Software Development System

Vol. II

MICROPORT SYSTEMS

The material contained in this manual was reprinted with permission from
AT&T and is comprised of excerpts from the following AT&T manuals.

*UNIX System V - Release 2.0 Support Tools Guide April 1984

307-108, Issue 2
UNIX System V - Release 2.0 Supplement September 1985
+INTEL Processors 307-624, Issue 2
UNIX System V - Release 2.0 Programming Guide April 1984

307-103, Issue 2
UNIX System V - Release 2.0 Programmer March 1985
Reference Manual 307-627, Issue 1

INTEL Processors

*UNIX is a trademark of AT&T Bell Laborataries
FINTEL is a trademark of Intel Corporation
Copyright © 1984, 1985 by AT&T
All rights reserved
Printed in U.S.A.

DIABLO is a registered trademark of Xerox Corporation

UNIX is a trademark of AT&T Bell Laboratories

iAPX 286 is a trademark of Intel Corporation
DOCUMENTER'S WORKBENCH is a trademark of AT&T
PDP and VAX are trademarks of Digital Equipment Corporation
HP is a trademark of Hewlett-Packard, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE is a trademark of AT&T Teletype Corporation
VERSATEC is a registered trademark of Versatec Corporation

(O

QUICK REFERENCE
GUIDE

C LIBRARIES C-17

OBJECT & MATH LIBRARIES C-18

LEX ANALYZER GEN (LEX) c-19

YACC | C-20

I

SYSTEM CALLS 2

SUBROUTINES & LIBRARIES

MATH LIBRARY FUNCTIONS _

MISC. LIBRARY FUNCTIONS

FORTRAN LIBRARY FUNCTIONS

FILE FORMATS 'S4
| . v

MISCELLANY

Table

of Contents

TITLE
C LIBRARIES

CHAPTER
17

OBJECT AND MATH LIBRARIES

18

LEX ANALYZER GEN (LEX)

19

YACC

20

TITLE
SYSTEM CALLS

SECTION
...... 2

SUBROUTINES AND LIBRARIES....

3

MATH LIBRARY FUNCTIONS

3M

MISC. LIBRARY FUNCTIONS

3X

FORTRAN LIBRARY FUNCTIONS

3F

FILE FORMATS

4

MISCELLANY.

5

®

O

Chapter 17
C LIBRARIES

GENERAL

This chapter and the next describe the libraries that are supported on the UNIX
operating system. A library is a collection of related functions and/or declarations
that simplify programming effort by linking only what is needed, allowing use
of locally produced functions, etc. All of the functions described are also
described in section 3, 3M, 3X and 3F of the Software Development System
manual. Most of the declarations described are in section 5. The three main
libraries on the UNIX system are;

C library This is the basic library for C language
programs. The C library is composed of
functions and declarations used for file access,
string testing and manipulation, character
testing and manipulation, memory allocation,
and other functions. This library is described

later in this chapter.

Object file This library provides functions for the access and
manipulation of object files. This library is described in
the next chapter.

Math library This library provides exponential, bessel functions,

logarithmic, hyperbolic, and trigonometric functions.
This library is described in the next chapter.

Some libraries consist of two portions - functions and declarations.
In some cases, the user must request that the functions (and/or
declarations) of a specific library be included in a program being
compiled. In other cases, the functions (and/or declarations) are
included automatically.

17-1

=

C LIBRARIES

Including Functions

When a program is being compiled, the compiler will automatically
search the C language library to locate and include functions that are
used in the program. This is the case only for the C library and no
other library. In order for the compiler to locate and include
functions from other libraries, the user must specify these libraries
on the command line for the compiler. For example, when using
functions of the math library, the user must request that the math
library be searched by including the argument -Im on the command
line, such as:

cc file.c -Im

The argument -lm must come after all files that reference functions
in the math library in order for the link editor to know which
functions to include in the a.out file.

This method should he used for all functions that are not part of the
C language library.

Including Declarations

Some functions require a set of declarations in order to operate
properly. A set of declarations is stored in a file under the
/usr/include directory. These files are referred to as header files. In
order to include a certain header file, the user must specify this
request within the C language program. The request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the
type of the functions and various preprocessor constants, they must
be included before invoking the functions they declare.

The remainder of this chapter describes the functions and header
files of the C Library. The description of the library begins with the
actions required by the user to include the functions and/or header
files in a program being compiled (if any). Following the description

17-2

C LIBRARIES

o

of the actions required is information in three-column format of the :
form:

function reference (N) Brief description.

The functions are grouped by type while the reference refers to section N in the
Software Development System manual. Following this, are descriptions of the
header files associated with these functions (if any).

THE C LIBRARY

i e < The—C- - 1ibrary —-consists—of._several.. types_ol _funetions.—-All the .. __.__

functions of the C library are loaded automatically by the compiler.
Various declarations must sometimes be included by the user as
required. The functions of the C library are divided into the
following types:

N « Input/output control

o String manipulation

o Character manipulation
e Time functions

e Miscellaneous functions.

Input/Output Control

These functions of the C library are automatically included as needed
during the compiling of a C language program. No command line
request is needed.

The header file required by the input/output functions should be
included in the program being compiled. This is accomplished by
including the line:

) #include <stdioh>

near the beginning of each file that references an input or output
function.

17-3

C LIBRARIES

The input/output functions are grouped into the following categories:

File access
File status
Input

Output

o Miscellaneous.

File Access Functions

FUNCTION REFERENCE
fclose fclose(3S)
fdopen fopen(3S)
fileno ferror(3S)
fopen fopen(3S)
freopen fopen(3S)
fseek fseek(3S)
pclose popen(3S)
popen popen(3S)

17-4

BRIEF DESCRIPTION
Close an open stream.

Associate stream with
an open(2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

Close a stream opened
by popen.

Create pipe as a stream
between calling process
and command.

C LIBRARIES

rewind fseek(3S) Reposition file
Q pointer at beginning
N of file.
setbuf setbuf(3S) Assign buffering to
stream.
vsetbuf setbuf(3S) Similar to setbuf, but

allowing finer control.

File Status Functions

e -~ = FUNCTION~-————REFERENCE. ... _BRIEE DESCRIPTION .
; clearerr ferror(3S) Reset error condition on
stream.
i q feof ferror(3S) Test for “end of file”
% on stream.
ferror ferror(3S) Test for error condition
on stream.
ftell fseek(3S) Return current position
in the file.

Input Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fgetc getc (3S) True function for gete

‘ (3S).

i Q fgets gets(3S) Read string from stream.
fread fread(3S) General buffered read

from stream.

17-5

C LIBRARIES

fscanf

getc

getchar

gci..s
getw

scanf

sscanf

ungetc

scanf(3S)

gete(3S)

getc(3S)

gets(53)
getc(3S)

scanf(3S)

scanf(3S)

ungetc(3S)

Output Functions

FUNCTION

fflush

fprintf

fputc

fputs

fwrite

17-6

REFERENCE

felose(8S)

printf(3S)

putec(3S)

puts(3S)

fread(3S)

Formatted read from
stream.

Read character from
stream.

Read character from
standard input.

Read string from standard input.
Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

BRIEF DESCRIPTION

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for pute

(38).
Write string to stream.

General buffered write to
stream.

O

printf

putc

putchar

sprintl

viprintf

vprintf

vsprintf

C LIBRARIES

Miscellaneous Functions

FUNCTION

ctermid

cuserid

system

REFERENCE

ctermid(3S)

cuserid(3S)

system(3S)

printf(3S) Print using format to
standard output.
putc(3S) Write character to
standard output.
putc(3S) Write character to
standard output.
puts(3S) Write string to
standard output.
putc(3S) Write word to stream.
T printf(38) Formatted write to
string.
vprint(3C) Print using format to
stream by varargs(5)
argument list.
vprint(3C) Print using format to
standard output by
varargs(b) argument list.
vprintf (3C) Print using format to

stream string by
varargs(5) argument list.

BRIEF DESCRIPTION

Return file name for
controlling terminal.

Return login name for
owner of current process.

Execute shell command.

17-7

C LIBRARIES

tempnam tempnam (3S) Create temporary file
name using directory and
prefix.

tmpnam tmpnam (3S) Create temporary file
name.

tmpfile tmpfile (3S) Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string, copy,
concatenate, and compare strings. These functions are automatically
located and loaded during the compiling of a C language program.
No command line request is needed since these functions are part of
the C library. The string manipulation functions are declared in a
header file that may be included in the program being compiled.
This is accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strecat string (3C) Concatenate two strings.

strchr string (3C) Search string for
character.

stremp string(3C) Compares two strings.

strepy string (3C) Copy string.

strespn string (3C) Length of initial string
not containing set of
characters.

strlen string (3C) Length of string.

17-8

C LIBRARIES

Q

strncat string(3C) Concatenate two strings 3

with a maximum length.

,.
4
i
\\)

: strnemp string (3C) Compares two strings
with a maximum length.

strncpy string(3C) Copy string over string
with a maximum length.
strpbrk string (3C) Search string for any
set of characters.
: strrchr string(3C) Search string backwards
: for character.

- strs;m T string(3C) Length of initial string "
containing set of
characters.

q strtok string (3C) Search string for token
\J separated by any of a

set of characters.

Character Manipulation

The following functions and declarations are used for testing and
translating ASCII characters. These functions are located and loaded
automatically during the compiling of a C language program. No
command line request is needed since these functions are part of the
C library.

The declarations associated with these functions should be included
in the program being compiled. This is acecomplished by including
the line:

#include <ctype.h>

near the beginning of the file being compiled.

17-9

C LIBRARIES

Character Testing Functions

These functions can be used to identify characters as uppercase or

lowercase letters, digits, punctuation, etc.

FUNCTION

isalnum

isalpha

isasecii

isentrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

17-10

REFERENCE

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

BRIEF DESCRIPTION

Is character
alphanumeric?

Is character alphabetic?

Is integer ASCII
character?

Is character a control
character?

Is character a digit?

Is character a printable
character?

Is character a
lowercase letter?

Is character a printing
character including

space?

Is character a
punctuation character?

Is character a white
space character?

Is character an uppercase
letter?

Is character a hex digit?

C LIBRARIES

Character Translation Functions

These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

! tolower conv (3C) Convert character to
lowercase.
i toupper conv(3C) Convert character to
T T T - uppercase——

Time Functions

These functions are used for accessing and reformatting the systems

O idea of the current date and time. These functions are located and
loaded automatically during the compiling of a C language program.
No command line request is needed since these functions are part of
the C library.

The header file associated with these functions should be included in
the program being compiled. This is accomplished by including the
line:

finclude <time.h>
near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by
time(2).

17-11

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
asctime ctime(3C) Return string
representation

of date and time.

ctime ctime(3C) Return string
representation of
date and time, given
integer form.

gmtime ctime(3C) Return Greenwich
Mean Time.

localtime ctime(3C) Return local time.

tzset ctime(3C) Set time zone field
from environment
variable.

Miscellaneous Functions

These functions support a wide variety of operations. Some of these
are numerical conversion, password file and group file access,
memory allocation, random number generation, and table
management. These functions are automatically located and included
in a program being compiled. No command line request is needed
since these functions are part of the C library.

Some of these functions require declarations to be included. These
are described following the descriptions of the functions.

17-12

Numerical Conversion

C LIBRARIES

The following functions perform numerical conversion.

BRIEF DESCRIPTION

Convert string to
base 64 ASCII.

Convert string to
floating.

Convert string to
integer.

FUNCTION REFERENCE
a64l a641(30)
atof atof (3C)
atoi atof (3C)
 aal atef0)
frexp frexp(3C)
13tol 13tol(3C)
Itol3 13to0l(3C)
ldexp frexp(3C)
164a a641(3C)
modf frexp(3C)

DES Algorithm Access

.C(;nv“ert string to long. -

Split floating into
mantissa and exponent.

Convert 3-byte integer
to long.

Convert long to 3-byte
integer.

Combine mantissa and
exponent.

Convert base 64 ASCII
to string.

Split mantissa into
integer and fraction.

The following functions allow access to the Data Encryption
Standard (DES) algorithm used on the UNIX operating system. The
DES algorithm is implemented with variations to frustrate use of
hardware implementations of the DES for key search.

17-13

C LIBRARIES

FUNCTION

crypt

encrypt

setkey

Group File Access

REFERENCE
crypt(3C)

crypt(30)

crypt(3C)

BRIEF DESCRIPTION

Encode string.

Encode/decode string of
0s and 1s.

Initialize for subsequent
use of encrypt.

The following functions are used to obtain entries from the group
file. Declarations for these functions must be included in the

program being compiled with the line:

#include <grp.h>

FUNCTION

endgrent

getgrent

getgrgid

getgrnam

setgrent

fgetgrent

17-14

REFERENCE

getgrent (3C)

getgrent(3C)

getgrent(3C)

getgrent(3C)

getgrent(3C)

getgrent(3C)

BRIEF DESCRIPTION

Close group file being
processed.

Get next group file
entry.

Return next group with
matching gid.

Return next group with
matching name.

Rewind group file being
processed.

Get next group file entry
from a specified file.

! C LIBRARIES

=3

Password File Access

i @ These functions are used to search and access information stored in
: the password file (/etc/passwd). Some functions require declarations
3 that can be included in the program being compiled by adding the
! line:

#include <pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPTION
endpwent getpwent(3C) Close password file
being processed.
getpw getpw (3C) Search password file
for uid.
getpwent getpwent(3C) Get next password file
0 entry.
N
getpwnam getpwent(3C) Return next entry with
matching name.
f getpwuid getpwent(3C) Return next entry with
matching uid.
putpwent putpwent(3C) Write ehtry on stream.
setpwent getpwent(3C) Rewind password file
| being accessed.
fgetpwent getpwent(3C) Get next password file
entry from a specified
file.
N Parameter Access
.
The following functions provide access to several different types of

paramenters. None require any declarations.

17-15

C LIBRARIES

FUNCTION

getopt

getcwd

getenv

getpass

putenv

REFERENCE

getopt(30)

getewd(3C)

getenv(3C)

getpass(3C)

putenv(3C)

Hash Table Management

BRIEF DESCRIPTION

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables. The
header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION
hcreate
hdestroy

hsearch

17-16

REFERENCE

hsearch(3C)
hsearch(3C)

hsearch (3C)

BRIEF DESCRIPTION

Create hash table.
Destroy hash table.

Search hash table for
entry.

)

C LIBRARIES

Binary Tree Management

The following functions are used to manage a binary tree. The
header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete ___ tsearch(3C) _ Deletes nodes from
binary tree.
tfind tsearch(3C) Find element in
binary tree.
tsearch tsearch (3C) Look for and add
element to binary
tree.
twalk tsearch(30) Walk binary tree.

Table Management

The following functions are used to manage a table. Since none of
these functions allocate storage, sufficient memory must be allocated
before using these functions. The header file associated with these
functions should be included in the program being compiled. This is
accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

17-17

C LIBRARIES

FUNCTION

bsearch

Ifind

Isearch

gsort

Memory Allocation

REFERENCE

bsearch (3C)

Isearch(3C)

Isearch (3C)

gsort(3C) -

BRIEF DESCRIPTION

Search table using
binary search.

Find element in
library tree.

Look for and add
element in binary
tree.

"Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be
dynamically allocated or freed.

FUNCTION
calloc

free

malloc

realloc

REFERENCE
malloe(3C)

malloc(38C)

malloc(3C)

malloc(3C)

BRIEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Change size of allocated
storage.

The following is another set of memory allocation functions available.

FUNCTION
calloc

free

17-18

REFERENCE
malloc(3X)

malloc(3X)

BRIEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

malloe

Q_w mallopt

mallinfo

l realoc

Pseudorandom Number Generation

malloe(3X)

malloc(3X)

malloc(3X)

malloe(3X)

C LIBRARIES

Allocate storage.

Control allocation
algorithm.

Space usage.

Change size of
allocated storage.

\ The following functions are used to generate pseudorandom numbers.
The functions that end with 48 are a family of interfaces to a

o) FUNCTION
e

drand48

lcong48

|
‘ ' Irand48
mrand48

‘ rand

_1
L

REFERENCE

drand48(3C)

drand48(3C)

drand48(3C)

drand48(3C)

rand(3C)

psendorandom number generator based upon the linear congruent

‘ o glinrithm and 48-hit infeger arithmetic. The rand " and “srand
’ functions provide an interface to a multiplicative congruential
random number generator with period of 232.

BRIEF DESCRIPTION

Random double over
the interval [0 to 1).

Set parameters for
drand48, Irand48,
and mrand48.

Random long over the
interval [0 to 231).

Random long over the
interval [-2°" to 231).

Random integer over the
interval [0 to 32767).

17-19

Chapter 18

Q THE OBJECT AND MATH LIBRARIES

GENERAL

This chapter describes the Object and Math Libraries that are supported on the

UNIX operating system. A library is a collection of related functions and/or
declarations that simplify programming effort. All of the functions described are
also described in section 3, 3M, 3X and 3F of the Software Development
System manual. Most of the declarations described are in section 5. The three

main libraries on the UNIX system are:

C library

Object file

Math library

This is the basic library for C langnage programs. The C
library is composed of functions and declarations used for
file access, string testing and manipulation, character
testing and manipulation, memory allocation, and other
functions. This library is described in the preceding
chapter.

This library provides functions for the access
and manipulation of object files. This library is
described later in this chapter.

This library provides exponential, Dbessel
functions, logarithmie, hyperbolic, and
trigonometric functions. This library is also
described later in this chapter.

18-1

THE OBJECT AND MATH LIBRARIES

THE OBJECT FILE LIBRARY

The object file library provides functions for the access and manipulation of
object files. Some functions locate portions of an object file such as the symbol
table, the file header, sections, and line number entries associated with a
function. Other functions read these types of entries into memory. For a
description of the format of an object file, see "The Common Object File
Format" in the Software Development System manual.

This library consists of several portions. The functions reside in
/usr/lib/libld.a and are located and loaded during the compiling of a
C language program by a command line request. The form of this
reguest is:

cc file -11d

which causes the link editor to search the object file library. The
argument -1ld must appear after all files that reference functions in
libld.aR.

In addition, various header files must be included. This is
accomplished by including the line:

#include <stdio.h>
#include <a.out.h>
#include <ldfen.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

ldaclose ldclose (3X) Close object file being
processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen (3X) Open object file for
reading.

ldclose ldclose (3X) Close object file being
processed.

18-2

ldfhread

ldgetname

1dlinit

ldlitem

THE OBJECT AND MATH LIBRARIES

ldfhread(3X)

ldgetname(3X)

ldlread (3X)

ldlread (3X)

Read file header of
object file being
processed.

Retrieve the name of
an object file symbol
table entry.

Prepare object file for
reading line number
entries via ldlitem.

Read line number entry
from object file after
1dlinit.

@

ldlread

ldlseek

ldnlseek

ldnrseek

ldnshread

ldnsseek

ldlread (3X)

ldlseek (3X)

ldlseek (3X)

ldrseek (3X)

ldshread (3X)

ldsseek (3X)

Read line number entry
from object file.

Seeks to the line number
entries of the object
file being processed.

Seeks to the line number
entries of the object file
being processed given
the name of a section.

Seeks to the relocation
entries of the object file

" being processed given

the name of a section.

Read section header of
the named section of the
object file being
processed.

Seeks to the section of
the object file being
processed given the
name of a section.

18-3

THE OBJECT AND MATH LIBRARIES

ldohseek

ldopen

ldrseek
ldshread
ldsseek

ldtbindex

ldtbread

ldtbseek
sgetl

sputl

18-4

ldohseek (3X)

ldopen(3X)

ldrseek(3X)

ldshread(3X)

ldsseek (3X)

1dtbindex (3X)

ldtbread(3X)

ldtbseek (3X)

sputl(3X)

sputl(3X)

Seeks to the optional
file header of the object
file being processed.

Open object file for
reading.

Seeks to the relocation
entries of the object file
being processed.

Read section header of
an object file being
processed.

Seeks to the section of
the object file being
processed.

Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

Reads a specific
symbol table entry
of the object file
being processed.

Seeks to the symbol
table of the object file
being processed.

Access long integer data
in a machine independant
format.

Translate a long integer
into a machine
independant format.

THE OBJECT AND MATH LIBRARIES

Common Object File Interface Macros (ldfen.h)

The interface between the calling program and the object file access

/ routines is based on the defined type LDFILE which is defined in
the header file ldfen.h (see ldfen(4)). The primary purpose of this
structure is to provide uniform access to both simple object files and
to object files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through the following macros: the type macro returns
the magic number of the file, which is used to distinguish between
archive files and simple object files. The IOPTR macro returns the
file pointer which was opened by ldopen(8X) and is used by the
: input7oaiput finctiomy of the-Crlibrary—The-OFFSET macro-returng— ..
: the file address of the beginning of the object file. This value is
non-zero only if the object file is a member of the archive file. The
HEADER macro accesses the file header structure of the object file.

O Additional macros are provided to access an object file. These macros parallel the
input/output functions in the C library; each macro translates a reference to an
LDFILE structure into a reference to its file descriptor field. The available
macros are described in Idfcn(4).

THE MATH LIBRARY

; The math library consists of functions and a header file. The

i functions are located and loaded during the compiling of a C

‘ language program by a command line request. The form of this
request is:

ce file -1m

which causes the link editor to search the math library. In addition
to the request to load the functions, the header file of the math

O

18-5

THE OBJECT AND MATH LIBRARIES

library should be included in the program being compiled. This is
accomplished by including the line:

#include <math.h>
near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

e Trigonometric functions
o Bessel functions
o Hyperbolic functions

e Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian measure),
sines, cosines, and tangents. All of these values are expressed in
double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION
acos trig(3M) Return arc cosine.
asin trig(3M) Return arc sine.
atan trig(3M) Return are tangent.
atan2 trig(3M) Return arc tangent of

a ratio.
cos trig(3M) Return cosine.

18-6

THE OBJECT AND MATH LIBRARIES

sin trig (3M) Return sine.

tan trig (3M) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second
kinds of several orders for real values. The bessel functions are jO,
j1, jn, y0, y1, and yn. The functions are located in section

bessel(3M).

Hyperbolic Furictions

These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION
cosh sinh (3M) Return hyperbolic cosine.
sinh sinh(3M) Return hyperbolic sine.
tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are
provided to truncate the integer portion of double precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION
ceil floor (3M) Returns the smallest
integer not less than a

given value.

exp exp(3M) Returns the exponential
function of a given value.

18-7

THE OBJECT AND MATH LIBRARIES

fabs floor (3M) Returns the absolute value
of a given value.

floor floor (3M) Returns the largest integer
not greater than a given
value.

fmod floor (3M) Returns the remainder

produced by the division of
two given values.

gamma gamma (3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Return the square root
of the sum of the squares
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.
logl10 exp(3M) Returns the lorarithm base
ten of a given value.
matherr matherr(3M) Error-handling function.
pow exp(3M) Returns the result of a

given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

18-8

)

O

Chapter 19
LEXICAL ANALYZER GENERATOR
(LEX)

GENERAL

The Lex is a program generator that produces a program in a
general purpose language that recognizes regular expressions. It is
designed for lexical processing of character input streams. It accepts
a high-level, problem oriented speclflcatlon for character strlng
matching. The regular expressmns are specified by you (the user) in

source is a table of regular expressions and correspondmg program

fragments. The table is translated to a program that reads an input
stream, copies the input stream to an output stream, and partitions
the input into strings that match the given expressions. As each
such string is recognized, the corresponding program fragment is
executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The program
fragments written by you are executed in the order in which the
corresponding regular expressions occur in the input stream.

The user supplies the additional code beyond expression matching
needed to complete the tasks, possibly including codes written by
other generators. The program that recognizes the expressions is
generated in the general purpose programming language employed
for your program fragments. Thus, a high-level expression language
is provided to write the strmg expressions to be matched while your
freedom to write actions is unimpaired.

The Lex written code is not a complete language, but rather a
generator representing a new language feature which can be added to
different programming languages, called “host languages”. Just as
general purpose languages can produce code to run on different
computer hardware, Lex can write code in different host languages.
The host language is used for the output code generated by Lex and
also for the program fragments added by the user. Compatible run-
time libraries for the different host languages are also provided.
This makes Lex adaptable to different environments and different

19-1

LEX

users. Each application may be directed to the combination of
hardware and host language appropriate to the task, the user’s
background, and the properties of local implementations. At present,
the only supported host language is the C language, although Fortran
(in the form of Ratfor) has been available in the past. The Lex
generator exists on the UNIX operating system, but the codes
generated by Lex may be taken anywhere the appropriate compilers
exist.

The Lex program generator turns the user’s expressions and actions
(called source) into the host general purpose language; the
generated program is named yylex. The yylex program recognizes
expressions in a stream (called input) and performs the specified
actions for each expression as it is detected. See Figure 11-1.

Source—s | Lex |—s yylex

Input — | yylex | — OQutput

Figure 11-1. Overview of Lex

For example, consider a program to delete from the input all blanks
or tabs at the ends of lines.

% %
[\t]+$;

is all that is required. The program contains a %% delimiter to
mark the beginning of the rules. This rule contains a regular
expression that matches one or more instances of the characters

19-2

LEX

blank or tab (written for visibility, in accordance with the C
language convention) and occurs prior to the end of a line. The
brackets indicate the character class made of blank and tab; the +
indicates “one or more ...”; and the $ indicates “end of line,” as in
QED. No action is specified, so the program generated by Lex
yylex() ignores these characters. Everything else is copied. To
change any remaining string of blanks or tabs to a single blank, add
another rule.

% %
[\t]+$;
[\t]+ printf(" ");

The coded instructions (generated for this source) scan for both
rules at onee, observe (at the termination of the string of blanks or

o

®

Q
©

" tabs) whether or not there is a newline character, and then execute

the desired rule action. The first rule matches all strings of blanks
or tabs at the end of lines, and the second rule matches all remaining
strings of blanks or tabs.

The Lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a lexical
level. The Lex generator can also be used with a parser generator to
perform the lexical analysis phase; it is particularly easy to interface
Lex and yace. The Lex program recognizes only regular
expressions; yacc writes parsers that accept a large class of context
free grammars but requires a lower level analyzer to recognize input
tokens. Thus, a combination of Lex and yacec is often appropriate.
When used as a preprocessor for a later parser generator, Lex is
used to partition the input stream; and the parser generator assigns
structure to the resulting pieces. The flow of control in such a case is
shown in Figure 11.2. Additional programs, written by other
generators or by hand, can be added easily to programs written by
Lex. You will realize that the name yylex is what yace expects its
lexical analyzer to be named, so that the use of this name by Lex
simplifies interfacing.

In the program written by Lex, the user’s fragments (representing
the actions to be performed as each regular expression is found) are
gathered as cases of a switch. The automaton interpreter directs the
control flow. Opportunity is provided for the user to insert either

19-3

LEX

lexical grammar
rules rules
Lex Yace
Input —e] yylex yyparse

-~ Parsed input

Figure 11-2. Lex With Yacc

declarations or additional statements in the routine containing the

actions or to add subroutines outside this action routine.

The Lex program generator is not limited to a source that can be
interpreted on the basis of one character look-ahead. For example, if
there are two rules, one looking for “ab” and another for “abedefg”
and the input stream is “abedefh,” Lex recognizes “ab” and leaves
the input pointer just before “cd ..

than the processing of simpler languages.

”. Such backup is more costly

LEX SOURCE

The general format of Lex source is

19-4

LEX

{definitions}

% %

{rules}

% %

{user subroutines}

where the definitions and the user subroutines are often omitted.
The first % % is required to mark the beginning of the rules, but the
second % % is optional. The absolute minimum Lex program is

%o To

_{no definitions, no rules) which trang]ates mto a program that coples
the input to the output unchanged. T

In the outline of Lex programs shown above, the rules represent
your control decisions. They are in a table containing

e A left column with regular expressions

e A right column with actions and program fragments to be
executed when the expressions are recognized.

Thus an individual rule might be
integer printf(" found keyword INT");

to look for the string integer in the input stream and print the
message " found keyword INT" whenever it appears. In this example,
the host procedural language is C, and the C language library
function printf is used to print the string. The end of the expression
is indicated by the first blank or tab character. If the action is
merely a single C language expression, it can just be given on the
right side of the line; if it is compound or takes more than a line, it
should be enclosed in braces. As a more useful example, suppose you
desire to change a number of words from British to American
spelling.

19-5

LEX

The Lex rules such as:

colour printf(" color");
mechanise printf(" mechanize");
petrol printf(" gas");

would be a start. These rules are not sufficient since the word
" petroleum”" would become " gaseum".

LEX REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those in
QED. A regular expression specifies a set of strings to be matched.
It contains text characters (which match the corresponding
characters in the strings being compared) and operator characters
(which specify repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; the regular
expression

integer
matches the string “integer” wherever it appears, and the expression
a57D

looks for the string “a57D".

Operators

The operator characters are
"NITT- 7.4+t ()8/{} % <>

and if they are to be used as text characters, an escape should be
used. The quotation mark operator " indicates that whatever is
contained between a pair of quotes is to be taken as text characters.

19-6

LEX

Thus:
xyz" ++"
matches the string xyz++ when it appears. Note that a part of a

string may be quoted. It is harmless, but unnecessary, to quote an
ordinary text character; the expression

" xyz++"

is equivalent to the one above. Thus, by quoting every
nonalphanumeric character being used as a text character, the user
can avoid remembering the list above of current operator characters
and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by
preceding it with a backslash (\) as in

XYz~

which is another, less readable, equivalent of the above expressions.
Another use of the quoting mechanism is to get a blank into an
expression; normally, as explained above, blanks or tabs end a rule.
Any blank character not contained within [] (see below) must be
quoted. Several normal C language escapes with \ are recognized: \n
is newline, \t is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used; it is not
required to escape tab and backspace. Every character except blank,
tab, newline, and the list of operator characters above is always a
text character.

Character Classes

Classes of characters can be specified using the operator pair []. The
construction [abe] matches a single character which may be “a”, “b”,
or “c”. Within square brackets, most operator meanings are ignored.
Only three characters are special; these are \, —, and ~. The —
character indicates ranges. For example,

[a-20-9<>_]

19-7

LEX

indicates the character class containing all the lowercase letters, the
digits, the angle brackets, and underline. Ranges may be given in
either order. Using - between any pair of characters which are not
both uppercase letters, both lowercase letters, or both digits is
implementation dependent and gets a warning message (e.g., [0-z] in
ASCII is many more characters than is in EBCDIC). If it is desired
to include the character - in a character class, it should be first or

last; thus:
[-+0-9]
matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character
after the left bracket to indicate that the resulting string is
complemented with respect to the computer character set. Thus:

["abe]

[{Pel]

matches all characters except “a”, “b”, or “c”, including all special or
control characters; or

[(a-zA-Z]

is any character that is not a letter. The \ character provides the
usual escapes within character class brackets.

Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except newline. Escaping into octal is
possible although nonportable.

[\40-\176]

19-8

LEX

matches all printable ASCII characters from octal 40 (blank) to octal
176 (tilde).

O
Optional Expressions

The operator ? indicates an optional element of an expression. Thus:

ab?c

matches either “ac” or “abe”.

Repeated Expressions

"Repetitions of classes are indicated by the vperators*-and- +—For——

example,

a*

O

is any number of consecutive “a” characters, including zero; while

a+

is one or more instances of “a”. For example,
| [a-z]+
is all strings of lowercase letters. And
[A-Za-z][A-Za-2z0-9]+

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recoghizing identifiers in

C computer languages.

19-9

LEX

Alternation and Grouping

The operator ! indicates alternation
(ablced)

matches either “ab” or “ed”. Note that parentheses are used for
grouping; although they are not necessary on the outside level,

abled

would have sufficed. Parentheses can be used for more complex
expressions.

(abled+)?(ef)#

matches such strings as “abefef”, “efefef”, “cdef”, or “cddd”; but not
“abe”, “abed”, or “abedef”.

Context Sensitivity

The Lex program recognizes a small amount of surrounding context.
The two simplest operators for this are ~ and $. If the first character
of an expression is ~, the expression is only matched at the beginning
of a line (after a newline character or at the beginning of the input
stream). This never conflicts with the other meaning of ~
(complementation of character classes) since that only applies within
the [] operators. If the very last character is §, the expression is only
matched at the end of a line (when immediately followed by newline).
The latter operator is a special case of the / operator character which
indicates trailing context. The expression

ab/cd
matches the string “ab” but only if followed by “ed”. Thus:

ab$

19-10

LEX

is the same as

ab/\n

Left context is handled in Lex by “start conditions” as explained f
later. If a rule is only to be executed when the Lex automaton ¥
interpreter is in stari condition x, the rule should be prefixed by

<X>

using the angle bracket operator characters. If we considered “being
at the beginning of a line” to be start condition ONE, then the ~

_operator would be equivaient to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers)
or definition expansion (if they enclose a name). For example,

{digit}

looks for a predefined string named “digit” and inserts it at that
point in the expression. The definitions are given in the first part of
the Lex input before the rules. In contrast,

a{1,5)
looks for 1 to 5 occurrences of “a”.

Finally, initial % is special being the separator for Lex source
segments.

19-11

LEX

LEX ACTIONS

When an expression written as above is matched, Lex executes the
corresponding action. This part describes sonmie features of Lex that
aid in writing actions. Note that there is a default action that
consists of copying the input to the output. This is performed on all
strings not otherwise matched. Thus, the Lex user who wishes to
absorb the entire input, without producing any dutput, must provide
rules to match everything. When Lex is being used with yace, this
is the normal situation. One may consider that actions are what is
done instead of copying the input to the output; thus; in general, a
rule that merely copies can be omitted. Also, a character
combination that is omiitted from the rules and that appears as input
is likely to be printed on the output, thus calling atténtion to the gap
in the rules.

One of the simplest things that can be done is to ignore the input.
Specifying a C language null statement, ; as an action causes this
result. A frequent rule is

[\t\n] ;

which causes the three spacing characters (blank; tab, and newline)
to be ignored.

Another easy way to avoid writing actions is the action character !
which indicates that the action for this rule is the action for the next
rule. The previous example could also have been written

"t
n \n" ;

with the same result although in different style. The quotes around
\n and \t are not required.

In more coniplex actions, you may often want to know the actual text
that matched some expression like “[a-z]+”. The Lex program
leaves this text in an external character array. Thus, to print the
name found, a rule like

19-12

LEX

[a-z]+ printf(" %s", yytext);

O prints the string in yytext{]. The C language function printf accepts
a format argument and data to be printed; in this case, the format is
“print string” (% indicating data conversion, and s indicating string %
type), and the data are the characters in yytext/] This places the fiys
matched string on the output. This action is so common that it may
be written as ECHO.

: [a-z]+ ECHO;

is the same as the above. Since the default action is just to print the
: characters found, one might ask why give a rule like this one which
- —=——————merely-specifies- the-default-action. -Such_rules are often required to____
avoid matching some other rule that is not desired. For example, if
there is a rule that matches read, it normally matches the instances
of read contained in bread or readjust. To avoid this, a rule of the
form “[a-z]+" is needed. This is explained further below.

C Sometimes it is more convenient to know the end of what has been

found; hence, Lex also provides a count yyleng of the number of
characters matched. To count both the number of words and the
number of characters in words in the input, write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words
recognized. The last character in the string matched can be accessed

by
yytext[yyleng-1]

Occasionally, a Lex action may decide that a rule has not recognized
the correct span of characters. Two routines are provided to aid with
Q this situation. First, yymore() can be called to indicate that the next
input expression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite the current
entry in yytext. Second, yyless(n) may be called to indicate that not
all the characters matched by the currently successful expression are

19-13

LEX

[{3e }]

wanted right now. The argument “n” indicates the number of
characters in yytext to be retained. Further characters previously
matched are returned to the input. This provides the same sort of
look ahead offered by the / operator but in a different form.

Example:

Consider a language that defines a string as a set of characters
between quotation (") marks and provides that to include a (") in a
string it must be preceded by a \. The regular expression which
matches that is somewhat confusing, so that it might be preferable to
write

\" [w]* {
if (yytextlyyleng-1] =="\\)
yymore();
else
... normal user processing
}

will, when faced with a string such as " abe\" def”, first match the
five characters " abe\; then the call to yymore() will cause the next
part of the string " def to be tacked on the end. Note that the final
quote terminating the string should be picked up in the code labeled
“normal processing”.

The function yyless() might be used to reprocess text in various
circumstances. Consider the C language problem of distinguishing
the ambiguity of “=-a ”. Suppose it is desired to treat this as “=-
a” but also to print a message: a rule might be

=-[a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =- ...

}

which prints a message, returns the letter after the operator to the
input stream, and treats the operator as “=- ”. Alternatively, it
might be desired to treat this as “=-a ”. To do this, just return the

19-14

@

LEX

minus sign as well as the letter to the input.

=-[a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng-2);
.. action for = ...

}

61-0

performs the other interpretation. Note that the expressions for the
two cases might more easily be written

=_/[A-Za-z]

"7 in the first case, and

=/-[A-Za-z]

in the second; no backup is required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity.
The possibility of “=-3", however, makes

=-/[" \t\n]
a still better rule.

In addition to these routines, Lex also permits access to the 1/0
routines it uses. They are as follows:

1. Input() returns the next input character.
2. output(c) writes the character “c” on the output.

3. unput(c) pushes the character “c” back onto the input stream
to be read later by input().

By default, these routines are provided as macro definitions; but the
user can override them and supply private versions. These routines

19-15

LEX

define the relationship between external files and internal characters
and must all be retained or modified consistently. They may be
redefined to cause input or output to be transmitted to or from
strange places including other programs or internal memory. The
character set used must be consistent in all routines and a value of
zero returned by input must mean end of file. The relationship
between unput and input must be retained or the Lex look ahead will
not work. The Lex program does not look ahead at all if it does not
have to, but every rule ending in +, ¥, ?, or § or containing / implies
look ahead. Look ahead is also necessary to match an expression that
is a prefix of another expression. The standard Lex library imposes
a 100-character limit on backup.

Another Lex library routine that you may sometimes want to
redefine is yywrap() which is called whenever Lex reaches an end of
file. If yywrap returns a 1, Lex continues with the normal wrap-up
on end of input. Sometimes, however, it is convenient to arrange for
more input to arrive from a new source. In this case, the user should
provide a yywrap which arranges for new input and returns 0. This
instructs Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables, summaries,
etc., at the end of a program. Note that it is not possible to write a
normal rule that recognizes end of file; the only access to this
condition is through yywrap. In fact, unless a private version of
input() is supplied, a file containing nulls cannot be handled since a
value of 0 returned by input is taken to be end of file.

AMBIGUOUS SOURCE RULES

The Lex program can handle ambiguous specifications. When more
than one expression can match the current input, Lex chooses as
follows:

1. Thelongest match is preferred.

2. Among rules that matched the same number of characters, the
rule given first is preferred.

19-16

LEX

Thus, suppose the rules

integer keyword action ..;
[a-z]+ identifier action ...; o
-

are to be given in that order. If the input is “integers”, it is taken as b
an identifier because

“[a*Z]+”

matches eiglit characters while “integer” matches only seven. If the
input is “integer”, both rules niatch seven characters; and the

“keyword Tule Ts selected because-it was-given first:—Anything-shorter——__

(e.g., “int”) does not match the expression “integer” and so the
identifier interpretation is used.

The principle of preferring the longest niat h makes rules containing
expressions like .* dangerous. For example:

» %7

might appear to be a good way of recognizing a string in single
quotes. However, it is an invitation for the program to read far
ahead looking for a distant single quote. Presented with the input

'first’ quoted stritig here, 'second’ here
the above expression will match
"first’ quoted string here, 'second’
which is probably not what was wanted. A better rule is of the form
T\nl+

whiéh, on the above input, stops after (first’). The consequences of
errors like this are mitigated by the fact that the dot (.) operator

19-17

LEX

does not match newline. Thus_expressions.like.* stop-on-the-current-
line. Do not try to defeat this with expressions like [.\m]+ or
equivalents; the Lex generated program tries to read the entire input
file causing internal buffer overflows.

Note that Lex is normally partitioning the input stream not
searching for all possible matches of each expression. This means
that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both “she” and
“he” in an input text. Some Lex rules to do this might be

she s++;
he h++;

\n H

where the last two rules ignore everything besides “he” and “she”.
Remember that dot (.) does not include newline. Since “she” includes
“he”, Lex normally does not recognize the instances of “he” included
in “she” since once it has passed a “she” those characters are gone.

Sometimes the user desires to override this choice. The action
REJECT means “go do the next alternative”. It causes whatever rule
was second choice after the current rule to be executed. The position
of the input pointer is adjusted accordingly. Suppose you really want
to count the included instances of “he”. Use the following rule to
change the previous example to accomplish the task.

she {s++; REJECT;}
he {h++; REJECT;}
\n !

1)

After counting each expression, it is rejected; whenever appropriate,
the other expression is then counted. In this example, you could note
that “she” includes “he” but not vice versa and omit the REJECT
action on “he”. In other cases, it is not possible to state which input
characters are in both classes.

19-18

LEX

Consider the two rules

a[bel+ {..; REJECT;}
afedl+ {...; REJECT;}

)

i =k

If the input is “ab”, only the first rule matches, and on “ad” only the
second matches. The input string “aceb” matches the first rule for
four characters and then the second rule for three characters. In
contrast, the input “accd” agrees with the second rule for four
characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to

_partition the input stream but t odetect all examples of some items in
the input, and the instances of these items may overlap or include’

each other. Suppose a digram table of the input is desired; normally,
the digrams overlap, that is the word “the” is considered to contain
both “th” and “he”. Assuming a 2-dimensional array named
digramf] to be incremented, the appropriate source is

% %
[a-z])[a-zZ] {digram[yytext[0]][yytext[1]]++; REJECT;}

\n :

where the REJECT is necessary to pick up a letter pair beginning at
every character rather than at every other character.

The action REJECT does not rescan the input; instead it remembers
the results of the previous scan. This means that if a rule with
trailing context is found and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input
stream. This is the only restriction on the user’s ability to
manipulate the not-yet-processed input.

19-19

«©

LEX

LEX SOURCE DEFINITIONS __ .

Recalling the format of the Lex source,

{definitions}

% %

{rules}

% %

{user routines}

So far, only the rules have been described. You need additional
options to define variables for use in the program and for use by
Lex. Variables can go éither in the definitions section or in the rules

section.

Remember Lex is generating the rules into a program. Any source
not intercepted by Lex is copied into the generated program. There

are three classes of such things.

1. Any line not part of a Lex rule or action that begins with a
blank or tab is copied into the Lex generated program. Such
source ihput prior to the first % % delimiter is external to any
function in the code; if it appears immediately after the first
% %, it appears in an appropriate place for declarations in the

function written by Lex which contains the actions.

material must look like program fragments and should precede

the first Lex rule.

Lines that begin with a blank or tab and that contain a
comment are passed through to the generated program: This
can be used to include comments in either the Lex source or
the generated code; the comments should follow the host lan-

guage convention.

2. Anything included between lines containing only %{ and %} is
copied out as above. The delimiters are discarded. This
format Permits entering text like preprocessor statements that
must begin in column 1 or copying lines that do not look like

programs.

19-20

LEX

3. Anything after the third % % delimiter, regardless of formats,
q etc., is copied out after the Lex output.
\

Definitions intended for Lex are given before the first %%
delimiter. Any line in this section not contained between %{ and % } K%
and beginning in column 1 is-assumed to define Lex substitution a

strings. The format of such lines is
name translation

and it causes the string given as a translation to be associated with

the name. The name and translation must be separated by at least
| one blank or tab, and the name must begin with a letter. The
[~ ———————rtranslation -can-then-be-called-out -by-the-{name} syntax-in.a rule._____
i Using {D} for the digits and {E} for an exponent field, for example,
i abbreviate rules to recognize numbers

~ D [0-9]
() E [DEde][-+]?{D}+
e % %
{D}+ printf(" integer");

| {D}+u " {D}*({E})‘? !
{D}* " (D}+({E}? !
' {D}+{E} printf(" real");

Note the first two rules for real numbers; both require a decimal
point and contain an optional exponent field. The first requires at
least one digit before the decimal point, and the second requires at
least one digit after the decimal point. To correctly handle the

not contain a real number, a context-sensitive rule such as:
[0-9]+/" "EQ printf(" integer");
- could be used in addition to the normal rule for integers.

The definitions section may also contain other commands including
the selection of a host language, a character set table, a list of start
conditions, or adjustments to the default size of arrays within Lex

19-21

LEX

itself for larger source programs. These possibilities are discussed
later. e

USAGE

There are two steps in compiling a Lex source program. First, the
Lex source must be turned into a generated program in the host
general purpose language. Then this program must be compiled and
loaded usually with a library of Lex subroutines. The generated
program is on a file named lex.yy.c. The I/0 library is defined in
terms of the C language standard library.

On the UNIX operating system, the library is accessed by the loader
flag ~1l. So an appropriate set of commands is

lex source
cc lex.yy.c -11

The resulting program is placed on the usual file a.out for later
execution. To use Lex with yace, see part "LEX AND YACC"
Although the default Lex I/0 routines use the C language standard
library, the Lex automata themselves do not do so; if private
versions of input, output, and unput are given, the library is avoided.

LEX AND YACC

To use Lex with yace, observe that Lex writes a program named
yylex() (the name required by yace for its analyzer). Normally, the
default main program on the Lex library calls this routine; but if
vace is loaded and its main program is used, yace calls yylex(). In
this case, each Lex rule ends with

return(token);

where the appropriate token value is returned. An easy way to get
access to yace’s names for tokens is to compile the Lex output file
as part of the yace output file by placing the line

19-22

LEX

include " lex.yy.c"

in the last section of yace input. If the grammar is to be named
“good” and the lexical rules are to be named “better”, the UNIX
software command sequence could be

yace good
lex better
cc y.tab.c -ly -1l

The yace library (—ly) should be loaded before the Lex library to
obtain a main program that invokes the yace parser. The
generations of Lex and yace programs can be done in either order.

EXAMPLES

As a problem, consider copying an input file while adding three to
every positive number divisible by seven. A suitable Lex source
program follows:

% %
int k;
[(0-91+ {
k = atoi(yytext);
if (k%7 == 0)
printf(" %d", k+3);
else
printf(" %d" ,k);
}

The rule “[0-9]+” recognizes strings of digits; atoi() converts the
digits to binary and stores the result in “k”. The operator %
(remainder) is used to check whether “k” is divisible by seven; if it is,
“k” is incremented by three as it is written out. It may be objected
that this program alters such input items as “49.63” or “XT7".
Furthermore, it increments the absolute value of all negative
numbers divisible by seven. To avoid this, add a few more rules after

19-23

LEX

the active one, as here:

% %

int k;
-?7[0-9]+ {

k = atoi(yytext),

printf(" %d", k%7 == 0 ? k+3: k);
-710-9.]+ } ECHO;

[A-Za-2][A-Za-20-9]+ ECHO;

Numerical strings containing a dot (.) or preceded by a letter will be
picked up by one of the last two rules and not changed. The “if-else”
has been replaced by a C language conditional expression to save
space; the form “a?b:ec” means “if a then b else ¢”.

For an example of statistics gathering, here is a program that
histograms the lengths of words, where a word is defined as a string
of letters:

int lengs[100];
% %
[a-z]+ lengs[yylengl++;

\n ;
% %
yywrap()
L
int 1;
printf(" Length No. words\n");
for(i=0; i<100; i++)

if (lengs[i] > 0)

printf(" %5d% 10d\n" ,i,lengs[i]);

return(1);

}

This program accumulates the histogram while producing no output.
At the end of the input, it prints the table. The final statement
“return(l);” indicates that Lex is to perform wrap-up. If yywrap
returns zero (false), it implies that further input is available and the
program is to continue reading and processing. Providing a yywrap
(that never returns true) causes an infinite loop.

19-24

LEX

LEFT CONTEXT SENSITIVITY

(' Sometimes it is desirable to have several sets of lexical rules to be

C; applied at different times in the input. For example, a compiler
preprocessor might distinguish preprocessor statements and analyze
them differently from ordinary statements. This requires sensitivity
to prior context, and there are several ways of handling such
problems. The ~ operator, for example, is a prior context &perator
recognizing immediately preceding left context just as $ recognizes
immediately following right context. Adjacent left context could be
extended to produce a facility similar to that for adjacent right
context, but it is unlikely to be as useful since often the relevant left
context appeared some time earlier such as at the beginning of a line.

| This part describes three means of dealing with different

61-0

——————--- - environments:“a--simple-use-of- flags-(when_only_a.few. rules change .

from one environment to another), the use of “start conditions” on
rules, and the possibility of making multiple lexical analyzers all run
| together. In each case, there are rules that recognize the need to
- change the environment in which the following input text is analyzed
[(\, and that set a parameter to reflect the change. This may be a flag

/ explicitly tested by the user’s action code; this is the simplest way of
dealing with the problem since Lex is not involved at all. It may be
more convenient, however, to have Lex remember the flags as initial
conditions on the rules. Any rule may be associated with a start
| condition. It is only recognized when Lex is in that start condition.
' The current start condition may be changed at any time. Finally, if
’ the sets of rules for the different environments are very dissimilar,
clarity may be best achieved by writing several distinct lexical
analyzers and switching from one to another as desired.

Consider the following problem: copy the input to the output,

changing the word " magic" to "first" on every line which began

with the letter " a", changing " magic" to " second" on every line

which began with the letter "b", and changing " magic" to " third"
, on every line which began with the letter "¢". All other words and
. all other lines are left unchanged.

| Q These rules are so simple that the easiest way to do this job is with a
| flag.

19-25

LEX

int flag.

%% _. e e -

“a {flag = 'a’; ECHO;}
“b {flag = 'b’; ECHO;}
"¢ {flag = 'c’; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switeh (flag)

case ‘a’: printf(" first"); break;
case 'b": printf(" second"); break;
case ‘c”: printf(" third"); break;
default: ECHO; break;

}
}

should be adequate.

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions section with a
line reading

% Start namel name?2 ...

where the conditions may be named in any order. The word “Start”
may be abbreviated to “s” or “S”. The conditions may be referenced
at the head of a rule with <> brackets;

<namel>expression

is a rule that is only recognized when Lex is in the start condition
namel. To enter a start condition, execute the action statement

BEGIN namel,;

which changes the start condition to namel. To resume the normal
state

19-26

LEX

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule
may be active in several start conditions.

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator
is always active.

The same example as before can be written as follows:

- %STARTAABBCE- ——— . ———

N
@

O

% %

“a {ECHO; BEGIN AA;}
b {ECHO; BEGIN BB;}
“c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic - printf(" first");
<BB>magic printf(" second");
<CC>magic printf(" third");

where the logic is exactly the same as in the previous method of
handling the problem, but Lex does the work rather than the user’s

code.

CHARACTER SET

The programs generated by Lex handle character I/0 only through
the routines input(), output(), and unput(). Thus, the character
representation provided in these routines is accepted by Lex and
used to return values in yytext(). For internal use, a character is
represented as a small integer which, if the standard library is used,
has a value equal to the integer value of the bit pattern representing
the character on the host computer. Normally, the letter a is
represented in the same form as the character constant ’a’. If this
interpretation is changed by providing I/0 routines that translate the
characters, Lex must be given a translation table that is in the
definitions section and must be bracketed by lines containing only

19-27

61-0

LEX

%T; the translation table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.

SUMMARY OF SOURCE FORMAT

The general form of a Lex source fileis

{definitions}

% %

{rules}

% %

{user subroutines}

The definitions section contains a combination of

)

1. Definitions in the form “name space translation”.
2. Included code in the form “space code®”.

3. Included code in the form:

% {
code
%}

4. Start conditions given in the form:
%S namel name2 ...

5. Character set tables in the form:

19-28

LEX

%T
C \ number space character-string

%T

6. Changes to internal array sizes in the form:

%x nnn

‘o

where “nnn” is a decimal integer representing an array size and “a
selects the parameter as follows:

——m - ——e '}jet,ter-"—'-‘Pal'amEter- . e —— i,

positions

states

tree nodes

transitions

packed character classes
output array size

o "Moo 3-

Lines in the rules section have the form “expression action” where
the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in Lex use the operators shown in Figure 11-3.

O

19-29

LEX

‘OPERATOR-| - - “DESCRIPTION— -

i x i the character "x".

e | an"x" , even if x is an operator.
\X an" x", even if x is an operator.
[xy] the character x or y.

i [x-2] the characters x, y, or z.

| ["x! any character but x.

. any character but newline.

Cx an x at the beginning of a line. :
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.

x? an optional x.

X* 0,1,2, ... instances of x.
| x+ ! 12,3, ... instances of x.

Xy i an x or a y.

(x) anx.

| x/y | an x but only if followed by .
{xx} | the translation of xx from

| the definitions section.
| x{m,n} | m through n occurrences of x.

Figure 11-3. Operators and Descriptions

CAVEATS AND BUGS

There are pathological expressions that produce exponential growth
of the tables when converted to deterministic machines; fortunately,

they are rare.

REJECT does not rescan the input; instead it remembers the results
of the previous scan. This means that if a rule with trailing context is
found and REJECT executed, the user must not have used unput to
. change the characters forthcoming from the input stream. This is
the only restriction on the user’s ability to manipulate the not-yet-

processed input.

19-30

@

(0

Chapter 20

YET ANOTHER (iOMP)ILER-COMPILER
yace

GENERAL

The yace program provides a general tool for imposing structure on
the input to a computer program. The yacc user prepares a
specification of the input process. This includes rules describing the
input structure, code to be invoked when these rules are recognized,
and a low-level routine to do the basic input. The yace program
then generates a function to control the input process. This function,

"called a parser, calls the user-supplied low-level input routine (the

lexical analyzer) to pick up the basic items (called tokens) from the
input stream. These tokens are organized according to the input
structure rules,'called grammar rules. When one of these rules has
been recognized, then user code (supplied for this rule, an action) is
invoked. Actions have the ability to return values and make use of
the values of other actions.

The yace program is written in a portable dialect of the C language,
and the actions and output subroutine are in the C language as well.
Moreover, many of the syntactic conventions of yacec follow the C
language.

The heart of the input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a name. For
example, one grammar rule might be

)

date : month_name day ', year ;

where “date”, “month_name”, “day”, and “year” represent structures
of interest in the input process; presumably, “month name”, ‘day”,
and “year” are defined elsewhere. The comma is enclosed in single
quotes. This implies that the comma is to appear literally in the
input. The colon and semicolon merely serve as punctuation in the

20-1

0
ha
o

YACC

rule and have no significance in controlling the input. With proper
- definitions; the-input- - -——- e e e

July 4, 1776
might be matched by the rule.

An important part of the input process is carried out by the lexical
analyzer. This user routine reads the input stream, recognizes the
lower-level structures, and communicates these tokens to the parser.
For historical reasons, a structure recognized by the lexical analyzer
is called a “terminal symbol”, while the structure recognized by the
parser is called a “nonterminal symbol”. To avoid confusion,
terminal symbols will usually be referred to as “tokens”.

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For example,
the rules

month_name :’J’ 'a’ 'n’ ;
month_name : 'F’ ¢’ 'b’ ;

month_name : ’D’’e’ ¢’ ;

might be used in the above example. The lexical analyzer only needs
to recognize individual letters, and “month name” is a nonterminal
symbol. Such low-level rules tend to waste time and space and may
complicate the specification beyond the ability of yacc to deal with
it. Usually, the lexical analyzer recognizes the month names and
returns an indication that a “month name” is seen. In this case,
“month name” is a “token”.

Literal characters such as a comma must also be passed through the
lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date : month’/’ day’/’ year ;

20-2

YACC

allowing
C 7/ 4/ 1776

as a synonym for

July 4, 1776

on input. In most cases, this new rule could be “slipped in” to a~
working system with minimal effort and little danger of disrupting
existing input.

——____The input_being read may. not_conform _to_the specifications. These__ __.
input errors are detected as early as is theoretically possible with a
left-to-right scan. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad
data can usually be quickly found. Error handling, provided as part
of the input specifications, permits the reentry of bad data or the

C‘ continuation of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-
contradictory, or they may require a more powerful recognition
mechanism than that available to yace. The former cases represent
design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar
rules. While yace cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the
constructions which are difficult for yace to handle are also
frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid yace specifications
for their input revealed errors of conception or design early in the
program development.

The yace program has been extensively used in numerous practical
Q applications, including lint, the Portable C Compiler, and a system
for typesetting mathematics.

20-3

YACC

The remainder of this document descrlbes the following subjects as
they-relate-to-yaee - -~ -~=--- e — -

« Basic process of preparing a yace specification

e Parser operation

e Handling ambiguities

e Handling operator precedences in arithmetic expressions
e Error detection and recovery

e The operating environment and special features of the parsers
yacc produces

Suggestions to improve the style and efficiency of the
specifications

e Advanced topics.

In addition, there are four appendices. Appendix 121 is a brief
example, and Appendix 12.2 is a summary of the yace input syntax.
Appendix 12.3 gives an example using some of the more advanced
features of yace, and Appendix 124 describes mechanisms and
syntax no longer actively supported but provided for historical
continuity with older versions of yace.

BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. The yace
program requires token names to be declared as such. In addition, it
is often desirable to include the lexical analyzer as part of the
specification file. It may be useful to include other programs as well.
Thus, every specification file consists of three sections: the
declarations, (grammar) rules, and programs. The sections are
separated by double percent (% %) marks. (The percent symbol is
generally used in yacc specifications as an escape character.)

20-¢

®

O

YACC

In other words, a full specification file looks like

declarations
% %

rules

%%
programs

when each section is used.

The declaration section may be empty, and if the programs section is
omitted, the second % % mark may also be omitted. The smallest
legal yace specification is

since the other two sections may be omitted.

Blanks, tabs, and newlines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear
wherever a name is legal. They are enclosed in /* ... ¥/, as in C
language.

The rules section is made up of one or more grammar rules. A
grammar rule has the form

A : BODY ;

where “A” represents a nonterminal name, and “BODY” represents a
sequence of zero or more names and literals. The colon and the
semicolon are yace punctuation.

Names may be of arbitrary length and may be made up of letters,
dots, underscores, and noninitial digits. Uppercase and lowercase
letters are distinct. The names used in the body of a grammar rule
may represent tokens or nonterminal symbols.

20-5

YACC

A literal consists of a character enclosed in single quotes (*). Asin C
language, the backslash (\) is an escape character within literals,
and all the C'language escapes are recognized. Thus:

\n’ newline

\r’ return

\” single quote (*)
"\\' backslash (\)
\t’ tab

\b’ backspace

\f” form feed
A\xxx” " xxx" in octal

are understood by yace. For a number of technical reasons, the NUL
character ("\0’ or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the
vertical bar () can be used to avoid rewriting the left-hand side. In
addition, the semicolon at the end of a rule can be dropped before a
vertical bar. Thus the grammar rules

A :BCD ;
A :EF ;
A'G

’

can be given to yace as

A :BCD
{EF
i G

by using the vertical bar. It is not necessary that all grammar rules
with the same left side appear together in the grammar rules section
although it makes the input much more readable and easier to
change.

20-6

(O

YACC

If a nonterminal symbol matches the empty string, this can be
indicated by

empty : ;
which is understood by yace.

Names representing tokens must be declared. This is most simply
done by writing

%token namel name2 ..

in the declarations section. Every name not defined in the
declarations section is assumed to represent a nonterminal symbol.

Every nonterminal _symbol must appear on the left side of at least

one rule.

Of all the nonterminal symbols, the start symbol has particular
importance. The parser is designed to recognize the start symbol.
Thus, this symbol represents the largest, most general structure
described by the grammar rules. By default, the start symbol is
taken to be the left-hand side of the first grammar rule in the rules
section. It is possible and desirable to declare the start symbol
explicitly in the declarations section using the %start keyword

%start symbol
to define the start symbol.

The end of the input to the parser is signaled by a special token,
called the end-marker. If the tokens up to but not including the end-
marker form a structure that matches the start symbol, the parser
function returns to its caller after the end-marker is seen and accepts
the input. If the end-marker is seen in any other context, it is an
error.

It is the job of the user-supplied lexical analyzer to return the end-
marker when appropriate. Usually the end-marker represents some
reasonably obvious I/0 status, such as “end of file” or “end of
record”.

20-7

YACC

ACTIONS

With each granimar “f1lg, the nSer Iray associate achions to be
performed each time the rule is recognized in the input process.
These actions may return values and may obtain the values returned
by previous actions. Moreover, the lexical analyzer can return values
for tokens if desired.

An action is an arbitrary C language statement and as such can do
input and output, call subprograms, and alter external vectors and
variables. An action is specified by one or more statements enclosed
in curly braces ({) and (}). For example:

A : ,(7 B ’))

hello(1, " abe");
!

and

XXX : YYY ZZZ

printf(" a message\n");
flag = 25;
}

are grammar rules with actions.

To facilitate easy communication between the actions and the parser,
the action statements are altered slightly. The dollar sign symbol ($)
is used as a signal to yace in this context.

To return a value, the action normally sets the pseudo-variable $$ to
some value. For example, the action

{$$=1}

does nothing but return the value of one.

20-8

YACC

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudo-variables $1, $2, ..., which
refer to the values returned by the components of the right side of a
rule, reading from left to right. If the rule is

A :BCD ;

then $2 has the value returned by C, and $3 the value returned by D. 3

The rule

expr : (expr ') ;

O

 provides a more concrete example. The value returned by this rule is’

usually the value of the “expr” in parentheses. This can be indicated
by

expr : ’(expr)

$$=292;

By default, the value of a rule is the value of the first element in it
($1). Thus, grammar rules of the form

A : B ;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules.
Sometimes, it is desirable to get control before a rule is fully parsed.
The yace permits an action to be written in the middle of a rule as
well as at the end. This rule is assumed to return a value accessible
through the usual § mechanism by the actions to the right of it. In

20-9

YACC

turn, it may access the values returned by the symbols to its left.
--- Phus;-in-the-rule- - ---- -

A : B

{
3% =1,

}

C

{

x = $2;
y =33

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yace by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered off by recognizing this added rule. The yace
program actually treats the above example as if it had been written

$ACT : /* empty */

=1
;
A : B $SACT C
{
x = §2;
y = $3;
}

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A
data structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse
trees are particularly easy to construct given routines to build and

20-10

YACC

maintain the tree structure desired. For example, suppose there is a
C function node written so that the call

node(L, n1, n2)

p

8

. creates a node with l_ai_:_e_l L and descendants nl ard n2 and returns
1 the index of the newly created node. Then parse tree can be built by
' supplying actions such as

' expr : expr '+ expr

$3 = node('+, 81, $3);
}

in the épe_;é-ifiéa_.ti_on.

The user may define other variables to be used by the actions.
Declarations and definitions can appear in the declarations section
enclosed in the marks %{ and %}. These declarations and
definitions have global scope, so they are known to the action
statements and the lexical analyzer. For example:

@

%{ int variable =0; %)

could be placed in the declarations section making “variable”
accessible to all of the actions. The yaecec parser uses only names
beginning with yy. The user should avoid such names.

In these examples, all the values are integei's. A disc_ussion of values
of other types is found in the part “ADVANCED TOPICS”.

LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The

C', lexical analyzer is an integer-valued function called yylex. The
function returns an integer, the token number, representing the kind
of toketi read. If there is a value associated with that token, it
should be assigned to the external variable yylval,

20-11

YACC

The parser and the lexical analyzer must agree on these token

“Tiamibers in order for comminication between them to fake place.

The numbers may be chosen by yace or the user. In either case, the
#define mechanism of C language is used to allow the lexical
analyzer to return these numbers symbolically. For example, suppose
that the token name DIGIT has been defined in the declarations
section of the yacec specification file. The relevant portion of the
lexical analyzer might look like

yylex()
{

extern int yylval;
int ¢;

;:“= getchar();

switch(¢)

{

case '0”:
case 'l

case 9
yylval = ¢-'0%
return(DIGIT);

}
to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to
the numerical value of the digit. Provided that the lexical analyzer
code is placed in the programs section of the specification file, the
identifier DIGIT is defined as the token number associated with the
token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that
are reserved or significant in C language or the parser. For example,
the use of token names if or while will almost certainly cause severe

20-12

o

YACC

difficulties when the lexical analyzer is compiled. The token name
error is reserved for error handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yace or
the user. In the default situation, the numbers are chosen by yacec.
The default token number for a literal character is the numerical
value of the character in the local character set. Other names arc
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first
appearance of the token name or literal in the declarations section
can be immediately followed by a nonnegative integer. This integer
is taken to be the token number of the name or literal. Names and

-literalsmot defined by this mechanism retain their default-definition---

It is important that all token numbers be distinet.

For historical reasons, the end-marker must have token number 0 or
negative. This token number cannot be redefined by the user. Thus,
all lexical analyzers should be prepared to return 0 or a negative
number as a token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex
program. These lexical analyzers are designed to work in close
harmony with yace parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules. Lex can
be easily used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN) which do not fit
any theoretical framework and whose lexical analyzers must be

crafted by hand.

PARSER OPERATION

The yace program turns the specification file into a C language
program, which parses the input according to the specification given.
The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, however, is
relatively simple and understanding how it works will make
treatment of error recovery and ambiguities much more
comprehensible.

20-13

YACC

a stack. “The parser is also capable of reading and remembermg ‘the
next input token (called the look-ahead token). The current state is
always the one on the top of the stack. The states of the finite state
machine are given small integer labels. Initially, the machine is in
state 0 (the stack contains only state 0) and no look-ahead token has
been read.

The machine has only four actions available—shift, reduce, accept,
and error. A step of the parsor is done as follows:

1. Based on its current state, the parser decides if it needs a
look-ahead token to choose the action to be taken. If it needs
one and does not have one, it calls yylex to obtain the next
token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may
result in states being pushed onto the stack or popped off of
the stack and in the look-ahead token being processed or left
alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead token.
For example, in state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current
state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack) The look-ahead token is
cleared.

The reduce action keeps the stack from growing without bounds.
Reduce actions are appropriate when the parser has seen the right-
hand side of a grammar rule and is prepared to announce that it has
seen an instance of the rule replacing the right-hand side by the
left-hand side. It may be necessary to consult the look-ahead token
to decide whether to reduce or not (usually it is not necessary). In
fact, the default action (represented by a dot) is often a reduce action.

20-14

YACC

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this leads

to some confusion. The action
reduce 18

refers to grammar rule 18, while the action
IF shift 34

refers to state 34.

N Sﬂpposeth.erule- ’ L e et e e ol e e e

A xyz ;

is being reduced. The reduce action depends on the left-hand symbol
(A in this case) and the number of symbols on the right-hand side
(three in this case). To reduce, first pop off the top three states from
the stack. (In general, the number of states popped equals the
number of symbols on the right side of the rule.) In effect, these
states were the ones put on the stack while recognizing x, y, and z
and no longer serve any useful purpose. After popping these states, a
state is uncovered which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the
symbol on the left side of the rule, perform what is in effect a shift
of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing
of the left-hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the look-ahead token
is cleared by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as

A goto20
causing state 20 to be pushed onto the stack and become the current

state.

20-15

YACC

In effect, the reduce action *‘turns_back the clock” _in_the parse -
popping the states off the stack to go back to the state where the
right-hand side of the rule was first seen. The parser then behaves
as if it had seen the left side at that time. If the right-hand side of
the rule is empty, no states are popped off of the stacks. The
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with
the rule is executed before the stack is adjusted. In addition to the
stack holding the states, another stack running in parallel with it
holds the values returned from the lexical analyzer and the actions.
When a shift takes place, the external variable “yylval” is copied onto
the value stack. After the return from the user code, the reduction is
carried out. When the goto action is done, the external variable
“yyval” is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has been seen and that it
matches the specification. This action appears only when the look-
ahead token is the end-marker and indicates that the parser has
successfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing
according to the specification. The input tokens it has seen (together
with the look-ahead token) cannot be followed by anything that
would result in a legal input. The parser reports an error and
attempts to recover the situation and resume parsing. The error
recovery (as opposed to the detection of error) will be discussed later.

Consider:

%token DING DONG DELL
% %
rhyme : sound place

¥

sound : DING DONG

Ed

place : DELL

¥

as a yace specification.

20-16

YACC

When yace is invoked with the —v option, a file called y.output is

state 0

R

statel. .. ___

. produced with a human-readable description of the parser.
Loy youtput file corresponding to the above grammar (with some

statistics stripped off the end) is

$accept : _rhyme $énd

DING shift 3
. error

rhyme goto 1
sound goto 2

$accept : rhyme_?$;n_d'

$end accept
. error

state 2

rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3

sound DING_DONG

DONG shift 6

. error
state 4
rhyme : sound place_ (1)
reduce 1
state 5

The

0Z-0

20-17

YACC

place : DELL_ @) =

reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

where the actions for each state are specified and there is a
description of the parsing rules being processed in each state. The _
character is used to indicate what has been seen and what is yet to
come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the
current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first
token, DING, is read and becomes the look-ahead token. The action
in state 0 on DING is shift 3, state 3 is pushed onto the stack, and
the look-ahead token is cleared. State 3 becomes the current state.
The next token, DONG, is read and becomes the look-ahead token.
The action in state 3 on the token DONG is shift 6, state 6 is pushed
onto the stack, and the look-ahead is cleared. The stack now contains
0, 3, and 6. In state 6, without even consulting the look-ahead, the
parser reduces by

sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack
uncovering state 0. Consulting the description of state 0 (looking for
a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the current
state.

20-18

O

YACC

In state 2, the next token, DELL, must be read. The action is shift 5,

so state 5 is pushed onto the stack, which now has 0, 2 and 5 on it,

and the look-ahead token is cleared. In state 5, the only action is to
reduce by rule 3. This has one symbol on the right-hand side, so one
state, 5, is popped off, and state 2 is uncovered. The goto in state 2

ofi place (the left side of rule 3) is state 4. Now, the stack contains 0,

2, and 4. In state 4, the only action is to reduce by rule'l. "'There are =~
two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing o
the parser to enter state 1. In state 1, the input is read and the end-
marker is obtained indicated by $end in the y.output file. The action
in state 1 (when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG, DING ____
DONG, DING DONG DELL DELL, ete. A few minutes spent with

this and other simple examples is repaid when problems arise in

more complicated contexts.

AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string
that can be structured in two or more different ways. For example,
the grammar rule

expr : expr -’ expr

is a natural way of expressing the fact that one way of forming an
arithmetic expression is to put two other expressions together with a
minus sign between them. Unfortunately, this grammar rule does
not completely specify the way that all complex inputs should be
structured. For example, if the input is

eXpr - expr - expr

20-19

YACC

the rule allows this input to be structured as either

{ expr - expr) - expr
or as
expr - (expr - expr)

(The first is called “left association”, the second “right association”.)

The yace program detects such ambiguities when it is attempting to
build the parser. Given the input

eXpr - expr - expr

consider the problem that confronts the parser. When the parser has
read the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser could
reduce the input by applying this rule. After applying the rule, the
input is reduced to “expr” (the left side of the rule). The parser
would then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative
interpretation.

Alternatively, if the parser sees
expr - expr
it could defer the immediate application of the rule and continue

reading the input until
expr - expr - expr

20-20

O

YACC

is seen. It could then apply the rule to the rightmost three symbols
reducing them to “expr” which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to
take the right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It
has no way of deciding between them. This is called a “shift/reduce

“conflict”. It may also happen that the parser has a choice of two

legal reductions. This is called a “reduce/reduce conflict”. Note that
there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yaece still
produces a parser. It does this by selecting one of the valid steps
wherever it has a choice. A rule describing the choice to make in a
given situation is called a “disambiguating rule”.

The yace program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the
earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts when
there is a choice. Rule 2 gives the user rather crude control over the
behavior of the parser in this situation, but reduce/reduce conflicts
should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because
the grammar rules (while consistent) require a more complex parser
than yaec can construct. The use of actions within rules can also

20-21

YACC

cause conflicts if the action must be done before the parser can be
sure which rule-is being recopnized; T these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect
parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule
2.

In general, whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the grammar
rules so that the same inputs are read but there are no conflicts. For
this reason, most previous Parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this
rewriting is somewhat unnatural and produces slower parsers. Thus,
yacc will prodice parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat : IF ' cond ')y stat
! IF ’C cond ’) stat ELSE stat

¥

which is a fragment from a programming language involving an “if-
then-else” statement. In these rules, “IF” and “ELSE” are tokens,
“corid” is a nonterminal symbol describing conditional (logical)
expressions, and ‘“stat” is a nonterminal symbol deseribing
statements. The first rule will be called the “simple-if” rule and the
second the “if-else” rule.

These two rules form an ambiguous construction since input of the
form

IF (C1)IF (C2) Sl ELSE S2

20-22

YACC

can be structured according to these rules in two ways

(‘\‘ IF (C1)
o IF (C2)
S1
)
ELSE
S2
or
IF (C1)
S1
ELSE
S2
}
Q where the second interpretation is the one given in most

programming languages having this construct. Each “ELSE” is
' associated with the last preceding “un-ELSE’d” IF. In this example,
consider the situation where the parser has seen

IF (C1)IF (C2) S1

and is looking at the “ELSE”. It can immediately reduce by the
simple-if rule to get

! IF (C1) stat
and then read the remaining input

ELSE S2

Q and reduce

IF (C1) stat ELSE S2

20-23

YACC

by the if-else rule. This leads to the first of the above groupings of
-the-imput: -~ -~ - - --— e

On the other hand, the “ELSE” may be shifted, “S2” read, and then
the right-hand portion of

IF (C1) IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second
of the above groupings of the input which is usually desired.

Once again, the parser can do two valid things—there is a
shift/reduce conflict. The application of disambiguating rule 1 tells
the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular
current input symbol, “ELSE”, and particular inputs, such as

IF (C1)IF(C2) 81

have already been seen. In general, there may be many conflicts, and
each one will be associated with an input symbol and a set of
previously read inputs. The previously read inputs are characterized
by the state of the parser.

The conflict messages of yace are best understood by examining the
verbose (—v) option output file. For example, the output
corresponding to the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF { cond } stat_ (18)
stat : IF (cond } stat_ELSE stat

ELSE shift 45
reduce 18

20-24

)

O

YACC

where the first line describes the conflict—giving the state and the
input symbol. The ordinary state description gives the grammar
rules active in the state and the parser actions. Recall that the
underline marks the portion of the grammar rules which has been
seen. Thus in the example, in state 23 the parser has seen input
corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser
can do two possible things. If the input symbol is “ELSE”, it is
possible to shift into state 45. State 45 will have, as part of its
description, the line

stat : IF (cond) stat ELSE_stat

since the “ELSE” will have been shifted in this state. In state 23, the
alternative action [describing a dot (.)] is to be done if the input
symbol is not mentioned explicitly in the actions. In this case, if the
input symbol is not “ELSE”, the parser reduces to

stat : IF ’C cond ’) stat
by grammar rule 18.

Once again, notice that the numbers following “shift” commands
refer to other states, while the numbers following “reduce”
commands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed after those rules which can be reduced. In
most one states, there is reduce action possible in the state and this
is the default command. The user who encounters unexpected
shift/reduce conflicts will probably want to look at the verbose
output to decide whether the default actions are appropriate.

20-25

YACC

PRECEDENCE

There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left
or right associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar rules
of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very
ambiguous grammar with many parsing conflicts. As disambiguating
rules, the user specifies the precedence or binding strength of all the
operators and the associativity of the binary operators. This
information is sufficient to allow yace to resolve the parsing
conflicts in accordance with these rules and construct a parser that
realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with
a yacc keyword: %left, %right, or %nonassoc, followed by a list
of tokens. All of the tokens on the same line are assumed to have the
same precedence level and associativity; the lines are listed in order
of increasing precedence or binding strength. Thus:

% left '+ '
%left * '/

20-26

YACC

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower
O precedence than star and slash, which are also left associative. The
keyword %right is used to describe right associative operators, and
the keyword %nonassoc is used to describe operators, like the

operator .LT. in FORTRAN, that may not associate with themselves.

Thus:

§ 02-O

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with
| the keyword %nonassoc in yacc. As an example of the behavior of
these declarations, the description

%right '='

%left '+ -
%left ¥’ '/
c o=
; expr : expr '=" expr
|| expr '+’ expr
' expr -’ expr

expr ¥ expr
expr '/’ expr
NAME

might be used to structure the input
a=b=c*d - e - f*g
as follows

C a=(b=((c*d)-e) - (f*g)))

20-27

YACC

in order to perform the correct precedence of operators. When this
- mechanism—is-used, umary Gyerafors must, In general, be given a
precedence. Sometimes a unary operator and a binary operator have
the same symbolic representation but different precedences. An
example is unary and binary “—”. Unary minus may be given the
same strength as multiplication, or even higher, while binary minus
has a lower strength than multiplication. The keyword, %pree,
changes the precedence level associated with a particular grammar
rule. The keyword %prec appears immediately after the body of the
grammar rule, before the action or closing semicolon, and is followed
by a token name or literal. It causes the precedence of the grammar
rule to become that of the following token name or literal. For
example, the rules

%left '+ -’

%left '* °/

% %

expr : expr '+’ expr
i expr - expr
{ expr ¥ expr

expr '/’ expr
expr %prec *
NAME

might be used to give unary minus the same precedence as
multiplication.

A token declared by %left, %right, and %nonassoc need not be,
but may be, declared by %token as well.

The precedences and associativities are used by yacc te resolve
parsing conflicts. They give rise to disambiguating rules. Formally,
the rules work as follows:

1. The precedences and associativities are recorded for those
tokens and literals that have them.

20-28

N

YACC

2. A precedence and associativity is associated with each
grammar rule. It is the precedence and associativity of the last
token or literal in the body of the rule. If the %prec
construction is used, it overrides this default. Some grammar
rules may have no precedence and associativity associated with

them.

3. When there is a reduce/reduce conflict or there is a
shift/reduce conflict and either the input symbol or the
grammar rule has no precedence and associativity, then the

two disambiguating rules given at the beginning of the section
are used, and the conflicts are reported.

4. If there is a shift/reduce conflict and both the grammar rule

-~ -and the-input character have precedence and associativity. ..

associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher
precedence. If the precedences are the same, then the
associativity is used; left associative implies reduce, right
associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yaece. This
means that mistakes in the specification of precedences may disguise
errors in the input grammar. It is a good idea to be sparing with
precedences and use them in an essentially “cookbook” fashion until
some experience has been gained. The y.output file is very useful in
deciding whether the parser is actually doing what was intended.

ERROR HANDLING

Error handling is an extremely difficult area, and many of the
problems are semantic ones. When an error is found, for example, it
may be necessary to reclaim parse tree storage, delete or alter symbol
table entries, and, typically, set switches to avoid generating any

further output.

It is seldom acceptable to stop all processing when an error is found.
It is more useful to continue scanning the input to find further

syntax errors.

This leads to the problem of getting the parser
20-29

YACC

“restarted” after an error. A genersl class of algorithms_to.do_this. .
involves discarding a number of tokens from the input string and
attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a
simple, but reasonably general feature. The token name “error” is
reserved for error handling. This name can be used in grammar
rules. In effect, it suggests places where errors are expected and
recovery might take place. The parser pops its stack until it enters a
state where the token “error” is legal. It then behaves as if the token
“error” were the current look-ahead token and performs the action
encountered. The look-ahead token is then reset to the token that
caused the error. If no special error rules have been specified, the
processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after
detecting an error, remains in error state until three tokens have
been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input
token is quietly deleted.

As an example, a rule of the form
stat : error

means that on a syntax error the parser attempts to skip over the
statement in which the error is seen. More precisely, the parser
scans ahead, looking for three tokens that might legally follow a
statement, and start processing at the first of these. If the beginnings
of statements are not sufficiently distinctive, it may make a false
start in the middle of a statement and end up reporting a second
error where there is in fact no error.

Actions may be used with these special error rules. These actions
might attempt to reinitialize tables, reclaim symbol table space, etc.

20-30

)

YACC

Error rules such as the above are very general but difficult to
control. Rules such as

stat : error ’y

are somewhat easier. Here,. when there is an error, the parser
attempts to skip over the statement but does so by skipping to the
next semicolon. All tokens after the error and before the next
semicolon cannot be shifted and are discarded. When the semicolon
is seen, this rule will be reduced and any “cleanup” action associated
with it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permlt a hne to be reentered after an error. The

“following example

input : error \n’

printf(" Reenter last line: ");

}

input

is one way to do this. There is one potential difficulty with this
approach. The parser must correctly process three input tokens
before it admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two tokens, the
parser deletes the offending tokens and gives no message. This is
clearly unacceptable. For this reason, there is a mechanism that can
force the parser to believe that error recovery has been
accomplished. The statement

yyerrok ;

20-31

YACC

in an action resets the parser to its normal mode. The last example
can be rewritten as

input : error ’\n’
{
yyerrok;
printf(" Reenter last line: ");

}

input

35 = $4;
i

which is somewhat better.

As previously mentioned, the token seen immediately after the
“error” symbol is the input token at which the error was discovered.
Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to
resume input. In this case, the previous look-ahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action
after error were to call some sophisticated resynchronization routine
(supplied by the user) that attempted to advance the input to the
beginning of the next valid statement. After this routine is called,
the next token returned by yylex is presumably the first token in a
legal statement. The old illegal token must be discarded and the
error state reset. A rule similar to

stat : error

resynch();
yyerrok ;
yyclearin;

}

could perform this.

20-32

IS

YACC

These mechanisms are admittedly crude but do allow for a simple,
fairly effective recovery of the parser from many errors. Moreover,
the user can get control to deal with the error actions required by
other portions of the program.

THE “yace” ENVIRONMENT

When the user inputs a specification to yaece, the output is a file of C
language programs, called y.tab.c on most systems. (Due to local file
system conventions, the names may differ from installation to
installation.) The function produced by yace is called yyparse(); it is
an integer valued function. When it is called, it in turn repeatedly

_.calls yylex(), the lexical analyzer supplied by the user (see “LEXICAL.. .

ANALYSIS”), to obtain input tokens. Eventually, an error is
detected, yyparse() returns the value 1, and no error recovery is
possible, or the lexical analyzer returns the end-marker token and the
parser accepts. In this case, yyparse() returns the value 0.

The user must provide a certain amount of environment for this
parser in order to obtain a working program. For example, as with
every C language program, a program called main() must be defined
that eventually calls yyparse(). In addition, a routine called yyerror()
prints a message when a syntax error is detected.

These two routines must be supplied in one form or another by the
user. To ease the initial effort of using yaece, a library has been
provided with default versions of main() and yyerror(). The name of
this library is system dependent; on many systems, the library is
accessed by a —ly argument to the loader. The source codes

main()
{

return (yyparse());
}

20-33

YACC

and

include <stdio.h>

yyerror(s)
char *s;
{

}

fprintf(stderr, " %s\n", s);

show the triviality of these default programs. The argument to
yyerror() is a string containing an error message, usually the string
“syntax error”. The average application wants to do better than this.
Ordinarily, the program should keep track of the input line number
and print it along with the message when a syntax error is detected.
The external integer variable yychar contains the look-ahead token
number at the time the error was detected. This may be of some
interest in giving better diagnostics. Since the main() program is
probably supplied by the user (to read arguments, etc.), the yace
library is useful only in small projects or in the earliest stages of
larger ones.

The external integer variable yydebugis normally set to 0. If it is set
to a nonzero value, the parser will output a verbose description of its
actions including a discussion of the input symbols read and what the
parser actions are. Depending on the operating environment, it may
be possible to set this variable by using a debugging system.

HINTS FOR PREPARING SPECIFICATIONS

This part contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more
or less independent.

20-34

YACC

Input Style

N It is difficult to provide rules with substantial actions and still have a
Lo readable specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase
letters- for -nonterminal names. This rule comes under the
heading of “knowing who to blame when things go wrong”.

2. Put grammar rules and actions on separate lines. This allows
either to be changed without an automatic need to change the
other. ' '

3. Put all rules with the same left-hand side together. Put the
left-hand side in only once and let all following rules begin
--—----—- - -with a vertical bar. - - it

4. Put a semicolon only after the last rule with a given left-hand
side and put the semicolon on a separate line. This allows new
rules to be easily added.

: O 5. Indent rule bodies by two tab stops and action bodies by three
. tab stops.

The example in Appendix 12.1 is written following this style, as are
the examples in this section (where space permits). The user must
make up his own mind about these stylistic questions. The central
problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the yace parser encourages so called “left
recursive” grammar rules. Rules of the form

name : name rest_of_rule ;

C

20-35

YACC

match this algorithm. These rules such as

list : item

i list ’) item

r
and

seq : item

i seq item

frequently arise when writing specifications of sequences and lists.
In each of these cases, the first rule will be reduced for the first item
only; and the second rule will be reduced for the second and all
succeeding items.

With right recursive rules, such as

seq : item e

1

! item seq

the parser is a bit bigger; and the items are seen and reduced from
right to left. More seriously, an internal stack in the parser is in
danger of overflowing if a very long sequence is read. Thus, the user
should use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any
meaning, and if so, consider writing the sequence specification as

seq : /*empty*/

| seq item

using an empty rule. Once again, the first rule would always be
reduced exactly once before the first item was read, and then the
second rule would be reduced once for each item read. Permitting
empty sequences often leads to increased generality. However,
conflicts might arise if yace is asked to decide which empty sequence
it has seen when it hasn’t seen enough to know!

20-36

@

YACC

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally but not within quoted
strings, or names might be entered into a symbol table in
declarations but not in expressions.

"One way of handling thi$ situatiofi is to create a global flag thatis’

examined by the lexical analyzer and set by actions. For example,

%
int dflag;

%}
. other declarations ...

% %
prog : decls stats

decls : /* empty */

{
dflag = 1;

{ decls declaration
stats : /* empty */
dflag = 0;

| stats statement

. other rules ...

specifies a program that consists of zero or more declarations
followed by zero or more statements. The flag “dflag” is now 0 when
reading statements and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the
parser before it can tell that the declaration section has ended and
the statements have begun. In many cases, this single token

exception does not affect the lexical scan.

20-37

YACC

This kind of “back-door” approach can be elaborated to a noxious
.degree.-Nevertheless;-it-represents-a-way-of-doing-some-things-that--
are difficult if not impossible to do otherwise.

Reserved Words

Some programming languages permit you to use words like “if”,
which are normally reserved as label or variable names, provided
that such use does not conflict with the legal use of these names in
the programming language. This is extremely hard to do in the
framework of yace. It is difficult to pass information to the lexical
analyzer telling it “this instance of if is a keyword and that instance
is a variable”. The user can make a stab at it using the mechanism
described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved ie., forbidden for use
as variable names. There are powerful styhstlc reasons for
preferring this. ' '

ADVANCED TOPICS

This part discusses a number of advanced features of yace.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action
by use of macros YYACCEPT and YYERROR. The YYACCEPT
macro causes yyparse() to return the value 0; YYERROR causes the
parser to behave as if the current input symbol had been a syntax
error; yyerror() is called, and error recovery takes place. These
mechanisms can be used to simulate parsers with multiple end-
markers or context sensitive syntax checking.

20-38

(0

.\\‘_1_;

YACC

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the
current rule. The mechanism is simply the same as with ordinary
actions, a dollar sign followed by a digit.

sent : adj noun verb adj noun

look at the sentence ...
}
adj : THE

{
$$ = THE;

}
| YOUNG
$$ = YOUNG;

noun : DOG

{
$$ = DOG;

3
?

{ CRONE
if($0 == YOUNG)
printf(" what\n");

}
$$ = CRONE;
}

In this case, the digit may be 0 or negalive. In the action following
the word CRONE, a check is made that the preceding token shifted
was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol “noun” in the input.
There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism prevents a great deal of
trouble especially when a few combinations are to be excluded from
an otherwise regular structure.

20-39

YACC

Support for Arbitrary Value Types

---By-default;-the--values-returned—by-actions—and—the-lexical-analyzer-
are integers. The yacc program can also support values of other
types including structures. In addition, yace keeps track of the types
and inserts appropriate union member names so that the resulting
parser is strictly type checked. The yace value stack is declared to
be a union of the various types of values desired. The user declares
the union and associates union member names to each token and
nonterminal symbol having a value. When the value is referenced
through a $$ or $n construction, yace will automatically insert the
appropriate union name so that no unwanted conversions take place.
In addition, type checking commands such as lint is far more silent.

There are three mechanisms used to provide for this typing. First,
there is a way of defining the union. This must be done by the user
since other programs, notably the lexical analyzer, must know about
the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is
a mechanism for describing the type of those few values where yace
cannot easily determine the type.

To declare the union, the user includes

% union

body of union ...

}

in the declaration section. This declares the yace value stack and
the external variables yyilval and yyval to have type equal to this
union. If yacc was invoked with the —d option, the union
declaration is copied onto the y.tab.h file. Alternatively, the union
may be declared in a header file, and a typedef used to define the

20-40

()

AN

YACC

variable YYSTYPE to represent this union. Thus, the header file
might have said

typedef union
body of union ...
YYSTYPE;

instead. The header file must be included in the declarations section
by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names. The

—.construction..— e e e e

< name >

is used to indicate a union member name. If this follows one of the
keywords %token, %left, %right, and %nonassoc, the union
member name is associated with the tokens listed. Thus, saying

%left <optype> '+ -

causes any reference to values returned by these two tokens to be
tagged with the union member name optype. Another keyword,
%type, is used to associate union member names with nonterminals.
Thus, one might say

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal
symbols “expr” and “stat”.

There remains a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned by
this action has no a priori type. Similarly, reference to left context
values (such as $0) leaves yace with no easy way of knowing the
type. In this case, a type can be imposed on the reference by

20-41

N
ho
o

YACC

inserting a union member name between < and > immediately after
"Lhe first . The example

rule : aaa

{

$<intval>$ = 3,

}
bbb

{
}

3

fun($<intval>2, $<other>0);

shows this usage. This syntax has little to recommend it, but the
situation arises rarely.

A sample specification is given in Appendix 12.3. The facilities in
this subsection are not triggered until they are used. In particular,
the use of %type will turn on these mechanisms. When they are
used, there is a fairly strict level of checking. For example, use of $n
or $$ to refer to something with no defined type is diagnosed. If
these facilities are not triggered, the yace value stack is used to hold
int’s, as was true historically.

APPENDIX 12.1

A Simple Example

This example gives the complete yace applications for a small desk
calculator; the calculator has 26 registers labeled " a" through " z"
and accepts arithmetic expressions made up of the operators +, -,
*/,% (med operator), & (bitwise and), | (bit wise or), and
assignments. If an expression at the top level is an assignment, the
value is printed; otherwise, the expression is printed. As in C
language, an integer that begins with 0 (zero) is assumed to be octal;
otherwise, it is assumed to be decimal.

As an example of a yace specification, the desk calculator does a
reasonable job of showing how precedence and ambiguities are used
and demonstrates simple recovery. The major oversimplificationsare
that the lexical analyzer is much simpler for most applications, and
the output is produced immediately line by line. Note the way that

20-42

o

®

_ %token DIGIT LETTER

YACC

degimal and octal integers are read.in by grammar rules. This job is

probably better done by the lexical analyzer.

% { o
includes<stdio.h>
includes<ctype.h>

int regs[26};
int base;

% }

% start list

% left ¥

% left ‘&’

% left “+* ¢
%left (2 3 t/) 4%:

% left UMINUS /* supplies precedence for unary minus */

% % /* beginiing of rule section */
list : /* empty */

i list stat ‘\n’
| list error ‘\n’

{

yyerrork;

stat : expr
printf(" %dn", $1);
}
} LETTER ‘=’ expr

regs[$1] = $3
}

20-43

YACC

expr : ‘(expr €Y

{

3% = $2;

}
| expr ‘+’ expr
{

$$ =91+ 83
}

expr ‘-’ expr

$$=91-93

~—

| expr ¥ expr

$$ =$1* 83

-~ eAe

| expr ‘/’ expr
$$ = $1/83;
exp ‘%’ expr

$$ =31 % $3

—_—— —— - poSy

expr ‘&’ expr

$B=351&33
| expr T expr
3 =191183
{ ‘’ expr %prec UMINUS

8% =-92

$8 = reg($1);

20-44

! number

r

number : DIGIT
$$ = $1; base-= ($1==0) ? 8 ; 10;
}
! number DIGIT

$$ = bas * $1 + $2
}

% % /* start of program */

yylex() /*lexical analysis routine */
{ /* return LETTER for lowercase letter,
yylval = 0 through 25*/

/* returns DIGIT for digit, yylval = 0 through 9*/
/* all other characters are returned immediately */

int ¢;
/*skip blanks*/
while (c=getchar()) ==°9)

1

/* ¢ is now nonblank */
if(islower(c))

yylval = ¢- ‘a’;
return(LETTER);

}
if(isdigit(¢))
yylval = ¢-0’;

return(DIGIT);

return(¢);

YACC

20-45

YACC

APPENDIX 12.2

YACC Input Syntax

This appendix has a description of the yace input systax as a yace
specification. Contex dependencies, etc. are not considered. Ironically,
the yace input specification language is most naturally specified as
an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule; otherwise, it is a
continuation of the current rule which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead
after seeing an identifier and decides whether the next token
(skipping blanks, hewlines, and comments, etc.) is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS but never as part of C_IDENTIFIERs.

/* grammar for the input to yacc */
/* basic entries */
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal)
followed by a colon */
%token NUMBER /* [0-9]+ */

/* reserved words: %type=> TYPE %left=>LEFT etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /* the %% mark */
%token LCURL /*the % { mark */
%token RCURL /* the % } mark */
/* ASCII character literals stand for themselves */
%token spec

% %

20-46

spec : defs MARK rules tail

| ¥

tail : MARK

i
<

. -..In this-action, -eat up the rest of the.file
t

/* empty: the second MARK is optional */

defs : /* empty */
! | defs def

defs : START IDENTIFIER
! UNION

Copy union definition to output
NG, i LCURL

Copy C code to output file
RCURL

! ndefs rword tag nlist

rword : TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag : /* empty: union tag is optional */
| ‘<’ IDENTIFIER ‘>’

nlist : nmno
{ nlist nmno
| nlist‘’nmno

YACC

20-47

YACC

nmno : IDENTIFIER /*Note: literal illegal with % type */
{ IDENTIFIER NUMBER /* Note: illegal with % type */

/* rule section */

rules : C_IDENTIFIER rbody proc

i rules rule
rule : C_IDENTIFIER rbody prec
1 ‘¥ rbody prec

rbody : /* empty */
| rbody IDENTIFIER
! rbody act

act :

{

Copy action traunslate $$’ etc.

}
‘}’

Bprec : /* empty */

| PREC IDENTIFIER
PREC IDENTIFIER act
prec’y

20-48

)

O

YACC

APPENDIX 12.3

An Advanced Example

This appendix gives an example of a grammar using some of the
advanced features. The desk calculator example in Appendix 121 is
modified to provide a desk calculator that does floating point interval
arithmetic. The calculator understands floating point constants; the
arithmetic operations +, - *, /, unary - "a" through " z". Moreover, it
also understands intervals written

(X,Y)

- “where X is-less than -or-equal to-Y. There are -26 interval -valued. ----

variables " A" through "Z" that may also be used. The usage is
similar to that in Appendix 12.1; assignments returns no value and
prints nothing while expressions print the (floating or interval) value.

This example explores a number of interesting features of yace and
C language. Intervals are represented by a structure consisting of the
left and right endpoint values stored as doubles. This structure is
given a type name, INTERVAL, by using typedef The yace value
stack can also contain floating point scalars and integers (used to
index into the arrays holding the variable values). Notice that the
entire strategy depends strongly on being able to assign structures
and unions in C language. In fact, many of the actions call functions
that return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions—division by an interval containing 0 and an interval
presented in the wrong order. The error recovery mechanism of yace
is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar
also demonstrates an interesting use of syntax to keep track of the
type (for example, scalar or interval) of intermediate expressions.
Note that scalar can be automatically promoted to an interval if the
context demands an interval value. This causes a large number of
conflicts when the grammar is run through yace—18 Shift/Reduce

20-49

YACC

and 26 Reduce/Reduce. The problem can be seen by looking at the
two input lines.

2.5+(3.5-4.)
and
25+ (354)

Notice that the 2.5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read.
By this time, 2.5 is finished, and the parser cannot go back and
change its mind. More generally, it might be necessary to look ahead
an arbitrary number of tokens to decide whether to convert a scalar
to an interval. This problem is evaded by having two rules for each
binary interval valued operator—one when the left operand is a
scalar and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be
applied automatically. Despite this evasion, there are still many cases
where the conversion may be applied or not, leading to the above
conflicts. They are resolved by listing the rules that yield scalars first
in the specification file; in this way, the conflict will be resolved in
the direction of keeping scalar valued expressions scalar valued unti
they are forced to become intervals.

This way of handling multiple types is very instructive but not very
general. If there were many kinds of expression types instead of just
two, the number of rules needed would increase dramatically and the
conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the
value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating point constants. The C language library
routine atof() is used to do the actual conversion from a character
string to a double precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar
provoking a syntax error in the parser and thence error recovery.

% {

#include<stdio.h>
#include<ctype.h>

20-50

@

e

YACC

typedef struct interval

double lo, hi;
} INTERVAL;

INTERVAL .vmul(), vdiv(); . .
double atof();

double dreg[26];
INTERVAL vreg[26 J;

%)

- Pstartline ___

% union
int ival;

double dval;
INTERVAL vval;

}
%token <ival> DREG VREG /*indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */
%type <dval> dexp /* expression */
%type <vval> vexp /* interval expression */
/* precedence information about the operators */
%left ‘4 ¢
%left **
%left UMINUS /* precedence for unary minus */

% %
lines : /* empty */
| lines line

20-51

02-0

YACC

line : dexp ‘\n’

{
}

| vexp ‘\n’

printf(" % 15.8f\n" .$1);

printf(" (%15.8f , %15.8f)0,$1.10,$1.hi);

}
{ DREG ‘= ‘\n'
{

dreg[$1] = $3;

}
{ VREG ‘=’ vexp ‘\n’
{

vreg($1] = $3;
}
{

error ‘\n’

yyerrork;

dexp : CONST
| DREG

{
$$ = dreg[$1]

| dexp ‘+’ dexp
{
$$ =81+ $3

20-52

)

N

Ry

3

{ dexp ‘-’ dexp

{
$$ =1 - 53

| dexp **' dexp

$$ = $1* 53

{ dexp ‘/’ dexp
{

$6=8§1/43

}
i ““dexp %prec UMINUS
{

$$ =-$2
1
t ¢ dexp?y
{

5 = 52
)

vexpp : dexp
{

$8.hi = $$.1o = $1;

}
! ‘¢ dexp’, dexp‘)
{

$$.1o = §2;

$$.hi = $4;
If($$.Jo > $$.hi)
{

YACC

20-53

YACC

printf(" interval out of order n");
YYERROR;

}
! VREG

$$ = vreg[$1]
}

i vexp ‘+’ vexp

{

$$.hi = $1.hi + $3.hi;
$$.Jo = $1.lo + $3.lo

! dexp ‘+’ vexp

{
$$.hi = $1 + $3.hi;
$$.lo = $1 + $3.lo

}

{ vexp ‘=" vexp

{
$$.hi = $1.hi - $3.lo;
$3.1o = $1.lo - $3.hi

i dvep ‘-’ vdep

{
$$.hi = $1 - $3.10;
$$.Jo = $1 - $3.hi

}

i vexp * vexp

{

$$ = vmul($1.10,$.h1,$3)

20-54

O

}
i dexp ¥ vexp
{
$$ = vmul($1, $1, $3)

% %

define BSZ 50 /* buffer size for floating point number */

i vexp '/’ vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.1o, $1.hi, $3)

! dexp ‘/’ vexp

if(dcheck($3)) YYERROR;

3 = vdiv($1.lo, $1.hi, $3)
! ““vexp %prec UMINUS

$$.hi = -$2.10;$$.10 =-$2.hi

}
i ‘Cvexp)
}
3§ =82
)

/* lexical analysis */

yylex()

{

register c;

/* skip over blanks */

YACC

20-5§

YACC

if (isupper(c))

yylvalival = ¢ - ‘A’
return(VREG);

if(islower(c))

yylvalival = ¢ - ‘a’,
return(DREG);
}

/* gobble up digits. points, exponents */
if(idigit(c) ¥ c=="")

{

char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar())
{

*ep =¢;

if(isdigit(c))
continue;

if(e=="

if(dot++ i exp)
return(.’);/* will cause syntax error */
continue;

}
if(¢ == ‘e)
{

if(exp++)
return(‘e’); */will cause syntax error */
continue;

/* end of number */
break;

}
*ep = \0%
if(cp-buff) >= BSZ)

20-56

}

Y

printef(" constant too long truncated\n");

else
ungetc(¢, stdin); /* push back last char read */

yylval.dval = atof(buf);
return(CONST);

return(¢);

INTERVAL
hilo(a, b, ¢, d)

{

double a, b, ¢, d;

. ./* returns the smallest interval containing a, b, ¢, and d */

/* used by *,/ routine */

INTERVAL v;
if(a>b)
.
v.hi = g;
vlo = b;
}
else
v.hi = b;
vlo = a;
}
if(e>d)
if(e>v.hi)
v.hi=g¢;
if(d<v.lo)
v.lo =d;
}
else
if(d>v.hi)
v.hi =d;
if(c<v.lo)
vlo=g¢
1

ACC

20-57

YACC

return(v);

}

INTERVAL vmul(a, b, v)
double a, b;
INTERVAL v;

return(hilo(a*v.hi, a*v,lo, b*v.hi, b*v.lo));

}
dcheck(v)
INTERVAL v;

if(v.hi >=0.&&v.lo <=0.)

printf(" divisor internal contains 0.\n");
return(1);

return(0);

{

INTERVAL vdiv(a, b, v)
double a, b;
INTERVAL v;

return(hilo(a/v.hi, a/v,lo, b/v.hi, b/v.lo));

APPENDIX 12.4

Old Features Supported But Not Encouraged

This appendix mentions synonyms and features that are supported
for historical continuity but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes.
2. Literals may be more that one character long. If all the

characters are alphabetic, numeric, or _, the type number of
the literal is defined just as if the literal did not have the

20-58

Y

VACC

quotes around it. Otherwise, it is difficult to find the value for
such literal.

The use of multicharacter literals is likely to mislead those
unfamiliarwith yace since it suggests that yaece is doing a job
which must be actually done by the lexical analyzer.

Most places where % is legal, backslash " \" may be used. In k%
particular, \\ is the same as % %, \left the same as % left, etc. §:4

There are a number of other synonyms:

% < is the same as %left
%> is the same as %right
. %binary and %2 are the same as %nonassoc
%0 and %term are the same as % token
%= is the same as % prec

Action may also have the form

={..}

and the curly braces can be dropped if the action is a single C
language statement. '

The C language code hetween % { and %} use to be permitted
at the head of the rules section as well as in the declaration
section.

20-59

N

2. System Calls and Error Numbers

TABLE OF CONTENTS OF COMMANDS

intro introductiof to system calls and error numbers
access. determirie accessibility of a file
acct enable or disable process accounting
alarm set a process alanin clock
ek, rhange data segment space allocalon
chdir cliange working directory
clunod. change mode of file
chown change owner and group of a file
chroot changeroot directory
close...... close afile descriptor
creat....... crcate anew file or rewrite an existing oné
dup. duplicate an open file descriptor
exec cxccule a file
exit. termingte process
fentl file control
forkCTeate a new process
getpid get process, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
ioctl.: control device
kill send a sxgnal to a process or a group of processes
link. link to 4 file
o i =iienmemove read/write file pointer
mknod make a directory, or a serial or ordinary file
mount mount a file system
msgctl message control operations
msgget get message queue
msgop. ..Imessage operdtions
nice. change priority of a process
OPBILuruussirestssesese esssssssssssson oo resscs asshsasssssssssos sismaratasess messbsosssssassossoss s e open for reading or writing
pause suspend process until signal
pipe create ari interprocess channel
plock lock process; text, or data in memory
profil execution Mme profile
PITBCC cuuususensesensssassssssssssssiicssssses eresssnssss ; process trace
Tead read from file
semctl semaphore control operations
setnget. get setof semaphores
semop. semaphore operations
setpgrp set process group ID
setuid, .set user and group IDs
shmetl shared meinory control operations
shinget get shared meniory segment
shmop... shared memory operations
signal. specnfy what to dopn receipt of a signal
stat get file status
stime sct time
sync update super-block
time get time
times getprocess and child process Wmes
uadmin administrative control
ulimit get and set user Limits
umask ..setand get file creasion mask
umount urunount a file system
uname get nante of current UNIX system
unlink remove directory entry
ustat.., . get file system statistics
utime, set file access and modification times
wait wait for child process to stop or terminate

f

write

write on a file

C

O

NAME

INTRO(2)

intro - introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

This section describes all of the system calls. Most of these calls have
one or more error returns. An error condition is indicated by an other-
wise impossible returned value. This is almost always -1; the individual
descriptions specify the details. An error number is also made available
in_the external variable errno. Errpo is not cleared on successful calls,
so it should be tested only after an error has been indicated. - ’

Each system call description attempis to list all possible error numbers.
The following is a complete list of the error numbers and their names as
defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

- 2 ENOENT No such fileor directory

This error occurs when a file name is spec1f1ed and the file should
exist but doesn’t, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If execu-
tion is resumed after processing the signal, it will appear as if the
interrupted system call returned this error condition.

5 EIO I/0 error
Some physical I/0 error has occurred. This error may in some
cases occur on a call following the one to which it actually
applies.

6 ENXIO No such device or address
170 on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number [see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec-
tively, write) request is made to a file which is open only for writ-
ing (respectively, reading).

INTRO(2)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

EAGAIN No.more processes)
A fork failed because the system’s process table is full or the user
is not allowed to create any more processes.

ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than
the system is able to supply. This is not a temporary condition;
the maximum space size is a system parameter. The error may
also occur if the arrangement of text, data, and stack segments
requires too many segmentatior registers, or if there is not
enough swap space during a fork.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

EFAULT Bad address . '
THhe system.encountered a hardware fault in attempting to use an
argument of a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, €.g., in mount.

EBUSY Device or resource busy
An attempt was made to mount a device that was already
motunted or an attempt was made to dismount a device on which
there is an active file (open file, current directory, mounted-on
file, active text segment). It will also occur if an attempt is made
to enable accounting when it is already enabled. The device or
resource is currently unavailable.

EEXIST File exists
An existing file was mentioned ih an inappropriate context, e.g.,
link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attemipt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

EISDIR Is a directory
An atternpt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signel, or kill; reading or writ-
ing a file for which lseek has generated a negative pointer). Also
set by the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow
The system file table is full, and temporarily no more opens can
be accepted.

24

25

27

28

29

30

31

32

33

34

35

36

45

INTRO(2)

EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.
When a record loék is being created with fentl, there are too many
files with record locks on them.

ENOTTY Not a character device
An attempt was made to Zoctl(2) a file that is not a special char-
acter device.

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that
is currently open for writing. Also an attempt to open for writing
a pure-procedure-program-that is. being.executed.

EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088

bytes) or ULIMIT; see ulimit(2).

ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on
the device. In fentl, the setting or removing of record locks on a
file cannot be accomplished because there are no more record
entries left on the system.

ESPIPE Illegal seek
An Iseek was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

EDOM Math argument
The argument of a function in the math package (3M) is out of
the domain of the function.

ERANGE Result too large
The value of a function in the math package (8M) is not
representable within machine precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a 1ype that does not
exist on the specified message queue; see msgop(2).

EIDRM Identifier Removed
This error is returned to processes that resume execution due to
the removal of an identifier from the file system’s name space
[see msgctl(2), semctl(2), and shmctl(2)].

EDEADLK Deadlock
A deadlock situation was detected and avoided.

£
“~~" " DEFINITIONS
Proeess ID
Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

INTRO(2)

Parent Process ID
A new process is created by a currently active process; see fork(2). The
parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a
positive integer called the process group ID. This ID is the process ID of
the group leader. This grouping permits the signaling of related
processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is identi-
fied by a positive integer called the tty group ID. This grouping is used to
terminate a group of related processes upon termination of one of the
processes in the group; see extt(2) and signal(2).

Real User ID and Real GroupID
Each user allowed on the system is identified by a positive integer called
a real user ID.

Each user is also a member of a group. The group is identified by a posi-
__tive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group ID, respectively, of the user responsible for the
creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that
are used to determine file access permissions (see below). The effective
user ID and effective group ID are equal to the process’s real user ID and
real group ID respectively, unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set; see
exec(2).

Super-user
A process is recognized as a super-user process and is granted special
privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc0 and procl.

ProcO is the scheduler. Proci is the initialization process (init). Procl is
the ancestor of every other process in the system and is used to control
the process structure.

File Descriptor
A file descriptor is a small integer used to do 170 on a file. The value of a
file descriptor is from 0 to 19. A process may have no more than 20 file
descriptors (0-19) open simultaneously. A file descriptor is returned by
system calls such as open(2), or pipe(2). The file descriptor is used as an
argument by calls such as read(2), write(2), toctl(2), and clese(2).

File Name
Names consisting of 1 to 14 characters may be used to name an ordinary
file, special file, or directory.
These characters may be selected from the set of all character values in
the range of octal values 1 through 0177 excluding the ASCII code of /
(slash).
Note that it is generally unwise to use ¥, ?, [, or] as part of file names
because of the special meaning attached to these characters by the shell.
See sh(1). Although permitted, it is advisable to avoid the use of

-4-

@

INTRO(2)

unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names separated by
slashes, optionally followed by a file name.
More precisely, a path name is a null-terminated character string con-
structed as follows:
<path-name>::=<file-name> | <path-prefix><file-name>\/
<path-prefix>:=<rtprefix>|/<rtprefix>
<rtprefix>::=<dirname>/ | <rtprefix><dirnaine>/

where <file-name> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters (other
than the ASCII slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begms from the current working direc-
tory.

A slash by itself names the root directory.

Unless specifically stated otherw1se, the null path name is treated as 1f lt
named a nonexistent file. - e

Directory
Directory entries are called links. By convention, a directory contains at
least two links, . and .., referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name
searches. The root directory of a process need not be the root directory of
the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the
owner of the file and the appropriate access bit of the “owner”
portion (0700) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file, and the effective group ID of the process
matches the group of the file and the appropriate access bit of the
“group” portion (070) of the file mode is set.

The effective user ID of the process does not match the user ID of
the owner of the file; the effective group ID of the process does
not match the group ID of the file; the appropriate access bit of
the “other” portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by
a msgget(2) system call. Each msqid has a message queue and a data
structure associated with it.

INTRO(2)

The data structure is referred to as msqid_ds and contains the following

members:
struet ipc_perm msg_perm; /+ operation permission struct */
ushort msg_gnum; /* number of msgs on q */
ushort msg_qbytes; /* max number of bytes on q */
ushort msg_lspid; /+ pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrev operation */
time_t msg_stime; /+ last msgsnd time */
time_t msg_rtime; /+ last msgrev time */
time_t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 =/

Msg_perm is an ipc_perm structure that specifies the message opera-
tion permission (see below). This structure includes the following

members:
ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /#* user id */
ushort gid; /* group id */
ushort mode; /#* r/w permission */

Msg_qnum is the number of messages currently on the queue.
Msg_qgbytes is the maximum number of bytes allowed on the queue.
Msg_lspid is the process id of the last process that performed a msgsnd
operation. Msg_lrpid is the process id of the last process that per-
formed a msgrcv operation. Msg_stime is the time of the last msgsnd
operation, msg_rtime is the time of the last msgrcv operation, and
msg_ctime is the time of the last msgctl(2) operation that changed a
member of the above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions, the permission
required for an operation is given as " {token}", where " token" is the
type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.[cluid in
the data structure associated with msqid and the appropriate bit
of the “user” portion (0600) of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.cjuid and the effective group ID of the process
matches msg_perm.[c]gid and the appropriate bit of the “group”
portion (060) of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[/cJuid and the effective group ID of the process does
not match msg_perm.[clgid and the appropriate bit of the
“other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

T
R

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a
semget(2) system call. Each semid has a set of semaphores and a data

structure associated with it.

semid_ds and contains the following members:

ipe_perm sem_perm; /* operation permission struct */
/* number of sems in set */

struct

ushort sem_nsems;
time_t sem_otime;
time_t sem_ctime;

tion permission (see below).

members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* last operation time */

/* last change time */
/* Times measured in secs since */
- /% 00:00:00-GMT,-Jan. 1,-1970 */

Sem_perm is an ipc_perm strpcture that specifies the semaphore ppera-

/* creator user id */
/* creator group id */

/* user id */
/* group id */

/* r/a permission */

INTRO(2)

The data structure is referred to as

This structure includes the following

_.The value of sem_nsems is equal to the number of semaphores in the ;
set. Each semaphore in the set is referenced by a positive integer =

referred to as a sem_num. Sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. Sem_otime is the time of the last
semop(2) operation, and sem_ctime is the time of the last semctl(2)
operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:
/* semaphore value */

ushort
short

ushort
ushort

semval;
sempid,;

semnent;

semzent,;

/* pid of last operation */

/* # awaiting semval > cval */
/* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to the process ID of
the last process that performed a semaphore operation on this semaphore.
Semnent is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become greater than its
current value. Semzent is a count of the number of processes that are
currently suspended awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the permission
required for an operation is given as " {token}", where "‘token" is the
type of permission needed interpreted as follows:

00400
00200

0
0

0060
0006

Read by user
Alter by user
Read, Alter by group

Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.[cjuid in
the data structure associated with semid and the appropriate bit
of the “user” portion (0600) of sem_perm.mode is set.

The

effective

user

ID of the

process

does

not match

sem_perm.[cjuid and the effective group ID of the process

-7

INTRO(2)

matches sem__perm.[c]gid and the appropriate bit of the “group”
portion (060) of sem__perm.mode is set.

The effective user ID of the process does not match
sem_perm|[cluid and the effective group ID of the process does
not match sem_perm.cjgid and the appropriate bit of the
“other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive integer created
by a shmget(2) system call. Each shmid has a segment of memory
(referred to as a shared memory segment) and a data structure associated
with it. The data structure is referred to as shmid_ds and contains the
following members:

struct ipc_perm shm_perm; /* operation permission struct */

int shm_segsz; /* size of segment */

ushort shm_cpid; /* creator pid */

ushort shm_lpid; /* pid of last operation */

short shm_nattch; /+* number of current attaches */
time_t shm_atime; /* last attach time +/

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

/+* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is an ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following
members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* greup id +/

ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment.
Shm_cpid is the process id of the process that created the shared
memory identifier. Shm_lpid is the process id of the last process that
performed a shmop(2) operation. Shm_nattch is the number of
processes that currently have this segment attached. Shm_atime is the
time of the last shmat operation, shm_dtime is the time of the last
shmdt operation, and shm__ctime is the time of the last shmct!(2) opera-
tion that changed one of the members of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmcti(2) system call descriptions, the permission
required for an operation is given as " {token}", where " token" is the
type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm,cjuid in
the data structure associated with shmid and the appropriate bit
of the “user” portion (0600) of shm_perm.mode is set.

-8-

INTRO(2)

The effective user ID of the process does not match
shm_perm,cjuid and the effective group ID of the process
matches shm_: perm.[c]gid and the appropriate bit of the “group”
portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match

! Y shm_perm/|cjuid and the effective group ID of the process does
R not match shm_perm.c]gid and the appropriate bit of the
“other” portion (06) of shm_perm.mode is set.
Otherwise, the corresponding permissions are denied.
Shared Memory Operations in-the-Small-Memory-Model
The shared memory system calls shmget(2), shmop(2), and shmctl(Z) are
not allowed in System V/286 small model programs, since the small
memory model allows only one data segment.
SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).
(s
S
l/_)
AN

This page intentionally left blank.

NAME

ACCESS(2)

access — determine accessibility of a file

SYNOPSIS

int access (path, amode)

char spath;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access checks the named file for
acccssxblllty according to the bit pattern contained in amode, using the real
user 1D in place of the effective user ID and the real’ group ID in place of the
effective group ID. The bit pattern contained in amode is constructed as fol-

lows:
04 read
02 write
01 execute (search)
00 check existence of file
Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
_[ENOENTL___ Read, write, or execute (search) permission is
requested for a null path name. - o T
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the
path prefix.
[EROFS] Write access is requested for a file on a read-only
file system.
[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.
[EACCESS] Permission bits of the file mode do not permit
the requested access.
[EFAULT] Path points outside the allocated address

space for the process.

The owner of a file has permission checked with respect to the *“‘owner™ read,
write, and execute mode bits. Members of the file’s group other than the owner
have permissions checked with respect to the *“‘group™ mode bits, and all others
have permissions checked with respect to the “other” mode bits.

RETURN VALUE

If the requested access is permitted, a value of O is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod (2), stat(2).

()

~—

ALARM(2)

NAME
alarm — set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds specified

by sec have elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.
If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock of
the calling process.

SEE ALSO
pause(2), signal(2).

BRK(2)

NAME

brk, sbrk — change data segment space allocation

SYNOPSIS

int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION

Brk and sbrk are used to change dynamically the amount of space allocated for
the calling process’s data segment(s); see exec(2). The change is made by
resetting the process’s break value and allocating the appropriate amount of
space. The break value is the address of the first data location beyond the end
of allocated data. The amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative, in which case the amount of allocated space
is decreased.

Endds and incr are rounded up to the next multiple of 512 in large and huge
model programs.

Brk and sbrk will fail without making any change in the allocated space if one
or more of the following are true:

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum [see ulimit(2)]. [ENOMEM]

Such a change would result in the segment selector of the break loca-
tion being pgreater than or equal to the segment selector of any
attached shared memory segment [see shmop(2)]. [ENOMEM]

A large model process attempts to brk to an endds that has a segment
selector which is greater than one more than the segment selector of
the old break value. [ENOMEM]

Such a change would result in the break value being in the stack or
text areas of the process. {ENOMEM]

Such a change would result in the break value being placed within an
unallocated area between two currently allocated segments.
[ENOMEM]

The following table summarizes the actions of brk(2), and sbrk(2) in the
different memory models (S = small, L = large, H = huge).

BRK(2)

Dperation Model - Action

sbrké®) 'S Retumns current break value,
LH Returns starting address of NEXT data
segment.
sbrk{+iner) -8 AHocates iner bytes in current segment,
O LH ABHoccates iner bytes in next data segment

{space from o}d break value® 1o end of
ald segment is not allocated),
5,L.H Returns the same valac as sbrk (0},

i shrk{-iner) . 8 Frees iner bytes in current segment. .
LI Frees incr bytes from as many segments
_ as needed.
o S.L.H Returns the same value as shrk €0).
brk(endds) S,.L,H Sets break value to endds and aBocates
{carrent sepment} or frees memory ta that point,
bri{endds) LH Sets break vahee to endds and frees
{previcus segment) memory between old break value and sndds.

Endds must be an allocated location,
Can free multiple segmeénts.

bric{endds) LH Sets break value to endds in next segment..
T T Y (dew segmient) © - L Can allocate up to cne segment; - - —) - -
H Can aBeocate multiple segments.

LH Space from old break value to end of
old segment is not allocated.
* *0jd break value” is the break vaiue previcus to the execution of the current

“ operation.
f } RETURN VALUE
e’ Upon successful completion, brk returns a value of 0 and sbrk returns elther

|. the current break value (small inodel) or the starting address of next data seg-
ment (large and huge models). Otherwise, a value of —1 is returned and errno
is set to indicate the error.

| CAVEATS
| Brk(2) and sbrk(2) are not intended for general use: Malloc(3C) is the
| recommended way to obtain aibitrary amounts of memory.

Processes must iiot assume that the allocated address space is contiguous.
| When large and hugé model processes perform any sbrk with a non-negative
! incr or a brk to a new seginent, the area between the old segment’s break loca-
| tion offset and the end of the old segment (off'set 65535) is not accessible. Any
I reference to this area will cause a segmentation violation.
|

SEE ALSO
exec(2), shmop(2), signal(2), uliinit(2).
"Programming Procedures for UNIX System V/AT" in the Software Development
System manual, Vol. 1.

CHDIR(2)

NAME
chdir — change working directory

SYNOPSIS
int chdir (path)
char spath;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory
to become the current working directory, the starting point for path searches
for path names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIRI] A component of the path name is not a directory.

[ENOENT)] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path
name.

[EFAULT] Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —I
is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

CHMOD(2)

NAME
chmod — change mode of file

SYNOPSIS
int cbmod (path, mode)
char spath;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission
_portion_of the named file’s mode according to the bit pattern contained in
mode.

Access permission bits are interpreted as follows:

04000 Set user 1D on execution.

02000 Set group ID on execution.

01000 Savetext image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.

00070 Read, write, execute (search) by group.
Tems e e 00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save
text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group
ID of the process does not match the group ID of the file, mode bit 02000 (set
group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the
system from abandoning the swap-space image of the program-text portion of
the file when its last user terminates. Thus, when the next user of the file exe-
cutes it, the text need not be read from the file system but can simply be
swapped in, saving time.)

Chmod will fail and the file mode will be unchanged if one or more of the fol-
lowing are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT) The named file does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[EPERM] The effective user ID does not match the owner of the file and
the effective user ID is not super-user.

[EROFS) The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of —I
is returned and errno is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

CHOWN(2)

NAME
chown — change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char epath;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of the
named file are set to the numeric values contained in owner and group respec-
tively.
Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI The named file does not exist.
[EACCES] Search permission is denied on a component of the path
prefix.
[EPERM] The effective user ID does not match the owner of the file and
the effective user ID is not super-user.
[EROFS] The named file resides on a read-only file system. -
[EFAULT! Path points outside the allocated address space of the process. b

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
chown(1) in the Runtime System manua .

O

CHROOT(2)

NAME
chroot — change root directory

SYNOPSIS
int chroot (path)
char =path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named
directory to become the root directory, the starting point for path searches for
path names beginning w1th / The user’s workmg dlrcctory is unaff'ected by the
chroot system call. - e
The effective user 1D of the process must be super-user to change the root
directory.
The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root
directory.
Chroot will fail and the root directory will remain unchanged if one or more of
the following are true:
[ENOTDIR] Any component of the path name is not a directory.

{ENOENT] =~ " "The named diréctory does ot exist: ~~— ~— T
[EPERM] The effective user ID is not super-user.
[EFAULT] Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1

is returned and errno is set to indicate the error.

SEE ALSO
chdir(2).

CLOSE(2)

NAME
close — close a file descriptor
SYNOPSIS
int close (fildes)
int fildes;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe sys-
tem call. Close closes the file descriptor indicated by fildes.
Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

NAME

CREAT(2)

creat — create a new file or rewrite an existing one

SYNOPSIS

int creat (patb, mode)
char epath;
int mode;

DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite an existing file named
by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owrer are

unchanged. Otherwise, the file’s owner ID is set to the efl'ective user ID of the
process, the group ID of the process is set to the eflective group ID of the pro-
cess, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:
All bits set in the process’s file mode creation mask are cleared. See
umask(2).
The *“save text image after execution bit” of the mode is cleared. See
chmod (2).

- Upon successful completion, the file descriptor is returned and the file is open

for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec
system calls. See fentl(2). No process may have more than 20 files open
simultaneously. A new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT) A component of the path prefix does not exist.

[EACCES] Search permission is denied on a component of the path
prefix.

[ENOENT) The path name is null.

[EACCES) The file does not exist and the directory in which the file is to
be created does not permit writing.

[EROFS] The named file resides or would reside on a read-only file sys-
tem.

[ETXTBSY] The file is a pure procedure (shared text) file that is being
executed.

[EACCES) The file exists and write permission is denied.

[EISDIR] The named file is an existing directory.

[EMFILE] Twenty (20) file descriptors are currently open.

{EFAULT) Path points outside the allocated address space of the process.

[ENFILE] The system file table is full.

RETURN VALUE

Upon successful completion, a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of —1 is returned and errno is set to indicate
the error. .

SEE ALSO

chmod(2), close(2), dup(2), fentl(2), lseek(2), open(2), read(2), umask(2),
write(2).

@
[N

DUP(2)

NAME
dup — duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int Gldes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe sys-
tem call. Dup returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See

Sentl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the followiiig are true:
[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] Twenty (20) file descriptors are currently open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of —I1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), close(2), exec(2), fentl(2), open(2), pipe(2).

EXEC(2)

NAME)
execl, execv, execle, execve, execlp, execvp — execute a file
SYNOPSIS
int execl (path, arg0, argl, ..., argn, (char *)0)
O char epath, arg0, *argl, .., *argn;

int execv (path, argy)
char spath, sargyl |;

int execle (path, arg0, argl, .., argn, (char *)0, envp)
char spath, +arg0, +argl, ..., *argn, *envp! |;

int execve (path, argy, envp)

char spath, eargyl |, eenvpl ;

int execlp (file, arg0, argl, ..., argn, (char *)0)
char sfile, #arg0, #argl, ..., argn;

int execvp (file, argv)
char sfile, sargyl [;

DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The
-new process is constructed from an ordinary, executable file called the new pro-
cess file. This file consists of a header [see a.out(4)], one or more text seg-
ments, and one or more data segmients. The data segment may contain an ini-
tialized portion and an uninitialized portion (bss). There can be no return from
a successful exec because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

@

main (argc, argy, envp)

int argc;

char seargy, *senvp;
where arge is the argument count and argv is an array of character pointers to
the arguments themselves. As indicated, argc is conventionally at least one and
the first member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH =" [see
environ(5)]. The environment is supplied by the shell [see sk (1)].

Arg0, argl, ..., argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By conven-
tion, at least argd must be present and point to a string that is the same as
path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention, argv
must have at least one member, and it must point to a string that is the same
as path (or its last component). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings
N constitute the environment for the new process. Envp is terminated by a null
L) pointer. For execl and execv, the C run-time start-off routine places a pointer
to the environment of the calling process in the global cell:
extern char **environ;
and it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcnt!(2). For those file
descriptors that remain open, the file pointer is unchanged.

-1-

EXEC(2)

Signals set to terminate the calling process will be set to terminate the new pro-
cess. Signals set to be ignored by the calling process will be set to be ignored
by the new process. Signals set to be caught by the calling process will be set
to terminate new process; see signal(2).

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec
sets the effective user ID of the new process to the owner ID of the new process
file. Similarly, if the set-group-ID mode bit of the new process file is set, the
effective group ID of the new process is set to the group ID of the new process
file. The real user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process [see shmop(2)].

Profiling is disabled for the new process; see profil(2).
The new process also inherits the following attributes from the calling process:

nice value [see nice(2)]

process 1D

parent process ID

process group ID

semad]j values [see semop (2)]

tty group ID [see exit(2) and signal(2)]

trace flag [see ptrace(2) request 0)]

time left until an alarm clock signal [see alarm(2)]
current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimit (2)]

utime, stime, cutime, and cstime [see times(2)]

Exec will fail and return to the calling process if one or more of the following

are true:

[ENOENT] One or more components of the new process path name of the
file do not exist.

[ENOTDIR] A component of the new process path of the file prefix is not a
directory.

[EACCES] Search permission is denied for a directory listed in the new
process file’s path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execution permission.

[ENOEXEC] The exec is not an execlp or execvp, and the new process file
has the appropriate access permission but an invalid magic
number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that
is currently open for writing by some process.

[ENOMEM] The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

[E2BIG] The number of bytes in the new process’s argument list is
greater than the system-imposed limit of 5120 bytes.

[EFAULT] The new process file is not as long as indicated by the size
values in its header.

[EFAULT] Path, argv, or envp point to an illegal address.

2.

EXEC(2)

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value
will be —1 and errno will be set to indicate the error.

SEE ALSO
alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2),
ulimit(2), umask(2), a.out(4), environ(5).
sh(1) in the Runtime System mamual.

EXIT(2)

NAME

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is exccuting a wait, it is
notified of the calling process’s termination and the low order eight bits
(i.e., bits 0377) of status are made available to it; see wait (2).

If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie process
is a process that only occupies a slot in the process table. It has no
other space allocated eithér in user or kernel space. The process table
slot that it occupies is partially overlaid with time accounting informa-
tion (see <sys/proc.h>) to be used by times.

The parent process ID of all of the calling process’s existing child
processes and zombie processes is set to 1. This means the initializa-
tion process [seée intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value [see semop(2)], that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
[see plock(2)].

An accounting record is written on the accounting file if the system’s
accounting routine is enabled; see accz (2).

If the process ID, tty group ID, and process group ID of the calling pro-
cess are equal, the SIGHUP signal is sent to each process that has a
process group ID equal to that of the calling process.

The C function exiz may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO

acct(2), intro(2), plock(2), semop(2), signal(2), wait(2).

WARNING

See WARNING in signal(2).

O

NAME

FCNTL(2)

fentl - file control

SYNOPSIS

#include <fentl.h>

int fentl (fildes, emd, arg)
int fildes, cmd, arg;

DESCRIPTION

Fentl provides for control over open files. Flildes is an open file descrip-

. tor obtained from a creat, open, dup, fentl, or pipe system call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

F_SETLK

F_SETLKW

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write, or read/write).

" Same file status flags (i.e., both file descriptors shiare

the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) system
calls.

Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0 , the file will
remain open across exec; otherwise, the file will be
closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can be
set; see fentl(5).

Get the first lock which blocks the lock description given
by the variable of type struct flock pointed to by arg.
The information retrieved overwrites the information
passed to fentl in the flock structure. If no lock is found
that would prevent this lock from being created, then
the structure is passed back unchanged except for the
lock type which will be set to F_UNLCK.

Set or clear a file segment lock according to the variable
of type struct flock pointed to by arg [see fentl(5)]. The
c¢md F_SETLK is used to establish read (F_RDLCK) and
write (F_WRLCK) locks, as well as to remove either type
of lock (F_UNLCK). If a read or write lock cannot be set,
Sentl will return immediately with an error value of -1.

This ¢md is the same as F_SETLK, except that if a read
or write lock is blocked by other locks, the process will
sleep until the segment is free to be locked.

FCNTL(2)

A read lock prevents any process from write-locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevents any process from read-locking or write-locking the
protected area. Only one write lock may exist for a given segment of a
file at a given time. The file descriptor on which a write lock is being
placed must have been opened with write access.

The structure flock describes the type (I_type), starting offset (I_whence),
relative offset (I_start), size (I_len), and process id (I_pid) of the segment
of the file to be affected. The process id field is only used with the
F_GETLK c¢md to return the value for a blocking lock. Locks may start
and extend beyond the current end of a file, but may not be negative rela-
tive to the beginning of the file. A lock may be set to always extend to
the end of file by setting 1_len to zero (0). If such a lock also has I_start
set to zero (0), the whole file will be locked. Changing or unlocking a seg-
ment from the middle of a larger locked segment leaves two smaller seg-
ments for either end. Locking a segment that is already locked by the
calling process causes the old lock type to be removed and the new lock
type to take affect. All locks associated with a file for a given process
are removed when a file descriptor for that file is closed by that process
or the process holding that file descriptor terminates. Locks are not
inherited by a child process in a fork(2) system call.

Fentl will fail if one or more of the following are true:

[EBADF) Fildes is not a valid open file descriptor. 4
[EMFILE] Cmd is F_DUPFD and 20 file descriptors are currently ‘\V
open. -
[EINVAL] Cmd is F_DUPFD and arg is negative, greater than or
equal to 20.
[EINVAL) Cmd is F_GETLK, F_SETLK, or F_SETLKW and arg or the
data it points to is not valid.
[EACCESS) Cmd is F_SETLK, the type of lock (l_type) is a read

(F_RDLCK) or write (F_WRLCK) lock, and the segment of
a file to be locked is already write-locked by another pro-
cess, or the type is a write lock and the segment of a file
to be locked is already read- or write-locked by another
process.

[EMFILE) Cmd is F_SETLK or F_SETLKW, the type of lock is a read
or write lock and there are no more file-locking headers
available (too many files have segments locked).

[ENOSPC]) Cmd is F_SETLK or F_SETLKW, the type. of lock is a read
or write lock and there are no more file-locking headers
available (too many files have segments locked) or there
are no more record locks available (too many file seg-
ments locked).

[EDEADLK] Cmd is F_SETLK, when the lock is blocked by some lock
from another process and sleeping (waiting) for that lock
to become free; this causes a deadlock situation.

SEE ALSO
close(2), exec(2), open(2), fentl(5).

RETURN VALUE

FCNTL(2)

Upon successful completion, the value returned depends on cmd as fol-

lows:
F_DUPFD
F_GETFD

F_SETFD
; F_GETFL

e F_SETFL
F_GETLX
F_SETLK

~F_SETLKW .

A new file descriptor.

Value of flag (only the low-order bit is defined).
Value other than -1.

Value of file flags.

Value other than -1.

Value other than -1.

Value other than -1.

-Value other than -1..

Otherw1se, a value of -1 is returned and errno is set to mdlcate the error.

@

FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is
an exact copy of the calling process (parent process). This means the
child process inherits the following attributes from the parent process:

environment

close-on-exec flag [see exec(2)]

signal-handling settings (ie, SIG_DFL, SIG_ING, function
address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value [see nice(2)]

all attached shared memory segments [see shmop(2)]

process group ID)

tty group ID [see extt(2) and signal(2)]

trace flag [see ptrace(2) request 0]

time left until an alarm clock signal [see alarm(2))

current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimi(2)]

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s file descriptors.
Each of the child’s file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

All semadj values are cleared [see semop(2)].

Process locks, text locks and data locks are not inherited by the
child [see plock(2)).

The child process’s utime, stime, cutime, and csttme are set to 0,
the time left until an alarm clock signal is reset to 0.

Fork will fail and no child process will be created if one or more of the
following are true:

[EAGAIN] The system-imposed limit on the total number of
processes under execution would be exceeded.

[EAGAIN) The system-imposed limit on the total number of
processes under execution by a single user would be
exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of O to the child process
and returns the process ID of the child process to the parent process.
Otherwise, a value of -1 is returned to the parent process, no child pro-
cess is created, and errno is set to indicate the error.

O

~

GETPID(2)

NAME
getpid, getpgrp, getppid — get process, process group, and parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETUID(2)

NAME

getuid, geteuid, getgid, getegid — get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.
SEE ALSO
intro(2), setuid(2).

9

O

10CTL(2)

NAME
ioctl — control. device

SYNOPSIS
ioctl (fildes, request, arg)
int fildes, request;
union ioctl_arg {
int iarg; /*integer argument*/
char *cparg; /*character pointer argument*/
} arg;
DESCRIPTION
Joctl performs a variety of functions on character special files (devices). The write-ups of
various devices in Section 7 of the Runtime System manual discuss how foctl applies to

them.
Toctl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

@
(&

[ENOTTY] Fildes is not associated with a character special device.

[EINVAL] Request or arg is not valid. See Section 7 of the
Runtime System manual.

[EINTRI ‘A signal was caught during. the ioct/ system call.

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate

the error.

SEE ALSO
termio(7) in the Runtime System manual.

KILL(2)

NAME
kill — send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal
that is to be sent is specified by sig and is either one from the list given in sig-
nal(2), or 0. If sig is O (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
[see intro(2)] and will be referred to below as procO and proc !, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc/ whose
process group ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding procO and procl whose real user ID is equal to
the effective user ID of the sender.

If pid is —1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and proc!.

If pid is negative but not =1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:
[EINVALI Sigis not a valid signal number.
[EINVALI Sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by
pid.
[EPERM] The user ID of the sending process is not super-user, and its

real or effective user ID does not match the real or effective
user ID of the receiving process.

RETURN VALUE .
Upon successful completion, a value of 0 is returned. Otherwise, a value of —I
is returned and errno is set to indicate the error.

SEE ALSO

getpid(2), setpgrp(2), signal(2).
kill(1) in the Runtime System manual.

| LINK(2)

NAME
link — link to a file

SYNOPSIS
int link (pathl, path2)
/-\‘ char epathl, spath2;
DESCRIPTION
Pathl points to a path name naming an existing file. Parh2 points to a path
name naming the new directory entry to be created. Link creates a new link
(directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are

\

-

true:
[ENOTDIR] A component of either path prefix is not a directory.
: [ENOENT] A component of either path prefix does not exist.
[EACCES) A component of either path prefix denies search permission.
: [ENOENT] The file named by parhl does not exist.
| [EEXIST) The link named by path2 exists.
Lo [EPERM] . The file named by pathl is a directory and the effective user
; ID is not super-user. ' i T
[EXDEV] The link named by path2 and the file named by path! are on
different logical devices (file systems).
[ENOENT] Path2 points to a null path name.
\ [EACCES] The requested link requires writing in a directory with a mode
that denies write permission. :
[EROFS] The requested link requires writing in a directory on a read-
only file system.
[EFAULT] Parh points outside the allocated address space of the process.
[EMLINK] The maximum number of links to a file would be exceeded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1

is returned and errno is set to indicate the error.

SEE ALSO
unlink(2).

LSEEK(2)

NAME
Iseek — move read/write file pointer

SYNOPSIS
long lIseek (fildes, offset, whence)
int fildes;
long offset;
int whence;
DESCRIPTION

Fildes is a file descriptor returned from a creat, open, dup, or fentl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offser bytes.
If whence is 1, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes
from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the
following are true;

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signall

Whence is not 0, 1, or 2.
[EINVAL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

-1-

MKNOD(2)

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)

O char epath;
int mode, dev;
DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following
"~ 0000400 read by owner T i
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

//‘\ The owner ID of the file is set to the effective user ID of the process. The
) group ID of the file is set to the effective group ID of the process.

L
Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process’s file mode creation
mask: all bits set in the process’s file mode creation mask are cleared. See
umask (2). If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block 1/0 device. If
mode does not indicate a block special or character special device, dey is
ignored.
Mknod may be invoked only by the super-user for file types other than FIFO
special.
Mknod will fail and the new file will not be created if one or more of the fol-
lowing are true:
[EPERM] The eftective user 1D of the process is not super-user.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT!] A component of the path prefix does not exist.
[EROFS] The directory in which the file is to be created is located on a

read-only file system.
[EEXISTI] The named file exists.
RN
U [EFAULTI] Path points outside the allocated address space of the process.

MKNOD(2)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(1) in the Runtime System manual.

NAME

MOUNT(2)

mount - mount a file system

SYNOPSIS

int mount (spec, dir, rwflag)
char *spec, *dir;

int rwflag;

DESCRIPTION

Mount requests that a removable file system contained on the block spe-
cial file identified by spec be mounted on the directory identified by dir.
Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the
root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is per-
mitted according to individual file accessibility.

Mount may be invoked only hy the super-user.

Mowunt will fail if one or more of the following are true:

{EPERM]
{ENOENT]
{ENOTDIR]
[ENOTBLK]
[ENXIO]

Q [ENOTDIR]
[EFAULT]
[EBUSY]

[EBUSY]
[EBUSY]
[EROFS]

[ENOSPC]

[EINVAL)]
RETURN VALUE

The effective user ID is not super-user.

"Any of the named filés does not exist.

A component of a path prefix is not a directory.
Spec is not a block special device.

The device associated with spec does not exist.
Dir is not a directory.

Spec or dir points outside the allocated address space of
the process.

Dir is currently mounted on, is someone’s current work-
ing directory, or is otherwise busy.

The device associated with spec is currently mounted.
There are no more mount table entries.

Spec is write-protected and rwflog requests write permis-
sion.

The file system state in the super-block is not FsOKAY
and rwflag requests write permission.

The file system magic is not FsMAGIC.

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO

umount(2), fs(4).

O

MSGCTL(2)

NAME

msgctl - message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

Msgctl provides a variety of message control operations as specified by
cmd. The following ¢mds are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data struc-
ture associated with msqid into the structure pointed to
by buf. The contents of this structure are defined in
intro(2). {READ}

Set the value of the following members of the data struc-
ture associated with msqid to the corresponding value
found in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /+ only low 9 bits »/

msg_gbytes

This ¢md can only be executed by a process that has an
effective user ID equal to either that of super-user or to
the value of msg_perm.uid in the data structure associ-
ated with msqid. Only super-user can raise the value of
msg_qbytes.

Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with it. This ¢md can only be exe-
cuted by a process that has an effective user ID equal to
either that of super-user or to the wvalue of
msg_perm.uid in the data structure associated with
msqid.

Msgctl will fail if one or more of the following are true:

([EINVAL]
[EINVAL]
[EACCES)]

(EPERM]

(EPERM]

[EFAULT]

Msqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation per-
mission is denied to the calling process [see intro(2)].

Cmd is equal to TPC_RMID or IPC_SET. The effective
user ID of the calling process is not equal to that of
super-user and it is not equal to the wvalue of
msg_perm.uid in the data structure associated with
msqid.

Cmd is equal to IPC_SET; an attempt is being made to
increase to the value of msg_qbytes, and the effective
user ID of the calling process is not equal to that of
super-user.

Buf points to an illegal address.

MSGGET(2)

NAME
msgget — get message queue
SYNOPSIS

#include <sys/types.h>
O #include <sys/ipc.h>
#include <sys/msg.h>

.int msgget (key, msgfig)
key_t key;
int msghg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure
[see intro (2)] are created for key if one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with
it, and (msgflg & IPC_CREAT) is “true”.

Upon creatlon, the data structure associated with the new message queue
- identifier-is-initialized as-follows:-

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are
set equal to the eff'ective user ID and eff'ective group ID, respectively, of
the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9

bits of msgfig.
Q Msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set
equal to 0.

Msg_cﬁme is set equal to the current time.
Msg_gbytes is set equal to the system limit.
Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation per-
mission [see intro(2)] as specified by the low-order 9 bits of
msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and (msgflg
& IPC_CREAT) is “false”.
{[ENOSPC] A message queue identifier is to be created but the system-

imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but ((msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL)) is “truc”.

RETURN VALUE

Upon successful completion, a non-negative integer, namely a message queue

identifier, is returned. Otherwise, a value of —1 is returned and errno is set to

indicate the error.

(")
_" sEE ALsO

intro(2), msgctl(2), msgop(2).

MSGOP(2)

NAME
msgop — message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgfig)
int msqid;
struct msghuf emsgp;
int msgsz, msgfig;
int msgrev (msqid, msgp, msgsz, msgtyp, msgfig)
int msqid;
struct msgbuf emsgp;
int msgsz;
long msgtyp;
int msgfig;
DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message
queue identifier specified by msqid. (WRITE) Msgp points to a structure con-
taining the message. This structure is composed of the following members:
long mtype; /+ message type */
char mtextl]; /* message text «/
Mtype is a positive integer that can be used by the receiving process for mes-
sage selection (see msgrcv below). Mtext is any text of length msgsz bytes.
Msgsz can range from O to a system-imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_ghytes [see
intro(2)].
The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the message will not be sent and
the calling process will return immediately.

If (msgflg & TPC_NOWAIT) is “false”, the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists,
in which case the message is sent.

Msgid is removed from the system [see msgcti(2)]. When
this occurs, errno is set equal to EIDRM, and a value of —1 is
returned.

The calling process receives a signal that is to be caught. In
this case the message is not sent and the calling process
resumes execution in the manner prescribed in signal (2).

Msgsnd will fail and no message will be sent if one or more of the following are

true:
[EINVALI] Msqid is not a valid message queue identifier.
[EACCES] Operation permission is denied to the calling process [see

intro(2)].

MSGOP(2)

[EINVAL] Mtype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited above
and (msgflg & IPC_NOWAIT) is “true’’.

[EINVAL] Msgsz is less than zero or greater than the system-imposed
limit.

[EFAULTI Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msgid [see intro (2)].

Msg_qnum is incremented by 1.
Msg _lspid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msgid and places it in the structure pointed to by msgp
{READ]} This structure is composed of the following members:

long mtype; /* message type */
char mtextl]; /* message text */

- -Mtype-is -the-received--message’s- type--as specified by the sending- process.

Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg & MSG_NOERROR) is “true”. The truncated part of the message is
lost and no indication of the truncation is given to the calling process.
Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is
received.
If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgfig specifies the action to be taken if a message of the desired type is not
on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the calling process will return
immediately with a return value of —1 and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is “false”, the calling process will suspend
execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msgid is removed from the system. When this occurs, errno
is set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In
this case a message is not received and the calling process
resumes execution in the manner prescribed in signal(2).

Msgrev will fail and no message will be received if one or more of the following
are true:

[EINVAL] Msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.
[EINVAL] Msgsz is less than 0. -

[E2BIG] Mtext is greater than msgsz and (msgflg & MSG_NOERROR)

is “false™.

2.

MSGOP(2)

[ENOMSGI The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is “true”.
[EFAULT) Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msgid [see intro (2)1.

Msg_qnum is decremented by 1,
Msg_lrpid is set equal to the process ID of the calling process.
Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of —1 is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of —1 is returned and errno is set to
EIDRM.

Upon successful completion, the retusn value is as follows:
Msgsnd returns a value of 0.
Msgrev re;fums a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

e

_ SEE ALSO

NICE(2)

NAME
nice - change priority of a process
SYNOPSIS
int nice (incr)
int incr;
DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A
process’s nice value is a positive number for which a more positive value
results in lower CPU priority.
A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. Requests for values above or below these limits result in
the nice value being set to the corresponding limit.
[EPERM] Nice will fail and not change the nice value if incr is
negative or greater than 40 and the effective user ID of
the calling process is not super-user.

RETURN VALUE

Upon successful completion, nice returns the new nice value minus 20. ff

Otherwise, a value of -1 is returned and errno is set to indicate the error.

exec(2)

nice(1) in the Runtime System manual.

[p%]

OPEN(2)

NAME

open - open for reading or writing

SYNOPSIS

#include <fentlh>
int open (path, oflag [, mode])

char xpath;

int oflag, mode;

DESCRIPTION

Path points to a path name naming a file. Open opens a file descriptor
for the named file and sets the file status flags according to the value of
oflag. Oflag values are constructed by or-ing flags from the following list
(only one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR

O_NDELAY

O_APPEND

O_SYNC

O_CREAT

Open for reading only.

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes. See

read(2) and write(2).

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:
An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading.

If O_NDELAY is clear:
An open for reading-only will block until a process
opens the file for writing. An open for writing-
only will block until a process opens the file for
reading.

When opening a file associated with a communication line:

If O_NDELAY is set:
The open will return without waiting for carrier.

If O_NDELAY is clear:
The open will block until carrier is present.

If set, the file pointer will be set to the end of the file
prior to each write.

When opening a regular file, this flag affects subsequent
writes. If set, each wite(2) will wait for both the file
data and file status to be physically updated.
If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the
process, the group ID of the file is set to the effective
group ID of the process, and the low-order 12 bits of the
file mode are set to the value of mode modified as follows
[see creet(2)]:
All bits set in the file mode creation mask of the
process are cleared. See umask(2).

The “save text image after execution bit” of the
mode is cleared. See chmod(2).

-1-

OPEN(2)

O_TRUNC If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file
exists.
r_\| The file pointer used to mark the current position within the file is set to
NG the beginning of the file.
The new file descriptor is set to remain open across exec system calls.
See fentl(2).

The named file is opened unless one or more of the following. are true:
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT) O_CREAT is not set and the named file does not exist.
[EACCES] A component of the path prefix denies search permission.
[EACCES] Oflag permission is denied for the named file.

[EISDIR) The named file is a directory and oflag is write or
read/write. "

[EROFS]) The named file resides on a read-only file system and PO

; o oflag is write or read/write.

[EMFILE] Twenty (20) file descriptors are currently open.

[ENXIO] The named file is a character special or block special file,
and the device associated with this special file does not
exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is

O being executed, and oflag is write or read/write.

[EFAULT) Path points outside the allocated address space of the
process.

{EEXIST) O_CREAT and O_EXCL are set, and the named file exists.

[ENXIO) O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

[EINTR) A signal was caught during the open system call.

[ENFILE] The system file table is full.

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fentl(2), 1seek(2), read(2), umask(2),
write(2).

PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned from
the signal-catching function [see signal(2)], the calling process resumes
execution from the point of suspension with a return value of -1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

PIPE(2)

NAME . ‘
pipe — create an interprocess channel

SYNOPSIS)
int pipe (fildes)

CE int fildes[2];
- DESCRIPTION

Pipe creatés an 1/0 niechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1]. Fildes[0] is opened for reading and fildes[1] is opened
for writing. _

Up to 5120 bytes of data are buffered by the pipe before the writing process is
blocked. A rcad only file descriptor fildes[0] accesses the data written to
fildes[1] on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file descriptors are currently open.
[ENFILE] The system file table is full.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —I
is returned and errno is set to indicate the error.
SEE ALSO
read(2), write(2).
sh(1) in the Runtime System manual.

PLOCK(2)

NAME
plock — lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>
int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data
segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. Plock also
allows these segments to be unlocked. The eff'ective user ID of the calling pro-
cess must be super-user to use this call. Op specifies the following:

PROCLOCK — lock text and data segments into memory (process

lock)
TXTLOCK — lock text segment into memory (text lock)
DATLOCK — lock data segment into memory (data lock)
UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or more of the
following are true:

[EPERMI The effective user ID of the calling process is not super-user.
[EINVALI Op is equal to PROCLOCK and a process lock, a text lock, or a
data lock already exists on the calling process.

[EINVAL] Op is equal to TXTLOCK and a text lock, or a process lock
already exists on the calling process.

[EINVALI Op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process.

[EINVALI Op is equal to UNLOCK and no type of lock exists on the call-
ing process.

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

NAME

PROFIL(2)

profil — execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
short sbufl;

int bufsiz, scale;

void (*offset) ();

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After

" thi§ call, thé user’s program counter (pc) is examined each clock tick (60th

second); offset is subtracted from it, and the result multiplied by scale. If the
resulting number corresponds to a word inside &uff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: 0177777 (octal) gives a 1-1 mapping of pc’s to words in buf; 077777
(octal) maps each pair of instruction words together. 02(octal) maps all
instructions onto the beginning of &uf (producing a non-interrupting core &)
clock). R

Profiling is turned off' by giving a scale of 0 or 1. It is rendered ineff'ective by
giving a bufsiz of 0. Profiling is turned off when an exec is executed, but
remains on in ¢hild and parént both after a fork.” ‘Profiling will be turned oft"if
an update in buf would cause a memory fault.

RETURN VALUE

Not defined.

SEE ALSO

monitor(3C).
prof(1) in the Runtime System manual,

PTRACE(2)

NAME

ptrace — process trace

SYNOPSIS

int ptrace (request, pid, addr, data);
int request, pid, data;
char *addr;

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging; see sdb(1). The child process behaves normally until it encounters
a signal [see signal(2) for the list), at which time it enters a stopped state and
its parent is notified via waif(2). When the child is in the stopped state, its
parent can examine and modify its “core image” using ptrace. Also, the parent
can cause the child either to terminate or continue, with the possibility of
ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and
is one of the following:

0 This request must be issued by the child process if it is to be
traced by its parent. It turns on the child’s trace flag that stipu-
lates that the child should be left in a stopped state upon receipt
of a signal rather than the state specified by func; see signal(2).
The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue if
the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped state
before these requests are niade.

1,2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and D
space are separated (as on iAPX 286s and PDP-11s), request 1
returns a word from I space, and request 2 returns a word from
D space. If I and D space are not separated (as on the 3B20
computer and VAX-11/780), either request 1 or request 2 may be
used with equal results. The data argument is ignored. These
two requests will fail if addr is not the start address of a word, in
which case a value of —1 is returned to the parent process and
the parent’s errno is set to EIO.

3 With this request, the word at location addr in the child’s USER
area in the system’s address space (see <sys/user.h>) is
returned to the parent process. Addresses in this area range from
0 to 1024 on the PDP-11s and 0 to 2048 on the 3B20 computer,
the iAPX 286 and VAX. The data argument is ignored. This
request will fail if addr is not the start address of a word or is
outside the USER area, in which case a value of —1 is returned to
the parent process and the parent’s errno is set to EIO.

4,5 With these requests, the value given by the data argument is
written into the address space of the child at location addr. If I
and D space are separated (as on the iAPX 286 and PDP-11s),
request 4 writes a word into I space, and request 5 writes a word
into D space. If I and D space are not separated (as on the 3B20
computer and VAX), either request 4 or request 5 may be used
with equal results. Upon successful completion, the value written
into the address space of the child is returned to the parent.

-1-

PTRACE(2)

These two requests will fail if addr is a location in a pure pro-
cedure space and another process is executing in that space, or
addr is not the start address of a word. Upon failure a value of
—1 is returned to the parent process and the parent’s errno is set
to EIO.

6 With this request, a few entries in the child’s USER area can be
written. Data gives the value that is to be written and addr is
the location of the entry. The few entries that can be written
are:

the general registers (i.e., registers 0—11 on the 3B20
computer, registers 0—7 on PDP-11s, all registers except
SS on the iAPX 286 and registers 0—15 on the VAX)

the condition codes of the Processor Status Word on the
3B20 computer

the floating point status register and six floating point
registers on PDP-1 1s

certain bits of the Processor Status Word on PDP-1ls
(i.e, bits 0—4, and 8—11)

.__certain bits of the flags register on the iAPX 286 (i.e,_ bits
0-7, and 10—11)

certain bits of the Processor Status Longword on the
VAX (ie., bits 0—7, 16—20, and 30—31).

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused
the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execu-
tion as if it had incurred that signal, and any other pending sig-
nals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not 0 or a
valid signal number, in which case a value of —1 is returned to
the parent process and the parent’s errno is set to E10.

8 This request causes the child to terminate with the same conse-
quences as exit(2).

9 This request sets the trace bit in the Processor Status Word of
the child (i.e., bit 4 on PDP-1ls, bit 8 on the iAPX 286, and bit
30 on the VAX) and then executes the same steps as listed above
for request 7. The trace bit causes an interrupt upon completion
of one machine instruction. This effectively allows single step-
ping of the child. On the 3B20 computer there is no trace bit and

this request returns an error.
Note: the trace bit remains set after an interrupt on PDP-11s but
is turned off after an interrupt on the iAPX 286, or the VAX.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec(2) calls. If a traced process calls exec, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS)
Ptrace will in general fail if one or more of the following are true:

[EIO] Reguest is an illegal number.

[ESRCH] Pid identifies a child that does not exist or has not executed a
ptrace with request 0,

_2-

PTRACE(2)

CAVEAT
It is not generally possible for a small model process to trace a large or huge
madel process.

SEE ALSO
exec(2), signal(2), wait(2).
sdb(1) in the Runtime System manual.

READ(2)

NAME
read — read from file

SYNOPSIS
int read (fildes, buf, nbyte)
77N int fildes;
NG char +buf;
unsigned nbyte;

! DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe sys-
tem call. -

Read attempts to read nbyte bytes from the file associated with fildes into the
buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
~ = - - - and placed in the buffer; this number may be less than nbyte if the file is asso-
ciated with a communication line [see ioct/(2) and termio(7)], or if the
I number of bytes left in the file is less than nbyte bytes. A value of O is
‘ returned when an end-of -file has been reached.

When attempting to read from an empty pipe (or FIFO):
‘ m If O_NDELAY is set, the read will return a 0.
NG

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently
available:

If O_NDELAY is set, the read will return a 0.
If O NDELAY is clear, the read will block until data becomes avail-

able.
| Read will fail if one or more of the following are true:
{EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT] Buf points outside the allocated address space.
[EINTRI] A signal was caught during the read system call:
RETURN VALUE

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a —1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), open(2), pipe(2).
(—\ termio(7) in the Runtime System manual.
N—r

)

SEMCTL(2)

NAME

semctl — semaphore control operations

SYNOPSIS

#include <sys/types.h>
#tinclude <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)

int semid, cmd;

int semnum;

union semun {
int val;

struct semid_ds *buf;

ushort earray;
} arg;

DESCRIPTION

Semctl provides a variety of semaphore control operations as specified by cmd.
The following cmds are executed with respect to the semaphore specified by

semid and semnum:
GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval [see intro(2)]. (READ}

Set the value of semval to arg.val. {ALTER} When this
cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes
is cleared.

Return the value of sempid. {READ}
Return the value of semncnt. (READ}
Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of

semaphores.
GETALL

SETALL

Place semvals into array pointed to by argarray.
{READ}

Set semvals according to the array pointed to by
arg.array. {ALTER} When this cmd is successfully exe-
cuted, the semad] values corresponding to each specified
semaphore in all processes are cleared.

The following cmds are also available:

IPC_STAT

1PC_SET

Place the current value of each member of the data
structure associated with semid into the structure pointed
to by argbuf. The contents of this structure are defined
in intro(2). {READ}

Set the value of the foliowing members of the data struc-
ture associated with semid to the corresponding value
found in the structure pointed to by arg.buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode /+ only low 9 bits ¢/

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to
the value of sem_perm.uid in the data structure associ-
ated with semid.

G

IPC_RMID

SEMCTL(2)

Remove the semaphore identifier specified by semid from
the system and destroy the set of semaphores and data
structure associated with it. This cmd can only be exe-
cuted by a process that has an effective user 1D equal to
either that of super-user or to the value of sem_perm.uid
in the data structure associated with semid.

Semct! will fail if one or more of the following are true:

[EINVALI]
[EINVAL}
[EINVALI]
[EACCES]

[ERANGE]

[EPERM]

[EFAULT]
RETURN VALUE

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than sem_nsems.
Cmd is not a valid command.

Operation permission is denied to the calling process
[se¢ intro(2)1.

Cmd is SETVAL or SETALL and the value to which
semval is to be set is greater than the system imposed
maximum.

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal to

__.that of super-user and it is not equal to the \(aluc pf_‘
sem_perm.uid in the data structure associated with ~

semid.
Arg.bufpoints to an illegal address.

Upon successful completion, the value returned depends on cmd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt. .
A value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO

intro(2), semget(2), semop(2).

SEMGET(2)

NAME
semget — get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semfig;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new semaphore identifier
is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9
bits of semfig.
Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the current
time.

Semget will fail if one or more of the following are true:
[EINVAL] Nsems is either less than or equal to zero or greater than the
system-imposed limit.

[EACCES] A semaphore identifier exists for key, but operation permis-
sion [see intro(2)] as specified by the low-order 9 bits of
semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems and
nsems is not equal to zero.

{[ENOENTI A semaphore identifier does not exist for key and (semflg &
IPC_CREAT) is “false”.
[ENOSPC] A semaphore identifier is to be created but the system-

imposed limit on the maximum number of allowed semaphore
identifiers system wide would be exceeded.

[ENOSPC] A semaphore identifier is to be created but the system-
imposed limit on the maximum number of allowed semaphores
system wide would be exceeded.

[EEXIST] A semaphore identifier exists for key but ((semfls &
IPC_CREAT) and (semflg & IPC_EXCL)) is “true’.

SEMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

(") SEE ALSO

N intro(2), semctl(2), semop(2).

SEMOP(2)

NAME

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)

int semid;

struct sembuf **sops;

int nsops;
DESCRIPTION

Semop is used to automatically perform an array of semaphore operations on
the set of semaphores associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-operation structures.
Nsops is the number of such structures in the array. The contents of each
structure includes the following members:

short
short
short

sem_num; /# seriiaphore number ¢/
sem_op; /+ semaphore operation */
sem_flg; /+ operation flags ¢/

Each semaphore operation specified by sem_op is performed on the correspond-
ing semaphore spécified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval [see intro(2)] is greater than or equal to the abso-
lute value of sem_op, the absolute value of sem_op is sub-
tracted from semval. Also, if (sem_flg & SEM_UNDO) is
“true”, the absolute value of sem_op is added to the calling
pracess’s semadj value [see exit(2)] for the specified sema-
phore.

If semval is less than the absolute value of sem_op and
(sem_flg & IPC_NOWAIT) is “true”, semop will return
immediately.

If semval is less than the absolute value of sem_op and
(sem_flg & IPC_NOWAIT) is “false”, semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol-
lowing conditions occur.

Semval becomes greater than or equal to the absolute value
of sem_op. When this occurs, the value of semncnt associ-
ated with the specified semaphore is decremented, the abso-
lute value of sem_op is subtracted from semval and, if
(sem flg & SEM_UNDQ) is “true”, the absolute value of
sem_op is added to the calling process’s semadj value for the
specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system [see semctl(2)]. When this occurs,
errno is set equal to EIDRM, and a value of —1 is returned.

SEMOP(2)

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with the
specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval

v and, if (sem_flg & SEM_UNDO) is “true”, the value of sem_op is sub-
tracted from the calling process’s semadj value for the specified sema-
phore. [ALTER}

If sem_op is zero, one of the following will occur: {READ)

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_flg & 1PC_NOWAIT)
is “true”, semop will return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT)
is “false”, semop will increment the semzcnt associated with
the specified semaphore and suspend execution of the calling
process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

" “The semid for which the calling process is awaiting action is ™
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught.

When this occurs, the value of semzcnt associated with the

‘ specified semaphore is decremented, and the calling process
C' resumes execution in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of the sema-
phore operations specified by sops:

[EINVAL] Semid is not a valid semaphore identifier.
[EFBIG] Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.
[E2BIG] Nsops is greater than the system-imposed maximum.
[EACCES] Operation permission is denied to the calling process [see
intro(2)).
[EAGAIN] The operation would result in suspension of the calling process
but (sem_flg & IPC_NOWAIT) is “true”.
[ENOSPC] The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.
[EINVAL] The number of individual semaphores for which the calling
process requests a SEM_UNDO would cxceed the limit.
[ERANGE] An operation would cause a semval to overflow the system-
i imposed limit.
. [ERANGE] An operation would cause a semadj value to overflow the
| O system-imposed limit.
[EFAULT] Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set equal to the process ID of the calling pro-
cess.

SEMOP(2)

RETURN VALUE

If semop returns due to the receipt of a signal, a value of —1 is returned to the
calling process and errno is set to EINTR. If it returns due to the removal of a
semid from the system, a value of —1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the call for the
last operation in the array pointed to by sops is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

O

SETPGRP(2)

NAME

setpgrp — set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp sets the process group ID of the calling process to the process ID of the
calling process and returns the new process group 1D.

RETURN VALUE
- - Setpgrp .returns the_value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill (2), signal(2).

SETUID(2)

NAME

setuid, setgid — set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;
int setgid (gid)
int gid;

DESCRIPTION

Setuid (setgid) is used to set the real user (group) [D and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real uscr (group)
ID and effective user (group) ID are set to uid (gid).

[f the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid), the effective user (group) ID is set to uid
(gid).

If the effective user ID of the calling process is not super-user, but the saved
set-user (group) ID from exec(2) is equal to wid (gid), the effective user
(group) ID is set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling process is not
equal to uid (gid) and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINVALI]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO

getuid(2), intro(2).

SHMCTL(2)

; NAME
‘ . shmctl — shared memory control operations

! SYNOPSIS
! #include <sys/types.h>

#include <sys/ipc.h>
p #include <sys/shm.h>
int shmetl (shmid, cmd, buf)

int shmid, cmd;
struct shmid_ds ebuf;

‘ DESCRIPTION
I Shmct! provides a variety of shared memory control operations as spccxﬁcd by
! cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data
structure associated with shmid into the structure
pointed to by buf. The contents of this structure are g
defined in intro (2). (READ) R

IPC_SET Set the value of the following members of the data struc-
ture associated with shmid to the corresponding value
found in the structure pomted to by buf

““shin_perm.uid~ -
shm_perm.gid
shm_perm.mode /+ only low 9 bits «/

This cmd can only be executed by a process that has an

effective user ID equal to either that of super-user or to

‘ the value of shm_perm.uid in the data structure associ-
C" ated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment

g and data structure associated with it. This cmd can only
|' be executed by a process that has an effective user 1D
| equal to either that of super-user or to the value of
shm_perm.uid in the data structure associated with

shmid.

Shmctl will fail if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EINVAL] Cmd is not a valid command.

[EACCES] Cmd is equal to IPC_STAT and (READ} operation
permission is denied to the calling process [see
intro(2)).

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the

effective user ID of the calling process is not equal to
that of super-user and it is not equal to the value of
shm_perm.uid in the data structure associated with
shmid.

[EFAULT] Buf points to an illegal address.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of —1

is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmget(2), shmop(2).

T

SHMGET(2)

NAME
shmget — get shared memory segment

SYNOPSIS
#include <sys/types.b>
#include <sys/ipc.b>
#include <sys/sbm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;
DESCRIPTION
Shmget returns the shared memory identifier associated with kejy.

A shared memory identifier and associated data structure and shared memory
segment of size size bytes [see intro(2)] are created for key if one of the fol-
lowing are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is “true”.
Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

Sbm_perm.cuid, shm_perm.uid, sbm_perm.cgid, and shm_perm.gid are
set equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9
bits of shmflg. Shm_segsz is set equal to the value of size.

Shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.
Shm_ctime is set equal to the current time.
Shmget will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed minimum or greater than
the system-imposed maximum.

[EACCES] A shared memory identifier exists for key but operation per-
mission [see intro(2)] as specified by the low-order 9 bits of
shmfg would not be granted.

[EINVAL] A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not
equal to zero.

[ENOENT) A shared memory identifier does not exist for key and (shmflg
& IPC_CREAT) is “false”.
[ENOSPCI A shared memory identifier is to be created but the system-

imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory
segment are to be created but the amount of available physi-
cal memory is not sufficient to fill the request.

[EEXISTI A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) and (shmflg & IPC_EXCL)) is “true”.

SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

\ SEE ALSO
: intro(2), shmctl(2), shmop(2).

~— -

SHMOP(2)

NAME

shmop — shared memory operations

SYNOPSIS

#tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)

int shmid;
char eshmaddr
int shmflg;

int shmdt (shmaddr)

char ¢shmaddr
DESCRIPTION

Shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling process.
The segment is attached at the address specified by one of the following cri-

teria:

If shmaddr is equal to zero, the segment is attached at the first avail-
able address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is “true”,
the segment is attached at the address given by (shmaddr - (shmaddr
modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfly & SHM_RND) is “false”,
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is “true”
{READ], otherwise it is attached for reading and writing (READ/WRITE].

Shmat will fail and not attach the shared memory segment if one or more of
the following are true:

[EINVALI
[EACCES]

[ENOMEM]

[EINVALI

[EINVALI]

[EMFILE]

[EINVAL]

[EINVAL]

Shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process [see
intro(2)].

The available data space is not large enough to accommodate
the shared memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmflg & SHM_RND) is
“false”, and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the cal-
ling process would exceed the system-imposed limit.

Shmd: detaches from the cailing process’s data segment the
shared memory segment located at the address specified by
shmaddr.

Shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared
memory segment.

SHMOP(2)

RETURN VALUES
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared

N memory segment.
C) Shmdt returns a value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(_?.)_, _shmctl(2), shmget(2).

M
o

(

SIGNAL(2)

NAME
signal — specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

int (ssignal (sig, func)) ()
int sig;
void (sfunc) ();
DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is pos-

sible to handle the receipt of a specific signal. Sig specifies the signal and func
specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit

SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* IOT instruction

SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child

(see WARNING below)
SIGPWR 19 power fail

(see WARNING below)

See below for the significance of the asterisk (¢) in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address.
The actions prescribed by these values are as follows:

SIG_DFL — terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter-
minated with all of the consequences outlined in exit(2). In addi-
tion a “core image™ will be made in the curreat working directory
of the receiving process if sig is one for which an asterisk appears in
the above list and the following conditions are met:

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can
be created. If the file must be created, it will have the fol-
lowing properties:

a mode of 0666 modified by the file creation
mask [see umask (2)]

a file owner ID that is the same as the effective
user ID of the receiving process.

-1-

O

SIGNAL(2)

a file group ID that is the same as the effective
group ID of the receiving process

SIG_IGN — ignore signal

The signal sig is to be ignored.
Note: the signal SIGKILL cannot be ignored.

Sunction address — catch signal

Upon receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by func. The signal number sig
will -be passed as-the only -argument to the signal-catching-function.
Additional arguments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal-catching func-
tion, the value of func for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an
open, or an ioctl system call on a slow device {like a terminal; but not
a file), during a pause system call, or during a wait system call that

does not return immediately due to the existence of a previously -

stopped or zombie process, the signal catching function will be exe-
cuted and then the interrupted system call may return a —1 to the
calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL sig-

Signal will fail if sig is an illegal signal number, including SIGKILL. {EINVAL]

RETURN VALUE
Upon successful completion, signal returns the previous value of func for the

specified signal sig. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

lall(2), pause(2), ptrace(2), wait(2), setimp(3C).
1aill(1) in the Runtime System manual.

Two other signals that behave differently than the signals described above exist
in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail {not reset when caught)

There is no guarantee that, in future releases of the UNIX system, these signals
will continue to behave as described belew; they are included only for compati-
bility with other versions of the UNIX system. Their use in new programs is
strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a
Sfunction address. The actions prescribed by these valugs are as follows;

SIG_DFL - ignore signal

The signal is to be ignored.

SIG_IGN - ignore signal

The signal is to be ignored. Also, if sig is SIGCLD, the calling
process’s child processes will not create zombie processes when they
terminate; see exit (2).

-2.

»
(X

SIGNAL(2)

Sunction address - catch signal

If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is
true if the signal is SIGCLD except, that while the process is execut-
ing the signal-catching function, any received SIGCLD signals will
be queued and the signal-catching function will be continually reen-
tered until the queue is empty.

The SIGCLD affects two other system calls [waiz(2), and exit(2)] in the fol-
lowing ways:

wait

exit

If the func value of SIGCLD is set to SIG_IGN and a wait is exe-
cuted, the wait will block until all of the calling process’s child
processes terminate; it will then return a value of =} with errno set
to ECHILD.

If in the exiting process's parent process the func value of SIGCLD is
set to SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in
this manner (and thus become the parent of other processes) should take
care not to set SIGCLD to be caught.

STAT(2)

NAME

stat, fstat — get file status
SYNOPSIS
#include <sys/types.h>
! f\') #include <sys/stat.h>
e int stat (path, buf)

char epath;
struct stat sbuf;
int fstat (fildes, buf)

int fildes;
struct stat sbuf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permission
of the named file is not required, but all directories listed in the path name
leading to the file must be searchable. Strat obtains information about the
named file.

Similarly, fstat obtains information about an open file known by the file
I descriptor fildes, obtained from a successful open, creat, dup, fcntl, or pipe
! el o e - --systemcal]. B e em e e e e e e oDl e e
Buf is a pointer to a stat structure into which information is placed concerning

! the file.

|) The contents of the structure pointed to by buf include the following members:
| ushort st_mode; /+ File mode; see mknod(2) */

: ino_t st_ino; /* Inode number */

i m dev_t st_dev; /+ ID of device containing */

P~ /+ a directory entry for this file +/

: dev_t st_rdev; /+ 1D of device */

/* This entry is defined only for +/
/+ character special or block special files */
short st_nlink; /+* Number of links */

ushort st_uid; /* User ID of the file’s owner */
ushort st_gid; /* Group ID of the file's group */
off _t st_size; /+ File size in bytes */

time_t st_atime; /+ Time of last access */

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

: /* Times measured in seconds since */
| /+ 00:00:00 GMT, Jai. 1, 1970 #/

st_atime Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod (2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following sys-
tem calls: creat(2), mknod(2), pipe(2), utime(2), and write(2). .

st_ctime Time when file status was last changed. Changed by the following
system calls: chmod(2), chown(2), creat(2), link(2), mknod(2),

\ pipe(2), unlink (2), utime(2), and wri_re(z).
) C) Star will fail if one or more of the following are true:
I [ENOTDIR] A component of the path prefix is not a directory.
[ENOENTI The named file does not exist.
[EACCES] Sca;i'ch permission is denied for a component of the path
prefix. -

-1-

STAT(2)

{EFAULTI] Buf or path points to an invalid address.
Fstat will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
(EFAULT) Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

STIME(2)

NAME
stime — set time

SYNOPSIS
int stime (tp)
long stp;
DESCRIPTION
Stime sets the system’s idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM] Stime will fail if the efféctive user 1D of the calling process is
not super-user.
RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
time(2).

SYNC(2)

NAME
sync — update super-block
SYNOPSIS
void sync ()
DESCRIPTION
Sync causes all information in memory that should be on disk to be written out.
This includes modified syper blocks, modified i-nodes, and delayed block 1/O.

It should be used by programs which examine a file system, for example fsck,
df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from
sync.

TIME(2)

NAME
time — get time
SYNOPSIS
long time ((long *) 0)
long time (tloc)
long etloc;
DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1,
If tloc (1aken as an integer) is non-zero, the return value is also stored in the
location to which t/oc points.
[EFAULT] Time will fail if tloc points to an illegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
stime(2).

'
L

TIMES(2)

NAME
times — get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms sbuffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information.
The following are the contents of this structure:

struct tms (

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;
13
This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are in 60ths of a
second on DEC and Intel processors, 100ths of a second on AT&T processors.

Tms_utime is the CPU time used while executing instructions in the user space
of the calling process.

Tms_stime is the CPU time used by the system on behalf of the calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child
processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child
processes.

[EFAULT!] Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths
(100ths) of a second, since an arbitrary point in the past (e.g., system start-up
time). This point does not change from one invocation of times to another. If
times fails, a —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

UADMIN(2)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin (cmd, fen, mdep)
int cmd, fcn, mdep;

_-' DESCRIPTION
Uadmin provides control for basic administrative functions. This system
call is tightly coupled to the system administrative procedures and is not
intended for general use. The argument mdep is provxded for machme-
dependent useé and is not defined here.

The commands available as specified by emd are:

A_SHUTDOWN The system is shutdown. All user processes are killed,

| the buffer cache is flushed, and the root file system is

unmounted. The action to be taken after the system is

shutdown is specified by fen. The functions are generic;
on specific machines the hardware capabilities will vary.

AD_HALT Halt the processor and turn off power.
AD_BOOT Reboot the system, use /unix.
" AD_IBOOT ' Interactive reboot, prompt for system name.

A_REBOOT The system stops immediately without any further pro-
cessing. The action to be taken next is specified by fen as

above.

A_REMOUNT The root file system is mounted again after having been

C._ fixed. This should only be used during the startup pro-
/ cess.
Uadmin will fail if any of the following are true:
[EPERM]) The effective user ID is not super-user.
DIAGNOSTICS
Upon successful completion, the value returned depends on ¢md as fol-
lows:

A_SHUTDOWN Never returns.
A_REBOOT Never returns.
A_REMOUNT 0

Otherwise, a value of -1 is returned and erno is set to indicate the error.

O

This page intentionally left blank.

ULIMIT(2)

NAME
ulimit — get and set user limits

SYNOPSIS

long ulimit (cmd, newlimit)

int cmd;

long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values available
. are: . - e e e P . . frm e me e L e e P

1 Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process
may decrease this limit, but only a process with an effective user ID of
super-user may increase the limit. Uiimit will fail and the limit will be
unchanged if a process with an effective user ID other than super-uszr
attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE)
Upon successful completion, a non-negative value is returned. Otherwise, a
value of =1 is returned and errno is set to indicate the error.

SEE ALSO
brk(2), write(2).

o
N

UMASK(2)

NAME
umask — set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
Umask sets the process’s file mode creation mask to cmask and returns the pre-
vious value of the mask. Only the low-order 9 bits of cmask and the file mode
creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
climod(2), creat(2), mknod(2), open(2).
mkdir(1), sh(1) in the Runtime System manual.

UMOUNT(2)

NAME
umount — uninount a file system

SYNOPSIS
int umount (spec)

O char sspec;
< DESCRIPTION

Umount requests that a previously motnted file system contained on the block
special device identified by spec be unmounted. Spec is a pointer to a path
name. After unmounting the file system, the directory upon whlch the ﬁle sys-
tem was mounted reverts to its ordinary interpretation. © °

Umount may be invoked only by the super-user.

Umount will fail if otie or more of the foliowing are true:

[EPERM] Tlie process’s effective user 1D is not super-use.
[ENXI10] Spec does not exist.
[ENOTBLKI Spec is not a block special device.
[EINVAL] Spec is not mounted.
R [EBUSY] A file on spec is busy.
[EFAULTI Spec puints to an illegal address.

RETURN VALUE))
Upon successful completion a value of 0 is returned. Otherwise, a value of —1

is returned and errno is set to indicate the error.

SEE ALSO
C_} mount(2).

UNAME(2)

NAME
uname — get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
Uname stores information identif ying the current UNIX system in the structure
pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char sysnamel[9];
char nodenamel9];
char release[9];
char version[9];
char machinel9];

Uname returns a null-terminated character string naming the current UNIX
system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. Release and
version further identify the operating system. Machine contains a standard
name that identifies the hardware that the UNIX system is running on.

[EFAULT] Uname will fail if name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, —1 is
returned and errno is set to indicate the error.

SEE ALSO
uname(1) in the Runtime System manual.

UNLINK(2)

NAME
unlink — remove directory entry
SYNOPSIS
£ int unlink (path)
{1 char »path;
o DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be
path.
" The nameédfile is unlinked unless one or moie of the following are true:
[ENOTDIR) A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path
prefix.
[EACCES] Write permission is denied on the directory containing the link
to be removed.
[EPERM] The named file is a directory and the effective user ID of the
L ~ process is not super-user.
[EBUSY] The entry to be unlinked is the mount point for a mounted file
system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

~ [EROFS! The directory entry to be unlinked is part of a read-only file
(! system.
i [EFAULTI] Path points outside the process’s allocated address space.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is-removed, the removal is post-
poned until all references to the file have been closed.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
close(2), link(2), open(2).
mm(1) in the Runtime System manual.

USTAT(2)

NAME
ustat — get file system statistics
SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat sbuf;

DESCRIPTION

Ustat returns information about a mounted file system. Dev is a device number
identifying a device containing a mounted file system. Buf is a pointer to a

ustat structure that includes the following elements:

daddr_t f tfree; /» Total free blocks */
inot f_tinode; /* Number of free inodes */
char f_fnamel6}; /+ Filsys name »/

char f_fpackl6l; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

[EINVAL] Dev is not the device nimber of a device containing a

mounted file system.

[EFAULTI Buf points outside the process’s allocated address space.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1

is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

UTIME(2)

NAME
utime — set file access and modification times
SYNOPSIS
et #include <sys/types.h>
l\ ! int utime (path, times)
- char epath;
struct utimbuf etimes;
DESCRIPTION
Path points to a path name naming a file. Utime sets..the access and
modification times of the named file.
If imes is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permission
to use utime in this manner.
If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the U')
designated structure. Only the owner of the file or the super-user may us¢ ro
utime this way.
5 ..The times in the following structure are measured in 1 seconds smce 00:00: 00
GMT, Jan. i, 1970,) T
struct utimbuf {
time_t actime; /* access time */
| time_t modtime; /+ modification time +/
/-\) Utime will fail if one or more of the following are true:
S [ENOENT] The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] Search permission is denied by a component of the path
prefix.
[EPERM] The effective user ID is not super-user and not the owner of
the file and times is not NULL.
[EACCES] The effective user ID is not super-user and not the owner of
the file and fimes is NULL and write access is denied.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] Times is not NULL and points outside the process’s allocated
address space.
[EFAULT] Path points outside the process’s allocated address space.

RETURN VALUE
Upon success{ul completion, a value of 0 is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

()

WAIT(2)

NAME

wait — wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int sstat_loc;

int wait ((int *)0)

DESCRIPTION

Wait suspends the calling process until one of the immediate children ter-
minates or until a child that is being traced stops, because it has hit a break
point. The wait system call will return prematurely if a signal is received and
if a child process stopped or terminated prior to the call on wait, return is
immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pointed to by stat_/oc.
Status can be used to differentiate between stopped and terminated child
processes and if the child process terminated, status identifies the cause of ter-
mination and passes useful information to the parent. This is accomplished in
the following manner:

If the child process stopped, the high order 8 bits of status will contain
the number of the signal that caused the process to stop and the low
order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits
of status will be zero and the high order 8 bits will contain the low
order 8 bits of the argument that the child process passed to exit; see
exit(2).

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of
the signal that caused the termination. In addition, if the low order
seventh bit (ie., bit 200) is set, a “core image™ will have been pro-
duced; see signal (2).

If a parent process terminates without waiting for its child processes to ter-
minate, the parent process ID of each child process is set to 1. This means the
initialization process inherits the child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child
processes.
[EFAULTI] Stat_loc points to an illegal address.

RETURN VALUE

If wait returns due to the receipt of a signal, a value of —1I is returned to the
calling process and errno is set to EINTR. If wait returns due to a stopped or
terminated child process, the process ID of the child is returned to the calling
process. Otherwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING

See WARNING in signal(2).

WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;

P i char +buf;
AN unsigned nbyte;
DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe

system call. _ o

Write attempts to write nbyte bytes from the buffer pointed to by buj to

the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from

the position in the file indicated by the file pointer. Upon return from

write, the file pointer is incremented by the number of bytes actually

written.

On devices incapable of seeking, writing always takes place starting at

the current position. Tlke value of a file pointer associated with such a

device is undefined.

~If the O_APPEND flag of the file status flags is set, the file pointer will be

set to the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the

write will not return until both the file data and file status are physically

updated. This function is for special applications that require extra relia-

bility at the cost of performance. Also; for block special files, if this flag
C is set, the write will not return until the data has been physically

' updated. _
Write will fail and the file pointer will remain unchanged if one or more
of the following are trie:

[EBADF) Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]
An attempt is made to write to 4 pipe that is not open for

reading by any process.

|[EFBIG] An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size. See
ulimit (2).

[EFAULT) Buf points outside the process’s allocated address space.

[EINTR] A signal was caught during the write system call.

If a write requests that more bytes be written than there is room for

(e.g., the ulimit [see ulimit(2)] or the physical end of a medium), only as

many bytes as there is room for will be written. For example, suppose

there is space for 20 bytes more in a file before reaching a limit. A write

of 512 bytes will return 20. The next write of a non-zero number of bytes
! will give a failure return (except as noted below).

Q If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count
of 0. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will
block until space becomes available.

RETURN VALUE

Upon successful completion, the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the error.

-1-

WRITE(2)

SEE ALSO
creat(2), dup(2), fentl(2), lseek(2), open(2), pipe(2), ulimit(2).

~
/

C

TABLE OF CONTENTS OF SUBROUTINES

3. Subroutines and Libraries

intro, einitiesmssnans introduction to subroutines and libraries
at4] : convert between long integer and base-64 ASCII string
abort. generate JOT fault
abs, retum integer absolute value
bsearch binary search a sorted table
clock. report CUP time used
conv translate characters
crypt. a one-way hashing encryption algorithm
ctermid. generate file name for terminal
chme convertdate and time to string
ctype. classify characters
caserid. oot get character login name of the user

..... establish an out-going tenmal line connection
generate unifonnly distributed pseudo-random numbers
convert floating-point number to string

last locasions in program

close or flush a stream

strean status inquiries
open a stream
binary input/output

reposition a file pointer in a stream
walk a file tree
get character or word from a stream
get pathname of current working directory
return value for environiment name

getgrent. get group file entry
getlogin getlogin name
getopt. get option letter fiom argwnent vector
getpass. ; read a password
getpw getname from UID
getpwent. . get password file entry
gets get a string from a stream
getut access utmp file entry
hsearch manage hash search tables
lockE record locking on file
13tol ; convert between 3-byte integers and long integers
Isearch linear search and update
malloc, main memory allocator
memory. ; memory operalons
mkternp . make a unique file name
monitor, prepare execulion profile
11§13 SO, get entries from name list
Perror....... -...8y slem eITor messages
PP verserssssssssassassessssosssessssstssscisssssssessamassasssssissssasnsssssssssasssss ssas iniMate pipe to/from a process
printf. print formatted output
putc put character or word on a siream
putenv change or add value to environment
putpwent. . write password file entry
puts put a string on a stream
qgsort. quicker sort
rand. simple random-number generator
scanf, comvert formatted input
setbuf, assign buffering to a siream
setjimp. ; non-local goto
sleep. suspend execution for interval

ssignal software signals

manipulate parts of floating-point numbers . .

12 TSRO standard buffered input/output package

s(d.ipc Standard interprocess commmic.:ation pacl.(age
3561 17 string operakons
strtod convert string to double-precision mumber
strtol convert string to integer
swab. swap bytes
system issue a shell command
tmpfile create a temporary file
tmpnam create a name for a temporary file
tsearch manage binary search trees
ttyname. find name of a terminal
ttyslot find the slot in the utmp file of the curent user
ungetc push character back into input stream
vprintf pont formatted output of arargs argumentlist

TABLE OF CONTENTS OF MATH SUBROUTINES

3M. Math Subroutines and Libraries

bessel Bessel functions
erf error function and complementary exor function
exp exponential, logarithm, power, square roét functionis
floor. floor, ceiling, remainder absolute value fimctions
gamma log gamma function
hypot.......... Euclidean distance function
matherr....... errar-handling function
sinh hyperbolicfunctions

trig trigonometricfimctions

NAME

INTRO(3)

intro — introduction to subroutines and libraries

SYNOPSIS

#include <stdio.h>
#tinclude <math.h>

DESCRIPTION

This section describes functions found in various libraries, other than those
functions that. directly invoke UNIX system primitives, which are described in
Section 2 of this volume. Certain major collections are identified by a letter

after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc(1). The link editor /d(1) searches this
library under the —le option. Declarations for some of these functions
may be obtained from #include files indicated on the appropriate pages.

(3S) These functions constitute the “standard 1/0 package™ [see stdio(3S)].
These functions are in the library libc, already mentioned. Declarations
for these functions may be obtained from the #include file <stdjo.h>.

(3M) These functions constitute the Math Library, /ibm. They are automati-
cally loaded as needed by the FORTRAN compiler /77 (1). They are not
automatically loaded by the C compiler, cc(1); however, the link editor
searches this library under the —Im option. Declarations for these func-
tions may be obtained from the #include file <math.h>. Several gen-
erally useful mathematical constants are also defined there [see
math (5)].

(3X) Various specialized libraries. The files in which these libraries are found
are given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function library,
libF77. These functions are automatically available to the FORTRAN
programmer and require no special invocation of the compiler.

There are separate library files for use with small, large and huge model pro-
grams (see "Files," below). Normally, /d(1) automatically selects the correct
library file for the memory model you are using. However, if you specify the
library file yourself, be sure that it matches the memory model of your pro-
gram.

DEFINITIONS

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as '\0’. A
character array is a sequence of characters. A null-terminated character
array is a sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The null string
is a character array containing only the null character. A NULL pointer is the
value that is obtained by casting 0 into a pointer. The C language guarantees
that this value will not match that of any legitimate pointer, so many functions
that return pointers return it to indicate an error. NULL is defined as 0 in
<stdjo.h>; the user can include an appropriate definition if not using
<stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that
do not require explicit or implicit type declaration. The type of the function
will be determined by the type of its argument(s). For example, the generic
function max will return an integer value if given integer arguments (max0), a

teal value if given real arguments (amaxI), or a double-precision value if given

double-precision arguments (dmax!).

-1-

INTRO(3)

FILES

/lib/small/libc.a
/lib/large/libc.a
/lib/huge/libc.a
/lib/small/libm.a
/lib/large/libm.a
/lib/huge/libm.a
/usr/small/lib/1ibF77.a
/usr/large/lib/1ibF77.a
/usr/huge/lib/1ibF77.a

SEE ALSO

intro(2), stdio(3S), math(5).
ar(1), cc(1), £77(1), 1d(1), lint(1), nm(1) in the Runtiine System miarmal,

DIAGNOSTICS

Functions in the C and Math Libraries (3C and 3M) may return the conver-
tional values 0 or +HUGE (the largest-magnitude single-precision floating-point
numbers; HUGE is defined in the <math.h> header file) when the function is
undefined for the given arguments or when the value is not representable. In
these cases, the external variable errno [see intro(2)] is set to the value EDOM
or ERANGE. As many of the FORTRAN intrinsic functions use the routines
found in the Math Library, the same conventions apply.

WARNING

Many of the functions in the libraries call and/or refer to other functions and
external variables described in this section and in section 2 (System Calls). 1f
a program inadvertantly defines a function or external variable with the same
name, the presumed library version of the function or external variabie may not
be loaded. The /inz(1) program checker reports name conflicts of this kind as
“multiple declarations” of the names in question. Definitions for sections 2, 3C,
and 3S are checked automatically. Other definitions can be included by using
the —1 option (for example, —1m includes definitions for the Math Library, sec-
tion 3M). Use of lint is highly recommended.

A64L(3C)

NAME
a64l, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

long a64] (s)

E char »s;
char ¢164a (1)
long I;

DESCRIPTION e e e e

These functions are used to maintain numbers stored in base-64 ASCII charac-
ters. This is a notation by which long integers can be representied by up to six
characters; each character represents a “digit” in a radix-64 notation.

The characters used to represent “digits” are . for 0, / for 1, 0 through 9 for
2—11, A through Z for 12—37, and a through z for 38—63.

: A64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a64!/ will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64
""" © -+ == - v representation. If the argument is 0, /64a returns a pointer to a null string.

BUGS

The value returned by /64a is a pointer into a static buffer, the contents of
which are overwritten by each call.

ABORT(3C)

NAME
abort — generate an [OT fault
SYNOPSIS
int ahort ()
DESCRIPTION
Abort first closes all open files if possible, then causes an IOT signal to be sent
to the process. This usually results in termination with a core dump.
It is possible for abort to return control if SIGIOT is caught or ignored, in which
case the value returned is that of the kiff(2) system call.
SEE ALSO
exit(2), kill(2), signal(2).
sdb(1) in the Runtime System manual. ual.
DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a

core dump is produced and the message “abort — core dumped™ is written by
the shell.

ABS(3C)

NAME
abs — return integer absolute value

SYNOPSIS
int abs @)

int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

""" " 'In twos-complement representation; the absolute value-of-the negative integer .
with largest magnitude is undefined. Some implementations trap this error, but
others simply ignore it.

SEE ALSO

floor(3M).

BSEARCH(3C)

NAME
bsearch — binary search a sorted table

SYNOPSIS
#tinclude <search.h>

char sbsearch ((char *) key, (char +) base, nel, sizeof (skey), compar)
unsigned nel;
int (scompar)();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a provided
comparison function. Key points to a datum instance to be sought in the table.
Base points to the element at the base of the table. Nel is the number of ele-
ments in the table. Compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater than zero as
accordingly the first argument is to be considered less than, equal to, ot greatéf
than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct. node { /+ these are stored in the table /
char estring;
int length;

siruct node table[TABSIZE], /e table to be searched +/

struct node *node_ptr, node;
int node_compare(); /¢ routine to compare 2 nodes */
char str_space[20); /¢ space to read string into */

node.string = str_space;
while (scanf(*%s", nodestring) !'= EOF) {
node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof (struct node), node_compare);
if (node_ptr != NULL) {
(void) printf("string = %20s, length = %d\n",
node_ptr—>string, node_ptr—>length);
} else {
(void) printf("not found: %s\n", node.string);

-1-

BSEARCH(3C)

!

/e
This routine compares two nodes based on an
; alphabetical ordering of the string field.
o/
int

I node_compare(nodel, node2)
: struct node *nodel, enode2; =

return stremp (node 1—> string, node2—>string);

NOTES
The pomters to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO
hsearch(3C), Isearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

0
©

()
—

CLOCK(3C)

NAME
clock — report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since the first
call to clock. The time reported is the sum of the user and system times of the
calling process and its terminated child processes for which it has executed
wait (2) or system (3S).

The resolution of the clock is 10 millissconds on AT&T 3B computers, 16.667
milliseconds on Digital Equipment Corporation and Intel processors.

SEE ALSO
times(2), wait(2), system(3S).

BUGS
The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this,
the value returned will wrap around after accumnulating only 2147 seconds of
CPU time (about 36 minutes).

CONV(3C)

NAME
toupper, tolower, _toupper, _tolawer, toascii — translate characters
SYNOPSIS
P #tinclude <ctype.h>
AN int toupper (c)
i int c;
int tolower (c)
_ int ¢;
int _toupper (¢)
int c;
int _tolower (c)
int c;
int toascii (c)
int c;
DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from
—1 through 255. If the argument of foupper represents a lowercase letter, the RfY
result is the corresponding uppercase letter. If the argument of tolower %]
represents an uppercase letter, the result is the corresponding lowercase letter.
All other arguments in the domain are returned unchanged.
The macros _toupper and _tolower, are macros that accomplish the same thing
as toupper and tolower but have restricted domains and are faster. _toupper
requires a lowercase letter as its argument; its result is the correspondin
q 8 P 8
(\; uppercase letter. The macro _tolower requires an uppercase letter as its argu-
N ment; its result is the corresponding lowercase letter. Arguments outside the

|

| domain cause undefined results.

i Toascii yields its argument with all bits turned off' that are not part of a stan-
dard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
! ctype(3C), getc(3S).

CRYPT(3C)

NAME

crypt, encrypt — a one-way hashing encryption algorithm

SYNOPSIS

char scrypt (key, salt)
char skey, ssalt;

void encrypt (block)
char <block;

DESCRIPTION

Crypt is the password encryption function. It is based on a one-way hashing
encryption algorithm with variations intended (among other things) to frustrate
use of hardware implementations of a key search.

Key is a user’s typed password. Salr is a two-character string chosen from the
set [a-zA-Z0-9./]; this string is used to perturb the hashing algorithm in one of
4096 different ways, after which the password is used as the key to encrypt
repeatedly a constant string. The returned value points to the encrypted pass-
word. The first two characters are the salt itself.

There is a character array of length 64 containing only the characters with
numerical value 0 and 1. When this string is-divided into groups of 8, the low-
order bit in ¢ach group is ignored; this gives a 56-bit key which is set into the
machine by crypt.

The encrypt entry provides (rather primitive) access to the actual hashing algo-
rithm. The argument to the encrypt entry is a character array of length 64
containing only the characters with numerical value of 0 and 1. The argument
array is modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the hashing algorithm using the key set by
crypt.

SEE ALSO

BUGS

getpass(3C), passwd(4).
login(1), passwd(1) in the Runtime System marmal.

The return value points to static data that are overwritten by each call.

SEE ALSO

CTERMID(3S)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#include <stdio.h>
char ectermid (s)
char »s;
DESCRIPTION
Ctermid generates the path name of the controlling terminal for the current
process, and stores it in a string.

“If s is @ NULL ‘pointer;the string is-stored in an-internal-static -area,-the con-
tents of which are overwritten at the next call to ctermid, and the address of
which is returned. Otherwise, s is assumed to point 1o a character array of at
least L_ctermid elements; the path name is placed in this array and the value of
s is returned. The constant L_ctermid is defined in the <stdio.h> header file.

NOTES
The difference between ctermid and ttyname(3C) is that tfyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctermid returns a string (/dev/tty) that will
refer to the terminal if used as a file name. Thus #yname is useful only if the
process already has at least one file open to a terminal,

ttyname(3C).

CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset — convert date and time to string

SYNOPSIS
#include <time.b>

char ectime (clock)
long sclock;

struct tm e*localtime (clock)
long eclock;

struct tm sgmtisne (clock)
long eclock;

char easctime (tm)

struct tm etm;

extern long timezone;
extern int daylight;
extern char stznamel2];
void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-
character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to “tm” structures, described below.
Localtime corrects for the time zone and possible Daylight Saving Time;
gmtime converts directly to Greenwich Mean Time (GMT), which is the time
the UNIX system uses.

Asctime converts a “tm” structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the “tm™ structure, are in
the <time.h> header file. The structure declaration is:

struct tm {
int tm_sec; /» seconds (0 - 59) »/
int tm_min; /+ minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /» day of month (1 - 31) /
int tm_mon; /+ month of year (0 - 11) »/
int tm_year; /* year — 1900 »/

int tm_wday; /» day of week (Sunday =0) /
int tm_yday; /» day of year (0 - 365) */
int tm_isdst;
B
Tm_isdst is non-zero if Daylight Saving Time is in effect.

The external long variable rimezone contains the difference, in seconds, between
GMT and local standard time (in EST, timezone is 5460+60); the external vari-
able daylight is non-zero if and only if the standard U.S.A. Daylight Saving
Time conversion should be applied. The program knows about the peculiarities
of this conversion in 1974 and 1975; if necessary, a table for these years can be
extended.

O

O

CTIME(3C)

If an environment variable named TZ is present, asctime uses the contents of
the variable to override the default time zone. The value of TZ must be a
three-letter time zone name, followed by a number representing the difl'erence
between local time and Greenwich Mean Time in hours, followed by an
optional three-letter name for a daylight time zone. For example, the setting
for New Jersey would be ESTSEDT. The efl'ects of setting TZ are thus to
change the values of the external variables timezone and daylight; in addition,
the time zone names contained in the external variable
char stznamel2]l = { "EST", "EDT" };

are set from the environment variable TZ. The function fzsef sets these exier-
nal variables from TZ; tzset is called by asctime and may also be called expli-
citly by the user.

Note that in most installations, TZ is set by default when the user logs on, to a
value in the local /ete/profile file [see profile (4)].

SEE ALSO

BUGS

time(2), getenv(3C), profile(4), environ(5).

The return values point to static data whose content is overwritten by each call, 0

'
w

CTYPE(3C)

NAME

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,‘ ispunct, isprint,
isgraph, iscntrl, isascii — classify characters

SYNOPSIS

#include <ctype.h>

int isalpha (c)

int c;

DESCRIPTION

These macros classify character-coded integer values by table lookup. Each is
a predicate returning nonzero for true, zero for false. fsascii is defined on all
integer values; the rest are defined only where isascii is true and on the single
non-ASCII value EOF [—1 — see stdio (3S)].

isalpha
isupper
islower
isdigit
isxdigit
isalnum
isspace

ispunct
isprint

isgraph

iscntrl

isascii
DIAGNOSTICS

c is a letter.

¢ is an uppercase letter.

¢ is a lowercase letter.

¢ is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f].
¢ is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical tab, or
form-feed.

¢ is a punctuation character (neither control nor
alphanumeric).

c is a printing character, code 040 (space) through 0176
(tilde).

¢ is a printing character, like isprint except false for space.

¢ is a delete character (0177) or an ordinary control character
(less than 040).

¢ is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the function, the
result is undefined.

SEE ALSO

stdio(3S), ascii(5).

O

CUSERID(3S)

NAME
cuserid — get character login name of the user

SYNOPSIS
#include <stdioh>

char scuserid (s)
char ss;

DESCRIPTION
Cuserid generates a character-string representation of the login name that the
“owner of 'the current process is logged in-under: -If s-is-a~-NULL -pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point to an array of at least L_cuserid
characters; the representation is left in this array. The constant L_cuserid is
defined in the <stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character (\0) will be placed at s(0].

SEE ALSO
getlogin (3C), getpwent(3C).

This page intentionally left blank.

DIAL(3C)

NAME
dial — dial out on a modem

SYNOPSIS
#include <termio.h>
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

extern int _debug ; /* set to extern int nolock ; /* don't
extern int (*lockfn) (), (*ulockfn) () ; /*

DESCRIPTION
Dial is a modem-independent implementasion of the standard System V Dial procedure.

Dial calls out on a modem or a direct tenninal line, and returns a file-descriptor open
forread/write.

When fmished with the line, the caller must invoke undial to gracefully disconnect.

Dial reads the uucp L-devices file to determine eligible devices, and the dialinfo file to

determine the modem dial procedure. Dial is fully compatible withcu and uucp. (7))
The definison of CALL in the <dialh> header file is: W
typedef struct {

struct termio *atiy; /* Rinal terminal attributes */

int baud; /* Baud rate to use after dialing */

int speed; /* Baud rate to use during dialing */

char *line; /% TTY device name */

char *telno; /* Phone number(s) or system name */

int modem; /* Use modem control on direct lines */

char *device; /¥ Where to store device name */

int dev_len; /* Sizeof (call.device) */
} CALL;

The CALL parameters are as follows:

atr If specified, the tty device is setto use the given parity, character size, and
baud rate after connect. Before a successful retum, the remaining tty
atiributes---except carrier sense—are set. Carrier sense is conirolled exclu-
sively through dialinfo commands. If not given, baud rate defaults to the
modem baud rate, and in any case is overridden by baud below, or com-
mands in the dialinfo file.

band If specified, the tty device is set to this baud rate after connect. This
parameter may be overridden by commands in the dialinfo file.

speed If specified, only entries with this speed in field 4 of L-devices are

considezed.

line If specified, only enwies with this tty name in field 2 of L-devices are
considered.

telno If not specified, the call is to a direct line. Otherwise this is the telephone

number to be dialed. Several alternate numbers may be given, separated by
commas. L-dialcodes prefix substitution is performed.

DIAL(3C)

modem Modem control is used on direct lines when this variable is non-zero, and
connect option 2 (command C2) is selected by the diaknfo procedure.

device If this pointer is non-null, the line device pathname (eg /dev/tty12) is
copied here after a successful dial.

dev_len Length of the array pointed to by device above.

If the global variablenolock is a non-zerio, dial does not test for or secure the normal
uucp lock file, and undial does not remove it.

FILES
Just/lib/mcp/dialinfo Dial procedure data base.
fusr/lib/uucp/L-devices UUCP device entries.
fusr/lib/uucp/L-dialcodes Dialcode substitutions.

Just/lib/uucpL.sys UUCP system definitions.

fusr/spool/uucp/LCK . . * UUCP lock file.

[dev/ity* TTY device names.
AUTHOR

Gene H. Olson, Qiiest Research, Bumsville, MN, Daniel M. Frank, Microport
Systems, wrote the locking modifications.

SEE ALSO

cu(1C) Calls another system.

dialprint(1) Prints adialer entry.

dialer(1) Modem dial-out program.

uucp(1) UUCP interface.

dialinfo(4) Dial procedure data base.

terrnio(7) TTY device infonnation
DIAGNOSTICS

On failure, a negative error code is retarmed. Possible error codes—as listed in <dialh>

include:

INTRPT -1 /* Interrupt during dial */

D_HUNG 2 /* Dialer hung */

NO_ANS -3 /* Busy or no answer*/

ILL_ BD -4 /* Ilegal/unknown baud rate */

A_PROB -5 /* Dialinfo(4) configuration error */
L_PROB -6 /* TTY device error */

NO_Ldv =7 /* L-devices file unreadable */

DV.NT_ A -8 /* Requested device not available */

DV NI K 9 /* Requetsed device unknown */
NOBD_A -10 /*Nothing available at requested speed */
NO_BD K -l11 /* No device known at requested speed */

If the environment variable DIALINFO exists, it specifies a patlmame to be used
instead of /usr/lib/uucp/dialinfo.

If dial discovers a corrupted or improperly configured file or device, diagnostic
information is written to stder.

DIAL(3C)

Debugging output is written to stderr when the environment variable DIALDEBUG
exists, and contains one or more of the characters listed below.

d Show data and decisions related to the L-devices file, plus creation and deletion
of the uucplockfile.

s Show dialer state definitions and transitions.
m Show matching of dialer transition strings against the incoming data stream.
1 Show all device operations other than character /O to the communications
S deVICR. e e o e e
c Show all transmitted and received conununication.

a Show all of the above.

The dialinfo file may also contain commands which write user specified diagnostics to
stderr.

WARNING

When internal locking is used, the dial lock file is touched every hour by a routine
triggered by the alarm(). If you use the alarm signal for any purpose, be very careful 1o
restore both the signal and the alamm clock value when you are done. If you need the
alarm on an ongoing basis, you must establish your own locking rautincs, and inform CID
dial() of those routines using the extemal variables lockfn and ulockfn. Then it be- K&
comes your responsibilty to touch the lock file.

DRAND48(3C)

NAME
drand48, crand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubil3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubil3l;

void srand48 (seedval)
long seedval;

unsigned short sseed48 (seed16v)
unsigned short seed16vI3l;

void lcong48 (param)
unsigned short paraml7l];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand4% and erand48 return non-negative double-precision floating-
point values uniformly distributed over the interval {0.0, 1.0).

Functions Irand48 and nrand48 rcturn non-negative long integers uniformly
distributed over the interval [0, 2%

Functions mrand48 and jrand48 return signed long integers uniformly distri-
buted over the interval [—23!, 231).

Functions srand48. seed48 and Icong48 are initialization entry points, one of
which should be invoked before either drand48. lrand48 or mrand48 is called.
(Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48, Irand48 or mrand48 is called
without a prior call to an initialization entry point.) Functions erand48.
nrand48 and jrand48 do not require an initialization entry point to be called
first.

All the routines work by generating a sequence of 48-bit integer values, X;,
according to the linear congruential formula

Xn+1 = (aXn+C)modm fl?o

The parameter m =28, hence 48-bit integer arithmetic is performed. Unless
lcong48 has been invoked, the multiplier value @ and the addend value ¢ are

given by
a = SDEECE66D ¢ = 2736731631554
c=Bs=13s

The value returned by any of the functions drand48, erand48, lrand48.
nrand48. mrand48 or jrand48 is computed by first generating the next 48-bit
X; in the sequence. Then the appropriate number of bits, according to the type
of data item to be returned, are copied from the high-order (leftmost) bits of
X; and transformed into the returned value.

-1-

DRANDA48(3C)

-

The functions drand48, lrand48 and mrand48 store the last 48-bit X; gen-
crated in an internal buff'er; that is why they must be initialized prior to being
invoked. The functions erand48, nrand48 and jrand48 require the calling pro-
gram to provide storage for the successive X; values in the array specified as an

Y argument when the functions are invoked. That is why these routines do not
. have to be initialized; the calling program merely has to place the desired ini-
i tial value of X; into the array and pass it as an argument. By using difl'erent

arguments, functions erand48, nrand48 and jrand48 allow separate modules of
a large program to generate several independent streams of pseudo-random
numbers, i.e., the sequence of numbers. in each. stream will not. depend upon.
how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits
contained in its argument. The low-order 16 bits of X; are set to the arbitrary
value 330E .

The initializer function seed48 sets the value of X; to the 48-bit value specified
in the argument array. In addition, the previous value of X; is copied into a
48-bit internal buffer, used only by seed48, and a pointer to this bufer is the
value returned by seed48. This returned pointer, which can just be ignored if
not needed, is useful if a program is to be restarted from a given point at some
future time — use the pointer to get at and store the last X; value, and then
use this value to reinitialize via seed48 when the program is restarted.

. The initialization function lcong48 allows the user to specify the initial X}, the

i multiplier value a, and the addend value ¢. Argument array elements

| param{0-2] specify X;, paraml3-5] specify the multiplier a, and paraml6]

w specifies the 16-bit addend c¢. After lcong48 has been called, a subsequent call

C to either srand48 or seed48 will restore the “standard” multiplier and addend
values, a and ¢, specified on the previous page.

NOTES

The versions of these routines for the VAX-11 and PDP-]1 are coded in assem-
: bly language for maximum speed. It requires approximately 80 usec on a
i VAX-11/780 and 130 usec on a PDP-11/70 to generate one pseudo-random
number. On other computers, the routines are coded in portable C. The
source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist; instead, they are replaced by the two new functions
below.

| long irand48 (m)
f unsigned short m;

: long krand48 (xsubi, m)
unsigned short xsubil3), m;
Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, n1—11.

SEE ALSO
rand(3C).

O

ECVT(3C)

NAME
ecvt, fevt, gcvt — convert floating-point number to string

SYNOPSIS
char eecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char ofcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, sign;

char sgcvt (value, ndigit, buf)
double value;
int ndigit;
char sbuf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero. The
low-order digit is rounded. The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt (negative means to
the left of the returned digits). The decimal point is not included in the
returned string. If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero.

Fewt is identical to ecvt, except that the correct digit has been rounded for
printf “%f* (FORTRAN F-format) output of the number of digits specified by
ndigit.

Gevt converts the value to a null-terminated string in the array pointed to by
buf and returns buf. It attempts to produce ndigit significant digits in FOR-
TRAN F-format if possible, otherwise E-format, ready for printing. A minus
sign, if there is one, or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fevt point to a single static data array whose
content is overwritten by each call.

—

END(3C)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern void etext();
extern edata;

DESCRIPTION

These names refer neither to routines nor to locations with interesting contents.
The address of etext is the first address above the program text, edata above

" ‘the “initialized data region, and end above the uninitialized data region. The™ -
addresses are logical and have the form selector:offset in large and huge model.
When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines of
brk (2), malloc(3C), standard input/output [stdio (3S)], the profile (—p) option
of ¢c(1), and so on. In small model programs sbrk(0) returns the current value
of the program break; in large and huge model programs, it returns the starting
address of the next data segment [see brk(2)].

SEE ALSO
brk(2), malloc(3C), stdio(3S).
cc(1) in the Runtime System manual.

FCLOSE(3S)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.b>

int fclose (stream) _
FILE estream; \

int filush (stream)
FILE estream,

DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and
the stream to be closed.

Feclose is performed automatically for all open files upon calling exit(2).

Fflush causes any buffered data for the named stream to be written to that file.
The stream remains open.
DIAGNOSTICS

These functions return O for success, and EOF if any error (such as trying to i
write to a file that has not been opened for writing) was detected. :

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(38).

@

NAME

FERROR(3S)

ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS

#include <stdio.h>

int ferror (stream)
FILE estream;

int feof (stream)
FILE estream;

void “clearerr " (stream) - - -
FILE estream;

int fileno (stream)
FILE estream;

DESCRIPTION

NOTE

Ferror returns non-zero when an 1/0 error has previously occurred reading
from or writing to the named stream, otherwise zero.

Feof returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
Stream.

Fileno returns the integer file descriptor associated with the named stream; see
open(2).

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO

open(2), fopen(3S).

FOPEN(3S)

NAME
fopen, freopen, fdopen — open a stream
SYNOPSIS
#include <stdio.h>
FILE <fopen (file-name, type)
char *file-name, stype;
FILE *freopen (file-name, type, stream)
char efile-name, etype;
FILE estream;
FILE *fdopen (fildes, type)
int fildes;
char stype;
DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be

opened.
Type is a character string having one of the following values:
" open for reading
"w" truncate or create for writing
"a" append; open for writing at end of file, or create for writing
"r+" open for update (reading and writing)
"w" truncate or create for update
"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freopen
returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin,
stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained
from open, dup, creat, or pipe(2), which open files but do not return pointers
to a FILE structure stream. Streams are necessary input for many of the Sec-
tion 3S library routines. The type of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input
without an intervening fseek or rewind, and input may not be directly followed
by output without an intervening fseek, rewind, or an input operation which
encounters end-of -file.

n,n

When a file is opened for append (i, when fype is "a" or "a+"), it is impossi-
ble to overwrite information already in the file. Fseek may be used to reposi-
tion the file pointer to any position in the file, but when output is written to the
file, the current file pointer is disregarded. All output is written at the end of
the file and causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file in the order in
which it is written.

O

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

FOPEN(3S)

FREAD(3S)

NAME

fread, fwrite — binary input/output

SYNOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char sptr;

int size, nitems;

FILE estream;

int fwrite (ptr, size, nitems, stream)
char sptr;

int size, nitems;

FILE estream;

DESCRIPTION

Fread copies, into an array pointed to by ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not neces-
sarily terminated by & null byte) of length size. Fread stops appending bytes if
an end-of-file or error condition is encountered wlile reading stream, or if
nitems items have been read. Fread leaves the file pointer in stream, if
defined, pointing to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr
to the named output stream. Fwrite stops appending when it has appended
nitems items of data or if an error conditiorni is encountered on stream. Fwrite
does not change the contents of the array pointed to by ptr.

The argument size is typically sizeoff+ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char it should be cast into a pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S).

DIAGNOSTICS

BUGS

Fread and fwrite return the number of items read or written. If size or nitems
is non-positive, no characters are read or written and O is returned by both
fread and fwrite.

On the PDP-11 and {APX286, the number of bytes transferred is the product of
size and nitems, modulo 65536.

FREXP(3C)

NAME
frexp, ldexp, modf — manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)

C A\ double value;
int eeptr;
double 1dexp (value, exp)
double value;
.int exp; N
double modf (value, iptr)
double value, siptr;
DESCRIPTION
Bvery non-zero number can be written uniquely as x » 2”, where the “mantissa”
(fraction) x is in the range 0.5 < |x| < 1.0, and the “exponent™ n is an
integer. Frexp returns the mantissa of a double value, and stores the exponent
indirectly in the location pointed to by eptr. If value is zero, both results
returned by frexp are zero.

Ldexp returns the quantity values 2°*7.
Modf returns the signed fractional part of value and stores the integral part§
indirectly in the location pointed to by iptr.

DIAGNOSTICS
If Idexp would cause overflow, £HUGE is returned (according to the sign of

value), and errno is set to ERANGE.
If Idexp would cause underflow, zero is returned and errno is set to ERANGE.

¢

e

FSEEK(3S)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
#include <stdio.b>

int fseek (stream, offset, ptrname)
FILE estream;

long offset;

int ptrname;

void rewind (stream)
FILE estream,

long ftell (stream)
FILE estream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning, from
the current position, or from the end of the file, according as ptrname has the
value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is
returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may be
either input or output.

Ftell returns the off'set of the current byte relative to the beginning of the file
associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S), popen(3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek
can be, for example, an fseek done on a file that has not been opened via fopen;
in particular, fseek may not be used on a terminal, or on a file opened via
popen(3S).

WARNING
Although on the UNIX system an offset returned by frell is measured in bytes,
and it is permissible to seek to positions relative to that off'set, portability to
non-UNIX systems requires that an offset be used by fseek directly. Arithmetic
may not meaningfully be performed on such an offset, which is not necessarily
measured in bytes.

FTW(3C)

NAME
ftw — walk a file tree

SYNOPSIS
#include <ftw.h>

(\ int ftw (path, fn, depth)

- char *path;
int (*fn) ();
int depth;

DESCRIPTION e .

Ftw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw calls fn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure
[see star(2)] containing information about the object, and an integer. Possible
values of the integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW D for a directory, FTW_DNR for a directory that cannot be read, and
FTW_NS for an object for which star could not successfully be executed. If the
integer is FTW_DNR, descendants of that directory will not be processed. If the
integer is FTW_NS, the stat structure will contain garbage. An example of an
object that would cause FTW_NS to be passed to fn would be a file in a direc-
tory with read but without execute (search) permission.

Frw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn

returns a nonzero value, or some error is detected within ftw (such as an 1/0

error). If the tree is exhausted, ftw returns zero. If fn returns a nonzero value,
(— Jtw stops its tree traversal and returns whatever value was returned by fn. If
_ j JStw detects an error, it returns ~1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. Depth must not be greater than the number
of file descriptors currently available for use. Ftw will run more quickly if
depth is at least as large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because f1w is recursive, it is possible for it to terminate with a memory fault
when applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at the
cost of considerable complexity.
Ftw uses malloc (3C) to allocate dynamic storage during its operation. If ftw is
forcibly terminated, such as by longjmp being executed by fn or an interrupt
routine, ftw will not have a chance to free that storage, so it will remain per-
manently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its
next invocation.

GETC(3S)

NAME

getc, getchar, fgetc, getw — get character or word from a stream

SYNOPSIS

#include <stdio.b>

int getc (stream)
FILE estream;

int getchar ()

int fgetc (stream)
FILE estream,

int getw (stream)
FILE e*stream;

DESCRIPTION

Getc returns the next character (i.e., byte) from the named input stream, as an
integer. It also moves the file pointer, if defined, ahead one character in
stream. Getchar is defined as getc(stdin). Getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs
more slowly than getc, but it takes less space per invocation and its riame can
be passed as an argument to a function.

Getw returns the next word (i.e., integer) from the named input stream. Getw
increments the associated file pointer, if defined, to point to the next word. The
size of a word is the size of an integer and varies from machine to machine.
Getw assumes no special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror (38) should be used to detect getw errors.

WARNING

BUGS

If the integer value returned by getc, getchar, or fgetc is stored into a character
variable and then compared against the integer constant EOF, the comparison
may never succeed, because sign-extension of a character on widening to
integer is machine-dependent.

Because it is implemented as a macro, getc treats incorrectly a stream argu-
ment with side effects. In particular, getc(sf++) does not work sensibly.
Fgetc should be used instead.

Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a
diff'erent processor.

GETCWD(3C)

NAME
getcwd — get path name of current working directory

SYNOPSIS

. char sgetcwd (buf, size)

S char shuf;

AV int size;

DESCRIPTION :
Getcwd returns a pointer to the current directory path name. The value of size
. . must be at least two greater than the length of the path name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
malioc(3C). In this case, the peinter returned by getcwd may be used as the
argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the output of the
pwd(1) command into the specified string space.

EXAMPLE
char *cwd, *getcwd();
if ((cwd = getcwd((char *)NULL, 64)) == NULL) [
perror(*pwd”);
| exit(1);
printf(“%s\n”, cwd);
T SEE ALSO
L malloc(3C), popen(3S)
pwd(1) in the Runtime Systemmanual. ual.
DIAGNOSTICS - - e

Returns NULL with errno set if size is not large enough, or if an error occurs in
a lower-level function.

GETENV(3C)

NAME
getenv — return value for environment name
SYNOPSIS
char sgetenv (name)
char ename;
DESCRIPTION
Getenv searches the environment list [see environ(5)] for a string of the form
name =value, and returns a pointer to the value in the current environment if
such a string is present, otherwise a NULL pointer.
SEE ALSO
exec(2), putenv(3C), environ(S).

GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent — get group file
entry
N SYNOPSIS
() #include <grp.h>
N~ struct group egetgrent ()
struct group sgetgrgid (gid)
int gid;
struct group egetgrnam (name)
char *pame; '
void setgrent ()
void endgrent ()
struct group efgetgrent (f)
FILE +f;
DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an object with the fol-
) lowing structure containing the broken-out fields of a line in the /etc/group filc.
Each line contains a “group” structure, defined in the <grp.h> header file. &
struct group {
char +gr_name; /* the name of the group */
char gr_passwd; /+ the encrypted group password */
int gr_gid; /+ the numerical group ID */
S } char e*gr_mem; /* vector of pointers to member names */
o H .
o~ Getgrent when first called returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so,
successive calls may be used to search the entire file. Getgrgid searches from
the beginning of the file until a numerical group id matching gid is found and
returns a pointer to the particular structure in which it was found. Getgrnam
searches from the beginning of the file until a group name matching name is
found and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.
A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.
Fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of /etc/group.
FILES
/etc/group
SEE ALSO
getlogin(3C), getpwent(3C), group(4).
r DIAGNOSTICS
_/J A NULL pointer is returned on EOF or error.
WARNING
The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard I/0, more than might be expected.
BUGS

All information is contained in a static area, so it must be copied if it is 1o be
saved.

-1-

GETLOGIN(3C)

NAME

getlogin — get login name
SYNOPSIS

char sgetlogin ();
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be
used in conjunction with getpwnam to locate the correct password file entry
when the same user ID is shared by several login names.
If getlogin is called within a process that is not attached to a terminal, it
returns @ NULL pointer. The correct procedure for determining the login name
is to call cuserid, or to call getlogin and if it fails, to call gerpwuid.

FILES
/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS 7 -
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

o
N

GETOPT(3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char s*sargv, *opstring;

extern char soptarg;
extern int optind, opterr;

- DESCRIPTION

Getopt returns the next option letter in argv that matches a letter in optstring.
Optstring is a string of recognized option letters; if a letter is followed by a
colon, the option is expected to have an argument that may or may not be
separated from it by white space. Optarg is set to point to the start of the
option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argu-
ment), getopt returns EOF. . The special option — ~ may be used to delimit the 3
end of the options; EOF will be returned, and — — will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (2)

when it encounters an option letter not included in optstring. This error mes-
sage may be disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options
f and o, both of which require arguments:

main (argc, argv)
int argc;
char *+argv;

int c;

extern char ¢optarg;
extern int optind;

while ((c = getopt(argc, argv, "abf:o:")) != EOF)
switch (c) {

case ‘a":
if (bfig)
errfig++;
else
aflg++;
break;
case 'b"
if (aflg)
errfig++;
else
bproc();
break;
case 'f":

-1-

GETOPT(3C)

ifile = optarg;
break;

case ‘0"
ofile = optarg;
break;

case '7"
errflg++;

if (errflg) {

fprintf(stderr, "usage: . . . ");
exit (2);

for (; optind < argc; optind++) {
if (access(argvloptind], 4)) {

}

SEE ALSO
getopt(1) in the Runtime System manual.

GETPASS(3C)

NAME
getpass — read a password

SYNOPSIS
char egetpass (prompt)
char eprompt;

DESCRIPTION
Getpass reads up to anew-lineor EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling

. echoing, A pointer is returned to a null-lerminated string of at most 8 charac-

ters. If /dev/tty cannot be opened, a NULL pointer is returned. "A'n interrupt
will terminate input and send an interrupt signal to the calling program before
returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.b>, which causes it to increase the size of pro- W
grams not otherwise using standard I/0, more than might be expected. e
BUGS
The return value points to static data whose content is overwritten by each call.

GETPW(3C)

NAME
getpw — get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char ebuf;

DESCRIPTION
Getpw searches the password file for a user id number that equals uid, copies
the line of the password file in which wid was found into the array pointed to
by buf, and returns 0. Getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should
not be used; see getpwent (3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO

getpwent(3C), passwd(4).
DIAGNOSTICS

Get pw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than
might be expected, the size of programs not otherwise using standard 1/0.

NAME

GETPWENT(3C)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get password

file entry

SYNOPSIS
#include <pwd.h>

.
< ; struct passwd sgetpwent ()
struct passwd egetpwuid (uid)
int uid;

struct passwd sgetpwnam (name)
char ename;

vold setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE of;

DESCRIPTION

Getpwent, getpwuid and getpwnam each returns a pointer to anob ject with the
following structure containing the broken-out fields of a line in the /etc/passwd
file. Each line in the file contains a “passwd” structure, declared in the

" <pwd.h> header file:
struct passwd {

char *pw_name;
char epw_passwd,

int pw_uid;

int pw_gid;
- b char spw_age;
N char epw_comment;

char epw_gecos;

char epw_dir;

char spw_shell;

%

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The pw_comment field is unused; the others have meanings described in

passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file. Getpwuid searches from
the beginning of the file until a numerical user id matching uid is found and
returns a pointer to the particular structure in which it was found. Getpwnam
searches from the beginning of 'the file until a login name matching name is
found, and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions rcturn a

NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when

C =y processing is complete.

matches the format of /ete/passwd.

FILES
/etc/passwd

Fgetpwent returns a pointer to the next passwd structure in the stream f, which

GETPWENT(3C)

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).
DIAGNOSTICS
A NULL pointer is returned on EOF or error.
WARNING
The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard 1/0, more than might be expected.
BUGS

All information is contained in a static area, so it must be copied if it is to be
saved.

O

GETS(3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char sgets (s)
char ss;

char sfgets (s, n, stream)
char ss;

int n;

FILE estream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condition is
encountered. The new-line character is discarded and the string is terminated
with a null character.

Fgets reads characters from the stream into the array pointed to by s, until
n—1 characters are read, or a new-line character is read and transferred to s,
or an end-of-file condition is encountered. The string is then terminated with a
null character.

SEE ALSO ’
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned. Otherwise s is returned.

GETUT(3C)

NAME

getutent, getutid, getutline, pututline, setutent, endutent, utmpname — access
utmp file entry

SYNOPSIS

#include <utmp.b>
struct utmp egetutent ()
struct utmp egetutid (id)
struct utmp eid;

struct utmp egetutline (line)
struct utmp eline;

void pututline (utmp)
struct utmp eutmp;

void setutent ()
void endutent ()

void utmpname (file)
char efile;

DESCRIPTION

Getutent, getutid and getutline each return a pointer to a structure of the fol-
lowing type:
struct utmp {

char ut_user[8]; /s User login name */
char ut_id[4]; /+ /etc/inittab id
* (usually line #) »/
char ut_line[12]; /» device name (console,
* Inxx) o/ '
short ut_pid; /+ process id */
short ut_type; /+ type of entry ¢/
struct exit_status {
short e_termination; /+ Process termination status */
short e_exit; /s Process exit status »/
} ut_exit; /+ The exit status of a process
» marked as DEAD_PROCESS. */
time_t ut_time; /+ time entry was made */

Getutent reads in the next entry from a utmp-like file. Ifthe fileis not already
open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the urmp file until it finds
an entry with a ur_type matching id—>ut rype if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id
is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS,
then gerutid will return a pointer to the first entry whose type is one of these
four and whose ur_id field matches id—>ur_id. If the end-of-file is reached
without a match, it fails.

Getutline searches forward from the curcent point in the utmp file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a
ut_line string matching the line—> ut_line string. If the end-of-file is reached
without a match, it fails.

Pututline writes out the supplied urmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututline will have
searched for the proper entry using one of the getur routines. If so, pututline

-1-

FILES

GETUT(3C)

will not search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire file be
examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/ete/utmp to any other file. It is most often expected that this other file will be
/etc/wtmp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. Utmpname does not open the file. It just
closes the old file if it is currently open and saves the new filc name.

/etc/utmp
/etc/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. Each call to either gerurtid
or getutline sees the routine examine the static structure before performing
more /0. If the contents of the static structure match what it is searching for,
it looks no further. For this reason to use getut/ine to search for multiple
occurrences, it would be necessary to zero out the static after each success, or
getutline would just return the same pointer over and over again. There is one
exception to the rule about removing the structure before further reads are
done. The implicit read done by pututline (if it finds that it is not already at
the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just
modified those contents and passed the pointer back to purutline.

These routines use buffered standard 1/0 for input, but purutline uses an
unbufiered non-standard write to avoid race conditions between processes trying
to modify the utmp and wtmp files.

HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY ehsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm
D. It returns a pointer into a hash table indicating the location at which an
entry can be found. Item is a structure of type ENTRY (defined in the
<search.h> header file) containing two pointers: item.key points to the com-
parison key, and item.data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to-
character.) Action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that
the item should be inserted in the table at an appropriate point. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the
return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before
hsearch is used. Nel is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algorithm
in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

NOTES
Hsearch uses open addressing with a multiplicative hash function. However,
its source code has many other options available which the user may select by
compiling the hsearch source with the following symbols defined to the prepro-
Cessor:

h DIV Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR Use a User-Supplied Comparison Routine for ascertaining

table membership. The routine should be named hcompar

and should behave in a mannner similar to strcmp [see
string(3C) 1.

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in ascend-
ing order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging printout
(-DDEBUG) and for including a test driver in the calling routine
(—DDRIVER). The source code should be consulted for further details.

-1-

HSEARCH(3C)

EXAMPLE
The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and
find the matching entry in the hash table and print it out.

& #include <stdio.h>
N

#include <search.h>

struct info { /+ this is the info stored in the table */
int age, room; /¢ other than the key. */

#deﬁne NUM_EMPL 5000 /+ # of elements in search table */
main()

/+ space to store strings */

char string_spacel[NUM_EMPL#20];

/* space to store employee info */
struct info info_spacelNUM_EMPL];
/+ next avail space in string_space */
char estr_ptr = string_space;

/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
/* name to look for in table */

char name_to_find[30];

int i =0,

O /+ create table */

(void) hcreate(NUM_EMPL);

while (scanf("%s%d%d", str_ptr, &info_ptr—>age,
&info_ptr—>room) != EOF && i++ < NUM_EMPL) {
/+ put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;
/+ put item into table */
(void) hsearch(item, ENTER);

i

/+ access table */
item.key = name_to_find;
while (scanf("%s', item.key) '= EOF) {
if ((found item = hsearch(item, FIND)) != NULL) {
/+ if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",
found_ijtem—>key,
((struct info *)found_jtem—>data)—>age,
} ((struct info *)found_jtem—> data)—>room);
else
(void) printf("no such employee %s\n",
name_to_find)

O

HSEARCH(3C)

SEE ALSO

bsearch (3C), Isearch (3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).
DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item could

not be found or the action is ENTER and the table is full.

Hecreate returns zero if it cannot allocate sufficient space for the table.
WARNING

Hsearch and hcreate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

LOCKF(3C)

table of active locks. If this table is full, an [EDEADLK] error is returned
and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource
is put to sleep by accessing another process’s locked resource. Thus calls
to lock or fentl scan for a deadlock prior to sleeping on a locked resource.
An error return is made if sleeping on the locked resource would cause a
deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) com-
mand may be used to provide a timeout facility in applications which
require this facility. L

The lockf utility will fail if one or more of the following are true:

[EBADF]
FYldes is not a valid open descriptor.

[EACCESS]
Cwmd is F_TLOCK or F_TEST and the section is already locked by
another process.

[EDEADLK]
Cmd is F_LOCK or F_TLOCK and a deadlock would occur. Also the
“emd is either of the above or F_ULOCK and the number of entries
in the lock table would exceed the number allocated on the sys-
tem.

SEE ALSO
alarm(2), close(2), creat(2), fentl(2), intro(2), open(2), read(2), write(2).

\ RETURN VALUE
() Upon successful completion, a value of 0 is returned. Otherwise, a value

of -1 is returned and errno is set to indicate the error.

CAVEATS
Unexpected results may occur in processes that do buffering in the user
address space. The process may later read/write data which is/was
locked. The standard I/0 package is the most common source of unex-
pected buffering.

;

LSEARCH(3C)

NAME

Isearch, Ifind - linear search and update

SYNOPSIS

#include <stdio.h>
#include <search.h>

char #*lsearch ((char #*)key, (char #*)base, nelp, sizeof(+key),
compar)

unsigned *nelp;

int (*compar)();

char *Ifind ((char *)key, (char *)base, nelp, sizeof(+*key), com-
par)

unsigned *nelp;

int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algo-
rithm S. It returns a pointer into a table indicating where a datum may
be found. If the datum does not occur, it is added at the end of the table.
Key points to theé datum to be sought in the table. Base points to the
first element in the table. Nelp points to an integer containing the
current number of elements in the table. The variable pointed to by nelp
is incremented if the datum is added to the table. Compar is the name
of the comparison function which the user must supply (stremp, for
example). It is called with two arguments that point to the elements
being compared. The function must return zero if the elements are equal
and non-zero otherwise.

Lfind is the same as Isearch except that if the datum is not found, it is
not added to the table. Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com-
pared.

Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

EXAMPLE

This fragment will read in < TABSIZE strings of length < ELSIZE and
store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int stremp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch(line, (char *)tab, &nel,
ELSIZE, stremp);

O

L3TOL(3C)

NAME
13to], Itol3 - convert between three-byte integers and long integers

SYNOPSIS
void 13tel (Ip, ep, n)
long *Ip;
char *cp;
int n;
void Itol3 (cp, lp, n)
char *cp;
long *lp;
int- n;
DESCRIPTION
Lstol converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by Ip.
Ltols performs the reverse conversion from long integers (Ip) to three-
byte integers (cp).
These functions are useful for file-system maintenance where the block
numbers are three bytes long.
SEE ALSO
. fs(4). . - - -
BUGS

wn

Because of possible differences in byte ordering, the numerical values of bt
the long integers are machine-dependent.

LOCKF(3C)

NAME

lockf - record locking on files

SYNOPSIS

include <unistd.h>

lockf (fildes, function, size) long size; int fildes, function;

DESCRIPTION

The lockf command will allow sections of a file to be locked (advisory
write locks). (Mandatory or enforcement mode record locks are not
currently available.) Locking calls from other processes which attempt to
lock the locked file section will either return an error value or be put to
sleep until the resource becomes unlocked. All the locks for a process are
removed when the process terminates. See fcntl(2) for more information
about record locking.

Fildes is an open file descriptor. The file descriptor must have
O_WRONLY or O_RDWR permission in order to establish lock with this
function call.

Function is a control value which specifies the action to be taken. The
permissible values for function are defined in <unistd.h> as follows:

#define F_ULOCK 0 /#* Unlock a previously locked section */
#define F_LOCK 1 /= Lock a section for exclusive use */

#define F_TLOCK 2 /= Test and lock a section for exclusive use */
#define F_TEST 3 /* Test section for other processes locks */

All other values of function are reserved for future extensions and will
result in an error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the
specified section. F_LOCK and F_TLOCK both lock a section of a file if the
section is available. F_UNLOCK removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The
resource to be locked starts at the current offset in the file and extends
forward for a positive size and backward for a negative size (the preced-
ing bytes up to but not including the current offset). If size is zero, the
section from the current offset through the largest file offset is locked
(i.e., from the current offset through the present or any future end-of-
file). An area need not be allocated to the file in order to be locked, as
such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part,
contain or be contained by a previously locked section for the same pro-
cess. When this occurs, or if adjacent sections occur, the sections are
combined into a single section. If the request requires that a new ele-
ment be added to the table of active locks and this table is already full,
an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the
resource is not available. F_LOCK will cause the calling process to sleep
until the resource is available. F_TLOCK will cause the function to return
a -1 and set errno to [EACCESS] error if the section is already locked by
another process.

F_ULOCK requests may, in whole or in part, release one or more locked
sections controlled by the process. When sections are not fully released,
the remaining sections are still locked by the process. Releasing the
center section of a locked section requires an additional element in the

-1-

LSEARCH(3C)

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both Ilsearch and)find return a
pointer to it. Otherwise, lfind returns NULL and lsearch returns a
C Y pointer to the newly added element.

Undefined results ecan occur if there is not enough room in the table to
add a new item.

MALLOC(3C)

NAME

malloc, free, realloc, calloc — main memory allocator

SYNOPSIS

char smalloc (size)
unsigned size;

void free (ptr)

char sptr;

char srealloc (ptr, size)
char sptr;

unsigned size;

char scalloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, but
its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adjacent free
blocks as it searches. It calls sbrk [see brk(2)] to get more memory from the
system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloc will ask malloc to enlarge
the arena by size bytes and will then move the data to the new space.

Realloc also works if ptr points to a block freed since the last call of malloc,
realloc, or calloc; thus sequences of free, malloc and realloc can exploit the
search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO

brk(2), malloc(3X).

DIAGNOSTICS

NOTE

Malloc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by ptr may be des-
troyed.

Search time increases when many objects have been allocated; that is, if a pro-
gram allocates but never frees, then each successive allocation takes longer.
For an alternate, more flexible implementation, see malloc(3X).

O

NAME

MEMORY (3C)

memccpy, memchr, memcmp, memcpy, memset — memory operations

SYNOPSIS

#include <memory.h>

char smemccpy (sl, s2, ¢, n)
char »sl, *s2;
int ¢, m;

char smemchr (s, ¢, n)
char .ss;

int ¢, n;

int memcmp (sl, s2, n)
char ssl, »s2;

int n;

char smemcpy (sl, s2, n)
char ssl, »s2;

int n;

char smemset (s, c, n)
char ss;

intc;m - - e

DESCRIPTION

NOTE

BUGS

These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do
not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into sl, stopping after the
first occurrence of character c has been copied, or after n characters have been
copied, whichever comes first. It returns a pointer to the character after the
copy of ¢ in sl, or a NULL pointer if ¢ was not found in the first n characters
of s2.

Memchr returns a pointer to the first occurrence of character ¢ in the first n
characters of memory area s, or a NULL pointer if ¢ does not occur.

Memcmp compares its arguments, looking at the first n characters only, and

returns an integer less than, equal to, or greater than 0, according as sl is lexi-
cographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns s1.

Memset sets the first n characters in memory area s to the value of character
c. Itreturnss.

For user convenience, all these functions are declared in the optional
<memory.h> header file.

Memcmp uses native character comparison, which is signed on PDP-11s and
VAX-1ls, unsigned on other machines. Thus the sign of the value returned
when one of the characters has its high-order bit set is implementation-
dependent.

Character movement is performed differently in different implementations.
Thus overiapping moves may yield surprises,

MKTEMP(3C)

NAME
mktemp — make a unique file name

SYNOPSIS
char emktemp (template)
char etemplate;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unique
file name, and returns the address of iemplate. The string in template should
look like a file name with six trailing Xs; mktemp will replace the Xs with a
letter and the current process ID. The letter will be chosen so that the resulting
name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

MONITOR(3C)

NAME
monitor — prepare execution profile
SYNOPSIS
O #include <mon.h>
void monitor (lowpc, highpe, huffer, hufsize, nfunc)

int (elowpc) (), (shigbpc)();
WORD ebufier;
int hufsize, nfunc;

DESCRIPTION
An executable program created by cc —p automatically includes calls for mon-
itor with default parameters; monitor needn’t be called explicitly except to gain
fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of
two functions; buffer is the address of a (user-supplied) array of bufsize
WORDs (defined in the <mon.h> header file). Monitor arranges to record a
histogram of periodically sainpled values of the program counter, and of counts
of calls of certain functions, in the buffer. The lowest address sampled is that
of lowpc and the highest is just below highpc. Lowpc may not equal O for this
- -—= - - use of monitor. At most nfunc call counts can be kept;-only calls of functions
compiled with the profiling option —p of cc(1) are recorded. (The C Library
and Math Library supplied when c¢ —p is used also have call counts recorded.)

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no more than a few times smaller
than the range of locations sampled.

To profile the entire program, it is sufficient to use

O

extern void etextQ;

monitor ((void () 0)2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use
monitor ((void () 0)0, (void (+) 0)0, (word *)0, 0, 0);

Prof (1) can then be used to examine the results.

FILES

mon.out
/lib/small/libp/libc.a
/lib/small/libp/libm.a
/lib/large/libp/libc.a
/lib/large/libp/libm.a
/Tib/huge/libp/libc.a
/lib/huge/libp/libm.a

SEE ALSO
profil(2), end(3C).
cc(1), prof(1) in thée Runime System manual.

C

NLIST(3C)

NAME

nlist — get entries from name list

SYNOPSIS

#include <nlist.h>

int nlist (file-name, nl)
char efile-name;
struct nlist enl;

DESCRIPTION

NOTES

Nlist examines the name list in the executable file whose name is pointed to by
file-name, and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list n/ consists of an array of struc-
tures containing names of variables, types and values. The list is terminated
with a null name; that is, a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the next two fields. The
type field will be set to O unless the file was compiled with the —g option. If
the name is not found, both entries are set to 0. See a.our(4) for a discussion
of the symbol table stiuctiire.

This function is useful for examining the system name list kept in the file
/unix. In this way programs can obtain system addresses that are up to date.

The <nlist.h> header file is automatically included by <a.out.h> for compa-
tability. However, if the only information needed from <a.out.h> is for use of
nlist, then including <a.out.h> is discouraged. If <a.out.h> is included, the
line “#undef n_name™ may need to follow it.

SEE ALSO

a.out(4).

DIAGNOSTICS

All value entries are set to 0 if the file cannot be read or if it does not contain a
valid name list.

Nlist returns —1 upon error; otherwise it returns 0.

PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr — system error messages

SYNOPSIS
void perror (s)

O char ss;
' extern int errno;

extern char esys_errlistl }
extern int sys_nerr;

DESCRIPTION

Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
string s is printed first, then a colon and a blank, then the message and a new-
line. To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external
variable errno, which is set when errors occur but not cleared when non-
erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index in this table to get the

— — Tnessage string without-the-new-line.- Sys-nerr -is the largest message number
provided for in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2).

O

O

POPEN(3S)

NAME

popen, pclose — initiate pipe to/from a process

SYNOPSIS

#include <stdio.h>

FILE *popen (command, type)
char ecommand, etype;

int pclose (stream)
FILE estream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing,
respectively, a shell command line and an I/0 mode, either r for reading or w
for writing. Popen creates a pipe between the calling program and the com-
mand to be executed. The value returned is a stream pointer such that one can
write to the standard input of the command, if the I/O mode is w, by writing to
the file stream; and one can read from the standard output of the command, if
the I/0 mode is r, by reading from the file stream.

A stream openéd by popen shoild be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter
and a type w as an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if the
shell cannot be accessed.

Pclose returns —1 if stream isnot associated with a “popened” command.

If the original and “popened” processes concurrently read or write a common
file, neither should use buffered I/0, because the buffering gets all. mixed up.
Problems with an output filter may be forestalled by careful buffer flushing,e.g.,
with flush; see fclose(38S).

PRINTF(3S)

NAME
printf, fprintf, sprintf — print formatted output
SYNOPSIS
#include <stdio.h>
m int printf (format [, arg] ...)
_ char <format;

int fprintf (stream, format [, arg] ...)
FILE estream;
char *format;

int sprintf (s, format [, arg] ...)
char +s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places out-
put on the named output stream. Sprintf places “output,” followed by the null
character (\0), in consecutive bytes starting at =s; it is the user’s responsibility
to ensure that enough storage is available. Each function returns the number
of characters transmitted (not including the \0 in the case of sprintf), or a
negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of
the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

O Bach conversion specification is introduced by the character %. After the %,

the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag ‘—*, described
below, has been given) to the field width. If the field width for an s
conversion is preceded by a 0, the string is right adjusted with zero-
padding on the left.

A precision that gives the minimum number of digits to appear for the
d, o, u, x, or X conversions, the number of digits to appear after the
decimal point for the e and f conversions, the maximum number of
significant digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a null
digit string is treated as zero.

An optional I (ell) specifying that a following d, o, u, X, or X conver-
sion character applies to a long integer arg. A [before any other
conversion character is ignored.

C A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (s) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the conversion letter is seen,
so the args specifying field width or precision must appear before the arg (if
any) to be converted.

PRINTF(3S)

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.
The r)esult of a signed conversion will always begin with a sign (+
or =).

If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an *“alternate
form.” For ¢, d, s, and u conversions, the flag has no effect. For o
conversion, it increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non-zero result will
have 0x or 0X prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result (which they nor-
mally are).

The conversion characters and their meanings are:

d,0,u,x,x

e,E

86

The integer arg is converted to signed decimal, unsigned octal,
decimal, or hexadecimal notation (x and X), respectively; the letters
abcdef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility
with older versions, padding with leading zeroes may alternatively
be specified by prepending a zero to the field width. This does not
imply an octal value for the field width.) The default precision is 1.
The result of converting a zero value with a precision of zero is a
null string.

The float or double arg is converted to decimal notation in the style
“[-]ddd.ddd,” where the number of digits after the decimal point
is equal to the precision specification. If the precision is missing, six
digits are output; if the precision is explicitly 0, no decimal point
appears.

The float or double arg is converted in the style “[—]d.ddde+dd,”
where there is one digit before the decimal point and the number of
digits after it is equal to the precision; when the precision is miss-
ing, six digits are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with E instead
of e introducing the exponent. The exponent always contains at
least two digits.

The float or double arg is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number
of significant digits. The style used depends on the value converted:
style e will be used only if the exponent resulting from the conver-
sion is less than —4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is
followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters
from the string are printed until a null character (\0) is encoun-
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character are printed.
A NULL value for arg will yield undefined results.

-2

PRINTF(3S)

%o Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a

field; if the result of a conversion is wider than the field width, the field

is simply expanded to contain the conversion result. Characters gen-
C \\ erated by printf and fprintf are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form “Sunday, July 38, 10:02,” where week-
day and month are pointers to null-terminated strings:

printf(" %s, %s %d, %d:%.2d", weekday, month, day, hour, min);
To print = to 5 decimal places:
printf(" pi = %.5f", 4 * atan(1.0));

SEE ALSO
ecvt(3C), pute(3S), scanf(3S), stdio(3S).

PUTC(3S)

NAME
pute, putchar, fpute, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int pute (¢, stream)
int c;

FILE #*stream;

int putchar (c)

int c;

int fpute (c, stream)
int c;

FILE *stream;

int putw (w, stream)
int w;

FILE *stream;

DESCRIPTION
Putc writes the character ¢ onto the output stream (at the position where
the file pointer, if defined, is pointing). Putchar(c) is defined as putc(c,
stdout). Putc and putchar are macros.

Fputc behaves like putc, but is a function rather than a macro. Fpuic
runs more slowly than putc, but it takes less space per invocation and its
name can be passed as an argument to a function.

Putw writes the word (i.e., integer) w to the output stream (at the posi-
tion at which the file pointer, if defined, is pointing). The size of a word
is the size of an integer and varies from machine to machine. Putw nei-
ther assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr,
are by default buffered if the output refers to a file and line-buffered if
the output refers to a terminal. The standard error output stream stder»
is by default unbuffered, but use of frreopen [see fopen(3S)] will cause it
to become buffered or line-buffered. When an output stream is unbuf-
fered, information is queued for writing on the destination file or termi-
nal as soon as written; when it is buffered, many characters are saved up
and written as a block. When it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line is com-
pleted (that is, as soon as a new-line character is written or terminal
input is requested). Setbuf(3S) or Setbuf(3S) may be used to change the
stream’s buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS
On success, putc, fputc, and putchar each return the value they have writ-
ten. On failure, they return the constant EOF. This will occur if the file
stream is not open for writing or if the output file cannot be grown.
Putw returns nonzero when an error has occured, otherwise zero.

BUGS
Because it is implemented as a macro, putc treats incorrectly a stream
argument with side effects. In particular, pute(e, *f++); doesn’t work
sensibly. F'putc should be used instead.
Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

c

PUTENV(3C)

NAME
putenv — change or add value to environment

SYNOPSIS
int putenv (string)
char sstring;

DESCRIPTION
String points to a string of the form “name=value.” Putenv makes the value
of the environment variable name equal to value by altering an existing vari-
able or creating a new one. In either case, the string pointed to by string
becoines part of the environ ment, so altering the string will change the environ-
ment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via malloc for
an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc (3C), environ(5).

WARNINGS _
Pritenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp (the third argument to main) is not
changed.

This routine uses malloc(3C) to enlarge the environment.

After putenv is called, environmental variables are not in alphabetical order.

A potential error is to call putenv with an automatic variable as the argument,
then exit the calling function while string is still part of the environment.

PUTPWENT(3C)

NAME
putpwent — write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p,)
struct passwd ep;
FILE ef;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a pointer to a passwd struc-
ture created by getpwent (or getpwuid or getpwnam), putpwent writes a line on
the stream f, which matches the format of /ete/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, other-
wise zero.

SEE ALSO
getpwent(3C).

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of pro-
grams, not otherwise using standard I/0, more than might be expected.

PUTS(3S)

[NAME
| puts, fputs — put a string on a stream

| SYNOPSIS
#include <stdio.h>

int puts (s)
char ses;

®

int fputs (s, stream)
char ss;
FILE estream;
DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line
character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.
Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write

on a file that has not been opened for writing,

SEE ALSO
ferror(3S), fopen(3S), fread (3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while fputs does not.

O

®

QSORT(3C)

NAME
gsort — quicker sort

SYNOPSIS
void gsort ((char *) hase, nel, sizeof (shase), compar)
unsigned nel;
int (scompar)();

DESCRIPTION
QOsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Base points to the element at the base of the table. NVel is the number of ele-
ments in the table. Compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. As the
function must return an integer less than, equal to, or greater than zero, so
must the first argument to be considered be less than, equal to, or greater than
the second.

NOTES
The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO o
bsearch(3C), Isearch(3C), string(3C).
sort(1) in the UNLX System V User Reference Manual.

WARNING
The total size of the table (nel x sizeof(*base)) must be less than 65536 in
small and large model programs.

RAND(3C)

NAME
rand, srand — simple random-number generator
SYNOPSIS
int rand ()
(_\, void srand (seed)
N unsigned seed;
DESCRIPTION

Rand uses a multiplicative congruential random-number generator with period
215 that returns successive pseudo-random numbers in the range from 0 to
25—, e .
Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

NOTE

The spectral properties of rand leave a great deal to be desired. Drand48(3C)
provides a much better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

SCANF(3S)

NAME
scanf, fscanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...)
char eformat;

int fscanf (stream, format [, pointer] ...)
FILE estream;
char eformat;

int sscanf (s, format [, pointer] ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each function
reads characters, interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control string format
described below, and a sét of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional assign-
ment suppressing character e, an optional numerical maximum field width,
an optional 1 (ell) or h indicating the size of the receiving variable, and a
conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by . The suppression of assignment pro-
vides a way of describing an input field which is to be skipped. An input field
is defined as a string of non-space characters; it extends to the next inappropri-
ate character or until the field width, if specified, is exhausted. For all descrip-
tors except “[” and “c”, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion codes

are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an
integer pointer.

u an unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

X a hexadecimal integer is expected; the corresponding argument should

be an integer pointer.
ef,g a floating point number is expected; the next field is converted accord-
ingly and stored through the corresponding argument, which should be
a pointer to a floar. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a decimal point,
-1-

SCANF(3S)

followed by an optional exponent field consisting of an E or an e, fol-
lowed by an optiorial +, —, or space, followed by an integer.

5 a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added automati-
cally. The input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a char-
acter pointer. The normal skip over white space is suppressed in this
case; to read the next non-space character, use %1s. If a field width is
given, the corresponding argument should refer to a character array,
the indicated number of characters is read. o

{ indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which
we will call the scanset, and a right bracket; the input field is the max-
imal sequence of input characters consisting entirely of characters in
the scanset. The circumflex ("), when it appears as the first character
in the scanset, serves as a complement operator and redefines the scan-
set as the set of all characters not contained in the remainder of the
scanset string. There are some conventions used in the construction of
the scanset. A range of characters may be represented by the con-

- struct first—last, thus [0123456789] may be expressed [0—9]. Using
this convention, first must be lexically less than or equal to /ast, or else
the dash will stand for itself. The dash will also stand for itself when-
ever it is the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and
in this case it will not be syntactically interpreted as the closing
bracket. The corresponding argument must point to a character array
large enough to hold the data field and the terminating \0, which will
be added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, 0, and x may be preceded by 1 or b to indicate
that a pointer to long or to shert rather than to int is in the argument list.
Similarly, the conversion characters e, f, and g may be preceded by I to indicate
that a pointer to double rather than to float is in the argument list. The lor h
maodifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input stream.:

Scanf returns the number of successfully matched and assigned input items;
this number can be zero in the event of an early conflict between an input char-
acter and the control string. If the input ends before the first conflict or
conversion, EOF is returned.

EXAMPLES

The call:

int i, n; float x; char namel50];

n = scanf ("%d%f%s", &i, &x, name);
with the input line:

25 54.32E—1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name
will contain thompson\0. Or;

int i; float x; char namel50];
(void) scanf("%2d%f%+*d %[0—91", &i, &x, name);

-2-

»
(A

SCANF(3S)

with input:
56789 0123 56a72
will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to getchar [see getc(3S)] will return a.
SEE ALSO
getc(3S), printf(3S), strtod(3C), strtol(3C).
NOTE

Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or
illegal data items.

BUGS

The success of literal matches and suppressed assignments is not directly deter-
minable.

O

SETBUF(3S)

NAME
setbuf, setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.b>

void setbuf (stream, buf)
FILE estream;
char ebuf;
int setvbuf (stream, buf, type, size)
FILE estream;
char ebof;
int type, size;
DESCRIPTION
Setbuf may be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer input/output will be
completely unbuffered.

A constant BUFSIZ, defined in the <stdio.b> header file, tells how big an
array is needed:

char buf{BUFSIZ]; . o L _
Setvbuf may be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

i
w

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed
when a new-line is written, the buffer is full, or input is
requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buff'ering,
instead of an automatically allocated buffer. Size specifies the size of the
buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as a good
buffer size. If input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line-buffered and all other input/output is
fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbu f returns a non-zero value.

Otherwise, the value returned will be zero.

NOTE
A common source of error is allocating buffer space as an “automatic” variabie

in a code block, and then failing to close the stream in the same block.

SETJMP(3C)

NAME
setjmp, longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in
a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_buf, is defined in
the <setjmp.h> header file) for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the cofresponding call of setjmp (which must not itself have
returned in the interim) had just returned the value val. Longjmp cannot
cause setjmp to return the value 0. If longjmp is invoked with a second argu-
ment of 0, setjmp will return 1. All accessible data had values as of the time
longjmp was called.

SEE ALSO
signai(2).

WARNING
If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function which has since returned, absolute
chaos is guaranteed.

SLEEP(3C)

i NAME
‘ sleep — suspend execution for interval
‘ SYNOPSIS
unsigned sleep (seconds)
| (‘\ unsigned seconds;
NG DESCRIPTION

The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: (1) Because scheduled wakeups occur at fixed 1-
second ‘intervals, (on the second, according to -an internal -clock) -and- (2)
because any caught signal will terminate the sleep following execution of that
signal’s catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the
system. The value returned by sleep will be the *“unslept” amount (the
requested time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or premature
arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or

some other signal) occurs. The previous state of the alarm signal is saved and

.- . -restored.. The calling program may have set up an alarm signal before calling

sleep. If the sleep time exceeds the time till such alarm signal, the process

: sleeps only until the alarm signal would have occurred. The caller’s alarm

i catch routine is executed just before the sleep routine returns. But if the sleep

i time is less than the time till such alarm, the prior alarm time is reset to go off
; at the same time it would have without the intervening sleep.

| SEE ALSO
| / alarm(2), pause(2), signal(2).

®

SSIGNAL(3C)

NAME
ssignal, gsignal — software signals

SYNOPSIS
#include <signal.h>

int (essignal (sig, action))()
int sig, (saction) ();
int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to signa/(2). This
facility is used by the Standard C Library to enable users to indicate the dispo-
sition of error conditions, and is also made available to users for their own pur-
poses.

Software signals made available to users are associated with integers in the
inclusive range 1 through 15. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to gsig-
nal. Raising a software signal causes the action established for that signal to
be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it
is either the name of a (user-defined) action function or one of the manifest
constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal returns the action
previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset
to SIG_DFL and the action function is entered with argument sig. Gsig-
nal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no
other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig, gsignal
returns the value O and takes no other action.

SEE ALSO
signal(2).

NOTES
There are some additional signals with numbers outside the range 1 through 15
which are used by the Standard C Library to indicate error conditions. Thus,
some signal numbers outside the range 1 through 15 are legal, although their
use may interfere with the operation of the Standard C Library.

STDIO(3S)

NAME
stdio — standard buffered input/output package

SYNOPSIS
#include <stdio.b>

O FILE estdin, *stdout, estderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute
an efficient, user-level 1/0 buffering scheme. The in-line macros getc(3S) and
putc(3S) handle characters quickly. The macros getchar and putchar, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite,
gets, getw, printf, puts, putw, and scanf all use or act as if they use gere and
putc; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen(3S) creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio.h> header file and associated with the standard open files:

stdin standard input file
.- stdout . standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (—1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions for

details).
O An integer constant BUFSIZ specifies the size of the buffers used by the partic-
ular implementation.

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this
manual are declared in that header file and need no further declaration. The
constants and the following “functions” are implemented as macros (redeclara-
tion of these names is perilous): getc, getchar, putc, putchar, ferror, feof,
clearerr, and fileno.

SEE ALSO
open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid (3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S),
gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system (3S), tmpfile (3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

O

STDIPC(3C)

NAME

ftok — standard interprocess communication package

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char spath;
char id;

DESCRIPTION

All interprocess communication facilities require the user to supply a key to be
used by the msgget(2), semget(2), and shmget (2) system calls to obtain inter-
process communication identifiers. One suggested method for forming a key is
to use the frok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining
portion as a sequence number. There are many other ways to form keys, but it
is necessary for each system to define standards for forming them. If some
standard is not adhered to, it will be possible for unrelated processes to uninten-
tionally interfere with each other’s operation. Therefore, it is strongly sug-
gested that the most significant byte of a key in some sense refer to a project so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Path must be the path name of an existing
file that is accessible to the process. /d is a character which uniquely identifies
a project. Note that frok will return the same key for linked files when called
with the same id and that it will return different keys when called with the
same file name but different ids.

SEE ALSO

intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS

Ftok returns (key_t) —1 if path does not exist or if it is not accessible to the
process.

WARNING

If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did
the original time it was called.

/.
\ U

NAME

STRING(3C)

strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok — string operations

SYNOPSIS

#include <string.h>

char estrcat (sl, s2)
char esl, es2;

char estrncat (sl, s2, n)
char esl, *s2;

int n;

int strcmp (sl1, s2)

char esl, s2;

int strncmp (sl, s2, n)
char esl, *s2;

int n;

char estrcpy (s, s2)
char esl, es2;

char estrncpy (sl, s2, n)
char esl, es2;

int n;

int strlen (s)

char es;

char estrcbr (s, c)
char es;

int c;

char estrrchr (s, c)
char ss;

int c;

char estrpbrk (sl, s2)
char esl, es2;

int strspn (sl, s2)
char esl, *s2;

int strcspn (s, s2)
char esl, s2;

char estrtok (sl, s2)
char esl, es2;

DESCRIPTION

The arguments sl, s2 arid s point to strings (arrays of characters terminated by
a null character). The functions strcat, strncat, strcpy, and strncpy all alter
sl. These functions do not check for overflow of the array pointed to by sl.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at
most n characters. Each returns a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as sl is lexicographically less than, equal to, or
greater than s2. Strncmp makes the same comparison but looks at most n
characters.

Strepy copies string s2 to sl, stopping after the null character has been copied.
Strncpy copies exactly n characters, truncating s2 or adding null characters to
sl if necessary. The result will not be null-terminated if the length of s2 is n

S1-

STRING(3C)

NOTE

BUGS

or more. Each function returns s1.

Strlen returns the number of characters in s, not including the terminating null
character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢
in string s, or a NULL pointer if ¢ does not occur in the string. The null char-
acter terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string st of any character
from string s2, or a NULL pointer if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence ef zere er more text
tokens separated by spans of one or more characters from the separator string
s2. The first call (with pointer s1 specified) returns a pointer to the first char-
acter of the first token, and will have written a null character into s1 immedi-
ately following the returned token. The function keeps track of its position in
the string between separate calls, so that subsequent calls (which must be made
with the first argument a NULL pointer) will work through the string sl
immediately following that token. In this way subsequent calls will work
through the string s1 until no tokens remain. The separator string s2 may be
different from call to call. When no token remains in s1, a NULL pointer is
returned.

For user convenience, all these functions are declared in the optional
<string.h> header file.

Stremp and strncmp use native character comparison, which is signed on PDP-
11s and VAX-1ls, unsigned on other machines. Thus the sign of the value
returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

-
»

STRTOD(3C)

NAME
strtod, atof — convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char estr, eeptr;
double atof (str)
char sstr;

DESCRIPTION

" Strtod ‘returns as a double-precision floating-point number the value
represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.
Strtod recognizes an optional string of “white-space™ characters [as defined by
isspace in ctype (3C)], then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optianal sign
or space, followed by an integer.
If the value of ptr is not (char **)NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no number can be
formed, *ptr is set to str, and zero is returned.

" Atofistr) is equivalent to strtod(str, (char *NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, +HUGE is returned (according to the
sign of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.

STRTOL(3C)

NAME

strtol, atol, atoi — convert string to integer

SYNOPSIS

long strtol (str, ptr, base)
char sstr, eeptr;
int base;

long atol (str)
char sstr;

int atoi (str)
char sstr;

DESCRIPTION

Strtol returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent
with the base. Leading “white-space” characters [as defined by isspace in
ctype (3C)] are ignored.

If the value of ptr is not (char +)NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conver-
sion. After an optional leading sign, leading zeros are ignored, and “Ox™ or
“0X” is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional
leading sign a leading zero indicates octal conversion, and a leading “Ox” or
“0X" hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

Atol(str) is equivalent to strtol(str, (char «s)NULL, 10).
Atoi(str) is equivalent to (int) streol(str, (char ++)NULL, 10).

SEE ALSO

BUGS

ctype(3C), scanf(3S), strtod(3C).

Overflow conditions are ignored.

N

RN

(5

SWAB(3C)

NAME
swab — swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char ¢from, sto;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by to,
- exchanging adjacent- even and odd bytes. It is useful for carrying binary-data
between PDP-1ls and other machines. Nbytes should be even and non-
negative. If nbytes is odd and positive swab uses nbyres—1 instead. If nbytes is
negative, swab does nothing.

SYSTEM(3S)

NAME
system — issue a shell command
SYNOPSIS
#include <stdio.h>
int system (string)
char sestring;
DESCRIPTION
System causes the string to be given to sh(1) as input, as if the string had
been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
ex

sh(l) in the Runtime System manual.

DIAGNOSTICS
System forks to create a child process that in turn exec’s /bin/sh in order to
execute string. If the fork or exec fails, system returns a negative value and
sets errno.

TMPFILE(3S)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.b>

FILE etmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by tmpnam (3S), and
returns a corresponding FILE pointer. If the file cannot be opened, an error
‘message is-printed-using-perror(3C),-and a NULL pointer is returned. The file
will automatically be deleted when the process using it terminates. The file is
opened for update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S).

TMPNAM(3S)

NAME

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char stmpnam (s)
char ss;

char stempnam (dir, pfx)
char sdir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary
file.

Tmpnam always generates a file name using the path-prefix defined as
P_tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result
in an internal static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed
to be the address of an array of at least L_tmpnam bytes, where L_tmpnam is a
constant defined in <stdio.h>; tmpnam places its result in that array and
returns s.

Tempnam allows the user to control the choice of a directory. The argument
dir points to the name of the directory in which the file is to be created. If dir
is NULL or points to a string which is not a name for an appropriate directory,
the path-prefix defined as P_tmpdir in the <stdio.h> header file is used. If
that directory is not accessible, /tmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable TMPDIR in
the user’s environment, whose value is the name of the desired temporary-file
directory.

Many applications prefer their temporary files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argument
may be NULL or point to a string of up to five characters to be used as the first
few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from tempnam
may serve as an argument to free [see malloc(3C)). If tempnam cannot return
the expected result for any reason, i.e., malloc(3C) failed, or none of the above
mentioned attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are tem-
porary only in the sense that they reside in a directory intended for temporary
use, and their names are unique. It is the user’s responsibility to use unlink (2)
to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start
recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen
if that other process is using these functions or mktemp, and the file names are
chosen so as to render duplication by other means unlikely.

S1-

.

TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS
#include <search.b>

char stsearch ((char *) key, (char **) rootp, compar)
int (scompar) ();

char stfind ((char ¢) key, (char *+) rootp, compar)
int (scompar)();

char stdelete ((char *) Key, (char *¢+) rootp, compar)
int (scompar) ();

void twalk ((char ¢) root, action)
void (eaction)();

DESCRIPTION

Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All com-
parisons are done with a user-supplied routine. This routine is called with two
arguments, the pointers to the elements being compared. It returns an integer
less than, equal to, or greater than 0, according to whether the first argument is [fé;]
to be considered less than, equal to or greater than the second argument. The A8
comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to *key (the value
pointed to by key), a pointer to this found datum is returned. Otherwise, *key
is inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data. Rootp points to a variable that points to the root
of the tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which
will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, zfind will return a NULL pointer. The
arguments for 2find are the same as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same
as for tsearch. The variable pointed to by rootp will be changed if the deleted
node was the root of the tree. Tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below that
node.) Action is the name of a routine to be invoked at each node. This rou-
tine is, in turn, called with three arguments. The first argument is the address
of the nodc being visited. The second argument is a value from an enumeration
data type typedef enum { preorder, postorder, endorder, leaf } VISIT; (defined
in the <search.h> header file), depending on whether this is the first, second
or third time that the node has been visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-
element, and cast to type pointer-to-character. Similarly, although declared as
type pointer-to-character, the value returned should be cast into type pointer-
to-element.

TSEARCH(3C)

EXAMPLE
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the
stored strings and their lengths in alphabetical order.

#tinclude <search.h>
#include <stdio.h>

struct node | /* pointers to these are stored in the tree */
char »string;
int length;

char string_spacel 10000} /* space to store strings */
struct node nodes[500]; /+ nodes to store */
struct node *root = NULL; /* this points to the root */

main()

char sstrptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {

/* set node */

nodeptr— >string = strptr;

nodeptr— >length = strlen (strptr);

/* put node into the tree */

(void) tsearch((char *)nodeptr, &root,
node_compare);

/# adjust pointers, so we don’t overwrite tree */

strptr += nodeptr—>length + 1;

nodeptr++;

twalk(root, print_node);

)

/*
This routine compares two nodgs, based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)
struct node *nodel, *node2;

return strcmp(nodel —>string, node2—>string);
This routine prints out a node, the first time

twalk encounters it.
*/

@

-

SEE ALSO

TSEARCH(3C)

void

print_node(node, order, level)
struct node **node;

VISIT order;

int level;
if (order == preorder il order == leaf;) {
(void)printf("string = %20s, length = %d\n",
(*node)—>string, (*node)—>length);
}

bséarch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS

WARNINGS o) :

BUGS

A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.))

A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on
entry.

If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

The root argument totwalk is one level of indirection less than the rootp argu-
ments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are
visited. Tsearch uses preorder, postorder and endorder to respectively refer to
visting a node before any of its children, after its left child and before its right,
and after both its children. The alternate nomenclature uses preorder, inorder
and postorder to refer to the same visits, which could result in some confusion
over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictablé.

TTYNAME(3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char sttyname (fildes)
int fildes;
int isatty (fildes)
int fildes;
DESCRIPTION
Ttyname returns a pointer to a string containing the null-terminated path name
of the terminal device associated with file descriptor fildes.
Isatty returns | if fildes is associated with a terminal device, 0 otherwise.

FILES
/dev/s
DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device
in directory /dev.
BUGS _
The return value points to static data whose content is overwritten by each call.

TTYSLOT(3C)

NAME
ttysiot — find the slot iri the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
Ttyslot returns the index of the current user’s entry in the /etc/utmp file. This
is accomplished by actually scanning the file /etc/inittab for the name of the
terminal associated with the standard input, the standard output, or the error
output (0, 1 or 2).

'FILES

/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of O is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a termi

nal device.

¢
o

UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int ¢;
FILE sstream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an irnput stream.
That character, ¢, will be returned by the next getc(3S) call on that stream.
Ungetc returns ¢, and leaves the file stréam unchanged.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered. In the case that
stream is stdin, one character may be pushed back onto the buffer without a
previous read statement.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.
Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek (3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

s

S

NAME

VPRINTF(3S)

vprintf, vfprintf, vsprintf — print formatted output of a varargs argument list

SYNOPSIS

#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)

char *format;

va_list ap;

int vfprintf (stream, format, ap) ..
FILE estream;

char *format;

va_list ap;

int vsprintf (s, format, ap)

char s, *format;

va_list ap;

DESCRIPTION

EXAMPLE

vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of argu-]

ments, they are called with an argument list as defined by varargs(5). oo

The following demonstrates how vfprintf could be used to write an error rou-
tine.

#include <stdio.h>
#include <varargs.h>

/e

* error should be called like

» error(function_name, format, argl, arg2...);
o/

/*VARARGSO0¢/

void

error(va_alist)

/+ Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
o/

va dcl

va_list args;
char «mt;

va_start (args);
/+ print out name of function causing error ¢/
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va_arg(args, char);
/e print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
| (void)abort();.

SEE ALSO

vprintf(3X), varargs(5).

TABLE OF CONTENTS OF MATH SUBROUTINES

3M. Math Subroutines and Libraries

Bessel functions

bessel

efl error function and complementary error function

exp exponential, logarithm, power, square root functions

floor. floor, ceiling, remainder absolute value functions
K“. gamma log gamma function
{ N hypot. Fuclidean distance function
e matherr. ermor-handling function

sinh hyperbolic functions

trig trigonometric functions

N

()

N

O

NAME

BESSEL(3M)

j0, jl1, jn, yO, y1, yn — Bessel functions

SYNOPSIS

#include <math.h>

double j0 (%)
double x;

double j1 (x)
double x;
double jn (n, x)
int n;

double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION

JO and ;I return Bessel functions of x of the first kind of orders O and 1
respectively. Jnreturns the Bessel function of x of the first kind of order A.

Y0 and yJ return Bessel functions of x of the second kind of orders 0 @nd I
respectively. Yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

DIAGNOSTICS

Non-positive arguments cause y0, y! and yn to return the value ~HUGE and to
set errno to EDOM. In addition, a message indicating DOMAIN error is printed
on the standard error output.

Arguments too large in magnitude cause jO, jI, y0 and y! to return zero and to
set errno to ERANGE. In addition, a message indicating TLOSS error is printed
on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO

matherr (3M).

oty
=

ERF(3M)

NAME
erf, erfc — error function and complementary error function

SYNOPSIS
#ioclude <math.b>

double erf (x)

double x;
double erfc (x)
double x;
DESCRIPTION) x .
Erf returns the error function of x, defined as —fe"’ dt.
T

Erfc, which returns 1.0 — erf(x), is provided because of the extreme loss of
relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

EXP(3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logarithin, power, square root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double. log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns e”,

Log returns the natural logarithm of x. The value of x must be positive.
Logi0 returns the logarithm base ten of x. The value of x must be positive.

&

Pow returns x°. If x is zero, ¥ must be positive. If x is negative, y must be
an integer.

Sgrt returns the non-negative square root of x. The value of x may not be
negative.

DIAGNOSTICS
/ Exp returns HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and sets errno to ERANGE.

Log and logl0 return —HUGE and set errno to EDOM when x is non-positive.
A message indicating DOMAIN error (or SING error when x is 0) is printed on
the standard error output.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases a message indicating
DOMAIN error is printed on the standard error output. When the correct value
for pow would overflow or underflow, pow returns *HUGE or O respectively,
and sets errno to ERANGE.

Sgrt returns 0 and sets errno to EDOM when x is negative. A message indicat-
ing DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

O

FLOOR(3M)

NAME
floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value functions

SYNOPSIS
#ioclude <matb.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;
double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater

than x.
Ceil returns the smallest integer not less than x,

Fmod returns the floating-point remainder of the division of ¥ by y: zero if y
is zero or if x/y would overflow; otherwise the number f with the same sign as
x, such that x = iy + f for some integer i, and |f| < |¥|.

Fabs returns the absolute value of x, |x|

SEE ALSO
abs(3C).

@

~ DESCRIPTION

GAMMA(3M)

NAME
gamma — log gamma f{unction

SYNOPSIS
#include <math.h>
double gamma (x)
double x;
extern int signgam;
Gamma returus In(lI‘(x)|), wheré T'(x) is défined as '_r'e-'t""'"'dt. "The -
0
sign of I'(x) is returned in the external integer signgam. The argument x
may not be a non-positive integer.
The following C program fragment might be used to calculate I':

if ((y = gamma(x)) > LN_MAXDOUBLE)
error();
y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes exp(3M) to return a
_ range error, and is defined in the <values.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating SING error is printed on the standard error out-
put.

If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO)
exp(3M), matherr(3M), values(5).

HYPOT(3M)

NAME

hypot — Euclidean distance function
SYNOPSIS

#include <math.h>

double hypot (x, y)

double x, y;

DESCRIPTION
Hypot returns
sgri(x e x +y * ¥),
taking precautions against unwarranted overflows.
DIAGNOSTICS

When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures
matherr(3M).

SEE ALSO
matherr(3M).

may be changed with the function

Y
' &

MATHERR(3M)

NAME
matherr — error-handling function

SYNOPSIS
#tinclude <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected.
Users may define their own procedures for handling errors, by including a func-
tion named matherr in their programs. Matherr must be of the form described
above. When an error occurs, a pointer to the exception structure x will be
passed to the user-supplied matherr function. This structure, which is defined
in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
| double argl, arg2, retval;
. The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables arg! and arg2 are the arguments with which
the function was invoked. Retval is set to the default value that will be
returned by the function unless the user’s matherr sets it to a different value.

If the user’s matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, errno is set
to EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;

switch (x—>type) {
case DOMAIN:
/* change sgrt to return sqrt(—argl), not 0 »/
if (strcmp(x—>name, “sqrt")) {
x—>retval = sqrt(—x—>argl);
return (0); /* print message and set errno */

MATHERR(3M)

case SING:
/+ all other domain or sing errors, print message and abort */
fprintf(stderr, "domain error in %s\n", x—>name);
abort();
case PLOSS:
/+ print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n",
x—>name, x—>argl, x—>retval);
return (1); /* take no other action */

return (0); /+ all other errors, execute default procedure */

)
DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type DOMAIN | SING | OVERFLOW | UNDERFLOW TLOSS PLOSS
errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE
BESSEL:! - - - - M, 0 .
¥0, y1, yn (arg £ 0) M, —H - - - - -
EXP: - - H 0 - -
LOG, LOG10:
(arg < 0) M, -H - - - - -
(arg = 0) - M, =H - - - -
POW: - - zH 0 - -
neg ** non-int M, 0 - - - - -
0 e non-pos
SQRT: M, 0 - - - - -
GAMMA: - M,H H - - —
HYPOT: - - H - - -
SINH: - - +H - - -
COSH. - - H - - -
SIN, COS, TAN: - - - - M, 0 .
ASIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS
4 As much as possible of the value is returned.
M Message is printed (EDOM erron).
H HUGE is returned.
—H —HUGE is returned.
+H HUGE or —HUGE is returned.
0 0 is returned.

SINH(3M)

NAME
sinh, cosh, tanh — hyperbolic functions
SYNOPSIS
f#tinclude <math.h>
double sinh (x)
double x;
double cosh (x)
. double x;
double tanh (x)
double x;
DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and
tangent of their argument.
DIAGNOSTICS
Sink and cosh return HUGE (and sinh may return —HUGE for negative x)
when the correct value would overflow and set errno to ERANGE.
These error-handling procedures may be changed with the function
" matherr (3M),

SEE ALSO
matherr(3M).

TRIG(3M)

NAME

sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS

#include <matb.h>
double sin (x)

double x;
double cos (x)
double x;
double tan (x)
double x;
double asin (x)
double x;
double acos (%)
double x;
double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of their argu-
ment, x, measured in radians.

Asin returns the arcsine of x, in the range —=/2 to =/2.
Acos returns the arccosine of x, in the range 0 to =.
Atan returns the arctangent of x, in the range —7/2 to /2.

Atan2 returns the arctangent of y/x, in the range —= to w, using the signs of
both arguments to determine the quadrant of the return value.

DIAGNOSTICS

Sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would oth-
erwise be a complete loss of significance. In this case a message indicating
TLOSS error is printed on the standard error output. For less extreme argu-
ments causing partial loss of significance, a PLOSS error is generated but no
message is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both
arguments of atan2 are zero, zero is returned and errno is set to EDOM. In
addition, a message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO

matherr(3M).

TABLE OF CONTENTS OF MISCELLANEOUS SUBROUTINES

3X. Various Specialized Libraries

assert.

verify program assertion

curses.

..CRT screen handling and optimizason package

1dshread

read the archive header of amember of an archive file

1dclose

close a common object file

1dfhread.

read the file header of a conunon object file

................ retrieve symbol name for common object file symbol table entry

manipulate line number entries of a common object file funcion
seek to line number entries of a section of a common object file

seek to the optional file header of a common object file

open a common object file for reading

-.seek to relocation entries of a section of & cornmon object file-

........................ 1ead an indexed/named section header of a common object file

seek to an indexed/named section of a common object file

compute the index of a symbol table entry of a common object file

read an indexed symbol table entry of a common object file
seek to the symbol table of a common object file

.......... Tetum login name of user

fast main memory allocator

graphics interface subroutines
compile and execute regular expression

access long integer data in a machine-independent fashion

print formatted output of a varargs argument list

ASSERT(3X)

NAME
assert — verify program assertion

SYNOPSIS
#include <assert.h>

O assert (expression)

int expression;
DESCRIPTION

This macro is useful for putting diagnostics into programs. When it is exe-
cuted, if expression-is false- (zero) , assert. prints-

“Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error message, xyz is the name
of the source file and nnn the source line number of the assert statement.

Compiling with the preprocessor option ~DNDEBUG [see cpp (1)1, or with the
preprocessor control statement “#define NDEBUG” ahead of the “#include
<assert.h>" statement, will stop assertions from being compiled into the pro-
gram.

SEE ALSO
abart(3C). R
cpp(1) inthe Runtime System manual.

CURSES(3X)

NAME

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
cc [flags] files ~lcurses [libraries]

DESCRIPTION

These routines give the user a method of updating screens with reasonable
optimization. In order to initialize the routines, the routine initscr() must be
called before any of the other routines that deal with windows and screens are
used. The routine endwin() should be called before exiting. To get character-
at-a-time input without echoing, (most interactive, screen oriented-programs
want this) after calling fnitscr() you should call “noni(); cbreak(); noecho().”

The full curses interface permits manipulation of data structures called win-
dows which can be thought of as two dimensional arrays of characters
representing all or part of a CRT screen. A default window called stdscr is sup-
plied, and others can be created with newwin. Windows are referred to by vari-
ables declared “WINDOW *”, the type WINDOW is defined in curses.h to be a
C structure. These data structures are manipulated with functions described
below, among which the most basic are move, and addch. (More general ver-
sions of these functions are included with names beginning with ‘w’, allowing
you to specify a window. The routines not beginning with ‘w’ affect stdscr.)
Then refresh() is called, telling the routines to make the users CRT screen look
like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more
than one window. To invoke this subset, use -DMINICURSES as a cc¢ option.
This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses
will check for a local terminal definition before checking in the standard place.
For example, if the standard place is /usr/lib/terminfo, and TERM is set to
“vt100”, then normally the compiled file is found in /use/lib/terminfo/v/vt100.
(The “v” is copied from the first letter of *“vtl00” to avoid creation of huge
directories.) However, if TERMINFO is set to /usr/mark/mytenms, curses will
first check /opusr/mark/myterms/v/vt100, and if that fails, will then check
/usc/lib/terminfo/v/vt100. This is wuseful for developing experimental
definitions or when write permission in /usr/lib/terminfo is not available.

SEE ALSO

terminfo(4).

FUNCTIONS

Routines listed here may be called when using the full curses. Those marked
with an asterisk may be called when using Mini-Curses.

addch(ch)* add a character to stdscr
(like putchar) (wraps to next
line at end of line)

addstr(str)* calls addch with each character in str
attroff (attrs) ® turn off attributes named
attron{attrs)* turn on attributes named
attrset(attrs)* set current attributes to attrs
baudrate()* current terminal speed

beep()* sound beep on terminal

box(win, vert, hor) draw a box around edges of win

vert and hor are chars to use for vert.
and hor. edges of box
clear() clear stdscr

o

clearok(win, bf)
clrtobot()

clrtoeol ()
cbreak()*
delay_output(ms)*
deich()

deleteln()
delwin(win)
doupdate()

CChO(')‘ e e el e m e

endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has_il()
idlok(win, bf)*
inch()

initscr ()*
insch(c)
insertIn()
intrflush (win, bf)
keypad (win, bf)
killchar()
leaveok (win, flag)

longname()

meta(win, flag)*

move(y, x)*

mvaddch(y, x, ch)

mvaddstr(y, x, str)

mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)

mvgetch(y, x)

mvgetstr(y, x)

mvinch(y, x)

mvinsch(y, x, ¢)

mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch (win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)

mvwgetch (win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args) -

CURSES(3X)

clear screen before next redraw of win

clear to bottom of stdscr

clear to end of line on stdscr

set cbreak mode

insert ms millisecond pause in output

delete a character

delete a line

delete win

update screen from all wnooutrefresh

set echo mode - e e
end window modes

crase stdser

return user's erase character

restore tty to "in curses" state

flash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

establish current tty modes

get (y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use terminal’s insert/delete line if bf = 0
get char at current (y, x) co-ordinates
initialize screens

insert a char

insert a line

interrupts flush output if bf is TRUE
enable keypad input

return current user’s kill character

OK to leave cursor anywhere after refresh if
flag!=~0 for win, otherwise cursor must be left
at current position.

return verbose name of terminal

allow meta characters on input if flag != 0
move to (y, x) on stdscr

movel(y, x) then addch(ch)

similar...

low level cursor motion
like delch, but move(y, x) first
etc.

CURSES(3X)

newpad (nlines, ncols) create a new pad with given dimensions
newterm (type, fd) set up new terminal of given type to output on
newwin(lines, cols, begin_y, begin_x)

create a new window

nlQ)* set newline mapping

nocbreak ()* unset cbreak mode

nodelay(win, bf) enable nodelay input mode through getch
noecho()* unset echo mode

noni()* unset newline mapping

noraw()* unset raw mode

overlay(winl, win2) overlay winl on win2

overwrite(winl, win2) overwrite winl on top of win2

pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)
like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)
refresh from pad starting with given upper left
corner of pad with output to given
portion of screen
printw(fmt, argl, arg2, ..}
printf on stdscr

raw()* set raw mode

refresh()* make current screen look like stdscr
resetterm()* set tty modes to "out of curses® state
resetty()* reset tty flags to stored value
saveterm() * save current modes as "in curses” state
savetty()* store current tty flags

scanw(fmt, argl, arg2, ...)
scanf through stdscr

scroll(win) scroll win one line

scrollok(win, flag) allow terminal to scroll if flag != 0
set_term(new) now talk to terminal new

setscrreg(t, b) set user scrolling region to lines t through b
setterm(type) establish terminal with given type
setupterm(term, filenum, errret)

standend ()* clear standout mode attribute

standout()* set standout mode attribute

subwin(win, lines, cols, begin_y, begin_x)
create a subwindow

touchwin(win) change all of win

traceoff () turn off’ debugging trace output
traceon() turn on debugging trace output
typeahead(fd) use file descriptor fd to check typeahead
unctrl(ch)* printable version of ck

waddch(win, ch) add char to win

waddstr(win, str)
wattroft (win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
welear(win)
wclrtobot(win)
wclrtosol (win)
wdelch(win, c)
wdeleteln (win)
werase(win)
wegetch(win)

add string to win

turn off attrs in win
turn on attrs in win

set attrs in win to autrs
clear win

clear to bottom of win
clear to end of fine on win
delete char from win
delete line from win
erase win

get a char through win

-3.

C

(\.
—

/

wgetstr(win, str)

winch(win)

winsch(win, c)

winsertln(win)

wmove(win, y, x)

wnoutrefresh (win)

wprintw(win, fmt, argl, arg2, ...)

wrefresh(win)

_wscanw(win, fmt, argl, arg2,..)

wsetscrreg(win, , b)
wstandend(win)
wstandout(win)

TERMINFO LEVEL ROUTINES

CURSES(3X)

get a string through win

get char at current (y, x) in win
insert char into win

insert line into win

set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win

set scrolling region of win
clear standout attribute in win
set standout attribute in win

These routines should be called by programs wishing to deal directly with the
terminfo database. Due to the low level of this interface, it is discouraged. Ini-
tially, setupterm should be called. This will define the set of terminal depen-

dent variables defined in terminfo(4).

The include files <curses.h> and

<term.h> should be inclided to get the definitions for these strings, numbers,
and flags. Parameterized strings should be passed through tparm to instantiate
them. All terminfo strings (including the output of tparm) should be printed
with tputs or putp . Before exiting, resetterm should be called to restore the tty
modes. (Programs desiring shell escapes or suspending with control Z can call
resetterm before the shell is called and fixterm after returning from the shell.)

fixterm()

resetterm()
setupterm(term, fd, rc)

tparm(str, p1, p2, ..., p9)

tputs(str, affcnt, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

TERMCAP COMPATIBILITY ROUTINES

restore tty modes for terminfo use
(called by setupterm) W
reset tty modes to state before program entry d;
read in database. Terminal type is the >
character string term, all output is 1o UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1
is normal. The simplest call would be
setupterm{0, I, 0) which uses all defaults.

instantiate string str with parms P;

apply padding info to string szr.

affent is the number of lines afl'ected,

or | if not applicable. Putc is a

putchar-like function to which the characters
are passed, one at a time.)
handy function that calls tputs

(str, 1, putchar)

output the string to put terminal in video
attribute mode arrrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like

function putc.

Like vidputs but outputs through

putchar

These routines were included as a conversion aid for programs that use
termcap. Their parameters are the same as for termcap. They are emulated
using the terminfo database. They may go away at a later date.

tgetent (bp, name)
tgetflag(id)

look up termcap entry for name
get Boolean entry for id

CURSES(3X)

tgetnum(id) get numeric entry for id

tgetstr(id, area) get string entry for id

tgoto(cap, col, row) apply parms to given cap

tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar
ATTRIBUTES

The following video attributes can be passed to the functions

attron,attroff attrset.

A_STANDOUT Terminal’s best highlighting mode

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_BLANK Blanking (invisible)

A_PROTECT Protected

A_ALTCHARSET Alternate character set

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been
enabled. Note that not all of these are currently supported, due to lack of
definitions in terminfo or the terminal not transmitting a unique code when the
key is pressed.

Name Value Key name

KEY_BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403

KEY_LEFT 0404

KEY_RIGHT 0405

KEY_HOME 0406 Home key (upward+left arrow)
KEY_BACKSPACE 0407 backspace (unreliable)
KEY_F0 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY_F0+(n)) Formula for fn.

KEY_DL 0510 Delete line

KEY_IL 0511 Insert line

KEY_DC 0512 Delete character

KEY_IC 0513 Insert char or enter insert mode
KEY_EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear toendof line

KEY_SF 0520 Scroll 1 fine forward

KEY_SR 0521 Scroll I line backward (reverse)
KEY_NPAGE 0522 Next page

KEY_PPAGE 0523 Previous page

KEY_STAB 0524 Set tab

KEY_CTAB 0525 Clear tab

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unrefiable)
KEY_SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
KEY_PRINT 0532 print or copy

KEY_LL 0533 home down or battom (lower left)

CURSES(3X)

WARNING
The plotting library plot(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need both
libraries, put the plor(3X) code in a diff'erent source file than the curses (3X)
code, and/or #undef move() and erase() in the plor(3X) code.

O
XE-8

()

LDAHREAD(3X)

NAME
ldahread — read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(/dptr) is the archive file magic number, /dahread reads the archive
header of the common object file currently associated with Idptr into the area
of memory beginning at grhead.
Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TYPE(/dptr)
does not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldfcn(4), ar(4).

LDCLOSE(3X)

NAME
ldclose, 1daclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
O #include <ldfen.h>
- int ldclose (ldptr)
LDFILE +ldptr;

int ldaclose (ldptr)
LDFILE #ldptr;-

DESCRIPTION
Ldopen(3X) and ldclose are designed to provide uniform access to both
simple object files and object files that are members of archive files.
Thus an archive of common object files can be processed as if it were a
series of simple common object files.

If TYPE(ldptr) is not ARTYPE, ldclose will close the file and free the
memory allocated to the LDFILE structure associated with ldptr. If
TYPE(ldptr) is ARTYPE, and if there are any more files in the archive,
ldclose will reinitialize OFFSET(ldptr) to the file address of the next
archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent ldopen. In all other cases, ldclose returns
SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE
structure associated with ldpir regardless of the value of TYPE(ldpir).
Ldaclose always returns SUCCESS. The function is often used in con-

m junction with ldaopen.
~ The program must be loaded with the object file access routine library o
libld.a. g
SEE ALSO

fclose(38), 1dopen(3X), 1dfen(4),

LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR +filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently associ-
ated with ldptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it can-
not read the file header.

In most cases the use of ldfhread can be avoided by using the macro
HEADER(ldptr) defined in ldfen.h [see ldfen(4)]. The information in
any field, fieldname, of the file header may be accessed using
HEADER(ldptr),fieldname.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

NAME

LDGETNAME(3X)

ldgetname - retrieve symbol name for a common object file symbol table
entry

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

char *ldgetname (ldptr, symbol)
LDFILE +ldptr;

SY.M.ENT*Symbol; . e . C e e e e e e

DESCRIPTION

Ldgetname returns a pointer to the name associated with symbol as a
string. The string is contained in a static buffer local to ldgetname that
is overwritten by each call to ldgetname, and therefore must be copied by
the caller if the name is to be saved.

Ldgetname will return NULL (defined in stdio.h) for an object file if the
name cannot be retrieved. This situation can occur:

e if the “string table” cannot be found,
e if not enough memory can be allocated for the string table,

e if the string table appears not to be a string table (for example,
if an auxiliary entry is handed to ldgetname that looks like a
reference to a name in a nonexistent string table), or

e if the name’s offset into the string table is past the end of the
string table.

Typically, ldgetname will be called immediately after a successful call to
ldtbread to retrieve the name associated with the symbol table entry

filled by ldtbread.
The program must be loaded with the object file access routine library
libld.a.

SEE ALSO

ldclose(3X), 1dopen(3X), 1dtbseek(3X), ldtbread(3X), ldfen(4).

w
L2
=

LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common
object file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcen.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE sldptr;

long fecnindx;

unsigned short linenum;

LINENO linent;

int 1dlinit(ldptr, fenindx)
LDFILE #ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE #ldptr;

unsigned short lirenum;
LINENO linent;

DESCRIPTION

Ldlread searches the line number entries of the common object file
currently associated with ldptr. Ldiread begins its search with the line
number entry for the beginning of a function and confines its search to
the line numbers associated with a single function. The function is iden-
tified by femindzx, the index of its entry in the object file symbol table.
Ldlread reads the entry with the smallest line number equal to or greater
than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as ldlread.
After an initial call to ldlread or ldlinit, ldlitem may be used to retrieve a
series of line number entries associated with a single function. Ldlinit
simply locates the line number entries for the function identified by
femindx. Ldlitem finds and reads the entry with the smallest line number
equal to or greater than linenum into linent.

Ldlread, Idlimit, and Idlitem each return either SUCCESS or
FAILURE. Ldiread will fail if there are no line number entries in the
object file, if femindx does not index a funection entry in the symbol table,
or if it finds no line number equal to or greater than linenum. Ldlinit
will fail if there are no line number entries in the object file or if fenindx
does not index a function entry in the symbol table. Ldlitem will fail if it
finds no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfen(4).

LDLSEEK(3X)

NAME
ldlseek, ldnlseek — seek to line number entries of a section of a conmon object

file

~~ SYNOPSIS _
P #include <stdio.h>
e #include <filehdr.h>
#include <Ildfcn.h>
int ldiseek (ldptr, sectindx)
| LDFILE -eldptr; A e J
unsigned short sectindx;
int ldnlseek (ldptr, sectname)
LDFILE eldptr;
char esectname;
DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by sectindx of
the common object file currently associated with ldptr.

Ldnliseek seeks to the line number entries of the section specified by sectname,

Ldlseek and ldniseek return SUCCESS or FAILURE. Ldliseek will fail if sec-
tindx is greater than the nuinber of sections in the object file; /dnlseek will fail
if there is no section name corresponding with ssectname. Either function will
fail if the specified section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.
O The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), ldopen (3X), ldshread(3X), ldfcn(4).

LDOHSEEK(3X)

NAME
ldohseek — seek to the optional file header of a common object file
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
int ldohseek (ldptr)
LDFILE eldptr;
DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently
associated with ldptr.
Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file
has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), 1dfhread (3X), Idfcn(4).

A

LDOPEN(3X)

ldopen, 1daopen — open a common object file for reading

SYNOPSIS

#tinclude <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE eldopen (filename, ldptr)
char sfilename;

. LDFILE <dptr;

LDFILE e¢ldaopen (filename, oldptr)
char sfilename;
LDFILE eoldptr;

DESCRIPTION

Ldopen and ldclose (3X) are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive
of common object files can be processed as if it were a series of simple common
object files.

If ldptr has the value NULL, then /dopen will open filename and allocate and

. initialize the LDFILE structure, and return a pointer to the structure to the call -

ing program.

If ldptr is valid and if TYPE(/dptr) is the archive magic number, /dopen will
reinitialize the LDFILE structure for the next archive member of filename.

Ldopen and ldclose (3X) are designed to work in concert. Ldclose will return
FAILURE only when TYPE(/dptr) is the archive magic number and there is
another file in the archive to be processed. Only then should /dopen be called
with the current value of /dptr. In all other cases, in particular whenever a
new filename is opened, ldopen should be called with a NULL /dptr argument.

The following is a prototype for the use of /dopen and ldclose (3X).
/» for each filename to be processed */

Idptr = NULL;
do

i{f ((Idptr = Idopen(filename, 1dptr)) != NULL)

/¢ check magic number */
/s process the file ¢/

)
) while (dclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, /daopen will open filename anew and allo-
cate and initialize a new LDFILE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. Ldaopen returns a pointer to the new LDFILE
structure. This new pointer is independent of the old pointer, oldptr. The two
pointers may be used concurrently to read separate parts of the object file. For
example, one pointer may be used to step sequentially through the relocation
information, while the other is used to read indexed symbol table entries.

Both I/dopen and Idaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file is a
common object file or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

fopen(38S), ldclose(3X), ldfcn (4) 1

LDRSEEK(3X)

NAME
ldrseek, ldnrseek — seek to relocation entriés of a section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.b>
#include <Ildfcn.h>

int ldrseek (ldptr, sectindx)
LDFILE sldptr;
unsigned short sectindx;
int ldnrseek (ldptr, sectname)
LDFILE »ldptr;
char ssectname;
DESCRIPTION ‘
Ldrseek seeks to the relocation entries of the section specified by sectindx of
the comnion object file currently associated with /dptr.

Ldnrseek seeks to the relacation entries of the section specified by séctndnme.

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek will fail if sec-
tindx is greater than the number of sections in the object file; /dnrseek will fail
if there is no section name corresponding with sectname. Either function will
fail if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries.

Note that the first section has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), idopen(3X), Idshread(3X), 1dfcn(4).

LDSHREAD(3X)

NAME
Idshread, ldnshread — read an indexed/named section header of a common

object file

SYNOPSIS
#include <stdio.h>
#tinclude <filehdr.b>
#include <scnhdr.b>
#tinclude <ldfcn.b>

int ldshread (idptr, sectindx, sectbead)

LDFILE sldptr; — "~ i G e e
unsigned short sectindx;

SCNHDR esecthead;

int ldnshread (ldptr, sectname, secthead)
LDFILE eldptr;

char esectname;

SCNHDR ssecthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the common object
file currently associated with /dptr into the area of memory beginning at sect-
head.

Ldnshread reads the section header specified by sectname into the area of
memory beginning at secthead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread will fail if
sectindx is greater than the number of sections in the object file; /dnshread will
fail if there is no section name corresponding with sectname. Either function (ID
will fail if it cannot read the specified section header. A

b3

Note that the first section header has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), 1dfcn(4).

LDSSEEK(3X)

NAME
ldsseek, ldnsseek — seek to an indexed/named section of a common object file
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#tinclude <ldfen.b>
int ldsseek (ldptr, sectindx)
LDFILE sldptr;
unsigned short sectindx;
int Idnsseek (Idptr, sectname)
LDFILE eldptr;
char ssectname;
DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common object file
currently associated with /dptr.
Ldnsseek seeks to the section specified by sectname.

Ldsseek and Idnsseek return SUCCESS or FAILURE. Ldsseek will fail if sec-
tindx is greater than the number of sections in the object file; /dnsseek will fail
if there is no section name corresponding with sectname. Either function will
fail if there is no section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), Idshread(3X), 1dfcn(4).

O

" DESCRIPTION

LDTBINDEX(3X)

NAME
Idtbindex — compute the index of a symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filebdr.h>
#include <syms.b>
#include <Idfcn.b>

long ldtbindex (ldptr)
LDFILE eldptr;

Ldtbindex returns the (long) index of the symbol table entry at the current
position of the common object file associated with /dptr.

The index returned by /Idtbhindex may be used in subsequent calls to
Idtbread (3X). However, since /dtbindex returns the index of the symbol table
entry that begins at the current position of the object file, if /dtbindex is called
immediately after a particular symbol table entry has been read, it will return
the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file
is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose (3X), 1dopen(3X), Idtbread(3X), Idtbseek (3X), 1dfcn(4).

LDTBREAD(3X)

NAME
Idtbread — read an indexed symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.b>
#include <syms.h>
#include <Mdfcn.b>

int ldtbread (ldptr, symindex, symbol
LDFILE eldptr;
long symindex;
SYMENT esymbol;
DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with ldptr into the area of memory beginning at
symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if symindex is
greater than the number of symbols in the object file, or if it cannot read the
specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), 1dtbseek(3X), ldgetname(3X), ldfcn(4).

LDTBSEEK(3X)

NAME ‘ _
ldtbseek — seek to the symbol table of a common object file

SYNOPSIS)
#include <stdio.b>
#tinclude <filebdr.h>
#include <ldfcn.h>

int ldtbseek (ldptr)

LDFILE eldptr;

Ldtbseek seeks to the symbol table of the abject file currently associated with’
idptr.

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO)
ldclose(3X), 1dopen (3X), Idtbread (3X), idfcn(4).

LOGNAME(3X)

NAME

logname — return login name of user
SYNOPSIS

char slogname()
DESCRIPTION

Logname returns a pointer to the null-terminated login name; it extracts the
SLOGNAME variable from the user’s environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile

SEE ALSO
profile(4), environ(5).
env(1), login(1) in the Runtime System manual.

BUGS
The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo — fast main memory allocator

SYNOPSIS
#include <malloc.h>

char emalloc (size)
unsigned size;

void free (ptr)

char eptr;

char erealloc (ptr, size)
char eptr;

unsigned size;

char ecalloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

" DESCRIPTION

Malloc and free provide a simple general-purpose memory allocatlon package,
which runs consnderably faster than the malloc (3C) package It is found in the
library “malloc”, and is loaded if the option “—Imalloc™ is used with cc(1) or
1d(1).

Malloc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to Sfree is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation, and
its contents have been destroyed (but see mallopt below for a way to change
this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

Mallopt provides for control over the allocation algorithm. The available
values for cmd are;

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below
the size of maxfast in large groups and then doles them out
very quickly. The default value for max fast is 0.

M_NLBLKS Set numlblks to value. The above mentioned “large groups™
each contain numlblks blocks. Numlblks must be greater than
0. The default value for numiblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than max-
fast are considered to be rounded up to the nearest multiple of
grain. Grain must be greater than 0. The default value of
grain is the smallest number of bytes which will allow align-
ment of any data type. Value will be rounded up to a multiple
of the default when grain is set.

-1-

MALLOC(3X)

M_KEEP Preserve data in a freed block until the next malloc, realloc,
or calloc. This option is provided only for compatibility with
the old version of malloc and is not recommended.

These values are defined in the <malloc.h> header file.

Mallopt may be called repeatedly, but may not be called after the first small
block is allocated.

Mallinfo provides instrumertation describing space usage. It returns the struc-

ture:

struct mallinfo {
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblkhd; /* space in holding block headets */
int hblks; /* number of holding blocks */
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordbiks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

] /* is used */

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

SEE ALSO
: brk(2), malloc(3C).

DIAGNOSTICS
Mallac, realloc and calloc return a NULL pointer if there is not enough avail-
able memory. When realloc returns NULL, the block pointed to by ptr is left
intact. If mallopt is called after any allocation or if cimd or value are invalid,
non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc(3C), this package does not preserve the contents of a
block when it is freed, unless the M_KEEP option of mallopt is used.
Undocumented features of malloc(3C) have not been duplicated.

C

NAME

PLOT(3X)

plot — graphics interface subroutines

SYNOPSIS

DESCRIPTION

openpl ()

erase ()

label (s)

char es;

line (x1, y1, x2, y2)

int x1, y1, x2,.y2; e

circle (x, y, r)

int x, y, r;

arc (x, y, x0, y0, x1, yl1)
int x, y, x0, y0, x1, yl;
move (x, y)

int x, y;

cont (x, y)

int X, ¥;

point (x, y)
int x, y;

linemod (s)
char es;

space (x0, y0, x1, y1)
int x0, y0, x1, yl;

closepl ()

&
W
x

These subroutines generate graphic output in a relatively device-independent
manner. Space must be used before any of these functions to declare the
amount of space necessary. See plot(4). Openpl must be used before any of
the others to open the device for writing. Closepl flushes the output.

Circle draws a circle of radius » with center at the point (x, y).

Arc draws an arc of a circle with center at the point (x, y) between the points
(x0, y0) and (x1, yl).

String arguments to /abel and linemod are terminated by nulls and do not con-
tain new-lines.

See plot(4) for a description of the effect of the remaining functions.
The library files listed below provide several flavors of these routines.

FILES
/usr/lib/libplot.a produces output for tplof (1G) filters
/usr/lib/1ib300.a for DASI 300
/usr/lib/1ib300s.a for DASI 300s
/usr/lib/1ib450.a for DASI 450
/usr/lib/1ib4014.a for TEKTRONIX 4014
WARNINGS

In order to compile a program containing these functions in file.c it is necessary
to use “‘cc file.c —Iplot™.

In order to execute it, it is necessary to use “a.out | tplot”.
The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard I/0, more than might be expected.

-1-

PLOT(3X)

SEE ALSO
Plot(4).
graph(1G), stat(1G), tplot(1G) in the Rumime System manual.

REGCMP(3X)

NAME
regemp, regex ~ compile and execute regular expression

SYNOPSIS
char *regcmp (stringl [, string2, ...}, (char *)0)
\ char *stringl, *string2, ...;
(\ char *regex (re, subject|, ret0, ...])
char *re, *subject, *reto0, ...;

extern char *__locl;

.. ..DESCRIPTION . e e
Regemp compiles a regular expression and returns a pointer to the com- =~
piled form. Malloc(3C) is used to create space for the vector. It is the
user’s responsibility to free unneeded space so allocated. A NULL return
from regemp indicates an incorrect argument. Regcmp(1l) has been writ-
ten to generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regexr returns NULL on
failure or a pointer to the next unmatched character on success. A global
character pointer __loci points to where the match began. Regemp and
regex were mostly borrowed from the editor, ed(1); however, the syntax
and semantics have been changed slightly. The following are the valid
symbols and their associated meanings.

[1*.” These symbols retain their current meaning.
$ Matches the end of the string; \n matches a new-line.

- Within brackets the minus means through. For example, [a—z]
is equivalent to [abed...xyz]. The — can appear as itself only
if used as the first or last character. For example, the character
class expression []—] matches the characters] and —.

+ A regular expression followed by + means one or more times.
For example, [0—9]+ is equivalent to [0—9]0—-9)+.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. The value m is
the minimum number and « is a number, less than 256, which is
the maximum. If only m is present (e.g., {m}), it indicates the
exact number of times the regular expression is to be applied.
The value {m,} is analogous to {m,infinity}. The plus (+) and
star (#) operations are equivalent to {1,} and {0,} respectively.

(...)$n The value of the enclosed regular expression is to be returned.
The value will be stored in the {n+1)th argument following the
subject argument. At most ten enclosed regular expressions are
allowed. Regexr makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, eg., *, +, {},
can work on a single character or a regular expression enclosed
in parentheses. For example, (a*(cb+)*)$0.

L By necessity, all the above defined symbols are special. They must, there-
! fore, be escaped to be used as themselves.

O

REGCMP(3X)

EXAMPLES

Example 1:
char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regemp(" "\n", 0)), cursor);

free(ptr);
This example will match a leading new-line in the subject string pointed
at by cursor.
Example 2:

char ret0[9];

char *newecursor, *name;

name =-x"égcmp(“ ([A-Za-z][A-za-20-9__1{0,7})$0", ’(char #)0’);
newcursor = regex(name, " 123Testing321", ret0);
This example will match through the string “Testing3” and will return
the address of the character after the last matched character (cursor+11).
The string “Testing3” will be copied to the character array ret0.

Example 3:
#include * file.i"
char #string, *newcursor;

newcurs'c;r‘ = regex(name, string);
This example applies a precompiled regular expression in file.i [see
regemp(1)] against string.

This routine is kept in /lib/<module>/libPW.a, where module is either
small or large.

SEE ALSO

BUGS

malloc(3C)
ed(1), regemp(1) in the Runtime System manual.

The user program may run out of memory if regemp is called iteratively
without freeing the vectors no longer required. The following user-
supplied replacement for malloc(3C) reuses the same vector, saving time
and space:

/* user’s program */
char *

malloe(n)
unsigned n;

static char rebuf[512];
return (n <= sizeof rebuf) ? rebuf : NULL;

SPUTL(3X)

NAME
! sputl, sgetl — access long integer data in a machine-independent fashion.

] SYNOPSIS
void sputl (value, buffer)
! long value;
N char ebufTer;
long sgetl (buffer)
char ebuffer;
- DESCRIPTION - N .
Sputl takes the four bytes of the long mteger value and places them in memory
starting at the address pointed to by buffer. Thc ordering of the bytes is the
same across all machines.
Sgetl retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host
machine.
The combination of sput! and sget! provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to charac-
ters.
A program which uses these functions must be loaded with the object-file
access routine library libld.a.

VPRINTF(3X)

NAME
vprintf, vfprintf, vsprintf — print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)

char *format;

va_list ap;

int vfprintf (stream, format, ap)
FILE estream;

char eformat;

va_list ap;

int vsprintf (s, format, ap)
char es, *format;
va_list ap;

DESCRIPTION .)
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of argu-
ments, they are called with an argument list as defined by varargs(5).

EXAMPLE
The following demonstrates how vfprintf could be used to write an error rou-
tine.

#include <stdio.h>
#include <varargs.h>

/*
» error should be called like
. error(function_name, format, argl, arg2...);
*/
/*VARARGSO0+/
void

error(va_alist)

/+ Note that the function_name and format arguments cannot be
. separately declared because of the definition of varargs.
o/

va dcl

{

va_list args;
char *fmt;

va_start(args);
/» print out name of function causing error «/
(void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char »));
fmt = va_arg(args, char »);
/+ print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
| (void) abort();

SEE ALSO
printf(3S), varargs(5).

TABLE OF CONTENTS OF FORTRAN LIBRARY FUNCTIONS

3F. Fortran Library Functions
abort

terminate FORTR AN program

FORTRAN absolute value

FORTRAN arccosine intrinsic function

FORTRAN iniaginary part of complex argunent

FORTRAN integer part intrinsic function

FORTRAN arcsine intrinsic function

FORTRAN arctangent intrinsic function

FORTRAN arctangent intrinsic function

FORTRAN bitwise Boolean functions

FORTRAN complex conjugate intrinsic function

FORTRAN cosine intrinsic function --

FORTRAN hyperbolic cosine intrinsic function

posilive difference intrinsic functions
double precision product intrinsic function

FORTRAN exponential intrinsic function

explicit FORTRAN type conversion

retum FORTRAN comnand-line argument

retun FORTRAN envirorument variable

retun number of connand line arguments

retumn location of FORTRAN substring

return length of FORTRAN string

.FORTRAN natural logarithm intrinsic function

FORTRAN common logarithm intrinsic function

FORTRAN maximun-value functions

retum FORTRAN wume accounting

FORTRAN minimurn-value functions

FORTRAN remaindering intrinsic functions

rand.

random number generator

O

- round

FORTRAN nearest integer functions

sign

FORTRAN transfer-of-sign intrinsic function

signal
sin

specify FORTRAN action on receiptof a system signal

FORTRAN sine intrinsic function

sinh

FORTRAN hyperbolic sine intrinsic function

sqrt.
1

FORTRAN square root intrinsic function

string comparison infrinsic functions

streinp.
system,

issue a shell command from FORTRAN

tan

FORTRAN tangent intrinsic function

tanh

FORTRAN hyperbolic tangent intrinsic funcion

O

()

ABORT(3F)

NAME
abort — terminate FORTRAN program

SYNOPSIS
call abort ()
DESCRIPTION
Abort terminates the program which calls it, closing all open files truncated to
the current position of the file pointer.
DIAGNOSTICS
=~ ~When-invoked, abort prints-“FORTRAN -abort routine-called”-on- the-standard. - - ..
error output.

SEE ALSO
abort (3C).

d4E-S

ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs — FORTRAN absolute value

SYNOPSIS
integer il, i2
real rl, r2
double precision dpl, dp2
complex cxl1, cx2
double complex dx1, dx2

r2 = abs(rl)
i2 = iabs(il)

i2 = abs(i1)

dp2 = dabs(dpD)
dp2 = abs(dpl)
c¢x2 = cabs(cx1)
cx2 = abs(ex1)
dx2 = zabs(dx1)
dx2 = abs(dx1)

DESCRIPTION

Abs is the family of absolute value functions. 7abs returns the integer absolute
value of its integer argument. Dabs returns the double-precision absolute value
of its double-precision argument. Cabs returns the complex absolute value of
its complex argument. Zabs returns the double-complex absolute value of its
double-complex argument. The generic form abs returns the type of its argu-
ment.

SEE ALSO
fioor(3M).

ACOS(3F)

NAME
acos, dacos — FORTRAN arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = acos(rl)
dp2 = dacos(dpl)
dp2 = acos(dpl)
DESCRIPTION =
Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The generic form

acos may be used with impunity as its argument will determine the type of the
returned value.

SEE ALSO
trig(3M).

AIMAG(3F)

NAME

aimag, dimag — FORTRAN imaginary part of complex argument
SYNOPSIS

realr

complex cxr

double precision dp

double complex cxd

r = aimag(cxr)
dp = dimag(cxd)
DESCRIPTION

Aimag returns the imaginary part of its single-precision complex argument.

Dimag returns the double-precision imaginary part of its double-complex argu-
ment.

AINT(3F)

NAME
aint, dint — FORTRAN integer part intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

2 = aint(rl)

dp2 = dint(dpl)
dp2 = aintp)

' DESCRIPTION

Aint returns the truncated value of its real argument in a real. Dint returns
the truncated value of its double-precision argument as a double-precision
value. Aint may be used as a generic function name, returning either a real or
double-precision value depending on the type of its argument.

ASIN(3F)

NAME
asin, dasin — FORTRAN arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = asin(rl)

dp2 = dasin(dpl)
dp2 = asin(dpl)
DESCRIPTION

Asin returns the real arcsine of its real argument. Dasin returns the double-
precision arcsine of its double-precision argument. The generic form asin may
be used with impunity as it derives its type from that of its argument.

SEE ALSO
trig(3M).

O

"DESCRIPTION

ATAN(3F)

NAME
atan, datan — FORTRAN arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = atan(rl)
dp2 = datan(dpl)
dp2 = atan(dpl)

Atan returns the real arctangent of its real argument. Datan returns the
double-precision arctangent of its double-precision argument. The generic form
atan may be used with a double-precision argument returning a double-
precision value.

SEE ALSO
trig(3M).

ATAN2(3F)

NAME
atan2, datan2 — FORTRAN arctangent intrinsic function

SYNOPSIS
real rl, r2, r3
double precision dp1, dp2, dp3
r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION
Atdn2 returns the arctangent of argl/arg? as a real value. Datan2 returns the
double-precision arctangent ef its double-precision arguments. The generic
form atan2 may be used with impunity with double-precision arguments.

SEE ALSO
trig(3M).

(N

A

NAME

BOOL(3F)

SYNOPSIS

and, or, xor, not, Ishift, rshift — FORTRAN bitwise Boolean functions
integer i, j, k

real a, b, ¢

double precision dpl, dp2, dp3

k = and(G, j)

¢ = or(a, b)

.= xor, a)

j = notG)" -

k = IshiftG, j)

k = rshift(, j)

DESCRIPTION

NOTE

BUGS

The generic intrinsic Boolean functions and, or and xor return the value of the
binary operations on their arguments. Nof is a unary operator returning the
one’s complement of its argument. Lshift and rshift return the value of the
first argument shifted left or right, respectively, the number of times specified
by the second (integer) argument.

The Boolean functions are generic, that is, they are defined for all data types as
arguments and return values. Where required, the compiler will generate
appropriate type conversions.

Although defined for all data types, use of Boolean functions on any but integer
data is bizarre and will probably result in unexpected consequences.

The implementation of the shift functions may cause large shift values to
deliver weird results.

CONJG(3F)

NAME
conjg, dconjg — FORTRAN complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx1)
dx2 = dconjg(dx1)

DESCRIPTION
Conjg returns the complex conjugate of its complex argument. Dconjg returns

the double-complex conjugate of its double-complex argument.

COS(3F)

NAME
cos, dcos, ccos — FORTRAN cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = cos(rl)

dp2 = dcos(dpl)
- dp2 = cos(dpl)
ex2 = ccos(cxl)
cx2 = cos(cxl)

DESCRIPTION
Cos returns the real cosine of its real argument. Dcos returns the double-
precision cosine of its double-precision argument. Ccos returns the complex
cosine of its complex argument. The generic form cos may be used with
impunity as its returned type is determined by that of its argument.

SEE ALSO
trig(3M).

COSH(3F)

NAME
cosh, dcosh — FORTRAN hyperbolic cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = cosh(rl)

dp2 = dcosh(dp1)
dp2 = cosh(dpl)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns the
double-precision hyperbolic cosine of its double-precision argument. The gen-
eric form cosh may be used to return the hyperbolic cosine in the type of its
argument.

SEE ALSO
sinh(3M).

DIM(3F)

NAME
dim, ddim, idim — positive difference intrinsic functions
SYNOPSIS
o integer al,a2,a3
[a3 = idim(al,a2)

real al,a2,a3
al = dim(al,a2)

“double precision a1,a2.,a3
a3 = ddim(al,a2)
DESCRIPTION
These functions return:
al-a2 if al > a2
[V} ifal <= a2

DPROD(3F)

NAME

dprod — double precision product intrinsic function
SYNOPSIS

real al,a2

double precision a3
a3 = dprod (al,a2)

DESCRIPTION
Dprod returns the double precision product of its real arguments.

EXP(3F)

NAME
exp, dexp, cexp — FORTRAN exponential intrinsic function

SYNOPSIS
. real rl, r2
i C} double precision dpl, dp2
S complex cx1, cx2

r2 = exp(rl)

i dp2 = dexp(dpl)
.- edp2 = expldpl)
cx2 = clog(cx1)
cx2 = explcxl)

DESCRIPTION
Exp returns the real exponential function e of its real argument. Dexp
returns the double-precision exponential function of its double-precision argu-
ment. Cexp returns the complex exponential function of its complex argument.
The generic function exp becomes a call to dexp or cexp as required, depend-
ing on the type of its argument.

i SEE ALSO
P exp(3M).

4£-S

FTYPE(3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char — explicit FOR-
TRAN type conversion

SYNOPSIS
integer i, j
realr, s
double precision dp, dq
complex cx
double complex dcx
characters! cb

i = int(r)

i = int(dp)

i = int(cx)

i = int(dex)

i = ifix(r)

i = idint(dp)

r = real(id)

r = real(dp)

r = real(cx)

r = real(dcx)

r = float()

r = sngl(dp)

dp = dble(i)

dp = dble(r)

dp = dble(cx)

dp = dble(dex)

cx = cmplx(i)

cx = cmplx(@, j)

ex = cmpix(r)

cx = cmplx(r, s)

cx = cmplx(dp)

cx = cmplx(dp, dg)

ex = cmplx(dex)

dex = demplx(f)

dex = demplx@, j)

dex = demplx(r)

dex = demplx(r, s)

dex = dcmplx(dp)

dex = demplx(dp, dq)

dex = demplx(cx)

i = ichar(ch)

ch = char(i
DESCRIPTION

These functions perform conversion from one data type to another.

The function int converts to integer form its real, double precision, complex, or
double complex argument. If the argument is real or double precision, int
returns the integer whose magnitude is the largest integer that does not exceed
the magnitude of the argument and whose sign is the same as the sign of the
argument (i.e.,truncation). For complex types, the above rule is applied to the
real part. ifix and idint convert only real and double precision arguments
respectively.

FTYPE(3F)

The function real converts to real form an integer, double precision, complex,
or double complex argument. If the argument is double precision or double
complex, as much precision is kept as is possible. If the argument is one of the
complex types, the real part is returned. float and sngl convert only integer and
double precision arguments respectively.

The function dble converts any integer, real, complex, or double complex argu-
ment to double precision form. If the argument is of a complex type, the real
part is returned.

The function cmplx converts its mteger real, double precision, or double com-

~ plex argument () to complex form.

The function demplx converts to double complex form its integer, real, double
precision, or complex argument(s).

Either one or two arguments may be supplied to emplx and demplx . If there is
only one argument, it is taken as the real part of the complex type and an ima-
ginary part of zero is supplied. If two arguments are supplied, the first is taken
as the real part and the second as the imaginary part.

The function ichar converts from a character to an integer depending on the
character’s position in the collating sequence.

The function char returns the character in the ith position in the processor col-
lating sequence where i is the supplied argument.

For a processor capable of representing n characters,
ichar(char(i)) = ifor0 < i < n, and

char(ichar(ch)) = ch for any representable character ch.

GETARG(3F)

NAME
getarg — return FORTRAN command-line argument

SYNOPSIS
charactersN ¢
integer i
getarg(i, ¢)

DESCRIPTION
Getarg returns the i-th command-line argument of the current process. Thus, if
a program were invoked via

foo argl arg2 arg3
getarg(2, c) would return the string “arg2” in the character variable c.

SEE ALSO
getopt(3C).

@

@

GETENV(3F) GETENV(3F)

NAME
getenv — return FORTRAN environment variable

SYNOPSIS
character*N c
getenv(TMPDIR , ¢)

DESCRIPTION
Getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its second argu-
ment. _If no such environment variable exists, all blanks will be returned.

SEE ALSO
getenv(3C), environ(5).

IARGC(3F)

NAME
iargc
SYNOPSIS
integer i
i = iargeQ
DESCRIPTION
The iargc function returns the number of command line arguments passed to
the program. Thus, if a program were invoked via

foo argl arg2 arg3

iargc() would return “3".

SEE ALSO
getarg(3F).

INDEX(3F)

NAME
index — return location of FORTRAN substring

SYNOPSIS
charactersN1 cbl
charactereN2 ch2
integer i

i = index (chl, ch2)

DESCRIPTION]
. ..dndex returns the location of substring ch2 in string chl. The value returned is

the position at which substring ch2 starts, or 0'is it is not present in string chl.

4€-S

LEN(3F)

NAME

len — return length of FORTRAN string
SYNOPSIS

character¢N ch

integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch.

LOG(3F)

NAME
log, alog, dlog, clog — FORTRAN natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
O complex cx1, cx2
r2 = alog(rl)
r2 = log(rl)

dp2 = dlog(dpl)
dp2 = log(dpl)
cx2 = clog(ex1)
cx2 = log(cx1)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog returns the
double-precision natural logarithm of its double-precision argument. Clog
returns the complex logarithm of its complex argument. The generic function
log becomes a call to alog, dlog, or clog depending on the type of its argu-
ment.

SEE ALSO
exp(3M).

LOG10(3F)

NAME

logl0, alogl0, dlogl0 — FORTRAN common logarithm intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

r2 = alogl0(rl)

r2 = logl0(r1)

dp2 = dlogl0(dp1)
dp2 = log10(dpl)
DESCRIPTION

Alogl0 returns the real common logarithm of its real argument. Dlogl0
returns the double-precision common logarithm of its double-precision argu-
ment. The generic function log!0 becomes a call to alogl0 or dlogl0 depend-
ing on the type of its argument.

SEE ALSO
exp(3M).

C‘
}
./

C

MAX(3F)

max, max0, amax0, maxl, amaxl, dmax] — FORTRAN maximum-value func-
tions

SYNOPSIS

integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3

1 = maxG, j, k)

¢ = max(a, b)

dp = max(a, b, ¢)

k max0(1, j)

a amax0(G, j, k)

i max1(a, b)

d amax1(a, b, c)
dp3 = dmax1(dpl, dp2)

DESCRIPTION

The maximum-value functions return the largest of their arguments (of which
there may be any number). Max is the generic form which can be used for all
data types and takes its return type from that of its arguments (which must all
be of the same type). Max0 returns the integer form of the maximum value of
its integer arguments; amax0, the real form of its integer arguments; maxl,
the integer form of its real arguments; amax]!, the real form of its real argu-
ments; and dmax!, the double-precision form of its double-precision arguments.

SEE ALSO

min(3F).

MCLOCK(3F)

NAME
mclock — return FORTRAN time accounting

SYNOPSIS
integer i
i = mclock()
DESCRIPTION
Mclock returns time accounting information about the current process and its

child processes. The value returned is the sum of the current process’s user time
and the user and system times of all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

MIN(3F)

NAME
min, min0, amin0, min}l, aminl, dminl — FORTRAN minimum-value functions

SYNOPSIS
integer i, j, k, |

real a, b, ¢, d
O

double precision dpl, dp2, dp3

I = min(, j, k)
¢ = min(a, b)
dp = min(a, b, ¢)
k = min0G, j)
a = amin0G,], k)
i = minl(a, b)
d = aminl(a, b, c)
dp3 = dminl{dp1, dp2)

DESCRIPTION
The minimum-value functions return the mimmum of their arguments (of
which there may be any number). Min is the generic form which can be used
for all data types and takes its return type from that of its arguments (which
must all be of the same type). Min0 returns the integer form of the minimum
value -of its integer arguments; amin0, the real form of its integer arguments;
minl, the integer form of its real arguments; amin!, the real form of its real
arguments; and dmin!, the double-precision form of its double-precision argu-
ments.

SEE ALSO
max(3F). ’

O

MOD(3F)

NAME

mod, amod, dmod — FORTRAN remaindering intrinsic functions
SYNOPSIS

integer i, j, k

real rl, r2, r3

double precision dpl, dp2, dp3

k = mod(, j)

r3 = amod(rl, r2)
r3 = mod(rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)
DESCRIPTION

Mod returns the integer remainder of its first argument divided by its second
argument. Amod and dmod return, respectively, the real and double-precision
whole number remainder of the integer division of their two arguments. The
generic version mod will return the data type of its arguments.

RAND(3F)

NAME
irand, rand, srand ~ random number generator
SYNOPSIS
call srand(iseed)
i = irand()
x = rand()
DESCRIPTION
Irand generates successive pseudo-random numbers in the range from 0 to
2**15-1. Rand generates pseudo-random numbers distributed in. (0, 1.0).

Srand uses its integer argument to re-initialize the seed for successive invoca-
tions of irand and rand. i

SEE ALSO
rand(3C).

ROUND(3F)

NAME
anint, dnint, nint, idnint — FORTRAN nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 = anint(r1)
i = nint(r1)

dp2 = anint(dpl)

dp2 = dnint(dpl)

i = nint(dpl)

i = idnint(dp1)

DESCRIPTION
Anint returns the nearest whole real number to its real argument I[i.e.,
int(a+0.5) if a 2 0, int(a—0.5) otherwisel. Dnint does the same for its
double-precision argument. Nint returns the nearest integer to its real argu-
ment. Idnint is the double-precision version. Aniat is the generic form of
anint and dnint, performing the same operation and returning the data type of
its argument. Nint is also the generic form of idnint.

O

O

SIGN(3F)

sign, isign, dsign — FORTRAN transfer-of-sign intrinsic function

SYNOPSIS

integer i, j, k

real rl, r2, r3

double precision dpl, dp2, dp3
k = isign(i, j)

k = signG, j)

r3 = sign(rl, r2)

dp3 = dsign(dp1, dp2)

dp3 = sign(dpl, dp2)

DESCRIPTION

Isign returns the magnitude of its first argument with the sign of its second
argument. Sign and dsign are its real and double-precision counterparts,
respectively. The generic version is sign and will devolve to the appropriate
type depending on its arguments.

SIGNAL(3F)

NAME
signal — specify FORTRAN action on receipt of a system signal
SYNOPSIS
integer i
external integer intfnc
call signal(i, intfnc)
DESCRIPTION
Signal allows a process to specify a function to be invoked upon receipt of a

specific signal. The first argument specifies which fault or exception; the second
argument the specific function to be invoked.

SEE ALSO
kill(2), signal(2).

SIN(3F)

NAME
sin, dsin, csin — FORTRAN sine intrinsic function
SYNOPSIS
real rl, r2
C double precision dpl, dp2
‘ complex cxl, cx2

r2 = sin(rl)
dp2 = dsin(dpl)
dp2 = sin(dpl)

cx2 = csin(cx1)
cx2 = sin(cx1)

DESCRIPTION
Sin returns the real sine of its real argument. Dsin returns the double-
precision sine of its double-precision argument. Csin returns the complex sine
of its complex argument. The generic sin function becomes dsin or csin as
required by argument type.

SEE ALSO
trig(3M).

SINH(3F)

NAME
sinh, dsinh — FORTRAN hyperbolic sine intrinsic function

SYNOPSIS
real r1, r2
double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinb(dpl)
dp2 = sinh(dp1)
DESCRIPTION

Sinh returns the real hyperbolic sine of its real argument. Dsinh returns the
double-precision hyperbolic sine of its double-precision argument. The generic
form sinh may be used to return a double-precision value when given a
double-precision argument.

SEE ALSO
sinh(3M).

SQRT(3F)

NAME
sqrt, dsqrt, csqrt — FORTRAN square root intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = sqrt(r1)

dp2 = dsqrt(dpl)
dp2 = sqrt(dpl)
cx2 = csqrt{cxl)
cx2 = sqrt(cxl)

DESCRIPTION
Sgrt returns the real square root of its real argument. Dsgrt returns the
double-precision square root of its double-precision argument. Csgrt returns
the complex square root of its complex argument. Sgrt, the generic form, will
become dsgrt or csqrt as required by its argument type.

SEE ALSO
exp(3M).

STRCMP(3F)

NAME
Ige, Igt, lle, llt — string comparison intrinsic functions

SYNOPSIS
character*N al, a2
loglecal 1

Ige (al,a2)
Igt (al,a2)
lle (al,a2)
I = it (al,a2)

DESCRIPTION
These functions return .TRUE. if the inequality holds and .FALSE. otherwise.

———
[

SYSTEM(3F)

NAME
system — issue a shell command from FORTRAN

SYNOPSIS
charactersN ¢

call system(c)

DESCRIPTION
System causes its character argument to be given to sh(1) as input, as if the
string had been typed at a terminal. The current process waits until the shell
“has completed. " - : - C :

SEE ALSO
exec(2), system(3S).
sh(1) in the Runtime System manual.

TAN(3F)

NAME
tan, dtan — FORTRAN tangent intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = tan(rl)
dp2 = dtan(dpl)
dp2 = tan(dpl)
DESCRIPTION
Tan returns the real tangent of its real argument. Dtan returns the double-
precision tangent of its double-precision argument. The generic tan function
becomes dtan as required with a double-precision argument.
SEE ALSO
trig(3M).

S

()

TANH(3F)

NAME
tanh, dtanh — FORTRAN hyperbolic tangent intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = tanh(rl)
dp2 = dtanh(dp1)
dp2 = tanh(dpl)
DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns

the double-precision hyperbelic tangent of its double-precision argument. The
generic form tanh may be used to return a double-precision value given a

double-precision argument.

SEE ALSO
sinh(3M).

TABLE OF CONTENTS OF FILE FORMATS

4, File Formats

introducion to file formats

iniro
a.out assembler and link editor output
acct. per-process accounting file format
ar conunon archive file format
checklist. list of file systems processed by fsck
P care fonnat of core image file
L cpio. format of cpio archive
dialinfo....... dial procedure data base
dix. format of directories
ertfile error-log file format
filehdr, file header for object files
fs format of system volume
fspec format specification in text files
geltydefs speed andterminal settings used by getty
£ps graphical primitive string, format of graphical files
group group file
inittab. script for the init process
inode format of an i-node
issue issue idenuification file
1dfmn object file access routines
linenum line number entries in a common object file
master. master device informasion table
mnttab mounted file system table
passwd password file
plot. graphics interface
pach...file format for card images
profile seting up anenvironment at login time
\ reloc relocasion information for and object file
/ scesflle format of SCCS file
scnhdr. section header for an object file
syms conunon object file synibol table format
tenm. format of compiled term file
terminfo terminal capability data base
usnp ulmp and winp entry formats

O

NAME

INTRO(4)

intro - introduction to file formats

DESCRIPTION

This section outlines the formats of various files, The C struct declara-
tions for the file formats are given where applicable. Usually, these
structures can be found in the directories /usr/include or
/usr/include/sys.

References of the type name(1M)refer to entries found in Section 1 of the Runtime
System manual

This page intentionally left blank.

O

A.OUT(4)

a.out - common assembler and link editor output

DESCRIPTION

The file name a.out is the output file from the assembler as(1) and the
link editor Id(1). Both programs will inake a.out executable if there were
no errors in assembling or linking and no unresolved external references.

A common object file consists of a file header, a UNIX system header; a
table of section headers, relocation information, (optional) line numbers,
a symbol table, and a string table. The order is given below.

" File header.
UNIX system header.
Section 1 header.

é'ection n header.
Section 1 data.

é.ection n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

ééction n line mimbers.
Symbol table.
String table.

The last three parts of an object file (lire numbers, symbol table and
string table) may be missing if the program was linked with the —s
option of ld(1) or if they were removed by strip(1). Also note that the
relocation information will be absent if there were no unresolved external
references after linkirig. The string table exists only if the symbol table
contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in
bytes and are even.

When an a.out file is loaded for execution, two or more memory seg-
ments are set up. The number of segments depends on the memory model
selected at compile time and the prograni’s size. The loader builds these
segments from the data sections of the object file, according to the
parameters in the headers.

In the small memory model, programs have one data segment (containing
a stack and all of the data), and one code (program text) segment.

In the large memory model, programs have a separate stack segnient and
one or more segments for both data and code. Each segment in the iAPX
286 is limited to 64k bytes of information; so for these models, the com-
piler creates multiplé code and data segments when necessary.

The data segment is extended during program execution as requested by
the brk(2) system call. When necessary in large model programs, addi-
tional memory segments are allocated to-accommodate such extensions.

The valie of a word in the text or data portions that is not a reference to
an undefined external symbol is exactly the value that will appear in
memory when the file is executed. If a word in the text involves a refer-
ence to an undefined external symbol, the storage class of the symbol-
table entry for that word will be marked as an “external symbol”, and the

-1-

A.OUT(4)

section number will be set to 0. When the file is processed by the link
editor and the external symbol becomes defined, the value of the symbol
will be added to the word in the file.

File Header
The format of the filehdr header is

struct filehdr
{

unsigned short f_magic; /* magic number */
unsigned short f_nsens; /* number of sections */

long f_timdat; /* time and date stamp */
long f_symptr; /#file ptr to symtab */
long f_nsyms; /*# symtab entries */

unsigned short f_opthdr; /#* sizeof(opt hdr) */
unsigned short f_flags; /* flags */
b
UNIX System Header
The format of the UNIX system header is

typedef struct aouthdr

{

short magic; /* magic number */
short vstamp; /* version stamp */
long tsize; /* text size in bytes, padded */
long dsize; /+ initialized data (.data) */
long bsize; /* uninitialized data (.bss) */
long entry; /* entry point */
long text_start, /* base of text used for this file */
long data_start; /* base of data used for this file */ .
} AOUTHDR; RN

A.OUT(4)

Section Header
The format of the section header is

struct senhdr

{

char s_name[SYMNMLEN];/* section name */
long s_paddr; /* physical address */

long s_vaddr; /* virtual address */

long s_size; /* section size */

long s_senptr; /# file ptr to raw data */
long s_relptr; /# file ptr to relocation */
-long --s.Innoptr; /* file ptr to line numbers */

_nreloc; /* # reloc entries */
_nlnno; /* # line number entries */
_flags; /* flags */

unsigned short
unsigned short
long

w w w

b
Relocation
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow-

ing format:
struct reloc
{
long r_vaddr; /* (virtual) address of reference */
long r_symndx; /* index into symbol table */
short r_type; /* relocation type */

b
The start of the relocation information is s_relptr from the section
header. If there is no relocation information, s_relptr is 0.

S

A.OUT(4)

Symbol Table L
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 /* the size of a SYMENT */

struct syment

union /* all ways to get a symbol name */
char _n_name[SYMNMLEN]; /* name of symbol */
struct
long _n_zeroes; /* == (L if in string table */
long _n_offset; /* location in string table */
} _n_n;
char *_n_nptr[2}, /* allows overlaying */
}om
unsignéd long n_value; /* value of symbol +/
short n_scnum, /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
b
#define n_name _n._n_name
#define n_zeroes _N._n_n._n_zeroes
#define n_offset _n._n_n._n_offset ;
#define n_nptr _n._n_nptr{1] L

Some symbols require more information than a single entry; they are fol-
lowed by auziliary entries that are the same size as a symbol entry. The
format follows:

A.OUT(4)

union auxent {

struet {
long x_tagndx;
union {
struet {
unsigned short x_lnno;
unsigned short x_size;
} x_Insz,
long x_fsize;
} ¥_misc;
union {.
" struet {
long x_lnnoptr;
long x_endndx;
} x_fen;
struet {
unsigned short x_dimen[DIMNUM];
} x_ary;
} x_fenary;
unsigned short x_tvndx;
} x_sym;
struet {
char x_fname[FILNMLEN];
} x_file;
struct {
long x_scnlen;

unsigned short x_nreloc;
unsigned short x_nlinno;
} x_sen;

struet {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran{2];
} x_tv;
b
Indexes of symbol table entries begin at zero. The start of the symbol
table is f_symptr (from the file header) bytes from the beginning of the
file. If the symbol table is stripped, f_symptr is 0. The string table (if
one exists) hegins at f_symptr + (f_msyms * SYMESZ) bytes from the
beginning of the file.
SEE ALSO

brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), secnhdr(4), syms(4).
as(1), ec(1), 1d(1) in the Runtime System manual.

ACCT(4)

NAME
accet - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form
defined by <sys/acct.h>, whose contents are:

typedef ushort comp_t; /#* " floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct

{ char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac_uid;
ushort ac_gid,
dev_t ac_tty;
time_t ac_btime; /* Beginning time */
comp_t ac_utime; /* acetng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; /* acetng elapsed time in clock ticks */
comp_t ac_mem,; /* memory usage in clicks */
comp_t ac_io; /% chars trnsfrd by read/write #/
comp_t ac_rw; /* number of block reads/writes */
char ac_comm[8]; /* command name */
b
extern struct acct acctbuf;
extern struet inode +acctp; /# inode of accounting file */
#define AFORK 01 /#* hag executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /# record type: 00 = acct */

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by
an exec(2). The ac_comm field is inherited from the parent process and
is reset by any exec. Each time the system charges the process with a
clock tick, it also adds to ac_mem the current process size, computed as
follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem /(ac_stime+ ac_utime) can be viewed as an approxi-
mation to the mean process size, as modified by text-sharing.

ACCT(4)

The structure tacct.h, which resides with the source files of the accounting com-
mands, represents the total accounting format used by the various accounting
commands:

/e

+ total accounting (for acct period), also for day

o/

®

struct tacct {

uid _t ta_uid; /* userid +/

char - - -ta_namel8]; /e login name +/ e
float ta_cpul2]; /¢ cum. cpu time, p/np (mins) +/
{loat ta_kcore[2); /¢ cum kcore-minutes, p/np */
float ta_conl[2]; /¢ cum. connect time, p/np, mins */
float ta_du; /+ cum. disk usage */

long . ta_pc; /+ count of processes */

unsigned short ta_sc; /+ count of login sessions */
unsigned short ta_dc; /+ count of disk samples */
unsigned short ta_fee; /+ fee for special services */

|5
SEE ALSO

acck(2), exec(2), fork(2).
acct(1M), acctcom(l) in the Runtime System manual.

BUGS
_ The ac_mem value for a short-lived command gives little information about the

7N actval size of the command, because ac_mem may be incremented while a

’\“’,-" differént command (e.g., the shell) is being executed by the process.

AR(4)

NAME

ar — common archive file format

DESCRIPTION

The archive command ar(1) is used to combine several files into one. Archives
are used mainly as libraries to be searched by the link editor /d(1).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n" /+ magic string */
#define SARMAG 8 /+ length of magic string */

Each archive which contains common object files [see a.out(4)] includes an
archive symbol table. This symbol table is used by the link editor /d(1) to
determine which archive members must be loaded during the link edit process.
The archive symbol table (if it exists) is always the first file in the archive (but
is never listed) and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

#define ARFMAG "\n" /+ header trailer string */

struct ar_hdr /+ file member header */
char ar_namel[16]; /+’/’ terminated file member name */
char ar datel[12]; /» file member date */
char ar_uidlé6]; /+ file member user identification */
char ar_gidl6]; /» file member group identification */
char ar_model8]; /» file member mode (octal) /
char ar size[10]; /+ file member size +/
char ar fmag(2]; /* header trailer string */

I8 -

All information in the file member headers is in printable ASCIl. The numeric
information contained in the headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field
is the modification date of the file at the time of its insertion into the archive.
Common format archives can be moved from system to system as long as the
portable archive command ar(1) is used.

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length
name (i.e., ar_namel0] == */"). The contents of this file are as follows:

L] The number of symbols. Length: 4 bytes.

L The array of offsets into the archive file. Length: 4 bytes * “the
number of symbols”.

[The name string table. Length: ar_size — (4 bytes * (“the number of
symbols” + 1)).

AR(4)

The number of symbols and the array of offsets are managed with
sgetl and sputl. The string table contains exactly as many null
terminated strings as there are elements in the offsets array.
O Each offset from the array is associated with the corresponding
! name from the string table (in order). The names in the string
table are all the defined global symbols found in the common
object files in the archive. Kach offset is the location of the
archive header for the associated symbol.
SEE ALSO
sput(3X), a.out(4).
ar(1), 1d(1), strip(1) in the Runtime System manual.
CAVEATS
Strip(1) will remove all archive symbol entries from the header. The
archive symbol entries must be restored via the ts option of the ar(1)
command before the archive can be used with the link editor ld(1).

t-S

CHECKLIST(4)

NAME
checklist - list of file systems processed by fsek

DESCRIPTION
Checklist resides in directory /etc and contains a list of, at most, 15 spe-
cial file names. Each special file name is contained on a separate line
and corresponds to a file system. Each file system will then be automati-
cally processed by the fsck(1M) command.

SEE ALSO
fsck(1M) in the Runtime System manual.

CORE(4)

NAME
core — format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process when any of
C j various errors occur. See signal(2) for the list of reasons; the most common
’ are memory violations, illegal instructions, bus errors, and user-gencratcd quit
signals. The core image is called core and is written in the process’s working
directory (provided it can be; normal access controls apply). A process. with an
effective user ID dlﬂerent from the real user ID will not produce a core 1mage

The ﬂrst section of the core image is a copy of the system s per user data for
the process, including the registers as they were at the time of the fault. The
size of this section depends on the parameter usize, which is defined in
/usr/include/sys/param.h. The second section of the core image is a copy of
the process’s local descriptor table(LDT). The size of this section is specified in
the per-user data field, u_Isize. The remainder represents the actual contents
of the user’s core area when the core image was written. If the text segment is
read-only and shared, it is not dumped.

The format of the information in the first section is described by the user struc-
ture of the system, defined in /usr/include/sys/user.h. The important stuff’ not
detailed therein is the locations of the registers, which are outlined in
/usr/include/sys/reg.h.

The format of the information in the second section is described by the
seg_desc structure of the system, defined in /usr/include/sys/seg.b. The LDT is
an array of these structures.

P SEE ALSO
R setuid(2), signal(2).
= crash(1M), sdb(1) in the Runtime System manual.
1 !
M

CPIO(4)

NAME
cpio — format of cpio archive

DESCRIPTION
The header structure, when the —c option of cpio (1) is not used, is:

struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesizel2];
char h_namelh_namesize rounded to wordl; i
} Hdr;

When the —c option is used, the header information is described by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60%1110%60%]1 110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.b_gid, &Hdr.h_nlink, &Hdr.h_rdeyv,
&Longtime, &Hdr.h_namesize, &Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h filesize,
respectively. The contents of each file are recorded in an element of the array

of varying length structures, archive, together with other items describing the Ny
file. Every instance of h_magic contains the constant 070707 (octal). The

items h_dev through h_mtime have meanings explained in szat(2). The length

of the null-terminated path name h_name, including the null byte, is given by
h_namesize.

The last record of the archive always contains the name TRAILER!. Special

files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
stay(2).
cpio(1), find(1) in the Runtime System manual.

DIALINFO(4)

NAME

dialinfo' - dial procedure database
SYNOPSIS

/usr/lib/uucp/dialinfo

DESCRIPTION
The dialinfo file is a databse of dialers. Each dialer is a procedure for connecting a
terminal line to some kind of remote computer system. Mostdialer entries dial outon a
modem with bujlt-in auto-dial capability. Some more esoteric entries resolve baud rate
switching with a remote ge?ty, perforin auto-login, and even detect/defeat remote dial back
modemms. i .

Each dialer entry describes the operation of a state machinc. This statemachine is capable
of sending characters to the remote, controlling the switchook, sending break, adjusting
baud-rate, and printing user messages on stderr. State transison decisions are made
according to responses from the remote, response timeout, carrier detection, and retry
count. The state machine may be partially or fully customized with user environment
variables.

Dialinfo contains an extensive diagnostic capability both to support initial debugging,
and to deal with day-to-day problems onreal telephone lines and downsystems.

®

The entry format of dialinfo is modeled after terminfo. Entries have the general form:
namel |name21..., '
keyl=strl, key2=str2, ...
keyn=stm, ...

o
7 nzame? Descriptive dialer name, For an auto-dial modem this is usually

i manufacturer name and model mumber. For a dialer to be used, this name
i must appearin field3 of a corresponding entry in the L-devices file.

i

I

key? Dialinfo keyword.
! str? Keyword definition string. A definition may span several lines. Only
! commas need be escaped.

The name entry must begin in column 1. Keyword entries may immediatley follow the
first comma, or may be indented and placed on subsequent lines. Blank lines, and

comment lines beginning with # are ignored.

Keywords include:

delay Modem sting to geta 2 second dial delay.

walt Modem string to wait for dial tone or secondary dial tone,

star Modem string for the * key on a touch tone phone.

pound Modem string for the # key on a touch tone phone.

flash Modem string to flash off hook for 1 second.

retry Initial retry count. Specifies the number of retries to be performed before
C announcing failwre.

DIALINFO(4)

sn

use

Definition of machine state ». There are 100 possible states numbered 0
to 99.

The specified string is a dialer entry from which remaining undefined
keywordsmay be taken. Presently defined keywords are not affected. Any
keyword definisons which follow in the current dialer entry are ignored.

An environment variable string may be placed anywhere in a dialinfo definition. The
form $(name} inserts the value of the environment variable name. The form ${nane-
default} inserts the value of name if it exists, and otherwise literally inserts the default

string.

Machine state definitions contain a sequence of commands performed in order from left to
right. Possible commands include:

B
Cn

Estring "

F “Slring"

M “string”
Nb
Pn

Sn

Ts

Transmit 250 millisecond break signal.

Set commect option. If n is 0, use 8 bits, no parity, L-devices baud rate and
clocal mode formodem corrmmunication. If z is 1, switch parity, character
size and baud rate for cammumication with the remote systern; carrier detect
is still disabled. If nis 2, proceed as with 1, but enable cammier detect if this
is an ACU line or call-modem is non-zero, Ifn is 3, set options as with 1,
but always enable carier detect. Ifnis4, set options as with 1, but enable
carrier detect and waitfor carier to be estblished. If carrier is not seen
within the timeout period set by the last S command, take action according
to the last H conimand.

Drop DTR (hang up line) for n seconds. When DR is restored, baud rate,
parity efc is set as if CO was executed.

Write string to stderr. Presumably stderr is directed to a user terminal, ora
log file.

Declare that string should be sent to stderr on any subsequent dial failure.
Remains in effect until canceled.

Immediately transfer controltostate s.

Declare that the carier lost error recovery state is s.If a subsequent read of
the conununication line fails because carrier sense is enabled and DCD is
false, control will be transferred tostate.s.

Whiite string to the communication line.

Change the conwnunication line baud rate to speed b.
Pause for n seconds.

Decrement the retry count, and fail if the result is negative,

Declare that the timeout used when waisng for carrier or a conununication
line response is 72 seconds.

Declare that the ®imeout recovery state is 5. Any subsequent timeout will
cause a transfer to this state.

DIALINFO(4)

Un Execute (usc) the text of state definition # as a subroutine. This command
nests up to 10 deep.

[string] s Declare that a transfer to state s should be performed when string is
received from the remote,

The state parameter denoted as s in the above entries is one of the following:

n Transfer control to state n, where n is a decimal number in the range 0
to 99,
+ E_xit, returning success.

- Exit, remming the error code NO ANS .(no answer).
-n Exit, returning the error code —n.

The following escapes arerecognisedin E, F, M, and {] command strings:
\ran The octal character»mn.

Ae The control character derived by the logical and of the ASCII character ¢
and the octal mask 037. This is the character fransmitted by a standard
ASCII keyboard when the control key is held down, and the character c is

\¢ Standaid C language escapes \b (backspace), \f (formfeed), \t (tab), \n
(newline), and \r (return).

%n Field number 7 of the current L-devices entry.

%o{var} The user environment variable var.

Yo The unmodified telephone number string.

%N Converted telephone number described below.

The following characters have special meaning in the %N character strings, and are
replaced with corresponding dialinfo strings as described below.

*or: (star) Dials the * on a touch-tone telephone.
$#or; (pound) Dials the# on a touch-tone telephone.
- (pause) Pauses 2 seconds.

=0TW (wait) Wait for secandary dial tone,

f (flash) Flash of fhook for one second.

DIALER OPERATION
The state machine is initialized to “COH~ S10T-", and execution begins atstate 0.

As each state is entered, any previous [] command strings are cleared. Command
execution then proceeds in order from left to right.

If a command (eg G) is encountered that causes a change of state, remaining commands
inthe current state are notperfonned, and execution continues in thenew state.

Otherwise, when all the conunands in a state have been executed, a read operation is
performed on the communication line. Incoming characters are then matched against
previously declared [] command strings. If a match is found, the corresponding state
transfer occurs. If carrier sense was enabled by a previous C command, and carrier is lost,
the last H command is honored. If neither of these events occur within the timeout
specified by the last S command, a timeout is detected. Actionis thentaken according to
the last T command.

DIALINFO(4)

EXAMPLES
The following is a stripped-down definition for a Hayes Smartmodem.

hayes,
star=*, pound=#, flash=HO\, H1,
delay=\,, wait=\,, retry=2,
s0=M"\1AT DT%N\r' S60 [CONNECT] +,

Below is a more complicated entry %o handle a Vadic 3451.

vadic | va3451,
delay=K, wait=KK, retry=5,
s0=P1 M"AE\r" [*]1 S2 T10,
s1=P1 M"D\t" (NUMBER] 2,
s2=P1 M"%N\r" P1 "\r" [DIALING]3,
s3=E"Dialing %n..." S30H11 C4 [CONNECT|4 T11,
s4=E"Connected." G+,
s10=F"No response from modem.” R1 D1 G0,
s11=F"Dial failed." R1 E"No Carrier, retrying .. ." D1 G0,

The next enwy gets its complete definition from the DIALCUSTOM envirorunent
variable, and defaults to hayes if that variable is imdefined.

custom,
${DIALCUSTOM-use=hayes} ,
FILES
fost /lib/uucp/dialinfo Dial procedure data base.
Jusr/lib/uucp/l -devices UUCPdevice file.
AUTHOR
Gene H. Olson, Quest Research, Burnsville MN.
SEE ALSO
dialer(1) Modem dial out program.
dialprint(1) Prints dialer entries,
getty(1) For informaiton on dial-in lines,
uucp(1) UUCP interface information.
dial(3) C library dial procedure.
terminfo(4) Teiminal capability data base.
acu(7) For System V phone number conventions.
tean(7) Terminal device information.

@

O

O

DIR(4)

NAME
dir — format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write

into a directory. The fact that a file is a directory is indicated by a bit in the
flag word of its i-node entry (see fs(4)1. The structure of a directory entry as
given in the include file is: .

#ifndef DIRSIZ

#define DIRSIZ 14

#endif

struct direct

{

ino_t d_ino;

| char d_namelDIRSIZ];
By convention, the first two entries in each directory are for . and ... The first
is an entry for the directory itself. The second is for the parent directory. The
meaning of .. is modified for the root directory of the master file system; there
is no parent, so .. has the same meaning as ..

SEE ALSO
fs(4).

ERRFILE(4)

NAME
errfile — error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is generated
and passed to the error-logging daemon for recording in the error log for later
analysis. The default error log is /usr/adm/errfile.

The format of an error record depends on the type of error that was encoun-
tered. Every record, however, has a header with the following format:

struct errhdr {

short e_type; /+ record type ¢/
short e_len; /+ bytes in record (inc hdr) */
time_t e_time; /* time of day +/

IR

The permissible record types are as follows:

#define E_GOTS 010 /+ start for UNIX System/TS ¢/

#define E_GORT 011 /+ start for UNIX system/RT +/

#define E_STOP 012 /#* stop ¢/

#define E TCHG 013 /+ time change */

#define E.CCHG 014 /+ configuration change */

#define E_BLK 020 /+ block device error ¢/

#define E. STRAY 030 /* stray interrupt */

#define E_PRTY 031 /+ memory parity */

#define E_PIO 041 /+ 3B20 computer programmed
*1/0+/

#define E_[OP 042 /+ 3B20 computer I/O

* processor */

Some records in the error file are of an administrative nature. These include
the startup record that is entered into the file when logging is activated, the
stop record that is written if the daemon is terminated *“gracefully”, and the
time-change record that is used to account for changes in the system’s time-of-
day. These records have the following formats:

struct estart {

short e_cpu; /+ CPU type */
struct utsname e_name; /* system names */
#ifndef u3b
short e_mmr3; /+ contents mem mgmt reg 3 */
long e_syssize; /* 11/70 system memory size */
short e_bconf; /* block dev configuration */
#endif
#ifdef u3b
int e_mmcnt; /* kbytes per array */
#endif

k
#define eend errhdr /+ record header +/

struct etimchg {
time_t e_ntime; /* new time ¢/

ERRFILE(4)

Stray interrupts cause a record with the following format to be logged:

struct estray {

#ifdef u3b
B uint e_saddr; /+ stray loc or device addr «/
If #else
N : physadr e_saddr; /+ stray loc or device addr +/
short e_sbacty; /+ active block devices */
#endif
: o Memory subsystem errors on 3820 computer-and the iAPX 286 and VAX 11/70
. processors cause the following record to be generated:
struct eparity {
#ifdef v3b
int e_parreg[3]; /+ 3B computer memory
* registers +/
#else
short e_parreg[4]; /+ memory subsys registers */
#endif
Memory subsystem errors on VAX-11/780 processors cause the following record
to be generated:
struct ememory {
int e_sbier;
| int e_memcad;
O Memory subsystém errors on Intel-iAPX 286~ processors cause the following

record to be generated:

struct ememory {
ushort
ushort

e_esr;
e_hard;

Error records for block devices have the following format:

struct eblock {

#ifdef u3b
ushort e_num;
struct jostat {
long io_ops;
long io_misc;
ushort io_unlog;
e_stats;
short e_bflags;
daddr_t e_bnum,;
uint e_bytes;

union ptbl {
int pagel64];
union ptbl *pnext;

N
'\

e_ptbl;
struct ptbl e_ptbl;
uint e_voff;
uint e_statl;
uint e_stat2;
#endif

-2-

/* ECC error status register*/
/* fiag to indicate a hard err*/

/+ device number ¢/

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc ¢/
/+ logical block number +/
/* number bytes to transfer */

/+ page table entries */

/+ page table for transfer */
/+ offset into page table */
/+ status word 1 */

/+ status word 2 */

ERRFILE(4)

#ifndef u3b
dev_t e dev; /+ "true" major + minor dev no */
physadr e_regloc; /# controller address */
short e_bacty; /* other block I/0 activity */
struct iostat {
long io_ops; /* number read/writes */
long io_misc; /+ number "other" operations */
ushort io_unlog; /+ number unlogged errors */
e_stats;
short e_bflags; /+ read/write, error, etc +/
#ifdef iIAPX286
short e_secoff; /* logical dev start sector */
#else
short e_cyloff; /* logical dev start cyl */
#endif ‘
daddr t e_bnum; /+ logical block number */
ushort e_bytes; /+ number bytes to transfer */
paddr t e_memadd; /+ buffer memory address */
ushort e_rtry; /+ number retries */
short e_nreg; /+ number device registers */
#endif
#ifdef vax

struct mba_regs {
long mba_csr;
long mba_cr;
long mba_sr;
long mba_var;
long mba_vcr;

} e_mba;

#endif

The following values are used in the e bflags word:

#define E WRITE 0 /* write operation */
#define E_READ 1 /+ read operation */
#define E_NOIO 02 /¢ no 1/0 pending */
#define E_PHYS 04 /+ physical 1/0 */
#define E MAP 010 /+* Unibus map in use */
#define E ERROR 020 /4 170 failed +/

For iAPX 286 processors, a configuration change message is sent to the error
logging daemon whenever a block device driver is attached or detached.

struct econfchg {
char e_trudev; /* "true" major device number */
char e_cflag; /* driver attached or detached */

h;
#define E ATCH 1
#define E DTCH 0
iAPX 286 processors use the following structure for system accounting:

struct iotime {
struct iostat ios;

long io_bent; /* total blocks transferred */

time_t io_act; /* total controller active time */

time_t io_resp; /* total block response time */
#define io_cnt ios.io_ops

Z3-

ERRFILE(4)

The following error records are for the 3B20 computer only:

struct epio { /* programmed 1/0 (pio) error */
char e_chan; /* which channel */
char e_dev; /* which dev on channel */
N uint e_chstat; /* channel status */
O uint e_cmd; /#* pio command */
[} ’
struct eiop { /* 1/0 processor (iop) error */
char e_unit; /* unit number */
uint e_word0; "/* iop report word */ -
uint e_wordl; /% iop report word */
1
The “true” major device numbers that identify the failing device are as
follows:
Digital Bquipment AT&T Intel BEquipment

#define RKO 0 #defineDFCO 0 #define WNO 0
#define RPO 1 #define IOPO 1
#define RFQ 2 #define MTO 2
#define TMO 3
#define TCO 4
#define HPO 5
#define HT0 6
#define HSO 7
#define RLO 8
#define HP1 9

0

1

_ #define HP2 1
/ #define HP3 1
SEE ALSO
errdemon(1M) in the Runtime System manual.

()

FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include " filchdr.h"

DESCRIPTION
Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struet filehdr
{

/* magic number */
/* number of sections */

unsigned short f_magic ;
unsigned short f_nsens ;

long f_timdat; /= time & date stamp */
long f_symptr ; /# file ptr to symtab #/
long f_nsyms; /## symtab entries */

unsigned short f_opthdr ;
unsigned short f_flags ;

/#* sizeof(opt hdr) */
/* flags */

'
F_symptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek(3S) to position an I/0
stream to the symbol table. There are two possible magic numbers
corresponding to the two possible addressing models available:

#defineI286SMAGIC 0512
#defineI286LMAGIC 0522

The value in

f_timdat

is obtained from the
time(2) e
system call.

Flag bits currently defined are:

#define F_RELFLG 00001 /*relocation entries stripped */
#define F_EXEC 00002 /# file is executable */

#define F_LNNO 00004 /* line numbers stripped */
#define F_LSYMS 00010/+* local symbols stripped */
#define F_MINMAL 00020 /+* minimal object file +/

#define F_UPDATE 00040 /* update file, ogen produced */
#define F_SWABD 00100 /* file is " pre-swabbed"” */
#define F_AR16WR 00200 /% 16-bit DEC host */

#define F_AR32WR 00400 /+ 32-bit DEC host */

#define F_AR32W 01000/* non-DEC host */

#define F_PATCH 02000/* " patch" list in opt hdr */
#define F_80186 010000 /* need to run on an 80186 or 80286 */
#define F_80286 020003 /+ need to run on an 80286 */

SEE ALSO
time(2), fseek(3S), a.out{4).

FILEHDR(4)

Flag bits currently defined are:

##define F_RELFLG 0x0001 /¢ relocation entries stripped */
#tdefine F_EXEC 0x0002 /+ file is executable */
#tdefine F LNNO 0x0004 /+ line numbers stripped */
(_\ ##define F_LSYMS 0x0008 /+ local symbols stripped */
: ##define F_ MINMAL 0x0010 /+ minimal object file «/
##define F_UPDATE 0x0020 /+ update file, ogen produced */
##define F. SWABD 0x0040 /= file is "pre-swabbed" */
#tdefine F_ARI6WR 0x0080 /+ 16-bit DEC host */
“== 7 - jtdefine F_AR32WR " '0x0100~ -/+-32-bit DEC host+/ -~ =+
##define F_AR32W 0x0200 /+ non-DEC host */
##define F_PATCH 0x0400 /» "patch" list in opt hdr «/

Map of COFF to STL
The following table shows the mapping of the (virtual format) COFF file-
header fields to their actual STL locations. These conventions are used:

The fileheader is referred to as "filehdr" in COFF and "stlhdr" in
STL.

The system header is referred to as "aouthdr" in COFF and "exthdr"
(extended header) in STL.

The section headers are referred to as "scnhdr" in COFF and
"sechdr" in STL.

Filehdr
filehdr->f magic = stlhdr->fh_magic;
(_ ™~ filehdr->f nscns = total number of text, data,
S and bss sections

filehdr->f_timdat = exthdr->e_timdat;
if (sechdr->se_type == S_SYMINFO)
/* section header for symbol table */
filehdr->f_symptr = sechdr->se_scnptr;
filehdr->f_nsyms = (unsigned short) (stlhdr->fh_symtblsiz /
(long) SYMESZ2);
filehdr->f opthdr = stlhdr->1{h_exthdrsiz;
filehdr->f flags = exthdr->e_flags;
Both STL and COFF
Sf_symptr is the byte off'set into the file at which the symbol table can be found.
This value can be used as the offset in fseek(3S) to position an I/0 stream to
the symbol table. The COFF UNIX system header is 36 bytes on the 3B20
computer, 28 bytes otherwise. The valid magic number is:

f##define 1286MAGIC 0x0206 /+ iAPX 286 processor */
The value inf_timdat (e_timdat) is obtained from the time(2) system call.

SEE ALSO
time(2), fseek(3S), a.out(4).

FS(4)

NAME
file system — format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital infor-
mation. Every such volume is divided into a certain number of 512-byte long
sectors. Sector O is unused and is available to contain a bootstrap program or
other information.

Sector 1 is the super block. The format of a super block is:

/e
« Structure of the super block

o/

struct filsys

{
ushort s_isize; /+ size in blocks of i-list =/
daddr_t s_fsize; /+size in blocks of entire volume */
short s_nfree; /+ number of addresses in s_free */
daddr t s_free[NICFREE]; /+ free block list ¢/
short s_ninode; /+ number of i-nodes in s_inode ¢/
ino_t s_inode[NICINOD]; /e free i-node list */
char s_flock; /+ lock during free list manipulation */
char s_ilock; /+ lock during i-list manipulation ¢/
char s_fmod; /e super block modified flag */
char s_ronly; /+ mounted read-only flag «/
time_t s_time; /+ last super block update ¢/
short s_dinfol4]; /+ device information «/
daddr_t s_tfree; /= total free blockse/
ino_t s_tinode; /» total free i-nodes ¢/
char s_fnamel6]; /+file system name */
char s_fpackl6]; /¢ file system pack name */
long s_filll13]; /+ ADJUST to make sizeof filsys

be 512 «/
long s_magic; /+ magic number to denote new
file system */

long s_type; /+ type of new file system /

ki

#define FsMAGIC 0xfd187e20 /+ s_magic number */

#define Fsib 1 /¢ 512-byte block */

#define Fs2b 2 /+ 1024-byte block */

S_type indicates the file system type. Currently, two types of file systems are
supported: the original 512-byte oriented and the new improved 1024-byte
oriented. S_magic is used to distinguish the original 512-byte oriented file sys-
tems from the newer file systems. If this field is not equal to the magic
number, FSMAGIC, the type is assumed to be Fs/b, otherwise the s type field
is used. In the following description, a block is then determined by the type.
For the original 512-byte oriented file system, a block is 512 bytes. For the
1024-byte oriented file system, a block is 1024 bytes or two sectors. The
operating system takes care of all conversions from logical block numbers to
physical sector numbers.
-1-

C

@

FS(4)

NAME
file system - format of system volume

SYNOPSIS

#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION

Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-

-.-byte.long. sectors... Sector 0._is._unused and_is available io_contain a

bootstrap program or other information.
Sector 1 is the super-block. The format of a super-block is:

/%

* Structure of the super-block

*/
struct filsys
§

ushort
daddr_t
short
daddr_t
short
ino_t
char
char
char
char
time_t
short
daddr_t
ino_t
char
char
long

long
long

long
1.

Iy
#define FsMAGIC
#define Fslb
#define Fs2b
f#define FsOKAY
#define FsACTIVE
#define F'sBAD

s_isize;

s_{size;

s_nfree;
s_{ree[NICFREE];
s_ninode;
s_inode|NICIN®D];
s_flock;

s ilock;

s_{mod;

s_ronly;

s_time;
s_dinfo(4];
s_ifree;

s_tinode;
s_{name[G);
s_fpack[6];
s_fill[14];

s_slate;
s_magic;

s_type;

0x{d187e20
1
2
0x7¢269d38
0x5e72d81a
0xcb096£43

/% size in blocks of i-list +/

/+ size in blocks of entire volume */
/* number of addresses in s_{ree */
/* free block list */

/* number of i-nodes in s_inode */
/* free i-node list*/

/# lock during free list manipulation */
/* lock during i-list manipulation #/
/* super block modified flag +/

/* mounted read-only flag=*/

/* last super block update */

/* device information */

/# total free blocks+*/

/#* total free i-nodes */

/# file system name */

/#* file system pack name #/

/* ADJUST to make size of filsys

be 512 */

/* file system state +/

/* magic number to denote new
file system =/

/#type of new file system */

/* s_magic number*/
/#* 512-byte block +/
/* 1024-byte block */
/* s_state: clean */

/* s_state: active »/
/* s_state: bad root */

S_type indicates the file system type. Currently, two types of file sys-
tems are supported: the original 512-byte oriented and the new improved
1024-byte oriented. S_magic is used to distinguish the original 512-byte
oriented file systems from the newer file systems. If this field is not
equal to the magic number, FsMAGIC, the type is assumed to be F'sib,
otherwise the s_type field is used. In the following description, a block is
then determined by the type. For the original 512-byte oriented file sys-
tem, a block is 512 bytes. For the 1024-byte oriented file system, a block

-1-

FS(4)

is 1024 bytes or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector numbers.
S_state indicates the state of the file system. A cleanly unmounted, not
damaged file system is indicated by the FsOKAY state. After the file sys-
tem has been mounted for update, the state is changed to FsACTIVE. A
special case is used for the root file system. If the root file system
appears damaged at boot time, it is mounted but marked FsBAD.

S_tsize is the address of the first data block after the i-list; the i-list
starts just after the super-block, namely in block 2; thus the i-list is
s_tsize-2 blocks long. S_fsize is the first block not potentially available
for allocation to a file. These numbers are used by the system to check
for bad block numbers; if an “impossible” block number is allocated from
the free list or is freed, a diagnostic is written on the on-line console.
Moreover, the free array is cleared, so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array
contains, in s_free[l1], ..., s_free[s_mfree-1], up to 49 numbers of free
blocks. S_free[0] is the block number of the head of a chain of blocks
constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of this
chain member. The first of these 50 blocks is the link to the next
member of the chain. To allocate a block: decrement s_nfree, and the
new block is s_free[s_mfree]. If the new block number is 0, there are no
blocks left, so give an error. If s_nfree became 0, read in the block named
by the new block number, replace s_nfree by its first word, and copy the
block numbers in the next 50 longs into the s_free array. To free a block,
check if s_nfree is 50; if so, copy s_nfree and the s_free array into it,
write it out, and set s_nfree to 0. In any event set s_free[s_nfiee] to the
freed block’s number and increment s_nfree.

S_ifree is the total free blocks available in the file system.

S_minode is the number of free i-numbers in the s_imode array. To allo-
cate an i-node: if s_minode is greater than 0, decrement it and return
s_inode{s_ninode). If it was 0, read the i-list and place the numbers of
all free i-nodes (up to 100) into the s_inode array, then try again. To free
an i-node, provided s_minode is less than 100, place its number into
s_tnode[s_ninode] and increment s_ninode. If s_ninode is already 100, do
not bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the
i-node’ is really free or not is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file sys-
tem while it is mounted and their values on disk are immaterial. The
value of s_fmod on disk is likewise immaterial; it is used as a flag to indi-
cate that the super-block has changed and should be copied to the disk
during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.
S_time is the last time the super-block of the file system was changed,
and is the number of seconds that have elapsed since 00:00 Jan. 1, 1970

(GMT). During a reboot, the s_time of the super-block for the root file
system is used to set the system’s idea of the time.

S_fname is the name of the file system and s_fpack is the name of the
pack.

/
\

FS(4)

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes aré G4 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. For the format
of an i-node and its flags, see tnode(4).

FILES
/usr/include/sys/filsys.h
/usr/include/sys/stat.h

SEE ALSO
fsck(1M), fsdb(1M) in the Runtime System manual.

This page intentionally left blank.

FSPEC(4)

NAME
fspec — format specification in text files

DESCRIPTION
e It is sometimes convenient to maintain text files on the UNIX system with non-
i standard tabs, (i.e., tabs which are not set at every eighth column). Such files

- must generally be converted to a standard format, frequently by replacing all
tabs with the appropriate number of spaces, before they can be processed by
UNIX system commands. A format specification occurring in the first line of a
text file specifies. how. tabs are to be expanded in the remainder of the file.
A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :>. Each parameter consists of a
keyletter, possibly followed immediately by a value. The following parameters
are recognized:
ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:
1. a list of column numbers separated by commas, indicating
tabs set at the specified columns;
2. a — followed immediately by an integer n, indicating tabs at
intervals of n columns;
3. a — followed by the name of a “‘canned” tab specification.
Standard tabs are specified by t—8, or equivalently, t1,9,17,25,etc.
The canned tabs which are recognized are defined by the tabs(1)
command.
. (_\ Voo - ssize The s parameter specifies a maximum line size. The value of size
N must be an integer. Size checking is performed after tabs have

been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t—8 and
m0. If the s parameter is not specified, no size checking is performed. If the
first line of a file does not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a line containing a
format specification:

* <:t5,10,15572:>
If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

G Several UNIX system commands correctly interpret the format specification for
a file. Among them is gath [sec send (1C)] which may be used to convert files
to a standard format acceptable to other UNIX system commands.

SEE ALSO
ed(1), newform(1), send(1C), tabs(1) in the Runtime System manual,

GETTYDEFS(4)

NAME

gettydefs — speed and terminal settings used by getty

DESCRIPTION

FILES

The /etc/gettydefs file contains information used by getty (IM) to set up the
speed and terminal settings for a line. It supplies information on what the
login prompt should look like. It also supplies the speed to try next if the user
indicates the current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:
label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted
characters of the form \b, \n, \¢, etc, as well as \nnn, where nnn is the octal
value of the desired character. The various fields are:

label This is the string against which getty tries to match its second
argument. It is often the speed, such as 1200, at which the ter-
minal is supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioct/(2) settings to which the terminal
is to be set if a terminal type is not specified to getty. The flags
that gerty understands are the same as the ones listed in
/usr/include/sys/termioh [see termio(7)]l. Normally only the
speed flag is required in the initial-flags. Getty automatically
sets the terminal to raw input mode and takes care of most of
the other flags. The initial-flag settings remain in effect until
getty executes login(1).

final-flags These flags take the same values as the initial-flags and are set
just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and terminal
are communicating in a rational fashion. The other two com-
monly specified final-flags are TAB3, so that tabs are sent to the
terminal as spaces, and HUPCL, so that the line is hung up on
the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or new-
line), they are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by the
user typing a <break> character, then getty will search for the
entry with next-label as its label field and set up the terminal
for those settings. Usually, a series of speeds are linked together
in this fashion, into a closed set; For instance, 2400 linked to
1200, which in turn is linked to 300, which finally is linked to
2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the default
entry. It is also used if getty cannot find the specified label. If /etc/gettydefs
itself is missing, there is one entry built into the command which will bring up
a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be
run through getty with the check option to be sure there are no errors.

/letc/gettydefs

®

SEE ALSO
ioctl(2).
getty(IM), login(1), termio(7) in the Runtime System manual.

GETTYDEFS(4)

GPS(4)

NAME

gps — graphical primitive string, format of graphical files

DESCRIPTION

GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher level
graphics programs such as plot lin stat (1G)] and vtoc [in toc(1G)] produce
GPS format output files.

A GPS is composed of five types of graphical data or primitives.
GPS PRIMITIVES

lines

arc

text

hardware

comment

The lines primitive has a variable number of points from which zero
or more connected line segments are produced. The first peint
given produces a move to that location. (A move is a relocation of
the graphic cursor without drawing.) Successive points produce line
segments from the previous point. Parameters are available to set
color, weight, and style (see below).

The arc primitive has a variable number of points to which a curve
is fit. The first point produces a move to that point. If only two
points are included, a line connecting the points will result; if three
points a circular arc through the points is drawn; and if more than
three, lines connect the points. (In the future, a spline will be fit to
the points if they number greater than three) Parameters are
available to set color, weight, and style.

The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn. Param-
eters are color, font, textsize, and textangle.

The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the begin-
ning location of the hardware string.

A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a comment
of zero length.

GPS PARAMETERS

color
weight

style

font

textsize

Color is an integer value set for arc, lines, and text primitives.

Weight is an integer value set for arc and lines primitives to indi-
cate line thickness. The value 0 is narrow weight, 1 is bold, and 2
is medium weight.

Style is an integer value set for lines and arc primitives to give one
of the five diff'erent line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

0 solid

1 dotted

2 dot dashed
3 dashed

4 long dashed

An integer value set for text primitives to designate the text font to
be used in drawing a character string. (Currently font is expressed
as a four-bit weight value followed by a four-bit style value.)

Textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the height
of characters in absolute universe-units and is stored at one-fifth
this value in the size-orientation (s0) word (see below).

S1-

Pl

et

textangle

ORGANIZATION

GPS(4)

Textangle is a signed integer value used in fext primitives to express
rotation of the character string around the beginning point. Tex-
tangle is expressed in degrees from the positive x-axis and can be a
positive or negative value. It is stored in the size-orientation (so)
word as a value 256/360 of it’s absolute value.

GPS primitives are organized internally as follows:

lines

arc

text
hardware
comment

cw

point(s)

swW

SO

string

SEE ALSO

graphics(1G), stat(1G), toc(1G) in the Runtime System manual.

cw points sw

cw points ‘sw

cw point sw so [string]

cw point [string]

cw [string)
Cw is the control word and begins all primitives. It consists of four
bits that contain a primitive-type code and twelve bits that contain
the word-count for that primitive.
Point(s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are values
within a Cartesian plane or universe having 64K (—=32K to +32K)
points on each axis.
Sw is the style-word and is used in lines, arc, and text primitives.
For all three, eight bits contain color information. In arc and lines
eight bits are divided as four bits weight and four bits style. In the
text primitive eight bits of sw contain the font.
So is the size-orientation word used in fext primitives. Eight bits
contain text size and eight bits contain text rotation. - :

String is a null-terminated character string. If the string does not
end on a word boundary, an additional null is added to the GPS file
to insure word-boundary alignment.

GROUP(4)

NAME
group — group file
DESCRIPTION
Group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCI file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no pass-
word is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical group ID’s to names.

FILES
/etc/group

SEE ALSO

crypX3C), passwd(4).
newgrp(1), passwd(1) in the Runtime System manual.

INITTAB(4)

NAME
inittab — script for the init process

DESCRIPTION
The inittab file supplies the script to inif’s role as a general process dispatcher.
‘ The process that constitutes the majority of init's process dispatching activities
C is the line process /etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the
following format:
id:rstate:action:process

Each entry is delimited by a new-line; however, a backslash (\) preceding a
new-line indicates a continuation of the entry. Up to 512 characters per entry
are permitted. Comments may be inserted in the process field using the si (1)
convention for comments. Comments for lines that spawn gettys are displayed
by the who(1) command. It is expected that they will contain some informa-
tion about the line such as the location. There are no limits (other than max-
imum entry size) imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in the
system. That is, each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As an example,
if the system is in run-level 1, only those entries having a 1 in the
rstate field will be processed. When init is requested to change run-
levels, all processes which do not have an entry in the rsrate field for
the target run-level will be sent the warning signal (SIGTERM) and
allowed a 20-second grace period before being forcibly terminated by
a kill signal (SIGKILL). The rstate field can define multiple run-
levels for a process by selecting more than one run-level in any com-
bination from 0—6. If no run-level is specified, then the process is
assumed to be valid at all run-levels 0—6. There are three other
values, a, b and ¢, which can appear in the rstate field, even though
they are not true run-levels. Entries which have these characters in
the rstate field are processed only when the felinit Isee init (IM)] pro-
cess requests them to be run (regardless of the current run-level of
the system). They differ from run-levels in that init can never enter
run-level a, b or ¢. Also, a request for the execution of any of these
processes does not change the current run-level. Furthermore, a pro-
cess started by an a, b or ¢ command is not killed when init changes
levels. They are only killed if their line in /etc/inittab is marked ofl
in the action field, their line is deleted entirely from /etc/inittab, or
init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

F | respawn If the process does not exist then start the process, do not

N wait for its termination (continue scanning the initrab
file), and when it dies restart the process. If the process
currently exists then do nothing and continue scanning
the inittab file.

wait Upon init's entering the run-level that matches the
entry’s rstate, start the process and wait for its

@

1.

INITTAB(4)

once

boot

bootwait

powerfail

powerwait

offf

ondemand

initdefault

sysinit

termination. All subsequent reads of the inittab file while
init is in the same run-level will cause init to ignore this
entry.

Upon init's entering a run-level that matches the entry’s
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If upon entering
a new run-level, where the process is still running from a
previous run-level change, the program will not be res-
tarted.

The entry is to be processed only at init's boot-time read
of the inittab file. I'nit is to start the process, not wait for
its termination; and when it dies, not restart the process.
In order for this instruction to be meaningful, the rstate
should be the default or it must match init's run-level at
boot time. This action is useful for an initialization func-
tion following a hardware reboot of the system.

The entry is to be processed only at init’s boot-time read
of the inittab filé. Init is to start the process, wait for its
termination and, when it dies, not restart the process.

Execute the process associated with this entry only when
init receives a power fail signal [SIGPWR see signal(2)].

Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR) and wait until
it terminates before continuing any processing of inittab.

If the process associated with this entry is currently run-
ning, send the warning signal (SIGTERM) and wait 20
seconds before forcibly terminating the process via the kill
signal (SIGKILL). If the process is nonexistent, ignore the
entry.

This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run-levels. This is used only with the a, b or ¢ values
described in the rstate field.

An entry with this action is only scanned when init ini-
tially invoked. Init uses this entry, if it exists, to deter-
mine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate field
and using that as its initial state. If the rsrate field is
empty, this is interpreted as 0123456 and so init will
enter run-level 6. Also, the initdefault entry cannot
specify that init swrt in the SINGLE USER state. Addi-
tionally, if init does not find an initdefault entry in
/etc/inittab, then it will request an initial run-level from
the user at reboot time.

Entries of this type are executed before init tries to access
the console. It is expected that this entry will be only
used to initialize devices on which init might try to ask
the run-level question. These entries are executed and
waited for before continuing.

e
y

INITTAB(4)

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh —c ‘exec com-
mand'. For this reason, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #comment syntax.

FILES
/etc/inittab

SEE ALSO
exec(2), open(2), signal(2).
getty(IM), init(IM), sh(1), who(1) in the Runtims System manual.

INODE(4)

NAME
inode — format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following struc-
ture defined by <sys/ino.h>.

/+ Inode structure as it appears on a disk block. */
struct dinode

ushort di_mode; /* mode and type of file »/
short di_nlink; /* number of links to file */

ushort di_uid; /* owner’s user id */
ushort di_gid; /* owner’s group id */
off t di_size; /* number of bytes in file »/

char di_addr[40); /+ disk block addresses */
time_t di_atime; /* time last accessed */
time t di_mtime; /» time last modified »/
time_t di_ctime; /» time of last file status change »/
A
» the 40 address bytes:
* 39 used; 13 addresses
+ of 3 bytes each.
*/
For the meaning of the defined types off_t and time_t see types(5).
FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(4), types(5).

ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the tssue or project identification to be
printed as a login prompt. This is an ASCII file which is read by program
getty and then written to any terminal spawned or respawned from the
lines file.

FILES
/etc/issue

login(1) in the Runtime System manual.

7-S

LDFCN(4)

NAME
ldfen - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

DESCRIPTION
The common object file access routines are a collection of functions for
reading an object file that is in common object file format. Although the
calling program must know the detailed structure of the parts of the
object file that it processes, the routines effectively insulate the calling
program from knowledge of the overall structure of the object file.

The interface between the calling program and the object file access rou-
tines is based on the defined type LDFILE, defined as struct ldfile,
declared in the header file ldfenh. The primary purpose of this struc-
ture is to provide uniform access to both simple object files and to object
files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure
and returns a pointer to the structure to the calling program. The fields
of the LDFILE structure may be accessed individually through macros
defined in 1dfen.h and contain the following information:

LDFILE *|dptr;

TYPE(ldptr) The file type, used to distinguish between archive
members and simple object files. If the file is a simple
object file, TYPE(ldtpr) will contain the file magic
number [see filehdr(4)]. If the file is an archive,
TYPE(ldptr) will be ARTYPE, defined in ldfcn.h.

IOPTR(ldptr) The file pointer returned by fopen and used by the stan-
dard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the
offset is nonzero if the object file is a member of an
archive file.

HEADER(ldptr)

The file header structure of the object file.

The object file access functions themselves may be divided into four

categories:

(1) functions that open or close an object file

ldopen(3X) and ldaopen

open a common object file
ldclose(3X) and Ildaclose

close a common object file

(2) functions that read header or symbol table information

ldahread(3X)
read the archive header of a member of an archive
file
ldfhread(3X)
read the file header of a common object file
ldshread(3X) and ldnshread
read a section header of a common object file
ldtbread (3X)
read a symbol table entry of a common object file

-1-

LDFCN(4)

ldgetname(3X)
retrieve a symbol name from a symbol table entry
or from the string table

(3) functions that position an object file at (seek to) the start of

(’\I the section, relocation, or line number information for a particu-
lar section.
{dohseek (3X)
seek to the optional file header of a common
object file

ldsseek (3X)-and ldnsseek
seek to a section of a common obJect f11e
ldrseek(3X) and ldnrseek
seek to the relocation information for a section of
a common object file
ldlseek (3X) and ldniseek
seek to the line number information for a section
of a cemmon object file
ldtbseek(3X)
seek to the symbol table of a common object file

(4) the function Idtbindex(3X) which returns the index of a partic-
ular common object file symbol table entry

These functions are described in detail in their respective manual pages.

All the functions except ldopen, ldgetname, ldaopen and ldtbindex return
either SUCCESS or FAILURE, both constants defined in ldfen.h.
Ldopen and ldaopen both return pointers to a LDFILE structure.

Additional access to an object file is provided through a set of macros
defined in ldfen.h. These macros parallel the standard input/output file
reading and manipulating functions, translating a reference of the
LDFILE structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)

FGETC(ldptr)

GETW(ldptr)

UNGETC(c, ldptr)

FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEX (ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)

FEOF(ldptr)

FERROR(ldptr)
FILENO(idptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

Ir"" . The STROFFSET macro calculates the address of the string table in a

! UNIX System V Release 2.0 object file. See the manual entries for the
corresponding standard input/output library functions for details on the
use of the rest of the macros.

The program must be loaded with the object file access routine library
libld.a.

CAVEAT
The macro FSEEK defined in the header file 1dfen.h translates into a

-2

LDFCN(4)

call to the standard input/output function fseek(3S). FSEEK should not
be used to seek from the end of an archive file since the end of an archive
file may not be the same as the end of one of its object file members!

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), Ildgetname(3X), Idfhread(3X),
Idlread(3X), ldlseek(8X), ldohseek(8X), ldopen(3X), ldrseek(3X),
ldlseek(3X), ldshread(3X), ldtbindex(3X), Ildtbread(3X), ldtbseek(3X),
a.out(4), ar(4), filehdr(4),
Common Object File Format.

D

i

(

NAME

LINENUM(4)

linenum — line number entries in a common object file

SYNOPSIS

#include <linenum.h>

DESCRIPTION

Compilers based on pcc generate an entry in the object file for each C source
line on which a breakpoint is possible [when invoked with the —g option; see
cc(1)]. Users can then reference line numbers when using the appropriate

" software tést §ystem [see sdb(1)]. The structure-of these line number- entries-

appears below.
struct lineno

union

long 1 symndx;
long 1_paddr;
1 addr ;
unsigned short 1_lnno ;

Numbering starts with one for each function. The initial line number entry for
a function has /_/nno equal to zero, and the symbol table index of the function’s
entry is in /_symndx. Otherwise, I Inno is non-zero, and /_paddr is the physi-
cal address of the code for the referenced line. Thus the overall structure is the
following:

|_addr " A _Inno
function symtab index 0
physical address line

physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO

a.out(4).
cc(1),sdb(1) in the Runtime System manual.

MASTER(4)

NAME

master — master device information table

DESCRIPTION

This file is used by the config(IM) program to obtain device information that
enables it to generate the configuration file. Master contains lines of various
forms for controlling the configuration of hardware devices, software drivers,
parameters, and aliases.

In Part 1, hardware devices and software drivers are defined as follows:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

device name (8 chars maximum).
interrupt vector

functions for this device:

open handler

close handler

read handler

write handler

ioctl handler

startup routine

fork

exec

exit

element characteristics:

specify only once
suppress count field
required device

block device

character device

device is a tty

handler prefix

major device number if block-type device
ma jor device number if character-type device
number of sub-devices per device
configuration table structure

XOmw =97 npo

o TRV

Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars. maximum; specified
in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1:
Field 2:
Field 3:

SEE ALSO

parameter name (as it appears in description file; 20
chars. maximum)

parameter name (as it appears in the conf.c file; 20
chars. maximum)

default parameter value (20 chars. maximum; parameter
specification is required if this field is omitted)

config(1M), sysdef(1M) in the Runtime Systemn manual.

MNTTAB(4)

NAME
mnttab — mounted file system table

SYNOPSIS
#tinclude <mnttab.h>

! h DESCRIPTION

' S Mnttab resides in directory /etc and contains a table of devices, mounted by
the mount(IM) command, in the following structure as defined by
<mnttab.h>:

struct - - mnttab { -
char mt_dev[32];
char mt_filsys[32];
short mt_ro_flg;
time_t mt_time;

J;
Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of
the place where the special file is mounted; the next 32 bytes represent the
null-padded root name of the mounted special file; the remaining 6 bytes con-
tain the mounted special file’s read/write permissions and the date on which it

was mounted.

The maximum number of entries in mnttab is based on the system parameter
NMOUNT located in /ust/src/uts/cf/conf.c, which defines the number of allow-
able mounted special files.

SEE ALSO
mownt(IM), setmnt(1M) in the Runtime System manual.

PASSWD(4)

NAME

passwd — password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

GCOS job number, box number, optional GCOS user ID
initial working directory

program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the
next by a colon. The GCOS field is used only when communicating with that
system, and in other installations can contain any desired information. Each
user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (., /, 0—9, A—Z, a—z), except when the password is null, in which
case the encrypted password is also null. Password aging is effected for a par-
ticular user if this encrypted password in the password file is followed by a
comma and a non-null string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks
for which a password is valid. Users who attempt to log in after their pass-
words have expired will be forced to supply a new one. The next character, m
say, denotes the minimum period in weeks which must expire before the pass-
word may be changed. The remaining characters define the week (counted
from the beginning of 1970) when the password was last changed. (A null
string is equivalent to zero) M and m have numerical values in the range
0—63 that correspond to the 64-character alphabet shown above (ie., / = 1
week; z = 63 weeks). If m = M = 0 (derived from the string . or ..) users
will be forced to change their passwords the next time they log in (and the
“age” will disappear from their entries in the password file). If m > M
(signified, e.g., by the string ./) only the super-user will be able to change the
password.

/letc/passwd

SEE ALSO

a641(3C), crypt(3C), getpwent(3C), group(4).
login(1), passwd(1) in the Runtime Systern manual.

PLOT(4)

NAME
plot — graphics interface

DESCRIPTION
Files of this format are produced by routines described in plor(3X) and are
interpreted for various devices by commands described in tplot (1G). A graph-
ics file is a stream of plotting instructions. Each instruction consists of an
ASCII letter usually followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer. The last designated point in an],
--m, n, or p instruction becomes the “current point” for the next imstruction.

Each of the following descriptions begins with the name of the corresponding
routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four
bytes. See tplot (1G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point
given by the following four bytes.

t label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for draw-
ing further lines. The styles are “dotted”, “solid”, “longdashed”, *short-
dashed”, and “dotdashed”. Effective only for the —T4014 and —Tver
options of 7plot(1G) (TEKTRONIX 4014 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area;
the following four give the upper right corner. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of tplot (1G). The upper limit is just outside
the plotting area. In every case the plotting area is taken to be square; points
outside may be displayable on devices whose face is not square.

DASI 300 space(0, 0, 4096, 4096);
DASI 300s space(0, 0, 4096, 4096);
DASI 450 space(0, 0, 4096, 4096);

TEKTRONIX 4014 space(0, 0, 3120, 3120);
Versatec plotter space(0, 0, 2048, 2048);

SEE ALSO
plot(3X), gps(4), texm(s).
graph(1G), tplot(1G) in the Runtime System manual.

WARNING
The plotting library plo?(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need both
libraries, put the plot(3X) code in a different source file than the curses(3X)
code, and/or #undef move () and erase() in the plot(3X) code.

PNCH(4)

NAME
pnch — file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists
of a single control byte followed by a variable number of data bytes. The con-
trol byte spacifies the number (which must lie in the range 0-80) of data bytes
that follow. The data bytes are 8-bit codes that constitute ihe card image. If
there are fewer than 80 data bytes, it is understood that the remainder of the
card image consists of trailing blanks.

SEE ALSO
send(1C) in the Runtime System manual.

NAME

PROFILE(4)

profile - setting up an environment at login time

DESCRIPTION

If your login directory contains a file named .profile, that file will be
executed (via exec .profile) before your session begins; .profiles are
handy for setting exported environment variables and terminal modes. If
the file /etc/profile exists, it will be executed for every user before the
.profile. The following example is typical (except for the comments):

Make some environment variables global

-.export MAIL PATH TERM

FILES

Set file creation mask
umask 22
Tell me when new mail comes in
MAIL=/usr/mail/myname
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
echo " terminal: \c"
read TERM
case $TERM in
300) stty cr2 nl0 tabs; tabs;;
300s) stty cr2 nlO tabs; tabs;;
450) stty cr2 nl0 tabs; tabs;;
hp) stty cr0 nl0 tabs; tabs;;
745 | 735) stty crl nll -tabs; TERM=745;;
43) stty crl nl0 -tabs;;
4014 |tek) stty cr0 nl0 -tabs ff1; TERM=4014; echo " \33;" 5
*) - echo " $TERM unknown" ;;

esac

$HOME/.profile
/etc/profile

SEE ALSO

environ(5), term(5).
env(1), login(1), mail(1), sh(1), stty(1), su(1) in the Runtime System manual.

RELOC(4)

NAME

reloc - relocation information for an object file

SYNOPSIS

#include <reloc.h>

DESCRIPTION

Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow-

ing format.

struct reloc

{

b

long r_vaddr; /* (virtual) address of +/

/* reference */
long r_symndx ; /#*index into symbol table */
short r_type ; /#* relocation type */

#define R_ABS 0

#define R_DIR16 01
#define R_REL16 02
#define R_IND16 03
#define R_QFF8 07
#define R_OFF16 010
#define R_SEG12 011
#define R_AUX 013

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

R_ABS

R_DIR16
R_REL16

R_IND16

R_OFF8

R_OFF16

R_SEG12

R_AUX

The reference is absolute, and no relocation is necessary.
The entry will be ignored.

A direct, 16-bit reference to a symbol’s virtual address.

A “PC-relative”, 16-bit reference to a symbol’s virtual
addréss. Relative references occur in instructions such as
jumps and calls. The actual address used is obtained by
adding a constant to the value of the program counter at the
time the instruction is executed.

An indirect, 16-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer vec-
tor, where the actual address of the referenced word is
stored.

A direct, 16-bit reference to the low-order 8 bits of a 20-bit

virtual address. The 16-bit field has its high-order 8 bits
forced to zero.

A direct, 16-bit reference to the low-order 16 bits of a 32-bit
virtual address. The 16-bit field is treated as an unsigned
integer. This relocation type is used when a (16-bit) con-
stant modifies the virtual address.

A direct, 16-bit reference to the high-order 16 bits of a 32-bit
virtual address.

An " auxiliary entry”, generated to permit the correct pro-
cessing of relocation entries of type R_SEG12. Each
R_SEGI12 entry is followed immediately by a R_AUX entry.

O

()

RELOC(4)

Other relocation types will be defined as they are needed.
Relocation entries are generated automatically by the assembler and

automatically utilized by the link editor. A link editor option exists for
removing the relocation entries from an object file.

SEE ALSO

a.out(4), syms(4).
1d(1), strip(1) in the Runtime System manual.

S

This page intentionally left blank.

NAME

SCCSFILE(4)

sccsfile — format of SCCS file

DESCRIPTION

An SCCS file is an ASCII file. It consists of six logical parts: the checksum,
the delta table (contains information about each delta), user names (contains
login names and/or numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments (contains arbitrary
descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start
of heading) character (octal 001). This character is hereafter referred to as
the control character and will be represented graphically as @. Any line
described below which is not depicted as beginning with the control character is
prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:
@bDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consisis of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD

@d <type> <SCCS ID> yr/ma/da hr:miise <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@g DDDDD ...

@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d) con-
tains the type of the delta (currently, normal: D, and removed: R), the
SCCS 1D of the delta, the date and time of creation of the delta, the
login name corresponding to the real user 1D at the time the delta was
created, and the serial numbers of the delta and its predecessor, respec-
tively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are optional.

SCCSFILE(4)

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta. Any line starting with a] prohibits the succeeding group or user
from making deltas.

Keywords used internally [see admin(1) for more information on their
use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@ft <type of program>
@fv <program name>
@fi <keyword string>

efb
@fm <module name>
@ff <floor>

@fc <ceiling>

@fd <default-sid>

@fn

@fj

efl <lock-releases>

@f q <user defined>

@f z <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification keyword.
The v flag controls prompting for MR numbers in addition to com-
ments; if the optional text is present it defines an MR number validity
checking program. The i flag controls the warning/error aspect of the
“No id keywords” message. When the i flag is not present, this mes-
sage is only a warning; when the i flag is present, this message will
cause a “fatal” error (the file will not be gotten, or the delta will not
be made). When the b flag is present the —b keyletter may be used
on the ger command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the “floor” release; the
release below which no deltas may be added. The ¢ flag defines the
“ceiling” release; the release above which no deltas may be added.
The d flag defines the default SID to be used when none is specified on
a get command. The n flag causes delta to insert a “null” delta (a
delta that applies no changes) in those releases that are skipped when
a delta is made in a nrew release (e.g., when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag
causes skipped releases to be completely empty. The j flag causes get
to allow concurrent edits of the same base SID. The I flag defines a list
of releases that are locked against editing [ger(1) with the —e
keyletter]. The q flag defines the replacement for the %Q%
identification keyword. The z flag is used in certain specialized inter-
face programs.
-2-

pg

SCCSFILE(4)

Comments

Body

SEE ALSO

Arbitrary text is surrounded by the bracketing lines @t and @T.
The comments section typically will contain a description of the
file’s purpose.

The body consists of text lines and control lines. Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@I DDDDD
@E DDDDD

respectively. The digit string is the serial number corresponding
to the delta for the control line.

admin(1), delta(1), get(1), prs(1) in the Runtime System manual,
"Source Code Control System User Guide" in the Software Development System
manual, Vol. I.

@

SCNHDR(4)

NAME

senhdr - section header for a common object file
SYNOPSIS

#include <scnhdr.h>
DESCRIPTION

Every common object file has a table of section headers to specify the
layout of the data within the file. Each section within an object file has
its own header. The C structure appears below.

struet senhdr
{
char
long
long
long
long
long
long
unsigned short
unsigned short
long

b

s_name[SYMNMLEN]; /* section name */

s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr; .
s_Innoptr;
s_nreloc;
s_nlnno;
s_flags;

/* physical address */

/* virtual address */

/* section size */

/* file ptr to raw data */

/* file ptr to relocation */

/% file ptr to line numbers */
/% # reloc entries */

/#* # line number entries */
/# flags */

File pointers are byte offsets into the file; they can be used as the offset
in a call to fseek(38). If a section is initialized, the file contains the
actual bytes. An uninitialized section is somewhat different. It has a
size, symbols defined in it, and symbols that refer to it. But it can have
no relocation entries, line numbers, or data. Consequently, an uninitial-
ized section has no raw data in the object file, and the values for
s_scnptr, s_relptr, s_Ilnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
fseek(3S), a.out(4).

1d(1) in the Runkime System manual.

@

Flag bits currently defined are:

#tdefine FSA_ITER 0x0001
#tdefine FSA_HUGE 0x0002
#fdefine FSA_BSS 0x0004
#tdefine FSA_SHARE 0x0008

#tdefine FSA_EXPDOWN 0x0010
##define FSA_SEG 0x8000

_ COFF Section Header

SCNHDR(4)

/* true if seg contains iter data */

/* true if huge data item in seg */

/* true if seg contains implicit BSS */
/* true if seg is sharable */

/* true if seg is expanddown */

/* true if segment, else section */

The following C struct declaration shows the format of the COFF section -

header:

struct scnhdr
char
long s_paddr;
long s_vaddr;
long s_size;
long s_scnptr;
long s_relptr;
long s_|nnoptr;
unsigned short s_nreloc;
unsigned short s_nlnno;

) long s_flags;

Map of COFF to STL

s_namelSYMNMLEN]; /¢ section name +/

/+ physical address */

/# virtual address +/

/+ section size +/

/¢ file ptr to raw data «/

/+ file ptr to relocation +/

/+ file ptr to line numbers */
/+ # reloc entries */

/+ # line number entries */
/+ flags ¢/

The following table shows the mapping of the (virtual format) COFF section-
header fields to their actual STL locations. The following conventions are used:

The fileheader is referred to as "filehdr" in COFF and "stlhdr" in

STL.

The system header is referred to as “aouthdr" in COFF and "exthdr"

(extended header) in STL.

The section headers are referred to as "scnhdr" in COFF and

"sechdr” in STL.

The mapping of some fields varies depending on the type of segment, the
MODEL of the file, and if the file is executable. Type is derived from sechdr-
>se_type and sechdr->se_flags, and MODEL from stlhdr->fh_flags (see

“filehdr.h).

For text:
scnhdr->s_name

= "text";

scnhdr->s_size = sechdr->se_psize;

if (filehdr->f flags & F_EXEC)

scnhdr->s_paddr = (sechdr->se_num < <19) |
((exthdr->e_csselector < < 16) & 0x7000)

else
scnhdr->s_paddr = 0;
scnhdr->s_vaddr = 0;

scnhdr->s_scnptr = sechdr->se_scnptr;
scnhdr->s_flags = STYP_TEXT;/ * 0x020 «/

For data:
scnhdr->s_name

= "data";

scnhdr->s_size = sechdr->se_psize;

if (filehdr->f flags & F_EXEC)

-2-

SCNHDR(4)

scnhdr->s _paddr = (sechdr->se_num <<19) I
((exthdr->e_csselector << 16) & 0x7000)
else
scnhdr->s_paddr = sechdr->se_psize(TEXT)
if (filehdr->f flags & F_EXEC)
if (MODEL == M_SMALL)
scnhdr->s_vaddr = exthdr->e_stksiz
else
scnhdr->s_vaddr = 0;
else
scnhdr->s_vaddr = scnhdr->s_size(TEXT)
scnhdr->s_scnptr = sechdr->se_scnptr;
scnhdr->s_flags = STYP_DATA;/« 0x040 »/

For bss:
scnhdr->s_name = " bss";
if (MODEL ==M SMALL) && (filehdr->f flags & FH_EXEC))
scnhdr->s_size = stlhdr->fh_nsuisiz
else
scnhdr->s_size = sechdr->se_vsize

if (filehdr->f ﬂags & F_EXEC)
if (MODEL == M _SMALL)
scnhdr->s_ _paddr = scnhdr->s_paddr(DATA)
+ scnhdr->s_size (DATA) + exthdr->e_stksiz
else
scnhdr->s_paddr = (sechdr->s_num <<19) |
((exthdr->e_csselector << 16) & 0x7000)
else
scnhdr->s_paddr = scnhdr->s_psize(TEXT) +
scnhdr->s_psize(DATA)
if (filehdr->f flags & F_EXEC)
if (MODEL == M _SMALL)
scnhdr->s vaddr = exthdr->e_stksiz +
scnhdr->s_size(DATA) + scnhdr->s_paddr(DATA)
else
scnhdr->s_vaddr = 0;
else
scnhdr->s_vaddr = scnhdr->s_size(DATA) +
scnhdr->s_vaddr(DATA)
scnhdr->s_scnptr = 0;
scnhdr->s_flags = STYP_BSSy/ * 0x080 »/

The rest of the fields in the section header are mapped
the same way regardless of the type of section:

if (filehdr->f flags & FH_EXEC)

s_relptr = 0
else

s_relptr = sechdr->se_relptr;
scnhdr->s_lnnoptr= sechdr->se _Innoptr;
scnhdr->s_nreloc = sechdr->se¢_num;
scnhdr->s_nlnno = sechdr->se_nlnno;

SEE ALSO
feeek(3S), a.out(4).
¢2861d(1) in the Runtime System manual.

SYMS(4)

NAME

syms - common object file symbol table format
SYNOPSIS

#include <syms.h>
DESCRIPTION

Common object files contain information to support symbolic software
testing. Line number entries, linenum(4), and extensive symbolic infor-
mation permit testing at the C source level. Every object file’s symbol
table is organized as shown below.

.

....File name 1.
Function 1.
Local symbols for function 1.
Function 2
Local symbols for function 2.

é‘tatic externs for file 1.

File name 2.)
Function 1. _
Local symbols for function 1.

Function 2.
Local symbols for function 2.

é.t_atic externs for file 2.

Global symbols.

’ r\ /? The entry for a symbol is a fixed-length structure. The inembers of the
structure hold the name (null padded), its value, and other information.

'The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment

union /#* all the ways to get a#/
/* symbol namie */
{ .
char _n_name[SYMNMLEN]; /* symbol name */
struct
long _n_zeroes; /* == OL when in string table */
lonig _n_offset; /# location of name in table */
} _n_n; .
char *_n_nptr[2]; /# allows overlaying */
b
long n_value; /* value of symbol */
" short n_senum; /* section number %/
"-] unsigned short n_type; /* type dnd derived type */
» char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
b
#define n_name _n._n_name

#define n_zeroes _n._n_n._n_zeroes

-1-

SYMS(4)

#define n_offset _n._n_n._n_offset
#define n_nptr n._n_nptr[1)

Meaningful values and explanations for them are given in both syms.h
and Common Object File Format Chapter. Anyone who needs to interpret
the entries should seek more information in these sources. Some symbols
require more information than a single entry; they are followed by awuxili-
ary entries that are the same size as a symbol entry. The format follows.

union auxent

{
struct
{
long x_tagndx;
union
{
struct
{
unsigned short x_Inno;
unsigned short x_size;
} x_lnsz;
long x_fsize;
) x_misc;
union
{
struct
{
long x_lnnoptr;
long x_endndx;
x_fen;
struct
{
unsigned short x_dimen[DIMNUM];
} x_ary;,
x_fenary;
unsigned short x_tvndx;
} X_sym;
struct
{
char x_fname[FILNMLEN};
} x_file;
struct
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} x_sen;
struct
{
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran(2];
} x_tv;
b

Indexes of symbol table entries begin at zero.

S

@

SYMS(4)

SEE ALSO

CAVEATS

a.out(4), linenum(4),.
Common Object File Format.

On machines in which longs are equivalent to ints (3B20S computer,
VAX), they are converted to ints in the compiler to minimize the complex-
ity of the compiler code generator. Thus the information about which
symbols are declared as longs and which as ints does not show up in the

symbol table.

TERM(4)

NAME

term - format of compiled term file.

SYNOPSIS

term

DESCRIPTION

Compiled terminfo descriptions are placed under the directory
/usr/lib/terniinfo. In order to avoid a linear search of a huge UNIX sys-
tem directory, a two-level scheme is used: /usr/lib/terminfo/c/name
where name is the name of the terminal, ahd ¢ is the first character of
name. Thus, act} can be found in the file /usr/lib/terminfo/a/act4.
Synonyms for the same terminal are implemented by multiple links to the
same compiled file.

The format has been chosen so that it will be the same on all hardware.
An 8-or-niore-bits byte is assumed, but no assumptions about byte-
ordering or sign extension are made.

The compiled file is created with the compile program, and read by the
routine setupterm. Both of these pieces of software are part of
curses(3X): The file is divided into six parts: the header, terminal names,
Boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short
integers in the forimat described below. These integers are (1) the magic
number (octal 0432); (2) the size, in bytes, of the names section; (3) the
number of bytes in the Boolean section; (4) the number of short integers
in the numbers section; (5) the number of offsets (short integers) in the
strings section; (6) the size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the most
significant 8 bits. (Thus, the value represented is 256*second+first.) The
value -1 is represerited by 0377, 0377, other negative values are illegal.
The -1 generally means that a capability is missing from this terminal.
Note that this format corresponds to the hardware of the VAX and PDP-
11. Machines where this does not correspond to the hardwate read the
integers as two bytes and compute tle result.

The terminal names section comes next. It contains the first line of the
terminfo description, listing the various names for the terminal,
separated by the |} character. The section is terminated with an ASCII
NUL character.

The Boolean flags have one byte for each flag. This byte is either 0 or 1
as the flag is present or absent. The capabilities are in the same order as
the file <term.h>.

Between the Boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an
even byte. All short integérs are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes
up two bytes, and is stored as a short integer. If the value represented is
-1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 means the capability is miss-
ing. Otherwise, the value is taken as an offset from the beginning of the
string table. Special characters in "X or \c notation are stored in their
interpreted form, not the printing representation. Padding information
$<nn> and parameter information %x are stored intact in uninterpreted
form.

-1-

FILES

TERM(4)

The final section is the string table. It contains all the values of string capabili-
ties referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a diff'erent set of capabilities
than are actually present in the file. Either the database may have been
updated since sefupterm has been recompiled (resulting in extra unrecognized
entries in the file) or the program may have been recompiled more recently
than the database was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities — this is why the numbers
and sizes are-included.--Also;-new -eapanbilities-must- always be-added -at-the.end
of the lists of Boolean, number, and string capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is
included:

microtermlact4jmicroterm act iv,
cr="M, cudl="J, ind="J, bel="G, am, cubl—
ed="_, el="", clear="L, cup= T%pl%c%pz%c,
cols#80, lines#24, cufl="X, cuu1="Z, home="),

000 032 001 \0 025 \O N\b \0 212 \oO " \O m i c T
020 o t e T m | a c t 4 l m i c b o
040 t 3 r m a c t i v N0 \0 001 \O \oO

060 N0 NO N0 N\NO N\NO NO NO NO NO N\NO NO N\O N\O NO \O O
100 N0 \O P \0 377 377 030 \O 377 377 377 377 377 377 377 3717
120 377 377 377 377 \O \O 002 \O 377 377 377 377 004 \O0 006 \oO
140 \b \0 377 377 377 377 \n \O0 026 \O 030 \O 377 377 032 \oO
160 377 377 377 377 034 \0 377 377 036 \O0 377 377 377 377 377 3717
200 377 377 377 377 379 377 377 377 377 377 377 377 377 377 377 377
*

520 377 377 377 3717 \0 377 377 377 377 377 377 377 377 377 3717
540 377 377 377 377 377 377 007 N0 Nr N\O N\f \O 036 \O 037 \oO
560 024 % P 1 % c % P 2 % c N0 \n \O 035 \oO
600 \b \0 030 \O 032 \O0O \n \O

Some limitations: total compiled entries cannot exceed 4096 bytes. The name
field cannot exceed 128 bytes.

/Jusr/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO

curses(3X), terminfo(4).

TERMINFO(4)

NAME

terminfo — terminal capability data base

SYNOPSIS

Jusr/lib/terminfo/*/*

DESCRIPTION

Terminfo is a data base describing terminals, used, e.g., by vi(l) and
curses (3X). Terminals are described in terminfo by giving a set of capabilities
which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in terminfo.

Entries in terminfo consist of a number of “,” separated fields. White space
after each “,” is ignored. The first entry for each terminal gives the names
which are known for the terminal, separated by “|* characters. The first
name given is the most common abbreviation for the terminal, the last name
given should be a long name fully identifying the terminal, and all others are
. nderstood as synonyms for the terminal name. All names but the last should
Lo in lowercase and contain no blanks; the last name may well contain upper-
case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the termi-
nal should have a root name chosen, thus “hp2621”. This name should not
contain hyphens, except that synonyms may be chosen that do not conflict with
other names. Modes that the hardware can be in, or user preferences, should
be indicated by appending a hyphen and an indicator of the mode. Thus, a
vtl00 in 132 column mode would be vtl00-w. The following suffixes should be
used where possible:

Suffix Meaning Example
—w Wide mode (more than 80 columns) vt100-w
—am With auto. margins (usually default) vt100-am
—nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
—na No arrow keys (leave them in local) c100-na
—np Number of pages of memory c100-4p
-rv Reverse video c100-rv

CAPABILITIES

The variable is the name by which the programmer (at the terminfo level)
accesses the capability. The capname is the short name used in the text of the
data base, and is used by a person updating the data base. The i.code is the
two letter internal code used in the compiled data base, and always corresponds
to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 charac-
ters has been adopted to keep them short and to allow the tabs in the seurce
file caps to line up nicely. Whenever possible, names are chosen to be the same
as or similar to the ANSI X3.64-1979 standard. Semantics are also intended
to match those of the specification.

(P) indicates that padding may be specified
(G) indicates that the string is passed through tparm withparms as given

@#.
*) indicates that padding may be based on the number of lines affected
(#,.) indicates the il parameter.

Variable
Booleans
auto_left_margin,

auto_right_margin,
beehive_glitch,
ceol_standout_glitch,

. eat_newline_glitch,

erase_overstrike,
generic_type,

hard_copy,
has_meta_key,

has_status_line,
insert_null_glitch,
memory_above,

memory_below,

move_insert_mode,
move_standout_mode,
over_strike,
status_line_esc_ok,
teleray_glitch,

tilde_glitch,
transparent_underline,
xon_xoff,

Numbers:
columns,
init_tabs,

lines,

lines_of _memory,

magic_cookie_glitch,
padding_baud_rate,

virtual_terminal,
width_status_line,

Strings:

back_tab,

bell,

carriage_return,
change_scroll_region,

clear_all_tabs,
clear_screen,
clr_eol,
clr_eos,

Cap-
name
bw

am
xsb
xhp

xenl

eo
Bgn

he
hs

in

da
db
mir
msgr
os
eslok
xt

hz
xon
cols
it
lines
xmc

pb

vt
wsl

cbt

Code
bw

am
xb
Xs

xn .

eo
Bn

he

hs
in
da

db

co
it
li
Im
sg
pb

vi
ws

bl
cr
cs

ct

TERMINFO(4)

Description

cubl wraps from column 0 to last
column

Terminal has automatic margins
Beehive (fl=escape, f2=ctrl C)
Standout not erased by overwriting
(hp)

_new-line ignored after 80 cals

(Concept)

Can erase overstrikes with a blank
Generic line type (e.g., dialup,
switch).

Hardcopy terminal

Has a meta key (shift, sets parity
bit)

Has extra "status line"

Insert mode distinguishes nulls
Display may be retained above the
screen

Display may be retained below the
screen

Safe to move while in insert mode
Safe to move in standout modes
Terminal overstrikes

Escape can be used on the status line
Tabs ruin, magic so char (Teleray
1061)

Hazeltine; can not print ~'s
underline character overstrikes
Terminal uses xon/xofl handshaking

Number of columns in a line

Tabs initially every # spaces

Number of lines on screen or page
Lines of memory if > lines. 0 means
varies

Number of blank chars left by smso or
rmso

Lowest baud where cr/nl padding is
needed

Virtual terminal number (UNIX system)
No. columns in status line

Back tab (P)

Audiblesignal (bell) (P)

Carriage return (P*)

change to lines #1 through #2 (v1100)
(PG)

Clear all tab stops (P)

Clear screen and home cursor (P*)
Clear to end of line (P)

Clear 1o end dof display (P*)

TERMINFO(4)

column_address,
command_character,
cursor_address,

cursor_down,
cursor_home,
cursor_invisible,
cursor_left,
cursor_mem_address,
cursor_normal,
cursor_right,
cursor_to_ll,
cursor_up,
cursor_visible,
delete_character,
delete_line,
dis_status_line,
down_half _line,

enter_alt_charset_mode,

enter_blink_m~de,
enter_bold_mode,
enter_ca_mode,
enter_delete_mode,
enter_dim_mode,
enter_insert_mode,
enter_protected_mode,
enter_reverse_mode,
enter_secure_mode,
enter_standout_mode,
enter_underline_maode,
erase_chars
exit_alt_charset_mode,
exit_attribute_mode,
exit_ca_mode,
exit_delete_mode,
exit_insert_mode,
exit_standout_mode,
exit_underline_mode,
flash_screen,
form_feed,
from_status_line,
init_lstring,
init_2string,
init_3string,

init_file,
insert_character,
insert_line,
insert_padding,

key_backspace,
key_catab,
key_clear,
key_ctab,
-key_dc,

key_dl,

hpa
cmdch
cup

cudl
home
civis
cubl
mrcup
cnorm
cufl

)|
cuul
cvvis
dchl
dll
dsl

hd
smacs
blink
bold
smcup
smdc
dim
smir
prot
rev
invis
smso
smul
ech
rmacs
sgr0
rmcup
rmdc
rmir
rmso
rmul
flash
ff

fsl

isl

is2

is3

if

ichl
ill

ip

kbs
ktbe
kdir
kctab
kdchl
kdll

ch
CC
cm

Set cursor column (PG)

Term. settable cmd char in prototype

Screen rel. cursor motion row #1

col #2 (PG)

Downone line N
Home cursor (if no cup) ~
Make cursor invisible

Move cursor left one space

Memory relative cursor addressing

Make cursor appear normal (undo vs/vi)
Non-destructive space (cursor right)

Last line, first column (if no cup)

Upline (cursor up)

Make cursor very visible

Delete character (P*)

Delete line (P*)

Disable status line .
Half-linedown (forward 1/2 linefeed) !
Start alternate character set (P)

Turn on blinking

Turn on bold (extra bright) mode

String to begin programs that use cup
Delete mode (enter)

Turn on half-bright mode

Insert mode (enter):

Turn on protected mode

Turn on reverse video mode .
Turn on blank mode (chars invisible) R
Begin stand-out mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)

Turn off all attributes

String to end programs that use cup

End delete mode

End insert mode

End stand-out mode

End underscore mode

Visible bell (may not move cursor)
Hardcopy terminal page eject (P*)
Return from status line

Terminal initialization string

Terminal initialization string

Terminal initialization string

Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after character inserted

(p®

Sent by backspace key .
Sent by clear-all-tabs key

Sent by clear screen or erase key

Sent by clear-tab key

Sent by delete character key

Sent by delete line key

-3.

S

key_down,
key_eic,
key_cal,
key_eos,
key_f0,
key_f1,
key_f10,
key_ {2,

....key;fSI e e e o

key (4,
key_5,
key_f6,
key_f7,
key (8,
key_19,
key_home,
key_ic,
key_il,
key_left,
key_ll,
key_npage,
key_ppage,
key_right,
key_sf,
key_sr,
key_stab,
key_up,
keypad_local,
keypad_xmit,
lab_f0,
lab_f1,
lab_fl0,
lab_f2,
lab_f3,
lab_f4,
lab_f5,
lab_f6,
lab_{7,
lab_{8,
lab_f9,
meta_on,
meta_off’,
newline,

pad_char,
parm_dch,
parm_delete_line,
parm_down_cursor,
parm_ich,
parm_index,
parm_insert_line,
parm_left_cursor,
parm_right_cursor,
parm_rindex,
parm_up_cursor,

kcud!
krmir
kel
ked
kf0
kfl
kf10
kf2

kf3.

kf4
kf5
kf6
kf7
kf8
kf9
khome
kichl
kill
kcubl
kll
knp
kpp
kcufl
kind
kri
khts
kcuul
rmkx
smkx
1f0
If1
If10
if2
13
4
ifs
If6
7
8
9
smm
rmm
nel

pad
dch
dl
cud
ich
indn
il
cub
cuf
rin
cuu

TERMINFO(4)

Sent by terminal down arrow key
Sent by rmir or smir in insert mode
Sent by clear-to-end-of-line key
Sent by clear-to-end-of -screen key
Sent by function key 0

Sent by function key f1

Sent by function key 10

Sent by function key 2

.. Sent.by function key f3...

Sent by function key (4

Sent by function key 15

Sent by function key f6

Sent by function key {7

Sent by function key 8

Sent by function key {9

Sent by home key

Sent by ins char/enter ins mode key
Sent by insert line

Sent by terminal left arrow key

Sent by home-down key

Sent by next-page sty

Sent by previous-page key

Sent by terminal right arrow key
Sent by scrotl-forward/down key
Sent by scroll-backward/up key

Sent by set-tab key

Sent by terminal up arrow key

Out of "keypad transmit” mode

Put terminal in "keypad transmit" mode
Labels on function key fO if not fO
Labels on function key {1 if not f1
Labels on function key {10 if not {10
Labels on function key {2 if not 12
Labels on function key f3 if not f3
Labels on function key {4 if not {4
Labels on function key 5 if not f5
Labels on function key {6 il not {6
Labels on function key {7 if not {7
Labels on function key {8 il not 8
Labels on function key 9 if not {9
Turn on "meta mode” (8th bit)
Turn ofl’ "meta mode”

New-line (behaves like cr followed
by 1}

Pad character (rather than null)
Delete #1 chars (PG*)

Delete #1 lines (PG*)

Move cursor down #1 lines (PG*)
Insert #1 blank chars (PG*)
Scroll forward #1 lines (PG)

Add #! new btank lines (PG*)
Move cursor left #1 spaces (PG)
Move cursor right #1 spaces (PG*)
Scroll backward #1 lines (PG)
Move cursor up #I lines (PG*)

TERMINFO(4)

pkey_key, pikey pk Prog funct key #1 to type string #2
pkey_local, pfloc pl Prog funct key #1 to execute string #2
pkey_xmit, pfx px Prog funct key #1 to xmit string #2
print_screen, mc0 ps Print contents of the screen
prtr_off, mcé4 pf Turn oft the printer
prtr_on, mc5 po Turn on the printer
repeat_char, rep rp Repeat char #1 #2 times. (PG*)
reset_lstring, sl rl Reset terminal completely to sane modes.
reset_2string, rs2 r2 Reset terminal completely to sane modes.
reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf f Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (PG)
save_cursor, sc ¢ Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri st Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Seta tab in all rows, current column
set_window, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up_half_Jine, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, kal Kl Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key b2, kb2 K2 Center of keypad
key_cl, kel K4 Lower left of keypad
key_c3, ke3 KS Lower right of keypad
prtr_non, mc5p pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept—100, is among the more
complex entries in the terminfo file as of this writing.

concept100 | c100! concept | c104 ! c100-4p | concept 100,

am, bel=*G, blank=\EH, blink=\EC, clear="L3$<2#>, cnorm=\Ew,
cols#80, cr="M3$<9>, cubi1=*H, cudi=*J, cuf1=\Easm,

cup=\EaXp1%¥’ ’‘X+XcXp2X’ ‘X+Xc,

cuu1=\E;, cvvis=\EW, db, dchi=\E"A3<16#>, dim=\BE, dl1=\E*B3<3a>,
ed=\E"C3<16#>, el=\E"U3<16>, eo, flash=\Ek$<20>\EK, ht=\t3<8>,
i11s\E*R$<3#>, in, ind="J, .ind="J3$<9>, 1p=3<16a>,
182=\EU\E£\E7\ES\ES\E1\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs="h, kcub1=\E>, kcud1=\E<, kcufi=\E=, kcuui=\E;,

kf1=\ES5, k£f2=\E6, k£3=\E7, khome=s\E?,

lines#24, mir, pb#9600, prot=\EI, reps\ErXpiXcXp2X’ ’X+Xc3$<.2a>,
rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul=\Bg, sgr0=\EN\200,

smcup=\EU\Ev S8p\Ep\r, smir=\E"P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the begin-
ning of each line except the first. Comments may be included on lines begin-
ning with “#”. Capabilities in terminfo are of three types: Boolean capabili-
ties which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular delays, and

.5

TERMINFO(4)

string capabilities, which give a sequence which can be used to perform particu-
lar terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description of the
Concept includes am. Numeric capabilities are followed by the character ‘#’
and then the value. Thus cols, which indicates the number of columns the ter-
minal has, gives the value ‘80’ for the Concept.

" Finilly, string valued capabilities; such as-el ‘(clearto-end of line ‘sequence) are

given by the two-character code, an “=’, and then a string ending at the next
following ‘. A delay in milliseconds may appear anywhere in such a capabil-
ity, enclosed in §<..> brackets, as in el=\EK$<3>, and padding characters
are supplied by tputs to provide this delay. The delay can be either a number,
e.g, ‘20°, or a number followed by an *’, i.e,, ‘3*’. A ‘*’ indicates that the
padding required is proportional to the number of lines affected by the opera-
tion, and the amount given is the per-affected-unit padding required. (In the
case of insert character, the factor is still the number of lines affected. This is
always one unless the terminal has xenl and the software uses it.) When a *’
is specified, it is sometimes useful to give a delay of the form ‘3.5’ to specify a
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for
easy encoding of characters there. Both \E and \e map to an ESCAPE charac-
ter, “x maps to a control-x for any appropriate x, and the sequences \n \I \r \t
\b \f \s give a new-line, linefeed, return, tab, backspace, formfeed, and space.
Other escapes include \~ for %, \\ for \, \, for comma, \: for :, and \O for null.
(\0 will produce \200, which does not terminate a string but behaves as a null
character on most terminals.) Finallyy characters may be given as three octal
digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the
example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective
way to prepare a terminal description is by imitating the description of a simi-
lar terminal in terminfo and to build up a description gradually, using partial
descriptions with vi to check that they are correct. Be aware that a very
unusual terminal may expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal description you can set
the environment variable TERMINFO to a path name of a directory containing
the compiled description you are working on and programs will look there
rather than in fusrflibferminfo. To get the padding for insert line right (if the
terminal manufacturer did not document it) a severe test is to edit /etc/passwd
at 9600 baud, delete 16 or so lines from the middle of the screen, then hit the
‘v’ key several times quickly. If the terminal messes up, more padding is usu-
ally needed. A similar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal is a CRT, then the number of lines on the
screen is given by the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right margin, then it should have
the am capability. If the terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string capability. If the terminal

-6-

TERMINFO(4)

overstrikes (rather than clearing a position when a character is struck over)
then it should have the os capability: If the terminal is a printing terminal,
with no soft copy unit, give it both he and os. (os applies to storage scope ter-
minals, such as TEKTRONIX 4010 series, as well as hard copy and APL termi-
nals.) If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control M.) If there is
a code to produce an audible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as back-
space) that capability should be given as cubl. Similarly, codes to move to the
right, up, and down should be given as cufl, cuul, and cudl. These local cursor
motions should not alter the text they pass over, for example, you would not
normally use ‘cufl= ’ because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in ter-
minfo are undefined at the left and top edges of a CRT terminal. Programs
should never attempt to backspace around the left edge, unless bw is given, and
never attempt to go up locally off the top. In order to scroll text up, a program
will go to the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined when
not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have
the same semantics as ind and ri except that they take one parameter, and
scroll that many lines. They are also undefined except at the appropriate edge
of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cufl from the last
column. The only local motion which is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right edge of the previ-
ous row. If bw is not given, the effect is undefined. This is useful for drawing
a box around the edge of the screen, for example. If the terminal has switch
selectable automatic margins, the rerminfo file usually assumes that this is on;
i.e., am. If the terminal has a command which moves to the first column of the
next line, that command can be given as nel (new-line). It does not matter if
the command clears the remainder of the current line, so if the terminal has no
cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus
the model 33 TELETYPE is described as

331 tty33!{tty!model 33 TELETYPE,
bel="G, cols#72, cr="M, cudi="J, hec, ind="J, os,

while the Lear Siegler ADM-3 is described as

adm3!31{1lsi adm3,
am, bel="G, clear="2, cols#80, cr="M, cub1="H, cudi1="J,
ind="J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with printf(3S) like escapes %x
in it. For example, to address the cursor, the cup capability is given, using two
parameters: the row and column to address to. (Rows and columns are num-
bered from zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory relative cursor addressing, that
can be indicated by mrcup.

-7-

™
o

TERMINFO(4)

The parameter mechanism uses a stack and special % codes to manipulate it.
Typically a sequence will push one of the parameters onto the stack and then
print it in some format. Often more complex operations are necessary.

The % encodings have the following meanings:

%% outputs ‘%’
%d print pop() as in printf
%2d print pop() like %2d
%3d print pop(} like %3d
%02d
%03d as in printf
wGpg -+ w e+ oo print popQ)-gives %c e e .
%s print pop() gives %s
%pl1-9] push ith parm
%Pla-z] set variable [a-z] to pop()
%gla-z] get variable [a-z] and push it
%'c’ char constant ¢
%{nn} integer constant nn

%+ %- %* %/ %m ‘
arithmetic (%m is mod): push(pop() op pop())

%& % %" bit operations: push(pop() op pop(}))

o= %> %< logical operations: push(pop() op pop())

%! B~ unary operations push(op pop())

i add | to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

else-if’s are possible ala Algol 68:

% o %t bd"?.ze <, %t b2 %oe ;3 %t b3 %oe 4 %t h4 %oe P,
¢, are con itions, bi are bodies.

Binary operations are in postfix form with the operands in the usual order.
That is, to get x-5 one would use "%gx%{5)%-".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent
\E&al2c03Y padded for 6 milliseconds. Note that the order of the rows and s
columns is inverted here, and that the row and column are printed as two
digits. Thus its cup capability is cup=6\E&%p2%2dc%pl%2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a
“T, with the row and column simply encoded in binary, cup="T%pl%c%p2%c.
Terminals which use %c need to be able t6 backspace the cursor (cubl), and to
move the cursor up one line on the screen (cuul). This is necessary because it
is not always safe to transmit \n "D and \r, as the system may change or dis-
card them. (The library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns out to be essential for
the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus cup=\E=%pl%’ '%+%c%p2%’ '%+%c. After sending
‘\E=", this pushes the first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values)
and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute) and vpa

“(vertical position absolute). Sometimes these are shorter than the more general

-8-

TERMINFO(4)

two parameter sequence (as with the hp2645) and can be used in preference to
cup . If there are parameterized local motions (e.g., move n spaces to the right)
these can be given as cud, cub, cuf, and cuu with a single parameter indicating
how many spaces to move. These are primarily useful if the terminal does not
have cup, such as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as II; this may involve going up with cuul
from the home position, but a program should never do this itself (unless N
does) because it can make no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leav-
ing the cursor where it is, this should be given as el. If the terminal can clear
from the current position to the end of the display, then this should be given as
ed. Ed is only defined from the first column of a line. (Thus, it can be simu-
lated by a request to delete a large number of lines, if a true ed is not avail-
able.)

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is,
this should be given as ill; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can
delete the line which the cursor is on, then this should be given as dll; this is
done only from the first position on the line to be deleted. Versions of ill and
di1 which take a single parameter and insert or delete that many lines can be
given as il and dl. If the terminal has a settable scrolling region (like the
vt100) the command to set this can be described with the esr capability, which
takes two parameters: the top and bottom lines of the scrolling region. The
cursor position is, alas, undefined after using this command. It is possible to
get the effect of insert or delete line using this — command; the sc and rec (save
and restore cursor) commands are also useful. Inserting lines at the top or bot-
tom of the screen can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster cven on terminals with those features.

If the terminal has the ability to define a window as part of memory, which all
commands aff'ect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should
be given; if display memory can be retained below, then db should be given.-
These indicate that deleting a line or scrolling may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
characters which can be described using terminfo. The most commor
insert/delete character operations affect only the characters on the current line
and shift characters off the end of the line rigidly. Other terminals, such as the
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you have by clearing

-9-

C\

TERMINFO(4)

the screen and then typing text separated by cursor motions. Type abc def
using local cursor motions (not spaces) between the abc and the def. Then
position the cursor before the abc and put the terminal in insert mode. If typ-
ing characters causes the rest of the line to shift rigidly and characters to fall
oft' the end, then your terminal does not distinguish between blanks and
untyped positions. If the abc shifts over to the def which then move together
around the end of the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which stands for
insert null, While these are two logically separate attributes (one line vs. mul-.
tiline insert mode, and special treatment of untyped spaces) we have seen no
terminals whose insert mode cannot be described with the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals
which send a simple sequence to open a blank position on the current line.
Give as smir the sequence to get intoinsert mode. Give as rmir the sequence to
leave insert mode. Now give as ichl any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true insert mode
will not give ichl; terminals which send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually prefer-
able to ichl. Do not give both unless the terminal actually requires both to be
used in combination.) If post insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence which may need to be
sent after an insert of a single character may also be given in ip. If your termi-
nal needs both to be placed into an ‘insert mode’ and a special code to precede
each inserted character, then both smir/rmir and ichl can be given, and both
will be used. The ich capability, with one parameter, n, will repeat the effects
of ichl n times.

It is occasionally necessary to move around while in insert mode to delete char-
acters on the same line (e.g., if there is a tab after the insertion position). If
your terminal allows motion while in insert mode you can give the capability
mir to speed up inserting in this case. Omitting mir will affect only speed.
Some terminals (notably Datamedia’s) must not have mir because of the way
their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one parame-
ter, n, to delete n characters, and delete mode by giving smde and rmde to
enter and exit delete mode (any mode the terminal needs to be placed in for
dchl to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display form
as standout mode, representing a good, high contrast, easy-on-the-eyes, format
for highlighting error messages and other attention getters. (If you have a
choice, reverse video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and rmso, respec-
tively. If the code to change into or out of standout mode leaves one or even
two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xme
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul
respectively. If the terminal has a code to underline the current character and
move the cursor one space to the right, such as the Microterm Mime, this can
be given as uc.

-10-

TERMINFO(4)

Other capabilities to enter various highlighting modes include blink (blinking)
bold (bold or extra bright) dim (dim or half-bright) invis (blanking or invisible
text) prot (protected) rev (reverse video) sgr0 (turn oft' all attribute modes)
smacs (enter alternate character set mode) and rmacs (exit alternate character
set mode). Turning on any of these modes singly may or may not turn off
other modes.

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking 9 parameters. Each parameter is either 0
or 1, as the corresponding attribute is on or off. The 9 parameters are, in
order; standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set. Not all modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Terminals with the “magic cookie™ glitch (xmc) deposit special “cookies” when
they receive mode-setting sequences, which aff'ect the display algorithm rather
than having extra bits for each character. Some terminals, such as the HP
2621, automatically leave standout mode when they move to a new line or the
cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a new-line, unless the msgr capability,
asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement) then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as cvvis. If there is a way
to make the cursor completely invisible, give that as civis. The capability
cnorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup. This arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only memory relative cur-
sor addressing and not screen relative cursor addressing, a one screen-sized win-
dow must be fixed into the terminal for cursor addressing to work properly.
This is also used for the TEKTRONIX 4025, where smcup sets the command
character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give the
capability ul. If overstrikes are erasable with a blank, then this should be indi-
cated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed,
this information can be given. Note that it is not possible to handle terminals
where the keypad only works in local (this applies, for example. to the
unshifted HP 2621 keys). If the keypad can be set to transmit or not transmit,
give these codes as smkx and rmkx. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome
respectively. If there are function keys such as f0, fl, ..., fl0, the codes they
send can be given as kf0, kfl, ..., kf10. If these keys have labels other than the
default fO through f10, the labels can be given as If0, If1, ..., If10. The codes
transmitted by certain other special keys can be given: kli (home down), kbs
(backspace), ktbe (clear all tabs), ketab (clear the tab stop in this column),
kelr (clear screen or erase key), kdechl (delete character), kdll (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of screen),

211 -

O

TERMINFO(4)

kicbl (insert character or enter insert mode), kill (insert line), knp (next
page), kpp (previous page), kind (scroll forward/down), kri (scroll
backward/up), kbts (set a tab stop in this column). In addition, if the keypad
has a 3-by-3 array of keys including the four arrow keys, the other five keys
can be given as kal, ka3, kb2, kecl, and ke3. These keys are useful when the
effects of a 3-by-3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab
stop ¢an be giver a§ ht (usudlly control T). "A “backtab” command which
moves leftward to the next tab stop can be given as cbt. By convention, if the
TELETYPE modes indicate that tabs are being expanded by the computer
rather than being sent to the terminal, programs should not use ht or cbt even
if they are present, since the user may not have the tab stops properly set. If
the terminal has hardware tabs which are initially set every n spaces when the
terminal is powered up, the numeric parameter it is given, showing the number
of spaces the tabs are set to. This is normally used by the tset command to
determine whether to set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be saved in nonvolatile
memory, the terminfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the termi-
nal, iprog, the path name of a program to be run to initialize the terminal, and
if, the name of a file containing long initialization strings. These strings are
expected to set the terminal into modes consistent with the rest of the terminfo
description. They are normally sent to the terminal, by the tset program, each
time the user logs in. They will be printed in the following order: isl; is2; set-
ting tabs using tbe and hts; if; running the program iprog; and finally is3. Most
initialization is done with is2. Special terminal modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
isl and is3. A pair of sequences that does a harder reset from a totally
unknown state can be analogously given as rsl, rs2, rf, and rs3, analogous to
is2 and if. These strings are output by the reset program, which is used when
the terminal gets into a wedged state. Commands are normally placed in rs2
and rf only if they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set the vtl100 into 80-column
mode would normally be part of is2, but it causes an annoying glitch of the
screen and is not normally needed since the terminal is usually already in 80-
column mode.

If there are commands to set and clear tab stops, they can be given as thc
(clear all tab stops) and hts (set a tab stop in the current column of every
row). If a more complex sequence is needed to set the tabs than can be
described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the TELETYPE driver. These are pri-
marily needed by hard copy terminals, and are used by the tset program to set
TELETYPE modes appropriately. Delays embedded in the capabilities cr, ind,
cubl, I, and tab will cause the appropriate delay bits to be set in the TELE-
TYPE driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of ph.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad. Only the first character of the pad string is used.

If the terminal has an extra “status line” that is npt normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below

-12.

TERMINFO(4)

the bottom line, into which one can cursor address normally (such as the
Heathkit h19’s 25th line, or the 24th line of a vtl00 which is set to a 23-line
scrolling region), the capability hs should be given. Special strings to go to the
beginning of the status line and to return from the status line can be given as
tsl and fsl. (fsl must leave the cursor position in the same place it was before
tst. If necessary, the sc and re strings can be included in tsl and fsl to get this
effect) The parameter tsl takes one parameter, which is the column number of
the status line the cursor is to be moved to. If escape sequences and other spe-
cial commands, such as tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to save and restore the
position of the cursor, give them as sc and rc. The status line is normally
assumed to be the same width as the rest of the screen, e.g., cols. If the status
line is a different width (possibly because the terminal does not allow an entire
line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts
and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to
save time transmitting a large number of identical characters) this can be indi-
cated with the parameterized string rep. The first parameter is the character to
be repeated and the second is the number of times to repeat it. Thus,
tparm(repeat_char, 'x’, 10) is the same as ‘xxxxxxxxxx’.

If the terminal has a settable command character, such as the TEKTRONIX
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the cmdch
capability to identify it. The following convention is supported on some UNIX
systems: The environment is to be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the character in the
environment variable.

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch, dialup, patch, and network, should include the gn (generic)
capability so that programs can complain that they do not know how to talk to
the terminal. (This capability does not apply to virtual terminal descriptions
for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted.

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit
of any character transmitted, this fact can be indicated with km. Otherwise,
software will assume that the 8th bit is parity and it will usually be cleared. If
strings exist to turn this “meta mode™ on and off, they can be given as smm
and rmm.

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with Im. A value of Im#0
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

If the terminal is one of those supported by the UNIX system virtual terminal
protocol, the terminal number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal
can be given as mc0: print the contents of the screen, mc4: turn off the
-13.

)

FILES

TERMINFO(4)

printer, and meS: turn on the printer. When the printer is on, all text sent to
the terminal will be sent to the printer. It is undefined whether the text is also
displayed on the;terminal screen when the printer is on. A variation mc5p
takes one parameter, and leaves the printer on for as many characters as the
value of the parameter, then turns the printer off. The parameter should not
exceed 255. All text, including mc4, is transparently passed to the printer
while an me5p is in effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of
these strings takes two parameters: the function key number to program (from

0 to 10)- and the-stringto program-it -with “Function-key numbers out -of this ‘-

range may program undefined keys in a terminal-dependent manner. The
difference between the capabilities is that pfkey causes pressing the given key
to be the same as the user typing the given string; pfloc causes the string to be
executed by the terminal in local; and pfx causes the string to be transmitted to
the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ‘” characters to be displayed should
indicate bz.

Terminals which ignore a linefeed immediately after an am wrap, such as the
Concept and vt100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on
top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should
indicate xt (destructive tabs). This glitch is also taken to mean that it is not
possible to position the cursor on top of a “magic cookie”, that to erase
standout mode it is instead necessary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or con-
trol C characters, has xsb, indicating that the fl key is used for escape and 2
for control C. (Only certain Superbees have this problem, depending on the
ROM.)

Other specific terminal problems may be corrected by adding more capabilities
of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the
name of the similar terminal. The capabilities given before use override those
in the terminal type invoked by use. A capability can be cancelled by placing
xx@ to the left of the capability definition, where xx is the capability. For
example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence
does not turn on the function key labels when in visual mode. This is useful for
different modes for a terminal, or for different user preferences.

/usr/lib/terminfo/?/* files containing terminal descriptions

SEE ALSO

curses(3X), printf(3S), tern(5).
tic(IM) in the Runtime System manual.

_14-

UTMP(4)

NAME
utmp, wtmp — utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as
who(1), write(1), and login(1), have the following structure as defined by
<utmp.h>:
#define UTMP_FILE "/etc/utmp®

#define WTMP_FILE "/etc/wtmp"
#define ut_name ut_user

struct utmp {

char ut_user(8]; /+ User login name +/
char ut_id[4]; /+ Jetc/inittab id (usually line #) +/
char ut line[12]; /% device name (console, Inxx) =/
short ut_pid; /+ process id e/
short ut_type; /+ type of entry s/
struct exit_status {

short e_termination; /e« Process termination status */

short e_exit; /+ Process exit status ¢/
} ut_exit; /e The exit status of a process

* marked as DEAD_PROCESS. +/

time_t ut_time; /+ time entry was made */

)

/+ Definitions for ut_type */

#define EMPTY 0

#define RUN_LVL 1

#define BOOT_TIME 2

#define OLD_TIME 3

#define NEW_TIME 4

#define INIT_PROCESS 5 /+ Process spawned by "init" +/
#define LOGIN_PROCESS 6 /* A “getty" process waiting for login +/
#define USER_PROCESS 7 /+ A user process */

#define DEAD_PROCESS 8

#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING /s Largest legal value of ut_type +/

/+ Special strings or formats used in the "ut_line" field when «/
/+ accounting for something other than a process ¢/

/+ No string for the ut_line field can be more than 11 chars + ¢/
/+ a NULL-in length o/

#define RUNLVL_MSG "run—level %c"

#define BOOT_MSG "system boot"

#define OTIME_MSG ‘“old time"

#define NTIME_MSG "new time"

FILES
/usr/include/utmp.h

/etc/utmp
/etc/wtmp

SEE ALSO
getut(3C).

login(1), who(1), write(1) in the Runtime System manual.

UTMP(4)

TABLE OF CONTENTS OF MISCELLANY

5. Miscellaneous

intro introduction to miscellany

ascii map of ASCII character set

environ Alser environment

fentl file control options

. math, math funciions and constants
Sy prof. profile within a funcion
S regexp. regular expression cope and match routines
stat dataretumed by stat system call

term, conventional names for texminals

L PeS e, o primitive system data types
valies machine-dependent valoes
varargs handle variable argument list

PP

INTRO(5)

NAME A
intro — introduction to miscellany
DESCRIPTION »
This section describes miscellaneous facilities such as macro packages, charac-
("' . ter set tables, etc.
\

O

ASCII(5)

NAME

ascii — map of ASCII character set
SYNOPSIS

cat /usr/pub/ascii
DESCRIPTION

Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

|[000 nul |001 soh|[002 stx|003 etx|004 eot |005 enq|006 ack |007 bel
[010 bs [011 ht [012 nl |013 vt |014 np [015 cr |016 so [017 si
1020 dle 021 dcl 022 dc2]023 dec3 |024 dc4 |025 nak |026 syn [027 etb
1030 can|031 em |032 sub|033 esc|034 fs |035 gs |036 rs 037 us
040 sp 041 1 042 * |043# 044 $ [045% 046 & |047
050 (|os1) |os2 * Jos3+ los4, |oss— |ose. los7/
060 0 |o61 1 Jo62 2 |0633 (o064 4 |0655 |o66 6 (067 7 |
' 070 8 0719 072 : 073 ; lo74< |075= |076 > [077 ?
100@ [101A [102B [103C 104D |105E {106 F |107 G
110 H |t11 I J112J [113K [|114L J11sM J116 N [1170
[120 P 121 Q [|122R [123s 124 T 125U |126 v 1271 W
[130x [131Y 11322 1331 [134\ [1351 136 ° |137 _
140 {1412 142 b |143 c [144d |145e |146 ¢ |147¢
150 h |151 4 11525 153k [154 1 |155m [156 n |157 o
160 p |161q J162r |163 s [164t |165u [166v [167 w
[170 x 171y f172 z |173 { N74 | 175} [176 = [177 del

eot| 05 enq| 06 ack| 07 bel |
np | Odcr | Oe so | OF si |
dc4| 15 nak| 16 syn| 17 etb]|

| 00 nulf 01 soh} 02 stx| 03 etx}
| 08 bs | 09 nt [Oa nl | Ob vt }
i 10 dlef 11 del} 12 dc2| 13 de3

i 18 canf 19 em | la sub} 1b esc} fs | 1dgs | lers | If us |
P20sp 21t 22" | 23 # $ | 25% | 26& | 27 |
28 C 129) [2a°* | 2b+ , l2d= | 2. |27 |
300 311 322 |333 4 355 1366 |377 |
388 [399 |3a: | 3b; < |3d= 3> |37 |
f40@ [41A | 42B | 43C D |45E | 46F | 471G |
{48 H [491 | 4a) | 4bK L |4dM | 4eN | 4f 0 |
i S0P }51Q JS2R | 538 T | 55U |s6ev | 51w |
58X	S9Y {5az	5bl \	sdl	se*	sf_	
60	61a i62b	63 ¢ d	65¢	66f	67g	
68 h	69 i ;6aj	6bk 1	6dm	6en	6f o	
70p	71q [72r	73 s t	75u	6v	77w	
8x [79y	7az	7 {		7d)}	7¢e =	7f del
FILES
/usr/pub/ascii

ENVIRON(5)

NAME
environ - user environment
DESCRIPTION
An array of strings called the “environment” is made available by exec(2)
— when a process begins. By convention, these strings have the form
(“name=value”. The following rames are used by various commands:

PATH The sequence of directory prefixes that sh(l), ttme(l), nice(l),
nohup(l), ete., apply in searching for a file known by an incom-
plete path name. The prefixes are separated by colons ()

- --Login(1)-sets PATI{— /bin:/usr/bin. . R

HOME Name of the user’s login directory, set by logm(l) from the pass-
word file passwd(4).

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm(1) or tplot(1G),
which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is
standard local time zone abbreviation, n is the difference in hours
from GMT, and zzz is the abbreviation for the daylight-saving
local time zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the export command

and “name=value” arguments in sh(1), or by exec(2). It is unwise to con-

flict with certain shell variables that are frequently exported by .profile
files: MAIL, PS1, PS2, IFS.

SEE ALSO
exec(2).

O env(1), login(1), sh(l), nice(1), nohap(1), time(1), tplot(1G) in the Runtime System
manual.

mm(1) in the "User Reference Manual" chapter of the Text Preparation System manual.

G-S

FCNTL(5)

NAME
fentl - file control options

SYNOPSIS
#include <fcntlh>

DESCRIPTION
The fentl(2) function provides for control over open files. This include file L
describes requests and arguments to fentl and open(2). :

/* Flag values accessible to open(2) and fentl(2) */

/* (The first three can only be set by open) */

#define O_RDONLY 0

#define O_WRONLY 1

fdefine O_RDWR 2

#define O_NDELAY 04 /* Nonblocking 1/0 */

#define O_APPEND 010 /* append (writes guaranteed at the end) */
#define O_SYNC 020 /* synchronous write options */

/* Flag values accessible only to open(2) */

#define O_CREAT 00400 /* open with file create (uses third open arg)+/
#define O_TRUNC 01000 /#open with truncation */

#define O_EXCL 02000 /* exclusive open */

/* fentl(2) requests */

#define F_ DUPFD 0 /* Duplicate fildes */

#define F_GETFD 1 /+* Get fildes flags */

#define F_SETFD 2 /* Set fildes flags */

#define F_GETFL 3 /* Get file flags +/

#define F_SETFL 4 /* Set file flags */

#define F_ GETLK 5 /* Get blocking file locks */

#define F_SETLK 6 /* Set or clear file locks and fail on busy */
#define F_SETLKW 7 /* Set or clear file locks and wait on busy */

/# file segment locking control structure */
struct flock {
short 1_type;
short 1_whence;
long 1_start;
long 1ien; /% if 0 then until EOF */
int 1_pid; /# returned with F_GETLK */

/* file segment locking types */

#define F_ RDLCK 01 /# Readlock */
#define F_ZWRLCK 02 /* Write lock #/
#define F_.UNLCK 03 /* Remove locks */

SEE ALSO
fentl(2), open(2).

MATH(5)

NAME
math — math functions and constants
SYNOPSIS
#include <math.h>
PR DESCRIPTION
{ This file contains declarations of all the functions in the Math Library

e (described in Section 3M), as well as various functions in the C Library (Sec-
tion 3C) that return floating-point values.

It defines the structure and constants used by the matherr (3M) error-handling
mechanisms, incliding thé following constant used as an errorreturn value:

HUGE The maximum value of a single-precision floating-point
X number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOGIOE The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LNIO The natural logarithm of 10.

M_PI The ratio of the circumference of a circle to its diame-

ter. (There are also several fractions of its reciprocal
and its square root.)

M_SQRT2 The positive square root of 2.
N _ M _SQRTI_2 The positive square root of 1/2,
N For the definitions of various machine-dependent “‘constants,” see the descrip-
tion of the <values.h> header file.
FILES
/usr/include/math.h
SEE ALSO

intro(3), matherr(3M), values(5).

PROF(5)

NAME
prof — profile within a function

SYNOPSIS
##define MARK
#include <prof.b>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that mark,
and program-counter time spent will be accounted to the immediately preced-
ing mark or to the function if there are no preceding marks within the active
function.

Name may be any combination of up to six letters, numbers or underscores.
Each name in a single compilation must be unique, but may be the same as
any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header
file <prof.h> is included. This may be defined by a preprocessor directive as
in the synopsis, or by a command line argument, i.e:

cc —p “DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the source
files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in
each loop. Unless this example is compiled with MM ARK defined on the com-
mand line, the marks are ignored.

#include <prof.h>

t"oo()
int i, J;
MARK(loopl);
for- (i = 0; i < 2000; i++) {
MARK(loop2),
for G = 0; j < 2000; j++) (
)

}

SEE ALSO
profil(2), monitor(3C).

prof (1) in the Runtime System manual.

NAME

REGEXP(5)

regexp — regular expression compile and match routines

SYNOPSIS

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include kr.é.g.e-xp.h>

char scompile (instring, expbuf, endbuf, eof)
char sinstring, sexpbuf, sendbuf;

int eof;

int step (string, expbuf)

char estring, *expbuf;

extern char ¢locl, *loc2, slocs;

extern int circf, sed, nbra;

DESCRIPTION

This page describes general-purpose regular expression matching routines in the
form of ed(1), defined in /usr/include/regexp.h. Programs such as ed(l),
sed (1), grep(1), bs(1), expr(1), etc., which perform regular expression match-
ing use this source file. In this way, only this file need be changed to maintain
regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this
file must have the following five macros declared before the
“f#include”<regexp.h>" statement. These macros are used by the compile

routine.
GETC()

PEEKC()

UNGETC(c)

RETURN (pointer)

ERROR(va/)

Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should
return successive characters of the regular expression.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character [which should also be the next character
returned by GETC()1.

Cause the argument c to be returned by the next call to
GETC() [and PEEKC()]. No more that one character
of pushback is ever needed and this character is
guaranteed to be the last character read by GETC().
The value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile rou-
tine. The value of the argument pointer is a pointer to
the character after the last character of the compiled
regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

w
i}

REGEXP(5)

ERROR MEANING

II Range endpoint too large.

16 Bad number.

25 “\digit” out of range.

36 Illegal or missing delimiter.

41 No remembered search string.

42 \(*\) imbalance.

43 Too many \(.

44 More than 2 numbers given in\{"\}.
45 } expected after \,

46 First number exceeds second in \(™\}.
49 1 | imbalance.

50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but
is useful for programs that pass down different pointers to input characters. It
is sometimes used in the INIT declaration (see below). Programs which call
functions to input characters or have characters in an external array can pass
down a value of (char) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf—expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expres-
sion. For example, in ed(1), this character is usually a /.

Each program that includes this file must have a #define statement for INIT.
This definition will be placed right after the declaration for the function com-
pile and the opening curly brace ({). It is used for dependent declarations and
initializations. Most often it is used to set a register variable to point the
beginning of the regular expression so that this register variable can be used in
the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be
used to declare external variables that might be used by GETC(), PEEKC() and
UNGETC(). See the example below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression
matching, one of which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked
for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two
external character pointers are set as a side effect to the call to step. The vari-
able set in step is locI. This is a pointer to the first character that matched
the regular expression. The variable /oc2, which is set by the function advance,
points to the character after the last character that matches the regular expres-
sion. Thus if the regular expression matches the entire line, loc! will point to
the first character of string and loc2 will point to the null at the end of string.

-2-

REGEXP(5)

Step uses the external variable circf which is set by compile if the regular
expression begins with . If this is set then step will try to match the regular
expression to the beginning of the string only. If more than one regular expres-
: - sion is to be compiled before the first is executed the value of cir¢f should be
! (} saved for each compiled expression and cfrcf should be set to that saved value
) before each call to step.

The function advance is called from step with theé same arguments as step.
The purpose of step is to step through the string argument and call advance

- until -advance. returns.non-zero .indicating a match_or.until the end of string is
reached. If one wants to constrain string to the beginning of tlié line in all
cases, sfep need not be called; simply call advance.

When advance encounters a » or \{™\) sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and will
recursively call itself trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance will back up along
the string until it finds a match or reaches the point in the string that initially
matched the * or\{"\). It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer locs
is equal to the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero. This is
used by ed(1) and sed(1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like s/y+//g do not
loop forever.

The additional external variables sed and nbra are used for special purposes.

N EXAMPLES
[N ' The following is an example of how the regular expression macros and calls
“ look from grep(1):

#tdefine INIT register char *sp = instring;
#define GETC() (ssp++)

#define PEEKC() (*sp)

#define UNGETC(c) (——sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>

(void) compile(sargv, expbuf, &expbuflESIZE], \0);

if (step(linebuf, expbuf))

succeed();
FILES
/usr/include/regexp.h
SEE ALSO
bs(1), ed(1), expr(1), grep(1), sed(1) in the Runkime Systemmanual.
(‘) BUGS
W The handling of circf is kludgy.

The actual code is probably easier to understand than this manual page.

STAT(5)

NAME

stat — data returned by stat system call

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

The system calls stat and fstat return data whose structure is defined by this
include file. The encoding of the field st_mode is defined in this file also.

/*

* Structure of the result of stat

*/

struct

|8

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FILES

stat

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
off _t
time_t
time_t
time_t

S_IFMT
S_IFDIR
S_IFCHR
S_IFBLK
S_IFREG
S_IFIFQ
S_ISUID
S_ISGID
S_ISVTX
S_IREAD

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000

/+ type of file »/

0040000 /= directory */
0020000 /s character special */
0060000 /+ block special */
0100000 /+ regular */

0010000 /s fifo */

04000
02000
01000
00400

S_IWRITE 00200

S_IEXEC

00100

/usr/include/sys/types.h
/usr/include/sys/stat.h

SEE ALSO

stat(2), types(5).

/+ set user id on execution */

/* set group id on execution */

/+ save swapped text even after use */
/+ read permission, owner */

/s write permission, owner */

/» execute/search permission, owner */

®

NAME

TERM(5)

term — conventional names for terminals

DESCRIPTION

These names are used by certain commands le.g., tabs(1), man(1)] and are
maintained as part of the shell environment [see sh(1), profile(4), and
environ (5)] in the variable STERM:

1520
1620
1620—12
2621
2631
2631—c
2631—e
2640
2645
300
300—12
300s
382
300s—12
3045

33

37
40—2
40—4
4540
3270
4000a
4014

43

450
450-12
735

745
dumb

sync

hp

Ip
tnl200
tn300

Datamedia 1520

DIABLO 1620 and others using the HyType II printer
same, in_12-pitch mode e e e
Hewlett-Packard HP2621 series

Hewlett-Packard 2631 line printer

Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard HP2640 series

Hewlett-Packard HP264n series (other than the 2640 series)
DASI/DTC/GSI 300 and others using the HyType I printer
same, in 12-pitch mode

DASI/DTC/GSI 300s

DTC 382

same, in 12-pitch mode

Datamedia 3045

TELETYPE® Model 33 KSR

TELETYPE Model 37 KSR

TELETYPE Model 40/2

TELETYPE Model 40/4

TELETYPE Mode] 4540

IBM Model 3270

Trendata 4000a

TEKTRONIX 4014

TELETYPE Model 43 KSR

DASI 450 (same as DIABLO 1620)

same, in 12-pitch mode

Texas Instruments TI1735 and T1725

Texas Instruments TI1745

generic name for terminals that lack reverse

line-feed and other special escape sequences

generic name for synchronous TELETYPE
4540-compatible terminals

Hewlett-Packard (same as 2645)

generic name for a line printer

User Electric TermiNet 1200

User Electric TermiNet 300

Up to 8 characters, chosen from [—a—z0—9], make up a basic terminal name.
Terminal sub-models and operational modes are distinguished by suffixes begin-
ning with a — Names should generally be based on original vendors, rather
than loca] distributors. A terminal acquired from one vendor should not have
more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept argu-
ments of the form —Tterm where term is one of the names given above; if no
such argument is present, such commands should obtain the terminal type from
the environment variable STERM, which, in turn, should contain term. -

TERM(5)

SEE ALSO
Yrofile(4), environ(5).
man(1), tplot(1G), sh(l), stty(1), tabs(1) in the Runtime Systerh manual.

mm(1), nroff(1) in the "User Reference Manual" chapter of the Text Preparation System manualgi\)

BUGS
This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

TYPES(5)

NAME
types — primitive system data types
SYNOPSIS
s #include <sys/types.h>
L DESCRIPTION
T The data types defined in the include file are used in UNIX system code; some
data of these types are accessible to user code:
typedef struct { int r[l] }e physadr;
‘typedef” long T daddrty
typedef char « caddrvt
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label _t[10];
typedef short dev_t;
typedef long off _t;
typedef long paddr_t;
typedef long key_t;
The form daddr t is used for disk addresses except in an i-node on disk, see
fs(4). Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.
The major and minor parts of a device code specify kind and unit number of a
device and are installation-dependent. Off'sets are measured in bytes from the
77N beginning of a file. The label_t variables are used to save the processor state
i \\) while another process is running.
i SEE ALSO
fs(4).

5-S

VALUES(5)

NAME

values — machine-dependent values
SYNOPSIS

#include <values.b>
DESCRIPTION

This file contains a set of manifest constants, conditionally defined for particu-

lar processor architectures.

The model assumed for integers is binary representation (one’s or two’s comple-

ment), where the sign is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit

set (in most implementations, 0x8000).

HIBITL The value of a long integer with only the high-order bit

set (in most implementations, 0x80000000).

HIBITI The value of a regular integer with only the high-order

bit set (usually the same as-HIBITS-or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most

implementations, 0x7FFF = 32767).
MAXLONG The maximum value of a signed long integer (in most
implementations, 0X7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular integer (usually

the same as MAXSHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision
floating-point number, and its natural loga-
rithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision
floating-point number, and its natural loga-
rithm.

MIN FLOAT, LN_MINFLOAT The minimum positive value of a single-
precision floating-point number, and its
natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-
precision floating-point number, and its
natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a

single-precision floating-point number.

DSIGNIF The number of significant bits in the mantissa of a

double-precision floating-point number.
FILES
/usr/include/values.h
SEE ALSO

intro(3), math(5).

Ve

VARARGS(5)

NAME
varargs — handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
-.ya_list pvar;

type v_a_arg(pvar,._r)“’be)" -
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists [such as
printf (3S)] but do not use varargs are inherently nonportable, as different
machines use diff'erent argument-passing conventions.

va_alist is used as the parameter list in a function header. }
va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.’
va_list is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the
type the argument is expected to be. Diff'erent types can be mixed, but it is up
to the routine to know what type of argument is expected, as it cannot be
determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE
This example is a possible implementation of execl.

#include <varargs.h>
#define MAXARGS 100

/e execl is called by
execl(file, argl, arg2, ..., (char +)0);

+/
execl(va_alist)
va_dcl

va_list ap;

char sfile;

char *argsIMAXARGS];
int argno = 0;

va_start(ap);

file = va_arg(ap, char +);
while ((argslargno++] = va_arg(ap, char +)) != (char +)0)

va_end(a’p_);
return execv(file, args);

-1-

VARARGS(5)

SEE ALSO

BUGS

exec(2), printf(3S).

It is up to the calling routine to specify how many arguments there are, since it
is not always possible to determine this from the stack frame. For example,
execl is passed a zero pointer to signal the end of the list. Printf can tell how
many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float arguments
to double before passing them to a function.

NOTES

NOTES

()

NOTES

NOTES

NOTES

NOTES

