
N

o
tifica

tio
n

HSC
Driver
Bridge
locks
set

I/
O

sta
tu

s

S
lo

t in
fo

re
a
d

DRM
read
node
status

Flush
Fifo's

D
R

M
sy

sc
tl

stmd
Fifo's

flushed
D

R
M

sta
tu

s

DRM
Read PCI

bridge
nodes

Clear
PROP_ENUM,

ENUM_A_MASK
and

ENUM_B_MASKH
S

C
 i
o

ct
l

HSC
STMD
mask
bits

cleared HSC
Clear
mask
status

H
S

C
sta

tu
s

stmd
HSC

enum's
disabled

Error

Unable
to
flush
fifo's

HS
App
Error
Notify

E
rro

r
N

o
tifica

tio
n

HS
App
Warm

Standby

See Previous FigureSee Previous FigureSee Previous FigureSee Previous Figure
High Availablility Package User’s Guide 71

Chapter 4 - Writing High Availability Platform Applications

Warm Standby to Active
The following diagram describes the Warm Standby to Active domain state
transition::

Figure 4-11 part 1 : Warm Standby to Active State

ErrorErrorErrorError

CS to
Active
Com-
mand

stmdstmdstmdstmd
CS to Active

Command

Set
Interrupt
mask
status

Turn on
PROP_ENUM,PROP_ENUM,PROP_ENUM,PROP_ENUM,

ENUM_A_MASKENUM_A_MASKENUM_A_MASKENUM_A_MASK
and

ENUM_B_MASKENUM_B_MASKENUM_B_MASKENUM_B_MASK

HSHSHSHS
AppAppAppApp

Initiate
CS to

Active

EN
UM

 io
ct

l
EN

UM
 io

ct
l

EN
UM

 io
ct

l
EN

UM
 io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

HSC Set
Interrupt
mask
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Register
for HSC
events

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

HSC
Interrupt
registration
status

ErrorErrorErrorError

HSC
Interrupt
register
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Register
for ENUM

events

ENUM
Interrupt
registration
status

EN
UM

 status
EN

UM
 status

EN
UM

 status
EN

UM
 status

ErrorErrorErrorError

ENUM
Interrupt
register
fails

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

HSCHSCHSCHSC
DriverDriverDriverDriver

Interrupt
mask

set

stmdstmdstmdstmd
HSC

interrupt
masks set

HSCHSCHSCHSC
DriverDriverDriverDriver
stmd

registered for
interrupts

stmdstmdstmdstmd
HSC interrupts

registered

ENUMENUMENUMENUM
DriverDriverDriverDriver
stmd

registered for
interrupts

stmdstmdstmdstmd
ENUM

interrupts
registered

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l Take

control
of I/O

Domains

HSCHSCHSCHSC
DriverDriverDriverDriver

Take A & B
slotsCard BusCard BusCard BusCard Bus

slotsslotsslotsslots
controlled

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

Sl
ot

 P
ow

er
Sl

ot
 P

ow
er

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

of
f E

ve
nt

Take
control

of all
A & B

I/O slots

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

HSCHSCHSCHSC
DriverDriverDriverDriver

SSSSet Bridge
locks

Write
Status

W
ri

te
W

ri
te

W
ri

te
W

ri
te

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

I/OI/O I/OI/O
status
status
status
status

HSCHSCHSCHSC
DriverDriverDriverDriver
Bridge
locks

set

Lock
set
status

Slot info read
Slot info read
Slot info read
Slot info read

Write
directly

to bridges
A & B

setting
locksHSCHSCHSCHSC

Bridges A
& B

Disable
arbitration

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

stmdstmdstmdstmd
arbitration

disabled

ErrorErrorErrorError

HSC Set
bridge
locks
fails

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

HSC status
HSC status
HSC status
HSC status

HSC status
HSC status
HSC status
HSC status

Bus
State
Registers See Next FigureSee Next FigureSee Next FigureSee Next Figure
72 High Availablility Package User’s Guide

Warm Standby to Active
Figure 4-11 part 2 : Warm Standby to Active State

The system performs the following on receipt of STMD_WS_TO_ACTIVE message:

1. Sets PROP_ENUM, ENUM_A_MASK, and ENUM_B_MASK to 1

2. Disables arbitration

3. Disables interrupts from the CompactPCI domains by turning them off in
the MPIC

4. Registers for HSC events. This is to capture PRESENT events

5. Registers for ENUM events

HSC
HSC
HSC
HSC

Response
Response
Response
Response

Slot
Control
Status

Card BusCard BusCard BusCard Bus
slotsslotsslotsslots

controlled Bus
State
Registers

Slot Pow
er

Slot Pow
er

Slot Pow
er

Slot Pow
er

off Events
off Events
off Events
off Events

HSCHSCHSCHSC
DriverDriverDriverDriver

all I/O slots
controlled

stmdstmdstmdstmd
bus slots

controlled

Unable to
take
control
of I/O
domains ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Program
PCI

bridges

DRMDRMDRMDRM
PCI bridges

DRM
bridge
control
status

stmdstmdstmdstmd
PCI bridges

pro-grammed

Unable to
program
PCI
bridges ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otificationTransition

all slot
drivers

to activeSTMD awareSTMD awareSTMD awareSTMD aware
driversdriversdriversdrivers
device
active Driver

state
change
status

DRM
 status

DRM
 status

DRM
 status

DRM
 status

stmdstmdstmdstmd
devices
active

Unable to
change
driver
state to
active ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Warm
Standby
 to Active
Success
(includes
slot count) SuccessSuccessSuccessSuccess

STM
D read

STM
D read

STM
D read

STM
D read

m
sg queue

m
sg queue

m
sg queue

m
sg queue

HSHSHSHS
AppAppAppApp

Active
state

DR
M

 s
ys

ct
l

DR
M

 s
ys

ct
l

DR
M

 s
ys

ct
l

DR
M

 s
ys

ct
l

DRM
 status

DRM
 status

DRM
 status

DRM
 status

De
vi

ce
De

vi
ce

De
vi

ce
De

vi
ce

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

HSCHSCHSCHSC
DriverDriverDriverDriver

Clear Bridge
locks

Write
Status

W
ri

te
W

ri
te

W
ri

te
W

ri
te

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

Re
gi

st
er

I/OI/O I/O
I/O

status
status
status
status

HSCHSCHSCHSC
DriverDriverDriverDriver
Bridge
locks

cleared

Lock
clear
status

Slot info read
Slot info read
Slot info read
Slot info read

Write
directly

to bridges
A & B

clearing
locks

HSCHSCHSCHSC
Bridges A

& B

Enable
arbitration

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

stmdstmdstmdstmd
arbitration

enabled

Unable to
enable
arbitration ErrorErrorErrorError

HSHSHSHS
AppAppAppApp
Error
Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

See Previous FigureSee Previous FigureSee Previous FigureSee Previous Figure
High Availablility Package User’s Guide 73

Chapter 4 - Writing High Availability Platform Applications

6. Adds the HSC driver signal and the ENUM driver signal to the signal list

7. Takes control of both domains. The domain bridges now become visible

8. Programs the domain bridges with the information already in the DRM
nodes that were pushed before

9. Goes through the list of installed drivers and enables all of them by
calling the active script for each driver

10. Enables arbitration

11. Enables interrupts from the CompactPCI domains by turning them on in
the MPIC

12. Sends a STMD_WS_TO_ACTIVE response

Hot Insertion
Hot Insertion can take these different forms:

� Bottom Up Hot Insertion on the Active Domain

� Application initiated Hot Insertion on a Warm Standby Domain

Bottom Up Hot Insertion on the Active Domain

The state transition for this transition are presented in Figure 4-5 part 1,
�Successful Hot Insertion State,� on page 50.

1. STMD gets a signal from the ENUM driver; this can happen only on the
active side.

2. Get the event from the ENUM driver.

3. Check the HEALTHY bit for the slot; if it is not set, power down the slot,
set the slot status to CARD_UNHEALTHY, send a STMD_CARD_UNHEALTHY
message and return.

4. Have DRM find all the devices and bridges in the slot by calling
CMD_PROBE.

NOTE: If any errors occur during the transition from Warm Standby to Active, the
system will be left in an undefined state. No attempt is made to restore the system
to its original state.
74 High Availablility Package User’s Guide

Hot Insertion

5. Starting with the root of the subtree corresponding to the card in the slot,

do the following for each node in the tree:

- CMD_SELECT and CMD_ALLOC the node.

- Install the driver corresponding to the node by calling the driver
installation script.

- Bring the driver to standby by calling the driver standby script.

- Enable the driver by calling the driver active script.

- Update the drv_info structure.

- Update the slot table.

6. Set the slot state to CARD_INSERTED.

7. Send a STMD_CARD_INSERT message to stmd_msgq_rd.
High Availablility Package User’s Guide 75

Chapter 4 - Writing High Availability Platform Applications

Application-Initiated Hot Insertion on a Warm Standby Domain

Because there can be no bottom up hot insertion on the Standby Side, insertion
must be initiated by the application itself. The following shows the state transitions
requirements:

Figure 4-12: Application-Initiated Hot Insertion

ErrorErrorErrorError

Insert
Card

Command

stmdstmdstmdstmd
Insert Card
Command

DRM
push
info
status

Push
DRM

Info

HSHSHSHS
AppAppAppApp

Initiate
Card

Insertion

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

HSC status
HSC status
HSC status
HSC status

Driver
Install
script
error

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Power
on slot

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

DRMDRMDRMDRM
Device

tree
info

stmdstmdstmdstmd
DRM

node info set

stmdstmdstmdstmd
slot

powered

Card
Inserted

SuccessSuccessSuccessSuccess

STM
D read

STM
D read

STM
D read

STM
D read

m
sg queue

m
sg queue

m
sg queue

m
sg queue

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

HSHSHSHS
AppAppAppApp

Active
state

Slot info read
Slot info read
Slot info read
Slot info read

Transition
drivers to

standby

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

s tmdstmdstmdstmd
drivers

in standby ErrorErrorErrorError

Driver
Standby
script
error

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

STMD awareSTMD awareSTMD awareSTMD aware
driversdriversdriversdrivers

driver
standby Driver

state
transition
status

HSCHSCHSCHSC
DriverDriverDriverDriver

slot Power
bit

ErrorErrorErrorError

DRM
push
info
error

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

s tmdstmdstmdstmd
DRM

node info set

Slot info read
Slot info read
Slot info read
Slot info read

Install
drivers

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

STMD awareSTMD awareSTMD awareSTMD aware
driversdriversdriversdrivers

driver
Inactive Driver

install-
ation
status

Always
Succeeds

HSC status
HSC status
HSC status
HSC status
76 High Availablility Package User’s Guide

Hot Extraction

These steps are completed on receiving a STMD_CARD_INSERT command
message:

1. Update the slot table entry

2. Call push_drm_info() to push the DRM node into the standby tree.
push_drm_info() returns the root of the pushed subtree

3. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Look for a driver for the vendor_id, device_id pair in the node.
Install the driver corresponding to it. Execute the standby script in
order to bring the driver to standby state

- Update the drv_info structure

- Update the slot table

4. Send a STMD_CARD_INSERT response with the return status

Hot Extraction
Hot Extraction can take these different forms:

� Bottom Up Hot Extraction on the Active Domain.

� Application initiated Hot Extraction on a Warm Standby Domain.

Bottom Up Hot Extraction on the Active Domain

The state transitions for this transition is presented in Figure 4-6 part 1, �Card
Extraction State,� on page 52.

1. STMD gets a signal from the ENUM driver. This can happen only on the
active side.

2. Get the event from the ENUM driver.

3. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Call driver standby script. Wait for the response. If error, flag an
asynchronous error STMD_ERROR_QUIESCE and return.

- Uninstall the driver by calling the driver uninstallation script.

- Update drv_info.
High Availablility Package User’s Guide 77

Chapter 4 - Writing High Availability Platform Applications

4. Prune the DRM subtree.

5. Set the slot state to CARD_EXTRACTED.

6. Update the slot table.

7. Turn off power to the slot.

8. Send message STMD_CARD_REMOVE.
78 High Availablility Package User’s Guide

Hot Extraction

Application-Initiated Hot Extraction on a Warm Standby Domain

Because there can be no bottom up Hot Extraction on the Standby Side, extraction
must be initiated by the application itself. The following figure shows the required
state transitions:

Figure 4-13: Application-Initiated Hot Extraction

ErrorErrorErrorError

Extract
Card

Command

stmdstmdstmdstmd
Extract Card

Command

DRM
prune
info
status

Prune
device

info
tree

HSHSHSHS
AppAppAppApp

Initiate
Card

Extraction
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l

DRM
prune
info
error

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Power
off slot

DRMDRMDRMDRM
Device

tree
info

stmdstmdstmdstmd
DRM

node info
removed

stmdstmdstmdstmd
slot

power off

Card
Extracted

STM
D read

STM
D read

STM
D read

STM
D read

m
sg queue

m
sg queue

m
sg queue

m
sg queue

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

ST
M

D
w

ri
te

m
sg

 q
ue

ue
m

sg
 q

ue
ue

m
sg

 q
ue

ue
m

sg
 q

ue
ue

HSHSHSHS
AppAppAppApp
Card

Extracted

HSCHSCHSCHSC
DriverDriverDriverDriver

Slot Power
bit off

Slot info read
Slot info read
Slot info read
Slot info read

transition
drivers to

standby
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts

stmdstmdstmdstmd
drivers

in standby

STMD awareSTMD awareSTMD awareSTMD aware
driversdriversdriversdrivers
driver

standby Driver
state
transition
status

ErrorErrorErrorError

Device
driver
script
errors

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Slot info read
Slot info read
Slot info read
Slot info read

Uninstall
driver

stmdstmdstmdstmd
drivers

uninstalled

STMD awareSTMD awareSTMD awareSTMD aware
driversdriversdriversdrivers
driver

uninstalled Driver
uninstall
status

ErrorErrorErrorError

Device
driver
script
errors

HSHSHSHS
AppAppAppApp
Error

Notify

Error
Error
Error
Error

N
otification

N
otification

N
otification

N
otification

Always
succeeds

HSC status
HSC status
HSC status
HSC status

HSC status
HSC status
HSC status
HSC status

HS
C

io
ct

l
HS

C
io

ct
l

HS
C

io
ct

l
HS

C
io

ct
l

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts

Dr
iv

er
 s

cr
ip

ts
Dr

iv
er

 s
cr

ip
ts
High Availablility Package User’s Guide 79

Chapter 4 - Writing High Availability Platform Applications

These steps are completed on receiving a STMD_CARD_REMOVE command
message:

1. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Uninstall the driver.

- Update the drv_info structure.

2. Use the slot table entry with CMD_PRUNE to delete the DRM subtree
corresponding to the line card that is extracted.

3. Update the slot table entry.

4. Send a STMD_CARD_REMOVE response with the return status.

5. For an unrecognizable message, send the message
STMD_UNKNOWN_MESSAGE.

Asynchronous Events
There are certain events (other than bottom up Hot Insertion and Extraction) that
alter system state and generate asynchronous notification.

HSC Events

The STMD HSC event handler gets called upon receiving a signal from the HSC
driver. The HSC Event Handler:

1. Receives the event from the event queue.

2. If it is not a PRESENT event, discards it.

3. If the slot state is CARD_PRESENT or CARD_INSERTED, flags an
asynchronous error STMD_ERROR_INTERNAL.

4. If the slot state is CARD_EXTRACTED and the event is PRESENT, ON,
ignores it. When power is turned off to the slot, the PRESENT bit changes
from 0 to 1 and generates an interrupt, but this is not a true PRESENT
event, therefore it is ignored.

5. If the slot state is CARD_ABSENT and the event is PRESENT, ON, sets slot
state to CARD_PRESENT and turns on power to the slot.

6. If the slot state is CARD_EXTRACTED and the event is PRESENT, OFF, sets
slot state to CARD_ABSENT.
80 High Availablility Package User’s Guide

Asynchronous Events

7. If the slot state is CARD_ABSENT and the event is PRESENT, OFF, flags an

asynchronous error STMD_ERROR_SPURIOUS_PRESENT.
High Availablility Package User’s Guide 81

Chapter 4 - Writing High Availability Platform Applications
82 High Availablility Package User’s Guide

APPENDIX A Basic Terminology
These definitions and descriptions are derived from section 2.1.4 �Additional
Terms� from the Compact PCI Hot Swap Specification R1.0 and several
additional sources indicated in footnotes.1

Back End Logic

The portion of a Compact PCI board that is isolated from the system until the
Hardware Connection Process is complete.

Back End Power

The power to the back end logic of a Compact PCI board. Back end power is
applied to the back end logic through the power isolation circuitry.

Dynamic Configuration

A process whereby a hot swap board is allocated system resources (enumerated) by
the system software following insertion of the board. In non hot swap systems,
enumeration only takes place on system boots. The same resources are released
prior to extraction of the board.

Enumeration

The action taken by the Compact PCI system host to poll the configuration spaces
of all the PCI devices and assign (or release) the necessary resources (memory, I/O
address space, interrupts, drivers).

1. Compact PCI Hot Swap Specification 2.1 R1.0 August 3, 1998 PCI Industrial Computers
Manufacturer�s Group (PICMG) 1997. 1998
High Availablility Package User’s Guide 83

Appendix A - Basic Terminology

Fault Tolerance

A Fault Tolerant Computer System is a system that can continue to operate reliably
by producing acceptable outputs in spite of occasional occurrences of component
failures in both hardware and software components.1

One of the principal concepts of Fault Tolerance is that of handling a fault as
additional system state.

Fault Tolerant computer systems can be created using two or more conventional
computers that duplicate all processing, or having one system standby if the other
fails. They can be built from the ground up from commercially available redundant
processors. Such systems have several processors, control units, peripheral units
and power supplies / sources combined into a modular integrated system.

Fault Tolerance has even been extended into the realm of handling deliberate
sabotage; this is the so-called byzantine fault. Obviously, anticipating, detecting
and handling this type of fault is very involved.

It is precisely the nature of these Fault Detection and Management systems,
involving such things as multiple copy elections and lock step operation that
seriously impacts system performance � even the time bounded qualities required
of Real-Time systems.

Hardware Fault Tolerance has been matured for these reasons:

� Hardware cost has become relatively insignificant in comparison with
overall system cost and as a result, hardware redundancy is easily
justified.

Systems vendors have provided platforms with substantial fault tolerance
capabilities.

The primary beneficiaries of traditional Fault Tolerance are financial applications.
Because of the extreme cost and lack of COTS support, such systems have not
been practical in most other applications.

1. �Design of Real-Time Fault-Tolerant Computing Stations� by K. H. Kim, University of
California at Irvine from Real Time Computing NATP ASI Series ISBN 3-540-57558-8 Springer
Verlag 1994
84 High Availablility Package User’s Guide

High Availability

High Availability

The attribute of a system designed to keep running (maintain availability) in the
event of a system component failure, or preventative action. To provide a higher
degree of availability, a system requires a higher degree of control.

Hot Swap

The idea behind Hot Swap is to allow the orderly insertion and extraction of boards
(usually in reference to Compact PCI boards) without adversely affecting system
operation.

Hot Swap is described in terms of three processes:

� Physical Connection Process,

Includes:

- Hot Insertion (by which a board is installed in a live system).

- Hot Extraction (by which a board is removed from a live system).

� Hardware Connection Process

Describes the electrical connection and disconnection of hardware to a
live system.

� Software Connection Process

Describes the connection and disconnection of the software layer(s) to a
live system.

There are four different degrees of Hot Swap capability. These are:

� Non Hot Swap

� Basic Hot Swap

� Full Hot Swap

� High Availability

For more detail on these different Hot Swap capabilities, see �Hot Swap� on
page 4.

PCI Extended Capabilities Pointer (ECP)

A pointer to a linked list of additional configuration space registers. The
mechanism allows additional configuration space registers to be added. A hot swap
High Availablility Package User’s Guide 85

Appendix A - Basic Terminology

control and status register is added using the ECP mechanism to bring signals to
I/O transition boards or for other auxiliary buses. These signals can also be used for
additional hot swap and HA support.

PCI Mezzanine Card (PMC)

PMCs are modules which are modules installed on a Hot Swap Module PMC
expansion Carrier or on the system controller CPU board. They provide additional
I/O capabilities.

Quiesced

No operations are in progress or pending and there is no authorization to launch
new operations.

Warm Domain Switchover

In contrast to Hot Swap, Warm Domain Switchover involves switching from one
processor domain in the same chassis again to another processor domain, without
seriously affecting overall system performance.
86 High Availablility Package User’s Guide

APPENDIX B Motorola Hot Swap Controller/

Bridge API
This Appendix is provided by Motorola, and details the Hot Swap
Controller/Bridge API.

Introduction

This document addresses the Motorola Hot Swap Controller/Bridge Driver
incorporated into various Motorola supported operating systems. This driver is
required to manage the Motorola Compact PCI CPX82xx Computer system chassis
and functions.

Definitions

Mesquite Code name for the MCP750 single board computer.
DDI Device Driver Interface
API Application program interface. Equivalent to the DDI.
CPX8216 Dual-Mesquite capable cPCI computer w/ 12 payload card slots.
CPX8216A Dual-Mesquite capable cPCI computer w/ 12 payload card slots

and ATM bus.
CPX8216T Dual-Mesquite capable cPCI computer w/ 12 payload card slots

and H110 Reset.
CPX8221 Dual-Mesquite capable cPCI computer w/ 17 payload card slots.
HSC/B Hot Swap Controller and Bridge board.
HSCD Hot Swap Controller/Bridge Driver.
High Availablility Package User’s Guide 87

Appendix B - Motorola Hot Swap Controller/ Bridge API

CPX82xx HA Programmable Resource Management

Purpose of this Document
This document describes the Application Program Interface(API), a collection of
C-based library functions, which are used to manage the resources of Motorola�s
CPX8216, CPX8216A, CPX8216T and CPX8221 High Availability(HA), Hot
Swapable, Compact PCI(cPCI) computer systems.

Where differences in hardware exist between these two systems, a notation of
(CPX8216), (CPX8216A), (CPX8216T) or (CPX8221) will indicate that the
resource is available to that hardware platform only.

Overview

A Set Of Manageable System Resources

All hardware resources addressed by the HA Resource Management API reside in
some variant of the CPX8216 or CPX8221 system rack. These resources include
four drive/tape peripheral bays (CPX8216), three power supplies, three cooling
fans, two processors--each with its own bridge card, two extension bridges
(CPX8221), eeprom programmer, system LEDs, four alarms, two hot swap
controllers, and two buses with 6+6 cPCI payload card slots (CPX8216) or three
buses with 6+6+5 cPCI payload card slots (CPX8221), respectively. Managing
these resources allow user applications to provide the HA environment which
keeps the work flow going, even if performance might, to some extent, be
degraded temporarily. The software managing the HA environment facilitates,
through finer gradation of control, the coordinated swapping of defective, new or
upgraded boards and their drivers, fail over to redundant hardware, or even new OS
or eeprom, software.

Modifiable Attributes for Each Resource

Each resource has a set of attributes which can be altered, i.e. LEDs being turned
on, or power being turned off, etc. When this purposeful action is taken, the
attribute�s state is being changed. Altering one state may precipitate a different
attribute�s state to transition--change-- asynchronously. For example, changing the
power attribute on a payload slot from off to on may result in the transition of the
healthy attribute�s state from off to on. A power loss to a payload slot would
obviously cause the reverse transition of healthy to occur. In this example, note that
the healthy attribute itself cannot be changed directly, but represents a new state
88 High Availablility Package User’s Guide

Overview

that happens as a result of some other event. This type of attribute is classed as
non-modifiable, and can only be status�d.

Whether scheduled (state changed by application code) or unscheduled (state
transitions asynchronously), these events are available to a user�s application
through a function call which uses a signaling scheme. In this manner, the HA
application(s) can monitor what other software is doing with the resources in
addition to being notified of �unexpected� events which indicate a change in status
for any particular resource. Requesting these event notifications makes the
application a subscriber as opposed to simply being a one-way user of the
interface.

As of now, this interface will support 10 simultaneous subscribers, but an unlimited
number of users (dependent only upon operating system limits and configuration).
The number of event subscribers permitted can be adjusted higher or lower via a
#define in the system header file hscd.h, which is currently not part of the
distribution. Until end user modifyable, a request can be made of MCG
Engineering to effect a change in this value.

Valid Attribute Values

Modifiable attributes may be set to on or set to off. In the case of LEDs, a third
setable state is blink. Non-modifiable attributes, which transition asynchronously,
cannot be set, but can be status�d. Naturally, all attributes of any particular resource
may be status�d to determine their current states.

Brief Summary

The CPX82xx platform hardware resources are managed through the use of an API
comprised of several C-language functions collected into a library accessible to the
HA application software. Each software resource has a set of attributes which may
be disabled or enabled through the use of this API, as well as a group of attributes
whose states cannot be set, but which transition asynchronously in response to
other system resource states. In either case, changes to ALL resource attributes
result in events which may be received by the HA applications to assist in their HA
environment�s control.

All hardware addressed by this software resides in some variant of the CPX8216 or
CPX8221 system cabinet. This includes peripheral drive bays (CPX8216 only),
power supplies, fans, processors, extension bridges (CPX8221 only) and Compact
PCI slots with boards.
High Availablility Package User’s Guide 89

Appendix B - Motorola Hot Swap Controller/ Bridge API

Accessing CPX System API’s

The software described in this document resides in a LynxOS, or other OS
compatible library and is linked with the user�s own applications. A single header
file--cpxapi.h-- needs to be #include�d in your application�s sources for successful
compilation. The locations of this software is as follows:

� header - cpxapi.h in /hasw/include

� library - libcpxapi.a or libcpxapi.o in /hasw/cpx

� tool - cpxtool.o in /hasw/cpx

� driver cpxHSCD (LynxOS)

� device - hscdev (LynxOS binary file)

All functions and enumerations/defines are preceded by cpx or hsc_, trigraphs
representing the compatible family of hardware it is used to manage. This is done
so that no ambiguity or overlap occurs with other OS header files and libraries.

CPX82xx System Resource and Attribute Identifiers
Access to the CPX8000�s hot swap controller is done through a functional
interface. The enumerations found in this document�s tables must be used as
arguments for the various functions to control that interface. The hot swap
controller/bridge permits control of the processor, bridge and cPCI payload slots
[16 (12 payload) in the CPX8216 & 21 (17payload) in the CPX8221] and system
functions such as power supplies, alarms and bus control options, etc.

Required Enumerations

The following enumerations are necessary for using the functions discussed later in
this document. Virtually all enumerations come under the heading of command,
status, and identification. Many are equivalenced for code readability, but are
logically the same.

hsc_RESOURCE_ID Enumerations

For identification, the following register resource enumerations are available. Bold
entries indicate either CPX8216 or CPX8221 specific implementations. Note that
these enumerations apply to hsc_-style API calls only.
90 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-1: hsc_RESOURCE_ID Enums

Slot/Subsystem

 typedef:
Equivalent Description

In

Domain

hsc_SLOT_01 N/A non-host cPCI slot A

hsc_SLOT_02 N/A non-host cPCI slot A

hsc_SLOT_03 N/A non-host cPCI slot A

hsc_SLOT_04 N/A non-host cPCI slot A

hsc_SLOT_05 N/A non-host cPCI slot A

hsc_SLOT_06 N/A non-host cPCI slot A

hsc_SLOT_07 hsc_PROC_A host processor slot A

hsc_SLOT_08 hsc_BRIDGE_B bridge to B B

hsc_SLOT_09 hsc_PROC_B host processor slot B

hsc_SLOT_10 hsc_BRIDGE_A bridge to A A

hsc_SLOT_11 N/A non-host cPCI slot B

hsc_SLOT_12 N/A non-host cPCI slot B

hsc_SLOT_13 N/A non-host cPCI slot B

hsc_SLOT_14 N/A non-host cPCI slot B

hsc_SLOT_15 N/A non-host cPCI slot B

hsc_SLOT_16 N/A non-host cPCI slot B

hsc_SLOT_17 N/A non-host slot (CPX8221) B(bus C)

hsc_SLOT_18 N/A non-host slot (CPX8221) B(bus C)

hsc_SLOT_19 N/A non-host slot (CPX8221) B(bus C)

hsc_SLOT_20 N/A non-host slot (CPX8221) B(bus C)

hsc_SLOT_21 N/A non-host slot (CPX8221) B(bus C)

hsc_PS_1 N/A Power Supply 1 A

hsc_PS_2 N/A Power Supply 2 A

hsc_PS_3 N/A Power Supply 3 A

hsc_PBAY_1 N/A Peripheral Bay 1 (CPX8216) A and/or B
High Availablility Package User’s Guide 91

Appendix B - Motorola Hot Swap Controller/ Bridge API
cpx-Style Resource Enumerations

These enumerations are used with cpx-Style API calls only and have the ability to
be aggregated. That is, they can be specified in groups of individual resources
enumerations programatically, and arithmetically, or�d together when application
of a change to one or more of their attributes is desired. For example, to connect
payload slots one, two and four, the following call could be made:

cpxConnect(cpxSLOT1|cpxSLOT02|cpxSLOT04, cpxON);

hsc_PBAY_2 N/A Peripheral Bay 2 (CPX8216) A and/or B

hsc_PBAY_3 N/A Peripheral Bay 3 (CPX8216) A and/or B

hsc_PBAY_4 N/A Peripheral Bay 4 (CPX8216) A and/or B

hsc_BUS_A N/A Bus Control Reg A N/A

hsc_BUS_B N/A Bus Control Reg B N/A

hsc_BUS_C N/A Bus C (CPX8221 only) N/A

hsc_EXT_BRIDGE_1 N/A Extension Bridge to C-bus
(CPX8221)

N/A

hsc_EXT_BRIDGE_2 N/A Extension Bridge to C-bus
(CPX8221)

N/A

hsc_ALARM_CTRL N/A Alarm Control Reg A

hsc_EEPROM_CTRL N/A EEPROM Control Reg local

hsc_INT_MASK N/A Interrupt Mask Reg. N/A

hsc_SYS_LED N/A System LED Reg. A

hsc_INT_STAT_MASK N/A All pending interrupts N/A

hsc_INT_STAT_A N/A PCI_A active ints N/A

hsc_INT_STAT_B N/A PCI_B active ints N/A

hsc_INT_STAT_C N/A PCI_C active ints N/A

hsc_ATM N/A ATM BUS control Reg.
(CPX8216A)

N/A

Table B-1: hsc_RESOURCE_ID Enums (Continued)

Slot/Subsystem

 typedef:
Equivalent Description

In

Domain
92 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Note that not all cpx-Style calls support aggregation. For example,
cpxTakeDomain() takes arguments for specific resources specifying domain A,
domain B or a combination of domains A & B--cpxDOMAIN_A, cpxDOMAIN_B
and cpxDOMAIN_A_B respectively. Bold entries indicate either CPX8216 or
CPX8221 specific implementations.

Table B-2: cpxRESOURCE Enums

cpx-Style

Aggregatable Resources
Platforms

cpxSLOT01 All CPX8000-series
cpxSLOT02

cpxSLOT03

cpxSLOT04

cpxSLOT05

cpxSLOT06

cpxPROCA

cpxPROCB

cpxBRIDGEA

cpxBRIDGEB

cpxSLOT11

cpxSLOT12

cpxSLOT13

cpxSLOT14

cpxSLOT15

cpxSLOT16

cpxSLOT17 CPX8221
cpxSLOT18

cpxSLOT19

cpxSLOT20

cpxSLOT21

cpxALL_SLOTS Logical aggregate of all
valid platform payload
slots. All CPX8000-
series
High Availablility Package User’s Guide 93

Appendix B - Motorola Hot Swap Controller/ Bridge API
cpxEB1 CPX8221
cpxEB2

cpxSYSLED All CPX8000-Series
cpxALARM

cpxPS1

cpxPS2

cpxPS3

cpxFAN1

cpxFAN2

cpxFAN3

cpxBUS_A

cpxBUS_B

cpxBUS_C

cpxPBAY1 CPX8216 only
cpxPBAY2

cpxPBAY3

cpxPBAY4

Table B-2: cpxRESOURCE Enums

cpx-Style

Aggregatable Resources
Platforms
94 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTION Enumerations

Bold entries indicate either CPX8216 or CPX8221 specific implementations.

hsc_DOMAIN Enumerations

 Bold entries indicate either CPX8216 or CPX8221 specific implementation

Table B-3: hsc_ACTION Enums

hsc_ACTION

typedef
Usage Comments

NOTE: All action enumerations are positive in value. (see �hsc_Action� on page 155)

hsc_ON attribute change operations also result of hsc_STATUS request

hsc_OFF attribute change operations also result of hsc_STATUS request

hsc_STATUS attribute acquisition

hsc_WRITE RegDirect() or RegByte() write
operation

also hsc_PUT (to become obsolete)

hsc_READ RegDirect() or RegByte() read
operation

also hsc_GET (to become obsolete)

hsc_NCHG attribute operations - a result of
hsc_ON or hsc_OFF if state already
set

May occur in response to hsc_ON or
hsc_OFF action. Never used as an
action argument itself.

Table B-4: hsc_DOMAIN Enums

Enumeration Meaning Bus’s

hsc_DOMAIN_A A A

hsc_DOMAIN_B B B (& C if CPX8221)

hsc_DOMAIN_A_B A & B A, B (& C if CPX8221)

hsc_DOMAIN_THIS Host�s Own Domain obsolete - removed
High Availablility Package User’s Guide 95

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpx-Style Domain Enumerations

Bold entries indicate either CPX8216 or CPX8221 specific implementation.

hsc_ATTRIBUTE Enumeration

Bold entries indicate either CPX8216 or CPX8221 specific implementations.s

Table B-5: cpx-Style Domain Enums

Enumeration Meaning Bus’s

cpxDOMAIN_A A A

cpxDOMAIN_B B B (& C if CPX8221)

cpxDOMAIN_A_B A & B A, B (& C if CPX8221)

cpxDOMAIN_THIS Host�s Own Domain (to become obsolete)

Table B-6: hsc_ATTRIBUTE Enums

hsc_ATTRIBUTE typedef Comment Status

These objects can be used to set, clear or obtain status trigraph hsc_

hsc_SOFT_XFR enable/disable soft transfer for Bus A or Bus B ON/OFF

hsc_XFR_CTL1 Bus control register bus transition ON/OFF

hsc_XFR_CTL2 Bus control register bus transition ON/OFF

hsc_LOCK control of Bus access by Payload slot cards ON/OFF

hsc_POWER power enable/disable ON/OFF

hsc_CONNECT board connect/disconnect ON/OFF

hsc_CONNECT_CTRL extension bridge for bus C -- write only (CPX8221) ON/OFF

hsc_LED_1 LED enable /disable ON/OFF

hsc_LED_2 LED enable/disable ON/OFF

hsc_LED_3 LED enable/disable ON/OFF

hsc_LED_4 LED enable/disable ON/OFF

hsc_PS_LED_1 LED enable /disable ON/OFF

hsc_PS_LED_2 LED enable/disable ON/OFF

hsc_FAN_LED_1 LED enable/disable ON/OFF
96 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_FAN_LED_2 LED enable/disable ON/OFF

hsc_MINOR_ALARM alarm enable/disable ON/OFF

hsc_MAJOR_ALARM alarm enable/disable ON/OFF

hsc_CRIT_ALARM alarm enable/disable ON/OFF

hsc_RACK_ALARM alarm enable/disable ON/OFF

hsc_FAN_LOW power supply fan speed control ON/OFF

hsc_FORCE_HEALTHY use hsc_ power value as the healthy state ON/OFF

hsc_INT_STATUS slot status has changed ON/OFF

hsc_IMASK_A interrupt mask for PCI A interrupt ON/OFF

hsc_IMASK_B interrupt mask for PCI B interrupt (no support)

hsc_IMASK_C interrupt mask for PCI C interrupt (no support)

hsc_ENUM_A_MASK enable/disable ENUM interrupts for Domain A ON/OFF

hsc_ENUM_B_MASK enable/disable ENUM interrupts for Domain B ON/OFF

hsc_PROP_ENUM Propagate ENUMS between domains? ON/OFF

hsc_INSERTION HSC/Bridge card inserted? ON/OFF

hsc_REMOVAL HSC/Bridge cards only (cleared by SW) ON/OFF

hsc_EEPROM_REST_OE eeprom reset and output enable ON/OFF

 Objects which can be used to acquire status only

hsc_ENUM_A_STATE ENUM in Domain A currently asserted? ON/OFF

hsc_ENUM_B_STATE ENUM in Domain B currently asserted? ON/OFF

hsc_PRESENT board present? ALL slots! ON/OFF

hsc_PS_PRESENT power supply present? ON/OFF

hsc_EJECTOR Ejector handles on CPU/Bridge lock state ON/OFF

hsc_OWN_DEVICE peripherals only; set by present, cleared by reset ON/OFF

hsc_POWER_GOOD power supplies only ON/OFF

hsc_INSTALLED for HSC/Bridge card ON/OFF

hsc_COOLING_ALARM power supplies only ON/OFF

Table B-6: hsc_ATTRIBUTE Enums (Continued)

hsc_ATTRIBUTE typedef Comment Status
High Availablility Package User’s Guide 97

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_COOLING_FAULT power supplies only - critical ON/OFF

hsc_XFR_STAT1 Bus control registers only ON/OFF

hsc_XFR_STAT2 Bus control registers only ON/OFF

hsc_RESET_STATE reset is currently being asserted ON/OFF

hsc_STATE_BIT_0 state bit for bus control & ext bridge registers ON/OFF

hsc_STATE_BIT_1 state bit for bus control & ext bridge registers ON/OFF

hsc_STATE_BIT_2 state bit for bus control & ext bridge registers ON/OFF

hsc_STATE_BIT_3 state bit for bus control & ext bridge registers ON/OFF

hsc_CONNECTED board connection completed ON/OFF

hsc_HEALTHY board says it�s healthy ON/OFF

hsc_WHAT_DOMAIN Bus Control Reg, this domain is; hsc_OFF=A
hsc_ON=B

ON/OFF

hsc_FAN_PRESENT PS Reg; is fan present? ON/OFF

hsc_FAN_FAULT power supplies only; power supply failure? ON/OFF

hsc_REG_ACTIVE this register�s writes trigger immediate action ON/OFF

hsc_CLOCK_ENABLE ATM control register use ON/OFF

hsc_CLOCK_MASTER ATM control register use ON/OFF

hsc_A_FAIL ATM control register use ON/OFF

hsc_B_FAIL ATM control register use ON/OFF

hsc_PLL_LOCK ATM control register use ON/OFF

hsc_VTERM_OK ATM control register use ON/OFF

hsc_FORCE_A_FAIL ATM control register use ON/OFF

hsc_FORCE_B_FAIL ATM control register use ON/OFF

hsc_VTERM_ENABLE ATM control register use ON/OFF

hsc_GLOBAL_H110 CPX8216T H110 reset only. ON/OFF

hsc_SLOT_H110 CPX8216T H110 reset only. ON/OFF

hsc_BRIDGE_H110 CPX8216T H110 reset only. ON/OFF

Table B-6: hsc_ATTRIBUTE Enums (Continued)

hsc_ATTRIBUTE typedef Comment Status
98 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-7: cpx Action Enums

Attribute Name Comment

cpxOK valid operation

cpxOFF request & notification status

cpxON request & notification status

cpxFASTBLINK for LEDs

cpxSLOWBLINK for LEDs

cpxMEDBLINK for LEDs

cpxSTATUS all operations (read only)

cpxHIGH for fans

cpxLOW for fans

cpxNOP status only

cpxWRITE Word & Byte operations request or notification status

cpxREAD

cpxNCHG status only

cpxERROR general failure

cpxEARG1 argument 1 in error

cpxEARG2 argument 2 in error

cpxEARG3 argument 3 in error

cpxEARG4 argument 4 in error

cpxEARGN argument count(number of) in error

cpxEOPEN hsc_Open() not yet called

cpxELAMP lamp test already in progress

cpxEALRM alarm test already in progress

cpxMXNOT maximum subscribers exceeded

cpxBADRES bad resource - invalid or non-existent

cpxBADATT bad attribute - invalid or non-existent

cpxBADACT bad action - invalid or non-existent

cpxROATT read only attribute
High Availablility Package User’s Guide 99

Appendix B - Motorola Hot Swap Controller/ Bridge API
cpxACTION Status & Error Return Value Enumerations

Software Interfaces

The HSC access functions fall into five major categories:

1. Gaining HSCD Access - Before any control or status over the Hot Swap
Controller/Bridge (HSC/B) can be exercised, the user must open and
initialize a connection to its controller software.

2. Exercising Control - The HSC/B hardware is commanded to change its
state or the state of some other device. This control extends to such items
as applying board power, switching LEDs on and off, enabling/disabling
interrupts and transferring cPCI bus control between processors.

3. Notification of Events - This software is designed to inform other user
processes when asynchronous events (interrupts signifying a change of
state for a resource) take place to which the HSC/B is privy and EVERY
access (API call initiated) made of it. These include such items as board
insertions or removals, alarm conditions, or other processes such as

cpxRORES read only resource

cpxIERR internal error

cpxNOFUNC no function - used in event notifications

Table B-7: cpx Action Enums (Continued)

Attribute Name Comment

Table B-8: hsc_ACTION Error Return Value Enumerations

Error Enums Meaning

note: All error enumerations are negative. (see �hsc_ACTION Enumerations� on page 95)

hsc_ERROR general error, no action taken by API library or HSC/B driver

hsc_BAD_REGISTER slot/register specified out-of-range

hsc_BAD_OBJECT bit object specified out-of-range

hsc_BAD_ACTION action requested not defined or invalid

hsc_BAD_DOMAIN domain specified is invalid

hsc_ACTION_DENIED requested action cannot be performed

hsc_NO_FUNCTION required function address for receiving signals is missing
100 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

altering an LEDs state, requesting a board connection, etc. The software
provided allows the user to register for such events and to obtain the
precise reason for the event via API calls. A tool (cpxtool) is provided to
allow such monitoring on a casual basis as the developer debugs/unit
tests his processes.

4. Obtaining Status - A process may at any time request the status of all
items controllable by the HSC/B hardware. These include items such as
board connection status, LED status, power status and overall HSC
internal metrics.

CPX8000 System HSC Driver Control Functional Interface

What follows is a summary of the API functions which provide access to the
HSC/B hardware.

� OPENING THE HOT SWAP CONTROLLER DRIVER
hsc_Open()

� CLOSING THE HOT SWAP CONTROLLER DRIVER
hsc_Close()

� IDENTIFYING THE DOMAIN
hsc_GetDomainId()

� TAKING AND RELEASING THE DOMAINS/BUSES
hsc_TakeDomain()
hsc_ReleaseDomain()
hsc_TakeBus()
hsc_ReleaseBus()

hsc_GetBusCEBridgeId() [CPX8221 only]

� CONTROLLING BUS ACCESS
cpxLockDomain()
cpxLockBus()

� ENUMS PROPAGATION
cpxEnumPropagation()

NOTE: All functions described below will return an hsc_ERROR if any of
the caller�s input/output arguments are not within the caller�s memory
space (LynxOS only). Moreover, except for hsc_Open(), all hsc_-style
functions will return an hsc_ERROR if a successful hsc_Open() has not
been performed (all OS�s), or in the case of cpx-Style calls, a cpxEOPEN
is returned for the same reason.
High Availablility Package User’s Guide 101

Appendix B - Motorola Hot Swap Controller/ Bridge API

� CONTROLLING POWER AND CONNECTIONS

cpxPower()
cpxConnect()
cpxForceHealthy()

� CONTROLLING POWER SUPPLY FAN SPEED
cpxFanHigh()

� CONTROLLING LED�S

cpxLED() [see on page 117]

cpxLampTest() [see on page 122]

� CONTROLLING ALARMS

cpxAlarms() [see on page 123]

cpxAlarmTest() [see on page 124]

� HARDWARE SUPPLIED PERSISTENT SCRATCH BYTES

cpxInfoByte() [see on page 125]

� INTERRUPTS
cpxProgramInterrupts()
cpxEnableInterrupts()
cpxProgramEnums()

� SIGNING UP FOR EVENTS AND EVENT CLASSES
cpxSetEventFunction()
cpxInstallEventFunction()
cpxRemoveEventFunction()
(change list of event classes of interest)
cpxSetEventList()
(retrieve an event, status & class)
cpxGetEvent()
(extract event information)
cpxExtractEventReason()
(pausing event notification)
cpxBlockEventNotification()

� SETTING/GETTING BRIDGE STATES
hsc_SetBridgeStates()
hsc_GetBridgeStateSettings()

hsc_SetEBridgeStates() [CPX8221 only]

hsc_GetEBridgeStateSettings() [CPX8221 only]

� RETRIEVING STATUS ONLY
102 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetSlotStatus()
hsc_GetProcessorStatus()

hsc_GetPBayStatus() [CPX8216 only]

hsc_GetPSStatus()
hsc_GetBridgeStatus()

hsc_GetEBridgeStatus() [CPX8221 only]

� ACQUIRING VARIOUS REVISION LEVELS
hsc_GetHSCRevision()
hsc_GetPSRevision()
hsc_GetAlarmPLDRevision()
hsc_GetAlarmPanelRevision()

� LOW-LEVEL HSC/B ACCESS
hsc_Action()
hsc_RegDirect()
hsc_RegByte()
hsc_Interrupts()

OPENING THE HOT SWAP CONTROLLER DRIVER

The function hsc_Open() must be called once, and only once, prior to attempting
any other HSCD operations. When an application has completed its session with
the HSCD, then the hsc_Close() function must be called.

hsc_Open

NAME

hsc_Open - allows an application to open the hot swap controller

SYNOPSIS

#include <cpxapi.h>

int hsc_Open ()

DESCRIPTION

This function enables the CPX8000 HA API for command and status
functions. This function must be called before any other functions which
invoke the control and status gathering ability of the API can be used.

Open returns an hsc_OK if successful. Note that multiple hsc_Open()�s
without a matching hsc_Close()�s are not supported. Two or more
consecutive hsc_Open()�s return an hsc_ERROR result.
High Availablility Package User’s Guide 103

Appendix B - Motorola Hot Swap Controller/ Bridge API

DIAGNOSTICS

An error return of hsc_ERROR signifies a failure to successfully initialize
access to the API�s controller driver. This will happen if the driver is not
loaded (LynxOS only), the driver fails to install from its device (hscdev;
LynxOS only), the HSC/B card is not found in cPCI space or the application
already has an hsc_Open() to this driver in effect.

hsc_OK is returned for a successful open.

hsc_ERROR is returned:

�if the open fails.

�if the API�s driver�s not loaded.

�if the driver fails to install its device. (LynxOS only)

�if more than one hsc_Open() is attempted.

�Hot Swap controller hardware not found.

CLOSING THE HOT SWAP CONTROLLER DRIVER

hsc_Close

NAME

hsc_Close - closes an application�s connection to the HSC/B board

SYNOPSIS

#include <cpxapi.h>

int hsc_Close (void)

DESCRIPTION

This function closes the program�s open connection to the API�s resources.

This function returns hsc_OK upon successful completion.

DIAGNOSTICS

This function will return an hsc_ERROR if the close fails. A close will fail
only if an hsc_Open() for the calling process is not currently in effect.
104 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

IDENTIFYING THE DOMAIN

hsc_GetDomainId

NAME

hsc_GetDomainId - gets the domain id for the current process

SYNOPSIS

#include <cpxapi.h>

hsc_DOMAIN_ID hsc_GetDomainId ()

DESCRIPTION

This function returns the domain id for the current process.

ARGUMENTS

None.
High Availablility Package User’s Guide 105

Appendix B - Motorola Hot Swap Controller/ Bridge API

DIAGNOSTICS

hsc_DOMAIN_A or hsc_DOMAIN_B are the only two possible domain values
returned.

hsc_ERROR is returned if a successful hsc_Open() has not been performed.

TAKING AND RELEASING THE DOMAINS/BUSES

hsc_TakeDomain

NAME

hsc_TakeDomain - makes a domain�s slots & functions active for this
processor

SYNOPSIS

#include <cpxapi.h>

hsc_ACTION hsc_TakeDomain(domain)

hsc_DOMAIN_ID domain; /* grab slots in this domain */

DESCRIPTION

This function forcefully transfers control of the bus slots and functions in the
domain specified to the current processor and process. This means all slot
registers from that domain will become active for the process making the
request, and any other process with an open connection to the HSC/B.

For domain A taken by either processor, its applications are now able to
access system functions associated with domain A.

ARGUMENTS

domain - The hsc_DOMAIN_ID argument must be hsc_DOMAIN_A,
hsc_DOMAIN_B or hsc_DOMAIN_A_B

An hsc_OK return code indicates a successful grabbing of the domain.
106 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS

hsc_OK is returned if this request succeeds.

hsc_BAD_DOMAIN is returned if the domain id provided is incorrect.

hsc_ERROR is returned if the request fails.

hsc_ReleaseDomain

NAME

hsc_ReleaseDomain - makes domain�s slots & functions inactive for this
process

SYNOPSIS

#include <cpxapi.h>

hsc_ACTION hsc_ReleaseDomain (domain)

hsc_DOMAIN_ID domain; /* grab slots in this domain */

DESCRIPTION

This function relinquishes control of the named domain for all processes
runing with the current processor. This means all slot registers from that
domain will become inactive (albeit still programmable). To emphasize, any
other local process with a connection to the HSCD will also lose its �active�
access to these registers!

ARGUMENTS

domain - The hsc_DOMAIN_ID argument must be hsc_DOMAIN_A,
hsc_DOMAIN_B or hsc_DOMAIN_A_B

An hsc_OK return code indicates a successful jettisoning of the slot registers.

DIAGNOSTICS

hsc_OK is returned if this request succeeds.

hsc_BAD_DOMAIN is returned if the domain id is incorrect.

hsc_ERROR is returned if the release fails.

hsc_TakeBus

NAME

hsc_TakeBus - makes a bus�s slots & functions active for this processor
High Availablility Package User’s Guide 107

Appendix B - Motorola Hot Swap Controller/ Bridge API

SYNOPSIS

#include <cpxapi.h>

hsc_ACTION hsc_TakeBus(bus)

hsc_RESOURCE_ID bus; /* grab slots in this bus */

DESCRIPTION

This function forcefully transfers control of the bus slots and functions in the
bus specified to the current processor and process. This means all slot
registers on that bus will become active for the process making the request,
and any other process with an open connection to the HSC/B.

For bus A taken by either processor, applications are able to access other
system functions associated with bus A.

Taking bus A is equivalent to taking domain A. Taking bus B is not the same
as taking domain B on the CPX8221. Taking domain B gets both B & C
buses on that platform.

ARGUMENTS

bus - The hsc_RESOURCE_ID argument must be hsc_BUS_A, hsc_BUS_B,
or hsc_BUS_C(CPX8221 only).

An hsc_OK return code indicates a successful grabbing of the bus registers.

DIAGNOSTICS

hsc_OK is returned if this request succeeds.

hsc_BAD_REGISTER is returned if the bus id provided is incorrect.

hsc_ACTION_DENIED is returned if the bus C is specified, but bus B is not
currently controlled.

hsc_ERROR is returned if the request fails.

hsc_ReleaseBus

NAME

hsc_ReleaseBus - makes a bus�s slots & functions inactive for this
processor

SYNOPSIS

#include <cpxapi.h>

hsc_ACTION hsc_ReleaseBus(bus)
108 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_RESOURCE_ID bus; /* grab slots in this domain(or bus)*/

DESCRIPTION

This function forcefully relinquishes control of the bus slots and functions in
the bus specified for the current processor and process. This means all slot
registers on that bus will become inactive for the process making the request,
and any other process with an open connection to the HSC/B.

If bus A is released by the bus B processor, it also disallows the application
from accessing other system functions associated with bus A.

Releasing bus A is equivalent to releasing domain A. Releasing bus B is not
the same as releasing domain B on the CPX8221. Releasing bus B does not
release bus C bus on that platform as does releasing domain B.

ARGUMENTS

bus - The hsc_RESOURCE_ID argument must be hsc_BUS_A, hsc_BUS_B,
or hsc_BUS_C(CPX8221 only).

An hsc_OK return code indicates a successful grabbing of the bus registers.

DIAGNOSTICS

hsc_OK is returned if this request succeeds.

hsc_BAD_REGISTER is returned if the bus id provided is incorrect.

hsc_ERROR is returned if the request fails(HW issue).

hsc_GetBusCEBridgeId()

NAME

hsc_GetBusCEBridgeId - gets id of extension bridge attached to bus C

SYNOPSIS

#include <cpxapi.h>

hsc_RESOURCE_ID hsc_GetBusCEBridgeId()

DESCRIPTION

This function returns the id of the extension bridge that was used to acquire
bus C after an hsc_TakeDomainBus() call.

ARGUMENTS

None.
High Availablility Package User’s Guide 109

Appendix B - Motorola Hot Swap Controller/ Bridge API

DIAGNOSTICS

hsc_EXT_BRIDGE_1 is returned if this bridge indicates a bus active state.

hsc_EXT_BRIDGE_2 is returned if this bridge indicates a bus active state.

hsc_NO_FUNCTION is returned if neither extension bridge is actively
connected to bus C.

CONTROLLING BUS ACCESS

cpxLockDomain()

NAME

cpxLockDomain - status or control payload board�s access to domain�s
bus(ses)

SYNOPSIS

#include <cpxapi.h>

int cpxLockDomain(domain_id, action)

int domain_id;

int action;

DESCRIPTION

This function allows or disallows payload boards within a domain to access
its bus.

ARGUMENTS

Valid domain_id�s are cpxDOMAIN_A, cpxDOMAIN_B or cpxDOMAIN_A_B.

Table B-9: Argument vs. Platform Detail

platform argument buses locked

all cpxDOMAIN_A cpxBUS_A

CPX8216 cpxDOMAIN_B cpxBUS_B

CPX8221 cpxDOMAIN_B cpxBUS_B & cpxBUS_C

CPX8216 cpxDOMAIN_A_B cpxBUS_A & cpxBUS_B

CPX8221 cpxDOMAIN_A_B cpxBUS_A, cpxBUS_B &
cpxBUS_C
110 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Valid actions consist of cpxON (to lock bus access) or cpxOFF (to allow bus
access).

DIAGNOSTICS

cpxOK is returned for a domain successfully locked or unlocked.

cpxBADRES is returned if the domain specified is not valid.

cpxBADACT is returned if the action specified is incorrect.
High Availablility Package User’s Guide 111

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxLockBus()

NAME

cpxLockBus - controls a payload�s access to the bus or gets bus access status

SYNOPSIS

#include <cpxapi.h>

int cpxLockBus(bus_id, action)

int bus_id;

int action;

DESCRIPTION

This function allows or disallows payload boards within a particular bus to
access it.

ARGUMENTS

Valid arguments for bus_id are cpxBUS_A, cpxBUS_B or
cpxBUS_C(CPX8221 only).

Action is either cpxON (to prevent bus access), cpxOFF (to allow bus access)
or cpxSTATUS (to determine current lock state).

DIAGNOSTICS

cpxOK is returned for a bus successfully locked or unlocked.

cpxON is returned if the bus specified is currently locked from payload slot
access.

cpxOFF is returned if the bus specified is currently unlocked and available
for payload slot access.

cpxBADRES is returned if the bus specified is invalid.

cpxBADACT is returned if the action specified is incorrect.

cpxERROR is returned if the action specified could not be performed.
112 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

ENUM PROPAGATION

cpxEnumPropagation

CONTROLLING POWER AND CONNECTIONS

cpxPower()

NAME

cpxPower - power on or off multiple resources, or status a single resource

SYNOPSIS

#include <cpxapi.h>

int cpxPower(resources, action)

unsigned long resources;

int action;

DESCRIPTION

This function applies or removes power from one or more resources or gets
the current power status from a single resource. More than one resource with
a power attribute may be specified when setting the power to on or off. These
resource aggregates are discussed in �cpx-Style Resource Enumerations� on
page 92. When acquiring status, only one resource may be specified. If not,
the first resource extracted from the aggregate will be used for the status. For
obvious reasons, this approach is not recommended.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.

ARGUMENTS

Valid register aggregates include all slots inclusive of cpxSLOT01 ..
cpxSLOT06, cpxSLOT11 .. cpxSLOT16 and slots cpxSLOT17 ..
cpxSLOT21 (CPX8221). All valid payload slots may be specified with the
special enumeration of cpxALL_SLOTS. Also valid are cpxPROCA,
cpxPROCB, cpxBRIDGEA, cpxBRIDGE_B, cpxEB1 .. cpxEB2 (CPX8221)
cpxPS1 .. cpxPS3 and cpxPBAY1 .. cpxPBAY4(CPX8216).

Action is declared as cpxON, cpxOFF or cpxSTATUS only.

DIAGNOSTICS

cpxOK is returned for a successful cpxON or cpxOFF action.
High Availablility Package User’s Guide 113

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxON or cpxOFF is returned if the action specified is cpxSTATUS.

cpxEARG1 is returned if no resources are specified (i.e. a 0 is passed).

cpxBADRES is returned for an invalid resource.

cpxBADACT is returned for an invalid action.

cpxEOPEN is returned if an hsc_Open() has not been successfully
performed.

cpxConnect()

NAME

cpxConnect - turn resources� connect on or off, or status a single resource

SYNOPSIS

#include <cpxapi.h>

int cpxConnect(resources, action)

unsigned long resources;

int action;

DESCRIPTION

This function connects or disconnects one or more resources or gets the
current connect status from a single resource. It is analogous in all other
respects to �cpxPower()� on page 113.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.
114 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxForceHealthy()

NAME

pxForceHealthy - control or status the board healthy overide for
resource(s)

SYNOPSIS

#include <cpxapi.h>

int cpxForceHealthy(resources, action)

unsigned long resources;

int action;

DESCRIPTION

This function forces a resource�s healthy status to track a payload board�s
power on or off condition. It is used for boards which are non-compliant with
the hot plug PCI specifications for asserting healthy. It can also return the
current force healthy status for a single resource. It is analogous in all other
respects to �cpxPower()� on page 113.

It is possible that if an error is returned, such as cpxBADRES for a bad
resource, that other valid resources have already been correctly handled.

CONTROLLING POWER SUPPLY FAN SPEED

cpxFanHigh()

NAME

cpxFanHigh - status or run a power supply�s fan at high or temp. controlled
speed

SYNOPSIS

#include <cpxapi.h>

int cpxFanHigh(fan_ids, action)

unsigned long fan_ids;

int action;
High Availablility Package User’s Guide 115

Appendix B - Motorola Hot Swap Controller/ Bridge API

DESCRIPTION

This function causes one or more power supply fans to be run at it highest
speed for additional cooling, or to be run at a speed as dictated by thermistor
measurements. This action takes place immediately only if the processor
owns domain A.

ARGUMENTS

Fan_ids is an aggregate of up to three fan identifiers arithmetically or�d
together. They are cpxFAN1, cpxFAN2 and cpxFAN3. As a convenience, the
identifier cpxALL_FANS is enumerated to include all three fans.

Action is cpxON (run at high speed), cpxOFF (allow automatic variable
speed setting of fan based on temperature conditions) or cpxSTATUS (is the
fan currently running at high speed: cpxON == yes, cpxOFF == no).

If an aggregate of more than one fan is specified when cpxSTATUS is
requested, then the first fan encountered--beginning with cpxFAN1--will
have its status returned. It�s better to specify only one fan at a time when
requesting status.

DIAGNOSTICS

cpxOK is returned for an action of cpxON or cpxOFF being successfully
taken.

cpxBADRES is returned if fan_ids has no valid fan identifiers.

cpxEOPEN is returned if hsc_Open() has not been performed to make the
library available.

cpxBADACT is returned if the action requested is invalid.

cpxON is returned for a status request if the fan is running at high speed.

cpxOFF is returned for a status request if the fan is running at a temperature
driven speed.
116 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

CONTROLLING LED’S

cpxLED()

NAME

cpxLED - turn on, off or blink various chassis LEDs

SYNOPSIS

#include <cpxapi.h>

int cpxLED(resources, leds, action)

unsigned long resources;

unsigned long leds;

int action;

DESCRIPTION

This function is used to light, extinguish or blink various chassis LEDs. More
than one resource with available LEDs may be specified and more than one
of it/their LEDs may be placed in the desired state. These resource and LED
aggregates will be discussed further.

States for an LED is either on, off or blinking. If blinking, three blink rates
are available. They are 1/4 second (cpxFASTBLINK), 1/2 second
(cpxMEDBLINK) and 1 second (cpxSLOWBLINK).

ARGUMENTS

The first argument specifies a grouping of one or more resources for which
LED attributes exist. Their enumerations are shown in the table below.

The second argument specifies one or more LED enumerations which
specify the LEDs to be affected. These enumerations are cpxLED1 through
cpxLED4. Specifying cpxALL_LEDS will refer to all LEDs that any
particular resource supports regardless of number. For instance,
cpxALL_LEDS can be used for a power supply (like cpxPS1) and a payload
slot (like cpxSLOT01) even though the power supply has four LEDs
available while a payload slot has but three. In specifying aggregates of
LEDs, you must mathematically OR them together. For example, to light
LEDs one and three for slot6, you�d use cpxLED(cpxSLOT06, cpxLED1 |
cpxLED3, cpxON);
High Availablility Package User’s Guide 117

Appendix B - Motorola Hot Swap Controller/ Bridge API

Resources with LEDs include the payload slots, processor cards,
HSC/Bridge cards, system LEDs. alarm LEDs, power supplies, peripheral
bays (CPX8216) and extension bridges (CPX8221).

The aggregate which specifies all payload slots (non-system board occupied
slots) is cpxALL_SLOTS. Thus, to blink (at 1/4 second) all LED 1�s for all
payload cards, you�d use: cpxLED(cpxALL_SLOTS, cpxLED1,
cpxFASTBLINK);

In another example, to extinguish all LEDs for the cpxSYSLED resource,
processor A and slots 3 and 5, you�d use:
cpxLED(cpxSLOT03|cpxSLOT05|cpxPROCA|cpxSYSLED,

cpxALL_LEDS, cpxOFF);

The third argument specifies the LEDs new state or a status request. The
arguments are cpxON, cpxOFF, cpxFASTBLINK, cpxMEDBLINK and
cpxSLOWBLINK or cpxSTATUS. These arguments must not be OR�d together
as the result would be indeterminate.

SPECIAL NOTE: Alarms can blink also. The first three alarms have an
associated LED which lights as a by-product of enabling the alarm. The
fourth does not, but it is blinked in order to remain consistent. All alarm
blinking can be monitored externally. The alarm enumerations can be used,
or, cpxLED1, cpxLED2, cpxLED3 and cpxLED4 may be used for cpxCRIT,
cpxMAJOR, cpxMINOR and cpxRACK respectively. All four alarms may also
be designated using the cpxALL_ALARMS enumeration.
118 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS

cpxOK is returned for a successful call to alter LED states.

cpxON, cpxOFF, cpxFASTBLINK, cpxMEDBLINK or cpxSLOWBLINK is
returned in response to a cpxSTATUS request.

cpxEARG1 is returned if NO resources are specified or the specified resource
has no LEDs.

cpxEARG2 is returned if NO valid LEDs were specified.

cpxEARG3 is returned if NO valid action was specified.

cpxEOPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE

Here is an example of invoking cpxLED() using cpxtool:

usage: l)ed arg1 arg2 arg3
 arg1 = one or more slot/resource names-
 slot01..slot16 (cpx8216) or all_slots for all
 slot01..slot21 (cpx8221) or all_slots for all
 Separate by spaces or vertical bars '|'
 (also for ps, procs, bridges(all), alarms, sysleds)
 arg2 = any combination of led1, led2, led3 or led4
 or use all_leds for led1|led2|led3 grouping
 arg3 = on, off, fblink, mblink or sblink
 (fast) (medium) (slow)
example: l slot02 slot06 slot16 led1 led3 mblink
 l slot02|slot06|slot16 led1|led3 mblink
 l all_slots proca all_leds on
 l slot02 led2 status

LEDs available by resource..

Table B-10: LEDs Available per Resource

chassis

exception
resource

cpxLED

comment

1 2 3 4

cpxSLOT01 t t t Payload slots 1 through 6 in
Domain A, on Bus A.

cpxSLOT02 t t t

cpxSLOT03 t t t

cpxSLOT04 t t t

cpxSLOT05 t t t

cpxSLOT06 t t t
High Availablility Package User’s Guide 119

Appendix B - Motorola Hot Swap Controller/ Bridge API
cpxSLOT11 t t t Payload slots 11 through 16 in
Domain B, on Bus B.

cpxSLOT12 t t t

cpxSLOT13 t t t

cpxSLOT14 t t t

cpxSLOT15 t t t

cpxSLOT16 t t t

cpxSLOT17 t t t Payload slots 17 through 21 in
Domain B, on Bus C.

CPX8221
ONLY

cpxSLOT18 t t t

cpxSLOT19 t t t

cpxSLOT20 t t t

cpxSLOT21 t t t

cpxALL_SLOTS t t t All applicable payload slots.

cpxPROCA t t t Chassis processors.

cpxPROCB t t t

cpxBRIDGEA t t t Chassis HSC & inter-domain
bridges.

cpxBRIDGEB t t t

cpxALARM t t t t System alarms (see Special Note
on previous page).

cpxPS1 t t t t cpxLED1 & cpxLED2 are for
the power supplies. cpxLED3 &
cpxLED4 are for the fans.

cpxPS2 t t t t

cpxPS3 t t t t

Table B-10: LEDs Available per Resource

chassis

exception
resource

cpxLED

comment

1 2 3 4
120 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers
IN
CPX8216
CPX8216T
CPX8216A
ONLY

cpxPBAY1 t t

cpxPBAY2 t t Peripheral Bays

cpxPBAY3 t t

cpxPBAY4 t t

CPX8221
ONLY

cpxEBRIDGE1 t t t Extension Bridges

cpxEBRIDGE2 t t t

Table B-10: LEDs Available per Resource

chassis

exception
resource

cpxLED

comment

1 2 3 4
High Availablility Package User’s Guide 121

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxLampTest()

NAME

cpxLampTest - light chassis LEDs for inspection purposes (except
ALARMS)

SYNOPSIS

#include <cpxapi.h>

int cpxLampTest(duration)

int duration;

DESCRIPTION

This function lights all system chassis LEDs (cpxALARM LEDs
notwithstanding), and in the case of a CPX8221 chassis, both extension
bridge board�s LEDs, for the amount of time specified. This allows for a
visual inspection of the LEDs to ensure that they are working properly.
Whatever state the LEDs are in, including blink mode, is preserved for the
duration of the test, then restored after it completes.

If a lamp test or an alarm test is already in progress, then this lamptest is
rejected with an appropriate error message.

ARGUMENTS

Valid arguments are between 1 and 60 seconds.

DIAGNOSTICS

cpxOK is returned for a successful call.

cpxELAMP is returned if a lamp test is already in progress.

cpxEALRM is returned if an alarm test is currently in progress.

cpxEARG1 is returned if the duration argument is not within (1..60) seconds.

cpxEOPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE

Here is an example of invoking cpxLampTest() using cpxtool:
usage: L)ampTest seconds; range = (1..60)

example: L 10
122 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

CONTROLLING ALARMS

cpxAlarms()

NAME

cpxAlarms - turn on or off, one or more system alarms, or status one

SYNOPSIS

#include <cpxapi.h>

int cpxAlarms (alarm_ids, action)

unsigned long alarm_ids;

int action;

DESCRIPTION

This function enables or disables one or more of the system alarms, or gets
the current status of a single alarm. The four alarms which may be
aggregated (arithmetically or�d together) are cpxMINOR, cpxMAJOR,
cpxCRIT and cpxRACK.

If a status is requested, but an aggregate of more than one alarm is specified,
then the status of one of those alarms with be returned, but it will not be
deterministic. If statusing an alarm, specify one alarm only.

If an alarm is to be �blinked�, then use the cpxLED() function with the
cpxALARM resource for all alarm on, off, blink and status related operations!

ARGUMENTS

Valid alarm_ids are cpxMINOR, cpxMAJOR, cpxCRIT and cpxRACK. The
enumeration cpxALL_ALARMS is provided as a convenience.

Valid actions are cpxON (turn the alarm on), cpxOFF (turn the alarm off) and
cpxSTATUS (for current state).

DIAGNOSTICS

cpxOK is returned for a successful call.

cpxBADATT is returned if no valid alarm_ids are specified.

cpxBADACT is returned if the action given is invalid.

cpxON is returned if the alarm specified is currently on.

cpxOFF is returned if the alarm specified is currently off.
High Availablility Package User’s Guide 123

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxEOPEN is returned if the hsc_Open() call has not been made.

cpxAlarmTest()

NAME

cpxAlarmTest - light chassis Alarm LEDs for inspection purposes

SYNOPSIS

#include <cpxapi.h>

int cpxLampTest (duration)

int duration;

DESCRIPTION

This function enables all the cpxALARM�s four alarm attributes--cpxMINOR,
cpxMAJOR, cpxCRIT and cpxRACK--which in turn also lights the LEDs
associated with the first three alarms. Whatever state all the alarms are in,
including blink mode, is preserved for the duration of the test, then restored
after it completes.

If a lamp test or an alarm test is already in progress, then this alarm test is
rejected with an appropriate error message--cpxELAMP or cpxEALRM.

ARGUMENTS

Valid arguments are between 1 and 60 seconds.

DIAGNOSTICS

cpxOK is returned for a successful call.

cpxELAMP is returned if a lamp test is currently in progress.

cpxEALRM is returned if an alarm test is already in progress.

cpxEARG1 is returned if the duration argument is not within (1..60) seconds.

cpxEOPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE

Here is an example of invoking cpxAlarmTest() using cpxtool:
usage: A)larmTest seconds; range = (1..60)

example: A 10

HARDWARE SUPPLIED PERSISTENT SCRATCH BYTES
124 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxInfoByte()

NAME

cpxInfoByte - write or read a resource�s scratch byte

SYNOPSIS

#include <cpxapi.h>

int cpxInfoByte (resources,value,action)

unsigned long resources;

char * value;

int action;

DESCRIPTION

This function reads or writes a single byte to a resource�s scratch byte area,
located on the HSC/B hardware, for whatever application purpose deemed
useful.

Most system resources have a scratch byte which is non-volatile as long as
the computer system is under power. These bytes will survive computer
resets and crashes without corruption. A software application may take
advantage of these storage locations associated with the hardware if found
useful.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.

ARGUMENTS

Valid resources are an aggregate of one or more of the following system
resources arithmetically OR�d together:

cpxSLOT01 .. SLOT06, cpxSLOT11 .. cpxSLOT16 and for the CPX8221
only, slots cpxSLOT17 .. cpxSLOT21. Also valid are cpxPROCA,
cpxPROCB, cpxBRIDGEA, cpxBRIDGEB, cpxPS1 .. cpxPS3,
cpxPBAY1 .. cpxPBAY4 (CPX8216), cpxEB1 and cpxEB2
(CPX8221), cpxALARM, cpxBUS_A, cpxBUS_B, cpxEEPROM,

cpxIMASK and cpxSYSLED.

The value to write must be stored in a variable of type char whose address is
provided. For a read operation, the current value of the scratch byte for the
resource specified is written to the byte address provided.

The action is either cpxWRITE or cpxREAD. If cpxREAD, then only one
resource should be specified. If the aggregate contains more that one
High Availablility Package User’s Guide 125

Appendix B - Motorola Hot Swap Controller/ Bridge API

resource when reading, the resource identity from which the value is read and
returned will be non-deterministic.

DIAGNOSTICS

cpxOK is returned for a successful read or write action.

cpxEARG2 is returned if the byte�s value address provided is zero (0).

cpxBADRES is returned if a resource is invalid or no valid resources were
specified.

cpxEOPEN is returned if a successful cal to hsc_Open() has not been made.

INTERRUPTS

cpxProgramInterrupts

NAME

cpxProgramInterrupts - program resources to be able to generate
interrupts

SYNOPSIS

#include <cpxapi.h>

int cpxProgramInterrupts (resources, action)

unsigned long resources;

int action;
126 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DESCRIPTION

This function programs one or more resources to be capable of generating
PCIA interrupts to the processor when interrupts are enabled. Programming
is permitted only for those registers actually capable of generating interrupts.

Resources are one or more resources aggregated together using arithmetic
OR�ing.

For example, to program slot1, slot2 and power supply2, the following
should be used--

(cpxSLOT01|cpxSLOT02|cpxPS1)

--for the resources argument.

ARGUMENTS

As mentioned above, resource consist of any resource capable of generating
an interrupt or�d together with other such resources as desired.

Action is cpxON (to program), cpxOFF (to deprogram) or cpxSTATUS (to get
the current programmed state of the resource).

DIAGNOSTICS

An cpxOK is returned for successfully programming all resources specified.

An cpxBADRES is returned if any resource specified is not valid (cannot
generate interrupts).

A cpxON is returned if the resource specified is currently programmed.

A cpxOFF is returned if the resource specified is currently not programmed.

A cpxEOPEN is returned if a successful call to hsc_Open() has not yet been
made.
High Availablility Package User’s Guide 127

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxEnableInterrupts

NAME

cpxEnableInterrupts - enable or disable all resource interrupts to the
processor

SYNOPSIS

#include <cpxapi.h>

int cpxEnableInterrupts(action)

int action;

DESCRIPTION

This function enables or disables processor interrupts. If interrupts are not
enabled, then no event notifications to applications can occur because
resources programmed to interrupt cannot get their interrupts through to the
processor. Hence, no event software comes alive to handle them and send
notifications.

ARGUMENTS

Valid actions are cpxON (enable interrupts), cpxOFF (disable interrupts) and
cpxSTATUS (return the current interrupt enable setting).

DIAGNOSTICS

cpxOK is returned if interrupts have been successfully enabled or disabled.

cpxON is returned for a status if interrupts are currently enabled.

cpxOFF is returned for a status if interrupts are currently disabled.

cpxEOPEN is returned if an hsc_Open() has not yet been performed.
128 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxProgramEnums

NAME

cpxProgramEnums - program/deprogram a domain�s ability to generate an
interrupt

SYNOPSIS

#include <cpxapi.h>

int cpxProgramEnums(domain_id, action)

int domain_id;

int action;

DESCRIPTION

This function enables the enum event taking place in a domain to generate an
interrupt, or deprograms it so that it cannot. This function must be called in
addition to cpxProgramInterrupts() for enum events to actually generate
processor interrupts.

ARGUMENTS

A domain_id of cpxDOMAIN_A, cpxDOMAIN_B or cpxDOMAIN_A_B must
be provided.

An action of cpxON (program the Enum interrupt), cpxOFF (deprogram the
Enum interrupt) or cpxSTATUS (get Enum�s current programmed setting) is
valid.

DIAGNOSTICS

cpxOK is returned for a successful cpxON or cpxOFF action.

cpxON is returned if the Enum for the specified domain is currently
programmed and the action requested is cpxSTATUS.

cpxOFF is returned if the Enum for the specified domain is not currently
programmed and the action requested is cpxSTATUS.

cpxBADACT is returned if an invalid action is specified.

cpxBADRES is returned if an invalid domain is specified.

cpxEOPEN is returned if a successful hsc_Open() has not been performed.
High Availablility Package User’s Guide 129

Appendix B - Motorola Hot Swap Controller/ Bridge API

EVENT NOTIFICATION AND RETRIEVAL

cpxSetEventFunction

NAME

cpxSetEventFunction - remove or specify function for event signals

SYNOPSIS

#include <cpxapi.h>

int cpxSetEventFunction(func, action, classes, sigval)

void(*func)();

int action;

unsigned long classes;

int sigval;

DESCRIPTION

This function installs or removes a process�s event function. Event functions
are signaled when events corresponding to one of the classes specified in the
classes aggregate occur.

After receiving a signal, the user�s function must retrieve the events and
examine them. Two additional functions are provided to assist in
accomplishing this task. They are cpxGetEvent() in section on page 136
and cpxExtractEventReason() in section on page 138.

ARGUMENTS

action is either cpxON, cpxOFF or cpxSTATUS. If cpxON, then the function
will be installed and the classes aggregate list used to determine which events
will cause a signal to be sent to the func specified. If cpxOFF is specified,
then the function specified will no longer be signaled. In the cpxOFF case,
the values for classes and sigval may be 0 because they will not be used. The
case is also true for cpxSTATUS, but a cpxON or cpxOFF is returned based
upon the current event notification status of the proces.

func is the address of the function which receives a signal when a wanted
event occurs. It is never passed as a NULL pointer or NULL value.

sigval is the value of the signal which will be used to cause invocation of
func via a system kill(). If a value of zero is specified, then the default signal
value of 28 will be used.
130 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

classes - If the action is cpxOFF, its value is immaterial because it is ignored.
Otherwise, it is the aggregate of event classes being signed up for. When an
event for one of the specified classes occurs, a signal is sent to the function
specified. It is then up to that function to retrieve and examine the event. See
the classes description in �cpxInstallEventFunction� on page 132.

DIAGNOSTICS

A cpxEOPEN is returned is the hsc_Open() call has not been made.

A cpxEARG1 is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxEARG2 is returned if the action is not cpxON, cpxOFF or cpxSTATUS.

A cpxBADACT is returned if the action is cpxOFF with no previous cpxON
having been performed.

A cpxBADACT is returned if the action is neither cpxOFF nor cpxON.

for a cpxSTATUS action

A cpxON indicates that the process is currently set up to receive events.

A cpxOFF indicates that the process is not currently set up to receive events.

for a cpxON or cpxOFF action

A cpxOK indicates that the request was accepted and acted upon.
High Availablility Package User’s Guide 131

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxInstallEventFunction

NAME

cpxInstallEventFunction - declare function for event signals and
classes wanted

SYNOPSIS

#include <cpxapi.h>

int cpxInstallEventFunction (func, classes, sigval)

void(*func)();

unsigned long classes;

int sigval;

DESCRIPTION

This function, in conjunction with cpxGetEvent() and
cpxExtractEventReason(), form the backbone of managing the High
Availability environment. The cpxInstallEventFunction() call allows the
application to specify the user�s own function which is to be invoked
whenever an event takes place and also to provide an aggregate list of events
for which notifications are wanted. Once this function is successfully
invoked, the calling process is elevated to the status of a subscriber, as
opposed to a simple user, of the HSCD.

The user�s function, once signaled, must acquire the events and the reason(s)
for the events from the resource controller using cpxGetEvent() and
cpxExtractEventReason(). What this means, for example, is that when a
payload board asserts hsc_CONNECTED, the user�s function is signaled. Or if
a board loses hsc_HEALTHY, the application is notified. These notifications
are critical to managing the HA environment. In addition, anytime a user
process makes a request of the controller to perform some operation, that
notification is also made available to the any other subscriber (event-
registered) process.

When calling this function, the user�s event notification function address (a
C-function) is specified, plus an aggregate list of classes the user want to be
notified about and the value of the signal to be used in notifying the process.
The class list is a grouping of classes mathematically OR�d together. When
the user gets the events, they can switch on the class in order to identify and
process the event properly. The signal value passed as the third argument will
default to a 28 if a zero is passed. Otherwise, the value passed by the user
132 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

will be used. No validation is made upon the signal value--whatever is passed
is accepted.

ARGUMENTS

Func is the address of the function to receive a signal when an event occurs.
It is never passed as a NULL pointer or a NULL value. Doing so will fail the
call. Since only one function may ever be specified by any given process to
receive event signals, making subsequent calls to this function will replace
the previous function�s address with the new one.

Sigval is the value of the signal which will be used to cause invocation of
func via a system kill(). If a value of zero is specified, then the default signal
value of 28 will be used.

Classes is a set of one or more class types mathematically OR�d together and
specifies which events are to cause func to be invoked. The value
cpxALLCLS will cause all controller events which are traceable (see list
below) to be reported to the subscriber�s function.

To request only cpxINTRPT & cpxACTION event reporting, using the default
signal value of 28, the call would be:

cpxInstallEventFunction(my_func, cpxINTRPT | cpxACTION,
0);

Valid classes are:

Table B-11: Event Classes

Class Events Captured

cpxINTRPT all controller interrupt events

cpxACTION all hsc_Action() requests made of the controller

cpxREGDIR all hsc_RegDirect() requests

cpxREGBYT all hsc_RegByte() requests

cpxSETLED all cpxLED() requests

cpxLEDTST all cpxLampTest() calls

cpxALMTST all cpxAlarmTest() calls

cpxNOTIFY all cpxSetNotifyFunction() requests
[Install/RemoveNotifyFunction]

cpxSETMSK all cpxSetEventList() requests
High Availablility Package User’s Guide 133

Appendix B - Motorola Hot Swap Controller/ Bridge API
DIAGNOSTICS

A cpxEOPEN is returned if the cpxapi library has not been opened using
hsc_Open().

A cpxMXNOT is returned if the maximum number of event subscribers has
been reached. This configurable value is currently ten (10).

A cpxARG1 is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxOK indicates that the request was accepted and acted upon.

Note that a class aggregate value of 0 will not create an error condition, but
will allow one or more subsequent calls to cpxSetEventList() to be made to
create and alter the list of desired events.

cpxRemoveEventFunction

NAME

hsc_RemoveEventFunction - remove function for event signals

SYNOPSIS

#include <cpxapi.h>

int cpxRemoveEventFunction(func)

void(*func)();

DESCRIPTION

This function removes the user�s previously specified function from the
driver�s list of functions to be signaled when Hot Swap controller events take
place. For any given process, only one function can be specified to receive
event signals.

ARGUMENTS

Func is the address of the function which received a signal when an event
occurred. It is never passed as a NULL pointer or NULL value.

cpxPRGINT all hsc_Interrupt() calls [Program/DeProgram
interrupts]

cpxALLCLS includes all the above.

Table B-11: Event Classes (Continued)

Class Events Captured
134 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS

A cpxEOPEN is returned if the hsc_Open() call has not been made.

A cpxMXNOT is returned if the maximum number of event subscribers has
been reached. This configurable value is currently ten(10).

A cpxBADACT is returned if no cpxInstallEventFunction() has been called
prior to this function.

A cpxEARG1 is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxOK indicates that the request was accepted and acted upon.

(CHANGE LIST OF EVENT CLASSES OF INTEREST)

cpxSetEventList

NAME

cpxSetEventList - re-declare event class list for which notifications are wanted

SYNOPSIS

#include <cpxapi.h>

int cpxSetEventList (classes)

unsigned long classes;
High Availablility Package User’s Guide 135

Appendix B - Motorola Hot Swap Controller/ Bridge API

DESCRIPTION

This function is used to respecify the aggregate list of events for which the
user�s function declared in cpxInstallEventFunction() or
cpxSetEventFunction() is to be signalled. See �cpxInstallEventFunction�
on page 132 for a detailed list of classes which may be specified.

ARGUMENTS

Classes is a mathematically OR�d list of events for which signals are wanted.

DIAGNOSTICS

A cpxEOPEN is returned is the hsc_Open() call has not been made.

A cpxOK indicates that the request was accepted and acted upon.

(RETRIEVE AN EVENT, STATUS AND CLASS)

cpxGetEvent

NAME

cpxGetEvent - retrieve an event�s class and status

SYNOPSIS

#include <cpxapi.h>

int cpxGetEvent (class, status)

unsigned long *class;

unsigned long *status;

DESCRIPTION

This function is the companion to cpxInstallEventFunction() and must be
called immediately after the user�s event notification function is invoked.
This function retrieves the first, or next, class of the event and the status it
resulted in.

Typically, an application that, for instance, asked a functional board to power
on would anticipate a �board healthy� event. Likewise, a board that was
pulled or suddenly lost power would cause �board healthy� to be de-asserted.
In both cases, if the event is one which the application�s function is being
notified about, then it will be signaled to pick up that event for processing.

Since multiple events can occur nearly simultaneously, this function must be
called repeatedly until �cpxERROR� is returned. By doing this, the event
reasons list is exhausted. However, it is important to call
136 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

�cpxExtractEventReason� on page 138 in between cpxGetEvent()�s in
order to acquire the details of the event.

ARGUMENTS

The first argument is the address of an unsigned long which will receive the
event class--the type of event it is. An event can be tracing requests placed by
another peer or responding with interrupts occurring in response to these
calls, or both. The class of the event identifies them.

The second argument is the address of another unsigned long to receive the
status or results for the event. A cpxINTRPT event ALWAYS has a status of
cpxOK. But the other events, such as cpxACTION could return cpxEOPEN,
cpxON or even cpxEARG1. This information, used with the
cpxExtractEventReason() allows very precise understanding of what is
transpiring in the system.

See cpxInstallEventFunction() for a list of classes returned by
cpxGetEvent().

DIAGNOSTICS

cpxERROR is returned:

if this call is made and no notifications were sent.

if all events have been retrieved.

cpxEOPEN is returned if hsc_Open() has never been called.

cpxOK is returned when an event has been retrieved.
High Availablility Package User’s Guide 137

Appendix B - Motorola Hot Swap Controller/ Bridge API

(EXTRACT EVENT INFORMATION)

cpxExtractEventReason

NAME

cpxExtractEventReason - retrieve event notification specifics

SYNOPSIS

#include <cpxapi.h>

int cpxExtractEventReason (arg1, arg2, arg3, arg4)

hsc_RESOURCE_ID long *arg1;

hsc_ATTRIBUTE *arg2;

hsc_ACTION *arg3;

unsigned long *arg4;

DESCRIPTION

This function is another companion to cpxInstallEventFunction() and is
called immediately after the user�s event notification function has retrieved
an event using cpxGetEvent().

Typically, for instance, an application that asked a functional board to power
on would anticipate a �board healthy� event. Likewise, a board that was
pulled or suddenly lost power would cause �board healthy� to be de-asserted.
In another case, an application might alter the state of an LED. If
cpxInstallEventFunction() also specified an cpxACTION call of events,
this notification would also be received.

If this function is not called after each cpxGetEvent() call, then the reasons
for the events will be lost.

ARGUMENTS

There are four arguments which provide the remaining information about the
retrieved event. The values returned in these arguments vary based upon the
type of class being examined. They are described below in a table.

For example; if hsc_SLOT_01�s hsc_HEALTHY attribute went off, then the
values returned would be:

arg1(resource) == hsc_SLOT_01

arg2(attribute) == hsc_HEALTHY

arg3(action) == cpxOFF
138 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

arg4 == not used

class == cpxINTRPT (from previous cpxGetEvent() call)

status == cpxOK (cpxINTRPT class events are always cpxOK!)

Note that in the following table, the �hsc� column. If this column is marked
�y�, then arg1 and arg2 values returned will be of the �hsc_� variety.
Otherwise, they will use the new �cpx� variety. All status�s are of the cpx-
variety. All actions are of the cpx-variety. Actions can take on the same
values as status�s also and cover a wider range of possibilities. Status and
action values are in a separate table below.

Here are the various classes and the meanings of the values returned for each:

Table B-12: Extraction Event

Class

of

Event

h

s

c

Arguments returned from

cpxExtractEventDetail()
Status

arg1 arg2 arg3 arg4

cpxINTRPT y resource attribute action n/a cpxOK

cpxACTION y resource attribute action n/a cpxON,
cpxOFF,
cpxNOP, cpxROATT,
cpxBADRES,
cpxBADATT,
cpxBADACT

cpxREGDIR y resource n/a action value cpxOK,
cpxEOPEN, cpxBADRES,
cpxBADACT

cpxREGBYT y resource n/a action value cpxOK,
cpxEOPEN,
cpxBADRES,
cpxBADACT

cpxLEDTST n n/a n/a n/a duration cpxOK, cpxEOPEN,
cpxEALRM, cpxELAMP,
cpxEARG1

cpxALMTST n n/a n/a n/a duration cpxOK, cpxEOPEN,
cpxEALRM, cpxELAMP,
cpxEARG1
High Availablility Package User’s Guide 139

Appendix B - Motorola Hot Swap Controller/ Bridge API
DIAGNOSTICS

cpxERROR is returned if this call is made and no notifications were retrieved.

cpxOK is returned indefinitely if a valid event was earlier retrieved.

cpxLEDSET n resource
group

attribute
group

action n/a cpxOK
cpxEOPEN
cpxEARG1
cpxEARG2
cpxEARG3

cpxPRGINT y resource n/a n/a n/a cpxEOPEN,
cpxBADRES,
cpxBADATT,
cpxOK

cpxSETMSK n n/a n/a n/a classes cpxEOPEN, cpxOK

(all classes can
experience
cpxSEGFLT)

n n/a n/a n/a n/a cpxSEGFLT
(memory access error with
application supplied pointers
or values)

Table B-12: Extraction Event (Continued)

Class

of

Event

h

s

c

Arguments returned from

cpxExtractEventDetail()
Status

arg1 arg2 arg3 arg4

Table B-13: Status & Action values

Value Meaning

cpxOK function call was successful.

cpxEOPEN hsc_Open() not yet called.

cpxARG1 function argument one is invalid.

cpxARG2 function argument two is invalid.

cpxARG3 function argument three is invalid.

cpxARG4 function argument four is invalid.

cpxBADRES invalid resource (individual or domain) specified.

cpxBADATT invalid attribute provided.
140 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxBADACT invalid action requested.

cpxROATT attempt to modify read-only attribute.

cpxON status of attribute is in the on state.
action specified is to change attribute state to on.

cpxOFF as above for off state.

cpxNOP as above for no operation state.

cpxNCHG a status of no change to the attribute. already in
requested state.

cpxSTATUS action request for status of an attribute.

cpxELAMP a lamp test is in progress. request denied.

cpxEALRM an alarm test is in progress. request denied.

Table B-13: Status & Action values

Value Meaning
High Availablility Package User’s Guide 141

Appendix B - Motorola Hot Swap Controller/ Bridge API

(PAUSING EVENT NOTIFICATION)

cpxBlockEventNotification()

NAME

cpxBlockEventNotification - prevent or allow event signals to an
application

SYNOPSIS

#include <cpxapi.h>

int cpxBlockEventNotification(action)

int action;

DESCRIPTION

This function allows or disallows signaling an application signed up for
event notifications when one occurs. This function must be used judiciously.
The current event queue is 45 deep for any application requesting events. If
they are not retrieved in a timely manner, it is possible for them to overflow
the queue and be lost (and duly noted on the system console). In most system
configurations, this will hardly prove to be an issue because event rates are
relatively low in a correctly functioning system. This function is used when
an application wants to temporarily halt notifications during a critical
processing phase.

ARGUMENTS

Valid actions are cpxON, cpxOFF or cpxSTATUS only.

DIAGNOSTICS

cpxOK is returned for a successful cpxON or cpxOFF action.

cpxON (blocked) or cpxOFF(unblocked) is returned if the action specified is
cpxSTATUS.

cpxNOFUNC is returned if the calling application is not currently registered to
receive event notifications.

cpxBADACT is returned for an invalid action.

cpxEOPEN is returned if an hsc_Open() has not been successfully
performed.
142 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

SETTING/GETTING BRIDGE STATES

hsc_SetBridgeStates()

NAME

hsc_SetBridgeStates - clrs the special removal & insertion bridge states

SYNOPSIS

#include <cpxapi.h>

int hsc_SetBridgeStates(bridge, removal, insertion)

hsc_RESOURCE_ID bridge;

hsc_ACTION * removal;

hsc_ACTION * insertion;

DESCRIPTION

This function allows the clearing of special R/W bridge states which also are
capable of generating interrupts. These states are used in conjunction with
the ejector_state and installed status information to understand and control
the comings and goings of the HSC/B card.

ARGUMENTS

Valid processor arguments are hsc_BRIDGE_A and hsc_BRIDGE_B.

The 2nd and 3rd arguments are hsc_ACTION variable pointers. If either of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_BAD_OBJECT is returned for if either hsc_ACTION argument is not
hsc_SET or hsc_CLEAR.

hsc_BAD_REGISTER is returned for an invalid bridge argument.
High Availablility Package User’s Guide 143

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_GetBridgeStateSettings()

NAME

hsc_GetBridgeStateSettings - return removal/insertion state settings

SYNOPSIS

#include <cpxapi.h>

int hsc_GetBridgeStateSettings(bridge, removal,
insertion);

hsc_RESOURCE_ID bridge;

hsc_ACTION * removal;

hsc_ACTION * insertion;

DESCRIPTION

This function returns the insertion and removal states for a processor�s bridge
slot.

ARGUMENTS

Valid processor arguments are hsc_BRIDGE_A and hsc_BRIDGE_B.

The 2nd and 3rd arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid bridge argument.
144 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_SetEBridgeStates()

NAME

hsc_SetEBridgeStates - sets extension bridge states

SYNOPSIS

#include <cpxapi.h>

int hsc_SetEBridgeStates(ebridge, removal, insertion,
installed)

hsc_RESOURCE_ID ebridge;

hsc_ACTION * removal;

hsc_ACTION * insertion;

hsc_ACTION * installed;

DESCRIPTION

This function allows the setting of special R/W bridge states, the first two of
which also are capable of generating interrupts.

ARGUMENTS

Valid processor arguments are hsc_EXT_BRIDGE_1 and
hsc_EXT_BRIDGE_2.

The 2nd, 3rd and 4th arguments are hsc_ACTION variable pointers. If any of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_BAD_OBJECT is returned for if either hsc_ACTION argument is not
hsc_SET or hsc_CLEAR.

hsc_BAD_REGISTER is returned for an invalid ebridge argument.
High Availablility Package User’s Guide 145

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_GetEBridgeStateSettings()

NAME

hsc_GetEBridgeStateSettings - gets the special removal & insertion
bridge states

SYNOPSIS

#include <cpxapi.h>

int hsc_GetEBridgeStateSettings(ebridge, removal,
insertion)

hsc_RESOURCE_ID ebridge;

hsc_ACTION * removal;

hsc_ACTION * insertion;

DESCRIPTION

This function allows the acquisition of special R/W bridge states which also
are capable of generating interrupts. These states are used in conjunction
with the ejector_state and installed status information to understand and
control the comings and goings of the HSC/B card.

ARGUMENTS

Valid processor arguments are hsc_EXT_BRIDGE_A and
hsc_EXT_BRIDGE_B.

The 2nd and 3rd arguments are hsc_ACTION variable pointers. If either of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_SET or hsc_CLR is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid extension bridge argument.

RETRIEVING STATUS ONLY
146 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetSlotStatus()

NAME

hsc_GetSlotStatus - return status conditions for a payload slot

SYNOPSIS

#include <cpxapi.h>

int hsc_GetSlotStatus(slot, present, healthy, connected,
reset_state, active, power, connect, force_healthy)

hsc_RESOURCE_ID slot;

hsc_ACTION * present;

hsc_ACTION * healthy;

hsc_ACTION * connected;

hsc_ACTION * reset_state;

hsc_ACTION * active;

hsc_ACTION * power;

hsc_ACTION * connect;

hsc_ACTION * force_healthy;

DESCRIPTION

This function returns the general status conditions for a particular payload
slot.

It is important to note that the only status guaranteed to be valid regardless of
domain control is the hsc_PRESENT status. The hsc_RESET_STATE is valid
only if the slot�s domain/bus is under control. All other status indicators are
valid only if the current processor controls the domain/bus the slot is in.

ARGUMENTS

Valid slot arguments include all payload slots(hsc_SLOT_01 through
hsc_SLOT_16(CPX8216) or hsc_SLOT_21(CPX8221).

The 2nd through 6th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored. Status values are written
only to those variables whose addresses are supplied.
High Availablility Package User’s Guide 147

Appendix B - Motorola Hot Swap Controller/ Bridge API

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid slot argument.

hsc_GetProcessorStatus()

NAME

hsc_GetProcessorStatus - return status conditions for a processor.

SYNOPSIS

#include <cpxapi.h>

int hsc_GetProcessorStatus(proc, healthy, connected,
active, power)

hsc_RESOURCE_ID proc;

hsc_ACTION * healthy;

hsc_ACTION * connected;

hsc_ACTION * active;

hsc_ACTION * power;

DESCRIPTION

This function returns the general status conditions for a particular processor.

ARGUMENTS

Valid processor arguments are hsc_PROC_A and hsc_PROC_B.

The 2nd through 5th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid processor argument.

hsc_GetPBayStatus()

NAME
148 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetPBayStatus - return status conditions for a peripheral bay.

SYNOPSIS

#include <cpxapi.h>

int hsc_GetPBayStatus(pbay, present, own_device, active,
power)

hsc_RESOURCE_ID pbay;

hsc_ACTION * present;

hsc_ACTION * own_device;

hsc_ACTION * active;

hsc_ACTION * power;

DESCRIPTION

This function returns the general status conditions for a particular peripheral
bay in a CPX8216 chassis only.

ARGUMENTS

Valid peripheral bay arguments are hsc_PBAY_1 .. hsc_PBAY_4 inclusive.

The 2nd through 5th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid peripheral bay argument.

hsc_GetPSStatus()

NAME

hsc_GetPSStatus - return status conditions for a power supply

SYNOPSIS

#include <cpxapi.h>

int hsc_GetPSStatus(ps, ps_present, power_good,
cooling_alarm, cooling_fault, fan_present, fan_fault)

hsc_RESOURCE_ID ps;
High Availablility Package User’s Guide 149

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_ACTION *ps_present;

hsc_ACTION *power_good;

hsc_ACTION *cooling_alarm;

hsc_ACTION *cooling_fault;

hsc_ACTION *fan_present;

hsc_ACTION *fan_fault;

DESCRIPTION

This function returns the general status conditions for a power supply. The
statuses returned are valid only if either one of the processors owns domain
A. Moreover, if ps_present is not hsc_TRUE, then the other information
retrieved is invalid.

ARGUMENTS

Valid power supply arguments are hsc_PS_1, hsc_PS_2 and hsc_PS_3.

The 2nd through 7th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid power supply argument.

hsc_GetBridgeStatus()

NAME

hsc_GetBridgeStatus - return status conditions for an processor�s bridge

SYNOPSIS

#include <cpxapi.h>

int hsc_GetBridgeStatus(bridge, present, installed,
connected, ejector_state, active)

hsc_RESOURCE_ID bridge;

hsc_ACTION *present;

hsc_ACTION *installed;

hsc_ACTION *connected;
150 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTION *ejector_state;

hsc_ACTION *active;

DESCRIPTION

This function returns the general status conditions for a processor�s bridge.

ARGUMENTS

Valid extension bridge arguments are hsc_BRIDGE_A and hsc_BRIDGE_B.

The 2nd through 6th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

hsc_BAD_REGISTER is returned for an invalid bridge argument.
High Availablility Package User’s Guide 151

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_GetEBridgeStatus()

NAME

hsc_GetEBridgeStatus - return status conditions for an extension bridge

SYNOPSIS

#include <cpxapi.h>

int hsc_GetEBridgeStatus(ebridge, present, installed,
connected, active, state)

hsc_RESOURCE_ID ebridge;

hsc_ACTION *present;

hsc_ACTION *installed;

hsc_ACTION *connected;

hsc_ACTION *active;

int * state;

DESCRIPTION

This function returns the general status conditions for an extension bridge.

ARGUMENTS

Valid extension bridge arguments are hsc_EXT_BRIDGE_1 and
hsc_EXT_BRIDGE_2.

The 2nd through 5th arguments are hsc_ACTION variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

The 6th argument is a pointer to an integer to receive the current state of the
extension bridge. AT THIS TIME!, 010 is for bus idle and 1210 for bus active.
If the state pointer is zero (0), then no bus state can be returned.

DIAGNOSTICS

hsc_OK is returned for success.

hsc_TRUE or hsc_FALSE is returned for each hsc_ACTION variable.

An integer value is returned for state.

hsc_BAD_REGISTER is returned for an invalid extension bridge argument.

hsc_GetHSCRevision()

NAME
152 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetHSCRevision - get a Hot Swap Controller�s revision number

SYNOPSIS

#include <cpxapi.h>

int hsc_GetHSCRevision(void)

DESCRIPTION

This function returns the HSC/B�s hardware revision number for the domain
the calling application is running in. This revision number is retrieved from
the HSC/B board�s configuration space during the loading of the HSC Driver.

ARGUMENTS

None

DIAGNOSTICS

An integer revision number is returned.

hsc_GetPSRevision()

NAME

hsc_GetPSRevision - get a power supply�s revision number

SYNOPSIS

#include <cpxapi.h>

int hsc_GetPSRevision(ps)

hsc_RESOURCE_ID ps;

DESCRIPTION

This function returns the revision number for the power supply indicated.
The revision number is valid only if domain A is under control by either
processor and the power supply�s hsc_PS_PRESENT bit is hsc_TRUE.

ARGUMENTS

The argument must specify a power supply in the range of hsc_PS_1 ..
hsc_PS_3 inclusive.

DIAGNOSTICS

A positive integer revision number is returned.

hsc_BAD_REGISTER is returned if the power supply argument is invalid.

hsc_ACTION_DENIED is returned if domain A is not active.
High Availablility Package User’s Guide 153

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_GetAlarmPLDRevision()

NAME

hsc_GetAlarmPLDRevision - get the alarm panel�s PLD revision number

SYNOPSIS

#include <cpxapi.h>

int hsc_GetALarmPLDRevision(void)

DESCRIPTION

This function returns the revision number of the system�s alarm panel PLD.
The revision level is valid only if domain A is owned by either processor and
hsc_PRESENT is hsc_TRUE for the hsc_SYS_LED register [alarm board is
installed].

ARGUMENTS

None.

DIAGNOSTICS

A positive integer revision number is returned.

hsc_ACTION_DENIED is returned if domain A is not active.

hsc_GetAlarmPanelRevision()

NAME

hsc_GetAlarmPanelRevision - get the alarm panel�s assembly revision
number

SYNOPSIS

#include <cpxapi.h>

int hsc_GetALarmPanelRevision(void)

DESCRIPTION

This function returns the revision number of the system�s alarm panel
assembly. The revision level is valid only if domain A is owned by either
processor and hsc_PRESENT is hsc_TRUE for the hsc_SYS_LED register
[alarm board is installed].

ARGUMENTS

None.
154 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS

A positive integer revision number is returned.

hsc_ACTION_DENIED is returned if domain A is not active.

hsc_Action

NAME

hsc_Action - sets, clears or status the HSC/B�s register bits

SYNOPSIS

#include <cpxapi.h>

hsc_ACTION hsc_Action (register, object, action)

hsc_RESOURCE_ID register;

hsc_ATTRIBUTE object;

hsc_ACTION action;

EXAMPLE

if(hsc_ON == hsc_Action(hsc_SLOT_02, hsc_CONNECTED,
hsc_STATUS)

hsc_Action(hsc_SLOT_02, hsc_LED2, hsc_ON);

DESCRIPTION

This function permits the application program to modify and/or status all
R/W bits in the registers controlled by the HSC/B board, but to only status
their R/O bits.

CAVEAT: It does not allow the interrupt bits(27 & 28) or operation bits (29
& 30) to be modified, however. For those registers which are capable of
generating one, the function hsc_Interrupt() performs the programming
and/or deprogramming of interrupts. Alternatively,
hsc_ProgramInterrupts() and hsc_DeProgramInterrupts() may be
used. The invoking of hsc_Action()--among other functions--with the action
specified, causes the proper programming of the operation bits.

Enumerations have been defined for all slots/registers, their bit objects and
the actions to perform on those bit objects. These enumerations have been set
forth in �Required Enumerations� on page 90.

For hsc_SET(_ON), hsc_CLR(OFF), and hsc_NOP actions the return value
should equal the requested action unless anomalies were detected. For
High Availablility Package User’s Guide 155

Appendix B - Motorola Hot Swap Controller/ Bridge API

statusing--hsc_STATUS--an hsc_SET or hsc_CLR action value (or their
equivalents) should be returned. If a totally problematic request is made, then
hsc_ERROR is returned.

ARGUMENTS

register - hsc_RESOURCE_ID is the slot or register upon which the action is
to be performed. See �hsc_RESOURCE_ID Enumerations� on page 90 for
an inclusive list of values.

object - hsc_ATTRIBUTE - this is the object identifier for the bit to be set,
cleared, or status�d. See �hsc_ATTRIBUTE Enumeration� on page 96 for an
inclusive list of values.

action - hsc_ACTION is the action to be performed upon the bit object
specified. See �hsc_ACTION Enumerations� on page 95 for the inclusive list
of valid operations.

DIAGNOSTICS

hsc_ON should be returned for a valid hsc_ON operation or if any bit object
status�d is currently on(set).

hsc_OFF should be returned for a valid hsc_OFF operation or if any bit
object status�d is currently off(clr).

hsc_NOP will always be returned for an action of hsc_NOP. No registers are
modified or status�d for a no-operation request.

hsc_NCHG will always be returned for an hsc_ON or hsc_OFF operation
upon a register�s R/W bit object already in that state. However, the requested
action still will be performed.

hsc_BAD_REGISTER will be returned for any invalid resource enumeration
passed to hsc_Action().

hsc_BAD_OBJECT will be returned for any invalid attribute enumeration
passed to hsc_Action().

hsc_BAD_ACTION will be returned for any invalid action enumeration
passed to hsc_Action().

hsc_RO_OBJECT will be returned for hsc_ON or hsc_OFF operations on a
read only object (for example, the hsc_CONNECTED object and opposed to
the hsc_CONNECT object).
156 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTION_DENIED will be returned for hsc_ON or hsc_OFF operations
on a read only register (for example, the hsc_INT_STAT_A register cannot
be modified).

hsc_RegDirect

NAME

hsc_RegDirect - write, set, clear, or get a register directly

SYNOPSIS

#include <cpxapi.h>

int hsc_RegDirect (register, bitmask, action)

hsc_RESOURCE_ID register;

unsigned long *bitmask; /* an address must be passed */

hsc_ACTION action;

DESCRIPTION

This function permits a program to directly modify or retrieve the contents of
an entire register without regard to specific bit objects and actions like those
provided in hsc_Action().

The bit mask should not contain the 2-bit sequence specifying the
SET/WRITE/CLEAR action because the driver installs those bits based upon
the action specified in the call. Whatever is there will be overwritten.

Only hsc_READ can be used with a R/O register.

The function returns the hsc_ACTION specified if the operation succeeds.

All bits in the mask are applied against the target register. No check is made
to ensure that R/O bits aren�t being written.

ARGUMENTS

register - The register name is as enumerated in hsc_RESOURCE_ID
Enumerations, above.

bitmask - The unsigned long word pointed to by bitmask contains the bits
which are to be set (hsc_SET), cleared (hsc_CLR), or written (hsc_WRITE).
Or, it points to the unsigned long word which is to receive the register�s
current contents (hsc_READ).
High Availablility Package User’s Guide 157

Appendix B - Motorola Hot Swap Controller/ Bridge API

action - The action is as enumerated in hsc_ACTION Enumerations, above.

DIAGNOSTICS

An hsc_BAD_REGISTER is returned if the register specified is not within the
range of valid register/slot enumerations.

An hsc_ACTION_DENIED is returned for any modifying action attempted
against a R/O register.

An hsc_BAD_ACTION is returned for an invalid operation. An hsc_STATUS
is considered an invalid action.

An hsc_NOP is returned for an hsc_NOP action. No register contents are
returned. Support for this action will soon be removed, so its use is
discouraged.

An hsc_READ, hsc_WRITE, hsc_ON or hsc_OFF is returned if one of these
actions requested was performed.
158 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_RegByte

NAME

hsc_RegByte - write or retrieve a register�s SW scratch byte

SYNOPSIS

#include <cpxapi.h>

hsc_Action hsc_RegByte (register, byteval, action)

hsc_RESOURCE_ID register;

unsigned char *byteval; /* note that an address must be
passed */

hsc_ACTION action;

DESCRIPTION

This function allows access to the software scratch byte made available in
many of the HSC/B board�s registers. The HSCD does not use this byte, so it
is available to the applications. This byte is read (hsc_READ) or write
(hsc_WRITE) only. The concepts of set or clear do not apply. The concept of
status does not apply. However, you can perform hsc_NOP operations till the
cows come home.

If successful, an hsc_READ or hsc_WRITE is returned.

ARGUMENTS

register - The register name is as enumerated in hsc_RESOURCE_ID
Enumerations, above.

byteval - The character pointed to by byteval contains the value to be placed
in the designated register�s scratch byte, or is the byte which is to receive the
current value of the register�s scratch byte.

action - The action is as enumerated in hsc_ACTION Enumerations, above.

DIAGNOSTICS

An hsc_BAD_REGISTER is returned if the register specified is not within the
range of valid register/slot enumerations.

An hsc_BAD_REGISTER is returned if the register specified does not support
a scratch byte.

An hsc_ACTION_DENIED is returned for any modifying action attempted
against a R/O register.
High Availablility Package User’s Guide 159

Appendix B - Motorola Hot Swap Controller/ Bridge API

An hsc_BAD_ACTION is returned for an invalid operation. An hsc_STATUS
is considered an invalid action. The actions hsc_SET and hsc_CLR are also
considered invalid actions.

An hsc_NOP is returned for an hsc_NOP action. No register contents are
returned.

An hsc_READ is returned for for a successful hsc_READ action request.

An hsc_WRITE is returned for for a successful hsc_WRITE action request.

hsc_Interrupts

NAME

hsc_Interrupts - program/deprogram slot/domain register interrupts

SYNOPSIS

#include <cpxapi.h>

int hsc_Interrupts(domain, action)

hsc_DOMAIN_ID domain;

hsc_ACTION action;

int hsc_Interrupts(register,action)

hsc_RESOURCE_ID register;

hsc_ACTION action;

DESCRIPTION

This function programs or de-programs a register�s (or a set of domain
registers�) capability to generate interrupts on a particular interrupt vector
when interrupts are enabled. Programming is permitted only for those
registers actually capable of generating interrupts.

The interrupt vectors used are as defined in the HSCD�s device file
(hscdev). At this time, only PCI_A interrupts are used.

ARGUMENTS

domain - hsc_RESOURCE_ID’s are as specified in the hsc_RESOURCE_ID
Enumeration list. It specifies the register for which interrupts are to be
enabled or disabled.
160 High Availablility Package User’s Guide

Appendix1: Changes in Version 2

Alternatively, hsc_DOMAIN_IDs are as specified in hsc_DOMAIN_ID
Enumerations. The domain is that set of registers for which interrupts are to
be enabled or disabled

action - hsc_ACTIONs are as enumerated in hsc_ACTION Enumerations,
above. The action is either to program (hsc_ON) interrupts or to deprogram
(hsc_OFF) them. An hsc_NOP request performs no operation.

DIAGNOSTICS

If an hsc_STATUS is the action to perform, then either hsc_ON or hsc_OFF
is returned to provide the current interrupts enabled state.

If hsc_ON or hsc_OFF is the action, then hsc_ON or hsc_OFF should be
returned, respectively.

An hsc_NOP is returned for an action of hsc_NOP and no changes are made
to the registers.

And hsc_NCHG is returned if the interrupts are already in the requested on or
off state.

An hsc_BAD_DOMAIN is returned if the domain specified is not a single valid
domain. The domain cannot be specified as hsc_DOMAIN_A_B.

An hsc_ACTION_DENIED is returned if the register specified does not
support interrupts. Read only and non-interrupting registers are not
considered valid.

An hsc_BAD_REGISTER is returned if the register specified is not within the
range of valid register/slot enumerations. Read only and non-interrupting
registers are not considered valid.

Appendix1: Changes in Version 2

This document describes version 2 of the API interface to the CPX8000 series Hot
Swap controller. It is the beginning of a change from the old hsc_, bit oriented
interface, towards the new cpx system resource interface. A major change is the
introduction of resource aggregation, which permits a function to logically access
more than a single resource at a time. Depending upon which pre-release version 1
of the API you received and used earlier, some of this information may not apply to
your development efforts. In such cases, it is offered as background material which
may be of interest.
High Availablility Package User’s Guide 161

Appendix B - Motorola Hot Swap Controller/ Bridge API

What’s New?

1. cpxLED() - This functions controls the state of all system LEDs. LED
states now include cpxON, cpxOFF, cpxFASTBLINK (~.25 sec.),
cpxMEDBLINK (~.5 sec.) and cpxSLOWBLINK (~1 sec.). Slots or
other system functions who�s LEDs are to be affected are specified as
aggregates--one or more of them arithmetically OR�d together. The LEDs
are also specified as aggregates of cpxLEDx id�s arithmetically OR�d
together. Convenient enumerations have been defined as follows;
cpxALL_SLOTS for all payload slots and cpxALL_LEDS for all LEDs
available. When acquiring status though, only a single resource and
single LED id may be specified, for obvious reasons. The hsc_Action()
function should not be used if any blinking of LEDs will be used. Not
only can blink not be specified in hsc_Action(), but the status of an LED
can only take on the values of hsc_ON or hsc_OFF. If an LED is
blinking, then hsc_Action() status for a particular LED will be
indeterminate. New cpx-style enumerations are used in the cpxLED()
function call. Special note: Alarms for the cpxALARM resource can also
be blinked, even though the fourth alarm(cpxRACK) does not have an
associated LED. Those enumerations are: cpxCRIT, cpxMAJOR,
cpxMINOR and cpxRACK. The whole alarm aggregate may be
designated using the cpxALL_ALARMS enumeration.

2. cpxLampTest() - allows all system LEDs to be lit for a given amount of
time. This does not include cpxALARM LEDs. New cpx-style
enumerations are used.

3. cpxAlarmTest() - allows all alarms for the cpxALARM resource to be
activated for the requested amount of time. Three of these alarms also
have LEDs tied to them. New cpx-style enumerations are used.

4. cpxInstallEventFunction() replaces hsc_InstallEventFunction(). It
now accepts an aggregate of classes which specify the type of events
being signed up for. Events comprise interrupt and non-interrupt entities.
If all classes are wanted, then the enumeration for all of them is
cpxALLCLS. New cpx-style enumerations are used.

5. cpxSetEventList() permits the list of classes specified in the
cpxInstallEventFunction() to be replaced by a new set. New cpx-style
enumerations are used.

6. cpxRemoveEventFunction() replaces hsc_RemoveEventFunction().
New cpx-style enumerations are used.
162 High Availablility Package User’s Guide

What’s New?

7. cpxGetEvent() replaces hsc_GetEvent(). It now returns the status and

class of an event for which the function was signaled. New cpx-style
enumerations are used for the class and status parameter.

8. cpxExtractEventReason() replacing hsc_GetEventReason(),
acquires detail about the event which caused it to occur. The action
parameter is valued as a new cpx-style parameter which loosely translates
to the old hsc_-style enumeration in meaning, but not in value.

9. cpxSetEventFunction() replaces hsc_SetEventFunction(). New cpx-
style enumerations are used.

10. cpxBlockEventNotification() prevents signals from the driver to the
function signed up to handle events when they occur until they are
unblocked. Upon unblocking, if any events have been queued for the
function, then a signal will be sent immediately to the receiving function.

11. The substring �ForceHealthy� replaces �IgnoreHealthy� in function
names.

12. cpxPower() replaces hsc_PowerOff(), hsc_PowerOn() and
hsc_GetPowerSetting(). This new call permits the use of resource
aggregates.

13. cpxConnect() replaces hsc_Connect(), hsc_Disconnect() and
hsc_GetConnectSetting(). This new call permits the use of resource
aggregates.

14. cpxForceHealthy() replaces hsc_ForceHealthyOn(),
hsc_ForceHealthyOff() and hsc_GetForceHealthySetting(). This
new call permits the use of resource aggregates.

15. cpxInfoByte() replaces hsc_WriteInfoByte() and
hsc_ReadInfoByte(). This new call permits the use of resource
aggregates.

16. cpxProgramInterrupts() replaces hsc_ProgramInterrupts(),
hsc_DeProgramInterrupts() and
hsc_GetProgramInterruptsSetting(). This new call permits the use of
resource aggregates.

17. cpxEnableInterrupts() replaces hsc_EnableInterrupts(),
hsc_DisableInterrupts() and hsc_GetInterruptsSetting().

18. cpxProgramEnums() replaces hsc_ProgramEnums(),
hsc_DeProgramEnums() and hsc_GetProgramEnumsSetting().
High Availablility Package User’s Guide 163

Appendix B - Motorola Hot Swap Controller/ Bridge API

19. cpxFanHigh() replaces hsc_FanHighOn(), hsc_FanHighOff() and

hsc_GetFanHighSetting(). This new call permits the use of attribute
aggregates.

20. cpxtool replaces hsctool. It permits access to the new functionality.

- use �L� to access cpxLampTest(); simply enter L for details.

- use �A� to access cpxAlarmTest(); simply enter A for details.

- use �l� to access cpxLED(); simply enter l for details.

21. cpxapi.h replaces hscd.h for the application writers. hscd.h will not be
distributed and contains info for use only in building our distribution.

22. libcpxapi.a replaces libhscd.a.

23. .cpxtoolrc replaces .hsctoolrc

24. cpxtool users!

- You can now use c1 and c2 in lieu of / addition to xfr_ctl1 and xfr_ctl2.
Also, s1 and s2 in addition to xfr_stat1 and xfr_stat2. Should reduce
typing fatigue for those of you grabbing domains from the busa and
busb registers. Of course, you could have used macros....but I know a
lot of you never bothered! ;-)

- Execute only �menus� have been introduced to simplify access to
frequently executed script fragments or as block of processing to be
used with the

-New �if..then..else� capability.

-Ability to get user input into variables and well as to set
variables.

what’s gone?
1. hsc_GetGeneralStatus() - this capability is exclusively used by

cpxtool.

2. enumerations for hsc_DOMAIN_OTHER and hsc_DOMAIN_NONE
removed.

3. The following tracing capability has been replaced by the event
mechanisms discussed in What�s New above:

- hsc_SetTraceLevel() - nominally replaced by cpxSetEventList()
164 High Availablility Package User’s Guide

What’s Changed?

- hsc_SetTraceFunction() - replaced by cpxSetEventFunction()

- hsc_GetTraceCode() - nominally replaced by cpxGetEvent()

- hsc_InstallTraceFunction() - see hsc_SetTraceFunction() above

- hsc_RemoveTraceFunction() - see hsc_SetTraceFunction()
above

- hsc_BuildTraceMsg() - no equivalent

What’s Changed?
1. hsc_ACTION_REG_ID is now hsc_RESOURCE_ID; adjust your sources!

2. hsc_BIT_OBJECT is now hsc_ATTRIBUTE; adjust your sources!

3. hsc_GetSlotStatus() has three(3) additional arguments. See
�hsc_GetSlotStatus()� on page 147 for details.

4. hsc_GetPBayStatus() has one(1) additional argument. See
�hsc_GetPBayStatus()� on page 148 for details.

5. cpxProgramInterrupts replaces hsc_ProgramInterrupts(),
hsc_DeProgramIntrrupts() and
hsc_GetProgramInterruptsSetting().

6. hsc_GetProcessorStatus() has one(1) additional argument. See
�hsc_GetProcessorStatus()� on page 148 for details.

7. Most hsc_Style API return codes have been changed to either hsc_OK
(for success), or a negative value indicating the reason for failure--such as
hsc_BAD_REGISTER, etc. Adjust your sources to accept hsc_OK.

8. The use of many old API calls is now discouraged in light of several
replacement calls. The old calls are shown under �CPX8000 System HSC
Driver Control Functional Interface� on page 101 in a lightened and
italicized font. Their descriptions are in a lightened font. At some future
date, they will be removed from the API, so timely conversion to their
replacements is encouraged.

9. hsc_Open() no longer supports an argument to specify a different
device node name. It expects /dev/hsc0 to be present.

10. To maintain access to all enumerations used for test code, API�s and tools
written at MCG, two header files must be included in the following order:

#include cpxapi.h /* for all users of the API */
High Availablility Package User’s Guide 165

Appendix B - Motorola Hot Swap Controller/ Bridge API

#include hscd.h/* for MCG use only - not distributed */

11. End users developing code which uses the API must include cpxapi.h
only; upon successful compilation, the object module(s) must be linked
with the archive cpxapi.a (or object cpxapi.o) to be able to access the
API.

Programmer’s Notes
This version of the API is significantly different from all previous versions. In all
likelihood, developers using this API will need to recompile and relink against this
new version. The good news is that newer versions of the API, when available, will
remain backward compatible with this version. To determine if you need to rebuild
your application, note the following uses of the old API which would require a new
compile and build against the new one.

1. If you have used ANY interrupt or tracing mechanisms, you will need to
change your code and rebuild. Both interrupts and driver access are
treated as events and reported via the same mechanism.

2. If in using higher level functions, such as hsc_PowerOn() or
hsc_PowerOff(), and you paid attention to any non-negative values, you
will probably have to change your code and rebuild. Most of these
functions have been altered to return a negative error enumeration or a
value of hsc_OK. If your code checked for hsc_ON, hsc_OFF or
hsc_NCHG specifically, then you may have a problem. By the way,
hsc_PowerOn() and hsc_PowerOff() have been replaced by
cpxPower(). You should change your code anyway as the old calls are
considered obsolete and will disappear at some later date.

3. 3. If you used any status gathering calls such as hsc_GetSlotStatus(),
you will need to alter your argument lists as additional arguments are now
returned.

Appendix 2: Programming Information & Considerations

The following notes may be of use to the development engineer in understanding
how the programming of the HSC/B affects the access to, and operation of, the
CPX8xxx chassis.

� In a single chassis, there are one or two processors with hsc
controller/bridges and one or two extension bridges (CPX8221 only)
residing in two domains called A and B. Although each domain�s
166 High Availablility Package User’s Guide

Appendix 2: Programming Information & Considerations

processor can run stand alone, it may, when appropriate, take control of
the other processor�s resources--its domain. Each processor may have
control over no domains, one domain or both domains. Having control of
a domain means having control over the 6 primary, non-host slots in that
domain. In the case of Domain A, additional system resources (alarms,
system LEDs, etc.) are also controlled. On the CPX8221, having control
of Domain B also means having control over the 5 additional payload
slots on Bus C, for a total of 11 payload slots in that domain.

� The buses in Domain B may be taken one at a time. In this scenario, bus
B must be taken before control of bus C can be realized. Control of bus C
by itself is not possible (CPX8221 only).

� A payload slot�s board present status is valid only when power is not
applied to the slot. When power is applied, the healthy status would
indicate a board being present and operational. If power is applied, but
healthy is not asserted, then the board is either absent, non-cPCI Hot
Swap compliant or defective. If it is non-compliant, then the
cpxForceHealthy() function may be used to cause the healthy status to
reflect the power on state.

� For purposes of this document, a status change typically results from a
setting being changed or some asynchronous event occurring. For
example, when power is applied to a board (a setting of power to on), an
event usually takes place in that its healthy status is asserted. Therefore,
the functions described herein make the distinction between setting,
acquiring the value of a setting and acquiring a status value. Settings are
deterministic, driven by software. Statuses track state transitions, a read-
only condition which reflects a resource�s change of state.

� Having control of domain A also allows the processor to control system
functions such as alarms, system LEDs, power supplies and fans. Taking
control of domain A by an application executing on the processor
installed in domain B is accomplished by taking control of bus A. Again,
taking control of buses is better accomplished by specifying a domain as
opposed to a bus-by-bus method. Once a domain takeover bid is made, it
cannot be rescinded except under very specific conditions.

� A domain (hence its associated bus) may be taken by the other domain�s
processor either cooperatively or �by force�. A processor�s own domain
(and bus) may be taken back from the other processor either
cooperatively or �by force�.

� Just as a domain may be taken by a processor, it may also be given up
without the other processor�s intervention.
High Availablility Package User’s Guide 167

Appendix B - Motorola Hot Swap Controller/ Bridge API

� When a domain is owned, its slots and system functions are called

�active,� Otherwise, they are �inactive.� In most instances, the API calls
may be made against inactive slots and system functions, but they will be
pending the takeover of the bus by the programming processor and will
be effected only after the domain is taken. Domains are taken by taking
control of the primary bus in that domain.

� Both processors in the CPX8216 can have simultaneous control over the
four peripheral bays based upon a hardware strapping option. The
CPX8221 has no peripheral bays under hot swap control, which makes
this point moot.

� A processor may not cut its own power. It can cut the power to the other
domain�s processor though.

� A processor removing/restoring power from/to a power supply must also
change the LEDs to reflect its new operational status before the operation
can actually occur. This is done automatically by the functional interface.

� The last powered on power supply in a system cannot be powered off
under software control. Upon �powering off� the last supply, it does so
only momentarily, then comes back on, causing both processors to begin
their reboot sequence.

� For peripheral bays owned by both processors (a drive jumper setting),
either processor can turn the LEDs on. However, both must turn the same
LEDs off to actually make it happen. This action is specific to the
CPX8216, which has controller managed peripheral bays.

� Performing non-host slot actions regarding power, connections, LEDs,
etc., in a domain not currently owned by the processor can be done in
preparation for taking the domain. As soon as this takeover is
accomplished, the last pending actions performed upon them take effect.

� All functions and slots may be programmed (or deprogrammed) to
interrupt with a single command, or they may be targeted singly. The
application may also declare a function to receive their interrupt
information when exceptions arise. This function must, in turn, make one
or more calls to retrieve all the interrupt reasons.
168 High Availablility Package User’s Guide

Appendix 2: Programming Information & Considerations
 Hscd Context Diagram

Hot Swap
Controller

Domain

tm.conf

User
space

Kernel
space

...

Interrupt
Control
Register

Non-host
Slots

Host
Slots

Peripheral
Bays

Power
Supplies

LED
Panel

Metrics and
Status

Bridge
Boards

Bus
Control

Registers

System
Alarm

Topology
Manager

Hot
Swap
Event

Manager

Hot Swap
Conroller

Driver

Hot Swap
Controller

Tool

ENUM
Driver HSCD

HSEM

TM

cpxtool

DB

ENUM and
other
device

Interrupts
High Availablility Package User’s Guide 169

Appendix B - Motorola Hot Swap Controller/ Bridge API
170 High Availablility Package User’s Guide

APPENDIX C stmd.conf file example
This appendix provides a sample stmd.conf file for generic use. For additional
information on configuring stmd.conf, please see the man page stmd.conf(5)

$Id: stmd.conf,v 1.4 2000/12/13 02:43:15 carlb Exp $
;**
; (C) Copyright 2000
; LynuxWorks, Inc.
; San Jose, CA
; All rights reserved.
;
; $Date: 2000/12/13 02:43:15 $
; $Revision: 1.4 $
; $Source: /home/Lynx/src/HAP2.0/stmd/RCS/stmd.conf,v
; $
;**
;--
;$State: Exp $ by $Locker: $
;--

; static char sccsid[] = "@(#) hsem/hsem.conf, hsem, Phase0 1.8 99/02/02";
;
; COMPONENT_NAME: (HSEM) Hot Swap Event Manager
;
; Copyright (c) 1998,1999 MOTOROLA
; All Rights Reserved
;
; THIS IS UNPUBLISHED SOURCE CODE OF MOTOROLA.
; The copyright notice above does not evidence any actual or
; intended publication of such source code.

; The "slots" entry defines the slot table for the specific chassis.
; Field 1 = Physical Slot number
; Field 2 = Bus Number
; Field 3 = Device Number
; Field 4 = Function Number
; The slot table below is for the domain A side of an 8216 Chassis.
; It should not be modified.
slots
;slot#,bus#,dev#,func#
slot 1,1,14,0
slot 2,1,13,0
slot 3,1,12,0
slot 4,1,11,0
slot 5,1,10,0
High Availablility Package User’s Guide 171

Appendix C - stmd.conf file example

slot 6,1,9,0
slot 7,0,0,0
slot 8,0,0,0
slot 9,0,0,0
slot 10,0,0,0
slot 11,42,14,0
slot 12,42,13,0
slot 13,42,12,0
slot 14,42,11,0
slot 15,42,10,0
slot 16,42,9,0
end_slots

; This is the drivers section of the config file. In it are
; sections for each driver.

drivers

driver
device_name_prefix /dev/wan

; This signature is used during device parsing.
; It corresponds to the PCI device specific vendor ID.

signature
vendor 0x00091011,0,255
end_signature

; The script invoked during device insertion transition.

device_install
system /etc/hasw/install.scr
end_device_install

; The script invoked during device removal transition.

device_uninstall
system /etc/hasw/uninstall.scr
end_device_uninstall

; NOTE these scripts MUST exist or these lines should be omitted
; placing these lines but omitting the scripts will cause
; all standby and active trasitions to return error
; the net effect of this would be that the driver would
; remain in Inactive state
; The script invoked during domain transition to active.

active_command /etc/hasw/active.scr

; The script invoked during domain transition to standby.

standby_command /etc/hasw/standby.scr

end_driver

end_drivers.
172 High Availablility Package User’s Guide

NOTE: The active_command and standby_command scripts must exist if they
are declared in the file. If these scripts are not in the declared location, all
transitions to Active or Standby fail and the driver will be stuck in the Inactive
state. If the active_command and standby_command declarations are left out,
transitions to Active and Standby are still allowed.
High Availablility Package User’s Guide 173

Appendix C - stmd.conf file example
174 High Availablility Package User’s Guide

Index
A

About High Availability 2
Active to Warm Standby 68
Asynchronous Events 78
Availability Impacting Events 4

B

Basic Hot Swap System 9

C

Calculating System Availability 3
Cold Standby to Active 65
Cold Standby to Warm Standby 68
Contacting LynuxWorks v
cpxload 21
cpxtool 21
cpxunload 21

D

Device Driver Model 44
STMD 46

Device Resource Manager (DRM) 43
Domain Switchover 14

Driver Model 14
Warm Domain Switchover 14

DRM 43
drm_stat 22

E

enum 41
example file 173

F

Frameworks 11
Full Hot Swap System 9

H

ha_sim 25
HAP 2.0

Installation 17
Product Overview 1

High Availability
About 2
Availability Impacting Events 4
Computing System Availability 3
Frameworks 11
Hot Swap 4
Hot Swap Model 11
Hot Swap States 5
Network-Based Redundancy 12

High Availability Platform
Device Driver Model 44
Device Resource Manager 43
enum 41
hscd 41
hsem 40
hsem / STMD 40
High Availablility Package User’s Guide 175

Index

Install.HAP Configuration Specifications

19
Installing 17
LynxOS elements used 41
mdd 40
Post-Installation Tasks 19
stmd 40
STMD Driver Model 46
System Requirements 17
Tools 21

ha_sim 25
Uninstalling 19
Writing Applications 37

Application Interface to HAP 2.0 38
High Availability System 11
High Availability Tools 21

cpxtool 21
cpxunload 21
drm_stat 21, 22
ha_sim 25
hscmd 28
hsem 29
hsi 30
hsls 31
hsx 32
mdd 32
stmd 33
tm - Topology Manager 34

Hot Extraction 75
Hot Insertion 72
Hot Swap 4

Basic System 9
Bottom up Hot Insertion 50
CompactPCI Architecture 7
Full System 9
Hot Extraction 53
Operation Messages 49

Error Notifications 49
States 5
System Models 8
Writing Applications 47

HSC Events 78
hscd 41
hscmd 28
hsem 29, 40
hsem / STMD 40
hsi 30
hsx 32

I

Install.HAP configuration file 19
Installing HAP 2.0 17
Installing High Availability Platform 17

L

LynxOS elements used in HAP 41

M

mdd 32, 40

P

Post-Installation Tasks 19
Product Overview 1

S

stmd 33, 40
STMD / hsem 40
stmd.conf 173
System Availability, Calculating 3
System Models

Hot Swap 8
System Requirements 17

T

tm - Topology Manager 34
Tools

cpxtool 21
cpxunload 21
drm_stat 21, 22
ha_sim 25
hscmd 28
hsem 29
176 High Availablility Package User’s Guide

hsi 30
hsls 31
hsx 32
mddl 32
stmd 33
tm - Topology Manager 34

Typographical Conventions vi

U

Uninstalling High Availability Platform 19

W

Warm Domain Switchover 14
Asynchronous Events, HSC 78
Hot Extraction 75
Hot Insertion 72
Operation 57
State Transitions

Active to Warm Standby 68
Cold Standby to Active 65
Cold Standby to Warm Standby 68
Warm Standby to Active 71

STMD Messages 57
Writing Applications 54

Error Notifications 60
Warm Standby to Active 71
Writing Hot Swap Applications 47
Writing Warm Domain Switchover Applications

54
High Availablility Package User’s Guide 177

Index
178 High Availablility Package User’s Guide

	High Availability Platform User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	High Availability Platform for LynxOS
	Product Overview
	About High Availability
	System Availability
	Availability Impacting Events
	Hot Swap
	System Models
	Basic Hot Swap System
	Full Hot Swap System
	High Availability System

	High Availability Frameworks
	Domain Switchover
	Warm Domain Switchover

	Chapter 2 Installing the High Availability Platform
	System Requirements
	Installing the High Availability Platform
	Uninstalling
	Post-Installation Tasks

	Install.HAP Configuration Specifications

	Chapter 3 High Availability Tools
	Introduction
	cpxload - cpxunload
	cpxtool
	drm_stat - Display all device nodes in a system
	Synopsis
	Description

	ha_sim - HA System Initialization Manager
	Synopsis
	Description
	Dependencies
	Initialization
	Shutdown
	Default
	Options

	hscmd - Hot Swap Command Utility
	Synopsis
	Description

	hsem - Hot Swap Event Manager
	Synopsis
	Description
	Options

	hsi - Hot Swap Insert
	Synopsis
	Description
	Sample Session

	hsls - List Non-Bridge Devices
	Synopsis
	Description
	Sample Session

	hsx - Hot Swap Extract
	Synopsis
	Description
	Sample Session

	mdd - Message Distributor Daemon
	Synopsis
	Description
	Options

	stmd - State Transition Management Daemon
	Synopsis
	Description
	Options

	tm - Topology Manager Script
	Synopsis
	Description
	Options
	Error Handling

	Chapter 4 Writing High Availability Platform Applications
	Overview
	Client Application
	hsem
	mdd
	stmd
	enum
	hscd
	LynxOS Elements Used
	Device Resource Manager

	The Device Driver Model
	STMD Driver Model

	Writing Hot Swap Applications
	Initialization and Registration
	Operation
	Bottom Up Hot Insertion
	Hot Extraction

	Writing Warm Domain Switchover Applications
	Initialization and Registration
	Operation
	State Transitions
	Cold Standby to Active
	Cold Standby to Warm Standby
	Active to Warm Standby
	Warm Standby to Active
	Hot Insertion
	Hot Extraction
	Asynchronous Events

	Appendix A Basic Terminology
	Back End Logic
	Back End Power
	Dynamic Configuration
	Enumeration
	Fault Tolerance
	High Availability
	Hot Swap
	PCI Extended Capabilities Pointer (ECP)
	PCI Mezzanine Card (PMC)
	Quiesced
	Warm Domain Switchover

	Appendix B Motorola Hot Swap Controller/ Bridge API
	Introduction
	Definitions
	CPX82xx HA Programmable Resource Management
	Purpose of this Document
	Overview
	CPX82xx System Resource and Attribute Identifiers

	Appendix1: Changes in Version 2
	What’s New?
	what’s gone?
	What’s Changed?
	Programmer’s Notes

	Appendix 2: Programming Information & Considerations

	Appendix C stmd.conf file example
	Index

