
User's Guide to gperf 2.7.2

The GNU Perfect Hash Function Generator
Edition 2.7.2, 26 September 2000

DOC 0465-00

Douglas C. Schmidt

Copyright c 1989-2000 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the section entitled \GNU General
Public License" is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that the section entitled
\GNU General Public License" may be included in a translation approved by the author
instead of in the original English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c 1989, 1991 Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software|to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation's software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modi�ed by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
e�ect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

GNU GENERAL PUBLIC LICENSE 2

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The \Program", below, refers to any such program or work, and a
\work based on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modi�cations and/or translated into another language. (Hereinafter,
translation is included without limitation in the term \modi�cation".) Each licensee is
addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modi�cations or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you
changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 3

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface de�nition �les, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from
a designated place, then o�ering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

GNU GENERAL PUBLIC LICENSE 4

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a
version number of this License which applies to it and \any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 5

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are di�erent, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS
IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISKAS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 6

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source �le to most e�ectively convey the exclusion of warranty; and each �le
should have at least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than `show w' and `show c'; they could even be mouse-clicks or menu items|whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 7

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Contributors to GNU gperf Utility 8

Contributors to GNU gperf Utility

� The GNU gperf perfect hash function generator utility was originally written in GNU
C++ by Douglas C. Schmidt. It is now also available in a highly-portable \old-style"
C version. The general idea for the perfect hash function generator was inspired by
Keith Bostic's algorithm written in C, and distributed to net.sources around 1984.
The current program is a heavily modi�ed, enhanced, and extended implementation
of Keith's basic idea, created at the University of California, Irvine. Bugs, patches,
and suggestions should be reported to both <bug-gnu-utils@gnu.org> and <gperf-

bugs@lists.sourceforge.net>.

� Special thanks is extended to Michael Tiemann and Doug Lea, for providing a useful
compiler, and for giving me a forum to exhibit my creation.

In addition, Adam de Boor and Nels Olson provided many tips and insights that greatly
helped improve the quality and functionality of gperf.

� A testsuite was added by Bruno Haible. He also rewrote the output routines for better
reliability.

Chapter 1: Introduction 9

1 Introduction

gperf is a perfect hash function generator written in C++. It transforms an n element
user-speci�ed keyword set W into a perfect hash function F. F uniquely maps keywords
in W onto the range 0..k, where k >= n. If k = n then F is a minimal perfect hash
function. gperf generates a 0..k element static lookup table and a pair of C functions.
These functions determine whether a given character string s occurs in W, using at most
one probe into the lookup table.

gperf currently generates the reserved keyword recognizer for lexical analyzers in several
production and research compilers and language processing tools, including GNU C, GNU
C++, GNU Pascal, GNU Modula 3, and GNU indent. Complete C++ source code for
gperf is available via anonymous ftp from ftp://ftp.gnu.org/pub/gnu/gperf/. A paper
describing gperf's design and implementation in greater detail is available in the Second
USENIX C++ Conference proceedings.

Chapter 2: Static search structures and GNU gperf 10

2 Static search structures and GNU gperf

A static search structure is an Abstract Data Type with certain fundamental operations,
e.g., initialize, insert, and retrieve. Conceptually, all insertions occur before any retrievals.
In practice, gperf generates a static array containing search set keywords and any as-
sociated attributes speci�ed by the user. Thus, there is essentially no execution-time cost
for the insertions. It is a useful data structure for representing static search sets. Static
search sets occur frequently in software system applications. Typical static search sets in-
clude compiler reserved words, assembler instruction opcodes, and built-in shell interpreter
commands. Search set members, called keywords, are inserted into the structure only once,
usually during program initialization, and are not generally modi�ed at run-time.

Numerous static search structure implementations exist, e.g., arrays, linked lists, binary
search trees, digital search tries, and hash tables. Di�erent approaches o�er trade-o�s
between space utilization and search time eÆciency. For example, an n element sorted
array is space eÆcient, though the average-case time complexity for retrieval operations
using binary search is proportional to log n. Conversely, hash table implementations often
locate a table entry in constant time, but typically impose additional memory overhead and
exhibit poor worst case performance.

Minimal perfect hash functions provide an optimal solution for a particular class of static
search sets. A minimal perfect hash function is de�ned by two properties:

� It allows keyword recognition in a static search set using at most one probe into the
hash table. This represents the \perfect" property.

� The actual memory allocated to store the keywords is precisely large enough for the
keyword set, and no larger. This is the \minimal" property.

For most applications it is far easier to generate perfect hash functions than minimal

perfect hash functions. Moreover, non-minimal perfect hash functions frequently execute
faster than minimal ones in practice. This phenomena occurs since searching a sparse
keyword table increases the probability of locating a \null" entry, thereby reducing string
comparisons. gperf's default behavior generates near-minimal perfect hash functions for
keyword sets. However, gperf provides many options that permit user control over the
degree of minimality and perfection.

Static search sets often exhibit relative stability over time. For example, Ada's 63 re-
served words have remained constant for nearly a decade. It is therefore frequently worth-
while to expend concerted e�ort building an optimal search structure once, if it subsequently
receives heavy use multiple times. gperf removes the drudgery associated with constructing
time- and space-eÆcient search structures by hand. It has proven a useful and practical
tool for serious programming projects. Output from gperf is currently used in several
production and research compilers, including GNU C, GNU C++, GNU Pascal, and GNU
Modula 3. The latter two compilers are not yet part of the oÆcial GNU distribution. Each
compiler utilizes gperf to automatically generate static search structures that eÆciently
identify their respective reserved keywords.

Chapter 3: High-Level Description of GNU gperf 11

3 High-Level Description of GNU gperf

The perfect hash function generator gperf reads a set of \keywords" from a key�le

(or from the standard input by default). It attempts to derive a perfect hashing function
that recognizes a member of the static keyword set with at most a single probe into the
lookup table. If gperf succeeds in generating such a function it produces a pair of C source
code routines that perform hashing and table lookup recognition. All generated C code
is directed to the standard output. Command-line options described below allow you to
modify the input and output format to gperf.

By default, gperf attempts to produce time-eÆcient code, with less emphasis on eÆcient
space utilization. However, several options exist that permit trading-o� execution time for
storage space and vice versa. In particular, expanding the generated table size produces a
sparse search structure, generally yielding faster searches. Conversely, you can direct gperf
to utilize a C switch statement scheme that minimizes data space storage size. Furthermore,
using a C switch may actually speed up the keyword retrieval time somewhat. Actual
results depend on your C compiler, of course.

In general, gperf assigns values to the characters it is using for hashing until some set
of values gives each keyword a unique value. A helpful heuristic is that the larger the
hash value range, the easier it is for gperf to �nd and generate a perfect hash function.
Experimentation is the key to getting the most from gperf.

3.1 Input Format to gperf

You can control the input key�le format by varying certain command-line arguments,
in particular the `-t' option. The input's appearance is similar to GNU utilities flex and
bison (or UNIX utilities lex and yacc). Here's an outline of the general format:

declarations
%%
keywords
%%
functions

Unlike flex or bison, all sections of gperf's input are optional. The following sections
describe the input format for each section.

3.1.1 struct Declarations and C Code Inclusion

The keyword input �le optionally contains a section for including arbitrary C declarations
and de�nitions, as well as provisions for providing a user-supplied struct. If the `-t' option
is enabled, you must provide a C struct as the last component in the declaration section
from the key�le �le. The �rst �eld in this struct must be a char * or const char * identi�er
called `name', although it is possible to modify this �eld's name with the `-K' option described
below.

Here is a simple example, using months of the year and their attributes as input:

Chapter 3: High-Level Description of GNU gperf 12

struct months { char *name; int number; int days; int leap_days; };
%%
january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
april, 4, 30, 30
may, 5, 31, 31
june, 6, 30, 30
july, 7, 31, 31
august, 8, 31, 31
september, 9, 30, 30
october, 10, 31, 31
november, 11, 30, 30
december, 12, 31, 31

Separating the struct declaration from the list of keywords and other �elds are a pair of
consecutive percent signs, `%%', appearing left justi�ed in the �rst column, as in the UNIX
utility lex.

Using a syntax similar to GNU utilities flex and bison, it is possible to directly include
C source text and comments verbatim into the generated output �le. This is accomplished
by enclosing the region inside left-justi�ed surrounding `%{', `%}' pairs. Here is an input
fragment based on the previous example that illustrates this feature:

%{
#include <assert.h>
/* This section of code is inserted directly into the output. */
int return_month_days (struct months *months, int is_leap_year);
%}
struct months { char *name; int number; int days; int leap_days; };
%%
january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
...

It is possible to omit the declaration section entirely. In this case the key�le begins
directly with the �rst keyword line, e.g.:

january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
april, 4, 30, 30
...

3.1.2 Format for Keyword Entries

The second key�le format section contains lines of keywords and any associated attributes
you might supply. A line beginning with `#' in the �rst column is considered a comment.
Everything following the `#' is ignored, up to and including the following newline.

The �rst �eld of each non-comment line is always the key itself. It can be given in two
ways: as a simple name, i.e., without surrounding string quotation marks, or as a string

Chapter 3: High-Level Description of GNU gperf 13

enclosed in double-quotes, in C syntax, possibly with backslash escapes like \" or \234

or \xa8. In either case, it must start right at the beginning of the line, without leading
whitespace. In this context, a \�eld" is considered to extend up to, but not include, the
�rst blank, comma, or newline. Here is a simple example taken from a partial list of C
reserved words:

These are a few C reserved words, see the c.gperf file
for a complete list of ANSI C reserved words.
unsigned
sizeof
switch
signed
if
default
for
while
return

Note that unlike flex or bison the �rst `%%' marker may be elided if the declaration
section is empty.

Additional �elds may optionally follow the leading keyword. Fields should be separated
by commas, and terminate at the end of line. What these �elds mean is entirely up to you;
they are used to initialize the elements of the user-de�ned struct provided by you in the
declaration section. If the `-t' option is not enabled these �elds are simply ignored. All
previous examples except the last one contain keyword attributes.

3.1.3 Including Additional C Functions

The optional third section also corresponds closely with conventions found in flex and
bison. All text in this section, starting at the �nal `%%' and extending to the end of the input
�le, is included verbatim into the generated output �le. Naturally, it is your responsibility
to ensure that the code contained in this section is valid C.

3.2 Output Format for Generated C Code with gperf

Several options control how the generated C code appears on the standard output. Two
C function are generated. They are called hash and in_word_set, although you may modify
their names with a command-line option. Both functions require two arguments, a string,
char * str, and a length parameter, int len. Their default function prototypes are as
follows:

Functionunsigned int hash (const char * str, unsigned int len)
By default, the generated hash function returns an integer value created by adding
len to several user-speci�ed str key positions indexed into an associated values table
stored in a local static array. The associated values table is constructed internally
by gperf and later output as a static local C array called `hash_table'; its meaning
and properties are described below (see Chapter 7 [Implementation], page 23). The
relevant key positions are speci�ed via the `-k' option when running gperf, as detailed
in the Options section below(see Chapter 4 [Options], page 15).

Chapter 3: High-Level Description of GNU gperf 14

Functionin word set (const char * str, unsigned int len)
If str is in the keyword set, returns a pointer to that keyword. More exactly, if
the option `-t' was given, it returns a pointer to the matching keyword's structure.
Otherwise it returns NULL.

If the option `-c' is not used, str must be a NUL terminated string of exactly length len.
If `-c' is used, str must simply be an array of len characters and does not need to be NUL
terminated.

The code generated for these two functions is a�ected by the following options:

`-t'
`--struct-type'

Make use of the user-de�ned struct.

`-S total-switch-statements'
`--switch=total-switch-statements'

Generate 1 or more C switch statement rather than use a large, (and potentially
sparse) static array. Although the exact time and space savings of this approach
vary according to your C compiler's degree of optimization, this method often
results in smaller and faster code.

If the `-t' and `-S' options are omitted, the default action is to generate a char * array
containing the keys, together with additional null strings used for padding the array. By
experimenting with the various input and output options, and timing the resulting C code,
you can determine the best option choices for di�erent keyword set characteristics.

3.3 Use of NUL characters

By default, the code generated by gperf operates on zero terminated strings, the usual
representation of strings in C. This means that the keywords in the input �le must not
contain NUL characters, and the str argument passed to hash or in_word_set must be
NUL terminated and have exactly length len.

If option `-c' is used, then the str argument does not need to be NUL terminated. The
code generated by gperf will only access the �rst len, not len+1, bytes starting at str.
However, the keywords in the input �le still must not contain NUL characters.

If option `-l' is used, then the hash table performs binary comparison. The keywords in
the input �le may contain NUL characters, written in string syntax as \000 or \x00, and
the code generated by gperf will treat NUL like any other character. Also, in this case the
`-c' option is ignored.

Chapter 4: Invoking gperf 15

4 Invoking gperf

There are many options to gperf. They were added to make the program more conve-
nient for use with real applications. \On-line" help is readily available via the `-h' option.
Here is the complete list of options.

4.1 Options that a�ect Interpretation of the Input File

`-e keyword-delimiter-list'
`--delimiters=keyword-delimiter-list'

Allows the user to provide a string containing delimiters used to separate key-
words from their attributes. The default is ",\n". This option is essential if
you want to use keywords that have embedded commas or newlines. One useful
trick is to use -e'TAB', where TAB is the literal tab character.

`-t'
`--struct-type'

Allows you to include a struct type declaration for generated code. Any text
before a pair of consecutive `%%' is considered part of the type declaration.
Keywords and additional �elds may follow this, one group of �elds per line.
A set of examples for generating perfect hash tables and functions for Ada, C,
C++, Pascal, Modula 2, Modula 3 and JavaScript reserved words are distributed
with this release.

4.2 Options to specify the Language for the Output Code

`-L generated-language-name'
`--language=generated-language-name'

Instructs gperf to generate code in the language speci�ed by the option's ar-
gument. Languages handled are currently:

`KR-C' Old-style K&R C. This language is understood by old-style C com-
pilers and ANSI C compilers, but ANSI C compilers may ag warn-
ings (or even errors) because of lacking `const'.

`C' Common C. This language is understood by ANSI C compilers, and
also by old-style C compilers, provided that you #define const to
empty for compilers which don't know about this keyword.

`ANSI-C' ANSI C. This language is understood by ANSI C compilers and
C++ compilers.

`C++' C++. This language is understood by C++ compilers.

The default is C.

`-a' This option is supported for compatibility with previous releases of gperf. It
does not do anything.

`-g' This option is supported for compatibility with previous releases of gperf. It
does not do anything.

Chapter 4: Invoking gperf 16

4.3 Options for �ne tuning Details in the Output Code

`-K key-name'
`--slot-name=key-name'

This option is only useful when option `-t' has been given. By default, the
program assumes the structure component identi�er for the keyword is `name'.
This option allows an arbitrary choice of identi�er for this component, although
it still must occur as the �rst �eld in your supplied struct.

`-F initializers'
`--initializer-suffix=initializers'

This option is only useful when option `-t' has been given. It permits to specify
initializers for the structure members following key name in empty hash table
entries. The list of initializers should start with a comma. By default, the
emitted code will zero-initialize structure members following key name.

`-H hash-function-name'
`--hash-fn-name=hash-function-name'

Allows you to specify the name for the generated hash function. Default name
is `hash'. This option permits the use of two hash tables in the same �le.

`-N lookup-function-name'
`--lookup-fn-name=lookup-function-name'

Allows you to specify the name for the generated lookup function. Default
name is `in_word_set'. This option permits completely automatic generation
of perfect hash functions, especially when multiple generated hash functions are
used in the same application.

`-Z class-name'
`--class-name=class-name'

This option is only useful when option `-L C++' has been given. It allows you
to specify the name of generated C++ class. Default name is Perfect_Hash.

`-7'
`--seven-bit'

This option speci�es that all strings that will be passed as arguments to the
generated hash function and the generated lookup function will solely consist
of 7-bit ASCII characters (characters in the range 0..127). (Note that the ANSI
C functions isalnum and isgraph do not guarantee that a character is in this
range. Only an explicit test like `c >= 'A' && c <= 'Z'' guarantees this.) This
was the default in versions of gperf earlier than 2.7; now the default is to
assume 8-bit characters.

`-c'
`--compare-strncmp'

Generates C code that uses the strncmp function to perform string comparisons.
The default action is to use strcmp.

Chapter 4: Invoking gperf 17

`-C'
`--readonly-tables'

Makes the contents of all generated lookup tables constant, i.e., \readonly".
Many compilers can generate more eÆcient code for this by putting the tables
in readonly memory.

`-E'
`--enum' De�ne constant values using an enum local to the lookup function rather than

with #de�nes. This also means that di�erent lookup functions can reside in
the same �le. Thanks to James Clark <jjc@ai.mit.edu>.

`-I'
`--includes'

Include the necessary system include �le, <string.h>, at the beginning of the
code. By default, this is not done; the user must include this header �le himself
to allow compilation of the code.

`-G'
`--global'

Generate the static table of keywords as a static global variable, rather than
hiding it inside of the lookup function (which is the default behavior).

`-W hash-table-array-name'
`--word-array-name=hash-table-array-name'

Allows you to specify the name for the generated array containing the hash
table. Default name is `wordlist'. This option permits the use of two hash
tables in the same �le, even when the option `-G' is given.

`-S total-switch-statements'
`--switch=total-switch-statements'

Causes the generated C code to use a switch statement scheme, rather than
an array lookup table. This can lead to a reduction in both time and space
requirements for some key�les. The argument to this option determines how
many switch statements are generated. A value of 1 generates 1 switch con-
taining all the elements, a value of 2 generates 2 tables with 1/2 the elements
in each switch, etc. This is useful since many C compilers cannot correctly
generate code for large switch statements. This option was inspired in part by
Keith Bostic's original C program.

`-T'
`--omit-struct-type'

Prevents the transfer of the type declaration to the output �le. Use this option
if the type is already de�ned elsewhere.

`-p' This option is supported for compatibility with previous releases of gperf. It
does not do anything.

4.4 Options for changing the Algorithms employed by gperf

Chapter 4: Invoking gperf 18

`-k keys'
`--key-positions=keys'

Allows selection of the character key positions used in the keywords' hash func-
tion. The allowable choices range between 1-126, inclusive. The positions are
separated by commas, e.g., `-k 9,4,13,14'; ranges may be used, e.g., `-k 2-7';
and positions may occur in any order. Furthermore, the meta-character '*'
causes the generated hash function to consider all character positions in each
key, whereas '$' instructs the hash function to use the \�nal character" of a key
(this is the only way to use a character position greater than 126, incidentally).

For instance, the option `-k 1,2,4,6-10,'$'' generates a hash function that
considers positions 1,2,4,6,7,8,9,10, plus the last character in each key (which
may di�er for each key, obviously). Keys with length less than the indicated key
positions work properly, since selected key positions exceeding the key length
are simply not referenced in the hash function.

`-l'
`--compare-strlen'

Compare key lengths before trying a string comparison. This might cut down
on the number of string comparisons made during the lookup, since keys with
di�erent lengths are never compared via strcmp. However, using `-l' might
greatly increase the size of the generated C code if the lookup table range is
large (which implies that the switch option `-S' is not enabled), since the length
table contains as many elements as there are entries in the lookup table. This
option is mandatory for binary comparisons (see Section 3.3 [Binary Strings],
page 14).

`-D'
`--duplicates'

Handle keywords whose key position sets hash to duplicate values. Duplicate
hash values occur for two reasons:

� Since gperf does not backtrack it is possible for it to process all your
input keywords without �nding a unique mapping for each word. However,
frequently only a very small number of duplicates occur, and the majority
of keys still require one probe into the table.

� Sometimes a set of keys may have the same names, but possess di�erent
attributes. With the -D option gperf treats all these keys as part of
an equivalence class and generates a perfect hash function with multiple
comparisons for duplicate keys. It is up to you to completely disambiguate
the keywords by modifying the generated C code. However, gperf helps
you out by organizing the output.

Option `-D' is extremely useful for certain large or highly redundant keyword
sets, e.g., assembler instruction opcodes. Using this option usually means that
the generated hash function is no longer perfect. On the other hand, it permits
gperf to work on keyword sets that it otherwise could not handle.

Chapter 4: Invoking gperf 19

`-f iteration-amount'
`--fast=iteration-amount'

Generate the perfect hash function \fast". This decreases gperf's running time
at the cost of minimizing generated table-size. The iteration amount represents
the number of times to iterate when resolving a collision. `0' means iterate by
the number of keywords. This option is probably most useful when used in
conjunction with options `-D' and/or `-S' for large keyword sets.

`-i initial-value'
`--initial-asso=initial-value'

Provides an initial value for the associate values array. Default is 0. Increasing
the initial value helps inate the �nal table size, possibly leading to more time
eÆcient keyword lookups. Note that this option is not particularly useful when
`-S' is used. Also, `-i' is overridden when the `-r' option is used.

`-j jump-value'
`--jump=jump-value'

A�ects the \jump value", i.e., how far to advance the associated character value
upon collisions. Jump-value is rounded up to an odd number, the default is 5.
If the jump-value is 0 gperf jumps by random amounts.

`-n'
`--no-strlen'

Instructs the generator not to include the length of a keyword when computing
its hash value. This may save a few assembly instructions in the generated
lookup table.

`-o'
`--occurrence-sort'

Reorders the keywords by sorting the keywords so that frequently occuring
key position set components appear �rst. A second reordering pass follows so
that keys with \already determined values" are placed towards the front of
the keylist. This may decrease the time required to generate a perfect hash
function for many keyword sets, and also produce more minimal perfect hash
functions. The reason for this is that the reordering helps prune the search
time by handling inevitable collisions early in the search process. On the other
hand, if the number of keywords is very large using `-o' may increase gperf's
execution time, since collisions will begin earlier and continue throughout the
remainder of keyword processing. See Cichelli's paper from the January 1980
Communications of the ACM for details.

`-r'
`--random'

Utilizes randomness to initialize the associated values table. This frequently
generates solutions faster than using deterministic initialization (which starts all
associated values at 0). Furthermore, using the randomization option generally
increases the size of the table. If gperf has diÆcultly with a certain keyword
set try using `-r' or `-D'.

Chapter 4: Invoking gperf 20

`-s size-multiple'
`--size-multiple=size-multiple'

A�ects the size of the generated hash table. The numeric argument for this
option indicates \how many times larger or smaller" the maximum associated
value range should be, in relationship to the number of keys. If the size-multiple

is negative the maximum associated value is calculated by dividing it into the
total number of keys. For example, a value of 3 means \allow the maximum
associated value to be about 3 times larger than the number of input keys".

Conversely, a value of -3 means \allow the maximum associated value to be
about 3 times smaller than the number of input keys". Negative values are
useful for limiting the overall size of the generated hash table, though this
usually increases the number of duplicate hash values.

If `generate switch' option `-S' is not enabled, the maximum associated value
inuences the static array table size, and a larger table should decrease the time
required for an unsuccessful search, at the expense of extra table space.

The default value is 1, thus the default maximum associated value about the
same size as the number of keys (for eÆciency, the maximum associated value is
always rounded up to a power of 2). The actual table size may vary somewhat,
since this technique is essentially a heuristic. In particular, setting this value too
high slows down gperf's runtime, since it must search through a much larger
range of values. Judicious use of the `-f' option helps alleviate this overhead,
however.

4.5 Informative Output

`-h'
`--help' Prints a short summary on the meaning of each program option. Aborts further

program execution.

`-v'
`--version'

Prints out the current version number.

`-d'
`--debug' Enables the debugging option. This produces verbose diagnostics to \standard

error" when gperf is executing. It is useful both for maintaining the program
and for determining whether a given set of options is actually speeding up the
search for a solution. Some useful information is dumped at the end of the
program when the `-d' option is enabled.

Chapter 5: Known Bugs and Limitations with gperf 21

5 Known Bugs and Limitations with gperf

The following are some limitations with the current release of gperf:

� The gperf utility is tuned to execute quickly, and works quickly for small to medium
size data sets (around 1000 keywords). It is extremely useful for maintaining perfect
hash functions for compiler keyword sets. Several recent enhancements now enable
gperf to work eÆciently on much larger keyword sets (over 15,000 keywords). When
processing large keyword sets it helps greatly to have over 8 megs of RAM.

However, since gperf does not backtrack no guaranteed solution occurs on every run.
On the other hand, it is usually easy to obtain a solution by varying the option param-
eters. In particular, try the `-r' option, and also try changing the default arguments
to the `-s' and `-j' options. To guarantee a solution, use the `-D' and `-S' options,
although the �nal results are not likely to be a perfect hash function anymore! Finally,
use the `-f' option if you want gperf to generate the perfect hash function fast, with
less emphasis on making it minimal.

� The size of the generate static keyword array can get extremely large if the input
keyword �le is large or if the keywords are quite similar. This tends to slow down
the compilation of the generated C code, and greatly inates the object code size. If
this situation occurs, consider using the `-S' option to reduce data size, potentially
increasing keyword recognition time a negligible amount. Since many C compilers
cannot correctly generated code for large switch statements it is important to qualify
the -S option with an appropriate numerical argument that controls the number of
switch statements generated.

� The maximum number of key positions selected for a given key has an arbitrary limit
of 126. This restriction should be removed, and if anyone considers this a problem
write me and let me know so I can remove the constraint.

Chapter 6: Things Still Left to Do 22

6 Things Still Left to Do

It should be \relatively" easy to replace the current perfect hash function algorithm with
a more exhaustive approach; the perfect hash module is essential independent from other
program modules. Additional worthwhile improvements include:

� Make the algorithm more robust. At present, the program halts with an error diag-
nostic if it can't �nd a direct solution and the `-D' option is not enabled. A more
comprehensive, albeit computationally expensive, approach would employ backtrack-
ing or enable alternative options and retry. It's not clear how helpful this would be, in
general, since most search sets are rather small in practice.

� Another useful extension involves modifying the program to generate \minimal" per-
fect hash functions (under certain circumstances, the current version can be rather
extravagant in the generated table size). Again, this is mostly of theoretical interest,
since a sparse table often produces faster lookups, and use of the `-S' switch option
can minimize the data size, at the expense of slightly longer lookups (note that the gcc
compiler generally produces good code for switch statements, reducing the need for
more complex schemes).

� In addition to improving the algorithm, it would also be useful to generate a C++ class
or Ada package as the code output, in addition to the current C routines.

Chapter 7: Implementation Details of GNU gperf 23

7 Implementation Details of GNU gperf

A paper describing the high-level description of the data structures and algorithms used
to implement gperf will soon be available. This paper is useful not only from a maintenance
and enhancement perspective, but also because they demonstrate several clever and useful
programming techniques, e.g., `Iteration Number' boolean arrays, double hashing, a \safe"
and eÆcient method for reading arbitrarily long input from a �le, and a provably optimal
algorithm for simultaneously determining both the minimum and maximum elements in a
list.

Chapter 8: Bibliography 24

8 Bibliography

[1] Chang, C.C.: A Scheme for Constructing Ordered Minimal Perfect Hashing Functions

Information Sciences 39(1986), 187-195.

[2] Cichelli, Richard J. Author's Response to \On Cichelli's Minimal Perfect Hash Func-

tions Method" Communications of the ACM, 23, 12(December 1980), 729.

[3] Cichelli, Richard J. Minimal Perfect Hash Functions Made Simple Communications
of the ACM, 23, 1(January 1980), 17-19.

[4] Cook, C. R. and Oldehoeft, R.R. A Letter Oriented Minimal Perfect Hashing Function

SIGPLAN Notices, 17, 9(September 1982), 18-27.

[5] Cormack, G. V. and Horspool, R. N. S. and Kaiserwerth, M. Practical Perfect Hashing
Computer Journal, 28, 1(January 1985), 54-58.

[6] Jaeschke, G. Reciprocal Hashing: A Method for Generating Minimal Perfect Hashing

Functions Communications of the ACM, 24, 12(December 1981), 829-833.

[7] Jaeschke, G. and Osterburg, G. On Cichelli's Minimal Perfect Hash Functions Method

Communications of the ACM, 23, 12(December 1980), 728-729.

[8] Sager, Thomas J. A Polynomial Time Generator for Minimal Perfect Hash Functions

Communications of the ACM, 28, 5(December 1985), 523-532

[9] Schmidt, Douglas C. GPERF: A Perfect Hash Function Generator Second USENIX
C++ Conference Proceedings, April 1990.

[10] Sebesta, R.W. and Taylor, M.A.Minimal Perfect Hash Functions for Reserved Word

Lists SIGPLAN Notices, 20, 12(September 1985), 47-53.

[11] Sprugnoli, R. Perfect Hashing Functions: A Single Probe Retrieving Method for

Static Sets Communications of the ACM, 20 11(November 1977), 841-850.

[12] Stallman, Richard M. Using and Porting GNU CC Free Software Foundation, 1988.

[13] Stroustrup, Bjarne The C++ Programming Language. Addison-Wesley, 1986.

[14] Tiemann, Michael D. User's Guide to GNU C++ Free Software Foundation, 1989.

Concept Index 25

Concept Index

%
`%%' . 12

`%{' . 12

`%}' . 12

A
Array name . 17

B
Bugs . 8

C
Class name . 16

D
Declaration section . 11

Delimiters . 15

Duplicates . 18

F
Format . 11

Functions section . 11

H
hash . 13

hash table . 13

I
in_word_set . 14

Initializers . 16

J
Jump value. 19

K
Keywords section . 11

M
Minimal perfect hash functions 10

N
NUL . 14

S
Slot name . 16

Static search structure . 10

switch . 14, 17

i

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2
How to Apply These Terms to Your New Programs 6

Contributors to GNU gperf Utility 8

1 Introduction . 9

2 Static search structures and GNU gperf 10

3 High-Level Description of GNU gperf 11
3.1 Input Format to gperf . 11

3.1.1 struct Declarations and C Code Inclusion 11
3.1.2 Format for Keyword Entries . 12
3.1.3 Including Additional C Functions 13

3.2 Output Format for Generated C Code with gperf 13
3.3 Use of NUL characters . 14

4 Invoking gperf . 15
4.1 Options that a�ect Interpretation of the Input File 15
4.2 Options to specify the Language for the Output Code 15
4.3 Options for �ne tuning Details in the Output Code 16
4.4 Options for changing the Algorithms employed by gperf . . 17
4.5 Informative Output . 20

5 Known Bugs and Limitations with gperf . . . 21

6 Things Still Left to Do . 22

7 Implementation Details of GNU gperf 23

8 Bibliography . 24

Concept Index . 25

