
3

VisualLynux User’s Guide

Release 4.0

DOC 00-446-00

Product names mentioned in VisualLynux User’s Guide are trademarks of their respective manufacturers and are used
here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of VisualLynux User’s Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE ... XI

For More Information ... xi
Typographical Conventions ...xii
Special Notes ...xii
Technical Support ...xiii

LynuxWorks U.S. Headquarters ...xiii
LynuxWorks Europe ...xiii
World Wide Web ...xiii

CHAPTER 1 INTRODUCTION.. 1

About VisualLynux ... 1
Cross Development Hosts and Targets .. 1
LynuxWorks Cross Development Kits ... 2
VisualLynux Help .. 3

VisualLynux Objects ... 3
Projects ... 3
Workspaces .. 4

Workspace and Project Directories ... 4
Wizards ... 5

Configurations ... 6
Terminology ... 7

CHAPTER 2 GETTING STARTED .. 9

Prerequisites ... 9
System Requirements .. 9
Package Contents ... 10
Configuring VisualLynux .. 10
VisualLynux User’s Guide iii

Contents

VisualLynux Configuration Utility .. 11
Invoking the Configuration Utility ... 11
LynxOS CDK Configuration ... 13
BlueCat Linux CDT Configuration .. 15
CYGWIN Installation .. 17
Unregistering VisualLynx 1.x .. 19
Preparing a Mount Table .. 19

Launching the VisualLynux Application and Kernel Wizards 20
Overview of Project Creation Process ... 22

Building a Project ... 25
Debugging a Project ... 26

CHAPTER 3 VISUALLYNUX BUILD PROCESS.. 27

Building Project Targets .. 27
Processing Files ... 28
Project-Level Build Steps .. 29

Build Macros .. 30
Global Macros ... 31
Project (Configuration)-Level Macros .. 31
File-Level Macros ... 33

CHAPTER 4 VISUALLYNUX MENUS .. 35

Overview of Menu Structure ... 35
VisualLynux Menus ... 35
File Menu ... 36
Edit Menu ... 36
View Menu ... 37
Insert Menu .. 38
Project Menu .. 38
Build Menu .. 39
Tool Menu .. 40
Window Menu .. 42

CHAPTER 5 VISUALLYNUX APPLICATION WIZARD... 43

Launching the VisualLynux Application Wizard .. 43
Selecting a VisualLynux Project Type .. 44

C User Application Wizard .. 45
A Custom C LynuxWorks Application ... 47
iv VisualLynux User’s Guide

Component Functions ... 49

C++ User Application Wizard .. 52
X/Motif Graphical Application Wizard ... 54

A Custom X/Motif Application .. 56
Device Driver Wizard .. 58

LynxOS Device Drivers .. 59
BlueCat Linux Device Drivers .. 64

Static Library Application Wizard ... 77

CHAPTER 6 LYNXOS KERNEL WIZARD... 79

Kernel Projects .. 79
Launching the VisualLynux LynxOS Kernel Wizard 80
Selecting a Board Support Package ... 81
Preparing a Kernel Executable Project .. 83
Configuring Kernel Downloadable Image (KDI) .. 86

Configuring KDI File System .. 88
Selecting Kernel Library Projects .. 94
Copying Source Files ... 96

CHAPTER 7 VISUALLYNUX ADDIN TOOLS .. 101

IDE Tools .. 101
Toolbar Icons ... 102
VisualLynux Import Wizard .. 104

Import a Makefile .. 104
Import Wizard Initial Screen ... 105
Selecting a Makefile to Import .. 105
Specifying Project Configurations .. 106
Specifying Build Environment .. 107
Adding/Editing Environment Variables .. 108
Adding Source Files to a Project ... 109
Specifying Build Target .. 110

VisualLynux Export Wizard .. 111
Export to Makefile ... 111

Export Wizard Initial Screen ... 111
Setting Configurations to Export .. 112
Export Directories Setup ... 113
Specifying Directories for New Source Tree 114
Specifying Names of Exported Makefiles 115
VisualLynux User’s Guide v

Contents

Project Files to Copy ... 116
Summary Dialog Box .. 117

LynuxWorks GDB ... 118
Total/db .. 120
Upload ... 124
bash Shell ... 124
Telnet ... 125
VisualLynux HTML Help ... 126
Other VisualLynux Tools .. 126

CHAPTER 8 VISUALLYNUX PROJECT SETTINGS .. 127

Overview ... 127
Project-Level Property Pages .. 129
File-Level Property Pages ... 130
General Page .. 131
Debug Page .. 133
Browser Page ... 134
Library Page .. 135
Pre-Link Step Page .. 136
Post-Build Step Page ... 137
Custom Build Steps ... 138

Project Custom Build ... 138
Directory Menu ... 140
File Menu .. 141

File Custom Build .. 142
Directory Menu ... 144
File Menu .. 145

Compiler Options .. 145
C/C++ Page .. 145

C/C++ General .. 148
C/C++ Code Generation .. 149
C/C++ Language ... 152
C/C++ Listings .. 154
C/C++ Warnings ... 155
C/C++ Profiling ... 158
C/C++ Optimization .. 159
C/C++ Preprocessor .. 164
C/C++ Special Options ... 165
vi VisualLynux User’s Guide

Linker Options ... 166

Linker Option Categories ... 166
Link General ... 167
Link Customize .. 168
Link Debug ... 170
Link Input ... 171
Link Output .. 172
Link Special Options .. 174

Make Page ... 174
Make Project ... 174

General Options .. 175
Environment Options .. 175

Make File .. 177
Kernel Options ... 178

Kernel General Page ... 180
Kernel Configuration Page ... 181

Editing Item Properties ... 183
Kernel Parameters Page .. 192

CHAPTER 9 LYNUXWORKS FTP... 195

Overview ... 195
LynuxWorks FTP Main Window ... 196

LynuxWorks FTP Functions ... 197
Connecting to an FTP Server ... 197

LynuxWorks FTP Command Line .. 198
Browsing FTP Folders .. 199

Keyboard Controls .. 200
Mouse Controls ... 201
Menu and Toolbar Commands .. 201

Displaying Contents of FTP Folders .. 202
Manipulating FTP Folders .. 202

Removing an FTP Folder .. 203
Renaming a Folder .. 203
Creating an FTP Folder ... 203
Displaying FTP Folder Properties ... 204

Manipulating FTP Files .. 204
Removing FTP Files ... 204
Renaming an FTP File .. 204
Displaying File Properties ... 205

Browsing Local Folders ... 205
VisualLynux User’s Guide vii

Contents

Opening Folders .. 205
Displaying the Parent Folder ... 206
Changing the View Mode ... 206

Manipulating Files on a Local Computer ... 207
Creating a New Folder .. 207
Renaming Files or Folders .. 207
Displaying File or Folder Properties ... 208
Removing Files and Folders ... 209

Downloading Files and Folders .. 210
Downloading Files .. 210
Downloading Folders .. 210

Uploading Files and Folders .. 211
Transfer Dialog Box ... 211

CHAPTER 10 VISUALLYNUX TARGET ADMINISTRATION... 215

Overview ... 215
Target Configuration .. 216
Invoking Target Administration ... 216
Target Administration Dialog Box ... 217

Target Wizard .. 220
General Information ... 220
Target Identification Step ... 221
Network Connection Step .. 222
Authentication Step .. 224
Utilities Step ... 226
Projects Directory Step ... 228
Debugging Step .. 231
Process Viewer Step ... 233

Target Administration Tasks ... 234
Creating a New Target ... 235
Editing Target Properties ... 235
Removing a Target ... 236
Setting a Default Target ... 236
Specifying Target Selection Mode ... 237
Renaming a Target ... 238
Running Commands on the Target ... 238

Run Command Dialog Box ... 239

CHAPTER 11 LYNUXWORKS CROSS PROCESS VIEWER ... 241

Overview ... 241
viii VisualLynux User’s Guide

The CPV Window ... 242

CPV Window Panes ... 243
File Menu ... 245
View Menu .. 247
Options Menu .. 248

Performance Chart Options .. 248
Add to Counters .. 249
Processes Options ... 250

LynxOS Processes Options ... 250
BlueCat Linux Processes Options ... 254

Sort Options .. 256
Help Menu .. 258
Cross Process Viewer Toolbar Buttons .. 258

CHAPTER 12 BOOTP-TFTP-PFTP UTILITY .. 261

BTP Overview ... 261
BTP Servers .. 261
Starting BTP ... 262
BTP Dialog Boxes .. 263

General BTP Page ... 263
Bootp Page ... 264
Tftp Page .. 265
Pftp Page .. 267
Bootp DB Entry ... 268
BTP Tray Icon ... 270

INDEX .. 271
VisualLynux User’s Guide ix

Contents
x VisualLynux User’s Guide

VisualLynux User’s Guide

Preface
For More Information

For more information on the features of VisualLynux, refer to the following printed
and online documentation:

• Release Notes

This printed document contains late-breaking information about the
current release of VisualLynux.

• Online information

The VisualLynux CD-ROM contains an Online Help System that includes
an online version of this document, man pages for LynxOS and BlueCat
Linux, and documentation for GNU tools.
VisualLynux User’s Guide xi

Preface

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Kind of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User’s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by
the user

cat filename
mv file1 file2

Blocks of text that appear on the display
screen after entering instructions
or commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and
menu sequences

Enter, Ctrl-C
xii VisualLynux User’s Guide

Technical Support
Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products.

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com

Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com

Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
VisualLynux User’s Guide xiii

Preface
xiv VisualLynux User’s Guide

ì

CHAPTER 1 Introduction
About VisualLynux

VisualLynux is a cross development tool with a graphical user interface (GUI)
expands the functionality of Microsoft Visual Studio C++ to provide users the
ability to build and debug real-time embedded applications on Windows hosts for
target platforms running the LynxOS or BlueCat Linux operating systems from
LynuxWorks, Inc.

Cross development is required and optimal in situations where targets do not have
the necessary development resources. The building and debugging of applications
is conducted mainly on a host, connected to a target via a network or serial port.

LynuxWorks supports cross development in the form Cross Development Kits (or
CDKs, for LynxOS) and Cross Development Tools (or CDTs, for BlueCat Linux).
A CDK is a LynuxWorks configuration for a particular target and host platform.
(See “Terminology” on page 7 for definitions.)

VisualLynux functions are invoked using the Visual C++ main menu and the
VisualLynux toolbar. The VisualLynux toolbar is installed the first time Visual C++
is invoked after VisualLynux installation.

Cross Development Hosts and Targets

A target, for this purpose, is a combination of hardware (computer and
input/output devices) and software (operating system and applications) that is

NOTE: Unless otherwise stated, the term CDK refers to both CDKs and CDTs.

NOTE: The installation procedure is described in the VisualLynux Release Notes.
VisualLynux User’s Guide 1

Chapter 1 - Introduction

intended to perform a specific function. The target platform refers to the
architecture type, e.g., x86, PowerPC, MIPS, SH3, ARM, XScale.

Embedded target system requirements differ significantly from those of
conventional operating systems in several ways. Embedded systems deployed for a
specific function, often in a time-critical environment, require increased reliability,
small footprint, small kernel overhead, and support for real-time applications.

Visual Studio and VisualLynux, working together, address these needs and the
associated accelerated development cycles. LynuxWorks operating systems are
specially designed for embedded target systems. LynxOS is used for targets whose
real-time requirements are very critical, while the BlueCat Linux is used for targets
where the compatibility with Linux (especially the kernel) is more essential than
real-time performance.

LynxOS and BlueCat Linux configurations called Board Support Packages (BSPs)
are available for several boards within each target platform category.

LynuxWorks Cross Development Kits

A CDK for a particular target configuration and host platform includes the specific
BSP, as well as cross development tools for the host platform.

In addition to the powerful VisualLynux GUI and tools, a CDK itself can be used
for cross development in command line mode. You can invoke an MS-DOS
window, start bash, and run the SETUP script to create a LynxOS or BlueCat Linux
command line environment.

VisualLynux leverages the Microsoft Visual Studio Development System and
LynuxWorks CDKs in the following ways:

• It expands the Microsoft Visual C++ GUI and environment to build
LynxOS and BlueCat Linux applications, libraries, drivers, and kernels

• It provides the Administration utility to configure and edit target
descriptions, automating the setting or editing of development and
debugging options for target applications

• It easily transfers development results to the target and starts debugging

• It provides assistance in importing existing projects from a LynxOS or
BlueCat Linux environment to the VisualLynux environment.

• It exports VisualLynux projects to UNIX-type Makefiles.

• It provides the GUI FTP tool to transfer files between the host and target
2 VisualLynux User’s Guide

VisualLynux Help

• It provides the GUI BTP utility that runs Bootp, Tftp, and Pftp servers on

the host to boot targets via TCP/IP or a parallel port.

• It provides a bash shell if the user needs a command line environment

• It provides a Cross Process Viewer (CPV) to dynamically watch
processes and threads on the target

• It provides the detailed Online Help Library

VisualLynux Help

The VisualLynux Online Help Library is an essential resource using LynuxWorks
products. Relevant product documentation and reference libraries are included.

You can navigate online help in either of two ways:

• By using the Table of Contents on the left to browse the library, or

• By using the Index to search for topics

• By using Search to find information by keyword

VisualLynux Objects

Projects

A key VisualLynux concept is that of a project, which is a basic unit of
development. VisualLynux projects are created by VisualLynux wizards. (See
“Wizards” on page 5.) A VisualLynux project has the same features as Visual C++
project with specific additions and limitations.

VisualLynux projects can be of different types, having one or more goals. Usually,
a project has one main goal or result (e.g. the program executable) and some
secondary goals (e.g. object files). The user can add additional goals to the project.
The main goal defines the type of project.

The main goal also determines the main tool used for the project: the main tool for
a C User Application project is the gcc.exe cross compiler. A project can have
several associated tools: a Static Library project has two tools: the gcc.exe

compiler to build object files, and the ar.exe archiver to build a static library
from the object files.
VisualLynux User’s Guide 3

Chapter 1 - Introduction

Each project contains files that are used to build the project goal(s). The user can
edit these files with the Visual C++ editor, or delete or add new files. A project also
contains a special group of VisualLynux files. For example, the .vlm files contain
information about project options and tools. These files should not be edited or
deleted.

Workspaces

A group of projects (or a single project) constitutes a workspace. A workspace has
two main functions:

• It represents several projects as a group in the Visual C++ Workspace
window. It allows quick switching between projects in the same group.

• It controls dependencies between projects.

A new project can be created in a new workspace. A project can also be created in
an existing workspace. An empty new workspace can be created using the File/New
menu item. Only one workspace can be active (open) at a given moment. The
Visual C++ workspace window displays all projects in the workspace.

The current project is highlighted in the Visual C++ workspace window. When you
start a building process, Visual C++ builds only the current process. If it depends
on other processes in the workspace, first the processes on which it is dependent is
built before the current process is built.

A workspace is described by a .dsw file. A project is described by a .dsp file.
These files have formats defined by Visual C++ and should not be edited.

Workspace and Project Directories
The .dsw file resides in the workspace directory. The .dsp file and other
VisualLynux project files reside in the project directory. The user source and data
files are also usually created in the project directory. While it is recommended that
all project files are managed within the same directory, the user can create files in
other directories or add files from other directories to the project.

NOTE: VisualLynux 4.0 use a different format for its internal project files from
VisualLynx 1.x. If a project created in VisualLynx 1.x is opened (using the
File/Open workspace menu item), a warning message appears. explaining how to
run the VLConvert.exe utility to convert internal file formats.
4 VisualLynux User’s Guide

Wizards

The first project of a workspace is usually created in the workspace directory; in
this case the workspace directory and the project directory are the same. All
subsequent projects are created in a directory specified by the user, usually a
subdirectory of the workspace directory. The name of the project directory becomes
the name of the project.

The current directory is where the build process is initiated. In general, this is the
project directory of the project being built. If the current project depends on other
projects in the workspace, the current directory is switched to account for the
project being built currently.

Wizards

A VisualLynux wizard is a special component that creates a VisualLynux project.
The three VisualLynux wizards and the project types they create are listed in the
table below:

A wizard displays dialog boxes that help the user create new projects (of
predefined types). The user can create an empty project and add necessary files
later. A project can also be created using template files and edited according to
requirements. In both cases the VisualLynux wizard creates its own specific project
environment depending on the project type and saves it in a .vlm file. This file
contains information about project goals and configurations.

NOTE: VisualLynux does not support mixed workspaces, i.e., workspaces that
contain both VisualLynux and standard Visual C++ projects.

Table 1-1: Wizards and Project Types

Wizard Project Type Operating System

VisualLynux Application
Wizard

C User Application
C++ User Application
X11/Motif Application
Device Driver
Static Library

LynxOS, BlueCat Linux
LynxOS, BlueCat Linux
LynxOS
LynxOS, BlueCat Linux
LynxOS, BlueCat Linux

VisualLynux LynxOS
Kernel Wizard

Regular LynxOS Kernel
(includes Kernel
Downloadable Image, KDI)

LynxOS

VisualLynux Import Wizard VisualLynux make project LynxOS, BlueCat Linux
VisualLynux User’s Guide 5

Chapter 1 - Introduction

Never modify the .vlm file directly. Instead use the Project Settings dialog box by
clicking on the Project/Settings menu item, or the Project Settings icon in the
VisualLynux toolbar.

The first two wizards are invoked using the menu sequence to create a new project.
The third wizard is invoked by clicking the Import button in the VisualLynux
toolbar. The Import wizard creates a project from LynxOS or BlueCat Makefile.
The VisualLynux make project differs from other VisualLynux projects in that it
doesn’t provide the Project Settings dialog box to set or modify compiler and linker
options. Imported projects use the make tool that runs a LynxOS or BlueCat Linux
Makefile in a particular VisualLynux/CDK environment. The user can edit the
Makefile as needed.

Configurations
A project may contain one or more configurations. The configuration defines how
to build the project goal(s). The user can create and modify configurations using
Project Settings. Project configurations may differ only in target configurations,
project goals, project options, or any combination of these elements. The project
configuration specifies the following information:

• The target operating system (LynxOS or BlueCat)

• The target platform (e.g. x86, PPC, ARM)

• The target object format (e.g. coff, elf, xcoff)

• Project goals

• Project options

VisualLynux wizards generate configurations during project creation. The wizards
provide a list of supported target configurations, depending on the project type.
The target configuration defines the target operating system and the target
platform. The object format is also defined because only one object format is used
per combination of target configuration and project type.

Project options determine how to build the project goals. Options are available for
the project main tool used to build the main goal. There are also options for other
project tools, for example, the compiler used to build object files. These options
can be modified for all secondary goals, or for each secondary goal.

A project can contain several configurations with different target configurations, or
(in the case of Device Driver or kernel projects) all project configurations must
have the same target configuration. VisualLynux wizards usually create more than
one configuration for each target configuration for Debug and Release mode.
6 VisualLynux User’s Guide

Terminology

These two configurations differ only in the options for project tools. For example,
the Debug configuration adds the options -g -D_DEBUG for the compiler.

Terminology

Target - a system (such as a telecommunication switch node or an airplane
navigation device) that renders a specific function (from transmitting data over the
network to controlling an airplane subsystem) - A target system includes computer
hardware with input/output devices, the operating system, and applications.

Target Platform - The type of computer architecture used for a particular target -
VisualLynux supports various target platforms (x86, PowerPC, MIPS, ARM, SH3,
XScale, etc.)

Board - Each target platform can have several hardware configurations
(combinations of motherboard, I/O devices, buses, etc.) called boards.

BSP - Board Support Package -

Cross Development - A development paradigm where applications are developed
and debugged on a system (host), other than the board/platform (target) that they
are deployed on. Development can be performed entirely on the host. Debugging
can take place on both the host and target, with the host providing much of the user
support, and the target executing a debug server program that communicates with
the host debugger.

CDK - Cross Development Kit - A LynuxWorks deliverable for a particular target
configuration and host platform - It consists of a Board Support Package (BSP)
and cross development tools for the host platform. The tools include compilers,
linkers, shells, utilities, etc. needed for embedded application development. CDKs
also include the CYGWIN package, which contains common UNIX tools for
Windows systems like bash, make, cp, ls, mount, and a dynamic link library.

Project - The basic unit of application development under VisualLynux consisting
a main goal representing the project result

Goal - Central or subsidiary purpose of a project, defined in terms of a specific file,
e.g., an application, driver, or object file.

NOTE: Items are ordered for easy comprehension rather than alphabetically.
VisualLynux User’s Guide 7

Chapter 1 - Introduction

File - Files included as part of a project (such as C or C++ source files, header files,
and script and data files) to build project goals, and additional VisualLynux files
containing project summaries and information.

Workspace - VisualLynux grouping of projects to manage switching among
associated projects and dependencies between them - A workspace can contain
none, one, or several projects. However, only one workspace can be active at a
time. Thus, at any given point you work with a particular group of related projects.

Project Configuration - Information contained in a .vlm file pertaining to target
configurations, target platform, object format, target operating system, project
primary and secondary goals, and project options (tools selected for goals) - A
project can contain more than one configuration.
8 VisualLynux User’s Guide

CHAPTER 2 Getting Started
Prerequisites

Users of VisualLynux 4.0 should be familiar with the Microsoft Visual C++, the C
programming language, programming in the Windows environment. They should
also be familiar with the C++ programming language for developing C++
application programs for target systems.

This guide assumes that you have installed Microsoft Visual C++, the LynxOS or
BlueCat Linux cross development system, and VisualLynux. (Please refer to the
LynxOS Installation Guide, the LynxOS Installation Guide, or the BlueCat Linux
User’s Guide for installation instructions.)

Online help is provided with Microsoft’s Visual products. For specific questions
regarding the operation of the Microsoft Visual Studio 6.0 Development System
and Visual C++ Version 6.0, please refer to release-specific help guides.

System Requirements

The minimum recommended system configuration for VisualLynux is:

• Windows 98, NT, ME, or 2000

• Microsoft Visual C++, Version 6.0 (or higher), Standard Edition

• 32 MB (or more) RAM

NOTE: This document does not cover LynxOS or BlueCat Linux cross
development on a Windows machine that does not have VisualLynux installed. For
additional information on using the Windows cross development system for
LynxOS or BlueCat Linux, please refer to appropriate product documentation.
VisualLynux User’s Guide 9

Chapter 2 - Getting Started

• 250 MB of disk space (This estimate does not include the disk space

required for BlueCat Linux or LynxOS cross development systems.)

VisualLynux leverages the framework of the Microsoft Visual Studio 6.0
Development System found in Visual C++, Version 6.0.

VisualLynux requires installation of any of the following versions of Microsoft
Visual C++:

• Microsoft Visual C++, Version 6.0, Standard Edition

• Microsoft Visual C++, Version 6.0, Professional Edition

• Microsoft Visual C++, Version 6.0, Enterprise Edition

Package Contents

The VisualLynux package contains the following components and documentation:

A software CD-ROM containing:

• VisualLynux

• VisualLynux Online Help

- VisualLynux Release Notes

- VisualLynux User's Guide

- LynxOS man pages

- BlueCat Linux man pages

- GNU documentation set

• License Agreement

Configuring VisualLynux

Before working with VisualLynux you need to register target Cross Development
Kits (CDKs) installed on your host machine. At least one CDK must be registered
before you can use VisualLynux. The registration process is performed by the
VisualLynux Configuration Utility invoked during installation. You might need to
run this utility from the Start menu in the following cases also:

• When a new CDK has been installed on your host computer
10 VisualLynux User’s Guide

VisualLynux Configuration Utility

• When an existing CDK has been moved to another directory

• When an existing CDK has been uninstalled

The VisualLynux Configuration Utility collects necessary data and stores it in the
Windows Registry. The data then becomes available to other VisualLynux
components (VisualLynux Application wizard, VisualLynux AddIn Tools,
Debugger, etc.).

VisualLynux Configuration Utility

The VisualLynux Configuration Utility sets up necessary configuration data for
VisualLynux. This includes information about supported operating systems,
available Cross Development Kits (CDKs) installed on your host machine,
installation directories for every CDK, and CYGWIN programs used by the build
tools (compiler, linker, make utility, and so on).

You must also use the Configuration Utility to change the current operating system
version used by VisualLynux, to remove configuration data for uninstalled CDKs,
or to modify the installation directory (if a CDK has been moved).

In summary, the Configuration Utility:

• Collects configuration data related to installed LynxOS CDK(s) and/or
BlueCat Linux Cross Development Tools (CDTs)

• Writes collected data to the Windows Registry to make it accessible to
other VisualLynux components

• Unregisters VisualLynux 1.x, if installed

• Prepares a mount table that includes mountpoints used by CDK tools

Invoking the Configuration Utility

When the VisualLynux installation program first invokes the Configuration Utility,
the dialog box shown in the next figure appears. Empty check boxes in the General
page imply that the Configuration Utility has not found any configuration data in
the Registry. Check an appropriate box to set up configuration data for a particular
operating system.

If configuration data for an operating system has been found, the appropriate box is
checked and the utility displays additional property pages.
VisualLynux User’s Guide 11

Chapter 2 - Getting Started
Figure 2-1: Configuration Utility Initial Screen

Selecting Cancel closes the Configuration Utility. If you click OK without checking
any boxes, the message in the following figure appears. VisualLynux, however,
will not be able to function properly.

Figure 2-2: CDK Installation Message

Selecting Yes unregisters CDKs that have been previously registered; selecting No
returns you to the previous dialog box. Depending on the boxes checked in the
Configuration Utility General page, additional pages appear. Select an appropriate
page to edit corresponding data.
12 VisualLynux User’s Guide

LynxOS CDK Configuration
Figure 2-3: Configuration Data for Target OS

To unregister all CDKs for a particular operating system (LynxOS or BlueCat
Linux), uncheck the appropriate box. To safeguard against the accidental removal
of all registration data, when you press OK, the Configuration Utility displays the
dialog box shown below:

Figure 2-4: Message Box to Unregister CDKs

LynxOS CDK Configuration

To edit configuration data for installed LynxOS CDKs, select the LynxOS CDK(s)
property page. The following dialog box appears:
VisualLynux User’s Guide 13

Chapter 2 - Getting Started
Figure 2-5: Lynx CDK(s) Property Page

Because all LynxOS CDK files that depend on a particular target configuration
(board) have different names, it is safe to install all LynxOS CDKs under the same
root installation directory. You can also install LynxOS CDKs for different OS
versions under the same root installation directory, because the CDK tree has
branches for different OS versions (3.1.0a and 3.1.1).

However, VisualLynux works with only one version of the operating system for
LynxOS CDKs at a time. To specify a different version of the OS, you must run the
Configuration Utility again.

CDKs occupy a significant amount of disk space, and therefore, it may not be
possible to install all LynxOS CDKs under the same installation tree. If so, you can
install some CDKs in another root installation directory.

However, VisualLynux can work with only one LynxOS CDK root installation
directory at a time. To switch installation directories, you must run the
Configuration Utility again.

NOTE: The Configuration Utility recognizes only target platforms, not target
configurations.
14 VisualLynux User’s Guide

BlueCat Linux CDT Configuration

The next table describes the CDK configuration controls.

BlueCat Linux CDT Configuration

To set up configuration data for BlueCat Linux Cross Development Tools (CDTs)
installed, check the appropriate box in the Configuration Utility General page and
select the BlueCat CDT(s) property page. The following dialog box appears:

Table 2-1: LynxOS CDK Configuration

Control Description

Current OS version

Select the current LynxOS version using this drop-down
list. VisualLynux can work with only one version of a an
operating system at a time. You must account for projects
built for different versions of LynxOS.
Select version 3.1.0 for both LynxOS 3.1.0 and 3.1.0a.
Controls change values depending on the version selected.

LynxOS CDKs

installation directory

Enter the root installation directory path for installed
LynxOS CDKs. Note that the LynxOS installation structure
assumes that all CDKs for a particular OS version are
installed in the same directory tree and have the same root
installation path name. The platform-specific part of the
CDK tree begins in root/usr/lynx/platform
where root is the root installation name and
platform is the platform name.
For example, if the LynxOS root installation directory is
E:\Lynx, the PowerPC CDK resides in a platform-
specific subtree at E:\Lynx\usr\lynx\ppc. Use
Browse to search for the LynxOS root installation
directory.

LynxOS Cross

Development Kits

installed

This list box enumerates all supported target platforms for
the selected LynxOS version. Check all target platforms
installed on your host computer.
If you uncheck a previously installed target platform,
configuration data for the corresponding CDKs is removed
from the Registry and you cannot build LynxOS projects
for that platform.
VisualLynux User’s Guide 15

Chapter 2 - Getting Started
Figure 2-6: BlueCat Linux CDT(s) Property Page

The Configuration Utility recognizes only target platforms, not target
configurations, implying that VisualLynux uses only one BlueCat Linux CDT for a
given platform at a time. Because BlueCat Linux CDTs are installed in separate
installation directories, run the Configuration Utility to switch between BlueCat
Linux CDTs for a given platform.

VisualLynux works with only one version of an operating system for a given
BlueCat Linux CDT at a time. You must rerun the Configuration Utility to switch
between OS versions and installation directories of a BlueCat Linux CDT for a
given platform.

Because the BlueCat Linux installation tree does not have OS version-dependent
folders, you need not change or unregister installed CDTs for other platforms until
you have them for different OS versions. In this case, VisualLynux works at a time
with only one set of CDTs related to the current OS version.
16 VisualLynux User’s Guide

CYGWIN Installation

The table below shows the configuration controls for BlueCat Linux CDKs:

CYGWIN Installation

The BlueCat Cross Development Tools (CDT) installation places the CYGWIN
binaries into a different directory from that of the VisualLynux installation.
Therefore, you need to specify the root CYGWIN directory. To do so, select the
CYGWIN Installation property page. Unless the CYGWIN installation has been
moved, you need not change the default value (C:\cygwin32).

Table 2-2: BlueCat Linux CDK Configuration

Control Description

Current OS version

Select the BlueCat Linux version for which CDTs are
installed on your computer. VisualLynux can only work
with one version of a given operating system at a time. You
must rerun the Configuration Utility to build projects
targeted for a different version of BlueCat Linux.

BlueCat 3.01 Cross

Development Tools

1. BlueCat 3.0 and BlueCat 3.1 are both registered as BlueCat 3.0 in the VisualLynux
configuration.

This list box displays supported CDTs for the selected
version of BlueCat Linux. Check every installed target
platform. To unregister a CDT that has been uninstalled,
uncheck the appropriate box.

Installation directory

for

Enter the name of the root directory in which the selected
BlueCat Linux CDT has been installed.
Note that BlueCat Linux configuration requires that the
installation directory be specified for each installed target
platform.
Use the Browse button to look for the installation directory.
VisualLynux User’s Guide 17

Chapter 2 - Getting Started
Use the Browse button to look for the CYGWIN installation directory.

When you click OK, the Configuration Utility verifies that the directory name is
valid and that the cygwin1.dll library can be found. If the path does not exist,
the following message box is displayed (see figure below). Change the directory as
appropriate.

NOTE: When only LynxOS CDKs are installed, the CYGWIN path name is
%LynxOSInstallDir%\usr\bin, where %LynxOSInstallDir% is the
installation directory entered in the LynxOS CDK(s) property page for all LynxOS
CDKs.

CAUTION! Continuing may break VisualLynux functionality.
18 VisualLynux User’s Guide

Unregistering VisualLynx 1.x
Figure 2-7: CYGWIN Error Message

Unregistering VisualLynx 1.x

The VisualLynux Configuration Utility checks if VisualLynx 1.0 or 1.1 has been
installed on your computer. Because VisualLynux 4.0 replaces VisualLynx 1.x and
extends its functionality, the Configuration Utility unregisters VisualLynx 1.x. In
this case the following dialog box appears:

Figure 2-8: Unregistering VisualLynx

Preparing a Mount Table

Some CDK tools require specific mount points. The Configuration Utility sets up
the following mountpoints to provide valid environments for such tools:

NOTE: If you have VisualLynx 1.x projects, use the Project Conversion Utility to
convert them to the VisualLynux 4.0 format.
VisualLynux User’s Guide 19

Chapter 2 - Getting Started

The table below describes the LynxOS CDK tools mount points:

The Configuration Utility sets appropriate mount points and notifies you with the
dialog box shown in the next figure.

Figure 2-9: Mountpoints Screen

Launching the VisualLynux Application and Kernel
Wizards

The VisualLynux Application Wizard and the VisualLynux Kernel wizard create a
new project through a series of dialog boxes or a wizard (see next figure). They

Table 2-3: Mount Table for CDK Tools

Mountpoint Points to

/bin CYGWIN utilities/commands subdirectory

/usr/bin CYGWIN utilities/commands subdirectory used by
LynxOS CDKs

/etc CYGWIN etc subdirectory

/usr/lynx LynxOS CDK subtree

CAUTION! Do not change these mountpoints when working in a command line
environment as this may break CDK functionality.
20 VisualLynux User’s Guide

Launching the VisualLynux Application and Kernel Wizards

allow a programmer to select the type of project to be developed and specify its
parameters.

Figure 2-10: VisualLynux Application Wizard

To run the Application wizard or Kernel wizard to create a new project:

1. Select File/New in the Visual Studio menu bar.

2. Select the Projects tab in the New dialog box. The left pane of the dialog
box displays the Wizards available.

3. Select VisualLynux Application Wizard or VisualLynux LynxOS Kernel

Wizard.

4. Next, enter a name for the new project. Be sure to specify the location for
the project. The project name is used to derive many of the project’s
C/C++ function names and the project directory name, and should,
therefore, conform to ANSI C/C++ naming conventions.

Do not specify names with blank spaces.

NOTE: If the Application wizard or the Kernel wizard do not appear in the left
pane, reinstall VisualLynux.
VisualLynux User’s Guide 21

Chapter 2 - Getting Started

5. To add the new project to the current workspace, check the Add to current

workspace radio button. Ensure that the current workspace is empty or
contains only VisualLynux projects.

When the Kernel wizard is invoked, the Create new workspace radio
button is automatically checked, and the Add to current workspace button
is disabled. This is because the Kernel wizard always creates a separate
kernel workspace that can contain several dependent projects.

The Platforms control at the bottom right of the dialog box always
contains a checked LynuxWorks item when the Application wizard or
Kernel wizard is selected. It denotes that a new project is targeted to the
LynuxWorks operating systems (BlueCat Linux or LynxOS).

6. Click OK to launch the Application wizard or Kernel wizard.

The following section describes project creation using the Application
wizard. For a detailed description of the Kernel wizard, see Chapter 6,
“LynxOS Kernel Wizard” on page 79.

Overview of Project Creation Process

The starting point of a project is selecting a project type using the Application
wizard. The project type selected determines project goals and tools. The
Application wizard provides a specific set of dialog boxes for each project type.
Please refer to Chapter 5, “VisualLynux Application Wizard” for specific details on
each project type.

The lower portion of the dialog box displays the list of target configurations
(LynxOS or BlueCat Linux, target platform) for which cross development tools are
available. Note that the list of configurations depends on the type of project
selected in the Project Type list. If cross development tools or tools for a particular
project type are not installed on your computer, the Target Configurations list
displays the appropriate message.

Select and check at least one configuration. If not, the Application wizard displays
a message and returns to the Step 1 page.
22 VisualLynux User’s Guide

Overview of Project Creation Process
Figure 2-11: Selecting Application Type

Press the Enter key or press Next to proceed. Follow the instructions in the dialog
boxes that follow. The following figure is an example of what appears if you select
C User Application from the list of project types. For details on other project types,
refer to Chapter 5, “VisualLynux Application Wizard”
VisualLynux User’s Guide 23

Chapter 2 - Getting Started
Figure 2-12: C User Application Types

If the Finish button is selected on any of these dialog boxes, the Application wizard
displays selected settings in a summary dialog box (see next figure). This dialog
box offers a final opportunity to go back and change settings.
24 VisualLynux User’s Guide

Building a Project
Figure 2-13: Summary Dialog Box

If Cancel is selected, the summary dialog box disappears and you are returned to
the previous dialog box for more changes. If OK is selected, a new project (with
template files to modify and compile) is created. The project tree appears in the left
pane of the Visual C++ window. The Class page shows the structures and functions
used in the project, and the File View page shows project files you can edit.

Building a Project

To build a project, press the F7 key or select the Build->Build LynuxWorks menu
item. The LynuxWorks compiler and the linker create the result (an executable,
driver, library, or kernel, depending on the project type) in the output directory.

To view output directories, click the Project Settings icon in the VisualLynux
toolbar, use the Project Settings menu item, or press the Alt F7 keys. The General
page displays the directory names for the project output (intermediate files and
results).

The output window, which usually resides at the bottom of the Visual C++ main
window, contains information on how the project has been compiled and linked.
VisualLynux User’s Guide 25

Chapter 2 - Getting Started

If the LynuxWorks compiler or linker finds an error, click on the error message,
and the editor displays the origin of the error. For details, refer to Chapter 3,
“VisualLynux Build Process”

Now, you are ready to debug the project result on a target machine. First, however,
you must define a target machine for VisualLynux. Click on the Target

Administration button.

The LynuxWorks debugger can be started after the target machine has been
defined.

Be sure to set up an account on the target machine. If you do not have one already,

click the Telnet button in the VisualLynux toolbar, and use a telnet session to
create an account.

Debugging a Project

There are two varieties of the LynuxWorks version of the GNU GDB and Insight
debuggers: GDB and Total/db. The GDB debugger has a text interface, Total/db
has a graphical interface that facilitates the debugging process. Launch the
appropriate debugger by clicking on the corresponding VisualLynux toolbar

button: Debugger or Total/db. (see Chapter 7, “VisualLynux AddIn
Tools” for descriptions of toolbar icons).

Both debuggers create a session with the target machine, copy the executable to the
target machine into project directory defined using the Target Administration
wizard, and launch GDBSERVER on the target machine. For additional
information, refer to Chapter 7, “VisualLynux AddIn Tools”

If you locate a bug, edit the corresponding source file in the VisualLynux C++
editor and rebuild the project. Then run the debugger again.

NOTE: See the Target Wizard section in Chapter 10, “VisualLynux Target
Administration” for information on defining a target machine.

NOTE: See Chapter 7, “VisualLynux AddIn Tools” for descriptions of toolbar
items.
26 VisualLynux User’s Guide

CHAPTER 3 VisualLynux Build Process
Building Project Targets

This chapter describes the process used by VisualLynux to create project goals.

• VisualLynux always builds the main project goal in two stages: First, it
processes source files, and second, it performs project-level build steps (if
all files have been processed successfully). Usually VisualLynux
processes source files using the LynuxWorks compiler, and uses the main
project tool to build the main project goal.

When a project is created by VisualLynux Application wizard, a default
compiler is associated with the source files, depending on their file
extension. The project type defines the project-level tool (linker, library,
etc.) used to build the project.

• You can customize the build process using the VisualLynux Settings
dialog box to define Custom Build steps for a file or a project in a specific
configuration.

• You can build or rebuild the project goal (executable, library, and so on)
that a project configuration defines. When you invoke a build (by
pressing F7 or selecting the Build/Build LynuxWorks menu command),
VisualLynux builds the current project configuration. VisualLynux
processes only files that have changed since the last build.

The current project configuration is displayed in the Visual C++ Build
toolbar. You can switch to another project configuration using the drop-
down list on this toolbar, or using the Build/Set Active Configuration menu
items. VisualLynux wizards create at least two configurations for each
project (Debug and Release). You can add configurations using the Build/

Configurations menu item.

When rebuilding a project (using Build/Rebuild All or Build/Batch Build
menu commands), VisualLynux processes all the files in the project
VisualLynux User’s Guide 27

Chapter 3 - VisualLynux Build Process

whether they have or have not been changed. Also, you can either build
one project configuration (Rebuild All) or choose multiple configurations
(Batch Build).

Processing Files

To process a file VisualLynux uses either the compiler (the default tool) or the
Custom Build option. Both tools cannot be specified for a particular file
simultaneously. The compiler is associated with a particular source file. This is
done by the VisualLynux wizard during project creation or by the VisualLynux
add-in tools when you have created or inserted a new source file into the project.

VisualLynux uses file name extensions, as shown in the table below, to assign a
default processing tool.

File name extensions are case sensitive. If a capital “C” is the file extension, the
C++ compiler is invoked rather than the C compiler. .CPP is not recognized as a
valid extension, and causes an error. In cases other than those described in the table
above, VisualLynux does not assign a default build tool for a file.

The compiler used to process any or all files in a project can also be changed using
the Settings dialog box. A custom setting can be specified for any file, even if a
default tool is assigned to it. To do so, check the Always use custom build box in the
file-level Property page for a file, and specify the custom build step for it.

VisualLynux always uses the following sequence to process project files:

Table 3-1: File Processing Using File Name Extensions

File Extension Default Build Tool

.c gcc.exe

.cpp g++.exe

.s gcc.exe (gcc.exe invokes the assembler)

.cc g++.exe

.cxx g++.exe

.i gcc.exe

.ii gcc.exe

.C g++.exe
28 VisualLynux User’s Guide

Project-Level Build Steps

1. Custom build steps are performed for all those files for which a custom

build is specified.

2. If all custom build steps are performed successfully or if no custom
builds are specified, default builds (compiling) are performed for the
remaining files assigned to a default build tool.

Project-Level Build Steps

VisualLynux assigns a main build tool to a project that is created by the
VisualLynux wizard or imported from an external Makefile. Depending on the
project type, VisualLynux assigns these tools as shown in the table below:

NOTE: VisualLynux checks header/source file dependencies only if you check
Generate dependencies in the compiler options (C/C++) dialog box.

Table 3-2: Project Build Steps

Application Type Main Build Step Tool

C Application Linking gcc.exe

C++ Application Linking g++.exe

X/Motif Application Linking gcc.exe

Device Driver Linking ld.exe

Static Library Building library ar.exe

LynxOS Kernel Linking ld.exe (ar.exe to build
intermediate driver and
devices subprojects)
VisualLynux User’s Guide 29

Chapter 3 - VisualLynux Build Process

You can customize a project build by specifying the additional build steps shown in
the next table:

See detailed descriptions of the Pre-link, Custom Build, and Post-build steps in
Chapter 8, “VisualLynux Project Settings”

Build Macros

VisualLynux defines a set of special build macros for use while customizing file or
project builds. Build macros can be used anywhere in the user-defined set of batch
commands in the Custom Build, Pre-Link, or Post-Build steps. Make note,
however, of the format of the command generated after macro expansion.

To specify the macro value anywhere in a command, use its name in parenthesis
with dollar sign ($) as a prefix. For example, $(Output_Dir) is substituted by
the relative output directory name before command execution.

Macros used by VisualLynux are distributed in three categories: global, project-
(configuration-) level, and file-level macros. Although the names of some project-
and file-level macros are the same, their values can change depending on the build
level.

Table 3-3: Additional Build Steps

Build Step Description Execution

Pre-link A set of arbitrary batch commands
executed by a Windows shell

Right before the main build
step (linker or librarian) is
invoked

Custom Build Set of arbitrary batch commands
executed by a Windows shell with the
ability to set up resulting files and
custom dependencies

Right after the main build step
is successfully completed

Post-build A set of arbitrary commands Right after the build process is
finished (including Project
Custom Build step, if any)
30 VisualLynux User’s Guide

Global Macros

Global Macros
Macros of this group have the same values for all project configurations. The table
below shows global build macros and their definitions:

Project (Configuration)-Level Macros
This group of macros have values that change from one configuration to another:

Table 3-4: Global Build Macros

Macro Definition

$(MSDevDir) Fully qualified path to the directory in which the Microsoft
Visual Studio msdev.exe executable resides

$(MSVCDir) Fully qualified path to the directory in which Visual Studio
build tools reside

$(VisualLynuxDir) Fully qualified path to the directory in which VisualLynux
is installed

$(ToolDir) Fully qualified path to the directory in which VisualLynux
tools reside

$(WkspName) Name of the current workspace

$(WkspDir) Fully qualified path to the directory in which a workspace
file (.dsw file) resides

$(ProjDir) Fully qualified path to the directory in which a project file
(.dsp file) resides

$(ProjName) Name of the project (usually the name of a .dsp file
without directory name and extension)

Table 3-5: Project-Level Build Macros

Macro Definition

$(TargetOS) Name of the target OS (LynxOS or BlueCat Linux)

$(TargetOSPrefix) Target OS (LynxOS or BlueCat Linux) prefix in the
directory subtree

$(TargetOSVersion) Version number of the target OS (e.g., 3.1.0a)

$(TARGET_GENERIC) Generic target platform name (x86, MIPS, etc.)
VisualLynux User’s Guide 31

Chapter 3 - VisualLynux Build Process

$(TargetCPU) Target processor name used in directory names for

cross development tools (i386, ppc, etc.)

$(OBJ_FORMAT) Object format code (coff\xcoff\elf)

$(InstallDir) Fully qualified path to the installation directory of
the cross development tools for a particular platform

$(BUILD_ENV_PREFIX) Fully qualified path to the root directory of the cross
development tools for a particular platform

$(TargetPlatformCDKDir) Same as $(BUILD_ENV_PREFIX)

$(GCC) Fully qualified path to the C compiler (gcc.exe)
for a particular platform

$(CPP) Fully qualified path to the C++ compiler
(g++.exe) for a particular platform

$(LD) Fully qualified path to the linker (ld.exe) for a
particular platform

$(AR) Fully qualified path to the library (ar.exe) for a
particular platform

$(MAKE) Fully qualified path to the make utility
(make.exe)

$(BASH) Fully qualified path to the bash shell (bash.exe)

$(Intermediate_Dir) Path to the directory in which intermediate project
results (e.g., object files) are placed, relative to the
project directory

$(Output_Dir) Path to the output directory, relative to the project
directory

$(TargetDir) Path to the directory in which main project goal is
created; usually the same as $(Output_Dir)

$(TargetPath) Project main goal file path, relative to the project
directory

$(TargetName) Project main goal file name (without directory name
and extension), relative to the project directory

$(ProjectPseudoTarget) Special pseudo-target that may be used to force
file/project build step execution

Table 3-5: Project-Level Build Macros (Continued)

Macro Definition
32 VisualLynux User’s Guide

File-Level Macros
File-Level Macros
This is a group of macros that can have different values for different source files.

$(LINKER) Path to linker used to link main project goal (may
not exist for library projects)

$(Objects) List of object files generated as a result of file builds
(DOS path format)

$(UnixObjects) List of object files generated as a result of file builds
(UNIX path format)

$(ExternalInputs) List of files resulting from other projects on which
current project depends

$(LINK_OPTIONS) Linker command line options (as they are passed to
the linker)

$(InputPath) Path to the input file for custom build step, relative
to the project directory; always equal to
$(TargetPath)

Table 3-6: File-Level Build Macros

Macro Definition

$(Intermediate_Dir) Path to the directory in which file processing result is
placed, relative to the project directory

$(InputPath) Relative or fully qualified path to the source file

$(InputName) Name of the source file (without path and extension)

$(InputDir) Fully qualified path to the directory in which source file
resides

$(FileOutputs) List of files generated as the result of file processing (by
default tool or custom build)

$(FileDependency) List of files on which source file depends

Table 3-5: Project-Level Build Macros (Continued)

Macro Definition
VisualLynux User’s Guide 33

Chapter 3 - VisualLynux Build Process

$(COMPILER) Fully qualified path to the compiler used to process this

file (may be empty if compiler is not associated with the
file)

$(COMPILE_FLAGS) Compiler command line options (may be empty if
compiler is not associated with the file)

Table 3-6: File-Level Build Macros (Continued)

Macro Definition
34 VisualLynux User’s Guide

7

CHAPTER 4 VisualLynux Menus
Overview of Menu Structure

Under VisualLynux, the default Visual C++ menus retain their Visual Studio
default behaviors where appropriate. Because this is true for the majority of Visual
Studio menu commands, the following tables detail the differences in menu
selection when using VisualLynux.

VisualLynux Menus

The following is a list of VisualLynux menus available:

File Menu
Edit Menu
View Menu
Insert Menu
Project Menu
Build Menu
Tool Menu
Window Menu

All Help menu selections apply only to Microsoft Visual C++ projects. For
VisualLynux projects, select Help in the VisualLynux Toolbar.

NOTE: The VisualLynux Application wizard can guide the developer set up a new
project file. The first project file is inserted into the default workspace. Following
projects can be inserted into the current workspace. New workspaces are created
using the File->New->Workspace tabs. This is the default behavior of Visual Studio.
The File->New->Other Documents sequence allows the creation and normal
functioning of files not applicable to VisualLynux projects.
VisualLynux User’s Guide 35

Chapter 4 - VisualLynux Menus

File Menu

All File menu selections and items can be applied to VisualLynux. The File->New
menu item displays the New dialog box where some of the file types in the Files
page, all project wizards except VisualLynux wizard in the Project page, and all
documents in the Other Documents page are not used in VisualLynux projects.

Edit Menu

The table below lists the commands available on the Edit menu:

Table 4-1: Edit Menu Commands

Submenu Description

Breakpoints Inapplicable to VisualLynux
This command is disabled for VisualLynux projects.

List Members Default Visual Studio Behavior
Part of the IntelliSense options that speed up the creation of C++
code - this feature displays a list of valid member variables or
functions for the selected class or structure. Selecting from the
list inserts the member into your code.

Type Info Default Visual Studio Behavior
Part of the IntelliSense options that speed up the creation of C++
code - this feature displays the complete declaration for any
identifier in your code. If the mouse cursor is reset over the
identifier, its declaration appears in a popup window. This feature
depends on compiling the application with browser information
on.

Parameter Info Default Visual Studio Behavior
This feature displays the complete declaration, including a
parameter list, for the function to the left of the cursor. The
parameter in bold indicates the next parameter required as you
type the function call.

Complete Word Default Visual Studio Behavior
This feature types the rest of a variable or function name once
enough characters have been entered to distinguish the term. If
typed input has none, or more than one possible match, invoking
Complete Word displays the Members list, which finds the term
wanted.
36 VisualLynux User’s Guide

View Menu

View Menu

The following table shows the commands available on the View menu:

Table 4-2: View Menu Commands

Submenu Behavior

ClassWizard Inapplicable to VisualLynux
This wizard works only with applications that use MFC classes.
It makes certain routine tasks easier: such as creating new
classes, defining message handlers, overriding MFC virtual
functions, and gathering data from controls in a dialog box, form
view, or record view.

Resource Symbols Inapplicable to VisualLynux
This brings up the Resource Symbol Browser for managing
Microsoft Studio Resource files. These resource files are not
used on LynxOS or BlueCat Linux. Although VisualLynux does
not use Microsoft resources, this command functions for native
Windows projects.

Resource Includes Inapplicable to VisualLynux
This brings up a dialog box that prompts for the resource files to
be included in a project. LynxOS and BlueCat Linux do not use
resource files.

Debug Windows Inapplicable to VisualLynux
This sliding menu provides a way to bring Microsoft Debugger
windows into view. These include windows to view watchpoints,
callstacks, memory, variables, registers, and disassembly within
the debugger. As VisualLynux does not use these windows, they
are disabled for VisualLynux projects.
VisualLynux User’s Guide 37

Chapter 4 - VisualLynux Menus

Insert Menu

The following table shows the Insert menu commands:

Project Menu

This table shows the Project menu commands:

Table 4-3: Insert Menu Commands

Submenu Behavior

New Class Default Visual Studio Behavior
This invokes a dialog box that allows you to add a new generic
class to a C++ project.

New Form Inapplicable to VisualLynux
This is the database wizard for creating forms. This item is
disabled in the VisualLynux workspace.

Resource Inapplicable to VisualLynux
This adds Windows Resources to a project. This item is disabled
in the VisualLynux workspace.

Resource Copy Inapplicable to VisualLynux
This copies a Windows Resource. This item is disabled in the
VisualLynux workspace.

File As Text Default Visual Studio Behavior
This allows insertion of a selected file at the insertion point in an
open source file.

New ATL Object Inapplicable to VisualLynux
This menu item allows creation of a new ATL (ActiveX Template
Library). This item is disabled in the VisualLynux workspace.

Table 4-4: Project Menu Commands

Submenu Behavior

Setting Default Visual Studio Behavior
In the VisualLynux workspace this invokes the VisualLynux

Project Settings dialog box instead of the default Visual Studio
Settings dialog box.
38 VisualLynux User’s Guide

Build Menu

Build Menu

The following table shows the Build menu commands:

Table 4-5: Build Menu Commands

Submenu Behavior

Compile

selected_file
Default Visual Studio Behavior

This calls the current compiler to build the selected_file.
In the context of a VisualLynux project, the correct version of
GCC or G++ is called. In the context of a Microsoft native
project, this implies calling the Microsoft compiler.

Build

project_target
Default Visual Studio Behavior

This builds the entire project_target, bringing the target
up to date by compiling and linking as necessary. In the context
of a VisualLynux Project, the correct version of GCC or G++ is
called to compile each source file, and the proper tool (linker or
librarian) is called to create the target file.

Rebuild All Default Visual Studio Behavior
This essentially does a Clean, followed by a Build of the
project_target.

Batch Build Default Visual Studio Behavior
This opens a dialog box to select the project configurations to
be built in a single Build instance and allows for multiple
projects to be built together.

Clean Default Visual Studio Behavior
This removes any existing object files and executables and
marks all files as needing to be rebuilt.

Start Debug Default Visual Studio Behavior
This invokes the Microsoft debugger and can direct it to Go,
Step Into, Run to cursor, and Attach to process. In the context
of a VisualLynux Project, this invokes the GDB debugger for
the active project.

Debugger Remote

Connection

Default Visual Studio Behavior
This allows remote connection setup for the Microsoft
debugger. It cannot be used by LynuxWorks debuggers. In a
VisualLynux project, it invokes the VisualLynux Target
Administration tool.
VisualLynux User’s Guide 39

Chapter 4 - VisualLynux Menus
Tool Menu

The following table displays the Tool menu commands:

Execute

file.exe
Default Visual Studio Behavior

This executes the project executable on the target machine. This
command sends the executable produced by current project to
the default target machine (set by the Target Administration
tool) and executes it using a remote shell.

Set Active

Configuration

Default Visual Studio Behavior
By default, the VisualLynux Application wizard creates several
configurations for every new project. This dialog box prompts
the developer to select the configuration to be current and built
by default.

Profile Inapplicable to VisualLynux
This generates profiling information for a Windows application.
This item is disabled in a VisualLynux project.

Table 4-6: Tool Menu Commands

Submenu Behavior

Setting Source

Browser

Default Visual Studio Behavior
This launches the Microsoft Class and Symbol browser, allowing
the developer to browse the class and symbolic information (like
the class definition and reference, member function, structure,
member field, and variable). All the behaviors are exactly same
as the VC++. To use this feature, the browser information files
must be generated for the project sources. To turn on the
generation of browser information, use the VisualLynux Project

Settings dialog box (Browser and C/C++ pages).

Close Source

Browser File

Default Visual Studio Behavior
Closes the Source Class and Symbol browser.

Visual Component

Manager

Inapplicable to VisualLynux
This launches the Visual component manager tool, which
maintains a database of reusable components that developers can
share.

Table 4-5: Build Menu Commands (Continued)

Submenu Behavior
40 VisualLynux User’s Guide

Tool Menu

Register Control Inapplicable to VisualLynux

This registers an add-in or plug-in component to the Visual
Studio environment.

Error Lookup Inapplicable to VisualLynux
This looks up Microsoft defined error numbers and reports the
corresponding textual error message.

ActiveX Control Test

Container

Inapplicable to VisualLynux
This utility facilitates testing of ActiveX controls.

OLE/COM Object

Viewer

Inapplicable to VisualLynux
This is a viewer utility to browse OLE/COM objects.

SPY++ Inapplicable to VisualLynux
This tool provides a graphical view of the native Win32 systems
processes, threads, windows, and window messages. Although it
does not look at items on a LynxOS/BlueCat Linux target, it can
still be used to monitor tools running on the Windows cross
development host.

MFC Tracer Inapplicable to VisualLynux
This allows tracing of MFC calls within the Microsoft Debugger.

InstallShield Wizard Inapplicable to VisualLynux
This helps create an InstallShield version of a native Windows
application. This is then used to install the application on
Windows systems.

Table 4-6: Tool Menu Commands (Continued)

Submenu Behavior
VisualLynux User’s Guide 41

Chapter 4 - VisualLynux Menus
Window Menu

All menu items and selections in the Window menu function are the same for both
Microsoft C++ and VisualLynux projects.

Customize Default Visual Studio Behavior
Allows for customization of the Toolbars and Tools menu. The
developer can add different toolbars and icons to the IDE display
as needed. The VisualLynux toolbar can be added using this
feature.

Options Default Visual Studio Behavior
This pops up a multi-tab dialog box to allow options to be set for
the following features:
• Editor

• Tabs

• Debug

• Compatibility

• Build

• Directories

• Source Control

• Workspace

• DataView

• Macros

• Help Systems

• Format

All the options function as normal under the VisualLynux IDE
except for the Debug options, which apply only to the Microsoft
debugger.

Table 4-6: Tool Menu Commands (Continued)

Submenu Behavior
42 VisualLynux User’s Guide

CHAPTER 5 VisualLynux Application Wizard
Launching the VisualLynux Application Wizard

The VisualLynux Application wizard creates a new project through a series of
dialog boxes. You can select the application type and specify new project
parameters.

To launch the VisualLynux Application wizard and create a new project:

1. Select File/New in the Visual Studio menu bar.

2. Select the Projects tab in the New dialog box.

Figure 5-1: VisualLynux Application Wizard
VisualLynux User’s Guide 43

Chapter 5 - VisualLynux Application Wizard

3. The left pane of the dialog box displays the wizards available. Select

VisualLynux Application Wizard.

4. Next, enter a name for the new project. Be sure to specify a proper
location for the project. This is the full path of the project directory. The
project name is used to derive many of the project’s C/C++ function
names and should, therefore, conform to ANSI C/C++ naming
conventions. Do not specify names with blank spaces.

5. To add the new project to the current workspace, check the Add to current

workspace radio button. Be sure that the current workspace is empty or
contains only VisualLynux projects.

The Platforms control at the bottom right of the dialog box always
contains a checked LynuxWorks item when VisualLynux Application Wizard
is selected. It shows that a new project is targeted to one or more of the
LynuxWorks operating systems.

6. Click OK to launch the Application wizard.

Selecting a VisualLynux Project Type

The VisualLynux Application wizard facilitates the creation of a new VisualLynux
project based on some sample code and creating a typical VisualLynux project
environment depending on the project type. It offers six project types to choose
from as a starting point.

NOTE: If the VisualLynux Application wizard does not appear in the left pane,
reinstall VisualLynux.
44 VisualLynux User’s Guide

C User Application Wizard
Figure 5-2: Selecting a Project and a Configuration

The list in the bottom right of the dialog box displays the target configurations for
which cross development tools are installed on the host machine. Note that the
configurations depend on the type of project selected in the Project Type list at the
top right of the dialog box.

If no cross development tools or tools for a particular project type are installed on
your computer, the Target Configurations list displays an appropriate message.

If no target configuration is selected, you are returned to the Step 1 dialog box of
the Application wizard.

C User Application Wizard

If you select a C User Application as the Project Type, the Step 2 dialog box of the
VisualLynux Application wizard (see next figure) allows you to choose from three
different C user application types.
VisualLynux User’s Guide 45

Chapter 5 - VisualLynux Application Wizard
Figure 5-3: C User Application Types

The C User application types and functions are shown in the table below:

The first two choices above do not ask for additional information. The
VisualLynux Application wizard proceeds to summarize selections made and the
project is created with the click of the Finish button.

Table 5-1: C User Application Types and Functions

Application Type Function

An Empty C

Project

Creates an appropriate Visual Studio workspace and project files
for a LynxOS or BlueCat Linux targeted C user application, but
does not create any source code files. This is generally used when
existing source code is to be imported into an empty VisualLynux
project.

A Simple C "Hello

World" Application

 Creates a VisualLynux project with a C source file version of the
"Hello World" program as the starting source files.

A Custom C

LynuxWorks

Application

Allows you to create a starting application that contains functioning
code for many LynxOS, BlueCat Linux, and POSIX-based
programming concepts. An additional dialog box assists in
selecting the appropriate template code for your application type.
46 VisualLynux User’s Guide

A Custom C LynuxWorks Application

If A Custom C LynuxWorks Application is selected, click Next to continue
customizing the new project.

A Custom C LynuxWorks Application
The following dialog box appears as Step 3 of the VisualLynux Application wizard
for creating a custom C LynuxWorks application:

Figure 5-4: A Custom C LynuxWorks Application

Any combination of the programming components that appear in the figure above
can be selected. Note that not all features are available for both LynxOS and
BlueCat Linux operating systems. Your selection should correspond to the
configurations selected in the Project Type dialog box.

Also, the target operating system must contain appropriate support for selected
features. For example, if you select Curses, the target BlueCat Linux system must
contain the libncurses.so and libtermcap.so libraries to run the
application.

For each component selected, VisualLynux creates sample code that can be
compiled and executed. If multiple components are selected, all of them are placed
in separate source files within the new project. A main function, which calls all
Component Functions that have been selected, is created.
VisualLynux User’s Guide 47

Chapter 5 - VisualLynux Application Wizard

Selecting Finish from the dialog box creates a summary of selected settings and
allows you a final opportunity to go back and change them.

Figure 5-5: C User Application Summary Dialog Box

Select OK to create the new project that contains the template files to be modified
and compiled. The Cancel button returns you to the previous dialog box.
48 VisualLynux User’s Guide

Component Functions

Component Functions
The following table describes components of a Custom C LynuxWorks
Application, and the functions they demonstrate.

Table 5-2: Component Functions

Component Description Functions to be Demonstrated

POSIX MultiThreaded This generates a section of
code that sets up two threads
and initializes them to
execute a simple function.

pthread_attr_init()
pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_create()
sigaction()
sigemptyset()
alarm()

fork() and exec() This generates a function
that forks a child process and
allows it to execute some
other program, such as
/bin/ls.

fork()
execvp()

POSIX Signal Handler This generates a function
that demonstrates the use of
POSIX signal handling
functions. It creates two
signal handling functions:
one for SIGUSR1, and the
other for SIGALRM. The
process sends itself
SIGUSR1 for 10 seconds
and counts how many signals
are processed.

The POSIX signal set manipulation function
sigemptyset()
and the POSIX signal functions
kill()
sigaction()
alarm()
VisualLynux User’s Guide 49

Chapter 5 - VisualLynux Application Wizard

Condition Variables and
Mutexes

This generates a section of
code that demonstrates the
use of condition variables
and mutexes to synchronize
access to a shared resource.
A multi-thread application
declares a mutex to guard a
shared resource. Threads
take turns locking the mutex,
checking a condition
variable, modifying a shared
resource, sending a
conditional signal to the
other thread, and unlocking
the mutex.

pthread_mutexattr_init()
pthread_mutex_init()
pthread_condattr_init()
pthread_cond_init()
pthread_mutex_lock()
pthread_cond_wait()
pthread_cond_signal()
pthread_mutex_unlock()
pthread_attr_init()
and other standard routines to create threads
and signal handlers

POSIX Semaphores
(for LynxOS only)

This generates a function
that creates a binary
semaphore, opens it and calls
fork(). The child process
waits on the semaphore, and
after the parent unlocks it,
closes the semaphore and
exits.

sem_wait()
sem_open()
sem_unlink()
sem_close()
sem_getvalue()
sem_post()

POSIX Shared Memory
(for LynxOS only)

This generates a function to
set up a shared memory
region that two processes (a
parent and child) can read
and write messages to.

shm_open()
ftruncate()
mmap()
fork()
sched_yield()
close()
shm_unlink()
munmap()

Table 5-2: Component Functions (Continued)

Component Description Functions to be Demonstrated
50 VisualLynux User’s Guide

Component Functions

PIPES This generates a function

that demonstrates two
processes (parent and child)
communicating through a
pipe. A first pipe is created, a
fork() executed, and the
child creates an additional
pipe to run a sub-process.
The child sends all data to
the parent through the pipe.

pipe()
fork()
fread()
close()
popen()
pclose()

Priority Alteration This generates a function
that checks the current
priority of a process and
modifies it to a new priority.

fork()
sched_getparam()
sched_setparam()

Interval Timers
(for LynxOS only)

This application
demonstrates the POSIX.1b
facilities for creating,
reading, and deleting an
interval timer. When the
timer goes off, it calls a
signal handler to wake up the
application.

timer_create()
timer_settime()
timer_gettime()
timer_delete()

POSIX Message Queues
(for LynxOS only)

This generates a function
that shows two processes
(parent and child)
communicating through a
message queue. The parent
sends messages to the child
through the queue.

wait()
fork()
mq_send()
mq_receive()
mq_open()
mq_close()
mq_unlink()

Table 5-2: Component Functions (Continued)

Component Description Functions to be Demonstrated
VisualLynux User’s Guide 51

Chapter 5 - VisualLynux Application Wizard
C++ User Application Wizard

Figure 5-6: C++ User Application Types

Real-Time Events
(for LynxOS only)

This generates a function
that demonstrates the use of
real-time events. It sets up a
signal handler for a given
real-time event, forks a child,
and sends the child the real-
time event.

sigaction()
sigemptyset()
sigaddset()
fork()
sched_yield()
wait()
sigtimedwait()
sigqueue()

Curses This generates a section of
code that uses the curses
functions to control and
update the screen. A small
on-screen animation is
created to demonstrate the
use of curses functions.

initscr()
clear()
move()
clrtoeol()
mvprintw()
refresh()
endwin()

Table 5-2: Component Functions (Continued)

Component Description Functions to be Demonstrated
52 VisualLynux User’s Guide

C++ User Application Wizard

The C++ User Application dialog box in the figure above allows you to choose
from two different C++ user application types (see table below), each designed to
expedite programming.

The VisualLynux Application wizard summarizes selections made and creates the
project when you click the Finish button. At this stage, you have a final opportunity
to go back and change settings.

Table 5-3: C++ User Application Types and Functions

Application Type Function

An Empty C++

Project

Creates an appropriate Visual Studio workspace and project files
for a LynxOS or BlueCat Linux targeted C++ user application.
Does not create any source code files. This is generally used when
existing source code is to be imported into an empty VisualLynux
project.

A Simple C++

"Hello World"

application.

Creates a VisualLynux project with a C++ source file version of the
"Hello World" program as the starting source files.
VisualLynux User’s Guide 53

Chapter 5 - VisualLynux Application Wizard
Figure 5-7: C++ User Application Summary Dialog Box

When you select OK, the new project with the template files to be modified and
compiled is created. The Cancel button returns you to the previous dialog box.

X/Motif Graphical Application Wizard

The purpose of the X/Motif wizard is to help the X11/Motif programmer get
started with writing a graphical application. This is accomplished by modifying
template code to implement many of the common X11 and Motif programming
constructs.

The options below are presented if X/Motif Application and the Next are selected:
54 VisualLynux User’s Guide

X/Motif Graphical Application Wizard
Figure 5-8: X/Motif Graphical Application Types

The table below lists the X/Motif application types available:

NOTE: The X/Motif wizard is available only for the LynxOS operating system.

Table 5-4: X/Motif Graphical Application Types

Application Type Function

An Empty Project Creates an appropriate Visual Studio workspace and project files
for a VisualLynux X/Motif graphical user application but does not
create any source code files. This is generally with existing source
code that is to be imported into an empty VisualLynux project.

A Simple

Application

Creates an appropriate Visual Studio workspace and project files
for a simple X/Motif graphical application. This is a starting
application for a minimal program.

A Custom X/Motif

Application

Allows creation of a starting application that contains functioning
code for many popular widgets. A series of dialog boxes allow for
detailed customization of the X/Motif application, including
selection of a toolbar, menu bar and a status bar.
VisualLynux User’s Guide 55

Chapter 5 - VisualLynux Application Wizard
A Custom X/Motif Application
The Custom X/Motif Application wizard (see next figure) allows you to select an
application with a single top-level window or an application with multiple top-
level windows.

Figure 5-9: Window Levels on a Custom X/Motif Application

The following table shows the Custom X/Motif Application dialog box controls:

NOTE: The first two choices above do not require further information from the
developer. The VisualLynux Application wizard proceeds to summarize the
information collected and create the project.

Table 5-5: Custom X/Motif Application Builder

Feature Function

How many

windows?

Creates an application with either a single top-level window or
multiple top-level windows.

Add Menu Bar Creates an X11 Menu bar. The menu bar contains example menus
such as the common File menu.
56 VisualLynux User’s Guide

A Custom X/Motif Application
Selecting the Next button proceeds to the final X/Motif Custom Application dialog
box.

Figure 5-10: Custom X/Motif Application Final Dialog Box

Add Tool Bar Creates an X11 Tool bar.

Add Status Bar Creates an X11 Status bar.

Add Scroll Bar Creates an X11 Scroll bar.

NOTE: If you select any of the Menu Bar, Tool Bar, or Status Bar items, the Scroll Bar
option is also selected as defined by X11.

Table 5-5: Custom X/Motif Application Builder (Continued)

Feature Function
VisualLynux User’s Guide 57

Chapter 5 - VisualLynux Application Wizard

The following table shows additional features of the X11 Application:

After making selections from the final X11/Motif dialog box, click the Finish
button to complete the new project, or the Cancel button to continue editing project
selections. A summary dialog box that displays project selections and files that are
created and added to the new project is shown.

Device Driver Wizard

The purpose of the Device Driver wizard is to help with writing a new LynxOS or
BlueCat Linux driver. The Device Driver wizard creates template driver files that
can be used for a dynamic or a static device driver. A dynamic device driver is
compiled, linked and loaded separately from the LynxOS or BlueCat Linux kernel
image. Because you do not modify the kernel, the system does not need to be
rebooted when installing/uninstalling the dynamic device driver. A static device
driver can be compiled separately from the LynxOS of BlueCat Linux kernel. To
link it with the kernel, you need to import it to a VisualLynux Kernel Project
(LynxOS only) or use a CDK command line mode to build the kernel (for both
LynxOS and BlueCat Linux).

The dynamic device driver leads to a much faster compile/execute/debug cycle
than the static device driver.

When selecting the Device Driver project type a dialog box offers the driver
template choices depending on the operating system.

Table 5-6: X11 Application Additional Features

Feature Function

Top Level Widget The following choices are available for the top-level widget:
• Drawing Area
• Bulletin Board
• Form
• Row Column
• Paned Window

Additional Code

Support

The user can choose any combination of the following X11
features:
• Suppress XT Runtime Warnings (good for production code).
• Edit Support (good for debugging code)
• X Error Handler (catches X11 error runtime exceptions and

handles appropriately)
• User Translation Support
58 VisualLynux User’s Guide

LynxOS Device Drivers

LynxOS Device Drivers
When you select a LynxOS configuration for the device driver project type in the
Application wizard, the dialog box shown in the next figure appears.

Figure 5-11: LynxOS Device Driver Types

The following table shows LynxOS device driver types:

After choosing a driver template, click Finish to see a summary of project settings.

Table 5-7: LynxOS Device Driver Types

Driver Type Function

An Empty Project

Creates appropriate Visual Studio workspace and project
files for a LynxOS Device Driver. Does not create any
source code files. This is generally used when source
code exists for importing into the VisualLynux project.

Basic Null Character

Device

Creates a Null Character-based driver.

Simple Streams Based

Loopback/Echo Driver

Creates a working Streams Loopback/Echo driver.

Block RAMdisk Driver Creates a dynamically loadable RAMdisk driver.
VisualLynux User’s Guide 59

Chapter 5 - VisualLynux Application Wizard

At this point, the Application wizard creates starting project and source files to be
compiled, linked, and modified.

The Device Driver wizard also creates project_DriverInfo and
project_DriverTest projects in the same workspace, where project is the
name of the Device Driver project. The VisualLynux project files define the
compile option -D_DYNAMIC_DRIVER for all projects to generate the dynamic
driver.

To create a static driver do the following:

1. Click on the Project Settings icon in the VisualLynux toolbar and select
the C/C++ tab.

2. Select All configurations from the Settings for drop-down list.

3. Delete macro_DYNAMIC_DRIVER from the Preprocessor definitions box.

4. Click OK.

The project_DriverInfo project contains the source files projectinfo.h

and projectinfo.c containing the device information necessary to install a
major device. The dynamic driver version of projectinfo.c also contains a
main() program to generate the driver device information as a binary file.

The project_DriverTest project contains the test program projecttest.c

for the driver. The VisualLynux Device Driver wizard always makes the
project_DriverTest project active (current). Because
project_DriverTest depends on the device driver project, which in its turn
depends on the project_DriverInfo project, all projects are built when you
press the F7 key.

Click the File/View tab in the workspace window to see the projects and files tree.

Testing a Dynamic Driver
To test a dynamic driver you should define a target machine for VisualLynux, copy
all necessary files to the target machine, install the driver, create a device, and run
the test. The whole procedure is described below assuming that project is the
project name specified in the Application wizard New dialog box:

1. Click on the Target Administration icon in the VisualLynux toolbar to
display the VisualLynux Target Administration dialog box.

2. Click on the New target button in the VisualLynux Target Administration
dialog box. This invoked the VisualLynux Target wizard. Follow its
instructions to define a target name, a target host name, an account name,
60 VisualLynux User’s Guide

LynxOS Device Drivers

a password, a project directory on the target, etc. Be sure you have an
account on the target machine with the same name and password. See the
detailed description in Chapter 10, “VisualLynux Target Administration”

3. Be sure that the target machine is a default target. If its name is not
highlighted in the VisualLynux Target Administration dialog box, select it
and click the Make default button.

4. Be sure that the project_DriverTest is still the current project (i.e. it
is highlighted in the workspace window). If it is not, set the test project as
active using the Project/Set Active Project menu item. Or click on the
File/View tab in the workspace window, select the
project_DriverTest project, use the right mouse button to display
the context menu, and select the Set As Active Project menu item.

5. Click on the Upload icon in the VisualLynux toolbar menu. This copies
the driver test to the target machine.

6. Make the project_DriverInfo project active. Click on the Upload
icon to copy the device information to the target machine.

7. Make the driver project active. Click on the Upload icon to copy the
device driver to the target machine.

8. Now you are ready to install the dynamic driver on the target machine.
Click on the Telnet icon in the VisualLynux toolbar and enter your
account name and password on the target machine. Go to the project
directory specified while creating the target description. If you haven’t
specified a project directory, your home directory is the project directory.
The following three subdirectories are seen:

- project

- project_DriverInfo

- project_DriverTest

9. Go to the project directory. Enter su to become a superuser.

For a character or STREAM device driver:

drinstall -c project

For a block device driver:

drinstall -b project

If successful, the drinstall command returns the unique driver ID that
is defined internally by the LynxOS kernel. LynxOS block drivers are
VisualLynux User’s Guide 61

Chapter 5 - VisualLynux Application Wizard

always composite drivers including the code for raw (character) and
block drivers. Therefore for a block driver, the driver ID is a logical OR

of the character-driver ID in the low 16 bits and the block-driver ID in the
upper 16 bits.

10. Go to the project_DriverInfo directory and run the device
information program:

cd ../project_DriverInfo
./project_DriverInfo > projectinfo

This creates the device information file projectinfo.

11. Install the device.

For the character device:

devinstall -c -d driver_id project_nameinfo

For the block device:

devinstall -c -d raw_driver_id projectinfo

devinstall -b -e raw_major_no -d block_driver_id \
projectinfo

The devinstall command returns a major number of the installed
device. The driver_id is the driver identification number returned in
Step 9. This installs the appropriate device with the corresponding driver
and assigns a major device number. For the block driver, the first
devinstall command returns a major_no of the raw device. Use it in
the second command with option -e to logically connect the raw and
block devices.

12. Run the devices command to get the major number major_no

assigned to the device. Use this number to create the device node.

For a character device:

mknod /dev/project c major_no 0

For a block device:

mknod /dev/rproject c raw_major_no 0

mknod /dev/project b major_no 0

NOTE: You can run the drivers command to see driver IDs for installed drivers.
62 VisualLynux User’s Guide

LynxOS Device Drivers

The mknod command above specified project as a device name
because this name is used in the test generated by the VisualLynux
Device Driver wizard. To specify another device name, ensure that it is
unique, and change the file name in the test. Although you can create a
device anywhere in the file system, the /dev directory is recommended.
The last parameter is the minor device number, which is specified as 0 for
testing purposes. You can create several devices with minor device
numbers in the range of 0-255.

13. Go to the project_DriverTest directory and run the test.

For Basic Null Character and Simple Streams Echo drivers:

cd ../project_DriverTest
./project_DriverTest

For Block Ramdisk drivers you need first to create a file system and a
mountpoint:

mkfs /dev/project

mkdir /mnt/project

mount /dev/project /mnt/project

cd ../project_DriverTest

./project_DriverTest

14. To uninstall the driver when it is no longer needed, uninstall the device.

For a character driver enter:

devinstall -u -c major_no

For a block driver enter:

devinstall -u -b major_no

devinstall -u -c raw_major_no

The major_no and raw_major_no are the same numbers used in
Step 12 above.

After the device is uninstalled the driver can be uninstalled using the
command:

drinstall -u driver_id

where driver_id is the number used in Step 11 above.
VisualLynux User’s Guide 63

Chapter 5 - VisualLynux Application Wizard

BlueCat Linux Device Drivers
When you select a BlueCat Linux configuration for the type of device driver in the
Application wizard, the following dialog box appears:

Figure 5-12: BlueCat Linux Device Driver Types

The BlueCat Linux device driver types are shown below:

After choosing the driver template, click Next to proceed.

Table 5-8: BlueCat Linux Device Driver Types

Driver Type Function

An Empty Project Creates appropriate Visual Studio workspace and project
files for BlueCat Linux Device Driver. Does not create
any source code files. This is generally used when there is
existing source code that is to be imported into an empty
VisualLynux project.

Basic Character Driver Creates a working Character Driver.

Simple Block Driver Creates a working Block Driver.

Network Driver Creates a working, dynamically loadable network driver.
64 VisualLynux User’s Guide

BlueCat Linux Device Drivers

Character Driver
When you select the Basic Character Driver type from the BlueCat Linux Device

Drivers dialog box, the following screen appears:

Figure 5-13: BlueCat Linux Character Driver Wizard

The following table shows Character Driver wizard controls:

Table 5-9: Character Driver Wizard

Control Description

Dynamic major number

Uncheck this box to specify the major number explicitly.
It is a good practice to keep this box checked to force
dynamic assignment of the major number because
BlueCat Linux driver major numbers depend on the
kernel configuration.

Major number

Specifies major number value. Use this control to
explicitly specify the driver major number. Else, check
the Dynamic major number box.

Max dev no
Specifies the maximum number of devices supported by
the driver.
VisualLynux User’s Guide 65

Chapter 5 - VisualLynux Application Wizard
Click Next to display the BlueCat Linux Driver Ports and IRQs dialog box.

Block Driver

When you select Simple Block Driver from the BlueCat Linux Device Drivers dialog
box, the following screen appears:

Timeout (sec)

Specifies the timeout value in milliseconds. Drivers use
timeouts to recover from operations where operation with
the device lasts too long or the device hangs. Leave as is
if there is no use for this value.

Input bufsize

Specifies the input buffer size. If input buffer is not
needed, set size to 0. Use spin control to modify the
value.

Output bufsize

Specifies the output buffer size. If output buffer is not
needed, set size to 0. Use spin control to modify the
value.

Allocate buffers during

registration

Check this box to allocate buffers during driver
registration (i.e., during kernel booting for static drivers,
or during dynamic driver installation). It is not
recommended that you allocate buffers during registration
because this wastes kernel memory when driver is
unused.

Export symbols

Check this box to export some driver functions or
variables. The wizard creates a skeleton table. Edit this
later on to specify particular functions and/or variables for
exporting.

Multiple open
Check this box if the driver must support multiple
concurrent sessions with a device.

Table 5-9: Character Driver Wizard (Continued)

Control Description
66 VisualLynux User’s Guide

BlueCat Linux Device Drivers
Figure 5-14: Block Driver Dialog Box

The following table shows Character Driver wizard controls and their descriptions:

Table 5-10: Block Driver Wizard

Control Description

Dynamic major number

Uncheck this box to explicitly specify a major number. It
is a good practice to keep this box checked to force
dynamic assessment of the major number. This is because
BlueCat Linux driver major numbers depend on the kernel
configuration.

Major number

Specifies major number value. Use this control to
explicitly specify the driver major number. Otherwise,
check the Dynamic major number box.

Max dev no
Specifies maximum number of devices supported by the
driver.

Timeout (msec)

Specifies timeout value in milliseconds. Drivers use
timeouts to recover from situations where operations with
a driver lasts too long or the driver hangs. Leave as is if
this value is not needed.

Export symbols

Check this box to export driver functionalities or variables.
The wizard creates a skeleton table. Edit this table later on
to specify particular functions and variables for exporting.
VisualLynux User’s Guide 67

Chapter 5 - VisualLynux Application Wizard
Click Next to display the BlueCat Linux Driver Ports and IRQs dialog box.

Network Driver
When you select Network Driver from the BlueCat Linux Device Drivers dialog box,
the following screen appears:

Figure 5-15: Network Driver Dialog Box

Allocate buffers
Check this box to allocate buffers in the open()
method.

Input bufsize

Specifies the input buffer size. If you do not need input
buffer, set its value to 0. Use spin control to modify the
value.

Output bufsize

Specifies the output buffer size. If you do not need output
buffer, set its value to 0. Use spin control to modify the
value.

Table 5-10: Block Driver Wizard (Continued)

Control Description
68 VisualLynux User’s Guide

BlueCat Linux Device Drivers

The following table shows Network Driver wizard controls:

Click Next to display the BlueCat Linux Driver Ports and IRQs dialog box.

BlueCat Linux Driver Ports and IRQs
This is the final dialog box that appears when creating a BlueCat Linux Character
Driver, Block Driver, or Network Driver project. By default, the Board uses ports
and Board generates IRQ boxes are unchecked. Click Finish to create a project for a

Table 5-11: Network Driver Wizard

Control Description

Dynamic major number

Uncheck this box if you want to specify major number
explicitly. It is a good practice to keep this box checked to
force dynamic assignment of the major number. This is
because BlueCat Linux driver major numbers depend on
kernel configuration.

Major number

Specifies major number value. Use this control to
explicitly specify the driver major number. Otherwise,
check the Dynamic major number box.

Max dev no
Specifies the maximum number of devices supported by
the driver.

Timeout (msec)

Specifies timeout value in milliseconds. Drivers use
timeouts to recover from situations where operation with
a device lasts too long or the device hangs. Leave as is if
this value is not needed.

Export symbols

Check this box to export some driver functions or
variables. The wizard creates a skeleton table. Edit this
later on to specify particular functions and/or variables for
exporting.

Allocate buffers
Check this box to allocate buffers in the open()
method.

Input bufsize

Specifies the input buffer size. If you do not need input
buffer, set its value to 0. Use spin control to modify the
value.

Output bufsize

Specifies the output buffer size. If you do not need output
buffer, set its value to 0. Use spin control to modify the
value.
VisualLynux User’s Guide 69

Chapter 5 - VisualLynux Application Wizard

pseudo-driver, that is, a driver that does not work with a real device. VisualLynux
creates a pseudo-driver project depending on the selected driver type:

• Basic Character Driver: VisualLynux creates a working character driver
that simulates the real device working with main memory.

• Simple Block Driver: VisualLynux creates a working RAM block driver
that uses the kernel buffers simulating a block device.

• Network Driver: VisualLynux builds a skeleton driver project that can be
used as a starting point to develop a real network driver.

If creating a real device driver, check the Board uses ports and Board generates IRQ
boxes. The following dialog box appears:

Figure 5-16: Ports and IRQ Dialog Box

The following table shows Ports and IRQ wizard controls:

Table 5-12: Ports and IRQ Wizard

Control Description

Board uses ports
Check this box to specify information about port
addresses.

Board generates IRQ Check this box to specify information about IRQ lines.
70 VisualLynux User’s Guide

BlueCat Linux Device Drivers
Board provides info

If this box is checked, the board provides the device
base port address(es). Leave box checked for PCI
boards. The PCI standard specifies how the board is
mapped to the address space and also describes the
common header providing information on device ports
and IRQ numbers. Add the code specific to your
device later.
Uncheck the box to probe the device.
NOTE: Sometimes, the probing procedure may be
inappropriate, for example, for ISA boards. In
this case, leave the box checked and edit the
resulting source code later to explicitly specify
information about device port addresses.

Extent

Specifies the address range the device uses for port
numbers. Enter appropriate value in C-hexadecimal
format (0x10, for example).

Port autodetection

If checked, the wizard generates skeleton code to
automatically probe the device during registration. You
need to specify minimum, maximum, and incremental
values for port addresses.
The probing procedure starts with the port base address
specified in the Min addr box. If probing is
unsuccessful, the next attempt is made for the base port
address incremented by value specified in the Incr box.
This continues till the base address reaches the
maximum address specified in the Max addr edit box.
Uncheck this box to probe a device using a list of base
port addresses.

Min addr

Specifies the minimum base port address used for the
autoprobing feature. Enter the value in C-hex format
(0x100, for example).

Incr

Specifies the incremental value for the autoprobing
procedure. Enter the value in C-hex format (0x40, for
example).

Max addr

Specifies the maximum base port address for the
autoprobing procedure. Enter the value in C-hex
format (0x300, for example).

Table 5-12: Ports and IRQ Wizard (Continued)

Control Description
VisualLynux User’s Guide 71

Chapter 5 - VisualLynux Application Wizard
Base table

Specifies list of base port addresses to probe the
device. Enter the values in C-hex format (0x300, for
example). You can enter up to eight values.

Board provides IRQ

If checked, the board provides the IRQ line number.
Leave unchecked for PCI boards. The PCI standard
specifies how the board is mapped to the address space
and describes the common header that provides
information on device ports and IRQ numbers. Add
code specific to your device later. Uncheck to probe
the device for IRQ number.
NOTE: Sometimes, probing is inappropriate, for
example, for ISA boards. In this case, leave the
box checked. Edit the resulting source code later
to explicitly specify information about device
IRQ numbers.

IRQ autodetection

If checked, the wizard generates skeleton code to
automatically probe the device for IRQ during
registration. You need to specify a list of IRQ values in
the IRQ values box. The probing procedure tries them
for each board in the order they appear.
Uncheck the box if you want to explicitly specify a list
of IRQ values, one for each board. If the number of
IRQ values is less than the maximum number of
boards, the last IRQ value is used to probe all other
boards.

IRQ values

Specifies list of IRQ values for IRQ probing. Enter
values separated by a comma (,).
NOTE: The IRQ values list cannot be empty.

Fast handler

Specifies the type of interrupt handler routine
(SA_INTERRUPT). Although (Linux 2.12 onwards)
there is no difference between fast and slow handlers,
the flag can still be useful.

Table 5-12: Ports and IRQ Wizard (Continued)

Control Description
72 VisualLynux User’s Guide

BlueCat Linux Device Drivers
Click Finish to create a BlueCat Linux driver project.

The Device Driver wizard also creates a project_DriverTest project in the
same workspace, where project is the name of the Device Driver project. The
VisualLynux project files define the compile option -D_DYNAMIC_DRIVER for all
projects to generate the dynamic driver. To create a static driver do the following:

1. Click on the Project Settings icon in the VisualLynux toolbar and select
the C/C++ tab.

2. Select All configurations from the Settings for drop-down list.

3. Delete macro_DYNAMIC_DRIVER from the Preprocessor definitions box.

4. Click OK.

The project_DriverTest project contains the test program projecttest.c

for the driver. The VisualLynux Device Driver wizard always makes the
project_DriverTest project active (current). Because the
project_DriverTest project depends on the device driver project, both project
are built when you press F7.

Click the File/View tab in the workspace window to see the projects and files tree.

Shared interrupt

Specifies that the driver processes shared interrupts. It
means that the IRQ line number can be used by
different devices and the kernel propagates interrupts
to all devices. You need to add code that determines
whether the interrupt was produced by the board
supported by the driver.

Sample random

Specifies whether the generated interrupts can
contribute to the entropy pool used by
/dev/random and /dev/urandom.

NOTE: You also need to edit the resulting source files to implement the specific
device code. Look for // TODO: lines in the code where you should add or
modify code for the particular device.

Table 5-12: Ports and IRQ Wizard (Continued)

Control Description
VisualLynux User’s Guide 73

Chapter 5 - VisualLynux Application Wizard

Testing a Dynamic Driver
To test a dynamic driver you should define a target machine for VisualLynux, copy
all necessary files to the target machine, install the driver, create a device, and run
the test. The whole procedure is described below assuming that project is the
project name specified in the Application wizard New dialog box:

1. Click on the Target Administration icon in the VisualLynux toolbar to
display the VisualLynux Target Administration dialog box.

2. Click on the New target button in the VisualLynux Target Administration
dialog box. This invokes the VisualLynux Target wizard. Follow its
instructions to define a target name, a target host name, an account name,
a password, a project directory on the target, etc. Be sure to have an
account on the target machine with the same name and password. See the
detailed description in Chapter 10, “VisualLynux Target Administration”

3. Be sure that the target machine is a default target. If its name is not
highlighted in the VisualLynux Target Administration dialog box, select it
and click the Make default button.

4. Be sure that the project_DriverTest is still the current project (i.e. it
is highlighted in the workspace window). If it is not, set the test project as
active using the Project/Set Active Project menu item. Or click on the
File/View tab in the workspace window, select the
project_DriverTest project, use the right mouse button to display
the context menu, and select the Set As Active Project menu item.

5. Click on the Upload icon in the VisualLynux toolbar menu. This copies
the driver test to the target machine.

6. Make the driver project active. Click on the Upload icon to copy the
device driver to the target machine.

7. Now you are ready to install the dynamic driver on the target machine.
Click on the Telnet icon in the VisualLynux toolbar and enter your
account name and password on the target machine. Go to the project
directory specified while creating the target description. If you haven’t
specified a project directory, your home directory is the project directory.
The following subdirectories are seen:

- project

- project_DriverTest

8. Go to the project directory. Enter su to become a superuser.

9. Enter the following command to install the dynamic driver:
74 VisualLynux User’s Guide

BlueCat Linux Device Drivers

/sbin/insmod ./project arguments

where arguments are additional parameters passed to the driver during
installation. The template drivers created by the Application wizard do
not need any additional parameters to run tests.

If the target operating system version differs from the BlueCat Linux
CDT version you get a warning message. In such a case there is no
guarantee that your driver will be functional.

10. Run the following command to see major number assigned to the driver:

cat /proc/devices

11. The output contains a list of character and block drivers with their major
numbers and names. Use the major number for the installed driver and
enter the following command to create the device node:

For a character device enter:

mknod /dev/project c major_no 0

For a block device enter:

mknod /dev/project b major_no 0

The mknod command above specified project as a device name
because this name is used in the test generated by the VisualLynux
Device Driver wizard. To specify another device name, be sure it is
unique, and change the file name in the test. Although you can create a
device anywhere in the file system, the /dev directory is recommended.
The last parameter is the minor device number, which is specified as 0 for
testing purposes. You can create several devices with minor device
numbers in the range of 0-255.

12. Go to the project_DriverTest directory and run the test.

cd ../project_DriverTest

A)For a Basic Character driver:

./project_DriverTest

B)For a Simple Block driver you need first to create a file system and a
mountpoint:

mkfs /dev/project

mkdir /mnt/project

mount /dev/project /mnt/projectr
VisualLynux User’s Guide 75

Chapter 5 - VisualLynux Application Wizard

./project_DriverTest

C)For a Network driver you need first to prepare a simulated network
environment to test the driver on your target. Enter the following
commands to create additional interfaces:

ifconfig project0 local0

ifconfig project1 local1

Run an editor (e.g. vim) and add the following lines to the file
/etc/hosts:

192.168.2.88 local0

192.168.2.99 remote0

192.168.3.99 local1

192.168.3.88 remote1

The IP addresses shown above are selected from the range of public
addresses and should not interfere with those used in your local
network. If they do, select different addresses provided the following
conditions are met:

- The subnet addresses for hosts ending with 0 must differ from hosts
ending with 1 only in lowest bit of the third octet. For example, instead
of subnets 192.168.2 and 192.168.3, you can specify 172.17.6
and 172.17.7.

- The forth octet for local0 and remote1 addresses must be the
same, as well as for remote0 and local1.

The above conditions are related to the implementation of the
template network driver that simulates two subnets by changing the
lowest bit in the IP headers of the packets transmitting through the
driver.

13. Now you can run ping to see if the simulated subnets work:

ping -c 2 remote0

ping -c 2 remote1

14. If the ping commands transmit packets successfully, run the test:

./project_DriverTest

To uninstall the driver when it is no longer needed:

rmmod project
76 VisualLynux User’s Guide

Static Library Application Wizard

Before removing a network driver you need to close the interfaces:

ifconfig project0 down

ifconfig project1 down

Static Library Application Wizard

The purpose of the Static Library Application wizard is to help the programmer get
started with building a static library.

When you select Static Library and click Next, the following dialog box appears:

Figure 5-17: Static Library Dialog Box

You can add or remove source and header files that are used to build a static library.
You can also add or remove files after the project has been created. To add files to
the project, press Add and select files to the list box. To remove files select them in
the list box and click Remove. Remove all removes all files from the list box.

Clicking the Finish button completes the new project. Cancel is used to continue
editing project selections. A summary dialog box that displays your selections and
the files that are created and added to the new project is shown. An additional test
project is also built to test your library.

NOTE: You must provide a project name beginning with lib... characters.
VisualLynux User’s Guide 77

Chapter 5 - VisualLynux Application Wizard
78 VisualLynux User’s Guide

CHAPTER 6 LynxOS Kernel Wizard
Kernel Projects

To create LynxOS Kernel projects, use the VisualLynux LynxOS Kernel wizard
(Kernel wizard). The Kernel wizard provides a set of dialog boxes that help create
a workspace to build LynxOS 3.1.0a kernels, and optionally, Kernel Downloadable
Images (KDIs). The Kernel wizard allows you to select a Board Support Package
(BSP), specify projects to be included in the workspace, select source code to be
copied into the working directory for modification, and set up an initial kernel
configuration parameters as well as KDI properties.

A new kernel workspace contains one to five interdependent projects:

• The main Kernel Executable project that builds a kernel executable
(usually a.out), nodetab, and optionally, Kernel Downloadable
Image (KDI) files

• The Generic Devices Library project that builds a generic device library
for the selected target platform (x86, PowerPC, or MIPS)

• The Generic Device Drivers Library project that builds a generic device
driver library for the selected BSP

• The Specific BSP Device Library project that builds a device library for
the selected BSP

• The Specific BSP Device Drivers Library project that builds a device
drivers library for the selected BSP

The actual number of projects depends on the selected BSP and user needs. The
Kernel wizard always creates the main Kernel Executable project, and allows you
to specify the projects you need. If you do not create any Kernel Library projects,
the appropriate library from the CDK is used to link the kernel executable. In this
case, you cannot edit any driver source code, but you have the ability to configure
the kernel by setting up drivers and kernel parameters.
VisualLynux User’s Guide 79

Chapter 6 - LynxOS Kernel Wizard

If you do create one or more Kernel Library projects, the Kernel wizard allows you
to select the source code that you are going to change. Selected source and header
files are copied to the working directory from the CDK installation. The Library
project builds the modified kernel library, used to link the Kernel Executable. All
unmodified components (drivers, devices, and so on) are copied from the source
library.

The Kernel wizard makes the main Kernel Executable project dependent on all
Kernel Library projects. Every time the source code is changed, the appropriate
library and kernel are rebuilt.

Launching the VisualLynux LynxOS Kernel Wizard

To run the Kernel wizard and create a new kernel workspace

1. Select File->New from the Visual Studio menu bar.

2. Then select the Projects tab in the New dialog box. The left pane of the
dialog box displays the wizards available.

3. Select VisualLynux LynxOS Kernel Wizard.

4. Enter a name for the new project. The project name is used as the
workspace name.

Note that the Kernel wizard disables the Add to current workspace radio
button and selects the Create new workspace button. This is because the
Kernel wizard can create several interdependent projects (up to five),
each of which must be placed in the same separate workspace.

5. Select a directory where the new workspace is to be located using the
Location edit box.

You can also use the button to the right of this field to browse for a
directory in which to create a kernel workspace.

Note that Visual Studio automatically appends the project name to the
selected directory and creates a new workspace directory. To create a
project in another directory, manually edit data in the Location box.

NOTE: If this item does not appear in the left pane, reinstall VisualLynux.
80 VisualLynux User’s Guide

Selecting a Board Support Package
Figure 6-1: LynxOS Kernel Wizard

6. Click OK to launch the VisualLynux LynxOS Kernel wizard.

Selecting a Board Support Package

The first step of the Kernel wizard is shown in the figure below. Select a target
platform and a Board Support Package (BSP). When you choose a platform using
the Target Platform drop-down list, the Supported Kernels list box displays available
BSPs. Select one to create a the kernel workspace. When finished with selection,
press Next to continue. The Kernel wizard creates the main Kernel Executable
project.
VisualLynux User’s Guide 81

Chapter 6 - LynxOS Kernel Wizard
Figure 6-2: Selecting a BSP

The Kernel wizard fills the Supported kernels list box by looking in the kernel
subdirectory of the apropriate CDK. If there is no BSP subdirectory for a selected
target platform, the Kernel Wizard displays the following dialog box. You will not
be able to continue creation of the Kernel workspace and will need to invoke the
Platform Administrator to modify installation data.
82 VisualLynux User’s Guide

Preparing a Kernel Executable Project
Figure 6-3: Invalid BSP Error Message

The Kernel wizard always creates the same build configuration for all projects in
the workspace. By default, the Kernel wizard assigns the name “Release” for the
build configuration. Change it as needed by editing the Configuration edit box. Note
that the actual build configuration name contains a platform-dependent prefix. For
example, if you create a kernel project for the LynxOS PowerPC platform and do
not change the configuration name, the build configuration is named
LynxOS_ppc_xcoff_Release. This convention provides consistency in case you
wish to add other projects to this workspace.

Preparing a Kernel Executable Project

The Kernel wizard starts this process after you select a BSP and press the Next
button in the BSP Selection step. The kernel executable project preparation
consists of the following steps:

1. Extracting linker options used to link the kernel

2. Extracting compiler options used to compile configuration source files
(conf.c, info.c).

3. Creating a working copy of the kernel configuration data: CONFIG.TBL

and driver configuration files (cfg)
VisualLynux User’s Guide 83

Chapter 6 - LynxOS Kernel Wizard

4. Extracting source file dependencies

The Kernel wizard specially processes the Makefile that comes with a BSP to
extract linker and compiler options.

The Kernel wizard runs the compiler and collects source file dependency
information from generated d files.

Throughout the process, the Kernel wizard displays a progress dialog box.
Errors are displayed as appropriate.

Figure 6-4: Kernel Wizard Progress

The Kernel wizard creates a working copy of the kernel configuration files
(CONFIG.TBL and driver configuration files). These files are copied from
the CDK directory to the Configuration Data subdirectories.

After preparation is complete, the Kernel wizard displays the Kernel Configuration
dialog box. This allows you to select a primary kernel configuration (drivers,
devices, device nodes, and so on). The dialog box displays CONFIG.TBL and

NOTE: Project configurations allow the use of different options to build different
versions of a project goal (e.g., a kernel in a kernel project) for the same set of files,
for example, Debug and Release versions of a kernel. Kernel projects, unlike
ordinary application projects, also use specific configuration data to build a kernel.
To allow handling of configuration data depending on a project configuration, a
separate Configuration Data subdirectory is created, and has a name derived from
the configuration name with a “_CFG” suffix. For example, the Configuration Data
subdirectory for the Release kernel configuration on a PPC platform is named
LynxOS_ppc_xcoff_Release_CFG.
84 VisualLynux User’s Guide

Preparing a Kernel Executable Project

driver configuration files in a tree view. To include a component, check the
corresponding box.

Figure 6-5: Kernel Configuration Dialog Box

When you have finished selection, press Next to display the Kernel Parameters
dialog box. A table representing lines from the corresponding uparam.h file
shows parameter names, current values, and default values. To edit a value, select
the appropriate line in the table. Edit the parameter value that appears in the Value
edit box.

Some lines in the table define parameter values as C expressions. You do not
normally need to edit these. However, the Kernel wizard does not prevent you from
doing so.

VisualLynux creates and stores the uparam.h file for every project configuration.
The file name is configuration_name_uparam.h, where
configuration_name stands for the build configuration. For example,

NOTE: The Kernel wizard copies all configuration files, regardless of their initial
selection state, to provide the ability to edit the configuration at a later time.

NOTE: Modifying such values may cause an invalid kernel build.
VisualLynux User’s Guide 85

Chapter 6 - LynxOS Kernel Wizard

VisualLynux creates the file LynxOS_x86_coff_Release_uparam.h for the
project configuration Win32 LynxOS_x86_coff_Release.

Figure 6-6: Kernel Parameters Dialog Box

Press Next to continue.

Configuring Kernel Downloadable Image (KDI)

The fourth step of the Kernel wizard is shown in figure below. To create a Kernel
Downloadable Image (KDI) based on the kernel project, check the appropriate box.
To skip KDI creation, press Next and the Kernel wizard skips all dialog boxes that
configure the KDI project. You can, however, add the KDI to the kernel project in
the future.
86 VisualLynux User’s Guide

Configuring Kernel Downloadable Image (KDI)
Figure 6-7: Kernel Wizard Step 4

If the box is checked, the dialog box displays additional controls that allow you to
configure a KDI. The Kernel wizard also adds an additional step to configure the
target file system to be included in the KDI. When finished with the dialog box,
press Next.

Figure 6-8: KDI Configuration Box
VisualLynux User’s Guide 87

Chapter 6 - LynxOS Kernel Wizard

The following table explains the controls in the KDI configuration box:

Configuring KDI File System

Next, the Kernel wizard allows you to specify the initial configuration of the KDI
root file system.

Table 6-1: KDI Configuration Controls

Control Description

KDI Name of the Kernel Downloadable Image file - The Kernel
wizard creates the default KDI name by appending a .kdi
extension to the project name. The KDI file is always created
in the output project directory.

Place text to These radio buttons designate where the kernel is to reside in
the running system, RAM, or ROM

Strip symbol definitions

from kernel text

Select Do not strip if the symbol definitions should not be
stripped from the kernel text file. Check Local if only local
symbol definitions should be stripped, and All if all symbols
should be stripped.

Generate ELF headers Check if ELF headers must be generated for netbooting by
the firmware that requires ELF format files.

Boot flags Enter boot flags to be passed to the kernel. “-” flag (single-
user) is not allowed. See the reboot(1) man page for
valid values.

Applications Allows you to specify properties of the application text files
added to the KDI.

Make resident Check if the application programs should be resident in
memory.

Strip symbol definitions Check this box if application files are to have symbols
stripped before being placed into the ROM kit file.

Place to Select the location of the resident application programs
(RAM or ROM)
88 VisualLynux User’s Guide

Configuring KDI File System
Figure 6-9: KDI Root File System Creation

The set of controls in the table below allow you to specify general properties of the
file system to be created in the KDI. Select the location of the root file system
using the drop-down list in the upper left corner of these controls.:

Table 6-2: Create File System Controls

Control Description

Do not create Do not create the file system - When this option is selected, all
other controls are disabled.

ROM A ramdisk resident in Read Only Memory

RAM A ramdisk resident in Random Access Memory

Other device A disk as specified by the device’s Major and Minor numbers
VisualLynux User’s Guide 89

Chapter 6 - LynxOS Kernel Wizard

The following table describes other controls in the KDI root file system creation
dialog box:

The Target directories and files control displays the directory path, owner, group, and
mode set for every target directory. The directory child items display files to be
placed in the directory. The buttons below the tree view allow you to add a new
directory, remove a directory or file, edit properties, or create hard or soft links.

The Links button invokes the following dialog box:

Table 6-3: KDI Root File System Controls

Control Description

Major, Minor These boxes are enabled only if Other device is selected from the
drop-down list. Enter the major and minor device numbers of the
disk on which the root file system is to be created.

Free blocks Number of free blocks to be generated for the file system

Free inodes Number of free inodes to be generated for the file system

Target directories

and files

Displays the set of directories and files to be created on the root
file system.

Add Invokes the dialog box to a new directory to the target file system.

Remove Removes the currently selected item in the Target directories and

files control.

Edit Invokes the dialog box to edit data associated with item currently
selected in the tree.

Links Invokes the dialog box to edit the list of hard and soft links to be
created on the target file system.
90 VisualLynux User’s Guide

Configuring KDI File System
Figure 6-10: KDI RFS Links Dialog Box

To add a new link to the list, press the Add button. Then enter the path name of the
link file in the Link edit box. Enter the full target file path name for the link in the
Target edit box. If creating a symbolic link, check the Symbolic link box.

To edit a link definition, select it in the list and edit data in the Link, Target and
Symbolic link fields. To delete a link, select it in the list and click the Remove
button.

Figure 6-11: Target Directory Properties Edit Box
VisualLynux User’s Guide 91

Chapter 6 - LynxOS Kernel Wizard

The table below describes the controls in the Target Directory Properties edit box:

The File list displays the files that are to be created in the target directory in the
following format:

file_name<=source_file_path

where file_name is the name in the target directory, and source_file_path

is the absolute or relative DOS path name of the source file.

The Add file button invokes the following dialog box. The same dialog box is
invoked by the Edit button.

Table 6-4: KDI Target Directory Properties

Control Definition

Path The full UNIX-like path name of the directory to be created on the
target

Owner The numeric owner ID of the target directory

Group Numeric group ID of the target directory

Mode The file mode of the target directory - The mode should be specified as
a 10-character string in the “ls -l” style. To change any character,
place the cursor at that point and type. Blanks are treated as a dash “-”

Fill directory Designates the mode in which the directory is to be filled.

Recurse Fills the directory with all the files from the Source directory, including
subdirectories.

Use Fills directory will all files from the Source directory only.

Specify file list Explicitly specifies list of files to be created in the directory.

Source The path name of the directory used in the Recurse and Use modes -
Disabled if the Specify file list option is selected. Enter an absolute or
relative DOS path name to the source directory or browse to select a
directory.

File list Displays the list of files to be created in the target directory. Disabled if
the Recurse or Use options are selected.

Add file Invokes the dialog box to add a new file to the file list.

Multiple Invokes the dialog box that allows adding multiple files to the list

Remove Removes the selected file from the list.

Edit Invokes the dialog box to edit file properties for selected file.
92 VisualLynux User’s Guide

Configuring KDI File System
Figure 6-12: Adding a File to the KDI Target Directory

The following table explains the controls in the previous figure:

To add several files from the same directory, use the Multiple button. It invokes the
Windows Open File dialog box with three additional controls that allow you to set

Table 6-5: KDI Target File Property Controls

Control Description

Target Directory Displays the target directory path.

File name File name as it should appear in the target directory - If the
field is empty while you use the Browse button, it is filled
with the name of the source file.

Source file The full or relative DOS path name of the source file to be
copied to the target directory - You may use Browse to
search for the file.

Owner Numeric owner ID of the file

Group Numeric group ID of the file

Mode Permission mode of the file - The mode should be specified
as a 10-character string in the “ls -l” style. To change
any character, place cursor at that point and type. You can
also use the drop-down list to select a permission mode.
VisualLynux User’s Guide 93

Chapter 6 - LynxOS Kernel Wizard

an Owner ID, a Group ID and a Mode for all files selected. The Mode drop-down
list also allows you to select an initial value from a predefined set of values.

Figure 6-13: Adding Multiple Files to KDI Target Directory

Selecting Kernel Library Projects

After you have finished configuring the Kernel Executable and KDI project, the
Kernel wizard takes you through a set of dialog boxes to select Kernel Library
projects to be included in the kernel workspace. Each dialog box corresponds to a
library type. By default, the Kernel wizard does not create any library projects. You
need to create such sub-projects only if you are going to modify source code that
comes with the CDK (for example, if you wish to create your own version of a
particular driver). Also you may create an empty Kernel Library project to add
your own drivers/devices to the kernel in the future.
94 VisualLynux User’s Guide

Selecting Kernel Library Projects
Figure 6-14: Library Project Creation

To create a library project, check the box at the top of the dialog box. The Target
edit box displays the name of library to be built. The Project name edit box shows
the default project name assigned by the Kernel wizard. You can change the project
name as appropriate.

For proprietary reasons, CDKs may not include source code for several
drivers/devices, causing errors while processing such components. In most cases,
this means that you cannot modify the source code of the erratic component in
VisualLynux or in the bash command line environment.

When the Kernel wizard finishes preparing for a Kernel Library project, it updates
the dialog box and shows the components, source and header files in a tree view.
You should either check Create empty kernel library project or select at least one
component to be included in the project. Otherwise, the Kernel wizard displays an
error message when you press Next button. Make your selections by checking the
boxes next to the appropriate files. Note that when you select an upper-level
component, all components in the appropriate subtree are also selected. When
Create empty kernel library project is checked, the selection tree is grayed out and the
Wizard ignores all selections.

When you select a component in the tree, the Kernel Wizard starts preparation for
this component. If there is an error, the Kernel wizard displays an appropriate
VisualLynux User’s Guide 95

Chapter 6 - LynxOS Kernel Wizard

message box and marks the erratic components with red icons to denote errors. Do
not include such components in the project.

Usually, devices and drivers libraries are closely interrelated; you probably need to
modify the corresponding source code for both libraries.

If you do not want to create a project, uncheck the box at the top of the dialog box.
When you finished with component selection press the Next button. The Kernel
wizard displays the dialog box for the next project or the Copy files dialog box.

Figure 6-15: Library Project Content Selection

Copying Source Files

Finally, the Kernel wizard asks permission to start the process of copying files.
Press Start to copy files from CDK directories to your working directories. Or,
press Back to return to previous steps.

NOTE: The Next and Finish buttons are disabled when the dialog box appears for
the first time. They are enabled if you have copied files at least once. If you have
not made any changes that require copying files, you can skip this step and press
Next or Finish to complete creating the project.
96 VisualLynux User’s Guide

Copying Source Files

If you repeat the process of copying files, the Kernel wizard removes all files
previously copied before proceeding.

Figure 6-16: Kernel Wizard Copy Files Dialog Box

The number of files copied depends on selected projects and library components.

The Kernel wizard displays a progress indicator box.

Figure 6-17: File Copy Progress
VisualLynux User’s Guide 97

Chapter 6 - LynxOS Kernel Wizard

After copying files, the Kernel wizard updates the dialog box above. The dialog
box contains a list of source files copied with errors. Such errors may occur if you
accidentally select an erratic component. For an error description, select a source
file from the list of files copied with errors. Press the Back button to modify your
selections. If you ignore errors, the kernel does not build correctly. You can
exclude invalid components later.

Figure 6-18: Error Message While Copying Files

If there are no copy errors, the message at the top of dialog box indicates that all
files have been copied. Press the Next or Finish button to view the New Project

Information dialog box. This box displays information about the Kernel Executable
project to be created, the name of the Configuration Data Subdirectory, and names
and descriptions of each Kernel Library project included in the workspace. Press
OK to create all selected projects, or press Cancel to return to the previous steps.
98 VisualLynux User’s Guide

Copying Source Files
Figure 6-19: New Project Information

A sample workspace created for the x86_at Board Support Package is displayed in
the following figure. It is assumed that the project has been created to modify a
high level SCSI hard disk driver.
VisualLynux User’s Guide 99

Chapter 6 - LynxOS Kernel Wizard
Figure 6-20: Sample Workspace
100 VisualLynux User’s Guide

CHAPTER 7 VisualLynux AddIn Tools
IDE Tools

The VisualLynux IDE Tools provide additional functionality to the standard Visual
Studio environment and help increase productivity for real-time embedded systems
development. VisualLynux AddIn Tools include the following functions:

• Import a Makefile

• Export to Makefile

• VisualLynux Project Settings

• LynuxWorks FTP

• LynuxWorks GDB

• LynuxWorks Total/db

• Upload

• LynuxWorks Cross Process Viewer

• Telnet

• VisualLynux Target Administration

• VisualLynux HTML Help

The VisualLynux Toolbar provides integrated access to LynuxWorks tools and
features. LynuxWorks tools that are unique from those already available in the
Studio IDE are added to this toolbar. The add-in toolbar is a small, movable, icon-
based toolbar on the desktop (see following figure).

Figure 7-1: VisualLynux AddIn Toolbar
VisualLynux User’s Guide 101

Chapter 7 - VisualLynux AddIn Tools

If the VisualLynux toolbar is not available on your screen, check to see if you have
a VisualLynux project open. A VisualLynux project is one created using the
VisualLynux Application wizard. If a VisualLynux project is open and the
VisualLynux Addin Toolbar is still not visible, it can be installed manually by
using the Tools->Customize selection in Visual Studio. Use the Add-ins and

MacroFiles tab to make sure the VisualLynux Add-in is installed. Use the Toolbars tab
to make sure it is set to Display.

Toolbar Icons

Table 7-1: VisualLynux Toolbar Icons

Icon Function

Import Makefile
This icon launches a VisualLynux Import wizard that helps create a
Makefile-based project. This is especially useful for bringing
existing UNIX, LynxOS, or BlueCat Linux code and Makefiles into
the Visual Studio environment.

Export to Makefile

This icon launches a VisualLynux Export wizard that allows the
developer to save existing Visual Studio project information as a
LynxOS/BlueCat Linux Makefile. It is useful for switching back to
executing builds in a bash shell environment.

VisualLynux Project Settings

This icon launches the project settings dialog boxes for setting up
preferences for LynuxWorks tools. Preferences can be set
independently for each configuration or for several selected
configurations. The initial window displays the source files for the
project on the left. By selecting an individual file, the developer can
change options for just that file. Or else, the options apply to the
entire project. This is the default look of the initial dialog box.

GDB
This icon invokes the LynuxWorks GDB debugger in command line
mode. If a default target is defined in the VisualLynux Target
Administration wizard, it may cause the GDBSERVER to be
automatically launched on the target. Otherwise, VisualLynux
prompts for the selection of a target on which the debugged program
should run.
102 VisualLynux User’s Guide

Toolbar Icons

LynuxWorks Total/db
This icon launches Total/db, the LynuxWorks version of Insight
Debugger. This is a Tcl/Tk version of the GDB debugger.

Upload

This icon copies the project result (an executable, library, or kernel
image) to the default target set by the VisualLynux Target
Administration wizard.

Bash

This icon opens an MS-DOS window, launches the bash shell,
and sets the environment for the current project.

LynuxWorks FTP
This icon launches the LynuxWorks FTP (File Transfer Protocol)
application. This program facilitates the transfer of files to and from
the LynxOS or BlueCat Linux target. The LynuxWorks FTP
program can be used to transfer the binary to the target.
LynuxWorks FTP automatically connects to the default target (set
by the VisualLynux Target Administration wizard).

Telnet
This icon launches the standard Windows telnet application,
providing a convenient way to log in to a LynxOS or BlueCat Linux
target and run applications on the target. Telnet automatically
connects to the default target.

LynuxWorks Cross Process Viewer

This icon launches the LynuxWorks Cross Process Viewer. This
application runs on a Windows cross development host and
communicates with a LynxOS or BlueCat Linux target machine to
display all processes and threads running on the target. The
LynuxWorks Cross Process Viewer automatically connects to the
default target.

Table 7-1: VisualLynux Toolbar Icons (Continued)

Icon Function
VisualLynux User’s Guide 103

Chapter 7 - VisualLynux AddIn Tools
VisualLynux Import Wizard

Import a Makefile

This launches the VisualLynux Import wizard, which helps in the creation of
Makefile-based VisualLynux projects. If the current workspace is not a
VisualLynux workspace, this button is disabled. The Import wizard provides a
series of dialog boxes to gather information about existing Makefiles, source files
to be included in the project, project configurations, and Makefile targets.

VisualLynux Target Administration Wizard
This icon launches the VisualLynux Target Administration wizard,
which facilitates and manages Windows connections to LynxOS and
BlueCat Linux targets. The wizard can be used to establish a
connection, set up target names and login names, pick default
directories for FTP, and also test connections. Only TCP/IP
connections are supported. The information set up by this wizard is
used by the other VisualLynux tools described above.

VisualLynux Help
This icon launches the VisualLynux online HTML help facility,
which provides an indexed, searchable HTML Help version of the
VisualLynux User’s Guide, LynxOS man pages, BlueCat
Linux online documentation, and GNU Tools Documentation.

About VisualLynux
This icon displays the About VisualLynux dialog box.

Bootp-Tftp-Pftp Utility

This icon launches the program that provides servers for booting
targets remotely through an Ethernet network or a parallel port
connection. BTP uses the TCP/IP protocol for communication with
remote targets and Parallel Port Protocol for targets connected to the
host via parallel port.

Table 7-1: VisualLynux Toolbar Icons (Continued)

Icon Function
104 VisualLynux User’s Guide

Import Wizard Initial Screen

Import Wizard Initial Screen
The Import wizard starts with an initial screen. Press Next to go to the next step.

Figure 7-2: Import Wizard Initial Screen

Selecting a Makefile to Import
In the second step, the wizard prompts for the selection of an existing Makefile.
Enter the path in the Makefile to import edit box or click Browse to select a
Makefile.

The edit box at the bottom of the dialog box displays the files created as a result of
the import. The Import wizard always creates a project file (with a .dsp

extension) in the directory containing the Makefile. If you create a new workspace,
a workspace file (with a .dsw extension) is created in the new workspace
directory.

Add the new project to the current workspace or create a new workspace by
clicking the appropriate radio button. If there is no open workspace, or the current
workspace is not a VisualLynux workspace, the Add to current workspace radio
button is disabled.

Enter a new project name in the Project name edit box. By default, the Import
wizard sets the project name to the name of the directory containing the imported
Makefile.
VisualLynux User’s Guide 105

Chapter 7 - VisualLynux AddIn Tools
Figure 7-3: Import: Makefile and Project Names

After entering required data, press Next to proceed.

Specifying Project Configurations
To create a Makefile-based VisualLynux project you must specify at least one
project configuration. In the next step, the Import wizard displays a dialog box
with a choice of platforms in the Platforms drop-down list. This list displays the
cross development tools installed on your computer. Select a target platform from
this list.

Enter the name of the configuration in the Configuration name edit control and click
Add. The Import wizard constructs a full configuration name that reflects the target
platform and adds it to the Create configuratons list. To create more than one
configuration, repeat target platform selection and enter a configuration name.

To remove a configuration from the list, make the Create configurations list active,
select the configuration to be removed, and click Remove.
106 VisualLynux User’s Guide

Specifying Build Environment
Figure 7-4: Makefile Import: Specifying Project Configuration

Specifying Build Environment
In the next step, the Import wizard asks you to specify a build environment, which
should be established before processing the imported Makefile. You must specify a
build environment for every configuration. Use the Configuration drop-down list to
select the configuration to which data belongs.

A build environment can include:

• Shell scripts to be executed before processing the Makefile

• A set of environment variables to be exported before processing the
Makefile

VisualLynux executes shell scripts specified (using bash) and exports
environment variables before invoking the make utility to process the imported
Makefile.

Usually, the scripts and environment variables required for every target
configuration are set during VisualLynux installation, and the wizard displays them
in the proper controls. You can add or remove additional scripts/variables, and
modify values of variables.
VisualLynux User’s Guide 107

Chapter 7 - VisualLynux AddIn Tools

You can use the small toolbar in the Shell scripts control to add new script, remove
a selected script, and arrange scripts in the list box.

Figure 7-5: Makefile Import: Build Configurations.

Adding/Editing Environment Variables
To add a new variable, click the New... button. This invokes a dialog box to enter
the new variable’s name and value. To edit the name or value of the variable, select
it in the Variables list and click the Edit... button. A dialog box that allows you to
make the changes appears. To remove an existing variable, select it in the Variables
list and click Remove.

NOTE: The script path must be entered in UNIX format using the CYGWIN
convention for mounts and drives. The Import wizard checks the path and displays
an error message if a script file does not exist.
108 VisualLynux User’s Guide

Adding Source Files to a Project
Figure 7-6: Editing Environment Variables

When you have finished with the build environment settings for all configurations,
click Next to proceed to the next step.

Adding Source Files to a Project
The next step of the Import wizard allows you to specify source files to be included
in the new project. (You can add files later using the Visual Studio Insert files in

project function.) Remember that while adding files to the project, there are no
additional build steps or tools to process these files. The Makefile itself is
responsible for performing a build step for a particular source file. Nevertheless,
adding files to the project may be useful because it provides additional editing and
project maintenance capabilities.

You can add only existing files to the project. To do so, click Add... and select
file(s) in the dialog box. To remove file(s) from the project, select them in the list
box and click Remove.
VisualLynux User’s Guide 109

Chapter 7 - VisualLynux AddIn Tools
Figure 7-7: Makefile Import: Adding Source Files

Specifying Build Target
The last step of the Import wizard allows you to specify build targets (project goal)
used by the imported Makefile. The Project target edit control contains, by default,
the name of the project without an extension. Enter the name of the valid Makefile
target. For example, if a Makefile uses the pseudo-target all to build a project,
you should set the default target name to all.

If source files have been added to the project, the File targets list contains the files
and default targets assigned by the wizard. To change the target name, select the
appropriate line in the list and click the Edit... button. The edit control in the Target
column appears, allowing you to change the target name.

When finished, click Enter.

If a file does not have a target, begin editing and clear the target name. After you
hit Enter, the text none appears in place of the target name. The same text is
assigned by default for all non-compilable files (such as header files).

Click Finish to complete the wizard and create a new imported project.
110 VisualLynux User’s Guide

VisualLynux Export Wizard
Figure 7-8: Build Target for Imported Project

VisualLynux Export Wizard

Export to Makefile

This toolbar button launches the VisualLynux Export wizard, which helps convert
VisualLynux projects into the Makefiles to be used in cross- or native-development
environments. If the current workspace is not a VisualLynux workspace, the
appropriate toolbar button is disabled.

The Export wizard allows creation of Makefiles for every configuration defined for
projects in the current workspace. You can export an entire workspace or select
projects and configurations to be exported. If you need to, you can create a new
source tree. In such a case, the Export wizard copies all source files to specified
directories.

Export Wizard Initial Screen
The Export wizard starts with an initial screen. Click Next to continue exporting.
VisualLynux User’s Guide 111

Chapter 7 - VisualLynux AddIn Tools
Figure 7-9: Makefile Export Wizard Initial Screen

Setting Configurations to Export
In the second step the Export wizard displays a dialog box with a control tree
listing the projects and configurations in the current workspace. Select
configurations for which you wish to create Makefiles. Click on the check mark
next to a configuration, or next to a project icon to select all project configurations.
You can also use the Select all and Deselect all buttons.
112 VisualLynux User’s Guide

Export Directories Setup
Figure 7-10: Makefile Export Configurations

When done with selection, press Next to proceed. The wizard displays the Export

Directories page.

Export Directories Setup
The Export Directories page allows you to specify directories where the new
source tree is to be placed. To generate a new source tree, check the Create new

source tree box. Appropriate controls appear in the dialog box.

If you do not wish to create a new source tree, simply click Next for the next
screen. In this case, all Makefiles are created in the Output directories as
specified in VisualLynux Settings dialog box.
VisualLynux User’s Guide 113

Chapter 7 - VisualLynux AddIn Tools
Figure 7-11: Export Directories Setup

Specifying Directories for New Source Tree
When the Create new source tree box is checked, additional controls appear in the
dialog box. Enter a root directory name for the new source tree in the Root

workspace source directory box.

You can also use Browse... to select an existing directory. In this case the Export
wizard appends the name of the current workspace directory to the name of the
selected directory and displays it in the Root workspace source directory edit field.
You can modify this name as needed.

The Subdirectories tree displays the subdirectory structure that is to be created for
each exported project and configuration. To rename the subdirectory, select the
appropriate item and click Rename. An edit control appears with a directory name
that you can change as appropriate.

NOTE: The Export wizard uses project and configuration names as default
directory names.
114 VisualLynux User’s Guide

Specifying Names of Exported Makefiles
Figure 7-12: Export Directories for New Source Tree

To continue click Next. The Export wizard displays the Makefiles page.

Specifying Names of Exported Makefiles
The Makefiles page allows you to specify names for exported Makefiles. It contains
tree controls that display projects and configurations to be exported. When you
select a configuration, a Makefile name appears in the Makefile edit control. The
Makefile directory is displayed at the bottom of the dialog box. Edit the Makefile
name as needed. To rename a directory, click Back to edit the name in the Export

Directories dialog box.

If you have not selected Generate new source tree, the Finish button appears instead
of Next. Otherwise, the Project Files step dialog box appears.

NOTE: Directory names cannot be changed if you have not created a new source
tree.
VisualLynux User’s Guide 115

Chapter 7 - VisualLynux AddIn Tools
Figure 7-13: Exported Makefile Names

Project Files to Copy
The Project Files dialog box displays projects to be exported and files to be copied
in a tree view. You can view the list of files copied, directories in which project
files are placed, and source file paths. This page is for your own information. Press
Next to copy files.

Files to be copied are organized into two folders. The Project Files folder contains
files included directly in the project. The External Dependencies folder includes
files not included in the project but on which some source files may depend.

The Export wizard uses dependency files (.d files) to obtain dependency
information, so you should rebuild all exported configurations before exporting the
project with the compiler’s Generate Dependency switch set for all source files.
116 VisualLynux User’s Guide

Summary Dialog Box
Figure 7-14: Makefile Export Summary

Summary Dialog Box
Finally, the Export wizard displays the results of file copying. If a file has been
copied successfully, a check mark appears against its name. If any error occurs, an
appropriate message pops up and the file is marked as not copied. This dialog box
is for your information.

To complete the export, click Finish. The wizard then creates Makefiles for the
selected configurations.
VisualLynux User’s Guide 117

Chapter 7 - VisualLynux AddIn Tools
Figure 7-15: Makefile Export Summary Dialog Box

LynuxWorks GDB

This toolbar button launches the standard LynuxWorks GDB debugger.

The LynuxWorks GDB debugger creates a session with the target machine, copies
the executable to the target machine project directory (defined using the Target
wizard), and launches GDBSERVER on the target machine.

The GDBSERVER text mode window appears. It displays GDBSERVER
information as well as program output:
118 VisualLynux User’s Guide

LynuxWorks GDB
Figure 7-16: GDBSERVER Text-Mode Window

Use the LynuxWorks GDB text-mode window to enter GDB commands:

Figure 7-17: Entering GDB Commands

Note that GDBSERVER has already started the main process of your program and
has stopped it at the first instruction. Therefore, after defining break points, enter
the GDB continue command (not run). If you need to start a program with

arguments, use the VisualLynux Project Settings dialog box and set program
arguments in the Debug page. GDBSERVER starts the program with these
arguments.
VisualLynux User’s Guide 119

Chapter 7 - VisualLynux AddIn Tools

After you have executed the debugged program, GDBSERVER restarts the
process. Enter the run command in the GDB window to restart debugging. To exit,
enter the quit command.

If you have found a bug, edit the corresponding file in the VisualC++ editor
window, rebuild the project, and start the debugger again.

Total/db

This toolbar button launches the LynuxWorks Total/db debugger.

VisualLynux includes two LynuxWorks versions of the GNU GDB debugger: GDB
and Total/db. Total/db has a graphical interface that significantly facilitates the
debugging process.

The LynuxWorks Total/db debugger creates a session with the target machine,
copies the executable to the target machine project directory (defined using the
Target wizard), and launches GDBSERVER on the target machine. The
GDBSERVER text-mode window displays GDBSERVER information as well as
program output as shown in the figure GDBSERVER Text-Mode Window.

Next, the LynuxWorks Total/db window appears:

Figure 7-18: LynuxWorks Total/db Window
120 VisualLynux User’s Guide

Total/db

Total/db has its own help system. Click on the Help menu item to get additional
information on how Total/db works.

To start debugging, click on File->Target Settings. The Target Selection dialog box
appears (see the following figure).

Figure 7-19: Total/db Target Selection Dialog Box

Note that the dialog box already contains correct settings for the target set by the
Target wizard. Click OK and the LynxOS source window displays the starting
assembler commands of your program. For BlueCat Linux, Total/db displays the
starting source code of your program.
VisualLynux User’s Guide 121

Chapter 7 - VisualLynux AddIn Tools
Figure 7-20: Starting Assembler Commands

Click on Continue. The execution stops at the first line of your main function, and
the source window shown in the next figure is displayed.
122 VisualLynux User’s Guide

Total/db
Figure 7-21: Total/db Source Window

Use the Total/db GUI to debug your program. (The online VisualLynux Help
System contains a guide for Total/db.) To rerun your program for LynxOS, click on
the Console button to pop up the Total/db console window and enter run. For
BlueCat Linux, simply click Continue.

NOTE: For LynxOS 3.1.0a CDKs and BlueCat Linux 3.0 CDTs, you need to edit
the targetselection.ifl file to be able to rerun your program. See the
VisualLynux Release Notes for instructions on how to do this.
VisualLynux User’s Guide 123

Chapter 7 - VisualLynux AddIn Tools
Figure 7-22: Total/db Console Window

If you have found a bug, edit the corresponding file in the VisualC++ editor
window, rebuild the project, and start the debugger again.

Upload

This button launches the VisualLynux FTP program to copy the executable
to the target machine. The project result must exist, that is, it must be built without
errors. The target machine must be defined using VisualLynux Target
Administration.

If you debug a program, you do not need this function because the LynuxWorks
GDB and Total/db debuggers always refresh the executable on the target machine.
This function is useful if you have created the Release version of your executable
and want to launch it using a Telnet window. In this case, ensure that you are in
Release mode. If not, use the Build->Set Active Configuration menu item to switch
to Release mode.

bash Shell

This button opens the MS-DOS console window and starts the bash shell.
The button is active only if a VisualLynux project is loaded. While starting the
bash shell, VisualLynux invokes the appropriate bash script to establish the
build environment for the command line tools in accordance with the current build
124 VisualLynux User’s Guide

Telnet

configuration. The current working directory is set to the project directory of the
active VisualLynux project.

To change the appearance (font, color, size, etc.) of the window, press the Alt-Space
keys and invoke the Properties command.

Figure 7-23: bash Shell Screen

Telnet

The VisualLynux Toolbar contains a button to launch the Windows
version of Telnet. Telnet is launched with no parameters. Ideally, the Telnet session
is started by default with the name of the target connection.
VisualLynux User’s Guide 125

Chapter 7 - VisualLynux AddIn Tools

VisualLynux HTML Help

This button invokes an HTML-based set of documents for VisualLynux.

Documents include:

• VisualLynux User’s Guide

• LynxOS man pages

• LynuxWorks GNU Tools

Other VisualLynux Tools

Project settings are discussed in Chapter 8, “VisualLynux Project Settings” FTP
functions in greater detail, in Chapter 9, “LynuxWorks FTP” Target Administration
in Chapter 10, “VisualLynux Target Administration” the Cross Process Viewer in
Chapter 11, “LynuxWorks Cross Process Viewer” and the BTP utility in Chapter
12, “Bootp-Tftp-Pftp Utility”.
126 VisualLynux User’s Guide

CHAPTER 8 VisualLynux Project Settings
Overview

The VisualLynux Project Settings dialog box allows you to specify options for
LynuxWorks tools (compiler, linker, library, for example) used to build a project
target. You can open the VisualLynux Settings dialog box using the toolbar button

 or by clicking Settings on the Project menu.

Using the VisualLynux Project Settings dialog box, you can specify settings for the
tool used to process a particular source file, any one or several configurations, or
the project as a whole.

You can also edit options common to several items (files or projects). To determine
what items the edited options belong to, you should check in the drop-down list in
the left side of the Project Settings dialog box.

To select configurations for which you wish to apply options, use the drop-down
list at the top left of the Settings dialog box. You can select a particular
configuration, all configurations, or a specific set of the configurations from the
tree view.

NOTE: If the current workspace is not a VisualLynux workspace, this command
invokes the Visual Studio settings dialog box. The VisualLynux Project Settings
dialog box is very similar to that of Visual Studio, so you can use Visual Studio
Help to learn how to work with the dialog box.
VisualLynux User’s Guide 127

Chapter 8 - VisualLynux Project Settings
Depending on what is selected, the right part of the Settings dialog box changes,
representing the set of properties that belong to all selected items.

If several items or configurations are selected, tabs in the right part of the dialog
box display common properties. Properties that are different for selected items
have empty or indeterminate values. When several items are selected, all changes
made are applied to all items.

If there are no common options for selected items, the right part of the dialog box
contains no tabs and displays an appropriate message.

Figure 8-1: VisualLynux Project Settings

The Reset button discards option changes made to project or file settings, and
reverts to the settings of the project or file when it was created. This button is
enabled only if a single project or file is selected, and the settings of the selection
have been changed.

NOTE: When you have selected the configuration to be edited, the tree view may
change. This is because the tree view contains items for projects that have at least
one of the configurations selected to edit.
128 VisualLynux User’s Guide

Project-Level Property Pages

Project-Level Property Pages

When one or several project items are selected from the tree, the right part of the
dialog box displays the following pages:

• General: Allows editing of general project properties.

• Debug: Allows editing of options used while debugging the target
executable.

• C/C++: Allows editing of compiler options used as defaults for compiling
all source files in the project.

• Link: Allows editing of linker options.

• Library: Allows for editing options of the ar.exe utility.

• Browse Info: Allows you to specify options used to build the Source
Browser Database.

• Custom Build: Allows you to specify a Custom Build step for the project
as a whole.

• Pre-Link Step: Allows you to specify a set of arbitrary commands,
executed just before linking the target.

• Post-Build Step: Allows you to specify a set of arbitrary commands,
executed after the project build.

• Make: Allows you to edit options used to build a project based on an
imported Makefile.

• Kernel: Allows editing of LynxOS kernel properties, including selection
of drivers to be included in the kernel, and selection of kernel parameters.

Depending on the type of application, the pages displayed at the project level vary.
If the result of a project is a LynxOS/BlueCat Linux application or driver, the Link
page appears. If a project builds a static library, the Library page is displayed
instead. For a project based on an imported Makefile, only the Make page is
displayed.

For LynxOS projects, both the Kernel page and the Link page are displayed.
VisualLynux User’s Guide 129

Chapter 8 - VisualLynux Project Settings

File-Level Property Pages

When one or more source files is selected from the tree, a combination of the
following pages appears in the right part of the Settings dialog box:

• General: Allows you to specify general properties of the file build.

• C/C++: Allows editing of compiler settings for a particular file or group of
selected files.

• Custom Build: Allows you to specify special commands used to build a
file.

• Make: Allows you to edit properties of the file build step for Makefile-
based projects.

The C/C++ page at the file level appears only for files that should be compiled.
VisualLynux assigns a compiler to a file with one of the following extensions: .c,
.cpp, .cc, .cxx, .i, or .ii. If the compiler is assigned to a file, you can use
either the C/C++ or Custom Build page, but not both. If file is not compilable, the
Custom Build page appears by default.

If the project is based on an imported Makefile, only the Make page appears when a
single file is selected from the tree.

Figure 8-2: File-Level Property Page
130 VisualLynux User’s Guide

General Page

General Page

The General page for a project allows you to change directories used during a build
to place output and intermediate files.

.

Figure 8-3: General Page for a Project

The following table lists General page commands for a project:

When a single file or a group of files is selected in the left part of the dialog box,
the General property page in the figure below appears. The Output files field is

Table 8-1: General Page Commands

Command Description

Intermediate files Specifies the name of the folder in which to place
results of processing project files. Usually, these are
object files and dependency files, but can be any other
files that result from building a particular file. This field
specifies a default directory for new files, and the
directory used if the intermediate directory has not been
changed for a particular file.

Output files Specifies the name of a folder for a file resulting from a
project build. Usually an executable or a library.
VisualLynux User’s Guide 131

Chapter 8 - VisualLynux Project Settings

disabled because it specifies project-level options. You can set up additional
properties for a file; the following table lists file commands:

Figure 8-4: General Page for a File

Table 8-2: Single File Command Options

Command Description

Always use custom build

step

Click on this control to disable default build step
(compilation) and use a Custom Build step for a file. If
clicked, the Custom Build property page appears instead
of the C/C++ property page.

Exclude file from build Click to exclude file from build. VisualLynux does not
process this file at all. This is useful when a file should
not participate in a build or when different configurations
require different sets of source files.

Intermediate files Specifies the folder in which results of processing a
selected file are placed. The value in this field overrides
settings made at the project level in the same field.
132 VisualLynux User’s Guide

Debug Page

Debug Page

The Debug page allows you to specify options for debugging the project
executable. These options apply to both GDB and Total/db, as appropriate.

Figure 8-5: Debug Page

The following table lists Debug page commands for a project:

Table 8-3: Debug Page Commands

Command Description

Executable for

debug session

This is the name of the executable used to debug the application. By
default it is set by VisualLynux to the resulting executable of the
project. If you change the value in the field, be sure that the
executable exists and is valid for a target platform when the debugger
is invoked.

Working

directory

This field is not supported in the current implementation.

Program

arguments

By default, this field is empty. If your program uses command line
arguments, enter them in this field.
VisualLynux User’s Guide 133

Chapter 8 - VisualLynux Project Settings

Browser Page

The Browser page is used by VisualLynux to enter options used to build the source
browser database. This database readily accesses program definitions and
references, facilitates source code editing, outlines source file contents, or browses
class definitions (for C++ programs). To use the browser database, be sure that the
Generate browse info box is checked for each source file in the “C/C++ Page” on
page 145.

Figure 8-6: Browser Page

The following table displays the Browser page commands:

Table 8-4: Browser Page Commands

Command Description

Browser info file

name

Specify the name of the browser database file if it differs from the
default. By default, VisualLynux generates a browser database
name by appending a .bsc extension to the project name and
places it in the Output directory.

Build browse info file Check this box to browse the database to be built.

Suppress startup

banner

Check this box if you do not wish the bscmake.exe utility to
display startup information during a build.
134 VisualLynux User’s Guide

Library Page
Library Page

The Library page allows you to edit options used to build static libraries with the
ar.exe utility. This page appears only for Static Library projects.

Figure 8-7: Library Page

NOTE: To build the Browse Info file (browser database), VisualLynux uses the
Microsoft compiler (cl.exe) and browser builder (bscmake.exe). Because of
differences between Windows header files and LynxOS/BlueCat Linux header
files, VisualLynux source files may not always be compiled by cl.exe without
error. In such cases, you may get an incomplete browser database that may not
allow you to browse system structures and/or files.
VisualLynux User’s Guide 135

Chapter 8 - VisualLynux Project Settings

The following table shows the Library page commands:

Pre-Link Step Page

You can specify a set of commands that is always executed before linking a project
target. The term “linking” is used here in general and refers to a build step that is
performed by the main build tool (for example, linker, library builder) for a project.

The Pre-link step page contains a Pre-link description edit box and a Pre-link

commands list. Fill the first box with appropriate text to be displayed in the output
window during the build. The Pre-link commands list contains the batch commands
to be executed.

• To add a new command, double click on the empty line with a focus
rectangle and enter a command.

• To edit an existing command, double click the appropriate line in the grid
and edit the text.

• To delete a command, select it in the list and press Del on your keyboard.

You can also use internal toolbar buttons to add a command, or delete or arrange
commands in the grid.

Table 8-5: Library Page Commands

Command Description

Library file name Enter or edit the library file name. By default, VisualLynux creates
the library name by adding an .a extension to the project name and
places it in the Output directory.

Verbose Check this box to obtain ar.exe messages in the output window
during library build.
136 VisualLynux User’s Guide

Post-Build Step Page
Figure 8-8: Pre-Link Step Page

While entering commands or descriptions, you can use Build macros as part of the
command/description text. At build time these macros are replaced by appropriate
values.

Post-Build Step Page

This page allows you to specify a set of commands to be executed after every
successful completion of the normal build process, including successful execution
of the commands specified in the Custom Build step.

The Post-build page contains a Post-build description control and a Post-build

commands list. Fill the first box with appropriate text to be displayed in the output
window during step execution. The Post-build commands list contains the batch
commands to be executed.

• To add a new command, double click on the empty line with a focus
rectangle and enter a command.

• To edit an existing command, double click the appropriate line in the list
and edit the text.

• To delete a command, select it in the list and press Del on your keyboard.
VisualLynux User’s Guide 137

Chapter 8 - VisualLynux Project Settings

You can use internal toolbar buttons to add new commands, delete commands, or
arrange commands in the list.

Figure 8-9: Post-Build Step Page

While entering commands or descriptions, you can use Build macros as part of the
command/description text. At build time these macros are replaced by appropriate
values.

Custom Build Steps

Project Custom Build

The Project Custom Build step is executed just after the normal build process.
Custom build commands run only if the project target file is rebuilt, or if any of the
output files specified for Custom Build step do not exist.
138 VisualLynux User’s Guide

Project Custom Build

The project Custom Build page contains the fields in the table below:

Table 8-6: Project Custom Build Page Commands

Command Description

Input file Displays name of project target file.

Description You can enter a description of the Custom Build step. By default,
VisualLynux uses the text “Performing custom build step
on $(InputPath).” All Build macros used in this field are
replaced by their values before running commands.

Commands Enter commands to be executed in this box. If you need more than
one command, press Enter to start a new line and enter the next
command. Commands are executed in the sequence in which they
appear in the edit box. You can use Build Macros in the commands
(see also the Directory and Files menus).

Outputs Enter names of the files generated as a result of the Custom Build
step execution. If more than one file is generated, enter the name of
every file on a separate line. You can use Build Macros in the
commands (see also Directory and Files menus).

Directory Press this button to invoke the Directory menu, which allows you to
insert the Directory macro at the current insertion point.

Files Press this button to invoke the File menu, which allows you to insert
the File macro at the current insertion point.

NOTE: Do not specify pseudo-targets in the Outputs control. The Custom Build
step must create a real file. You cannot debug the application or send the
executable to the target because the resulting file does not exist.
VisualLynux User’s Guide 139

Chapter 8 - VisualLynux Project Settings
Figure 8-10: Project Custom Build Page

Directory Menu
The Directory menu allows you to insert the Directory macro at the current
insertion point (command text, Custom Build step description, or list of output
files). You can insert the macros from the following table:

Table 8-7: Directory Menu (Project Custom Build)

Menu Item Macro Description

Intermediate $(Intermediate_Dir) The value of the Intermediate directory
control in the project General page

Output $(Output_Dir) The value of the Output directory
control in the project General page

Target $(TargetDir) Directory in which the project target file
is placed - It may differ from Output

directory if you have changed Output

file name in the Linker or Library pages.

Input $(InputDir) Always has an empty value for Project
Custom Build step.
140 VisualLynux User’s Guide

File Menu
File Menu
The File menu allows insertion of the File macro at the current insertion point
(command text, Custom Build step description, or list of output files). You can
insert the macros from the table below:

Project $(ProjDir) Fully qualified path to the directory in
which the project file (.dsp file)
resides

Workspace $(WkspDir) Fully qualified path to the directory in
which the workspace file (.dsw file)
resides - The value of this macro is
changed if the project is inserted into a
different workspace.

Microsoft Developer $(MSDevDir) Fully qualified path to the directory in
which the msdev.exe executable
resides

Cross- Development

Tools

$(InstallDir) Fully qualified path to the root
installation directory of cross
development tools

Build Environment $(BUILD_ENV_PREFIX) Fully qualified path to the directory
considered as the root directory of cross-
development tools for a particular
configuration

CDK Directory $(TargetPlatformCDKDir) Fully qualified path to the directory
containing build tools for a particular
configuration

Table 8-7: Directory Menu (Project Custom Build) (Continued)

Menu Item Macro Description

Table 8-8: File Menu (Project Custom Build)

Menu Item Macro Description

Target path $(TargetPath) Path to the target file relative to the project
directory

Target name $(TargetName) Name of the target file without directory and
extension (if any)

Input path $(InputPath) Always the same as Target path for a project
VisualLynux User’s Guide 141

Chapter 8 - VisualLynux Project Settings
File Custom Build

The Custom Build step for a file is executed before the normal build process starts,
that is, all custom builds defined for particular files are performed before
compiling any other file. VisualLynux executes the Custom Build step for a
particular file if the source file has been changed or any of the output files need to
be rebuilt.

If a compiler is assigned to a file, you must check the Always use custom build box
in the General page to specify a Custom Build step. Instead of a compile, the
Custom Build step is executed for a source file.

The Custom Build page for a file contains the fields in the table below:

Input name $(InputName) Always empty for a project

Workspace name $(WkspName) Name of workspace file (.dsw file) without
extension

Table 8-8: File Menu (Project Custom Build) (Continued)

Menu Item Macro Description

Table 8-9: File Custom Build Page

Command Description

Input file Displays source file path relative to the project
directory.

Description You can enter a description of the Custom Build step
in this field. By default, VisualLynux uses the text
“Performing custom build step on
$(InputPath).”
All Build Macros used in this field are substituted by
their values before commands are run.

Commands Enter commands to be executed in this edit control.
If you need more than one command, press Enter to
start a new line.
Commands are executed in the sequence they appear
in the edit box. You can use Build Macros in the
commands (See also the Directory and Files menus).
142 VisualLynux User’s Guide

File Custom Build
Figure 8-11: File Custom Build Page

Outputs Enter names of the files generated as a result of the
Custom Build execution. If more than one file is
generated, enter the name of every file on a separate
line.
You can use Build Macros in the commands (See
also the Directory and Files menus).

Directory Press this button to invoke the Directory menu,
which allows you to insert the Directory macro
at the current insertion point.

Files Press this button to invoke the File menu, which
allows you to insert the File macro at the current
insertion point.

NOTE: If you specify a pseudo-target as the output of a file custom build, this step
is executed twice. First, it is executed during file build and second, during project
build. Avoid using pseudo-targets in Custom Build steps for a file.

Table 8-9: File Custom Build Page (Continued)

Command Description
VisualLynux User’s Guide 143

Chapter 8 - VisualLynux Project Settings

Directory Menu
The Directory menu allows insertion of the Directory macro at the current insertion
point (command text, Custom Build step description, or list of output files). You
can insert the macros listed in the table below:

Table 8-10: Directory Menu (File Custom Build)

Menu Item Command Description

Intermediate $(Intermediate_Dir) The value of the Intermediate directory
control in the General page for a file

Output $(Output_Dir) The value of the Output directory control
in the project General page

Target $(TargetDir) Directory in which project target file is
placed - It may differ from the Output

directory if you have changed the Output

file name in the Linker or Library pages.

Input $(InputDir) Name of fully qualified directory where the
source file resides

Project $(ProjDir) Fully qualified path to the directory in
which the project file (.dsp file) resides

Workspace $(WkspDir) Fully qualified path to the directory in
which the workspace (.dsw file) file
resides - The value of this macro is changed
if the project is inserted into a different
workspace.

Microsoft Developer $(MSDevDir) Fully qualified path to the directory in
which the msdev.exe executable resides

Cross- Development

Tools

$(InstallDir) Fully qualified path to the root installation
directory of cross-development tools

Build Environment $(BUILD_ENV_PREFIX) Fully qualified path to the directory
considered as the root directory of cross-
development tools for a particular
configuration

CDK Directory $(TargetPlatformCDKDir) Fully qualified path to the directory
containing build tools for a particular
configuration
144 VisualLynux User’s Guide

File Menu

File Menu
The File menu allows insertion of the File macro at the current insertion point
(command text, Custom Build step description, or list of output files). You can
insert the macros from the table below:

Compiler Options

C/C++ Page

The C/C++ page allows you to set options for the LynuxWorks C/C++ cross
compiler. Depending on the selection from the tree, this page displays project
settings (if a project is selected) or file settings (if a particular file is selected). If
several files or a file folder is selected, this page displays common options for all
selected items.

The following figure shows the C/C++ page when a project is selected. The edit box
in the bottom right corner of the dialog box is called the Project Options box, and is
open for editing. This edit box displays compiler options in a command line style.
When any option is changed in the dialog box, the corresponding command line
switch is added (or removed) from this exit box. You can use this control to enter
compiler command line options that are not presented in dialog boxes.

Table 8-11: File Menu (File Custom Build)

Menu Item Macro Description

Target path $(TargetPath) Path to the target file relative to the project
directory

Target name $(TargetName) Name of the target file without directory and
extension (if any)

Input path $(InputPath) Path to the source file relative to the project
directory

Input name $(InputName) Name of source file without path and
extension

Workspace name $(WkspName) Name of the workspace file (.dsw file)
without extension
VisualLynux User’s Guide 145

Chapter 8 - VisualLynux Project Settings
Figure 8-12: C/C++ Page - Project

Compiler options for a project are used as defaults in the following cases:

• When a new source file is added to the project and inherits all the compile
options set at the project level

• When Reset is pressed while editing compiler options for a particular file

The C/C++ page for a particular file is shown in the next figure. Note that the edit
box in the bottom right of the dialog box is titled Source File Options and is closed
for editing. This edit box displays differences between compile options for a
project and for a file. If there are no differences, it displays the text Project

Settings. All differences are shown in command line terms.

For example, if the Generate dependency option is checked for a project but
unchecked for a file, the control displays the text Project settings, and not

-MMD. If the Warning as errors’ option is checked for a file but not for a project, the
control displays Project Settings, and -Werror.

If the Debug level for a project is Level 2 Default, but is Level 1 Minimal for a file, the
control contains the text Project Settings, and -g1 replaces -g.

Because the settings edit control is closed for editing when a single file is selected,
use the Special options page to enter compile options not represented by the
Settings dialog box.
146 VisualLynux User’s Guide

C/C++ Page
Figure 8-13: C/C++ Page - File

The C/C++ page organizes compile options into several categories. To edit options
belonging to a category, use the Category drop-down list.

There are nine categories of compiler options as shown in the table below:

Table 8-12: Compiler Option Categories

Category Description

C/C++ General General compiler options

C/C++ Language Language-specific compiler options

C/C++ Warnings Custom warnings options

C/C++ Code Generation Options for code generation conventions

C/C++ Profiling Options controlling profiling

C/C++ Listings Options controlling listings generated during compilation

C/C++ Optimization Custom optimization options

C/C++ Preprocessor Options controlling the preprocessor

C/C++ Special Options Special options that cannot be edited using the C/C++ page
VisualLynux User’s Guide 147

Chapter 8 - VisualLynux Project Settings

C/C++ General
The General compiler settings are shown in the figure below:

Figure 8-14: C/C++ General Compiler Settings

This page provides the functionalities shown in the following table:

Table 8-13: C/C++ General Settings

Control Item Description

Compile using Allows for selection of the compiler used to process source
files (gcc.exe or g++.exe). By default, VisualLynux
assigns compilers according to file extension.

Generate dependency Check to generate the dependency file (.d file) during
compilation (-MMD). The dependency file is used to check
dependencies before build.

Generate browse info Check to generate browse information for a file (or by
default).
148 VisualLynux User’s Guide

C/C++ Code Generation
C/C++ Code Generation
The Code Generation page settings are shown in the figure below:

Warning Level Allows the selection of the warning level during compilation.
The following levels can be selected:
• Default (default compile warning level)
• Inhibit all warnings (-W)
• Syntax only (-fsyntax-only)
• Customize (use C/C++ Warnings page to set specific

warnings)

Optimization Allows selection of the optimization level. There are five
optimization levels:
• Disable(-O0)
• Minimal Size (-O1)
• Maximum Speed (-O2)
• Extended Optimization (-O3)
• Customize (use C/C++ Optimization page to set specific

optimization flags)

Warnings as errors When checked, forces the compiler to treat all warnings as
errors (-Werror).

Debug level Controls debug information produced by compiler. There are
four debug levels:
• Disable (generate no debug information)
• Level 1 Minimal (-g1)
• Level 2 Default (-g)
• Level 3 Maximum (-g3)

Preprocessor Definitions You can enter definitions that should be passed to the
compiler in this field using the -D directive. To separate
definitions, use a comma (,).

Table 8-13: C/C++ General Settings (Continued)

Control Item Description
VisualLynux User’s Guide 149

Chapter 8 - VisualLynux Project Settings
Figure 8-15: C/C++ Code Generation Page

The user to change the code generation options in the table below.:

Table 8-14: C/C++ Code Generation Commands

Control Command Line Option Description

Short enumeration fshort-enums Allocates to an enum type only as many bytes as
it needs for the declared range of possible
values.

Short doubles -fshort-doubles Use the same size for double as for float.

All pointer

references are

volatile

-fvolatile Considers all memory references through
pointers to be volatile.

Position

Independent Code

-fpic Generates Position-Independent Code (PIC)
suitable for use in a shared library, if supported
on the target machine.

No ident -fno-ident Ignores the #ident directive.

Global volatile -fvolatile-global Considers all memory references to extern
and global data items to be volatile.
150 VisualLynux User’s Guide

C/C++ Code Generation

Verbose asm -fverbose-asm Puts extra commentary information in the

generated assembly code to make it more
readable.

No common -fno-common Allocates even uninitialized global variables in
the bss section of the object file, rather than
generating them as common blocks.

Shared Data -fshared-data Requests that the data on non-constant variables
of this compilation be shared rather than
private.

Call saved registers -fcall-saved- Treats the registers listed in the field as
allocatable registers saved by functions.
Differentiate multiple registers in this field with
a comma (,).

Call used registers -fcall-used- Treats the registers listed in the field as
allocatable registers, clobbered by function
calls. Differentiate multiple registers in the field
with a comma (,).

Fixed registers -ffixed- Treats the registers listed in the field as fixed
registers. Differentiate multiple registers in this
field with a comma (,).

Table 8-14: C/C++ Code Generation Commands (Continued)

Control Command Line Option Description
VisualLynux User’s Guide 151

Chapter 8 - VisualLynux Project Settings

C/C++ Language
The C/C++ Language category settings are shown in the figure below:

Figure 8-16: C/C++ Language Page

You can enable or disable options using check marks in the list box.
Correspondence between compiler command line options, and options listed in the
list box is shown in the table below:

Table 8-15: C/C++ Language

List Item Command Line Option

Do not recognize asm, inline and typeof -fno-asm

Signed char -fsigned-char

ANSI -ansi

Traditional C -traditional

Traditional C++ -traditional-cpp

Do not recognize built-in functions -fno-builtin

Allow conditional expressions with

mismatched types

-fcond-mismatch
152 VisualLynux User’s Guide

C/C++ Language

Store string constants in the writable

segment

-fwritable-strings

Do not promote to double precision -fallow-single-precision

Turn off all access control -fno-access-control

Treat all possible functions as virtual -fall-virtual

Conserve space -fconserve-space

External templates -fexternal-templates

External templates based on place -falt-external-templates

Enable automatic templates instantiation -frepo

Operator names -foperator-names

Check pointer returned by new -fcheck-new

Do not recognize GNU keywords -fno-gnu-keywords

No implicit templates -fno-implicit-templates

Limit scope of vars to the for loop -ffor-scope

Strict function prototype -fstrict-prototype

Enable $ sign in identifiers -fdollars-in-identifiers

Table 8-15: C/C++ Language (Continued)

List Item Command Line Option
VisualLynux User’s Guide 153

Chapter 8 - VisualLynux Project Settings

C/C++ Listings
The C/C++ Listings category settings are shown in the figure below:

Figure 8-17: C/C++ Listings Page

All assembler listings are displayed in the output window.

Table 8-16: C/C++ Listings

Control Item
Command Line

Option
Description

Save temporary

files

-save-temps Stores the usual temporary
intermediate files permanently, that is,
it places them in the current directory,
and names them based on the source
file.

Output program

assembly listing

-Wa,-al Requests an output program assembly
listing.

High level listing -Wa,-ah Requests a high-level language
listing.

Symbol table listing -Wa,-as Requests a symbol table listing.
154 VisualLynux User’s Guide

C/C++ Warnings

C/C++ Warnings
The C/C++ Warnings category settings are shown in the figure below:

Figure 8-18: C/C++ Warnings Page

The Warning level drop-down list allows you to select one of the following levels:

• Default (compiler issues warnings in accordance with its configuration)

• Inhibit all warnings (-W)

• Syntax only (-fsyntax-only)

• Customize (custom options)

The list box below this control is enabled only if the Warning level is set to
Customize. You can turn the option on by checking the appropriate item.
Correspondence between items and command line options is presented in the table
below:

Table 8-17: C/C++ Warnings

List Item Command Line Option

All strict ANSI warnings -pedantic

Treat ANSI warnings as errors -pedantic-errors

Don’t warn #import -Wno-import
VisualLynux User’s Guide 155

Chapter 8 - VisualLynux Project Settings

Array subscript is of type char -Wchar-subscripts

Comment in comment -Wcomment

Check calls to printf/scanf -Wformat

Warn no type in variable declarations -Wimplicit-int

Warn no type in function declaration -Wimplicit-function
-declaration

Treat no type in function declaration as error -Werror-implicit
-function-declaration

Warn implicit declarations -Wimplicit

Check declaration of main -Wmain

Warn if multichar constants are used -Wmultichar

Check if parentheses are omitted -Wparentheses

Check function return type -Wreturn-type

Check enumerated types in switch -Wswitch

Warn trigraphs -Wtrigraphs

Warn unused variables -Wunused

Warn uninitialized automatic variables -Wuninitialized

Check order of member initialization -Wreorder

Warn unknown pragmas -Wunknown-pragmas

Turn on all warnings shown above -Wall

Print extra warnings -W

Warn traditional constructs -Wtraditional

Warn undefined identifiers evaluation -Wundef

Warn shadowing of local variables -Wshadow

Warn pointer arithmetic -Wpointer-arith

Warn casting to non-matching type -Wbad-function-cast

Warn removing type qualifier in casting -Wcast-qual

Warn pointer alignment in casting -Wcast-align

Table 8-17: C/C++ Warnings (Continued)

List Item Command Line Option
156 VisualLynux User’s Guide

C/C++ Warnings

Warn copying constant strings -Wwrite-strings

Warn type conversion in function calls -Wconversion

Warn comparison of signed/unsigned values -Wsign-compare

Warn returning aggregate values -Waggregate-return

Warn if argument type isn't defined -Wstrict-prototypes

Warn if function prototype missing -Wmissing-prototypes

Warn if function declaration missing -Wmissing-declarations

Warn multiple declarations -Wredundant-decls

Warn extern within function -Wnested-externs

Warn if function can't be inlined -Winline

Warn possible errors in overloaded virtuals -Woverloaded-virtual

Warn g++ synthesis behavior -Wsynth

Warn if long long type is used -Wlong-long

Table 8-17: C/C++ Warnings (Continued)

List Item Command Line Option
VisualLynux User’s Guide 157

Chapter 8 - VisualLynux Project Settings

C/C++ Profiling
The Profiling category settings dialog box is shown in the figure below:

Figure 8-19: C/C++ Profiling

The C/C++ Profiling commands are shown in the table below:

Table 8-18: C/C++ Profiling Commands

Control Coverage Command Line Option Description

Generate for prof -p Generates extra code to write profile
information suitable for the prof analysis
program.

Generate for gprof -pg Generates extra code to write profile
information suitable for the gprof
analysis program.

Generate for basic blocks -a Generates extra code to write profile
information for basic blocks, which record
the number of times each basic block is
executed, the basic block start address, and
the name of the function containing the basic
block.
158 VisualLynux User’s Guide

C/C++ Optimization
C/C++ Optimization
This dialog box allows you to select an optimization level and set custom
optimization options using the Optimization drop-down list. You can select an
optimization level from the following:

• Disable (-O0)

• Minimal Size (-O1)

• Maximum Speed (-O2)

• Extended Optimization (-O3)

• Customize

When the optimization level is not set to Customize, the optimization level list box
is disabled.

Generate extra code for

basic blocks

-ax Generates extra code to profile basic blocks.
Your executable produces output that is a
superset of that produced by the previous
option. This includes the source and target
address of the basic blocks where a jump
takes place, and the number of times a jump
is executed.

Instrument arcs -fprofile-arcs Instruments arcs during compilation.

Generate for coverage -ftest-coverage Generates data files for the gcov code-
coverage utility.

Table 8-18: C/C++ Profiling Commands (Continued)

Control Coverage Command Line Option Description

NOTE: You can also select the optimization level using the C/C++ General page.
VisualLynux User’s Guide 159

Chapter 8 - VisualLynux Project Settings
Figure 8-20: C/C++ Custom Optimization

The items in the custom options list are described in the table below:

Table 8-19: C/C++ Custom Option Commands

Customize Option Command Line Option Description

Do not store FP in

register

-ffloat-store Does not store floating point variables in
registers, and inhibits other options that
might change, whether a floating point
value is taken from a register or from
memory.

No default inline -fno-default-inline Does not make member functions inline
by default, merely because they are
defined inside the class scope (C++
only). Otherwise, when you specify -O,
member functions defined inside class
scope are compiled inline by default,
that is, you do not need to add inline
in front of the member function name.
160 VisualLynux User’s Guide

C/C++ Optimization

Don’t defer pop of

the arguments

-fno-defer-pop Always pops the arguments to each
function call as soon as that function
returns. For machines that must pop
arguments after a function call, the
compiler normally lets arguments
accumulate on the stack for several
function calls and pops them all at once.

Always copy

memory operands

to registers

-fforce-mem Forces memory operands to be copied
into registers before performing
arithmetic operations on them. This
produces better code by making all
memory references potential common
subexpressions. When they are not
common sub-expressions, the
instruction combination should
eliminate the separate register-load. The
-O2 option turns on this option.

Always copy

address operands to

registers

-fforce-addr Forces memory address constants to be
copied into registers before performing
arithmetic on them. This may produce
better code just as -fforce-mem
may do likewise.

Keep static consts -fkeep-static-consts Emits variables declared static
const when optimization is not turned
on, even if the variables are not
referenced. This option is enabled by
default.
-fno-keep-static-consts
forces the compiler to check if the
variable is referenced, whether or not
optimization is turned on.

Omit frame pointer -fomit-frame-pointer Does not keep the frame pointer in a
register for functions that do not need
one. This avoids instructions to save, set
up, and restore frame pointers; it also
makes an extra register available for
many functions. Additionally, it also
makes debugging impossible on
some machines.

Table 8-19: C/C++ Custom Option Commands (Continued)

Customize Option Command Line Option Description
VisualLynux User’s Guide 161

Chapter 8 - VisualLynux Project Settings

Ignore inline

keyword

-fno-inline Does not pay attention to the inline
keyword. Normally, this option is used
to keep the compiler from expanding
any functions inline. If you are not
optimizing, no functions can be
expanded inline.

Inline functions -finline-functions Integrates all simple functions into their
callers. The compiler heuristically
decides which functions are simple
enough to be integrated in this way. If all
calls to a given function are integrated
and the function is declared static,
then the function is normally not output
as assembler code in its own right.

Keep inline

functions

-fkeep-inline-functions Even if all calls to a given function are
integrated and the function is declared
static, this command outputs a
separate run-time callable version of the
functions.

Strength reduce -fstrength-reduce Performs the optimization of loop
strength reduction and elimination of
iteration variables.

Thread jumps -fthread- Performs jump optimizations to check
if a jump branches to a location where
another comparison subsumed by the
first is found. If so, the first branch is
redirected to either the destination of the
second branch or to a point immediately
following it, depending on whether the
condition is true or false.

CSE follow jumps -fcse-follow-jumps In common subexpression elimination,
scans through jump instructions when
the target of the jump is not reached by
any other path. For example, when CSE
encounters an if statement with an
else clause, CSE follows the jump
when the condition tested is false.

Table 8-19: C/C++ Custom Option Commands (Continued)

Customize Option Command Line Option Description
162 VisualLynux User’s Guide

C/C++ Optimization

CSE skip bocks -fcse-skip-blocks This is similar to -fcse-follow-

jumps, but causes CSE to follow jumps
that conditionally skip over blocks.
When CSE encounters a simple if
statement with no else clause,
-fcse-skip-blocks causes CSE
to follow the jump around the body of
the if.

CSE after loop -frerun-cse-after-loop Reruns common subexpression
elimination after loop optimization has
been performed.

Expensive

optimization

-fexpensive-optimizations Performs a number of minor
optimizations that are relatively
expensive.

No peephole -fno-peephole Disables any machine-specific peephole
optimization.

Function sections -ffunction-sections Places each function into its own section
in the output file if the target supports
arbitrary sections.

Caller saves -fcaller-saves Enables values to be allocated in
registers that are clobbered by function
calls, by issuing extra instructions to
save and restore the registers around
such calls. Such allocation is done only
when it seems to result in better code
than would otherwise be produced.

Unroll loops -funroll-loops Performs the optimization of loop
unrolling. This is only done for loops
whose number of iterations can be
determined at compile time or run time.
-funroll-loop implies both
-fstrength-reduce and
-frerun-cse-after-loop.

Table 8-19: C/C++ Custom Option Commands (Continued)

Customize Option Command Line Option Description
VisualLynux User’s Guide 163

Chapter 8 - VisualLynux Project Settings
C/C++ Preprocessor
The Preprocessor options are shown in the figure below:

Figure 8-21: C/C++ Preprocessor

Unroll all loops -funroll-all-loops Performs the optimization of loop
unrolling. This is done for all loops and
usually makes programs run more
slowly.
-funroll-all-loops implies
-fstrength-reduce as well as
-frerun-cse-after-loop.

Branch probabilities -fbranch-probabilities After running a program compiled with
-fprofile-arcs (see C/C++

Profiling), you can compile it a second
time using the option
-fbranch-probabilities to
improve optimizations based on
guessing the path a branch might take.

Table 8-19: C/C++ Custom Option Commands (Continued)

Customize Option Command Line Option Description
164 VisualLynux User’s Guide

C/C++ Special Options
C/C++ Special Options
The Special options dialog box is intended for use when you need to specify
compiler options that cannot be edited using the Settings dialog box. For example,
you can use this dialog box to enter specific hardware-dependent compile options.

The dialog box is shown in the following figure. Enter compile options in the
Special options edit box. Remember that all options are used as entered, and
appended to the compiler command line. Options entered are displayed in the
Project Options edit box after you leave the Special options field.

Table 8-20: C/C++ Preprocessor Options

Control Command Line Option Description

Preprocessor

definitions

-Dsymbol You can set up preprocessor definitions to
pass to the C/C++ preprocessor in the form
-Dsymbol. Delimit different symbols with
a comma (,).

Undefine all

nonstandard

macros

-undef Does not predefine any nonstandard macros
(including architecture flags).

Undefine Symbols -Usymbol You can set up preprocessor undefinitions to
pass to the C/C++ preprocessor in the form
-Usymbol. Delimit different symbols with
a comma (,).

Ignore standard

include paths

-nostdinc Does not pass any of the standard
include file paths.

Additional include

directories

-Iinclude_dir Uses the specified include paths.
Delimit different paths with a comma (,).
VisualLynux User’s Guide 165

Chapter 8 - VisualLynux Project Settings
Figure 8-22: C/C++ Special Options

Linker Options

This page allows you to set preferences for the LynuxWorks cross linker. There are
six groups of linker options. You can select a group of options to edit using the
Category drop-down list.

At the bottom of every category dialog box is a Project Options edit box that
displays the selected command line options corresponding to the options from the
Settings dialog box. The Project Options box can be manually modified at any time
by typing options directly into the box. While entering options in the edit box,
follow the rules for ld.exe command lines.

Note that when gcc.exe or g++.exe is used to link the program executable,
linker options are passed to the linker using the -Wl prefix. The Settings dialog
box does not display this prefix in the Project Options edit control, and you should
not type it in while entering specific options.

Linker Option Categories

The following is a list of linker option categories available in VisualLynux:
166 VisualLynux User’s Guide

Link General

• Link General

• Link Customize

• Link Debug

• Link Input

• Link Output

• Link Special Options

Link General

The Linker General category settings are shown in the figure below:

Figure 8-23: Linker Options Dialog Box
VisualLynux User’s Guide 167

Chapter 8 - VisualLynux Project Settings

The Link General category allows you to change the control items shown in the
table below:

Link Customize

The Linker Customize category settings are shown in the figure below:

Figure 8-24: Linker Customize Options Dialog Box

Table 8-21: Linker General Options

Control Item Description

Use linker Use the drop-down list to explicitly select a linker (gcc.exe,
g++.exe, or ld.exe). VisualLynux assigns a default linker
based on the type of project.

Output file name In this edit box, the path relative to the executable produced by the
linker is displayed. By default, VisualLynux uses the output
directory and project name to construct the project target name.

Use shared

libraries

If clicked, forces the linker to link with shared instead of static
libraries (-mshared) and -shared for BlueCat Linux.

Use threads

libraries

Links an application written to use pthreads with special
libraries and startup code that enable the application to run in a
multi-threaded environment.
168 VisualLynux User’s Guide

Link Customize

You can change the linker customization options shown in the table below:

Table 8-22: Linker Customize Options

Control Item Description

Set text segment read-only Sets the text segment to be read only, and marks the
output as NMAGIC if possible.

Optimization Set text and data to

be read-writable

Sets the text and data sections to be readable and
writable. Does not page align the data segment. If
the output format supports UNIX-style magic
numbers, marks the output as OMAGIC.

Force file output Retains the executable output file whenever it is
still usable. Normally, the linker does not produce
an output file if it encounters errors during the link
process; it exits without writing an output file.

No symbol table caching ld normally optimizes for speed over memory
usage by caching the symbol tables of input files in
memory. This option tells ld to optimize for
memory usage instead by rereading the symbol
tables as necessary. This may be required if ld runs
out of memory space while linking a large
executable.

Link statistics Computes and displays statistics about the
operation of the linker, such as execution time and
memory usage.

Verbose Displays the version number for ld. The -v option
also lists the supported emulations.
VisualLynux User’s Guide 169

Chapter 8 - VisualLynux Project Settings

Link Debug

The linker debug category allows you to change options that control debugging
data.

Figure 8-25: Linker Debug Options Dialog Box

You can change the following control items on the linker Debug page:

Table 8-23: Linker Debug Options

Control Item
Command Line

Option
Description

Map file name -Map mapfile Prints to the file mapfile a link map:
diagnostic information about where symbols
are mapped by ld, and information on
global common storage allocation.

Generate map file -M Prints (to the standard output) a link map:
diagnostic information about where symbols
are mapped by ld, and information on
global common storage allocation.

Omit debugger

symbol

information

-S Omits debugger symbol information (but not
for all symbols) from the output file.
170 VisualLynux User’s Guide

Link Input

Link Input

The Linker Input category settings are shown in the figure below:

Figure 8-26: Linker Input Options Dialog Box

The control items in the table below appear on the linker Input page:

Table 8-24: Linker Input Options

Control Item
Command Line

Option
 Description

Additional library

path

-Llibrarypath Enter additional paths in which the linker
should look for libraries in this field.
Library paths should be delimited with a
comma (,).

Additional libraries -lar Adds archive file libar.a to the list of
files to link. This option can be used any
number of times. ld searches its path list
for occurrences of libar.a for every
archive specified. Different libraries
should be delimited with a comma (,).
VisualLynux User’s Guide 171

Chapter 8 - VisualLynux Project Settings
Link Output

The Linker Output category options are shown in the figure below:

Figure 8-27: Link Output Options Dialog Box

Debug Level

Symbol reference

file name

-Rfilename Reads symbol names and their addresses
from the filename, but does not relocate it
or include it in the output. This allows
your output file to refer symbolically to
absolute locations of memory defined in
other programs.

No start files -nostartfiles Does not use the standard system startup
files when linking. The standard system
libraries are used normally, unless
-nostdlib or -nodefaultlibs
is used.

Ignore all default

libraries

-nostdlib Does not use the standard system startup
files or libraries when linking. No startup
files, and only the libraries you specify
are passed to the linker.

Table 8-24: Linker Input Options (Continued)

Control Item
Command Line

Option
 Description
172 VisualLynux User’s Guide

Link Output

You can change the following linker output control items:

Table 8-25: Linker Output Options

Control Command Line Option Meaning

Base address -Ttext org Uses org as the starting address for
the text segment of the output file. org
must be a single hexadecimal integer; for
compatibility with other linkers, you can
omit the leading 0x usually associated
with hexadecimal values.

Entry point symbol -e entry Uses entry as the explicit symbol for
beginning execution of your program,
rather than the default entry point.

Retain only symbols in

file

-retain-symbols-
file filename

Retains only the symbols listed in the
file filename, discarding all others.
filename is simply a flat file, with
one symbol name per line. This option is
especially useful in environments where
a large global symbol table is
accumulated gradually to conserve
runtime memory.

Generate relocatable

output

-r Generates relocatable output, that is,
generates an output file that can, in turn,
serve as input to ld.

Do not sort global

common symbols

-sort-common Normally, when ld places the global
common symbols in the appropriate
output sections, it sorts them by size.
First come all the one byte symbols, then
the two byte symbols, then the four byte
symbols, and then everything else. This
is to prevent gaps between symbols from
alignment constraints. This option
disables that sorting.

Remove sym table and

relocation

-s Omits all symbol information from the
output file.

Split by relocation -split-by-reloc Tries to create extra sections in the
output file.

Split by file -split-by-file Similar to -split-by-reloc but
creates a new output section for each
input file.
VisualLynux User’s Guide 173

Chapter 8 - VisualLynux Project Settings

Link Special Options

The Special options dialog box shown in the following figure is used to specify
compiler options that cannot be edited using the Settings dialog box. For example,
you can use this box to enter specific hardware-dependent linker options.

Enter linker options in the Special options edit box. All options are used as entered
by the user and appended to the linker command line. Options entered are
displayed in the Project Options edit box after you leave the Special options field.

Figure 8-28: Linker Special Options Dialog Box

Make Page

Make Project

The Make page, shown in the next figure, allows for editing of project options for a
project based on an external Makefile. The Make page for a project provides two
dialog boxes that appear depending on the category selected in the Category drop-
down list.

• The General category allows editing of general make options.
174 VisualLynux User’s Guide

General Options

• The Environment category allows editing of data used to establish a build

environment before invoking the make utility.

General Options

Figure 8-29: Make Project General Options

The following control items appear on General Make page for a project:

Environment Options
A build environment can include:

• Shell scripts to be executed before processing the Makefile

Table 8-26: Make Project General Options

Command Description

Makefile path This field is for information purposes only. It displays the full path
to Makefile used to build a project.

Project target Enter or modify the name of the target (project goal) built by the
make utility. If your Makefile contains several targets, you can
use this field to specify the target to be built.
VisualLynux User’s Guide 175

Chapter 8 - VisualLynux Project Settings

• A set of environment variables that must be exported before processing

the Makefile

VisualLynux executes shell scripts specified (using bash) and exports
environment variables before invoking make to process the Makefile.

Usually, the VisualLynux installation process sets up scripts and environment
variables required for every target configuration and displays them in the proper
controls. You can add/remove scripts or variables, or modify values of variables.

Setting up Scripts
To manipulate shell scripts use the small toolbar in the Scripts control (see next
figure). You can then add a new script, remove a selected script, and arrange scripts
in the list box. Remember that the script path must be entered in a UNIX-like form,
using the CYGWIN convention for mounts and drives. The Settings dialog box
checks the path and displays an error message if a script file does not exist.

Figure 8-30: Setting Up Scripts

Adding/Editing Environment Variables
To add a new variable press the New button. It invokes a dialog box (see next
figure) in which you enter the variable name and value. To edit the value or name
of a variable, select it in the Variables list and press the Edit button. To remove an
176 VisualLynux User’s Guide

Make File

existing variable, select it in the Environment variables list and press the Remove
button.

Figure 8-31: Editing Environment Variables

Make File

The file Make page (see figure below) allows you to edit the name of the target to
be built when the Compile command is invoked. Also, Visual Studio uses this
name to remove intermediate files when the Clean command is executed.

Figure 8-32: Make File Page
VisualLynux User’s Guide 177

Chapter 8 - VisualLynux Project Settings

Kernel Options

The Kernel page (see following figure) allows you to enter options used by
VisualLynux to configure a LynxOS Kernel project. The Kernel page appears when
the Kernel Project item is selected from the tree in left pane. There are three
different groups of Kernel configuration options. You select a group of options to
edit using the Category drop-down list.

The following are the kernel options categories:

• Kernel General Page

• Kernel Configuration Page

• Kernel Parameters Page

Figure 8-33: Kernel Page

If the CONFIG.TBL file is selected in the left tree view, the Configuration page
appears instead of the Custom Build page. This page enables you to edit some of the
kernel build parameters.
178 VisualLynux User’s Guide

Kernel Options
Figure 8-34: Configuration Page

The following table shows the control items on the Kernel Configuration page:

Table 8-27: Kernel Options Configuration Page

Item Description

Input file

This field contains the name of the source file whose
properties are displayed. Note that VisualLynux always saves
a copy of kernel configuration data for a particular project
configuration in the configuration_name_CFG
subdirectory. configuration_name is a VisualLynux
project configuration name.
For example, for the project configuration Win32
LynxOS_x86_coff_Monolithic, VisualLynux creates
a subdirectory named
LynxOS_x86_coff_Monolithic_CFG and places
CONFIG.TBL and all driver configuration files into this
directory.

Description
This is a verbal description of the build step that appears in
the Visual Studio Output window during the build.
VisualLynux User’s Guide 179

Chapter 8 - VisualLynux Project Settings
Kernel General Page

The Kernel General page provides general information about the kernel project.

Figure 8-35: Kernel General Page

nodetab file path

Use this edit box to change the default path to the generated
nodetab file. By default, the nodetab file is placed into
the output directory.

Configuration tree

Represents driver configuration data to be included in the
kernel. It can be edited exactly in the same way as in the
Kernel Configuration Page dialog box.

Table 8-27: Kernel Options Configuration Page (Continued)

Item Description
180 VisualLynux User’s Guide

Kernel Configuration Page

The following table shows the control items on the Kernel General page:

Kernel Configuration Page

Figure 8-36: Kernel Configuration Page

These kernel options allow you to edit kernel configuration data, select drivers to
be included in the kernel, and specify driver and device properties. The dialog box
presents kernel configuration data (CONFIG.TBL and driver configuration files) in
a tree view. The root of the tree corresponds to the CONFIG.TBL file for a selected
project configuration. Other items represent driver configuration files, driver

Table 8-28: Kernel General Page Options

Item Description

Board Support Package

Displays the name of the Board Support Package from
the Cross Development Kit that has been used to create
the kernel project. This field is for information
purposes only.

Link with debug libraries

If checked, VisualLynux uses the debug version of the
drivers and devices libraries (libraries with _d suffix).
Otherwise, optimized libraries are used.
VisualLynux User’s Guide 181

Chapter 8 - VisualLynux Project Settings

properties, devices, device nodes, etc. The tree contains the item types shown in
the following table:

During the build, VisualLynux processes CONFIG.TBL and driver configuration
files using the config.exe utility. This build step produces the nodetab,
config.h, and sysdevices.h files. Generated header files are used to compile
the conf.c and info.c files.

You can specify different kernel configurations for different VisualLynux project
configurations. This dialog box allows you to use the same kernel project and
workspace to build kernels containing different sets of drivers or to configure
drivers in a different way.

Table 8-29: Kernel Configuration Tree Items

Item Description

cfg
Driver configuration file (.cfg file) included in
CONFIG.TBL or another configuration file.

C: Character driver definition

B: Block driver definition

D: Device definition

N: Device node definition

sys System device definition

n: Directly specified nodetab entry

L: Cloned device node

M: Module definition

c: Direct output to the config.h file

NOTE: Working with configuration data using the VisualLynux Setting dialog box
is very similar to editing CONFIG.TBL and appropriate driver configuration files
manually. The user is expected to know how to configure kernels using the
CONFIG.TBL file. For more details refer to the config and config.spec man
pages.
182 VisualLynux User’s Guide

Editing Item Properties

VisualLynux always stores configuration data and the CONFIG.TBL file for a
particular project configuration in a separate directory. You can edit common
kernel configuration data for several/all project configurations. If several
configurations are selected in the Settings For drop-down list, the configuration
data tree displays only items present in all project configurations. By
selecting/deselecting an item, you include/exclude it from all selected project
configurations.

VisualLynux always saves a copy of kernel configuration data for a particular
project configuration in a configuration_name_CFG subdirectory, where
configuration_name is a VisualLynux project configuration name. For
example, for the project configuration LynxOS_x86_coff_Monolithic,
VisualLynux creates a LynxOS_x86_coff_Monolithic_CFG subdirectory and
places all driver configuration files in this directory.

To include any component in a kernel, check the corresponding box in the tree. To
include an IDE driver in the kernel, check the box against the ide.cfg item. To
exclude this driver from the kernel, uncheck the ide.cfg item. You can include
or exclude other components (drivers, devices, device nodes) in the same way.
Note that VisualLynux does not check for driver interdependency, so make sure
that you have selected all necessary drivers, devices, and device nodes.

To remove a component permanently, select it and press Remove. VisualLynux
does not remove an item immediately but marks it with a special overlapped
image. The Remove button changes to a Restore button. You can return the item by
selecting it and pressing the Restore button. Marked items are deleted from the
configuration file when you close the dialog box or move to another page. Note
that if you have just created a new item, the Remove button deletes it immediately.

To rearrange items at the same level, use the Up and Down buttons. The sequence in
which items appear on the tree determines the major and minor device numbers in
the generated nodetab file.

Editing Item Properties
Edit button functions depend on the item selected from the tree. When pressed, the
button displays a submenu listing available operations. If the submenu contains
only one item, that operation is invoked implicitly.

NOTE: If you have created a new component, VisualLynux does not mark it as
selected automatically.
VisualLynux User’s Guide 183

Chapter 8 - VisualLynux Project Settings

The actions available for each kind of item are described in the table below:

Table 8-30: Edit Options for Kernel Items

Item Type Action Description

Root

Importing
Configuration File

Inserts a reference to the existing driver
configuration file in the CONFIG.TBL file.

Inserting Configuration
File

Creates a new driver configuration file and
inserts a reference to it in the CONFIG.TBL
file.

Adding nodetab Entry Creates a configuration entry that directly
specifies the nodetab entry (n: item).

Adding config.h Line
Entry

Creates a configuration entry that directly
dumps a config.h line.

cfg

Adding Driver Entry Creates a new driver specification line and
adds it to the selected configuration file.

New Module Entry Creates a new module specification line and
adds it to the selected configuration file.

Adding nodetab Entry Creates a configuration entry that directly
specifies the nodetab line (n: item)

Adding config.h Line
Entry

Creates a configuration entry that directly
dumps a config.h line.

C:

New Device Entry Creates a new device specification entry and
adds it to the selected character driver.

Editing Driver Entry Edits properties of the selected character
driver.

B:

New Device Entry Creates a new device specification entry and
adds it to the selected block driver.

Editing Driver Entry Edits properties of the selected block driver.

D:

New Device Node
Entry

Creates a new device node and adds it for the
selected device.

New System Device
Entry

Creates a system device entry for the
selected device.

Editing Device Entry Edits selected device properties.

N:
Editing Device Node
Properties

Automatically invokes a dialog box to edit
device node properties.
184 VisualLynux User’s Guide

Editing Item Properties
Importing Configuration File

Perform this operation to add an existing driver configuration file to the kernel
configuration data. Select the root item from the configuration tree, press the Edit
button, and select the Import cfg file menu item. VisualLynux displays a dialog box
containing a list of driver configuration files. After you have selected a file,
VisualLynux loads it and adds a subitem to the end of the tree. To move this file to
another position in the tree, use the Up and Down buttons.

Inserting Configuration File
This operation creates a new empty driver configuration file (or files, if several
project configurations are being edited). Select the root item from the tree, press
the Edit button and select the Insert cfg file menu command. The following dialog
box appears:

sys:
Editing System Device
Entry

Automatically invokes a dialog box to edit
system device properties.

n:
Properties...

Adding nodetab Entry
Automatically invokes a dialog box to edit
nodetab entry properties.

L:
Properties...

Device Node Entry
Automatically invokes a dialog to edit
module properties.

M:

Properties...

Editing Module
Properties

Automatically invokes a dialog box to edit
module properties.

c:
Properties...

Editing .config.h Line
Automatically invokes a dialog box to edit
config.h line properties.

NOTE: VisualLynux creates a copy of the imported driver configuration file and
saves it in the configuration data directory for a selected project configuration. If
several project configurations are selected, a separate copy of the imported
configuration file is created for every project configuration.

Table 8-30: Edit Options for Kernel Items (Continued)

Item Type Action Description
VisualLynux User’s Guide 185

Chapter 8 - VisualLynux Project Settings
Figure 8-37: Creating Configuration File

Enter the name of a configuration file (including extension) in the Configuration file

name edit box and press OK. The Configuration data directory edit box shows the full
path to the directory in which the new file is to be placed.

An entry for the new configuration file is inserted into the tree under the root item.
The entry is the last item in the tree. Use the Up and Down buttons to change its
position.

Adding nodetab Entry
This operation allows you to add an entry to generate the nodetab line directly.
Select the root item or the driver configuration file (cfg item) from the tree, press
the Edit button and select the Add nodetab entry menu command. The following
dialog box appears:
186 VisualLynux User’s Guide

Editing Item Properties
Figure 8-38: Nodetab Entry

Fill in the dialog box fields as appropriate and press OK. The new nodetab entry
is added as the last item in the subtree. Use the Up and Down buttons to position it
as desired. For information on nodetab lines, refer to the nodetab man page.

config.h Line Entry
To create a line that is dumped directly to the config.h file, select the root tree
item or the appropriate cfg item, press the Edit button and select the Add config.h

line menu item. The following dialog box appears. Enter the line to add to the
config.h file as is and press the OK button. The appropriate tree item is added to
the end of the list.

NOTE: All such lines are written to the config.h file before all other lines
generated by the config.exe utility.
VisualLynux User’s Guide 187

Chapter 8 - VisualLynux Project Settings
Figure 8-39: config.h Line

Editing .config.h Line
To edit a config.h line entry, select it from the tree and press the Edit button.
The dialog box above pops up. Edit the line and press OK.

Driver Entry
To create a driver entry, select the appropriate driver configuration file (cfg item),
press the Edit button, and select the Add driver menu item. The following dialog box
appears:

Figure 8-40: Driver Properties
188 VisualLynux User’s Guide

Editing Item Properties

Select a driver type by checking the appropriate radio button, then enter entry point
names in the Entry points list box. Select the appropriate line in the list and press
the Edit EP name button. Then enter or edit the entry point name in the edit box.
You can leave some entry point names empty. In such case the ionull entry
point name is used. A new driver entry is added to the end of the driver
configuration file. To move it, use the Up and Down buttons.

Editing Driver Entry
To edit a driver entry, select it from the tree, press the Edit button, and select the
Properties menu item. The Driver property dialog box appears. You may change
driver properties, but note that you may not change driver type.

New Module Entry
To create a new module, select the appropriate driver configuration file, press Edit,
and select the Add module command. The following dialog box appears:

Figure 8-41: Kernel Module Properties

Fill the text boxes and press OK. A new module entry is added to the end of the
configuration file. Use the Up and Down buttons to move the module entry.

Editing Module Properties
To edit module properties, select the module from the tree view and press Edit. The
Module properties dialog box appears. You can change appropriate values.
VisualLynux User’s Guide 189

Chapter 8 - VisualLynux Project Settings

New Device Entry
To create a new device entry, select the appropriate driver (C: or B:), press the
Edit button and select the Add device menu item. The Device property dialog box
pops up.

Figure 8-42: Kernel Device Properties

Fill in edit controls (the Name must be filled in) and press OK. A new device entry
is added to the tree under the selected driver. If needed, move the entry using the
Up and Down buttons.

Editing Device Entry
To edit a device entry, select it from the tree, and press the Edit button. Select the
Properties menu item. The Device property dialog box appears.

Device Node Entry
To create a device node entry, select the device from the tree, press the Edit button
and select the Add device node menu item. The Device node property dialog box
appears:
190 VisualLynux User’s Guide

Editing Item Properties
Figure 8-43: Device Node Properties

Select a device node type using the Clone node check box. Note that this type of
node does not use the Minor field and is disabled if Clone node is checked. Enter a
device node name, minor number, and permissions in the corresponding field. If
left empty, the Permission field defaults to 0600. A new device node entry is added
at the end of the device node list for the selected device.

Editing Device Node Properties

To edit device node properties, select a device in the tree (L: or N:) and press the
Edit button. VisualLynux automatically displays the Device node property dialog
box. Change the appropriate data. Note that the device node type cannot be
changed and the Clone node check box is disabled.

System Device Entry
To create a system device entry, select the device from the tree, press the Edit
button and select the Add system device menu item. The System device property
dialog box appears.

NOTE: If the Clone node is checked, an entry of the type L: is created. Otherwise
the N: entry is created.
VisualLynux User’s Guide 191

Chapter 8 - VisualLynux Project Settings
Figure 8-44: System Device Properties

Enter a name and minor number for the new system device and press the OK
button. A new system device entry is placed at the end of the device node list.

Editing System Device Entry
To edit a system device entry, select it from the tree and press the Edit button.
VisualLynux automatically displays the System device property dialog box. Modify
the desired values and press OK.

Kernel Parameters Page

Figure 8-45: Kernel Parameters Page
192 VisualLynux User’s Guide

Kernel Parameters Page

This option allows you to change some of the kernel build parameters. It displays
the table representing lines from the corresponding uparam.h file. The table
shows parameter names, current values, and default values (that is, when the
project was created). To edit a value, select the appropriate line in the table. Its
current value appears in the edit box. Other controls are described in the Kernel
Parameter Controls table below.

Note that some of the lines define parameter values as C expressions. Usually you
need not edit them, but VisualLynux does not prevent you from doing so.

VisualLynux creates and stores a uparam.h file for every project configuration.
The actual name of the file used for a particular configuration is
configuration_name_uparam.h, where configuration_name is the
VisualLynux project configuration name. For example, VisualLynux creates the
file LynxOS_x86_coff_Monolithic_uparam.h for the project configuration
Win32 LynxOS_x86_coff_Monolithic.

If you have selected several configurations in the Settings For drop-down list,
VisualLynux displays empty values for parameters that differ for some
configurations. Changing a value for such parameters sets the new value for all
configurations.

The following table shows control items for changing kernel parameters:

NOTE: Modifying such values can cause an invalid kernel build.

Table 8-31: Kernel Parameter Controls

Item Description

Default
This command replaces the current value for a selected
parameter with a default value.

Undefine this symbol

This command inserts the appropriate #undef name
statement in the uparam.h file before the
corresponding #define statement. Use this to
reduce the number of warning messages displayed
during compile time.

Undefine all
This command inserts #undef name statements for
all symbols in the uparam.h file.
VisualLynux User’s Guide 193

Chapter 8 - VisualLynux Project Settings
194 VisualLynux User’s Guide

CHAPTER 9 LynuxWorks FTP
Overview

The LynuxWorks FTP program (vlftp.exe) has been developed to facilitate
access to FTP servers for VisualLynux users. It provides a Windows Explorer-like
interface for easy transfer, creation, removal and renaming of files and directories
on both target and a host machines. The LynuxWorks FTP application contains its
own online help facility.

LynuxWorks FTP is designed and implemented with VisualLynux user needs in
mind. LynuxWorks FTP contains special functionalities, such as creation, deletion,
and renaming of FTP directories and files. Also, LynuxWorks FTP assumes high
speed connections to target FTP servers through a local area network. Therefore, it
does not use asynchronous implementation of the file/directory transfer or other
FTP operations.

LynuxWorks FTP provides the following functionality:

• Connecting to an FTP Server on the target computer

• Browsing FTP Folders on a target computer

• Displaying Contents of FTP Folders

• Browsing Local Folders and directories

• Manipulating FTP Folders - creating, renaming, and removing

• Manipulating FTP Files - renaming and removing on target

• Manipulating Files on a Local Computer - creating folders, removing
directories

• Downloading Files and Folders from FTP server to local computer

• Uploading Files and Folders to an FTP server
VisualLynux User’s Guide 195

Chapter 9 - LynuxWorks FTP

To perform a particular operation, you can use toolbar buttons, menu items, and
keyboard shortcuts.

LynuxWorks FTP Main Window

Figure 9-1: Main FTP Window

The LynuxWorks FTP main window contains three panes (shown in the previous
figure) displaying an FTP directory tree (top left pane), contents of the current FTP
directory (top right pane), and contents of the current directory on the local
computer. The active pane is highlighted visually by a border. Both the top right
and bottom panes can display file lists in four different modes (large icons, small
icons, list, and details). The user selects the desired mode using the menu item or
toolbar button.

In addition to panes, two toolbars reside at the top and the bottom of the main
window. The top toolbar is used to perform operations with directories and files
196 VisualLynux User’s Guide

LynuxWorks FTP Functions

located on the target computer and to select the display mode of the active pane.
The bottom toolbar pertains to the local computer and is used to perform
operations on files displayed in the bottom pane.

LynuxWorks FTP Functions

Connecting to an FTP Server

You can establish a connection to the target FTP server using the Connect

command or by passing command line parameters while launching the
LynuxWorks FTP program. To invoke the Connect command, open the
Connection submenu and select the Connect item, or click on this toolbar button

 to invoke the command.

When the Connect command is invoked, the LynuxWorks FTP utility brings up
the dialog box shown in the following figure. Fill in the fields and press OK to
connect to the target FTP server.

If LynuxWorks FTP has already been connected to a target, it asks for permission
to close the existing connection before the dialog box appears.

After the connection has successfully been established, LynuxWorks FTP fills the
FTP directory view and sets the root FTP directory on the target machine as the
current directory. The contents of the root directory are displayed in the FTP view.

An error occurring while connecting to the FTP server is displayed in an error box.

To disconnect from the server, open the Connection submenu and select Disconnect.
LynuxWorks FTP disconnects from the server automatically when you close the
main window or invoke the Exit command.
VisualLynux User’s Guide 197

Chapter 9 - LynuxWorks FTP
Figure 9-2: LynuxWorks FTP connect window

The following table describes the FTP connection window controls:

LynuxWorks FTP Command Line
You can connect to the target FTP service automatically, launching the
LynuxWorks FTP program from a command line that specifies the target machine.
The command line contains switches that provide values for connection

Table 9-1: FTP Connect Window Controls

Control Item Definition

FTP host name Enter the name of the target computer as defined in
your TCP/IP network.

Connect as Enter your name. You can leave this field blank and
LynuxWorks FTP registers you on the FTP server as
Anonymous.

Password Enter a password if it is required to connect to the
server. Usually, when connecting to the server as
Anonymous, a password is not required.

Port number You can change the default FTP port number if the
FTP service running on the target machine uses a
non-default TCP/IP port.
198 VisualLynux User’s Guide

Browsing FTP Folders

parameters. Any switch should start with “-” or “/” followed by a letter (see table
below) and parameter value without blank spaces. LynuxWorks FTP recognizes the
switches shown in the following table:

For example, the following command line connects UserName to the FTP server
ftp.lynx.com using the password pswUser and the default FTP port number
(21).

vlftp.exe -hftp.LynuxWorks.com -uUserName \
-WpswUser

Browsing FTP Folders

LynuxWorks FTP displays the FTP folder hierarchy in a tree as shown in the figure
below. The root item in the tree corresponds to the FTP home directory on the
target machine. Its name contains the name of the target machine to which the
program is connected. If there is no active connection to the FTP server, the tree
contains only the root item named not connected.

Table 9-2: FTP Command Line Switch Letters

Command Line Switch Letter Parameter Value

h or H FTP host computer name

u or U User name (can be omitted)

w or W User password (can be omitted)

p or P Port number (can be omitted)
VisualLynux User’s Guide 199

Chapter 9 - LynuxWorks FTP
Figure 9-3: FTP Folder Hierarchy

You can browse FTP directories on the target using the keyboard, mouse or
menu/toolbar commands. Every time you change the selected item in the tree, the
right pane (a file list) displays contents of the selected FTP folder. The folder
whose contents are currently displayed in the list view is highlighted and has a File

Open icon.

After you have selected an FTP folder from the tree, you can remove or rename it,
or download its contents to the local computer.

Keyboard Controls
The following keyboard controls can be used to browse FTP folders:

Down Arrow Moves the selection to the next directory at the current
level, or to the first directory on the next level (if the
current item is expanded).

Up Arrow Moves the selection to the previous directory at the current
level or to the parent directory.
200 VisualLynux User’s Guide

Mouse Controls

Left Arrow Collapses the current subtree and moves the selection to

the parent item.

Right Arrow Expands the current subtree and selects the first directory
in the subtree.

Home Moves the selection to the root item.

End Moves the selection to the last item in the tree.

Mouse Controls
Use the following mouse controls to browse FTP folder:

• Click an item label or icon to select the item.

• Double-click on an item to open the folder.

• Click on the “+” sign to open the folder.

Menu and Toolbar Commands
To use the following menu or toolbar commands, activate the FTP directory view:

• To expand a currently selected subtree and select the first child item,
select the Target/Open folder menu item. You can use the Open Folder

 button in the top toolbar. This command is unavailable if you have
already tried to expand an item that didn’t contain a subfolder.

• To select the parent folder, use the Target/Parent folder menu command, or

press the Parent folder button in the top toolbar. This command is
unavailable if the top tree item is currently selected.

You can also invoke the Parent folder command from the popup menu
(right mouse click).

NOTE: Initially, all items in the tree have a “+” sign indicating that the item has
subfolders. In fact, the program checks if the item really has subfolders when you
try to expand it. If the item doesn't have subfolders, the “+” sign disappears.
VisualLynux User’s Guide 201

Chapter 9 - LynuxWorks FTP

Displaying Contents of FTP Folders

The contents of FTP folders on the target machine are displayed in the FTP file list
view (see figure below). LynuxWorks FTP updates this view every time you move
the selection to another folder in the FTP Directory Tree. The view displays the file
list in four different modes: large icons, small icons, list, and details.

Figure 9-4: FTP Directory Tree

To change the display mode using the menu, do the following:

1. Make the FTP file list view active.

2. Select a desired command in the View/List submenu.

You can also use the following toolbar buttons in the top toolbar:

Displays the file list using large icons

Displays the file list using small icons

Displays the files in list mode

Displays the file list in detailed mode

Manipulating FTP Folders

Before performing any operation on an FTP folder you should make the FTP folder
tree view active and select the folder you want.
202 VisualLynux User’s Guide

Removing an FTP Folder

Removing an FTP Folder
To remove an FTP folder do the following:

1. Make the FTP folder tree view active.

2. Select the folder to remove. Ensure that the folder is empty. If it isn’t,
delete all files and subfolders.

3. Select Target/Remove from the main menu, or

- Press the Delete button in the top toolbar, or

- Press the right mouse button and select Remove from the popup menu.

Renaming a Folder
To rename a folder do the following:

1. Make the FTP folder tree view active.

2. Select the folder to rename.

3. Right-click the mouse and select Rename, or edit the folder name in-
place.

Creating an FTP Folder
To create a new FTP folder on the target computer, do the following:

1. Make the FTP folder tree view active.

2. Select the subdirectory under which you are going to create a new folder.

3. Select Target/New folder in the main menu, or

- Press the right mouse button and select New folder in the popup menu,
or

- Press the Create Folder button in the top toolbar.

LynuxWorks FTP creates a new folder and adds a new item to the FTP folder tree.
The new item is selected and LynuxWorks FTP goes into label edit mode, allowing
you to change the folder name.
VisualLynux User’s Guide 203

Chapter 9 - LynuxWorks FTP

Displaying FTP Folder Properties
To display folder properties, do the following:

1. Make the FTP folder tree view active.

2. Select the folder you wish to look up.

3. Select Target/Properties in the main menu, or

Press the Properties button in the top toolbar.

LynuxWorks FTP displays a dialog box that contains the description of the selected
folder.

Manipulating FTP Files

Before performing any operation on FTP files, activate the FTP file list view.

Removing FTP Files
To remove FTP files from a folder, do the following:

1. Select the FTP folder in the tree view to display its contents in the FTP
file list view.

2. Make the FTP file list view active.

3. Select one or more files in the file list view.

4. Select Target/Remove in the main menu, or

- Press the Delete button in the top toolbar, or

- Press the right mouse button and select Remove in the popup menu.

LynuxWorks FTP asks for confirmation of the deletion and removes files only if
you reply Yes.

Renaming an FTP File
To rename an FTP file, do the following:

1. Select the FTP folder in the tree view to display its contents in the FTP
file list view.
204 VisualLynux User’s Guide

Displaying File Properties

2. Make the FTP file list view active.

3. Select exactly one file in the list.

4. Select Target/Rename in the main menu, or

- Press the right mouse button and select Rename in the popup menu, or

- Click once more on the label of the selected item.

LynuxWorks FTP goes into label edit mode for the selected file. When finished
editing, press the Enter or click outside of the edit field.

Displaying File Properties
To display file properties, do the following:

1. Select the FTP folder in the tree view to display its contents in the FTP
file list view.

2. Make the FTP file list view active.

3. Select exactly one file in the list.

4. Select Target/Properties in the main menu, or

- Press the Properties button in the top toolbar, or

- Press the right mouse button and select Properties.

Browsing Local Folders

Initially, the bottom pane in the LynuxWorks FTP main window displays the list of
both local and remote drives on your machine.

Opening Folders
You can browse the contents of the folders on the drives. To open any folder and
display its contents, do the following:

NOTE: This command is available only if you select exactly one item in the list.

NOTE: This command is available only if you have selected just one file in the list.
VisualLynux User’s Guide 205

Chapter 9 - LynuxWorks FTP

1. Make the local file list view active.

2. Select the folder whose contents you wish to display. Folder items have

the Folder icon on the left. When the local file view displays the list
of drives, the items have the appropriate drive icon.

3. Double-click on the folder item, or

- Invoke My computer/Open folder using the menu, or

- Press Open Folder in the bottom toolbar, or

- Press the right mouse button and select Open folder from the menu.

LynuxWorks FTP changes the contents of the local file list view.

Displaying the Parent Folder
To return to the parent folder and to display its contents, do the following:

1. Make the local file list view active.

2. Select My computer/Parent folder in the menu, or

- Press Parent folder in the bottom toolbar, or

- Press right mouse button and select Parent folder.

LynuxWorks FTP displays contents of the parent folder.

Changing the View Mode
To change the display mode, do the following:

1. Make the local file list view active;

2. Select a desired mode in the View/List submenu.

You can also use the following toolbar buttons in the top toolbar:

NOTE: The Open folder command is inaccessible if you select non-folder items
from the view, or select more than one item.

NOTE: The command is inaccessible if the root folder is displayed (drives list).
206 VisualLynux User’s Guide

Manipulating Files on a Local Computer

Displays the file list using large icons

Displays the file list using small icons

Displays the files in list mode

Displays the file list in detailed mode

Manipulating Files on a Local Computer

Before performing any operation on files on the local computer, you should make
the local file list view active. Then Browse to the folder on which you are going to
perform the operation.

Creating a New Folder
To create a new folder, do the following:

1. Make the local file list view active.

2. Go to the folder on which you are going to perform the operation.

3. Select My computer/New folder in the main menu, or

- Press the right mouse button and select New folder from the popup
menu, or

- Press the New folder button in the bottom toolbar.

LynuxWorks FTP creates a new folder as a child of the folder currently displayed
in the local file view and goes into label edit mode. You can edit the name of the
new folder.

Renaming Files or Folders
To rename a file or a folder on the local machine, do the following:

1. Make the local file list view active.

2. Go to the folder on which you are going to perform the operation.

NOTE: You cannot create a new folder if the disk drive list is displayed.
VisualLynux User’s Guide 207

Chapter 9 - LynuxWorks FTP

3. Select exactly one file or folder.

4. Invoke My computer/Rename from the main menu, or

- Press the right mouse button and select Rename from the menu, or

- Click once more on the label of selected item.

LynuxWorks FTP goes into label edit mode for the selected file. When finished
editing, press Enter or click outside of the edit field.

Displaying File or Folder Properties
To display file or folder properties, do the following:

1. Make the local file list view active.

2. Browse to the folder that you want.

3. Select exactly one file or folder.

4. Select My computer/Properties in the main menu, or

- Press the right mouse button and select Properties from the menu, or

- Press the Properties button in the bottom toolbar.

LynuxWorks FTP displays a dialog box containing the description of the selected
file or folder:
208 VisualLynux User’s Guide

Removing Files and Folders
Figure 9-5: File Properties

Removing Files and Folders
To remove one or more files or folders on the local machine, do the following:

1. Make the local file list view active.

2. Go to the folder from which you wish to delete files or folders.

3. Select files and folders you are going to remove.

4. Select My computer/Remove in the main menu, or

- Press the right mouse button and select the Remove, or

- Press the Delete button in the bottom toolbar.

LynuxWorks FTP asks for your permission to remove the selected files or folders.

NOTE: Use the Recycle Bin folder to restore removed files and folders.
VisualLynux User’s Guide 209

Chapter 9 - LynuxWorks FTP

Downloading Files and Folders

Downloading Files
To download one or more files, do the following:

1. Browse to the folder on the local computer to which you wish to
download the file from the FTP server.

2. Select the folder to be downloaded using the FTP Directory Tree.

3. In the FTP file list view select files to download.

4. Select the Target/Download menu item, or

- Press the right mouse button and select the Download command in the
popup menu, or

- Press the Download button in the top toolbar.

LynuxWorks FTP brings up the Transfer Dialog Box that displays the progress of
the download. If some files already exist in the current local folder, LynuxWorks
FTP asks for permission to replace them. You can permit replacing, skip
transferring files, or cancel the operation.

Downloading Folders
To download a folder from the target machine to the local host, do the following:

1. Browse to the folder on the local computer to which you wish to
download the folder from the FTP server.

2. Using the FTP Directory Tree, select the folder to be downloaded.

3. Select Target/Download in the main menu, or

- Press the right mouse button and select Download from the menu, or

- Press the Download button in the top toolbar.

LynuxWorks FTP brings up the Transfer Dialog Box that displays the progress of
the download. If a folder with the same name already exists in the current local
directory, LynuxWorks FTP asks for permission to replace the folder.

NOTE: If the selected folder contains subfolders, they are also downloaded.
210 VisualLynux User’s Guide

Uploading Files and Folders

Uploading Files and Folders

To upload files or folders from the local host to the target, do the following:

1. Select the folder in the FTP Directory Tree to which you wish to transfer
files and folders from the local computer.

2. Browse to the folder on the local computer where the files and folders
you wish to transfer to the target machine reside.

3. Select all files and folders you wish to upload.

4. Select My computer/Upload in the main menu, or

- Press the right mouse button and select Upload from the menu, or

- Press the Upload button in the bottom toolbar.

LynuxWorks FTP brings up the Transfer Dialog Box that displays the progress of
upload. If a folder or file with the same name already exists on the target,
LynuxWorks FTP asks for permission to replace it.

Transfer Dialog Box

The transfer dialog box enables the user to control the process of downloading or
uploading files and folders. This dialog box is shown in the following figure. When
a file or folder transfer is occurring, the dialog box displays the name of the source
directory, the name of the file being transferred, as well as the full name of the
destination file. The progress bar shows the status of the current file processing.

In addition, the Status tree view displays the status of the files and folders in the
transfer process (see figure below).

NOTE: If the selected folder contains subfolders, they are also uploaded.
VisualLynux User’s Guide 211

Chapter 9 - LynuxWorks FTP

.

Figure 9-6: Transfer Dialog Box

You can stop the transfer process by pressing the Cancel button. When the transfer
procedure is completed, the name of the button changes to Close and the Status
window becomes available. You can browse the tree in the Status window to verify
the results of the transfer. To display the results of processing, the transfer dialog
box uses icons (shown in the following table) in the Status tree:

Table 9-3: FTP Status Tree Icons

Icon Description

In Progress

Folder Copied Partially
212 VisualLynux User’s Guide

Transfer Dialog Box

Not Copied (Error or Skipped)

Copied Successfully

Table 9-3: FTP Status Tree Icons

Icon Description
VisualLynux User’s Guide 213

Chapter 9 - LynuxWorks FTP
214 VisualLynux User’s Guide

CHAPTER 10 VisualLynux Target

Administration
Overview

The purpose of the VisualLynux Target Administration tool is to provide support in
defining, configuring, and troubleshooting targets.

A target is a computer or device for which the user develops LynxOS or BlueCat
Linux applications using VisualLynux, and which is connected to the developer
computer through a network or serial line.

VisualLynux uses TCP/IP protocols as the basis for communication with targets
and FTP protocols as a primary tool for file transfers between the local computer
and the target.

It uses the target definition to establish a connection while running VisualLynux
tools such as Telnet, LynuxWorks FTP, or the Cross Process Viewer. In addition,
VisualLynux uses target definitions while running the debugger and transferring
project files and executables to and from the target.

You can define any number of targets with unique readable names. Each target
definition is composed of configuration data, including the target computer
network name, communication mode, FTP/Telnet configuration, project root
directories, and communication parameters to establish connections with the
debugger and process viewer servers. The user can specify different target
definitions for the same target computer or device, which enables a different setup
from the target properties for another project.

The Target Administration tool provides the default target from a set of defined
targets. You can change default behavior and specify that VisualLynux enables
target selection whenever the tool is invoked. The user can invoke VisualLynux
without a target and specify the correct target later on.
VisualLynux User’s Guide 215

Chapter 10 - VisualLynux Target Administration

Target Configuration

To communicate properly with a computer running VisualLynux, target
configuration should be in accordance with the following requirements:

• It must support TCP/IP.

• It must run FTP service.

• It must run the remote shell daemon, which has to be configured to allow
the user to run programs on the target (that is, there must be proper user
rights).

• The FTP service should allow the user full access to directories under the
home FTP directory (including creating and removing directories/files).

• The home FTP directory for the user should be the same as the root
directory of the target local file system or its name.

• It should run the Telnet service.

• It should allow for remote debugging. The target should have the
GDBSERVER program and allow it to be run remotely.

• It should allow the Cross Process Viewer to run. It should have the
PCDSRVR program and allow the user to run it remotely.

Furthermore, VisualLynux Target Administration assumes that all LynxOS or
BlueCat Linux configuration tasks have been performed.

Invoking Target Administration

To invoke the Target Administration Wizard, press the Target Administration button

 in the VisualLynux toolbar. The Target Administration dialog box appears
with the following options:

• Creating a New Target definition

• Editing Target Properties

• Renaming a Target definition

• Removing a Target definition

• Setting a Default Target

• Specifying Target Selection Mode

• Running Commands on the Target
216 VisualLynux User’s Guide

Target Administration Dialog Box

Target Administration Dialog Box

The Target Administration dialog box allows you to define new targets, modify or
remove existing target definitions, or set default targets. If no target is defined, the
Target Administration dialog box invokes the Target Wizard to automatically
allow you to define the first target.

The Target Administration dialog box displays existing target definitions in a tree
view (see next figure). The name of the tree root is formatted using the following
syntax:

VisualLynux Targets on computer_name

where computer_name is the name of the local host machine as specified in the
TCP/IP configuration.

The default target is highlighted in bold. You can navigate the target tree using the
Arrow keys or the mouse. The target currently selected is the target on which the
next operation is performed. To perform a particular operation on a target, use the
dialog buttons or press the right mouse button and select a command from the
popup menu.
VisualLynux User’s Guide 217

Chapter 10 - VisualLynux Target Administration
Figure 10-1: Target Administration Dialog Box
218 VisualLynux User’s Guide

Target Administration Dialog Box

Table 10-1: Target Administration Dialog Box

Control Item Definition

New target This button invokes the Target Wizard, which helps to define a
new target, and define a network connection with the target, to
specify and check Telnet/FTP configurations, and to define
communication parameters for the GDBSERVER and
PCDSRVR programs running on the target.
After successful definition of the new target, its name appears
in the tree view. If the new target is the only target defined, it
automatically becomes the default.

Edit target properties This button is enabled only if a target is selected in the tree
view. It displays the Editing Target Properties dialog box,
which facilitates changing the properties of the highlighted
target.

Remove target Removes the target selected in the tree view. Because target
removal cannot be undone, you are alerted before the operation
is performed. The button is enabled only if a target is selected.

Make default This button sets the current target as the default. The name of
the target is immediately highlighted in bold. This button is
enabled only if a target that is not already the default is
selected.

Options This button invokes the Target Selection dialog box, which is
used to set a target selection mode. This specifies whether the
default target is used for VisualLynux tools, or the user selects a
target every time a VisualLynux tool is invoked.

Run command This button invokes the Running Commands on the Target
dialog box, which allows you to run a command on the selected
target. This button is enabled only if a non-root item is selected
in the target tree.

OK This button closes the dialog box and saves changes.

Cancel This button closes the dialog box and rejects changes.

Help This button invokes the help system.
VisualLynux User’s Guide 219

Chapter 10 - VisualLynux Target Administration

Target Wizard

VisualLynux invokes the Target Wizard when you press the New target button in
the Target Administration Dialog Box. The Target Wizard displays a sequence of
pages that help to define target properties.

Target Administration also invokes the Target Wizard automatically if it needs a
target definition, and no target is defined yet. For example, if VisualLynux is
launching a tool and needs to connect to the target but none has been defined, the
Target Wizard is invoked.

The Target Wizard includes the following steps to process target definition. You
can navigate the steps using the Next and Back buttons.

1. General Information Step

2. Target Identification Step

3. Network Connection Step

4. Authentication Step

5. Utilities Step

6. Projects Directory Step

7. Debugging Step

8. Process Viewer Step

General Information

The General information step provides general information about the Target
Wizard.
220 VisualLynux User’s Guide

Target Identification Step
Figure 10-2: General Information Step

Target Identification Step

Using the Target Identification step, you provide the target name and the select the
mode used to connect with the target (see next figure).
VisualLynux User’s Guide 221

Chapter 10 - VisualLynux Target Administration
Figure 10-3: Target Identification Step

The following table lists the controls for the target identification step:

Network Connection Step

The Network Connection step allows you to specify a target network name and
check the TCP/IP connection with the target.

Table 10-2: Target Identification Step

Control Item Description

Target name This field has to be filled with a unique target name. The
program checks to see if the name is unique. Target

name allows you to specify the one physical target as
multiple logical targets with different properties.

Connection mode This radio button specifies the mode used by Target
Administration to communicate with a particular target.
The current implementation supports only connection
through a local area network.
222 VisualLynux User’s Guide

Network Connection Step
Figure 10-4: Network Connection Step

The following table lists the controls in the network connection step:

Table 10-3: Network Connection Step

Control Item Description

I have access to the target through

the Network Neighborhood window

Check this box if the target computer is visible in
the Network Neighborhood window. This
means that the target is running Network File
System support compatible with the Windows
Network browser and you can select the target
using the Browse button. If you uncheck the
box, the Browse button is disabled and you must
enter the target name manually.
VisualLynux User’s Guide 223

Chapter 10 - VisualLynux Target Administration
Authentication Step

To maintain proper connection with the services running on the target,
VisualLynux may need authentication data (user name and password). You should
enter this data during the Authentication Step.

Target computer name This field displays the target name as defined in
the TCP/IP configuration of your network. The
program fills this field automatically if you have
selected the target computer using the Browse
button. Otherwise you must enter a valid
computer name in this field manually. You can
also enter a valid IP address in this field.

Check connection now Verifies the TCP/IP connection with the target
immediately. The program verifies connection
with the target when you press Next as well. If
connection with the target cannot be established,
the program displays an error message and offers
to verify the computer name entered in the
Target computer name field.

Table 10-3: Network Connection Step (Continued)

Control Item Description
224 VisualLynux User’s Guide

Authentication Step
Figure 10-5: Authentication Step

The following table lists the controls in the target authentication step:

Table 10-4: Target Authentication Step

Control Item Description

Use anonymous

connection

This box is unchecked by default. If checked, VisualLynux
does not use the user name and password while connecting to
services on the target computer. For example, while connecting
to the target FTP service, VisualLynux uses Anonymous as
the user name and a default password (usually the user’s e-mail
address). Be sure that the services on the target are configured
to allow anonymous access.
VisualLynux User’s Guide 225

Chapter 10 - VisualLynux Target Administration
Utilities Step

The Utilities step is used to specify connection parameters with services running
on the target. VisualLynux uses Telnet and FTP as the main communication
protocols with the target. Usually you do not need to change the data displayed on
this page by default.

User name If the Use anonymous connection button is not checked the
user must fill this field with a valid user name. This name is
used by Target Administration while connecting to services on
the target. LynxOS or BlueCat Linux running on the target and
all other services should be configured to allow the user to
access required services (FTP, Telnet).
By default the program fills this field with the current user
name provided by Windows.

Password If you leave this field empty, Target Administration uses an
empty password while connecting to the target. In this case, the
target must allow user access without a password. If this is not
the case, you must enter a valid password.

Table 10-4: Target Authentication Step (Continued)

Control Item Description
226 VisualLynux User’s Guide

Utilities Step
Figure 10-6: Utilities Step

The following table shows the controls in the utilities step:

Table 10-5: Utilities Step

Control Item Description

Telnet port number You can change the default Telnet port number if the
Telnet service on the target uses a non-standard port
number. By default the program uses a standard
Telnet port number (23).

FTP port number You can change the default FTP port number if the
FTP service on the target uses a non-standard port
number. By default the program uses a standard FTP
port number (21).

Check Telnet connection Press this button to check the Telnet connection to
the target immediately. The program establishes a
connection with the Telnet service on the target using
the Network Connection Step and the Telnet port
number. In case of an error, a message box explains
the error.
VisualLynux User’s Guide 227

Chapter 10 - VisualLynux Target Administration
Projects Directory Step

The Projects Directory step is used to create or select a directory on the target that
is used by VisualLynux for files and executables while debugging/running
applications. VisualLynux creates a directory for each project under the root
projects directory and places files and executables in this directory.

Check FTP connection Press this button to establish an FTP connection with
the target using the Network Connection Step and
FTP port number. If a connection is established
successfully, the program fills the FTP home

directory field with the full name of the user’s home
directory. If any error occurs, a message box
explaining the error appears.
The FTP connection is also checked when you
change the page using Next.

FTP home directory Contains the full name of the user’s home directory.
This field is filled by the program as a result of a
successful FTP connection checking.

Table 10-5: Utilities Step (Continued)

Control Item Description
228 VisualLynux User’s Guide

Projects Directory Step
Figure 10-7: Projects Directory Step
VisualLynux User’s Guide 229

Chapter 10 - VisualLynux Target Administration

The following table lists the projects directory step controls:

Table 10-6: Projects Directory Step

Control Item Description

Home FTP directory on target This field is filled by the program as a result of checking
the FTP connection to the target. It is not accessible and
is displayed only for your information.

Root Project Directory name Enter the root project directory name in this field. If the
directory name is entered without forward (/) or back
slash (\), the program considers the entered name as a
subdirectory of the home FTP directory.
If the entered name starts with a slash, the program
considers it as a full directory name on the target. Use
Browse to select the directory that serves as a root
project directory on the target.
If you have entered the name of a nonexistent directory,
you can create it by pressing the Create now button. The
program also checks if the directory exists when you
press the Next button and it prompts you to create a new
directory immediately.

Browse This button displays the Browse for FTP folders dialog
box. You can select the existing folder on the target as
the root project directory.

Create now Press this button to force the program to create a new
FTP directory on the target. The new directory has a
name specified in the Root Project Directory name
field. Again, the program considers the directory name
in this field as a relative of the home directory if it
doesn’t start with a slash, and as a full directory name if
it does.
230 VisualLynux User’s Guide

Debugging Step
Figure 10-8: Browse for FTP Folders Dialog Box

Debugging Step

The Debugging step (see next figure) is used to specify the location of the
GDBSERVER program and the default port number with which it communicates.
VisualLynux User’s Guide 231

Chapter 10 - VisualLynux Target Administration
Figure 10-9: Debugging Step

The following table lists the debugging step controls:

Table 10-7: Debugging Step

Control Item Description

GDBSERVER directory Enter the full path to the directory in which the
GDBSERVER program is placed (if it differs
from default /usr/bin directory). The path
must be specified using the local target file
system directory tree.

CAUTION! The FTP directory tree and
filesystem directory tree on the target
should be the same because the full
directory name is used to invoke
GDBSERVER on the target.
232 VisualLynux User’s Guide

Process Viewer Step
Process Viewer Step

The Process Viewer step allows you to specify the directory on the target where the
Process Viewer server (PCDSRVR) is placed and the TCP/IP port number
VisualLynux uses to communicate with the server.

Figure 10-10: Process Viewer Step

Browse Invokes the Browse FTP folders dialog box.

GDBSERVER TCP/IP port number You should specify the TCP/IP port number to
communicate with the GDBSERVER. If you
leave this field empty, the program signals that
remote debugging is not available.

Table 10-7: Debugging Step (Continued)

Control Item Description
VisualLynux User’s Guide 233

Chapter 10 - VisualLynux Target Administration
The following table lists the process viewer step controls:

Target Administration Tasks

VisualLynux provides capabilities for performing the following Target
Administration tasks:

• Creating a New Target

• Editing Target Properties

• Renaming a Target

• Removing a Target

• Setting a Default Target

NOTE: The current version does not allow changing the default TCP/IP port
number used by the PCDSRVR and, therefore, the appropriate field is grayed out.

Table 10-8: Process Viewer Step

Control Item Description

Process Viewer server directory Change the name of the directory in which
PCDSRVR is placed if it differs from the
default /usr/bin directory name. The
directory name has to be specified using the
local target file system directory tree.

Browse Invokes the Browse for FTP folders dialog
box. Select the existing directory where
PCDSRVR resides.

CAUTION! The FTP directory tree and
file system directory tree on the target
should be the same because the full
directory name is used to invoke
PCDSRVR on the target.

Process Viewer server TCP/IP port

number

Because the current implementation does
not allow changing the default TCP/IP port
used by PCDSRVR, this field is grayed out.
234 VisualLynux User’s Guide

Creating a New Target

• Specifying Target Selection Mode

• Running Commands on the Target

Creating a New Target

To create a new target:

1. Invoke the Target Administration Dialog Box.

2. Press the New target button.

Target Administration invokes the Target Wizard, which guides you through
defining new target properties.

Editing Target Properties

To edit target properties, do the following:

1. Invoke the Target Administration dialog box.

2. Select the target from the target tree.

3. Press the Edit target properties button, or

Press the right mouse button and select the Edit target command from the
popup menu.

This invokes a tabbed Target Properties dialog box. Select the page or pages you
want to edit and follow the rules described in the Target Wizard section.

• Target Identification Step

• Network Connection Step

• Authentication Step

• Utilities Step

• Projects Directory Step

• Debugging Step

• Process Viewer Step
VisualLynux User’s Guide 235

Chapter 10 - VisualLynux Target Administration
Figure 10-11: Target Properties Dialog Box

Removing a Target

To remove a target do the following:

1. Invoke the Target Administration Dialog Box.

2. Select the target you wish to remove from the target tree.

3. Press the Remove target button, or

Press the right mouse button and select the Remove command from the
popup menu.

Target Administration asks if you really want to remove the target because this
operation cannot be undone.

Setting a Default Target

To set the default target, do the following:
236 VisualLynux User’s Guide

Specifying Target Selection Mode

1. Invoke the Target Administration Dialog Box.

2. Select the target you want to set as the default.

3. Press the Make default button, or

Press the right mouse button and select the Make default command from
the popup menu.

If you select a target that is already set as default, the Make default button is grayed
out.

Specifying Target Selection Mode

To specify the target selection mode used to connect to the target while
VisualLynux is being launched, do the following:

1. Invoke the Target Administration Dialog Box.

2. Press the Options button.

This invokes the Target selection dialog box (see following dialog box). Select the
target selection mode you wish to use when VisualLynux invokes tools.

Figure 10-12: Target Selection Dialog Box
VisualLynux User’s Guide 237

Chapter 10 - VisualLynux Target Administration

The following controls appear in the target selection dialog box:

Renaming a Target

To rename target do the following:

1. Invoke the Target Administration Dialog Box.

2. Select the target you want to rename from the target tree.

3. Press the right mouse button and select the Rename command from the
popup menu, or

Click once more on selected item label.

Target Administration changes to label edit mode. After editing, press Enter or
select another item in the tree. Target Administration verifies that the new name
you have entered in the edit box is unique, and rejects changes if it is not unique.

Running Commands on the Target

To run a command on a target, do the following:

1. Invoke the Target Administration Dialog Box.

2. Select the target on which you are going to run a command.

Table 10-9: Target Selection

Control Item Description

Always use default target for VisualLynux

tools

If this option is selected, VisualLynux
automatically tries to connect to the default
target while a tool is starting.This is the
default mode.

Enable me to select target before

launching VisualLynux tools

If this option is selected, VisualLynux
always brings up the dialog box that allows
you to select the target to which a tool has
to be connected.

Always invoke VisualLynux utilities

without target

If this option is selected VisualLynux does
not try to connect automatically to any
target. You should connect to the target
after a tool has been launched using the
tool’s commands.
238 VisualLynux User’s Guide

Run Command Dialog Box

3. Press the Run command button.

Target Administration invokes the Running Commands on the Target dialog box,
which allows you to run commands using the Remote shell (see next figure).

Run Command Dialog Box
The Run command dialog box allows you to run commands on the target using the
Remote shell. This window also pops up if Target Administration runs servers on
the target to support VisualLynux utilities (for example, Cross Process Viewer),
and an error occurs.

Figure 10-13: Run Command Dialog Box
VisualLynux User’s Guide 239

Chapter 10 - VisualLynux Target Administration

The following controls appear in the Run Command dialog box:

Table 10-10: Run Command Dialog Box

Control Item Description

Command to run Enter the command you want to run on the
target. If the dialog box is invoked (e.g., when
starting Cross Process Viewer on the selected
target) this field is filled in by the program.

Run Press this button to run the command on the
target. The button is enabled only if the previous
field is filled in. The program disables this
button after command execution has begun.

Close When the command is being executed, this
button is called Cancel. Pressing it interrupts
current command execution. After the command
has been executed, the button name changes to
Close. This button closes the Run command
dialog box.

Command output The command output window is placed at the
top of the dialog box. This window shows output
from the Remote Shell utility. The first line of
output always displays "Running
command_text" and the last line shows the
return code from the RSH utility. You can use
this line to check the success of command
execution.
240 VisualLynux User’s Guide

CHAPTER 11 LynuxWorks Cross Process

Viewer
Overview

This LynuxWorks Cross Process Viewer (CPV) is a part of the VisualLynux
Integrated Development Environment (IDE). CPV runs on Windows cross
development hosts and communicates with LynxOS or BlueCat Linux target
machines to display all processes and threads running on the target.

The LynuxWorks CPV program (cpv.exe) monitors a target system for
information on load average, memory usage, and processes and threads statistics.

Listed below are the main CPV functionalities:

• The CPV Window

• File Menu

• View Menu

• Options Menu

• Help Menu

• Cross Process Viewer Toolbar Buttons

NOTE: While CPV can be called from VisualLynux, it can also be executed
separately to monitor target systems with LynxOS or BlueCat Linux after the
development cycle. This use of CPV does not require VisualLynux.
To run CPV from an MS-DOS window, enter cpv -t targetname
where targetname is a name or IP address of the target. You can also enter just
cpv and specify a target or IP address using the File->New menu item.
VisualLynux User’s Guide 241

Chapter 11 - LynuxWorks Cross Process Viewer

The CPV Window

Figure 11-1: CPV Window

The CPV Window displays four panes:

• Performance pane

• Memory Usage pane

• Processes pane

• System Tasks pane (for LynxOS only)

The information in all four panes reflects the state of the current target with which
CPV has a session with and is updated after periodic transactions between CPV
and the target. The duration of the interval for periodic transactions is set by the
user. The default is 1 second. The possible range is between 0.5 seconds and 30
seconds.
242 VisualLynux User’s Guide

CPV Window Panes

CPV Window Panes

The following table describes the panes in the CPV window:

Table 11-1: CPV Panes

Pane Display

Performance pane The modes of display and display items are listed below:

Text
• Load average values for 1-, 5-, and 15-minute intervals
• CPU state (idle/user/kernel) in percentages
• Number of processes selected for display, including the number

of sleeping processes and those on the CPU

Chart
A chart of performance counters and the list of selected
performance counters

Histogram
A histogram of performance counters and the list of selected
performance counters - Performance counters include:
• Load average1
• Load average5
• Load average15
• Idle percent
• User percent
• Kernel percent
• LWM real (LynxOS only)
• Free real
• User real (Used real for BlueCat Linux)
• Kernel real (LynxOS only)
• Buffers real (BlueCat Linux only)
• Cached real (BlueCat Linux only)
• LWM virtual (LynxOS only)
• Free virtual
• User virtual (Used virtual for BlueCat Linux)
• Process number (LynxOS only)
• Waiting processes (LynxOS only)
• Paged in (BlueCat Linux only)
• Paged out (BlueCat Linux only)
• Swapped in (BlueCat Linux only)
• Swapped out (BlueCat Linux only)
• Interrupts (BlueCat Linux only)
• Context switches (BlueCat Linux only)
VisualLynux User’s Guide 243

Chapter 11 - LynuxWorks Cross Process Viewer

Memory Usage pane Displays the text and graphical bars representing memory usage

information in the target system:

LynxOS:
Displays values for the total amount of real and virtual (if any)
memory in the target system, low water mark (LWM), free and
user real and virtual memory, and real kernel memory.

BlueCat Linux:
Displays values for the total amount of real and virtual (if any)
memory in the target system, free memory, memory used for
system buffers, cached memory, shared memory, free and used
swapped memory.

Table 11-1: CPV Panes (Continued)

Pane Display
244 VisualLynux User’s Guide

File Menu
File Menu

The File menu initiates the following actions:

• Initiates a new session with a target running LynxOS or BlueCat Linux.

• Makes a snapshot of the current session and saves it in a file.

Processes pane Displays the following information for each selected process and
each additional thread:
• name
• pid
• ppid
• pgrp
• sid
• pri
• S (state)
• tid
• total time
• system time
• user time
• last percentage
• total percentage
• user name
• semaphore on wait
• number of files
• flags
• device name
• memory information (graphical bars and text values)

System Tasks pane
(LynxOS only)

Displays the following information:
• name
• tid
• pri
• S (state)
• stack
• system time
• last percentage
• total percentage
• semaphore on wait
• flags

Table 11-1: CPV Panes (Continued)

Pane Display
VisualLynux User’s Guide 245

Chapter 11 - LynuxWorks Cross Process Viewer

• Opens a file containing a snapshot and displays it in the panes.

• Specifies the most recent sessions.

• Specifies the most recent files (with snapshots).

• Exits from the CPV.

Figure 11-2: CPV File Menu

The following table lists the CPV File menu controls:

Table 11-2: CPV File Menu

Command Description

New session Displays a dialog box to specify a target machine name or IP
address.

Open Displays a File Selection dialog box to select a Cross Process
Viewer snapshot.

Save Makes a snapshot and saves it in the file specified in the Save As
dialog box.

Save As Displays a dialog box to specify a file name for the snapshot.

Recent sessions Displays a cascade menu to specify a target for a new session.

File list Lists the latest snapshots. You can select one of the latest
snapshots using this menu item instead of Open.

Exit Terminates the Cross Process Viewer session.
246 VisualLynux User’s Guide

View Menu

View Menu

The View menu (see figure below) controls the visibility of the toolbar, the status
bar, and the four panes.

Figure 11-3: CPV View Menu

The following table shows the CPV View menu controls:

Table 11-3: CPV View Menu Controls

Control Item Description

Performance Displays a cascade menu that allows you to select
one of three modes to represent the target system
parameters in the Performance pane.

Text
Displays system load averages for the last 1, 5, and
15 minutes; percent of time the system has spent in
idle, user, and kernel states during the last quantum;
the number of running or sleeping processes and
threads.

Chart
Displays target system parameters (counters) as a
dynamic chart. You can add or remove counters and
modify their look.

Histogram
Displays target system parameters (counters) as a
dynamic histogram.

Memory Usage Toggles the visibility of the Memory Usage pane.
VisualLynux User’s Guide 247

Chapter 11 - LynuxWorks Cross Process Viewer
Options Menu

The Options menu displays one of the options dialog boxes shown below:

Figure 11-4: CPV Options Menu

The following table describes the CPV Options dialog boxes:

Performance Chart Options

The CPV Performance Chart Options item displays the Performance Options dialog
box for changing Performance pane settings

Processes Toggles the visibility of the Processes pane.

System tasks Toggles the visibility of the System tasks pane
(LynxOS only).

Table 11-3: CPV View Menu Controls(Continued)

Control Item Description

Table 11-4: CPV Option Dialog Boxes

Command Description

Performance Chart Options Displays Performance Chart Options dialog box.

Add to Counters Displays Add to Counters dialog box.

Process Options Displays Processes Options dialog box.

Sort Options Displays Sort Options dialog box.
248 VisualLynux User’s Guide

Add to Counters
Figure 11-5: Changing Performance Pane Options

The Performance Options dialog box controls are shown below:

Add to Counters

The CPV Add to Counters dialog box allows you to change Performance pane
counter options:

Table 11-5: Performance Options Dialog Box

Command Description

Vertical labels Displays the vertical scale to represent counter values.

Horizontal labels Displays the horizontal time scale.

Vertical grid Displays vertical lines representing time intervals.

Horizontal grid Displays horizontal lines representing counter values.

Legend Displays counter information such as type, color, minimal,
last and maximal values, scale and line style.

Vertical maximum Sets the maximum visible counter value. Used for vertical
labels representing scaled counter values.
VisualLynux User’s Guide 249

Chapter 11 - LynuxWorks Cross Process Viewer
Figure 11-6: Add to Counters Dialog Box

The controls for modifying performance counters are shown below:

Processes Options

The CPV Processes Options settings depends on the target operating system. The
Cross Process Viewer supports two operating systems on the target machine and,
correspondingly, displays two different dialog boxes:

• LynxOS Processes Options

• BlueCat Linux Processes Options

LynxOS Processes Options
The LynxOS CPV Options dialog box is shown below:

Table 11-6: Add, Modify or Delete Performance Counters

Control Description

Counters Used to add or delete a counter from the active set, or
to select a counter for modifications.

Color Selects a color for the counter.

Scale Modifies scale factor for the counter value.

Width Sets line width for the counter.

Style Selects line style for the counter.
250 VisualLynux User’s Guide

LynxOS Processes Options
Figure 11-7: LynxOS Processes Options

NOTE: Memory bars section (bottom right) toggles settings to display bars for some
of the memory parameters.
VisualLynux User’s Guide 251

Chapter 11 - LynuxWorks Cross Process Viewer

The controls in the LynxOS CPV Options dialog box are described below:

Table 11-7: LynxOS Processes Options

Control Description

Other processes Displays information for other processes, not just processes
owned by the user.

Owner processes Displays information only for processes owned by the user.

Idle process (process 0) Displays information about the idle (init) process, idle
system time.

Processes without

control terminal

Displays information about processes without a control
terminal.

Processes with specific

UID

Displays only processes owned by a specific user. Check the
box and enter the user name.

Processes with specific

PID

Displays only processes with a specific process ID.

Processes with specific

PGRP

Displays only processes with a specific process group ID.

Display Threads Displays processes as well as their threads.

Total Time Includes process total time information.

System Time Includes process system and user total time information.

Last Percentage Includes percentage of CPU time for the latest quantum.

Total Percentage Includes percentage of CPU time for the entire CPU active
period.

Parent ID Includes parent process id information (ppid).

Group ID Includes process group id information (pgrp).

Session ID Includes session id information (sid).

Priority Includes priority information (pri).

State Includes process state information (S).

User name Includes user name.

Semaphore on Wait Includes semaphore hexadecimal value.

Number of Files Includes information about open files.

Flags Includes processes (and threads) and flags information.
252 VisualLynux User’s Guide

LynxOS Processes Options

Device name Includes the device name if the process owns the control

terminal.

Process Text Displays the size of the text segment in KB.

Process Data Displays the size of the data and segment in KB.

Process/ Thread Stack Displays the size of the user stack in KB.

Shared pages Displays the number of shared pages.

Shared regions Displays the number of shared regions.

Data size limit Displays data size limit in KB.

Data size percentage Displays data size percentage.

Stack size percentage Displays stack size percentage.

Stack size limit Displays stack size limit in KB.

System stack Displays system stack size.

Quantum (in millisec) Sets the duration of time quantum, that is, the time interval
between consecutive snapshots. Varies from 500 milliseconds
to 30 seconds.

Table 11-7: LynxOS Processes Options (Continued)

Control Description
VisualLynux User’s Guide 253

Chapter 11 - LynuxWorks Cross Process Viewer

BlueCat Linux Processes Options
The BlueCat Linux CPV Options dialog box is shown in the figure below:

Figure 11-8: BlueCat Linux Processes Options
254 VisualLynux User’s Guide

BlueCat Linux Processes Options

The controls in the BlueCat Linux CPV Options dialog box are described in the
following table:

Table 11-8: BlueCat Linux Processes Options

Command Description

Other processes Displays information for other processes, not just
processes owned by the user.

Owner processes Displays information only for processes owned by the
user.

Processes without control

terminal

Displays information about processes without a control
terminal.

Processes with specific UID Displays only processes owned by a specific user.
Check the box and enter the user name.

Processes with specific PID Displays only processes with specific process ID.

Processes with specific PGRP Displays only processes with specific process group ID.

Total Time Includes process total time information.

System Time Includes process system and user total time information.

Last Percentage Includes percentage of CPU time for the latest quant.

Total Percentage Includes percentage of CPU time for the entire CPU
active period.

Parent ID Includes parent process ID information (ppid).

Group ID Includes process group ID information (pgrp).

Session ID Includes session ID information (sid).

Priority Includes priority information (pri).

Nice Includes nice information (nice).

State Includes process state information (S).

User name Includes user name.

Semaphore on Wait Includes semaphore hexadecimal value.

Number of files Includes information about open files.

Flags Includes process flags information.

Device name Includes the device name if the process owns the control
terminal.
VisualLynux User’s Guide 255

Chapter 11 - LynuxWorks Cross Process Viewer
Sort Options

The CPV Sort options dialog box is shown below:

Task Displays task size.

Resident Displays resident size of the task.

Shared Displays size of shared memory used by task.

Resident text Displays resident size of the text segment.

Resident library Displays resident size of library code used by task.

Resident data Displays resident size of the data segment.

Dirty pages Displays size of dirty pages.

Swapped Displays size of the swapped portion of the task.

Total virtual Displays total virtual size of the task.

Locked Displays size of locked memory.

Total resident Displays total resident size of the task (including
libraries).

Data Displays size of the data segment.

Stack Displays size of the stack.

Executable Displays size of the executable.

Library Displays size of memory used by libraries.

Quantum (in millisec) Sets the duration of time quantum, that is, the time
interval between consecutive snapshots. Varies from
500 milliseconds to 30 seconds.

NOTE: Memory bars section (bottom right) toggles settings to display bars for some
of the memory parameters.

Table 11-8: BlueCat Linux Processes Options (Continued)

Command Description
256 VisualLynux User’s Guide

Sort Options
Figure 11-9: Sort Options Dialog Box

The Sort options controls are described in the table below:

Table 11-9: CPV Sort Options

Command Description

Pids Sorts by process IDs.

Hierarchical Sorts processes in the same order as they are represented in the
kernel hierarchical tree, that is, first displays a child, then a
brother.

Priority Sorts by process priority.

Groups Sorts by process group IDs.

Memory Sorts by total memory the process occupies, that is, text segment,
data segment, and stack.

Sids Sorts by session IDs.

Time Sorts by time elapsed.

Last Percentage Sorts by the sum of user and system percentage of CPU time for
the last time quantum.
VisualLynux User’s Guide 257

Chapter 11 - LynuxWorks Cross Process Viewer
Help Menu

The Help menu displays the following dialog boxes:

• Help Topics
• About CPV

Cross Process Viewer Toolbar Buttons

The figure below shows the CPV toolbar. Buttons are described in the following
table.

Figure 11-10: CPV Toolbar

Total Percentage Sorts by the sum of user and system percentage of CPU time for
the whole time interval that Cross Process Viewer has been
active.

Last System

Percentage

Sorts by system percentage of CPU time for the last time
quantum.

Total System

Percentage

Sorts by system percentage of CPU time for the whole time
interval that Cross Process Viewer has been active.

Sort in reverse order Sorts by options above, but in reverse order.

Table 11-9: CPV Sort Options (Continued)

Command Description
258 VisualLynux User’s Guide

Cross Process Viewer Toolbar Buttons

The toolbar buttons initiate the following actions:

Table 11-10: Cross Process Viewer Toolbar Buttons

Button Action

 Initiates a new session with a target running
LynxOS or BlueCat Linux.

Loads a snapshot from a file.

Saves the current state (a snapshot) to the file.

Displays the Processes Options dialog box.

Displays the Add to Counters dialog box.

Displays VisualLynux Help.
VisualLynux User’s Guide 259

Chapter 11 - LynuxWorks Cross Process Viewer
260 VisualLynux User’s Guide

CHAPTER 12 Bootp-Tftp-Pftp Utility
BTP Overview

The Bootp-Tftp-Pftp (BTP) utility provides servers for booting targets remotely.

A target is a computer or device for which the user develops LynxOS or BlueCat
Linux applications and kernel images (using VisualLynux or a command-line tool
on a Windows host). The target is connected to the development/host computer
through a network or parallel port connection.

BTP uses the TCP/IP protocol for communicating with targets, and the Parallel
Port Protocol as the primary tool to transfer files between the host and the target.

Choose from the following BTP topics:

• BTP Overview

• General BTP Page

• Bootp Page

• Tftp Page

• Pftp Page

• Bootp DB Entry

• BTP Tray Icon

BTP Servers

The Bootp-Tftp-Pftp utility provides three servers for booting targets remotely:

• Bootp (Bootstrap Protocol) server

• Tftp (Trivial File Transfer Protocol) server

• Pftp (Parallel Port File Transfer Protocol) server
VisualLynux User’s Guide 261

Chapter 12 - Bootp-Tftp-Pftp Utility

Bootp and Tftp servers work together to service target booting requests via a
TCP/IP network. This version of BTP includes the Bootp server that supports only
single-domain Ethernet local networks. The Tftp server supports TCP/IP networks
and uses the UDP protocol to communicate with a target. The target should use
Bootp and Tftp protocols to be remotely booted via Ethernet network.

The Pftp server uses a special Bidirectional Parallel port driver to communicate
with a target via a parallel port interface and implements the Parallel port File
Transfer Protocol. The target should also support this protocol and use the
appropriate parallel port driver. BTP includes two drivers, (for Windows NT/2000
and Windows 98) both of which support the conventional LPT ports of the
Windows host system. LynuxWorks Cross Development Kits (Tools) include
appropriate parallel port drivers for LynxOS and BlueCat Linux operating systems.

Starting BTP

BTP can be started from an MS-DOS command-line window, by double-clicking
the icon in the Windows Explorer, or by double-clicking the BTP icon on the
Desktop (provided the user has created a shortcut).

If started from an MS-DOS command-line window or by double-clicking a
shortcut, the command syntax can include optional parameters:

btp [b={start|stop}] [t={start|stop}] \
[p={start|stop}]

where the b, t, and p denote Bootp, Tftp, and Pftp servers, respectively,

start forces the server to be started automatically,

and stop prevents the server from being started automatically.

When a keyword is omitted, a default value is used. Set the default by checking or
unchecking the Launch server at startup box and clicking Apply in the corresponding
page of the BTP dialog box.

You can start and stop a server dynamically by using the Start/Stop buttons in the
corresponding page of the BTP dialog box.

The BTP dialog box does not appear if BTP is started in hidden mode. The General
BTP Page contains the Hide Window at startup box to set the appropriate mode.

When started, the BTP Tray Icon appears in the Windows tray bar (in the right part
of the task bar). The icon shows the status of BTP servers and can be used to
display or hide the BTP dialog box.
262 VisualLynux User’s Guide

BTP Dialog Boxes

BTP Dialog Boxes

The main BTP dialog box contains four pages:

• General BTP Page

• Bootp Page

• Tftp Page

• Pftp Page

The General BTP Page displays copyright and version information and is used to
set the BTP startup mode. Other pages are used to dynamically start or stop the
appropriate server or to modify its options.

The Bootp Page displays the Bootp DB Entry page when you click New or Modify.

General BTP Page

The General BTP page is used to set the BTP startup mode.

Figure 12-1: General BTP Page
VisualLynux User’s Guide 263

Chapter 12 - Bootp-Tftp-Pftp Utility

The following control is available on the General BTP page:

Bootp Page

The Bootp page is used to modify Bootp server options, dynamically start or stop
the Bootp server, or display the Bootp DB Entry dialog box.

Figure 12-2: Bootp Page

Table 12-1: General BTP Page Commands

Control Description

Hide Window at startup

If checked, and the Apply button is clicked, BTP starts
up in hidden mode the next time it is invoked. The
BTP dialog box does not appear. Use the BTP Tray
Icon to display the dialog box.
264 VisualLynux User’s Guide

Tftp Page

The following table lists the Bootp page controls:

Tftp Page

The Tftp page (see figure below) is used to modify Tftp server options or
dynamically start or stop the Tftp server.

Table 12-2: Bootp Page Commands

Control Description

Server

Specifies the Bootp server port number. Normally, you do not
need to modify this number normally because LynuxWorks OS
loaders use the standard server port number in Bootp requests.

Client

Specifies the Bootp client port number. Normally, you do not
need to modify this number normally because LynuxWorks OS
loaders use the standard client port number in Bootp requests.

Target list

Shows entries in the Bootp database.
• To create a new entry, click the New button.
• To modify an entry, select it and click the Modify button.
• To delete an entry, select it and click Delete.

Launch server at

startup

Check the box and click Apply to start the Bootp server
automatically the next time BTP is invoked.

Start
Click to start the server. The button label changes to Stop.
Click again to stop the server.
VisualLynux User’s Guide 265

Chapter 12 - Bootp-Tftp-Pftp Utility
Figure 12-3: Tftp Page

The following table lists the Tftp page controls:

Table 12-3: Tftp Controls

Control Description

Server port

Specifies the Tftp server port number. You need not
modify this value normally because LynuxWorks OS
loaders use the standard server port number.

Timeout (sec) Specifies a timeout used in the Tftp protocol.

Retransmit count
Specifies the number of retransmit attempts in the Tftp
error recovery protocol.

Tftp folder

Specifies the full path for the Tftp file repository. Specify
only a simple file name in the OS loader boot
command. Use Browse to find the Tftp folder. Use the
Access level and Write options drop-down lists to select
a proper access level, and write options (used in case a
file with the same name already exists in the Tftp folder).
266 VisualLynux User’s Guide

Pftp Page
Pftp Page

The Pftp page (see next figure) is used to modify Pftp server options or
dynamically start or stop the Pftp server.

Figure 12-4: Pftp Page

Log file
Specifies a log file for the Tftp server. Use the Browse
button to specify a file.

Launch at startup
Check the box and click Apply to start the Tftp server
automatically the next time BTP is invoked.

Start
Click to start the server. The button label changes to
Stop. Click again to stop the server.

Table 12-3: Tftp Controls (Continued)

Control Description
VisualLynux User’s Guide 267

Chapter 12 - Bootp-Tftp-Pftp Utility

The table below lists the Pftp page controls:

Bootp DB Entry

The Bootp DB Entry dialog box is used to change Pftp target descriptions for the
Bootp server.

Table 12-4: Pftp Page Commands

Control Description

Lpt port
Use this drop-down list to specify the LPT port used to
boot the target.

Pftp folder

Specifies the full path name for the Pftp file repository.
You need supply only a simple file name in the OS
loader boot command. Use the Browse button to find
the Pftp folder. Use Access level to specify access level.

Log file
Specifies a log file for the Pftp server. Use Browse to
specify a file.

Launch at startup
Check the box and click Apply to start the Pftp server
automatically when BTP is next invoked.

Start
Click to start the server. The button label changes to
Stop. Click again to stop the server.
268 VisualLynux User’s Guide

Bootp DB Entry
Figure 12-5: Database Entry

The following table lists the Bootp DB controls:

Table 12-5: Bootp DB Commands

Control Description

Target name A symbolic name for a target

Hardware address

(hexadecimal)

MAC address for the target

Target IP address Target IP address sent to the target by the Bootp server

Server IP address

Server IP address sent to the target by the Bootp server -
If this field is blank, one of the current host addresses is
used to serve Bootp requests. Is useful in situations when
host gets IP address from a DHCP server.

Name server IP address
Name server IP address sent to the target by the Bootp
server. Is optional for this version of BTP.
VisualLynux User’s Guide 269

Chapter 12 - Bootp-Tftp-Pftp Utility
BTP Tray Icon

The BTP Tray Icon (see figure below) appears in the Windows tray bar (in the right
part of the task bar). The icon shows the status of BTP servers and can be used to
display or hide the BTP dialog box.

Figure 12-6: BTP Tray Icon

When the mouse cursor enters the icon area, a tip text window appears to show the
servers currently active. The icon itself also shows the BTP status. If a server is not
active, the appropriate letter in the icon is grayed-out. In the example shown above
the Pftp server is not active.

Double-click the icon to display the hidden BTP dialog box or to set it as a
foreground window. When clicking with the right mouse button, a pop-up menu
appears; it can be used to switch the BTP mode or to terminate the program.

Figure 12-7: BTP Tray Icon Context Menu

Domain name
Domain name sent to the target by the Bootp server.
Optional for this version of BTP.

Network type
The current version uses only Ethernet local area
networks.

Table 12-5: Bootp DB Commands (Continued)

Control Description
270 VisualLynux User’s Guide

Index
Symbols

.a file 136

.bsc file, browser database 134

.cfg file 182

.CPP 28

.d file 116, 148

.dsp file 4, 31, 105

.dsw file 4, 31, 105

.vlm file 5

A

a.out file, kernel executable 79
Add to Counters dialog box, CPV 249
AddIn Tools 101
adding nodetab entry 186
adding or removing source and header files, static

device driver 77
always use custom build, file processing 28
ANSI 152, 155
Application Wizard, launching 43
ar.exe, static library building 29
arbitrary batch commands 30
arbitrary commands 30
archive file 171
authentication data 224
Authentication step 224
automatic probing, BlueCat Linux device

driver 71

B

Basic Null Character and Simple Streams Echo
drivers 63

bidirectional parallel port driver, Pftp 262
block driver 184

BlueCat Linux 66
kernel configuration 182

Block Ramdisk drivers 63
BlueCat Linux

CPV options settings, dialog box 254
man pages xi, 10
online documentation 104
User’s Guide 9

Board Support Package 2, 181
selecting for kernel build 81

Bootp
client port number 265
database 265
server definition 262
server port number 265

Bootp DB Entry 268
Bootp Page 263, 264
Bootp server, Pftp target descriptions 268
break points, debugging 119
Browse Info file 135
browser database file 134
Browser page

Commands 134
project settings 134

browsing
class definitions 134
FTP Folders 199

BTP
command syntax 262
General page 263
VisualLynux User’s Guide 271

Index

starting 262

BTP servers
launching automatically 262
launching dynamically 262

BTP Tray Icon 261, 262, 270
build configuration name 183
build configuration, uparam.h file 193
build environment 144
Build macros 138
Build Menu 39
build tools, CYGWIN programs 11
Building project targets

Batch Build 27
Rebuild All 27

C

C expressions, kernel parameter values 193
C User Application Types 46
C User Application Wizard 45
C++ User Application Types 53
C++ User Application Wizard 52
C/C++

Listings 154
Optimization 159

Custom Option Commands 160
Customize 159
Disable 159
Extended Optimization 159
Minimal Size 159

Preprocessor 164
Preprocessor Options 165
Profiling 158

Commands 158
Project Options 165
Special Options 165
Warnings 155

Warning level drop-down list 155
C/C++ Page 145

Category drop-down list 147
Code Generation 149

Commands 150
Position Independent Code 150

Debug level 146
General 148
General Settings 148
Language 152

ANSI 152

Project Options 145
Special options 146

CDK
configuring 13
directory 84
mountpoints 11

CDK tree, LynxOS 14
CDT

configuring 15
character driver 184

BlueCat Linux 65
kernel configuration 182

checking Telnet connection to the target 227
Cloned device node, kernel configuration 182
command line tools, bash shell 124
communication protocols with target 226
Compiler

assigning 130
C 28
C++ 28

Compiler Option Categories 147
C/C++ Language 147
Code Generation 147
General 147
Listings 147
Optimization 147
Preprocessor 147
Profiling 147
Special Options 147
Warnings 147

Compiler Options
kernel executable project 83
project settings 145

Component Functions 47, 49
Priority Alteration 51

config.h file 182, 187
creating line entry 187

config.h line, editing 188
CONFIG.TBL file 182

configuring kernel with 182
kernel configuration data 181

configuration data 11
directory 185
subdirectory 98

configuration entry 184
configuring

BlueCat Linux CDTs 15
KDI 87

file system 88
LynxOS CDKs 13
272 VisualLynux User’s Guide

target 216

contacting LynuxWorks xiii
copy errors, kernel wizard 98
copying files from CDK directory, kernel

wizard 96
CPV 241

About CPV 258
Add to Counters 249
Cross Process Viewer 103
File menu 245
Help Menu 258
Memory Usage Pane 242
Options menu 248
Performance Pane 242
Processes Options 250

BlueCat 254
LynxOS 250

Processes Pane 242
Sort Options 256
Sort options dialog box 256
System Tasks Pane 242
Toolbar Buttons 258
transactions with target 242
using after development cycle 241
View menu 247
Window 242

cpv.exe 241
creating

an FTP folder 203
config.h line 187
device node 62, 75
device node entry, driver configuration

file 190
driver entry 188
new device entry, driver configuration

file 190
new module entry, driver configuration

file 189
system device entry, driver configuration

file 191
cross development environment 111
Cross Development Kit 2, 10, 11, 181
Cross Development Tools 15, 106, 144
cross development, definition 1
cross linker 166
Cross Process Viewer 215, 241
CSE 162, 163
curses 52
Custom Build 27, 28, 30

File 142

Directory menu 144
File menu 145

Project
Build Environment 141
Build macros 139
Commands 139
Cross Development Tools 141
Directory menu 140
File menu 141

Steps 138
Custom C LynuxWorks Application 46
CYGWIN 7

binaries 17
conventions 108, 176
Installation property page 17

D

DDD
Block-based driver 64
Character-based driver 64
creating empty project 59, 64
Network driver 64
Null Character-based driver 59
RAMdisk driver 59
Streams Loopback/Echo driver 59

Debug page
Commands 133
project settings 133

debuggers 118, 120
debugging

project 26
Debugging step 231

GDBSERVER directory 232
dependency file 148

.d file 116
dependency, generating 116, 146
device driver project selection 58
Device Driver Wizard 58
device node 184

creation 62, 75
kernel configuration 182
properties 184
type 191

device specification entry 184
Device, kernel configuration 182
directory

msdev.exe 31
VisualLynux User’s Guide 273

Index

platform independent tools 31
Visual Studio build tools 31
VisualLynux installation 31

Directory macros 140, 144
displaying

Contents of FTP Folders 202
File Properties 205
FTP Folder Properties 204

documentation 104
BlueCat Linux xi, 10
GNU tools 10
LynxOS xi, 10
VisualLynux xi, 10

Driver Basics 1, 9
driver configuration file 181, 182, 184, 188, 189

creating device node entry 190
creating entry 188
creating new device entry 190
creating new module entry 189
creating system device entry 191
editing device entry 190
editing device node properties 191
editing module properties 189
editing system device entry 192
importing 185
inserting 185

Driver Ports and IRQs, BlueCat Linux 69
driver specification line 184
dynamic device driver 58

BlueCat Linux 64
LynxOS 59
testing 60, 74

E

editing
a config.h line 188
a driver entry, driver configuration file 189
device entry, driver configuration file 190
device node properties, driver configuration

file 191
environment variables, Make page 176
module properties, driver configuration

file 189
system device entry, driver configuration

file 192
Empty C Project, C user application 46
Empty C++ Project 53

entropy pool 73
entry point names, driver configuration file 189
enum type 150
Export

Directories for New Source Tree 114
directories, setting up 113
Initial Screen 111
Makefile names 115
Output directories 113
Project Files to Copy 116
Setting Configurations 112
Subdirectories tree control 114
to Makefile 111

Export Directories page 113
Export Wizard 111
Extended Optimization 159
external dependencies 116

F

F7 key 25, 27
File Custom Build 142
File macros 141, 145
FTP

Browsing Local Folders 205
Changing the View Mode 206
Command line 198
Connect as 198
Creating a New Folder 207
Directory tree 196
Disconnect 197
Displaying File or Folder Properties 208
Displaying the Parent Folder 206
Down Arrow 200
Downloading Files 210
Downloading folders 210
End 201
Folder Hierarchy 200
FTP host name 198
Home 201
home directory 228
Keyboard 200
Left Arrow 201
Main window 196
Manipulating Files on a Local

Computer 207
Menu and Toolbar Commands 201
Mouse 201
274 VisualLynux User’s Guide

Opening Local Folders 205
Password 198
Port number 198
Removing Files and Folders 209
Renaming Files or Folders 207
Right Arrow 201
Up Arrow 200

FTP server 210
FTP/Telnet configuration 215

G

g++.exe 28, 166
gcc.exe 28, 166, 168
gcov code-coverage utility 159
GDB 26, 118, 133
GDB text-mode window 119
GDBSERVER 102, 118, 120, 216, 219, 231
GDBSERVER TCP/IP port number 233
General BTP Page 263
General information step, target wizard 220
General page commands, project settings 131
General page, File 131
General page, project settings 131
Generate dependencies 29
Generic Device Drivers Library project 79
Generic Devices Library project 79
GNU 153
GNU documentation set 10
GNU GDB and Insight debuggers 26
GNU Tools Documentation xi, 104, 126
gprof analysis program 158

H

Help Topics 258
Help, resources 3
HTML help 126

I

IDE Tools 101
Import

Adding/Editing Environment
Variables 108

Build Environment 107
Environment variables 107
Initial Screen 105
Insert files in project 109
Project Configurations 106
Project name 105
Shell scripts 107
Specifying build target 110

Import Wizard 104
importing configuration file 185
init 252
input buffer size, device driver 66, 68, 69
inserting configuration file 185
installation procedure, VisualLynux 1
installing

block device 62
character device 62

IntelliSense options 36
interrupt handler routine 72
IRQ line number, BlueCat Linux device

driver 72
ISA boards 71, 72

J

jump optimization 162

K

KDI 86
configuring 87
configuring file system 88
creation 86
File System 88
source files added to target directory 92
Target Directory 92

kernel build parameters, editing 178
kernel configuration 84

editing item properties 183
kernel configuration data 179, 181

kernel executable project 83
kernel configuration files 84
Kernel Configuration Page 181
Kernel Downloadable Image 86
kernel executable

a.out file 79
VisualLynux User’s Guide 275

Index

nodetab file 79

Kernel Executable project 79, 80
creating kernel configuration data 83
Extracting compiler options 83
Extracting linker options 83
Extracting source file dependencies 84

Kernel General Page 180
kernel library project 79, 80, 94
Kernel Options 178
Kernel page 178
Kernel Parameters 85

Page 192
Kernel Project 178

configuration 179
Kernel Wizard 79

L

ld 170, 171, 173
ld.exe 29, 168
libar.a file, archive file 171
Library page

Commands 136
project custom build 140
project settings 135

Linker Options 166
Category drop-down list 166
kernel executable project 83

Linker Options Categories
Customize 168
Debug 170
General 167
Input 171
Output 172
Special Options 174

Linker page, project custom build 140
linking a project target 136
low water mark 244
LynuxWorks FTP 195, 215
LynuxWorks, contacting xiii
LynxOS

Dynamic Device Driver 29
Installation Guide 9
Kernel project 178
Kernel Wizard 79
man pages xi, 10, 104, 126
Processes options 250

M

macros
file-level 30, 33
global 30, 31
project-level 30, 31

major number, device driver 65, 67, 69
Make

Adding/editing environment variables 176
Environment variables 176
File 177
Project 174
Setting up Scripts 176
Shell scripts 175

Make page 174, 177
Environment 175
General 174

make utility 11, 107
Makefile, selecting for import 105
Makefile-based VisualLynux projects 104
Makefiles page 115
man pages

BlueCat Linux xi, 10
LynxOS xi, 10

Manipulating FTP Files 204
Memory Usage pane, CPV 244
Menu, VL

Build 39
Edit 36
File 36
Insert 38
Overview 35
Project 38
Tool 40
View 37
Window 42

Microsoft browser builder (bscmake.exe) 135
Microsoft Class and Symbol browser 40
Microsoft compiler (cl.exe) 135
Microsoft Developer 141
Microsoft Visual C++ 9

Enterprise Edition 10
Professional Edition 10
Standard Edition 10

module properties 185
module specification line 184
Module, kernel configuration 182
Mount Table, CDK tools 19
mountpoint
276 VisualLynux User’s Guide

CDK tools 11, 19
CYGWIN utilities/commands 20
LynxOS root installation 20

msdev.exe 31
mutexes 50

N

native-development environment 111
Network Connection Step 222
Network driver 76

BlueCat Linux 68
Network Driver wizard 69
Network File System support 223
Network Neighborhood window 223
new project information, kernel wizard 99
nodetab entry, adding 186
nodetab file 180, 183, 185

kernel executable 79

O

OLE/COM objects, viewing 41
Online Help xi, 9
OS loader 265, 266, 268
output buffer size, device driver 66

P

PCDSRVR 216, 219
TCP/IP port number 233

PCI boards 72
Performance Chart Options, CPV 248
performance counters, CPV 243
Performance Options dialog box, CPV 248
Performance pane, CPV 243

counter options 249
settings 248

Pftp
file repository 268
server definition 262

Pftp Page 267
port addresses, BlueCat Linux device driver 70
Position Independent Code 150
POSIX Signal Handler 49

POSIX-based programming concepts 46
Post-Build 30

commands grid 137
description 137

Post-Build page, project settings 137
Pre-Link page, project settings 136
Pre-Link step 30

Build macros 137
commands 136
description 136

Process Viewer server (PCDSRVR) 233
Process Viewer server directory 234
Process Viewer Step 233
processes and threads statistics 241
Processes Options

BlueCat Linux 254
CPV 250

Processes pane, CPV 245
prof analysis program 158
Project

Build Steps 29
configuration 6, 183
Conversion utility 19
creation, overview 22
Custom Build 138
Debugging overview 26
definition 3

project directory 4
project file 4, 31, 105
project goals 3
Project Settings 38, 40

File level property pages
130

Build 130
C/C++ 130
Custom Build 130
General 130

Overview 127
Project level property pages 129

Browse Info 129
C/C++ 129
Custom Build 129
Debug 129
General 129
Kernel 129
Library 129
Link 129
Make 129
Post-Build 129
Pre-Link 129
VisualLynux User’s Guide 277

Index

Project Type 22, 45

selecting 44
project-level tools 27
Projects Directory Step 228

Browse for FTP folders 230
Create now 230
Home FTP directory 230
Root Project Directory 230

Property Pages 129, 130
pseudo-driver project 70
pseudo-target 110, 139, 143
pthreads, linker options 168

R

Release mode 124
release notes, VisualLynux 10
removing

a component, kernel configuration 183
an FTP folder 203
FTP Files 204

renaming
an FTP File 204
an FTP folder 203

Root Project Directory name 230
Run command dialog box 239

S

sample workspace 99
Settings Dialog Box 27
shared instead of static libraries, linker

options 168
shared interrupts 73
Shell scripts 108
Simple Block driver 75
Simple C "Hello World" Application 46
Simple C++ "Hello World" Application 53
Source Browser Database 129
source file dependencies, kernel executable

project 84
Source File Options, C/C++ page 146
source files copied with errors, kernel wizard 98
source files for project 27
Specific BSP Device Drivers Library project 79
Specific BSP Device Library project 79

starting assembler commands, Total/db 122
static device driver 58

creating 60
creating for BlueCat Linux 73

Static Library 29
Static Library Application Wizard 77
Static Library projects 135
system device 192
system device entry 184
System device, kernel configuration 182
System Requirements 9
System Tasks pane, CPV 245

T

Target Administration
Cancel 219
Default target 236
Edit target properties 219
Editing target properties 235
Help 219
Invoking 216
Make default 219
New Target 235
New target 219
OK 219
Options 219
Remove target 219
Removing a target 236
Renaming a target 238
Run command 219
Target selection mode 237
Tasks 234

Target Administration Dialog Box 217, 218
Target Authentication

anonymous connection 226
Target Configurations 22, 45
Target identification 221

Connection mode 222
Target name 222

target platforms supported 2
Target selection dialog box 237
Target Wizard 217, 220
TCP/IP 104, 198

connection 222
port number 198
protocols 215

Technical Support xiii
278 VisualLynux User’s Guide

Telnet 26, 103, 125, 215
Telnet/FTP configuration 219
Terminology 7
Tftp

error recovery 266
file repository 266
server definition 262
server port number 266

timeout, device driver 66, 67, 69
Toolbar 101

About VisualLynux 104
Bash 103
Copy Executable 103
Export to Makefile 102
GDB 102
Import Makefile 102
LynuxWorks Cross Process Viewer 103
LynuxWorks FTP 103
LynuxWorks Total/db 103
Target Administration Wizard 104
Telnet 103
VisualLynux Help 104
VisualLynux Project Settings 102

toolbar, Addin tools 101
toolbar, VisualLynux 1
Total/db 26, 103, 120, 133
transactions, CPV and target 242
Transfer dialog box 211

Status window 212
Typographical Conventions xi, xii

U

UDP protocol 262
uninstalling

device driver 63, 76
unregistering

CDKs 12
VL 1.x 19

uparam.h file 85
build configuration 193
kernel parameters 85

Upload 124
Uploading Files and Folders 211
Utilities Step 226

Check FTP connection 228
Check Telnet connection 227
FTP home directory 228

FTP port number 227
Telnet port number 227

V

Verifying the TCP/IP connection 224
Visual component manager tool 40
Visual Studio 55
Visual Studio menu 35
VisualLynux Application Wizard 5, 20
VisualLynux Configuration Utility 10, 11
VisualLynux Import Wizard 5
VisualLynux Integrated Development

Environment 241
VisualLynux Kernel Wizard 20
VisualLynux LynxOS Kernel Wizard 5
VisualLynux Online Help 10
VisualLynux Release Notes 10
VisualLynux Target Administration

Overview 215
VisualLynux Target Administration Wizard 104
VisualLynux Toolbar 35
VisualLynux User’s Guide 10, 104, 126
VisualLynux, definition 1
VisualLynx 1.x 19
vlftp.exe 195

W

Warning level drop-down list 155
Window Menu 42
Windows 2000 Professional 9
Windows 98 9
Windows cross development system 9
Windows Network browser 223
Windows NT 9
Windows Registry 11, 15
wizards 5

launching 20
Workspace 4

Current 22
workspace directory 4
workspace file 31, 105
VisualLynux User’s Guide 279

Index

X

X Error Handler 58
X/Motif

Application 29
Custom Application 55
Empty Project 55
Graphical Application Wizard 54
Simple application 55

XT Runtime Warning 58
280 VisualLynux User’s Guide

	VisualLynux User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	About VisualLynux
	Cross Development Hosts and Targets
	LynuxWorks Cross Development Kits
	VisualLynux Help

	VisualLynux Objects
	Projects
	Workspaces
	Workspace and Project Directories

	Wizards
	Configurations

	Terminology

	Chapter 2 Getting Started
	Prerequisites
	System Requirements
	Package Contents
	Configuring VisualLynux
	VisualLynux Configuration Utility
	Invoking the Configuration Utility
	LynxOS CDK Configuration
	BlueCat Linux CDT Configuration
	CYGWIN Installation
	Unregistering VisualLynx 1.x
	Preparing a Mount Table

	Launching the VisualLynux Application and Kernel Wizards
	Overview of Project Creation Process
	Building a Project
	Debugging a Project

	Chapter 3 VisualLynux Build Process
	Building Project Targets
	Processing Files
	Project-Level Build Steps
	Build Macros
	Global Macros
	Project (Configuration)-Level Macros
	File-Level Macros

	Chapter 4 VisualLynux Menus
	Overview of Menu Structure
	VisualLynux Menus
	File Menu
	Edit Menu
	View Menu
	Insert Menu
	Project Menu
	Build Menu
	Tool Menu
	Window Menu

	Chapter 5 VisualLynux Application Wizard
	Launching the VisualLynux Application Wizard
	Selecting a VisualLynux Project Type
	C User Application Wizard
	A Custom C LynuxWorks Application
	Component Functions

	C++ User Application Wizard
	X/Motif Graphical Application Wizard
	A Custom X/Motif Application

	Device Driver Wizard
	LynxOS Device Drivers
	BlueCat Linux Device Drivers

	Static Library Application Wizard

	Chapter 6 LynxOS Kernel Wizard
	Kernel Projects
	Launching the VisualLynux LynxOS Kernel Wizard
	Selecting a Board Support Package
	Preparing a Kernel Executable Project
	Configuring Kernel Downloadable Image (KDI)
	Configuring KDI File System

	Selecting Kernel Library Projects
	Copying Source Files

	Chapter 7 VisualLynux AddIn Tools
	IDE Tools
	Toolbar Icons
	VisualLynux Import Wizard
	Import a Makefile
	Import Wizard Initial Screen
	Selecting a Makefile to Import
	Specifying Project Configurations
	Specifying Build Environment
	Adding/Editing Environment Variables
	Adding Source Files to a Project
	Specifying Build Target

	VisualLynux Export Wizard
	Export to Makefile
	Export Wizard Initial Screen
	Setting Configurations to Export
	Export Directories Setup
	Specifying Directories for New Source Tree
	Specifying Names of Exported Makefiles
	Project Files to Copy
	Summary Dialog Box

	LynuxWorks GDB
	Total/db
	Upload
	bash Shell
	Telnet
	VisualLynux HTML Help
	Other VisualLynux Tools

	Chapter 8 VisualLynux Project Settings
	Overview
	Project-Level Property Pages
	File-Level Property Pages
	General Page
	Debug Page
	Browser Page
	Library Page
	Pre-Link Step Page
	Post-Build Step Page
	Custom Build Steps
	Project Custom Build
	Directory Menu
	File Menu

	File Custom Build
	Directory Menu
	File Menu

	Compiler Options
	C/C++ Page
	C/C++ General
	C/C++ Code Generation
	C/C++ Language
	C/C++ Listings
	C/C++ Warnings
	C/C++ Profiling
	C/C++ Optimization
	C/C++ Preprocessor
	C/C++ Special Options

	Linker Options
	Linker Option Categories
	Link General
	Link Customize
	Link Debug
	Link Input
	Link Output
	Link Special Options

	Make Page
	Make Project
	General Options
	Environment Options

	Make File

	Kernel Options
	Kernel General Page
	Kernel Configuration Page
	Editing Item Properties

	Kernel Parameters Page

	Chapter 9 LynuxWorks FTP
	Overview
	LynuxWorks FTP Main Window

	LynuxWorks FTP Functions
	Connecting to an FTP Server
	LynuxWorks FTP Command Line

	Browsing FTP Folders
	Keyboard Controls
	Mouse Controls
	Menu and Toolbar Commands

	Displaying Contents of FTP Folders
	Manipulating FTP Folders
	Removing an FTP Folder
	Renaming a Folder
	Creating an FTP Folder
	Displaying FTP Folder Properties

	Manipulating FTP Files
	Removing FTP Files
	Renaming an FTP File
	Displaying File Properties

	Browsing Local Folders
	Opening Folders
	Displaying the Parent Folder
	Changing the View Mode

	Manipulating Files on a Local Computer
	Creating a New Folder
	Renaming Files or Folders
	Displaying File or Folder Properties
	Removing Files and Folders

	Downloading Files and Folders
	Downloading Files
	Downloading Folders

	Uploading Files and Folders
	Transfer Dialog Box

	Chapter 10 VisualLynux Target Administration
	Overview
	Target Configuration
	Invoking Target Administration
	Target Administration Dialog Box

	Target Wizard
	General Information
	Target Identification Step
	Network Connection Step
	Authentication Step
	Utilities Step
	Projects Directory Step
	Debugging Step
	Process Viewer Step

	Target Administration Tasks
	Creating a New Target
	Editing Target Properties
	Removing a Target
	Setting a Default Target
	Specifying Target Selection Mode
	Renaming a Target
	Running Commands on the Target
	Run Command Dialog Box

	Chapter 11 LynuxWorks Cross Process Viewer
	Overview
	The CPV Window
	CPV Window Panes

	File Menu
	View Menu
	Options Menu
	Performance Chart Options
	Add to Counters
	Processes Options
	LynxOS Processes Options
	BlueCat Linux Processes Options

	Sort Options
	Help Menu
	Cross Process Viewer Toolbar Buttons

	Chapter 12 Bootp-Tftp-Pftp Utility
	BTP Overview
	BTP Servers
	Starting BTP
	BTP Dialog Boxes

	General BTP Page
	Bootp Page
	Tftp Page
	Pftp Page
	Bootp DB Entry
	BTP Tray Icon

	Index

