
3

Total/db User’s Guide

LynxOS Release 4.0
DOC-0409-00

Product names mentioned in Total/db User’s Guide are trademarks of their respective manufacturers and are used here
for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of Total/db User’s Guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the prior written
permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE .. VII

For More Information ..vii
Typographical Conventions ..viii
Special Notes .. ix
Technical Support ... ix

LynuxWorks U.S. Headquarters ... ix
LynuxWorks Europe ... ix
World Wide Web ... ix

CHAPTER 1 TOTAL/DB OVERVIEW.. 1

Included Components .. 1
GDB .. 1
GDBServer ... 1
Insight ... 2
SSPP ... 2
SKDB ... 2

User Process Debugging vs. Kernel/Device Driver Debugging 2
Local Debugging versus Remote Debugging .. 3

Local Debugging .. 4
Remote Debugging ... 4

Total/db Configuration Options ... 7
Supported Languages ... 8
Source Code ... 9

CHAPTER 2 DEBUGGING WITH GDB... 11

The GNU Source Level Debugger .. 11
GDB as Free Software .. 11
LynxOS Total/db User’s Guide i

Contents

Controlling GDB ... 12

Prompt .. 12
Command Editing .. 12
Command History .. 13
Screen Size ... 14
Numbers ... 15
Optional Warnings and Messages .. 16

Getting In and Out of GDB ... 17
Invoking GDB .. 17
Quitting GDB ... 21
Shell Commands .. 22

GDB Commands ... 22
Command Syntax ... 22
Command Completion ... 23
Getting Help ... 25

Running Programs under GDB ... 27
Compiling for Debugging .. 27
Starting Your Program ... 28
Your Program’s Arguments ... 30
Your Program’s Environment .. 30
Your Program’s Working Directory .. 31
Your Program’s Input and Output .. 32
Debugging an Already-Running Process ... 32
Killing the Child Process .. 33
Debugging Programs with Multiple Threads ... 34
Debugging Programs with Multiple Processes 35

Stopping and Continuing ... 36
Breakpoints, Watchpoints, and Exceptions .. 36
Continuing and Stepping .. 50
Signals .. 53
Stopping and Starting Multithread Programs ... 55

Examining the Stack .. 56
Stack Frames .. 57
Backtraces .. 58
Selecting a Frame ... 59
Information about a Frame ... 60
MIPS Machines and the Function Stack .. 61

Examining Source Files ... 62
Printing Source Lines ... 62
Searching Source Files ... 65
ii LynxOS Total/db User’s Guide

Specifying Source Directories .. 65
Source and Machine Code .. 66

Examining Data ... 67
Expressions ... 68
Program Variables .. 69
Artificial Arrays ... 70
Output Formats ... 71
Examining Memory .. 72
Automatic Display .. 74
Print Settings .. 76
Value History ... 82
Convenience Variables ... 83
Registers ... 84
Floating Point Hardware .. 86

Using GDB with Different Languages .. 86
Switching between Source Languages ... 87
Displaying the Language .. 89
Type and Range Checking ... 89
Supported Languages ... 92

Examining the Symbol Table .. 99
Altering Execution ... 102

Assignment to Variables .. 103
Continuing at a Different Address .. 103
Giving Your Program a Signal ... 104
Returning from a Function ... 105
Calling Program Functions ... 105
Patching Programs .. 106

GDB Files .. 106
Commands to Specify Files .. 106
Errors Reading Symbol Files ... 110

Specifying a Debugging Target ... 112
Active Targets .. 112
Commands for Managing Targets .. 113
Remote Debugging ... 114

Stored Command Sequences ... 116
User-Defined Commands ... 116
User-Defined Command Hooks ... 118
Command Files ... 118
Commands for Controlled Output .. 119
LynxOS Total/db User’s Guide iii

Contents

Using GDB under GNU Emacs ... 120
Command Line Editing ... 124

Introduction to Line Editing ... 124
Readline Interaction ... 124
Readline Init File .. 127

Using History Interactively ... 134
History Interaction .. 135

CHAPTER 3 LYNXOS GDB ENHANCEMENTS .. 137

Overview ... 137
Debugging POSIX Threads ... 138

Understanding Thread Numbers .. 138
Browsing and Switching Threads .. 138
Setting a Breakpoint ... 139
Resuming Threads .. 140

Debugging Embedded Applications Remotely ... 140
Using the Target Command ... 141
Debugging Remote Targets .. 142
Supported Protocols for Remote and Extended-Remote Targets 142
Starting the Remote Target .. 145
Target’s Environment ... 148

Postmortem Debugging of Dynamically Linked Programs 148
Debugging Shared Libraries .. 148

Creating a Shared Library for Debugging Purposes 149
Loading Shared Library Symbol Information 149
Deferred Breakpoints ... 150
Shared Library File Path Names .. 153
Symbol Table ... 157
Single-Stepping into a Shared Library Function 157
Summary of Additional Commands for Shared Library Support 158

Debugging Kernel/Device Drivers .. 158
Requirements .. 158
Building a Kernel for Debug Purposes .. 159
Debugging the Kernel .. 159
Loading Device Drivers Dynamically .. 163
Raw SKDB Commands .. 164

Proxy Server .. 165
Syntax ... 166
Installation .. 166
iv LynxOS Total/db User’s Guide

General Tips and Miscellaneous Issues ... 168

Reading and Writing Large Memory Blocks 168
Browsing Target Process’s Environment ... 169
Executing Remote Shell Commands .. 169
Function Calls in a Multithreaded Process ... 170
Functions Calls after Ctrl+C ... 171
Resuming after a Blocking System Call ... 171
Debugging a Signal-Intensive Process ... 172

CHAPTER 4 DEBUGGING WITH TOTAL/DB... 173

Source Window ... 174
Toolbar Buttons .. 180
Special Display Pane Features ... 182
Using the Mouse in the Display Pane .. 182
Below the Horizontal Scroll bar ... 186
Dialog boxes for the Source Window .. 189

Stack Window .. 197
Registers Window .. 198
Memory Window ... 200

Memory Preferences Dialog Box ... 201
Watch Expressions Window .. 202

Add Watch Button .. 204
Watching Registers ... 204
Casting Pointers in the Watch Expressions Window 204

Local Variables Window ... 205
Breakpoints Window ... 206
Console Window ... 209
The Function Browser Window .. 210
Help Window ... 213
Tutorials for Debugging with Insight .. 215

Initializing a Target Executable File .. 215
Console Window with Initial Commands .. 216
Setting Breakpoints and Viewing Local Variables 218

CHAPTER 5 SIMPLE KERNEL DEBUGGER - SKDB.. 223

Overview ... 223
Installing/Removing SKDB ... 224

Installing SKDB ... 224
LynxOS Total/db User’s Guide v

Contents

Removing SKDB .. 224

Using SKDB .. 224
SKDB Prompt .. 224
Starting SKDB Automatically after a Kernel Crash or Panic 225
Breaking into SKDB with Hot Key .. 225
Kernel Status Display ... 226
Kernel Status Redisplay ... 227
Stack Trace Display ... 227
Verbose Trace Mode .. 227
Process, Thread, and Other Displays ... 227
Resuming the Kernel .. 227
Setting Breakpoints .. 228
Single-Stepping .. 228
Disassembly ... 228
Setting Watchpoints ... 229

SKDB Commands ... 231
General Notes .. 234

Parameter Validation .. 234
Symbol Information ... 234
Address Expressions .. 234
Default Virtual Address Space ... 235
Remote Debugger Interface Protocol ... 235

APPENDIX A GNU SOFTWARE LICENSE AGREEMENT ... 237

GNU General Public License .. 237
Preamble ... 237
Terms & Conditions for Copying, Distribution and Modification 238
How to Apply these Terms to Your New Programs 243

Contributors to GNU CC ... 245
Protect Your Freedom; Fight “Look And Feel” .. 248

INDEX .. 253
vi LynxOS Total/db User’s Guide

Preface
This Total/db guide contains information about debugging LynxOS targets with
the Total/db debugger. This manual assumes that you have a basic understanding
of debugging high-level language program and is intended primarily for developers
of LynxOS. A few tasks in this manual may require root privileges on the host
system or other information that typically falls in the system administration
domain.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

• LynxOS Release Notes

This printed document contains late-breaking information about the
current release.

• LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

• LynxOS User’s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a “Quick Starting”
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

• Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting
LynxOS Total/db User’s Guide vii

Preface

information about the GNU compiler would use the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

 Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User’s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by the
user

cat filename
mv file1 file2

Blocks of text that appear on the display
screen after entering instructions or
commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and menu
sequences

Enter, Ctrl-C
viii LynxOS Total/db User’s Guide

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products and LynuxWorks news groups.

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
LynxOS Total/db User’s Guide ix

Preface
x LynxOS Total/db User’s Guide

CHAPTER 1 Total/db Overview
Total/db is a robust and powerful debugger tool chain that supports debugging of
various LynxOS targets. Its modularity allows a variety of configurations suitable
for the needs of particular applications.

Included Components

Total/db consists of the following component programs. Each program runs as a
separate process:

GDB

GDB is the GNU debugger and is the “core” of Total/db. LynuxWorks has
improved and enhanced GDB in a variety of ways for better debugging LynxOS
targets. Readers are advised to read Chapter 2, “Debugging with GDB” on page 11
to get general familiarity with GDB and then the following chapter Chapter 3,
“LynxOS GDB Enhancements” on page 137 for the LynuxWorks GDB-specific
issues.

GDBServer

GDBServer is a part of the GDB package. GDBServer serves as the remote debug
target agent for remote user process debugging. For its details, refer to Chapter 3,
“LynxOS GDB Enhancements” on page 137.
LynxOS Total/db User’s Guide 1

Chapter 1 - Total/db Overview

Insight

Insight is the graphical user interface (GUI) front-end for GDB. It runs under the
X-Window system and provides GDB with an intuitive GUI particularly good at
displaying complex data.

Insight provides only the user interface using GDB as the “debug engine.” It knows
very little about the debug target, is independent from the debug targets, and is
usable with a variety of different debug targets, including LynxOS applications.

SSPP

SSPP is a simple proxy server program that extends the physical reach of serial line
remote debugging using GDB. Refer to Chapter 3, “LynxOS GDB Enhancements”
on page 137.

SKDB

SKDB is a simple machine-level symbolic kernel debugger. SKDB provides
interactive access to the LynxOS kernel internals including device drivers. It works
as the debug agent for remote kernel debugging with GDB. Refer to Chapter 5,
“Simple Kernel Debugger - SKDB” on page 223.

User Process Debugging vs. Kernel/Device Driver
Debugging

LynxOS distinguishes CPU execution modes between user and supervisor. A user
process runs in user mode with limited privileges. Supervisor mode controls all
kernel activities including system calls, devices drivers, interrupt handling, and so
forth.
2 LynxOS Total/db User’s Guide

Local Debugging versus Remote Debugging

Due to the differences in exception handling and other operations between the two
modes, appropriate consideration must be given before selecting a debugging tool.
Table 1-1 lists the options available for each CPU execution mode.

Local Debugging versus Remote Debugging

LynxOS can be configured from an embedded system to a full-featured
workstation with different levels of available resources including the user interface
and file systems. If the target system has enough resources, it is possible to set up
the debugger on the same machine; this is called local debugging. If the target is
poor in resources or if a more powerful or different host workstation is preferred,
perform remote debugging over a communication channel.

Table 1-1: User Process Debugging vs. Kernel/Device Driver Debugging

Target \ Use Stand-alone Source level
Source level

w/ GUI

User Process GDB1

1. Same as source level

GDB Insight+GDB

Kernel/Device
Driver

SKDB GDB+SKDB2

2. Remote debug only

Insight+GDB+SKDB

NOTE: Total/db can debug only a single process per debug session for user process
debugging. To debug multiple processes, do as many Total/db sessions as the
number of target processes involved. There is no synchronization mechanism
provided between those sessions.

For kernel debugging, a single Total/db session controls and debugs the entire
kernel. It is possible to mix user process debugging and kernel debugging by
invoking multiple Total/db sessions. Severe interference by the kernel debugging
session with the user process debugging is anticipated because the entire operating
system will freeze while it is at a kernel breakpoint.
LynxOS Total/db User’s Guide 3

Chapter 1 - Total/db Overview

Local Debugging

User Process Debugging
GDB can run locally on the target machine for full source level debugging. Insight
can also run on the same machine to provide GUI.

Kernel/Device Driver Debugging
SKDB provides stand-alone machine level local debugging on a serial terminal
port or a video console. There is no source level or GUI kernel debugging (see
Table 1-2).

Remote Debugging

Remote debugging uses two machines, one running the LynxOS target application
is called the debug target, the other running the debugger is called the debug host.
The debugger program on the debug host communicates with the remote debug
agent program on the debug target using a remote debug protocol through the
communication channel. The debug agent, the remote debug protocol, and the
communication channel differ between user process debugging and kernel/device
driver debugging.

Symbol Files
In remote debugging, both the debug host and the debug target must have the same
compiled binary image files. The debug host uses the files for obtaining symbols
and other debug information while the debug target uses the files for actual

Table 1-2: Local Debugging

Target \

Component
Insight GDB SKDB

User Process Optional for GUI Character-based
source level
debugging

N/A

Kernel/Device
Driver

N/A N/A Character-based
machine level
debugging
4 LynxOS Total/db User’s Guide

User Process Debugging

program execution. The debug target’s files may be stripped of symbols in order to
reduce their size, but they must be synchronized with the host’s files; otherwise,
the debugger may behave incorrectly or unexpectedly.

User Process Debugging
There are two choices for the communication channel:

• TCP/IP provides reliable and fast communication, but it may not be
available on simple embedded targets

• A serial line such as the RS-232 may be available on most targets for
remote debugging but it is usually slower and less reliable than TCP/IP
communication. A serial line also limits the distance between the host
and target (see SSPP below).

With either communication channel, GDBServer must run on the target as the
remote debug agent. GDBServer is a much smaller program (~100KB) than GDB
and it translates the remote debug protocol into debug system calls and vise versa.
Once a remote debug communication is established, there is no difference between
serial line debugging and TCP/IP debugging.

One can optionally run Insight as a GUI (graphical user interface). Insight can run
on the same host as the GDBs, or yet another host machine, in which case Insight
communicates with GDB though a TCP/IP channel. Because Insight uses the X-
Window, the display server (user interface) can be run on another machine.

Kernel/Device Driver Debugging
With Total/db, remote debugging is the only way to perform source level
debugging optionally with GUI. The debug target is connected through a serial
communication line such as the RS-232 to the debug host. There are no Ethernet or
other types of communications available for remote kernel debugging (except
SSPP). Like remote user process debugging, one can optionally use Insight for an
intuitive GUI. SKDB works as the remote debug agent on the target.

Using sspp to Extend Serial Line Remote Debugging
In either remote user process or remote kernel/device driver debugging, if the
remote debug target machine has only a serial port for communication with the
debug host, this usually limits the physical distance between the two machines.
LynuxWorks provides a solution to this: a third computer called a proxy server
LynxOS Total/db User’s Guide 5

Chapter 1 - Total/db Overview

running a server program sspp between the debug target and debug host will
convert the serial line connection to TCP/IP communication so that the host
machine can be located anywhere as long as there’s a TCP/IP communication
channel between the debug host and the proxy server.

Cross Debugging
In remote debugging, the debug host does not necessarily have to have the same
CPU architecture and/or run the same operating system as the debug target. If the
debug host has a different CPU architecture and/or runs a different operating
system from the target, it is called cross debugging, whereas debugging with the
same CPU architecture and operating system is called native debugging. Choose
the cross debug host from the combinations of debug targets and hosts LynxOS
supports.

Table 1-3: Remote Debugging

Component Debug Host Proxy Server LynxOS Target

Target Insight GDB sspp Agent

User Process Optional for GUI Yes Optional GDBserver

Kernel/Device Driver Optional for GUI Yes Optional SKDB
6 LynxOS Total/db User’s Guide

Total/db Configuration Options

Total/db Configuration Options

Total/db allows a wide rage of flexibility in configuration, from stand-alone
character based debugging to fully networked GUI based debugging. The
following diagrams represent typical Total/db configurations.

Figure 1-1: Kernel Debugging Configurations

Terminal

InsightX Server

Kernel/
DriverSKDBSerial

Line

Machine Level Local Kernel / Device Driver Debugging:

GDBIPC

Remote Kernel / Device Driver Debugging:

LynxOS / Cross Host

SKDB IPC

Serial Line

LynxOS Target

InsightX Server GDB

LynxOS / Cross Host

Remote Kernel / Device Driver Debugging with SSPP:

GDB
Server IPC

LynxOS Target

IPC

SSPP

TCP/IP

Serial
Line

Proxy Server

Kernel Debugging

Kernel/
Driver

Kernel/
Driver
LynxOS Total/db User’s Guide 7

Chapter 1 - Total/db Overview
Supported Languages

Total/db currently supports the C and C++ programming languages plus the
target’s assembly language only.

Figure 1-2: User Process Debugging Configurations

X Server

InsightX Server

Target User
ProcessInsight

Local User Process Debugging:

GDBIPC

Remote User Process Debugging:

LynxOS / Cross Host

GDB
Server IPC

Serial Line
or TCP/IP

LynxOS Target

InsightX Server GDB

LynxOS / Cross Host

Remote User Process Debugging with SSPP:

GDB
Server IPC

LynxOS Target

IPC

SSPP

TCP/IP

Serial
Line

Proxy Server

User Process Debugging

IPCGDB

Target User
Process

Target User
Process
8 LynxOS Total/db User’s Guide

Source Code

Source Code

Parts of Total/db, namely GDB and Insight, are derived from public domain
software. Though it is possible to obtain and build the source code for these
programs, it may not work properly. Any such build is not supported by
LynuxWorks.
LynxOS Total/db User’s Guide 9

Chapter 1 - Total/db Overview
10 LynxOS Total/db User’s Guide

CHAPTER 2 Debugging with GDB
This chapter is compiled from GNU’s GDB manual: Debugging with GDB.
Although GDB is flexible enough to support debugging of a variety of targets
including different languages, LynuxWorks supports GDB only for debugging
LynxOS target applications and drivers written in C, C++ or assembly languages in
a LynxOS developed environment.

Additionally, see “LynxOS GDB Enhancements” on page 137 for extensions and
enhancements made to the GDB.

The GNU Source Level Debugger

The purpose of a debugger such as GDB is to allow you to see what is going on
inside another program while it executes—or what another program was doing at
the moment it crashed.

GDB can do four main things to help you catch bugs.

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with correcting
the effects of one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++.

GDB as Free Software

GDB is free software, protected by the GNU General Public License (GPL). The
GPL gives you the freedom to copy or adapt a licensed program—but every person
LynxOS Total/db User’s Guide 11

Chapter 2 - Debugging with GDB

getting a copy also gets with it the freedom to modify that copy (which means that
they must get access to the source code), and the freedom to distribute further
copies. Typical software companies use copyrights to limit your freedoms; the Free
Software Foundation uses the GPL to preserve these freedoms. Fundamentally, the
General Public License is a license which says that you have these freedoms and
that you cannot take these freedoms away from anyone else.

Controlling GDB

You can alter the way GDB interacts with you by using the set command. For
commands controlling how GDB displays data, see “Print Settings” on page 76.

Prompt

GDB indicates its readiness to read a command by printing a string called the
prompt. This string is normally (gdb). You can change the prompt string with the
set prompt command. For instance, when debugging GDB with GDB, it is useful to
change the prompt in one of the GDB sessions so that you can always tell which
one you are talking to.

set prompt newprompt

Directs GDB to use newprompt as its prompt string henceforth.

show prompt

Prints a line of the form: Gdb’s prompt is: your-prompt.

Command Editing

GDB reads its input commands via the readline interface. This GNU library
provides consistent behavior for programs which provide a command line interface
to the user. Advantages are GNU Emacs-style or vi-style inline editing of
commands, csh-like history substitution, and a storage and recall of command

NOTE: set prompt no longer adds a space for you after the prompt you set. This
allows you to set a prompt which ends in a space or a prompt that does not.
12 LynxOS Total/db User’s Guide

Command History

history across debugging sessions. You may control the behavior of command line
editing in GDB with the set command.

Command History

GDB can keep track of the commands you type during your debugging sessions, so
that you can be certain of precisely what happened. Use the following commands
to manage the GDB command history facility.

set history filename fname

Set the name of the GDB command history file to fname. This is the file
where GDB reads an initial command history list, and where it writes the
command history from this session when it exits. You can access this list
through history expansion or through the history command editing characters
listed in the following. This file defaults to the value of the GDBHISTFILE
environment variable, or to ./.gdb_history if this variable is not set.

set history save

set history save on

Record command history in a file, whose name may be specified with the
set history filename command. By default, this option is disabled.

set history save off

Stop recording command history in a file.

set history size size

Set the number of commands which GDB keeps in its history list. This
defaults to the value of the environment variable HISTSIZE, or to 256 if this
variable is not set. History expansion assigns special meaning to the
exclamation point character (!). Because ! is also the logical not operator
in C, history expansion is off by default. If you decide to enable history
expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an
expression) with a space or a tab to prevent it from being expanded. The
readline history facilities do not attempt substitution on the strings

set editing

set editing on Enable command line editing (enabled by default).

set editing off Disable command line editing.

show editing Show whether command line editing is enabled.
LynxOS Total/db User’s Guide 13

Chapter 2 - Debugging with GDB

!= and ! , even when history expansion is enabled. The commands to
control history expansion are the following.

set history expansion on

set history expansion

Enable history expansion. History expansion is off by default.

set history expansion off

Disable history expansion.

The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar with GNU Emacs or vi may
wish to read it.

show history

show history filename

show history save

show history size

show history expansion

These commands display the state of the GDB history parameters. show
history by itself displays all four states.

show commands

Display the last ten commands in the command history.

show commands n

Print ten commands centered on command number, n.

show commands +

Print 10 commands just after the commands last printed.

Screen Size

Certain commands to GDB may produce large amounts of information output to
the screen. To help you read all of it, GDB pauses and asks you for input at the end
of each page of output. Use Return when you want to continue the output, or type q
to discard the remaining output. Also, the screen width setting determines when to
wrap lines of output. Depending on what is being printed, GDB tries to break the
line at a readable place, rather than simply letting it overflow onto the following
line.
14 LynxOS Total/db User’s Guide

Numbers

Normally, GDB knows the size of the screen from the termcap data base together
with the value of the TERM environment variable and the stty rows and stty
cols settings. If this is not correct, you can override it with the set height and
set width commands:

set height lpp

show height

set width cpl

show width

These set commands specify a screen height of lpp lines and a screen width
of cpl characters. The associated show commands display the current
settings. If you specify a height of zero lines, GDB does not pause during
output no matter how long the output is. This is useful if output is to a file or
to an editor buffer.

Likewise, you can specify set width 0 to prevent GDB from wrapping its
output.

Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the
usual conventions. Octal numbers begin with 0, decimal numbers end with a period
(.), and hexadecimal numbers begin with 0x.

Numbers that begin with none of these are, by default, entered in base 10; likewise,
the default format for displaying numbers is base 10. You can change the default
base for both input and output with the set radix command.

set input-radix base

Sets the default base for numeric input. Supported choices for base are
decimal 8, 10, or 16. base must itself be specified either unambiguously or
using the current default radix; for example, any of set radix 012, set
radix 10, or set radix 0xa set the base to decimal. On the other hand,
set radix 10 leaves the radix unchanged no matter what it was.

set output-radix base

Sets the default base for numeric display. Supported choices for base are
decimal 8, 10, or 16. base must itself be specified either unambiguously or
using the current default radix.

show input-radix

Display the current default base for numeric input.
LynxOS Total/db User’s Guide 15

Chapter 2 - Debugging with GDB

show output-radix

Display the current default base for numeric display.

Optional Warnings and Messages

By default, GDB is silent about its inner workings. If you are running on a slow
machine, you may want to use the set verbose command. This makes GDB tell you
when it does a lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that
the symbol table for a source file is being read; see symbol-file in “Commands to
Specify Files” on page 106.

set verbose on

Enables GDB output of certain informational messages.

set verbose off

Disables GDB output of certain informational messages.

show verbose

Displays whether set verbose is on or off. By default, if GDB encounters
bugs in the symbol table of an object file, it is silent; but if you are debugging
a compiler, you may find this information useful (see “Errors Reading
Symbol Files” on page 110).

set complaints limit

Permits GDB to output limit complaints about each type of unusual
symbols before becoming silent about the problem. Set limit to zero to
suppress all complaints; set it to a large number to prevent complaints from
being suppressed.

commandshow complaints

Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid
questions to confirm certain commands. For example, if you try to run a program
which is already running and you had entered a run, command you would see the
following message on screen:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
16 LynxOS Total/db User’s Guide

Getting In and Out of GDB

If you are willing to unflinchingly face the consequences of your own commands,
you can disable this “feature” with the following commands.

set confirm off

Disables confirmation requests.

set confirm on

Enables confirmation requests (the default).

show confirm

Displays state of confirmation requests.

Getting In and Out of GDB

The following material discusses invoking the debugger, choosing files, choosing
modes, stopping the debugger and some essential shell commands.

The essentials are starting GDB and quitting GDB.

• Type gdb to start the debugger in a graphical interface mode or use the
command, gdb -nw, to start the debugger in a non-window interface
mode.

• Type quit or use the keystroke sequence, Ctrl-d, to exit.

Invoking GDB

Invoke GDB by using the command, gdb. Once started, GDB reads commands
from the terminal until you tell it to quit.

You can also run GDB with a variety of arguments and options, to specify more of
your debugging environment at the outset.

The command-line options described in the following discussions are designed to
cover a variety of situations; in some environments, effectively, some of these
options may be unavailable.

The usual way to start GDB is with one argument, specifying an executable
program that you want to debug.

gdb program
LynxOS Total/db User’s Guide 17

Chapter 2 - Debugging with GDB

You can also start with both an executable program and a core file specified
as the following example’s input and variables show.

gdb program core

You can, instead, specify a process ID as a second argument, if you want to
debug a running process, for instance, as the following example’s input and
variables show.

gdb program 1234

Your machine hereby attaches GDB to process 1234 (unless you also have a
file named 1234; GDB does check for a core file first).

Taking advantage of the second command-line argument requires a fairly complete
operating system; when you use GDB as a remote debugger attached to a bare
board, there may not be any notion of process, and there is often no way to get a
core dump.

You can run GDB without printing the front material, which describes GDB’s non-
warranty, by specifying -silent:

gdb -silent

You can further control how GDB starts up by using command-line options. GDB
itself can remind you of the options available.

To display all available options and briefly describe their use, use
gdb -help as input (gdb -h is a shorter equivalent).

All options and command line arguments you give are processed in sequential
order. The order makes a difference when using the -x option.

Choosing Files
When GDB starts, it reads any arguments other than options as specifying an
executable file and core file or (process ID). This is the same as if the arguments
were specified by the -se and -c options, respectively. (GDB reads the first
argument that does not have an associated option flag as equivalent to the -se
option followed by that argument; and the second argument that does not have an
associated option flag, if any, as equivalent to the -c option followed by that
argument.)

Many options have both long and short forms; both are shown in Table 2-1. GDB
also recognizes the long forms if you truncate them, so long as enough of the
18 LynxOS Total/db User’s Guide

Choosing Files

option is present to be unambiguous. (If you prefer, you can flag option arguments
with -- rather than - , though we illustrate the more usual convention.)

Table 2-1: Choosing Files

Long Entry Form Short Entry Form Command Definition

-symbols file -s file Read symbol table from file, file.

-exec file -e file Use file, file, as the executable file to
execute when appropriate, and for
examining pure data in conjunction with a
core dump.

-se file Read symbol table from file, file, and use
it as the executable file.

-core file -c file Use file, file, as a core dump to examine.

-c number Connect to process ID number, as with the
attach command (unless there is a file in
coredump format named number, in which
case -c specifies that file as a core dump to
read).

-command file -x file Execute GDB commands from file file
(see “Command Files” on page 118).

-directory
directory

-d directory Add directory to the path to search for
source files.

-r -readnow Read each symbol file’s entire symbol table
immediately, rather than the default, which
is to read it incrementally as it is needed.
This makes startup slower, but makes future
operations faster.
LynxOS Total/db User’s Guide 19

Chapter 2 - Debugging with GDB

Choosing Modes
You can run GDB in various alternative modes—for example, in batch mode or
quiet mode. Table 2-2 shows other available options.

Table 2-2: Choosing Modes

Long Entry Form Short Entry Form Command Definition

-nx -n Do not execute commands from any
initialization files (normally called
.gdbinit). Normally, the commands
in these files are executed after all the
command options and arguments have
been processed (see “Command Files” on
page 118.

-quiet -q Quiet. Do not print the introductory and
copyright messages. These messages are
also suppressed in batch mode.

-batch Run in batch mode.
Exit with status 0 after processing all the
command files specified with -x and all
commands from initialization files, if not
inhibited with -n.
Exit with nonzero status if an error occurs in
executing the GDB commands in the
command files.
Batch mode may be useful for running GDB
as a filter. For example, to download and run
a program on another computer, in order to
make this more useful, the following
message does not issue when running in
batch mode (ordinarily, the message issues
whenever a program running under GDB
control terminates).
Program exited normally.

-cd directory Run GDB using directory as its working
directory, instead of the current directory.
20 LynxOS Total/db User’s Guide

Quitting GDB
Quitting GDB

quit

To exit GDB, use the quit command (abbreviated q), or use an end-of-file
character (usually Ctrl-d). If you do not supply expression, GDB will
terminate normally; otherwise it will terminate using the result of expression
as the error code.

An interrupt (often, Ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that is in progress and returns to GDB command level. It is
safe to use the interrupt character at any time because GDB does not allow it to
take effect until a time when it is safe.

If you have been using GDB to control an attached process or device, you can
release it with the detach command (see “Debugging an Already-Running
Process” on page 32).

-fullname -f GNU Emacs sets this option when it
runs GDB as a subprocess. It tells GDB
to output the full file name and line
number in a standard, recognizable
fashion each time a stack frame is
displayed (which includes each time
your program stops). This recognizable
format looks like two \032 characters,
followed by the file name, line number,
and character position separated by
colons, and a newline. The Emacs-to-
GDB interface program uses the two
\032 characters as a signal to display
the source code for the frame.

-b bps Set the line speed (baud rate or bits per
second) of any serial interface used by GDB
for remote debugging.

-tty device Run using device for your program’s
standard input and output.

Table 2-2: Choosing Modes (Continued)

Long Entry Form Short Entry Form Command Definition
LynxOS Total/db User’s Guide 21

Chapter 2 - Debugging with GDB

Shell Commands

If you need to execute occasional shell commands during your debugging
session, there is no need to leave or suspend GDB. Use the shell command to do
this.

shell command string

Invoke the standard shell to execute command string. If it exists, the
environment variable shell determines which shell to run. Otherwise GDB
uses /bin/sh.

The utility make is often needed in development environments. You do not have to
use the shell command for this purpose in GDB:

make make-args

Execute the make program with the specified arguments. This is equivalent
to shell make make-args.

GDB Commands

The following material discusses the GDB commands.

You can abbreviate a GDB command to the first few letters of the command name,
if that abbreviation is unambiguous; and you can repeat certain GDB commands by
using Return. You can also use the Tab key to get GDB to fill out the rest of a word
in a command (or to show you the alternatives available, if there is more than one
possibility).

Command Syntax

A GDB command is a single line of input. There is no limit on how long it can be.
It starts with a command name, which is followed by arguments whose meaning
depends on the command name. For example, the command, step, accepts an
argument which is the number of times to step, as in step 5. You can also use the
step command with no arguments. Some command names do not allow any
arguments.

Straight brackets ([]) enclose optional parameters. Curly brackets ({ }) enclose
choices or selections to be made. Neither of these brackets are typed in, but are
inferred.
22 LynxOS Total/db User’s Guide

Command Completion

GDB command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even ambiguous
abbreviations are allowed; for example, s is specially defined as equivalent to step
even though there are other commands whose names start with s. You can test
abbreviations by using them as arguments to the help command.

A blank line as input to GDB (using Return just once) means to repeat the previous
command. Certain commands (for example, run) will not repeat this way; such
commands have unintentional repetition which might cause trouble and which it is
unlikely you want to repeat.

The list and x commands, when you repeat them with Return key actions,
construct new arguments rather than repeating exactly as generated. This permits
easy scanning of source or memory.

GDB can also use Return in another way: to partition lengthy output, in a way
similar to the common utility (see “Screen Size” on page 14). Because it is easy to
use Return one too many times in this situation, GDB disables command repetition
after any command that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see “Command Files” on page 118).

Command Completion

GDB can fill in the rest of a word in a command for you, if there is only one
possibility; it can also show you, at any time, what the valid possibilities are for the
next word in a command. This works for GDB commands, GDB subcommands,
and the names of symbols in your program.

Use the Tab key whenever you want GDB to fill out the rest of a word. If there is
only one possibility, GDB fills in the word, and waits for you to finish the
command (or use Return to enter it). For example, if you type (gdb) info bre,
and use the Tab key, GDB fills in the rest of the word breakpoints, because that
is the only info subcommand beginning with bre.

You can either use Return at this point, to run the info breakpoints command,
or use the Backspace key and enter something else, if breakpoints does not look
like the command you expected. (If you were sure you wanted info
breakpoints in the first place, you might as well just use Return immediately
after info bre, to exploit command abbreviations rather than command
completion). If there is more than one possibility for the next word when you use
the Tab key, GDB sounds a bell. You can either supply more characters and try
LynxOS Total/db User’s Guide 23

Chapter 2 - Debugging with GDB

again, or just use the Tab key a second time; GDB displays all the possible
completions for that word. For example, you might want to set a breakpoint on a
subroutine whose name begins with make_, but when you type b make_ and use
the Tab key, GDB just sounds the bell. Using the Tab key again displays all the
function names in your program that begin with those characters. For example, you
type (gdb) make_b and then use the Tab key. GDB sounds the bell; you use the
Tab key again, to see the following display.

After displaying the available possibilities, GDB copies your partial input (in the
example, b make_) so you can finish the command. If you just want to see the list
of alternatives in the first place, you can get help by using the command key
sequence, M-? rather than using Tab twice.

Sometimes the string you need, while logically a word, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit
word completion to work in this situation, you may enclose words in single quote
marks in GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of
the same function, distinguished by argument type). For example, when you want
to set a breakpoint you may need to distinguish whether you mean the version of
name that takes an int parameter, name(int), or the version that takes a float
parameter, name(float). To use the word-completion facilities in this situation,
type a single quote, ’, at the beginning of the function name. This alerts GDB that
it may need to consider more information than usual when you use the Tab key or
M-? to request word completion, as in the following example:

(gdb) b ’bubble(

make_a_section_from_file make_environ

make_abs_section make_function_type

make_blockvector make_pointer_type

make_cleanup make_reference_type

make_command make_symbol_completion_list

(gdb) b make_

NOTE: M-? means using the META key (if there is one, or else, use ESC)
and the ? key. This is a command key sequence with which you may or
may not be familiar.
24 LynxOS Total/db User’s Guide

Getting Help

Use the M-? command key sequence this point.

bubble (double,double) bubble(int,int)

(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes.
When this happens, GDB inserts the quote for you while (completing as
much as it can) if you do not type the quote in the first place:

(gdb) b bub

Use the Tab key at this point.GDB alters your input line to the following, and
rings a bell.

(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts) it if you have not
yet started typing the argument list when you ask for completion on an
overloaded symbol.

Getting Help

You can always ask GDB itself for information on its commands, using the
command help.

help

h

You can use help (abbreviated h) with no arguments to display a short list
of named classes of commands like the following output example:

(gdb) help
List of classes of commands:
running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features
Type help followed by a class name for a list of commands in that class.
Type help followed by command name for full documentation. Command name
abbreviations are allowed if unambiguous.

help class

Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class, status:
LynxOS Total/db User’s Guide 25

Chapter 2 - Debugging with GDB

(gdb) help status Status inquiries.
List of commands:
show -- Generic command for showing things set with “set?”
info -- Generic command for printing status
Type “help” followed by command name for full documentation. Command
name abbreviations are allowed if unambiguous. (gdb)

help command

With a command name as help argument, GDB displays a short paragraph on
how to use that command.

complete args

The complete args command lists all the possible completions for the
beginning of a command. Use args to specify the beginning of the command
you want completed. For example: complete i results in the following.

info
inspect
ignore

This command is intentionally for use by GNU Emacs.

In addition to help, you can use the GDB info and show commands to inquire
about the state of your program, or the state of GDB itself. Each command
supports many topics of inquiry; this manual introduces each of were in the
appropriate context. The listings under info and under show in the Index point to
all the subcommands.

info

This command (abbreviated i) is for describing the state of your program.
For example, you can list the arguments given to your program with info
args, list the registers currently in use with info registers, or list the
breakpoints you have set with info breakpoints. You can get a complete
list of the info subcommands with help info.

set

You can assign the result of an expression to an environment variable with
set. For example, you can set the GDB prompt to $ with set prompt $.

show

In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command, set;
for example, you can control what number system is used for displays with
set radix, or simply inquire which is currently in use with show radix.
26 LynxOS Total/db User’s Guide

Running Programs under GDB

To display all the settable parameters and their current values, you can use show
with no arguments; you may also use info set. Both commands produce the same
display.

The following are three miscellaneous show subcommands which of no
corresponding set commands.

show version

Show what version of GDB is running. You should include this information
in GDB bug reports. If multiple versions of GDB are in use at your site, you
may occasionally want to determine which version of GDB you are running;
as GDB evolves, new commands are introduced, and old ones may wither
away. The version number is also announced when you start GDB.

show copying

Display information about permission for copying GDB.

show warranty

Display the GNU “NO WARRANTY” statement.

Running Programs under GDB

The following material discusses running your programs with GDB.When you run
a program under GDB, you must first generate debugging information when you
compile it.

You may start GDB with its arguments, if any, in an environment of your choice.
You may redirect your program’s input and output, debug an already running
process, or kill a child process.

Compiling for Debugging

In order to debug a program effectively, you need to generate debugging
information when you compile it. This debugging information is stored in the
object file; it describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the executable code.

To request debugging information, specify the -g option when you run the
compiler. Many C compilers are unable to handle the -g and -O options together.
Using those compilers, you cannot generate optimized executables containing
LynxOS Total/db User’s Guide 27

Chapter 2 - Debugging with GDB

debugging information. GCC, the GNU C compiler, supports
-g with or without -O making it possible to debug optimized code.

We recommend that you always use -g whenever you compile a program. You
may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with -g -O, remember that the optimizer is
rearranging your code; the debugger shows you what is really there.

Do not be too surprised when the execution path does not exactly match your
source file! An extreme example: if you define a variable, but never use it, GDB
never sees that variable—because the compiler optimizes it out of existence.

Some things do not work as well with -g -O as with just -g, particularly on
machines with instruction scheduling. If in doubt, recompile with -g alone, and if
this fixes the problem, please report it to us as a bug (including a test case!).

Starting Your Program

run

r

Use the run command to start your program locally under GDB. You must
first specify the program name with an argument to GDB or by using the file
or exec-file command (see “Getting In and Out of GDB” on page 17 or
“Commands to Specify Files” on page 106).

If you are running your program in an execution environment that supports
processes, run creates an inferior process and makes that process run your
program. (In environments without processes, run jumps to the start of your
program.)

The execution of a program is affected by certain information it receives from its
superior. GDB provides ways to specify this information, which you must do
before starting your program. (You can change it after starting your program, but
such changes only affect your program the next time you start it.) This information
may be divided into the following four categories.

CAUTION! The following discussions about your program’s arguments
environment, working directory and input/output apply only if you start
the debugged program locally from your GDB. If you attach GDB to an
already running process, the parameters are already determined. If you
start the application program remotely from a GDB subserver, the
program arguments are given to GDB server’s command line, and the
other parameters are inherited from the GDB server process
28 LynxOS Total/db User’s Guide

Starting Your Program

Arguments

Specify the arguments to give your program as the arguments of the run
command. If a shell is available on your target, the shell is used to pass the
arguments, so that you may use normal conventions (such as wildcard
expansion or variable substitution) in describing the arguments. In UNIX
systems, you can control which shell is used with the SHELL environment
variable.

Environment

Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to
change parts of the environment that affect your program (see “Your
Program’s Environment” on page 30).

Working directory

Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB (see “Your Program’s
Working Directory” on page 31).

Standard input and output

Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run
command line, or you can use the tty command to set a different device for
your program (see “Your Program’s Input and Output” on page 32).

When you issue the run command, your program begins to execute immediately.
See “Stopping and Continuing” on page 36 for a discussion of how to arrange for
your program to stop. Once your program has stopped, you may call functions in
your program, using the print or call commands in “Examining Data” on
page 67.

If the modification time of your symbol file has changed since the last time GDB
read its symbols, GDB discards its symbol table, and reads it again. When it does
this, GDB tries to retain your current breakpoints.

CAUTION! While input and output redirection work, you cannot use pipes
to pass the output of the program you are debugging to another program.
If you attempt this, GDB is likely to wind up debugging the wrong
program.
LynxOS Total/db User’s Guide 29

Chapter 2 - Debugging with GDB

Your Program’s Arguments

The arguments to your program can be specified by the arguments of the run
command. They are passed to a shell, which expands wildcard characters and
performs redirection of I/O, and thence to your program. Your SHELL environment
variable (if it exists) specifies what shell GDB uses. If you do not define SHELL,
GDB uses /bin/sh.

run with no arguments uses the same arguments used by the previous run, or those
set by the set args command.

set args

Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments.
Once you have run your program with arguments, using set args before
the next run is the only way to run it again without arguments.

show args

Show the arguments to give your program when it is started.

Your Program’s Environment

The environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your
home directory, your terminal type, and your search path for programs to run.

Usually you set up environment variables with the shell and they are inherited by
all the other programs you run.

When debugging, it can be useful to try running your program with a modified
environment without having to start GDB over again.

path directory

Add directory to the front of the PATH environment variable (the search
path for executables), for both GDB and your program. You may specify
several directory names, separated by a colon (:) or a whitespace. If
directory is already in the path, it is moved to the front, so it is searched
sooner.

You can use the $cwd string to refer to whatever is the current working
directory at the time GDB searches the path. If you use a period (.) instead, it
refers to the directory where you executed the path command. GDB replaces
the period (.) in the directory argument (with the current path) before adding
directory to the search path.
30 LynxOS Total/db User’s Guide

Your Program’s Working Directory

show paths

Display the list of search paths for executables (the PATH environment
variable).

show environment [varname]

Print the value of environment variable varname to be given to your
program when it starts. If you do not supply varname, print the names and
values of all environment variables to be given to your program. You can
abbreviate environment as env.

set environment

Set environment variable varname to value. The value changes for your
program only, not for GDB itself. value may be any string; the values of
environment variables are just strings, and any interpretation is supplied by
your program itself. The value parameter is optional; if it is eliminated, the
variable is set to a null value. For example, the command, set env USER =
foo, tells a UNIX program, when run, that its user is named foo. (The
spaces around = are used for clarity here; they are not actually required.)

unset environment varname

Remove variable, varname, from the environment to be passed to your
program. This is different from set env varname=; unset environment
removes the variable from the environment, rather than assigning it an empty
value.

Your Program’s Working Directory

Each time you start your program with run, it inherits its working directory from
the current working directory of GDB. The GDB working directory is initially
whatever it inherited from its parent process (typically the shell), but you can
specify a new working directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify
files for GDB to operate on, (see “Commands to Specify Files” on page 106).

NOTE: GDB runs your program using the shell indicated by your SHELL
environment variable if it exists (or /bin/sh if not). If your SHELL
variable names a shell that runs an initialization file—such as .cshrc for
C-shell, or .bashrc for BASH—any variables you set in that file affect
your program. You may wish to move setting of environment variables to
files that are only run when you sign on, such as .login or .profile.
LynxOS Total/db User’s Guide 31

Chapter 2 - Debugging with GDB

cd directory

Set the GDB working directory to directory.

pwd

Print the GDB working directory.

Your Program’s Input and Output

By default, the program you run under GDB does input and output to the same
terminal that GDB uses. GDB switches the terminal to its own terminal modes to
interact with you, but it records the terminal modes your program was using and
switches back to them when you continue running your program.

info terminal

Displays information recorded by GDB about the terminal modes your
program is using.

You can redirect your program’s input and/or output using shell redirection with
the run command. For example, run > outfile starts your program, diverting
its output to the file outfile. Another way to specify where your program should
do input and output is with the tty command. This command accepts a file name
as argument, and causes this file to be the default for future run commands.

It also resets the controlling terminal for the child process, for future run
commands. For example, tty /dev/ttyb directs that processes started with
subsequent run commands default to do input and output on the terminal
/dev/ttyb and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect no the
input/output device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the
input for your program is affected. The input for GDB still comes from your
terminal.

Debugging an Already-Running Process

attach process-id

This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as
argument a process ID. The usual way to find out the process-id of a
UNIX process is with the ps utility, or with the jobs -l shell command.
32 LynxOS Total/db User’s Guide

Killing the Child Process

attach does not repeat if you use Return a second time after executing the
command.

To use attach, your program must be running in an environment which
supports processes; for example, attach does not work for programs on
bareboard targets that lack an operating system. You must also have
permission to send the process a signal.

When using attach, you should first use the file command to specify the
program running in the process and load its symbol table (see “Commands to
Specify Files” on page 106).

The first thing GDB does after arranging to debug the specified process is to
stop it. You can examine and modify an attached process with all the GDB
commands that are ordinarily available when you start processes with run.
You can insert breakpoints; you can step and continue; you can modify
storage. If you would rather the process continue running, you may use the
continue command after attaching GDB to the process.

detach

When you have finished debugging the attached process, you can use the
detach command to release it from GDB control. Detaching the process
continues its execution. After the detach command, that process and GDB
become completely independent once more, and you are ready to attach
another process or start one with run. detach does not repeat if you use
Return again after executing the command.

If you exit GDB or use the run command while you have an attached process, you
kill that process. By default, GDB asks for confirmation if you try to do either of
these things; you can control whether or not you need to confirm by using the set
confirm command (see “Optional Warnings and Messages” on page 16).

Killing the Child Process

kill

Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a
running process. GDB ignores any core dump files while your program is
running.

The kill command is also useful if you wish to recompile and relink your
program, because on many systems it is impossible to modify an executable
file while it is running in a process. In this case, when you next use run, GDB
LynxOS Total/db User’s Guide 33

Chapter 2 - Debugging with GDB

notices that the file has changed, and reads the symbol table again (while
trying to preserve your current breakpoint settings).

Debugging Programs with Multiple Threads

In some operating systems, a single program may have more than one thread of
execution. The precise semantics of threads differ from one operating system to
another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine
and modify the same variables). On the other hand, each thread has its own
registers and execution stack, and perhaps private memory. GDB provides these
facilities for debugging multithread programs:

• automatic notification of new threads

• thread threadno, a command to switch among threads

• info threads, a command to inquire about existing threads

• thread apply [threadno][all] args, a command to apply a
command to a list of threads

• thread-specific breakpoints

The GDB thread debugging facility allows you to observe all threads while your
program runs—but whenever GDB takes control, one thread in particular is always
the focus of debugging. This thread is called the current thread. Debugging
commands show program information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target
system’s identification for the thread with a message in the [New systag]. systag
form is a thread identifier whose form varies, depending on the particular system.
For example, on LynxOS, you might see [New process 35 thread 27] when
GDB notices a new thread. In contrast, on an SGI system, the systag is simply
something like process 368, with no further qualifier.

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads

Display a summary of all threads currently in your program. GDB displays
for each thread (in the following order):

1. The thread number assigned by GDB

2. The target system’s thread identifier (systag)
34 LynxOS Total/db User’s Guide

Debugging Programs with Multiple Processes

3. The current stack frame summary for that thread

An asterisk (*) to the left of the GDB thread number indicates the current thread.
Use the following example for clarity.

(gdb) info threads
3 process 35 thread 72 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
*1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

thread threadno

Make thread number threadno the current thread. The command argument
threadno is the internal GDB thread number, as shown in the first field of
the info threads display. GDB responds by displaying the system
identifier of the thread you selected, and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the [New ...] message, the form of the text after Switching to
depends on your system’s conventions for identifying threads.

thread apply [threadno][all] args

The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argument threadno. threadno is the internal GDB thread number,
as shown in the first field of the info threads display. To apply a command to
all threads, use thread apply all args.

Whenever GDB stops your program, due to a breakpoint or a signal, it
automatically selects the thread where that breakpoint or signal happened. GDB
alerts you to the context switch with a message of the [Switching to systag]
form to identify the thread.

Debugging Programs with Multiple Processes

GDB has no special support for debugging programs which create additional
processes using the fork function. When a program forks, GDB will continue to
debug the parent process and the child process will run unimpeded.

However, if you want to debug the child process there is a workaround which isn’t
too painful. Put a call to sleep in the code which the child process executes after
the fork. It may be useful to sleep only if a certain environment variable is set, or
a certain file exists, so that the delay need not occur when you don’t want to run
GDB on the child. While the child is sleeping, use the ps program to get its
LynxOS Total/db User’s Guide 35

Chapter 2 - Debugging with GDB

process ID. Then tell GDB (a new invocation of GDB if you are also debugging the
parent process) to attach to the child process (see “Debugging an Already-Running
Process” on page 32). From that point on you can debug the child process just like
any other process to which you attached.

Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program
before it terminates; or so that, if your program runs into trouble, you can
investigate and determine causes.

Inside GDB, your program may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a GDB command such as step. You may
then examine and change variables, set new breakpoints or remove old ones, and
then continue execution. Usually, the messages shown by GDB provide ample
explanation of the status of your program—but you can also explicitly request this
information at any time.

info program

Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

The following documentation provides more specific discussion on breakpoints,
watchpoints, exceptions, and other information regarding stopping and continuing
GDB.

Breakpoints, Watchpoints, and Exceptions

A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail
whether your program stops. You can set breakpoints with the break command
and its variants (see “Setting Breakpoints” on page 37) to specify the place where
your program should stop by line, number function name or exact address in the
program.

In languages with exception handling (such as GNU C++), you can also set
Breakpoints where an exception is raised.

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints, but
aside from that, you can manage a watchpoint like any other breakpoint: you
36 LynxOS Total/db User’s Guide

Setting Breakpoints

enable, disable, and delete both breakpoints and watchpoints using the same
commands.

You can arrange to have values from your program displayed automatically
whenever GDB stops at a breakpoint (see “Automatic Display” on page 74).

GDB assigns a number to each breakpoint or watchpoint when you create it; these
numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints, you use the breakpoint number to say
which breakpoint you want to change. Each breakpoint may be ; if disabled, it has
no effect on your program until you enable it again.

Setting Breakpoints
Breakpoints are set with the break command (abbreviated b). The debugger
convenience variable $bpnum records the number of the breakpoints you have set
most recently; see “Convenience Variables” on page 83 for a discussion of what
you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function

Set a breakpoint at entry to function, function. When using source
languages that permit overloading of symbols, such as C++, function may
refer to more than one possible place to break.

break +offset

break -offset

Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected frame.

break linenum

Set a breakpoint at line linenum in the current source file. That file is the
last file whose source text saw printed. This breakpoint stops your program
just before it executes any of the code on that line.

break filename:linenum

Set a breakpoint at line, linenum, in source file, filename.

break filename:function

Set a breakpoint at entry to function, function, found in file, filename.
Specifying a file name as well as a function name is superfluous except when
multiple files contain similarly named functions.
LynxOS Total/db User’s Guide 37

Chapter 2 - Debugging with GDB

break *address

Set a breakpoint at address, address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source
files.

break

When called without any arguments, break sets a breakpoint at the next
instruction to be executed in the selected stack frame (see “Examining the
Stack” on page 56). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame.

This is similar to the effect of a finish command in the frame inside the
selected frame—except that finish does not leave an active breakpoint. If
you use break without an argument in the innermost frame, GDB stops the
next time it reaches the current location; this may be useful inside loops.
GDB normally ignores breakpoints when it resumes execution, until at least
one instruction has been executed. If it did not do this, you would be unable
to proceed past a breakpoint without first disabling the breakpoint.

This rule applies whether or not the breakpoint already existed when your
program stopped.

break...if cond

Set a breakpoint with condition, cond; evaluate the expression, cond, each
time the breakpoint is reached, and stop only if the value is non-zero—that is,
if cond, evaluates as true. ‘...’ stands for one of the possible arguments
described previously (or no argument) specifying where to break.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the
break command, and the breakpoint is set in the same way, but the
breakpoint is automatically deleted after the first time your program stops
there.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break
command and the breakpoint is set in the same way, but the breakpoint
requires hardware support and some target hardware may not have this
support. The main purpose of this is EPROM/ROM code debugging, so you
can set a breakpoint at an instruction without changing the instruction. This
can be used with the new trap-generation provided by SPARClite DSU. DSU
will generate traps when a program accesses some date or instruction address
38 LynxOS Total/db User’s Guide

Setting Breakpoints

that is assigned to the debug registers. However, the hardware breakpoint
registers can only take two data breakpoints, and GDB will reject this
command if more than two are used. Delete or disable used hardware
breakpoints before setting new ones.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak
command, the breakpoint requires hardware support and some target
hardware may not have this support.

rbreak regex

Set breakpoints on all functions matching the regular expression, regex.
This command sets an unconditional breakpoint on all matches, printing a list
of all breakpoints it set. Once these breakpoints are set, they are treated just
like the breakpoints set with the break command. You can delete them,
disable them, or make them conditional the same way as any other
breakpoint. When debugging C++ programs, rbreak is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.

info breakpoints [n]

info break [n]

info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not deleted, with the
following columns for each breakpoint:

• Breakpoint Numbers

Type breakpoint or watchpoint.

• Disposition

Whether the breakpoint is marked to be disabled or deleted when hit.

• Enabled or Disabled

CAUTION! The current release of LynxOS does not support hardware
assisted breakpoints, The above are provided only for information only.
LynxOS Total/db User’s Guide 39

Chapter 2 - Debugging with GDB

Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints that are
not enabled.

• Address

Where the breakpoint is in your program, as a memory address.

• What

Where the breakpoint is in the source for your program, as a file and line
number.

If a breakpoint is conditional, info break shows the condition on the line
following the affected breakpoint; breakpoint commands, if any, follow.

info break with a breakpoint number n as argument lists only that breakpoint.
The convenience variable $_ and the default examining-address for the x
command are set to the address of the last breakpoint listed (see “Examining
Memory” on page 72).

info break now displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You can
ignore a large number of breakpoint hits, look at the breakpoint info to see how
many times the breakpoint was hit, and then run again, ignoring one less than that
number. This will get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your
program. There is nothing silly or meaningless about this. When the breakpoints
are conditional this is even useful. GDB itself sometimes sets breakpoints in your
program for special purposes, such as proper handling of longjmp (in C
programs). These internal breakpoints are assigned negative numbers, starting with
-1; info breakpoints does not display them. You can see these breakpoints
with the GDB maintenance command maint info breakpoints.

maint info breakpoints

Using the same format as info breakpoints, display both the breakpoints
you have set explicitly, and those GDB is using for internal purposes.
Internal breakpoints are shown with negative breakpoint numbers. The type
column identifies what kind of breakpoint is shown:

• breakpoint

Normal, explicitly set breakpoint

• watchpoint

Normal, explicitly set watchpoint
40 LynxOS Total/db User’s Guide

Setting Watchpoints

• longjmp

Internal breakpoint, used to handle correctly stepping through longjmp
calls.

• longjmp resume

Internal breakpoint at the target of a longjmp.

• until

Temporary internal breakpoint used by the GDB until command.

• finish

Temporary internal breakpoint used by the GDB finish command.

Setting Watchpoints
You can use a watchpoint to stop execution whenever the value of an expression
changes, without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other
breakpoints, but this can be well worth it to catch errors where you have on clue
what part of your program is the culprit.

watch expr

Set a watchpoint for an expression. GDB will break when expr is written
into by the program and its value changes. This can be used with the new
trap-generation provided by SPARClite. DSU will generate traps when a
program accesses some date or instruction address that is assigned to the
debug registers. For the data addresses, DSU facilitates the watch command.
However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you
can set two watchpoints with watch commands, two with commands, or two
with awatch commands, but you cannot set one watchpoint with one
command and the other with a different command. {No value for
“GBDN”} will reject the command if you try to mix watchpoints. Delete or
disable unused watchpoint commands before setting new ones.

rwatch expr

Set a watchpoint that will break when watch args is read by the program. If
you use both watchpoints, both must be set with the rwatch command.

awatch expr
LynxOS Total/db User’s Guide 41

Chapter 2 - Debugging with GDB

Set a watchpoint that will break when args is read and written into by the
program. If you use both watchpoints, both must be set with the awatch
command.

info watchpoints

This command prints a list of watchpoints and breakpoints; it is the same as
info break.

Hardware Watchpoints

Watchpoints can be implemented in Software or Hardware. Hardware watchpoints
execute quicker than software watchpoints and allows the debugger to report a
change in value at the extact instruction where the change occured. Software
watchpoints execute slower, and report a change in value in the statement
following the change in value.

When setting a watchpoint, GDB attempts to set a hardware watchpoint first. If it is
not possible to set a hardware watchpoint, a software watchpoint is set instead.

When issuing the watch command, and hardware watchpoints are set, GDB
displays:

Hardware watchpoint num: expr

Breakpoints and Exceptions
Some languages, such as GNU C++, implement exception handling. You can use
GDB to examine what caused your program to raise an exception, and to list the
exceptions your program is prepared to handle at a given point in time.

CAUTION! In multithread programs, watchpoints have only limited
usefulness. With the current watchpoint implementation, GDB can only
watch the value of an expression in a single thread. If you are confident
that the expression can only change due to the current thread’s activity
(and if you are also confident that no other thread can become current),
then you can use watchpoints as usual. However, GDB may not notice
when a non-current thread’s activity changes the expression.

NOTE: Hardware Watchpoint support is not included in the default LynxOS kernel.
To build the kernel for Hardware Watchpoint, Code Test, and Assertation support,
use the following rule when running make:

make all SYS_DEBUG=true
42 LynxOS Total/db User’s Guide

Breakpoints and Exceptions

catch exceptions

You can set breakpoints at active exception handlers by using the catch
command. exceptions is a list of names of exceptions to catch.

You can use info catch to list active exception handlers (see “Information
about a Frame” on page 60).

There are currently some limitations to exception handling in GDB:

If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call
may bypass the mechanism that returns control to you and cause your program to
simply continue running until it hits a breakpoint, catches a signal that GDB is
listening for, or exits.

You cannot raise an exception interactively.

You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to
know exactly where an exception is raised, it is better to stop before the exception
handler is called, because that way you can see the stack before any unwinding
takes place. If you set a breakpoint in an exception handler instead, it may not be
easy to find out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU , C++ exceptions are raised by calling a
library function named __cp_push_exception which has the following ANSI
C interface:

/* addr is where the exception identifier is stored.
ID is the exception identifier. */
extern “c” void __cp_push_exception (void *value,

void *type,
void (*cleanup) (void *, int));

To make the debugger catch all exceptions before any stack unwinding takes place,
set a breakpoint on __cp_push_exception (see “Breakpoints, Watchpoints, and
Exceptions” on page 36).

With a conditional breakpoint that depends on the value of id, you can stop your
program when a specific exception is raised. You can use multiple conditional
breakpoints to spot your program when any of a number of exceptions are raised.
LynxOS Total/db User’s Guide 43

Chapter 2 - Debugging with GDB

Deleting Breakpoints
It is often necessary to eliminate a breakpoint or watchpoint once it has done its job
and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are
in your program. With the delete command you can delete individual breakpoints
or watchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically
ignores breakpoints on the first instruction to be executed when you continue
execution without changing the execution address.

clear

Delete any breakpoints at the next instruction to be executed in the selected
stacks frame (see “Selecting a Frame” on page 59). When the innermost
frame is selected, this is a good way to delete a breakpoint where your
program just stopped.

clear function

clear filename: function

Delete any breakpoints set at entry to the function, function.

clear linenum

clear filename: linenum

Delete any breakpoints set at or within the code of the specified line.

delete [breakpoints][bnums...]

Delete the breakpoints or watchpoints of the numbers specified as arguments.
If no argument is specified, delete all breakpoints GDB (asks confirmation,
unless you have set confirm off). You can abbreviate this command as d.

Disabling Breakpoints
Rather than deleting a breakpoint or watchpoint you might prefer to disable it. This
makes the breakpoint inoperative as if it had been deleted, but remembers the
information no the breakpoint so that you can enable it again later. You disable and
enable breakpoints and watchpoints with the enable and disable commands,
optionally specifying one or more breakpoint numbers as arguments. Use info
break or info watch to print a list of breakpoints or watchpoints if you do not
know which numbers to use. A breakpoint or watchpoint can have any of four
different states of enablement:
44 LynxOS Total/db User’s Guide

Disabling Breakpoints

• Enabled

The breakpoint stops your program. A breakpoint set with the break
command starts out in this state.

• Disabled

The breakpoint has no effect on your program.

• Enabled once

The breakpoint stops your program, but then becomes disabled. A
breakpoint set with the tbreak command starts out in this state.

• Enabled for deletion

The breakpoint stops your program, but immediately after it does so it is
deleted permanently.

You can use the following commands to enable or disable breakpoints and
watchpoints.

disable [breakpoints][bnums ...]

Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the
breakpoint is enabled again later. You may abbreviate disable as dis.

enable [breakpoints][bnums ...]

Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once bnums...

Enable the specified breakpoints temporarily. GDB disables any of these
breakpoints immediately after stopping your program.

enable [breakpoints] delete bnums...

Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see “Setting Breakpoints” on page 37),
breakpoints that you set are initially enabled; subsequently, they become disabled
or enabled only when you use one of the previously discussed commands. (The
command until can set and delete a breakpoint of its own, but it does not change
the state of your other breakpoints (see “Continuing and Stepping” on page 50).
LynxOS Total/db User’s Guide 45

Chapter 2 - Debugging with GDB

Break Conditions
The simplest sort of breakpoint breaks every time your program reaches a specified
place. You can also specify a condition for a breakpoint. A condition is just a
Boolean expression in your programming language (see “Expressions” on
page 68). A breakpoint with a condition evaluates the expression each time your
program reaches it, and your program stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation,
you want to stop when the assertion is violated—that is, when the condition is
false. In C, if you want to test an assertion expressed by the condition, assert,
you should set the condition ! assert on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, because a
watchpoint is inspecting the value of an expression anyhow—but it might be
simpler, say, to just set a watchpoint on a variable name, and specify a condition
that tests whether the new value is an interesting one.

Break conditions can have side effects, and may even call functions in your
program. This can be useful, for example, to activate functions that log program
progress, or to use your own print functions to format special data structures. The
effects are completely predictable unless there is another enabled breakpoint at the
same address. (In that case, GDB might see the other breakpoint first and stop your
program without checking the condition of this one.) Note that breakpoint
commands are usually more convenient and flexible for the purpose of performing
side effects when a breakpoint is reached (see “Breakpoint Command Lists” on
page 47).

Break conditions can be specified when a breakpoint is set, by using if in the
arguments to the break command (see “Setting Breakpoints” on page 37). They
can also be changed at any time with the condition command. The watch
command does not recognize the if keyword; condition is the only way to
impose a further condition on a watchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint or watchpoint
number, bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (non-zero, in C). When you
use condition, GDB checks expression immediately for syntactic
correctness, and to determine whether symbols in it have referents in the
context of your breakpoint. GDB does not actually evaluate expression at
the time the condition command is given, however (see “Expressions” on
page 68).

condition bnum
46 LynxOS Total/db User’s Guide

Breakpoint Command Lists

Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has
been reached a certain number of times. This is so useful that there is a special way
to do it, using the ignore count of the breakpoint. Every breakpoint has an ignore
count, which is an integer. Most of the time, the ignore count is zero, and therefore
has no effect. But if your program reaches a breakpoint whose ignore count is
positive, then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count value is n, the breakpoint does not stop
the next n times your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop;
other than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a breakpoint,
you can specify an ignore count directly as an argument to continue, rather
than using ignore (see “Continuing and Stepping” on page 50).

If a breakpoint has a positive ignore count and a condition, the condition is not
checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as $foo--
<= 0 using a debugger convenience variable that is decremented each time (see
“Convenience Variables” on page 83).

Breakpoint Command Lists
You can give any breakpoint or (watchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to
print the values of certain expressions, or enable other breakpoints.

commands [bnum]
...command-list...

end

Specify a list of commands for breakpoint number, bnum. The commands
themselves appear on the following lines.
LynxOS Total/db User’s Guide 47

Chapter 2 - Debugging with GDB

Type a line containing just end to terminate the commands. To remove all
commands from a breakpoint, type commands and follow it immediately
with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint or watchpoint set
(not to the breakpoint most recently encountered).

Using Return as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again.

Simply use the continue command, or step, or any other command that resumes
execution.

Any other commands in the command list are ignored, after a command that
resumes execution. This is because any time you resume execution (even with a
simple next or step), you may encounter another breakpoint— which could have
its own command list, leading to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message
about stopping at a breakpoint is not printed. This may be desirable for breakpoints
that are to print a specific message and then continue.

If none of the remaining commands print anything, you see no sign that the
breakpoint was reached.

silent is meaningful only at the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled
output, and are often useful in silent breakpoints (see “Commands for Controlled
Output” on page 119.)

For example, the following shows how to use breakpoint commands to print the
value of x at entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf x" is %d ",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can
test for another. Put a breakpoint just after the erroneous line of code, give it a
condition to detect the case in which something erroneous has been done, and give
it commands to assign correct values to any variables that need them. End with the
48 LynxOS Total/db User’s Guide

Breakpoint Menus

continue command so that your program does not stop, and start with the silent
command so that no output is produced. The following is an example.

break 403
commands
silent
set x=y +4
cont
end

Breakpoint Menus
Some programming languages notably (C++) permit a single function name to be
defined several times for application in different contexts. This is called
overloading. When a function name is overloaded, “break function” is not
enough to tell GDB where you want a breakpoint. If you realize this is a problem,
you can use something like “break function(types)” to specify which
particular version of the function you want. Otherwise, GDB offers you a menu of
numbered choices for different possible breakpoints, and waits for your selection
with the > prompt . The first two options are always
[0] cancel and [1] all. Typing 1 sets a breakpoint at each definition of
function, and typing 0 aborts the break command without setting any new
breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at
the overloaded symbol String::after. The following shows three particular
definitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] ;cc. String:file line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
>2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line .578
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the ‘delete’ command to delete unwanted breakpoints.
(gdb)
LynxOS Total/db User’s Guide 49

Chapter 2 - Debugging with GDB

Continuing and Stepping

Continuing means resuming program execution until your program completes
normally. In contrast, stepping means executing just one more “step” of your
program, where “step” may mean either one line of source code, or one machine
instruction (depending on what particular command you use). Either when
continuing or when stepping, your program may stop even sooner, due to a
breakpoint or a signal. (If due to a signal, you may want to use handle, or use
signal 0 to resume execution; see “Signals” on page 53.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed. The optional argument, ignore-
count, allows you to specify a further number of times to ignore a breakpoint at
this location; its effect is like that of ignore.

The argument, ignore-count, is meaningful only when your program stopped
due to a breakpoint. At other times, the argument to continue is ignored.

The synonyms, c and fg are provided purely for convenience, and have exactly
the same behavior as continue.

To resume execution at a different place, you can use Return (see “Returning from a
Function” on page 105) to go back to the calling function; or jump. See
“Continuing at a Different Address” on page 103. to go to an arbitrary location in
your program.

A typical technique for using stepping is to set a breakpoint at the beginning of the
function or the section of your program where a problem is believed to lie, run your
program until it stops at that breakpoint, and then step through the suspect area,
examining the variables that are interesting, until you see the problem happen.

step
50 LynxOS Total/db User’s Guide

Continuing and Stepping

Continue running your program until control reaches a different source line, then
stop it and return control to GDB. This command is abbreviated s.

The step command only stops at the first instruction of a source line. This
prevents multiple stops that used to occur in switch statements, for loops, etc. step
continues to stop if a function that has debugging information is called within the
line.

Also, the step command now only enters a subroutine if there is line number
information for the subroutine. Otherwise it acts like the next command. This
avoids problems when using cc -gl on MIPS machines. Previously, step
entered subroutines if there saw any debugging information about the routine.

step count

Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]

Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stacks level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in switch statements, for loops, etc.

finish

Continue running until just after function in the selected stack frame returns.
Print the returned value (if any). Contrast this with the return command
(see “Returning from a Function” on page 105).

CAUTION! If you use the step command while control is within a
function that was compiled without debugging information, execution
proceeds until control reaches a function that does have debugging
information. Likewise, it will not step into a function which is compiled
without debugging information. To step through functions without
debugging information, use the stepi command, described in the
following.
LynxOS Total/db User’s Guide 51

Chapter 2 - Debugging with GDB

u

until

Continue running until a source line past the current line in the current stack
frame is reached. This command is used to avoid single stepping through a
loop more than once. It is like the next command, except that when until
encounters a jump, it automatically continues execution until the program
counter is greater than the address of the jump.

This means that when you reach the end of a loop after single stepping through it,
until makes your program continue execution until it exits the loop. In contrast,
a next command at the end of a loop simply steps back to the beginning of the
loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counter-intuitive results if the order of machine
code does not match the order of the source lines. For instance, in the following
example from a debugging session, the f (frame) command shows that execution
is stopped at line 206. When we use until, we get to line 195:

This happened because, for execution efficiency, the compiler had generated code
for the loop closure test at the end, rather than the start, of the loop—even though
the test in a C for-loop is written before the body of the loop.

The until command appeared to step back to the beginning of the loop when it
advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

until with no argument works by means of single instruction stepping and,
hence, is slower than until with an argument.

until location

u location

(gdb) f

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206

206 expand_input();

(gdb) until

195 for (; argc > 0; NEXTARG) {
52 LynxOS Total/db User’s Guide

Signals

Continue running your program until either the specified location is reached,
or the current stack frame returns. location is any of the forms of argument
acceptable to break (see “Setting Breakpoints” on page 37).

This form of the command uses breakpoints and, hence, is quicker than until
without an argument.

stepi

si

Execute one machine instruction, then stop and return to the debugger.

It is often useful to use display/i $pc when stepping by machine
instructions. This makes GDB automatically display the next instruction to
be executed, each time your program stops. See “Automatic Display” on
page 74.

An argument is a repeat count, as in step.

nexti

ni

Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, as in next.

Signals

A signal is an synchronous event that can happen in a program.

The operating system defines the possible kinds of signals, and gives each kind a
name and a number. For example, in UNIX, SIGINT is the signal a program gets
when you use an interrupt (often Ctrl-c); SIGSEGV is the signal a program gets from
referencing a place in memory away from all the areas in use; SIGALRM occurs
when the alarm clock timer goes off (which happens only if your program has
requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your
program. Others, such as SIGSEGV, indicate errors; these signals are fatal (kill your
program immediately) if the program has not specified in advance some other way
to handle the signal. SIGINT does not indicate an error in your program, but it is
normally fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can
tell GDB in advance what to do for each kind of signal.
LynxOS Total/db User’s Guide 53

Chapter 2 - Debugging with GDB

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM so as not to
interfere with their role in the functioning of your program, but to stop your
program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types
of signals.

info handle is the new alias for info signals.

handle signal keywords...

Change the way GDB handles signal, signal. signal can be the number of
a signal or its name (with or without the SIG at the beginning). The keywords
say what change to make.

The keywords allowed by the handle command can be abbreviated. Their full
names are:

nostop

GDB should not stop your program when this signal happens. It may still
print a message telling you that the signal has come in.

stop

GDB should stop your program when this signal happens. This implies the
print keyword as well.

print

GDB should print a message when this signal happens.

noprint

GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass

GDB should allow your program to see this signal; your program can handle
the signal, or else it may terminate if the signal is fatal and not handled.

nopass

GDB should not allow your program to see this signal.
54 LynxOS Total/db User’s Guide

Stopping and Starting Multithread Programs

When a signal stops your program, the signal is not visible until you continue. Your
program sees the signal then, if pass is in effect for the signal in question at that
time. In other words, after GDB reports a signal, you can use the handle
command with pass or nopass to control whether your program sees that
signal when you continue.

You can also use the signal command to prevent your program from seeing a
signal, or cause it to see a signal it normally would not see, or to give it any signal
at any time. For example, if your program stopped due to some sort of memory
reference error, you might store correct values into the erroneous variables and
continue, hoping to see more execution; but your program would probably
terminate immediately as a result of the fatal signal once it was the signal. To
prevent this, you can continue with signal 0.

Stopping and Starting Multithread Programs

When your program has multiple threads (see “Debugging Programs with Multiple
Threads” on page 34), you can choose whether to set breakpoints on all threads, or
on a particular thread.

break linespec thread threadno

break linespec thread threadno if...

linespec specifies source lines; there are several ways of writing them, but
the effect is always to specify some source line.

Use the qualifier thread threadno with a breakpoint command to specify that
you only want GDB to stop the program when a particular thread reaches this
breakpoint. threadno is one of the numeric thread identifiers assigned by GDB,
shown in the first column of the info threads display.

If you do not specify thread threadno when you set a breakpoint, the breakpoint
applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this case,
place thread threadno before the breakpoint condition, as the following
example shows.

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution
stop, not just the current thread. This allows you to examine the overall state of the
program, including switching between threads, without worrying that things may
change underfoot.
LynxOS Total/db User’s Guide 55

Chapter 2 - Debugging with GDB

Conversely, whenever you restart the program, all threads start executing. This is
true even when single-stepping with commands such as step or next.

In particular, GDB cannot single-step all threads in lockstep. Because thread
scheduling is up to your debugging target’s operating system (not controlled by
GDB), other threads may execute more than one statement while the current thread
completes a single step. Moreover, in general other threads stop in the middle of a
statement, rather than at a clean statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or
even single-stepping. This happens whenever some other thread runs into a
breakpoint, a signal, or an exception before the first thread completes whatever you
requested.

Examining the Stack

The following documentation discusses GDB, stack frames and other related
topics.

When your program has stopped, the first thing you need to know is where it
stopped and how it got there.

Each time your program performs a function call, information about the call is
generated. That information includes the location of the call in your program, the
arguments of the call, and the local variables of the function being called. The
information is saved in a block of data called a stack frame. The stack frames are
allocated in a region of memory called the call stack. When your program stops,
the GDB commands for examining the stack allow you to see all of this
information.

One of the stack frames is selected by GDB and many GDB commands refer
implicitly to the selected frame. In particular, whenever you ask GDB for the value
of a variable in your program, the value is found in the selected frame. There are
special GDB commands to select whichever frame you are interested in (see
“Selecting a Frame” on page 59).

When your program stops, GDB automatically selects the currently executing
frame and describes it briefly, similar to the frame command (see “Information
about a Frame” on page 60).
56 LynxOS Total/db User’s Guide

Stack Frames

Stack Frames

The call stack is divided up into contiguous pieces called stack frames, or frames
for short; each frame is the data associated with one call to one function. The frame
contains the arguments given to the function, the function’s local variables, and the
address at which the function is executing.

When your program is started, the stack has only one frame, that of the function
main. This is called the initial frame or the outermost frame. Each time a function
is called, a new frame is made. Each time a function returns, the frame for that
function invocation is eliminated. If a function is recursive, there can be many
frames for the same function. The frame for the function in which execution is
actually occurring is called the innermost frame. This is the most recently created
of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer
has a convention for choosing one byte whose address serves as the address of the
frame. Usually this address is kept in a register called the frame pointer register
while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the
innermost frame, one for the frame that called it, and so on upward.

These numbers do not really exist in your program; they are assigned by GDB to
give you a way of designating stack frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without
stack frames. (For example, the -fomit-frame-pointer gcc option generates
functions without a frame.) This is occasionally done with heavily used library
functions to save the frame setup time. GDB has limited facilities for dealing with
these function invocations. If the innermost function invocation has no stack frame,
GDB nevertheless regards it as though it had a separate frame, which is numbered
zero as usual, allowing correct tracing of the function call chain. However, GDB
has no provision for frameless functions elsewhere in the stack.

frame args

The frame command allows you to move from one stack frame to another,
and to print the stack frame you select. args may be either the address of
the frame of the stack frame number. Without an argument, frame prints the
current stack frame.

select-frame

The select-frame command allows you to move from one stack frame to
another without printing the frame. This is the silent version of frame.
LynxOS Total/db User’s Guide 57

Chapter 2 - Debugging with GDB

Backtraces

A backtrace is a summary of how your program got where it is. It shows one line
per frame, for many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack.

backtrace

bt

Print a backtrace of the entire stack: one line per frame for all frames in the
stack. You can stop the backtrace at any time by using the system interrupt
character, normally Ctrl-c.

backtrace n

bt n

Similar, but print only the innermost n frames.

backtrace -n

bt -n

Similar, but print only the outermost n frames.

The names where and info stack (abbreviated info s) are additional aliases
for backtrace.

Each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless you use set print address
off. The backtrace also shows the source file name and line number, as well as the
arguments to the function. The program counter value is omitted if it is at the
beginning of the code for that line number. Here is an example of a backtrace. It
was made with the command bt 3, so it shows the innermost three frames.

The display for frame zero does not begin with a program counter value, indicating
that your program has stopped at the beginning of the code for line 993 of
builtin.c.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at
macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664,
td=fffb08)

 at macro.c:71

(More stack frames to follow...)
58 LynxOS Total/db User’s Guide

Selecting a Frame

Selecting a Frame

Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment. Here are the commands for
selecting a stack frame; all of them finish by printing a brief description of the
stack frame just selected.

frame n

f n

Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and
so on. The highest-numbered frame is the one for main.

frame addr

f addr

Select the frame at address, addr. This is useful mainly if the chaining of
stack frames has been damaged by a bug, making it impossible for GDB to
assign numbers properly to all frames. In addition, this can be useful when
your program has multiple stacks and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a
program counter.

On the 29k architecture, it needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n

Move n frames up the stack. For positive numbers n, this advances toward
the outermost frame, to higher frame numbers, to frames that have existed
longer. n defaults to one.

down n

Move n frames down the stack. For positive numbers n, this advances
toward the innermost frame, to lower frame numbers, to frames that were
created more recently. n defaults to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame.
The first line shows the frame number, the function name, the arguments, and the
LynxOS Total/db User’s Guide 59

Chapter 2 - Debugging with GDB

source file and line number of execution in that frame. The second line shows the
text of that source line. For instance, use the following as an example.

After such a printout, the list command with no arguments prints ten lines
centered on the point of execution in the frame (see “Printing Source Lines” on
page 62).

up-silently n

down-silently n

These two commands are variants of up and down, respectively; they differ
in that they do their work silently, without causing display of the new frame.
They are intended primarily for use in GDB command scripts, where the
output might be unnecessary and distracting.

Information about a Frame

There are several other commands to print information about the selected stack
frame.

frame
f

When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently selected stack
frame. It can be abbreviated f. With an argument, this command is used to
select a stack frame (see “Selecting a Frame” on page 59).

info frame

info f

This command prints a verbose description of the selected stack frame,
including:

• the address of the frame

(
g
d
b
)
u
p

#
1

0x22f0 in main (argc=1, argv=0xf7fffbf4,
env=0xf7fffbfc) at env.c:10

1
0

read_input_file (argv[i]);
60 LynxOS Total/db User’s Guide

MIPS Machines and the Function Stack

• the address of the next frame down (called by this frame)

• the address of the next frame up (caller of this frame)

• the language in which the source code corresponding to this frame is
written

• the address of the frame’s arguments

• the program counter saved in it (the address of execution in the caller
frame)

• which registers were saved in the frame

The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr
info f addr

Print a verbose description of the frame at address addr, without selecting
that frame. The selected frame remains unchanged by this command. This
requires the same kind of address (more than one for some architectures) that
you specify in the frame command (see “Selecting a Frame” on page 59).

info args

Print the arguments of the selected frame, each on a separate line.

info locals

Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch

Print a list of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or frame commands); then type:
info catch. See “Breakpoints, Watchpoints, and Exceptions” on page 36.

MIPS Machines and the Function Stack

MIPS based computers use an unusual stack frame, which sometimes requires
GDB to search backward in the object code to find the beginning of a function.
LynxOS Total/db User’s Guide 61

Chapter 2 - Debugging with GDB

To improve response time (especially for embedded applications, where GDB may
be restricted to a slow serial line for this search) you may want to limit the size of
this search, using one of these commands:

set heuristic-fence-post limit

Restrict GDB to examining at most limit bytes in its search for the
beginning of a function.

A value of 0 (the default) means there is no limit. However, except for 0, the
larger the limit the more bytes heuristic-fence-post must search and
therefore the longer it takes to run.

show heuristic-fence-post

Display the current limit.

These commands are available only when GDB is configured for debugging
programs on MIPS processors.

Examining Source Files

GDB can print parts of your program’s source, because the debugging information
recorded in the program tells GDB what source files were used to build it. When
your program stops, GDB spontaneously prints the line where it stopped. Likewise,
when you select a stack frame (see “Selecting a Frame” on page 59). GDB prints
the line where execution in that frame has stopped. You can print other portions of
source files by explicit command.

See the following documentation for more specific discussion on source files and
GDB.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs
facilities to view source (see “Using GDB under GNU Emacs” on page 120).

Printing Source Lines

To print lines from a source file, use the list command (abbreviated l). By
default, 10 lines are printed. There are several ways to specify what part of the file
you want to print. The following are the forms of the list command most
commonly used:

list linenum
62 LynxOS Total/db User’s Guide

Printing Source Lines

Print lines centered around line number, linenum, in the current source file.

list function

Print lines centered around the beginning of function, function.

list

Print more lines. If the last lines printed were printed with a list
command, this prints lines following the last lines printed; however, if the
last line printed was a solitary line printed as part of displaying a stack frame
(see “Examining the Stack” on page 56), this prints lines centered around that
line.

list -

Print lines just before the lines last printed.

By default, GDB prints 10 source lines with any of these forms of the list
command. You can change this using set listsize.

set listsize count

Make the list command display count source lines (unless the list
argument explicitly specifies some other number).

show listsize

Display the number of lines that list prints.

Repeating a list command using Return discards the argument, so it is equivalent
to typing list. This is more useful than listing the same lines again. An exception
is made for an argument of -; that argument is preserved in repetition so that each
repetition moves up in the source file.

In general, the list command expects you to supply zero, one or two
linespecs which specify source lines. There are several ways of writing
linespecs, but the effect is always to specify some source line. Here is a complete
description of the possible arguments for list:

list linespec

Print lines centered around the line specified by linespec.

list first,last

Print lines from first to last. Both arguments are linespecs.

list, last

Print lines ending with last.
LynxOS Total/db User’s Guide 63

Chapter 2 - Debugging with GDB

list first,

Print lines starting with first.

list +

Print lines just after the lines last printed.

list -

Print lines just before the lines last printed.

list

As described for list in the previous descriptions.

The following are the ways of specifying a single source line—all the kinds of
linespec.

number

Specifies line number of the current source file. When a list command has
two linespecs, this refers to the same source file as the first linespec.

+offset

Specifies the line offset lines after the last line printed. When used as the
second linespec in a list command that has two, this specifies the line
offset lines down from the first linespec.

-offset

Specifies the line offset lines before the last line printed.

filename:number

Specifies line number in the source file, filename.

function

Specifies the line that begins the body of the function, function. For
instance, in C, this is the line with the open brace.

filename:function

Specifies the line of the open-brace that begins the body of the function
function in the file, filename. You only need the file name with a
function name to avoid ambiguity when there are identically named
functions in different source files.

*address
64 LynxOS Total/db User’s Guide

Searching Source Files

Specifies the line containing the program address, address. address may
be any expression.

Searching Source Files

There are two commands for searching through the current source file for a regular
expression.

forward-search regexp

search regexp

The forward-search regexp command checks each line, starting with
the one following the last line listed, for a match for regexp. It lists the line
that is found. You can use the synonym, search regexp, or abbreviate the
command name as fo.

reverse-search regexp

The reverse-search regexp command checks each line, starting with
the one before the last line listed and going backward, for a match for
regexp. It lists the line that is found. You can abbreviate this command as
rev.

Specifying Source Directories

Executable programs sometimes do not record the directories of the source files
from which they were compiled, just the names. Even when they do, the directories
could be moved between the compilation and your debugging session. GDB has a
list of directories to search for source files; this is called the source path. Each time
GDB wants a source file, it tries all the directories in the list, in the order they are
present in the list, until it finds a file with the desired name.

If GDB cannot find a source file in the source path, and the object program records
a directory, GDB tries that directory too. If the source path is empty, and there is no
record of the compilation directory, GDB looks in the current directory as a last
resort.

Whenever you reset or rearrange the source path, GDB clears out any information
it has cached about where source files are found and where each line is in the file.

NOTE: The executable search path is not used for this purpose. Neither is
the current working directory, unless it happens to be in the source path.
LynxOS Total/db User’s Guide 65

Chapter 2 - Debugging with GDB

When you start GDB, its source path is empty. To add other directories, use the
directory command.

directory dirname ...
dir dirname ...

Add directory, dirname, to the front of the source path. Several directory
names may be given to this command, separated by a colon (:) or
whitespace. You may specify a directory that is already in the source path;
this moves it forward, so GDB searches it sooner.

You can use the $cdir string to refer to the compilation directory (if one is
recorded), and $cwd to refer to the current working directory. $cwd is not the
same as a period (.) —the former tracks the current working directory as it
changes during your GDB session, while the latter is immediately expanded to the
current directory at the time you add an entry to the source path.

directory

Reset the source path to empty again. This requires confirmation.

show directories

Print the source path; show which directories it contains.

If your source path is cluttered with directories that are no longer of interest,
GDB may sometimes cause confusion by finding the wrong versions of
source. You can correct the situation by the following methods.

• Use directory with no argument to reset the source path to empty.

• Use directory with suitable arguments to reinstall the directories you
want in the source path. You can add all the directories in one command.

Source and Machine Code

You can use the info line command to map source lines to program addresses
(and vice versa), and the disassemble command to display a range of addresses
as machine instructions.

When run under GNU Emacs mode, the info line command now causes the
arrow to point to the line specified. Also, info line prints addresses in
symbolic form as well as hex.

info line linespec
66 LynxOS Total/db User’s Guide

Examining Data

Print the starting and ending addresses of the compiled code for source line
linespec. Specify source lines in any of the ways understood by the list
command (see “Printing Source Lines” on page 62).

For instance, we can use info line to discover the location of the object code
for the first line of function, m4_changequote, as in the following example.

(gdb) info line m4_changecom
Line 895 of “builtin.c” starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addras, the form for linespec) what source line
covers a particular address, as in the following example.

(gdb) info line *0x63ff
Line 926 of “builtin.c” starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the
starting address of the line, so that x/i is sufficient to begin examining the
machine code (see “Examining Memory” on page 72). Also, this address is saved
as the value of the convenience variable, $_ (see “Convenience Variables” on
page 83).

disassemble

This specialized command dumps a range of memory as machine
instructions. The default memory range is the function surrounding the
program counter of the selected frame. A single argument to this command is
a program counter value; GDB dumps the function surrounding this value.
Two arguments specify a range of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown in the last info
line example (the example shows SPARC machine instructions):

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8<builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop
End of assembler dump.

Examining Data

The following material relates to examining data using GDB.
LynxOS Total/db User’s Guide 67

Chapter 2 - Debugging with GDB

The usual way to examine data in your program is with the print command
(abbreviated p), or its synonym, inspect. It evaluates and prints the value of an
expression of the language your program is written in. See “Using GDB with
Different Languages” on page 86.

print exp

print /f exp

exp is an expression (in the source language). By default the value of exp is
printed in a format appropriate to its data type; you can choose a different
format by specifying /f, where f is a letter specifying the format (see
“Output Formats” on page 71).

print /f

If you omit exp, GDB displays the last value again (from the value
history; see “Value History” on page 82). This allows you to conveniently
inspect the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data
in memory at a specified address and prints it in a specified format. See
“Examining Memory” on page 72.

If you are interested in information about types, or about how the fields of a struct
or class are declared, use the ptype exp command rather than print. See
“Examining the Symbol Table” on page 99.

Expressions

print and many other GDB commands accept an expression and compute its
value. Any kind of constant, variable or operator defined by the programming
language you are using is valid in an expression in GDB. This includes conditional
expressions, function calls, casts and string constants. It unfortunately does not
include symbols defined by preprocessor #define commands.

GDB now supports array constants in expressions input by the user. The syntax is
element, element For example, you can now use the command, print
{1 2 3} to build up an array in memory that is memory allocated in the target
program.

NOTE: Because C is so widespread, most of the expressions shown in
examples in this manual are in C. See “Using GDB with Different
Languages” on page 86.
68 LynxOS Total/db User’s Guide

Program Variables

In this section, we discuss operators that you can use in GDB expressions
regardless of your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming
languages:

::

:: allows you to specify a variable in terms of the file or function where it is
defined. See “Program Variables” on page 69.

@

@ is a binary operator for treating parts of memory as arrays. See “Artificial
Arrays” on page 70.

{type}addr

Refers to an object of type, type, stored at address, addr, in memory. addr
may be any expression whose value is an integer or pointer (but parentheses
are required around binary operators, just as in a cast). This construct is
allowed regardless of what kind of data is normally supposed to reside at
addr.

Program Variables

The most common kind of expression to use is the name of a variable in your
program. Variables in expressions are understood in the selected stack frame (see
“Selecting a Frame” on page 59); they must be either global (or static) or visible
according to the scope rules of the programming language from the point of
execution in that frame. Consider the following function example.

foo (a)
int a;
{
bar (a);
{
int b = test ();
bar (b);
}
}

This means that you can examine and use the variable, a, whenever your program
is executing within the function, foo, but you can only use or examine the
variable, b, while your program is executing inside the block where b is declared.
LynxOS Total/db User’s Guide 69

Chapter 2 - Debugging with GDB

There is an exception: you can refer to a variable or function whose scope is a
single source file even if the current execution point is not in this file. But it is
possible to have more than one such variable or function with the same name (in
different source files). If that happens, referring to that name has unpredictable
effects. If you wish, you can specify a static variable in a particular function or file,
using the colon-colon notation as in the following example.

file::variable

function::variable

Here file or function is the name of the context for the static variable.
In the case of file names, you can use quotes to make sure GDB parses the
file name as a single word—for example, to print a global value of x defined
in f2.c, use (gdb) p ’f2.c’::x.

This use of :: is very rarely in conflict with the very similar use of the same
notation in C++. GDB also supports use of the C++ scope resolution operator
in GDB expressions.

Artificial Arrays

It is often useful to print out several successive objects of the same type in
memory; a section of an array, or an array of dynamically determined size for
which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array,
using the @ binary operator. The left operand of @ should be the first element of the
desired array and be an individual object. The right operand should be the desired
length of the array. The result is an array value whose elements are all of the type
of the left argument. The first element is actually the left argument; the second
element comes from bytes of memory immediately following those holding the
first element, and so on.

CAUTION! Occasionally, a local variable may appear to have the wrong
value at certain points in a function—just after entry to a new scope, and
just before exit. You may see this problem when you are stepping by
machine instructions. This is because, on most machines, it takes more
than one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables may
appear to have the wrong values until the stack frame is completely built.
On exit, it usually takes more than one machine instruction to destroy a
stack frame; after you begin stepping through that group of instructions,
local variable definitions may be gone.
70 LynxOS Total/db User’s Guide

Output Formats

If a program says:

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with p *array@len.

The left operand of @ must reside in memory. Array values made with @ in this
way behave just like other arrays in terms of subscripting, and are coerced to
pointers when used in expressions. Artificial arrays most often appear in
expressions via the value history (see “Value History” on page 82), after printing
one out.

Another way to create an artificial array is to use a cast. This re-interprets a value
as if it were an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out, as in (type[])value, GDB
calculates a size to fill the value, as sizeof(value)/sizeof(type) as the
following example shows.

(gdb) p/x (short[])0x1234567
$2 = {0x1234, 0x5678}

Sometimes, the artificial array mechanism is not quite enough; in moderately
complex data structures, the elements of interest may not actually be adjacent—for
example, if you are interested in the values of pointers in an array. One useful
work-around in this situation is to use a convenience variable (see “Convenience
Variables” on page 83) as a counter in an expression that prints the first interesting
value, and then repeat that expression using Return. For instance, suppose you have
an array, dtab, of pointers to structures, and you are interested in the values of a
field, fv, in each structure. The following is an example of what you might type:

set $i = 0

p dtab[$i++]-fv

(At this point, use Return twice.)

Output Formats

By default, GDB prints a value according to its data type. Sometimes this is not
what you want. For example, you might want to print a number in hex, or a pointer
in decimal. Or you might want to view data in memory at a certain address as a
character string or as an instruction. To do these things, specify an output
format when you print a value.
LynxOS Total/db User’s Guide 71

Chapter 2 - Debugging with GDB

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a
format letter. The format letters supported are shown below.

For example, to print the program counter in hex (see “Registers” on page 84), type
p/x $pc. No space is required before the slash because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, p/x reprints
the last value in hex.

Examining Memory

You can use the x command (for “examine”) to examine memory in any of
several formats, independently of your program’s data types.

x/ nfuaddr

x addr

x Use the x command to examine memory.

Letter

Value
Definition

x
Regard the bits of the value as an integer, and print the integer in
hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t

Print as integer in binary. The letter ‘t’ stands for “two” (‘b’
cannot be used because these format letters are also used with the
x command, where ‘b’ stands for “byte” (see “Examining
Memory” on page 72).

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396

c Regard as an integer and print it as a character constant.

f
Regard the bits of the value as a floating point number and print
using typical floating point syntax.
72 LynxOS Total/db User’s Guide

Examining Memory

n, f, and u are all optional parameters that specify how much memory to display
and how to format it; addr is an expression giving the address where you want to
start displaying memory. If you use defaults for nfu, you need not type the slash,
‘/’. Several commands set convenient defaults for addr.

n, the repeat count

The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units, u) to display.

f, the display format

The display format is one of the formats used by print, s (null-terminated
string), or i (machine instruction). The default is x (hexadecimal) initially.
The default changes each time you use either x or print.

u, the unit size

The unit size is shown in the following table.

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the s and i formats, the unit size is ignored and is
normally not written.)

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always
interpreted as an integer address of a byte of memory. See “Expressions” on
page 68. The default for addr is usually just after the last address
examined—but several other commands also set the default address: info
breakpoints (to the address of the last breakpoint listed), info line (to
the starting address of a line), and print (if you use it to display a value
from memory).

For example, x/3uh0x54320 is a request to display three half words (h) of
memory, formatted as unsigned decimal integers (u), starting at address

Table 2-3: Unit Size

Type Unit

b Bytes

h Half words (two bytes)

w Words (four bytes); this is the initial default.

g Giant words (eight bytes)
LynxOS Total/db User’s Guide 73

Chapter 2 - Debugging with GDB

0x54320.x/4xw$sp prints the four words (w) of memory above the stack
pointer (here, $sp; (see “Registers” on page 84) in hexadecimal (x).

Because the letters indicating unit sizes are all distinct from the letters specifying
output formats, you do not have to remember whether unit size or format comes
first; either order works. The output specifications 4xw and 4wx mean exactly
the same thing. (The count must come first; wx4 does not work.)

Even though the unit size u is ignored for the formats s and i, you might still
want to use a count n. For example, 3i specifies that you want to see three
machine instructions, including any operands. The disassemble command
gives an alternative way of inspecting machine instructions; see “Source and
Machine Code” on page 66.

All the defaults for the arguments to x are designed to make it easy to continue
scanning memory with minimal specifications each time you use x. For example,
after you have inspected three machine instructions with x/3iaddr, you can
inspect the next seven with just x/7. If you use Return to repeat the x command,
the repeat count n is used again; the other arguments default as for successive
uses of x.

The addresses and contents printed by the x command are not saved in the value
history because there is often too much of them and they would get in the way.
Instead, GDB makes these values available for subsequent use in expressions as
values of the convenience variables $_ and $__. After an x command, the last
address examined is available for use in expressions in the convenience variable
$_. The contents of that address, as examined, are available in the convenience
variable, $__.

If the x command has a repeat count, the address and contents saved are from the
last memory unit printed; this is not the same as the last address printed if several
units were printed on the last line of output.

Automatic Display

If you find that you want to print the value of an expression frequently (to see how
it changes), you might want to add it to the automatic display list so that GDB
prints its value each time your program stops. Each expression added to the list is
given a number to identify it; to remove an expression from the list, you specify
that number. The automatic display looks like the following:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804
74 LynxOS Total/db User’s Guide

Automatic Display

This display shows item numbers, expressions and their current values. As with
displays you request manually, using x or print, you can specify the output
format you prefer; in fact, display decides whether to use print or x
depending on how elaborate your format specification is—it uses x if you specify
a unit size, or one of the two formats (i and s) that are only supported by x;
otherwise it uses print.

display exp

Add the expression, exp, to the list of expressions to display each time your
program stops (see “Expressions” on page 68).

display does not repeat if you press Return again after using it.

display/fmt exp

For fmt specifying only a display format and not a size or count, add the
expression exp to the auto-display list but arrange to display it each time in
the specified format, fmt (see “Output Formats” on page 71).

display/fmt addr

For fmt i or s, or including a unit-size or a number of units, add the
expression, addr, as a memory address to be examined each time your
program stops. Examining means in effect doing
x/fmt addr (see “Examining Memory” on page 72).

For example, display/i $pc can be helpful, to see the machine
instruction about to be executed each time execution stops ($pc is a
common name for the program counter; see “Registers” on page 84).

undisplay dnums...

delete display dnums...

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you use Return after using it. (Otherwise you
would just get the error, No display number....)

disable display dnums ...

Disable the display of item numbers, dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums...

Enable display of item numbers, dnums. It becomes effective once again in
auto display of its expression, until you specify otherwise.

display
LynxOS Total/db User’s Guide 75

Chapter 2 - Debugging with GDB

Display the current values of the expressions on the list, just as is done when
your program stops.

info display

Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes
disabled expressions, which are marked as such. It also includes expressions
which would not be displayed right now because they refer to automatic
variables not currently available.

If a display expression refers to local variables, then it does not make sense outside
the lexical context for which it was set up. Such an expression is disabled when
execution enters a context where one of its variables is not defined. For example, if
you give the command, display last_char, while inside a function with an
argument, last_char, GDB displays this argument while your program
continues to stop inside that function. When it stops elsewhere—where there is no
variable, last_char, the display is disabled automatically. The next time your
program stops where last_char is meaningful, you can enable the display
expression once again.

Print Settings

GDB provides the following ways to control how arrays, structures, and symbols
are printed. These settings are useful for debugging programs in any language:

set print address

set print address on

GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays
the contents of those addresses. The default is on.

For example, the following is what a stack frame display looks like with set
print address on:

(gdb)f
#0set_quotes (lq=0x34c78 "<<", rq=0x34c88 "")
at input.c:530 530
530if (lquote != def_lquote)

set print address off

Do not print addresses when displaying their contents. For example, the
following is the same stack frame displayed with set print address
off:
76 LynxOS Total/db User’s Guide

Print Settings

(gdb)set print addr off
(gdb)f
#0set_quotes (lq="<<", rq="")at input.c:530
530if (lquote != def_lquote)

You can use set print address off to eliminate all machine
dependent displays from the GDB interface. For example, with print
address off, you should get the same text for backtraces on all
machines—whether or not they involve pointer arguments.

show print address

Displays whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol
plus an offset. If that symbol does not uniquely identify the address (for example, it
is a name whose scope is a single source file), you may need to clarify.

One way to do this is with info line, for example,
info line *0x4537.

Alternately, you can set GDB to print the source file and line number when it prints
a symbolic address:

set print symbol-filename on

Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off

Do not print source file name and line number of a symbol. This is the
default.

show print symbol-filename

Show whether or not GDB will print the source file name and line number of
a symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is
when disassembling code; GDB shows you the line number and source file that
corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is
reasonably close to the closest earlier symbol:

set print max-symbolic-offset max-offset

Tell GDB to only display the symbolic form of an address if the offset
between the closest earlier symbol and the address is less than max-offset.
LynxOS Total/db User’s Guide 77

Chapter 2 - Debugging with GDB

The default is 0, which tells GDB to always print the symbolic form of an
address if any symbol precedes it.

show print max-symbolic-offset

Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try
set print symbol-filename on. Then, you can determine the name and
source file location of the variable where it points, using p/a pointer. This
interprets the address in symbolic form. For instance, the following shows that a
variable, ptt, points at another variable, t, defined in hi2.c:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c

Other settings control how different kinds of objects are printed:

set print array

set print array on

Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off

Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements

Set a limit on how many elements of an array GDB will print. If GDB is
printing a large array, it stops printing after it has printed the number of
elements set by the set print elements command. This limit also
applies to the display of strings. Setting number-of-elements to zero
means that the printing is unlimited.

show print elements

Display the number of elements of a large array that GDB will print. If the
number is 0, then the printing is unlimited.

CAUTION! For pointers that point to a local variable, p/a does not show
the symbol name and filename of the referent, even with the appropriate
set print options turned on.
78 LynxOS Total/db User’s Guide

Print Settings

set print null-stop

Cause GDB to stop printing the characters of an array when the first null is
encountered. This is useful when large arrays actually contain only short
strings.

set print pretty on

Cause GDB to print structures in an indented format with one member per
line, like the following example:
$1={

next = 0x0
flags = {
sweet = 1,
sour = 1
},

530meat = 0x54 “Pork”

set print pretty off

Cause GDB to print structures in a compact format, like the following
example:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty

Show which format GDB is using to print structures.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation, \nnn.
This setting is best if you are working in English (ASCII) and you use the
high-order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international
character sets, and is the default.

show print sevenbit-strings

Show whether or not GDB is printing only seven-bit characters.

set print union on

Tell GDB to print unions which are contained in structures. This is the
default setting.
LynxOS Total/db User’s Guide 79

Chapter 2 - Debugging with GDB

set print union off

Tell GDB not to print unions which are contained in structures.

show print union

Ask GDB whether or not it will print unions which are contained in
structures. For instance, consider the following example’s declarations.

typedef enum {Tree, Bug} Species; typedef enum {Big_tree, Acorn,
Seedling} Tree_forms; typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_forms;
struct thing {
Species it; union { Tree_forms tree; Bug_forms bug;
} form;
};

struct thing foo = {Tree, {Acorn}};

The example has set print union on in effect having
p foo printing the following result.

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

With set print union off in effect, it would print the following result.
$1 = {it = Tree, form = {...}}

The following settings are of interest when debugging C++ programs.

set print demangle

set print demangle on

Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle

Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle

Show whether C++ names in assembly listings are printed in mangled or
demangled form.

set demangle-style style
80 LynxOS Total/db User’s Guide

Print Settings

Choose among several encoding schemes used by different compilers to
represent C++ names. The choices for style are currently:

auto

Allow GDB to choose a decoding style by inspecting your program.

gnu

Decode based on the GNU C++ compiler (g++) encoding algorithm. This is
the default.

lucid

Decode based on the Lucid C++ compiler (lcc) encoding algorithm.

arm

Decode using the algorithm in the C++ Annotated Reference Manual.

foo

Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on

When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off

Display only the declared type of objects, without reference to the virtual
function table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off.

NOTE: This setting alone is not sufficient to allow debugging cfront-
generated executables. GDB would require further enhancement to permit
that functionality.
LynxOS Total/db User’s Guide 81

Chapter 2 - Debugging with GDB

set print vtbl off

Do not pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

Value History

Values printed by the print command are saved in the GDB value history. This
allows you to refer to them in other expressions. Values are kept until the symbol
table is reread or discarded (for example with the file or symbol-file
commands). When the symbol table changes, the value history is discarded,
becausebecause the values may contain pointers back to the types defined in the
symbol table.

The values printed are given history numbers by which you can refer to them.
These are successive integers starting with one. print shows you the history
number assigned to a value by printing $num= before the value; num is the history
number.

To refer to any previous value, use $ followed by the value’s history number. The
way print labels its output is designed to remind you of this. Just $ refers to the
most recent value in the history, and $$ refers to the value before that. $$n
refers to the nth value from the end; $$2 is the value just prior to $$, $$1 is
equivalent to $$, and $$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see
the contents of the structure. It suffices to type p *$.

If you have a chain of structures where the component next points to the next one,
you can print the contents of the next one with p *$.next. You can print
successive links in the chain by repeating this command— which you can do by
just using Return.

Note that the history records values, not expressions. Consider, for instance, if the
value of x is 4 and you type the following example’s commands.

print x

set x=5

Then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values
82 LynxOS Total/db User’s Guide

Convenience Variables

Print the last ten values in the value history, with their item numbers. This is
like p$$9 repeated ten times, except that
show values does not change the history.

show values n

Print ten history values centered on history item number n.

show values +

Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Using Return to repeat show values n has exactly the same effect as
SHOW VALUES +.

Convenience Variables

GDB provides convenience variables that you can use within GDB to hold on to a
value and refer to it later. These variables exist entirely within GDB; they are not
part of your program, and setting a convenience variable has no direct effect on
further execution of your program. That is why you can use them freely.

Convenience variables are prefixed with $. Any name preceded by $ can be used
for a convenience variable, unless it is one of the predefined machine-specific
register names (see “Registers” on page 84). Value history references, in contrast,
are numbers preceded by $ (see “Value History” on page 82).

You can save a value in a convenience variable with an assignment expression, just
as you would set a variable in your program. For example, set $foo =
*object_ptr would save in $foo the value contained in the object pointed to by
object_ptr.

Using a convenience variable for the first time creates it, but its value is void
until you assign a new value. You can alter the value with another assignment at
any time. Convenience variables have no fixed types. You can assign a
convenience variable any type of value, including structures and arrays, even if that
variable already has a value of a different type. The convenience variable, when
used as an expression, has the type of its current value.

show convenience

Print a list of convenience variables used so far, and their values.
Abbreviated as show con.

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For instance, to print a field from
LynxOS Total/db User’s Guide 83

Chapter 2 - Debugging with GDB

successive elements of an array of structures, use the following as an
example.

set $i = 0
print bar[$i++]-contents

Repeat that command by using Return.

Some convenience variables are created automatically by GDB and given values
likely to be useful.

$_

The $_ variable is automatically set by the x command to the last address
examined (see “Examining Memory” on page 72). Other commands which
provide a default address for x to examine also set $_ to that address; these
commands include info line and info breakpoint. The type of $_ is
void* except when set by the x command, in which case it is a pointer to
the type of $__.

$__

The $__ variable is automatically set by the x command to the value found
in the last address examined. Its type is chosen to match the format in which
the data was printed.

$_exitcode

The $_exitcode variable is automatically set to the exit code when the
program being debugged terminates.

Registers

You can refer to machine register contents, in expressions, as variables with names
starting with $. The names of registers are different for each machine; use info
registers to see the names used on your machine.

info registers

Print the names and values of all registers except floating-point registers (in
the selected stack frame).

info all-registers

Print the names and values of all registers, including floating-point registers.

info registers regname...
84 LynxOS Total/db User’s Guide

Registers

Print the relativized value of each specified register, regname. As discussed
in the following, register values are normally relative to the selected stack
frame. regname may be any register name valid on the machine you are
using, with or without the initial $.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical
mnemonics for registers. The register names $pc and $sp are used for the
program counter register and the stack pointer. $fp is used for a register that
contains a pointer to the current stack frame, and $ps is used for a register that
contains the processor status. For example, you could print the program counter in
hex with p/x $pc, or print the instruction to be executed next with x/i $pc, or
add four to the stack pointer with
set $sp += 4. This is a way of removing one word from the stack, on machines
where stacks grow downward in memory (most machines, nowadays). This
assumes that the innermost stack frame is selected; setting $sp is not allowed
when other stack frames are selected. To pop entire frames off the stack, regardless
of machine architecture, use Return (see “Returning from a Function” on
page 105).

Whenever possible, these four standard register names are available on your
machine even though the machine has different canonical mnemonics, so long as
there is no conflict. The info registers command shows the canonical names.
For example, on the SPARC, info registers displays the processor status
register as $psr but you can also refer to it as $ps.

GDB always considers the contents of an ordinary register as an integer when the
register is examined in this way. Some machines have special registers which can
hold nothing but floating point; these registers are considered to have floating point
values. There is no way to refer to the contents of an ordinary register as floating
point value (although you can print it as a floating point value with print/f
$regname).

Some registers have distinct “raw” and “virtual” data formats. This means that the
data format in which the register contents are saved by the operating system is not
the same one that your program normally sees. For example, the registers of the
68881 floating point coprocessor are always saved in “extended” (raw) format, but
all C programs expect to work with “double” (virtual) format. In such cases, GDB
normally works with the virtual format only (the format that makes sense for your
program), but the info registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see “Selecting a
Frame” on page 59). This means that you get the value that the register would
contain if all stack frames farther in were exited and their saved registers restored.
LynxOS Total/db User’s Guide 85

Chapter 2 - Debugging with GDB

In order to see the true contents of hardware registers, you must select the
innermost frame (with frame 0).

However, GDB must deduce where registers are saved, from the machine code
generated by your compiler. If some registers are not saved, or if GDB is unable to
locate the saved registers, the selected stack frame makes no difference.

set rstack_high_address address

On AMD 29000 family processors, registers are saved in a separate “register
stack”. There is no way for GDB to determine the extent of this stack.
Normally, GDB just assumes that the stack is “large enough”. This may
result in GDB referencing memory locations that do not exist. If necessary,
you can get around this problem by specifying the ending address of the
register stack with the set rstack_high_ address command. The
argument should be an address, which you probably want to precede with 0x
to specify in hexadecimal.

show rstack_high_address

Display the current limit of the register stack, on AMD 29000 family
processors.

Floating Point Hardware

Depending on the configuration, GDB may be able to give you more information
about the status of the floating point hardware.

info float

Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip.
Currently, info float is supported on the ARM and x86 machines.

Using GDB with Different Languages

Although programming languages generally have common aspects, they are rarely
expressed in the same manner. For instance, in ANSI C, dereferencing a pointer, p,
is accomplished by *p, but in Modula-2, it is accomplished by p^. Values can also
be represented (and displayed) differently. Hex numbers in C appear as 0x1ae,
while in Modula-2 they appear as 1AEH.
86 LynxOS Total/db User’s Guide

Switching between Source Languages

Language-specific information is built into GDB for some languages, allowing you
to express operations like the previous in your program’s native language, and
allowing GDB to output values in a manner consistent with the syntax of your
program’s native language. The language you use to build expressions is called the
working language.

See the following documentation for more specific discussion on languages that
GDB accommodates.

Switching between Source Languages

There are two ways to control the working language—either have GDB set it
automatically, or select it manually yourself. You can use the set language
command for either purpose. On startup, GDB defaults to setting the language
automatically. The working language is used to determine how expressions you
type are interpreted, how values are printed, and so on.

In addition to the working language, every source file that GDB knows about has
its own working language. For some object file formats, the compiler might
indicate which language a particular source file is in. However, most of the time
GDB infers the language from the name of the file. The language of a source file
controls whether C++ names are demangled—this way backtrace can show
each frame appropriately for its own language. There is no way to set the language
of a source file from within GDB. This is most commonly a problem when you use
a program, such as cfront or f2c, that generates C but is written in another
language. In that case, make the program use #line directives in its C output; that
way GDB will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

List of Filename Extensions and Languages
If a source file name ends in one of the following extensions, then GDB infers that
its language is the one indicated.

C source file

.C

C++ source file

NOTE: Although GDB is designed to support multiple languages,
LynuxWorks currently supports only GDB for C, C++, and assembly
languages.
LynxOS Total/db User’s Guide 87

Chapter 2 - Debugging with GDB

.C

.cc

.cxx

.cpp

.cp

.c++

Assembler source file*

.s

.S

*Assembler source files behave almost like C, but GDB does not skip over function
prologues when stepping.

Setting the Working Language
If you allow GDB to set the language automatically, expressions are interpreted the
same way in your debugging session and your program. If you wish, you may set
the language manually. To do this, issue the set language lang command,
where lang is the name of a language, such as c or modula-2. For a list of the
supported languages, type set language.

Setting the language manually prevents GDB from updating the working language
automatically. This can lead to confusion if you try to debug a program when the
working language is not the same as the source language, when an expression is
acceptable to both languages—but means different things. For instance, if the
current source file were written in C, and GDB was parsing Modula-2, a command
such as print a =b +c might not have the effect you intended. In C, this means
to add b and c and place the result in a. The result printed would be the value of
a. In Modula-2, this means to compare a to the result of b+c, yielding a Boolean
value.

Having GDB Infer the Source Language
To have GDB set the working language automatically, use set language
local or set language auto. GDB then infers the working language. That is,
when your program stops in a frame (usually by encountering a breakpoint), GDB
sets the working language to the language recorded for the function in that frame.
If the language for a frame is unknown (that is, if the function or block
corresponding to the frame was defined in a source file that does not have a
recognized extension), the current working language is not changed, and GDB
issues a warning.
88 LynxOS Total/db User’s Guide

Displaying the Language

This may not seem necessary for most programs, which are written entirely in one
source language. However, program modules and libraries written in one source
language can be used by a main program written in a different source language.
Using set language auto in this case frees you from having to set the working
language manually.

Displaying the Language

The following commands help you find out which language is the working
language, and also what language in which source files were written.

show language

Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame

Display the source language for this frame. This language becomes the
working language if you use an identifier from this frame. See “Information
about a Frame” on page 60 to identify the other information listed here.

info source

Display the source language of this source file. See “Examining the Symbol
Table” on page 99.

Type and Range Checking

Some languages are designed to guard against you making seemingly common
errors through a series of compile and run-time checks. These include checking the
type of arguments to functions and operators, and making sure mathematical
overflows are caught at run time. Checks such as these help to ensure a program’s
correctness once it has been compiled by eliminating type mismatches, and
providing active checks for range errors when your program is running.

CAUTION! In this release, the GDB commands for type and range
checking are included, but they do not yet have any effect. This section
documents the intended facilities.
LynxOS Total/db User’s Guide 89

Chapter 2 - Debugging with GDB

GDB can check for conditions like the previous if you wish. Although GDB does
not check the statements in your program, it can check expressions entered directly
into GDB for evaluation via the print command, for example. As with the
working language, GDB can also decide whether or not to check automatically
based on your program’s source language. See “Supported Languages,” later in this
chapter for the default settings of supported languages.

An Overview of Type Checking
Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type, otherwise an
error occurs. These checks prevent type mismatch errors from ever causing any
run-time problems. Consider the two following examples.

1 +2 3

1 + 2.3

The second example fails because the CARDINAL 1 is not type-compatible with
the REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker
to skip checking; to treat any mismatches as errors and abandon the expression; or
to only issue warnings when type mismatches occur, but evaluate the expression
anyway. When you choose the last of these, GDB evaluates expressions like the
second example, but also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know
how to add an int and a struct foo. These particular type errors have
nothing to do with the language in use, and usually arise from expressions, such as
the one described which make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both
Modula-2 and C require the arguments to arithmetical operators to be numbers. In
C, enumerated types and pointers can be represented as numbers, so that they are
valid arguments to mathematical operators. See “Supported Languages” for further
details on specific languages.

GDB provides the following additional commands for controlling the type checker.

set check type auto

Set type checking on or off based on the current working language. See
“Supported Languages” for the default settings for each language.
90 LynxOS Total/db User’s Guide

An Overview of Range Checking

set check type on

set check type off

Set type checking on or off, overriding the default setting for the current
working language. Issue a warning if the setting does not match the language
default. If any type mismatches occur in evaluating an expression while type
checking is on, GDB prints a message and aborts evaluation of the
expression.

set check type warn

Cause the type checker to issue warnings, but to always attempt to evaluate
the expression. Evaluating the expression may still be impossible for other
reasons. For example, GDB cannot add numbers and structures.

show type

Show the current setting of the type checker, and whether or not GDB is
setting it automatically.

An Overview of Range Checking
In some languages (such as Modula-2), it is an error to exceed the bounds of a type;
this is enforced with run-time checks. Such range checking is meant to ensure
program correctness by making sure computations do not overflow, or indices on
an array element access do not exceed the bounds of the array. For expressions you
use in GDB commands, you can tell GDB to treat range errors in one of three
ways: ignore them, always treat them as errors and abandon the expression, or
issue warnings but evaluate the expression anyway. A range error can result from
numerical overflow, from exceeding an array index bound, or when you type a
constant that is not a member of any type. Some languages, however, do not treat
overflows as an error. In many implementations of C, mathematical overflow
causes the result to “wrap around” to lower values—for example, if m is the
largest integer value, and s is the smallest, then

m +1 s

This, too, is specific to individual languages, and in some cases specific to
individual compilers or machines. See “Supported Languages” for further details
on specific languages. GDB provides some additional commands for controlling
the range checker:

set check range auto

Set range checking on or off based on the current working language. See
“Supported Languages” for the default settings for each language.
LynxOS Total/db User’s Guide 91

Chapter 2 - Debugging with GDB

set check range on

set check range off

Set range checking on or off, overriding the default setting for the current
working language. A warning is issued if the setting does not match the
language default. If a range error occurs, then a message is printed and
evaluation of the expression is aborted.

set check range warn

Output messages when the GDB range checker detects a range error, but
attempt to evaluate the expression anyway. Evaluating the expression may
still be impossible for other reasons, such as accessing memory that the
process does not own (a typical example from many UNIX systems).

show range

Show the current setting of the range checker, and whether or not it is being
set automatically by GDB.

Supported Languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be used in
expressions regardless of the language you use: the GDB @ and:: operators, and
the {type}addr construct (see “Expressions” on page 68) can be used with the
constructs of any supported language. The following sections detail to what degree
each source language is supported by GDB. These sections are not meant to be
language tutorials or references, but serve only as a reference guide to what the
GDB expression parser accepts, and what input and output formats should look
like for different languages. There are many good books written on each of these
languages; please look to these for a language reference or tutorial.

C and C++
Since C and C++ are so closely related, many features of GDB apply to both
languages. Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the GNU C++ compiler
and GDB. Therefore, to debug your C++ code effectively, you must compile your
C++ programs with the GNU C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debugging
format. You can select that format explicitly with the g++ command-line options -
92 LynxOS Total/db User’s Guide

C and C++

gstabs or -gstabs+. See “Options for Debugging Your Program or GNU CC”
in Using GNU CC in GNUPro Compiler Tools for more information.

C and C++ Operators
Operators must be defined on values of specific types. For instance, + is defined on
numbers and not on structures. Operators are often defined on groups of types. For
the purposes of C and C++, the following definitions hold:

• Integral types include int with any of its storage-class specifiers; char;
and enum.

• Floating-point types include float and double.

• Pointer types include all types defined as (type*).

• Scalar types include all of the previous types.

The following operators are supported, listed in order of increasing precedence:

, The comma or sequencing operator. Expressions in a
comma-separated list are evaluated from left to right,
with the result of the entire expression being the last
expression evaluated.

= Assignment. The value of an assignment expression
is the value assigned. Defined on scalar types.

op= Used in an expression of the form a op=b, and
translated to a= a opb. op= and = have the same
precedence. op is any one of the operators |, ^, &,
<<, >> , +, -, *, /, %.

?: The ternary operator. a?b: c can be thought of as: if
a, then b, else, c. a should be of an integral type.

|| Logical OR. Defined on integral types.

&& Logical AND. Defined on integral types.

| Bitwise OR. Defined on integral types.

^ Bitwise exclusive-OR. Defined on integral types.

& Bitwise AND . Defined on integral types.
LynxOS Total/db User’s Guide 93

Chapter 2 - Debugging with GDB
For debugging C++, GDB implements a use of & beyond what is allowed in the
C++ language itself: you can use &(&ref) (or, if you prefer, &&ref) to examine the
address where a C++ reference variable (declared with &ref) is stored.

==, != Equality and inequality. Defined on scalar types. The
value of these expressions is 0 for false and non-zero
for true.

<, >, <=, >= Less than, greater than, less than or equal, greater
than or equal. Defined on scalar types. The value of
these expressions is 0 for false and non-zero for true.

<<, >> Left shift, and right shift. Defined on integral types.

@ The GDB “artificial array” operator (see
“Expressions” earlier in this chapter).

+, - Addition and subtraction. Defined on integral types,
floating-point types and pointer types.

*, /, % Multiplication, division, and modulus. Multiplication
and division are defined on integral and floating-point
types. Modulus is defined on integral types.

++, -- Increment and decrement. When appearing before a
variable, the operation is performed before the
variable is used in an expression; when appearing
after it, the variable’s value is used before the
operation takes place.

* Pointer dereferencing. Defined on pointer types.
Same precedence as ++.

& Address operator. Defined on variables. Same
precedence as ++.

- Negative. Defined on integral and floating-point
types. Same precedence as ++.

! Logical negation. Defined on integral types. Same
precedence as ++.

~ Bitwise complement operator. Defined on integral
types. Same precedence as ++.
94 LynxOS Total/db User’s Guide

C and C++
C and C++ Constants
GDB allows you to express the constants of C and C++ in the following ways:

Integer constants are a sequence of digits. Octal constants are specified by a
leading 0 (i.e., zero), and hexadecimal constants by a leading 0x or 0X.
Constants may also end with a letter, l, specifying that the constant should be
treated as a long value.

Floating point constants are a sequence of digits, followed by a decimal point,
followed by a sequence of digits, and optionally followed by an exponent. An
exponent is of the form: e[[+]|-]nnn, where nnn is another sequence of digits.
The + is optional for positive exponents.

Enumerated constants consist of enumerated identifiers, or their integral
equivalents.

Character constants are a single character surrounded by single quotes (’), or a
number—the ordinal value of the corresponding character (usually its ASCII
value). Within quotes, the single character may be represented by a letter or by
escape sequences, which are of the form \nnn, where nnn is the octal
representation of the character’s ordinal value; or of the form \x, where x is a
predefined special character—for example, \n for newline.

String constants are a sequence of character constants surrounded by double quotes
(“ ”).

Pointer constants are an integral value. You can also write pointers to constants
using the C operator, &.

., -> Structure member, and pointer-to-structure member.
For convenience, GDB regards the two as equivalent,
choosing whether to dereference a pointer based on
the stored type information. Defined on struct and
union data.

[] Array indexing. a[i] is defined as *(a+i). Same
precedence as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. Defined on struct,
union, and class types.

:: Doubled colons also represent the GDB scope operator
(“Expressions” on page 68). Same precedence as ::.
LynxOS Total/db User’s Guide 95

Chapter 2 - Debugging with GDB

Array constants are comma-separated lists surrounded by braces { and }; for
example, {1,2,3} is a three-element array of integers, {{1,2}, {3,4}, {5,6}}
is a three-by-two array, and {&“hi”, &“there”, &“fred”} is a three-element
array of pointers.

C++ Expressions
GDB expression handling has a number of extensions to interpret a significant
subset of C++ expressions.

Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

While a member function is active (in the selected stack frame), your expressions
have the same namespace available as the member function; that is, GDB allows
implicit references to the class instance pointer, this, following the same rules as
C++.

You can call overloaded functions; GDB resolves the function call to the right
definition, with one restriction—you must use arguments of the type required by
the function that you want to call. GDB does not perform conversions requiring
constructors or user-defined type operators.

GDB understands variables declared as C++ references; you can use them in
expressions just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference
variables are not displayed (unlike other variables); this avoids clutter, since
references are often used for large structures. The address of a reference variable is
always shown, unless you have specified set print address off.

GDB supports the C++ name resolution operator ::—your expressions can use it
just as expressions in your program do. Since one scope may be defined in another,

CAUTION! GDB can only debug C++ code if you compile with the GNU
C++ compiler. Moreover, C++ debugging depends on the use of
additional debugging information in the symbol table, and thus requires
special support. GDB has this support only with the stabs debug format.
In particular, if your compiler generates a.out, MIPS ECOFF, RS/6000
XCOFF, or ELF with stabs extensions to the symbol table, these
facilities are all available. (With GNU CC, you can use the ‘-gstabs’
option to request stabs debugging extensions explicitly.) Where the
object code format is standard COFF or DWARF in ELF , on the other
hand, most of the C++ support in GDB does not work.
96 LynxOS Total/db User’s Guide

C and C++

you can use :: repeatedly if necessary, for example in an expression such as
scope1::scope2::name. GDB also allows resolving name scope by reference to
source files, in both C and C++ debugging (see “Program Variables” earlier in this
chapter).

C and C++ Defaults
If you allow GDB to set type and range checking automatically, they both default
to off whenever the working language changes to C or C++.

This happens regardless of whether you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files
whose names end with .c, .C, or .cc, and when GDB enters code compiled from
one of these files, it sets the working language to C or C++. See “Having GDB
Infer the Source Language,” earlier in this chapter, for further details.

C and C++ Type and Range Checks
By default, when GDB parses C or C++ expressions, type checking is not used.
However, if you turn type checking on, GDB considers two variables type
equivalent if:

• The two variables are structured and have the same structure, union, or
enumerated tag.

• The two variables have the same type name, or types that have been
declared equivalent through typedef.

Range checking, if turned on, is done on mathematical operations. Array indices
are not checked, since they are often used to index a pointer that is not itself an
array.

GDB and C

The set print union and show print union commands apply to the
union type. When set to on, any union that is inside a struct or class is
also printed. Otherwise, it appears as {...}.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and
a memory allocation function (see “Expressions” on page 68).
LynxOS Total/db User’s Guide 97

Chapter 2 - Debugging with GDB

GDB features for C++
Some GDB commands are particularly useful with C++, and some are designed
specifically for use with C++. The following is a summary:

breakpoint menus

When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want (see
“Breakpoint Menus,” earlier in this chapter).

rbreakregex

Setting breakpoints using regular expressions is helpful for setting
breakpoints on overloaded functions that are not members of any special
classes. See “Setting Breakpoints” on page 37.

catchexceptions

info catch

Debug C++ exception handling using these commands. See “Breakpoints
and Exceptions,” earlier in this chapter.

ptypetypename

Print inheritance relationships as well as other information for type
typename. See “Examining the Symbol Table” on page 99.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle

Control whether C++ symbols display in their source form, both when
displaying code as C++ source and when displaying disassemblies. See
“Print Settings,” earlier in this chapter.

set print object

show print object

Choose whether to print derived (actual) or declared types of objects. See
“Print Settings,” earlier in this chapter.

set print vtbl

show print vtbl

Control the format for printing virtual function tables. See “Print Settings,”
earlier in this chapter.
98 LynxOS Total/db User’s Guide

Examining the Symbol Table

Overloaded Symbol Names

You can specify a particular definition of an overloaded symbol, using the
same notation that is used to declare such symbols in C++: type
symbol(types) rather than just symbol. You can also use the GDB
command-line word completion facilities to list the available choices, or to
finish the type list for you. See “Command Completion,” earlier in this
chapter, for details on how to perform this function.

Examining the Symbol Table

The commands described in this section allow you to inquire about the symbols
(names of variables, functions and types) defined in your program. This
information is inherent in the text of your program and does not change as your
program executes. GDB finds it in your program’s symbol table, in the file
indicated when you started GDB (see “Choosing Files,” earlier in this chapter), or
by one of the file-management commands (see “Commands to Specify Files,” later
in this chapter).

Occasionally, you may need to refer to symbols that contain unusual characters,
which GDB ordinarily treats as word delimiters. The most frequent case is in
referring to static variables in other source files (see “Program Variables,” earlier in
this chapter). File names are recorded in object files as debugging symbols, but
GDB would ordinarily parse a typical file name, such as foo.c, as the three words
foo , . , and c. To allow GDB to recognize foo.c as a single symbol, enclose it
in single quotes; for example, p ’foo.c’::x looks up the value of x in the
scope of the file ‘foo.c’.

info address symbol

Describe where the data for symbol is stored. For a register variable, this
says which register it is kept in. For a non-register local variable, this prints
the stack-frame offset at which the variable is always stored.

whatis exp

NOTE: The contrast with print &symbol does not work at all for a register
variable, and for a stack local variable prints the exact address of the
current instantiation of the variable.
LynxOS Total/db User’s Guide 99

Chapter 2 - Debugging with GDB

Print the data type of expression exp. exp is not actually evaluated, and any
side-effecting operations (such as assignments or function calls) inside it do
not take place (see “Expressions” on page 68).

whatis

Print the data type of $, the last value in the value history.

ptype typename

Print a description of data type typename. typename may be the name of a
type, or for C code it may have the form class class-name, struct
struct-tag, union union-tag or enum enum.

ptype exp

ptype

Print a description of the type of expression exp. ptype differs from
whatis by printing a detailed description, instead of just the name of the
type. For instance, consider the following variable declaration example.

struct complex {double real; double imag;} v;

The declaration’s two commands give the following output.

(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {
double real;
double imag;

As with whatis, using ptype without an argument refers to the type of $,
the last value in the value history.

info types regexp

info types

Print a brief description of all types whose name matches regexp (or all
types in your program, if you supply no argument). Each complete typename
is matched as though it were a complete line; thus, i type value gives
information on all types in your program whose name includes the string
value, but i type ^value$ gives information only on types whose
complete name is value.

This command differs from ptype in two ways: first, like whatis, it does
not print a detailed description; second, it lists all source files where a type is
defined.

info source
100 LynxOS Total/db User’s Guide

Examining the Symbol Table

Show the name of the current source file—that is, the source file for the
function containing the current point of execution—and the language it was
written in.

info sources

Print the names of all source files in your program for which there is
debugging information, organized into two lists: files whose symbols have
already been read, and files whose symbols will be read when needed.

info functions

Print the names and data types of all defined functions.

info functions regexp

Print the names and data types of all defined functions whose names contain
a match for regular expression, regexp. Thus, info fun step finds all
functions whose names include step; info fun ^step finds those whose
names start with step.

info variables

Print the names and data types of all variables that are declared outside of
functions (i.e., excluding local variables).

info variables regexp

Print the names and data types of all variables (except for local variables)
whose names contain a match for regular expression regexp.

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. If you are running on one
of these systems, you can allow GDB to reload the symbols for the following
automatically relinked modules:

set symbol-reloading on

Replace symbol definitions for the corresponding source file when an object
file with a particular name is seen again.

set symbol-reloading off

Do not replace symbol definitions when re-encountering object files of the
same name. This is the default state; if you are not running on a system that
permits automatically relinking modules, you should leave symbol-
reloading off, since otherwise GDB may discard symbols when linking
large programs, that may contain several modules (from different directories
or libraries) with the same name.
LynxOS Total/db User’s Guide 101

Chapter 2 - Debugging with GDB

show symbol-reloading

Show the current on or off setting.

maint print symbolsfilename

maint print psymbolsfilename

maint print msymbolsfilename

Write a dump of debugging symbol data into the file, filename. These
commands are used to debug the GDB symbol-reading code. Only symbols
with debugging data are included.

If you use maint print symbols, GDB includes all the symbols for which
it has already collected full details: that is, filename reflects symbols for
only those files whose symbols GDB has read.

You can use the info sources command to find out which files these are.
If you use maint print psymbols instead, the dump shows information
about symbols that GDB only knows partially—that is, symbols defined in
files that GDB has skimmed, but not yet read completely.

Finally, maint print msymbols dumps just the minimal symbol
information required for each object file from which GDB has read some
symbols. See “Commands to Specify Files,” later in this chapter for a
discussion of how GDB reads symbols (in the description of symbol-
file).

Altering Execution

Once you think you have found an error in your program, you might want to find
out for certain whether correcting the apparent error would lead to correct results in
the rest of the run. You can find the answer by experiment, using the GDB features
for altering execution of the program.

For example, you can store new values into variables or memory locations, give
your program a signal, restart it at a different address, or even return prematurely
from a function.

See the following documentation for more details.
102 LynxOS Total/db User’s Guide

Assignment to Variables

Assignment to Variables

To alter the value of a variable, evaluate an assignment expression (see
“Expressions” on page 68). For example, print x=4 stores the value 4 into the
variable, x, and then prints the value of the assignment expression (which is 4). See
“Using GDB with Different Languages” on page 86.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the
expression’s value is not printed and is not put in the value history (see “Value
History” on page 82). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a
set subcommand, use the set variable command instead of only set. This
command is identical to set except for its lack of subcommands.

For example, if your program has a variable, width, you get an error if you try to
set a new value with just set width=13, because GDB has the command set
width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is =47. In order to actually set the program’s
variable, width, use (gdb) set var width=47.

GDB allows more implicit conversions in assignments than C; you can freely store
an integer value into a pointer variable or vice versa, and you can convert any
structure to any other structure that is the same length or shorter. To store values
into arbitrary places in memory, use the {...} construct to generate a value of
specified type at a specified address (see “Expressions” on page 68). For example,
{int}0x83040 refers to memory location 0x83040 as an integer (which
implies a certain size and representation in memory), and set {int}0x83040 =
4 stores the value 4 into that memory location.

Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it
stopped, with the continue command. You can instead continue at an address of
your own choosing, with the following commands.

jump linespec
LynxOS Total/db User’s Guide 103

Chapter 2 - Debugging with GDB

Resume execution at line, linespec. Execution stops again immediately if
there is a breakpoint there. See “Printing Source Lines” on page 62 for a
description of the different forms of linespec.

The jump command does not change the current stack frame, or the stack pointer,
or the contents of any memory location or any register other than the program
counter. If line, linespec, is in a different function from the one currently
executing, the results may be bizarre if the two functions expect different patterns
of arguments or of local variables. For this reason, the jump command requests
confirmation if the specified line is not in the function currently executing.
However, even bizarre results are predictable if you are well acquainted with the
machine-language code of your program.

jump *address

Resume execution at the instruction at address, address.

You can get much the same effect as the jump command by storing a new value
into the register, $pc. The difference is that this does not start your program
running; it only changes the address of where it will run when you continue. For
example, set $pc = 0x485 makes the next continue command or stepping
command execute at address, 0x485, rather than at the address where your
program stopped (see “Continuing and Stepping” on page 50).

The most common occasion to use the jump command is to back up, perhaps with
more breakpoints set, over a portion of a program that has already executed, in
order to examine its execution in more detail.

Giving Your Program a Signal

signal signal

Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a signal. For
example, on many systems signal 2 and signal SIGINT are both
ways of sending an interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal.
This is useful when your program stopped on account of a signal and would
ordinarily see the signal when resumed with the continue command;
signal 0 causes it to resume without a signal.

signal does not repeat when you use Return a second time after executing the
command.
104 LynxOS Total/db User’s Guide

Returning from a Function

Invoking the signal command is not the same as invoking the kill utility from
the shell. Sending a signal with kill causes GDB to decide what to do with the
signal, depending on the signal handling tables (see “Signals” on page 53). The
signal command passes the signal directly to your program.

Returning from a Function

return

return expression

You can cancel execution of a function call with the return command. If
you give an expression argument, its value is used as the function’s return
value.

When you use return, GDB discards the selected stack frame (and all
frames within it). You can think of this as making the discarded frame return
prematurely. If you wish to specify a value to be returned, give that value as
the argument to return.

This pops the selected stack frame (see “Selecting a Frame” on page 59), and
any other frames inside of it, leaving its caller as the innermost remaining
frame. That frame becomes selected. The specified value is stored in the
registers used for returning values of functions.

The return command does not resume execution; it leaves the program stopped
in the state that would exist if the function had just returned.

In contrast, the finish command (see “Continuing and Stepping” on page 50)
resumes execution until the selected stack frame returns naturally.

Calling Program Functions

call expr

Evaluate the expression, expr, without displaying void returned values.

You can use this variant of the print command if you want to execute a
function from your program, but without cluttering the output with void
returned values. If the result is not void, it is printed and saved in the value
history.

A new user-controlled variable, call_scratch_address, specifies the location
of a scratch area to be used when GDB calls a function in the target. This is
necessary because the usual method of putting the scratch area on the stack does
not work in systems that have separate instruction and data spaces.
LynxOS Total/db User’s Guide 105

Chapter 2 - Debugging with GDB

Patching Programs

By default, GDB opens the file containing your program’s executable code (or the
corefile) read-only. This prevents accidental alterations to machine code; but it also
prevents you from intentionally patching your program’s binary.

If you’d like to be able to patch the binary, you can specify that explicitly with the
set write command. For example, you might want to turn on internal debugging
flags, or even to make emergency repairs.

set write on

set write off

If you specify set write on, GDB opens executable and core files for
both reading and writing; if you specify set write off (the default),
GDB opens them read-only. If you have already loaded a file, you must load
it again (using the exec-file or core-file commands) after changing
set write, for your new setting to take effect.

show write

Display whether executable files and core files are opened for writing as well
as reading.

GDB Files

GDB needs to know the file name of the program to be debugged, both in order to
read its symbol table and in order to start your program. To debug a core dump of a
previous run, you must also tell GDB the name of the core dump file.

The following provides more details on command specification and symbol files
with GDB.

Commands to Specify Files

You may want to specify executable and core dump file names. The usual way to
do this is at start-up time, using the arguments to GDB’s start-up commands (see
“Getting In and Out of GDB” on page 17).

Occasionally it is necessary to change to a different file during a GDB session. Or
you may run GDB and forget to specify a file you want to use. In these situations
the GDB commands to specify new files are useful.

file filename
106 LynxOS Total/db User’s Guide

Commands to Specify Files

Use filename as the program to be debugged. It is read for its symbols and
for the contents of pure memory. It is also the program executed when you
use the run command. If you do not specify a directory and the file is not
found in the GDB working directory, GDB uses the environment variable,
PATH, as a list of directories to search, just as the shell does when looking for
a program to run. You can change the value of this variable, for both GDB
and your program, using the path command.

file

file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]

Specify that the program to be run (but not the symbol table) is found in
filename. GDB searches the environment variable, PATH, if necessary to
locate your program. Omitting filename means to discard information on
the executable file.

symbol-file [filename]

Read symbol table information from file, filename. PATH is searched
when necessary. Use the file command to get both symbol table and
program to run from the same file.

symbol-file with no argument clears out GDB information on your
program’s symbol table. The symbol-file command causes GDB to
forget the contents of its convenience variables, the value history, and all
breakpoints and auto-display expressions. This is because they may contain
pointers to the internal data recording symbols and data types, which are part
of the old symbol table data being discarded inside GDB.

symbol-file does not repeat if you use Return again after executing it
once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment; you
may use either a GNU compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from GNU compilers; for example,
using gcc you can generate debugging information for optimized code.

On some kinds of object files, the symbol-file command does not normally
read the symbol table in full right away. Instead, it scans the symbol table quickly
to find which source files and which symbols are present. The details are read later,
one source file at a time, as they are needed.
LynxOS Total/db User’s Guide 107

Chapter 2 - Debugging with GDB

The purpose of this two-stage reading strategy is to make GDB start up faster. For
the most part, it is invisible except for occasional pauses while the symbol table
details for a particular source file are being read. (The set verbose command
can turn these pauses into messages if desired, see “Optional Warnings and
Messages” on page 16.)

We have not implemented the two-stage strategy for COFF yet. When the symbol
table is stored in COFF format, symbol-file reads the symbol table data in full
right away.

symbol-file filename[-readnow]

file filename[-readnow]

You can override the GDB two-stage strategy for reading symbol tables by
using the -readnow option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table
available.

You can use both options together, to make sure the auxiliary symbol file has
all the symbol information for your program. The auxiliary symbol file for a
program called myprog is called myprog.syms. Once this file exists (so
long as it is newer than the corresponding executable), GDB always attempts
to use it when you debug myprog; no special options or commands are
needed.

The .syms file is specific to the host machine where you run GDB. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

core-file [filename]

Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address
space of the process that generated them; GDB can access the executable file
itself for other parts.

core-file with no argument specifies that no core file is to be used.

loadfilename

NOTE: The core file is ignored when your program is actually running
under GDB. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the kill command (see “Killing the
Child Process” on page 33).
108 LynxOS Total/db User’s Guide

Commands to Specify Files

Depending on what remote debugging facilities are configured into GDB, the
load command may be available. Where it exists, it is meant to make
filename (an executable) available for debugging on the remote system—by
downloading, or dynamic linking, e.g., load also records the filename
symbol table in GDB, like the
add-symbol-file command.

If your GDB does not have a load command, attempting to execute it gets the
error message “You can’t do that when your target is....”

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

load does not repeat if you use Return again after using it.

add-symbol-filefilename address

add-symbol-filefilename address[-readnow][-mapped]

The add-symbol-file command reads additional symbol table
information from the file, filename. You would use this command when
filename has been dynamically loaded (by some other means) into the
program that is running. address should be the memory address at which the
file has been loaded; GDB cannot figure this out for itself. You can specify
address as an expression.

The symbol table of the file, filename, is added to the symbol table
originally read with the symbol-file command. You can use the
command add-symbol-file any number of times; the new symbol data
thus read keeps adding to the old. To discard all old symbol data instead, use
the symbol-file command.

add-symbol-file does not repeat if, after using it, you use Return.

You can use the -readnow option, just as with the symbol-file command, to
change how GDB manages the symbol table information for filename.

section

The section command changes the base address of section, SECTION, of
the exec file to ADDR. This can be used if the exec file does not contain
section addresses (such as in the a.out format), or when the addresses
specified in the file itself are wrong. Each section must be changed
separately. The info files command lists all the sections and their
addresses.
LynxOS Total/db User’s Guide 109

Chapter 2 - Debugging with GDB

info files

info target

info files and info target are synonymous; both print the current
target (see “Specifying a Debugging Target” on page 112), including the
names of the executable and core dump files currently in use by GDB, and
the files from which symbols were loaded. The help target command
lists all possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file names as
arguments. GDB always converts the file name to an absolute file name and
remembers it that way.

info share

info sharedlibrary

Print the names of the shared libraries which are currently loaded.

sharedlibraryregex

shareregex

Load shared object library symbols for files matching a UNIX regular
expression. As with files loaded automatically, it only loads shared libraries
required by your program for a core file or after using run. If regex is
omitted, all shared libraries required by your program are loaded.

Errors Reading Symbol Files

While reading a symbol file, GDB occasionally encounters problems, such as
symbol types it does not recognize, or known bugs in compiler output. By default,
GDB does not notify you of such problems, since they are relatively common and
primarily of interest to people debugging compilers.

If you are interested in seeing information about ill-constructed symbol tables, you
can either ask GDB to print only one message about each such type of problem, no
matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints
command as shown in “Optional Warnings and Messages” on page 16.

The messages currently printed, and their meanings, include the following.

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as
at the start of a function or a block of statements). This error indicates that an
inner scope block is not fully contained in its outer scope blocks.
110 LynxOS Total/db User’s Guide

Errors Reading Symbol Files

GDB circumvents the problem by treating the inner block as if it had the
same scope as the outer block. In the error message, symbol may be shown
as “(don’t know)” if the outer block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur in order of
increasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in
the source file whose symbols it is reading. (You can often determine what
source file is affected by specifying set verbose on. See “Optional
Warnings and Messages” on page 16.

bad block start address patched

The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. This is known to occur in the
SunOS 4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger
than the size of the string table. GDB circumvents the problem by
considering the symbol to have the name, foo, which may cause other
problems if many symbols end up with this name.

unknown symbol type 0xnn

The symbol information contains new data types that GDB does not yet
know how to read. 0xnn is the symbol type of the misunderstood
information, in hexadecimal.

GDB circumvents the error by ignoring this symbol information. This
usually allows you to debug your program, though certain symbols are not
accessible. If you encounter such a problem and feel like debugging it, you
can debug gdb with itself, breakpoint on complain, then go up to the
function read_dbx_symtab and examine *bufp to see the symbol.

stub type has NULL name

GDB could not find the full definition for a struct or class.

const/volatile indicator missing

ok if using g++ v1.x), got ...
LynxOS Total/db User’s Guide 111

Chapter 2 - Debugging with GDB

The symbol information for a C++ member function is missing some
information that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

GDB could not parse a type specification output by the compiler.

Specifying a Debugging Target

A target is the execution environment occupied by your program. Often, GDB runs
in the same host environment as your program; in that case, the debugging target is
specified as a side effect when you use the file or core commands. When you
need more flexibility—for example, running GDB on a physically separate host, or
controlling a standalone system over a serial port or a realtime system over a
TCP/IP connection—you can use the target command to specify one of the
target types configured for GDB.

The following material provides more details on GDB specification.

Active Targets

There are three classes of targets: processes, core files, and executable files.

GDB can work concurrently on up to three active targets, one in each class. This
allows you to (for example) start a process and inspect its activity without
abandoning your work on a core file.

For example, if you execute gdb a.out, then the executable file, a.out, is the
only active target. If you designate a core file as well—presumably from a prior
run that crashed and coredumped—then GDB has two active targets and uses them
in tandem, looking first in the corefile target, then in the executable file, to satisfy
requests for memory addresses. (Typically, these two classes of target are
complementary, since core files contain only a program’s read-write memory—
variables and so on—plus machine status, while executable files contain only the
program text and initialized data.)

When you type run, your executable file becomes an active process target as well.
When a process target is active, all GDB commands requesting memory addresses
refer to that target; addresses in an active core file or executable file target are
obscured while the process target is active.

Use the core-file and exec-file commands to select a new core file or
executable target (see “Commands to Specify Files” on page 106). To specify as a
112 LynxOS Total/db User’s Guide

Commands for Managing Targets

target a process that is already running, use the attach command (see
“Debugging an Already-Running Process” on page 32).

Commands for Managing Targets

target type parameters

Connects the GDB host environment to a target machine or process. A target
is typically a protocol for talking to debugging facilities. You use the
argument, type, to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically
include things like device names or host names to connect with, process
numbers, and baud rates.

The target command does not repeat if you use Return again after
executing the command.

help target

Displays the names of all targets available. To display targets currently
selected, use either info target or info files (see “Commands to
Specify Files” on page 106).

help target name

Describe a particular target, including any parameters necessary to select it.

set gnutarget args

GDB uses its own library, BFD, to read your files. GDB knows whether it is
reading an executable, a core, or a .o file; however you can specify the file
format with the set gnutarget command.

Unlike most target commands, with gnutarget, the target refers to a
program, not a machine.

show gnutarget

Use the show gnutarget command to display what file format
gnutarget is set to read. If you have not set gnutarget, GDB will

CAUTION! To specify a file format with set gnutarget, you must
know the actual BFD name. See “Commands to Specify Files” on
page 106.
LynxOS Total/db User’s Guide 113

Chapter 2 - Debugging with GDB

determine the file format for each file automatically and show gnutarget
displays this message:

The current BDF target is “auto”.

The following are some common targets (available, or not, depending on the GDB
configuration).

target exec program

An executable file, target exec Substitute Text, is the same as
exec-file program.

target core filename

A core dump file, target core filename, is the same as
core-file filename.

target remote dev

Remote serial target in GDB-specific protocol. The argument, dev, specifies
what serial device to use for the connection (e.g., /dev/ttya); see “Remote
Debugging” on page 114. target remote now supports the load
command. This is only useful if you have some other way of getting the stub
to the target system, and you can put it somewhere in memory where it won’t
get clobbered by the download.

Different targets are available on different configurations of GDB; your
configuration may have more or fewer targets.

Remote Debugging

If you are trying to debug a program running on a machine that cannot run GDB in
the usual way, it is often useful to use remote debugging. For example, you might
use remote debugging on an operating system kernel, or on a small system which
does not have a general purpose operating system powerful enough to run a full-
featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this
work with particular debugging targets. In addition, GDB comes with a generic
serial protocol (specific to GDB, but not specific to any particular target system)
which you can use if you write the remote stubs—the code that runs on the remote
system to communicate with GDB.

Other remote targets may be available in your configuration of GDB; use help
target to list them.
114 LynxOS Total/db User’s Guide

Using the gdbserver program

Using the gdbserver program
gdbserver is a control program for UNIX-like systems, which allows you to
connect your program with a remote GDB via target remote—but without
linking in the usual debugging stub.

GDB and gdbserver communicate via either a serial line or a TCP connection,
using the standard GDB remote serial protocol.

On the Target Machine
You need to have a copy of the program you want to debug. gdbserver does not
need your program’s symbol table, so you can strip the program if necessary to
save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it how to communicate with GDB; the name of your program;
and the arguments for your program. The syntax is: target gdbserver comm
program [args...].

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument, foo.txt, and
communicate with GDB over the serial port, /dev/com1, use the following:

target gdbserver /dev/com1 emacs foo.txt.

gdbserver waits passively for the host GDB to communicate with it. To use a
TCP connection instead of a serial line, use the following:

target gdbserver host:2345 emacs foo.txt.

The only difference from the previous example is the first argument, specifying
that you are communicating with the host GDB via TCP. The host:2345
argument means that gdbserver is to expect a TCP connection from machine
host to local TCP port 2345. (Currently, the host part is ignored.) You can
choose any number you want for the port number as long as it does not conflict
with any TCP ports already in use on the target system. If you choose a port
number that conflicts with another service, gdbserver prints an error message
and exits.

You must use the same port number with the host GDB target remote
command.

On the GDB Host Machine
You need an unstripped copy of your program, since GDB needs symbols and
debugging information.
LynxOS Total/db User’s Guide 115

Chapter 2 - Debugging with GDB

Start up GDB as usual, using the name of the local copy of your program as the
first argument. (You may also need the --baud option if the serial line is running
at anything other than 9600 bps.)

After that, use target remote to establish communications with gdbserver.

Its argument is either a device name (usually a serial device like /dev/ttyb) or a
TCP port descriptor in the form, host:port. For example, (gdb) target
remote /dev/ttyb communicates with the server via serial line, /dev/ttyb.

(gdb) target remote target:2345 communicates via a TCP connection to
port 2345 on host, target. For TCP connections, you must start up gdbserver
prior to using the target remote command. Otherwise you may get an error
whose text depends on the host system, but which usually looks something like
“connection refused.”

Stored Command Sequences

Aside from breakpoint commands (see “Breakpoint Command Lists” on page 47),
GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

User-Defined Commands

A user-defined command is a sequence of GDB commands to which you assign a
new name as a command. This is done with the define command. User
commands may accept up to 10 arguments separated by whitespace. Arguments are
accessed within the user command via
$arg0 ...$arg9. A trivial example is the following:

define adder
print $arg0 + $arg1 + $arg2

To execute the command use the following:

adder 1 2 3

This defines the adder command, which prints the sum of its three arguments.

NOTE: The arguments are text substitutions, so they may reference
variables, use complex expressions, or even perform inferior function
calls.
116 LynxOS Total/db User’s Guide

User-Defined Commands

define commandname

Define a command named commandname. If there is already a command by
that name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which
are given following the define command. The end of these commands is marked
by a line containing end.

if

Takes a single argument, which is an expression to evaluate. It is followed by
a series of commands that are executed only if the expression is true (non-
zero). There can then optionally be a line else, followed by a series of
commands that are only executed if the expression was false. The end of the
list is marked by a line containing end.

while

The syntax is similar to if: the command takes a single argument, which is
an expression to evaluate, and must be followed by the commands to
execute, one per line, terminated by an end. The commands are executed
repeatedly as long as the expression evaluates to true.

document commandname

Document the user-defined commandname command so that it can be
accessed by help. The commandname command must already be defined.
This command reads lines of documentation just as define reads the lines of
the command definition, ending with end. After the document command
is finished, help on command, commandname, displays the documentation
you have written. You may use the document command again to change the
documentation of a command. Redefining the command with define does
not change the documentation.

help user-defined

List all user-defined commands, with the first line of the documentation (if
any) for each.

show user

show user commandname

Display the GDB commands used to define commandname (but not its
documentation). If no commandname is given, display the definitions for all
user-defined commands.
LynxOS Total/db User’s Guide 117

Chapter 2 - Debugging with GDB

When user-defined commands are executed, the commands of the definition are
not printed. An error in any command stops execution of the user-defined
command. If used interactively, commands that would ask for confirmation
proceed without asking when used inside a user-defined command. Many GDB
commands that normally print messages to say what they are doing omit the
messages when used in a user-defined command.

User-Defined Command Hooks

You may define hooks, which are a special kind of user-defined command.
Whenever you run the foo command, if the user-defined hook-foo command
exists, it is executed (with no arguments) before that command. In addition, a
pseudo-command, stop, exists. Defining hook-stop makes the associated
commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed. For example,
to ignore SIGALRM signals while single-stepping, but treat them normally during
normal execution, you could define the following debugging input.

define hook-stop
handle SIGALRM nopass
end
define hook-run
handle SIGALRM pass
end
define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, but not for
command aliases; you should define a hook for the basic command name, e.g.,
backtrace rather than bt. If an error occurs during the execution of your hook,
execution of GDB commands stops and GDB issues a prompt (before the
command that you actually used had a chance to run).

If you try to define a hook which does not match any known command, you get a
warning from the define command.

Command Files

A command file for GDB is a file of lines that are GDB commands.

Comments (lines starting with #) may also be included. An empty line in a
command file does nothing; it does not mean to repeat the last command, as it
would from the terminal. When you start GDB, it automatically executes
118 LynxOS Total/db User’s Guide

Commands for Controlled Output

commands from its init files. These are files named .gdbinit. GDB reads
the init file (if any) in your home directory, then processes command line
options and operands, and then reads the init file (if any) in the current working
directory. This is so the init file in your home directory can set options (such as
set complaints) which affect the processing of the command line options and
operands. The init files are not executed if you use the -nx option; see
“Choosing Modes” on page 20. You can also request the execution of a command
file with the source command:

source filename

Execute the command file filename.

The lines in a command file are executed sequentially. They are not printed
as they are executed. An error in any command terminates execution of the
command file.

Commands that would ask for confirmation if used interactively proceed without
asking when used in a command file. Many GDB commands that normally print
messages to say what they are doing omit the messages when called from
command files.

Commands for Controlled Output

During the execution of a command file or a user-defined command, normal GDB
output is suppressed; the only output that appears is what is explicitly printed by
the commands in the definition. The following documentation describes
commands useful for generating exactly the output you want.

echo text

Print text. Non-printing characters can be included in text using C escape
sequences, such as ‘ ’ to print a newline.

In addition to the standard C escape sequences, a backslash followed by a space
stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed from
all arguments. To print and foo =, use the echo \ and foo = \ command.
A backslash at the end of text can be used, as in C, to continue the command on to
subsequent lines.

Consider the following example.

NOTE: No newline is printed unless you specify one.
LynxOS Total/db User’s Guide 119

Chapter 2 - Debugging with GDB

echo This is some text \
which is continued \
onto several lines.

The previous example shows input that produces the same output as the following.
echo This is some text
echo which is continued
echo onto several lines.

output expression

Print the value of expression and nothing but that value: no newlines, no
$ nn= . The value is not entered in the value history either. See
“Expressions” on page 68 for more information on expressions.

output/fmt expression

Print the value of expression in format, fmt. You can use the same
formats as for print. See “Output Formats” on page 71.

printf string, expressions ...

Print the values of the expressions under the control of string. The
expressions are separated by commas and may be either numbers or pointers.
Their values are printed as specified by string, exactly as if your program
were to execute the C subroutine, as in the following example.

printf (string, expressions...);

For example, you can print two values in hex like the following example
shows.

printf "foo, bar-foo = 0x%x, 0x%x ", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the
simple ones that consist of backslash followed by a letter.

Using GDB under GNU Emacs

A special interface allows you to use GNU Emacs to view (and edit) the source
files for the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable
file you want to debug as an argument. This command starts GDB as a subprocess
of Emacs, with input and output through a newly created Emacs buffer.

Using GDB under Emacs is just like using GDB normally, except all “terminal”
input and output goes through the Emacs buffer. This applies both to GDB
120 LynxOS Total/db User’s Guide

Using GDB under GNU Emacs

commands and their output, and to the input and output done by the program you
are debugging. This is useful because it means that you can copy the text of
previous commands and input them again; you can even use parts of the output in
this way. All the facilities of Emacs’ Shell mode are available for interacting with
your program. In particular, you can send signals the usual way—for example,
Ctrl-c, Ctrl-c for an interrupt, Ctrl-c, Ctrl-z for a stop. GDB displays source code
through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file
for that frame and puts an arrow (=>) at the left margin of the current line. Emacs
uses a separate buffer for source display, and splits the screen to show both your
GDB session and the source.

Explicit GDB list or search commands still produce output as usual, but you
probably have no reason to use them from Emacs.

GDB can find programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs does not get enough
information back from GDB to locate the source files in this situation.

To avoid this problem, either start GDB mode from the directory where your
program resides, or specify an absolute file name when prompted for the M-x gdb
argument.

A similar confusion can result if you use the GDB file command to switch to
debugging a program in some other location, from an existing GDB buffer in
Emacs.

By default, using the keystroke sequence, M-x gdb calls the program called gdb.
If you need to call GDB by a different name (for example, if you keep several
configurations around, with different names) you can set the Emacs variable
gdb-command-name.

For example, (setq gdb-command-name “mygdb”)—which is preceded by
using the keystroke sequence, Esc, Esc, or typed in the *scratch* buffer, or in
your .emacs file—makes Emacs call the “mygdb” program instead.

CAUTION! If the directory where your program resides is not your current
directory, it can be easy to confuse Emacs about the location of the source
files, in which case the auxiliary display buffer does not appear to show
your source.
LynxOS Total/db User’s Guide 121

Chapter 2 - Debugging with GDB

In the GDB I/O buffer, you can use these special keystroke sequences of Emacs
commands in addition to the standard Shell mode commands in Table 2-4.

Table 2-4: Shell Mode Commands

Command Description

C-h, m Describe the features of Emacs’ GDB Mode.

M-s

Execute to another source line, like the GDB step
command; also update the display window to show
the current file and location.

M-n

Execute to next source line in this function, skipping
all function calls, like the GDB next command.
Then update the display window to show the current
file and location.

M-i
Execute one instruction, like the GDB stepi
command; update display window accordingly.

M-x,
gdb-nexti

Execute to next instruction, using the GDB nexti
command; update display window accordingly.

Ctrl-c, Ctrl-f
Execute until exit from the selected stack frame, like
the GDB finish command.

M-c

Continue execution of your program, like the GDB
continue command.

Note: In Emacs version 19, this command uses the
Ctrl-c, Ctrl-p keystroke sequence.

M-u

Go up the number of frames indicated by the numeric
argument (see “Numeric Arguments” in The GNU
Emacs Manual), like the GDB up command.

Note: In Emacs version 19, this command uses the
Ctrl-c, Ctrl-u keystroke sequence.
122 LynxOS Total/db User’s Guide

Using GDB under GNU Emacs
In any source file, the Emacs command using the C-x, Spacebar keystroke sequence
and typing (gdb-break) tells GDB to set a breakpoint on the source line point.

If you accidentally delete the source-display buffer, an easy way to get it back is to
type the command, f, in the GDB buffer, to request a frame display; when you run
under Emacs, this recreates the source buffer if necessary to show you the context
of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are
visiting the source files in the usual way. You can edit the files with these buffers if
you wish; but keep in mind that GDB communicates with Emacs in terms of line
numbers.

If you add or delete lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.

M-d

Go down the number of frames indicated by the
numeric argument, like the GDB down command.

Note: In Emacs version 19, this command uses the
Ctrl-c, Ctrl-d keystroke sequence.

Ctrl-x, &

Read the number where the cursor is positioned, and
insert it at the end of the GDB I/O buffer. For
example, if you wish to disassemble code around an
address that was displayed earlier, type
disassemble; then move the cursor to the address
display, and pick up the argument for disassemble
by using the Ctrl-x, & keystroke sequence.

You can customize this further by defining elements
of the list gdb-print-command; once it is defined, you
can format or otherwise process numbers picked up
by using the Ctrl-x, & keystroke sequence before they
are inserted. A numeric argument to Ctrl-x, & indicates
that you wish special formatting, and also acts as an
index to pick an element of the list. If the list element
is a string, the number to be inserted is formatted
using the Emacs function format; otherwise the
number is passed as an argument to the corresponding
list element.

Table 2-4: Shell Mode Commands(Continued)

Command Description
LynxOS Total/db User’s Guide 123

Chapter 2 - Debugging with GDB

Command Line Editing

The following material describes GNU’s command line editing interface.

Introduction to Line Editing

The following paragraphs describe the notation we use to represent keystrokes.

NOTE: The text Ctrl-K is read as “Control K” and describes the command to produce when using
the Control and the K keys sequence. The text M-K is read as “Meta K” and describes the
command to produce when using the meta key (if you have one, it may be the key with a
diamond), and the K key. If you do not have a meta key, the identical keystroke can be generated
by using the Esc key and then K. Either process is known as “meta-fying the K key.” The text M-

Ctrl-K is read as “Meta Control K” and describes the command to produce when asked to “meta-
fy C K.”

All uppercase letters require using the shift key, of course, since all commands are
case sensitive.

In addition, several keys have their own names. Specifically, Delete, Esc, LFD
(linefeed), Spacebar, Return, and Tab all stand for themselves when seen in this text
or in an init file. See “Readline Init File” on page 127 for more information.

Readline Interaction

Often during an interactive session you type in a long line of text, only to notice
that the first word on the line is misspelled. The Readline library gives you a set of
commands for manipulating the text as you type it in, allowing you to just fix your
typo, and not forcing you to retype the majority of the line. Using these editing
commands, you move the cursor to the place that needs correction, and delete or
insert the text of the corrections. Then, when you are satisfied with the line, you
simply use Return. You do not have to be at the end of the line to use Return; the
entire line is accepted regardless of the location of the cursor within the line.

NOTE: The hyphen characters and the comma characters are not a part of
the keystroke sequence to type.
124 LynxOS Total/db User’s Guide

Readline Bare Essentials

Readline Bare Essentials
In order to enter characters into the line, simply type them. The typed character
appears where the cursor was, and then the cursor moves one space to the right. If
you mistype a character, you can use Delete to back up, and delete the mistyped
character.

Sometimes you may miss typing a character that you wanted to type, and not notice
your error until you have typed several other characters. In that case, you can use
Ctrl-B to move the cursor to the left, and then correct your mistake. Afterward, you
can move the cursor to the right with Ctrl-F.

When you add text in the middle of a line, you will notice that characters to the
right of the cursor get “pushed over” to make room for the text that you have
inserted. Likewise, when you delete text behind the cursor, characters to the right
of the cursor get “pulled back” to fill in the blank space created by the removal of
the text. A list of the basic essentials for editing the text of an input line are in the
following table.

Readline Movement Commands
The previous commands are the most basic possible keystrokes that you need in
order to do editing of the input line. For your convenience, many other commands
have been added in addition to Ctrl-B, Ctrl-F, Ctrl-D, and Delete.

Command Action

Ctrl-B Move back one character.

Ctrl-F Move forward one character.

Delete Delete the character to the left of the cursor.

Ctrl-D Delete the character underneath the cursor.

Printing
characters

Insert itself into the line at the cursor.

Ctrl-_ Undo the last thing that you did. You can undo all the
way back to an empty line.
LynxOS Total/db User’s Guide 125

Chapter 2 - Debugging with GDB

Here are some commands for moving more rapidly about the line:

Notice how Ctrl-F moves forward a character, while M-F moves forward a word. It
is a loose convention that control keystrokes operate on characters while meta
keystrokes operate on words.

Readline Killing Commands
Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking it back into the line. If the description for a command says that
it “kills” text, then you can be sure that you can get the text back in a different (or
the same) place later. Table 2-8 is a list of commands for killing text.

Command Action

Ctrl-A Move to the start of the line.

Ctrl-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

Ctrl-L Clear the screen, reprinting the current line at the top.

Command Action

Ctrl-K
Kill the text from the current cursor position to the
end of the line.

M-D
Kill from the cursor to the end of the current word, or
if between words, to the end of the next word.

M-Delete
Kill from the cursor to the start of the previous word,
or if between words, to the start of the previous word.

Ctrl-W Kill from the cursor to the previous whitespace.

Ctrl-L
Clear the screen, reprinting the current line at the top.
This is different than M-Delete because the word
boundaries differ.
126 LynxOS Total/db User’s Guide

Readline Arguments

The following table shows how to yank the text back into the line.

When you use a kill command, the text is saved in a kill-ring. Any number of
consecutive kills save all of the killed text together, so that when you yank it back,
you get it in one clean sweep. The kill ring is not line specific; the text that you
killed on a previously typed line is available to be yanked back later, when you are
typing another line.

Readline Arguments
You can pass numeric arguments to Readline commands. Sometimes the arguments
act as a repeat count, other times it is the sign of the argument that is significant.
If you pass a negative argument to a command which normally acts in a forward
direction, that command will act in a backward direction. For example, to kill text
back to the start of the line, you might use M-- Ctrl-K.

The general way to pass numeric arguments to a command is to type meta digits
before the command. If the first digit you type is a minus sign (-), then the sign of
the argument will be negative. Once you have typed one meta digit to get the
argument started, you can type the remainder of the digits, and then the command.
For example, to give the Ctrl-D command an argument of 10, you could use the
keystroke sequence, M-1, 0, Ctrl-D.

Readline Init File

Although the Readline library comes with a set of GNU Emacs-like keybindings, it
is possible that you would like to use a different set of keybindings. You can
customize programs that use Readline by putting commands in an init file in your
home directory. The name of this file is ˜/.inputrc.

When a program which uses the Readline library starts up, the ˜/.inputrc file is
read, and the keybindings are set.

Command Action

Ctrl-Y

Yank the most recently killed text back into the buffer
at the cursor.Yank the most recently killed text back
into the buffer at the cursor.

M-Y Rotate the kill-ring, and yank the new top. You can
only do this if the prior command is Ctrl-Y or M-Y.
LynxOS Total/db User’s Guide 127

Chapter 2 - Debugging with GDB

In addition, the Ctrl-X, Ctrl-R command re-reads this init file, thus incorporating any
changes that you might have made to it.

Readline Init Syntax
There are only four constructs allowed in the ˜/.inputrc file.

Variable Settings
You can change the state of a few variables in Readline. You do this by using the
set command within the init file. Here is how you would specify that you wish to
use vi line editing commands:

set editing-mode vi

Right now, there are only a few variables which can be set; so few, in fact,
that we just iterate them here:

editing-mode

The editing-mode variable controls which editing mode you are using. By
default, GNU Readline starts up in Emacs editing mode, where the
keystrokes are most similar to Emacs. This variable can either be set to
emacs or vi.

horizontal-scroll-mode

This variable can either be set to On or Off. Setting it to On means that the
text of the lines that you edit will scroll horizontally on a single screen line
when they are larger than the width of the screen, instead of wrapping onto a
new screen line. By default, this variable is set to Off.

mark-modified-lines

This variable when set to On, says to display an asterisk, (*), at the starts of
history lines which have been modified. This variable is off by default.

prefer-visible-bell

If this Off variable is set to On it means to use a visible bell if one is
available, rather than simply ringing the terminal bell. By default, the value is
Off.
128 LynxOS Total/db User’s Guide

Readline Init Syntax

Key Bindings
The syntax for controlling keybindings in the ˜/.inputrc file is simple. First you
have to know the name of the command that you want to change. The following
pages contain tables of the command name, the default keybinding, and a short
description of what the command does.

Once you know the name of the command, simply place the name of the key you
wish to bind the command to, a colon, and then the name of the command on a line
in the ˜/.inputrc file. The name of the key can be expressed in different ways,
depending on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "&output"

In the example, Ctrl-U is bound to the function, universal-argument, and

Ctrl-O is bound to run the macro expressed on the right hand side (that is, to
insert the text “&output” into the line).

“keyseq”: function-name or macro

keyseq differs from keyname in that strings denoting an entire key
sequence can be specified. Simply place the key sequence in double quotes.

GNU Emacs style key escapes can be used, as in the following example:

“\C-u”: universal-argument
“\C-x\C-r”: re-read-init-file
“\e[11˜”: “Function Key 1”

In the example, Ctrl-U is bound to the function universal-argument (just as it
was in the first example), Ctrl-X, Ctrl-R is bound to the function reread-init-
file, and Esc-[, 1, 1, ˜ is bound to insert the text Function Key 1. See the
following table for additional information.

Command Action

beginning-of-line (Ctrl-A) Move to the start of the current line.

end-of-line (Ctrl-E) Move to the end of the line.

forward-char (Ctrl-F) Move forward a character.

backward-char (Ctrl-B) Move back a character.
LynxOS Total/db User’s Guide 129

Chapter 2 - Debugging with GDB

forward-word (M-F) Move forward to end of the next

word.

backward-word (M-B) Move back to the start of this, or the
previous, word.

clear-screen (Ctrl-L) Clear the screen leaving the current
line at the top of the screen.

Command Action

accept-line
(Newline, Return)

Accept the line regardless of where
the cursor is. If this line is non-
empty, add it to the history list. If
this line was a history line, then
restore the history line to its
original state.

previous-history (Ctrl-P) Move ‘up’ through the history list.

next-history (Ctrl-N) Move ‘down’ through the history
list.

beginning-of-history (M-<) Move to the first line in the history.

end-of-history (M-) Move to the end of the input
history, i.e., the line you are
entering.

reverse-search-history
(Ctrl-R)

Search backward starting at the
current line and moving ‘up’
through the history as necessary.
This is an incremental search.

forward-search-history
(Ctrl-S)

Search forward starting at the
current line and moving ‘down’
through the the history as
necessary.

Command Action
130 LynxOS Total/db User’s Guide

Readline Init Syntax

Command Action

delete-char
(Ctrl-D)

Delete the character under the
cursor. If the cursor is at the
beginning of the line, and there are
no characters in the line, and the
last character typed was not Ctrl-D,
then return EOF.

backward-delete-char

(Rubout)
Delete the character behind the
cursor. A numeric argument says to
kill the characters instead of
deleting them.

quoted-insert
(Ctrl-Q, Ctrl-V)

Add the next character that you
type to the line verbatim. This is
how to insert things like Ctrl-Q, for
example

tab-insert (M-Tab) Insert a tab character.

Command Action

self-insert (a, b, A, 1, !, ...) Insert yourself.

transpose-chars (Ctrl-T) Drag the character before point
forward over the character at point.
Point moves forward as well. If
point is at the end of the line, then
transpose the two characters before
point. Negative arguments don’t
work.

transpose-words (M-T) Drag the word behind the cursor
past the word in front of the cursor
moving the cursor over that word as
well.

upcase-word (M-U) Uppercase all letters in the current
(or following) word. With a
negative argument, do the previous
word, but do not move point.
LynxOS Total/db User’s Guide 131

Chapter 2 - Debugging with GDB

downcase-word (M-L) Lowercase all letters in the current

(or following) word. With a
negative argument, do the previous
word, but do not move point.

capitalize-word (M-C) Uppercase the first letter in the
current (or following) word. With a
negative argument, do the previous
word, but do not move point.

kill-line (Ctrl-K) Kill the text from the current cursor
position to the end of the line.

backward-kill-line () Kill backward to the beginning of
the line. This is normally unbound.

kill-word (M-D) Kill from the cursor to the end of
the current word, or if between
words, to the end of the next word.

backward-kill-word
(M-Delete)

Kill the word behind the cursor.

unix-line-discard (Ctrl-U) Kill the whole line the way Ctrl-U

used to in UNIX line input. The
killed text is saved on the kill-ring.

unix-word-rubout (Ctrl-W) Kill the word the way Ctrl-W used to
in UNIX line input. The killed text
is saved on the kill-ring. This is
different than backward-kill-word
because the word boundaries differ.

yank (Ctrl-Y) Yank the top of the kill ring into the
buffer at point.

yank-pop (M-Y) Rotate the kill-ring, and yank the
new top. You can only do this if the
prior command is yank or yank-
pop.

Command Action
132 LynxOS Total/db User’s Guide

Readline Init Syntax

Command Action

digit-argument
(M-0, M-1, ... M--)

Add this digit to the argument
already accumulating, or start a
new argument. M-- starts a negative
argument.

universal-argument () Do what Ctrl-U does in GNU
Emacs. By default, this is not
bound.

Command Action

complete (Tab) Attempt to do completion on the
text before point. This is
implementation defined. Generally,
if you are typing a filename
argument, you can do filename
completion; if you are typing a
command, you can do command
completion, if you are typing in a
symbol to GDB, you can do symbol
name completion, if you are typing
in a variable to Bash, you can do
variable name completion.

possible-completions (M-?) List the possible completions of the
text before point.
LynxOS Total/db User’s Guide 133

Chapter 2 - Debugging with GDB
Readline vi Mode
While the Readline library does not have a full set of vi editing functions, it does
contain enough to allow simple editing of the line.

In order to switch interactively between GNU Emacs and vi editing modes, use
the command M-Ctrl-J (toggle-editing-mode). When you enter a line in vi
mode, you are already placed in insertion mode, as if you had typed an i.
Using Esc switches you into edit mode, where you can edit the text of the line
with the standard vi movement keys, move to previous history lines with k, and
following lines with j, and so forth.

Using History Interactively

The following describes how to use the GNU History Library interactively, from a
user’s standpoint.

Command Action

reread-init-file
(Ctrl-X, Ctrl-R)

Read in the contents of your
˜/.inputrc file, and incorporate
any bindings found there.

abort (Ctrl-G) Stop running the current editing
command.

prefix-meta (Esc) Make the next character that you
type be metafied. This is for people
without a meta key. Typing ESC F is
equivalent to typing M-F.

undo (Ctrl-_) Incremental undo, separately
remembered for each line.

revert-line (M-R) Undo all changes made to this line.
This is like typing undo enough
times to get back to the beginning.
134 LynxOS Total/db User’s Guide

History Interaction

History Interaction

The History library provides a history expansion feature similar to the history
expansion in csh. The following text describes the syntax you use to manipulate
history information.

History expansion takes two parts. In the first part, determine which line from the
previous history will be used for substitution. This line is called the event. In the
second part, select portions of that line for inclusion into the current line. These
portions are called words. GDB breaks the line into words in the same way that the
Bash shell does, so that several English (or UNIX) words surrounded by quotes are
considered one word.

Event Designators
An event designator is a reference to a command line entry in the history list.

Word Designators
A: separates the event designator from the word designator. It can be omitted if the
word designator begins with a ˆ, $, * or %. Words are numbered from the
beginning of the line, with the first word being denoted by a 0 (zero).

! Start a history substitution, except when followed by
a space, tab, or the end of the line... = or (.

!! Refer to the previous command. This is a synonym
for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with
string.

!?string[?] Refer to the most recent command containing
string.

0 (zero) The zero’th word. For many applications, this is the
command word.

n The n’th word.
LynxOS Total/db User’s Guide 135

Chapter 2 - Debugging with GDB
Modifiers
After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by a :.

ˆ The first argument. that is, word 1.

T$ The last argument.

% The word matched by the most recent ?string?
search.

x-y A range of words; -y abbreviates 0-y.

* All of the words, excepting the zero’th. This is a
synonym for 1-$. It is not an error to use * if there
is just one word in the event. The empty string is
returned in that case.

The entire command line typed so far. This means the
current command, not the previous command.

h Remove a trailing pathname component, leaving only
the head.

r Remove a trailing suffix of the form ‘.’ suffix,
leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving
the tail.

p Print the new command but do not execute it.
136 LynxOS Total/db User’s Guide

CHAPTER 3 LynxOS GDB Enhancements
LynxOS GDB extends and enhances the functionality of the GNU debugger for
debugging various LynxOS targets. This chapter is intended to supplement the
previous chapter, See “Debugging with GDB” on page 11. Readers are advised to
read the chapter prior to this in order to familiarize themselves with GDB.

Overview

LynxOS GDB supports debugging of a variety of LynxOS targets including, but
not limited to, the following areas:

• POSIX threads

• Remote applications

• Shared libraries

• LynxOS kernel device drivers.

This chapter shows command prompts as follows:

A command entry to GDB prompt (on the host):

(gdb) example command

A command entry to the host’s shell prompt:

myhost$> example command

A command entry to the target’s shell prompt:

mytarget$> example command
LynxOS Total/db User’s Guide 137

Chapter 3 - LynxOS GDB Enhancements

Debugging POSIX Threads

LynxOS user threads fully conform to the POSIX/IEEE 1003.1c threads model. A
LynxOS process consists of one or more threads each of which is scheduled by the
kernel. LynxOS GDB provides full support of multiple thread debugging including

• Browsing threads in a process

• Switching focus among threads

• Setting breakpoints either common to all threads in a process or specific
to a particular thread.

For more detailed information, see “Debugging Programs with Multiple Threads”
on page 34 in the previous chapter.

Understanding Thread Numbers

Each debugged process may contain any number of threads. GDB manages these
threads with internal thread numbers that are unique within the process, and within
the GDB session. Note that these thread numbers are different from LynxOS thread
IDs that are assigned by the LynxOS kernel and are unique throughout the
operating system. GDB maintains the mapping between its thread numbers and
LynxOS thread IDs.

Browsing and Switching Threads

To browse all the threads in the process, use the info thread command:

(gdb) info thread

* 1 process 8 thread 38 0x100029d4 in _trap_ ()
2 process 8 thread 32 0x10002dd0 in _trap_ ()
(gdb)

The first column of a thread list is the GDB thread number. The asterisk indicates
the current thread. The second and third numbers (8, 38, and 32 in this example)
are the LynxOS process ID and thread IDs, respectively.

NOTE: GDB can debug a single process per debug session. To debug more than
one process, start as many GDB sessions as the number of the processes. Each
GDB session works independently from the others and there is no mutual
synchronization mechanism available between GDB sessions.
138 LynxOS Total/db User’s Guide

Current Thread

Current Thread
Whenever GDB stops and returns to its prompt, it maintains its concept of the
current thread. GDB can only focus on one thread at a time, which is referred to as
the current thread. By default, any GDB command uses the current thread if it
implicitly uses thread-specific parameters such as

• Expressions that contain an automatic variable

• Browsing registers

• Browsing the call stack chain.

At the start-up of the debugged process, the initial thread is the current thread.
When a thread hits a breakpoint or watchpoint, that thread becomes the current
thread. When the target process is interrupted by GDB, then the interrupted thread
becomes the current thread.

Use the thread command with the new thread number to switch the focus from
one thread to another:

(gdb) thread 2

Setting a Breakpoint

You can make a breakpoint common to all the threads, so that any thread in the
target process will stop at a hit on it, or specific to a particular thread, so that only
the specified thread will stop. The default is any thread.

To set a thread-specific breakpoint, use the break command with the thread
modifier:

(gdb) break foo.c:123 thread 2

When a thread stops because of a breakpoint or any other reason, all threads in the
target process will stop immediately, not just the thread that encountered the stop
condition. Likewise, when a thread is resumed, all threads in the debug process are
resumed. Whenever GBD is at its prompt, the entire process is stopped and all
variables can be determined statically.

NOTE: Thread-specific breakpoints are implemented via simulation: All
breakpoints are actually thread-insensitive to the operating system. When GDB
detects a hit at a thread-specific breakpoint by a thread that is not specified for the
breakpoint, GDB immediately resumes the target without reporting it to the user.
So, the operation is transparent, but some speed penalty may be seen if there are
many uninteresting hits.
LynxOS Total/db User’s Guide 139

Chapter 3 - LynxOS GDB Enhancements

Resuming Threads

The continue command resumes the operation of the target process. If the target
process has more than one thread, all the threads are resumed, not just the current
thread.

Likewise, single-stepping actually resumes all the threads in the target process. The
step and stepi commands merely guarantee that the current thread executes at
most one line of code and one instruction respectively, while other threads with the
same or higher priorities than the current thread may execute any amount of code
before control returns to GDB. It is even possible that the current thread may not
have a chance to complete single-stepping if some other thread runs first and hits a
breakpoint or receives a signal.

To single-step the current thread, raise the thread’s priority to a value higher than
any other thread in the target process by using the setprio command at the shell
level.

You can run setprio (process 8, thread 38) at the target’s shell prompt:

mytarget$> setprio 20 8.38

or if the target is a remote machine:

(gdb) rshell setprio 20 8.38

The thread’s original priority must be restored after completing the exclusive
single-stepping for normal operation of the application.

Debugging Embedded Applications Remotely

GDB can be used to debug embedded applications remotely in the following ways:

• Debugging user processes with full support of signal, process attach, and
so on

• Debugging device drivers (kernel) over a serial line

For more information, see“Commands for Managing Targets” on
page 113 and “Using the gdbserver program” on page 115.

NOTE: When a multithreaded target process is resumed, the threads are actually
resumed one after another by the LynxOS kernel, not all at once. The order of
resumption and subsequent execution of threads is determined by the scheduling
algorithm of the LynxOS kernel based on priorities.
140 LynxOS Total/db User’s Guide

Using the Target Command

In addition, LynxOS GDB supports the following features:

• Remote start of gdbserver from GDB

• Extension of serial line communication to TCP/IP using a proxy.

Using the Target Command

Use the target command to choose the appropriate remote debug target and
protocol (communication channel). In the following syntax, the first argument
specifies the remote debug target and the second specifies the protocol.

(gdb) target debug-target protocol [args]

LynxOS GDB supports the remote debug targets shown in Table 3-1:

LynxOS GDB supports the remote debug protocols shown in Table 3-2.

The optional third argument args to the target command is only used by the
remote gdbserver and proxy server protocols. Refer to the following sections
for the details of args.

Table 3-1: Remote Debug Targets

Target Target name(s)

Remote user process remote and extended-remote

Kernel/device driver skdb

Table 3-2: Remote Debug Protocols

Protocol Example

TCP/IP foo:12345

Serial line /dev/ttya

Remotely started gdbserver foo:gdbserver

Proxy server foo:sspp
LynxOS Total/db User’s Guide 141

Chapter 3 - LynxOS GDB Enhancements

Debugging Remote Targets

Remote and Extended-Remote Targets
Both remote and extended-remote targets select debugging of a remote user
process over a communication channel. There are small differences between
remote and extended-remote targets in the way gdbserver handles
termination of a debug session as shown in Table 3-3.

Table 3-3: Remote and Extended-Remote Targets

remote and extended-remote targets support a full range of GDB features
available in LynxOS GDB, including debugging of multithreaded processes,
sending a signal to the target process, and attaching to a target process.

Device Driver/Kernel Target (skdb)
LynxOS GDB supports debugging of kernel code including device drivers over a
serial line communication. For more information, see “Debugging Kernel/Device
Drivers” on page 158.

Supported Protocols for Remote and Extended-Remote
Targets

TCP Port
If there is TCP/IP communication available between the debugging host and the
remote debugging target, it can be used to get the best possible debugging speed
and reliability.

Target Kill Command
Target Process Exits or

is Killed By Signal

Communication Error

or New Target is

Selected

remote gdbserver exits gdbserver exits gdbserver reopens
communication

extended-remote gdbserver
respawns target
process

gdbserver respawns
target process

gdbserver exits
142 LynxOS Total/db User’s Guide

Using a Serial Line

To start remote debugging through a TCP port, the remote target must first start
gdbserver with an unused TCP port number that is available for normal use.

The next example command lines are typed in to the target machine:

mytarget$> gdbserver junk:12345 /test/prog arg

or

mytarget$> gdbserver foo:23456

The first example starts the target program /test/prog with an argument arg.
The second example does not start a target program immediately but waits until it
is told by the host GDB to attach an already-running process. For more
information, see “Debugging Kernel/Device Drivers” on page 158.

In either case, the first argument to gdbserver is the TCP port specification in
the form of host:port. An unused TCP/IP port number must be specified for
gdb. This is usually a large number between 1,024 and 65,534 inclusive; a range of
5,000 through 65,534 is recommended for better compatibility. The host name
string before : can be anything and is ignored by gdbserver.

At the host machine, give the host GDB prompt the same port number associated
with the target’s host name or IP address:

(gdb) target remote mytarget:12345

or

(gdb) target extended-remote 198.4.254.217:23456

Using a Serial Line
A serial communication line can be used for GDB remote debugging with
gdbserver provided that a serial port is available on both the host and target
machines. When using a serial port, make sure that no other processes are using the
port on either side. Neither GDB nor gdbserver uses a lock file, but they must
gain exclusive access to the ports; otherwise, GDB may report a communication
error.

To start gdbserver with the target process on the target’s serial port
(/dev/com1):

mytarget$> gdbserver /dev/com1 /test/prog arg

The following starts gdbserver for later process attaching on the target’s serial
port (/dev/com2). The -b option is used to specify the serial port’s
communication speed explicitly.
LynxOS Total/db User’s Guide 143

Chapter 3 - LynxOS GDB Enhancements

mytarget$> gdbserver -b 19200 /dev/com2

In either case, /dev/com1 and /dev/com2 are the device files of the targets’
serial ports that are connected to the GDB hosts.

At the host machine, you must give the GDB prompt the host’s serial port name
(/dev/ttya in this case) to which the target is connected:

(gdb) target remote /dev/ttya

If the GDB host is Windows, it resembles the following:

(gdb) target remote com2

To change the host’s serial line speed, use the set remotebaud command before
using the target command:

(gdb) set remotebaud 19200

Starting gdbserver Remotely
With TCP/IP communication, you can start gdbserver remotely in a couple of
different ways:

• Through a telnet session on the target from the GDB host

• From the target’s start-up script

• With the rsh command from the debug host

• From GDB.

The last method has an advantage that, for example, you can start a debug session
completely from GDB, but it, as well as the rsh method, requires that the remote
shell (rsh) and the .rhosts file for your account on the target be set up so that
the GDB user can use remote shell commands on the target from the GDB host.

(gdb) target remote mytarget: /test/prog arg

or

(gdb) target remote mytarget:gdbserver

The first example starts gdbserver on the remote target with the target program

/test/prog and an argument of arg. The second starts gdbserver for later
attachment of a target process. The gdbserver string after the colon “:” is
optional; if it is present, it must be in all lower-case and cannot be preceded by a
path prefix.
144 LynxOS Total/db User’s Guide

Using a Proxy Server

In both of the above cases, the host GDB process spawns a local rsh process to
ask the remote rshd process to start gdbserver with appropriate arguments.
The communication TCP port number is automatically determined and you do not
need to specify it. The standard output and standard error paths of the remote target
process are redirected to those of the local GDB process, while the standard input
path of the remote target process is either closed or redirected to the local host’s
/dev/null. Therefore, an interactive program cannot be debugged in this way.

Using a Proxy Server
The serial line between the GDB host and the target usually limits the physical
distance between the two machines. It is, however, often desirable to be able to
debug a target that has only a serial line for communication from a geographically
distant locale. LynxOS GDB provides a proxy server solution to this problem.

The proxy server program runs on a third computer that is actually connected to the
target via a serial line. The proxy computer and the GDB host computer
communicate over TCP/IP and the proxy server program redirects all the messages
to and from the serial line to the TCP/IP connection. This way, one can debug the
target from a local workstation placed anywhere on the globe as long as there is a
TCP/IP connection with the proxy server.

To enable remote debugging with a proxy, start gdbserver on the target with the
serial port name connected to the proxy computer first:

mytarget$> gdbserver /dev/com2 /test/prog arg

Then specify the target sspp at the GDB prompt:

(gdb) target myproxy:sspp /dev/ttya

Here, myproxy is the proxy server’s host name, which could be a fully qualified
domain name (FQDN) such as myproxy.foo.com or an IP address such as
198.4.254.47; and /dev/ttya is the serial port name of the proxy computer to
which the target machine is connected.

This proxy server is also useful when the target’s serial port is connected to a
“serial terminal server” computer. The terminal server can be configured to run the
proxy for shared access to the target. For more details on the proxy server, see
“Proxy Server” on page 165.

Starting the Remote Target

There are two ways to start the remote target process:
LynxOS Total/db User’s Guide 145

Chapter 3 - LynxOS GDB Enhancements

• Start from gdbserver

• Attach to a Running Process

The next sections describe these ways of starting the remote target.

Starting from gdbserver
To start the remote target process from gdbserver, give the target program name
with optional arguments at the gdbserver command line:

mytarget$> gdbserver junk:12345 /test/prog arg

(gdb) target remote mytarget:12345

or

mytarget$> gdbserver /dev/com2 /test/prog arg

(gdb) target remote /dev/ttya

or

(gdb) target remote mytarget: /test/prog arg

The first and second examples start gdbserver on the remote target then make a
connection to the gdbserver process from GDB. The third example starts
gdbserver remotely from GDB over a TCP/IP connection.

In any case, as soon as the communication is established, one will see something
similar to the following:

(gdb) target remote mytarget: /test/prog arg
Process /test/proc created; pid = 17
Connected to 198.4.254.217...
Remote debugging using 198.4.254.217: /test/prog arg
Kernel supports MTD ptrace requests.
gdbserver: passed 0.0.0.0:3304 using addr:port=198.4.254.131:3304
0x10001000 in __start ()
(gdb)

At this point, the target process has started and is stopped at the very first user
instruction of the program, which is in this case labeled as __start. To let the
target process run, use the continue command (after setting breakpoints or other
desired debugger commands), but do not use the run command which would start
a local process.
146 LynxOS Total/db User’s Guide

Attaching to a Running Process

Attaching to a Running Process
In a multiprocess application where the target process is forked by another process
on the target, it is not possible for gdbserver to start the target process with the
target program specification given in the GDB command line. In such a case, GDB
can tell gdbserver to attach to an already-running process.

To start gdbserver for attaching to a process, give no target program
specification to it:

mytarget$> gdbserver junk:12345

(gdb) target remote mytarget:12345

or

mytarget$> gdbserver /dev/com2

(gdb) target remote /dev/ttya

or

(gdb) target remote mytarget:

The first and second examples start gdbserver on the remote target then make a
connection to the gdbserver process from GDB. The third example starts
gdbserver remotely from GDB over a TCP/IP connection.

To attach to a remote process, one needs to obtain the target process ID. To find out
the process ID, execute the ps command on the target. With LynxOS GDB, you
can run the ps command remotely from your GDB host with the rshell GDB
command.

Then, use the GDB attach command with the process ID to attach the target
process:

(gdb) target remote mytarget:

Ready to attach to a process
gdbserver: passed 0.0.0.0:1050 using addr:port=198.4.254.47:1050
Connected to mytarget...
Remote debugging using mytarget:

(gdb) rshell ps

pid ppid grp pri text stk data time dev user S name
34 32 34 17 336 32 132 0.58 ttyp0 joe W /bin/bash
36 13 36 17 336* 32 132 0.46 ttyp1 joe W /bin/bash
44 34 44 17 28 8 8 0.01 ttyp0 joe W /test/prog

6596K/0K free physical/virtual, 708K used (in this display)

(gdb) attach 44

Attaching to remote program `/usr/home/joe/test/prog’ (process 44)...
Kernel supports MTD ptrace requests.
LynxOS Total/db User’s Guide 147

Chapter 3 - LynxOS GDB Enhancements

Process 44 has threads 39.
0x100029d4 in _trap_ ()

(gdb)

To resume the target, use the continue command (after setting breakpoints, if
necessary).

Target’s Environment

Although GDB supports set environment to set the debug target’s
environment, currently this command has no effect on remote debugging. To set or
reset the remote target process’s environment, do so on the parent process (usually
the shell) of gdbserver (if the application process is started by gdbserver) or
the application process (if one attaches to the process later).

Postmortem Debugging of Dynamically Linked Programs

When loading a partial core file without either the data or the heap section created
from a dynamically linked program, GDB is unable to debug the shared libraries
used by the program. To obtain the shard libraries address for correct interpreting
of the libraries symbolic information, GDB uses the DT_DEBUG symbol. The
DT_DEBUG pointer maintained by the dynamic linker is located in the program data
section of the core file and points to a special program heap area. This program
heap area is allocated by the dynamic linker and holds the structures conatining the
information on how the dynamic linker loads the libraries needed for the program
execution. In the case when the core file is configured not to contain either the data
or the program heap section, GDB is unable to get the load information of the
library and analyze the functions located in the shared libraries.

Should debuging of the shared libraries in a core file be required, the user must
configure the core file to include the data and heap sections. Refer to the LynxOS
User’s Guide for details.

Debugging Shared Libraries

A shared library is a collection of library functions that are commonly used by
multiple application programs at the same time. Instead of linking a library to each
application program executable, a single copy of the shared library is loaded into
memory and used by multiple programs. This sharing reduces the use of physical
148 LynxOS Total/db User’s Guide

Creating a Shared Library for Debugging Purposes

memory as well as disk storage requirements; therefore, it is especially useful for
embedded applications where memory is tight.

LynxOS GDB can set breakpoints in, single-step, and trace shared library code just
like any application program. When a breakpoint is set in the text segment of a
shared library that is actually used by multiple processes, a copy of the page where
the breakpoint is being set is made for the debugged process so that the breakpoint
does not interfere with other processes that share the same shared library.

Creating a Shared Library for Debugging Purposes

To create a shared library for GDB debugging purposes, compile (gcc) the library
source file(s) with the -g option.

Loading Shared Library Symbol Information

GDB automatically loads the necessary symbol files (shared library files) when
one of the following GDB commands is executed:

• run

• attach

• target (extended-)remote

• target core (or the -c option or a core file is given in the GDB
command arguments—postmortem debugging)

The following add-symbol-file command can be used to load a shared library
symbol file. This may be necessary if the file cannot be found in one of the
automatically searched directory paths, or if you are performing postmortem (core
file) debugging:

(gdb) add-symbol-file ./libmy.so 0

The first argument for the add-symbol-file command is the additional shared
library file path name on the debug host’s file system.

The second argument (0) is a dummy argument, and GDB ignores it.

Application-Loaded (dlopen’ed) Shared Libraries
GDB automatically loads the necessary symbol file (shared library file) when an
application-loaded shared library file is first opened by the application (dlopen())
and discards the symbol file when the shared library file is last closed by the
LynxOS Total/db User’s Guide 149

Chapter 3 - LynxOS GDB Enhancements

application (dlclose()) for live debugging. The dlopen and dlclose library
functions use special signals to notify GDB that a shared library has been opened
or closed.

GDB also searches for application-loaded shared libraries and loads the necessary
symbol files when it attaches to a live target process or when it starts analyzing a
core file (postmortem debugging).

The following add-symbol-file command can be used to load a shared library
symbol file manually. This may be necessary if GDB cannot locate the file in any
of the automatically searched directory paths:

(gdb) add-symbol-file ./shlib2.so 0

The first argument for the add-symbol-file command is the additional shared
library file path name on the debug host’s file system.

The second argument (0) is a dummy argument, and GDB ignores it.

If a symbol file has been loaded manually with add-symbol-file, it must be
discarded manually with the delete-symbol-file command after the shared
library has been last closed by the dlclose() library call. GDB will prompt the
user when this seems to be necessary.

The delete-symbol-file command takes one argument for the deleted
symbol file name on the debug host’s file system. The info symbol-file
command shows the list of currently loaded symbol files.

(gdb) info symbol-file

From To Symbol file
0x00400a20 0x00400e1f /usr/lynx/3.1.0/mips/tmp/hello/hello
0x70000c20 0x7000450f /usr/lynx/3.1.0/mips/lib/shlib/libdl.so
0x70027f40 0x7005987f /usr/lynx/3.1.0/mips/lib/shlib/libc.so
0x70452ec0 0x704649ff /usr/lynx/3.1.0/mips/lib/shlib/libgcc.so
0x70475240 0x70480aef /usr/lynx/3.1.0/mips/lib/shlib/libm.so

(gdb) delete-symbolfile \
/usr/lynx/3.1.0/mips/lib/shlib/libdl.so

Deferred Breakpoints

When setting a breakpoint with symbolic information such as a function name,
GDB has to resolve the breakpoint specification into the target process’s virtual
address immediately. This is impossible if the breakpoint being set will be found in
a shared library and the shared library symbol file has not been loaded to GDB
either because the target process has not yet started or because GDB has not yet
attached to the target process.
150 LynxOS Total/db User’s Guide

Deferred Breakpoint Commands

GDB for LynxOS supports deferred breakpoints that allow breakpoint addresses to
remain unresolved. When a deferred breakpoint is set, GDB immediately tries to
set it as a “real” breakpoint: If the breakpoint setting is successful, the breakpoint
will work as a regular breakpoint; if it fails, GDB does not print an error message
but will remember the breakpoint specification by keeping it in the deferred
breakpoint list. When the target process starts or is attached to GDB and a shared
library is detected and loaded, GDB will try to set the deferred breakpoints as real
breakpoints.

Deferred Breakpoint Commands
The following GDB commands are available for supporting deferred breakpoints:

(gdb) dbreak breakpoint_spec

The dbreak command sets a deferred breakpoint. breakpoint_spec is the
specification of the breakpoint to be set; it can be any string that would be accepted
by the “real” break command, including an optional if condition clause. If the
breakpoint is successfully set as a real breakpoint, the breakpoint will work just
like any other regular breakpoints, except that it is also registered in the deferred
breakpoint list; otherwise, breakpoint_spec merely remains registered in the
deferred breakpoint list. An attempt will be made to set the deferred breakpoint as a
real breakpoint when the target process is started or attached by one of the
following commands:

• run

• attach

• target (extended-)remote

If the attempt to convert a deferred breakpoint to a real breakpoint fails, the
deferred breakpoint will remain registered for another attempt in the future and you
will see no error message.

Optionally, you may give the break command an unresolvable breakpoint
specification. If the break command finds it cannot resolve the breakpoint
specification to an address immediately, it will fall into the dbreak command
function after confirmation.

NOTE: The dbreak command does not parse or check the syntax of
breakpoint_spec; it simply passes the whole string to the breakpoint command
executive. So, “failure to set as a real breakpoint” may indicate a syntactical error
in breakpoint_spec.
LynxOS Total/db User’s Guide 151

Chapter 3 - LynxOS GDB Enhancements

(gdb) break dlfunc

Function “dlfunc” not defined. Make deferred? (y or n) y
Deferred breakpoint set for “dlfunc.”

(gdb) ddelete [dbreak_num]

The ddelete command removes a deferred breakpoint from the deferred
breakpoint list. dbreak_num is the deferred breakpoint number shown by the
info dbreak command. If dbreak_num is not given, ddelete will remove all
deferred breakpoints after confirmation. If the deferred breakpoint being removed
is currently set as a real breakpoint, ddelete will prompt for confirmation to
remove the real breakpoint as well.

(gdb) info dbreak [dbreak_num]

The info dbreak command displays the information about the deferred
breakpoint designated by dbreak_num or all deferred breakpoints.

Deferred Breakpoints for Application-Loaded (dlopen’ed)
Shared Libraries
In addition to the above features of deferred breakpoints that are applicable to both
kernel-loaded and application-loaded shared libraries, application-loaded
(dlopen’ed) shared libraries benefit some more from deferred breakpoints.

Automatic Promotion for dlopen
When a new application-loaded (dlopen’ed) shared library is loaded by the target
process and its symbol file is loaded to GDB, GDB will automatically try to set the
“pending” deferred breakpoints as real breakpoints. Those deferred breakpoints
that are successfully converted to real breakpoints are marked “busy,” while other
pending ones will remain pending for later attempts. GDB will not remove the
successfully converted deferred breakpoints from the list; they will remain
registered until explicitly removed by the ddelete command. This is because
those breakpoints may need to be set again when the shared library is closed and
then reopened in the future.

NOTE: The deferred breakpoint list uses separate numbering from “real
breakpoints.” Those two series of breakpoint numbers should not be confused.
152 LynxOS Total/db User’s Guide

Shared Library File Path Names

Automatic Demotion for dlclose
When an application-loaded shared library is last closed and its symbol file is
removed from GDB, GDB automatically removes all breakpoints that were set for
the shared library. These breakpoints include both those that were automatically set
“real” when the shared library was loaded and those that were set manually by the
break command.

It is important to know that a stale breakpoint is deleted but not disabled even if the
breakpoint belonged to an application-loaded shared library that may be reopened
in the future. This is because the breakpoint’s address value is no longer valid and
there is no guarantee that the same address will be used for the given deferred
breakpoint specification when the shared library is reopened. Therefore, the
corresponding real breakpoint number will become invalid as well, and a new
breakpoint number will be assigned when the shared library is reopened.

Shared Library File Path Names

In remote debugging, the debug host and the debug target may not necessarily have
the same directory layout; for example, one may be developing a shared library
foo.so in the debug host’s directory /home/joe/proj1/usr/lib/shlib/,
but the library may be supposed to be loaded by the target process from
/usr/lib/shlib/ on the debug target’s file system. GDB has to resolve this
directory path difference particularly for shared library symbol file loading
because:

• For automatic shared library symbol loading, the shared library file path
names are extracted from the application executable in the target’s
notation (/usr/lib/shlib/foo.so in the above example), while GDB
must load the symbol file from the debug host’s file system (for example:
/home/joe/proj1/usr/lib/shlib/foo.so)

• For manual shared library symbol loading
(add-symbol-file), the shared library file names are given in the
debug host’s notation. GDB has to translate it into the debug target’s
notation in order to obtain the dynamic loading address information from
the target.

In general, it is recommended to have (a subset of) the target’s file system image
under a host file system directory pointed to by the ENV_PREFIX environment
variable, but this may not always be the case. LynxOS GDB handles this shared
library file path resolution issue in the following ways for convenience and
flexibility.
LynxOS Total/db User’s Guide 153

Chapter 3 - LynxOS GDB Enhancements

Automatic Shared Library Symbol File Loading
The .dynamic section of the application’s executable file will contain the shared
library file names and optionally the directory information (on the target’s file
system). GDB uses the _host_shlib_dirs GDB variable and the debug host’s
ENV_PREFIX environment variable to search for the shared library symbol files on
the debug host’s file system.

_host_shlib_dirs is a colon-separated list of host directory names in which
the shared library file is expected to reside. GDB uses these directories to override
the following file name path composition rules. _host_shlib_dirs can be set
by the set command as follows:

(gdb) set _host_shlib_dirs
/home/joe/proj1/usr/lib/shlib:/home/joe/proj1/testlib

The above example implies the shared library symbol files are supposed to be
found in /home/joe/proj1/usr/lib/shlib or
/home/joe/proj1/testlib.

Otherwise if _host_shlib_dirs is not set, GDB will resolve shared library
path names in two stages:

First, GDB emulates ELF’s dynamic section rule:

• If the shared library file path contains at least one / (slash), the path
represents either

- An absolute path in the target’s file system, or

- A relative path to the target’s current directory (currently not
supported);

• If the shared library file path contains no / , use the following
components in order to find the file:

1. DT_RPATH in the .dynamic section

2. The target process’s LD_LIBRARY_PATH environment variable

3. The default directories /lib/shlib and /usr/lib.

If GDB cannot find the library in the preceding steps, GDB will prefix the
composed file path with the ENV_PREFIX environment variable (if it exists). GDB
uses ENV_PREFIX as the “virtual mount point” of the target’s file system on the
debug host. ENV_PREFIX should point to a directory on the debug host’s file
system which contains a duplicate image of the target’s file system.
154 LynxOS Total/db User’s Guide

Automatic Shared Library Symbol File Loading

For example, if the target application uses a shared library foo.so with the
following conditions:

• Host GDB’s _host_shlib_dirs is
/home/joe/proj1/usr/lib/shlib:/home/joe/ \

proj1/testlib

• DT_RPATH is /test/shlib:/prod/shlib

• Target process’s LD_LIBRARY_PATH is /test2/shlib

• Host’s ENV_PREFIX is /usr/lynx/3.1.0/mips

GDB will look for the corresponding symbol file on the debug host in the following
sequence:

1. GDB will first try /home/joe/proj1/usr/lib/shlib/foo.so and
/home/joe/proj1/testlib/foo.so. If one exists and is readable,
GDB will load it.

2. If the above _host_shlib_dirs scheme fails, GDB will try composing
the following file paths using DT_RPATH, LD_LIBRARY_PATH, the
default library paths, and ENV_PREFIX:

- /usr/lynx/3.1.0/mips/test/shlib/foo.so

- /usr/lynx/3.1.0/mips/prod/shlib/foo.so

- /usr/lynx/3.1.0/mips/test2/shlib/foo.so

- /usr/lynx/3.1.0/mips/lib/shlib/foo.so

- /usr/lynx/3.1.0/mips/usr/lib/foo.so

3. If the above still fails, GDB will assume the debug host has the same
directory layout as the target and will try the above file path names
without ENV_PREFIX (/usr/lynx/3.1.0/mips) on the debug host.

Application-Loaded Shared (dlopen’ed) Libraries
The LynxOS dlopen library resolves any application-loaded shared library path
name passed to the library as an argument into a “clean” absolute path beginning
with forward slash (/). Here, “clean” means that the path contains no single-dot (.

CAUTION! Although the ELF specification allows a relative shared
library path name to the application process’s current working directory
and LynxOS kernel-loaded shared library honors this, the current release
of LynxOS GDB does not support this for automatic symbol file loading.
LynxOS Total/db User’s Guide 155

Chapter 3 - LynxOS GDB Enhancements

) and double-dot (..) elements representing the current and parent directories
respectively. GDB will try to locate the corresponding symbol file on the debug
host’s file system in the following sequence (for /prod/shlib/foo.so):

1. If _host_shlib_dirs is set, for all of its members GDB will check if a
file foo.so exists and is readable in the directory. For example, if it is
/home/joe/proj1/usr/lib/shlib:/home/joe\

/proj1/testlib, /home/joe/proj1/usr/lib/shlib/foo.so
and /home/joe/proj1/testlib/foo.so will be checked. If one
exists and is readable, GDB will load it.

2. If the above _host_shlib_dirs scheme fails and if ENV_PREFIX is
set, GDB will try the given file path name prefixed by ENV_PREFIX (for
example: /usr/lynx/3.1.0/mips/prod/shlib/foo.so).

3. If the above still fails, GDB will assume the debug host has the same
directory layout as the target and will try the original file path name
(/prod/shlib/foo.so) on the host’s file system.

Manual Shared Library Symbol Loading/Unloading
(add-symbol-file/delete-symbol-file)
For the add-symbol-file command, GDB accepts a file path name in the
debug host’s notation. GDB will use the exact given file path name for loading
the file. For the platforms that support dynamic shared library loading, GDB will
ask the target about the library’s run-time loading address with the following rule:

• If the given shared library file path name is an absolute path name (starts
with /) and it starts with the ENV_PREFIX directory path name, GDB
will use the path name with the ENV_PREFIX component stripped off for
the inquiry.

• If the given address is an absolute path name but does not start with the
ENV_PREFIX directory name, GDB assumes that the host and the target
have the same directory layout and uses the original absolute path name
for the inquiry.

• If the given address is a relative path name (does not start
with /), GDB will use only the file name portion (last element of the path
name) for the inquiry implying “this file name in any directory.”

NOTE: Path names are compared literally: GDB will not resolve traverses in the
directory hierarchy with the current and parent directory notations (“.” and “..”).
For example, /usr/./abc and /usr/abc will not match.
156 LynxOS Total/db User’s Guide

Symbol Table

If any of the above inquiries fails, GDB considers that the shared library does not
have a dynamic loading address, but is loaded statically: That is, the loading
address is 0 (zero).

For each manually loaded shared library file, GDB displays a message like the
following:

(gdb) add-symbol-file ./file.so 0
add symbol table from file “./file.so” at text_addr = 0x0
(y or n) y
Loading symbols for ./file.so with address offset 0x12345678...

If the target platform supports dynamic loading of shared libraries and the “address
offset” is zero (0), it usually means GDB failed to determine the loading address.
Check the file path for add-symbol-file.

Symbol Table

GDB loads and unloads symbol information by the symbol file, but it looks up the
symbol table for a symbol entry by using the source file name. If two shared
libraries have been built using the same source file or source files with the same
name containing the same function name, and if those shared libraries are loaded at
the same time, only one of the multiple functions (with the same name) is visible to
GDB.

For example, if shared libraries x.so and y.so were built from a.c and b.c,
and b.c and c.c respectively, a reference to function foo in b.c (b.c:foo)
would find only one of the two functions, although there are two copies of function
foo at different addresses. GDB currently has no way to specify the shared library
file name for a symbol lookup.

Single-Stepping into a Shared Library Function

Because of the symbol scope sensitivity, the step command for a shared library
function call may unexpectedly act like the next command; execution does not
stop at the entry of the shared library function but it stops after returning the
function call. This happens if the function belongs to a different symbol scope
(another shared library) from the current one. To step into the function with
stopping, set a breakpoint at the function before executing the step command.
LynxOS Total/db User’s Guide 157

Chapter 3 - LynxOS GDB Enhancements

Summary of Additional Commands for Shared Library
Support

Refer to “Debugging with GDB” on page 11. for commands other than those listed
below:

• dbreak breakpoint_spec

Sets a deferred breakpoint

• ddelete [dbreakpoint_num]

Deletes deferred breakpoints

• info dbreak [dbreakpoint_num]

Displays deferred breakpoints

• add-symbol-file hostfile_name 0

Loads an additional symbol file manually

• delete-symbol-file hostfile_name

Unloads a manually loaded symbol file

• info symbol-file

Displays symbol files currently loaded in GDB

• info sharedlibraries

Displays a list of shared libraries loaded to the target. This is useful only
if the target process has loaded any application-loaded (dlopen’ed)
shared library.

Debugging Kernel/Device Drivers

GDB can be used to debug LynxOS custom device drivers. Although GDB can be
used as a tool for porting the LynxOS kernel to a new platform, it may not be very
useful because LynxOS GDB kernel debugging requires a fairly stable LynxOS
target kernel to operate.

Requirements

To use LynxOS GDB for kernel debug purposes, the following items are required:

• Target LynxOS with SKDB (Simple Kernel Debugger) installed

• LynxOS GDB host computer
158 LynxOS Total/db User’s Guide

Building a Kernel for Debug Purposes

• A serial line connection between the LynxOS target and the LynxOS

GDB host or proxy server. For more details, see “Proxy Server” on
page 165.

Building a Kernel for Debug Purposes

To build a LynxOS kernel for debug purposes at the source level, compile the
device driver (or whatever code that will be debugged at the source level) with the
-g option. Edit your Makefile to include the -g option for compiling (the
linker does not need -g).

LynuxWorks includes a second set of kernel libraries to help debug the kernel even
more. These libraries include not only the symbols necessary for linking, but also
the full debug information. By linking the kernel image with these libraries, even
though the LynxOS kernel source code may not be available, one can browse some
useful source level information such as calling parameters in a function call chain
(stack trace).

To build a kernel image with libraries that can be debugged fully, run the make
utility in sys/lynx.os with SYS_DEBUG=true:

myhost$> make SYS_DEBUG=true a.out

The use of the libraries with full debug information, however, increases the size of
the resulting kernel image (fat image) as well as the run time memory requirement,
typically by several mega bytes. If the target’s memory is tight, it is possible to
strip the debug information off the fat image being loaded into the target, while still
using the fat image for referencing debug information by GDB on the host.

Debugging the Kernel

Virtually all the normal GDB features are available for kernel debugging purposes:

• Source level variable examination

• Source level singlestepping

NOTE: A stripped kernel is not capable of dynamically loading device drivers
because it requires resolution of kernel symbols.To use dynamically loaded device
drivers on a system where the target’s memory is tight, use the traditional kernel
libraries. (Without SYS_DEBUG=true, you can still include full debug information
for a specific device driver incurring a small to moderate increase of memory
requirement.)
LynxOS Total/db User’s Guide 159

Chapter 3 - LynxOS GDB Enhancements

• Call stack chain examination

• Thread support.

One big difference is that kernel debugging must always be performed in the form
of remote debugging. A separate host computer to run LynxOS GDB on is required
to debug the LynxOS target kernel. There is no self or local kernel debugging.

Another difference is that it is impossible to start and terminate the target
kernel; GDB always interrupts a kernel that is already running to start a debug
session and releases it to finish the session. This is similar to attach and detach
in user process debugging. To start and finish debug sessions, see “Starting Kernel
Debugging” on page 161 and “Finishing Kernel Debugging” on page 163.

Simple Kernel Debugger—SKDB
LynxOS GDB on the debug host actually talks to SKDB, which is embedded in the
kernel of the target with a special protocol. SKDB works as an agent and performs
the following basic operations to requests made by GDB:

• Memory read

• Memory write

• Register examination

• Execution resumption

• Single-stepping.

Therefore, the target must have SKDB installed.

To build a LynxOS kernel with SKDB installed, use the Install.skdb utility
script with the optional SYS_DEBUG=true flag as follows:

mytarget$> Install.skdb SYS_DEBUG=true

For more detailed information on SKDB, see Chapter 5, “Simple Kernel Debugger
- SKDB”.

CAUTION! Since kernel debugging must stop the entire operating system,
the operating system will not respond when the kernel is at a breakpoint or
is stopped by the debugger. In some circumstances, even though one lets
the system “go,” the system may respond considerably slower or have no
response at all because the debugger internally keeps single-stepping the
kernel.
160 LynxOS Total/db User’s Guide

Threads vs. Processes

Threads vs. Processes
In a kernel debugging session, GDB is virtually unaware of processes at all.
Though it still reports the current process ID, every thread running on the target is
visible to GDB, unlike user process debugging in which only the target process’s
threads are visible. Therefore, a non-thread-specific breakpoint can be hit by any
thread of any process on the target, including kernel threads. The info thread
command may display a long list of threads.

Setting Up Serial Ports
Though it is possible to share the target serial port for both regular terminal use and
kernel debugging, a dedicated serial port for kernel debugging is strongly
recommended for reliable communication. The target serial port must have
matching parameters with the host’s, such as bit rate speed and parity bit. These
parameters are usually configured with the target’s ttyinfo.c file, but you can
override the default values with the
stty command on the target. To change the communication speed of GDB, use
the set remotebaud command.

Starting Kernel Debugging
To start a kernel debug session, use the target command with the target of
skdb and an appropriate protocol (serial port or sspp proxy).

(gdb) target skdb /dev/ttya

Kernel debugging using /dev/ttya
Kernel supports MTD ptrace requests.
0xdb006068 in null_loop () at main.c:224
main.c:224: No such file or directory.

(gdb)

Once communication is established, GDB interrupts the target’s kernel and reports
the location where the kernel was interrupted, usually in the null process. In the

NOTE: For SKDB to accept a “break-in” by GDB, the serial port must have been
opened by a process. This may be done by starting a login process on the port by
editing /etc/ttys or by running such a program as cat on the port. No user can
actually log in at the port because the port is connected to the debug host. Also, the
cat process should not output to the port. Keep the port open but quiet.
LynxOS Total/db User’s Guide 161

Chapter 3 - LynxOS GDB Enhancements

above example, an error message was displayed because GDB could not find the
source file main.c in its default source file search path while the null process
module was compiled with full debug information. If the source code file(s) are
available, use the dir command to add the appropriate directory to the search
path list.

If GDB returns with the following message:
communication not established

or, alternatively:
communication error

try the target command again. If the error persists, it may be due to wrong
communication parameters or wrong target configuration such as missing SKDB
or a wrong port.

Now set breakpoints at desired kernel locations and use the continue command
to resume the kernel. Once the kernel hits a breakpoint and stops, it is possible to
examine variables and the call stack chain, single-step, continue, and so forth as
one would do for user process debugging.

Interrupting the Kernel
To interrupt a running kernel, press Ctrl+C at GDB, while it is waiting for the target
to stop as one would do for user process debugging. LynxOS GDB sends the break-
in character to stop the target kernel.

Single-Stepping the Kernel
The step and stepi command single-step the current thread in the kernel.
Unlike user process debugging, however, only the current thread can be single-

CAUTION! Although kernel mode debugging is powerful and GDB lets
the user manipulate any and all memory contents in the target system, not
only those in the kernel space but also those in user process spaces, it is
not advisable to set breakpoints in the user process space (user program).

The LynxOS kernel handles kernel-mode breakpoints completely
different from user-mode breakpoints; a user-mode breakpoint set by
kernel debugger (GDB) will not be captured by GDB running in kernel
debug mode, and thus it will cause an unexpected termination of the
process.
162 LynxOS Total/db User’s Guide

Finishing Kernel Debugging

stepped; the thread command has no effect on single-stepping (you cannot
change the current thread for singlestepping).

Finishing Kernel Debugging
To finish a debug session and to let the target kernel resume freely, kill the target
at the GDB prompt or quit GDB. Despite the command name, the target’s kernel is
not killed, but is resumed freely.

(gdb) kill

Kill the program being debugged? (y or n) y
Kernel is resumed. None is actually “killed.”

(gdb)

Loading Device Drivers Dynamically

Device drivers can be dynamically loaded into memory at run-time, instead of
build-time, while the system is up and running. Device drivers can be also removed

CAUTION! It is not recommended to attempt to trace (setting breakpoints
in and/or single-stepping) the “core” portions of the LynxOS kernel, such
as those handling context switching and interrupt control, because such an
attempt may severely interfere with the LynxOS kernel operation.
Also, those instructions that manipulate the processor’s status register
cannot be safely single-stepped. Though LynxOS GDB detects, warns
about, and prevents such an attempt, casual tracing of such critical code
may result in an unexpected system freeze.

CAUTION! If a kernel debugging session is accidentally terminated due to
a communication error or some other unexpected reason, GDB may not
have had a chance to remove breakpoints before the termination. If this
happens and a new kernel debug session is started, the kernel may be
trapped at a breakpoint forever until the original instruction at the
breakpoint location is restored by hand with a command like print or
until the kernel is reloaded (restarted). GDB currently provides no
convenient way to restore the original instructions.To reload the kernel
and restart LynxOS, use the R SKDB command. (“Raw SKDB
Commands” on page 164.) or reset the target’s hardware with the reset
switch or a power-cycle.
LynxOS Total/db User’s Guide 163

Chapter 3 - LynxOS GDB Enhancements

from memory and reloaded later. This facility is very convenient for device driver
development.

To load a device driver dynamically, use the drinstall LynxOS command with
the device driver’s *.o file. To add symbol information for a dynamically loaded
device driver, use the add-symbol-file GDB command with the driver’s *.o
file name and its loading address as reported by the drinstall or drivers
LynxOS command.

mytarget$> drinstall -c drivers/mydriver.o
drivers/mydriver.o 0xb2000300

(gdb) add-symbol-file mytarget/drivers/mydriver.o
0xb2000300

Raw SKDB Commands

GDB is a generic debugger. It knows little about the LynxOS kernel. To explore the
LynxOS kernel in more detail, such as the process table, thread structures, and so
on, you can pass a raw SKDB command from LynxOS GDB using the skdb
command followed by the desired SKDB command string.

(gdb) skdb p 20

pid ppid prio pgroup signals mask sem state name
 0 0 0 0 0 ffffffff 0 current nullpr
 1 1 16 1 0 0 db168564 waiting /init
 10 1 17 10 0 0 db1228bc waiting /bin/lpd
 11 1 17 11 0 0 db17f758 waiting /bin/login
 12 1 17 12 0 0 db17b9e4 waiting /bin/bash
 13 1 17 13 0 0 db17c674 waiting /bin/login
 14 1 17 14 0 0 db17d304 waiting /bin/login
 15 1 17 15 0 0 db17df94 waiting /bin/login
 16 1 18 16 0 80000 db122abc waiting /bin/syncer
 22 1 17 22 0 0 db1232bc waiting /net/inetd
 24 1 17 24 0 0 db0e9648 waiting /net/unfsio
 27 1 17 27 0 0 db1236bc waiting /net/portmap
 29 1 17 29 0 0 db1238bc waiting /net/mountd
 31 1 17 31 0 0 db123abc waiting /net/nfsd
 33 1 17 33 0 0 db123cbc waiting /net/rpc.statd
 35 1 17 35 0 0 db123ebc waiting /net/rpc.lockd.svc
 37 1 17 37 0 0 db0e93e8 waiting /net/rpc.lockd.clnt
tid pid prio stklen signals mask sem state name
 0 0 0 0 0 ffffffff 0 current nullpr
 1 0 0 1096 0 0 db182314 waiting SIMISR
 2 0 18 4168 0 0 db18d8b0 waiting DECchip
*

(gdb)
164 LynxOS Total/db User’s Guide

Proxy Server

See Chapter 5, “Simple Kernel Debugger—SKDB” for information on the SKDB
command.

Proxy Server

If GDB is set up for remote debugging over a serial line such as RS-232, the serial
line usually limits the physical distance between the target and the host running
GDB. LynxOS GDB extends this distance infinitely by using a proxy server—a
third computer—between the target and the host. The proxy server redirects the
serial line communication to a TCP/IP connection such as a local area network
(LAN) or the Internet. Now you can use GDB from another room, another
building, or even another country to debug the target.

The proxy server program sspp is a simple and small program supplied in the
form of source code so that it can be ported to different platforms. The proxy server
computer is either a dedicated or shared machine running a variant of UNIX
including LynxOS, or it can be a terminal server that multiplexes a number of serial
port connections.

The sspp program is transparent to the target, so it can be used for both user
process debugging (target remote) and device driver/kernel debugging
(target skdb).

To run the sspp proxy server program, the following items are required on the
proxy server computer:

• A serial port connected to the LynxOS target

• TCP/IP connection to the GDB host

• BSD remote shell daemon (rshd)

CAUTION! GDB does not keep track of any operation performed with the
skdb command. For example, if you set a breakpoint with the skdb
command, it would be unknown to GDB but still cause a break, and
therefore the breakpoint would confuse GDB and SKDB. It is generally
not advisable to use raw SKDB commands to alter the target’s state.

It is possible to change the target’s memory contents with a raw SKDB
command (although it is not recommended). When doing so, it is
important to clear GDB’s internal data cache with the set
remotecache command after changing the memory contents.
LynxOS Total/db User’s Guide 165

Chapter 3 - LynxOS GDB Enhancements

• GDB user’s account capable of using rshd.

These should be available on most modern UNIX workstations including LynxOS
workstations.

sspp has been tested on LynxOS 3.1 and SunOS 4.1.x/5.x.

Syntax

The following example starts a user process debugging session (remote) using the
sspp proxy server program (sspp) on the proxy server computer myproxy, whose
serial port /dev/ttya is connected to the LynxOS target:

(gdb) target remote myproxy:sspp /dev/ttya

If the proxy program is not installed in the default search path on the server, pass its
full path name to GDB. To specify the serial port communication speed, use
sspp’s -b option.

The next example shows a device driver/kernel debugging session (skdb) using
the sspp proxy server program loaded at /local/bin/sspp on the proxy server
computer myproxy, whose serial port /dev/com2 is connected to the LynxOS
target at 19,200 bps:

(gdb) target skdb myproxy:/local/bin/sspp -b \
19200 /dev/com2

Installation

sspp comes in source code for easy porting to a variety of platforms. To port
sspp, you need an ANSI-compliant C compiler (gcc preferred).

Compiling sspp.c
The associated Makefile is simple. Give its compile command line the desired
macro definitions in the form of -DMACRO=1:

HAVE_TERMIOS

HAVE_TERMIO

HAVE_SGTTY

Define one and only one of these macros depending on the type of tty support
of the proxy server. Both LynxOS and SunOS use HAVE_TERMIOS.

__Lynx__
166 LynxOS Total/db User’s Guide

Installing sspp

Define this macro if the proxy server runs LynxOS.

NO_LOCKING

Define this macro if no locking of the serial port is required.

LOCKF_DIR=dir

Define this macro to override the default lock file directory
(/var/spool/uucp).

MINICOM

Define this macro if the proxy server has the Minicom terminal server
installed.

Installing sspp
sspp must be installed as a set-uid executable to be able to access the serial port
device file and the lock file. This requires root (super user) privilege. The
Makefile uses the set-uid user of uucp. If your site has a different user ID for
this purpose, change it appropriately.

After installation, try starting sspp from a remote machine for testing. If the
results are similar to the following, the installation was successful:

myhost$> rsh myproxy sspp

501 Usage: sspp [-b bps] [-c host:port] [-n] /dev/ttyname
520 Terminating connection.

myhost$>

When modifying sspp’s source code for a custom environment, it can be
debugged by using double colons when starting a debug session from GDB. The
message transactions and some more useful information are displayed:

(gdb) target remote myproxy::sspp /dev/ttya

The proxy protocol is found in GDB’s source file ser-rsh.c.

Minicom Terminal Server
LynuxWorks uses dedicated terminal servers in its product test area. These
terminal servers run the Minicom terminal server program written by Miquel van
Smoorenburg on LynxOS, and multiplex serial port connections to a number of test
platforms. The Minicom terminal server program is usually installed as the user’s
login shell and thus it is impossible for the user to use remote shell for the sspp
LynxOS Total/db User’s Guide 167

Chapter 3 - LynxOS GDB Enhancements

proxy. The sspp.arb script arbitrates between Minicom and sspp by checking
if a login is interactive (Minicom) or remote (sspp) with a simple time-out
mechanism.

To use this arbitrator script, first edit the script so that the function gominicom
points to a correct path for Minicom. Then install it as the user’s login shell (put the
script’s path into the login shell field of the user’s passwd entry).

General Tips and Miscellaneous Issues

The following sections provide you with general tips and other useful information:

• Reading and writing large memory blocks

• Executing remote shell commands

• Browsing target process’s environment

• Function calls in a multithreaded process

• Function calls after Ctrl+C

• Resuming off a blocking system call

• Debugging a signal-intensive process.

Reading and Writing Large Memory Blocks

The memget and memput commands let you transfer large blocks of memory
contents from and to, respectively, the target process’s address space very
efficiently. Table 3-4 shows the syntax for memget and memput commands.
168 LynxOS Total/db User’s Guide

Browsing Target Process’s Environment
Browsing Target Process’s Environment

The info environment command displays the debug target process’s
environment.

(gdb) info environment PATH

/usr/local/bin:/usr/bin:/bin:.

If the debug target process is not available the info environment command
displays the debugger’s or gdbserver’s environment, depending on the mode of
debugging (local or remote).

Executing Remote Shell Commands

The rshell command lets one execute a shell command on the remote target
machine. It is similar to the BSD rsh (remote shell) command, but rshell works

Table 3-4: Reading and Writing Large Memory Blocks

Syntax Description

memget localfile address

size

localfile is the GDB host’s local file to which the
memory block is transferred.
address is the absolute address in the debugged process’s
address space in either decimal, hexadecimal, or octal (no
symbolic address is allowed).
size is the transferred memory size in number of bytes in
decimal.

memget “>localfile” address

size

Same as the first syntax except that the surrounding
quotation marks are mandatory.

memget “|localcommand args”

address size

Same as the first syntax except that it redirects the memory
bytes to localcommand’s standard input through pipe.
The surrounding quotation marks are mandatory.

memput localfile address

size

Same as the first syntax except that localfile is the GDB
host’s local file from which the memory block is transferred.
size is optional and the default is localfile’s size.

memput “<localfile” address

size

Same as the previous syntax. size is optional and the
default is localfile’s size. The surrounding quotation
marks are mandatory.
LynxOS Total/db User’s Guide 169

Chapter 3 - LynxOS GDB Enhancements

even over a serial connection without TCP/IP. Therefore, it is useful for browsing
the embedded target’s directories, processes, and so forth.

(gdb) rshell ls -lF

total 80
-rw-r--r-- 1 joe 34268 Jan 2 10:45 core
-rw-r--r-- l joe 152 Oct 20 1999 getarc
drwxr-xr-x 8 joe 512 Nov 8 1997 src/

The rshell command handles quotation marks and other shell meta characters
properly if the target has a shell program installed; otherwise, it does not.

In remote debugging, the rshell command becomes effective only after a
connection with the target is established with the target command. If the
rshell command is used before a connection is established or after connection is
lost, it works for the local host because the default target is the local host.

Function Calls in a Multithreaded Process

To manually execute a function call, such as a command line like
“print foo(1)” at the GDB prompt, GDB performs the following:

1. Allocates a block of memory in the current thread’s stack in the target
process (moves the thread’s stack pointer value)

2. Writes a piece of “caller” code that makes a call to the target function
(“foo” in the above example) with necessary argument handling and
ends with a breakpoint instruction in the target’s extended stack area

3. Substitutes the current thread’s program counter value temporarily to the
caller code’s entry address

4. Resumes the target process (including the current thread) and waits for
the target process to stop (hopefully by hitting the breakpoint instruction
in the caller code)

5. After control returns to GDB, restores all the register values of the thread
(the extended stack area is discarded).

It should be noted that if a function is called by hand in a target process that has
more than one thread, not only the current thread but also all other sibling threads

CAUTION! Do not execute an interactive program or a program that reads
the standard input with the rshell command. The standard input of the
remote program is redirected to /dev/null.
170 LynxOS Total/db User’s Guide

Functions Calls after Ctrl+C

in the target process are subject to scheduling, as described in “Resuming Threads”
on page 140. This usage may result in unexpected side effects if some other thread
actually runs while the manual function call is running. To prevent this, raise the
current thread’s priority temporarily as described in “Resuming Threads” on
page 140 provided that the function call does not involve a blocking system call.

Functions Calls after Ctrl+C

If the current thread is in a blocking system call and you type Ctrl+C from GDB to
interrupt the thread, the target process stops and control returns to GDB. If you
then try to call a function in the target program by hand with the print command
or a similar command, GDB appears to be hung and the function will not be
executed.

This is because the target process has to complete the blocking system call before
running the function. The hung function may be interrupted by entering another
Ctrl+C. Then, the continue command resumes the target process to reenter the
system call.

Resuming after a Blocking System Call

If the current thread stops at a system call instruction due to a breakpoint and you
try to resume the application process with the continue command, GDB may
report the following warning:

SIGNONBLOCK, Would deadly block

In this case, GDB regains control without executing the blocking system call. To
resume the process continuously, remove the cause of the blocking.

This is a result of GDB’s internal mechanism to resume a thread from a breakpoint.
When GDB resumes a process that has stopped due to a breakpoint hit by one of its
threads, GDB:

1. Restores the original instruction at the breakpoint location

2. Lets the thread single-step the instruction

3. Reinstalls the breakpoint instruction there

4. Resumes the thread freely, if needed.

In order to ensure an atomic operation, LynxOS GDB uses special single-stepping
which guarantees that only the thread in the process runs while all other sibling
threads in the same target process remain stopped. Otherwise, some other thread in
LynxOS Total/db User’s Guide 171

Chapter 3 - LynxOS GDB Enhancements

the same process may run while the original instruction at the breakpoint location
is restored and that take-over thread may miss the breakpoint.

In this scenario, if the breakpoint were set at a system call instruction that waits for
a resource that is locked by another thread in the same target process (for example,
mutex) the system call would never complete because no other threads in the target
process can run, and thus this would cause a dead lock. The LynxOS kernel
prevents such a dead lock by detecting the situation and breaking the blocking with
a special internal signal (SIGNONBLOCK).

Debugging a Signal-Intensive Process

LynxOS relies on the UNIX/POSIX 1 synchronous signal mechanism for
debugging a process: Any signal to a traced (debugged) process is captured by the
kernel’s process trace code, causing the traced process to stop. The stop is then
reported to the debugger. A breakpoint or single-stepping merely generates and
sends a special signal to the traced process.

Although GDB can be configured with the handle command to pass and not
print a signal when it is sent to the target (traced) process, GDB implements this
signal handling by software: Any signal sent the target process still causes the
process to stop; when GDB detects the target process’s stop, it examines the signal
code that caused the stop; If the signal code is configured to pass, GDB silently
resumes the target process without reporting it to the user.

Obviously, the above processing involves software overhead in both the kernel and
GDB. If the target process is designed to receive signals frequently, its execution
speed may noticeably slow down under a debugger, even though the signals are not
explicitly reported by GDB. Remote debugging makes the situation even worse
because of the additional overhead for the remote communication transaction for
each signal reception.
172 LynxOS Total/db User’s Guide

CHAPTER 4 Debugging with Total/db
Total/db is the LynuxWorks debugger which is based on the GNU GDB debugger
and Insight graphical user interface. LynuxWorks has added many customizations
and enhancements to the standard GDB debugger so that it may be used more
efficiently with the LynxOS operating system. Total/db is capable of remote
debugging of LynxOS kernels and applications as well as multithreaded
debugging.

This chapter discusses the Insight user interface. Cygnus Insight is a graphical user
interface for GDB, the GNUPro Debugger. Insight has the same look and feel on
both Windows and Unix operating systems. Insight offers the ease of a GUI and
access to all the power of the GDB's command-line interface.
LynxOS Total/db User’s Guide 173

Chapter 4 - Debugging with Total/db

Source Window

When Insight first opens, it displays the Source Window (see Figure 4-1).

The Source Window menu bar has the following items: File, Run, View, Control,
Preferences and Help.

Figure 4-1: Source Window
174 LynxOS Total/db User’s Guide

File Menu

File Menu
Figure 4-2 shows the File Menu.

The File Menu options are:

Figure 4-2: File Menu

Open Brings up the Load New Executable dialog box. See “Load New
Executable Dialog Box” on page 189.

Page Setup Brings up the Page Setup dialog box. See “Page Setup Dialog
Box” on page 191. (This option is currently not available on the
Unix version.)

Print Source Brings up the Print dialog box. See “Print Dialog Box” on
page 192. (This option is currently not available on the Unix
version.)

Target Settings Brings up the Target Settings dialog box. See “Target Selection
Dialog Box” on page 192.

Exit Closes the Insight program.
LynxOS Total/db User’s Guide 175

Chapter 4 - Debugging with Total/db

Run Menu
Figure 4-3 shows the Run Menu.

The Run Menu options are:

View Menu
Figure 4-4 shows the View Menu.

Figure 4-3: Run Menu

Download Downloads a program to a board (if connected).

Run Runs the executable program.

Figure 4-4: View Menu
176 LynxOS Total/db User’s Guide

Control Menu

The View Menu options are:

Control Menu
Figure 4-5 shows the Control Menu.

Stack Displays Stack window. See “Stack Window” on page 197.

Registers Displays Registers window. See “Registers Window” on
page 198.

Memory Displays Memory window. See “Memory Window” on page 200.

Watch Expressions Displays Watch Expressions window. See “Watch Expressions
Window” on page 202.

Local Variables Displays Local Variables window. See “Local Variables Window”
on page 205.

Breakpoints Displays Breakpoints window. See “Breakpoints Window” on
page 206.

Console Displays Console window. See “Console Window” on page 209.

Function Browser Opens the Function Browser window. See “The Function
Browser Window” on page 210.

Figure 4-5: Control Menu
LynxOS Total/db User’s Guide 177

Chapter 4 - Debugging with Total/db

The Control Menu options are:

Preferences Menu
Figure 4-6 shows the Preferences Menu.

The Preferences Menu options are:

Step Steps to next executable line of source code. Steps into called
functions.

Next Steps to next executable line of source code in current file. Steps over
called functions.

Finish Finishes execution of the current frame. If clicked while in a function,
it finishes the function and returns to the line that called the function.

Continue Continues execution until a breakpoint, watchpoint or other exception
is encountered; or execution is complete.

Step Asm Inst Steps to next assembler instruction. Steps into subroutines.

Next Asm Inst Steps to next assembler instruction. Executes subroutines and steps to
the subsequent instruction.

Figure 4-6: Preferences Menu

Global Displays Global Preferences dialog box. See “Global Preferences Dialog
Box” on page 195.

Source Displays Source Preferences dialog box. See “Source Preferences Dialog
Box” on page 196.
178 LynxOS Total/db User’s Guide

Help Menu

Help Menu
Figure 4-7 shows the Help Menu.

The Help Menu options are:

Figure 4-7: Help Menu

Help Topics Displays Help window.

Cygnus on the Web Links to the GNUPro Tools web page.

About GDB... Displays About GDBTk window, containing product version
number, copyright and Cygnus contact information for Insight.
LynxOS Total/db User’s Guide 179

Chapter 4 - Debugging with Total/db

Toolbar Buttons

The toolbar provides quick access to various debugger functions. Table 4-1 list the
toolbar buttons.

Table 4-1: Toolbar Buttons

Icon Name Description

Run Runs the executable. During execution the
button turns into the Stop button. If you
click on the Run button with no executable
loaded, you invoke the Target Selection
dialog box. See “Target Selection Dialog
Box” on page 192.

Stop Interrupts the program, provided that the
underlying hardware and protocol support
this functionality. Many monitors that are
connected to boards cannot interrupt
programs on those boards. In this case, the
Stop button has no functionality.

Step Steps to next executable line of source
code. Steps into called functions.

Next Steps to next executable line of source
code in the current file. Steps over called
functions.

Finish Finishes execution of the current frame.

If clicked while in a function, it finishes
the function and returns to the line that
called the function.

Continue Continues execution until a breakpoint,
watchpoint or other exception is
encountered; or execution is complete.

Step
Assembler
Instruction

Invokes step assembler instruction. Steps
into subroutines.
180 LynxOS Total/db User’s Guide

Toolbar Buttons

Next
Assembler
Instruction

Steps to next assembler instruction.
Executes subroutines and steps to the
following instruction.

Register The Registers button brings up the
Registers window. See “Registers
Window” on page 198

Memory The Memory button brings up the Memory
window. See “Memory Window” on
page 200.

Stack The Stack button brings up the Stack
window. See “Stack Window” on
page 197.

Watch
Expressions

The Watch Expressions button brings up the
Watch Expressions window. See “Watch
Expressions Window” on page 202.

Local
Variables

The Local Variables button brings up the
Local Variables window. See “Local
Variables Window” on page 205.

Breakpoints The Breakpoints button brings up the
Breakpoints window. See “Breakpoints
Window” on page 206.

Console The Console button brings up the Console
window. See “Console Window” on
page 209.

Table 4-1: Toolbar Buttons (Continued)

Icon Name Description
LynxOS Total/db User’s Guide 181

Chapter 4 - Debugging with Total/db
Special Display Pane Features

• When the executable is running, the location of the current program
counter is displayed as a line with a green background.

• When the executable has finished running, the background color changes
to violet (browsing mode).

• When looking at a stack backtrace, the background color changes to
golden yellow.

Using the Mouse in the Display Pane

There are various uses of the mouse within the main display pane of the Source
Window. The display pane is divided into two columns (see Figure 4-8). The left
column extends from the left edge of the display pane to the last character of the
line number. The right column extends from the last character of the line number to

Line Address
&
Line Number
Display

The left side displays the program counter
of the current frame, while the program is
running.

The right side displays the line number,
which contains the program counter, while
the program is running.

Down
Stackframe

Moves down the stack frame one level.

Up
Stackframe

Moves up the stack frame one level.

 Go to Bottom
of Stack

Moves to the bottom of the stack frame.

Table 4-1: Toolbar Buttons (Continued)

Icon Name Description
182 LynxOS Total/db User’s Guide

Right Display Column

the right edge of the display pane. Within each column, the mouse has a different
set of effects.

Right Display Column
• By holding the cursor over a global or local variable, the current value of

that variable is displayed.

• By holding the cursor over a pointer to a structure or class, the type of
structure or class is displayed and the address of the structure or class is
displayed.

• By double clicking an expression, it is selected.

• By right clicking while an expression is selected, a pop-up menu appears
(see Figure 4-9). The selected expression appears in both menu
selections.

Figure 4-8: Using the Mouse in the Window

Figure 4-9: Pop-up Window for Expressions
LynxOS Total/db User’s Guide 183

Chapter 4 - Debugging with Total/db

The pop-up menu options are:

Left Display Column
When the cursor is in the left column and it is over an executable line (marked on
the far left by a minus sign), it changes into a circle. When the cursor is in this
state, events have the following results:

• A left click sets a breakpoint at the current line. The breakpoint appears
as a red square in place of the minus sign.

• A left click on any existing breakpoint or temporary breakpoint removes
that breakpoint.

• A right click brings up another pop-up menu (see Figure 4-10) for setting
breakpoints.

The pop-up menu options are:

The Add var to

Watch

Brings up the Watch Expressions Window and adds a variable
expression (the lis variable, in this instance) to the list of
expressions in the window. See “Watch Expressions Window”
on page 202.

Dump Memory at

var
Brings up the Memory Window, which displays a memory
dump at an expression, in this instance, the lis expression. See
“Memory Window” on page 200.

Figure 4-10: Pop-up Menu for Setting Breakpoints

Continue to Here This causes the program to run up to this location, ignoring any
breakpoints. Like the temporary breakpoint, this menu selection is
displayed as an orange square. This selection disables all other
breakpoints. When a breakpoint has been disabled, it turns from red
or orange to black.
184 LynxOS Total/db User’s Guide

Left Display Column
.

Figure 4-11 shows the pop-up menu for deleting breakpoints.

The menu options are:

NOTE: The debugger might be expected to execute to a given location, stopping at
all encountered breakpoints. This menu item currently forces execution to this
location without stopping at any encountered breakpoints

Set Breakpoint This sets a breakpoint on the current executable line. This has the
same action as left clicking on the minus sign.

Set Temporary

Breakpoint

This sets a temporary breakpoint on the current executable line. A
temporary breakpoint is displayed as an orange square. The
temporary breakpoint is automatically removed when it is hit.

Figure 4-11: Pop-up Menu for Deleting Breakpoints

Delete Breakpoint This deletes the breakpoint on the current executable line. This has
the same action as left clicking on the red square.

Continue to Here This causes the program to run up to this location, ignoring any
breakpoints. Like the temporary breakpoint, this menu selection is
displayed as an orange square. This selection disables all other
breakpoints. When a breakpoint has been disabled, it turns from
red or orange to black.
LynxOS Total/db User’s Guide 185

Chapter 4 - Debugging with Total/db

Below the Horizontal Scroll bar

There are four display and selection fields below the horizontal scroll bar: the
status text box, the drop-down list box, the function drop-down combo box and the
code display drop-down list box.

Status Text Box
At the top of horizontal scroll bar, a text box displays the current status of the
debugger (in the status box for the window depicted in Figure 4-12: Status text
box, the message reads "Program stopped at line 19" as current status for the
example program.)

Function List and Combo Boxes
Figure 4-13 shows the drop-down list box. The drop-down list box displays all the
source (.c) and header (.h) files associated with the executable. Files may be
selected by clicking in the list box, or by typing into the text field above the list.
The drop-down list box displays all the functions in the currently selected source or
header file. A function may be selected by clicking in the list box, or by typing into
the text field above.

Figure 4-12: Status Text Box
186 LynxOS Total/db User’s Guide

Code Display List Box
For the function drop-down combo box, the main.c file only contains the one
‘main’ function. Figure 4-14 function drop-down combo box.

Code Display List Box
Figure 4-15 shows the code display drop-down list box.

Figure 4-13: Drop-down List Box

Figure 4-14: Function Drop-down Combo Box

Figure 4-15: Code Display Drop-down List Box
LynxOS Total/db User’s Guide 187

Chapter 4 - Debugging with Total/db

Use the code display drop-down list to select how the code in the Source Window is
displayed. The options are:

Search Text Box
Figure 4-16 shows the search text box. By typing into the search text box and
pressing Enter, a forward search is done on the source file for the first instance of
the character string entered. By pressing the Shift and Enter keys simultaneously, a
backward search is performed. Repeatedly hitting Enter or the Shift and Enter keys
simultaneously, repeats the search forward or backward in the search window.

If you type "@" in the search text box and a number, the source display jumps to
the line of the number specified. For instance, after having specified "@" and "6"
in the search text box, the example program shows a jump to line 6 in the search
text dialog box (see Figure 4-17).

SOURCE The source code is displayed in the Source Window.

ASSEMBLY The assembly code is displayed in the Source Window.

MIXED The source code and the assembly code are both displayed, interspersed
in the Source Window.

SRC+ASM The source code and the assembly code are both displayed in a double
paned window. The source code is displayed in the Source Window
and, in a pane below the source code pane, the assembly code is
displayed.

Figure 4-16: Search Text Box
188 LynxOS Total/db User’s Guide

Dialog boxes for the Source Window
Dialog boxes for the Source Window

The section describes the Source Window dialog boxes.

Load New Executable Dialog Box
The Load New Executable dialog box (see Figure 4-18) is invoked by clicking Open
from in the File Menu. This dialog box allows you to navigate through directories
and select an executable file to be opened in the Source Window.

Figure 4-17: Using the Search Text Dialog Box
LynxOS Total/db User’s Guide 189

Chapter 4 - Debugging with Total/db
Figure 4-18: Load New Executable Dialog Box
190 LynxOS Total/db User’s Guide

Page Setup Dialog Box

Page Setup Dialog Box
The Page Setup dialog box (see Figure 4-19) is invoked by clicking Page Setup
from the File Menu. This dialog box allows you to make page layout selections
before printing a source file.

Figure 4-19: Page Setup Dialog Box
LynxOS Total/db User’s Guide 191

Chapter 4 - Debugging with Total/db

Print Dialog Box
The Print dialog box (see Figure 4-20) is invoked by clicking Print Source from the
File Menu. This dialog box allows you to select a printer and make other print
specific selections, before printing a source file.

Target Selection Dialog Box
The Target Selection dialog box (see Figure 4-21) is invoked by clicking Target
Settings from the File Menu. This dialog box allows you to select the target you
wish to run the executable on, and make other run specific selections.

Figure 4-20: Print Dialog Box

Figure 4-21: Target Selection Dialog Box
192 LynxOS Total/db User’s Guide

Target Selection Dialog Box

The basic set of options include:

Connection The Connection group contains the target drop-down list box for
target selection and two other fields for setting target-specific
parameters.

Target The contents of this list box depends upon the specific GDB
debugger configuration you have received. For a native
configuration, the list contains Exec (for native execution),
Remote/Serial (serial connection to a remote target) and
Remote/TCP (TCP connection to a remote target).
If GDB has been configured to include a specific hardware
simulator, the target Exec will be replaced by target sim. The
names of specific hardware targets may also be included in the
list, with serial, TCP or both methods of connection, depending
upon the hardware.

Baud Rate/

Hostname

When a serial connection to a remote target is selected the baud
rate may be set. When a TCP connection to a remote target is
selected, this list box turns into a text edit field, renamed
Hostname, allowing for specifying of a host name.

Port For both serial and TCP connections to remote targets, the port
must be designated. For serial connections, port specifies the
serial port on the host machine. For TCP connections, port
specifies the port number on the remote target.

Run until 'main' Set a breakpoint at main and run until that breakpoint is reached.
This is checked by default.

Set breakpoint at

'exit'

Set a breakpoint at the call to the 'exit' routine. This is checked by
default.

Display Download

Dialog

In addition to using the status-bar, display more extensive
download status information in a dialog box. This is particularly
useful when doing a serial download to a remote target. This is
unchecked by default.
LynxOS Total/db User’s Guide 193

Chapter 4 - Debugging with Total/db

More Options /Fewer Options
The More Options/Fewer Options selection of the Target Selection dialog box toggles
to display or hide the Run Options at the bottom of the dialog box (see Figure 4-22).

The four check boxes in the Run Options group set-up the actions taken, when the
Run button is clicked. The run options include:

Figure 4-22: Run Options

Attach to Target Connects to a remote target.

Download Program Downloads an executable to a remote target.

Run Program Begins execution of an executable.

Continue from Last Stop Continues execution from wherever the executable, on a
remote target, left off.
194 LynxOS Total/db User’s Guide

Global Preferences Dialog Box

Global Preferences Dialog Box
The Global Preferences dialog box (see Figure 4-23) is invoked by clicking Global
from the Preferences Menu. This dialog box allows you to select the font and the
type size for displaying text.

This Icons drop-down list box allows for choosing between the default Windows
style icon set and the basic icon set. These icon sets are shown in Figure 4-24 and
Figure 4-25.

Figure 4-23: Global Preferences Dialog Box

Figure 4-24: Windows-style Icon Set

Figure 4-25: Basic Icon Set
LynxOS Total/db User’s Guide 195

Chapter 4 - Debugging with Total/db

The Fonts group allows for custom selection of font family and size. The options
include:

Source Preferences Dialog Box
The Source Preferences dialog box (see Figure 4-26) is invoked by clicking Source
from the Preferences Menu.

The source preferences options are:

Fixed Font This drop-down list box allows you to select the font for the source
code display panes.

Default Font This drop-down list box allows you to select the font for use in list
boxes, buttons and other controls.

Statusbar Font This drop-down list box allows you to select the font for the status bar.

Figure 4-26: Source Preferences Dialog Box

Colors Single left-clicking any of the colored squares opens the Choose
color dialog box. The Choose color dialog box allows the display
colors to be modified by the user.
196 LynxOS Total/db User’s Guide

Stack Window
Stack Window

The Stack window (see Figure 4-27) displays the current state of the call stack.
Each line represents a stack frame.

Clicking a frame selects that frame, indicated by the background of the frame
turning yellow. The Source Window automatically updates to display the line,
corresponding to the selected frame. If the frame points to an assembly instruction,
the Source Window changes to display assembly code. The background of the
corresponding line in the Source Window also changes to yellow.

Debug Mode Unless GDB has been configured to enable the setting of trace
points, this radio button has no effect.

Variable Balloons If Variable Balloons is on, a balloon appears displaying the value
of a variable when the mouse is placed over the variable in the
Source Window. The default setting is On.

Figure 4-27: Stack Window
LynxOS Total/db User’s Guide 197

Chapter 4 - Debugging with Total/db

Registers Window

The Registers window (see Figure 4-28) dynamically displays the registers and
their content.

A double click on a register allows the content of the register to be edited. Hitting
the escape key (Esc) will abort the editing.

Changing register properties is handled by way of the Register menu (see
Figure 4-29).

Figure 4-28: Registers Window

Figure 4-29: Register Menu
198 LynxOS Total/db User’s Guide

Registers Window

The Register menu options are:

Edit This menu item has the same effect as double clicking a register. The
content of the selected register may be changed. This menu item is only
active when a register has been selected.

Format This menu item calls another pop-up menu, as shown below, allowing
the content of the selected register to be displayed in hexadecimal,
decimal, natural, binary, octal, and raw formats. Hexadecimal (Hex)
is the default display format.

Remove from

Display

This menu item removes the selected register from the window. All
registers are displayed if the window is closed and reopened. This
menu item is only active when a register has been selected.

Display All

Registers

This menu item displays all the registers. This menu item is only active
when one or more registers have been removed from display.
LynxOS Total/db User’s Guide 199

Chapter 4 - Debugging with Total/db

Memory Window

The Memory window (see Figure 4-30) dynamically displays the state of memory.

A memory location can be selected by double clicking the left mouse button with
the cursor in the window. The contents of a selected memory location can be
edited.

The Addresses menu is shown in Figure 4-31.

Figure 4-30: Memory Window

Figure 4-31: Address Menu
200 LynxOS Total/db User’s Guide

Memory Preferences Dialog Box

The Addresses menu options are:

Memory Preferences Dialog Box

The Memory Preferences dialog box (see Figure 4-32) makes it possible to set
memory options.

The memory preference options are:

Auto Update The contents of the Memory window are automatically updated
whenever the state of target changes. This is the default setting.

Update Now Forces the immediate update of the Memory window's view of the
target's memory.

Preferences This menu item brings up the Memory Preferences dialog box.

Figure 4-32: Memory Preferences Dialog Box

Size Selection of the size of the individual cells displayed.

Format Selection of the format of the memory display.
LynxOS Total/db User’s Guide 201

Chapter 4 - Debugging with Total/db
Watch Expressions Window

The Watch Expressions window (see Figure 4-33) displays the name and current
value of user-specified expressions.

• Single clicking on an expression selects that expression.

Number of Bytes Sets the number of bytes displayed in the Memory window.

Bytes Per Row Sets the number of bytes displayed per row.

Display ASCII Choose to display a string representation of the memory.

Control Char Choose the character used to display non-ASCII characters. The
default character is the period.

Figure 4-33: Watch Expressions Window
202 LynxOS Total/db User’s Guide

Watch Expressions Window

• Right clicking in the display pane, while an expression is selected, calls

an expression specific Watch menu, as shown in Figure 4-34.

The Watch Expressions menu options are:

Figure 4-34: Expression Specific Watch Menu

Edit Allows the value in the expression to be edited. Hitting the escape key
(Esc) will abort the editing.

Format This menu item brings up another pop-up menu, as shown below, allowing
the value of the selected expression to be displayed in hexadecimal,
decimal, binary, or octal formats. By default, pointers are displayed in
hexadecimal and all other expressions are displayed as decimal.

Remove Removes the selected expression from the watch list.
LynxOS Total/db User’s Guide 203

Chapter 4 - Debugging with Total/db

Add Watch Button

An expression can be typed into the text edit field at the bottom of the dialog box,
as shown in the left screen of Figure 4-35. By pressing the Add Watch button or
hitting the Enter key, the expression is added to the list, as shown in the right screen
of Figure 4-35. Invalid expressions are ignored.

Watching Registers

GDB allows registers to be added to the Watch Expressions window, by typing
register convenience variables into the text edit field. Every register has a
corresponding convenience variable. The register convenience variables consist of
a dollar sign followed by the register name. The convenience variable for the
program counter is $pc, for example. The convenience variable for the frame
pointer is $fp.

Casting Pointers in the Watch Expressions Window

Pointer values may be cast to other types and watched, represented as the type to
which the pointer was cast. For example, by typing (struct _foo *) bar in the
text edit field, the bar pointer is cast as a struct _foo pointer.

Figure 4-35: Add Watch Button
204 LynxOS Total/db User’s Guide

Local Variables Window

Local Variables Window

The Local Variables window displays the current value of all local variables (see
Figure 4-36).

• Single clicking the mouse with the cursor over a variable selects the
variable.

• Double clicking the mouse with the cursor in the Local Variables window
puts the variable into edit mode.

• Single clicking the mouse with the cursor on the plus sign to the left of a
structure variable displays the elements of that structure. See Figure 4-37.

Figure 4-36: Local Variables Window

Figure 4-37: Displaying the Elements of a Variable Structure
LynxOS Total/db User’s Guide 205

Chapter 4 - Debugging with Total/db

• Single clicking the mouse with the cursor on the minus sign to the left of

an open structure closes the display of the structure elements.

Variable Menu
The Variable menu of the Local Variables window has two options: Edit and Format.

Breakpoints Window

The Breakpoints window displays all breakpoints that are currently set (see
Figure 4-38).

Edit Allows the value of a selected variable to be edited. Hitting the escape key
(Esc) will abort the editing.

Format This menu item brings up another pop-up menu, as shown below, allowing
the value of the selected variable to be displayed in the hexadecimal,
decimal, binary and octal formats By default, pointers are displayed in
hexadecimal and all other expressions are displayed as decimal.

Figure 4-38: Breakpoints Window
206 LynxOS Total/db User’s Guide

Breakpoint Menu

• Single clicking with the mouse with the cursor over a check-box for the

information displayed for a breakpoint selects that breakpoint.

• Single clicking with the mouse with the cursor over a checked check box
of a breakpoint disables the breakpoint. The check disappears and the red
square in the Source Window turns black.

• Single clicking with the mouse with the cursor over an empty check box
of a disabled breakpoint re-enables the breakpoint. The check reappears
and the black square in the Source Window turns red.

Breakpoint Menu
Figure 4-39 shows the Breakpoint menu for the Breakpoints window.

The Breakpoint menu options are:

Figure 4-39: Breakpoint Menu

Normal/Temporary This pair of menu items toggles between the normal and
temporary setting of the selected breakpoint. A normal
breakpoint remains valid no matter how many times it is hit. A
temporary breakpoint is removed automatically the first time it is
hit. A single check mark for either setting shows the state of the
selected breakpoint. When a breakpoint is set to temporary, the
red check mark in the check box and the red square in the Source
Window turn orange. (See Figure 4-40.)
LynxOS Total/db User’s Guide 207

Chapter 4 - Debugging with Total/db
Global Menu
Figure 4-41 shows the Global menu for the Breakpoints window.

The Global menu options are:

Figure 4-40: Results of Setting Breakpoints

Enabled/Disabled This pair of menu items toggles the enabled or disabled state of
the selected breakpoint. The single check mark between them
shows the state of the selected breakpoint.

Remove This menu item removes the selected breakpoint.

Figure 4-41: Global Menu

Disable All Disables all breakpoints.

Enable All Enables all breakpoints.

Remove All Removes all breakpoints.
208 LynxOS Total/db User’s Guide

Console Window

Console Window

The Console Window (see Figure 4-42) contains the command prompt for GDB, the
GNUPro debugger, allowing access to the debugger through the command line
interface. (gdb) is the prompt for the debugger.

Figure 4-42: Console Window

NOTE: The Console window is different from the console window for the Windows
operating system (which is known as the Command.com window).
LynxOS Total/db User’s Guide 209

Chapter 4 - Debugging with Total/db

The Function Browser Window

The Function Browser window is invoked by clicking on the Function Browser menu
from the Source Window.

The Function Browser window options are:

Figure 4-43: Function Browser Window

Search for: Text edit field for entering a search expression.

Only show functions

declared 'static'

Limits listing to static functions.

Use regular

expression

Makes search routines use regular expression matching. For
example, searching for my_func, without using regular
expressions, will match my_func_1, not this_is_my_func,
while the regular expression, my_func, matches both
my_func_1 and this_is_my_func regular expressions.

Files Limits the search to the highlighted files. If no files are
highlighted, all files are searched. Clicking individual file names
selects or deselects that file.
210 LynxOS Total/db User’s Guide

The Function Browser Window

Select None/

Select All

Toggles between Select All and Select None, switching
whenever activated, for selecting all files or none. Useful when
searching all files except one or two specific files, or limiting
searches to a small group of individually selected files.

Functions Matches functions in the selected file(s). Right-click on a function
to toggle a breakpoint on it.

Toggle Breakpoint Toggles a breakpoint at all listed functions.

View Source/Hide

Source

Toggles to display or hide a source browser. See Figure 4-44.
LynxOS Total/db User’s Guide 211

Chapter 4 - Debugging with Total/db
Figure 4-44: Source Browser
212 LynxOS Total/db User’s Guide

Help Window

Help Window

The Help window is invoked by clicking the Help Topics menu selection from the
Help menu of the Source Window. The Help window offers HTML based navigable
help by topic.

Figure 4-45: Help Window

NOTE: There is currently no Help topic for the Function Browser window.
LynxOS Total/db User’s Guide 213

Chapter 4 - Debugging with Total/db

Figure 4-46 shows the File menu for the Help window.

Its options are:

Topics Menu
Figure 4-47 shows the Topics menu for the Help window

Figure 4-46: Help Window File Menu

Back Moves back one HTML help page, relative to previous forward page
movements.

Forward Moves forward one HTML help page, relative to previous back page
movement.

Home Returns to the HTML help "Table of Contents" home page.

Close Closes the Help window.

Figure 4-47: Help Topics Menu
214 LynxOS Total/db User’s Guide

Tutorials for Debugging with Insight

Each menu item represents a help topic. When a menu item is selected, the content
of the Help window changes to reflect the listed topic.

Tutorials for Debugging with Insight

The section contains an example debugging session with step by step procedures
for using Insight.

Initializing a Target Executable File

Initializing a target executable file with Insight means opening a specific
executable file.

There are two ways to open an executable file in Insight.

• Using the Open menu item in the File drop-down menu from the Source
Window.

• Using the following initialization procedure, entering commands at the
(gdb) prompt in the Console window.

1. Open the Console window, either from the View menu, or with the Console
button (see “Toolbar Buttons” on page 180.).

2. With the Console window active, determine if the target file is in the same
directory as Insight. If not, change to the target directory, using the cd
command.

In our example procedures, the syntax uses the forward slash as the path
delimiter on all platforms. Windows, though, requires using two forward
slashes after the drive designation.

3. Use the command, file example, to specify the target executable file.

See the following section, “Console Window with Initial Commands” for the
results of these procedures.

NOTE: If the source files are not in the same directory as the executable
file, use the GDB dir command to add a path to them This was not
needed in our example.
LynxOS Total/db User’s Guide 215

Chapter 4 - Debugging with Total/db

Console Window with Initial Commands

Figure 4-48 shows the Console window with initial commands.

Selecting a source file
To select a source file and specify a function within that file, use the following
procedure.

1. Select the foo.c source file in the file drop-down combo box, at the
bottom of the Source Window.

Source file and function selection (see Figure 4-49) represents the lower
left corner of the Source Window, showing the Source Window's File menu
drop-down combo box on the left and the function drop-down combo box

Figure 4-48: Console Window with Initial Commands
216 LynxOS Total/db User’s Guide

Selecting a source file

on the right of the window. (See “Below the Horizontal Scroll bar” on
page 186.)

2. Select the function, foo, in the function drop-down combo box, at the
bottom of the Source Window.

3. Now the foo.c source file is displayed in the Source Window (see
Figure 4-50) with a colored bar, indicating the current position The
colored bar is violet, indicating graphically that the program is not
running.

Figure 4-49: Source File and Function Selection
LynxOS Total/db User’s Guide 217

Chapter 4 - Debugging with Total/db
Setting Breakpoints and Viewing Local Variables

A breakpoint can be set at any executable line. Executable lines are marked by a
minus sign in the left margin of the Source Window. When the cursor is in the left
column and it is over an executable line, it changes into a circle. When the cursor is
in this state, a breakpoint can be set.

The following exercise steps you through setting four breakpoints in a function, as
well as running the program and viewing the changing values in the local variables.

1. With the Source Window active, having opened the foo.c source file,
place the cursor over the minus sign on line 6.

2. When the minus sign changes into a circle, click the left mouse button;
this sets the breakpoint, signified as a red square.

Figure 4-50: Source Window with foo.c Source File
218 LynxOS Total/db User’s Guide

Setting Breakpoints and Viewing Local Variables

Note: A second single click on a breakpoint will remove the breakpoint.

3. Repeat the process to set breakpoints at lines 8, 9 and 10.

4. Open the Breakpoints window (see Figure 4-51) by clicking the
Breakpoints button on the tool bar.

5. Click the check box for line 6. The red check mark disappears and the red
square in the Source Window changes to black. This color change
indicates that the breakpoint has been disabled. Re-enable the breakpoint
at line 6 by clicking the check box.

6. Click the Run button on the tool bar to start the executable (see “Toolbar
Buttons” on page 180). The program runs until it hits the first breakpoint

Figure 4-51: Breakpoints Window
LynxOS Total/db User’s Guide 219

Chapter 4 - Debugging with Total/db

on line 6. The color bar on line 6 is green, indicating that the program is
running (see Figure 4-52 and Figure 4-53).

Figure 4-52: Results of Setting Breakpoints
220 LynxOS Total/db User’s Guide

Setting Breakpoints and Viewing Local Variables
7. Open the Local Variables window, by clicking the Local Variables button in
the tool bar. The window displays the initial values of the variables.

8. Click the Continue button in the tool bar (see “Toolbar Buttons” on
page 180), to move to the next breakpoint. The variables that have
changed value turn blue in the Local Variables window (see Figure 4-54).

9. Click the Continue button two more times, to step through the next two
breakpoints and notice the changing values of the local variables.

Figure 4-53: Breakpoints Window

Figure 4-54: Local Variables Window After Setting Breakpoints
LynxOS Total/db User’s Guide 221

Chapter 4 - Debugging with Total/db
222 LynxOS Total/db User’s Guide

CHAPTER 5 Simple Kernel Debugger - SKDB
Overview

The Simple Kernel Debugger (SKDB) is a machine-level symbolic debugger. This
chapter provides an overview of SKDB, instructions on how to install and remove
it, and how to start it after a kernel crash, and also lists details of SKDB commands.

SKDB is designed to support debugging of LynxOS kernel internals, primarily
device drivers. It allows you to perform the following operations interactively in
LynxOS kernel space:

• Setting breakpoints

• Examining memory and registers

• Changing memory contents

• Displaying kernel data structures.

In addition, you can use SKDB to determine the cause of a kernel crash or a kernel
panic. LynxOS GDB uses SKDB as the target agent for kernel/device driver
debugging.

To use SKDB, the user needs a solid understanding of LynxOS internals, including
its memory model, scheduling, interrupt handling, and so forth. SKDB is not
designed for user process debugging; use GDB for user process debugging instead.

SKDB has the following characteristics by design:

• SKDB is a tool that you use to debug new device drivers and similar
components after the kernel has started and is running fairly stably. It is
not intended to be used for porting the LynxOS kernel to a new platform;
although SKDB may be still useful for LynxOS kernel porting, it requires
a fairly stable kernel and it is not effective in the early stages of the
kernel’s start-up until the kernel internally installs and initializes SKDB.
LynxOS Total/db User’s Guide 223

Chapter 5 - Simple Kernel Debugger - SKDB

• While SKDB is in operation (at its prompt) the entire operating system is

paused and no kernel services are available.

Installing/Removing SKDB

In order to use SKDB, install the SKDB module into the kernel. It is possible
install and/or remove SKDB support after initial installation of LynxOS.

Installing SKDB

To install, execute the following:

/usr/bin/Install.skdb

The installation script will prompt to choose the default SKDB port for SKDB to
use when it starts automatically in case of a kernel crash or a kernel panic. SKDB
uses this port to break in to SKDB with the hot key. The video console, if one
exists, always accepts break-ins with the hot key. For more information about
starting SKDB automatically, see “Using SKDB” on page 224.

After installation, reboot the system to make SKDB effective.

Removing SKDB

To remove SKDB, execute the following:

/usr/bin/Uninstall.skdb

Reboot the target system after removal of SKDB.

Using SKDB

SKDB Prompt

Whenever the operating system is in SKDB, it shows an asterisk (*) as its prompt.
The entire operating system is paused and no kernel services are available while in
SKDB.
224 LynxOS Total/db User’s Guide

Starting SKDB Automatically after a Kernel Crash or Panic

Starting SKDB Automatically after a Kernel Crash or Panic

If installed, SKDB is automatically started by a kernel crash, such as kernel
memory access fault or a panic situation. In this case, the kernel is usually unable
to resume operation, but it is possible to determine the cause and the location of the
kernel fault or the panic. For example, the following commands may be useful for
analyzing the cause:

• p - process/thread table display

• t - stack trace display

• r - register contents display

• m - memory contents display.

Breaking into SKDB with Hot Key

Once SKDB has been installed, it can invoked by pressing Shift-Ctrl-Minus (the
“hot key”) on the keyboard of an SKDB-ready port while the operating system is
up and running. Some keyboards (mostly video consoles) may use Ctrl-Minus
instead.

The default hot key combination for SKDB can be changed by using the z
command within SKDB.

1. At the SKDB prompt, enter the following command:

* z

SKDB will prompt for a new key combination.

2. Press the desired key combination.

SKDB will prompt for the same key combination for confirmation.

3. Press the same key combination again.

4. To cancel the change, press something else.

The hot key combination is set per port, therefore different key combinations can
be set for different ports.

NOTE: To break into SKDB with a hot key from a serial port, the port must have
been explicitly opened by a process. Having a login process or a dummy process
such as cat running on the port will suffice for this.
LynxOS Total/db User’s Guide 225

Chapter 5 - Simple Kernel Debugger - SKDB

The new hot key combination is not preserved across operating system reboots; it
returns to the default combination after each reboot and it needs to be again.

Kernel Status Display

At each invocation, SKBD prints a line like the following:

DELOK:pid.tid@trapcode, slevel, econtext, PSW, PC
checksum

DEL The ASCII Delete character (usually invisible)

OK: The literal string

pid Current process ID

tid Current thread ID

trapcode Trap code; trap code is the same as the architecture’s
exception code with the addition of -1 for invocation from
keyboard and -2 for a panic situation

slevel Last slevel; slevel is the kernel preemption level (0: user,
1: kernel, 2: no context switching, 3: no interrupts)

econtext Econtext address; econtext is the per-thread register stack
into which the kernel saves registers

PSW Processor status word (PSW); called flags or status
register in some architectures

PC Last program counter

checksum String checksum.

For example, breaking into SKDB with the “hot key” would display something
similar to the following:

OK:0.0@-1,1,DB0AB19C,000199A0,00000207 C961

The above is interpreted that the operating system was running the null process
code (process 0) at address 0x207 with context switching enabled when the break-
in occurred.

NOTE: To use SKDB for remote kernel debugging with GDB or TotalView, do not
change the hot key combination on the serial port. These debuggers have the hot
key combination hardcoded.
226 LynxOS Total/db User’s Guide

Kernel Status Redisplay

Kernel Status Redisplay

To redisplay the above information, press Ctrl-B then ? and Return. This option is
currently available on serial terminals only, not on video consoles.

Stack Trace Display

The t command displays a traceback or the “history” of nested function calls of a
thread within the kernel. One can determine the “path” to the current breakpoint,
panic location, or kernel fault location where the kernel entered SKDB. Tracing
stops as soon as the stack frame appears to be out of the valid kernel address range.

Give the t command the process ID to determine the process’s main thread, or the
thread ID with a preceding - (minus sign). The default is the current thread.

Verbose Trace Mode

Turning on the verbose trace mode with the v command makes the
t command display the contents of each stack frame as well as the offset values
from the frame pointer (or the stack pointer in the case of the PowerPC).

Process, Thread, and Other Displays

The p command displays the contents of the kernel’s process table and thread
table. The s command with options displays the contents of a variety of the
kernel’s internal data structures.

Resuming the Kernel

To exit SKDB and resume the operating system, press the Esc key; the kernel will
continue running until the following occurs:

• Hitting a kernel breakpoint

• Being interrupted by a hot key

• Getting a kernel crash or panic.

As discussed, it may not be possible to resume the kernel if the kernel was in
SKDB due to a kernel crash or a kernel panic.
LynxOS Total/db User’s Guide 227

Chapter 5 - Simple Kernel Debugger - SKDB

Setting Breakpoints

SKDB can set up to 10 breakpoints in the kernel including device drivers. When
the CPU reaches the instruction at a breakpoint, the control is trapped into SKDB.
The breakpoints remain set until explicitly unset by the
u command.

SKDB may refuse to set a breakpoint on some instructions that are critical to its
operation. These instructions include those handling the processor status word
(PSW) register.

Single-Stepping

Pressing x and Return single-steps the current thread (the thread that caused to enter
SKDB.) It is not, however, possible to single-step the following:

• The thread “broken-in” with the hot key

• Some machine instructions that are critical for SKDB’s operation
(generally those handling the processor status word (PSW) register)

• A crashed or panicked kernel.

Disassembly

The d command disassembles 10 instructions from the specified address or the
current address. The current address is updated to the next text location after each

CAUTION! Do not set a breakpoint in the user process space from SKDB.
Such a breakpoint will not be recognized by SKDB and thus will cause an
unexpected termination of the user process.

CAUTION! It is not recommended to attempt to trace (setting breakpoints
in and/or single-stepping) the “core” portions of the LynxOS kernel, such
as those handling context switching and interrupt control, because such an
attempt may severely interfere with the LynxOS kernel operation. Also,
the instructions that manipulate the processor’s status register cannot be
safely single-stepped. Though SKDB detects, warns about, and prevents
such an attempt, casual tracing of such critical code may result in an
unexpected system freeze.
228 LynxOS Total/db User’s Guide

Setting Watchpoints

disassembly. The current address is also updated to the breakpoint or the fault
location whenever the kernel stops and reenters SKDB.

Setting Watchpoints

Some CPU architectures support hardware debug registers to implement
watchpoints. The following LynxOS ports support SKDB watchpoints:

• x86 - up to 4 watchpoints

• PowerPC - up to 1 watchpoint

The B command can set as many watchpoints as the target CPU architecture
allows. The B command takes two mandatory arguments—the watchpoint
number and the watchpoint location address—plus the following optional
arguments:

• Access mode - r for read access and w for write access; the default is w

• Ignore PC addresses - up to 10 text addresses after “!” for the program
counter to be ignored for watchpoints hit. This is useful to avoid stopping
at know kernel locations where the watchpoint is accessed.

NOTE: The current x86 version of SKDB uses the Intel-style syntax of
disassembly, not the GNU (AT&T) style.

NOTE: The availability of watchpoint operation for the PowerPC depends on the
type of the CPU.
LynxOS Total/db User’s Guide 229

Chapter 5 - Simple Kernel Debugger - SKDB

For example, if one wants to catch all write accesses to currtptr but does not
want to stop at resched+0x24 which is considered a normal access:

* B 1 currtptr w ! resched+0x24

To remove a watchpoint, use the U command with the watchpoint number.

CAUTION! “Ignore PC addresses” is implemented by software: all
accesses to a watchpoint memory location actually cause CPU exception
handling that is captured by SKDB. SKDB examines the cause of the
exception and the program counter value to determine whether to resume
the kernel silently or to stop and report the hit to the user. This may result
in a significant speed penalty if the watchpoint is frequently accessed but
ignored.

SKDB uses the virtual address for setting the debug register. Depending
on the CPU (MMU) architecture, this may result in watchpoint misses if
the page is aliased (mapped at different address locations) and the alias
addresses are accessed.
230 LynxOS Total/db User’s Guide

SKDB Commands

SKDB Commands

Table 5-1: SKDB Commands

Command Format Example Description

Examine Memory

hex-addr [size] * 0xdb100000 Examines (displays) the 4 or size bytes
at the location of addr

$sym1 [size] * $currpid 10 Examines the 4 or size bytes at the
location of sym

m addr [size] * m currpid 256 Examines size or 64 bytes at addr

T addr [pid] * T 0xdb100000 9 Translates virtual address addr to
physical using pid or current process’
mapping

+ [size] * + Examines the next 32 or size bytes of
memory

- [size] * - 10 Examines the last 32 or size bytes of
memory

Change Memory

c addr data * c 0xdb100000 0x200 Stores data as a long word (4 bytes) at
addr

Find Symbol

f addr * f 0xdb100000 Displays closest symbol with offset to
addr

&sym * &currpid Displays the address of sym

Display Data Structure

s st [addr2|tid] * s st 5 Displays contents of st_entry structure
for thread ID tid, address addr, or
current thread

s proc [addr2|pid] * s proc Displays contents of pentry structure at
address addr, for process ID pid, or
for the current process
LynxOS Total/db User’s Guide 231

Chapter 5 - Simple Kernel Debugger - SKDB

s pss [addr2|pid] * s pss 0xdb100000 Displays contents of pssentry structure

at address addr, for process ID pid,
or for the current process

s inode {addr2|num} * s inode 45 Displays contents of inode_entry
structure at address addr or at index
num

s block {addr2|num} * s block 0xdb100000 Displays contents of buf_entry
structure at address addr or at index
num

s ihead {addr2|num} * s ihead 30 Displays contents of ihead_entry
structure at address addr or at index
num

s file {addr2|num} * s file 0xdb100000 Displays contents of file structure at
address addr or at index num

s fifo {addr2|num} * s fifo 49 Displays contents of fifo structure at
address addr or at index num

s cdev {addr2|num} * s cdev 0xdb100000 Displays contents of cdevsw_entry
structure at address addr or at index
num

s bdev {addr2|num} * s bdev 0 Displays contents of bdevsw_entry
structure at address addr or at index
num

s fdentry addr * s fdentry
0xdb100000

Displays contents of fdentry
structure at address addr

s {+|-} * s + Displays contents of the next or the last
(in memory) data structure of the type
being displayed

s {next|prev} * s next Displays contents of the data structure
pointed to by the next or prev (or
equivalent) field of the currently-
displayed data structure

Stack Trace

t [pid|-tid] * t -5 Symbolic stack trace of process pid,
thread tid, or the current thread

Table 5-1: SKDB Commands(Continued)

Command Format Example Description
232 LynxOS Total/db User’s Guide

SKDB Commands

v * v Toggles verbose mode for trace

Display Registers, Processes & Set Priority

r [pid|-tid] * r Displays CPU registers of process
pid’s main thread, thread tid, or the
current thread3

p [count] * p 20 Displays process table (all or count
lines worth)

P prio tid * P 15 8 Changes priority of thread tid to
prio divided by 2

Breakpoints

b * b Shows all breakpoints set

b num addr * b 1 0xdb100000 Sets breakpoint num at the memory
location addr

u num * u 5 Unsets breakpoint num

Watchpoints

B * B Shows all watchpoints set

B num addr [r|w|rw]
[! iaddr ...]

* B 1 currtptr w Sets watchpoint num at the memory
location addr for read, write or
read/write accesses but ignores
accesses by the instruction at iaddr

U num * U 5 Unsets watchpoint num

Single-Stepping

x * x Single-steps current thread

Disassembly

d [addr] * d resched+10 Disassembles at addr or the current
PC

Miscellaneous

Table 5-1: SKDB Commands(Continued)

Command Format Example Description
LynxOS Total/db User’s Guide 233

Chapter 5 - Simple Kernel Debugger - SKDB
General Notes

Parameter Validation

SKDB performs little validation for command arguments. Although SKDB catches
most memory access faults resulting from SKDB commands, improper arguments
may result in a system freeze.

Symbol Information

SKDB uses the kernel symbol table that is loaded at the start-up time for symbol
lookup. SKDB cannt do interactive symbolic debugging with a stripped kernel.

Address Expressions

SKDB accepts simple address expressions with symbolic notations for most
commands that accept memory address parameters. The syntax is as follows:

• Number - hexadecimal if starting with “0x”; octal if starting with “0”; or
otherwise decimal

R * R Restarts the operating system

h * h Displays a description of all available
commands

? * * ? Same as h

PowerPC Specific

S * S Sees segment register

1. On the PowerPC, a text symbol is preceded by a “.” (dot). A symbol without the preceding dot refers to the
corresponding TOC entry.

2. The address value must point to a valid table entry.
3. Some architecture may not save all registers upon context switching.

Table 5-1: SKDB Commands(Continued)

Command Format Example Description
234 LynxOS Total/db User’s Guide

Default Virtual Address Space

• Symbol - the symbol’s absolute virtual address value (note the PowerPC

requires a preceding dot for text symbols)

• Register - the CPU register of the current thread. The following
mnemonics work as common aliases for all architectures: %pc, %fp, %sp.
Other register mnemonics depend on the CPU architecture

• Operator - + and - represent addition and subtraction respectively.
Operations are performed left to right without precedence or
associatively.

For example, the following sets a breakpoint at the current PC address plus 20
bytes:

* b 1 %pc+0x14

Default Virtual Address Space

The LynxOS memory model assigns a separate virtual address space to each
process (kernel threads belong to process 0 <zero>). Although all processes share
the same kernel text, kernel data, and kernel heap in the kernel, each supervisor
stack still belongs to its respective process’s virtual address space. To access a
memory location of a non-current process, use the T command to get the memory
location’s PHYSBASE address.

The PHYSBASE address is the region of kernel address space where a mirror image
of the system’s physical memory is mapped (aliased). Since any page that the
kernel may access is found in this region and the page is visible to all processes at
the same virtual address, SKDB uses PHYSBASE for quick memory reference in a
non-current process’s virtual address space.

Remote Debugger Interface Protocol

SKDB supports a communication protocol for interfacing with a remote kernel
debugger such as LynxOS GDB. For more information on how to debug the
LynxOS kernel at the source level, see Chapter 3, See “LynxOS GDB
Enhancements” on page 137.
LynxOS Total/db User’s Guide 235

Chapter 5 - Simple Kernel Debugger - SKDB
236 LynxOS Total/db User’s Guide

APPENDIX A GNU Software License

Agreement
GNU General Public License

LynuxWorks, Inc. has derived Development Support Tools - VOLUME ONE from
the Cygnus Solutions version of the Free Software Foundation GNU
documentation. Because this is a work derived from the GNU documentation it
falls under the conditions of the GNU public License, and is subject to all the
limitations and conditions expressed in that license.

Version 2, June 1991

Copyright© 1989, 1991 - Free Software Foundation, Inc.
59 Temple Place / Suite 330, Boston, MA-- 02111-1307 - USA

Everyone is permitted to copy and distribute verbatim copies of the following
documentation of the GNU General Public License, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software- to make sure the
software is free for all its users. This General Public License applies to most of the
Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.
LynxOS Total/db User’s Guide 237

Appendix A - GNU Software License Agreement

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone’s free use or not
licensed at all. The precise terms and conditions for copying, distribution and
modification follow.

Terms & Conditions for Copying, Distribution and
Modification

This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification.”)
Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
238 LynxOS Total/db User’s Guide

Terms & Conditions for Copying, Distribution and Modification

1. You may copy and distribute verbatim copies of the Program’s source

code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
LynxOS Total/db User’s Guide 239

Appendix A - GNU Software License Agreement

right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for non-commercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
240 LynxOS Total/db User’s Guide

Terms & Conditions for Copying, Distribution and Modification

distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients- exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.
LynxOS Total/db User’s Guide 241

Appendix A - GNU Software License Agreement

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.
242 LynxOS Total/db User’s Guide

How to Apply these Terms to Your New Programs

No Warranty

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

End of Terms and Conditions

How to Apply these Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full notice is found.
LynxOS Total/db User’s Guide 243

Appendix A - GNU Software License Agreement

one line: the program's name and a brief idea of what it does.-

Copyright© 19yy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to:

Free Software Foundation, Inc.,

59 Temple Place - Suite 330

Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like the following
example when it starts in an interactive mode:

Gnomovision version 69, Copyright© 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type 'show w'. This is free software, and you are
welcome to redistribute it under certain conditions; type
'show c' for details.

The show w and show c hypothetical commands should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show w and show c; they can be mouse-clicks or
menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. The following
is a sample (when copying, alter the names).

Yoyodyne, Inc., hereby disclaims all copyright interest
in the program 'Gnomovision' (which makes passes at
compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice
244 LynxOS Total/db User’s Guide

Contributors to GNU CC

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of GNU CC.

• The idea of using RTL and some of the optimization ideas came from the
program PO written at the University of Arizona by Jack Davidson and
Christopher Fraser. See “Register Allocation and Exhaustive Peephole
Optimization,” Software Practice and Experience 14 (9), Sept. 1984,
pages 857-866.

• Paul Rubin wrote most of the preprocessor.

• Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and the VAX machine description.

• Ted Lemon wrote parts of the RTL reader and printer.

• Jim Wilson implemented loop strength reduction and some other loop
optimizations.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.

• Charles LaBrec contributed the support for the Integrated Solutions
68020 system.

• Michael Tiemann of Cygnus Solutions wrote the front end for C++, as
well as the support for inline functions and instruction scheduling. Also
the descriptions of the National Semiconductor 32000 series CPU, the
SPARC CPU and part of the Motorola 88000 CPU.

• Gerald Baumgartner added the signature extension to the C++ front-end.

• Jan Stein of the Chalmers Computer Society provided support for
GENIX, as well as part of the 32000 machine description.

• Randy Smith finished the Sun™ FPA support.

• Robert Brown implemented the support for Encore 32000 systems.
LynxOS Total/db User’s Guide 245

Appendix A - GNU Software License Agreement

• David Kashtan of SRI adapted GNU CC to VMS.

• Alex Crain provided changes for the 3b1.

• Greg Satz and Chris Hanson assisted in making GNU CC work on HP-
UX for the 9000 series 300.

• William Schelter did most of the work on the Intel 80386 support.

• Christopher Smith did the port for Convex machines.

• Paul Petersen wrote the machine description for the Alliant FX/8.

• Dario Dariol contributed the four varieties of sample programs that print
a copy of their source.

• Alain Lichnewsky ported GNU CC to the MIPS CPU.

• Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the
Tahoe.

• Jonathan Stone wrote the machine description for the Pyramid computer.

• Gary Miller ported GNU CC to Charles River Data Systems machines.

• Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes. He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination.

• Richard Kenner and Michael Tiemann jointly developed reorg.c, the
delay slot scheduler.

• Mike Meissner and Tom Wood of Data General finished the port to the
Motorola 88000.

• Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

• NeXT, Inc. donated the front end that supports the Objective C language.

• James Ivan Artsdalen wrote the code that makes efficient use of the Intel
80387 register stack.
246 LynxOS Total/db User’s Guide

Contributors to GNU CC

• Mike Meissner at the Open Software Foundation finished the port to the

MIPS CPU, including adding ECOFF debug support, and worked on the
Intel port for the Intel 80386 CPU.

• Ron Guilmette implemented the protoize and unprotoize tools, the
support for Dwarf symbolic debugging information, and much of the
support for System V Release 4. He has also worked heavily on the Intel
386 and 860 support.

• Torbjorn Granlund implemented multiply- and divide-by-constant
optimization, improved long long support, and improved leaf function
register allocation.

• Mike Stump implemented the support for Elxsi 64 bit CPU.

• John Wehle added the machine description for the Western Electric
32000 processor used in several 3b series machines (no relation to the
National Semiconductor 32000 processor).

• Holger Teutsch provided the support for the Clipper CPU.

• Kresten Krab Thorup wrote the run time support for the Objective C
language.

• Stephen Moshier contributed the floating point emulator that assists in
cross-compilation and permits support for floating point numbers wider
than 64 bits.

• David Edelsohn contributed the changes to RS/6000 port to make it
support the PowerPC and POWER2 architectures.

• Steve Chamberlain wrote the support for the Hitachi SH processor.

• Peter Schauer wrote the code to allow debugging to work on the Alpha.

• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.

• Michael K Gschwind contributed the port to the PDP-11.

Funding Free Software
If you want to have more free software a few years from now, it makes sense for
you to help encourage people to contribute funds for its development. The most
effective approach known is to encourage commercial redistributors to donate.
LynxOS Total/db User’s Guide 247

Appendix A - GNU Software License Agreement

Users of free software systems can boost the pace of development by encouraging
for-a-fee distributors to donate part of their selling price to free software
developers—the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them.
So when you compare distributors, judge them partly by how much they give to
free software development. Show distributors they must compete to be the one who
gives the most.

To make this approach work, you must insist on numbers that you can compare,
such as, “We will donate ten dollars to the Frobnitz project for each disk sold.”
Don’t be satisfied with a vague promise, such as “A portion of the profits are
donated,” since it doesn’t give a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction
of the sales price counts as profit. If the price you pay is $50, ten percent of the
profit is probably less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to
keep everyone honest, you need to inquire how much they do, and what kind.
Some kinds of development make much more long-term difference than others.
For example, maintaining a separate version of a program contributes very little;
maintaining the standard version of a program for the whole community
contributes much. Easy new ports contribute little, since someone else would
surely do them; difficult ports such as adding a new CPU to the GNU C compiler
contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of
resources into making more free software.

Copyright© 1994 Free Software Foundation, Inc.

Verbatim copying and redistribution of this section is permitted without royalty;
alteration is not permitted.

Protect Your Freedom; Fight “Look And Feel”

This section is a political message from the League for Programming Freedom to
the users of GNU CC.

We have included it here because the issue of interface copyright is important to
the GNU project.
248 LynxOS Total/db User’s Guide

Protect Your Freedom; Fight “Look And Feel”

Apple, Lotus, and now CDC have tried to create a new form of legal monopoly: a
copyright on a user interface.

An interface is a kind of language—a set of conventions for communication
between two entities, human or machine. Until a few years ago, the law seemed
clear: interfaces were outside the domain of copyright, so programmers could
program freely and implement whatever interface the users demanded. Imitating de
facto standard interfaces, sometimes with improvements, was standard practice in
the computer field. These improvements, if accepted by the users, caught on and
became the norm; in this way, much progress took place.

Computer users, and most software developers, were happy with this state of
affairs. However, large companies such as Apple and Lotus would prefer a
different system, one in which they can own interfaces and thereby rid themselves
of all serious competitors. They hope that interface copyright will give them, in
effect, monopolies on major classes of software.

Other large companies such as IBM and Digital also favor interface monopolies,
for the same reason: if languages become property, they expect to own many
de facto standard languages. But Apple and Lotus are the ones who have actually
sued. Apple’s lawsuit was defeated, for reasons only partly related to the general
issue of interface copyright.

Lotus won lawsuits against two small companies, which were thus put out of
business. Then they sued Borland; they won in the trial court (no surprise, since it
was the same court that had ruled for Lotus twice before), but the decision was
reversed by the court of appeals, with help from the League for Programming
Freedom in the form of a friend-of-the-court brief. We are now waiting to see if the
Supreme Court will hear the case. If it does, the League for Programming Freedom
will again submit a brief.

The battle is not over. A company that produced a simulator for a CDC computer
was shut down by a copyright lawsuit by CDC, which charged that the simulator
infringed the copyright on the manuals for the computer.

If the monopolists get their way, they will hobble the software field:

• Gratuitous incompatibilities will burden users. Imagine if each car
manufacturer had to design a different way to start, stop, and steer a car.

• Users will be “locked in” to whichever interface they learn; then they will
be prisoners of one supplier, who will charge a monopolistic price.

• Large companies have an unfair advantage wherever lawsuits become
commonplace. Since they can afford to sue, they can intimidate smaller
developers with threats even when they don’t really have a case.
LynxOS Total/db User’s Guide 249

Appendix A - GNU Software License Agreement

• Interface improvements will come slower, since incremental evolution

through creative partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are waiting to grab
theirs:

• Adobe is expected to claim a monopoly on the interfaces of various
popular application programs, if Lotus ultimately wins the case against
Borland.

• Open Computing magazine reported a Microsoft vice president as
threatening to sue people who imitate the interface of Windows.

Users invest a great deal of time and money in learning to use computer interfaces.
Far more, in fact, than software developers invest in developing and even
implementing the interfaces. Whoever can own an interface, has made its users into
captives, and misappropriated their investment.

To protect our freedom from monopolies like these, a group of programmers and
users have formed a grass-roots political organization, the League for
Programming Freedom.

The purpose of the League is to oppose monopolistic practices such as interface
copyright and software patents. The League calls for a return to the legal policies
of the recent past, in which programmers could program freely. The League is not
concerned with free software as an issue, and is not affiliated with the Free
Software Foundation.

The League’s activities include publicizing the issues, as is being done here, and
filing friend-of-the-court briefs on behalf of defendants sued by monopolists.

The League’s membership rolls include Donald Knuth, the foremost authority on
algorithms, John McCarthy, inventor of Lisp, Marvin Minsky, founder of the MIT
Artificial Intelligence lab, Guy L. Steele, Jr., author of well known books on Lisp
and C, as well as Richard Stallman, the developer of GNU CC. Please join and add
your name to the list. Membership dues in the League are $42 per year for
programmers, managers and professionals; $10.50 for students; $21 for others.

Activist members are especially important, but members who have no time to give
are also important. Surveys at major ACM conferences have indicated a vast
majority of attendees agree with the League on both issues (interface copyrights
and software patents). If just ten percent of the programmers who agree with the
League join the League, we will probably triumph.

To join, or for more information, phone (617) 243-4091 or write to the League at
the following address.
250 LynxOS Total/db User’s Guide

Protect Your Freedom; Fight “Look And Feel”

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to: lpf@uunet.uu.net.

In addition to joining the League, here are some suggestions from the League for
other things you can do to protect your freedom to write programs:

• Tell your friends and colleagues about this issue and how it threatens to
ruin the computer industry.

• Mention that you are a League member in your ‘.signature,’ and
mention the League’s e-mail address for inquiries.

• Ask the companies you consider working for or working with to make
statements against software monopolies, and give preference to those that
do.

• When employers ask you to sign contracts giving them copyright on your
work, insist on a clause saying they will not claim the copyright covers
imitating the interface.

• When employers ask you to sign contracts giving them patent rights,
insist on clauses saying they can use these rights only defensively. Don’t
rely on company policy, since policies can change at any time; don’t rely
on an individual executive’s private word, since that person may be
replaced. Get a commitment just as binding as the commitment they get
from you.

• Write to Congress to explain the importance of these issues.

House Subcommittee on Intellectual Property
2137 Rayburn Building
Washington, DC­­ 20515
Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC­­ 20510

(These committees have received lots of mail already; let’s give them even more.)

Democracy means nothing if you don’t use it. Stand up and be counted!
LynxOS Total/db User’s Guide 251

Appendix A - GNU Software License Agreement
252 LynxOS Total/db User’s Guide

Index
Symbols

#line directives 87
$_ variable 84
$__ variable 84
$_exitcode variable 84
$bpnum 37
$cdir string 66
$cwd string 30
$num= 82
&(&ref) 94
*address 64
+offset 64
...command-list... 47
@ binary operator 70
@ operator 97
__cp_push_exception library function 43
{type}addr 69
‘$’ prefix 82, 83

Numerics

29k architecture 59

A

a struct foo 90
aborting break command 49
Active Targets 112
adder command 116
addr, starting display address 73
add-symbol-file Command 164

add-symbol-file command 109
Alpha architecture 59
Altering Execution 102
altering value variable 103
AMD 29000 family processors 86
Applying terms to new programs 243
argument, for starting GDB 17
Arguments 29
arm 81
Artificial Arrays 70
assert condition 46
Assignment to Variables 103
attach 33
attach process-id 32
auto 81
Automatic Display 74

B

-b bps mode 21
backing up over program 104
Backspace key 23
backtrace 87
backtrace command 58
Backtraces 58
-batch mode 20
--baud option 116
BFD name 113
binary, patching 106
block messages 110
commands 47
break 37, 38

...if cond 38
filename

function 37
linenum 37
LynxOS Total/db User’s Guide 253

Index

function 37
-offset 37

break *address 38
break +offset 37
break command 139

aborting 49
Break Conditions 46
breakpoint 40

command lists 47
conditional 43
hardware-assisted 39
menus 49, 98
setting 24, 37, 139
settings 34

breakpoints 23
and exceptions 42
deleting 44
disabling 44
enabling 45
setting 55

Breakpoints window 206
bubble command 25
bubble option 25

C

C and C++ Constants 95
C and C++ Defaults 97
C and C++ Operators 93
C and C++ Type and Range Checks 97
-c file 19
C language 87, 91, 92
-c number 19
-c option 18
C++ 24, 49, 87

code, debugging 96
exceptions 43
expressions 96
language 92
program debugging 80
references, declared as variables 96

call expr command 105
call stack 56
call_scratch_address variable 105
calling overloaded functions 96
Calling Program Functions 105
canceling execution of function call 105
cast, use of 71

catch command 43
catch exceptions 43
catchexceptions 98
cd directory 32
-cd directory mode 20
changing text commands 129
Character constants 95
child process 35
Choosing Files 18
Choosing Modes 20
class class-name 100
clear 44
clear filename

function 44
linenum 44

clear function 44
clear linenum 44
COFF format 108
comm 115
command

adder 116
add-symbol-file 109
backtrace 58
break 139
catch 43
commandname 117
complete args 26
completion 23
continue 48, 103
core-file 106, 112
define 116
detach 33
echo 48
editing 12
exec-file 106, 107, 112
f 123
file 19, 106
filename 119
files 118
finish 38, 51
frame 57
handle 54
handle signal keywords... 54
help 25, 26
help target 113
history 13
hook-foo 118
hooks, user-defined 118
if 117
info 26
254 LynxOS Total/db User’s Guide

info frame 89
info signals 54
info source 89
info sources 102
jobs -l shell 32
jump 104
jump *address 104
jump linespec 103
kill 33
line editing 124
list 63
list ,last 63
list first 63
list function 63
list linenum 62
list linespec 63
load 109
maint info breakpoints 40
maint print 102
M-x 120
next 51
nexti 53
ni 53
nopass 54
nostop 54
output 48
pass 54
print 54, 82, 90, 103
printf 48
quit 21
return 105
return expression 105
run 28, 29, 32
section 109
select-frame 57
set 26, 103
set args 30
set check range 91
set check type 90
set complaints 16, 110
set confirm 17
set editing 13
set history expansion 14
set history filename 13
set history save 13
set history size 13
set input-radix 15
set language auto 88
set language local 88
set listsizecount 63

set print union 97
set symbol-reloading 101
set variable 103
set verbose 16, 108
set width 103
set write 106
show 26
show args 30
show confirm 17
show input-radix 15
show language 89
show listsize 63
show output-radix 16
show print 98
show print union 97
show range 92
show type 91
show verbose 16
show write 106
si 53
signal 104
silent 48
source 119
step 50, 51
stepi 53
stop 54
symbol-file 107
syntax 22
target 113
target remote 116
thread threadno 55
tty 32
u 52
u location 52
until 52
until location 52
while 117
x 72, 84

command lists
breakpoint 47

command-list 48
commands

file management 99
for changing text 129
for managing targets 113
for moving 129
GDB 22

remotebaud 161
target 161

GDB add-symbol-file 164
LynxOS Total/db User’s Guide 255

Index

killing text 126
list 64
shell 22
SKDB 231
user-defined 116

Commands for manipulating the history 129
commands, show history 14
compile checks 89
Compiling for Debugging 27
compiling functions 57
complete args command 26
condition 46
condition bnum expression 46
condition, assert 46
condition, false 46
condition, true 46
conditional breakpoint 43
configure Options 12
confirmation requests, disabling/enabling 17
confirmation requests, setting 17
Console Window 209
contacting LynuxWorks ix
Contents i
continue argument 47
continue command 48, 103
Continuing and Stepping 50
Contributors to GNU CC 245
Controlling GDB 12
controlling type checker commands 90
convenience variable 40, 74
copy permission 27
copying terms and conditions 238
Copyright Information ii
core files 18, 19, 108, 112

selecting new 112
core-file command 106, 112
correcting typos 124
correctness, ensuring program 89, 91
next 51
counter value 58
Creating a shared library for debugging 149
Ctrl-A 126
Ctrl-B 125
Ctrl-c system interrupt 58
Ctrl-D 125
Ctrl-E 126
Ctrl-F 125
Ctrl-L 126
Ctrl-X, Ctrl-R command 128
current on or off setting, showing 102

current source file, showing name of 101

D

data
addresses 41

Debug flag, SKDB 160
debugger

GNU source-level 11
Debugging

a shared library 140
embedded applications remotely 140
LynxOS kernels 223
POSIX Threads 138
Programs with Multiple Processes 35
Programs with Multiple Threads 34
remote 114
Remote Targets 142
target, specifying 112
with GDB 11

Debugging with Insight 215
default examining-address 40
define command 116
Delete 125
delete 44
delete display dnums... 75
Delete key 124
Deleting

Breakpoints 44
detach command 33
dev argument 114
Device Drivers

debugging
with GDB 142

loading dynamically from GDB 163
directory command 66
dirname, 66
disable display dnums ... 75
Disabling Breakpoints 44
disassemble command 66, 67
display

current values of expressions 75
display/fmt addr 75
display/fmt exp 75
display/i $pc 53
displayexp 75
displaying

core files 106
256 LynxOS Total/db User’s Guide

current limit 62
executable files 106
the Language 89

distribution terms and conditions 238
documents, LynxOS vii
documents, online vii
double (virtual) format 85
down n 59
down-silently n command 60
DSU 38, 41

E

-e file 19
echo command 48
editing

command 12
Emacs command keystroke sequences 122
Embedded applications

debugging 140
empty line, significance of 118
enable display dnums... 75
enabling breakpoints 45
encoding algorithm 81
end 47
ensuring program correctness 89, 91
enum enum-tag 100
Enumerated constants 95
Environment 29
environment variable 31
environment, program 30
EPROM/ROM code debugging 38
equivalent variables 97
error correction 102
error message, for absent load command 109
ESC key 24
Esc key 124
Event Designators 135
examine command (x command) 72
examining

data 67
memory 72
source files 62
the stack 56

exception handlers 61
exception handling 98
exceptions 42
exec-file command 106, 107, 112

executable file 18
executable files 112
execution stack, thread 34
execution, altering 102
expression 21, 100, 120
expressions 96
expressions, use of regular 98
extended (raw) format 85
Extended Remote Targets

supported protocols 142

F

f command 60, 123
-f mode 21
f, the display format 73
false condition 46
file commands 106
file-management commands 99
filename 102

function 64
number 64

filename command 119
files, choosing 18
finish 41
finish command 38, 51
fixed address 109
float parameter 24
floating point constants 95
Floating Point Hardware 86
Floating-point types 93
foo 48, 81
format letters supported in output format 72
forward-searchregexp command 65
frame

addr 59
args 57
command 57
n 59
pointer register 57
selecting 59

frames
stack 57

free software, funding 247
-fullname mode 21
function 44, 64
Function Browser window 210
function call 56
LynxOS Total/db User’s Guide 257

Index

Function Call in a Multithread Process 170
function invocations 57
function stack, and MIPS machines 61
Funding Free Software 247

G

g++ command 92
GDB 173

and C 97
as free software 11
attaching to a running process 147
browsing and switching threads 138
building a kernel for debugging 159
calling a shared library function by hand

(PowerPC) 140
commands 22

add-symbol-file 164
compiling sspp.c 166
creating

a shared library for debugging 149
current thread 139
debugging

device driver/kernel target 142
the kernel 159
with threads versus processes 161

deleting
breakpoints in shared libraries 152

description 11
executing a remote shell from the

target 169
features for C++ 98
files 106
host machine 115
installing 12
installing, sspp 167
interrupting

the kernel 162
the thread 171

loading
a shared library symbol table 149

overview 137
proxy server 165
Reading and Writing Large Memory

Blocks 168
Remote and Extended-remote Targets 142
requirements 158
resuming

after a blocking system call 171
threads 140

starting
gdbserver remotely 144
the remote target 145

target command 161
TCP Port 142
understanding thread numbers 138
Using a Serial Line 143

gdb program 17
gdbserver 115
Giving Your Program a Signal 104
GNU 173

C++ compiler 92
Emacs 26
General Public License 237
History Library 134
Software License Agreement 237
source-level debugger 11

gnu 81
-gstabs option 92
-gstabs+ option 93

H

handle command 54
handle signal keywords... command 54
hardware breakpoint registers 39
hardware-assisted breakpoint 39
Having GDB Infer the Source Language 88
hbreak args 38
help command 25, 26
help target commands 113
hex numbers 86
hex, printing number in 71
History Interaction 135
history numbers 82
hook-foo command 118
hook-stop 118

I

id, value of 43
identifier, thread 34
if argument 46
if command 117
258 LynxOS Total/db User’s Guide

ignore bnum count 47
ignore count 47
ignore count, positive 47
ignore-count argument 50
info

address symbol 99
all-registers 84
args 61
break 40
catch 61, 98
command 26
f 60
f addr command 61
files 32, 110
float 86
frame addr command 61
frame command 60
functions 101
functions regexp 101
line 77
line command 66
line linespec 66
locals 61
program 36
registers 84
registers regname... 84
share 110
sharedlibrary 110
signals command 54
source 100
source command 89
sources 101
sources command 102
target 110
terminal 32
thread 161
threads 34
threads display 35, 55
types 100
types regexp 100
watchpoints 42

info display 76
info frame command 89
info line command 66
info variables 101
info variables regexp 101
inheritance relationships, printing 98
init files 119
initial frame 57
innermost frame 57, 86

Insight 173
inspect 68
Install.skdb script 160
Installation 166
Installing GDB 12
int 90
int parameter 24
integer constants 95
integer value, storing 103
Integral types 93
interrupt 21
Introduction to Line Editing 124
invocations, function 57
Invoking GDB 17

J

jobs -l shell command 32
jump *address command 104
jump command 104
jump linespec command 103

K

Kernel
debugging with GDB 159
interrupting

at GDB prompt 162
single-stepping 162

Key Bindings 129
keyname 129
keystroke notations 124
keystroke sequences, Emacs commands 122
kill command 33
Killing and Yanking 131
killing text 126
killing text commands 126
Killing the Child Process 33

L

Language-specific information 87
LFD (linefeed) key 124
library for debugging 149
license 237
LynxOS Total/db User’s Guide 259

Index

limit 62
limitations to exception handling 43
linespec 64
list ,last command 63
list command 63
list commands 64
list first command 63
list function command 63
list linenum command 62
list linespec command 63
List of Filename Extensions and Languages 87
load address, specifying 109
load command 109, 114
loading

device drivers dynamically 163
Local Variables window 205
longjmp 40
longjmp resume 41
lucid 81
LynuxWorks, contacting ix
LynuxWorks, Inc. ii

M

maint info breakpoints command 40
maint print commands 102
maint print msymbols 102
maint print psymbols 102
make make-args 22
Makefile

sspp 166
manipulating history commands 129
manually setting working language 88
M-B 126
Memory window 200
meta bit 79
meta digits 127
META key 24
M-F 126
Minicom Terminal Server 167
MIPS architecture 59
MIPS Machines and the Function Stack 61
modes, choosing 20
modification terms and conditions 238
Modifiers 136
moving commands 129
multiple process debugging 35
multiple threads 55

multiple threads, debugging programs with 34
multi-thread programs 42
M-x command 120

N

-n 20
info break 39
info breakpoints 39
info watchpoints 39
n, the repeat count 73
newprompt 12
next command 51
nexti command 53
ni command 53

nn 79
NO WARRANTY statement, showing 27
nopass command 54
noprint command 54
nostop command 54
number 64
Numbers 15

thread, understanding GDB 138
numeric arguments, passing to readline

commands 127
-nx mode 20
-nx option 119

O

object files, replacing 101
octal constants 95
off default 97
-offset 64
on or off setting, showing 102
online documentation vii
openlink gdbInvoking_GDB.fm 17
optimizer 28
option, -c 18
option, -se 18
optional parameters 73
options, configure 12
outermost frame 57
output 120
output command 48
260 LynxOS Total/db User’s Guide

overloaded functions, calling 96
Overloaded symbol names 99
overloading 49, 98
Overview

GDB 137
SKDB 223

Overview of Range Checking 91
Overview of Type Checking 90

P

p/a pointer 78
parent process 35
pass command 54
Patching Programs 106
path directory 30
PATH variable 121
pauses, converting to messages 108
permission for copying 27
pointer in decimal, printing 71
Pointer types 93
pointer variable, storing 103
positive ignore count 47
PowerPC

calling a shared library function by
hand 140

print command 54, 82, 90, 103
print x 82
printexp command 68
printf 120
printf command 48
printing

declared types of objects 98
derived types of objects 98
names and data types 101
source file names 101
source lines 62
variable names and data types 101

process ID 18
process ID, getting 36
processes 112
program counter 59
program functions, calling 105
Program Variables 69
programs, patching 106
prompt string 12
Protocols

proxy 167

Proxy Server
running 165
ssp 165

ps program 35
pseudo-command 118
ptt 78
ptype 100
ptype exp command 68
ptype exp ptype 100
ptype typename 98, 100
pwd 32

Q

-q mode 20
-quiet mode 20
quit command 21
Quitting GDB 21

R

range checking overview 91
range checks, C and C++ 97
raw data format 85
rbreak regex 39
rbreakregex 98
Readline

Arguments 127
Bare Essentials 125
Init File 127
Init Syntax 128
Interaction 124
Killing Commands 126
Movement Commands 125
vi Mode 134

-readnow option 108, 109
Reference manuals vii
regex 39
Registers window 198
registers, thread 34
regular expressions 98
Remote

shell
executing from the GDB remote

target 169
target process, starting from gdbserver 146
LynxOS Total/db User’s Guide 261

Index

Remote Debugging 114
remote serial target 114
Remote Targets

supported protocols 142
repeating list command 63
replacing symbol definitions 101
Requirements

for GDB 158
restart, program 56
resuming program execution 50
Return 22, 23, 33, 63, 71, 74, 75, 82, 83, 84, 85,

104, 107, 109, 113, 124
return command 105
return expression command 105
Return key 23, 33, 48, 124
Returning from a Function 105
reverse-search regexp command 65
run command 28, 29, 32
Running Programs Under GDB 27
run-time checks 89

S

-s file 19
Scalar types 93
Scripts

Install.skdb 160
-se file 19
-se option 18
Searching Source Files 65
section command 109
select-frame 57
select-frame command 57
Selecting a Frame 59
semantics, thread 34
Semaphores 137
Serial Line

using for GDB 143
Serial Ports

setting up GDB 161
Server

GDB proxy 165
Minicom Terminal 167

Servers
starting gdbserver, remotely 144

set
args command 30
check range commands 91

check type commands 90
command 26, 103
complaints command 16
confirm command 17
demangle-stylestyle 80
editing command 13
environment 31
heuristic-fence-post limit command 62
history expansion command 14
history filename command 13
history save command 13
history size command 13
input-radix command 15
language 87
language auto command 88
language local command 88
listsizecount command 63
output-radix command, command, set

output-radix 15
prompt 12
remotebaud command 161
rstack_high_address address 86
symbol-reloading commands 101
variable command 103
verbose 16
verbose command 108
width command 103
write command 106
x=5 82

set command 103
set complaints command 110
set language 88
set print

address off 76
address on 76
array 78
asm-demangle 80
demangle 80, 98
max-symbolic-offsetmax-offset 77
null-stop 79
object 81
pretty on/off 79
sevenbit-strings 79
symbol-filename 78
symbol-filename on/off 77
union 79
union command 97
vtbl 81

set print elements number-of-elements 78
setprint addressoff 96
262 LynxOS Total/db User’s Guide

setting

breakpoint 24, 37, 139
multiple thread breakpoints 55
watchpoints 41
working language 88

Setting Up
GDB serial ports 161

Shared Libraries
setting GDB breakpoints 152

Shared Library
debugging 140
loading for GDB 149

shared object library symbols, loading 110
shell command string 22
Shell Commands 22
SHELL environment variable 30
show

args command 30
command 26
confirm command 17
convenience 83
demangle-style 81
directories 66
environment 31
heuristic-fence-post 62
history commands 14
input-radix command 15
language command 89
listsize command 63
output-radix command 16
paths 31
prompt 12
range command 92
rstack_high_address 86
symbol-reloading 102
type command 91
values 82
verbose command 16
write command 106

show print
address 77
array 78
asm-demangle 80
commands 98
demangle 80
elements 78
max-symbolic-offset 78
object 81
pretty 79
sevenbit-strings 79

symbol-filename 77
union 80
union command 97
vtbl 82

si 53
si command 53
side effects, break conditions 46
signal 35
signal command 104
silent command 48
silent version of frame 57
Single-stepping

into a shared library function 157
the Kernel 162

SKDB
commands 231
installing 224
overview 223
removing 224
setting the debug flag 160

sleep 35
Source and Machine Code 66
source command 119
source directories, specifying 65
source files, listing 100
source files, printing names of 101
source files, searching 65
source languages, switching between 87
Source Window 174
Spacebar key 124
SPARC architecture 59
SPARC machine instructions 67
SPARClite 41
SPARClite DSU 38
Special Note formats ix
Specifying a Debugging Target 112
specifying single source line 64
Specifying Source Directories 65
sspp

installing 167
makefile 166
proxy server 165

sspp.c
compiling 166

stack frame 52, 56, 61, 69
Stack Frames 57
stack frames 85
stack pointer 59
stack unwinding 43
Stack window 197
LynxOS Total/db User’s Guide 263

Index

stack-frame offset, printing 99
Standard input and output 29
Starting

gdbserver remotely 144
Starting Your Program 28
static variable 70
step command 50, 51
step count 51
stepi command 53
stepping 50
stop command 54
stop, program 55, 56
Stopping and Continuing 36
Stopping and Starting Multi-Thread

Programs 55
stopping, before exception handler is called 43
storing sequences of commands 116
string table message 111
struct struct-tag 100
structure conversion 103
style key escapes 129
Supported Languages 92
suppressing complaints 16
Switching Between Source Languages 87
symbol definitions, replacing 101
symbol information 111
Symbol Scopes (All Platforms) 157
symbol(types) 99
symbol-file command 107
-symbols file 19
symbols, unusual characters in 99
Syntax 166
syntax 87
syntax, command 22
systag thread identifier 34

T

t variable 78
Tab key 22, 23, 24, 25, 124
target command 161
target commands 113
target machine 115
target remote command 116
target, definition for 112
targets, commands for managing 113
tbreak args 38
TCP connections 116

Technical Support ix
Terms & conditions, copying, distribution,

modification 238
terms, applying 243
thbreak args 39
this, class instance pointer 96
thread apply 35
thread number 35
thread threadno command 55
Threads

current, GDB 139
GDB 138
resuming GDB 140

Total/db 173
trap-generation 41
true condition 46
tty command 32
-tty device mode 21
Type and Range Checking 89
type checker, commands for controlling 90
type checking 97
type checking overview 90
type checks, C and C++ 97
type typename 98
typedef 97
Typographical Conventions viii
typos, correcting 124

U

u command 52
u location command 52
u, the unit size 73
undisplay dnums... 75
union type 97
union union-tag 100
unset environment 31
until 41
until command 52
until location command 52
up n 59
up-silently n command 60
User-Defined Command Hooks 118
User-Defined Commands 116
user-defined commands 118
Using

a cast 71
GDB Under GNU Emacs 120
264 LynxOS Total/db User’s Guide

history interactively 134
target command 141

Using a Proxy Server 145
Utilities

Install.skdb 160

V

Variable Settings 128
variable, altering value of 103
variable, static 70
Variables

Title
BookTitle i

Legal ii
PartNumber i

variables, declared by C++ references 96
variables, equivalent 97
variables, program 69
varname 31
version, showing current running 27
virtual data format 85
virtual function tables, print format 98
void value 83

W

watch expr 41
Watch Expressions 202
Watching Registers 204
watchpoint 40
watchpoints, setting 41
whatis 100
whatis exp 99
while command 117
width variable 103
word delimiters 99
Word Designators 135
Working directory 29
working language 87
writing, dump of debugging symbol data 102

X

x addr 72

x command 40, 68, 72, 84
-x file 19
x/ nfuaddr 72
x/3iaddr 74
x86

creating a shared library for debugging 148

Y

Your Program’s Environment 30
LynxOS Total/db User’s Guide 265

Index
266 LynxOS Total/db User’s Guide

	Total/db User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Total/db Overview
	Included Components
	GDB
	GDBServer
	Insight
	SSPP
	SKDB

	User Process Debugging vs. Kernel/Device Driver Debugging
	Local Debugging versus Remote Debugging
	Local Debugging
	User Process Debugging
	Kernel/Device Driver Debugging

	Remote Debugging
	Symbol Files
	User Process Debugging
	Kernel/Device Driver Debugging
	Using sspp to Extend Serial Line Remote Debugging
	Cross Debugging

	Total/db Configuration Options
	Supported Languages
	Source Code

	Chapter 2 Debugging with GDB
	The GNU Source Level Debugger
	GDB as Free Software

	Controlling GDB
	Prompt
	Command Editing
	Command History
	Screen Size
	Numbers
	Optional Warnings and Messages

	Getting In and Out of GDB
	Invoking GDB
	Choosing Files
	Choosing Modes

	Quitting GDB
	Shell Commands

	GDB Commands
	Command Syntax
	Command Completion
	Getting Help

	Running Programs under GDB
	Compiling for Debugging
	Starting Your Program
	Your Program’s Arguments
	Your Program’s Environment
	Your Program’s Working Directory
	Your Program’s Input and Output
	Debugging an Already-Running Process
	Killing the Child Process
	Debugging Programs with Multiple Threads
	Debugging Programs with Multiple Processes

	Stopping and Continuing
	Breakpoints, Watchpoints, and Exceptions
	Setting Breakpoints
	Setting Watchpoints
	Breakpoints and Exceptions
	Deleting Breakpoints
	Disabling Breakpoints
	Break Conditions
	Breakpoint Command Lists
	Breakpoint Menus

	Continuing and Stepping
	Signals
	Stopping and Starting Multithread Programs

	Examining the Stack
	Stack Frames
	Backtraces
	Selecting a Frame
	Information about a Frame
	MIPS Machines and the Function Stack

	Examining Source Files
	Printing Source Lines
	Searching Source Files
	Specifying Source Directories
	Source and Machine Code

	Examining Data
	Expressions
	Program Variables
	Artificial Arrays
	Output Formats
	Examining Memory
	Automatic Display
	Print Settings
	Value History
	Convenience Variables
	Registers
	Floating Point Hardware

	Using GDB with Different Languages
	Switching between Source Languages
	List of Filename Extensions and Languages
	Setting the Working Language
	Having GDB Infer the Source Language

	Displaying the Language
	Type and Range Checking
	An Overview of Type Checking
	An Overview of Range Checking

	Supported Languages
	C and C++

	Examining the Symbol Table
	Altering Execution
	Assignment to Variables
	Continuing at a Different Address
	Giving Your Program a Signal
	Returning from a Function
	Calling Program Functions
	Patching Programs

	GDB Files
	Commands to Specify Files
	Errors Reading Symbol Files

	Specifying a Debugging Target
	Active Targets
	Commands for Managing Targets
	Remote Debugging
	Using the gdbserver program

	Stored Command Sequences
	User-Defined Commands
	User-Defined Command Hooks
	Command Files
	Commands for Controlled Output

	Using GDB under GNU Emacs
	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments

	Readline Init File
	Readline Init Syntax
	Readline vi Mode

	Using History Interactively
	History Interaction
	Event Designators
	Word Designators
	Modifiers

	Chapter 3 LynxOS GDB Enhancements
	Overview
	Debugging POSIX Threads
	Understanding Thread Numbers
	Browsing and Switching Threads
	Current Thread

	Setting a Breakpoint
	Resuming Threads

	Debugging Embedded Applications Remotely
	Using the Target Command
	Debugging Remote Targets
	Remote and Extended-Remote Targets
	Device Driver/Kernel Target (skdb)

	Supported Protocols for Remote and Extended�Remote Targets
	TCP Port
	Using a Serial Line
	Starting gdbserver Remotely
	Using a Proxy Server

	Starting the Remote Target
	Starting from gdbserver
	Attaching to a Running Process

	Target’s Environment

	Postmortem Debugging of Dynamically Linked Programs
	Debugging Shared Libraries
	Creating a Shared Library for Debugging Purposes
	Loading Shared Library Symbol Information
	Deferred Breakpoints
	Deferred Breakpoint Commands
	Deferred Breakpoints for Application-Loaded (dlopen’ed) Shared Libraries

	Shared Library File Path Names
	Automatic Shared Library Symbol File Loading
	Manual Shared Library Symbol Loading/Unloading (add-symbol-file/delete-symbol-file)

	Symbol Table
	Single-Stepping into a Shared Library Function
	Summary of Additional Commands for Shared Library Support

	Debugging Kernel/Device Drivers
	Requirements
	Building a Kernel for Debug Purposes
	Debugging�the�Kernel
	Simple Kernel Debugger—SKDB
	Threads vs. Processes
	Setting Up Serial Ports
	Starting Kernel Debugging
	Interrupting the Kernel
	Single-Stepping the Kernel
	Finishing Kernel Debugging

	Loading Device Drivers Dynamically
	Raw SKDB Commands

	Proxy Server
	Syntax
	Installation
	Compiling sspp.c
	Installing sspp
	Minicom Terminal Server

	General Tips and Miscellaneous Issues
	Reading and Writing Large Memory Blocks
	Browsing Target Process’s Environment
	Executing Remote Shell Commands
	Function Calls in a Multithreaded Process
	Functions Calls after Ctrl+C
	Resuming after a Blocking System Call
	Debugging a Signal-Intensive Process

	Chapter 4 Debugging with Total/db
	Source Window
	File Menu
	Run Menu
	View Menu
	Control Menu
	Preferences Menu
	Help Menu
	Toolbar Buttons
	Special Display Pane Features
	Using the Mouse in the Display Pane
	Right Display Column
	Left Display Column

	Below the Horizontal Scroll bar
	Status Text Box
	Function List and Combo Boxes
	Code Display List Box
	Search Text Box

	Dialog boxes for the Source Window
	Load New Executable Dialog Box
	Page Setup Dialog Box
	Print Dialog Box
	Target Selection Dialog Box
	Global Preferences Dialog Box
	Source Preferences Dialog Box

	Stack Window
	Registers Window
	Memory Window
	Memory Preferences Dialog Box

	Watch Expressions Window
	Add Watch Button
	Watching Registers
	Casting Pointers in the Watch Expressions Window

	Local Variables Window
	Variable Menu

	Breakpoints Window
	Breakpoint Menu
	Global Menu

	Console Window
	The Function Browser Window
	Help Window
	Topics Menu

	Tutorials for Debugging with Insight
	Initializing a Target Executable File
	Console Window with Initial Commands
	Selecting a source file

	Setting Breakpoints and Viewing Local Variables

	Chapter 5 Simple Kernel Debugger - SKDB
	Overview
	Installing/Removing SKDB
	Installing SKDB
	Removing SKDB

	Using SKDB
	SKDB Prompt
	Starting SKDB Automatically after a Kernel Crash or Panic
	Breaking into SKDB with Hot Key
	Kernel Status Display
	Kernel Status Redisplay
	Stack Trace Display
	Verbose Trace Mode
	Process, Thread, and Other Displays
	Resuming the Kernel
	Setting Breakpoints
	Single-Stepping
	Disassembly
	Setting Watchpoints

	SKDB Commands
	General Notes
	Parameter Validation
	Symbol Information
	Address Expressions
	Default Virtual Address Space
	Remote Debugger Interface Protocol

	Appendix A GNU Software License Agreement
	GNU General Public License
	Preamble
	Terms & Conditions for Copying, Distribution and Modification
	How to Apply these Terms to Your New Programs

	Contributors to GNU CC
	Protect Your Freedom; Fight “Look And Feel”

	Index

