High Availability Platform
User’s Guide

OOOOOOOOOOO

Product names mentioned in High Availability Platform User’s Guide are trademarks of their respective manufacturers
and are used here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571, 5,594,903

Printed in the United States of America.

All rights reserved. No part of High Availability Platform Users Guide may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise,
without the prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Contents

g 21 =0 X =3 PPN \")
For More INformationcocooeereiieienieieniee e v

Typographical CONVENtIONSccceeeeriieiieriieiinieee et vi

SPECIAL NOES ..veviieiieiiiieieeiiete ettt et ete e e sseeneesseesaenneas vii

TechniCal SUPPOTL ..cceveeeieiiieieeiieee ettt re e sbeeeaeenneens vii

LynuxWorks U.S. Headquartersccoceeeviervieeiieenieeieeee e eseeenenns viii

LynuxWorks EUTOPEccoieiiiiiieeieeieeieeeee et viii

WOrld Wide WEDboc.ooiiiiiiiiiiieeeeeee s viii

CHAPTER 1 INTRODUCTION....ccteuuuiiieeierenueeserrennssssererrnnsssssereressssssssenrensssssessnsnsnssesersnnns 1
High Availability Platform for LynxOSc.ccccocniniiiiiiiiiinnncccee 1

Product OVEIVIEWcecieiuieiiiiiiieitieiet ettt 1

About High Availabilitycccceeeiiiiiiiieiie et 2

System Availabilitycccccvevieririieneiieie e e 3

Availability Impacting EVENtscccecveviirienenieneciee e 4

HOE SWaD oo 4

SYStEM MOAEIS ...vieiiiieiieiieeeee et 7

High Availability Frameworksccccceeueviriienieiieiieiee e 11

Domain SWItChOVETccveiviiieiiiieieeieiceeee e 13

CHAPTER 2 INSTALLING THE HIGH AVAILABILITY PLATFORMcococminneeinnenisnnnnsanens 17
System REQUITEMENTSeecviiiiieiieiiieiierie et eie et eee e e e sveeaee e e sreeeenas 17

Installing the High Availability Platformc.ccocooiiiinininiiiicees 17

UNINStAIIING .oeveeeiiiieieie ettt e er e seeee s enae e 18

Post-Installation Tasksccccceeeeeriirienenieecieeee e 19

Instal. HAP Configuration Specificationscccceeeveerieroieeneenieeieeseeennenn 19

High Availablility Package User’s Guide i

Contents

CHAPTER 3 HIGH AVAILABILITY TOOLScccoriiiieiinnnnssses s sssse s ssssss s s sssessnans 21
INEOAUCTION ..ottt 21
cpxload - cPXUNIOAAccveiviiieiieiie ettt e 21
CPXEOOL ettt ettt ettt 21
drm_stat - Display all device nodes in a SYStemc.cceceeeereeieneerieneeneene. 21

SYNOPSIS wnvieieieiieieeieeteit ettt ettt sttt st s e ste it eaee e enee e
Description
ha sim - HA System Initialization Managerc..ccccoevveeerinencncniencnennens 24
SYNOPSTS teeuvveerieiieeieeiteerteeieestteesteesteessbeeseesseeesseesssesnseesaeesseesseessesnses 24
DESCTIPLION .evieeieeiiieiiieieeetee et eteeeteesteeseteeseesseeeseessaessseensaessseens 25
DEPENAENCIES ...eeeevieiiieiieeieecieeteetee et et e ete et eebeeseeeseessseenseesaeeens 25
INitialiZatiONooeeiiiieieieiiee e 26
SHULAOWN ..ttt 26
Default ..o 27
OPLIONS .evieeieeiiieiie et e stee et erte st e e e eteesseeenbeebeeesaeesseesssessseessesnsaenseennns 27
hsemd - Hot Swap Command Uityc.cccveeveieiieiiiienienieeseeeie e 28
SYNOPSIS nvieuiieiieiieiterteetieseeteteete et eteseeeeeseesesseessessaesseessenseensenseaseennn 28
DESCIIPION ..oevieieiiiiieie ettt ettt ere s se e sesseenaessaenseas 28
hsem - Hot Swap Event Managercccoecveeieenieiieenieeieenieesiesveeiee e 28
N 110] 03 C TSRS 28
DESCTIPLION .vvieeieeiieiiieieeeteeete ettt et e etreesteesebeeseesbeeeseensaessseensaeesseens 29
OPLIONS .evieiieeiieiieeteestte et erie st e e ete e teeesseebeessaeeseesssessseenssesnsaenseennns 29
hsi - HOt SWap INSETt ..cc.covivieriiniiiiiiicieeereceteee e 29
N 110] 03 SRR 29
DESCTIPLION .vvieiiieiieiiieieereeeteerte e et e etteesteesebeeseesseeesseessaessseensaessseens 29
SAMPIE SESSIOMN ..vvieeiieiieciiieiieiie ettt ere e e ebe et etaeesaeeseeenseenaees 30
hsls - List Non-Bridge DeviCesccccoevieririeininiinineniiieniceeeceeeeieeieniee 30
SYNOPSIS nvieuiieiieiieiestieieseeteteete st etesseeeeseesesseessessaesseessenseeneenseaseennn 30
DESCIIPION ..ovvieieiiiiieie ettt st et sseesae s enseesaenseas 30
SAMPIE SESSION ..vvreuieiiriieieeieieeie et ettt este et e e saeseeensenseeneeseeneenes 30
hsx - HOt SWap EXIIAC ...ccevieiiieiiieiiecieeiteee ettt s 31
SYNOPSIS uvieuieeiieiieeetiete st eteteete st etesseeee st esesseessessaessesssenseensanseaneennn 31
DESCIIPLION ..oevieieiiiiieie ettt ea e re e se s eenseesaenseas 31
SAMPLE SESSION ...eeeuiiiiiirieriirtiieriet ettt et 31
mdd - Message Distributor Daemonceccevvereeriiecieieniieseesieeeeeeeeene 31
N 110] 03 SRR 31
DESCTIPLION .vvieiiieiiieiiieieeetee ettt e re et e eteeesteesebeebeessaeeseessnessseensaessseens 31
OPLIONS .eviieieeiiiecie et ctteesteerte st e e eteesteessbeebeessaeesseesssessseessesnsaenseennns 32

ii High Availablility Package User’s Guide

stmd - State Transition Management Daemoncccceeeveenencenrninnncne. 32

SYNOPSIS -eeeureneienieriieieeteereseertesttete et e bt eseesteeseesseessesseesesseessesssensesssansenns 32
DIESCIIPLION ..veiieniiiieiieiieie ettt ettt sttt et et eseesseenaesseennenseenees 32
OPLIONS .ttt ettt sttt et ett et st e teeseesseesseseeseessesnnessesnsessennsens 33

tm - Topology Manager SCTIPLceeevveereeiiieeriienieeieeeeeeieeseeesreesree e eeeens 33
N 110) 01 TSRS 33
DESCTIPLION ...evieieieiiieiiieeieeie st eree et e ere e st e e e eteesebeeseenseessseenseenases 33
OPLIONS .ottt sttt et ettt ettt e teeseenseesaeseeseessesnnessesnnessennsens 34
Error Handlingccocveieeiiieiieieeiicie et 34
CHAPTER 4 WRITING HIGH AVAILABILITY PLATFORM APPLICATIONSccceeuuiereerennnens 37
OVEIVIEW eineieieeiiesiesiieieetete e teetteseeeseese st esseesaensessaessessaensesseenseeseensesneenees 37
Client APPLICALION ...cceeecuieiiiiiiesieeeieeteerte et e steeeie e e sveereeseeeaeenene e 40
RISEIM L.ttt et ettt srbeenneennte s 40
INAQ et e 40
131 1o KOS SURPSUURUSRIRPN 40
153111100 SRR SPSR 41
RSCA et ettt sraeenbeenaaens 41
LynxOS Elements USedcccevveeeeiieiienieeiieeieesieesiveeieeiee e esanesevens 41
The Device Driver Modelc.cocveiiiiiieeiieiieieeeecie e 44
STMD Driver Modelccoeveiiiiiieiiiiieciiecie ettt 47
Writing Hot Swap APpliCationsccceeceeeieeriiniieiieeie e sveeree e eie e 47
Initialization and RegIStrationccccceevevieeieseeieniieiese e 47
OPCTALION ...veeuiiiieieeeieieetete et et eettesee et eseenseseeseessessaessesnsensesnsenseensansenns 49
Bottom Up Hot INSEItionccceeeveviieieriieieieiese e 50

= (o] B8 253 T (o) AU 52
Writing Warm Domain Switchover Applicationscccccceevverveenieeneennenns 54
Initialization and RegIStrationcccceeeerierieceeeceeriieiee e 54
.. 57
OPCIALION ...vieneiiieieeiieieeteteeteet et e seeeseeseenseseeseessessaessesssensesnsenseensensenns 58
State TranSItIONSccecveeeieruerieriieiiereeereeieeteeeeeesseeeesseseesessseseensensenns 66
APPENDIX A BASIC TERMINOLOGY ...ccuuuiiiirrennunirerrrnnnssssserrmnnssssssseerensssssersesnssssssesrennsnns 83
Back ENd LOZIC ..ooovveeieiieiieiieiiese ettt 83
Back ENd POWETocvoiiiiieiiciececeeeeeee ettt 83
Dynamic Configurationcccceevecueeiesiieeieniieiesesieseeeeesseeseesseesaennens 83
ENUMETAtiONccvieiiieiiiiciieicieese ettt sne e sneas 83
Fault TOLEranCeccceeuveierieieeeeieeeiei ettt 84
High AVailabilitycccoecveeiieieiieiesieeee et 85

High Availablility Package User’s Guide iii

Contents

HOE SWAD ettt e e aee s 85

PCI Extended Capabilities Pointer (ECP)ccccceeeveviiecienceieeieen. 85

PCI Mezzanine Card (PMC)cccoovieviienieeieeieeieciee e eve e 86

QUICSCEA .veovieeiiieciieciee ettt ettt et eeaaeebe e s beesaeeteesebaenneeenes 86

Warm Domain SWitChOVETccevvieiiiiiieeie et 86

APPENDIX B MOTOROLA HOT SWAP CONTROLLER/ BRIDGE API........ccoceeeevveereeeeeeeen, 87
INEOAUCLION ..oviiiiiieieceeee ettt e eae et sne e e ees 87

DETINILIONS .oovvieiiieiieiiieieeeee ettt e e saeesaeenbeessaesnneens 87

CPX82xx HA Programmable Resource Managementcceeeueenee 88

Appendix1: Changes in VErsion 2cccceeeeeeevveniincieeneesneenveesveenens 161

Appendix 2: Programming Information & Considerations 166

APPENDIX C STMD.CONF FILE EXAMPLEcoiriuueiiisrrimsseesssssesssssssssssssssnsssssesssssnssssees 171
INDEX et 175

iv High Availablility Package User’s Guide

— Preface

The High Availability Platform User s Guide contains information about
LynuxWorks’ High Availability Platform (HAP), including installation
information, diagnostic tools, programmer’s reference and supported hardware.

This manual assumes a basic understanding of Hot Swap and Domain Failover
principles. It also assumes a basic familiarity with using, administering, and
programming in a UNIX environment.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

e HAP Release Notes

This document contains late-breaking information about this release,
including additional installation notes.

o LynxOS Installation Guide

This manual describes the initial installation and configuration of
LynxOS and the X Windows System.

o LynxOS User'’s Guide

This document contains information about basic system administration
and kernel-level specifics of LynxOS. It contains a “Getting Started”
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

* Writing Device Drivers for LynxOS

This document describes writing device drivers for the LynxOS kernel.

High Availablility Package User’s Guide v

Preface

* LynxOS Hardware Support Guide

This document describes the hardware supported by LynxOS. Hardware
supported by HAP 2.0 is detailed in the HAP Release Notes.

¢ Online information

The complete LynxOS documentation set is available on the
Documentation CD-ROM. Books are provided in both HTML and PDF
formats.

Updates to these documents are available online at the LynuxWorks
Website: ht t p: / / www. | ynuxwor ks. com

Additional information about commands and utilities is provided online
with the man command. For example, to find information about the GNU
gcc compiler, use the following syntax:

man gcc

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should

vi

be typed accurately.

Kind of Text

Body text; italicized for emphasis, new
terms, and book titles

Examples

Refer to the LynxOS User s Guide.

Environment variables, file names, I's

functions, methods, options, parameter -1

names, path names, commands, and mypr og. c
computer data [dev/ nul |
Commands that need to be highlighted | ogi n: nyname

within body text, or commands that must be
typed as is by the user are bol ded.

Text that represents a variable, such as a file
name or a value that must be entered by
the user

High Availablility Package User’s Guide

cd /usr/honme

cat filenane
mv filel file2

Special Notes

Kind of Text

Blocks of text that appear on the display
screen after entering instructions
or commands

Keyboard options, button names, and
menu sequences

Examples

Enter,

Loading file /tftpboot/shell.kdi
into 0x4000

File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
Al rights reserved.

LynxCS (ppc) created Mon Jul 17

17:50: 22 GMIr 2000
user nare:

Ctrl-C

Special Notes

The following notations highlight any key points and cautionary notes that may

appear in this manual.

NOTE: These callouts note important or useful points in the text.

CAuUTION! Used for situations that present minor hazards that may interfere with

or threaten equipment/performance.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information

about our products.

High Availablility Package User’s Guide vii

Preface

LynuxWorks U.S. Headquarters

Internet: support @ nxw. com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: t ech_eur ope@ nxw. com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://ww. | ynuxwor ks. com

viii High Availablility Package User’s Guide

cwren1 Introduction

High Availability Platform for LynxOS

The LynxOS High Availability Platform (HAP) 2.0 allows users to create highly
available system and application services. HAP 2.0 provides support for both Hot
Swap and Warm Domain Switchover applications.

This High Availability Platform User’s Guide describes:

Introduction to High Availability
Supported Hardware

Installation

High Availability Tools

Writing Applications for HAP

Basic Terminology

Product Overview

The High Availability Platform for LynxOS provides the following basic
functionality:

Response to ENUM signals
Dynamically loads or unloads device drivers

Appends or prunes the Device Resource Manager (DRM) resource tree,
which represents the system topology

High Availablility Package User’s Guide

Chapter 1 - Introduction

* Response to application commands to transition domain states in a
multiple domain system

In addition, the following major features are available in HAP 2.0:

« Full Hot Swap application support (both Hot Insertion and Hot
Extraction) for Motorola PowerPC and Intel x86 Processors in standard
Hot Swap-capable chassis (including Motorola 82xx, 22xx and 12xx
families). HAP 2.0 informs applications of all connection states if they
use the HAP 2.0 driver model.

e Warm Domain Switchover application support; HAP 2.0 allows
applications to perform Warm Domain Switchover, provided they use the
HAP 2.0 driver model. For more information, please see “Warm Domain
Switchover” on page 14.

* Tool utilities and libraries to assist manual intervention in diagnosing and
facilitating Hot Swap and Warm Domain Switchover events; for more
information, please see Chapter 3, “High Availability Tools”

This release runs on the Motorola MCP750 PowerPC and Motorola CPV5350 Intel
Pentium CompactPCI system controllers in 82xx, 22xx, and 12xx chassis.

About High Availability

High Availability is the term used to describe systems built with reliable
components, redundant elements, and the means to communicate system and
application states.

Problem detection and system recovery in High Availability systems can be either
manual or automatic. Manual detection and recovery requires an operator to detect
or anticipate a failure and replace the failing component. Automatic detection and
recovery is controlled by system hardware, software extensions, and in some cases,
the applications themselves.

It is possible to build systems with commercial hardware components and Open
System software extensions. By providing redundant elements and switchover
applications, the system can remain in service for a high percentage of time. The
components involved are assumed to be only moderately reliable, so there must be
a heavy reliance on software and manual intervention to anticipate and handle
failures.

2 High Availablility Package User’s Guide

System Availability

System Availability

Availability is defined as the duration of time a computer system provides services
to applications in proportion to the duration of time the system is unavailable. A
highly available system provides services to applications most of the time.

The downtime of a computer system can be predicted from the mean time to failure
(MTTF) of the components and the mean time to repair (MTTR) those components.
The following is the formula for Computing System Availability. In a system of
components, each having a mean time to failure and a mean time to repair, the
availability is calculated as such:

n

. MTTEF.
i=1 1

Di-1 1 1

For example, a computer system of five components has these MTTF and MTTR
specifications:

Table 1-1: MTTF/MTTR Specifications

Component MTTF MTTR
Chassis 1000 days 2 days
Processor 500 days 1 day
Board A 800 days 1 day
Board B 300 days 1 day
Board C 750 days 2 days

Component availability for this configuration is calculated as:

Availability=

(1000 + 500 + 800 + 300 + 750)

(1002 + 501 + 801 + 301 + 752)

In this example, the system is expected to be up 99.79% of the time. Some
computer applications require an availability of 99.999%. This is referred to as

Five-Nines Availability.

High Availablility Package User’s Guide 3

Chapter 1 - Introduction

Availability Impacting Events

In a system that supports application intervention on a live system, there are two
different types of events that require the platform to change its component
topology:

* An operator decides that a device in the system needs to be exchanged
* A device fails

The first event is characterized as a maintenance operation, and the second as a
fault. Support for these different modes are discussed below.

Hot Swap

In this and following sections, all references are to CompactPCI system
architecture.

Hot Swap is described in terms of three processes:
* Physical Connection Process
Includes:
- HotInsertion (installing a board in a live system)
- Hot Extraction (removing a board from a live system)
* Hardware Connection Process

Describes the electrical connection and disconnection of hardware to a
live system

» Software Connection Process

Describes the connection and disconnection of the software layer(s) to a
live system

4 High Availablility Package User’s Guide

Hot Swap

These processes are a set of states and transitions. These states depend on the
transitions and prior states for their characteristics. The following figure details
these states and transitions:

Physical
Connection
States

Hardware Software
Connection Connection
States States

O

JAN O N\ O o A
P == p O O A\

HIF S == 51 = 2 = 3
s2a $3Q

Figure 1-1: Hot Swap States

The following are descriptions of Hot Swap States in Figure 1-1:

PO —The board is physically separate from the system.

P1/HO - The board is fully seated, but not powered and not active on the
PCI bus. Note that at this point, the physical layer is in P1 and the
hardware layer is in HO.

HI — The board is powered up and is sufficiently initialized to connect to
the PCI bus.

HIF — The board is commanded to power up and initialize and has failed,
or the board detected an error and disconnects itself from the PCI bus.
The board is not suitable for connection to the PCI bus.

H?2 /80 — The board is powered and enabled for access by the PCI bus in
configuration space only. The board’s configuration space is not yet
initialized. Here, the hardware layer is in H2 and the software layer is in
S0.

S1 — The board is configured by the system.

S2 — The necessary supporting software (drivers, etc.) are loaded. The
board is ready for use by the operating system and applications, but no
operations involving the board are active.

8§20 — This state is the same as state S2, but no new operations are
allowed to start. The board is quiesced.

High Availablility Package User’s Guide 5

Chapter 1 - Introduction

e 83 —The board is engaged in software operations.

e 830 — The software is completing current operations, but is not allowed
to start new ones.

The following are components of a Hot Swap system in the CompactPCI
environment.

* Board
A circuit board in the system (other than the system host)
o System Host

The central resource that provides configuration of the CompactPCI bus;
it may also provide arbitration and clocking for the CompactPCI bus.

* Platform

The platform providing infrastructure for the boards; this includes (but is
not limited to) the backplane, system host, cooling, and power supplies.

The diagram below depicts the functional elements and their relationship in Hot
Swap architecture. Bold areas indicate the unique components for Hot Swap that
are a superset of conventional CompactPCI systems.

Device
Driver

Posix Message Queues API
Hot Swap Event Manager Software
Layers
Operating
System
Device Device Hot Swap . .
Driver I:;:::;:: Controller Driver ENUM Driver Drivers

] Platform
CompactPCI Bus H/W Connection Control Hardware
S/W Connection Control
- Board
H/W Connection Layer Hardware

Conventional CompactPCl Hardware

High Availablility Package User’s Guide

System Models

Figure 1-2: CompactPCl Hot Swap Architecture

At the lowest level, a Hot Swap board contains a Hardware Connection Layer,
which supports the Physical Connection Process to the CompactPCI bus.
Controlled by the platform, the Hardware Connection Layer performs the
Hardware Connection Process. This layer can optionally contain special hardware
resources to facilitate the Software Connection Process.

The Hot Swap architecture facilitates dynamic configuration of a users’s system by
interacting with the OS and user supplied device drivers.

System Models
There are four different degrees of Hot Swap capability:
* Non-Hot Swap
Systems that do not have Hot Swap capabilities
+ Basic Hot Swap
Systems meeting the basic requirements for Hot Swap
+ Full Hot Swap
Systems utilizing the features of Full Hot Swap boards
* High Availability

Systems utilizing features of High Availability platforms for greater
hardware control

There are several ways for applications to implement High Availability. Depending
on the system configuration, it is not always advisable to take advantage of High
Availability capabilities. In the following table, various possibilities are shown in
order of increasing complexity.

Table 1-2: System Models

Hardware .
System Type Connection Software Connection
Basic Hot Swap Automatic in Manually by operator
hardware

High Availablility Package User’s Guide 7

Chapter 1 - Introduction

Table 1-2: System Models

Hardware .
System Type Connection Software Connection
Full Hot Swap Automatic in Controlled automatically by
hardware software
High Availability Hot Controlled by Controlled automatically by
Swap software software

Fault detection and recovery requires either the Full Hot Swap or High Availability
models. The Manual operator maintenance function is the only capability
supported by Basic Hot Swap.

NOTE: HAP 2.0 supports the High Availability Hot Swap model.

Basic Hot Swap System

Basic Hot Swap consists of board hardware with the Hot Swap additions to the
Hardware Connection Layer, and the Event Management Service. The Basic Hot
Swap Model does not support software access to the Hardware and Software
Connection Processes.

Posix Message Queues API
Hot Swap Event Manager Software
Layers
Operating
System
i : Device]
D D)
D:;c:: D:;c:: ':;:::;:: ENUM Driver Drivers
Minimal HW
CompactPCl Bus Platform
Hardware

Conn Control

Hardware Connection Layer

Board Hardware
Conventional CompactPCl Hardware

Figure 1-3: Basic Hot Swap System

8 High Availablility Package User’s Guide

Full Hot Swap System

The Hardware Connection Layer automatically brings a board to the H2 / SO state
upon insertion (see Figure 1-3). The Event Management Service interacts with the
operating system to load drivers and configures the operating system to enable
applications to access the new hardware. The Event Management Service performs
the reverse function on an attempt to extract a board.

All Hot Swap actions must be initiated by an operator and performed in the correct
sequence for proper system operation.

Full Hot Swap System

In addition to the Basic Hot Swap functionality, Full Hot Swap provides resources
for controlling the Software Connection Process. These resources include Software
Connection Control resources on the board, and the ability for the operating system
to dynamically load drivers and configure new devices on a running system.

The Software Connection Control function on the board provides an electrical
signal (ENUM) that notifies the system host of a service request, as well as other
board state transitions. A Hot Swap board is expected to have a Hot Swap Switch.
When pulled, the switch notifies the system that an extraction is desired. When set,
the switch notifies the system that a new board has been inserted. There is also an
LED indicator for the state of the board; if illuminated, it is safe to extract the

High Availablility Package User’s Guide 9

Chapter 1 - Introduction

10

board. This mechanism makes it possible to perform the necessary steps in the
software to allow access to the board.

Device
Driver

Posix Message Queues API
Hot Swap Event Manager Software
Layers
Operating
System
. Device ini

Device Minimal Hot Swap . .
Driver I:::::;:: Controller Driver ENUM Driver Drivers

Minimal HW
CompactPCl Bus Platform
Conn Control Hardware
S/W Connection Control
H/W Connection Layer Board Hardware

Conventional CompactPCl Hardware

Figure 1-4: Full Hot Swap System

Full Hot Swap boards drive the ENUM signal to the system host to indicate a
service request. The system host responds to the ENUM signal by adding software
drivers for newly inserted boards, or unloading drivers for boards to be extracted.
An operator action indicating a need to extract a board allows the system to quiesce
and unload any drivers associated with the board. The board can then be safely
removed from the system.

High Availability System

High Availability requires even more control than simply handling insertion and
extraction. HA systems are able to control the Hardware Connection Process. This

High Availablility Package User’s Guide

High Availability Frameworks

is accomplished by adding support for additional electrical signals, namely
PRESENT and HEALTHY.

Posix Message Queues API
Hot Swap & Domain Event Manager Software
Layers
Operating
System
. . Device
Device Device Full Hot Swap . .
Driver Driver F'i\:as::;ce: Controller Driver ENUM Driver Drivers
] Platform
CompactPCl Bus H/W Connection Control Hardware
S/W Connection Control
H/W Connection Layer Board Hardware
Conventional CompactPCI Hardware

Figure 1-5: High Availability Hot Swap Mode

In this model, the system performs additional services to ensure more than just the
inserted or extracted state of the board. In particular, prior to applying power, it
detects the board’s presence and whether or not the board is reporting that it is
working properly.

High Availability Frameworks

For High Availability, a system must be able to be reconfigured (in the event of
maintenance requirements or active faults) with minimal system impact. While
reconfiguration does have some impact, it must still meet the given availability
specification for Highly Available systems.

In order to design a system that accommodates a number of different architectures
for High Availability, frameworks that provide High Availability benefits are
required. As a rule, more specialized (and hence weaker) frameworks provide the
maximum benefit.

High Availablility Package User’s Guide n

Chapter 1 - Introduction

12

For High Availability systems, there are two basic models for which the common
framework is, as yet, undeveloped: The first model for High Availability is
network based (what may be called interchassis redundancy). In this model, there
are two or more duplications of complete platforms, and system hosts processors
with the full complement of the necessary boards. Application software monitors
the health and reliability of each platform and shifts responsibilities accordingly.

0 —Ethe,‘net | G e T)

m| = = | - ole
|
Processor A Processor B Additional

Processors
1

| |
O ;Ethernet II—])

Figure 1-6: Network-Based Redundancy

In this case, availability is guaranteed by ensuring that one complete system is
functional at all times using an ethernet network to share application and device
states. In a more sophisticated setting, three or more systems running the same
applications use an election mechanism to determine the most likely correct result.

The second model is a common backplane (or intrachassis redundancy). One such
backplane is Compact PCI. Compact PCI is a commercial bus, backplane, and card
specification with many features making it ideal for High Availability systems. The
Compact PCI bus is electrically and logically the same as the motherboard based
PCI bus. Interface chips, CPU, and I/O card designs are inexpensive and readily
available. Compact PCI supports Hot Swap of I/O cards and Hot Swap of system
controllers.

Like PCI, Compact PCI supports the dynamic assignment of I/O space, interrupt
lines, and peripheral memory space. Boards are identified by the physical slot they
occupy and are not operational until they are initialized. This is in contrast with the
VME bus, where boards are not identified by their slot, but rather I/O space is
configured with jumpers on the I/O boards themselves.

Compact PCI extends the PCI specification by adding an enumeration signal
(ENUM#) and status bits to indicate insertion (INS) and extraction (EXT). These
additional signals, along with support for applying power before any signal lines

High Availablility Package User’s Guide

Domain Switchover

make contact, make it possible to Hot Swap Compact PCI boards. Compact PCI
boards can be extracted and inserted while the system is on and operational,
allowing replacement of a failed board without interrupting service. Also,
additional boards can be added to the computer while it is operational, to upgrade
the system without interrupting service. A PCI bus must be re-enumerated to make
room for new boards. This changes the hardware topology of the system. It is not a
simple task, because a board may contain more than one PCI device and even may
contain bridge chips that introduce new PCI buses to the system.

Sz Bus)y Lz Bus)y

ol [of [o < ol [of |o
=] (=) (=) =] o (=) =]
ol |O] |o &= ol |o] |o
=] (=) (=) [=] (=) =]
=) [m) [m)) [=) [m) =]
(=] (=} (=} [=} (=} o
I T T
Domain A Domain B

Figure 1-7: Compact PCI Bus Conceptual Diagram

Due to electrical characteristics, only eight devices can be plugged into a single
Compact PCI bus. Through the use of PCI bridge chips, a computer can have
multiple Compact PCI buses, and extend the number of PCI devices the CPU can
access. Although Compact PCI allows only for one system board, Compact PCI
buses (each with its own system board) can be connected through bus bridges. One
way to make use of a bus bridge is to create a dual Compact PCI system with one
CPU card/system controller for each half of the system. In case of failure of an I/O
card, a redundant card plugged into the other Compact PCI bus can be used. In the
case of a CPU/system card failure, the PCI bridge can be used to allow the working
CPU card to take over control of the I/O cards that the failed. This allows for great
flexibility in reconfiguring the system.

Today, the Compact PCI specification leaves the definition of the second set of
connectors on 6U Compact PCI boards to the vendor. These can be used to bring
signals to I/O transition boards or for other auxiliary buses. These signals can also
be used for additional Hot Swap and HA support.

Domain Switchover

In Domain Switchover, an active domain on one side may have its application and
driver states moved to the second domain. As with individual cards, a domain can

High Availablility Package User’s Guide 13

Chapter 1 - Introduction

be transitioned because of an operator-initiated act, or as a direct result of the
failure of the system host. As with cards, the application may be responsible for
controlling the transition.

Warm Domain Switchover

HAP 2.0 includes limited Domain Switchover support. At system startup, both
Domains enter a Cold Stand-By state. Upon application commands, HAP will:

* change from Cold Stand-By state to Active state.
* change from Cold Stand-By state to Warm Stand-By state.
* change from Active state to Warm Stand-By state.

* change from Warm Stand-By to Active state.

Driver Model

In order for HAP 2.0 to respond correctly to the above, each driver of interest to a
Warm Domain Switchover application must implement the following states and
provide scripts to perform the necessary driver state transitions as shown in the
following figure:

14 High Availablility Package User’s Guide

Warm Domain Switchover

Driver writer must supply an

installation script Driver writer must supply an
which leaves the driver in the uninstall script
<<<Inactive >>> state
State - State
" <<<<<<< State: Inactive >>>>>>>>>
Transitions

enabled: dev_install Transitions
dev_open
dev_ioctl

Driver writer must supply script to change the driver
from the
<<<Inactive >>> state to the
<<< Standby >>> state

<<<<<<<< State: Standby >>>>>>>>

enabled: dev_select

dev_read

dev_write

not enabled: S/W contact with H/W

Driver writer must supply script to v
change the driver from the
HS_SBY_ACT <<<Standby >>> state to the

<<< Active >>> state HS_ACT_SBY

<<<<<<<< State: Active >>>>>>>>>

lenabled: dev_select

dev_read

dev_write

S/W contact with H/W
Device errors reported

Driver writer must supply script to change the driver
from the
<<<Active >>> state to the
<<< Standby >>> state

Figure 1-8: Driver Model

High Availablility Package User’s Guide 15

Chapter 1 - Introduction

16 High Availablility Package User’s Guide

onmnz Installing the High Availability
Platform

This chapter describes the steps and prerequisites required to install the High
Availability Platform (HAP) 2.0 package.

System Requirements

HAP 2.0 must be installed on a Compact PCI system with either a PowerPC or
Intel x86 system controller.

Installing the High Availability Platform
Follow these steps to install HAP 2.0:

1. Mount the installation CD-ROM media to an available mount point on
the system. For example,

nount /dev/cdrom/mt/cdrom

2. Change directory to the mount point. For example,
cd /mt/cdrom

3. Install HAP 2.0 by executing this script:
sh> Install.HAP

Detailed configuration and system changes made by this script are
described in “Install. HAP Configuration Specifications” on page 19.

High Availablility Package User’s Guide 17

Chapter 2 - Installing the High Availability Platform

18

4. When prompted, specify the HAP installation location. This directory
must have a complete kernel build environment in a / sys tree. The
installation does not use ENV_PREFI X.

5. When prompted, supply the correct chassis type for your system. Several
configurations are installed on the system. In addition to different
configuration files, a single domain system (CPV12xx or CPX22xx) must
be configured to run the Hot Swap Event Manager from ha_si m For
more information, see See “ha_sim - HA System Initialization Manager”
on page 24.. For a multiple domain system (CPX 82xx) st nd is
configured to run by default.

6. When prompted, select to reconfigure the driver library automatically or
manually. If manual is selected, the driver library must be updated by the
user, and the kernel rebuilt before HAP will function.

7. After the driver library is rebuilt, the system must be restarted as follows:
reboot -aN

Previous kernel, nodetab, device and driver libraries are saved in this directory:
$I NSTALL_ROOT/ usr /| ocal / ki t s/ HAP.

NOTE: Old kernel and device libraries can be restored from this directory
should the system need to be restored to its previous state. This directory
should not be deleted.

The following scripts and files are saved in/ usr/ | ocal / ki t s/ HAP:
* Install.HAP
* Uninstall.HAP
e binary.filelist

e Distribution_HAP20.tar.gz

Uninstalling
To uninstall, or revert to a previous installation of HAP, follow these instructions:
1. Change to the HAP script directory as follows:
cd /usr/local/kits/HAP
2. Execute the uninstall script as follows:

sh> Uninstal |l . HAP

High Availablility Package User’s Guide

Post-Installation Tasks

Post-Installation Tasks

If not already completed by the installation script, device drivers must be added
and the kernel rebuilt before HAP can be enabled.

Install. HAP Configuration Specifications

When the installation script runs, these changes are made to the system:

1.

A directory is created for the installation scripts and working files in:
$I NSTALL_ROOT/ usr/ | ocal / ki t s/ HAP.

If this directory already exists, it is renamed:
$I NSTALL_ROOT/ usr/ | ocal / ki t s/ HAP. prev.

The installation files are copied to
$I NSTALL_ROOT/ usr/ | ocal / ki t s/ HAP.

These files include:

Di stribution_HAP20.tar.gz
binary.filelist

I nstal | . HAP

Uni nstal | . HAP

The following files are saved in
$I NSTALL_ROOT/ usr /1 ocal / ki t s/ HAP/ HAP_pre_
install.tar.gz:

$I NSTALL_ROOT/ | ynx. os

$I NSTALL_ROOT/ et ¢/ nodet ab

$I NSTALL_ROOT/ sys/ i b/libdevi ces_cpci _<platforne. a
$I NSTALL_RQOOT/ sys/ lib/1li bdevi ces_cpci _<platfornr_d. a
$I NSTALL_ROOT/ sys/ |i b/ l'i bdevi ces_cpci _<pl atf ornr_uk. a
$I NSTALL_ROOT/ sys/lib/libdrivers_cpci_<platforne. a
$I NSTALL_ROOT/ sys/ i b/libdrivers_cpci_<platfornr_d. a
$I NSTALL_ROOT/ sys/ i b/libdrivers_cpci _<pl atforms_uk. a

any fileinbi nary. fil el i st ifitexists

Where <pl at f or m> is dr mfor PowerPC and x86 for Intel.

High Availablility Package User’s Guide 19

Chapter 2 - Installing the High Availability Platform

20

. The following files, if they exist, are saved in the

$I NSTALL_ROOT/ usr/ | ocal / ki t s/ HAP/ save directory, so they can
be restored after the HAP 2.0 Installation:

- $I NSTALL_ROOT/ et ¢/ hasw ha_si m con
- $I NSTALL_ROOT/ sys/ cf g/ enum cfg

- $I NSTALL_ROOT/ et c/ hasw hsem conf

- $I NSTALL_ROOT/ et ¢/ hasw' t m conf

. The distribution is copied to the installation location. The files copied are

those listed in bi nary. fil el i st. The following directories are created
if they do not already exist:

- $I NSTALL_ROOT/ usr/ sbi n/ hasw

- $I NSTALL_ROOT/ et c/ hasw

- $I NSTALL_ROOT/ usr /i ncl ude/ hasw

- $I NSTALL_ROOT/ usr/ | i b/ hasw

- $I NSTALL_ROOT/ usr/ man/ cat 1

- $I NSTALL_ROOT/ usr/ man/ cat 5

- $I NSTALL_ROOT/ sys/ dri vers. cpci _<pl at f or m»
- $I NSTALL_RQOOT/ sys/ devi ces. cpci _<pl at f or >
- $I NSTALL_ROOT/ usr/ src/ hasw/ uti |

where <pl at f or ne is dr mfor PowerPC and x86 for Intel.

. Chassis type configuration files (t m hsem and ha_si m) are added to the

system.

. The files saved in step 4 are restored to their original location.

. $I NSTALL_ROOT/ sys/ bsp. cpci _<pl at f or n»/CONFI G. TBL is

checked to ensure that the |: enum cf g is present and uncommented.

. The driver library is rebuilt if the user requests it.

High Availablility Package User’s Guide

ewrens High Availability Tools

Introduction

The High Availability Platform 2.0 includes a set of tools that provide command
line interaction with Compact PCI and board hardware. This chapter details these
commands.

cpxload - cpxunload

Scripts for loading and unloading the Hot Swap Controller Driver.

cpxtool

An interactive tool for accessing Hot Swap Controller Driver statistics.

drm_stat - Display all device nodes in a system

Synopsis

drm st at

High Availablility Package User’s Guide 21

Chapter 3 - High Availability Tools

Description

This command uses no arguments. A status of all the devices in the DRM tree and
Internal Address Allocation information is displayed.

Table 0-1: Sample Session

bash# drm st at

Devi ce Resource Manager
Device ID =1

Vendor ID =1

Primary Buslayer ID = -1
Secondary Buslayer 1D =0
Node type = 5

State = 5
Interrupt Controller = -1
Interrupt Line = -1

Device ID = 2
Vendor 1D =1
Primary Buslayer ID

=0
Secondary Buslayer ID =

1
Node type = 5
State = 4
Interrupt Controller = -1
Interrupt Line = -1

Device ID = 4801

Vendor | D = 1057

Primary Buslayer 1D =1
Secondary Buslayer ID = 0
Node type = 10

State = 5

Interrupt Controller =0

Interrupt Line = -5

BusNo = 0

DevNo = 0

FuncNo = 0

0: Vaddr = 0, Paddr = 80040000, Baddr = 40000, Size = 40000, Al = 40000
1: Vaddr = c0000000, Paddr = c2000000, Baddr = 2000000, Size = 40000, Al =
40000

2: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

3: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

4: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

5: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

22 High Availablility Package User’s Guide

Description

Table 0-1: Sample Session (Continued)

Device ID = 586

Vendor |ID = 1106

Primary Buslayer 1D =1
Secondary Buslayer ID = 2
Node type = 6

State = 5

Interrupt Controller =0
Interrupt Line = 0
Device ID = 571

Vendor |ID = 1106

Primary Buslayer ID =1
Secondary Buslayer ID =0

Node type = 10

State = 4

Interrupt Controller =0

Interrupt Line = 0

BusNo = 0

DevNo = 11

FuncNo = 1

0: Vaddr = 0, Paddr = 80004000, Baddr = 4000, Size = 8, A = 1000
1: Vaddr = 0, Paddr = 80005000, Baddr = 5000, Size = 4, A = 1000
2: Vaddr = 0, Paddr = 80006000, Baddr = 6000, Size = 8, Al = 1000
3: Vaddr = 0, Paddr = 80007000, Baddr = 7000, Size = 4, Al = 1000
4: Vaddr = 0, Paddr = 80008000, Baddr = 8000, Size = 10, Al = 1000
5. Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

Device ID =9

Vendor | D = 1011

Primary Buslayer 1D =1

Secondary Buslayer ID =0

Node type = 10

State = 5

Interrupt Controller =0

Interrupt Line = 2

BusNo = 0

DevNo = 14

FuncNo = 0

0: Vaddr = 0, Paddr = 80009000, Baddr = 9000, Size = 80, Al = 1000
1: Vaddr = c0040000, Paddr = c2040000, Baddr = 2040000, Size = 80, Al =
2: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

3: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

4: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

5: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

High Availablility Package User’s Guide

1000

23

Chapter 3 - High Availability Tools

Table 0-1: Sample Session (Continued)

Device ID = 3

Vendor | D = 1000

Primary Buslayer ID =1
Secondary Buslayer ID = 0
Node type = 10

State = 5

Interrupt Controller =0
Interrupt Line = 3

BusNo = 0

DevNo = 16

FuncNo = 0

0: Vaddr = 0, Paddr = 8000a000, Baddr = a000, Size = 100, Al = 1000

1: Vaddr = c0041000, Paddr = c2041000, Baddr = 2041000, Size = 100, Al = 1000
2: Vaddr = 0, Paddr = c2042000, Baddr = 2042000, Size = 1000, Al = 1000
3: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

4: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

5: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

Device ID = 26

Vendor 1D = 1011

Primary Buslayer ID =1

Secondary Buslayer ID =1

Node type = 6

State = 4

Interrupt Controller =0

Interrupt Line =0

BusNo = 0

DevNo = 20

FuncNo = 0

SecBusNo = 1

SubBusNo = 41

0: Vaddr = 0, Paddr = 80080000, Baddr = 80000, Size = 1200000, Al = 1000
1: Vaddr = 0, Paddr = c2100000, Baddr = 2100000, Size = 6000000, Al = 100000
2: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

3: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

4: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

5: Vaddr = 0, Paddr = 0, Baddr = 0, Size =0, Al =0

ha_sim - HA System Initialization Manager

Synopsis

ha_sim-i | -s [-d -n <nddPubl i cQueueNane> -q
<Privat eQueueNanme> -f <Confi gFi | eNane>]

24 High Availablility Package User’s Guide

Description

Description

ha_si mis responsible for starting (at system init time) HA processes and stopping
(at system shut down time) HA sub-systems. ha_si mis started with a command
line argument indicating the mode as inif or shutdown. ha_si mstarts during
system initialization from the / bi n/ r ¢ file run by LynxOS init. When started,
ha_si mreads a configuration file to determine the HA processes or sub-systems to
start or to stop. ha_si mcan also be started at any time from the command line.

Dependencies

To receive the SHUTDOWN message, processes must register with hsem'st nd to
receive notification of these messages:

type = SIM
class = SYS CLASS 1

There is no response to the SHUTDOWN message.

The SI M SYS_CLASS_1 messages are not targeted to a single named process, but
rather, are broadcast to all processes registered to receive such messages.
Therefore, a process must filter received messages and shut down only if specific
messages are received:

type = SIM
class = SYS CLASS 1
event = SHUTDOMN

In addition, the process must also test the first two bytes of the attached data field
to determine if the shutdown message refers to its own sub-system. It is a matter of
convention that two characters are used. Any sequence of characters may be used
as long as they do not conflict with other sub-system designations. For example,
AP refers to the Application sub-system, and HS refers to the Hot Swap Event
Manager sub-system. These characters come from the SubSyst enNane portion of
the SHUTDOMN line in ha_si m conf . As necessary, new letter combinations can
be used, and the only coding change needed is localized to the process supporting
the new SubSyst enNane.

SubSyst emNane is (optionally) followed by a single space and then by
SubSyst emAr gunent s, if present. SubSyst emAr gunent s can be any

High Availablility Package User’s Guide 25

Chapter 3 - High Availability Tools

26

combination of characters that has meaning to the receiving process. The data field
is NULL terminated. The data field of a SHUTDOAN message has the following form:

Table 3-1: Shutdown Message Data Field

Field Element Description
SubSyst enmNane (2 bytes by convention).
Space char (only if SubSyst emAr gunent s is present).

SubSyst emAr gunent s (optional, variable length - can
be used to pass sub-system specific information to the
SubSyst emNare process.

NULL char.

Initialization

At init time, ha_si mstarts all processes referenced in the configuration file.
Processes are started via fork and execv. ha_si mcannot determine if a process
starts successfully. The only means of determining the health of a started process is
the SI GCHLD signal generated when the child process either forks itself to become
a daemon, or dies. If the SI GCHLD signal is caught by ha_si mbefore the timeout
period, the process is assumed to be running OK. If the timeout occurs before the
SI GCHLD signal is caught by ha_si m an error is assumed and ha_si mlogs an
error and continues to the next line in the config file. After all processes start,
ha_si mlogs a success message and exits.

ha_si mdoes not send or receive any messages when running in init mode.

Shutdown

At shut down time, ha_si mruns until all appropriate sub-systems referenced in the
config file are sent a SHUTDOWN message. If a timeout period is specified, ha_si m
waits the specified timeout period after sending the SHUTDOWN message and before
processing the next config file entry.

ha_si msends and receives messages only when running in SHUTDOAN mode.

High Availablility Package User’s Guide

Default

Default

The default ha. si m conf file contains commands to start the appropriate
components of HAP 2.0. In most circumstances, users should not need to modify

this file.

Options

Table 3-2: ha_sim Options

Token

Meaning

Either - i or - S must be specified, but not both. This option
instructs ha_si mto run in inif mode: Start process entries in the
config file with | NI T entries, and start the associated HA
processes.

Either - i or-s must be specified, but not both. This option tells
ha_si mto run in shutdown mode: Stop processes in the config file
with SHUTDOWN entries, and terminate the associated HA sub-
systems.

Optional. Run with Debug mode ON. Function calls are traced and
internal variables are displayed. Useful for unit testing. Output is
sent to STDOUT. Default is OFF.

Optional. Use mddPubl i cQueueNan® as the queue name to send
messages to mdd. Useful if mdd specifies a non-default public
queue name with its - N argument. Default is

/ mdd_publ i c_queue.

Optional. Use Pr i vat eQueueNan® as the queue name on which
to receive messages from ndd. Default is / Si m_queue.

Optional. Use Conf i gFi | eName as the full path name of the
configuration file. Default is / et ¢/ hasw/ ha_si m conf g.

High Availablility Package User’s Guide 27

Chapter 3 - High Availability Tools

hsecmd - Hot Swap Command Utility

Synopsis

hscnd [-t tinmeout] [-q queue_nane] [-p public_queue] action
sl ot

Description

The Hot Swap Command utility, hscnd, issues an ENUM message to the Hot
Swap Event Manager containing the action to occur and the slot number to which it
applies.

Timeout, provided with the - t option, indicates the time to wait for a response
from the Hot Swap Event Manager. The default is 5 seconds, the minimum 1
second, and maximum of 60 seconds.

The - q option is used to override the default message queue name,
/ hscnd_queue, used by hscnd with queue_nane.

The - p option is used to override the default public message queue name,
/ mdd_publ i c_queue, provided by ndd and used by hscnd with publ i c_queue.

Action may be eitheri nsert orextract.

sl ot is the slot number of the affected slot and must identify a valid slot in the
domain in which hscrd is executed.

hscnd waits for an acknowledgement from the Hot Swap Event Manager
indicating that the action completed or an error occurred. If the action succeeded,
hscnd exits with a status of 0. In the case of an error or timeout, the error is
reported to stderr and hscnd exits with a non-zero status.

hsem - Hot Swap Event Manager

Synopsis

hsem -f <config fil e> <options>

28 High Availablility Package User’s Guide

Description

Description

The Hot Swap Event Manager provides basic support for Hot Swap events, for
example, Hot Insertion and Hot Extraction. Running as a daemon, it communicates
information about these events to applications via message queues.

Options

Table 3-3: hsem Options

Token Meaning
- X Dump the current slot table and exit.
-f Use the following argument as the comfiguration file.

- If the following arg is “on” run with enum interrupts enables, and if the arg is
“off” run with them disabled.

-d Debug mode.

-1 Use the config file to download Compact PCI slot table to enum

-r Read the Compact PCI slot table from enum
-q Register with ndd and accept messages from queues.
-t Use the arg for the select time out (poll) value (otherwise 2 secs).

hsi - Hot Swap Insert

Synopsis

hsi <sl ot >

Description

This command uses slot numbers as arguments. This command inserts a recently
inserted board in slot <slof> of a CPX8216 chassis (Domain A Side Only). Insert
the board into the slot, and execute the command hsi <slotnumber>, for example:
hsi 3, if slot 3 is used for the new board. This command probes the slot and adds

High Availablility Package User’s Guide 29

Chapter 3 - High Availability Tools

the device to the DRM device tree. All devices are selected, and resources are
allocated and made ready for use.

Sample Session
bash# hsi 5

Hotswap Insert in slot 5
Hot Swap | nsert Board
Hot Swap i nsert of board successful

hsls - List Non-Bridge Devices

Synopsis

hsl s

Description

This command uses no arguments. hs| s probes all the nodes below the Domain A
bridge and extrapolates the slot occupancy on a CPX8216 chassis. This program
prints the occupied status of slots. hsl s works only with the Domain A backplane.

Sample Session
bash# hsls

Slot# State

0001 enpty

0002 enpty

0003 enpty

0004 enpty

0005 enpty

0006 enpty

0007 System Control |l er
0008 Not Present

0009 System Control | er
0010 Not Present

0011 enpty

0012 enpty

0013 enpty

0014 enpty

0015 enpty

0016 enpty

30 High Availablility Package User’s Guide

hsx - Hot Swap Extract

hsx - Hot Swap Extract

Synopsis

hsx <sl ot >

Description

This command is similar to hsi , except that the devices in a particular slot are
removed. Once this command runs, the board in the slot can be physically
removed. If any of the devices are in use (ACTIVE), then this command prints a
message, and the extraction should be done after releasing the device.

Sample Session
bash# hsx 5

Hot swap Extract in slot 5
Hot Swap Extract Board
Hot Swap extract of board successful

mdd - Message Distributor Daemon

Synopsis

mdd <opti ons>

Description

The message distributor sets up a public queue and waits for applications and
daemons to register. Part of the registration is the identification of a private
message queue by which ndd and others pass information to the registered process.
Applications also express interest in message classes during registration. ndd runs
as a daemon.

High Availablility Package User’s Guide 31

Chapter 3 - High Availability Tools

Options

Table 3-4: ndd Options

Token Meaning
-a The maximum applications allowed to connect
-C The maximum number of message classes

-1 The maximum data length

-d Run as daemon

-q Queue depth

-m Queue id

-0 Output file

-t Trace on

-Nn Queue name

-p Queue permissions

stmd - State Transition Management Daemon

Synopsis

stmd <options>

Description

STMD is the State Transition Management Daemon. It assists Warm Domain
Switchover applications in managing a multiple domain system and provides a
means of transitioning a domain from Active to Standby and vice versa.

32 High Availablility Package User’s Guide

Options

Options

Table 3-5: st nd Options

Token

Meaning

- X

Dump the current slot table and exit.

-f

Use the following argument as the configuration file.

If the following argument is used, run with enum interrupts enables. If off, run
with them disabled.

-d

Debug mode

-r

Read the Compact PCI slot table from enum

-q

Register with ndd and accept messages from queues.

-t

Use the argument for the select time out (poll) value (otherwise 2 secs).

-0

Usr argument as logfile name.

-b

Variable to indicate whether busno, devno, f uncno should be separated
with blank spaces or underscores when passed to the driver install/uninstall
scripts.

tm - Topology Manager Script

Synopsis

tm[-d device_nane] [-f fil enane]

include <tm h>

Description

The topology manager script is invoked to configure the topology of the High
Auvailability chassis. The configuration process is accomplished by reading in the
topology configuration file, processing it and setting up the High Availability
hardware accordingly.

High Availablility Package User’s Guide 33

Chapter 3 - High Availability Tools

34

The topology manager runs until it has finished configuring the hardware, or
encounters an error. Any error condition is treated as fatal, causing the manager to
halt processing and log the error message.

The default topology manager file is located in / et ¢/ haswand is described by
manpage / usr/ man/ cat 5/t m conf . 5. The file is specified by the user, and
more than one can be used when initializing the HSC hardware. The default
filename is t m conf , but any name (and path) can be specified using the - f
option.

The topology manager configuration file describes host processors, non-host slots,
peripheral bays, and power supplies. The topology manager reads this file in and
initializes a data structure. After reading in the file, the data structure is then used
to configure the hardware by initializing the relevant Hot Swap controller registers
via calls to the device driver.

Options

t mrequires no options to be specified, however, the following options modify the
behavior of t m

Table 3-6: Topology Manager Options

Token Meaning

-d devi ce_nane
Specify the full path name of the Hot Swap controller device to open,
read/write to, and close. The default is / dev/ hscO.

-f fil ename

Specify the full path name of the topology configuration file to be read in. The
topology configuration can be changed at any time by invoking the topology
manager script. The default file is/ et ¢/ hasw/ t m conf .

Error Handling

Two types of errors can occur with the topology manager: The first is associated
with the host swap controller device, and the second type is associated with the
topology file.

The Hot Swap controller device driver can cause errors by returning an error status
when opening or closing the device. Any device driver call (to set a bit, take
control of a domain, etc.) can return an error status if the hardware does not
respond correctly to the requested action.

High Availablility Package User’s Guide

Error Handling

The topology configuration file can also cause errors when opening or closing the
file. In addition, if the format of the topology file is incorrect, then errors will
occur.

When either type of error occurs, the topology manager cleans up by optionally
closing the Hot Swap controller device and the topology file before writing out an
error message and exiting with a non-zero value.

High Availablility Package User’s Guide 35

Chapter 3 - High Availability Tools

36 High Availablility Package User’s Guide

anrena Writing High Availability
Platform Applications

Overview

The High Availability Platform enables application writers to develop highly
available applications. The High Availability Platform does not itself provide high
availability. Application developers are responsible for a number of components of
the High Availability model, including:

Drivers conforming to the HAP 2.0 driver model. See Figure 1-8, “Driver
Model,” on page 15

Applications that respond to Hot Swap events, such as insertion and
extraction

Applications transitioning the HAP 2.0 state from Cold Standby to Active
on startup of a single system host system, or one side of a dual system
host system bringing the inactive side to Warm Standby

Applications responsible for all error recovery, including driver state
change failures, DRMfailures and card unhealthy failures

Detecting and managing hardware problems

Managing a specific message IPC interface with hsem STMD

In addition, if an application requires Warm Domain Switchover, the application

must:

Develop the overall Warm Domain Switchover policy
Communicate all DRMinformation from the Active to the Standby domain

Command Domain state transitions. For example, the system commands
one Domain to Active and the other to Warm Standby

Manage Domain state transition failures

High Availablility Package User’s Guide 37

Chapter 4 - Writing High Availability Platform Applications

The application interface to HAP 2.0 consists of standard Message Queue IPC.
Applications must connect to this queue and retrieve messages from it. This
interface allows applications to command state transitions.

There are three types of messages that occur on this interface:
e Application commands to HAP 2.0
e HAP 2.0 responses to application commands

* HAP 2.0 asynchronous notifications of system events related to High
Availability

The following diagram details the generalized command, status and state flow in
the system. It also shows which elements (i.e. application, HAP 2.0 or the kernel)
are responsible for which functions.

38 High Availablility Package User’s Guide

Overview

Processes

Command
to hsem/STMD
Asynchronous
notification
from hsem/STMD Insert/ prune
node
Response into / from
) from hsem/STMD DRM tree
Client
Application
DRM
insert/ prune
return
Nsc Dri status
river
res';SnCses actions State
Change
HSC joctl Script
Events Sianal p
HSC igna rom
to hsem/ hsem/
R Elvent. STMD STMD State
egistration Change
\ \ Status
AN
\HSC HSC \
actions Configuratiqn
responses for hsem/
STMD
Kernel STMD
aware
driver
. Chassis
Chassis |nfo
Info /
Legend
Hardware C[!afssis Chassis
info
S o [5 [Info T Part of HAP
20
Config
HEH Data
o o o HEH
o) (g |o al |o
o o [o HEH
o) (g |o
o) (g |o
o) (g |o
Information/
Hot Swap Chassis — State Change

Token

Figure 4-1: HAP 2.0 (Warm Domain Switchover) State and Information Flow

High Availablility Package User’s Guide

39

Chapter 4 - Writing High Availability Platform Applications

40

Client Application

A client application can range from simple Hot Swap Controller actions (register
accesses) to a full Warm Domain Switchover application. HAP enables
applications running on a dual domain system to make one domain Action the
other Standby, and to reverse the roles as needed.

An application can be a Hot Swap application on a single domain using hsemor a
Warm Domain Switchover application using st nd.

NOTE: A client application must not attempt to use hsemand st nd
simultaneously.

NOTE: Application developers must be aware that application intervention is
required on a dual domain system (CPX8216). Without it, the system comes up and
remains in Cold Standby state.

hsem

Basic Hot Swap actions such as card extraction and card insertion are supported by
a Hot Swap Event Manager (hsem). It informs a registered application when a
Card Insert or a Card Extract takes place. It also enables an application to read and
write Hot Swap Controller registers.

mdd

The Message Distributor Daemon (ndd) is the mechanism by which Hot Swap
applications interact with hsemand hscd. ndd is also available to Warm Domain
Switchover applications.

stmd

For HAP 2.0, hsem(Hot Swap Event Manager) enables application Warm Domain
Switchover. st nd (State Transition Management Daemon) allows applications
greater control of domain states than was previously possible.

st nd is the only interface to the HAP 2.0 platform a Warm Domain Switchover
application is required to support. All state transitions and Hot Swap events are
managed by this module. Tasks include:

* Transitioning internal state to Cold Standby on startup

High Availablility Package User’s Guide

enum

* Receiving application commands on a message queue, determining the
correct type of action to be taken and initiate the necessary state
transitions to satisfy the application request

* Responding to signals from enumor hsc drivers, determining next
function (either an i oct | to enumdriver), device adding or deleting to
dr m changing state of a driver or responding to a notification from an
application

* Responding to dr mfailures by returning the appropriate error
notification to the application

* Responding to driver state change failures by returning the appropriate
error notification to the application

enum

The enumdriver is responsible for taking appropriate action when the hardware
generates an ENUM# interrupt.

hscd

The Hot Swap Controller driver (hscd) is responsible for reporting basic Compact
PCI events to the application. It also provides applications direct access to slot
registers.

LynxOS Elements Used

In addition to the standard POSIX system calls, applications that use High
Availability Platform must provide drivers for each card supported in the Hot Swap
scenarios (i.e, Hot Extraction and Hot Insertion). The drivers must conform to the
standard LynxOS driver model, as well as the special state and transition
requirements set by HAP 2.0 as illustrated in “Driver Model” on page 15 and in
“The Device Driver Model” on page 44.

As indicated in Figure 4-1, “HAP 2.0 (Warm Domain Switchover) State and
Information Flow,” on page 39, the main elements of High Availability Platform
are the application drivers located in kernel space: the enumdriver and the hsc
driver. In addition, the Device Resource Manager (DRM) is an important part of
activating slot devices.

High Availablility Package User’s Guide 41

Chapter 4 - Writing High Availability Platform Applications

The following example provides a basic st nd. conf configuration file. For more
information, please see the st md. conf (5) man page, orAppendix C, “stmd.conf
file example”.

st nd. conf
For nore detailed information, see the man page.

Copyright (c) 1998, 1999 MOTOROLA
and

Copyright (c) 2000 LynuxWorks
Al Rights Reserved

The "slots" entry defines the slot table for the specific chassis.
Field 1 = Physical Slot nunber

Field 2 = Bus Nunber

Field 3 = Device Nunber

Field 4 = Function Nunber

The slot table belowis for the domain A side of an 8216 Chassis.
I't should not be nodified.

slots

slot 1,1,14,0
slot 2,1,13,0
slot 3,1,12,0
slot 4,1,11,0
slot 5,1,10,0
slot 6,1,9,0
slot 7,0,0,0
slot 8,0,0,0
slot 9,0,0,0
slot 10,0,0,0

slot 11,42,14,0
slot 12,42,13,0
slot 13,42,12,0
slot 14,42,11,0
slot 15,42,10,0
slot 16,42,9,0

end_slots
This is the drivers section of the config file. Init will be
; sections for each driver.
drivers
driver

This prefix will be used when the device is created.

devi ce_nare_prefix /dev/wan

Figure 4-2: stmd.conf file Exampe

42 High Availablility Package User’s Guide

LynxOS Elements Used

This signature is used during device parsing.
; It corresponds to the PCl device specific vendor ID.

si gnature

vendor 0x10b59080, 0, 255

end_si gnature

; The script invoked during device insertion transition.
devi ce_instal |

system /etc/hasw install.scr

end_devi ce_install

; The script invoked during device renoval transition.
devi ce_uni nstal |

system /etc/ hasw uninstall.scr

end_devi ce_uni nstal |

; The script invoked during donain transition to active.
active_command /etc/ hasw acti ve. scr

; The script invoked during domain transition to standby.
st andby_conmmand /et ¢/ hasw/ st andby. scr

end_driver

end_drivers

Figure 4-3: stmd.conf file Example (Continued)

The bus number in this example depends on the DRM bus number allocator. For
st nd, bus and slot numbers can be described the same for either side A or B. Slots
1-6 are mapped via Bus number 1, while slots 11-16 are mapped via bus number
42.

If a processor has a PMC card containing a bridge, then 41 should be added to the
above bus numbers.

Device numbers are given by (15 - slot) for 0 < slot < 7 and by (25 - slot) for 10 <
slot < 17 for the CPX8216 chassis.

Function numbers are always 0.

For additional information, please see the st nd. conf (5) man page.

High Availablility Package User’s Guide 43

Chapter 4 - Writing High Availability Platform Applications

44

Device Resource Manager

Device Resource Manager (DRM) is a LynxOS module that manages device
resources. DRMassists device drivers in identifying, setting up, and managing
devices and device address space. Using DRMservices, device drivers can use
devices without requiring information about board-specific configurations. DRMis
enhanced to support Basic Hot Swap services.

The Device Driver Model

Previous releases of HSP provided a model for Hot Swap-aware drivers. Previous
states and transitions are reorganized to draw parallels with the new HAP 2.0
model.

The Inactive Driver state is a superset of:
e No Driver
* Loaded
o Idle
* Software Init
* Offline
* Software Closing
e Zombie
* Released
The Standby state consists of:
* Software Quiesce
* Hardware Stop
The Active state consists of:
* Software Ready
* Hardware Init
* Hardware Ready
* Hardware Standby

The device driver writer supplies scripts that transition the driver from one superset
state to another. These are:

High Availablility Package User’s Guide

The Device Driver Model

1. I-S, which must include the following legacy state changes:
- Software Init to Quiesce
- Idle to Hardware Stop (dev_open partl)

2. S-A, which must include the following legacy state changes:
- Software Quiesce to Software Ready (hs_enabl e)
- Hardware Stop to Hardware Init (dev_open part 2)
- Hardware Stop to Hardware Standby (hs_st andby)

3. A-S, which must include the following legacy state changes:
- Software Ready to Software Quiesce (hs_qui esce)
- Hardware Ready to Hardware Stop (hs_st op)

Figure 4-4 shows the correspondence between that model and the one required by
the HAP 2.0 release.

High Availablility Package User’s Guide 45

46

Chapter 4 - Writing High Availability Platform Applications

Inactive

hs_die

7nmhin
Device

Released

HW

dr_install
Loaded dr_uninstall hs_release
! dev_uninstall
dev_install
hs_reinit
dev_oben
hs_offline Sw
hs_die Init dev_open
I-S I
v standby { J
- I-S
- Standby
C Quiesce) m
}S-A - ' S- A hs_;tandby hs_lstop
hs_enable hs_quiesce l candb S'A /
- standby
A-S active dev_open S
S/wW
Ready S-A
Active

Figure 4-4: HSAD Driver Model with corresponding HAP 2.0 states

High Availablility Package User’s Guide

STMD Driver Model

STMD Driver Model

Drivers must be written to accommodate these states: Inactive, Standby and Active
(see Figure 1-8, “Driver Model,” on page 15). The new driver model does not
attempt to label actual | OCTL calls to a driver. Only the notion of state is used.

* Inactive = Does nothing
+ Standby = Ready to perform function, but not accessing hardware
* Active = Ready to perform function, accessing hardware

Entry points for these transitions must be filled by user-defined code, which is
called during st nmd operation. See “stmd - State Transition Management Daemon”
on page 32.

Writing Hot Swap Applications

Hot Swap-only applications are hosted on single bus CompactPCI systems
(CPV1204 and CPX2208), or on dual bus systems (CPX8216), where Domain
Switchover is not implemented. In this case, it is necessary to use hsem(See “hsem
- Hot Swap Event Manager” on page 28. for usage) as well as ndd (See “mdd -
Message Distributor Daemon” on page 31.).

During installation, the user is queried for the chassis type, whether CPX 8216 or
CPX2208/CPV1204. If the user specifies a single domain chassis, then hsemis set
as the daemon. It is not required that the user to know how to start hsemor ndd.
The daemon appropriate for the chassis is installed in the ha_si mconf
configuration file and ha_si mstarts the correct daemon when invoked.

Initialization and Registration

Hot Swap applications uses the following header files to facilitate the interface to
hsem

include <ha_nsg. h>

include <hsem h>
In addition to providing device drivers that conform to the HAP 2.0 model,
applications need to open the ndd message queue and establish a command
message queue to ndd. In order to receive notification of Hot Insertion and Hot
Extraction events, as well as issue other commands to hscd, the application must
register with ndd.

High Availablility Package User’s Guide 47

Chapter 4 - Writing High Availability Platform Applications

The following shows the call to open the correct message queues:

ndd_q = ny_open (MDD_QUEUE, O WRONLY);
my_getattr (ndd_q, &attr);

app_gq = ng_open (“/nyQ,

O _CREAT| O_RDONLY,

creat _nod,

nmg_attr,);

The application must then send a message registering with ndd. This also allows
ndd to be aware of the application’s private message queue.

Msg snsg;

ReqDat a *data_p;

unsi gned charl en= ai zeof (MsQ)

- MAX_DATA LEN

+ si zeof (ReqgDat a) ;

smeg. cl ass = SYS_CLASS 1,

sneg. type = DI STR;

smsg. event = REG STER;

data_p = (ReqData *) snsg.data;
strcpy(data_p->queue_nane, “/nyQ);
ng_send(app_q, (char *) smsg, len, 1);
The nmessage structure is

typedef struct Msg

unsi gned charorigin_id;

unsi gned charnd_i d;

unsi gned charl en;

unsi gned charcl ass;

unsi gned | ongtype;

unsi gned shortevent;

unsi gned char dat a[MAX_DATA_LEN ;

} Msg;

The data field (RegData) structure is
typedef struct RegData

unsi gned char queue_nane[MAX_QUEUE_NAME_LEN] ;
unsi gned charcl ass;

unsi gned | ongtype;

unsi gned short st at us;

} RegDat a;

48 High Availablility Package User’s Guide

Operation

Operation

The following table details Hot Swap-related message types and the actions

required:

Table 4-1: Hot Swap Messages

Data
Message .
Tvoe Actions
yp Field Contents Possible Results
origin_id SUCCESS Open
cl ass SYS_CLASS 1 | FAI LURE_| NVALI D_SLOT (aPPhcatlon) the
device and
type HS_UTI L FAI LURE_UNHEALTHY_CARD perform needed
HS_I NSERT | event USER_ENUM FAI LURE_DRM DEVI CE_CONFI G operations
EnunDat a. acti on HS_| NSERT
EnunDat a. sl ot <sl ot no.> FAI LURE_DRI VER_STATE_CHANGE
EnunDat a. resul t <see bel ow>
origin_id SUCCESS Comp]ete
cl ass SYS_CLASS 1 | FAI LURE_I NVALI D_SLOT Pend“}g
operations and
type HS_UTI L FAI LURE_DRM DEVI CE_CONFI G close
?S—EXTRAC event USER_ENUM (application) the
EnunDat a. acti on HS_EXTRACT device

EnunDat a. sl ot

<sl ot no.>

EnunDat a. resul t

<see bel ow>

FAI LURE_DRI VER_STATE_CHANGE

The following table displays the various error notifications and their causes:

Table 4-2: Hot Swap-Related Error Notifications

Error Name Error Meaning

Num
SUCCESS 0 The action completed successfully
FAI LURE_| NVALI D_ACTI ON 1 Invalid action requested
FAI LURE_| NVALI D_SLOT 2 Action requested for invalid slot
FAI LURE_UNHEALTHY_CARD 3 Inserted Card sets its unhealthy bit

High Availablility Package User’s Guide 49

Chapter 4 - Writing High Availability Platform Applications

Table 4-2: Hot Swap-Related Error Notifications (Continued)

Error Name Error Meaning
Num
FAI LURE_DRM DEVI CE_CONFI G 4 DRM failure on Insert/Prune Device
FAI LURE_DRI VER_STATE_CHANGE 5 Driver failed to change to requested state

Bottom Up Hot Insertion
The following figure details the state transitions that take place in a Hot Insertion
event.

Slot
Present
Event

Jueng
Juasalg
juang
Juasalg
101S ISH

PRESENT

_hsem/
_stmd
Slot
Present

Failure
Invalid:
Slot

BuIbbol
Jouis
punspwasy

L5 Slot - Power on Error
St 532 Power 253 slot and
Power °© Bit w connect
Card
Power
ENUM# T2 earw Slot =
HEALTHY ES Inserted §§’
Signal 2"
_hsem/ | Card =
_stmd Slot £ct
Slot Unhealthy 3 gz
 Inserted Error ES
Insert Error
Device

Insert
Node
Event

Node

Insert
Device
Status

smejs
uasu|
aaimag

_hsem/
_stmd
Device
Configured

DRM
Device,
Config
Error

‘ubbol

Install Error

Driver

Driver
scripts

e

See Next Figure

Figure 4-5 part 1: Successful Hot Insertion State

50 High Availablility Package User’s Guide

Bottom Up Hot Insertion

See Previous
Figure

Driver
State ==
Change £383
Status ©
_hsem/ Driver HS
n Install E
D,) i
installe
Change
8g State to
s3 Standby
Driver
State »Qpo
Change E2E3
Status Driver
hsem{ Inactive - HS
to T o6
—s-t.m-d— Standby —p4E.3 3 'EAD'D‘
Driver State a%g rror
Quiesced Change Notify
Change Error Error
g8 state to
sg Active
Driver
A_I:I.S_ Standby z HS
ware to g App
Dri Acive — P 2 Error
Active State = Notify

Change

Error

Enable .

ISRs 529

status &=
Card
Successful 25 El
Insert gz 3
Notify 2

Success

Figure 4-5 part 2: Successful Hot Insertion State

Error conditions are reported:
* After power is applied to the card

+ After DRMis requested to configure the device information

High Availablility Package User’s Guide

Chapter 4 - Writing High Availability Platform Applications

¢ After the device driver is commanded to transition from Inactive to
standby and from Standby to Active

* The types of messages that an application can receive are detailed above.
In this example, the message received would be HS_| NSERT.

Hot Extraction

The following diagram shows the state transitions for a card extraction:

7~ N\

Card g Slot g2

Handle EiﬁngT ;é. 'Ii:il:rhtfﬁ Extraction—pfl ;

Disengaged ,:,. P Event H
N E

Failure

5
2
o
a
uopealioN
Jou3

1 081

Request
device info,
for parent
& children

m
=
=
o
=

o
E
=
a
&
=
s
8

I8

Device

ojul ad1naQ

Heirarchy
stmd Failure gz. m
= Dev info- a3
Delzlce tree Failure £8
nown 3
. =
All Drivers 8 Error
intree— &
transiton &
to standby ©
Driver o
o
State 232
Change @ P
g
Status g® Failure
Bad = HS
Driver e
Active to g g é%%
A Standby 5 :
Quiesced State 3 Notif
-y Change
All Drivers & Error
intree™ ¢
3
a

uninstalled

Driver

Change™— See Next Figure

Figure 4-6 part 1: Card Extraction State

52 High Availablility Package User’s Guide

Hot Extraction

Blue
Light

Set—
Register

Register
Status ——»

See Previous Figure

Error

\Driver o
State g2
Change % o
Status g5
i I i
Driver § g‘ EAEE
State % - fror
Change s Ngtl/fy
Prune Error
Device™ §
tree *
Prune g
Device g3
Status “Z
2
Failure z HS
Bad DRM E3d App
Prune ge Error
Operation E otif
®
& OKto . g Error
c Extraction remove 13 §
s Request card H
¢ ENUM EF Card g
g2 Driver Register "8 Extract H z ‘ o ’
-y Extraction Status '5 Noi 22 Application
g Request 3 extraction otify g
omplete
Success
Figure 4-6 part 2: Card Extraction State
conditions are reported:

+ After Extract interrupt (with invalid slot)
* After DRMis requested to return the device information
» After the device driver is commanded to transition from active to standby

+ After DRMreturns an error condition on a Device prune operation

High Availablility Package User’s Guide 53

Chapter 4 - Writing High Availability Platform Applications

Writing Warm Domain Switchover Applications

54

Warm Domain Switchover extends the types of messages that are sent and
received, and changes nomenclature. Warm Domain Switchover can only be run on
a dual domain chassis (Motorola CPX8216).

In this case, it is necessary to use st nd (See “stmd - State Transition Management
Daemon” on page 32. for usage) as well as ndd (See “mdd - Message Distributor
Daemon” on page 31.).

During installation, the user is queried for the chassis type, whether CPX82xx or
CPX22xx/CPV12xx. If the user specifies a multiple domain chassis, st nd is the
default daemon. It is not necessary for the user to know how to start st nd or ndd.
The daemon appropriate for the chassis is installed in the ha_si m conf
configuration file and ha_si mstarts the correct daemon when invoked.

Warm Domain Switchover framework in HAP 2.0 provides only a framework for
developers to create High Availability software. The following are responsibilities
of the system designer to develop a Highly Available system:

» Selection algorithm for Active/Standby state assignment on startup
* Detection algorithm for initiation of failover

* Checkpoint and reliable communication of slot and chassis information
across domains

* Error resolution and recovery (HAP halts transitions on errors, and
provides all available information to the user for resolution

» Scripts/applications to execute during driver state transition period
* Driver code following stateful driver model (conceptual, no forced syntax

* PICMG non-compliance issues (typical here are non-standard enum or
non-standard Hot Swap model issues)

Initialization and Registration

Initialization proceeds in similar fashion as Hot Swap applications, except there are
additional queues for talking to st nd. There is an additional header file to be
included as well.

include <ha_nsg. h>

include <hsem h>
include <stnd. h>

High Availablility Package User’s Guide

Initialization and Registration

Setting up the message queues must take this form:

mdd_g= ng_open(MDD_QUEUE, O VRONLY);
app_g= ng_open(“/nyq’,

O _CREAT| O_RDONLY,

creat _nod,

ng_attr,);

st md_wr _g= ng_open(STMD_MSGQ VR, O RDONLY);
stnd_rd_g= ng_open(STMD_MSGQ RD, O WRONLY);

The message structures are the same as Hot Swap applications and it is necessary
to register with the Message Distributor (nmdd).

The following state transition diagram shows how, upon startup, STMD transitions
to Cold Standby:

High Availablility Package User’s Guide 55

Chapter 4 - Writing High Availability Platform Applications

g 77 N\
= open

&s ENUM stmd)
2 device Initialization
]

ENU

opened

ENUM
File
Descripto
r

ENUM
interrupt
enable
status

loydiaosap ejy
891A8p NNN3I

Enable
ENUM

device
interrupt
s

ENUM ioctl

ENUM

interrupts
enabled

DEM
device
tree

esuodses
WNN3

Get
DRM nodes

node
info

asuogsel)

stmd
domain
bridges
known

esuopsal

ENUM ioctl

See Next Figure

ENUM
Device
open

failure

2
8
20
g3
£
g

ENUM
Interrupt
enable
failure

g 4 d g

DRM

i z
either g
root or g5
domain s
bridge s
falilure
DRM
prune z
below %5‘
bridge §’~ s
s 3
failed

Figure 4-7: STMD Initialization (Transition to Cold Standby)

56 High Availablility Package User’s Guide

See Previous Figure

asuodsa)
WNN3

ENUM
slot
table
read/
load
failed

1013

J q4 4 <

uopeaynoN

device

open
HSC driver

Descriptor

101duasap ajy
891A8p JSH

HSC
device
open
failed

stmd
HSC driver
opened

z
2
]

Adjust

B Domain
slot
entries

ENUM ioctl

asuodsa)
WNN3

table
ENUM
slot § -
table §§
Power off load g
5y Power = all failed
H off_{ Driver £)
e all -\ Power off a
&% slots slots 2 slots
ENUM#
Unable to
PRESENT Power g discomect | E o
or eac| slots off Bu g3
slot Powered / status 2° o §
2 off slots 2

off

Figure 4-7 part 2 : STMD Initialization (Transition to Cold Standby)

High Availablility Package User’s Guide 57

Chapter 4 - Writing High Availability Platform Applications

Operation

The following table denotes STMD-related message types and the actions required.
Note that in most cases the actual names begin with STMVD:

Table 4-1: State Transition Messages

Message Type Data Field Data Content | Possible Results Actions
nmsg CS_TO_ACTI VE SUCCESS (E_NCERR) Transition the domain
from Cold Standby to
CS_TO_ACTI VE_CVD type COMVAND E_ENABLE_ENUM Active; on errors, switch
other domain to active,
nsg_data none E_TAKE_BUS_SLOTS correct problem, and
g CS_TO ACTI VE Ep restart system controller.
type RESPONSE E_CET_DRM. | NFO
nmsg_t ag E_HSC_REQ STER
status E_ENUM REG STER
CS_TO_ACTI VE_RESP
errnum E_PWROFF
errstr E_DRM | NSERT
sl ot _mask
num car ds
msg CS_TOWs Domain state is changed
but no error conditions
CS_TO Ws_CMD type COMVAND are possible (errors, if
any, come on insert
neg_dat a none actions).
nsg CS_TO Ws
type RESPONSE SUCCESS (E_NCERR)
msg_t ag
CS_TO Ws_RESP
status
errnum
errstr

58 High Availablility Package User’s Guide

Operation

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content | Possible Results Actions
nsg W5_TO_ACTI VE SUCCESS (E_NCERR) Domain state is changed;
on error, correct problem
W5_TO_ACTI VE_CVD type COMVAND E_ENABLE_ENUM and reset system
controller.
nsg_dat a none E_DI SABLE_ARBI TRATI ON
nsg W5_TO_ACTI VE E_HSC_REG STER
type RESPONSE E_ENUM REG STER
nsg_t ag E_TAKE_BUS_SLOTS
WS_TO ACTI VE_RESP | status E_SYSCTL
errnum E_DRI VER_ENABLE
errstr E_ENABLE_ARBI TRATI ON
E_DRI VER_ENABLE_I| SR
nsg ACTI VE_TO W8 SUCCESS (E_NCERR) Domain state is changed;
on error correct problem
ACTI VE_TO_WS_CMVD type COMVAND E_HSC_DEREG STER and or reset system
controller, in either case,
msg_dat a none E_ENUM DEREG STER accompany with other
ide transitionine i
msg WE_TO ACTIVE | E_DRI VER_STANDBY Warm Standby to Active.
type RESPONSE E_DRI VER Dl SABLE_| SR
nsg_t ag E_DI SABLE_ARBI TRATI ON
ACTI VE_TO WS_RESP
status E_ENUM DI SABLE
errnum
errstr
GET_SYSTEM_ST Application use
meg ATE SUCCESS (E_NCERR) information
GET_SYSTEM STATE_
CVD type COMVAND
nsg_dat a none
neg data is
nsg %-EF—SYSTEM—ST STATE_COLD, STATE WS,
GET_SYSTEM STATE_ or STATE_ACTI VE
RESP type RESPONSE
nsg_dat a

High Availablility Package User’s Guide 59

Chapter 4 - Writing High Availability Platform Applications

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content | Possible Results Actions
msg CARD_I| NSERT SUCCESS (E_NCERR) Open (application) the
device and perform
type COMVAND E_I NVALI D_SLOT needed operations; on
- error, extract card,
neg_dat a card_inserted | g el THY CARD correct problem, and re-
CARD | NSERT CMD - _S - - insert. Switch to backup
- - domain if operation is
sl ot _num <sl ot no.> E_PUSH _DRM | NFO critical.
vendor _id E_SYSCTL
device_id E_DRI VER_NOT_FOUND
neg CARD_| NSERT E_DRI VER_| NSTALL
type RESPONSE E_DRI VER_STANDBY
CARD_| NSERT_RESP
neg_dat a card_id_s E_PWRON
sl ot _num <sl ot no.>
nsg CARD_REMOVE SUCCESS (E_NCERR) Complete pending
operations and close
CARD REMOVE_CMD type COMMVAND E_ I NVALI D SLOT (application) the device.
neg_dat a <sl ot no.> E_DRI VER_STANDBY
nsg CARD_REMOVE E_DRI VER DI SABLE_| SR
type RESPONSE E_DRI VER_NOT_FOUND
CARD_REMOVE_RESP
nmsg_dat a card_id_s E_ DRI VER_UNI NSTALL
sl ot _num <sl ot no.> E_DRM PRUNE
CET_SLOT_ENTR Application use
msg . .
Y information
GET_SLOT_ENTRY_CM
D type COMVMVAND
neg_dat a <sl ot no.>
CET_SLOT_ENTR
msg vy -
GET_SLOT_ENTRY_RE | LYPe RESPONSE
sp nmsg_dat a slot_entry_s

devi ce_i dent
[16]

busno
devi ce_i dent _
funcno s
vendor _i d
device_id
drm.info char*

SUCCESS (E_NCERR)

60 High Availablility Package User’s Guide

Operation

Table 4-1: State Transition Messages (Continued)

Message Type Data Field Data Content | Possible Results Actions
msg GET_VERSI ON Application use
information
GET_VERS| ON_CMD type COMVAND
nsg_dat a none
nsg GET_VERSI ON
type RESPONSE
nsg_dat a version_s SUCCESS (E_NCERR)
unused char
GET_VERSI ON_RESP [2o versio
char
n
mnor_versio | ...
n
maint_versio | ...
n
msg TRACE Application gets
messages tracing STMD
TRACE_CMVD type COVVAND operations
=1 trace on,
nsg_dat a 0. off
' SUCCESS (E_NCERR)
nsg TRACE
TRACE_RESP type RESPONSE
nsg_dat a none
Application may handle
FAI LURE_NOTI FY nsg FAI LURE event can be one of the conditions listed in
the foll owi ng:
Table on page 44.
type NOTI FI CATI ON ASYNC_| NSERTI ON
neg_dat a consi sts of ASYNC_EXTRACTI ON
event int CS_TO_ACTI VE_TRANS
INIT
PROCESS_MBGQ

ERROR _| NTERNAL

E_ENUM COMPLETE_EVENT

E_ENUM READ SLOT_TABL
E

ERROR_GET_DRM | NFO

CATCHALL

High Availablility Package User’s Guide 61

Chapter 4 - Writing High Availability Platform Applications

The following table shows the various error notifications and their causes:

Table 4-2: State Transition Management Error Notifications

Error Name

Error Strings

Meaning

SUCCESS (E_NCERR)

none

The action completed successfully (no error
occurred).

“Unabl e to power off slot”

During initialization, CS_TO_ACTI VE state
transition, hot insert or extract , if STMD is

“Unabl e to connect slot”

EP F “Unabl e to disconnect slot” unable to power off or disconnect a slot, this
message error is issued.
“Unabl e to power on slot” In CS_TO_ACTI VE or CARD_| NSERT,
E_PWRON P STMDreturns this status if it is unable to

power on or connect.

E_RELEASE_BUS_SLOTS none Unused
InCS_TO_ACTI VEand HS_TO_ACTI VE,
E_TAKE_BUS_SLOTS none if STMD is unable to command hsc to take

control of given bus slots.

E_HSC_OPEN

“stmd_wds_init: Unable to
open /dev/ hsc0. Possible
probl ens: perm ssions, non-
root user, HSC driver not

| oaded”

See error string.

E_DRM TRAVERSE

none

Unused

E_DRI VER | NSTALL

"install _drivers_for_slot_no
des: error installing driver
for vid nn did nn slot nn”

The driver installation script returned an
error.

E_DRI VER_ENABLE

The character special file
name

The driver enable script returned an error.

The STMD tables did not contain driver

E_DRI VER_NOT_FOUND none . . .

— - = quiesce and/or uninstall scripts.
E_MKNOD none Unused
E_DRI VER_OPEN none Unused

E_ENABLE_ARBI TRATI ON

“Error clearing LOCK bit in
HSC

STMD failed to enable arbitration in
HS_TO_ACTI VE state change.

E_DI SABLE_ARBI TRATI ON

“Error setting LOCK bit in

InHS_TO_ACTI VE and ACTI VE_TO_HS
state changes, STVD failed to disable
arbitration.

E_DRI VER_QUI ESCE

none

Unused

E_FLUSH FI FOS

“Error from get_drmroot()
call”

“Error fromread_pci_node()
call”

In ACTI VE_TQO_HS, there was an error in
flushing bridge FIFOs.

62 High Availablility Package User’s Guide

Operation

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name

Error Strings

Meaning

E_SYSCTL

"process_insertion:
get_drmroot returned error”
"process_insertion:

probe_drm node returned
error”

"process_insertion: Unable to
sel ect DRM subtree"
"process_insertion: Unable to
al | oc DRM subtree"
"process_insertion:

pci _get _conpl et e_node for

sl ot node returned error"
"find_new_node: get_drmroot
returned error”
"find_new_node:

get _next _drm node returned
error”

"find_new_node:

pci _get _conpl et e_node
returned error”
"find_new_node: domain bridge
has no child"

"find_new_node: get_drmchild
returned error”
"find_new_node:

pci _get _conpl ete_ node
returned error”

"install _drivers_for_slot_no
des: pci_get_conpl et e_node
returned error”

"mai n: prune domai nA returned
error”

"mai n: prune domai nB returned
error”

find_domai n_bridges:
get_drmroot returned error”
"drm_program pci _bridges:
get_drmroot returned error”
"drm_program pci _bridges:

get _next _drm node returned
error”

"drm_ program pci _bridges:

pci _get _conpl et e_node
returned error”

"drm_program pci _bridges:

PCl _PROGRAM BUSNCDE r et ur ned
error”

process_insertion:
find_new_node:
install _drivers_for_slot_nodes

mai n:

find_domai n_bri dges:

drm program pci _bridges:
error return froma sysctl ()
(DRM call

E_DRI VER_BOOT

none

Unused

E_GET_DRM | NFO

“process_st_insertion:
get _drmpartial _tree call
failed

process_i nserti on: Failed to get DRM
information about the inserted line card.

E_PUSH_DRM | NFO

“Possi bl e problem w ong
I engt h”

st nd_hs_card_i nsert : Failed to push
DRMinformation about a line card into the
standby.

High Availablility Package User’s Guide 63

Chapter 4 - Writing High Availability Platform Applications

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name

Error Strings

Meaning

E_DI SABLE_CPCI _| NTR

"Possi bl e cause: sysctl not
up to date"

st md_wds_hs_t o_act i ve: unable to
disable cPCI interrupts.

E_ENABLE_CPCI _| NTR

"Possi bl e cause: sysctl not
up to date"

st md_wds_hs_t o_act i ve: unable to
enable cPCI interrupts.

E_DI SABLE_ENUM

ENUM'
“Unable to turn off ENUM A
MASK”
“Unable to turn off ENUM B
MASK”

E_RESET_CPU none Unused
E_ERROR_LEVEL none Unused
“Unabl e to turn off PROP Initialization:

st md_wds_active_to_hs:
Failed to turn off ENUM interrupts in the
HSC.

E_ENABLE_ENUM

“Unabl e to turn on PROP ENUM
“Unable to turn on ENUM A
MASK”

“Unabl e to turn on ENUM B
MASK”

stmd_wds_cs_to_active:
stnd_wds_hs_to_acti ve:

Reason - Failed to turn on ENUM interrupts
in the HSC.

E_DRI VER_UNI NSTALL

command |ine of the driver
uni nstall script

uni nstall _drivers_in_sl ot :Driver
uninstall script returned error.

“Error inserting renote
domai n bridge”

E_DRM PRUNE sl ot nunber DRM PRUNE operation failed.
“Error inserting local domain | stnmd_wds_cs_to_active:
E_DRM | NSERT bri dge” Inserting either the local or the remote

domain bridge failed during
CS_TO_ACTI VE.

InCS_TO ACTI VE & HS_TO ACTI VE,

E_HSC REG STER none the call to hsc_Set Event Functi on()
to set an event handler failed.
In ACTI VE_TO_HS, the call to

E_HSC DEREG STER none hsc_Set Event Functi on() to clear the
event handler failed.

E_| NSERT_CARD none Unused

“find_new_node: Unable to

STMD was unable to find in DRMand nodes

B_NEW D find node” that corresponded to the inserted line card.
E_UNKNOWN_MESSAGE none Unused
E_NOT_CMD hone The msg_t ype field in the received

message was not STVD_CMD.

E_SYSTEM STATE

“active state”
“cold state”
“warm st andby state”

The requested operation is not possible in the
state STMD is in.

E_WRONG_SLOT

none

A wrong slot number is passed in.

64 High Availablility Package User’s Guide

Operation

Table 4-2: State Transition Management Error Notifications (Continued)

Error Name

Error Strings

Meaning

E_DOMAI N_BRI DGE

“find_new_node: could not
find donmin bridge”

STMD failed to find the correct domain
bridge while traversing the DRM tree after a
line card insertion.

“Unabl e to set up nmessage

The call to ng_noti fy() tosetup

E_MQ _NOTI FY queue notification signal: message queue notification failed.
errno = <errno>"
E_SI GACTI ON output of strerror The call to si gaction() failed.

E_SYNC_SI GNAL

“Recei ved signal <signo>"

STMDreceived a SI G LL, SI GFPE,
S| GBUS, or SI GSEGV.

st md_hs_i ni t: Failed to open the STMD

E_CFG.CPEN none config file

FCET-SLOLTEE none Sble from the STMD config s
=CETDRTEE none Sble from the STMD g s+
=R RECEE none P ecerve() Tt
E_HSC GET_DOVAI N_I D none Unused

EENLSEA none receving SIGALRM,
E_ENUM GET_EVENT none i octl toget ENUM event in the ENUM

event handler returns error.

E_DRI VER_STANDBY

Speci al device file name of
driver

Driver standby script returned error.

E_DRI VER_ENABLE_| SR

Speci al device file nane of
driver

Driver enable ISR script returned error.(no
longer used).

E_DRI VER DI SABLE | SR

Speci al device file nane of
driver

Driver disable ISR script returned error.(no
longer used).

stmd_wds_cs_to_active:
stmd_wds_hs_to_active

EB_ENUM REG STER none attempt to register for ENUM interrupts
failed.
st md_wds_active_to_hs:
E_ENUM DEREG STER none Attempt to deregister for ENUM interrupts
failed.
E ENUM READ SLOT TABLE none Initializgtion: unable to read slot table from
- - - - enum driver.
Initialization:
E_ENUM LOAD SLOT_TABLE none std_hs_card_insert:
unable to download slot table to enum driver.
E_ENUM COVPLETE_EVENT none ENUM i ocl t failed during insertion.

High Availablility Package User’s Guide 65

Chapter 4 - Writing High Availability Platform Applications

State Transitions

This section details various state transitions used.

Cold Standby to Active

The following state diagram describes the Cold Standby to Active domain state
transition:

66 High Availablility Package User’s Guide

Cold Standby to Active

Write directly to

bridges HS
A &Bresetting sC s Reset CSto
2] ook H' 'éi PCI cs ﬂgm '§ § Active Ap-n
= S Reset Bridge =5 Bridge Cotr?'lm:%e g z Com- Initiate
locks H locks BE mand |
Active
Lock §
reset E)
status g or -
a ridge 3
stmd AorB g
Bridge_locks lock g
Turnon reset reset g
3 PROP_ENUM, fails £
2 ENUM_A_MASK Error
§ and
ENUM_B_MASK
Set
Interrupt
mask
status
HSC Set

Interrupt
mask

stmd
HSC interrupt
masks set

uopedyRoN Jou3

X fails i
Register
for HSC Error
Hse events
Driver
_stmddf
registered for
interrupts HSC
Interrupt
registration
status o
stmd HSC]
HSC interrupts; :2‘;;2?‘ ;
registered fails H
Register, g
for ENUM
events Error
Driver
stmd
registered for
interrupts ENUM
Interrupt
registration
status
! stmd ENUM § HS
ENUM Interrupt z App
interrupts register H Error
Power Power off registered fais £ Notify
33 i HsC] all =
€3 (;II Power off 3 o Error
Es 2 slots

slots slots

Card
Power
off

See Next Figure

Figure 4-8 part 2: Cold Standby to Active State Transition Diagram

High Availablility Package User’s Guide 67

Chapter 4 - Writing High Availability Platform Applications

See Previous Figure

ENUM# HSC -
PRESENT ; Power g
for each slot table off £
slot filled status H

Unable to
disconnect
or power
off slots

uogeaynop J013

Error
entries m
Unable to E
i =
slot table dottale g
Insert filled from HSC g
Domain H
bridges
in DRM
device info
tree m
DRM Unable to H
return configure z
status e i
stmd inDRM H
domain
bridges
Get card configured CS to Active T
|n_fo for Success =
bridges (includes —>R2
from DRM slot count) 2
DRM y
device info Success
tree DRM Card
.refturn insert 2 g
info ify —>»
532 configure
status bridges ¢

Figure 4-8 part 2: Cold Standby to Active State Transition Diagram
On receiving a STMD_CS_TO_ACTI VE message, the system:

* Enables arbitration

* Enables CompactPCI interrupts

« Sets PROP_ENUM ENUM A MASK, and ENUM B_MASK to 1

» Takes control of both domains

« Powers all slots on

68 High Availablility Package User’s Guide

Cold Standby to Warm Standby

* Registers for HSC events
* Registers with the ENUMdriver
* Adds the enum driver signal and the HSC driver signal to the signal list

* Powers all slots off. Since the slots were previously powered on, this
causes the PRESENT bit to raise an interrupt

e Scans all slots for the PRESENT bit. Builds slot mask and number of
cards. This is sent with the return status in the STMD_CS_TO ACTI VE
response message

+ Inserts nodes into the DRMtree for the local and remote domain bridges
* Sends the STMD_CS_TO_ACTI VE response message

* Sends STMD_CARD | NSERT messages for the domain bridges, if unable
to get DRMnode, sends STMD_ERROR_GET_DRM | NFOnotification

Cold Standby to Warm Standby
The following state diagram describes the Cold Standby to Warm Standby domain

state transition:
Cold
Standby
to Warm Inltlat
Standby CSto
Command

Active

Cold

Success

Standby .
to Warm &z
a o
Standby 53 Warm Standby

state

Figure 4-9: Cold Standby to Warm Standby State Transition Diagram
This is completed on receiving a STMD_CS_TO W5 message.

There is no explicit Cold to Warm Standby transition. Slot and DRMinformation is
passed in parts from Active to Standby. The Active side notifies the Standby side
that it has the entire static configuration and that it must now transition into the
Standby state. It uses the message STMD_CS_TO W5 to do this. The Standby STMD

High Availablility Package User’s Guide 69

Chapter 4 - Writing High Availability Platform Applications

then sets an internal variable to indicate that it is in Warm Standby state and sends
a STMD_CS_TO WS response with the return status.

Active to Warm Standby

Figure 4-10 part 1 describes the Active to Warm Standby domain state transition:

N
Active HS
g Deregister Active to § § to App
3 for HSC Warm I Warm Initiate
HSC 2 events Standby = Standby Active to Warm
Drive Command Standby
N—

Deregister
STMD

HSC =
Deregister, g
status g
h stmd Failure z H
HSC events 0 5 o
deregist- Deregister g2 Errpr
3 Deregister ered HSC g o
H
= for ENUM
=
ENUM 2 events Error
2
Driver
Deregister
STMD AENuM
Deregister,
status
Failure z H
to EE
Dee‘r’Zgn]itsSt- Deregister g3 Error
= Transition ered ENUM g o
H all drivers
STMD H to standby Error
aware S
Driver
standby Oriver °
state state 3
transition pl =
o % stmd Driver(s)
status q - ;
; Drivers in :2‘::["‘;" 5 m
di:ﬁ.’:tll?/ HSC St:tr;?:y from active g g E(r’rt?r
i db
gk to bridges Driver Disable to standby
£E A&B ™\ SetBridge arbitration Error
= setting locks
locks

Write
Status=—> Gee Next Figure

Figure 4-10 part 1 : Active to Warm Standby State Transition

70 High Availablility Package User’s Guide

Active to Warm Standby

See Previous Figure

\Wr\te

Status’

smejs
o/1

pead
ojui jo|s

arbitration

disabled £

" Error i

Ssown
283&%
e (e}
)
uonesyRoN
Jo04a3
S 1EE;;
a3

o
g

T Flush
j¢e—Fifo's

2o
node —pll 2% 2
status s2 -
Unable 9 HS
to > =7 App
clear, flushed | push 18 Error
PROP_ENUM, fifo's H Error \yotif
ENUM_A_MASK
J and
ENUM_B_MASK
z
[y Unable to . HS
mask ——plH-3 clear — 55 éll?g:
status =3 by
B mask bits g Error \yotif
Active to ry
Warm 2349
Standby —»fl 3=
Success A
a
Success

Figure 4-10 part 2 : Active to Warm Standby State Transition

The system performs the following on receipt of STMD_ACTI VE_TO WS message:

1.
2.

Deregisters for HSC events
Deregisters for ENUMevents

Removes the HSC driver signal and the ENUMdriver signal from the signal
list

Quiesces the list of installed drivers by calling the standby script for each
driver

Disables arbitration

Flushes the FI FGs in all the PCI-to-PCI bridges by traversing the DRM
tree and reading the bridge's config space

Sends a STMD_ACTI VE_TO W5 response with the return status
Sets PROP_ENUM ENUM A_MASK, and ENUM B_MASK to 0

High Availablility Package User’s Guide 71

Chapter 4 - Writing High Availability Platform Applications

Warm Standby to Active

The following diagram describes the Warm Standby to Active domain state

transition::
Turn on 2o HS
Sl PROP_ENUM, stmd iz ACCfi © App
o NUM—AMA CS to Active g; com Initiate
2 and Command 2Bl non
ENUM_B_MASK
Interrupt
mask Set
e
set Interrupt ﬁ
mask a
status g
“ HSC Set z iS
HSC Intermupt EEd
Wi interrupt mask g3 Error
5 direc:ry asks set, fails H otif
gg R arb[i)i:l?tln
] ating Error
1]
Driver Lock g
Bridge set g
locks status 3 i
set 3 HSC Set [

bridge
locks
fails

arbitration
disabled

Error
otif;

-4
i App.

Register
for HSC

events Error

HSClioctl

HSC

stmd
registered for
interrupts

HSC
Interrupt
registration
status

smels JSH

HSC
Interrupt
register
fails

stmd
HSC interruptd
registered
Register,
for ENUM
events

ENUM ioctl

ENUM
Driver
stmd
registered for

interrupts ENUM

Interrupt
registration’
status

stmd ENUM z iS
ENUM Interrupt T App
interrupts register 85 Error
. Take = Take registered fails s otif
g E cunflrull 3 cu?:/rg
g ofa b 0
S XL 2 Domains Error
Card Bus slots

slots
controlled

Bus
State
Registers

See Next Figure

Figure 4-11 part 1 : Warm Standby to Active State

72 High Availablility Package User’s Guide

Warm Standby to Active

See Previous Figure

Card Bus
slots
controlled

Bus
State
Registers

Slot
Contro
Status

HSC
Driver

all /0 slots
controlled,

esuodsey
JOSH

Unable to

bus slots
controlled

°
8
E
uogeayoN

of I/0
domains

Program
PCI

bridges

DRM sysctl

=]
2
=
g
status ° stmd Unable to
PCl bridges e
2 Transition bridges
g‘§ all slot’
'5 = drivers
§ to active
&
device .
active Driver o
2
state =
change -4
status g L::::Igesw z
Wri devices i —n 27 » App
e active state to i-i Error
5 directly aciv Error \ ot
28 to bridges Enable
£g A&B arbitration
]
HSC / clearing
Bridges A locks
&B) “
E Unable to §
E) enable g
3 arbitration g
2

arbitration) Warm

enabled Standl?y sa HS
to Active &z App
Success g g Active
(includes €8s state
slot count) success —

Figure 4-11 part 2 : Warm Standby to Active State
The system performs the following on receipt of STMD_W5_TO ACTI VE message:
1. Sets PROP_ENUM ENUM A _MASK, and ENUM B_MASK to 1
2. Disables arbitration

3. Disables interrupts from the CompactPCI domains by turning them off in
the MPI C

4. Registers for HSC events. This is to capture PRESENT events
5. Registers for ENUMevents

High Availablility Package User’s Guide 73

Chapter 4 - Writing High Availability Platform Applications

74

6. Adds the HSC driver signal and the ENUMdriver signal to the signal list
7. Takes control of both domains. The domain bridges now become visible

8. Programs the domain bridges with the information already in the DRM
nodes that were pushed before

9. Goes through the list of installed drivers and enables all of them by
calling the active script for each driver

10. Enables arbitration

11. Enables interrupts from the CompactPCI domains by turning them on in
the MPIC

12. Sends a STMD_W5_TO_ACTI VE response

NOTE: If any errors occur during the transition from Warm Standby to Active, the
system will be left in an undefined state. No attempt is made to restore the system
to its original state.

Hot Insertion
Hot Insertion can take these different forms:
* Bottom Up Hot Insertion on the Active Domain

* Application initiated Hot Insertion on a Warm Standby Domain

Bottom Up Hot Insertion on the Active Domain

The state transition for this transition are presented in Figure 4-5 part 1,
“Successful Hot Insertion State,” on page 50.

1. STMD gets a signal from the ENUMdriver; this can happen only on the
active side.

2. Get the event from the ENUMdriver.

3. Check the HEALTHY bit for the slot; if it is not set, power down the slot,
set the slot status to CARD_UNHEALTHY, send a STMD_CARD_UNHEALTHY
message and return.

4. Have DRMfind all the devices and bridges in the slot by calling
CMD_PROBE.

High Availablility Package User’s Guide

Hot Insertion

. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

CVD_SELECT and CVD_ALLOCthe node.

Install the driver corresponding to the node by calling the driver
installation script.

Bring the driver to standby by calling the driver standby script.
Enable the driver by calling the driver active script.
Update the dr v_i nf o structure.

Update the slot table.

. Set the slot state to CARD_| NSERTED.

. Send a STMD_CARD | NSERT message to st nd_nsgq_r d.

High Availablility Package User’s Guide 75

Chapter 4 - Writing High Availability Platform Applications

Application-Initiated Hot Insertion on a Warm Standby Domain

Because there can be no bottom up hot insertion on the Standby Side, insertion
must be initiated by the application itself. The following shows the state transitions

requirements:

—_—

oo HS

3 Push tmd 53 Insert App
3 DRM Insert Card 2 E Card Initiate

2 Info Command 2 Command Card
Insertion
S——

status DRM

push
info
error

stmd
DRM
ode info s¢

uoneaoN
Jou3

Driver[scripts

drivers
driver
Inactive

Driver
install-
ation

peal oju1 10/

status Driver =
Install 5:r" Ann
script E’- g Error
error § Error\ gorir

drivers to
standby

Driver [scripts

drivers
driver
standby

Driver
state
transition
status

peal oju10js

uoneayoN
Jou3

Driver
Standb
script
error

HSC

Driver
slot Power He
bit = » HS
Always z Card 2 2 A_pn
slot 2
Succeed g powered Inserted g g’ (Active
@ ®a state

Figure 4-12: Application-Initiated Hot Insertion

76 High Availablility Package User’s Guide

Hot Extraction

These steps are completed on receiving a STMD_CARD_| NSERT command
message:

1. Update the slot table entry

2. Call push_drm i nfo() to push the DRMnode into the standby tree.
push_drm i nf o() returns the root of the pushed subtree

3. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Look for a driver for the vendor _i d, devi ce_i d pair in the node.
Install the driver corresponding to it. Execute the standby script in
order to bring the driver to standby state

- Update the dr v_i nf o structure
- Update the slot table
4. Send a STMD_CARD | NSERT response with the return status

Hot Extraction

Hot Extraction can take these different forms:
* Bottom Up Hot Extraction on the Active Domain.

* Application initiated Hot Extraction on a Warm Standby Domain.

Bottom Up Hot Extraction on the Active Domain

The state transitions for this transition is presented in Figure 4-6 part 1, “Card
Extraction State,” on page 52.

1. STMDgets a signal from the ENUMdriver. This can happen only on the
active side.

2. Get the event from the ENUMdriver.

3. Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Call driver standby script. Wait for the response. If error, flag an
asynchronous error STMD_ERROR_QUI ESCE and return.

- Uninstall the driver by calling the driver uninstallation script.

- Updatedrv_info.

High Availablility Package User’s Guide 77

Chapter 4 - Writing High Availability Platform Applications

Prune the DRMsubtree.
Set the slot state to CARD_EXTRACTED.
Update the slot table.

Turn off power to the slot.

® =N R

Send message STMD_CARD REMOVE.

78 High Availablility Package User’s Guide

Hot Extraction

Application-Initiated Hot Extraction on a Warm Standby Domain

Because there can be no bottom up Hot Extraction on the Standby Side, extraction
must be initiated by the application itself. The following figure shows the required
state transitions:

—
2 . HS
2 iti £3 Extract Al
s trgnsmon stmd = App
= drivers to Extract Card gz Card Initiate
o
2 standby Command 3 Command Card
5 .
Extractio
y SN——
driver .
standby Driver 2
state jad
Y. 3
transitior Ey \
status 5 Device =
< dﬂmd. driver %m
_drivers seript g3
g_ in standby, errors g
F Unins_tall
§ driver
5
driver
uninstalled Dri 2}
river 5
uninstal E)
o
status 3 —\ Device =
o _St_md_ driver 2
drivers script]
Prune uninstalled errors g
E device
/u info
(7]
x tree
DRM
=
prune 14
info % \
status @ stmd DRM =
DRM prune %g
node info info &=
_ removed error =
5 Power—"
‘/"’—é off slot
HSC
Driver
Slot Power ~
bit off x - HS
Always a8 Card 4= App
-1
succeed g Extracted] Card
a ca Extracte
v

Figure 4-13: Application-Initiated Hot Extraction

High Availablility Package User’s Guide 79

Chapter 4 - Writing High Availability Platform Applications

80

These steps are completed on receiving a STMD_CARD REMOVE command

message:

1.

Starting with the root of the subtree corresponding to the card in the slot,
do the following for each node in the tree:

- Uninstall the driver.
- Update the dr v_i nf o structure.

Use the slot table entry with CMD_PRUNE to delete the DRMsubtree
corresponding to the line card that is extracted.

Update the slot table entry.
Send a STMD_CARD_REMOVE response with the return status.

For an unrecognizable message, send the message
STMD_UNKNOWN_VESSAGE.

Asynchronous Events

There are certain events (other than bottom up Hot Insertion and Extraction) that
alter system state and generate asynchronous notification.

HSC Events

The STMD HSC event handler gets called upon receiving a signal from the HSC
driver. The HSC Event Handler:

1.
2.
3.

Receives the event from the event queue.
If it is not a PRESENT event, discards it.

If the slot state is CARD_PRESENT or CARD_| NSERTED, flags an
asynchronous error STMD_ERROR | NTERNAL.

If the slot state is CARD_EXTRACTED and the event is PRESENT, ON,
ignores it. When power is turned off to the slot, the PRESENT bit changes
from O to 1 and generates an interrupt, but this is not a true PRESENT
event, therefore it is ignored.

If the slot state is CARD_ABSENT and the event is PRESENT, ON, sets slot
state to CARD_PRESENT and turns on power to the slot.

If the slot state is CARD_EXTRACTED and the event is PRESENT, OFF, sets
slot state to CARD_ABSENT.

High Availablility Package User’s Guide

Asynchronous Events

7. If the slot state is CARD_ABSENT and the event is PRESENT, OFF, flags an
asynchronous error STMD_ERROR_SPURI OUS_PRESENT.

High Availablility Package User’s Guide 81

Chapter 4 - Writing High Availability Platform Applications

82 High Availablility Package User’s Guide

aeona Basic Terminology

These definitions and descriptions are derived from section 2.1.4 “Additional
Terms” from the Compact PCI Hot Swap Specification R1.0 and several
additional sources indicated in footnotes.!

Back End Logic

The portion of a Compact PCI board that is isolated from the system until the
Hardware Connection Process is complete.

Back End Power

The power to the back end logic of a Compact PCI board. Back end power is
applied to the back end logic through the power isolation circuitry.

Dynamic Configuration

A process whereby a hot swap board is allocated system resources (enumerated) by
the system software following insertion of the board. In non hot swap systems,
enumeration only takes place on system boots. The same resources are released
prior to extraction of the board.

Enumeration

The action taken by the Compact PCI system host to poll the configuration spaces
of all the PCI devices and assign (or release) the necessary resources (memory, I/O
address space, interrupts, drivers).

1. Compact PCI Hot Swap Specification 2.1 R1.0 August 3, 1998 PCI Industrial Computers
Manufacturer’s Group (PICMG) 1997. 1998

High Availablility Package User’s Guide 83

Appendix A - Basic Terminology

Fault Tolerance

A Fault Tolerant Computer System is a system that can continue to operate reliably
by producing acceptable outputs in spite of occasional occurrences of component
failures in both hardware and software components.1

One of the principal concepts of Fault Tolerance is that of handling a fault as
additional system state.

Fault Tolerant computer systems can be created using two or more conventional
computers that duplicate all processing, or having one system standby if the other
fails. They can be built from the ground up from commercially available redundant
processors. Such systems have several processors, control units, peripheral units
and power supplies / sources combined into a modular integrated system.

Fault Tolerance has even been extended into the realm of handling deliberate
sabotage; this is the so-called byzantine fault. Obviously, anticipating, detecting
and handling this type of fault is very involved.

It is precisely the nature of these Fault Detection and Management systems,
involving such things as multiple copy elections and lock step operation that
seriously impacts system performance — even the time bounded qualities required
of Real-Time systems.

Hardware Fault Tolerance has been matured for these reasons:

* Hardware cost has become relatively insignificant in comparison with
overall system cost and as a result, hardware redundancy is easily
justified.

Systems vendors have provided platforms with substantial fault tolerance
capabilities.

The primary beneficiaries of traditional Fault Tolerance are financial applications.
Because of the extreme cost and lack of COTS support, such systems have not
been practical in most other applications.

1. “Design of Real-Time Fault-Tolerant Computing Stations” by K. H. Kim, University of
California at Irvine from Real Time Computing NATP ASI Series ISBN 3-540-57558-8 Springer
Verlag 1994

84 High Availablility Package User’s Guide

High Availability

High Availability

The attribute of a system designed to keep running (maintain availability) in the
event of a system component failure, or preventative action. To provide a higher
degree of availability, a system requires a higher degree of control.

Hot Swap

The idea behind Hot Swap is to allow the orderly insertion and extraction of boards
(usually in reference to Compact PCI boards) without adversely affecting system
operation.

Hot Swap is described in terms of three processes:
* Physical Connection Process,
Includes:
- HotInsertion (by which a board is installed in a live system).
- Hot Extraction (by which a board is removed from a live system).
* Hardware Connection Process

Describes the electrical connection and disconnection of hardware to a
live system.

» Software Connection Process

Describes the connection and disconnection of the software layer(s) to a
live system.

There are four different degrees of Hot Swap capability. These are:
* Non Hot Swap
+ Basic Hot Swap
+ Full Hot Swap
* High Availability

For more detail on these different Hot Swap capabilities, see “Hot Swap” on
page 4.

PCIl Extended Capabilities Pointer (ECP)

A pointer to a linked list of additional configuration space registers. The
mechanism allows additional configuration space registers to be added. A hot swap

High Availablility Package User’s Guide 85

Appendix A - Basic Terminology

86

control and status register is added using the ECP mechanism to bring signals to
I/0 transition boards or for other auxiliary buses. These signals can also be used for
additional hot swap and HA support.

PCl Mezzanine Card (PMC)

PMCs are modules which are modules installed on a Hot Swap Module PMC
expansion Carrier or on the system controller CPU board. They provide additional
/O capabilities.

Quiesced

No operations are in progress or pending and there is no authorization to launch
new operations.

Warm Domain Switchover

In contrast to Hot Swap, Warm Domain Switchover involves switching from one
processor domain in the same chassis again to another processor domain, without
seriously affecting overall system performance.

High Availablility Package User’s Guide

mewons Motorola Hot Swap Controller/
Bridge API

This Appendix is provided by Motorola, and details the Hot Swap
Controller/Bridge API.

Introduction

This document addresses the Motorola Hot Swap Controller/Bridge Driver
incorporated into various Motorola supported operating systems. This driver is
required to manage the Motorola Compact PCI CPX82xx Computer system chassis

and functions.

Definitions

Mesquite
DDI

API
CPX8216
CPX8216A

CPX8216T
CPX8221

HSC/B
HSCD

Code name for the MCP750 single board computer.

Device Driver Interface

Application program interface. Equivalent to the DDI.
Dual-Mesquite capable ¢cPCI computer w/ 12 payload catd slots.
Dual-Mesquite capable cPCI computer w/ 12 payload card slots
and ATM bus.

Dual-Mesquite capable cPCI computer w/ 12 payload card slots
and H110 Reset.

Dual-Mesquite capable ¢cPCI computer w/ 17 payload catd slots.
Hot Swap Controller and Bridge board.

Hot Swap Controller/Bridge Driver.

High Availablility Package User’s Guide 87

Appendix B - Motorola Hot Swap Controller/ Bridge API

88

CPX82xx HA Programmable Resource Management

Purpose of this Document

This document describes the Application Program Interface(API), a collection of
C-based library functions, which are used to manage the resources of Motorola’s
CPX8216, CPX8216A, CPX8216T and CPX8221 High Availability(HA), Hot
Swapable, Compact PCI(cPCI) computer systems.

Where differences in hardware exist between these two systems, a notation of
(CPX8216), (CPX8216A), (CPX8216T) or (CPX8221) will indicate that the
resource is available to that hardware platform only.

Overview

A Set Of Manageable System Resources

All hardware resources addressed by the HA Resource Management API reside in
some variant of the CPX8216 or CPX8221 system rack. These resources include
four drive/tape peripheral bays (CPX8216), three power supplies, three cooling
fans, two processors--each with its own bridge card, two extension bridges
(CPX8221), eeprom programmer, system LEDs, four alarms, two hot swap
controllers, and two buses with 6+6 cPCI payload card slots (CPX8216) or three
buses with 6+6+5 cPCI payload card slots (CPX8221), respectively. Managing
these resources allow user applications to provide the HA environment which
keeps the work flow going, even if performance might, to some extent, be
degraded temporarily. The software managing the HA environment facilitates,
through finer gradation of control, the coordinated swapping of defective, new or
upgraded boards and their drivers, fail over to redundant hardware, or even new OS
or eeprom, software.

Modifiable Attributes for Each Resource

Each resource has a set of attributes which can be altered, i.e. LEDs being turned
on, or power being turned off, etc. When this purposeful action is taken, the
attribute’s state is being changed. Altering one state may precipitate a different
attribute’s state to transition--change-- asynchronously. For example, changing the
power attribute on a payload slot from off to on may result in the transition of the
healthy attribute’s state from off to on. A power loss to a payload slot would
obviously cause the reverse transition of kealthy to occur. In this example, note that
the healthy attribute itself cannot be changed directly, but represents a new state

High Availablility Package User’s Guide

Overview

that happens as a result of some other event. This type of attribute is classed as
non-modifiable, and can only be status d.

Whether scheduled (state changed by application code) or unscheduled (state
transitions asynchronously), these events are available to a user’s application
through a function call which uses a signaling scheme. In this manner, the HA
application(s) can monitor what other software is doing with the resources in
addition to being notified of ‘unexpected’ events which indicate a change in status
for any particular resource. Requesting these event notifications makes the
application a subscriber as opposed to simply being a one-way user of the
interface.

As of now, this interface will support 10 simultaneous subscribers, but an unlimited
number of users (dependent only upon operating system limits and configuration).
The number of event subscribers permitted can be adjusted higher or lower via a
#define in the system header file Ascd.h, which is currently not part of the
distribution. Until end user modifyable, a request can be made of MCG
Engineering to effect a change in this value.

Valid Attribute Values

Modifiable attributes may be set to on or set to off. In the case of LEDs, a third
setable state is blink. Non-modifiable attributes, which transition asynchronously,
cannot be set, but can be status 'd. Naturally, all attributes of any particular resource
may be status 'd to determine their current states.

Brief Summary

The CPX82xx platform hardware resources are managed through the use of an API
comprised of several C-language functions collected into a library accessible to the
HA application software. Each software resource has a set of attributes which may
be disabled or enabled through the use of this API, as well as a group of attributes
whose states cannot be set, but which transition asynchronously in response to
other system resource states. In either case, changes to ALL resource attributes
result in events which may be received by the HA applications to assist in their HA
environment’s control.

All hardware addressed by this software resides in some variant of the CPX8216 or
CPX8221 system cabinet. This includes peripheral drive bays (CPX8216 only),
power supplies, fans, processors, extension bridges (CPX8221 only) and Compact
PCI slots with boards.

High Availablility Package User’s Guide 89

Appendix B - Motorola Hot Swap Controller/ Bridge API

20

Accessing CPX System API's

The software described in this document resides in a LynxOS, or other OS
compatible library and is linked with the user’s own applications. A single header
file--cpxapi.h-- needs to be #include’d in your application’s sources for successful
compilation. The locations of this software is as follows:

e header - cpxapi . hin/ hasw i ncl ude

e library - libcpxapi.a or |ibcpxapi.oin/hasw cpx
¢ tool - cpxt ool . oin/hasw cpx

e driver cpxHSCD (LynxOS)

e device - hscdev (LynxOS binary file)

All functions and enumerations/defines are preceded by cpx or hsc_, trigraphs
representing the compatible family of hardware it is used to manage. This is done
so that no ambiguity or overlap occurs with other OS header files and libraries.

CPX82xx System Resource and Attribute Identifiers

Access to the CPX8000’s hot swap controller is done through a functional
interface. The enumerations found in this document’s tables must be used as
arguments for the various functions to control that interface. The hot swap
controller/bridge permits control of the processor, bridge and cPCI payload slots
[16 (12 payload) in the CPX8216 & 21 (17payload) in the CPX8221] and system
functions such as power supplies, alarms and bus control options, etc.

Required Enumerations

The following enumerations are necessary for using the functions discussed later in
this document. Virtually all enumerations come under the heading of command,
status, and identification. Many are equivalenced for code readability, but are
logically the same.

hsc_RESOURCE_ID Enumerations

For identification, the following register resource enumerations are available. Bold
entries indicate either CPX8216 or CPX8221 specific implementations. Note that
these enumerations apply to hsc_-style API calls only.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-1: hsc_RESOURCE_ID Enums

S;::)pténgb system Equivalent Description :;omain
hsc_SLOT_01 N/A non-host cPCI slot A
hsc_SLOT_02 N/A non-host cPCI slot A
hsc_SLOT_03 N/A non-host cPCI slot A
hsc_SLOT_04 N/A non-host ¢cPCI slot A
hsc_SLOT_05 N/A non-host ¢cPCI slot A
hsc_SLOT_06 N/A non-host ¢cPCI slot A
hsc_SLOT_07 hsc_PROC_A host processor slot A
hsc_SLOT_08 hsc_BRI DGE_B bridge to B B
hsc_SLOT_09 hsc_PROC_B host processor slot B
hsc_SLOT_10 hsc_BRI DGE_A bridge to A A
hsc_SLOT_11 N/A non-host ¢cPCI slot B
hsc_SLOT_12 N/A non-host ¢cPCI slot B
hsc_SLOT_13 N/A non-host cPCI slot B
hsc_SLOT_14 N/A non-host cPCI slot B
hsc_SLOT_15 N/A non-host cPCI slot B
hsc_SLOT_16 N/A non-host ¢cPCI slot B
hsc_SLOT_17 N/A non-host slot (CPX8221) B(bus C)
hsc_SLOT_18 N/A non-host slot (CPX8221) B(bus C)
hsc_SLOT_19 N/A non-host slot (CPX8221) B(bus C)
hsc_SLOT_20 N/A non-host slot (CPX8221) B(bus C)
hsc_SLOT_21 N/A non-host slot (CPX8221) B(bus C)
hsc_PS_1 N/A Power Supply 1 A
hsc_PS_2 N/A Power Supply 2 A
hsc_PS_3 N/A Power Supply 3 A
hsc_PBAY_1 N/A Peripheral Bay 1 (CPX8216) A and/or B

High Availablility Package User’s Guide

91

Appendix B - Motorola Hot Swap Controller/ Bridge API

Table B-1: hsc_RESOURCE_ID Enums (Continued)

st:;:)téngb system Equivalent Description :;omain
hsc_PBAY_2 N/A Peripheral Bay 2 (CPX8216) A and/or B
hsc_PBAY_3 N/A Peripheral Bay 3 (CPX8216) A and/or B
hsc_PBAY_4 N/A Peripheral Bay 4 (CPX8216) A and/or B
hsc_BUS_A N/A Bus Control Reg A N/A
hsc_BUS_B N/A Bus Control Reg B N/A
hsc_BUS _C N/A Bus C (CPX8221 only) N/A
hsc_EXT_BRI DGE_1 N/A Extension Bridge to C-bus N/A
(CPX8221)
hsc_EXT_BRI DGE_2 N/A Extension Bridge to C-bus N/A
(CPX8221)
hsc_ALARM CTRL N/A Alarm Control Reg A
hsc_EEPROM CTRL N/A EEPROM Control Reg local
hsc_I NT_MASK N/A Interrupt Mask Reg. N/A
hsc_SYS_LED N/A System LED Reg. A
hsc_| NT_STAT_NASK N/A All pending interrupts N/A
hsc_| NT_STAT_A N/A PCI_A active ints N/A
hsc_I NT_STAT_B N/A PCI_B active ints N/A
hsc_|I NT_STAT_C N/A PCI_C active ints N/A
hsc_ATM N/A ATM BUS control Reg. N/A
(CPX8216A)

cpx-Style Resource Enumerations

These enumerations are used with cpx-Style API calls only and have the ability to
be aggregated. That is, they can be specified in groups of individual resources
enumerations programatically, and arithmetically, or’d together when application
of a change to one or more of their attributes is desired. For example, to connect

payload slots one, two and four, the following call could be made:

cpxConnect (cpxSLOT1| cpxSLOT02| cpxSLOT04, cpxON);

92 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Note that not all cpx-Style calls support aggregation. For example,
cpxTakeDomain() takes arguments for specific resources specifying domain A,
domain B or a combination of domains A & B--cpxDOMAIN A, cpxDOMAIN B
and cpxDOMAIN_A B respectively. Bold entries indicate either CPX8216 or

CPX8221 specific implementations.

Table B-2: cpxRESOURCE Enums

cpx-Style
Aggregatable Resources

Platforms

cpxSLOT01

cpxSLOT02

cpxSLOT03

cpxSLOT04

cpxSLOT05

cpxSLOT06

cpxPROCA

cpxPROCB

cpxBRI DGEA

cpxBRI DGEB

cpxSLOT11

cpxSLOT12

cpxSLOT13

cpxSLOT14

cpxSLOT15

cpxSLOT16

All CPX8000-series

cpxSLOT17

cpxSLOT18

cpxSLOT19

cpxSLOT20

cpxSLOT21

CPX8221

CpXALL_SLOTS

Logical aggregate of all
valid platform payload
slots. All CPX8000-
series

High Availablility Package User’s Guide 93

Appendix B - Motorola Hot Swap Controller/ Bridge API

94

Table B-2: cpxRESOURCE Enums

cpx-Style
Aggregatable Resources

Platforms

CpXEBL

cpxEB2

CPX8221

CPXSYSLED

CpXALARM

cpxPS1

cpxPS2

cpxPS3

cpxFANL

CpXFAN2

cpxFAN3

cpxBUS_A

cpxBUS_B

cpxBUS_C

All CPX8000-Series

cpxPBAY1

CpXPBAY2

cpxPBAY3

cpxPBAY4

CPX8216 only

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTI ONEnumerations
Bold entries indicate either CPX8216 or CPX8221 specific implementations.

Table B-3: hsc_ACTION Enums

hsc_ACTION

typedef Usage

Comments

NOTE: All action enumerations are positive in value. (see “hsc_Action” on page 155)

hsc_ON attribute change operations also result of hsc_ STATUS request

hsc_OFF attribute change operations also result of hsc_ STATUS request

hsc_STATUS attribute acquisition

hsc_WRI TE RegDirect() or RegByte() write | also hsc PUT (to become obsolete)
operation

hsc_READ RegDirect() or RegByte() read also hsc_GET (to become obsolete)
operation

hsc_NCHG attribute operations - a result of May occur in response to hsc_ONor

set

hsc_ONor hsc_OFF if state already

hsc_OFF action. Never used as an
action argument itself.

hsc_DOMAIN Enumerations
Bold entries indicate either CPX8216 or CPX8221 specific implementation

Table B-4: hsc_DOMAIN Enums

Enumeration Meaning Bus's

hsc_DOVAI N_A A A

hsc_DOVAI N_B B B (& C if CPX8221)
hsc_DOVAI N_A B A&B A, B (& C if CPX8221)

hsc_DOMAI N_THI S

Host’s Own Domain

obsolete - removed

High Availablility Package User’s Guide

95

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpx-Style Domain Enumerations
Bold entries indicate either CPX8216 or CPX8221 specific implementation.

Table B-5: cpx-Style Domain Enums

Enumeration Meaning Bus’s

cpxDOVAI N_A A A

cpxDOVAI N_B B B (& C if CPX8221)
cpxDOVAI N_A B A&B A, B (& C if CPX8221)
cpxDOVAI N_THI S Host’s Own Domain (to become obsolete)

hsc_ATTRI BUTE Enumeration
Bold entries indicate either CPX8216 or CPX8221 specific implementations.s

Table B-6: hsc_ATTRIBUTE Enums

hsc_ATTRIBUTE typedef Comment Status
These objects can be used to set, clear or obtain status trigraph hsc_
hsc_SOFT_XFR enable/disable soft transfer for Bus A or Bus B ON/OFF
hsc_XFR _CTL1 Bus control register bus transition ON/OFF
hsc_XFR_CTL2 Bus control register bus transition ON/OFF
hsc_LOCK control of Bus access by Payload slot cards ON/OFF
hsc_POVNER power enable/disable ON/OFF
hsc_CONNECT board connect/disconnect ON/OFF
hsc_CONNECT_CTRL extension bridge for bus C -- write only (CPX8221) ON/OFF
hsc_LED 1 LED enable /disable ON/OFF
hsc_LED 2 LED enable/disable ON/OFF
hsc_LED 3 LED enable/disable ON/OFF
hsc_LED 4 LED enable/disable ON/OFF
hsc_PS LED 1 LED enable /disable ON/OFF
hsc_PS LED 2 LED enable/disable ON/OFF
hsc_FAN LED 1 LED enable/disable ON/OFF

96 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-6: hsc_ATTRIBUTE Enums (Continued)

hsc_ATTRIBUTE typedef Comment Status
hsc_FAN _LED 2 LED enable/disable ON/OFF
hsc_M NOR_ALARM alarm enable/disable ON/OFF
hsc_MAJOR_ALARM alarm enable/disable ON/OFF
hsc_CRI T_ALARM alarm enable/disable ON/OFF
hsc_RACK_ALARM alarm enable/disable ON/OFF
hsc_FAN_LOW power supply fan speed control ON/OFF
hsc_FORCE_HEALTHY use hsc_ power value as the healthy state ON/OFF
hsc_| NT_STATUS slot status has changed ON/OFF
hsc_I MASK_A interrupt mask for PCI A interrupt ON/OFF
hsc_| MASK B interrupt mask for PCI B interrupt (no support)
hsc_| MASK_C interrupt mask for PCI C interrupt (no support)
hsc_ENUM A MASK enable/disable ENUM interrupts for Domain A ON/OFF
hsc_ENUM B_MASK enable/disable ENUM interrupts for Domain B ON/OFF
hsc_PROP_ENUM Propagate ENUMS between domains? ON/OFF
hsc_I NSERTI ON HSC/Bridge card inserted? ON/OFF
hsc_REMOVAL HSC/Bridge cards only (cleared by SW) ON/OFF
hsc_EEPROM REST_CE eeprom reset and output enable ON/OFF
Objects which can be used to acquire status only

hsc_ENUM A STATE ENUM in Domain A currently asserted? ON/OFF
hsc_ENUM B_STATE ENUM in Domain B currently asserted? ON/OFF
hsc_PRESENT board present? ALL slots! ON/OFF
hsc_PS_PRESENT power supply present? ON/OFF
hsc_EJECTOR Ejector handles on CPU/Bridge lock state ON/OFF
hsc_OWN_DEVI CE peripherals only; set by present, cleared by reset ON/OFF
hsc_POWER_GOCD power supplies only ON/OFF
hsc_I NSTALLED for HSC/Bridge card ON/OFF
hsc_COOLI NG_ALARM power supplies only ON/OFF

High Availablility Package User’s Guide

97

Appendix B - Motorola Hot Swap Controller/ Bridge API

Table B-6: hsc_ATTRIBUTE Enums (Continued)

hsc_ATTRIBUTE typedef Comment Status

hsc_COOLI NG_FAULT power supplies only - critical ON/OFF
hsc_XFR_STAT1 Bus control registers only ON/OFF
hsc_XFR_STAT2 Bus control registers only ON/OFF
hsc_RESET_STATE reset is currently being asserted ON/OFF
hsc_STATE_BI T_O state bit for bus control & ext bridge registers ON/OFF
hsc_STATE_BIT_1 state bit for bus control & ext bridge registers ON/OFF
hsc_STATE BIT_2 state bit for bus control & ext bridge registers ON/OFF
hsc_STATE BIT_3 state bit for bus control & ext bridge registers ON/OFF
hsc_CONNECTED board connection completed ON/OFF
hsc_HEALTHY board says it’s healthy ON/OFF
hsc_WHAT_DOVAI N Bus Control Reg, this domain is; hsc_OFF=A ON/OFF

hsc_ON=B

hsc_FAN_PRESENT PS Reg; is fan present? ON/OFF
hsc_FAN_FAULT power supplies only; power supply failure? ON/OFF
hsc_REG _ACTI VE this register’s writes trigger immediate action ON/OFF
hsc_CLOCK_ENABLE ATM control register use ON/OFF
hsc_CLOCK_MASTER ATM control register use ON/OFF
hsc_A_FAI L ATM control register use ON/OFF
hsc_B FAI L ATM control register use ON/OFF
hsc_PLL_LOCK ATM control register use ON/OFF
hsc_VTERM K ATM control register use ON/OFF
hsc_FORCE_A FAI L ATM control register use ON/OFF
hsc_FORCE B FAI L ATM control register use ON/OFF
hsc_VTERM ENABLE ATM control register use ON/OFF
hsc_GLOBAL_H110 CPX8216T H110 reset only. ON/OFF
hsc_SLOT_H110 CPX8216T H110 reset only. ON/OFF
hsc_BRI DGE_H110 CPX8216T H110 reset only. ON/OFF

98 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-7: cpx Action Enums

Attribute Name

Comment

cpxOK valid operation

CcpxOFF request & notification status

CcpxON request & notification status
CcpxFASTBLI NK for LEDs

CpxXSLOMBLI NK for LEDs

cpxMEDBLI NK for LEDs

CpxSTATUS all operations (read only)

cpxH GH for fans

cpxLOW for fans

cpxNOP status only

cpxWRI TE Word & Byte operations request or notification status
CcpxREAD

cpXxNCHG status only

CpXERROR general failure

CpXEARGL argument 1 in error

CpXEARG2 argument 2 in error

CpXEARG3 argument 3 in error

CpXEARGA argument 4 in error

CpxEARGN argument count(number of) in error
cpxEOPEN hsc_Open() not yet called
CpXELAMP lamp test already in progress
CpxEALRM alarm test already in progress

cpx MXNOT maximum subscribers exceeded
CcpxBADRES bad resource - invalid or non-existent
CpxBADATT bad attribute - invalid or non-existent
cpxBADACT bad action - invalid or non-existent
CpXxROATT read only attribute

High Availablility Package User’s Guide 99

Appendix B - Motorola Hot Swap Controller/ Bridge API

Table B-7: cpx Action Enums (Continued)

Attribute Name Comment

CpXRORES read only resource
cpxl ERR internal error
CcpXxNOFUNC no function - used in event notifications

cpxACTI ON Status & Error Return Value Enumerations

Table B-8: hsc_ACTION Error Return Value Enumerations

Error Enums Meaning

note: All error enumerations are negative. (see “hsc_ ACTION Enumerations” on page 95)

hsc_ERROR general error, no action taken by API library or HSC/B driver

hsc_BAD REG STER

slot/register specified out-of-range

hsc_BAD OBJECT

bit object specified out-of-range

hsc_BAD_ACTI ON

action requested not defined or invalid

hsc_BAD_DOVAI N

domain specified is invalid

hsc_ACTI ON_DENI ED

requested action cannot be performed

hsc_NO_FUNCTI ON

required function address for receiving signals is missing

Software Interfaces

The HSC access functions fall into five major categories:

1. Gaining HSCD Access - Before any control or status over the Hot Swap
Controller/Bridge (HSC/B) can be exercised, the user must open and
initialize a connection to its controller software.

2. Exercising Control - The HSC/B hardware is commanded to change its
state or the state of some other device. This control extends to such items
as applying board power, switching LEDs on and off, enabling/disabling
interrupts and transferring cPCI bus control between processors.

3. Notification of Events - This software is designed to inform other user
processes when asynchronous events (interrupts signifying a change of
state for a resource) take place to which the HSC/B is privy and EVERY
access (API call initiated) made of it. These include such items as board
insertions or removals, alarm conditions, or other processes such as

100 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

altering an LEDs state, requesting a board connection, etc. The software
provided allows the user to register for such events and to obtain the
precise reason for the event via API calls. A tool (cpxtool) is provided to
allow such monitoring on a casual basis as the developer debugs/unit
tests his processes.

Obtaining Status - A process may at any time request the status of all
items controllable by the HSC/B hardware. These include items such as
board connection status, LED status, power status and overall HSC
internal metrics.

NOTE: All functions described below will return an hsc_ERROR if any of
the caller’s input/output arguments are not within the caller’s memory
space (LynxOS only). Moreover, except for hsc_Open(), all hsc_-style
functions will return an hsc_ERROR if a successful hsc_Open() has not
been performed (all OS’s), or in the case of cpx-Style calls, a cpx EOPEN
is returned for the same reason.

CPX8000 System HSC Driver Control Functional Interface

What follows is a summary of the API functions which provide access to the
HSC/B hardware.

OPENING THE HOT SWAP CONTROLLER DRIVER
hsc_Open()

CLOSING THE HOT SWAP CONTROLLER DRIVER
hsc_Close()

IDENTIFYING THE DOMAIN

hsc_GetDomainlId()

TAKING AND RELEASING THE DOMAINS/BUSES
hsc_TakeDomain()

hsc_ReleaseDomain()

hsc_TakeBus()

hsc_ReleaseBus()

hsc_GetBusCEBridgeld() [CPX8221 only]

CONTROLLING BUS ACCESS
cpxLockDomain()
cpxLockBus()

ENUMS PROPAGATION
cpxEnumPropagation()

High Availablility Package User’s Guide 101

Appendix B - Motorola Hot Swap Controller/ Bridge API

* CONTROLLING POWER AND CONNECTIONS
cpxPower()
cpxConnect()
cpxForceHealthy()

* CONTROLLING POWER SUPPLY FAN SPEED
cpxFanHigh()

« CONTROLLING LED’S

CpxLED() [see on page 117]
cpxLampTest() [see on page 122]
*+ CONTROLLING ALARMS
cpxAlarms() [see on page 123]
cpxAlarmTest() [see on page 124]
+ HARDWARE SUPPLIED PERSISTENT SCRATCH BYTES
cpxInfoByte() [see on page 125]

« INTERRUPTS
cpxProgramlInterrupts()
cpxEnablelnterrupts()
cpxProgramEnums()

* SIGNING UP FOR EVENTS AND EVENT CLASSES
cpxSetEventFunction()
cpxInstallEventFunction()
cpxRemoveEventFunction()

(change list of event classes of interest)
cpxSetEventList()

(retrieve an event, status & class)
cpxGetEvent()

(extract event information)
cpxExtractEventReason()

(pausing event notification)
cpxBlockEventNotification()

* SETTING/GETTING BRIDGE STATES
hsc_SetBridgeStates()
hsc_GetBridgeStateSettings()

hsc_SetEBridgeStates() [CPX8221 only]
hsc_GetEBridgeStateSettings() [CPX8221 only]
* RETRIEVING STATUS ONLY

102 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetSlotStatus()
hsc_GetProcessorStatus()

hsc_GetPBayStatus() [CPX8216 only]

hsc_GetPSStatus()
hsc_GetBridgeStatus()

hsc_GetEBridgeStatus() [CPX8221 only]

* ACQUIRING VARIOUS REVISION LEVELS
hsc_GetHSCRevision()
hsc_GetPSRevision()
hsc_GetAlarmPLDRevision()
hsc_GetAlarmPanelRevision()

+ LOW-LEVEL HSC/B ACCESS
hsc_Action()
hsc_RegDirect()
hsc_RegByte()
hsc_Interrupts()

OPENING THE HOT SWAP CONTROLLER DRIVER

The function hsc_Open() must be called once, and only once, prior to attempting
any other HSCD operations. When an application has completed its session with
the HSCD, then the hsc_Close() function must be called.

hsc_Open
NAME
hsc_Qpen - allows an application to open the hot swap controller
SYNOPSIS
#i ncl ude <cpxapi.h>
int hsc_Open ()
DESCRIPTION

This function enables the CPX8000 HA API for command and status
functions. This function must be called before any other functions which
invoke the control and status gathering ability of the API can be used.

Open returns an hsc_ K if successful. Note that multiple hsc_Open()’s
without a matching hsc_Close()’s are not supported. Two or more
consecutive hsc_Open()’s return an hsc_ ERROR result.

High Availablility Package User’s Guide 103

Appendix B - Motorola Hot Swap Controller/ Bridge API

104

DIAGNOSTICS

An error return of hsc_ ERROR signifies a failure to successfully initialize
access to the API’s controller driver. This will happen if the driver is not
loaded (LynxOS only), the driver fails to install from its device (hscdev;
LynxOS only), the HSC/B card is not found in cPCI space or the application
already has an hsc_Open() to this driver in effect.

hsc_OK is returned for a successful open.
hsc_ERROR s returned:
«if the open fails.
«if the API’s driver’s not loaded.
«if the driver fails to install its device. (LynxOS only)
«if more than one hsc_Open() is attempted.

*Hot Swap controller hardware not found.

CLOSING THE HOT SWAP CONTROLLER DRIVER

hsc_Close
NAME

hsc_d ose - closes an application’s connection to the HSC/B board
SYNOPSIS

#i ncl ude <cpxapi . h>

int hsc_Cl ose (void)
DESCRIPTION

This function closes the program’s open connection to the API’s resources.

This function returns hsc_OK upon successful completion.
DIAGNOSTICS

This function will return an hsc_ ERROR if the close fails. A close will fail
only if an hsc_Open() for the calling process is not currently in effect.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

IDENTIFYING THE DOMAIN

hsc_GetDomainld
NAME

hsc_Get Domai nl d - gets the domain id for the current process
SYNOPSIS

#i ncl ude <cpxapi . h>
hsc_DOMAI N_I D hsc_GetDomainlId ()

DESCRIPTION
This function returns the domain id for the current process.
ARGUMENTS

None.

High Availablility Package User’s Guide 105

Appendix B - Motorola Hot Swap Controller/ Bridge API

106

DIAGNOSTICS

hsc_DOVAI N_Aor hsc_DOVAI N_B are the only two possible domain values
returned.

hsc_ERROR s returned if a successful hsc_Open() has not been performed.

TAKING AND RELEASING THE DOMAINS/BUSES

hsc_TakeDonai n
NAME

hsc_TakeDomai n - makes a domain’s slots & functions active for this
processor

SYNOPSIS

#include <cpxapi.h>

hsc_ACTI ON hsc_TakeDonai n(domain)

hsc_DOVAI N_| D domain; /* grab slots in this domain */
DESCRIPTION

This function forcefully transfers control of the bus slots and functions in the
domain specified to the current processor and process. This means all slot
registers from that domain will become active for the process making the
request, and any other process with an open connection to the HSC/B.

For domain A taken by either processor, its applications are now able to
access system functions associated with domain A.

ARGUMENTS

domain - The hsc_DOVAI N_| D argument must be hsc_DOVAI N_A,
hsc_DOMAI N_Borhsc_DOVAIN A B

An hsc_Kreturn code indicates a successful grabbing of the domain.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS
hsc_K is returned if this request succeeds.
hsc_BAD DOMAI Nis returned if the domain id provided is incorrect.
hsc_ERROR is returned if the request fails.

hsc_ReleaseDomain
NAME

hsc_Rel easeDonmi n - makes domain’s slots & functions inactive for this
process

SYNOPSIS
#i ncl ude <cpxapi . h>
hsc_ACTI ON hsc_Rel easeDonai n (domain)
hsc_DOMAI N_I D donai n; /* grab slots in this domain */
DESCRIPTION

This function relinquishes control of the named domain for all processes
runing with the current processor. This means all slot registers from that
domain will become inactive (albeit still programmable). To emphasize, any
other local process with a connection to the HSCD will also lose its “active”
access to these registers!

ARGUMENTS

domain - The hsc_DOVAI N_| D argument must be hsc_DOVAI N_A,
hsc_DOVAI N_Bor hsc_DOVAIN_A B

An hsc_OKreturn code indicates a successful jettisoning of the slot registers.
DIAGNOSTICS

hsc_K is returned if this request succeeds.

hsc_BAD DOVAI Nis returned if the domain id is incorrect.

hsc_ERROR s returned if the release fails.

hsc_TakeBus
NAME

hsc_TakeBus - makes a bus’s slots & functions active for this processor

High Availablility Package User’s Guide 107

Appendix B - Motorola Hot Swap Controller/ Bridge API

SYNOPSIS
#i ncl ude <cpxapi.h>
hsc_ACTI ON hsc_TakeBus(bus)
hsc_RESQURCE_| Dbus; /* grab slots in this bus */
DESCRIPTION

This function forcefully transfers control of the bus slots and functions in the
bus specified to the current processor and process. This means all slot
registers on that bus will become active for the process making the request,
and any other process with an open connection to the HSC/B.

For bus A taken by either processor, applications are able to access other
system functions associated with bus A.

Taking bus A is equivalent to taking domain A. Taking bus B is not the same
as taking domain B on the CPX8221. Taking domain B gets both B & C
buses on that platform.

ARGUMENTS

bus - The hsc_RESOURCE_| D argument must be hsc_BUS_A, hsc_BUS_B,
or hsc_BUS_C(CPX8221 only).

An hsc_OK return code indicates a successful grabbing of the bus registers.
DIAGNOSTICS

hsc_K is returned if this request succeeds.

hsc_BAD_REGQ STERis returned if the bus id provided is incorrect.

hsc_ACTI ON_DENI ED s returned if the bus C is specified, but bus B is not
currently controlled.

hsc_ERROR s returned if the request fails.

hsc_ReleaseBus
NAME

hsc_Rel easeBus - makes a bus’s slots & functions inactive for this
processor

SYNOPSIS
#i ncl ude <cpxapi . h>

hsc_ACTI ON hsc_Rel easeBus(bus)

108 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_RESOURCE_| D bus; /* grab slots in this domain(or bus)*/
DESCRIPTION

This function forcefully relinquishes control of the bus slots and functions in
the bus specified for the current processor and process. This means all slot
registers on that bus will become inactive for the process making the request,
and any other process with an open connection to the HSC/B.

If bus A is released by the bus B processor, it also disallows the application
from accessing other system functions associated with bus A.

Releasing bus A is equivalent to releasing domain A. Releasing bus B is not
the same as releasing domain B on the CPX8221. Releasing bus B does not
release bus C bus on that platform as does releasing domain B.

ARGUMENTS

bus - The hsc_RESOURCE_| D argument must be hsc_BUS_A, hsc_BUS_B,
or hsc_BUS_C(CPX8221 only).

An hsc_Kreturn code indicates a successful grabbing of the bus registers.
DIAGNOSTICS

hsc_ K is returned if this request succeeds.

hsc_BAD_REG STERis returned if the bus id provided is incorrect.

hsc_ERROR s returned if the request fails(HW issue).

hsc_GetBusCEBridgeld()
NAME

hsc_Get BusCEBri dgel d - gets id of extension bridge attached to bus C
SYNOPSIS

#i ncl ude <cpxapi . h>

hsc_RESOURCE_ID hsc_GetBusCEBridgeld()
DESCRIPTION

This function returns the id of the extension bridge that was used to acquire
bus C after an hsc_TakeDomainBus() call.

ARGUMENTS

None.

High Availablility Package User’s Guide 109

Appendix B - Motorola Hot Swap Controller/ Bridge API

DIAGNOSTICS
hsc_EXT_BRI DGE_1 is returned if this bridge indicates a bus active state.
hsc_EXT_BRI DGE_2 is returned if this bridge indicates a bus active state.

hsc_NO_FUNCTI ONis returned if neither extension bridge is actively
connected to bus C.

CONTROLLING BUS ACCESS

cpxLockDomain()
NAME

cpxLockDomai n - status or control payload board’s access to domain’s
bus(ses)

SYNOPSIS
#i ncl ude <cpxapi.h>
i nt cpxLockDomai n(domain_id, action)
int domai n_id;
int action;
DESCRIPTION

This function allows or disallows payload boards within a domain to access
its bus.

ARGUMENTS
Valid domain_id’s are cpxDOMAI N_A, cpxDOVAI N_B or cpxDOVAI N_A_B.

Table B-9: Argument vs. Platform Detail

platform argument buses locked

all cpxDOVAI N_A cpxBUS_A

CPX8216 cpxDOVAI N_B cpxBUS_B

CPX8221 cpxDOVAI N_B cpxBUS_B & cpxBUS_C

CPX8216 cpxDOVAIN_A B cpxBUS_A & cpxBUS_B

CPX8221 cpxDOVAIN_A B cpxBUS_A, cpxBUS B &
cpxBUS_C

110 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Valid actions consist of cpxON (to lock bus access) or cpx OFF (to allow bus
access).

DIAGNOSTICS
cpx K is returned for a domain successfully locked or unlocked.
CcpxBADRES is returned if the domain specified is not valid.

cpxBADACT is returned if the action specified is incorrect.

High Availablility Package User’s Guide m

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxLockBus()
NAME

cpxLockBus - controls a payload’s access to the bus or gets bus access status
SYNOPSIS
#i ncl ude <cpxapi . h>

i nt cpxLockBus(bus_id, action)

int bus_id;
int action;
DESCRIPTION
This function allows or disallows payload boards within a particular bus to
access it.
ARGUMENTS

Valid arguments for bus_i d are cpxBUS_A, cpxBUS_B or
cpxBUS_C(CPX8221 only).

Action is either cpxON (to prevent bus access), ¢ px OFF (to allow bus access)
or cpxSTATUS (to determine current lock state).

DIAGNOSTICS
cpxOK is returned for a bus successfully locked or unlocked.

cpxONis returned if the bus specified is currently locked from payload slot
access.

cpxOFF is returned if the bus specified is currently unlocked and available
for payload slot access.

CcpxBADRES is returned if the bus specified is invalid.
CcpxBADACT is returned if the action specified is incorrect.

cpxERROR is returned if the action specified could not be performed.

12 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

ENUM PROPAGATION
cpxEnumPropagation
CONTROLLING POWER AND CONNECTIONS

cpxPower()
NAME

cpxPower - power on or off multiple resources, or status a single resource
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxPower (resources, action)

unsi gned | ong resources;

int action;
DESCRIPTION

This function applies or removes power from one or more resources or gets
the current power status from a single resource. More than one resource with
a power attribute may be specified when setting the power to on or off. These
resource aggregates are discussed in “cpx-Style Resource Enumerations” on
page 92. When acquiring status, only one resource may be specified. If not,
the first resource extracted from the aggregate will be used for the status. For
obvious reasons, this approach is not recommended.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.

ARGUMENTS

Valid register aggregates include all slots inclusive of cpxSLOTOL1 ..
cpxSLOTO06, cpxSLOT11 .. cpxSLOT16 and slots cpxSLOT17 ..
cpxSLOT21 (CPX8221). All valid payload slots may be specified with the
special enumeration of cpxALL_SLOTS. Also valid are cpxPROCA,
cpxPROCB, cpxBRIDGEA, cpxBRIDGE B, cpxEBI1 .. cpxEB2 (CPX8221)
cpxPS1 .. cpxPS3 and cpxPBAY1 .. cpxPBAY4(CPX8216).

Action is declared as cpxON, cpx OFF or cpxSTATUS only.
DIAGNOSTICS

cpx K is returned for a successful cpxON or cpx OFF action.

High Availablility Package User’s Guide 13

Appendix B - Motorola Hot Swap Controller/ Bridge API

14

cpxON or cpx OFF is returned if the action specified is cpx STATUS.
CpXEARGL is returned if no resources are specified (i.e. a 0 is passed).
cpxBADRES is returned for an invalid resource.

CcpxBADACT is returned for an invalid action.

CpXxECPEN is returned if an hsc_Open() has not been successfully
performed.

cpxConnect()
NAME

cpxConnect - turn resources’ connect on or off, or status a single resource
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxConnect (resources, action)

unsi gned | ong resources;

int action;

DESCRIPTION

This function connects or disconnects one or more resources or gets the
current connect status from a single resource. It is analogous in all other
respects to “cpxPower()” on page 113.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxForceHealthy()
NAME

pxFor ceHeal t hy - control or status the board healthy overide for
resource(s)

SYNOPSIS
#i ncl ude <cpxapi . h>
i nt cpxFor ceHeal t hy(resources, action)
unsi gned | ong resources;
int action;
DESCRIPTION

This function forces a resource’s healthy status to track a payload board’s
power on or off condition. It is used for boards which are non-compliant with
the hot plug PCI specifications for asserting healthy. It can also return the
current force healthy status for a single resource. It is analogous in all other
respects to “cpxPower()” on page 113.

It is possible that if an error is returned, such as cpx BADRES for a bad
resource, that other valid resources have already been correctly handled.

CONTROLLING POWER SUPPLY FAN SPEED

cpxFanHigh()
NAME

cpxFanHi gh - status or run a power supply’s fan at high or temp. controlled
speed

SYNOPSIS
#i ncl ude <cpxapi.h>
i nt cpxFanH gh(fan_ids, action)
unsi gned | ong fan_ids;

int action;

High Availablility Package User’s Guide 115

Appendix B - Motorola Hot Swap Controller/ Bridge API

116

DESCRIPTION

This function causes one or more power supply fans to be run at it highest
speed for additional cooling, or to be run at a speed as dictated by thermistor
measurements. This action takes place immediately only if the processor
owns domain A.

ARGUMENTS

Fan_i ds is an aggregate of up to three fan identifiers arithmetically or’d
together. They are cpxFANL, cpxFAN2 and cpxFAN3. As a convenience, the
identifier cpxALL_FANS is enumerated to include all three fans.

Action is cpxON (run at high speed), cpxOFF (allow automatic variable
speed setting of fan based on temperature conditions) or cpx STATUS (is the
fan currently running at high speed: cpxON== yes, cpxOFF == no).

If an aggregate of more than one fan is specified when cpx STATUS is
requested, then the first fan encountered--beginning with cpx FANL--will
have its status returned. It’s better to specify only one fan at a time when
requesting status.

DIAGNOSTICS

cpxXK is returned for an action of cpxON or ¢cpx OFF being successfully
taken.

cpxBADRES is returned if fan_ids has no valid fan identifiers.

CpXECPEN is returned if hsc_Open() has not been performed to make the
library available.

cpxBADACT is returned if the action requested is invalid.
cpxONis returned for a status request if the fan is running at high speed.

cpx OFF is returned for a status request if the fan is running at a temperature
driven speed.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

CONTROLLING LED'S

cpxLED()
NAME

CpXLED - turn on, off or blink various chassis LEDs
SYNOPSIS

#i ncl ude <cpxapi.h>

i nt cpxLED(resources, leds, action)

unsi gned | ong resources;

unsi gned | ong | eds;

int action;
DESCRIPTION

This function is used to light, extinguish or blink various chassis LEDs. More
than one resource with available LEDs may be specified and more than one
of it/their LEDs may be placed in the desired state. These resource and LED
aggregates will be discussed further.

States for an LED is either on, off or blinking. If blinking, three blink rates
are available. They are 1/4 second (cpxFASTBLINK), 1/2 second
(cpxMEDBLINK) and 1 second (cpxSLOWBLINK).

ARGUMENTS

The first argument specifies a grouping of one or more resources for which
LED attributes exist. Their enumerations are shown in the table below.

The second argument specifies one or more LED enumerations which
specify the LEDs to be affected. These enumerations are cpxLED1 through
cpxLED4. Specifying cpxALL_LEDS will refer to all LEDs that any
particular resource supports regardless of number. For instance,
CpXALL_LEDS can be used for a power supply (like cpxPS1) and a payload
slot (like cpxSLOTO1) even though the power supply has four LEDs
available while a payload slot has but three. In specifying aggregates of
LEDs, you must mathematically OR them together. For example, to light
LEDs one and three for slot6, you’d use cpxLED(cpxSLOT06, cpxLEDL1 |
CcpXxLED3, cpxON);

High Availablility Package User’s Guide 17

Appendix B - Motorola Hot Swap Controller/ Bridge API

118

Resources with LEDs include the payload slots, processor cards,
HSC/Bridge cards, system LEDs. alarm LEDs, power supplies, peripheral
bays (CPX8216) and extension bridges (CPX8221).

The aggregate which specifies all payload slots (non-system board occupied
slots) is cpxALL_SLOTS. Thus, to blink (at 1/4 second) all LED 1’s for all
payload cards, you’d use: cpxLED(cpxALL_SLOTS, cpxLED1,

cpxFASTBLI NK);

In another example, to extinguish all LEDs for the cpx SYSLED resource,
processor A and slots 3 and 5, you’d use:

CpXLED(cpxSLOT03| cpxSLOTO5| cpxPROCA| cpx SYSLED,
CpXALL_LEDS, cpxCFF);

The third argument specifies the LEDs new state or a status request. The
arguments are cpxON, cpxOFF, cpxFASTBLI NK, cpx MEDBLI NK and
CpXSLOMBLI NK or cpxSTATUS. These arguments must not be OR’d together
as the result would be indeterminate.

SPECIAL NOTE: Alarms can blink also. The first three alarms have an
associated LED which lights as a by-product of enabling the alarm. The
fourth does not, but it is blinked in order to remain consistent. All alarm
blinking can be monitored externally. The alarm enumerations can be used,
or, cpxLED1, cpxLED2, cpxLED3 and cpxLED4 may be used for cpxCRI T,
cpxMAJOR, cpxM NOR and cpxRACK respectively. All four alarms may also
be designated using the cpxALL_ALARMS enumeration.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS

cpx K is returned for a successful call to alter LED states.

cpxON, cpxOFF, cpxFASTBLINK, cpxMEDBLINK or cpxSLOWBLINK is
returned in response to a cpx STATUS request.

CpXxEARGL is returned if NO resources are specified or the specified resource

has no LEDs.

CcpXEARR is returned if NO valid LEDs were specified.

CcpXEARGS is returned if NO valid action was specified.

cpXECPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE

Here is an example of invoking cpxLED() using cpxt ool :

usage: |)ed arg
argl =

arg2 =
arg3 =

sl ot
sl ot

exanpl e

sl ot

|
|
I all_
|

1 arg2 arg3
one or nore slot/resource nanes-
sl ot01..slot16 (cpx8216) or all_slots for al
slot01..slot21 (cpx8221) or all_slots for al
Separate by spaces or vertical bars '|
(also for ps, procs, bridges(all), alarns, sysleds)
any conbination of |edl, led2, |ed3 or |ed4
or use all_leds for |edl|led2|]ed3 grouping
on, off, fblink, nmblink or sblink

(fast) (nmedium (sl ow)
02 slot06 slotl16 |edl |ed3 nblink
02| sl ot 06| sl ot 16 | ed1| | ed3 nblink
slots proca all_leds on
02 led2 status

LEDs available by resource..

Table B-10: LEDs Available per Resource

. cpxLED
chassis
. resource comment
exception 1 2 3 4

cpxSLOTO01 t t t Payload slots 1 through 6 in
cpxSLOT02 : : : Domain A, on Bus A.
cpxSLOT03 t t t
cpxSLOT04 t t t
cpxSLOT05 t t t
cpxSLOT06 t t t

High Availablility Package User’s Guide

119

Appendix B - Motorola Hot Swap Controller/ Bridge API

Table B-10: LEDs Available per Resource

. cpxLED
chassis
. resource comment
exception 2 3

cpxSLOT11 t t Payload slots 11 through 16 in

CpXSLOT12 : : Domain B, on Bus B.

cpxSLOT13 t t

cpxSLOT14 t t

cpxSLOT15 t t

cpxSLOT16 t t

cpxSLOT17 t t Payload slots 17 through 21 in

CPX8221 cpxSLOT18 ¢ |t Domain B, on Bus C.
ONLY cpxSLOT19 t t

cpxSLOT20 t t

cpxSLOT21 t t

CpXALL_SLOTS t t All applicable payload slots.

cpxPROCA t t Chassis processors.

cpxPRCCB t t

cpxBRI DGEA t t Chassis HSC & inter-domain
bridges.

cpxBRI DGEB t t

CPXALARM t t System alarms (see Special Note
on previous page).

cpxPS1 t t CpXLEDL & cpxLED2 are for
the power supplies. CpXLED3 &
CpXLED4 are for the fans.

cpxPS2 t t

cpxPS3 t t

120 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-10: LEDs Available per Resource

. cpxLED
chassis
. resource comment
exception 2 3 4
IN cpxPBAY1 t
CPX8216 -
CPX8216T CcpxPBAY2 t Peripheral Bays
CPX8216A cpxPBAY3 t
ONLY
cpxPBAY4 t

CPX8221 cpxEBRI DCGE1 t t Extension Bridges
ONLY CcpXxEBRI DGE2 t t

High Availablility Package User’s Guide

121

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxLampTest()
NAME

cpxLanmpTest - light chassis LEDs for inspection purposes (except
ALARMS)

SYNOPSIS
#i ncl ude <cpxapi . h>
i nt cpxLanpTest (duration)
i nt duration;
DESCRIPTION

This function lights all system chassis LEDs (cpxALARMLEDs
notwithstanding), and in the case of a CPX8221 chassis, both extension
bridge board’s LEDs, for the amount of time specified. This allows for a
visual inspection of the LEDs to ensure that they are working properly.
Whatever state the LEDs are in, including blink mode, is preserved for the
duration of the test, then restored after it completes.

If a lamp test or an alarm test is already in progress, then this lamptest is
rejected with an appropriate error message.

ARGUMENTS
Valid arguments are between 1 and 60 seconds.
DIAGNOSTICS
cpxXK is returned for a successful call.
CpXELAMP is returned if a lamp test is already in progress.
CpXEALRMis returned if an alarm test is currently in progress.
CPXEARGIL is returned if the duration argument is not within (1..60) seconds.

CpXECPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE
Here is an example of invoking cpxLampTest() using CpX‘[OOl:

usage: L)anpTest seconds; range = (1..60)
exanpl e. L 10

122 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

CONTROLLING ALARMS

cpxAlarms()
NAME

cpxAl ar s - turn on or off, one or more system alarms, or status one
SYNOPSIS

#i ncl ude <cpxapi.h>

int cpxAl arnms (alarm_ids, action)

unsi gned | ong al arm. ds;

int action;
DESCRIPTION

This function enables or disables one or more of the system alarms, or gets
the current status of a single alarm. The four alarms which may be
aggregated (arithmetically or’d together) are cpxM NOR, cpx MAJOR,
cpxCRI T and cpxRACK.

If a status is requested, but an aggregate of more than one alarm is specified,
then the status of one of those alarms with be returned, but it will not be
deterministic. If statusing an alarm, specify one alarm only.

If an alarm is to be “blinked”, then use the cpxLED() function with the
cpxALARMresource for all alarm on, off, blink and status related operations!

ARGUMENTS

Valid al ar m_i ds are cpxM NOR, cpxMAJOR, cpxCRI T and cpxRACK. The
enumeration cpxALL_ALARWVS is provided as a convenience.

Valid actions are cpxON (turn the alarm on), cpx OFF (turn the alarm off) and
CpxSTATUS (for current state).

DIAGNOSTICS
cpx K is returned for a successful call.
CpxBADATT is returned if no valid al ar m i ds are specified.
cpxBADACT is returned if the action given is invalid.
cpxONis returned if the alarm specified is currently on.

cpxOFF is returned if the alarm specified is currently off.

High Availablility Package User’s Guide 123

Appendix B - Motorola Hot Swap Controller/ Bridge API

cpxEOPEN is returned if the hsc_Open() call has not been made.

cpxAlarmTest()
NAME

cpxAl ar nTest - light chassis Alarm LEDs for inspection purposes
SYNOCPSI S

#i ncl ude <cpxapi . h>

i nt cpxLanpTest (duration)

int duration;

DESCRIPTION

This function enables all the cpx ALARM s four alarm attributes--cpxM NOR,
cpXxMAJOR, cpxCRI T and ¢ pxRACK--which in turn also lights the LEDs
associated with the first three alarms. Whatever state all the alarms are in,
including blink mode, is preserved for the duration of the test, then restored
after it completes.

If a lamp test or an alarm test is already in progress, then this alarm test is
rejected with an appropriate error message--c px ELAMP or cpx EALRM

ARGUMENTS
Valid arguments are between 1 and 60 seconds.
DIAGNOSTICS
cpxXK is returned for a successful call.
CPpXELAMP is returned if a lamp test is currently in progress.
CpXEALRMis returned if an alarm test is already in progress.
CPXEARGIL is returned if the duration argument is not within (1..60) seconds.

CcpXECPEN is returned if the hsc_Open() call has not been made.

CPXTOOL USAGE
Here is an example of invoking cpxAlarmTest() using cpxtool:

usage: A)larniTest seconds; range = (1..60)
exanpl e: A 10

HARDWARE SUPPLIED PERSISTENT SCRATCH BYTES

124 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxInfoByte()
NAME

cpx! nf 0Byt e - write or read a resource’s scratch byte
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxl nf oByt e (resources,value,action)

unsi gned | ong resources;

char * val ue;

int action;
DESCRIPTION

This function reads or writes a single byte to a resource’s scratch byte area,
located on the HSC/B hardware, for whatever application purpose deemed
useful.

Most system resources have a scratch byte which is non-volatile as long as
the computer system is under power. These bytes will survive computer
resets and crashes without corruption. A software application may take
advantage of these storage locations associated with the hardware if found
useful.

It is possible that if an error is returned, such as BADRES for a bad resource,
that other valid resources have already been correctly handled.

ARGUMENTS

Valid resources are an aggregate of one or more of the following system
resources arithmetically OR’d together:

cpxSLOT01 .. SLOT06, cpxSLOT11 .. cpxSLOT16 and for the CPX8221
only, slots cpxSLOT17 .. cpxSLOT21. Also valid are cpxPROCA,
cpxPROCB, cpxBRI DGEA, cpxBRI DGEB, cpxPSl1 .. cpxPS3,
cpxPBAY1 .. cpxPBAY4 (CPX8216), cpxEBl1 and cpxEB2
(CPX8221), cpxALARM cpxBUS_A, cpxBUS_B, cpxEEPROM

cpx| MASK and cpxSYSLED.

The value to write must be stored in a variable of type char whose address is
provided. For a read operation, the current value of the scratch byte for the
resource specified is written to the byte address provided.

The action is either cpxWRI TE or cpx READ. If cpx READ, then only one
resource should be specified. If the aggregate contains more that one

High Availablility Package User’s Guide 125

Appendix B - Motorola Hot Swap Controller/ Bridge API

resource when reading, the resource identity from which the value is read and
returned will be non-deterministic.

DIAGNOSTICS
cpx K is returned for a successful read or write action.
CpXEARR is returned if the byte’s value address provided is zero (0).

CcpXxBADRES is returned if a resource is invalid or no valid resources were
specified.

CpXxEOPEN is returned if a successful cal to hsc_Open() has not been made.

INTERRUPTS

cpxProgramlinterrupts
NAME

cpxProgranl nt err upt s - program resources to be able to generate
interrupts

SYNOPSIS
#i ncl ude <cpxapi . h>
i nt cpxProgram nterrupts (resources, action)

unsi gned | ong resources;

int action;

126 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DESCRIPTION

This function programs one or more resources to be capable of generating
PCIA interrupts to the processor when interrupts are enabled. Programming
is permitted only for those registers actually capable of generating interrupts.

Resources are one or more resources aggregated together using arithmetic
OR’ing.

For example, to program slotl, slot2 and power supply2, the following
should be used--

(cpxSLOT01| cpxSLOT02| cpxPS1)
--for the resources argument.
ARGUMENTS

As mentioned above, resource consist of any resource capable of generating
an interrupt or’d together with other such resources as desired.

Action is cpxON (to program), c px OFF (to deprogram) or c px STATUS (to get
the current programmed state of the resource).

DIAGNOSTICS
An cpxKis returned for successfully programming al/ resources specified.

An cpxBADRES is returned if any resource specified is not valid (cannot
generate interrupts).

A cpxONis returned if the resource specified is currently programmed.
A cpxOFF is returned if the resource specified is currently not programmed.

A cpxEOPEN s returned if a successful call to hsc_Open() has not yet been
made.

High Availablility Package User’s Guide 127

Appendix B - Motorola Hot Swap Controller/ Bridge API

128

cpxEnablelnterrupts
NAME

cpxEnabl el nt er r upt s - enable or disable all resource interrupts to the
processor

SYNOPSIS
#i ncl ude <cpxapi . h>
i nt cpxEnabl el nt err upt s(action)
int action;

DESCRIPTION

This function enables or disables processor interrupts. If interrupts are not
enabled, then no event notifications to applications can occur because
resources programmed to interrupt cannot get their interrupts through to the
processor. Hence, no event software comes alive to handle them and send
notifications.

ARGUMENTS

Valid actions are cpxON (enable interrupts), cpx OFF (disable interrupts) and
CPpXSTATUS (return the current interrupt enable setting).

DIAGNOSTICS
cpxXK is returned if interrupts have been successfully enabled or disabled.
cpxONis returned for a status if interrupts are currently enabled.
cpx OFF is returned for a status if interrupts are currently disabled.

CpXECPEN is returned if an hsc_Open() has not yet been performed.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

cpxProgramEnums
NAME

cpxProgr anEnuns - program/deprogram a domain’s ability to generate an
interrupt

SYNOPSI S
#i ncl ude <cpxapi . h>
i nt cpxProgranEnuns(domain_id, action)
int donmin_id;
int action;

DESCRIPTION

This function enables the enum event taking place in a domain to generate an
interrupt, or deprograms it so that it cannot. This function must be called in
addition to cpxProgramInterrupts() for enum events to actually generate
processor interrupts.

ARGUMENTS

A domai n_i d of cpxDOVAI N_A, cpxDOVAI N_B or cpxDOVAI N_A_B must
be provided.

An action of cpxON (program the Enum interrupt), cpx OFF (deprogram the
Enum interrupt) or cpxSTATUS (get Enum’s current programmed setting) is
valid.

DIAGNOSTICS
cpx K is returned for a successful cpxON or cpx OFF action.

cpxONis returned if the Enum for the specified domain is currently
programmed and the action requested is cpx STATUS.

cpxOFF is returned if the Enum for the specified domain is not currently
programmed and the action requested is cpx STATUS.

cpxBADACT is returned if an invalid action is specified.
cpxBADRES is returned if an invalid domain is specified.

CcpXECPEN is returned if a successful hsc_Open() has not been performed.

High Availablility Package User’s Guide 129

Appendix B - Motorola Hot Swap Controller/ Bridge API

130

EVENT NOTIFICATION AND RETRIEVAL

cpxSetEventFunction
NAME

cpxSet Event Funct i on - remove or specify function for event signals

SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxSet Event Funct i on(func, action, classes, sigval)
voi d(*func) ();

int action;

unsi gned | ong cl asses;

int sigval;

DESCRIPTION

This function installs or removes a process’s event function. Event functions
are signaled when events corresponding to one of the classes specified in the
classes aggregate occur.

After receiving a signal, the user’s function must retrieve the events and
examine them. Two additional functions are provided to assist in
accomplishing this task. They are cpxGetEvent() in section on page 136
and cpxExtractEventReason() in section on page 138.

ARGUMENTS

action is either cpxON, cpxOFF or cpxSTATUS. If cpxQN, then the function
will be installed and the classes aggregate list used to determine which events
will cause a signal to be sent to the func specified. If cpxOFF is specified,
then the function specified will no longer be signaled. In the cpx OFF case,
the values for classes and sigval may be 0 because they will not be used. The
case is also true for cpx STATUS, but a cpxON or cpxOFF is returned based
upon the current event notification status of the proces.

func is the address of the function which receives a signal when a wanted
event occurs. It is never passed as a NULL pointer or NULL value.

sigval is the value of the signal which will be used to cause invocation of
func via a system kill(). If a value of zero is specified, then the default signal
value of 28 will be used.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

classes - If the action is cpx OFF, its value is immaterial because it is ignored.
Otherwise, it is the aggregate of event classes being signed up for. When an
event for one of the specified classes occurs, a signal is sent to the function
specified. It is then up to that function to retrieve and examine the event. See
the classes description in “cpxInstallEventFunction” on page 132.

DIAGNOSTICS
A cpxECPEN s returned is the hsc_Open() call has not been made.

A cpxEARGL is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxEARR is returned if the action is not cpxON, cpxOFF or cpx STATUS.

A cpxBADACT is returned if the action is cpx OFF with no previous cpxON
having been performed.

A cpxBADACT is returned if the action is neither cpx OFF nor cpx ON.

for a cpxSTATUS action

A cpxONindicates that the process is currently set up to receive events.

A cpxOFF indicates that the process is not currently set up to receive events.
for a cpxON or cpx OFF action

A cpxX indicates that the request was accepted and acted upon.

High Availablility Package User’s Guide 131

Appendix B - Motorola Hot Swap Controller/ Bridge API

132

cpxInstallEventFunction
NAME

cpxl nst al | Event Functi on - declare function for event signals and
classes wanted

SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxlnstal |l Event Functi on (func, classes, sigval)
voi d(*func) ();

unsi gned | ong cl asses;

int sigval;

DESCRIPTION

This function, in conjunction with cpxGetEvent() and
cpxExtractEventReason(), form the backbone of managing the High
Availability environment. The cpxInstallEventFunction() call allows the
application to specify the user’s own function which is to be invoked
whenever an event takes place and also to provide an aggregate list of events
for which notifications are wanted. Once this function is successfully
invoked, the calling process is elevated to the status of a subscriber, as
opposed to a simple user, of the HSCD.

The user’s function, once signaled, must acquire the events and the reason(s)
for the events from the resource controller using cpxGetEvent() and
cpxExtractEventReason(). What this means, for example, is that when a
payload board asserts hsc_ CONNECTED, the user’s function is signaled. Or if
a board loses hsc_HEALTHY, the application is notified. These notifications
are critical to managing the HA environment. In addition, anytime a user
process makes a request of the controller to perform some operation, that
notification is also made available to the any other subscriber (event-
registered) process.

When calling this function, the user’s event notification function address (a
C-function) is specified, plus an aggregate list of classes the user want to be
notified about and the value of the signal to be used in notifying the process.
The class list is a grouping of classes mathematically OR’d together. When
the user gets the events, they can switch on the class in order to identify and
process the event properly. The signal value passed as the third argument will
default to a 28 if a zero is passed. Otherwise, the value passed by the user

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

will be used. No validation is made upon the signal value--whatever is passed
is accepted.

ARGUMENTS

Func is the address of the function to receive a signal when an event occurs.
It is never passed as a NULL pointer or a NULL value. Doing so will fail the
call. Since only one function may ever be specified by any given process to
receive event signals, making subsequent calls to this function will replace
the previous function’s address with the new one.

Sigval is the value of the signal which will be used to cause invocation of
func via a system kill(). If a value of zero is specified, then the default signal
value of 28 will be used.

Classes is a set of one or more class types mathematically OR’d together and
specifies which events are to cause func to be invoked. The value
cpxALLCLS will cause all controller events which are traceable (see list
below) to be reported to the subscriber’s function.

To request only cpx| NTRPT & cpxACTI ONevent reporting, using the default
signal value of 28, the call would be:

cpxl nstal | Event Functi on(ny_func, cpxl NTRPT | cpxACTI ON,
0);

Valid classes are:

Table B-11: Event Classes

Class Events Captured

cpx! NTRPT all controller interrupt events

CcpxACTI ON all hsc_Action() requests made of the controller

CpxREGDI R all hsc_RegDirect() requests

CpXREGBYT all hsc_RegByte() requests

CpxXSETLED all cpxLED() requests

CpXLEDTST all cpxLampTest() calls

CPXALMTST all cpxAlarmTest() calls

cpxNOTI FY all cpxSetNotifyFunction() requests
[Install/RemoveNotifyFunction]

CpxSETMSK all cpxSetEventList() requests

High Availablility Package User’s Guide 133

Appendix B - Motorola Hot Swap Controller/ Bridge API

134

Table B-11: Event Classes (Continued)

Class Events Captured

cpxPRGA NT all hsc_Interrupt() calls [Program/DeProgram
interrupts]

CpXALLCLS includes all the above.

DIAGNOSTICS

A cpxEOPEN is returned if the cpxapi library has not been opened using
hsc_Open().

A cpxMXNOT is returned if the maximum number of event subscribers has
been reached. This configurable value is currently ten (10).

A cpxARGL is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxOKindicates that the request was accepted and acted upon.

Note that a class aggregate value of 0 will not create an error condition, but
will allow one or more subsequent calls to cpxSetEventList() to be made to
create and alter the list of desired events.

cpxRemoveEventFunction
NAME

hsc_RenpveEvent Funct i on - remove function for event signals
SYNOPSIS

#i ncl ude <cpxapi.h>

i nt cpxRenmoveEvent Functi on(func)

voi d(*func) ();
DESCRIPTION

This function removes the user’s previously specified function from the
driver s list of functions to be signaled when Hot Swap controller events take
place. For any given process, only one function can be specified to receive
event signals.

ARGUMENTS

Func is the address of the function which received a signal when an event
occurred. It is never passed as a NULL pointer or NULL value.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS
A cpxECPEN s returned if the hsc_Open() call has not been made.

A cpxMXNOT is returned if the maximum number of event subscribers has
been reached. This configurable value is currently ten(10).

A cpxBADACT is returned if no cpxInstallEventFunction() has been called
prior to this function.

A cpxEARGL is returned if the func argument address is ever NULL. In this
case, the call is ignored.

A cpxX indicates that the request was accepted and acted upon.

(CHANGE LIST OF EVENT CLASSES OF INTEREST)

cpxSetEventList
NAME

cpxSet Event Li st - re-declare event class list for which notifications are wanted
SYNOPSIS

#i ncl ude <cpxapi . h>

int cpxSet EventList (classes)

unsi gned | ong cl asses;

High Availablility Package User’s Guide 135

Appendix B - Motorola Hot Swap Controller/ Bridge API

136

DESCRIPTION

This function is used to respecify the aggregate list of events for which the
user’s function declared in cpxInstallEventFunction() or
cpxSetEventFunction() is to be signalled. See “cpxInstallEventFunction”
on page 132 for a detailed list of classes which may be specified.

ARGUMENTS

Classes is a mathematically OR’d list of events for which signals are wanted.
DIAGNOSTICS

A cpxEOPEN s returned is the hsc_Open() call has not been made.

A cpxXK indicates that the request was accepted and acted upon.

(RETRIEVE AN EVENT, STATUS AND CLASS)

cpxGetEvent
NAME

cpxCet Event - retrieve an event’s class and status
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxGetEvent (class, status)

unsi gned | ong *cl ass;

unsi gned | ong *status;
DESCRIPTION

This function is the companion to cpxInstallEventFunction() and must be
called immediately after the user’s event notification function is invoked.
This function retrieves the first, or next, class of the event and the status it
resulted in.

Typically, an application that, for instance, asked a functional board to power
on would anticipate a ‘board healthy’ event. Likewise, a board that was
pulled or suddenly lost power would cause ‘board healthy’ to be de-asserted.
In both cases, if the event is one which the application’s function is being
notified about, then it will be signaled to pick up that event for processing.

Since multiple events can occur nearly simultaneously, this function must be
called repeatedly until ‘cpxERROR’ is returned. By doing this, the event
reasons list is exhausted. However, it is important to call

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

“cpxExtractEventReason” on page 138 in between cpxGetEvent()’s in
order to acquire the details of the event.

ARGUMENTS

The first argument is the address of an unsigned long which will receive the
event class--the type of event it is. An event can be tracing requests placed by
another peer or responding with interrupts occurring in response to these
calls, or both. The class of the event identifies them.

The second argument is the address of another unsigned long to receive the
status or results for the event. A cpxINTRPT event ALWAYS has a status of
cpxCK. But the other events, such as cpxACTI ON could return c px EOPEN,
cpxON or even cpXEARGL. This information, used with the
cpxExtractEventReason() allows very precise understanding of what is
transpiring in the system.

See cpxInstallEventFunction() for a list of classes returned by
cpxGetEvent().

DIAGNOSTICS
CcpXERROR is returned:
if this call is made and no notifications were sent.
if all events have been retrieved.
cpXECPEN is returned if hsc_Open() has never been called.

cpxK is returned when an event has been retrieved.

High Availablility Package User’s Guide 137

Appendix B - Motorola Hot Swap Controller/ Bridge API

138

(EXTRACT EVENT INFORMATION)

cpxExtractEventReason
NAME

cpxExt r act Event Reason - retrieve event notification specifics

SYNOPSIS

#i ncl ude <cpxapi . h>

i nt cpxExtract Event Reason (argl, arg2, arg3, arg4)
hsc_RESOURCE | D |l ong *argl;

hsc_ATTRI BUTE *ar g2;

hsc_ACTI ON *ar g3;

unsi gned | ong *arg4;

DESCRIPTION

This function is another companion to cpxInstallEventFunction() and is
called immediately after the user’s event notification function has retrieved
an event using cpxGetEvent().

Typically, for instance, an application that asked a functional board to power
on would anticipate a ‘board healthy’ event. Likewise, a board that was
pulled or suddenly lost power would cause ‘board healthy’ to be de-asserted.
In another case, an application might alter the state of an LED. If
cpxInstallEventFunction() also specified an cpxACTI ON call of events,
this notification would also be received.

If this function is not called after each cpxGetEvent() call, then the reasons
for the events will be lost.

ARGUMENTS

There are four arguments which provide the remaining information about the
retrieved event. The values returned in these arguments vary based upon the
type of class being examined. They are described below in a table.

For example; if hsc SLOT 01’s hsc HEALTHY attribute went off, then the
values returned would be:

argl(resource) == hsc_SLOT_01
arg2(attribute) == hsc_HEALTHY

arg3(action) == cpx OFF

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

arg4 == not used

class == cpx| NTRPT (from previous cpxGetEvent() call)

status == cpxOK (cpxINTRPT class events are always cpxOK!)

Note that in the following table, the “hsc” column. If this column is marked

‘y’, then argl and arg2 values returned will be of the “hsc

b}

> variety.

Otherwise, they will use the new “cpx” variety. All status’s are of the cpx-
variety. All actions are of the cpx-variety. Actions can take on the same
values as status’s also and cover a wider range of possibilities. Status and

action values are in a separate table below.

Here are the various classes and the meanings of the values returned for each:

Table B-12: Extraction Event

Arguments returned from
Class h ExtractEventDetail()
of s cpxExtractEventDetai Status
Event ¢ arg1 arg2 arg3 arg4

cpx| NTRPT y resource | attribute | action |n/a CpxOK

CpXxACTI ON y resource | attribute | action |n/a CcpxON,
cpxOFF,
CpxNOP, cpxROATT,
CpxBADRES,
CpxBADATT,
cpxBADACT

cpxRECGDI R y resource | n/a action | value CpxOK,
cpxEOPEN, cpxBADRES,
CcpxBADACT

CpXREGBYT y resource |n/a action value CpxOK,
CpxEOPEN,
CpxBADRES,
CcpxBADACT

CpXLEDTST n n/a n/a n/a duration CpxOK, cpx EOPEN,
CpXEALRM cpXxELANP,
CpxEARGL

CPXALMTST n n/a n/a n/a duration cpxOK, cpx EGPEN,
CPpXEALRM cpx ELAMP,
CpxEARGL

High Availablility Package User’s Guide 139

Appendix B - Motorola Hot Swap Controller/ Bridge API

Table B-12: Extraction Event (Continued)

Arguments returned from
Class h ExtractEventDetail()
of s cpxExtractEventDetai Status
Event ¢ arg1 arg2 arg3 arg4
CpxLEDSET n resource attribute action |n/a cpxOK
group group CpxECPEN
CpXEARGL
CpXxEARG2
CpXEARG3
cpxPRA NT y resource |n/a n/a n/a CpxECPEN,
CpxBADRES,
CpxBADATT,
cpxK
CpxSETMSK n n/a n/a n/a classes CPpXEOPEN, cpxOK
(all classes can | n n/a n/a n/a n/a CPXSEGFLT
experience (memory access error with
CpXSEGFLT) application supplied pointers
or values)
DIAGNOSTICS

CpXERROR is returned if this call is made and no notifications were retrieved.

cpx K is returned indefinitely if a valid event was earlier retrieved.

Table B-13: Status & Action values

Value Meaning

CpxOK function call was successful.

cpxEOPEN hsc_Open() not yet called.

CpXARGL function argument one is invalid.

CPXARG2 function argument two is invalid.

CpXARG3 function argument three is invalid.

CpXARG4A function argument four is invalid.

cpxBADRES invalid resource (individual or domain) specified.
CpXBADATT invalid attribute provided.

140 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

Table B-13: Status & Action values

Value Meaning
cpxBADACT invalid action requested.
CpXROATT attempt to modify read-only attribute.
cpxON status of attribute is in the on state.
action specified is to change attribute state to on.
CpxOFF as above for off state.
cpxNCOP as above for no operation state.
cpxNCHG a status of no change to the attribute. already in
requested state.
CpXSTATUS action request for status of an attribute.
CpXELAMP a lamp test is in progress. request denied.
CpXEALRM an alarm test is in progress. request denied.

High Availablility Package User’s Guide 141

Appendix B - Motorola Hot Swap Controller/ Bridge API

142

(PAUSING EVENT NOTIFICATION)

cpxBlockEventNotification()
NAME

cpxBl ockEvent Not i fi cati on - prevent or allow event signals to an
application

SYNOPSIS
#i ncl ude <cpxapi . h>
i nt cpxBl ockEvent Notification(action)
int action;

DESCRIPTION

This function allows or disallows signaling an application signed up for
event notifications when one occurs. This function must be used judiciously.
The current event queue is 45 deep for any application requesting events. If
they are not retrieved in a timely manner, it is possible for them to overflow
the queue and be lost (and duly noted on the system console). In most system
configurations, this will hardly prove to be an issue because event rates are
relatively low in a correctly functioning system. This function is used when
an application wants to temporarily halt notifications during a critical
processing phase.

ARGUMENTS

Valid actions are cpxON, cpx OFF or cpx STATUS only.
DIAGNOSTICS

cpx K is returned for a successful cpx ON or cpx OFF action.

cpxON (blocked) or cpxOFF(unblocked) is returned if the action specified is
CpXSTATUS.

cpxNOFUNC is returned if the calling application is not currently registered to
receive event notifications.

CcpxBADACT is returned for an invalid action.

CpXxECPEN is returned if an hsc_Open() has not been successfully
performed.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

SETTING/GETTING BRIDGE STATES

hsc_SetBridgeStates()
NAME
hsc_Set Bri dgeSt at es - clrs the special removal & insertion bridge states
SYNOPSIS
#i ncl ude <cpxapi.h>
int hsc_SetBridgeStates(bridge, renmoval, insertion)
hsc_RESOURCE | D bri dge;
hsc_ACTION * renpoval ;
hsc_ACTION * insertion;
DESCRIPTION

This function allows the clearing of special R/W bridge states which also are
capable of generating interrupts. These states are used in conjunction with
the ejector_state and installed status information to understand and control
the comings and goings of the HSC/B card.

ARGUMENTS
Valid processor arguments are hsc_BRI DGE_A and hsc_BRI DGE_B.

The 2nd and 3rd arguments are hsc_ACTI ON variable pointers. If either of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS
hsc_ K s returned for success.

hsc_BAD_OBJECT is returned for if either hsc_ACTI ON argument is not
hsc_SET or hsc_CLEAR

hsc_BAD_REG STERis returned for an invalid bridge argument.

High Availablility Package User’s Guide 143

Appendix B - Motorola Hot Swap Controller/ Bridge API

144

hsc_GetBridgeStateSettings()
NAME

hsc_Get Bri dgeSt at eSet t i ngs - return removal/insertion state settings
SYNOPSIS

#i ncl ude <cpxapi . h>

int hsc_GetBridgeStateSettings(bridge, renoval,
insertion);

hsc_RESOURCE | D bri dge;

hsc_ACTI ON * renoval ;

hsc_ACTION * insertion;
DESCRIPTION

This function returns the insertion and removal states for a processor’s bridge
slot.

ARGUMENTS

Valid processor arguments are hsc_BRI DGE_A and hsc_BRI DGE_B.

The 2nd and 3rd arguments are hsc_ACT| ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS
hsc_ K is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ ACTI ON variable.
hsc_BAD_REG STERis returned for an invalid bridge argument.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_SetEBridgeStates()
NAME

hsc_Set EBri dgeSt at es - sets extension bridge states

SYNOPSIS
#i ncl ude <cpxapi . h>
int hsc_Set EBri dgeSt at es(ebri dge, renoval, insertion,
i nstall ed)

hsc_RESOURCE_I D ebri dge;

hsc_ACTION * renoval ;

hsc_ACTION * insertion;

hsc_ACTION * install ed;
DESCRIPTION

This function allows the setting of special R/W bridge states, the first two of
which also are capable of generating interrupts.

ARGUMENTS

Valid processor arguments are hsc_EXT_BRI DGE_1 and
hsc_EXT_BRI DGE_2.

The 2nd, 3rd and 4th arguments are hsc_ACT| ONvariable pointers. If any of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS
hsc_ K s returned for success.

hsc_BAD_OBJECT is returned for if either hsc_ACTI ON argument is not
hsc_SET or hsc CLEAR.

hsc_BAD_REG STERis returned for an invalid ebridge argument.

High Availablility Package User’s Guide 145

Appendix B - Motorola Hot Swap Controller/ Bridge API

146

hsc_GetEBridgeStateSettings()
NAME

hsc_Get EBri dgeSt at eSet ti ngs - gets the special removal & insertion
bridge states

SYNOPSIS
#i ncl ude <cpxapi . h>

int hsc_GetEBridgeStateSettings(ebridge, renoval,
i nsertion)

hsc_RESOURCE_| D ebri dge;

hsc_ACTI ON * renoval ;

hsc_ACTION * insertion;
DESCRIPTION

This function allows the acquisition of special R/W bridge states which also
are capable of generating interrupts. These states are used in conjunction
with the ejector state and installed status information to understand and
control the comings and goings of the HSC/B card.

ARGUMENTS

Valid processor arguments are hsc_EXT_BRI DGE_A and
hsc_EXT_ BRI DGE_B.

The 2nd and 3rd arguments are hsc_ACTI ON variable pointers. If either of
them is NULL(0), then it is ignored--status values are taken only from those
variables whose addresses are supplied.

DIAGNOSTICS
hsc_OK is returned for success.
hsc_SET or hsc_CLRis returned for each hsc_ACTI ON variable.

hsc_BAD REGQ STERis returned for an invalid extension bridge argument.

RETRIEVING STATUS ONLY

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_GetSlotStatus()
NAME

hsc_Get Sl ot St at us - return status conditions for a payload slot
SYNOPSIS
#i ncl ude <cpxapi . h>

int hsc_GetSlotStatus(slot, present, healthy, connected,
reset_state, active, power, connect, force_healthy)

hsc_RESOURCE I D sl ot}
hsc_ACTION * present;
hsc_ACTI ON * heal t hy;
hsc_ACTI ON * connect ed;
hsc_ACTION * reset_state;
hsc_ACTION * acti ve;
hsc_ACTI ON * power;
hsc_ACTI ON * connect;
hsc_ACTION * force_healthy;

DESCRIPTION

This function returns the general status conditions for a particular payload
slot.

It is important to note that the only status guaranteed to be valid regardless of
domain control is the hsc_PRESENT status. The hsc_RESET_STATE is valid
only if the slot’s domain/bus is under control. All other status indicators are
valid only if the current processor controls the domain/bus the slot is in.

ARGUMENTS

Valid slot arguments include all payload slots(hsc_SLOT_01 through
hsc_SLOT_16(CPX8216) or hsc_SLOT_21(CPX8221).

The 2nd through 6th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored. Status values are written
only to those variables whose addresses are supplied.

High Availablility Package User’s Guide 147

Appendix B - Motorola Hot Swap Controller/ Bridge API

148

DIAGNOSTICS
hsc_ K is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.
hsc_BAD_REGQ STERis returned for an invalid slot argument.

hsc_GetProcessorStatus()
NAME

hsc_Get Processor St at us - return status conditions for a processor.
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt hsc_Get Processor Stat us(proc, healthy, connected,
active, power)

hsc_RESOURCE_I| D proc;

hsc_ACTI ON * heal t hy;

hsc_ACTI ON * connect ed;

hsc_ACTION * acti ve;

hsc_ACTI ON * power;
DESCRIPTION

This function returns the general status conditions for a particular processor.
ARGUMENTS

Valid processor arguments are hsc_PROC_A and hsc_PROC_B.

The 2nd through 5th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS
hsc_OK is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.

hsc_BAD _REG STERis returned for an invalid processor argument.

hsc_GetPBayStatus()
NAME

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_Get PBaySt at us - return status conditions for a peripheral bay.
SYNOPSIS
#i ncl ude <cpxapi.h>

i nt hsc_Get PBaySt at us(pbay, present, own_device, active,
power)

hsc_RESOURCE_I| D pbay;

hsc_ACTION * present;

hsc_ACTI ON * own_devi ce;

hsc_ACTION * acti ve;

hsc_ACTI ON * power;
DESCRIPTION

This function returns the general status conditions for a particular peripheral
bay in a CPX8216 chassis only.

ARGUMENTS
Valid peripheral bay arguments are hsc_PBAY_1 .. hsc_PBAY_4 inclusive.

The 2nd through 5th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS
hsc_ K s returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.

hsc_BAD REQ STERis returned for an invalid peripheral bay argument.

hsc_GetPSStatus()
NAME

hsc_Get PSSt at us - return status conditions for a power supply
SYNOPSIS
#i ncl ude <cpxapi.h>

int hsc_Get PSSt atus(ps, ps_present, power_good,
cooling alarm cooling fault, fan_present, fan_fault)

hsc_RESOURCE | D ps;

High Availablility Package User’s Guide 149

Appendix B - Motorola Hot Swap Controller/ Bridge API

150

hsc_ACTI ON *ps_present;
hsc_ACTI ON *power _good,;
hsc_ACTI ON *cool ing_alarm
hsc_ACTI ON *cool ing_fault;
hsc_ACTI ON *fan_present;
hsc_ACTION *fan_faul t;

DESCRIPTION

This function returns the general status conditions for a power supply. The

statuses returned are valid only if either one of the processors owns domain
A. Moreover, if ps_pr esent is not hsc_TRUE, then the other information
retrieved is invalid.

ARGUMENTS
Valid power supply arguments are hsc_PS_1, hsc_PS_2 and hsc_PS_3.

The 2nd through 7th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS
hsc_OK is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.

hsc_BAD _REG STERis returned for an invalid power supply argument.

hsc_GetBridgeStatus()
NAME

hsc_Get Bri dgeSt at us - return status conditions for an processor’s bridge
SYNOPSIS
#i ncl ude <cpxapi . h>

int hsc_GetBridgeStatus(bridge, present, installed,
connected, ejector_state, active)

hsc_RESOURCE | D bri dge;
hsc_ACTI ON *present;
hsc_ACTI ON *install ed;
hsc_ACTI ON *connect ed;

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTI ON *ej ector_state;
hsc_ACTI ON *acti ve;

DESCRIPTION

This function returns the general status conditions for a processor’s bridge.
ARGUMENTS

Valid extension bridge arguments are hsc_BRI DGE_A and hsc_BRI DGE_B.

The 2nd through 6th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

DIAGNOSTICS
hsc_ K is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.
hsc_BAD_REG STERis returned for an invalid bridge argument.

High Availablility Package User’s Guide 151

Appendix B - Motorola Hot Swap Controller/ Bridge API

152

hsc_GetEBridgeStatus()
NAME

hsc_Get EBri dgeSt at us - return status conditions for an extension bridge

SYNOPSIS

#i ncl ude <cpxapi . h>

int hsc_Get EBri dgeSt at us(ebridge, present, installed,
connected, active, state)

hsc_RESOURCE_I| D ebri dge;
hsc_ACTI ON *present;
hsc_ACTI ON *instal |l ed;
hsc_ACTI ON *connect ed;
hsc_ACTI ON *acti ve;

int * state;

DESCRIPTION

This function returns the general status conditions for an extension bridge.

ARGUMENTS

Valid extension bridge arguments are hsc_EXT_BRI DGE_1 and
hsc_EXT_BRI DGE_2.

The 2nd through 5th arguments are hsc_ACTI ON variable pointers. If one or
more of them is NULL(0), then it(they) are ignored--status values are written
only to those variables whose addresses are supplied.

The 6th argument is a pointer to an integer to receive the current state of the
extension bridge. AT THIS TIME!, 0, is for bus idle and 12, for bus active.
If the state pointer is zero (0), then no bus state can be returned.

DIAGNOSTICS

hsc_ K is returned for success.
hsc_TRUE or hsc_FALSE is returned for each hsc_ACTI ON variable.
An integer value is returned for state.

hsc_BAD_REG STERis returned for an invalid extension bridge argument.

hsc_GetHSCRevision()
NAME

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_Get HSCRevi si on - get a Hot Swap Controller’s revision number
SYNOPSIS

#i ncl ude <cpxapi.h>

i nt hsc_Get HSCRevi si on(voi d)
DESCRIPTION

This function returns the HSC/B’s hardware revision number for the domain
the calling application is running in. This revision number is retrieved from
the HSC/B board’s configuration space during the loading of the HSC Driver.

ARGUMENTS
None
DIAGNOSTICS

An integer revision number is returned.

hsc_GetPSRevision()
NAME

hsc_Get PSRevi si on - get a power supply’s revision number
SYNOPSIS

#i ncl ude <cpxapi.h>

i nt hsc_Get PSRevi si on(ps)

hsc_RESOURCE | D ps;
DESCRIPTION

This function returns the revision number for the power supply indicated.
The revision number is valid only if domain A is under control by either
processor and the power supply’s hsc PS PRESENT bit is hsc_TRUE.

ARGUMENTS

The argument must specify a power supply in the range of hsc_PS_1 ..
hsc_PS_3 inclusive.

DIAGNOSTICS
A positive integer revision number is returned.
hsc_BAD_REG STERis returned if the power supply argument is invalid.
hsc_ACTI ON_DENI ED s returned if domain A is not active.

High Availablility Package User’s Guide 153

Appendix B - Motorola Hot Swap Controller/ Bridge API

hsc_GetAlarmPLDRevision()
NAME

hsc_Get Al ar nPLDRevi si on - get the alarm panel’s PLD revision number
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt hsc_Get ALar mPLDRevi si on(voi d)
DESCRIPTION

This function returns the revision number of the system’s alarm panel PLD.
The revision level is valid only if domain A is owned by either processor and
hsc_PRESENT is hsc_TRUE for the hsc_SYS LED register [alarm board is
installed].

ARGUMENTS
None.
DIAGNOSTICS
A positive integer revision number is returned.

hsc_ACTI ON_DENI ED is returned if domain A is not active.

hsc_GetAlarmPanelRevision()
NAME

hsc_Get Al ar nPanel Revi si on - get the alarm panel’s assembly revision
number

SYNOPSIS

#i ncl ude <cpxapi . h>

i nt hsc_Get ALar nPanel Revi si on(voi d)
DESCRIPTION

This function returns the revision number of the system’s alarm panel
assembly. The revision level is valid only if domain A is owned by either
processor and hsc_PRESENT is hsc_TRUE for the hsc_SYS_LEDregister
[alarm board is installed].

ARGUMENTS

None.

154 High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

DIAGNOSTICS
A positive integer revision number is returned.

hsc_ACTI ON_DENI ED s returned if domain A is not active.

hsc_Action
NAME
hsc_Acti on - sets, clears or status the HSC/B’s register bits
SYNOPSIS
#i ncl ude <cpxapi . h>
hsc_ACTI ON hsc_Action (register, object, action)
hsc_RESOURCE I D register;
hsc_ATTRI BUTE obj ect;
hsc_ACTI ON acti on;

EXAMPLE

i f(hsc_ON == hsc_Action(hsc_SLOT_02, hsc_CONNECTED,
hsc_STATUS)

hsc_Action(hsc_SLOT_02, hsc_LED2, hsc_QN);
DESCRIPTION

This function permits the application program to modify and/or status all
R/W bits in the registers controlled by the HSC/B board, but to only status
their R/O bits.

CAVEAT: It does not allow the interrupt bits(27 & 28) or operation bits (29
& 30) to be modified, however. For those registers which are capable of
generating one, the function hsc_Interrupt() performs the programming
and/or deprogramming of interrupts. Alternatively,
hsc_ProgramlInterrupts() and hsc_DeProgramInterrupts() may be
used. The invoking of hsc_Action()--among other functions--with the action
specified, causes the proper programming of the operation bits.

Enumerations have been defined for all slots/registers, their bit objects and
the actions to perform on those bit objects. These enumerations have been set
forth in “Required Enumerations” on page 90.

For hsc_SET(_ON), hsc_CLR(OFF), and hsc_NOP actions the return value
should equal the requested action unless anomalies were detected. For

High Availablility Package User’s Guide 155

Appendix B - Motorola Hot Swap Controller/ Bridge API

156

statusing--hsc_STATUS--an hsc_SET or hsc_CLRaction value (or their
equivalents) should be returned. If a totally problematic request is made, then
hsc_ERROR s returned.

ARGUMENTS

register - hsc_RESOURCE_|I Dis the slot or register upon which the action is
to be performed. See “hsc RESOURCE _ID Enumerations” on page 90 for
an inclusive list of values.

object - hsc_ATTRI BUTE - this is the object identifier for the bit to be set,
cleared, or status’d. See “hsc ATTRIBUTE Enumeration” on page 96 for an
inclusive list of values.

action - hsc_ACTI ONis the action to be performed upon the bit object
specified. See “hsc_ ACTION Enumerations” on page 95 for the inclusive list
of valid operations.

DIAGNOSTICS

hsc_ON should be returned for a valid hsc_ON operation or if any bit object
status’d is currently on(set).

hsc_COFF should be returned for a valid hsc_OFF operation or if any bit
object status’d is currently off(clr).

hsc_NOP will always be returned for an action of hsc_NOP. No registers are
modified or status’d for a no-operation request.

hsc_NCHG will always be returned for an hsc_ON or hsc_OFF operation
upon a register’s R/W bit object already in that state. However, the requested
action still will be performed.

hsc_BAD_REG STER will be returned for any invalid resource enumeration
passed to hsc_Action().

hsc_BAD_OBJECT will be returned for any invalid attribute enumeration
passed to hsc_Action().

hsc_BAD_ACTI ON will be returned for any invalid action enumeration
passed to hsc_Action().

hsc_RO_OBJECT will be returned for hsc_ONor hsc_OFF operations on a
read only object (for example, the hsc_ CONNECTED object and opposed to
the hsc_ CONNECT object).

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_ACTI ON_DENI ED will be returned for hsc_ON or hsc_ OFF operations
on a read only register (for example, the hsc_| NT_STAT_A register cannot
be modified).

hsc_RegDirect

NAME
hsc_RegDi r ect - write, set, clear, or get a register directly

SYNOPSIS
#i ncl ude <cpxapi . h>
int hsc_RegDirect (register, bitnmask, action)
hsc_RESOURCE I D register;
unsi gned long *bitmask; /* an address nust be passed */
hsc_ACTI ON acti on;

DESCRIPTION

This function permits a program to directly modify or retrieve the contents of
an entire register without regard to specific bit objects and actions like those
provided in hsc_Action().

The bit mask should not contain the 2-bit sequence specifying the
SET/WRITE/CLEAR action because the driver installs those bits based upon
the action specified in the call. Whatever is there will be overwritten.

Only hsc_READ can be used with a R/O register.
The function returns the hsc_ACTI ON specified if the operation succeeds.

All bits in the mask are applied against the target register. No check is made
to ensure that R/O bits aren’t being written.

ARGUMENTS

register - The register name is as enumerated in hsc_RESOURCE | D
Enumerations, above.

bitmask - The unsigned long word pointed to by bitmask contains the bits
which are to be set (hsc_SET), cleared (hsc_CLR), or written (hsc_WRI TE).
Or, it points to the unsigned long word which is to receive the register’s
current contents (hsc_READ).

High Availablility Package User’s Guide 157

Appendix B - Motorola Hot Swap Controller/ Bridge API

158

action - The action is as enumerated in hsc_ACTI ON Enumerations, above.

DIAGNOSTICS

An hsc_BAD REG STERis returned if the register specified is not within the
range of valid register/slot enumerations.

An hsc_ACTI ON_DEN ED s returned for any modifying action attempted
against a R/O register.

An hsc_BAD_ACTI ONis returned for an invalid operation. An hsc_STATUS
is considered an invalid action.

An hsc_NOP is returned for an hsc_NOP action. No register contents are
returned. Support for this action will soon be removed, so its use is
discouraged.

An hsc_READ, hsc_WRI TE, hsc_ONor hsc_OFF is returned if one of these
actions requested was performed.

High Availablility Package User’s Guide

CPX82xx System Resource and Attribute Identifiers

hsc_RegByte
NAME
hsc_RegByt e - write or retrieve a register’s SW scratch byte
SYNOPSIS
#i ncl ude <cpxapi . h>
hsc_Action hsc_RegByte (register, byteval, action)
hsc_RESOURCE | D regi ster;

unsi gned char *byteval; /* note that an address nust be
passed */

hsc_ACTI ON acti on;
DESCRIPTION

This function allows access to the software scratch byte made available in
many of the HSC/B board’s registers. The HSCD does not use this byte, so it
is available to the applications. This byte is read (hsc_READ) or write
(hsc_WRI TE) only. The concepts of set or clear do not apply. The concept of
status does not apply. However, you can perform hsc_NOP operations till the
cows come home.

If successful, an hsc_READ or hsc_\WRI TE is returned.
ARGUMENTS

register - The register name is as enumerated in hsc RESOURCE ID
Enumerations, above.

byteval - The character pointed to by byteval contains the value to be placed
in the designated register’s scratch byte, or is the byte which is to receive the
current value of the register’s scratch byte.

action - The action is as enumerated in hsc_ACTI ON Enumerations, above.

DIAGNOSTICS

An hsc_BAD_REGQ STERis returned if the register specified is not within the
range of valid register/slot enumerations.

An hsc_BAD REQ STERis returned if the register specified does not support
a scratch byte.

An hsc_ACTI ON_DENI ED is returned for any modifying action attempted
against a R/O register.

High Availablility Package User’s Guide 159

Appendix B - Motorola Hot Swap Controller/ Bridge API

An hsc_BAD_ACTI ONis returned for an invalid operation. An hsc_STATUS
is considered an invalid action. The actions hsc_SET and hsc_CLR are also
considered invalid actions.

An hsc_NOP is returned for an hsc_NOP action. No register contents are
returned.

An hsc_READ s returned for for a successful hsc_READ action request.

An hsc_WRI TE is returned for for a successful hsc_WRI TE action request.

hsc_Interrupts
NAME

hsc_I nt errupt s - program/deprogram slot/domain register interrupts
SYNOPSIS

#i ncl ude <cpxapi . h>

i nt hsc_I nt errupt s(domain, action)

hsc_DOVAI N_| D domain;

hsc_ACTI ON action;

i nt hsc_I nt errupt s(register,action)

hsc_RESOURCE_| Dregister;

hsc_ACTI ON action;
DESCRIPTION

This function programs or de-programs a register’s (or a set of domain
registers’) capability to generate interrupts on a particular interrupt vector
when interrupts are enabled. Programming is permitted only for those
registers actually capable of generating interrupts.

The interrupt vectors used are as defined in the HSCD’s device file
(hscdev). At this time, only PCl _A interrupts are used.

ARGUMENTS

domain - hsc_RESOURCE_| D' s are as specified in the hsc_RESOURCE_I D
Enumeration list. It specifies the register for which interrupts are to be
enabled or disabled.

160 High Availablility Package User’s Guide

Appendix1: Changes in Version 2

Alternatively, hsc_DOVAI N_I Ds are as specified in hsc_DOVAI N_| D
Enumerations. The domain is that set of registers for which interrupts are to
be enabled or disabled

action - hsc_ACTI ON\s are as enumerated in hsc_ACTI ON Enumerations,
above. The action is either to program (hsc_ON) interrupts or to deprogram
(hsc_OFF) them. An hsc_NOP request performs no operation.

DIAGNOSTICS

If an hsc_STATUS is the action to perform, then either hsc_ONor hsc_OFF
is returned to provide the current interrupts enabled state.

If hsc_ONor hsc_OFF is the action, then hsc_ONor hsc_OFF should be
returned, respectively.

An hsc_NOP is returned for an action of hsc_NOP and no changes are made
to the registers.

And hsc_NCHG s returned if the interrupts are already in the requested on or
off state.

An hsc_BAD DOMAI Nis returned if the domain specified is not a single valid
domain. The domain cannot be specified as hsc_DOVAI N_A B.

An hsc_ACTI ON_DENI ED is returned if the register specified does not
support interrupts. Read only and non-interrupting registers are not
considered valid.

An hsc_BAD_REGQ STERis returned if the register specified is not within the
range of valid register/slot enumerations. Read only and non-interrupting
registers are not considered valid.

Appendix1: Changes in Version 2

This document describes version 2 of the API interface to the CPX8000 series Hot
Swap controller. It is the beginning of a change from the old hsc , bit oriented
interface, towards the new cpx system resource interface. A major change is the
introduction of resource aggregation, which permits a function to logically access
more than a single resource at a time. Depending upon which pre-release version 1
of the API you received and used earlier, some of this information may not apply to
your development efforts. In such cases, it is offered as background material which
may be of interest.

High Availablility Package User’s Guide 161

Appendix B - Motorola Hot Swap Controller/ Bridge API

162

What's New?

1.

cpxLED() - This functions controls the state of all system LEDs. LED
states now include cpxON, cpx OFF, cpxFASTBLINK (~.25 sec.),
cpxMEDBLINK (~.5 sec.) and cpxSLOWBLINK (~1 sec.). Slots or
other system functions who’s LEDs are to be affected are specified as
aggregates--one or more of them arithmetically OR’d together. The LEDs
are also specified as aggregates of cpxLEDx id’s arithmetically OR’d
together. Convenient enumerations have been defined as follows;
cpxALL _SLOTS for all payload slots and cpxALL_LEDS for all LEDs
available. When acquiring status though, only a single resource and
single LED id may be specified, for obvious reasons. The hsc_Action()
function should ot be used if any blinking of LEDs will be used. Not
only can blink not be specified in hsc_Action(), but the status of an LED
can only take on the values of hsc_ONor hsc_OFF. If an LED is
blinking, then hsc_Action() status for a particular LED will be
indeterminate. New cpx-style enumerations are used in the cpxLED()
function call. Special note: Alarms for the cpx ALARMresource can also
be blinked, even though the fourth alarm(c px RACK) does not have an
associated LED. Those enumerations are: cpxCRI T, cpx MAJOR,
cpxMINOR and cpxRACK. The whole alarm aggregate may be
designated using the cpxALL_ALARMS enumeration.

cpxLampTest() - allows all system LEDs to be lit for a given amount of
time. This does not include cpx ALARMLEDs. New cpx-style
enumerations are used.

cpxAlarmTest() - allows all alarms for the cpx ALARMresource to be
activated for the requested amount of time. Three of these alarms also
have LEDs tied to them. New cpx-style enumerations are used.

cpxInstallEventFunction() replaces hsc_InstallEventFunction(). It
now accepts an aggregate of classes which specify the type of events
being signed up for. Events comprise interrupt and non-interrupt entities.
If all classes are wanted, then the enumeration for all of them is
CpXALLCLS. New cpx-style enumerations are used.

cpxSetEventList() permits the list of classes specified in the
cpxInstallEventFunction() to be replaced by a new set. New cpx-style
enumerations are used.

cpxRemoveEventFunction() replaces hsc_RemoveEventFunction().
New cpx-style enumerations are used.

High Availablility Package User’s Guide

What's New?

10.

I1.

12.

13.

14.

15.

16.

17.

18.

cpxGetEvent() replaces hsc_GetEvent(). It now returns the status and
class of an event for which the function was signaled. New cpx-style
enumerations are used for the class and status parameter.

cpxExtractEventReason() replacing hsc_GetEventReason(),
acquires detail about the event which caused it to occur. The action
parameter is valued as a new cpx-style parameter which loosely translates
to the old hsc_-style enumeration in meaning, but not in value.

cpxSetEventFunction() replaces hsc_SetEventFunction(). New cpx-
style enumerations are used.

cpxBlockEventNotification() prevents signals from the driver to the
function signed up to handle events when they occur until they are
unblocked. Upon unblocking, if any events have been queued for the
function, then a signal will be sent immediately to the receiving function.

The substring ‘For ceHeal t hy’ replaces ‘I gnor eHeal t hy’ in function
names.

cpxPower () replaces hsc_PowerOff(), hsc_PowerOn() and
hsc_GetPowerSetting(). This new call permits the use of resource
aggregates.

cpxConnect() replaces hsc_Connect(), hsc_Disconnect() and
hsc_GetConnectSetting(). This new call permits the use of resource
aggregates.

cpxForceHealthy() replaces hsc_ForceHealthyOn(),
hsc_ForceHealthyOff() and hsc_GetForceHealthySetting(). This
new call permits the use of resource aggregates.

cpxInfoByte() replaces hsc_WriteInfoByte() and
hsc_ReadInfoByte(). This new call permits the use of resource
aggregates.

cpxProgramlInterrupts() replaces hsc_ProgramInterrupts(),
hsc_DeProgramInterrupts() and
hsc_GetProgramlinterruptsSetting(). This new call permits the use of
resource aggregates.

cpxEnablelnterrupts() replaces hsc_Enablelnterrupts(),
hsc_DisablelInterrupts() and hsc_GetInterruptsSetting().

cpxProgramEnums() replaces hsc_ProgramEnums(),
hsc_DeProgramEnums() and hsc_GetProgramEnumsSetting().

High Availablility Package User’s Guide 163

Appendix B - Motorola Hot Swap Controller/ Bridge API

164

19. cpxFanHigh() replaces hsc_FanHighOn(), hsc_FanHighOff() and
hsc_GetFanHighSetting(). This new call permits the use of attribute
aggregates.

20. epxtool replaces hsctool. It permits access to the new functionality.
- use ‘L’ toaccess cpxLampTest(); simply enter L for details.
- use ‘A’ toaccess cpxAlarmTest(); simply enter A for details.
- use ‘I’ toaccess cpxLED(); simply enter1 for details.

21. epxapi.h replaces hscd.h for the application writers. hscd.h will not be
distributed and contains info for use only in building our distribution.

22. libepxapi.a replaces libhscd.a.
23. .cpxtoolrce replaces .hsctoolrc
24. cpxtool users!

- Youcannow use cl and c2 in lieu of / addition to xfr_ctll and xfr_ctl2.
Also, sl and s2 in addition to xfr_statl and xfr_stat2. Should reduce
typing fatigue for those of you grabbing domains from the busa and
busb registers. Of course, you could have used macros....but I know a
lot of you never bothered! ;-)

- Execute only “menus” have been introduced to simplify access to
frequently executed script fragments or as block of processing to be
used with the ...

-New “if..then..else” capability.

-Ability to get user input into variables and well as to set
variables.

what’s gone?

1. hsc_GetGeneralStatus() - this capability is exclusively used by
cpxtool.

2. enumerations for hsc_DOVAI N_OTHER and hsc_DOVAI N_NONE
removed.

3. The following tracing capability has been replaced by the event
mechanisms discussed in What’s New above:

- hsc_SetTracelLevel() - nominally replaced by cpxSetEventList()

High Availablility Package User’s Guide

What's Changed?

- hsc_SetTraceFunction() - replaced by cpxSetEventFunction()
- hsc_GetTraceCode() - nominally replaced by cpxGetEvent()
- hsc_InstallTraceFunction() - see hsc_SetTraceFunction() above

- hsc_RemoveTraceFunction() - see hsc_SetTraceFunction()
above

- hsc_BuildTraceMsg() - no equivalent

What's Changed?

1.
2.
3.

10.

hsc_ACTI ON_REG | Dis now hsc_RESOURCE_| D; adjust your sources!
hsc_Bl T_OBJECT is now hsc_ATTRI BUTE; adjust your sources!

hsc_GetSlotStatus() has three(3) additional arguments. See
“hsc_GetSlotStatus()” on page 147 for details.

hsc_GetPBayStatus() has one(1) additional argument. See
“hsc_GetPBayStatus()” on page 148 for details.

cpxProgram nt er rupt s replaces hsc_ProgramlInterrupts(),
hsc_DeProgramIntrrupts() and
hsc_GetProgramlInterruptsSetting().

hsc_GetProcessorStatus() has one(1) additional argument. See
“hsc_GetProcessorStatus()” on page 148 for details.

Most hsc_Style API return codes have been changed to either hsc_OK
(for success), or a negative value indicating the reason for failure--such as
hsc_BAD REG STER, etc. Adjust your sources to accept hsc_OK.

The use of many old API calls is now discouraged in light of several
replacement calls. The old calls are shown under “CPX8000 System HSC
Driver Control Functional Interface” on page 101 in a lightened and
italicized font. Their descriptions are in a lightened font. At some future
date, they will be removed from the API, so timely conversion to their
replacements is encouraged.

hsc_Open() no longer supports an argument to specify a different
device node name. It expects / dev/ hscO to be present.

To maintain access to all enumerations used for test code, API’s and tools
written at MCG, two header files must be included in the following order:

#i ncl ude cpxapi . h /* for all users of the API */

High Availablility Package User’s Guide 165

Appendix B - Motorola Hot Swap Controller/ Bridge API

166

#i ncl ude hscd. h/* for MCG use only - not distributed */

11. End users developing code which uses the API must include cpxapi.h
only; upon successful compilation, the object module(s) must be linked
with the archive cpxapi.a (or object cpxapi.o) to be able to access the
APL

Programmer’s Notes

This version of the API is significantly different from all previous versions. In all
likelihood, developers using this API will need to recompile and relink against this
new version. The good news is that newer versions of the API, when available, will
remain backward compatible with this version. To determine if you need to rebuild
your application, note the following uses of the old API which would require a new
compile and build against the new one.

1. Ifyou have used ANY interrupt or tracing mechanisms, you will need to
change your code and rebuild. Both interrupts and driver access are
treated as events and reported via the same mechanism.

2. If in using higher level functions, such as hsc_PowerOn() or
hsc_PowerOff(), and you paid attention to any non-negative values, you
will probably have to change your code and rebuild. Most of these
functions have been altered to return a negative error enumeration or a
value of hsc_OK. If your code checked for hsc_ON, hsc_OFF or
hsc_NCHG specifically, then you may have a problem. By the way,
hsc_PowerOn() and hsc_PowerOff() have been replaced by
cpxPower(). You should change your code anyway as the old calls are
considered obsolete and will disappear at some later date.

3. 3. If you used any status gathering calls such as hsc_GetSlotStatus(),
you will need to alter your argument lists as additional arguments are now
returned.

Appendix 2: Programming Information & Considerations

The following notes may be of use to the development engineer in understanding
how the programming of the HSC/B affects the access to, and operation of, the
CPX8xxx chassis.

* Ina single chassis, there are one or two processors with hsc
controller/bridges and one or two extension bridges (CPX8221 only)
residing in two domains called A and B. Although each domain’s

High Availablility Package User’s Guide

Appendix 2: Programming Information & Considerations

processor can run stand alone, it may, when appropriate, take control of
the other processor’s resources--its domain. Each processor may have
control over no domains, one domain or both domains. Having control of
a domain means having control over the 6 primary, non-host slots in that
domain. In the case of Domain A, additional system resources (alarms,
system LEDs, etc.) are also controlled. On the CPX8221, having control
of Domain B also means having control over the 5 additional payload
slots on Bus C, for a total of 11 payload slots in that domain.

The buses in Domain B may be taken one at a time. In this scenario, bus
B must be taken before control of bus C can be realized. Control of bus C
by itself is not possible (CPX8221 only).

A payload slot’s board present status is valid only when power is not
applied to the slot. When power is applied, the healthy status would
indicate a board being present and operational. If power is applied, but
healthy is not asserted, then the board is either absent, non-cPCI Hot
Swap compliant or defective. If it is non-compliant, then the
cpxForceHealthy() function may be used to cause the healthy status to
reflect the power on state.

For purposes of this document, a status change typically results from a
setting being changed or some asynchronous event occurring. For
example, when power is applied to a board (a setting of power to on), an
event usually takes place in that its healthy status is asserted. Therefore,
the functions described herein make the distinction between setting,
acquiring the value of a setting and acquiring a status value. Settings are
deterministic, driven by software. Statuses track state transitions, a read-
only condition which reflects a resource’s change of state.

Having control of domain A also allows the processor to control system
functions such as alarms, system LEDs, power supplies and fans. Taking
control of domain A by an application executing on the processor
installed in domain B is accomplished by taking control of bus A. Again,
taking control of buses is better accomplished by specifying a domain as
opposed to a bus-by-bus method. Once a domain takeover bid is made, it
cannot be rescinded except under very specific conditions.

A domain (hence its associated bus) may be taken by the other domain’s
processor either cooperatively or ‘by force’. A processor’s own domain
(and bus) may be taken back from the other processor either
cooperatively or ‘by force’.

Just as a domain may be taken by a processor, it may also be given up
without the other processor’s intervention.

High Availablility Package User’s Guide 167

Appendix B - Motorola Hot Swap Controller/ Bridge API

168

When a domain is owned, its slots and system functions are called
‘active,” Otherwise, they are ‘inactive.’ In most instances, the API calls
may be made against inactive slots and system functions, but they will be
pending the takeover of the bus by the programming processor and will
be effected only after the domain is taken. Domains are taken by taking
control of the primary bus in that domain.

Both processors in the CPX8216 can have simultaneous control over the
four peripheral bays based upon a hardware strapping option. The
CPX8221 has no peripheral bays under hot swap control, which makes
this point moot.

A processor may not cut its own power. It can cut the power to the other
domain’s processor though.

A processor removing/restoring power from/to a power supply must also
change the LEDs to reflect its new operational status before the operation
can actually occur. This is done automatically by the functional interface.

The last powered on power supply in a system cannot be powered off
under software control. Upon “powering off” the last supply, it does so
only momentarily, then comes back on, causing both processors to begin
their reboot sequence.

For peripheral bays owned by both processors (a drive jumper setting),
either processor can turn the LEDs on. However, both must turn the same
LEDs off to actually make it happen. This action is specific to the
CPX8216, which has controller managed peripheral bays.

Performing non-host slot actions regarding power, connections, LEDs,
etc., in a domain not currently owned by the processor can be done in
preparation for taking the domain. As soon as this takeover is
accomplished, the last pending actions performed upon them take effect.

All functions and slots may be programmed (or deprogrammed) to
interrupt with a single command, or they may be targeted singly. The
application may also declare a function to receive their interrupt
information when exceptions arise. This function must, in turn, make one
or more calls to retrieve all the interrupt reasons.

High Availablility Package User’s Guide

Appendix 2: Programming Information & Considerations

‘ tm.conf Hot Swap
Controller

Hot i
o Topology Domain
P Manager
Event g
Manager HotSwap
Controller
Tool

User
| space
HotSwap
l Conroller Kernel
Driver space
—
-
System
Interrupt
Control Alarm
Register
Non-host Contro
Slots .
Registers
Host Bridge
ENUMand Slots Boards
other
device
Int t
nterrupts Peripheral{<)
Bays Metrics and
Status
Power
Supplies
LED
Panel

Hscd Context Diagram

High Availablility Package User’s Guide 169

Appendix B - Motorola Hot Swap Controller/ Bridge API

170 High Availablility Package User’s Guide

meonc Stmd.conf file example

This appendix provides a sample st md. conf file for generic use. For additional
information on configuring st nd. conf , please see the man page st nd. conf (5)

$ld: stnd.conf,v 1.4 2000/12/13 02:43:15 carlb Exp $

B
,

; (C) Copyright 2000
; LynuxWorks, Inc.

; San Jose, CA

; Al rights reserved.

$Date: 2000/12/13 02:43:15 $
; $Revision: 1.4 $
; $Source: /home/Lynx/src/ HAP2. 0/ st md/ RCS/ st nd. conf, v

B
’

; static char scesid[] = "@#) hsenml hsem conf, hsem Phase0
COVPONENT_NAME: (HSEM) Hot Swap Event Manager

; Copyright (c) 1998, 1999 MOTOROLA
Al Rights Reserved

; THIS I'S UNPUBLI SHED SOURCE CCODE OF MOTCROLA.

The copyright notice above does not evidence any actual or

; intended publication of such source code.

The "slots" entry defines the slot table for the specific chassis.

; t
; Field 1 = Physical Slot nunber

; Field 2 Bus Number
; Field 3 Devi ce Number
; Field 4 Functi on Nunber

The slot table belowis for the domain A side of an 8216 Chassis.

I't should not be nodified.

slots

; sl ot #, bus#, dev#, f unc#

slot 1,1,14,0

slot 2,1,13,0

slot 3,1,12,0

slot 4,1,11,0

slot 5,1,10,0

1.

8

99/ 02/ 02";

High Availablility Package User’s Guide 171

Appendix C - stmd.conf file example

slot 6,1,9,0
slot 7,0,0,0
slot 8,0,0,0
slot 9,0,0,0
slot 10,0,0,0

slot 11,42,14,0
slot 12,42,13,0
slot 13,42,12,0
slot 14,42,11,0
sl ot 15,42,10,0
sl ot 16,42,9,0
end_slots

; This is the drivers section of the config file. In it are
; sections for each driver.

drivers
driver
devi ce_nane_prefix /dev/wan

; This signature is used during device parsing.
; It corresponds to the PCl device specific vendor ID.

si gnature

vendor 0x00091011, 0, 255

end_si gnature

; The script invoked during device insertion transition.

devi ce_install

system /etc/ hasw install.scr

end_devi ce_instal |

; The script invoked during device renoval transition.

devi ce_uni nstal |

system /etc/ hasw uninstall.scr

end_devi ce_uni nstal |

; NOTE these scripts MJST exist or these lines should be omtted
; placing these lines but omtting the scripts will cause
; all standby and active trasitions to return error

; the net effect of this would be that the driver would
; remain in Inactive state

; The script invoked during donain transition to active.
active_conmmand /etc/ hasw active. scr

; The script invoked during domain transition to standby.

st andby_command / et ¢/ hasw st andby. scr

end_dri ver

end_drivers.

172 High Availablility Package User’s Guide

NOTE: The act i ve_comand and st andby_conmmand scripts must exist if they
are declared in the file. If these scripts are not in the declared location, all
transitions to Active or Standby fail and the driver will be stuck in the Inactive
state. If the act i ve_commuand and st andby_command declarations are left out,
transitions to Active and Standby are still allowed.

High Availablility Package User’s Guide 173

Appendix C - stmd.conf file example

174 High Availablility Package User’s Guide

— Index

A

About High Availability 2
Active to Warm Standby 68
Asynchronous Events 78
Availability Impacting Events 4

B

Basic Hot Swap System 9

C

Calculating System Availability 3
Cold Standby to Active 65

Cold Standby to Warm Standby 68
Contacting LynuxWorks v
cpxload 21

cpxtool 21

cpxunload 21

D

Device Driver Model 44

STMD 46
Device Resource Manager (DRM) 43
Domain Switchover 14

Driver Model 14

Warm Domain Switchover 14
DRM 43
drm_stat 22

E

enum 41
example file 173

F

Frameworks 11
Full Hot Swap System 9

H

ha_sim 25
HAP 2.0
Installation 17
Product Overview 1
High Availability
About 2
Availability Impacting Events 4
Computing System Availability 3
Frameworks 11
Hot Swap 4
Hot Swap Model 11
Hot Swap States 5
Network-Based Redundancy 12
High Availability Platform
Device Driver Model 44
Device Resource Manager 43
enum 41
hscd 41
hsem 40
hsem / STMD 40

High Availablility Package User’s Guide

175

Index

Install. HAP Configuration Specifications
19
Installing 17
LynxOS elements used 41
mdd 40
Post-Installation Tasks 19
stmd 40
STMD Driver Model 46
System Requirements 17
Tools 21
ha_sim 25
Uninstalling 19
Writing Applications 37
Application Interface to HAP 2.0 38
High Availability System 11
High Availability Tools 21
cpxtool 21
cpxunload 21
drm_stat 21, 22
ha_sim 25
hsemd 28
hsem 29
hsi 30
hsls 31
hsx 32
mdd 32
stmd 33
tm - Topology Manager 34
Hot Extraction 75
Hot Insertion 72
Hot Swap 4
Basic System 9
Bottom up Hot Insertion 50
CompactPCI Architecture 7
Full System 9
Hot Extraction 53
Operation Messages 49
Error Notifications 49
States 5
System Models 8
Writing Applications 47
HSC Events 78
hscd 41
hscmd 28
hsem 29, 40
hsem / STMD 40
hsi 30
hsx 32

176 High Availablility Package User’s Guide

Install. HAP configuration file 19
Installing HAP 2.0 17
Installing High Availability Platform 17

L

LynxOS elements used in HAP 41

M

mdd 32, 40

P

Post-Installation Tasks 19
Product Overview 1

S

stmd 33, 40
STMD / hsem 40
stmd.conf 173
System Availability, Calculating 3
System Models
Hot Swap 8
System Requirements 17

T

tm - Topology Manager 34
Tools
cpxtool 21
cpxunload 21
drm_stat 21, 22
ha_sim 25
hsemd 28
hsem 29

hsi 30

hsls 31

hsx 32

mddl 32

stmd 33

tm - Topology Manager 34
Typographical Conventions vi

U

Uninstalling High Availability Platform 19

w
Warm Domain Switchover 14
Asynchronous Events, HSC 78
Hot Extraction 75
Hot Insertion 72
Operation 57
State Transitions
Active to Warm Standby 68
Cold Standby to Active 65
Cold Standby to Warm Standby 68
Warm Standby to Active 71
STMD Messages 57
Writing Applications 54
Error Notifications 60
Warm Standby to Active 71
Writing Hot Swap Applications 47
Writing Warm Domain Switchover Applications
54

High Availablility Package User’s Guide

177

Index

178 High Availablility Package User’s Guide

	High Availability Platform User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	High Availability Platform for LynxOS
	Product Overview
	About High Availability
	System Availability
	Availability Impacting Events
	Hot Swap
	System Models
	Basic Hot Swap System
	Full Hot Swap System
	High Availability System

	High Availability Frameworks
	Domain Switchover
	Warm Domain Switchover

	Chapter 2 Installing the High Availability Platform
	System Requirements
	Installing the High Availability Platform
	Uninstalling
	Post-Installation Tasks

	Install.HAP Configuration Specifications

	Chapter 3 High Availability Tools
	Introduction
	cpxload - cpxunload
	cpxtool
	drm_stat - Display all device nodes in a system
	Synopsis
	Description

	ha_sim - HA System Initialization Manager
	Synopsis
	Description
	Dependencies
	Initialization
	Shutdown
	Default
	Options

	hscmd - Hot Swap Command Utility
	Synopsis
	Description

	hsem - Hot Swap Event Manager
	Synopsis
	Description
	Options

	hsi - Hot Swap Insert
	Synopsis
	Description
	Sample Session

	hsls - List Non-Bridge Devices
	Synopsis
	Description
	Sample Session

	hsx - Hot Swap Extract
	Synopsis
	Description
	Sample Session

	mdd - Message Distributor Daemon
	Synopsis
	Description
	Options

	stmd - State Transition Management Daemon
	Synopsis
	Description
	Options

	tm - Topology Manager Script
	Synopsis
	Description
	Options
	Error Handling

	Chapter 4 Writing High Availability Platform Applications
	Overview
	Client Application
	hsem
	mdd
	stmd
	enum
	hscd
	LynxOS Elements Used
	Device Resource Manager

	The Device Driver Model
	STMD Driver Model

	Writing Hot Swap Applications
	Initialization and Registration
	Operation
	Bottom Up Hot Insertion
	Hot Extraction

	Writing Warm Domain Switchover Applications
	Initialization and Registration
	Operation
	State Transitions
	Cold Standby to Active
	Cold Standby to Warm Standby
	Active to Warm Standby
	Warm Standby to Active
	Hot Insertion
	Hot Extraction
	Asynchronous Events

	Appendix A Basic Terminology
	Back End Logic
	Back End Power
	Dynamic Configuration
	Enumeration
	Fault Tolerance
	High Availability
	Hot Swap
	PCI Extended Capabilities Pointer (ECP)
	PCI Mezzanine Card (PMC)
	Quiesced
	Warm Domain Switchover

	Appendix B Motorola Hot Swap Controller/ Bridge API
	Introduction
	Definitions
	CPX82xx HA Programmable Resource Management
	Purpose of this Document
	Overview
	CPX82xx System Resource and Attribute Identifiers

	Appendix1: Changes in Version 2
	What’s New?
	what’s gone?
	What’s Changed?
	Programmer’s Notes

	Appendix 2: Programming Information & Considerations

	Appendix C stmd.conf file example
	Index

