
3

LynxOS Networking Guide

LynxOS 4.0
DOC-0402-00

Product names mentioned in the LynxOS Networking Guide are trademarks of their respective manufacturers and are
used here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of the LynxOS Networking Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE ... IX

For More Information ... ix
Typographical Conventions ... x
Special Notes .. xi
Technical Support ... xi

LynuxWorks U.S. Headquarters ..xii
LynuxWorks Europe ..xii
World Wide Web ..xii

CHAPTER 1 TCP/IP... 1

Installing/Removing TCP/IP Support .. 1
Installing TCP/IP .. 1

Configuring Ethernet Cards with ifconfig ... 2
rc.network ... 2

Common TCP/IP Utilities ... 3
Testing TCP/IP (ping) .. 4
Using traceroute ... 9
Logging On to a Remote Computer (telnet, rlogin) 9
Executing Commands Remotely (rsh) ... 11
Transferring Files Between Machines (ftp, tftp rcp) 12

Divert Sockets .. 16
NAT and IP Masquerading .. 17

Enabling and Starting natd ... 17
IPv6 Support .. 19

Using faithd to Connect IPv6 and IPv4 Networks 21
Driver Defaults .. 22
LynxOS Networking Guide iii

Contents

CHAPTER 2 NETWORK SECURITY ... 25

Firewalls .. 25
ipfw ... 25
ip6fw ... 28

IPsec .. 28
AH and ESP Security Protocols ... 29
Tunnel Mode and Transport Mode ... 29
Setting the Security Policy Database (SPD) .. 29
Setting the Security Association Database (SAD) 30
Using setkey ... 30

CHAPTER 3 PPP.. 35

LynxOS PPP Components ... 35
Installing/Removing PPP Support ... 36

Installing PPP ... 36
Removing PPP .. 36

Configuring the PPP Server ... 36
Running pppd on Each Serial Line .. 36
Creating a ppp Account and login Shell for pppd 37

Configuring the PPP Client ... 38
Dialing the Server ... 38

CHAPTER 4 DHCP .. 41

Introduction ... 41
LynxOS DHCP Components ... 42

LynxOS DHCP Files .. 42
DHCP man pages ... 42
Online Resources .. 43

Installing DHCP .. 43
The DHCP Server .. 43

dhcpd .. 43
dhcpd.conf .. 44
dhcpd.leases .. 45
Relay Agents .. 45

The DHCP Client .. 45
dhclient ... 45
iv LynxOS Networking Guide

CHAPTER 5 NFS... 47

Overview ... 47
Installing/Removing NFS Support .. 48

Installing NFS ... 48
Removing NFS ... 48

Tuning the NFS Server Kernel .. 48
NFS Server Tunable Parameters .. 49

Tuning the NFS Client Kernel ... 49
Tuning the NFS Client-Side Cache ... 51
Tuning NFS File Locking .. 53
Configuring the NFS Server .. 54

CHAPTER 6 SAMBA ... 55

What is Samba? ... 55
Installing/Removing Samba Support ... 56

Installing Samba ... 56
Removing Samba ... 56

LynxOS Samba Components ... 57
Configuring the Samba Server .. 57

Creating and Testing the Samba Configuration File 58
Starting the smbd and nmbd Daemons ... 59
Listing Shares on the Server ... 60

CHAPTER 7 NET-SNMP AND OPENSSL... 63

Introduction ... 63
Installing net-SNMP .. 64
SNMP Overview .. 64
net-SNMP Documentation .. 66
net-SNMP Components ... 66
Configuring SNMPv3 .. 67

Creating a User ... 67
Creating Additional Users .. 68

Extending the Agent with MIB modules ... 69
License & Copyright ... 70
OpenSSL .. 70

OpenSSL Legal Issues .. 71
LynxOS Networking Guide v

Contents

CHAPTER 8 SCMP.. 73

Overview ... 73
SCMP Concepts ... 73

Configuration ... 75
SCMP - VME .. 76

Bus Example Used in This Chapter ... 76
Setting Up the Hardware for SCMP .. 76

Assembling the System .. 77
Assigning the Board Addresses .. 77
Programming the VME Bridge Chip ... 79
Verifying the Hardware Setup .. 81

Setting Up LynxOS for SCMP .. 82
Copying the Current LynxOS Kernel ... 83
Choosing the Primary Processor .. 83
Configuring the LynxOS Backplane Driver ... 84
Rebuilding the LynxOS Kernel .. 85
Starting SCMP .. 85

CHAPTER 9 NETWORK BOOTING DISKLESS CLIENTS WITH LYNXOS 89

Overview ... 89
Using the LynuxWorks Netboot Scripts .. 90

Copying Scripts Before Customizing ... 90
Restrictions ... 90

Ethernet Netboot .. 91
Before Beginning ... 91

Configuring the Disk-Based Server ... 92
Enabling TFTP for LynxOS ... 93
Exporting the Root File System Via NFS .. 94
Building the Netboot Image ... 95
Putting the Netboot Files in the Download Directory 95

Configuring the Diskless Client .. 95
Setting Up the PowerPC System .. 95
Setting Up PPC PowerCore Systems ... 97
Setting Up Thales VMPC Systems .. 97

Example�Netbooting a FORCE PowerCore 680 Board 98
Preparing the Board .. 98
Configuring a Network Server ... 99
vi LynxOS Networking Guide

Network Booting the Target Board .. 101
Booting from Flash Memory .. 102

Configuring PXE Netboot Support .. 103
Configuring the PXE Client ... 103
Configuring the PXE Server ... 104

SCMP Netboot ... 105
How Does It Work? .. 106
Configuring the Disk-Based Server ... 106
Starting a Diskless Client ... 108

Troubleshooting ... 108
Advanced Issues for Ethernet Netboot .. 109

Sharing a Boot Image ... 109
Cleaning Up the Working Directory .. 110
Client Information Files ... 110
Adding Files to the RAM Disk ... 110
More About Kernel-Specific Files ... 110
More About Client-Specific Files .. 111
Configuring a Second Client .. 112

CHAPTER 10 RAW ETHERNET SUPPORT ... 113

Raw Ethernet Support .. 113
AF_RAWETH Description .. 113
GE_SET_DEV ... 114
GE_SET_SADDR .. 115
GE_SET_PROTO .. 116
GE_SET_MCAST .. 117
GE_PROM ... 117
GE_BLOCKING .. 118
GE_DEBUG_MODE ... 118
GE_GET_CTRS ... 118
GE_GET_SADDR ... 119
GE_GET_FADDR ... 119
GE_CLRIFNAME .. 119
GE_SET_FILTER .. 119

APPENDIX A SUPPORTED NETWORKING RFCS ... 121

INDEX .. 135
LynxOS Networking Guide vii

Contents
viii LynxOS Networking Guide

Preface
The LynxOS Networking Guide contains information about configuring LynxOS
network components.

This manual assumes that users have a basic understanding of UNIX and is
intended primarily for system administrators, network administrators, developers,
and end-users of LynxOS. Many tasks in this manual include system
administration and configuration tasks that require root privileges.

For More Information

For information on the features of LynxOS, refer to the following printed and
online documentation.

� Release Notes

This printed document contains details on the features and late-breaking
information about the current release.

� LynxOS User�s Guide

This manual details system administration concepts, building custom
LynxOS kernels, and additional features available in LynxOS.

� LynxOS Networking Guide

This guide contains configuration and usage information on the
networking capabilities in LynxOS. It provides information on supported
protocols such as TCP/IP, NFS, DHCP, etc.

� Writing Device Drivers

This guide contains details on writing device drivers for LynxOS.
LynxOS Networking Guide ix

Preface

� GNU Zebra User�s Guide

Contains information about configuring, and using GNU Zebra for
LynxOS. This book is available online only. See the LynxOS
Documentation CD-ROM.

� Online information

The complete LynxOS documentation set is available on the
Documentation CD-ROM. Books are provided in both HTML and PDF
formats.

Updates to these documents are available online at the LynuxWorks
website: http://www.lynuxworks.com.

Additional information about commands and utilities is provided online
with the man command. For example, to find information about the GNU
gcc compiler, use the following syntax:

man gcc

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to filenames and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by
the user

cat filename
mv file1 file2
x LynxOS Networking Guide

Special Notes
Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, Frequently Asked Questions (FAQs), and LynuxWorks news
groups.

Blocks of text that appear on the display
screen after entering instructions
or commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and
menu sequences

Enter, Ctrl-C

Kind of Text Examples

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
LynxOS Networking Guide xi

Preface

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com
xii LynxOS Networking Guide

6

CHAPTER 1 TCP/IP
LynxOS supports TCP/IP (Transmission Control Protocol/Internet Protocol)
networks. By default, TCP/IP is installed during the initial installation of LynxOS.
TCP/IP can be configured, installed, or removed at any time.

LynxOS TCP/IP is an enhanced version of the FreeBSD 4.2 TCP/IP stack, and
includes support for the BSD socket interface system and networking library
functions needed to access the TCP/IP and UDP network protocols. The LynxOS
TCP/IP stack is enhanced for real-time determinism and performance.

Installing/Removing TCP/IP Support

TCP/IP can be installed or removed after initial installation of LynxOS. Scripts are
provided to install or remove TCP/IP support. The Install.tcpip and
Uninstall.tcpip scripts are found in /usr/bin.

Installing TCP/IP

To install TCP/IP:

Install.tcpip

To remove TCP/IP:

Uninstall.tcpip

NOTE: These instructions are for IPv4 only. The IPv6 (and IPsec) protocols for
LynxOS are not included with the standard LynxOS package. These components
are available for purchase separately. For information on these products, please
contact your LynuxWorks sales representative.
LynxOS Networking Guide 1

Chapter 1 - TCP/IP

Configuring Ethernet Cards with ifconfig

ifconfig is used to assign an address to a network interface for each interface
present on the system. (This is handled automatically if LynxOS is installed with
network support.) ifconfig can be issued as a command to reconfigure the
network interface or to obtain configuration information.

To use ifconfig to configure a network interface, the command should be placed
in /net/rc.network (see rc.network below for more information on this file)
in order for the network interface to be properly configured at boot time.

Issuing an ifconfig command without parameters displays the current
configuration information of the network interface. Refer to the ifconfig man
page for more information.

rc.network

The rc.network file contains command scripts that configure the network
interface card and start other network related services. rc.network contains
ifconfig entries for all network interface drivers supplied by LynxOS. To use
one of the entries, enable it by removing the comment character and supply the
appropriate host name and IP address.

To use a network interface driver not supplied with LynxOS, insert an ifconfig
entry into rc.config specifying device driver file name, host name, and IP
address.

Use rc.network also to enable or disable network services such as NFS and
SNMP for example.
2 LynxOS Networking Guide

Common TCP/IP Utilities

Common TCP/IP Utilities

The following table lists common LynxOS TCP/IP commands and files:

Table 1-1: LynxOS TCP/IP Components

Component Definition

ping Sends a packet of data to a system to determine if it is on the
network. The ping command is used to test that TCP/IP is
installed correctly and that a system is up on a network.

hosts The hosts database. This can be the /etc/hosts file, the
Network Information Service (NIS) hosts map, the Internet
domain name server, or any combination of these.

rlogin Allows the user to log onto a remote host on the network. This
requires that the user name be the same on both the local and
remote machine. If the /etc/hosts.equiv file is set up,
a password is not needed when performing a remote log on.
rlogin requires the host computer to have a UNIX-
compatible operating system.

/etc/hosts.equiv This is the file that contains the list of acceptable remote hosts.

/etc/hosts The file that contains the list of hosts on the network.

/etc/resolv.conf The resolv.conf file is used to determine a system�s
domain name, domain search paths, and IP addresses for name
servers and routers.

telnet A protocol that allows for remote access to a system. The
system can run any operating system, UNIX-compatible or
not.

.rhosts A file that provides the remote authentication database for the
rlogin, rsh, and rcp commands.

rsh Allows users to connect and execute commands on a remote
host. This command expects that the /etc/hosts.equiv
and .rhosts files are configured properly. The rsh
command only works when users are considered equivalent
on the local and remote machine.
LynxOS Networking Guide 3

Chapter 1 - TCP/IP
For more information on these components, see the appropriate man pages.

The next sections provide an overview of some of the most common TCP/IP
utilities. These sections introduce basics of common TCP/IP utilities such as the
ping command, remote computer access (telnet, rlogin) and file transfer
between computers (ftp).

Testing TCP/IP (ping)

The simplest way to test the TCP/IP configuration of the system is to use the ping
utility. Users can send a test message to any host on the network with the ping
command. Users can ping either the IP address or host name of the machine. This
test verifies the correct operation of hardware and TCP/IP software connecting the
hosts. The ping command continues to send packets to the addressed host once
every second until the command is terminated with a Ctrl-C.

rcp A command that copies files and directories between different
hosts. The remote copy command or rcp is a fast and
efficient way to exchange data quickly between
UNIX-compatible hosts. The /etc/hosts.equiv
and .rhosts files must be correctly configured to use this
command. Note that rcp does not copy symbolic links.

ftp A file transfer program that uses the File Transfer Protocol.
The ftp program transfers files to and from a remote network
site. Passwords are required to access user directories.

ifconfig Allows users to view and configure TCP/IP network interface
parameters. The ifconfig command is not hardware
dependent.

netstat A command that lets users know the status of the network. It
displays the contents of various network-related data
structures.

tcpdump Displays TCP/IP activity on a particular interface.

Table 1-1: LynxOS TCP/IP Components (Continued)

Component Definition
4 LynxOS Networking Guide

Testing TCP/IP (ping)

The following figure shows the ping command testing TCP/IP configuration by
sending data packets to the IP address of a system:

The following figure shows the ping command testing TCP/IP configuration by
sending data packets to the hostname of a system.

$ ping 192.168.1.102
PING 192.168.1.102: 56 data bytes
64 bytes from 192.168.1.102: icmp_seq=0.time=10. ms
64 bytes from 192.168.1.102: icmp_seq=1.time=0. ms
64 bytes from 192.168.1.102: icmp_seq=2.time=0. ms
64 bytes from 192.168.1.102: icmp_seq=3.time=0. ms
^C
---- 192.168.1.102 PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/2/10
$

Figure 1-1: Testing TCP/IP with ping

$ ping shark
PING shark (192.168.1.101): 56 data bytes
64 bytes from 192.168.1.101: icmp_seq=0.time=10. ms
64 bytes from 192.168.1.101: icmp_seq=1.time=0. ms
64 bytes from 192.168.1.101: icmp_seq=2.time=0. ms
64 bytes from 192.168.1.101: icmp_seq=3.time=0. ms
^C
----shark PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/2/10
$

Figure 1-2: Using ping to test TCP/IP
LynxOS Networking Guide 5

Chapter 1 - TCP/IP

Once the correct host setup is verified, every host on the network can use the ping
command on other members of the network as shown in the following figure.

Troubleshooting ping
Problems related to testing TCP/IP configurations with ping sometimes occur
due to host lookup failures, or problems in connectivity between the systems, not
necessarily with the TCP/IP configuration on the local system.

The /etc/hosts File

Host lookup failures with ping can sometimes be attributed to incorrect
/etc/hosts, or /etc/resolv.conf files. For example, if the host named
fish in the /etc/hosts file is not defined, the ping command fails as shown
in the following figure.

Because the hostname fish is not defined on the local system, ping returns a
host name lookup failure. The /etc/hosts file provides a means of mapping IP
addresses to hostnames. However, in larger networks, a Domain Name Service
(DNS) server is typically used. The DNS server maintains a database of hostnames
and IP addresses. If a user pings a system that is not defined in a local
/etc/hosts file, the system then sends a request to a DNS server to translate the
hostname to the IP address.

$ ping orca
PING orca (192.168.1.102): 56 data bytes
64 bytes from 192.168.1.102: icmp_seq=0.time=10. ms
64 bytes from 192.168.1.102: icmp_seq=1.time=0. ms
64 bytes from 192.168.1.102: icmp_seq=2.time=0. ms
64 bytes from 192.168.1.102: icmp_seq=3.time=0. ms
^C
----orca PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/2/10
$

Figure 1-3: Pinging Other Hosts on a Network

$ ping fish
ping: fish: Host name lookup failure
$

Figure 1-4: Host Not Defined in /etc/hosts
6 LynxOS Networking Guide

Troubleshooting ping

However, a preferred method to test TCP/IP functionality is to first ping the IP
address of a system, then attempt to ping the hostname of a system. If the IP
address of a host is found, but the host name lookup fails, TCP/IP is correctly
configured, but the hostname resolution needs to be corrected. To resolve the
hostname lookup failure, the correct IP address and hostname must be added to the
/etc/hosts file.

The following table shows an example /etc/hosts configuration file:

In this example, the localhost entry is called a �loopback� address, and is used to
point to the local system. An entry also exists for the IP address and hostname of
the local system. Any other IP address and hostname definitions point to other
systems on the network.

The /etc/resolv.conf file

In addition to the /etc/hosts file, the /etc/resolv.conf file provides the
domain name for the local system, domain search paths used when looking up
hosts, and IP addresses for Domain Name Service (DNS) servers.

Users can ping a host without providing a domain name by entering the
following command:

ping fish

If fish is not defined in /etc/hosts, the local system uses the search paths and
DNS servers provided in /etc/resolv.conf to determine a fully-qualified
domain name and IP address. The system uses the search entries in the
resolv.conf file to determine a fully qualified domain name, for example,
fish.domain1.com. For the system to find the IP address of a host, it must have
access to one or more DNS servers. These DNS servers contain indexes of fully
qualified domain names and valid IP addresses.

#loopback address
127.0.0.1 localhost

#localhost address
192.168.1.103 stingray

#other host addresses
192.168.1.101 shark
192.168.1.102 orca

Figure 1-5: /etc/hosts example file
LynxOS Networking Guide 7

Chapter 1 - TCP/IP

The structure of the /etc/resolv.conf file is as follows:

In this example, the domain definition provides the domain of the local system. If
the hostname is stingray, for example, the fully qualified hostname would be
stingray.domain1.com.

The search definitions provide a means to resolve the fully-qualified domain
name for hosts. For example, a system searching for the host fish first attempts to
resolve the fully qualified domain name to the first search entry, or
fish.domain1.com by sending a request to the local DNS server. If no entry
exists in the DNS table for the system fish.domain1.com, the local system
resolves the fully qualified domain name to the second search entry in
resolv.conf, or fish.domain2.com. A second request is sent to the DNS
server for the IP address of fish.domain2.com. This process continues until a
valid host and domain is found or there are no more search paths. There is no limit
to the number of search paths that can be used in /etc/resolv.conf.

nameserver definitions in /etc/resolv.conf are IP addresses pointing to
local DNS servers. These DNS servers are used to translate the fully qualified
domain name to a valid IP address.

ping Not Responding

If the ping command fails to respond with any output, terminate the program by
pressing Ctrl-C. Common reasons for ping failure include:

� The machine orca is not connected to the network.

� The machine orca is down or powered off.

� The /etc/hosts file on shark has the wrong Internet address for
orca.

� TCP/IP is not properly configured for orca.

domain domain1.com

search domain1.com
search domain2.com

nameserver 192.168.1.254
nameserver 192.168.1.253

Figure 1-6: /etc/resolv.conf example file:
8 LynxOS Networking Guide

Using traceroute

Using traceroute

The traceroute utility is used to follow the route an IP packet takes to reach its
destination. By sending simple UDP probe packets, traceroute displays the
names and response times of the different gateways a packet traverses before
reaching its destination. The traceroute syntax is as follows:

traceroute <host>

Where <host> is the hostname or IP address of the destination system. Additional
usage information is available in the traceroute man page.

Additionally, traceroute6 can be used to follow the route of an IP packet
through IPv6 networks.

Logging On to a Remote Computer (telnet, rlogin)

Users can log on to another host on the network using either one of the two utilities
supplied with TCP/IP:

• telnet

• rlogin

telnet
The telnet utility allows users to log on any type of computer that supports
TCP/IP. The computer can run any operating system, UNIX-compatible or not.
This utility allows a LynxOS user to access a system from anywhere on the
network.
LynxOS Networking Guide 9

Chapter 1 - TCP/IP

telnet is invoked with the host name of a remote computer, as shown in the
following figure.

To access the system, users must supply a user name and password.

Terminate a telnet session by logging out of the system with the exit
command, as shown in the following figure.

rlogin
Users can use rlogin to remotely log on another computer similar to telnet.
Unlike telnet, rlogin requires the host computer to have a UNIX-compatible
operating system.

rlogin is invoked with the host name of the remote computer, as shown in the
figure below:

jones@orca$ telnet shark
Trying...
Connected to shark.
Escape character is '^]'.

LynxOS (shark)

user name: jones
password:

jones@shark$

Figure 1-7: Using telnet to Remotely Log in

jones@shark$ exit
Connection closed by foreign host.

jones@orca$

Figure 1-8: Terminating a telnet Session

jones@orca$ rlogin shark
login shark vt100
password:

jones@shark$

Figure 1-9: Using rlogin
10 LynxOS Networking Guide

Executing Commands Remotely (rsh)

In the previous example, no user name is passed to rlogin. In this case, the user
name on the local machine is used to log on the remote machine, for example, user
jones on host shark logged on remote host orca as user jones.

If the user wants to log on to a system that does not have an identical user account,
the login argument, -l followed by the desired user account must be added, as
shown in the following figure.

Unlike telnet, the rlogin utility lets users take advantage of the information
in /etc/hosts.equiv and.rhosts files. Users on machines that are set up to
be considered local are not prompted for a password.

Executing Commands Remotely (rsh)

Another utility included with TCP/IP is rsh, the remote shell command. This
utility allows users to perform the following tasks:

� Access remote hosts and redirect output to the local machine.

� Execute a command on that host.

Accessing Remote Hosts and Redirecting
Output to the Local Machine
The rsh command only works when the user is considered equivalent on the
local and remote machine.

The syntax for the rsh command is as follows:

rsh host [-l <user_name>] <command>

An optional user name can be given to execute the command as a specific user.
This is useful if the current user account is not considered equivalent on the remote
machine. rsh redirects standard input, standard output, and standard error from
the remote machine to the local host.

jones@orca$ rlogin shark -l doc
login shark vt100
password:

doc@shark$

Figure 1-10: Remote Log in as Another User
LynxOS Networking Guide 11

Chapter 1 - TCP/IP

The who utility displays users who are currently logged into a remote host, as
shown in the following figure.

Executing a Command on a Remote Host
Also, commands can be invoked on a remote host as another user. In the following
figure, user jones on host orca invokes the whoami command. This utility
reports the current login account.

Transferring Files Between Machines (ftp, tftp rcp)

There are several ways to copy files between hosts:

� ftp for hosts of differing operating systems.

� rcp for UNIX compatible operating systems.

File Transfer Protocol (ftp)
The File Transfer Protocol, or ftp allows users numerous configuration options.
In addition to the options provided in this document, review the ftp man page for
setting advanced options.

davis@shark$ rsh orca who
rootatc0 Mon Dec 23 10:40:54
rootttyp0:0.0Mon Dec 23 10:41:19
rootttyp1:0.0Mon Dec 23 10:49:02
rootttyp2:0.0Mon Dec 23 11:05:45
davis@shark$

Figure 1-11: Using who to Query Log ins on a Remote System

davis@shark$ rsh orca -l jones whoami
jones

davis@shark$

Figure 1-12: Using rsh to Remotely Execute a Utility
12 LynxOS Networking Guide

File Transfer Protocol (ftp)

Starting ftp

In its simplest invocation, ftp is called with the host name of the remote
machine. ftp prompts for a user login and password. A password must be
provided to access user accounts.

In the following figure user davis on host orca connects to host shark and
logs on as user jones.

Retrieving Files from a Remote Host (get)

Once logged in, files can be retrieved from the remote host using the get
command, as shown in the following figure.

davis@shark$ ftp orca
Connected to orca.
220 orca FTP server (Version 4.162 Tue Nov 1 10:50:37 PST
1988) ready.
Name (orca:davis): jones
331 Password required for jones.
Password:
230 User jones logged in.
ftp>

Figure 1-13: Connecting to a System with ftp

ftp> get .login
200 PORT command successful.
150 Opening ASCII mode data connection for .Login (209
bytes).
226 Transfer complete.
218 bytes received in 0.01 seconds (21.29KB/s)
ftp>

Figure 1-14: Downloading Files with ftp
LynxOS Networking Guide 13

Chapter 1 - TCP/IP

Sending Files to a Remote Host (put)

Alternatively, files can be sent to the remote host using the put command, as
shown in the following figure.

Transferring Binary Files

To transfer binary files, the transfer mode must be changed by entering the binary
command at the ftp prompt. For example:

ftp> binary
200 Type set to I.
ftp>

Transferring a binary file in ASCII mode results in a corrupt file. To preserve the
integrity of the file, be sure to set FTP to binary mode before the transfer. Note that
Binary file transfers are a little slower than ASCII file transfers.

Listing ftp Commands

ftp commands are displayed by entering a question mark (?) at the ftp prompt.
The following list describes some common ftp commands

ftp> put hosts.equiv
200 PORT command successful.
150 Opening ASCII mode data connection for hosts.equiv.
226 Transfer complete.
12 bytes sent in 0.07 seconds (0.17KB/s)
ftp>

Figure 1-15: Uploading Files with ftp

NOTE: By default, the ftp transfer program operates in an ASCII text mode. Set
the transfer mode to binary by entering binary at the ftp prompt.

Table 1-2: Common ftp Commands

Command Description

ascii Sets file transfer type to ASCII.

binary Sets file transfer type to binary.

bye Terminates the ftp session and exits.

cd Changes directory on the remote system.
14 LynxOS Networking Guide

Trivial File Transfer Protocol (tftp)
Trivial File Transfer Protocol (tftp)
tftp (Trivial File Transfer Protocol) is a simple UDP transfer protocol. Typically,
tftp is used for bootstrapping diskless clients and installing firmware into ROM.

tftp does not require client authentication, which may pose a security risk for
some systems. LynxOS supports two tftp transfer methods: Simple and Secure.

� Simple: The client can access the entire file system. This is a simpler
configuration, but it presents a larger security hole (anyone can access the
password file). In Simple mode, only files open to the public can be read.

Simple is the default tftp mode. No options are required:

tftpd

� Secure: Secure mode allows tftp access for a single directory. When
invoked, the TFTP server uses a chroot(2) system call to change its
root directory. All other directories are inaccessible to the client. Because
of the chroot(2) system call, tftpd must be run as root. Additionally,
secure mode allows for a particular user to be specified with the -u
option.

delete Deletes file on the remote system.

get Retrieves remote files to the local system

help Displays a list of ftp commands. If a command is provided as an
argument, displays specific command information.

lcd Changes working directory on the local system.

ls Lists contents of remote directory

mdir Lists contents of multiple remote directories.

mget Retrieves multiple files.

mkdir Makes directory on the remote system.

mput Sends multiple files.

put Sends one file.

pwd Prints remote system working directory.

Table 1-2: Common ftp Commands (Continued)

Command Description
LynxOS Networking Guide 15

Chapter 1 - TCP/IP

Secure tftp is set with the -s option and a directory name. For example,
to set up the directory /tmp/project for secure tftp for the user fred,
use the following command:

tftpd -s /tmp/project -u fred

For more information, see the tftpd(8) man page.

Remote Copy (rcp)
The remote copy command or rcp is an efficient way to exchange data between
UNIX-compatible hosts. To access files using rcp, users must have already set up
the /etc/hosts.equiv and .rhosts files correctly. Files can be copied
between hosts using a syntax similar to the UNIX cp command.

The only difference is that the remote host�s file name must be indicated properly.
In the following example, file /etc/hosts is copied from host orca to host
shark:

jones@shark$ rcp orca:/etc/hosts /tmp

Like the cp command, multiple files can be transferred to a directory:

jones@shark$ rcp /etc/passwd /etc/printcap orca:/tmp

Finally, the rcp command can be used to transfer files between two hosts that are
different than the host currently logged into (assuming proper configuration).
In the following example, the /etc/passwd file is copied from host orca to
host fish from a user on host shark:

jones@shark$ rcp orca:/etc/passwd fish:/tmp/passwd

Divert Sockets

divert provides a kernel packet diversion mechanism. Divert sockets are similar
to raw IP sockets except that they can be bound to a specific divert port with the
bind system call. A divert socket bound to a divert port receives all packets
diverted to that port.

Divert sockets are normally used in conjunction with packet filtering. By reading
from and writing to a divert port, matching packets can be passed through a filter as
they travel through host machine. For more information refer to the divert(4)
and bind(2) man pages.
16 LynxOS Networking Guide

NAT and IP Masquerading

NAT and IP Masquerading

IP masquerading is a form of NAT (Network Address Translation) that can be
implemented in conjunction with the natd daemon.

This feature allows internally connected computers that do not have registered
Internet IP addresses to communicate to the Internet by way of natd running on a
LynxOS host gateway that has a registered Internet IP address.

Network Address Translation can be used to redirect an IP access to a particular
client, or redirect specific internet services to a particular client and port.

Figure 1-16: Network Address Translation

Enabling and Starting natd

NAT is enabled with a sysctl:

sysctl -w net.inet.ip.forwarding=1

Once natd is enabled in the kernel, start the daemon with the proper configuration
options. natd syntax is as follows:

natd <redirection_options>

 Internet Client A 192.168.0.1

Client B 192.168.0.2

Gateway running NATD

Private
LAN
LynxOS Networking Guide 17

Chapter 1 - TCP/IP

The following table describes the redirection options used with natd:

For example, two clients, Client A (192.168.0.1) and Client B (192.168.0.2) are
connected to a gateway. IRC services (port 6667) are required for ClientA, and
HTTP services are required for ClientB (port 80). To configure natd to redirect
incoming packets to these ports, enter the following commands:

natd -interface pro0 -redirect_port tcp 192.168.0.1:6667 6667

natd -interface pro0 -redirect_port tcp 192.168.0.2:80 80

Additional configurations and options are available in the natd(8) man page.

Table 1-3: natd Options and Descriptions

Option Description

-interface <ifx> Uses the IP address set to the interface <ifx> for aliasing.

-redirect_address
<localIP> <publicIP>

Redirects access to a local IP address to public IP address. This
option maps an external IP address to a local client IP. This is
known as static NAT, and is useful if there are several external IP
addresses available.

<localIP> is the IP address of the local system

<publicIP> is the external IP address

-redirect_port
<protocol>
<targetIP:targetPort>
[<aliasIP>]:<aliasPort>
[<remoteIP:remotePort>]

Redirects access to networking services.

<protocol> -- the protocol used (tcp or udp).

<targetIP>:<targetPort> -- the IP address and port of the
local client to direct services to. A range of ports can also be
specified. For example, (192.168.0.1:2000-3000).

[<aliasIP>:]<aliasPort> -- The services port being
requested. A range of ports can also be specified. For example,
(2000-3000).

[<remoteIP>:<remotePort>] -- Used to specify the remote
IP address and port of a requesting system.
18 LynxOS Networking Guide

IPv6 Support

IPv6 Support

The IPv6 protocol addresses technical limitations of IPv4. Most notably is the
increase IP address space, which has changed from 32 to 128 bits per address.

IPv4 32-bit addresses are represented in dotted-decimal format divided along 8-bit
boundaries. IPv6 IP addresses are 128-bit address divided along 16-bit boundaries,
and each 16-bit block is converted to a 4-digit hexadecimal number and separated
by colons. For example:

200A:00A3:2C5B:0000:02FF:FF00:FE38:934A

The IPv6 address representation can be further simplified with features such as
leading zero suppression and zero compression. Detailed information on these
features as well as other information regarding the IPv6 addressing architecture are
described in RFC 2373.

Other notable improvements is the inclusion of the following services that were
optional under IPv4:

� Autoconfiguration�IPv6 specifies a stateless host autoconfiguration
mechanism which is an improvement on the optional DHCP mechanism
used with IPv4.

� Security�IPv6 mandates support for IPsec. This guarantees that a secure
IP connection can be established when communicating with IPv6
devices.

� Multicast�Muliticast is now mandatory under IPv6.

In addition, IPv6 has simpler packet header structures and also introduces a
protocol header chain that allow for more flexible protocol extensions

Additional information on the specifications of IPv6 can be found at
www.ipv6.org.

NOTE: The IPv6 and IPsec protocols for LynxOS are not included with the
standard LynxOS package. These components are available for purchase
separately. For information on these products, please contact your LynuxWorks
sales representative.
LynxOS Networking Guide 19

Chapter 1 - TCP/IP

Setting an IPv6 Address Statically
Use the following steps to configure and test the system for assigning a static IP
address. It is important to note that manually setting and maintaining IPv6 IP
addresses can be complicated. Due to the complex nature of address notation,
mistakes are more likely to occur with IPv6 than IPv4. Users are cautioned to
double check addresses set manually.

1. Update /etc/hosts to include the IPv6 loopback address, the IPv6
address for the host, and an external IPv6 host address.

2. Assign an interface an IPv6 address with ifconfig. Note that for IPv6
addresses, the switch inet6 must be used:

ifconfig <if> inet6 <address>

3. Use ping6 to ping additional IPv6 networks

ping6 otherhost

Setting up Hostname Resolution for IPv6 Addresses
Hostname resolution is configured by the /etc/resolv.conf file. IPv6
addresses can be used along with IPv4 address to perform hostname resolution.
The following provides an example resolv.conf file:

Setting up Routes with route6d
The route6d daemon is an extension of routed that includes support for RIP
over IPv6. Refer to the route6d(8) man page for syntax and usage information.

127.0.0.1 localhost #IPv4 Loopback Address
::1 localhost #IPv6 Loopback Address

192.168.0.1 myhost #IPv4 Hostname Address
3ffe:0501:1234:ffff:: myhost #IPv6 Hostname Address

3ffe:0501:1111:ffff:: otherhost #entry for external IPv6 host

Figure 1-17: Example IPv6 /etc/hosts file

nameserver 3ffe:0501:1111:ffff::
nameserver 192.168.99.1

Figure 1-18: Example IPv6 resolv.conf file
20 LynxOS Networking Guide

Using faithd to Connect IPv6 and IPv4 Networks

Additionally, other routing demons that support IPv6 can be used; zebra, for
example. For additional information, see the GNU Zebra User�s Guide.

Using faithd to Connect IPv6 and IPv4 Networks

The faithd daemon is used to provide a IPv6 to IPv4 relay. faithd performs
TCP relay similar to firewall gateways, but with the addition of address translation.
faithd is used only to translate IPv6 addresses to IPv4.

The following provides an example of setting up and configuring faithd relay for
telnet. On the translating router where faithd runs, perform the following:

1. Use sysctl to allow for route advertising, IP6 forwarding, and faith:

sysctl -w net.inet6.ip6.accept_rtadv=0
sysctl -w net.inet6.ip6.forwarding=1
sysctl -w net.inet6.ip6.keepfaith=1

2. Start the faith0 interface, and create a route to faith0:

ifconfig faith0 up
route add -inet6 3ffe:501:1234:ffff:: \
-prefixlen 96 ::1
route change -inet6 3ffe:501:1234:ffff:: \
-prefixlen 96 -ifp faith0

3. Execute faithd for the telnet port as follows:

faithd telnet /net/telnetd

The first argument is a service name for TCP relay. The service can be specified
either by the port number (23) or by service name (telnet). The second argument
is a path name for the local IPv6 TCP server. If there is a connection to the router
itself, this program is invoked.

Note that faithd must be invoked for each service required.
LynxOS Networking Guide 21

Chapter 1 - TCP/IP

Hostname Resolution Between IPv6 and IPv4 Hosts
The simplest way to translate an IPv4 address to IPv6 address is to add an entry to
the /etc/hosts file. On the IPv6 host, add a line that resolves the IPv6 and IPv4
addresses:

Driver Defaults

The following table shows the default values within the driver information files.
These files are located in /sys/devices.

To change the defaults, edit the file, compile it, and install TCP/IP support again.
For more information, see �Installing/Removing TCP/IP Support� on page 1.

3ffe:0501:1234:ffff::192.168.0.1 hostname

Figure 1-19: /etc/hosts example

Table 1-4: Default Values within Driver Information Files

Info File Platform Defaults Notes

hbtcpip_info.c

All Mbufs (multiple of 4): 4096
clusters=(1/4 of mbufs)1024
tcp_sendspace=16384
tcp_receivespace=16384
udp_sendspace=16384
udp_receivespace=41984
cluster_size=2048
clshift_bits=11
ipforwarding=1
tcprexmtthresh=3
tcp_mssdflt=512
tcp_keepintvl=150
tcp_do_rfc1323=0
tcpip_max_prio=255

This file contains info about memory
usage and other control args for the
TCP/IP stack. Please see the
hbtcpip0(4) man page for
detailed information on configuration
options.

if_3c509info.c

x86
iobase=240
intr=5
slotno=0
default BNC

TCP/IP driver for the 3com 3c509
ISA and PCMCIA controllers.
(Values are used only for PCMCIA
controller, ISA card values are read
from eeprom.

if_3c90xinfo.c

x86 None used TCP/IP driver for 3com
vortex/boomerang/cyclone PCI
controllers.

if_amd970info.c

x86/ppc None used TCP/IP driver for and PCNET
controllers (93970/93971/93972/
93973)
22 LynxOS Networking Guide

Driver Defaults
Additional Device Drivers may be included with the LynxOS ODE or BSP
packages. Refer to the driver file or man page for additional tunable information.

For specific information on adding device drivers to a LynxOS system, please refer
to the LynxOS User�s Guide.

Additional information on creating device drivers is available in the book Writing
Device Drivers for LynxOS.

if_dec21040info.c

x86/ppc

probeint=10

TCP/IP driver for any Digital Tulip
compatible controller (2140/21041,
21140, 21142, 21143, 82168, 82169,
82115, 98100)

if_epicinfo.c
x86 None used TCP/IP driver for SMC epic

controller.

if_fccinfo.c
ADS 8260 None used TCP/IP driver for 10/100 Base T

Ethernet connected to FCC2.

if_gxinfo.c
x86 None used TCP/IP driver for Intel 82235 Gigabit

Ethernet chip.

if_pro100binfo.c
x86/ppc None used TCP/IP driver for Intel pro controller

(82557/82558/82559)

if_neinfo.c

x86/pmc860
iobase=300
intr=5

TCP/IP driver for NE2000 ISA/PCI
controllers (values used only for
ISA).

Table 1-4: Default Values within Driver Information Files (Continued)

Info File Platform Defaults Notes

NOTE: On the x86, if RAMBase is changed, make sure that the selected RAM area
lies within the supported address range by the Ethernet card (ideally, within a
0xC0000 - 0xDFFFF range). Also, be sure to use BIOS-SETUP (where
applicable) to disable the �Adaptor ROM shadow� for the RAM address range
used by the Ethernet card.

NOTE: In the hbtcpip_info.c file, the checksum calculation for UDP packets
can be enabled/disabled by setting the udpcksum filed to 1 (enable) or 0
(disable). Disabling the checksum increases the throughput for UDP packets.
LynxOS Networking Guide 23

Chapter 1 - TCP/IP
24 LynxOS Networking Guide

6

CHAPTER 2 Network Security
This chapter provides an overview of the network security components provided
with LynxOS, including:

� Firewalls

� IPsec

Firewalls

LynxOS TCP/IP provides network protection from external intrusion with the
incorporation of firewalls. Firewalls provide system administrators the ability to
allow or deny the forwarding of packets through a network. Both inclusive and
exclusive rule sets can be implemented, and protection from spoofing and
bandwidth limitation can also be set. LynxOS supports the packet filter ipfw
utility.

ipfw

IPFW is a kernel-based utility that is used to provide packet filtering and counting.
Using a set of user-defined rules, IPFW controls whether or not network packets
are forwarded or blocked. These user-defined rules, also called a firewall chain (or
rule chain), can block or allow specific requests from specific hosts.

The user utility ipfw(8) is used as an interface to the IPFW kernel component.

ipfw can be set up to monitor both incoming and outgoing connections.
LynxOS Networking Guide 25

Chapter 2 - Network Security

Enabling ipfw
IPFW is enabled with sysctl:

sysctl -w net.inet.ip.fw.enable=1

Changing ipfw Rules
The ipfw user command is used to set the packet filter rules. Adding a rule with
the ipfw command updates the current firewall chain. The simplest usage syntax is
as follows:

ipfw <command> <action> <protocol> <address> <options>

The following table defines each of the arguments for ipfw.

NOTE: When enabled, IPFW leaves all ports open by default.

Table 2-1: Changing ipfw Rules

Option Command & Description

<command> add -- Adds an entry to the firewall chain

delete -- Deletes an entry to the firewall chain

<action> reject -- Drop packet and send ICMP host unreachable to source

allow -- Allow packet to pass

deny -- Drop packet and do not notify source

count -- Update packet counter

<protocol> all -- Set rule for all protocols

icmp -- Set rule for ICMP packets only

tcp -- Set rule for TCP packets only

udp -- Set rule for UDP packets only

<address> Defines the IP address, mask, and (if required, port). Both From and To addresses can be
specified, as well as the interface used (eth0, for example):

from <address/mask>[<port>] to <address/mask>[<port>] \
[via <interface>]

Specific ports, or a range of ports can be set:
<port>, <port>, <port>
<port>-<port>
26 LynxOS Networking Guide

Listing ipfw Rules
For example, to set up a rule to deny all incoming packets from the address
192.168.1.1 to the address 192.168.2.2 over TCP/IP would be as follows:

ipfw add deny tcp from 192.168.1.1 to 192.168.2.2 in

To deny packets from the Ethernet port 1 to the telnet port (port 23) of 192.168.1.1,
the command is:

ipfw add deny tcp from 192.168.1.1 to 192.168.2.2 23 \
via eth1

Listing ipfw Rules
The current set of ipfw rules is displayed with the list argument:

ipfw list

Removing ipfw Rules
The flush argument to ipfw removes all rules currently set for packet filtering.

ipfw flush

<options> via <if> -- Packet must be going through interface <if>.
via <if*> -- Packet must be going through interface <ifX>,
where X is a unit number.
via <any> -- Packet must be going through some interface.
via <ip> -- Packet must be going through the interface with the IP address <ip>.

frag -- Matches if the packet is a fragment.

in -- Matches if packet is incoming.

out -- Matches if packet is outgoing.

ipoptions <spec> -- Matches if IP header contains options specified in <spec>.

established -- Matches if the packet is part of an established TCP connection.

setup -- Matches if the packet is attempting to setup a TCP connection (syn bit set, ack not
set).

tcpflags <flags> -- Matches if the TCP header contains the flags specified
in <flags>. Supported flags include fin, syn, rst, psh, ack, urg.

icmptypes <types> -- Matches if the ICMP type is specified in <types>.

Table 2-1: Changing ipfw Rules (Continued)

Option Command & Description
LynxOS Networking Guide 27

Chapter 2 - Network Security

Clearing ipfw Counters
ipfw counters setup with the count option can be cleared with the zero argument
to ipfw:

ipfw zero [<index>]

<index> affects only the counter at the index number specified. If <index> is not
used, all packet counters are cleared.

ip6fw

The ip6fw utility is an IPv6 implementation of IPFW. The syntax and usage is
identical to IPFW, with the following exceptions to the <protocol> option:

IPsec

IPsec is a security protocol in the IP layer that provides a secure means of
communications between two hosts. IPsec can create a tunnel between subnets
(tunnel mode) or provide security between two hosts directly (transport mode.)
Hosts resolve the encryption keys and certification allowing for encrypted packets
to be exchanged. Security information can be exchanged manually, or automated
with the racoon daemon. Both IPv4 and IPv6 are supported.

Table 2-2: ip6fw Specific Options

Option Command & Description

<protocol> ipv6 or all -- Set rule for all protocols

ipv6-icmp -- Set rule for IPv6 ICMP packets only

tcp -- Set rule for TCP packets only

udp -- Set rule for UDP packets only

ipv6no/prefixlen An IPv6 number with a prefix length of the form
fec0::1:2:3:4/112.

NOTE: The IPsec and IPv6 protocols for LynxOS are not included with the
standard LynxOS package. These components are available for purchase
separately. For information on these products, please contact your LynuxWorks
sales representative.
28 LynxOS Networking Guide

AH and ESP Security Protocols

IPsec policies are configured with the setkey(8) utility. See �Using setkey� on
page 30 for additional information.

AH and ESP Security Protocols

IPsec uses two security protocols:

� AH (Authentication Header)

AH contains hashes of data identification in the header, protecting the
source and destination addresses of the packet. A shared secret between
hosts ensure that packets are sent and received from the right system.

� ESP (Encapsulated Security Payload)

The ESP header allows for encryption or decryption of the packet by a
shared secret between hosts.

Tunnel Mode and Transport Mode

IPsec includes two modes of communicating packets:

� Tunneling -- A connection between two systems on the same subnet.
Typically, IPsec is used in tunnel mode to establish a VPN. In tunnel
mode, IPsec encrypts the payload, and encapsulates it in a packet before
sending it to the host.

� Transport -- A connection between two systems, where the payload for
IPsec packets are encrypted. In transport mode, IPsec appends outgoing
IP packets with a security protocol header. The IPsec header is
determined by the original packet, and security information is included
by the packet header.

Setting the Security Policy Database (SPD)

A (SPD) Security Policy Database is kept in the kernel that determines what
encryption algorithms should be used, the security protocol to use (AH or ESP),
and what packets to encrypt. The utility setkey(8) is used to modify the policies
kept in the SPD.
LynxOS Networking Guide 29

Chapter 2 - Network Security

Setting the Security Association Database (SAD)

The encryption keys used in secure transactions are kept in the kernel table called
SAD (Security Association Database). The SAD contains the list of keys that are
required for secure communications. The SAD can be manually updated with the
setkey(8) utility. For hosts supporting IKE (Internet Key Exchange), the SAD
can be automatically updated with the racoon daemon.

Using setkey

The setkey utility, invoked with the -c option, reads commands from standard
input. Invoked with the -f option, setkey reads commands from a filename. The
syntax used with setkey is as follows:

setkey -f <filename>

or

setkey -c

... <rules>

<Ctrl-C>

The ipfw syntax is as follows:

<command> <src_addr> <dest_addr> <protocol> <spi> \
[<extension>] <algorithm> [-P <policy>]

NOTE: If using IPsec behind a firewall, be sure to open any required ports required
by ESP. For UDP, for example:
ipfw add pass esp from any to any
30 LynxOS Networking Guide

Using setkey

The following table describes the available commands and arguments:

Table 2-3: setkey Command Options and Descriptions

Option Commands and Descriptions

<command> add -- Adds an SAD entry

spdadd -- Adds an SPD entry

get -- Show a SAD entry

delete -- Removes an SAD entry

flush <protocol> -- Clears all SAD entries matching <protocol>

dump <protocol> -- Dumps all SAD entries matching <protocol>

<src_addr> IP address of source system

<dest_addr> IP address of destination system

<protocol> esp -- ESP based on RFC2405

esp-old -- ESP based on RFC1827

ah -- AH based on RFC2402

ah-old -- AH based on RFC1826

ipcomp -- IP COMP

<spi> Security Parameter Index (SPI) for the SAD and SPD. A decimal or hexadecimal number.

[<extension>] -m <mode> -- Specify a security protocol mode for use. <mode> is one of following:
transport, tunnel or any. The default value is any.

-r <size> -- Specify size of bytes for replay prevention.
<size> must be a 32-bit decimal number. If <size> is zero or not specified, replays are
not checked.

-u <id> -- Specify the identifier of the policy.

-f <pad_option> -- Where <pad_option> is one of following: zero-pad,
random-pad or seq-pad.

-f nocyclic-seq -- Don't allow cyclic sequence numbers.

-lh <time> -- Specify hard lifetime

-ls <time> -- Specify soft lifetime.

<algorithm> -E <ealgo key> -- Specify encryption algorithm.

-A <aalgo key> -- Specify authentication algorithm. If -A is used for ESP, it will be
treated as ESP payload authentication algorithm.

-C <calgo> -- Specify compression algorithm.
LynxOS Networking Guide 31

Chapter 2 - Network Security
The following commands and files provide an example of using setkey for
updating the SAD and SPD kernel tables. The following instructions must be
completed for both systems using IPsec.

1. Flush the current SAD and SPD:

setkey -F

2. Create a file that contains the policies for SAD. In the example file below,
two hosts (192.168.0.1 and 192.168.0.2) are enabled to use the 3des-cbc
encryption algorithm using ESP. The first two lines enable the source and
destination addresses, the last line updates the SPD table

For Host A, use the following:

[-P <policy>] -P <direction> discard -- Discards packet matching index.
<direction> is in or out.

-P <direction> none -- Specifies IPsec not to operate on packet. <direction> is
in or out.

-P <direction> ipsec <protocol>/<mode>/<src>-<dst>/
<level>
-- Specifies a Policy for IPsec to operate on a packet.
<protocol> is ah, esp, or ipcomp.
<mode> is transport or tunnel
<src>-<dst> is the beginning and end point addresses used to specify the SAD
<level> is either default, use, or require. default means the kernel consults to
the system-wide default against the protocol specified when the kernel processes the packet.
use means that the kernel uses an SA if it's available, otherwise the kernel operates normally.
require means SA is required whenever the kernel deals with the packet.
<direction> is in or out.

Table 2-3: setkey Command Options and Descriptions (Continued)

Option Commands and Descriptions

IPv4 ESP
local system: 192.168.0.1
remote system: 192.168.0.2

add 192.168.0.1 192.168.0.2 esp 1234 -E 3des-cbc “123456781234567812345678”;
add 192.168.0.2 192.168.0.1 esp 9999 -E 3des-cbc “123456781234567812345678”;
spdadd 192.168.0.1 192.168.0.2 any -P out ipsec esp/transport//use;

Figure 2-1: Sample Configuration File (hostA.sample.policies)
32 LynxOS Networking Guide

Using setkey

For Host B, use the following (note the spdadd change):

3. Point setkey to the SAD file for each host. For Host A:

setkey -f hostA.sample.policies

For Host B:

setkey -f hostB.sample.policies

setkey reads in the file and updates the SPD and SAD as necessary.

Additional configuration details are available in the setkey(8) man page. Also,
refer to the racoon utility man page for information on automating the SAD
update.

IPv4 ESP
local system: 192.168.0.1
remote system: 192.168.0.2

add 192.168.0.1 192.168.0.2 esp 1234 -E 3des-cbc “123456781234567812345678”;
add 192.168.0.2 192.168.0.1 esp 9999 -E 3des-cbc “123456781234567812345678”;
spdadd 192.168.0.2 192.168.0.1 any -P out ipsec esp/transport//use;

Figure 2-2: Sample Configuration File (hostB.sample.policies)
LynxOS Networking Guide 33

Chapter 2 - Network Security
34 LynxOS Networking Guide

CHAPTER 3 PPP
PPP (Point-To-Point Protocol) is a protocol used to send and receive data packets
reliably over a serial line. This chapter describes LynxOS PPP components and
how to configure PPP servers and clients.

LynxOS PPP Components

PPP, unlike SLIP (also used to communicate over serial lines) allows the
communicating side to negotiate options. PPP also provides for authentication, by
way of exchanging secret tokens between the client and the server. The table below
lists the LynxOS PPP components:

For more information on these components, see the pppd and chat man pages.
These man pages cover the PPP controlling options, chap-secrets file, and the
PPP kernel driver.

Table 3-1: LynxOS PPP Components

Component Definition

/net/pppd User level daemon that controls the PPP protocol.

/net/chat Automated conversational script with a modem.

/etc/ppp/options PPP controlling options.

/etc/ppp/chap-secrets CHAP secrets file.

/sys/drivers/if_ppp PPP kernel driver.
LynxOS Networking Guide 35

Chapter 3 - PPP

Installing/Removing PPP Support

PPP can be installed and/or removed after the initial installation of LynxOS. The
Install.ppp and Uninstall.ppp scripts are located in /usr/bin.

Installing PPP

To install PPP, execute this script:

Install.ppp

Removing PPP

To remove PPP:

Uninstall.ppp

For more advanced information on these steps, see �Customizing LynxOS� in the
LynxOS User�s Guide.

Configuring the PPP Server

The PPP Server is configured in one of two ways:

� Running pppd on each serial line.

� Creating an account and login shell for a user ppp.

Running pppd on Each Serial Line

The advantages of using this method are as follows:

� Exclusive options can be provided to each of the PPP serial lines.

� The client can be assigned a unique IP address.

Use the following procedure to run pppd on each of the serial lines:

1. Log in as root.

2. Run the pppd daemon by entering the following command:

pppd /dev/com2 9600 <server>:<client> \
auth silent persist &
36 LynxOS Networking Guide

Creating a ppp Account and login Shell for pppd

where <client> is the client and <server> is the PPP servername.
When the PPP runs over the com2 serial line, the client connects with a
hostname (client) and the connection is authorized using CHAP
secrets.

This command also ensures that pppd waits for an incoming
connection, and upon termination of connection, the daemon is ready for
new connections.

The rest of the pppd options are taken from the /etc/ppp/options file. In
this case, the login on the serial port com2 should be disabled by the /etc/ttys
controls.

If no authorization is preferred, the option noauth should be used instead of
auth when starting the pppd daemon. For more detailed information, see the
pppd and chat man pages.

For a complete list of configuration options for the ppp daemon, please see the
pppd(8) man page.

Creating a ppp Account and login Shell for pppd

A special account must be created called ppp. In addition, the login shell for the
serial device must be configured as the pppd daemon. Use the following
instructions to create a ppp account:

1. Use the adduser script to add an account for a user called ppp.

2. Add a password to the ppp account. A typical entry in the
/etc/passwd file for a ppp account is as follows:

ppp:KByn.VTqKXWsE:101:101:PPP\
connections:/usr/ppp:/net/pppd

In this example, the client is authenticated with the ppp password, in
addition to possible authentication with CHAP secrets.

3. Enable the shell login on the serial port by entering the serial device in
/etc/ttys file as follows:

/dev/com2:1:ppp:vt100:/bin/login

NOTE: This line can be added to system startup scripts to automate the PPP server
at boot time.
LynxOS Networking Guide 37

Chapter 3 - PPP

4. Add the terminal configuration for this serial line to the /etc/tconfig

file as ppp:

ppp:\ :si=9600:so=9600:\ :tc=default:

The PPP client is expected to login as the user ppp with the appropriate password
to initiate the PPP protocol. The ppp sessions on the server are controlled with the
/etc/ppp/options file. Therefore, when supporting PPP over multiple serial
lines, it is assumed that the client comes with it�s own IP address, asking for default
route and proxy ARP supports. For a complete list of options for the pppd
daemon, see the man page for pppd.

Configuring the PPP Client

It is recommended that the LynxOS PPP client kernel be built with PPP driver
support as described in the previous section. To establish the PPP connection to the
server, perform the following tasks:

� Dial the server and establish the link.

� Process the PPP protocol and authentication to effect the connection.

Dialing the Server

The chat utility can be used to dial the server, and as an argument to pppd by
using the connect option. The chat utility supplies a set of strings that reflect the
input and response from the serial line.

Different arguments are required with the chat program, depending on the
requirements of the server:

� Special login with a ppp user-ID in addition to a Dial-in.

� Dial-in facility alone.

NOTE: syslog must be running to view any output from the ppp daemon. Start
syslog with the command syslogd. For configuration information, see the
syslog(3) man page.
38 LynxOS Networking Guide

Using chat with Special Log in ppp User-ID

Using chat with Special Log in ppp User-ID
The following figure shows a sample chat script that assumes the client login to
be user-ID ppp.

This script shows how to respond to a given input string/condition. If a NULL
command is given, chat sends an ATZ command to the modem to initialize it,
and on receiving the OK, dials out the number 192. The script expects CONNECT
to come from the remote side, and sends a set of null commands ultimately
expecting the name string from the remote side. It responds with ppp and on
receiving the string ssword sends the previously agreed password allowme.
This chat session assumes that the PPP server is configured with a user ID ppp
to initiate the PPP connection with the password allowme.

The following figure shows a typical pppd command for the chat script that
uses the ppp user-ID:

In this example, the pppd command assumes that the PPP server is configured so
that the pppd daemon is started by the ppp user ID login session.

Using chat as a Dial-in Facility
Alternatively, the PPP server may already be started on the serial line, waiting for
incoming IPCP packets. The following figure shows this case, where the chat
script dials out to initiate the modem connection.

chat -v ABORT BUSY ABORT “NO CARRIER” ABORT “NO DIAL TONE” \
““ATZ OK ATDT192 CONNECT ““ ““ ““ ““ ““ name: ““ ““ ““\ name: ““ ““ ““ name:
ppp ssword: allowme

Figure 3-1: chat Script for a Special Log in and ppp User-ID

pppd /dev/com2 9600 \
connect ‘chat -v ABORT BUSY ABORT “NO CARRIER” ABORT “NO DIAL TONE” \
ATZ OK ATDT192 CONNECT ““ ““ ““ ““ ““ name: ““ ““ ““ name: ““ ““ ““ \
name: ppp ssword: allowme’ \
xonxoff nocrtscts asyncmap a0000 noipdefault defaultroute bsdcomp 15 \
nodeflate remotename lynx_se

Figure 3-2: chat Script for PPP Server

chat -v ABORT BUSY ABORT “NO CARRIER” ABORT “NO DIAL TONE” \
ATZ OK ATDT192 CONNECT

Figure 3-3: chat Script for a Dial-in Facility
LynxOS Networking Guide 39

Chapter 3 - PPP

Typically, this command is used with pppd as shown in the following figure.

For more detailed information on setting up the PPP client and server, see the
pppd and chat man pages.

pppd /dev/com2 9600 \
connect ‘chat -v ABORT BUSY ABORT “NO CARRIER” ABORT “NO DIAL TONE” \
ATZ OK ATDT192 CONNECT ‘ \
xonxoff nocrtscts asyncmap a0000 noipdefault defaultroute bsdcomp 15\
nodeflate remotename lynx_se user lynx_cl

Figure 3-4: Sample pppd Command for a Dial-in Facility
40 LynxOS Networking Guide

CHAPTER 4 DHCP
DHCP (Dynamic Host Configuration Protocol) enables systems to request network
configuration information (IP address, local nameservers, and routers) from a
DHCP server. This chapter details DHCP concepts, installation and configuration.

Introduction

Dynamic Host Configuration Protocol (DHCP) enables individual clients on an IP
network to receive network configurations from a DHCP server. The DHCP server
provides pre-defined network configuration information dynamically, including
client IP addresses, nameservers, and routers. DHCP reduces the amount of
overhead in administering a large IP network by freeing the system administrator
from having to reconfigure each system individually.

DHCP also enables the storage and distribution of network parameters for clients
and groups. Additionally, DHCP allows for recovery and reallocation of these
network addresses through a leasing mechanism. Client network configurations
expire after a designated period of time, after which the client system�s network
configuration is either renewed or reissued from the DHCP server. Another feature
of this protocol is that it can be routed. DHCP support consists of a server daemon,
client utility, a relay daemon and a diagnostic utility and a set of configuration
database files. DHCP support requires TCP/IP.
LynxOS Networking Guide 41

Chapter 4 - DHCP

LynxOS DHCP Components

LynxOS uses the ISC (Internet Software Consortium) Open Source DHCP version
2.0 distribution. DHCP consists of two software components:

� DHCP Server

� DHCP Client

The DHCP Client sends a request to a DHCP server, which responds with
particular network parameters for the client to use. The following sections describe
DHCP files and configurations.

LynxOS DHCP Files

This table details the various configuration files used to configure a LynxOS
system for DHCP.

DHCP man pages

Additional DHCP configuration information is available in these man pages:

Table A-1: LynxOS DHCP Files

Component Definition

/bin/dhclient DHCP client configuration binary

/etc/dhcpd.conf DHCP configuration file

/etc/dhcpd.leases DHCP lease configuration file

/etc/dhclient-script DHCP client configuration script

/net/dhcpd DHCP daemon

/net/dhcrelay DHCP relay agent

Table A-2: DHCP man pages

man page Description

dhcpd(1) The DHCP server

dhcpd.conf(5) The DHCP server configuration file

dhcp-options(1) DHCP option statements
42 LynxOS Networking Guide

Online Resources
Online Resources

Additional information on DHCP is available at the Internet Software Consortium
web page:

http://www.isc.org

Installing DHCP

DHCP is included with the LynxOS base product, and is installed by default.
Configuring DHCP is explained in the following sections.

The DHCP Server

The DHCP server responds to requests from DHCP clients with network
configuration information. DHCP server components include: dhcpd and
dhcpd.conf.

dhcpd

The DHCP server daemon (dhcpd) serves DHCP client requests based on the
configuration file dhcpd.conf. The server also monitors the lease details of the
client IP addresses, facilitating the recovery and reallocation of IP addresses
through predefined lease agreements. Additionally, the server also services BOOTP
clients. The DHCP server maintains all current client configurations in the
dhcpd.leases file. For more information on dhcpd.leases, See
�dhcpd.leases� on page 45.

dhclient(1) DHCP client for LynxOS

dhclient.conf(5) DHCP client for LynxOS config file

dhrelay(1) DHCP relay Agent

dhclient.leases(5) DHCP lease file

Table A-2: DHCP man pages (Continued)

man page Description
LynxOS Networking Guide 43

Chapter 4 - DHCP

By default, dhcpd uses UDP port 67 to receive and UDP port 68 to send DHCP
information.

dhcpd.conf

The DHCP configuration file, dhcpd.conf, must be created by hand. This
configuration file sets specific network topologies and parameters the DHCP
server uses to assign IP addresses, nameservers, and routers to clients. In addition
to a range of available IP addresses, dhcp.conf must provide the IP address
subnet mask, and at least one router and nameserver on the network.

Network topology declarations include the shared-network and subnet
declarations. Dynamically assigned addresses must include the range declaration
with a subnet declaration. DHCP options are declared per subnet. lease
durations are expressed in seconds.

The following is an example of a dhcpd.conf file:

Additional information on specific options in configuring dhcpd.conf can be
found in the dhcpd.conf(5) man page.

After editing the dhcpd.conf file, restart the DHCP daemon:

1. Find the Process ID (PID) of the DHCP daemon (dhcpd) with the
following command:

ps -axon | grep dhcpd

NOTE: It is recommended that the DCHP server be incorporated into system
startup scripts to automate this functionality; for example adding a line executing
dhcpd in /etc/rc/network.

shared-network
subnet 192.168.11.0 netmask 255.255.255.0 {

range 192.168.11.1 192.168.11.251;
option routers 192.168.11.254;
option subnet-mask 255.255.255.0;
option domain-name-servers 192.168.11.253;
default lease time=30 Days
default-lease-time 2592000;
max lease time=45 Days
max-lease-time 3888000;
}

Figure 4-1: example dhcpd.conf file
44 LynxOS Networking Guide

dhcpd.leases

2. Use the kill command to stop the process.

kill <PID>

3. Restart the DHCP daemon:

/net/dhcpd

dhcpd.leases

This is a generated file that contains lease expirations for client network
configurations. The DHCP server maintains up-to-date information on client leases
in this file. In the event of a system reboot, the DHCP server can resume all current
connections without having to reconfigure each client on the network. This file
should not be edited.

Relay Agents

Relay Agents allow a DHCP server to configure systems on more than one
network segment. Relay agents forward DHCP requests from clients to the DHCP
server, allowing a single DHCP server to serve multiple clients in multiple network
segments. Using relay agents provides flexibility in configuring a DHCP network.

The DHCP Client

dhclient

The DHCP client (dhclient) sends requests to a DHCP server for network
configuration information. The primary information sought from the server is the
client IP address. The IP address is issued for a specific �lease� period, varying

NOTE: X86 systems that netboot LynxOS use RARP and TFTP. However, PXE
compatible devices must use DHCP.

NOTE: PPP Server and Client IP address allocation are not integrated with DHCP
and continue to work independently.

NOTE: Dynamic DNS update is not currently supported.
LynxOS Networking Guide 45

Chapter 4 - DHCP

between a few hours up to a year. Initially, dhclient broadcasts DHCP requests
using the UDP protocol over a chosen network interface (passed as an argument) to
the DHCP server.

Once it establishes contact with the server, the network configuration is applied to
the client. The client network configuration is valid until the lease period expires,
after which, the client attempts to renew the lease, or obtain a lease on new
network configurations. After configuring the client, the dhclient script becomes a
background process to continue to contact the DHCP server.

While configuring a netbooted client to use bootp and DHCP, choose the
DHCP option in the scripts. If not, the traditional RARP is used to netboot the
client.

In addition, online man pages contain detailed information.

Starting dhclient
Start the dhclient script by typing:

dhclient

NOTE: It is recommended that dhclient be incorporated into system startup
scripts to automate this functionality; for example adding a line executing
dhclient in /net/rc/network.
46 LynxOS Networking Guide

CHAPTER 5 NFS
During initial installation of LynxOS, NFS (Network File System) support is
installed with the installit utility. NFS can also be configured, installed, or
removed at any time after initial installation. Note that NFS requires TCP/IP to
function. This chapter describes NFS basics, as well as advanced NFS
configuration options.

Overview

NFS is a suite of user programs and kernel functionality that allow access to a
remote host�s filesystems as if they were local. All or part of a remote host�s file
system is mounted into the local host�s file system, allowing transparent access to
remote files by local users. Once mounted, any file on the remote file system is
accessible. Such files can be operated on by most utilities, functioning no
differently than a file located on the local disk.

In addition to basic file system accesses over NFS, LynxOS also supports:

� Client-side caching

� File locking over NFS

NFS client-side caching supports the caching of directory entries, file attributes
and file data information depending on the type of access. File locking support
facilitates advisory record locking between cooperating processes over NFS. This
facility also supports monitored class locking, and is able to recover from NFS
server/client crashes.

NFS software is divided into two parts:

� NFS server

� NFS client
LynxOS Networking Guide 47

Chapter 5 - NFS

When attempting to access a file in an NFS-mounted directory, the NFS client
sends a request to the NFS server on the remote system. The NFS server accepts
and manages these requests from the remote NFS client for access to the local disk.
The server enforces permissions and performs the actual manipulations to the local
disk.

Installing/Removing NFS Support

NFS can be installed and/or removed after initial installation of LynxOS. Note that
NFS requires TCP/IP. The Install.nfs and Uninstall.nfs scripts are located
in /usr/bin.

Installing NFS

To install NFS:

Install.nfs

Removing NFS

To remove NFS:

Uninstall.nfs

These installation and uninstallation scripts automatically install and configure
nfs for LynxOS.

Tuning the NFS Server Kernel

The NFS server is tuned by increasing or decreasing the values of five parameters.
These parameters are in the structure nfssvc_info located in
/sys/devices/nfssvc_info.c.

To change any of these parameters, edit the file
/sys/devices/nfssvc_info.c. After editing, the device library must be
updated and the kernel rebuilt.

NOTE: The /etc/exports file specifies the directories to be exported and the
corresponding access list.
48 LynxOS Networking Guide

NFS Server Tunable Parameters

NFS Server Tunable Parameters

Tunable parameters include:

� The maximum number of directories that can be exported.

The default is 16. If the system is used as a file server, this parameter may
need to be increased.

� The maximum number of hosts that can be specified in the access list of
an exported directory.

The default is 16.

� The maximum number of hosts that can be specified with root access for
an exported directory.

The default is 16. For security reasons, this parameter can be decreased.

� The maximum number of hosts that can be specified with read and write
access for an exported directory.

The default is 16. For security reasons, this parameter can be decreased.

� The maximum number of NFS server daemons that can be started at any
time.

The default is 8. If the system is used as a file server, multiple daemons
should be started. This is done by adding a count parameter to the line
/net/nfsd in /net/rc.network. For example, to start three NFS
server daemons, modify the line to read: /net/nfsd 3.

Tuning the NFS Client Kernel

The NFS client is tuned by changing the values of six kernel parameters. The
structure unfs_info, in /sys/devices/nfsinfo.c, contains six tunable
parameters:

� The maximum number of NFS file nodes that can be open at any time.

The default is 64. The value of this parameter should be increased for
heavy NFS traffic.

� The maximum number of NFS directories that can be mounted.
LynxOS Networking Guide 49

Chapter 5 - NFS

The default is 8. If this value is increased, make sure that NMOUNTS in
/sys/lynx.os/uparam.h is also increased to an equal or greater
value.

� The maximum number of NFS client daemons that can be started at any
time.

The default is 32. In case of heavy NFS client traffic, multiple client
daemons should be started. This can be done by duplicating the
/net/unfsio line in /net/rc.network.

� The maximum number of NFS client requests that can be in the queue at
any time.

The default is 32. The value of this parameter should be increased for
heavy NFS traffic.

� The maximum number of bytes in an NFS read/write request.

The default is 8192. This value should be reduced to 4096 or less to
interface with systems that have slower (i.e. 8-bit) Ethernet boards.

Edit the /sys/devices/nfsinfo.c file to change any of these parameters. Be
sure to change only the values. After making the desired changes, the device
library must be updated, and the kernel rebuilt. The LynxOS User�s Guide describes
how to update and rebuild the kernel.
50 LynxOS Networking Guide

Tuning the NFS Client-Side Cache

Tuning the NFS Client-Side Cache

The amount of memory allocated for NFS client-side caching can be tuned by
increasing or decreasing the values of the various fields in the nfs_cache_info
structure in /sys/devices/nfs_cache_info.c file.

The various fields in this structure are explained below:

struct nfs_cache_info {
int num_attrcache; /* num attribute cache blocks */
int num_dnlchdrs; /* num of dir name lookup
 cache headers */
int size_dnlcblk; /* size of each dnlc cache block */
int num_datacache; /* num data cache headers */
int size_datacache; /* amount memory for data cache */
int hash_tblsize; /* hash table size for data/dnlc
 blocks */
/* default mount-time options */
int blksize; /* caching block size */
int dis_cache; /* disable all caching */
int dis_datacache; /* disable file data caching */
int acregmin; /* min time in secs for reg files */
int acregmax; /* max time in secs for reg files */
int acdirmin; /* min time in secs for dir files */
int acdirmax; /* max time in secs for dir files */
};

Figure 5-1: nfs_cache_info.c example file

Table 5-1: nfs_cache_info struct Parameters

Struct Parameter Description

num_attrcache This parameter controls the total number of simultaneous file/directory
entries that are allowed to be cached in this client. Each entry for this
parameter consumes 180 bytes. Default value for this field is 512 (total
memory consumption 512*180 bytes).

num_dnlchdrs This parameter controls the maximum number of directory name lookup
buffers that are cached in the client. Each entry corresponding to this field
consumes 32 bytes. The default value for this field is 128 (total memory
consumption 32*128 bytes). Depending on the size of the directory files,
more than one entry may be used for each directory.

size_dnlcblk This parameter controls the amount of buffer allocated for each
directory name lookup cache header; used to store the file name
and its NFS File Handle. The default value for this field is 512.
Each file name entry associated with the directory takes
40+FileNameLen bytes.
LynxOS Networking Guide 51

Chapter 5 - NFS

num_datacache This parameter indicates the number of data cache headers allocated for

the NFS cache. Effectively, this parameter controls the total number of
data blocks (of variable size) that can be cached by the driver. Each entry
corresponding to this field consumes a total of 96 bytes. The default value
for this field is 128 (total memory consumption 128*96 bytes).

size_datacache This parameter controls the total amount of memory in kilobytes that are
allocated for data caching. The default value for this field is 512 (memory
usage 512KB.)

hash_tblsize This parameter controls the size of the hash table associated with
each entry of the file attribute cache. Thus, each file attribute entry
has hash_tblsize number of pointers to the associated
directory name lookup entries (in case of directory files) or data
cache entries (for regular files.)

For directory files, the hashing is based on the file names associated with
that directory. For regular files, the hashing is based on the block number
of the data block. The default value of this field is 32 (32*4 bytes.)

blksize This parameter determines the default logical blocksize for data caching.
This field is overridden by the read/write block size given at NFS mount
time, for that mount. The default value for this field is 8192.

dis_cache This field, if non-zero, disables system-wide NFS caching. The default
value for this field is zero and should remain zero.

dis_datacache This field, if set to non-zero, disables NFS data caching in the system. This
field should remain zero.

acregmin This field specifies the minimum time in seconds that the attribute cache
entries are held with the client after the last modification, before
enqueueing for updating with the NFS server. This field applies for regular
files. The default value for this field is 10.

acregmax This field specifies the maximum time in seconds that the file attributes
are expected to be the same as the NFS client. Beyond this period, the
attribute cache is discarded and is used for refreshing. The default value
for this field is 60 seconds.

Table 5-1: nfs_cache_info struct Parameters (Continued)

Struct Parameter Description
52 LynxOS Networking Guide

Tuning NFS File Locking
Once the desired values for the tuning parameters are updated in
/sys/devices/nfs_cache_info.c, the device library must be updated and the
kernel rebuilt. These steps are described in �Customizing LynxOS� in the LynxOS
User�s Guide.

Tuning NFS File Locking

The lock device driver facilitates advisory file locking over NFS. Advisory file
locking works with only co-operating processes. File locking is supported using
fcntl() and lockf() system calls. This device driver also supports monitored
class locking in which all the locks are monitored from both client and server side.
The file /sys/devices/lock_info.c controls the number of NFS file locking
client requests that are enqueued in the driver.

struct lock_info {
 int nports; /* max requests that can be enqueued */
};

Each entry that corresponds to the request queue takes 3068 bytes. The default
value for this field is set as 10 (total memory allocated 10*3068 bytes).

Once the desired parameter value is updated in the file
/sys/devices/lockinfo.c, the device library must be updated and the kernel
rebuilt. These steps are described in �Customizing LynxOS� in the LynxOS User�s
Guide.

acdirmin This field specifies the minimum amount of time in seconds, that the
directory file attributes are considered to be valid. The attributes are ready
for refresh beyond this duration. The default value for this field is 30
seconds.

acdirmax This field specifies the maximum time in seconds that the directory file
attributes are expected to the same. After this time period, the attribute
cache entry for the files in this directory, if needed, are refreshed from the
NFS server. The default value for this field is 60 seconds.

Table 5-1: nfs_cache_info struct Parameters (Continued)

Struct Parameter Description
LynxOS Networking Guide 53

Chapter 5 - NFS

Configuring the NFS Server

The only file that must be modified to allow other systems to access data on the
system is /etc/exports. This file is a database used by the NFS server to
determine if the requesting host is authorized to share the system�s data. The syntax
for each entry is as follows:

<directory> [option] [,option]...

The first field is the directory that is to be exported. If no options are given, any
host may mount this directory and access the files for reading and writing.

Access to the directory may be given only to specific hosts. In the following
example, the directory /mydata is exported for access by hosts shark and
orca.

/mydata access=shark:orca

Permission to access an NFS-mounted directory as root must be explicitly
declared. An attempt by a remote system to write to an NFS-mounted directory as
root fails, even if the directory is mounted read/write. To allow the remote system

orca to have root access to the directory /mydata, the following line should be
added to /etc/exports:

/mydata root=orca

All directories are exported as read/write unless otherwise specified. The -ro flag
is used to export a directory as read-only to everyone. The -rw flag is used to
export a directory as read/write to specific users; all other users have read-only
access. In the following example, /mydata is exported read-only.

/mydata ro

To restrict the read/write access of /mydata to only the hosts shark and orca,
but allow read-only access to everyone else, the following entry would be added to
/etc/exports:

/mydata rw=shark:orca

Any of the previous examples may be grouped, giving multiple accesses:

/mydata access=shark:orca:fish root=shark,rw=shark:orca

In the above example, access of the exported directory is limited to hosts shark,
orca, and fish. Only users with root access on shark have root access to the
exported directory, and only users on shark and orca have read/write
capabilities. Users on fish can access the files only in a read-only state.
54 LynxOS Networking Guide

CHAPTER 6 Samba
During the initial installation of LynxOS, Samba is installed with the installit
utility. Samba can also be configured, installed, or removed at any time after initial
installation.

This chapter describes Samba basics and how to configure and run the Samba
utilities to connect LynxOS to network clients.

What is Samba?

Samba is server software for computers that run under UNIX or UNIX-like
operating systems with standard TCP/IP. The Samba suite is a collection of
programs that implements the following protocols for UNIX:

� Server Message Block (SMB)

� Common Internet Filesystem (CIFS)

The SMB protocol is sometimes referred to as the Lan Manager or Netbios
protocol.

In addition, Samba includes a program, smbclient that implements a simple ftp-like
interface that lets users on LynxOS clients access file space and printers on
SMB/CIFS servers.

The Samba software is licensed under the GNU Public License. The latest Samba
information can be found online at:

http://www.samba.org
LynxOS Networking Guide 55

Chapter 6 - Samba

Installing/Removing Samba Support

Samba can be installed or removed after initial installation of LynxOS.
Install.samba and Uninstall.samba scripts are found in /usr/bin.

Installing Samba

To install Samba, execute the following script:

Install.samba

The Samba binary distribution is located in /usr/samba. The bin sub-directory
contains the Samba executables and script files. The docs sub-directory contains
documents and the examples sub-directory contains some sample smb.conf
files.

Read the UNIX_INSTALL.txt and DIAGNOSIS.txt files to confirm that the
proper prerequisites for the Samba suite are met.

For more information on Samba components, see �LynxOS Samba Components,�
on the following pages.

Removing Samba

To remove Samba:

Uninstall.samba
56 LynxOS Networking Guide

LynxOS Samba Components

LynxOS Samba Components

The Samba suite includes several components. The following table lists the
LynxOS Samba components.

Each Samba component has its own man page. It is recommended that users read
the man pages for these components.

Configuring the Samba Server

Samba can be configured to allow connections between LynxOS and Windows
clients. LynxOS can behave like a LAN Server, Windows NT Server, or Pathworks
machine. Once Samba is installed and configured, directories and printers can be
exported to heterogeneous network clients including:

� LanManager

� Windows for Workgroups

� Windows NT

� Linux

� OS/2

� AIX

To enable Samba service on the server, perform the following tasks:

� Create and test the Samba configuration file.

Table 6-1: LynxOS Samba Components

Component Definition

smbd A daemon that provides the file and print services to SMB clients.
The configuration file for this daemon is smb.conf.

nmbd A daemon that provides Netbios nameserving and browsing support.
This daemon can be run interactively to query other name service
daemons.

smbclient A program that implements an ftp-like client.

testparm A utility that tests the smb.conf configuration file.

smbstatus A utility that displays the use of the smbd server.
LynxOS Networking Guide 57

Chapter 6 - Samba

� Start the smbd and nmbd daemons.

� Listen to the shares on the server.

Creating and Testing the Samba Configuration File

Use the following procedure to set up and test the Samba server configuration file.

1. Change to the /usr/samba/lib directory.

cd /usr/samba/lib

The Samba configuration file must be in this directory.

2. Create the SMB configuration file, smb.conf.

vi smb.conf

Sample configuration files can be found in /usr/samba/examples. A
simple configuration file is provided below:

This configuration provides global settings for the Windows workgroup,
wins support and allows the client to access the /tmp directory in read-
only mode. Additionally, the path /home/share is set up as a
read/write directory that anyone can access. The configuration file
describes the runtime configuration information for the smbd program.
See the smb.conf man page for additional options.

3. Test the configuration file with the testparm utility:

/usr/samba/bin/testparm smb.conf

[global]
 workgroup = lynuxworks
 wins server = server.lynuxworks.com
 wins support = no

[tmp]
 comment = Temporary file space
 path = /tmp
 read only = yes
 public = yes

[public]
 path = /home/share
 public = yes
 only guest = yes
 writable = yes
 printable = no

Figure 6-1: Sample smb.conf file
58 LynxOS Networking Guide

Starting the smbd and nmbd Daemons

It is important that the validity of smb.conf is tested using the
testparm program. If testparm runs without problems, it lists the
loaded services. If errors are discovered, testparm returns an error
message.

Make sure that the Samba configuration is correct before starting the smbd and
nmbd daemons.

Starting the smbd and nmbd Daemons

Start the smbd and nmbd daemons in one of two ways:

� From the inetd.conf file (default),

� From the command line, or

� From a setup script.

In either case, the NETBIOS Name Service and NETBIOS session service ports
are monitored for serving any requests. If the Samba daemons are started from the
command line, lines must be added to the /net/rc.network file to enable
Samba

Starting smbd and nmbd from inetd.conf

To start smbd and nmbd from inetd, execute the Install.samba script.

Starting smbd and nmbd from the Command Line
To start the smbd and nmbd daemons from the command line, type the following
commands:

/usr/samba/bin/smbd -D
/usr/samba/bin/nmbd -D

The -D option specifies the command to run as a daemon. For more information on
smbd and nmbd, see the respective man pages.

NOTE: smbd and nmbd daemons can be started from the inetd.conf file or
the command line. However, using both means of starting the daemons does not
work.
LynxOS Networking Guide 59

Chapter 6 - Samba

Starting smbd and nmbd from a Script
smbd and nmbd can be started from a script. The advantage is that Samba
responds quicker to an initial connection request.

Use the following procedure to start smbd and nmbd from a script.

1. Create a script to start the smbd and nmbd daemons. A sample
startsmb script can be created with these lines:

#!/bin/sh
/usr/samba/bin/smbd -D
/usr/samba/bin/nmbd -D

2. Make the script executable.

chmod +x startsmb

The script can be run manually, or it can be executed from

/net/rc.network.

3. To terminate the nmbd and smbd daemons, find them with the ps
command and then send a kill signal to the nmbd and smbd
daemons.

ps -ax | grep nmbd smbd
kill PID

Listing Shares on the Server

Check if the shares (exported services) are available on the server. To do so, run the
smbclient program.

The syntax for this command is as follows:

smbclient -L <hostname>

A list of available shares is returned. If the error message “Bad password”
returns, then either an incorrect hosts allow, hosts deny, or valid users
line exists in the smb.conf file or the guest account is not valid. Check the guest
account with the testparm program and temporarily remove any hosts allow,
hosts deny, valid users, or invalid users lines.

If the error message connection refused is returned, then the smbd server
might not be running. If the smbd server is initialized from inetd.conf, the line
may be malformed. If initialized as a daemon, check that the daemon is running,
and that the netbios-ssn port is in a LISTEN state with this command:

netstat -a
60 LynxOS Networking Guide

Listing Shares on the Server

If an error message “session request failed” is returned, then the server
refused the connection. If an error returns “your server software is being
unfriendly”, then it is probably due to an invalid command line parameters set
to smbd. Check the configuration file (smb.conf) for syntax errors with
testparm and for the existence of the various directories where Samba keeps the
log and lock files.

Another common cause of these two errors is if another process is running on port
139, such as Samba. For example, if smbd is running from inetd already or
something like Digital�s Pathworks is running, an error is returned. Check the
inetd.conf file before trying to start smbd as a daemon.
LynxOS Networking Guide 61

Chapter 6 - Samba
62 LynxOS Networking Guide

CHAPTER 7 net-SNMP and OpenSSL
Introduction

net-SNMP (previously known as UCD-SNMP) is an implementation of the SNMP
(Simple Network Management Protocol) protocol.

SNMP is used to deliver network management information between networked
hosts. Administrators can manage certain aspects of networking using net-SNMP,
including performance management and problem detection. net-SNMP is
comprised of various tools related to SNMP management, including:

� An extensible Agent

� An SNMP library

� Tools to request or set information from SNMP Agents

� Tools to generate and handle SNMP traps

� A version of the UNIX netstat command, using SNMP

� A Tk/perl MIB browser

NOTE: Though the UCD-SNMP project has been renamed to net-SNMP, the
current distribution of net-SNMP files is still called UCD-SNMP.
LynxOS Networking Guide 63

Chapter 7 - net-SNMP and OpenSSL

LynxOS includes net-SNMP version 4.1.1 which supports SNMPv2 and SNMPv3
(see following note), and MIBI and MIBII.

net-SNMP sends and receives information through UDP ports 161 (SNMP) and
162 (SNMP Traps).

Installing net-SNMP

net-SNMP components are installed during the initial LynxOS installation. To
enable net-SNMP functionality, users must run the Install.snmp script to
update the /net/rc.network file. net-SNMP can be disabled with the
Uninstall.snmp script.

Run the Install script to enable snmp functionality:

Install.snmp

The Install.snmp and Uninstall.snmp scripts are found in the /usr/bin/
directory.

SNMP Overview

SNMP architecture is comprised of three elements: Managed Devices, Agents, and
Network Management Stations (NMS).

Managed devices can be any device node on a network, including PCs, Hubs,
Routers, and Printers. Agents are software modules that are responsible for
maintaining information on a specific device node. Agents collect and store
information about a particular device in a local management database, for use by
network management stations. The Network Management Station (NMS) provides
a user interface to applications and network information. Network management
stations collect information from Agents for the Management Information Base

NOTE: The SHA authentication and DES encryption components of SNMPv3
require the OpenSSL package. This OpenSSL package is an unmodified version of
the open-source distribution built on LynxOS and is provided for the SNMPv3
encryption functionality only.

Use of OpenSSL outside of SNMPv3 is unsupported. Refer to �OpenSSL Legal
Issues� on page 71 for additional legal restrictions.
64 LynxOS Networking Guide

SNMP Overview

(MIB), and can set the types of data the Agents report. The MIB is a hierarchical
database of all managed devices on a network managed by SNMP.

The following figure shows the communication between managed devices, Agents,
and the network management station.

Figure 7-1: SNMP Basic Architecture

In this example, Agents act as an interface between the network management
station and the managed devices on the network. Each Agent resides on the device
as a software module and provides information to the NMS. The NMS maintains
the Management Information Base (MIB), a hierarchical table of all entities on the
network.

Ethernet

Agent

Managed Device

management
database

Agent

Managed Device

management
database

Agent

Managed Device

management
database

Network Management Station (NMS)

Managment
Information
Base (MIB)
LynxOS Networking Guide 65

Chapter 7 - net-SNMP and OpenSSL

net-SNMP Documentation

Included with the net-SNMP distribution for LynxOS are several documents,
including:

• FAQ

• README

• PORTING

• EXAMPLE.conf

• AGENT.txt

� man pages for individual tools, files, and the API

Additional resources and documentation are also available online at:

• http://net-snmp.sourceforge.net

net-SNMP Components

The following tables describe the net-SNMP daemons and applications included
with the LynxOS distribution. Each of the following components is described in its
respective man page.

Table 7-1: net-SNMP Daemon Components

Component Description

snmpd SNMP Agent daemon that responds to SNMP requests

snmpd.conf SNMP Agent configuration file

snmptrapd SNMP Trap daemon

snmptrapd.conf SNMP Trap configuration file

snmpcmd Common options used with SNMP commands.

snmp.conf Configuration file for SNMP applications
66 LynxOS Networking Guide

Configuring SNMPv3
Configuring SNMPv3

Use the following instructions to set up users for SNMPv3.

Creating a User

To create an SNMPv3 user, follow these instructions:

Table 7-2: net-SNMP Application Components

Component Description

snmpget Queries information from managed devices

snmpset Sets network information

snmpwalk Queries for a tree of information from managed
devices

snmptrap Uses TRAP to send network information

snmpbulkwalk Uses BULK requests to query for a tree of
information from managed devices

snmpdelta Monitors changes in SNMP variables

snmpgetnext Uses GET NEXT to query for information on a
managed device

snmpnetstat Show network status through SNMP

snmpstatus Retrieve status from a managed device

snmptable Outputs an SNMP table

snmptest Tests network connectivity with SNMP requests

snmptranslate Translates SNMP values to other formats

snmpusm Creates and Maintains SNMPv3 users on a remote
managed device

snmpbulkget Communicates with managed device with BULK
GET requests
LynxOS Networking Guide 67

Chapter 7 - net-SNMP and OpenSSL

1. Before creating the SNMPv3 user, update the

$ENV_PREFIX/usr/snmp/share/snmpconf/snmpd.conf file to
provide the users access to SNMPv3. For example:

cd $ENV_PREFIX/usr/snmp/share/snmp/snmpconf
vi snmpd.conf

Add this line:

rwuser <myuser>

where <myuser> is the name of the user account you want
to create.

2. To create the user, edit the file
$ENV_PREFIX/usr/snmp/share/snmp/snmpconf/snmpd.conf

and add the createUser command:

cd $ENV_PREFIX/usr/snmp/share/snmp/snmpconf
vi snmpd.conf

Add this line:

createUser <myuser> MD5 <my_password> DES

where <myuser> and <my_password> are the username and password
of the user account. Passwords must be at least 8 characters long.

3. Test the user account by starting SNMPv3 and running the sysUpTime
command:

cd $ENV_PREFIX/usr/snmp/sbin/snmpd
snmpget -v 3 -u myuser -l authNoPriv \
-a MD5 -A my_password localhost sysUpTime.0

By placing the createUser line in snmpd.conf, the password is automatically
erased from the file the next time the agent shuts down. This way, only the derived
secret key are remembered. Also, only the localized secret key is remembered and
if the machine is broken into, it is impossible to use this localized key to get access
to any of your other hosts.

Creating Additional Users

Once the first user is created, additional users can be created from the command
line. The snmpusm command appends the new user information to snmp.conf
so the new user can be accessed when SNMP starts.
68 LynxOS Networking Guide

Extending the Agent with MIB modules

Use the following instructions to add additional users.

1. Before starting the SNMP agent, edit the
/usr/snmp/share/snmp/snmpconf/snmpd.conf file to add the
name of the new user. For example,

cd $ENV_PREFIX/usr/snmp/share/snmp/snmpconf
vi snmpd.conf

Add the line:

rwuser <newuser>

where <newuser> is the name of the user account you want to add.

2. Start the SNMP agent

/usr/snmp/sbin/snmpd

3. Use the snmpusm command to add a user:

snmpusm -v 3 -u myuser -l authNoPriv \
-a MD5 -A my_password localhost create \ <newuser>
myuser

Where <newuser> is the name of the new user to create. A new user is
created with the same password as the myuser account. To change the
password, type the following command:

snmpusm -v 3 -u newuser -l authNoPriv \
-a MD5 -A my_password localhost passwd \
-CO my_password -CN <newpassword>

Where <newpassword> is the new password for newuser.

4. Test the user by running the sysUpTime SNMP function.

snmpget -v 3 -u newuser -l authNoPriv \
-a MD5 new_passphrase localhost sysUpTime.0

Extending the Agent with MIB modules

Custom modules can be added to extend the functionality of Agents. Refer to the
documentation on AgentX, SMUX and proxied SNMP included with the net-
SNMP distribution for more details. All three mechanisms use the same module
API, which is described in the AGENT.txt file, included with the distribution.
LynxOS Networking Guide 69

Chapter 7 - net-SNMP and OpenSSL

There is also an HTML version accessible from the net-SNMP project web page
(http://net-snmp.sourceforge.net).

The mib2c tool can be used to facilitate writing MIB modules. mib2c generates
most of the necessary skeleton code from the description in the MIB file. Note that
the net-SNMP suite does not currently include support for SMUX subagents.

License & Copyright

net-SNMP is free software distributed under the GNU General Public License
(GPL). Other Documents and product updates related to net-SNMP are available
from: http://net-snmp.sourceforge.net. Some of the documentation in
this guide is taken from the net-SNMP FAQ, man pages, and Readme files. In
some cases, content has changed for LynxOS specific environments. Unmodified
versions of these documents can be found on the net-SNMP homepage.
Copyright 1989, 1991, 1992 by Carnegie Mellon University Derivative Work

Copyright 1996, 1998, 1999, 2000 The Regents of the University of California All Rights Reserved Permission to use,
copy, modify and distribute this software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of CMU and The Regents of the University of California
not be used in advertising or publicity pertaining to distribution of the software without specific written permission.

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

OpenSSL

The SHA authentication and DES encryption components of SNMPv3 require the
OpenSSL package, which is provided as a tarball on a separate CD-ROM in the
LynxOS package. Please be aware that this version of OpenSSL is an unmodified
version of the open-source distribution built on LynxOS and is provided for the
SNMPv3 encryptionfunctionality only. Use of OpenSSL outside of SNMPv3 is
unsupported.

Refer to the LynxOS Installation Guide for instructions on installing OpenSSL.
70 LynxOS Networking Guide

OpenSSL Legal Issues

OpenSSL Legal Issues

The OpenSSL package (required for certain SNMPv3 components) uses strong
cryptography, which may fall under certain import/export restrictions in certain
countries. Use of strong cryptography, use of cryptography hooks, or
communicating technical details about cryptography software is illegal in some
countries. Please be aware of any import/export and/or use laws which apply.
LynxOS Networking Guide 71

Chapter 7 - net-SNMP and OpenSSL
72 LynxOS Networking Guide

CHAPTER 8 SCMP
SCMP (Snugly Coupled Multiprocessing) allows multiple CPU boards connected
to the same backplane (VME) to communicate with each other using the socket
interface and TCP/IP protocols.

This chapter describes how to configure an SCMP environment for use with
LynxOS.

Overview

SCMP splits complex applications across multiple processors resulting in faster
overall computational throughput and real-time response. Some of the features of
SCMP support include:

� Interprocess communication using socket interface and TCP/IP protocols.

� Availability of TCP/IP networking utilities like rlogin, rcp, and so on.

� Diskless operation with booting over the backplane and NFS for remote
file access.

� Backplane NFS transport for efficient access to remote files.

� Support for up to eight VME boards on the backplane.

SCMP Concepts

SCMP functions at the data link layer in a generic networking model.
Communication above the SCMP layer relies on TCP/IP protocols. To an
application, SCMP connections looks like a Ethernet or SLIP connections.
LynxOS Networking Guide 73

Chapter 8 - SCMP

The following figure shows a generic network layer model with SCMP.

Figure 8-1: Generic Network Model based on OSI/ISO

The SCMP configuration consists of a primary processor and one or more
secondary processor(s). The processor boards in the SCMP configuration can have
local disks or be diskless clients.

The backplane network driver is responsible for transferring packets over the
backplane. This driver provides the same interface as an ethernet driver to the
TCP/IP protocol code and is implemented as a kernel thread. In this way, a cluster
of processors running LynxOS can work together while sharing the common
backplane. They can be configured to work on different applications or a complex
application that can be split across processors. Such applications can communicate
over the backplane using sockets.

NOTE: The description of SCMP configuration in this chapter assumes that each
processor on the shared bus has a local backplane disk with LynxOS installed. To
configure diskless clients for SCMP, see �Starting SCMP� on page 85.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

NFS
SNMP
TFTP

TELNET
SMTP
FTP

UDP TCP

INTERNET PROTOCOL

SLIP ETHERNET SCMP

Modem 100 B-T VME Bus
74 LynxOS Networking Guide

Configuration

The following figure shows a hypothetical configuration of VME processors that
communicate via SCMP over a shared VME backplane.

Figure 8-2: Hypothetical SCMP Configuration

The bus backplane is considered to be an Internet network with its own network ID
and each board on the backplane is assigned a unique IP address within that
network.

Configuration

When configuring an SCMP environment, it involves installing the hardware
properly in the VME cage, configuring LynxOS with the appropriate information
about the hardware, and initializing SCMP on the LynxOS machine.

The following sections describe these steps:

� Setting up the hardware for SCMP

� Configuring the LynxOS backplane driver for each processor

� Building a new LynxOS kernel with the backplane driver for each
processor

� Modifying start-up files on the primary processor

� Starting the primary processor

� Starting the secondary processor(s).

Secondary
CPU

(Gateway)

VME BUS

Ethernet

b
o
ot

s

Secondary
CPU

(diskless)

Primary
CPU

Secondary
CPU

(diskless)

b
o
ot

s

b
o
ot

s

LynxOS Networking Guide 75

Chapter 8 - SCMP

SCMP - VME

Bus Example Used in This Chapter

For simplicity, this chapter uses an example SCMP setup (shown in the following
example) to describe how to configure an SCMP environment.

Figure 8-3: Example SCMP Configuration

Setting Up the Hardware for SCMP

LynxOS SCMP supports up to eight VME boards sharing a single VMEbus.
Boards of one architecture type can be included (PowerPC-only). LynxOS
currently supports the following CPU boards and VME bridge chips for SCMP:

Documentation should be provided for the particular processor boards and the
VME cage available during the initial setup of the hardware for SCMP. Before
installing SCMP, review VMEbug commands and concepts.

VME BUS

Ethernet

Primary
CPU

Secondary
CPU

(Gateway)

Table 8-1: VMEbus Driver

Board VME Bridge Chip LynxOS VME Driver

MVME 5100 Universe Uvme

MVME5101

NOTE: In this chapter, the term VMEbug is used to generically refer to the Bug
Monitor of the PowerPC system.
76 LynxOS Networking Guide

Assembling the System

Assembling the System

Select one processor board to be the system controller on the VMEbus. To do this,
set the appropriate jumpers on the board (as described in the hardware manual) and
place the board in slot 0 of the VME cage. Some VME chassis may require the
boards to be in adjacent slots.

From the perspective of LynxOS, there is one primary processor and one or more
secondary processor(s). The primary processor may or may not be the same board
as the system controller.

Assigning the Board Addresses

The processor boards communicate by accessing each other�s DRAM in the
VMEbus A32/D32 address space. They also communicate by using the Universe
SW-INT interrupt. To configure an SCMP environment, assign a unique address to
each board so this communication can occur.

VME Shared Memory Basics
Each board connected to the VMEbus is assigned a unique 32-bit address range for
its DRAM. Using the MVME 5100 as an example, the following figure illustrates
how shared memory is accessed through VME space. This example assumes there
are two boards (board 1 and board 2) in the SCMP setup, both making the top
0x03FFF000 bytes of their DRAM available to the VME space.

Note that for each processor board, VME space address 0x0 is accessible at
processor address 0xD0000000. Therefore in Figure 8-5 , where board 2�s DRAM
is mapped to VME address 0x04000000, it is available to board 1 at
0xD0000000+0x04000000. Similarly board 1�s DRAM is mapped to VME address
0x0 and available to board 2 at address 0xD0000000+0x0.
LynxOS Networking Guide 77

Chapter 8 - SCMP

The following figure illustrates how board 1�s DRAM is mapped to VME space
and where it is visible in the board 2�s address space.

Figure 8-4: Board 1 to Board 2 Shared Memory Example

The following figure illustrates how board 2�s DRAM is mapped to VME space
and where it is visible in the board 1�s address space.

Figure 8-5: Board 2 to Board 1 Shared Memory Example

0x00000000

0x00000000

0x00000000

0xFFFFFFFF

0xFFFFFFFF

DRAM

Board 1
DRAM

0xD0000000 0xD3FFF000

Board 1

Board 2

VME
Space

0x03FFF000

0x00000000

0x04000000

0x00000000

0xFFFFFFFF

0xFFFFFFFF

Board 2
DRAM

 DRAM

0x03FFF000

Board 1

Board 2

VME
Space

0x07FFF000

0xD4000000 0xD7FFF000
78 LynxOS Networking Guide

Selecting the Slave Addresses

For each processor in the SCMP environment, select and program the following
addresses into the VME device. In case of Universe chip, the VME device installed
on MVME5100 and MVME 5101 boards, this requires programming the
following:

� VME Slave Image Base Address

� VME Slave Image Bound Address

� VME Slave Image Translation Offset

Selecting the Slave Addresses
Each board also must have a unique slave address. The VME Slave Image Base
Address mentioned above is the starting address in VME space where a processor
board�s DRAM will be mapped. The VME Slave Image Bound address determines
the amount of local DRAM mapped. Once DRAM of a board is mapped to the
VME space at any address, Y for example, it becomes visible to all other boards in
the system at physical address 0xD0000000+Y. Note that this is valid only after the
system boots with LynxOS.

Programming the VME Bridge Chip

Use the addresses in the following table to program the VME bridge chip by
entering a firmware-specific command at the VMEbug monitor that modifies the
environment variables. Make sure that there is no overlap in the address ranges for
each board.

Programming the Universe Chip
The Universe chip must be programmed on each board with the DRAM slave
addresses. For primary processor and secondary processors that are booted from
the disk, firmware values for VME slave images will be overwritten by the

Table 8-2: Example DRAM Start and End Address

System

Amount

of DRAM

mapped

Starting DRAM

(Slave) Address

Ending DRAM (Slave)

Address

CPU1 64 MB 0x00000000 0x03FFF000

CPU2 64 MB 0x04000000 0x07FFF000
LynxOS Networking Guide 79

Chapter 8 - SCMP

Universe driver. Refer to /sys/dheaders/uvmeinfo.h for default values. For
secondary boards that are booted over the backplane using the slaveboot utility,
these values need to be programmed with VMEBug firmware (PPCBUG in case of
MVME5100/MVME5101 boards). Below is an example of how the universe
registers can be setup in the secondary processor to enable it for a slaveboot.

Example Settings
Set the VMEbus Slave Image 0 Control value to 0xC0F20000 for all MVME5100
boards in the configuration.

It is important to note that the MVME5100 and MVME5101 boards start in CHRP
address mapping mode and when LynxOS boots up, it transitions the board to
PReP mode. Therefore when programming the board�s VME slave images from
PPCBUG users need to do it in accordance with CHRP.

In CHRP mode the VME Slave Image Translation Offset is calculated by
subtracting the VME Slave Image Base Address from 0x00000000. For example:

0x00000000 – 0x04000000 = 0xFC000000

In PReP mode, the VME Slave Image Translation Offset is calculated by
subtracting the base address from 0x80000000. For example:

0x80000000 - 0x04000000 = 0x7C000000

The following figure uses a Slave Image Base Address Register (DRAM address)
of 0x04000000. This makes the DRAM of this board available at VME address
0x04000000

Figure 8-6: Programming the Universe Chip on an MVME2600 Board

PPC1_Bug> env
[...]
[...]
VMEbus Slave Image 0 ControlC0F20000
VMEbus Slave Image 0 Base Address Register04000000
VMEbus Slave Image 0 Bound Address Register07FFF000
VMEbus Slave Image 0 Translation OffsetFC000000
[...]
[...]
Update Non-Volatile RAM (Y/N)? Y
80 LynxOS Networking Guide

Verifying the Hardware Setup

Verifying the Hardware Setup

Before beginning the software (LynxOS) phase of setting up SCMP, verify that the
hardware is properly installed and configured.

A quick way to check the hardware setup is by using the md (memory dump)
command at the VMEbug prompt. The following steps show how to test the
example setup in this chapter.

Troubleshooting a VME Board that Uses the Universe Chip
If SCMP configuration is not working, verify the hardware in the system is correct.
Check the firmware in the system as described below. Assume that there are two
boards in the SCMP setup.

1. On both boards in the SCMP configuration, program the following values
for the PCI Slave Image #1 with the env command.

The above translation indicates that PCI address range 0x80000000-
0x90000000 is mapped to VME address 0x80000000 + 0x80000000 =
0x0. Since the board is in CHRP mode, PCI address 0x80000000 is also
CPU/physical address 0x80000000. Therefore any access to Physical
address range 0x80000000-0x90000000 will translate to VME address
range 0x0-0x10000000.

2. Program the VME slave images on all boards such that DRAMs of all
boards are available at unique VME addresses. Unique VME addresses
assigned to top portion (64MB in this example) of DRAM on all boards
must lie within the range 0x0-0x10000000. For example on board 2
program the following values into the VME slave image:

This maps the DRAM of this board to VME address range 0x04000000-
0x07FFF000. The first board can now access this board�s DRAM at

PCI Slave Image 1 Control Register
PCI Slave Image 1 Base Address Register
PCI Slave Image 1 Bound Address Register
PCI Slave Image 1 Translation Offset Register

C0820000
80000000
90000000
800000000

VMEbus Slave Image 0 Control
VMEbus Slave Image 0 Base Address Register
VMEbus Slave Image 0 Bound Address Register
VMEbus Slave Image 0 Translation Offset

E0F20000
04000000
07FFF000
FC000000
LynxOS Networking Guide 81

Chapter 8 - SCMP

address 0x84000000. Similarly setup board 1�s DRAM to be visible at
VME address range 0x0000000-0x03FFF000.

3. Use the PPC1Bug md (memory dump) command to verify that the
boards can access each other�s memory across the VMEbus.

Can the board 1 see board 2?

[board1]PPC1-Bug> md 80000000 20

[board2]PPC1-Bug> md 0 20

See the PPC6-Bug firmware documentation for more information on the
md command.

4. Now we need to make sure the boards can see each other�s Universe chip
registers. On board 2, setup the following values in the VMEbus Register
Access registers with the PPCBUG env command:

On board 1, set the base address to 0x03FFF000. Can the boards see each
other�s universe registers?

[board 1] PPC6-Bug> md 87FFF000 20

This should show the vendor id / device id combination of the Universe chip on
board 2. Note that 0x07FFF000 is a VME address and 0x87FFF000 is the CPU
address at which this VME address is visible. Similarly, board 1�s Universe
registers should be visible to board 2 at address 0x83FFF000.

Setting Up LynxOS for SCMP

This is the software stage of the SCMP setup. At this point, these steps must be
performed:

� Configure the LynxOS kernel with the VME backplane driver.

VMEbus Register Access Image Control Register
VMEbus Register Access Image Base Address Register

80F20000
07FFF000
82 LynxOS Networking Guide

Copying the Current LynxOS Kernel

This section assumes that LynxOS is already installed on the local disk of each
VME board in the SCMP environment. If LynxOS is not installed, do so now.

Copying the Current LynxOS Kernel

Because the SCMP setup scripts change the LynxOS kernel, it is a good idea to
make a copy of the current running kernel before proceeding with the scripts.

cp /lynx.os /lynx.os.pre-scmp

If there are problems, this copy of the kernel can be booted instead. See the
preboot man page for details on booting alternate kernels.

Choosing the Primary Processor

Select the board to be the primary processor in the SCMP environment. All
processor boards contains a database of information about all processors in the
SCMP system. This database is contained in the /etc/bplane.conf file. The
first entry in this database belongs to the primary processor. The following
information is required for each processor in the system:

� Hostname

� DRAM starting address

� VRAI Board Base Address (Universe chip)

Set the VRAI base address in the A32 address space.

The following table provides an example of the kind of information that is required
to supply for each processor:

NOTE: Any number of nodes in an SCMP environment can be diskless. However,
it is easier to configure the system if at least the primary processor has a local disk.
If a diskless secondary processor and a disk-based primary processor are used,
configure the primary processor as described in this chapter. Then refer to Chapter
9, �Network Booting Diskless Clients with LynxOS� on page 105.

Table 8-3: Information Required for Each Processor

Hostname DRAM Start Address Combined IO Addresses

scmp-cpu1 0x00000000 0xD3FFF000

scmp-cpu2 0x04000000 0xD7FFF000
LynxOS Networking Guide 83

Chapter 8 - SCMP

Configuring the LynxOS Backplane Driver

The LynxOS backplane device driver must be configured for each of the processors
in the SCMP environment. Complete the following steps for each processor in the
system, starting with the primary processor.

Creating the Backplane Configuration File
First, create the file /etc/bplane.conf. This configuration file specifies the
board ID, DRAM address, I/O address, and hostname for each board in the SCMP
system. The following figure shows an example /etc/bplane.conf file.

Figure 8-7: Example bplane.conf File

The /etc/bplane.conf fields are as follows:

� Board Type -- 9 refers to the MVME5100 and MVME5101 boards.

� Boot Flags -- Unused field; must be set to 0.

� DRAM Address -- The desired starting address for the board as specified
with the env command.

� I/O Address -- CPU address where VME bridge chip registers of this
board are visible.

� Hostname -- Unique IP address or hostname for each board. When using
the hostname, ensure that /etc/hosts contains the hostname with its
appropriate IP address.

For more information on bplane.conf file, see its man page.

Modifying the Backplane Driver Information
1. Move to the /sys/devices directory:

cd /sys/devices

Type Boot-Flag DRAM-Address IO-Address Hostname

9 0 0x00000000 0xD3FFF000 192.1.1.1
9 0 0x04000000 0xD7FFF000 192.1.1.2
84 LynxOS Networking Guide

Rebuilding the Backplane Driver Information

2. Edit the if_bplaneinfo.c file.

The parameter MAX_NO_PROCESSORS must be equal to or greater than
the total number of boards on the system (eight maximum). For example:

MAX_NO_PROCESSORS = 3

Rebuilding the Backplane Driver Information
Rebuild the backplane driver information file by typing make in the
/sys/devices directory:

make

Rebuilding the LynxOS Kernel

Now that the configuration files and backplane driver files are modified, rebuild
the kernel to incorporate the changes:

cd /sys/lynx.os
make install.tcpip

Choose the SCMP option and answer the questions presented by the script.

This step allows the user to enable the bplane and VME chip drivers.

The VME backplane is considered to be an Internet network with its own Internet
network ID. Choose a unique network address for the backplane network.
Similarly, enter the corresponding Internet host IDs and hostnames for the
processor boards on the backplane. These values should correspond to the values
specified in /etc/bplane.conf.

Starting SCMP

After rebuilding the kernel, reboot the primary processor. This brings up the
SCMP-configured kernel on the primary processor. The -N option remakes the
/dev directory with the device bplane added.

reboot -aN

NOTE: The primary processor must be running SCMP before the secondary
processor(s) can run SCMP. To boot a client processor, please refer to Chapter 9,
�Network Booting Diskless Clients with LynxOS� on page 105.
LynxOS Networking Guide 85

Chapter 8 - SCMP

If the primary processor is disk-based and is exporting file system for the
secondary processors, follow steps 1 through 3 below:

1. Enable TFTP Services:

- Uncomment the line starting with tftp in the file
/etc/inetd.conf.

- Kill the process /net/inetd:

the command ps -ax | grep inetd gives the process id of the
inetd process. Use this process id to kill the process and restart it.

ps -ax | grep inetd

kill -1 <process_id>

2. Export root directory for the diskless client via NFS:

For example, if /clients/cpu2 is the directory containing, or linked
to the root file system meant for the diskless client, this directory must be
exported.

A)Add the following line to the file /etc/exports:

/clients/cpu2 root=<client_processor>

where <client_processor> is the diskless client processor
importing the root file system from the server.

B)Export the directory to the client:

exportfs -av

For more information, see �Ethernet Netboot� on page 91.

3. Build diskless client configuration files, the SCMP-bootable image and
the necessary start-up files:

The SCMP netbootable image is built in the directory
$ENV_PREFIX/sys/romkit/scmp-boot.

The template file spec.tmpl is used to create the spec file for
mkimage: ppc-x.netboot.spec, where x is the CPUID, which
is 1 by default. This spec file can be edited to add/delete any item(s)
from the RAM disk.

NOTE: ENV_PREFIX is / for native development systems.
86 LynxOS Networking Guide

Starting SCMP

C)Configure the diskless client:

cd ENV_PREFIX/sys/romkit/scmp-boot

make config

This asks a few questions in order to configure the diskless client�s
image. It creates the directory sys-1 where the kernel for the diskless
client is copied.

D)Build the SCMP netbootable image for the diskless client:

make all

E)Install the image in the download directory (/tftboot by default):

make install

For configuring and building images for multiple clients, one needs to
specify the variable CPUID with the make command:

make CPUID=<x> config

make CPUID=<x> all

make CPUID=<x> install

where <x> is the client id. When CPUID is not specified, it defaults to
one.

To manually boot the client processor, type the following at the firmware prompt of
the client processor:

Motorola PowerPC client:
PPC1-Bugs go 4020
LynxOS Networking Guide 87

Chapter 8 - SCMP
88 LynxOS Networking Guide

CHAPTER 9 Network Booting Diskless Clients

with LynxOS
LynxOS supports network booting (netboot) of remote machines over a TCP/IP
network. This chapter describes how to netboot diskless clients over an Ethernet or
an SCMP connection.

Overview

Netboot allows a configured LynxOS kernel image to be downloaded onto a
machine without a hard disk. The kernel image can be downloaded in one of these
ways:

� Ethernet (see page 91)

� PXE Netboot (see page 103)

� Snugly Coupled Multi-Processing (SCMP) (see page page 105)

These diskless clients can also access remote file systems over the network. See the
LynxOS Hardware Support Guide (available on the Documentation CD-ROM and
the lynuxworks website) for the list of hardware configurations that support
network booting.

Booting a diskless client involves these tasks:

� Creating a LynxOS kernel image to netboot.

� Configuring the diskless client.

� Downloading the LynxOS kernel.

These tasks apply to all netboot protocols.
LynxOS Networking Guide 89

Chapter 9 - Network Booting Diskless Clients with LynxOS

Using the LynuxWorks Netboot Scripts

LynuxWorks provides ready-to-use scripts for both Ethernet and SCMP network
booting. These scripts are in the following locations:

� /sys/romkit/remote_boot (Ethernet)

� /sys/romkit/scmp_boot (SCMP)

LynuxWorks created these scripts to produce a typical configuration for a diskless
client. They can be used in their default configuration or as a template for other
applications.

Copying Scripts Before Customizing

These netboot scripts should be copied before editing them. Use the following
procedure to make a copy of the netboot scripts.

1. Move to the directory that contains the netboot scripts.

cd /sys/romkit

2. Make a copy of the netboot scripts.

cp -r remote_boot ethernet_client

This produces a working copy named ethernet_client.

Restrictions

The netboot scripts must be executed on either a LynxOS native system or a
compatible cross-development system. For example, to create a netboot image for
a diskless client, the scripts must be executed on a disk-based LynxOS native
system or a supported LynxOS cross-development system.

NOTE: On LynxOS cross-development systems, these scripts are located in
$ENV_PREFIX/sys/romkit/remote_boot and
$ENV_PREFIX/sys/romkit/scmp_boot.

NOTE: This chapter uses the original name of the directories in the examples.
90 LynxOS Networking Guide

Ethernet Netboot

Ethernet Netboot

In Ethernet netboot, the client-specific or shared LynxOS kernel image is
downloaded from a server using the Trivial File Transfer Protocol (TFTP), an
architecture-dependent feature.

Before Beginning

The easiest way to netboot a diskless client with LynxOS is to use the scripts in the
following location: /sys/romkit/remote_boot

These scripts assume that a single disk-based LynxOS system is being used for the
diskless client via NFS to perform the following tasks:

� Build the netboot image.

� Boot the diskless client.

� Serve the root file system.

Before running the netboot scripts, make sure that the disk-based server is of the
same architecture type (x86, PowerPC) as the intended diskless client. Or, on a
cross-development host, make sure that the appropriate LynxOS tools are available
for the target architecture.

Before proceeding with the scripts, information about the disk-based server and
diskless client(s) is required. The following table provides a list of this
information, with examples.

Table 9-1: Server and Client Information Needed to Configure Netboot

(Denoted by X)

Parameter
Disk-

Based
Server

Diskless

Client
Notes

Hostname
X X

A text string created of letters (A-Z a-z), digits (0-9),
hyphen (-), and or slash (/). For example,
client-ppc2 is a valid hostname.

IP Address
X X

A valid Internet Protocol address, usually of the form
A.B.C.D. For example, 192.1.1.2 is a valid IP
address.
LynxOS Networking Guide 91

Chapter 9 - Network Booting Diskless Clients with LynxOS
Configuring the Disk-Based Server

To configure the disk-based server, perform the following tasks:

� Enable TFTP services.

� Export the root directory for diskless client via NFS.

� Build the diskless client configuration files, the netbootable image, and
necessary start-up files.

� Put the image and start-up files in a download directory.

The following sections give a brief description of what these tasks involve. For
additional information, See �Example�Netbooting a FORCE PowerCore 680
Board� on page 98.

For instructions on configuring PXE support, see �Configuring PXE Netboot
Support� on page 103.

Ethernet
Interface

X X

The LynxOS device name for the network interface
card on the diskless client. The intro man page
contains a list of valid device names by hardware
type.

Ethernet
Address

X

A 6 byte hexadecimal number. For example,
08:00:3E:23:8C:BD is a valid Ethernet address.
Use the cnfg command from the VMEbug monitor
(PowerPC clients) to find the Ethernet address. On
x86 clients, look for a label on the Ethernet card. On
Solaris clients, use the ifconfig ie0 command.

Table 9-1: Server and Client Information Needed to Configure Netboot

(Denoted by X)

Parameter
Disk-

Based

Server

Diskless
Client

Notes

NOTE: TFTP is a potential security risk. Use caution when configuring it.
92 LynxOS Networking Guide

Enabling TFTP for LynxOS

Enabling TFTP for LynxOS

The following instructions are for LynxOS native development systems. TFTP
cross development system instructions vary. See �Configuring TFTP on Cross
Development System� on page 93.

The /etc/inetd.conf file contains the TFTP service information. This file
must contain the following line:

tftp dgram udp wait root /net/tftpd tftpd

If this information is added, a SIGHUP signal must be sent to the inetd process.
Find the process ID using the ps command. Then send the SIGHUP signal with
the kill command.

1. Find the process id for /etc/inetd.conf with the ps command.

ps -ax | grep inetd

2. Send the SIGHUP signal to the inetd process with the kill
command.

kill <process_id>

Configuring TFTP on Cross Development System
TFTP instructions differ on different cross development systems. Solaris TFTP
configurations are similar to LynxOS. Refer to the Solaris tftp man page for
instructions.

On Linux systems, users must edit the tftp file in /etc/xinetd.d/ and restart
internet services with xinetd. Refer to the xinetd and tftp man pages for
instructions. Sample instructions for configuring TFTP on a Linux system is
provided in �Example�Netbooting a FORCE PowerCore 680 Board� on page 98.

Windows does not include a TFTP server in its distribution. LynuxWorks includes
a shareware TFTP server on the Cross Development Kit (CDK) distribution.
Proceed as follows:

1. Install the CDK CD-ROM on the Windows cross development host.
Refer to the section, �Windows Cross Development Installation� in the
LynxOS Installation Guide.

2. Consulting Windows documentation, set up TCP/IP support on the host.

3. Locate the file c:\Lynx\4p0p0\tftppro.zip, the shareware TFTP
server from WaluSoft in zipped format. Follow instructions provided
with the WaluSoft TFTP distribution to set up TFTP service. Pay special
LynxOS Networking Guide 93

Chapter 9 - Network Booting Diskless Clients with LynxOS

attention to the outgoing server path from the Setup menu; it should point
to the host CD-ROM.

Exporting the Root File System Via NFS

The disk-based server must be set up so that it can provide a root file system to
the diskless client. The server can then export this file system via NFS. When using
the default settings for the netboot scripts, certain directories and files are required
in the root file system for the diskless client.

Use the following procedure to export the root file system to the diskless client:

1. Copy the following directories from the LynxOS distribution to the new
root file system directory.
ENVIRONMENT
bin/

bash
exportfs
ifconfig
login
syncer
reboot
touch

lib/
net/

inetd
portmap
mountd
nfsd
rpc.lockd.clnt
rpc.lockd.svc
rpc.statd

sys/
tmp/

2. (Optional) In addition, the following utilities can be copied:
bin/

cat
df
ftp
less
ls
ping
ps

rlogin

3. Export the root file system with the exportfs command.

exportfs -av

For more information on the exportfs command, see exportsfs
man page.
94 LynxOS Networking Guide

Building the Netboot Image

Building the Netboot Image

The Makefile in /sys/romkit/remote_boot builds a client-specific
configuration file for each diskless client. LynxOS uses this configuration file to
build the kernel image and supporting files that it downloads over the network to
the diskless client.

Putting the Netboot Files in the Download Directory

This final step creates the directory /tftpboot and copies the netboot image and
start-up files to this directory. The firmware of the diskless client must be
configured with the full path name of this directory and the netbootable image.

Configuring the Diskless Client

To remotely boot the diskless client, perform these steps:

� Configure the firmware with information about the server, the download
files, and the load address.

� Start netboot.

Because these commands are platform-dependent, the following sections briefly
describe the commands by platform type.

For instructions on configuring PXE support, see �Configuring PXE Netboot
Support� on page 103.

Setting Up the PowerPC System

For the PowerPC system, the network booting code is available as a programmable
option in the env settings of the VMEbug Monitor.

Use the following procedure to set this parameter.

1. Reboot/reset the CPU board.

2. Enter the Bug Monitor (this typically involves pressing the Break key
during CPU reset).
LynxOS Networking Guide 95

Chapter 9 - Network Booting Diskless Clients with LynxOS

Enabling NVRAM on the PowerPC
In newer PowerPC boards, the real-time clock is disabled. The real-time clock
must be enabled before netbooting LynxOS. Use the set command at the
VMEbug prompt (abbreviated xxxx-Bug) to set the time, thus enabling the clock:

set MMDDYYhhmm

Disabling PReP-Boot on PowerPC
The PReP-Boot setting defaults to yes on PowerPC boards. Disable this (no)
with the env command.

xxxx-Bug> env
Network PReP-Boot Mode Enable [Y/N] = Y? N
...
Update Non-Volatile RAM (Y/N)? Y

Setting Netboot Parameters

Use the niot command at the VMEbug prompt to set the network booting
parameters specific to the system�s hardware configuration.

Only a few parameters need to be changed. For more details about the commands,
consult the Motorola VMEbug documentation.

xxxx-Bug> niot

Client IP Address = [192.1.1.2] ?
Server IP Address = [192.1.1.1] ?
...
(Choose the Subnet IP Address Mask
appropriately)
...
Boot File Name = [/file] ?
Boot File Load Address = [00000000] ?
Boot File Execution Address = [00000000] ?
...
Update Non-Volatile RAM (Y/N)? Y

NOTE: The boot filename is normally just the filename. If the full path is given, it
may fail to load.
96 LynxOS Networking Guide

Booting the Remote Kernel Image

The following table shows the boot file load and execution addresses, which are
platform-dependent.

Booting the Remote Kernel Image
Use the nbo command to network boot the image.

xxxx-Bug> nbo

Setting Up PPC PowerCore Systems

Use the following procedure to set up PPC PowerCore systems:

1. At the PowerBoot prompt, enter the following command for an
individual boot-image:

PowerBoot> netload <netboot_file> 400000 <target_IP> \
<host_IP>

where <host_IP> is the Host IP address and <target_IP> is the target
system IP address.

2. After the download finishes, enter the following command:

PowerBoot> go 400020

Setting Up Thales VMPC Systems

Thales VMPC boot firmware netboot a PreP image using the bootp protocol.
This requires the server to run the bootpd daemon with the /etc/bootptab
file populated with the appropriate information on the netbootable image. For more
detailed information, see the man page on bootp on the server machine.

The netbootable image generated by mkimage would be run through the
mkbootprep utility in order to create a prep-bootable image for Thales machines.

Table 9-2: Boot File Addresses for PowerPC Systems

Target Boot File Load Address Boot File Execution Address

PowerPC 00004000 00004020

NOTE: Depending on how the server is configured, the path may or may not
require the full path to the netboot image (/tftboot/<netboot_file>).
LynxOS Networking Guide 97

Chapter 9 - Network Booting Diskless Clients with LynxOS

Setting Up Thales VMPC
Use the following procedure to set up Cetia VMPC:

1. Make sure that the /etc/bootptab file on the server has an entry for
the required image, and that the bootpd daemon is running.

2. At the VMPC Bug prompt, enter the following command:

COMMAND> ebop

Example—Netbooting a FORCE PowerCore 680 Board

The following table shows an example ethernet netboot configuration that is used
in the steps on configuring the disk-based server and diskless client for the
PowerPC.

Preparing the Board

To prepare the target board for downloading, proceed as follows:

1. Obtain an Internet Protocol (IP) address and network host name for the
target board. In the instructions below, 192.1.1.2 is used as an IP
address and fpc1 is used as the PowerCore network host name.

NOTE: Most of the steps to configure the disk-based server for the PowerPC and
for Sun hosts (SunOS and Solaris) are the same. Any differences that do exist are
explained below.

Table 9-3: Ethernet Netboot Configuration

Parameter Disk-Based Server Diskless Client

Platform Linux Host
LynxOS Cross Development Environment
with pc_680 BSP installed

Force PowerCore 680

Hostname linuxcdk fpc1

IP Address 192.1.1.1 192.1.1.2

Ethernet Address Not needed. 08:00:3E:23:8C:BD
98 LynxOS Networking Guide

Configuring a Network Server

2. Obtain the Ethernet address of the PowerCore target board. This address

is displayed during the power-up self test after a reboot or power cycle of
the board. These instructions use 00:80:42:0E:0C:02.

3. Follow the PowerCore manufacturer�s installation instructions to power
up the board, attach the serial terminal, and establish a method of
inputting keystrokes to the PowerBoot firmware. Proper setup will result
in the PowerBoot> prompt being displayed on the serial terminal.

4. Attach the PowerCore target board to the local network using the twisted
pair Ethernet connector located on the front panel of the PowerCore
target board.

To set up a point-to-point network (for example, to attach directly to a
laptop notebook), please remember to use an uplink cable. This is a
Category 5 twisted pair cable that has been crossed for uplink. If
connecting to a hub, a regular Category 5 cable suffices.

Configuring a Network Server

The firmware monitor on the PowerCore 680 board, PowerBoot, has built-in
support for downloading bootable images over the Ethernet using TFTP (Trivial
File Transfer Protocol).

Configuring TFTP on a Linux Cross Development Host
TFTP is required by the target to load the developer.kdi. Use the following
instructions to enable TFTP on the host system:

1. Edit /etc/ethers to include the Ethernet address of the Target board:

vi /etc/ethers

#Ethernet Address Client Hostname
08:00:3E:23:8C:BD fpc1

Figure 9-1: /etc/ethers file
LynxOS Networking Guide 99

Chapter 9 - Network Booting Diskless Clients with LynxOS

2. Edit the /etc/hosts file to include the hostname and IP address of the

Target board:

vi /etc/hosts

3. Create the tftpboot directory:

mkdir /tftpboot

4. Enable TFTP by editing the tftp file

cd /etc/xinetd.d/

vi tftp

5. In the disable field, type �no� to enable TFTP.

6. In the server_args field type �/tftpboot�. The following provides a
sample tftp file.

7. Restart the xinetd services:

cd /etc/rc.d/init.d

./xinetd restart

#IP Address Client Hostname

192.168.1.2 fpc1

Figure 9-2: /etc/hosts file

default: off
description: The tftp server serves files using the trivial file transfer \
protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network-aware printers, \
and to start the installation process for some operating systems.
service tftp
{

socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = /tftpboot
disable = no

}

Figure 9-3: Sample tftp configuration file
100 LynxOS Networking Guide

Network Booting the Target Board

Network Booting the Target Board

Once the TFTP server is configured and operational on the host, demo Kernel
Downloadable Images (KDIs) are downloaded to the PowerCore target board.
These demos are located in the directory \demo\demo.<bsp_name> on the
distribution CD-ROM.

1. Insert the LynxOS Open Development Environment (ODE) CD-ROM
into the host system CD-ROM drive and mount it.

2. Copy the hello.kdi file from the /demo/demo.pc_680 directory of
the distribution CD-ROM into the /tftpboot directory on the TFTP
server so that it can be downloaded from there onto the target board.

3. Download the demo KDI to the PowerCore target board. At the
PowerBoot> prompt on the target, type:

netload hello.kdi 400000 <target_IP> <host_IP>

where

<target_IP> IP address of the target

<host_IP> IP address of the server

For example:

PowerBoot> netload hello.kdi 400000 192.168.1.1 \
192.168.1.2

4. Boot the demo KDI on the PowerCore target:

PowerBoot> go 400020

The following output is displayed on the console:

NOTE: If the security feature of TFTP is disabled or not supported on the server,
the file name is prepended with the /tftpboot path component. Thus, in the
example above, /tftpboot/hello.kdi is specified in this case.

LynxOS POWERPC Version 4.0.0
Force PowerCore PC_DRM board support package
Copyright 1997-2002 LynuxWorks Inc.
All rights reserved.

LynxOS (ppc) created Tue Jan 02 19:49:10 PDT 2002

hello_world from C - reset machine or cycle the power to end this demo
hello_world from C++ - reset machine or cycle the power to end this
demo
LynxOS Networking Guide 101

Chapter 9 - Network Booting Diskless Clients with LynxOS

Reset the power to end the demo.

The preceding process can be used to download a custom LynxOS KDI as well as
other KDIs supplied with the distribution.

Since the image is in RAM, it is volatile and is erased as soon as the board is reset.
To keep a static version of the image, it must be burnt into target board flash
memory. The next section details this procedure.

Booting from Flash Memory

The previous procedure is useful for booting a target board quickly. Because the
image is loaded into target RAM, it is volatile and is erased as soon as the board is
reset.

To keep the image permanently on the target board, it is burned into target flash
memory. The following outlines this procedure:

1. Erase flash bank #1, user_flash1, on the target board:

PowerBoot> ferase user_flash1

2. Download the demo KDI to the PowerCore target board. At the
PowerBoot> prompt on the target, type:

netload hello.kdi 400000 <target_IP> <host_IP>

where

<target_IP> IP address of the target

<host_IP> IP address of the server.

3. Program the image into flash bank #1:

PowerBoot> fprog user_flash1 400000

4. Boot the demo KDI from the PowerCore target�s flash memory

PowerBoot> go ff000020

NOTE: If the security feature of TFTP is disabled or not supported on the server,
the file name is prepended with the /tftpboot path component. Thus, in the
example above, /tftpboot/hello.kdi is specified.
102 LynxOS Networking Guide

Configuring PXE Netboot Support

The following output is displayed to the console:

Reset the power to end the demo.

Now, every time the board is reset, boot the image by entering the following
command at the PowerBoot> prompt:

PowerBoot> go ff000020

The above process can be used to download a custom LynxOS KDI as well as other
KDIs supplied with the distribution.

Configuring PXE Netboot Support

Network cards enabled with the Prebooting Execution Environment (PXE)
specification provide x86 client systems the ability to boot software images
without having to reconfigure hardware or burn EPROMs. PXE-enabled network
cards receive network configuration from a LynxOS PXE server via DHCP.
Network configurations include local IP address, DNS, and Router information.
The client also receives a boot loader file. The boot loader file locates the system
serving the kernel image, and downloads it to the client system using tftp.

The following sections describe the steps required to configure the PXE Server and
Client systems.

Configuring the PXE Client

Configuration of the PXE client varies depending on the hardware used. Configure
the PXE network card according to the specifications provided by the card�s
manufacturer.

LynxOS POWERPC Version 4.0.0
Force PowerCore PC_DRM board support package
Copyright 1997-2002 LynuxWorks Inc.
All rights reserved.

LynxOS (ppc) created Tue Jan 02 19:49:10 PDT 2002

hello_world from C - reset machine or cycle the power to end this demo
hello_world from C++ - reset machine or cycle the power to end this
demo

NOTE: PXE Netboot support is available for x86 systems only.
LynxOS Networking Guide 103

Chapter 9 - Network Booting Diskless Clients with LynxOS

Configuring the PXE Server

Configuring a LynxOS system as a PXE server involves configurations in several
areas, enabling DHCP, and enabling TFTP. Use the following sections to
configure the system to respond to PXE requests.

Configure DHCP
DHCP must be enabled and running to provide PXE support. Information on
configuring DHCP is provided in Chapter 4, �DHCP� on page 41. To configure
DHCP to accept requests from PXE clients, it is necessary to specify two options in
dhcpd.conf that allow for PXE netbooting:

Where <lynxOS.0> is the filename of the bootloader.

The second option requires a hexadecimal string that must exist on the same line as
the option statement with no spaces or line breaks:

The dhcpd daemon must be restarted after editing dhcpd.conf:

1. Find the Process ID (PID) of the DHCP daemon (dhcpd) with this
command:

ps -axon | grep dhcpd

2. Use the kill command to stop the process.

kill PID

3. Restart the DHCP daemon:

/net/dhcpd

option dhcp-class-identifier
“PXEClient”;
allow booting;
allow bootp;
filename ”/tftpboot/<lynxOS.0>”;

Figure 9-4: dhcpd.conf addition for PXE devices

option vendor-encapsulated-options
09:0f:80:00:0c:4e:65:74:77:6f:72:6b:20:62:6f:6f:74:0a:07:00
:50:72:6f:6d:70:74:06:01:02:08:03:80:00:00:47:04:80:00:00:0
0:ff;

Figure 9-5: dhcpd.conf hexadecimal string addition
104 LynxOS Networking Guide

Configure tftp

Configure tftp
tftp must be enabled and running for the PXE client to receive the kernel image.
For information on configuring tftp, see �Enabling TFTP for LynxOS� on
page 93.

Configure Bootloader, KDI, and preboot files
The bootloader file, along with the KDI (Kernel Downloadable Image) and
modified preboot files must be accessible via tftp. These files should be placed
in the tftp root directory (/tftpboot) as:

� lynxOS.0 (bootloader)

� lynxOS.1 (preboot)

� lynxOS.2 (KDI)

Where lynxOS is the basename of the loader and image files. By default, the
basename is lynxOS, but the file can be renamed, if desired. However, the file
extensions (.0, .1, .2) must be used consistently. If, for example, a user wanted to
rename the file to the hostname of the system, it must be renamed hostname.0,
hostname.1, and hostname.2.

SCMP Netboot

The Netboot facility for systems using SCMP is very similar to the Ethernet
version. The main differences are as follows:

� SCMP runs only on the following platform:

PowerPC --MVME5100

� Boot image sharing is not possible.

NOTE: The Kernel Downloadable Image (KDI) file, lynxOS.2, must be created
by the user. Refer to the LynxOS User�s Guide for more information on creating a
KDI.
LynxOS Networking Guide 105

Chapter 9 - Network Booting Diskless Clients with LynxOS

� A set of tools is necessary to operate SCMP (see bpconfig,

slaveboot, bplane.conf).

How Does It Work?

As in Ethernet netboot, a diskless client is booted in two steps. The tools and
protocols, however, differ slightly as follows:

� The server downloads the boot-image using the slaveboot command.
This automatically starts the client.

� The boot procedure establishes the client as an SCMP network node,
determines its root file system server, and then loads the LynxOS
kernel.

Configuring the Disk-Based Server

As in Ethernet netboot, the following steps need to be performed to configure the
disk-based server:

� Enable TFTP services.

� Export root directory for diskless client via NFS.

� Build diskless client configuration files, the netbootable image, and
necessary start-up files.

� Put image and start-up files in a download directory.

See See �Ethernet Netboot� on page 91. for an overview of these steps. Then read
the following sections for SCMP-specific information.

Building the SCMP Netboot Image
The Makefile in /sys/romkit/scmp_boot builds a client-specific
configuration file for each diskless client. This configuration file is used to build
the kernel image and supporting files to be downloaded over the network to the
diskless client.

cd /sys/romkit/scmp_boot
make config

NOTE: Before booting a diskless client over a SCMP network, configure the SCMP
network as described in Chapter 8, �SCMP� on page 73.
106 LynxOS Networking Guide

Building the SCMP Netboot Image

The following figure shows an example SCMP netboot configuration.

Figure 9-6: Example, SCMP Netboot Configuration

Multiple clients can be configured within a single build environment by giving
them different CPU IDs:

make CPUID=2 config

The remainder of the build procedure is identical to the Ethernet version. To create
the netboot image (still in /sys/romkit/scmp_boot):

make all

To install the image and client files in the download directory: (/tftpboot by
default):

make install

Choose the bsp for which the scmp image is needed
1: [gen1]
2: [pp_drm]
3: [cpci_drm]
4: [pc_drm]
5: [mvme5100]

q/Q: Quit

enter selection: 2

SCMP Netboot Configuration

TFTP-Server Configuration
=========================
Please specify the location of the TFTP-directory
[/tftpboot]:<Return>
Enter the IP-Address of the TFTP-Server (aaa.bbb.ccc.ddd) [192.1.1.1]:<Enter
IP>

Checking IP-Address 192.1.1.1...ok.

Specify the name of the NFS-Server for the root filesystem [lynxdemo]:server-
ppc1
Specify the directory containing the root filesystem on the NFS-Server
[/clients/cpu2]:/clients/client-ppc2

Diskless Client Configuration
=============================

Enter the IP-Address of the diskless client (aaa.bbb.ccc.ddd) [192.1.1.2]:
192.1.1.2

Checking IP-Address 192.168.1.80...ok.
Hosts database to use on this client [/etc/hosts]:

Writing file netboot.config-1...ok.
LynxOS Networking Guide 107

Chapter 9 - Network Booting Diskless Clients with LynxOS

Starting a Diskless Client

On the server, which also must run SCMP, type:

slaveboot /tftpboot/<hex_IP_addr>.lynxos.netboot \
<client-hostname>

where <hex_IP_addr> is the hexadecimal notation of the client�s IP address (e.g.
C0010203 for 192.1.2.3) and <client-hostname> is the hostname of the client
within the SCMP network (instead of hostname, the IP address in dot-notation can
also be used).

If slaveboot is used to copy the image, start the client by typing at the prompt:

Go <start_addr.nhex>

where <start_addr.n_hex> is 4020 for Motorola boards and 400020 for
PowerCore.

For more information on the slaveboot command, see the slaveboot man
page.

Troubleshooting

� When booting the client a message �inetd: I/O error� appears.

The client�s root (/) file system is not exported with root permissions.
For example, if the client�s name is flipper, the /etc/exports file
should contain:

/clients/server_ppc root=flipper

� The downloaded boot-image cannot be executed.

This can happen if separate machines are used as servers�one for TFTP
and one for RARP. This error message indicates that the TFTP-server
answered the RARP request of the diskless client. Make sure that only the
real server machine is able to reply to a client�s RARP request.

If this is not feasible, change the boot script rc that is embedded in
rc.sh. Search for the netboot utility call and add the argument
-s tftpserver. This argument forces the use of a specific server.

� The SCMP network does not work.

Make sure that /etc/bplane.conf file contains IP addresses only
(not symbolic hostnames). The /etc/hosts hosts database is
108 LynxOS Networking Guide

Advanced Issues for Ethernet Netboot

downloaded after the initial SCMP configuration If symbolic hostnames
are required in /etc/bplane.conf, modify the SCMP kernel
specification file to include a hostname database.

Advanced Issues for Ethernet Netboot

The LynxOs Ethernet Netboot build environment supports shared boot-images.
This reduces the required disk space and makes kernel updates or changes easy,
because they automatically apply to all clients sharing the same boot-image.

Make sure that all of the clients can actually share the same boot image. For
example, a boot image cannot be shared between several x86-based systems
because they may have different network controllers.

Sharing a Boot Image

Use the following procedure to create shared boot-images.

1. For all clients, select the shared-KDI option when running
make config:

Do you want to use a shared KDI for this client?
[y,n] (n): y

In this mode of configuration, the Makefile offers slightly different
options. Instead of make all and make install, make kdi and

make install_kdi are added.

2. For only one client, enter the following command to build and install a
sharable boot image:

make install_kdi

3. For multiple clients, enter the following command to build and install a
sharable boot image:

make [CPUID=xxx] install

For more information on CPUID, see See �Configuring a Second Client�
on page 112..
LynxOS Networking Guide 109

Chapter 9 - Network Booting Diskless Clients with LynxOS

Cleaning Up the Working Directory

During development (or after) the working directory can be cleaned up. The
following make command deletes the kernel build subdirectory.

make clean

Client Information Files

When running the make config script, it creates a dedicated subdirectory,
sys-CPUID for each client. In this directory, make config creates the following
files:

� Kernel

� Boot-image

� Kernel-specific files

� Client-specific files

The make config script keeps each client�s configuration information in the
netboot.config-CPUID file. This file can be included in shell scripts and in
Makefiles. In a shell script, refer to a variable using $varname. In a Makefile,
use $(varname).

Adding Files to the RAM Disk

Depending on the architecture of the system, edit the <target>.netboot.spec
file and enter files and directories as needed. See the mkimage and
mkimage.spec man pages for the command syntax.

More About Kernel-Specific Files

Kernel-specific files contain information or parameters that are special for the
kernel being run by the diskless client.

The rc.sh file is a self-extracting script that creates the final version of the file
containing the network interface name. The rc.network file is actually copied
from rc.network.tmpl and is manipulated by the kernel configuration scripts
to enable or disable certain network daemons depending on what modules are
configured into the kernel.
110 LynxOS Networking Guide

More About Client-Specific Files

More About Client-Specific Files

Client-specific files contain information or parameters that are special for the
diskless client. In the standard LynxOS distribution, there are two client-specific
files:

• /etc/fstab

• /etc/hosts

The file system description database, /etc/fstab, is built from fstab.sh. This
is a self-extracting script that creates the final fstab with the proper server and
pathnames.

Adding Client-Specific Files
The following files must be edited to include another client-specific file:

Config-Netboot

Makefile

tftplist

Config-Netboot
Use the following procedure as an example to modify a hostname database.

1. Edit Config-Netboot.

vi Config-Netboot

2. Add a default value for the file in the header section and provide an
empty string if there is no default.

3. In the Diskless Client Configuration section, add the following
code:

use_default client_hosts_file

promptstr "user prompt" $<def_var_name> <var_name>

echo ""

Makefile
The TFTPFILES variable contains the list of files needed to install as client-
specific files. Add the file name here. If the file is specified it in Config-
Netboot, should now be refer to using $(var-name).
LynxOS Networking Guide 111

Chapter 9 - Network Booting Diskless Clients with LynxOS

tftplist
Use the following procedure to modify the tftplist file.

1. Edit the tftplist file.

vi tftplist

2. Add another line to this file.

Provide the file name, the TFTP-server (without the path and IP address),
and the final destination in the RAM disk as included by the ramdisk
driver.

3. (Optional) Add the access permissions for the file.

Other Options
Self-extracting scripts can be used to produce a file that uses one or more of the
configuration values. See the rc.sh and fstab.sh files on how to do this. The
Makefile contains generic rules how to run those scripts, so only one file needs
to be added $(SYSDIR)/myscript to the TFTPFILES variable and a
myscript.sh file in the build directory.

Configuring a Second Client

When running make config, the script saves the information that entered in the
netboot.config-CPUID file. The CPUID file extension distinguishes multiple
diskless clients and can be any unique string or number.

1. To configure a second client with a different CPUID, enter the following
command:

make CPUID=2 config

2. A boot image for this and other additional clients must be specified on the
command line.

make CPUID=2 all
112 LynxOS Networking Guide

CHAPTER 10 Raw Ethernet Support
Raw Ethernet Support is a facility available with LynxOS used to communicate
among nodes over an Ethernet/IEEE 802.3 data link from an application layer. This
facility provides for a direct link between application and link layers, and transfers
the burden of protocol-related processing to the application level. This
implementation facilitates the following interface-specific functions:

� Setting up the interface to allow raw ethernet reception

� Setting up the station address

� Setting up the protocol list

� Setting up the multicast address list

� Setting/resetting the promiscuous reception

� Setting/resetting the interface in blocking mode

� Enabling/disabling interface level debugging

� Getting the interface statistics, current station address and factory address

� Resetting the interface to stop raw ethernet reception

� Filtering the incoming packets with respect to an ethernet header

Raw Ethernet Support

AF_RAWETH Description

AF_RAWETH includes sockets of type SOCK_RAWETH. The raw Ethernet functions
are implemented with a set of ioctl calls on a raw Ethernet socket, providing the
interface between an application and the Ethernet interface driver.
LynxOS Networking Guide 113

Chapter 10 - Raw Ethernet Support

Multiple sockets can be operating simultaneously in raw Ethernet mode. Many of
the operations are restricted to use by a super-user and fail with return -1, if used
otherwise. The write and read system calls may be used to send and receive
Ethernet packets containing the Ethernet header and data fields. The following is
the list of ioctl functions available to the user with which to set up the interface in
raw Ethernet mode and communicate among nodes in Ethernet/IEEE 802.3
datalink.

• GE_SET_DEV

• GE_SET_SADDR

• GE_SET_PROTO

• GE_SET_MCAST

• GE_PROM

• GE_BLOCKING

• GE_DEBUG_MODE

• GE_SET_MODE

• GE_GET_CTRS

• GE_GET_SADDR

• GE_GET_FADDR

• GE_CLRIFNAME

• GE_SET_FILTER

The Ethernet driver facilitates simultaneous reception of regular TCP/IP packets
(ARP, RARP, and IP type) and processing, in case the Internet support exists.
Facilities exist for exclusive reception of all packets through raw Ethernet sockets.
The following sections explain each of the ioctl functions.

GE_SET_DEV

To use the interface in raw Ethernet mode, a socket needs to be created in the
AF_RAWETH domain of the SOCK_RAWETH type. The returned socket descriptor
can be used to set the device in raw Ethernet mode.

This ioctl function sets up the interface to accept raw Ethernet packets.
Optionally, this socket can be made to receive TCP/IP packets, where regular
TCP/IP processing is suspended until this socket gets closed for processing.

The arguments to this ioctl call, are as follows:

� Interface name

� Maximum queue length for the raw Ethernet interface
114 LynxOS Networking Guide

Example

� Flag indicating the reception of all packets to raw Ethernet sockets. (flag

-RECV_ALL). If this flag is passed, TCP/IP packets are sent to the
AF_RAWETH domain to see if a socket is waiting.

Example
typedef struct {
 int qlen; /* max. Qsize for this interface */
 char ename[13]; /* interface name */
 int recv_all; ,/* flag indicating the receiving
 of all packets to AF_RAWETH domain */
} T_GE_DEV;

int s, ret_val;
T_GE_DEV re_dev;
s = socket(AF_RAWETH, SOCK_RAWETH, 0);
re_dev.qlen = IFQ_MAXLEN; /* num packets to be cached
 IFQ_MAXLEN = 50 */
bcopy("wd0", re_dev.ename, sizeof("wd0"));
re_dev.recv_all = 0; /* TCP/IP packets not be
 received to this socket */
if ((ret_val = ioctl (s, GE_SET_DEV, &re_dev)) != 0) {
 perror("GE_SET_DEV:");
 exit(1);
};

This socket descriptor is used for all the raw Ethernet ioctl functions.

Facilities exist for configuring the Ethernet driver and protocol processing code to
get rid of TCP/IP processing entirely, such that any packet for this interface is
received by a properly matching raw Ethernet socket.

GE_SET_SADDR

This ioctl call is used to change the station address (Ethernet address) of this
interface. The address must be 6 bytes long, and the bit-0 of first byte should be
zero. This conforms to the Ethernet/IEEE 802.3 specification, which defines the
distinction between physical and multicast addresses depending on the bit-0 of the
first byte of the node address. The newly set address identifies this node and all
packets with this address as the source Ethernet address.

NOTE: This implementation does not support simultaneous processing of TCP/IP
packets by TCP/IP code and by raw Ethernet sockets. As explained above, TCP/IP
packets can be sent to a raw Ethernet socket by setting other parameters such as the
protocol range, filter pattern, or multicast address list. Normal TCP/IP processing
is restored when such a socket is properly closed (refer to the GE_CLRIFNAME
ioctl call).
LynxOS Networking Guide 115

Chapter 10 - Raw Ethernet Support

char saddr[6];
saddr[0] = 0xAA; saddr[1] = 00; saddr[2] = 04;
 saddr[3] = 00; saddr[4] = 04; saddr[5] = 00;

if ((ret_val = ioctl (s, GE_SET_SADDR, saddr)) != 0) {
 perror ("GE_SET_SADDR:");
 exit (1);
};

GE_SET_PROTO

This ioctl facilitates the setting up of the protocol range which the raw Ethernet
socket needs to receive. As many as four protocol ranges can be received by each
raw Ethernet socket.

typedef struct {
 int lowp; /* lower bound protocol type */
 int highp; /* upper bound protocol type */
} T_GE_LIST;

typedef struct {
 int num_items; /* num entries in list */
 T_GE_LIST plist[GE_MAX_PROTO];/* GE_MAX_PROTO=4 */
} T_GE_PROTO;

T_GE_PROTO pr_list;
pr_list.num_items = 2;
pr_list.plist[0].lowp = 0x100;
pr_list.plist[0].highp = 0x125;
pr_list.plist[1].lowp = 0x150;
pr_list.plist[1].highp = 0x175;

if ((ret_val = ioctl (s, GE_SET_PROTO, &pr_list)) != 0) {
 perror ("GE_SET_PROTO:");
 exit (1);
};
116 LynxOS Networking Guide

GE_SET_MCAST

GE_SET_MCAST

It is possible to set up a list of multicast addresses which the interface receives as
the destination node. Thus, data packets can be sent to a set of nodes, where a
certain multicast address is acceptable. This address is used as the destination
station address in such packets. According to the IEEE802.3 specifications, a
multicast address is identified from the physical address by the D0 bit of the first
byte in the 6-byte station address. If this bit is set, it is considered as a multicast
address. The interface needs to be programmed to accept a specific multicast
address.

typedef struct {
 int num_items; /* num entries in the list */
 char mlist[GE_MAX_MCAST][6]; /* GE_MAX_MCAST=3 */
} T_GE_MCAST;

T_GE_MCAST m_list;

m_list.num_items = 2;
m_list.mlist[0][0] = 0xCF;
m_list.mlist[0][1] = 0;
m_list.mlist[0][2] = 0;
m_list.mlist[0][3] = 0;
m_list.mlist[0][4] = 0;
m_list.mlist[0][5] = 0;
m_list.mlist[1][0] = 0xAB;
m_list.mlist[1][1] = 0;
m_list.mlist[1][2] = 0;
m_list.mlist[1][3] = 3;
m_list.mlist[1][4] = 0;
m_list.mlist[1][5] = 0;

if ((ret_val = ioctl (s, GE_SET_MCAST, &m_list)) != 0) {
 perror ("GE_SET_MCAST:");
 exit (1);
};

GE_PROM

This ioctl allows the interface to receive all packets, whether or not all packets
are destined for that node. Normally, this mode is not set, as it heavily loads the
system.

int prom;
prom = 1;
if ((ret_val = ioctl (s, GE_PROM, &prom)) != 0) {
 perror ("GE_PROM:");
 exit (1);
};
LynxOS Networking Guide 117

Chapter 10 - Raw Ethernet Support

GE_BLOCKING

This call puts the raw Ethernet socket in blocking mode. This call can be made to
be blocked or return with error for lack of input in case of read, or for lack of
output space in case of write). Note that the flag is set to 0 to put the socket in
blocking mode. The example below tests for non-blocking mode.

int donot_block;
donot_block = 1;/* set interface in non-blocked mode */
if ((ret_val = ioctl (s,GE_BLOCKING,&donot_block)) != 0) {
 perror ("GE_BLOCKING");
 exit (1);
};

GE_DEBUG_MODE

This ioctl call puts the interface in debug mode. The data which transfers
through this interface is displayed in the debug terminal.

int debug;
debug = 1;
if ((ret_val = ioctl (s, GE_DEBUG_MODE, &debug)) != 0) {
 perror ("GE_DEBUG_MODE:");
 exit (1);
};

GE_GET_CTRS

This ioctl call gets the raw Ethernet interface statistics.
typedef struct {
 long
 last_zeroed, /* unused now */
 msg_rcv, /* messages received */
 msg_xmt, /* messages transmitted */
 byt_rcv, /* bytes received */
 byt_xmt, /* bytes transmitted */
 xmt_err, /* transmit errors */
 msg_no_buff, /* no buffer occurrences */
 msg_qfull; /* no of qfull occurrences */
 int zero; /* unused now */
} T_GE_CTRS;

T_GE_CTRS ctrs;
if ((ret_val = ioctl (s, GE_GET_CTRS, &ctrs)) != 0) {
 perror ("GE_GET_CTRS:");
 exit (1);
};
118 LynxOS Networking Guide

GE_GET_SADDR

GE_GET_SADDR

This call gets the current station address of the raw Ethernet interface.
char saddr[6];
if ((ret_val = ioctl (s, GE_GET_SADDR, saddr)) != 0) {
 perror ("GE_GET_SADDR:");
 exit (1);
};

GE_GET_FADDR

This function gets the station address assigned by the manufacturer for the Ethernet
interface hardware.

char faddr[6];
if ((ret_val = ioctl (s, GE_GET_FADDR, faddr)) != 0) {
 perror ("GE_GET_FADDR:");
 exit (1);
};

GE_CLRIFNAME

This ioctl call closes the interface for raw Ethernet reception. It needs to be
followed by the closing of the raw Ethernet socket. Note that the flag RECV_ALL
needs to be set in the recv_all field, in case that option was chosen while
opening this socket.

typedef struct {
 int qlen; /* max. Qsize for this interface */
 char ename[13]; /* interface name */
 int recv_all; /* flag indicating the receiving
 all packets to AF_RAWETH domain */
} T_GE_DEV;

int s, ret_val;
T_GE_DEV re_dev;
re_dev.recv_all = 0; /* set to RECV_ALL if set while opening the i/f */

if ((ret_val = ioctl (s, GE_CLRIFNAME, &re_dev)) != 0){
 perror ("GE_CLRIFNAME");
 exit (1);
};
if (close (s) < 0) {
 perror ("close:");
 exit (1);
};

GE_SET_FILTER

This ioctl provides filtering for the incoming packets with respect to the
Ethernet header (first 14 bytes.) For example, the received packets falling within
LynxOS Networking Guide 119

Chapter 10 - Raw Ethernet Support

the protocol range set for this socket are passed through the filter and compared
against a given mask. In case of a match, the packet is sent to the socket receive
buffer. The argument for this ioctl contains two fields: filter and mask. The bits
in the header that are of interest for this socket are set to 1 in the filter field. The
bits that are expected to be set (logic 1) in the incoming pattern are reset (set to 0)
in the mask field.

The filtering is released by logically EX-NORing the incoming packet header with
the filter pattern. The resultant string is logically ORed with the mask pattern.
The output pattern is checked to see is all bits are set to 1. If yes, that packet is
received in the socket receive buffer.

By default, the filter is deactivated (i.e, there is no filtering on a received packet).
typedef struct {
 u_char filter[14];
 u_char mask[14];
} T_GE_FILTER;

T_GE_FILTER filter;
filter.filter[0] = 0xff; /* Pass the whole */
filter.filter[1] = 0xff; /* header (14 bytes) */
filter.filter[2] = 0xff; /* through the filter. */
filter.filter[3] = 0xff;
filter.filter[4] = 0xff;
filter.filter[5] = 0xff;
filter.filter[6] = 0xff;
filter.filter[7] = 0xff;
filter.filter[8] = 0xff;
filter.filter[9] = 0xff;
filter.filter[10] = 0xff;
filter.filter[11] = 0xff;
filter.filter[12] = 0xff;
filter.filter[13] = 0xff;
filter.mask[0] = ~0xab; /* Mask set for a */
filter.mask[1] = ~0; /* certain pattern of */
filter.mask[2] = ~0; /* destination */
filter.mask[3] = ~3; /* address and source */
filter.mask[4] = ~0; /* address but */
filter.mask[5] = ~0; /* doesn't care for */
filter.mask[6] = ~0; /* protocol field. */
filter.mask[7] = ~0x10; /* Note that the bits */
filter.mask[8] = ~0xc0; /* that are expected */
filter.mask[9] = ~0x40; /* to be 1 are */
filter.mask[10] = ~0xab; /* set to ‘0' in the */
filter.mask[11] = ~0x66; /* mask and vise-versa.*/
filter.mask[12] = 0xff; /* Do not care for */
filter.mask[13] = 0xff; /* protocol field. */

if ((ret_val = ioctl (s,GE_SET_FILTER,&filter)) != 0) {
 perror ("GE_SET_FILTER");
 exit (1);
};
120 LynxOS Networking Guide

APPENDIX A Supported Networking RFCs
The following table describes the supported RFCs for this release of LynxOS.

Table A-1: Supported RFCs

RFC/IEEE Description

3083 Baseline Privacy Interface Management Information Base for DOCSIS Compliant
Cable Modems and Cable Modem Termination Systems

3008 Domain Name System Security (DNSSEC)

3007 Secure Domain Name System (DNS) Update

2931 DNS Request and Transaction Signatures (SIG(0)s)

2930 Secret Key Establishment for DNS (TKEY RR)

2929 Domain Name System (DNS)

2915 The Naming Authority Pointer (NAPTR) DNS Resource Record

2894 Router Renumbering for IPv6

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering

2863 The Interface Group MIB

2845 Secret Key Transaction Authentication for DNS (TSIG)

2819 Remote Network Monitoring Management Information Base

2796 BGP Route Reflection

2790 Host Resource MIB

2789 Mail Monitoring MIB

2788 Network Services Monitoring MIB

2742 Definitions of Managed Objects for Extensible SNMP Agents

2741 Agent Extensibility (AgentX) Protocol version 1
LynxOS Networking Guide 121

Appendix A - Supported Networking RFCs

2740 OSPF for IPv6

2737 Entity MIB (version 2)

2711 IPv6 Router Alert Option

2710 Multicast Listener Discovery (MLD) for IPv6

2672 Non-Terminal DNS Name Redirection

2671 Extension Mechanisms for DNS (EDNSO)

2667 IP Tunnel MIB

2663 IP Network Address Translator (NAT)

2616 Hypertext Transfer Protocol (HTTP) 1.1

2594 Definitions of Managed Objects for www services

2593 Script MIB Extensibility Protocol Version 1.0

2592 Definitions of Managed Objects for the Delegation of Management Script

2591 Definitions of Managed Objects for Scheduling Management Operations

2588 IP Multicast and Firewalls

2580 Conformance Statement for SMIv2

2579 Textual Conventions for SMIv2

2578 Structure of Management Information Version 2 (SMIv2)

2576 Coexistence between version 1, version 2, version 3 of the Internet-standard Network
Management Framework

2575 View-based Access Control Model (VACM) for the Simple Management Protocol
(SNMP)

2574 User-based Security Model (USM) for version 3 of the Simple Network Management
Protocol (SNMPv3)

2573 SNMP Applications

2572 Message Processing and Dispatching for the Simple Network Management Protocol
(SNMP)

2571 An Architecture for Describing SNMP Management Frameworks

2564 Application Management MIB

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
122 LynxOS Networking Guide

2560 X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

2559 Internet X.509 Public Key Infrastructure Operational Protocols - LDAPv2

2553 Basic Socket Interface Extensions for IPv6

2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS)

2538 Storing Certificates in the Domain Name System (DNS)

2535 Domain Name System Security Extensions

2529 Transmission of IPv6 over IPv4 Domains without Explicit Tunnels

2526 Reserved IPv6 Subnet Anycast Addresses

2473 Generic Packet Tunneling in IPv6 Specification

2472 IP Version 6 over PPP

2464 Transmission of IPv6 Packets over Ethernet Networks

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification

2462 IPv6 Stateless Address Autoconfiguration

2461 Neighbor Discovery for IP Version 6 (IPv6)

2460 Internet Protocol, Version 6 (IPv6) Specification

2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile

2453 RIP Version 2

2437 PKCS #1: RSA Cryptography Specifications Version 2.0

2411 IP Security Document Roadmap

2410 The NULL Encryption Algorithm and Its Use With IPsec

2409 The Internet Key Exchange (IKE)

2406 IP Encapsulating Security Payload (ESP)

2405 The ESP DES-CBC Cipher Algorithm With Explicit IV

2404 The Use of HMAC-SHA-1-96 within ESP and AH

2403 The Use of HMAC-MD5-96 within ESP and AH

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 123

Appendix A - Supported Networking RFCs

2402 IP Authentication Header

2401 Security Architecture for the Internet Protocol

2396 Uniform Resource Identifiers (URI): Generic Syntax

2395 IP Payload Compression Using LZS

2394 IP Payload Compression Using DEFLATE

2393 IP Payload Compression Protocol (IPComp)

2391 Load Sharing using IP Network Address Translation (LSNAT)

2375 IPv6 Multicast Address Assignments

2374 An IPv6 Aggregatable Global Unicast Address Format

2373 IP Version 6 Addressing Architecture

2367 PF_KEY Key Management API, Version 2

2362 Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification

2358 Definitions of Managed Objects for the Ethernet-like Interface Types

2344 Reverse Tunneling for Mobile IP

2328 OSPF Version 2

2308 Negative Caching of DNS Queries (DNS NCACHE)

2292 Advanced Sockets API for IPv6

2283 Multiprotocol Extensions for BGP-4

2275 View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP)

2257 Agent Extensibility (AgentX) Protocol Version 1

2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names

2249 Mail Monitoring MIB

2248 Network Services Monitoring MIB

2247 Using Domains in LDAP/X.500 Distinguished Names

2236 Internet Group Management Protocol, Version 2

2233 The Interfaces Group MIB using SMIv2

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
124 LynxOS Networking Guide

2230 Key Exchange Delegation Record for the DNS

2181 Clarifications to the DNS Specification

2178 OSPF Version 2

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping
(MCGAM)

2156 MIXER (Mime Internet X.400 Enhanced Relay): Mapping between X.400 and RFC
822/MIME

2144 The CAST-128 Encryption Algorithm

2137 Secure Domain Name System Dynamic Update

2136 Dynamic Updates in the Domain Name System (DNS UPDATE)

2133 Basic Socket Interface Extensions for IPv6

2132 DHCP Options and BOOTP Vendor Extensions

2131 Dynamic Host Configuration Protocol

2119 Key words for use in RFCs to Indicate Requirement Levels

2117 Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification

2104 HMAC: Keyed-Hashing for Message Authentication

2096 IP Forwarding Table MIB

2080 RIPng for IPv6

2074 Remote Network Monitoring MIB Protocol Identifiers

2073 An IPv6 Provider-Based Unicast Address Format

2072 Router Renumbering Guide

2071 Network Renumbering Overview: Why would I want it and what is it anyway?

2065 Domain Name System Security Extensions

2040 The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms

2023 IP Version 6 over PPP

2013 SNMPv2 Management Information Base for the User Datagram Protocol using
SMIv2

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 125

Appendix A - Supported Networking RFCs

2012 SNMPv2 Management Information Base for the Transmission Control Protocol using

SMIv2

2011 SNMPv2 Management Information Base for the Internet Protocol using SMIv2

2003 IP Encapsulation within IP

2001 TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms

1997 BGP Communities Attribute

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)

1995 Incremental Zone Transfer in DNS

1994 PPP Challenge Handshake Authentication Protocol (CHAP)

1982 Serial Number Arithmetic

1972 A Method for the Transmission of IPv6 Packets over Ethernet Networks

1971 IPv6 Stateless Address Autoconfiguration

1970 Neighbor Discovery for IP Version 6 (IPv6)

1966 BGP Route Reflection An alternative to full mesh IBGP

1950 ZLIB Compressed Data Format Specification version 3.3

1933 Transition Mechanisms for IPv6 Hosts and Routers

1918 Address Allocation for Private Internets

1908 Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management Framework

1907 Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2)

1906 Transport Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)

1905 Protocol Operations for Version 2 of the Simple Network Management Protocol
(SNMPv2)

1904 Conformance Statements for Version 2 of the Simple Network Management Protocol
(SNMPv2)

1903 Textual Conventions for Version 2 of the Simple Network Management Protocol
(SNMPv2)

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
126 LynxOS Networking Guide

1902 Structure of Management Information for Version 2 of the Simple Network

Management Protocol (SNMPv2)

1901 Introduction to Community-based SNMPv2

1893 Enhanced Mail System Status Codes

1887 An Architecture for IPv6 Unicast Address Allocation

1886 DNS Extensions to support IP version 6

1885 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6)

1884 IP Version 6 Addressing Architecture

1883 Internet Protocol, Version 6 (IPv6) Specification

18876 A Means for Expressing Location Information in the Domain Name System

1858 Security Considerations for IP Fragment Filtering

1853 IP in IP Tunneling

1850 OSPF Version 2 Management Information Base

1829 The ESP DES-CBC Transform

1828 IP Authentication using Keyed MD5

1827 IP Encapsulating Security Payload (ESP)

1826 IP Authentication Header

1825 Security Architecture for the Internet Protocol

1812 Requirements for IP Version 4 Routers

1795 Data Link Switching: Switch-to-Switch Protocol AIW DLSw RIG: DLSw Closed
Pages, DLSw Standard Version 1

1779 A String Representation of Distinguished Names

1771 Lightweight Directory Access Protocol

1770 IPv4 Option for Sender Directed Multi-Destination Delivery

1757 Remote Network Monitoring Management Information Base

1750 Randomness Recommendations for Security

1724 RIP Version 2 MIB Extension

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 127

Appendix A - Supported Networking RFCs

1723 RIP Version 2 - Carrying Additional Information

1722 RIP Version 2 Protocol Applicability Statement

1721 RIP Version 2 Protocol Analysis

1716 Towards Requirements for IP Routers

1712 DNS Encoding of Geographical Location

1706 DNS NSAP Resource Records

1662 PPP in HDLC-like Framing

1661 The Point-to-Point Protocol (PPP)

1660 Definitions of Managed Objects for Parallel-printer-like Hardware Devices using
SMIv2

1659 Definitions of Managed Objects for RS-232-like Hardware Devices using SMIv2

1658 Definitions of Managed Objects for Character Stream Devices using SMIv2

1657 Definitions of Managed Objects for the Fourth Version of the Border Gateway
Protocol (BGP-4) using SMIv2

1655 Application of the Border Gateway Protocol in the Internet

1654 A Border Gateway Protocol 4 (BGP-4)

1644 T/TCP -- TCP Extensions for Transactions Functional Specification

1631 The IP Network Address Translator (NAT)

1623 Definitions of Managed Objects for the Ethernet-like Interface Types

1612 DNS Resolver MIB Extensions

1611 DNS Server MIB Extensions

1592 Simple Network Management Protocol Distributed Protocol Interface Version 2.0

1591 Domain Name System Structure and Delegation

1583 OSPF Version 2

1573 Evolution of the Interfaces Group of MIB-II

1572 Telnet Environment Option

1571 Telnet Environment Option Interoperability Issues

1566 Mail Monitoring MIB

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
128 LynxOS Networking Guide

1565 Network Services Monitoring MIB

1548 The Point-to-Point Protocol (PPP)

1542 Clarifications and Extensions for the Bootstrap Protocol

1541 Dynamic Host Configuration Protocol

1534 Interoperation Between DHCP and BOOTP

1533 DHCP Options and BOOTP Vendor Extensions

1532 Clarifications and Extensions for the Bootstrap Protocol

1531 Dynamic Host Configuration Protocol

1525 Definitions of Managed Objects for Source Routing Bridges

1514 Host Resources MIB

1497 BOOTP Vendor Information Extensions

1493 Definitions of Managed Objects for Bridges

1452 Coexistence between version 1 and version 2 of the Internet-standard Network
Management Framework

1451 Manager-to-Manager Management Information Base

1450 Management Information Base for version 2 of the Simple Network Management
Protocol (SNMPv2

1449 Transport Mappings for version 2 of the Simple Network Management Protocol
(SNMPv2)

1448 Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPv2)

1447 Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)

1446 Security Protocols for version 2 of the Simple Network Management Protocol
(SNMPv2)

1445 Administrative Model for version 2 of the Simple Network Management Protocol
(SNMPv2)

1444 Conformance Statements for version 2 of the Simple Network Management Protocol
(SNMPv2)

1443 Textual Conventions for version 2 of the Simple Network Management Protocol
(SNMPv2)

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 129

Appendix A - Supported Networking RFCs

1442 Structure of Management Information for version 2 of the Simple Network

Management Protocol (SNMPv2)

1441 Introduction to version 2 of the Internet-standard Network Management Framework

1424 Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and
Related Services

1423 Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and
Identifiers

1422 Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management

1421 Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures

1389 RIP Version 2 MIB Extensions

1388 RIP Version 2 Carrying Additional Information

1387 RIP Version 2 Protocol Analysis

1382 SNMP MIB Extension for the X.25 Packet Layer

1381 SNMP MIB Extension for X.25 LAPB

1361 Simple Network Time Protocol (SNTP)

1354 IP Forwarding Table MIB

1350 The TFTP Protocol (Revision 2)

1348 DNS NSAP RRs

1340 Assigned Numbers

1337 TIME-WAIT Assassination Hazards in TCP

1334 PPP Authentication Protocols

1333 PPP Link Quality Monitoring

1332 The PPP Internet Protocol Control Protocol (IPCP)

1327 Mapping between X.400(1988) / ISO 10021 and RFC 822

1323 TCP Extensions for High Performance

1321 The MD5 Message-Digest Algorithm

1320 The MD4 Message-Digest Algorithm

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
130 LynxOS Networking Guide

1319 The MD2 Message-Digest Algorithm

1315 Management Information Base for Frame Relay DTEs

1305 Network Time Protocol (Version 3) Specification, Implementation

1288 The Finger User Information Protocol

1286 Definitions of Managed Objects for Bridges

1282 BSD Rlogin

1271 Remote Network Monitoring Management Information Base

1269 Definitions of Managed Objects for the Border Gateway Protocol: Version 3

1258 BSD Rlogin

1256 ICMP Router Discovery Messages

1229 Extensions to the generic-interface MIB

1228 SNMP-DPI: Simple Network Management Protocol Distributed Program Interface

1227 SNMP MUX protocol and MIB

1215 Convention for defining traps for use with the SNMP

1213 Management Information Base for Network Management of TCP/IP-based
internets:MIB-II

1212 Concise MIB definitions

1191 Path MTU discovery

1186 MD4 Message Digest Algorithm

1184 Telnet Linemode Option

1183 New DNS RR Definitions

1179 Line printer daemon protocol

1157 Simple Network Management Protocol (SNMP)

1156 Management Information Base for network management of TCP/IP-based internets

1155 Structure and identification of management information for TCP/IP-based internets

1122 Requirements for Internet Hosts - Communication Layers

1119 Network Time Protocol (version 2) specification and implementation

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 131

Appendix A - Supported Networking RFCs

1116 Telnet Linemode option

1098 Simple Network Management Protocol (SNMP)

1094 NFS: Network File System Protocol specification

1091 Telnet terminal-type option

1084 BOOTP vendor information extensions

1075 Distance Vector Multicast Routing Protocol

1067 Simple Network Management Protocol

1066 Management Information Base for network management of TCP/IP-based internets

1065 Structure and identification of management information for TCP/IP-based internets

1063 IP MTU discovery options

1058 Routing Information Protocol

1057 RPC: Remote Procedure Call Protocol specification: Version 2

1050 RPC: Remote Procedure Call Protocol specification

1048 BOOTP vendor information extensions

1035 Domain names - implementation and specification

1034 Domain names - concepts and facilities

1010 Assigned numbers

1002 Protocol standard for a NetBIOS service on a TCP/UDP transport: Detailed
specifications

1001 Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and
methods

0988 Host extensions for IP multicasting

0961 Official ARPA-Internet protocols

0959 File Transfer Protocol

0958 Network Time Protocol (NTP)

0951 Bootstrap Protocol

0950 Internet Standard Subnetting Procedure

0922 Broadcasting Internet datagrams in the presence of subnets

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
132 LynxOS Networking Guide

0919 Broadcasting Internet Datagrams

0904 Exterior Gateway Protocol formal specification

0903 Reverse Address Resolution Protocol

0894 Standard for the transmission of IP datagrams over Ethernet networks

0893 Trailer encapsulations

0887 Resource Location Protocol

0877 Standard for the transmission of IP datagrams over public data networks

0861 Telnet Extended Options: List Option

0860 Telnet Timing Mark Option

0859 Telnet Status Option

0858 Telnet Suppress Go Ahead Option

0857 Telnet Echo Option

0856 Telnet Binary Transmission

0855 Telnet Option Specifications

0854 Telnet Protocol Specification

0826 Ethernet Address Resolution Protocol: Or converting network protocol addresses to
48.bit Ethernet address for transmission on Ethernet hardware

0822 Standard for the format of ARPA Internet text messages

0815 IP datagram reassembly algorithms

0793 Transmission Control Protocol

0792 Internet Control Message Protocol

0791 Internet Protocol

0790 Assigned numbers

0777 Internet Control Message Protocol

0768 User Datagram Protocol

0765 File Transfer Protocol specification

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
LynxOS Networking Guide 133

Appendix A - Supported Networking RFCs

0764 Telnet Protocol specification

0742 NAME/FINGER Protocol

Table A-1: Supported RFCs (Continued)

RFC/IEEE Description
134 LynxOS Networking Guide

Index
Symbols

/etc/bplane.conf File 108
/etc/ppp.options file 35
/etc/ppp/chap-secrets file 35
/etc/ppp/options file 37

A

Adding
files to the RAM Disk 110
netboot client-specific files 111

Administration Files
/etc/exports 54

Advanced
issues for Ethernet netboot 109

B

Booting
diskless clients 89
the Remote Kernel Image 97

Building
the Netboot Image 95
the SCMP Netboot Image 106

C

Client
caching 47
diskless, starting an Ethernet 108

files
modifying for netboot image 111

information files 110
specific files, netboot 111

Clients
configuring netboot 112
sharing boot images 109

Commands
ftp 14
ping 3
rlogin 3
rsh 3
SCMP

slaveboot command 108
telnet 3

Config-Netboot file,modifying 111
Configuration

file, creating the Samba 58
files, client netboot 111

Configuring
NFS Server 54
the netboot disk-based server 92, 98, 106
the netboot diskless client 95
the PPP Server 36
the Samba Server 57

Configuring the PPP Server 36
Configuring the Samba Server 57
contacting LynuxWorks xi
Contents iii
Copying

netboot scripts before customizing 90
Copyright Information ii
Creating

Samba configuration file 58
Cross Development

netboot scripts, location 90
LynxOS Networking Guide 135

Index

D

Daemons
pppd 35
running pppd 36
starting smbd and nmbd from a script 59

Database
hosts 3

dhclient 45
DHCP 41

About 41
Client 45
dhclient 45
dhcpd 43
dhcpd.conf 44
leases 45
LynxOS Files 42
man pages 42
Server 43
storage of parameters 41
Using DHCP and bootp 46

dhcpd 43
dhcpd.conf 44
Directory

cleaning up the working 110
Disabling

PReP-Boot on PowerPC 96
Diskless Client

booting across the network 89
booting with SCMP Netboot 106
sharing boot images 109
starting 108

Divert sockets 16
documents

LynxOS ix
online x

Dynamic Host Configuration Protocol 41

E

Enabling
NVRAM PowerPC 96
TFTP 93

Ethernet
netboot scripts 90

Ethernet Interface
configuring 2

Ethernet Neboot
setting up 91

Ethernet Netboot
issues 109
script location 91
setting parameters 96
setting up PowerPC systems 95

Example
Netbooting a FORCE PowerCore 680 98

Exporting
file systems 94

F

faithd 21
File Locking

NFS 47
tuning NFS 53

File Systems
exporting 94

Files
/etc/chap-secrets 35
/etc/ppp.options 35
adding netboot client-specific 111
adding RAM disk 110
binary, transferring 14
client information 110
client-specific 111
client-specific SCMP Netboot 111
Config-Netboot 111
creating the Samba configuration 58
getting from a remote host 13
host database 3
host, setting up 3
kernel-specific 110
Netboot configuration 111
resolv.conf 7
resolv.conf, setting up 3
SCMP

backplane 108
tftplist 112
transferring with ftp 12
tuning NFS locked 53

Firewalls 25
ip6fw 28
ipfw 25
ipfw rules 26

ftp
136 LynxOS Networking Guide

Commands

getting a list of 14
putting files on a remote host 14
transferring binary files 14
transferring files with 12

H

Hostname Database
modifying 111

Hostname databases
.rhosts 4, 16
/etc/bplane.conf 84
/etc/hosts.equiv 11

Hosts
database 3
remote, executing commands 3
setting up for remote access 3

I

ifconfig 2
Index 135
Installing

PPP 36
Samba 56

Installing/Removing PPP Support 36
Installing/Removing Samba Support 56
IP masquerading 17
IPsec 28

AH, ESP security protocols 29
SAD (security association database) 30
setkey 30
SPD (security policy database) 29
SPD, Security Policy Database 29

IPv6
connecting to IPv4 networks 21
hostname resolution between IPv4 and IPv6

hosts 22
improvements over IPv4 19
overview 19
Setting a static IP address 20
Setting up hostname resolution 20
setting up routed6 20
using faithd 21

K

Kernel
build, cleaning up 110
driver

PPP 35
files 110

Kernel-Specific Files 110

L

Locking
files 53
NFS file 47

Logging On
remotely 3
remotely with telnet 3

login
creating for pppd 37

LynuxWorks, contacting xi
LynuxWorks, Inc. ii
LynxOS

documents ix
PPP components 35
reference manuals x
Samba components 57

M

make config
script 110

Makefile 111
SCMP 106

man pages x
Masquerading

IP 17
Modifying

hostname database 111

N

NAT 17
natd 17
LynxOS Networking Guide 137

Index

Netboot

building images to 95
configuring a second client 112
configuring diskless clients 95�??
configuring servers 92�94
definition 89
parameters, setting 96
troubleshooting 108
utilities 90

Netboot Image
client information files 110
SCMP 106

Netboot Scripts
copying 90
restrictions 90
using 90

Netbooting
PowerPC 98

net-SNMP
adding custom modules 69
components 66
documentation 66
known limitations 70
license & copyright 70
OpenSSL legal issues 71
SNMP protocol overview 64
v3 OpenSSL requirements 64

Network Address Translation 17
Network Booting

Ethernet 91
Network Card

configuring 2
Network security 25

firewalls 25
ip6fw 28
ipfw 25
ipfw rules 26

IPsec 28
AH, ESP security protocols 29
SAD (security association

database) 30
setkey 30
SPD (security policy database) 29
SPD, Security Policy Database 29

NFS
definition 47
exporting 94
file locking 47
installing/removing 48
overview 47

protocols 1
server, configuring 54
tuning client kernel parameters 49
tuning locked files 53
tuning server parameters 48

NFS Client-Side Cache 51
NFS File Locking 53
NFS Server Tunable Parameters 49
NVRAM

enabling on PowerPC 96

O

online help x
OpenSSL

legal issues 71
SNMPv3 requirements 64

Other Options 112
Overview 89

Network File System 47

P

Parameters
Ethernet netboot 96
tuning NFS client kernel 49
tuning NFS server 48

ping Command 3
testing TCP/IP 4

PowerPC
disabling PReP-Boot 96
netbooting 98
setting up Ethernet Netboot 95

PPP 35
/bin/chat script 35
/net/pppd, user level daemon 35
Account,creating 37
chap-secrets file 35
components 35
Configuring

the PPP Client 38
Creating

ppp Account 37
definition 35
dialing up the server 38
Installing/Removing 36
138 LynxOS Networking Guide

kernel driver 35
options file 35
server,configuring 36
using chat as a dial-in facility 39
using chat with special login 39

Protocols
ftp 12
NFS 1
PPP 35
telnet 3

protocols
tftp 15

Putting the Netboot Files in the Download
Directory 95

PXE Netboot
configuring client 103
configuring server 104

bootloader, kdi & bootfiles 105
dhcp 104
tftp 105

R

RAM Disk
adding files 110
adding netboot files 110

Raw Ethernet
available ioctl functions 113
sockets 113

rc.network 2
Reference manuals x
Remote

utilities, ping 4
Remote Host

putting files on a 14
retrieving files from 13

Remote Kernel Image
booting 97

Removing
Samba 56

Removing PPP 36
resolv.conf 7
Restrictions 90
RFCs

supported 121
rlogin utility 11
routed6

for IPv6 networks 20

rsh utility 11

S

Samba
components 57
configuring the server 57
creating the configuration file 58
definition 55
installing 56
Listening to Shares on the Server 60
listening to shares on the server 60
starting daemons 59
starting smbd and nmbd from inetd 59

Samba Components 57
SCMP

/etc/bplane.conf file 108
backplane network driver 74
example configuration 76
Makefile 106
netboot image 106
netboot scripts 90
netboot, procedures 106
slaveboot command 108
troubleshooting 108

SCMP Netboot 105
booting a diskless client 106
client-specific files 111
configuring the disk-based server 106
example configuration 107
supported platforms 105

Scripts
chat 35
neboot cross development 90
netboot 90
netboot, copying 90
netboot, using 90
running make config 110

secure tftp 15
Security

network 25
Serial Line

running ppd 36
Server

configuring netboot disk-based 106
configuring the Samba 57
disk-based, configuring for SCMP 106
netboot disk-based, configuring 92
LynxOS Networking Guide 139

Index

PPP, configuring 36
PPP, dialing up 38
Samba, listening for shares 60

Setting Up
Netboot Parameters 96
Thales

VMPC neboot 97
Setting Up Cetia Vmpc4a 98
setting up Ethernet Netboot 95
Setting Up PPC/PowerCore-6603/4 Systems 97
Shared Memory

VMEbus 77
Sharing

a Boot Image 109
SNMP

protocol overview 64
sockets 74
Starting

an SCMP Ethernet diskless client 108
the smbd and nmbd daemons 59

T

TCP/IP
resolv.conf 7
testing 4

TCP/IP Components
/etc/hosts file 3
/etc/resolv.conf file 3
hosts file 3
ping 3
rlogin command 3
rsh command 3
telnet command 3

Technical Support xi
Telnet utility 9
Testing

TCP/IP 4
TFTP

enabling 93
overview 15
secure transfers 15
simple transfers 15

TFTPFILES Variable 111
tftplist 112
tftplist file

modifying 112
Thale

VMPC
setting up netboot 97

Troubleshooting
SCMP 108
TCP/IP 4

Typographical Conventions x

U

UCD-SNMP 63
Utilities

chat 38
Netboot 90
telnet 9

V

Variables
TFTPFILES 111
Title

BookTitle
Legal ii

VME
netboot parameters 96

VME bus
shared memory 77

VMEbug commands
env 95
md 81
nbo 97
niot 96
set 96

Z

Zebra
routing IPv6 hosts 21
140 LynxOS Networking Guide

	LynxOS Networking Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 TCP/IP
	Installing/Removing TCP/IP Support
	Installing TCP/IP

	Configuring Ethernet Cards with ifconfig
	rc.network

	Common TCP/IP Utilities
	Testing TCP/IP (ping)
	Troubleshooting ping

	Using traceroute
	Logging On to a Remote Computer (telnet, rlogin)
	telnet
	rlogin

	Executing Commands Remotely (rsh)
	Accessing Remote Hosts and Redirecting Output to the Local Machine
	Executing a Command on a Remote Host

	Transferring Files Between Machines (ftp, tftp rcp)
	File Transfer Protocol (ftp)
	Trivial File Transfer Protocol (tftp)
	Remote Copy (rcp)

	Divert Sockets
	NAT and IP Masquerading
	Enabling and Starting natd

	IPv6 Support
	Setting an IPv6 Address Statically
	Setting up Hostname Resolution for IPv6 Addresses
	Setting up Routes with route6d
	Using faithd to Connect IPv6 and IPv4 Networks
	Hostname Resolution Between IPv6 and IPv4 Hosts

	Driver Defaults

	Chapter 2 Network Security
	Firewalls
	ipfw
	Enabling ipfw
	Changing ipfw Rules
	Listing ipfw Rules
	Removing ipfw Rules
	Clearing ipfw Counters

	ip6fw

	IPsec
	AH and ESP Security Protocols
	Tunnel Mode and Transport Mode
	Setting the Security Policy Database (SPD)
	Setting the Security Association Database (SAD)
	Using setkey

	Chapter 3 PPP
	LynxOS PPP Components
	Installing/Removing PPP Support
	Installing PPP
	Removing PPP

	Configuring the PPP Server
	Running pppd on Each Serial Line
	Creating a ppp Account and login Shell for pppd

	Configuring the PPP Client
	Dialing the Server
	Using chat with Special Log in ppp User-ID
	Using chat as a Dial-in Facility

	Chapter 4 DHCP
	Introduction
	LynxOS DHCP Components
	LynxOS DHCP Files
	DHCP man pages
	Online Resources

	Installing DHCP
	The DHCP Server
	dhcpd
	dhcpd.conf
	dhcpd.leases
	Relay Agents

	The DHCP Client
	dhclient
	Starting dhclient

	Chapter 5 NFS
	Overview
	Installing/Removing NFS Support
	Installing NFS
	Removing NFS

	Tuning the NFS Server Kernel
	NFS Server Tunable Parameters

	Tuning the NFS Client Kernel
	Tuning the NFS Client-Side Cache
	Tuning NFS File Locking
	Configuring the NFS Server

	Chapter 6 Samba
	What is Samba?
	Installing/Removing Samba Support
	Installing Samba
	Removing Samba

	LynxOS Samba Components
	Configuring the Samba Server
	Creating and Testing the Samba Configuration File
	Starting the smbd and nmbd Daemons
	Starting smbd and nmbd from inetd.conf
	Starting smbd and nmbd from the Command Line
	Starting smbd and nmbd from a Script

	Listing Shares on the Server

	Chapter 7 net-SNMP and OpenSSL
	Introduction
	Installing net-SNMP
	SNMP Overview
	net-SNMP Documentation
	net-SNMP Components
	Configuring SNMPv3
	Creating a User
	Creating Additional Users

	Extending the Agent with MIB modules
	License & Copyright
	OpenSSL
	OpenSSL Legal Issues

	Chapter 8 SCMP
	Overview
	SCMP Concepts
	Configuration

	SCMP - VME
	Bus Example Used in This Chapter

	Setting Up the Hardware for SCMP
	Assembling the System
	Assigning the Board Addresses
	VME Shared Memory Basics
	Selecting the Slave Addresses

	Programming the VME Bridge Chip
	Programming the Universe Chip

	Verifying the Hardware Setup
	Troubleshooting a VME Board that Uses the Universe Chip

	Setting Up LynxOS for SCMP
	Copying the Current LynxOS Kernel
	Choosing the Primary Processor
	Configuring the LynxOS Backplane Driver
	Creating the Backplane Configuration File
	Modifying the Backplane Driver Information
	Rebuilding the Backplane Driver Information

	Rebuilding the LynxOS Kernel
	Starting SCMP

	Chapter 9 Network Booting Diskless Clients with LynxOS
	Overview
	Using the LynuxWorks Netboot Scripts
	Copying Scripts Before Customizing
	Restrictions

	Ethernet Netboot
	Before Beginning

	Configuring the Disk-Based Server
	Enabling TFTP for LynxOS
	Configuring TFTP on Cross Development System

	Exporting the Root File System Via NFS
	Building the Netboot Image
	Putting the Netboot Files in the Download Directory

	Configuring the Diskless Client
	Setting Up the PowerPC System
	Enabling NVRAM on the PowerPC
	Disabling PReP-Boot on PowerPC
	Setting Netboot Parameters
	Booting the Remote Kernel Image

	Setting Up PPC PowerCore Systems
	Setting Up Thales VMPC Systems
	Setting Up Thales VMPC

	Example—Netbooting a FORCE PowerCore 680 Board
	Preparing the Board
	Configuring a Network Server
	Configuring TFTP on a Linux Cross Development Host

	Network Booting the Target Board
	Booting from Flash Memory

	Configuring PXE Netboot Support
	Configuring the PXE Client
	Configuring the PXE Server
	Configure DHCP
	Configure tftp
	Configure Bootloader, KDI, and preboot files

	SCMP Netboot
	How Does It Work?
	Configuring the Disk-Based Server
	Building the SCMP Netboot Image

	Starting a Diskless Client

	Troubleshooting
	Advanced Issues for Ethernet Netboot
	Sharing a Boot Image
	Cleaning Up the Working Directory
	Client Information Files
	Adding Files to the RAM Disk
	More About Kernel-Specific Files
	More About Client-Specific Files
	Adding Client-Specific Files

	Configuring a Second Client

	Chapter 10 Raw Ethernet Support
	Raw Ethernet Support
	AF_RAWETH Description
	GE_SET_DEV
	Example

	GE_SET_SADDR
	GE_SET_PROTO
	GE_SET_MCAST
	GE_PROM
	GE_BLOCKING
	GE_DEBUG_MODE
	GE_GET_CTRS
	GE_GET_SADDR
	GE_GET_FADDR
	GE_CLRIFNAME
	GE_SET_FILTER

	Appendix A Supported Networking RFCs
	Index

