
'
r.''•·:::..
\. f

I . . . (I, ·, ._ .. _, ·
! .

Runtime System

Reorder No. 0101

MICROPORT SYSTEMS

The material contained in this manual was reprinted with permission from
AT&T and is comprised of excerpts from the following AT&T manuals.

*UNIX System V - Release 2.0 User Reference Manual
tiNIEL Processors - Version I

UNIX System V - Release 2.0 User Guide

UNIX System V - Release 2.0 Administrator Guide
INTEL Processors

UNIX System V - Release 2.0 Operator Guide
INTEL Processors

UNIX System V - Release 2.0 Administrator
Reference Manual
INTEL Processors

UNIX System V - Release 2.0 Release Notes
IN1EL Processor - Version 1

*UNIX is a trademark of AT&T Bell Laboratories
tiNTEL is a trademark of Intel Corporation
Copyright© 1984, 1985, 1986 by AT&T

All rights reserved
Printed in U.S.A.

DIABLO is a registered trademark of Xerox Corporation
UNIX is a trademark of AT&T Bell Laboratories
INTEL and iAPX 286 is a trademark of Intel Corporation
DOCUMENTER'S WORKBENCH is a trademark of AT&T

March 1985
307-605

April 1984
307-100, Issue 2

March 1985
307-622, Issue 1

March 1985
307-623, Issue I

March 1985
307-626, Issue I

January 1986
307-621, Issue 2

DEC, PDP, and VAX are trademarks of Digital Equipment Corporation
HP is a trademark of Hewlett-Packard, Inc.
VAX is a trademark of Digital Equipment Corporation
SYSVISION is a trademark of Microport Systems, Inc.
(Contents of SysVision provided by TaskForce)
INFORMIX is a trademark of Informix Corporation
UNIFY is a trademark of Unify Corporation

,, "-

(�

Preface

(--.....)
''.,, ..) You have in your haods a revolutionary new product, Microport's UNIX*

System V for the IBM PC-AT. The System V/AT product, derived from the
certified port of UNIX System V Release 2 for the iAPX286 Processor Version
1, brings the UNIX system as developed by AT&T Bell Laboratories to the
world of desktop computing. Because of the elegance of its design, and because
of all it can do, the UNIX system has gained wide popolarity since it was
introduced in the late 1960s. Now you ate about to implement it on your AT
compatible system.

This manual is intended fur a wide range of potential UNIX users, from
novice to expert. You will find that learning the UNIX system requires some
thought and time, and that you will be rewarded for your efforts with power and
flexibility that far surpasses other operating systems.

How to Use This Manual

The beginning user should probably start with Chapter 1, "Introduction and
Product Overview." This provides the novice user with a brief description of the
UNIX system, followed by a listing of feature updates and improvements, which an
experienced user will find helpful. Chapter 4, "UNIX System Capabilities," expands
on the information in Chapter 1, as does Chapter 6, "Using the File System."
Then, to install the package on your hardware, refer to Chapter 2, "Inslallation
Instructions." To perforni administrative tasks, Chapter 3, "SysVision," provides
menus and forms designed to aid novice and experienced users. Other chapter topics
are specific to particular needs, including using the vi editor, setting up the line
printer spooler, communicating with other UNIX system users, and adding device
drivers.

For reference information on all commands, including communications (IC)
and systems maintenance commmands (1M) and for references to the special files
interface to peripheral devices consult the last two sections of the manual, section 1
(Commands) and section 7 (Special Files).

Note that sections from the UNIX System V Release 2.0 Programmer
Reference Manual, that is, section 2 (System Calls), section 3 (Library Functions),
section 4 (File Formats) and section 5 (Miscellany) are found in the Software
Development System manual.

For system administration considerations, consult Chapter 3, "SysVision,"
and Chapter 5, "Single User and Multiuser," and Chapters 8 and 9, "Administrative
Advice" and "Fsck." Finally, in order to fmd out about technical differences between
System V/ AT and other UNIX systems, consult Appendix C to Chapter 1, "Product
Overview."

Preface
Chapter 1: , Introduction, and Product Overview
'I'lriS chapter atquil.i:nts yoU: with System V/AT and explains how the UNIX system works.
Appendix C also gives techliical details of the ptoduct, which is derived from UNIX
System V.release 2, i.PJlX28_6 Processor Version 1. and include; updates and improve
m� over release -1, and.featiJ!eS of'System V/AT in qci,mparistm -with other flavors of
the UNIX systeffi. .': ' · · '

_ ·
Chapter 2: Installation Information This chapter takes: yo� �tep P¥, �P' throUgh- the installati'oh of SyStem V /AT.
Chapt,er 3: SysVision ,, This chapter pres

_
ents you �ith menus_ and fopns to �d you in using the UNIX system,

designed to help-novic� UNIX sys� users �th system adnllni,Stration tasks.
Chapter 4: UNIX System, Capabilities ' This chapter highlights UNIX system capabilities such as conunand execution, text
editing, electronic �dnlm'i.llricadon,,. proira:rn.rung, and -aids to sOft:ware development
ChapterS: Single Vser imd Multhlser ,, , , , , , , Tiris chapter gives procedures and example's Jar cluiriging between single imd mui_rtuSer, -
saviJ;tg and restor4tg :17les, bringing- down the. sys� and restoring after a crash.

Chaper 6: Using th� File System This chapter introduces the file system and explahts how you can use it to organize infonnation, ap.d, desqribes commands for storing and retrieving this information.
Chapter?": Screen Editor Tu\odal . • . . ThiS chapter teaChes ;You how to tlse-·the vi text :'editor to create and modify text on the
video disP,lay tennina1 or :mopitor.'
Chapter 8: Administrative Advice . This -chap�r cont� helpful advice aric;l SU.ggestion,s regarding system adnrinistration.
includmg s�Stem t:Unip.g, allocation resources; and �Uble shooting.
Chapter9i J;'s<;I{ (File $ystem Check Utility) • ·' · This t;:haptet de.5cribes:the·me sYsiein checkiprogram of the UNIX-system. Fsck audits
and interactivelyrepaiis inconsistency ill tile file System.
Chapter•lO:J,P �pooling". This c�ter defiil.es Ure line pri,nter (LP}·Spooling system package and describes LP
administration fuilcti6rut

· ·

C!Iapter •. ll: Co.mmunication Tutorial
ThiS ·chapter teac:hes }rou how to __ send_inf6nn:atio!L lO others, arid receive information from
others, Whether. they, are working On yonr UNIX system or a different one.
Chapter 12: UUCP (Unix to Unix Copy) · . This cbapt� d8$Cn1>es_ how a UU�P netwOrk is se� up,·the fo:hnilt of the control file., and
admi.nstrai:i.Ve pio�ureS. · ·

Chapterl3: Adding De\ice Drives Using Li1ik Kit This' chapter,;poniaiits the iuleS. � procedures that shoUld be followed for writing device
driyers, for.MiciOpOrt's Systein V /AT �' in order ·tb add peripheral devices to the
system. · ·

S�ction 1: · Comma11dS ill'\! Application Programs
References for all seetiQ!l (!) .cottunands, including (!C) and (JM),

, - Section 7: SpeCial Files
References for the special files ,interface to peripherill devices.

,, ' -�-......

()

.0. ! '"'------)

QUICK REFERENCE GUIDE
INTRODUCTION & OVERVIEW C-1

INSTALLATION INFORMATION C-2

SYSVISION C-3

UNIX SYSTEM CAPABILITIES C-4

SINGLE USER AND MULTIUSER C-5

USING THE FILE SYSTEM C-6

SCREEN EDITOR TUTORIAL C-7

ADMINISTRATIVE ADVICE C-8

FSCK C-9

LP SPOOLING C-10

COMMUNICATION TUTORIAL C-11

UOOP �2

ADDING DEVICE DRIVERS C-13

COMMANDS 5-1

SPECIAL FILES 5-7

Table of Contents

TITLE CHAPTER

INTRODUCTION & PRODUCT OVERVIEW. .. .!

lNSTALLATIONINPORMATION ... 2.
SYSV!SION ... 3
UNIX SYSTEM CAP ABUITIES .. 4

SINGLE USER AND MULTIUSER .. 5
USING THE PILE SYSTEM ... E
SCREEN EDITOR TUTORIAL , .. ?

ADMINISTRATIVE ADVICE .. 8
FSCK ... 9
LP SPOOLING .. !O

COMMUNICATIONTUTORIAL ... !l

UUCP .. .l2

ADDING DEVICE DRNERS USING llNK KIT ... !3

SECTION

COMMANDS, APPLICATION PROGRAMS (!), (!C) & (IM) l

SPECIAL PILES (7) .. •, 7

/\ , I

0

PRODUCT OVERVIEW

Chapter 1

Introduction and Product Overview

Welcome to Microport System V/AT. In this introductory chapter, we explain
what System V/AT is, and explore some of its reatures. We also describe the
System V/AT Runtime manual and handbook that you get with the system, and
show you how to use them.

Tins chapter is divided into several parts, described as follows:

The first part, What is System V/AT?, describes some of the features of
Microport System V/AT, including a brief summary of the system
manuals, and explains how to use your manuals.

�--�--.��The"llecondjJart>How-to-Use4heC(JNJX�stemcexplaius-what-the UNDC ____ � -�- __
operating system is, and how you can use it to communicicate with your
computer.

The third part is contained in several appendices, which contain valuable
information specific to Microport System V/AT.

The more experienced UNIX user may want to proceed directly to the appendices,
which are described briefly below:

Appendix A tells you about some useful System V/AT features, such a
virtual consoles, not available in other versions of UNIX.

Appendix B explains UNIX documentation conventions.

Appendix C contains a detailed summary of improvements to the generic
System V release that help the experienced UNIX system user to
differentiate System V /AT UNIX from other "flavors" of the UNIX
system.

We strongly recommend that all novice UNIX system users, or those unfamiliar
with Microport System V/AT features, take time to read this introductory
chapter and its appendices.

1-1

PRODUCT OVERVIEW

1-2

WHAT IS SYSTEM V/AT?

System V/ATis a version of the UNIX system specifically designed for the IBM
PC/AT desktop computer. System V/AT can share a hard disk with DOS, giving
you two independent operating systems to work with. System V/AT features
include:

multi-user and multi-tasking capabilities

all standard UNIX System V capabilities

user friendly features such as System Vision (a collection of menus and
forms designed to help novice users with System Administration tasks)
ability to co-reside on a ftxed disk with DOS

utilities to read and write DOS ffies

Berkeley C Shell

ability to run sophisticated data base applications, such as Infonnix and
Unify

ability to run additional applications, such as office automation and
word processing packages

How To Use Your System V/AT Documentation

Microport System V/AT is divided into three parts. The msin part, the Runtime
System, comes with a manual and a handbook. Two optional parts of the pack
age, the Software Development System and the Text Preparation System, each
come with their own documents. A brief description of each document follows:

The Runtime System

The Runtime manual is really two separate books combined into one; a User's
manual and a Command Reference manual. The User part of the manual teaches
you how to install and use System V/AT. The Command Reference part is
actually two sections at the back of the manual, Section I and Section 7.
Section I, Commands, provides reference material for UNIX system commands;
and Section 7, Special Files Interfaces to Peripheral Devices, tells you how to
access devices such as the floppy drive, or how to install a modem.

To aid the novice user, we include an introductory user handbook with each
Runtime system. The handbook, Microport System V Made Easy: Using the
UNIX Operating System, teaches the basic system utility commands needed to
get you started on UNIX.

0

0

PRODUCT OVERVIEW

The Software Development Manuals

The Software Development manuals explain the variou1) system tools and how
to use them. In Volume I, you will find general material relating to the C
compiler, !he ld linker, make utility, and Source Code Control System. Volume
II provides reference material for !he sy$tem calls, libraries, and file formats.

The Text Preparation System

The Text Preparation System manual teaches you text preparation tllols, in·
eluding nro.ffand rrojfformatting and typesetting commands.

A note to the reader: You may notice 1hroughout !he manuals that we tend
to use the words the UNIX system and Microport System VIAT almost in!er
changably. This is because Microport System V/AT is our version of the UNIX
operating system, so that information pertaining 1ll one is usuaily true for both.

1-3

0

PRODUCT OVERVIEW

HOW TO USE THE UNIX SYSTEM

The UNIX system is a set of programs, called software, that acts as the
link between a computer and you, its user. The UNIX system is
designed to control the computer on which it is running so the
computer can operate efficiently and smoothly and to provide you
with an uncomplicated, efficient, and flexible computing
environment .

• It controls the computer,

• It acts as an interpreter between you and the computer, and

• It provides a package of programs or tools that allows you to do
your work.

The UNIX system software that controls the computer is referred to as the
operating system. The operating system coordinates all the details of the
computer's internals. such as allocating system resources and making the
computer available for general purposes. The nucleus of this operating system is
called the kernel.

In the UNIX system, the software that acts as a liaison between you and the
computer is called the shell. The shell interprets your requests and, if valid,
retrieves programs from the computer's memory and executes them.

The UNIX system software that allows you to do your work includes programs
and packages of programs, called tools, for electronic communication, for
creating and changing text, and for writing prognnns and developing software
tools.

1-5

PRODUCT OVERVIEW

1-6

Put simply, this package of services and utilities called the UNIX
sys�em offers;

• A general purpose system that makes the resources and capabilities
· of the computer availaPle to you for performing a wide variety of

jobs or applications, not simply one or a few specific tasks.

• A computing environment that allows for an interactive method
of operation so you can directly communicate with the computer
and ·receive an immediate response to your req"4est or message.

• A technique for sharing what the syst�m has to offer with other
users, even though you have the impression that the UNIX
system is giving you its undivided attention. This is called
timesharing. The UNiX systt�fu creates this feeling by allowing
yo"!l and other users--multiusers--slots of computing time
measured in fractions of seconds. The rapidity and effectiveness
with which the UNIX system switches from working with you to
worki:n.g with otfter users makes it appear that the system is
working with all users simultaneously.

• A system that provides you with the capability of executing more
than one program simultaneously, this feature is called
multitasking.

The UNIX system, like other operating systems, gives the computer
on which it runs a certain profile and distinguishing capabilities. But
unlike other operating systems, it is largely machine-independent;
this means that the UNIX system can run on mainframe computers as
�ell as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer
you are using, your computing environment will be the same. In
fact, the integrity of the computing environment offered by the UNIX
system remains intact, even with the addition of optional UNIX
system softWare packages that enhance yoqr computing capabilities.

CJ

CJ

0

PRODUCT OVERVIEW

HOW THE UNIX SYSTEM WORKS

After reading tl1e past few pages, you know that the UNIX system offers you a
set of software that performs services-some automatically, some you must
request. You also lmow that the system creates a certain environment in which
you can use its software. But before you can make requests of the UNIX system,
you need to know what it can do.

Figure 1-1 shows a set of layered circles in graduated sizes. Each circle represents
specific UNIX system software, such as:

• K!=rnel,

• Shell,

�'3-�t:':J
<t<.oc.r,

0, Programming
�� �onmont

Eloctmnlo • ?0 ff1.' }� •
eomm""'""o"

. · ..
A.. X/ <%i . . "? t i .I y \

Text
Processing

.
·

·
.
···)IP

··
···.·.
·
.
·.
·

.··
.·
.· •. •
.•
. · ... · ·.\··
·

· . ··
. ·.

·

.•
·

•.

·

•.. ,_·.
·
·
·K··
·

·
·
···

·

·

·
·

·

·

·
·
'
.
"--'

.
.
·.· . .. · .
1·
·

·

·
.. ·
·
•· •
·

·

•.
.•.. �� .. .
· .•... · •.
·

... ·
·
.� .••.• .. • ..•.•. •.• •. • .. •.•.• •. · .·

·
··
·
}

· <.. >1 >< ? �·
·
y

Additional
Utility

Programs
Information
Management

Figure 1-1. UNIX system model

1-7

PRODUCT OVERVIEW

1-8

You should know something about the major components of UNIX
system software to communicate with the UNIX system. Therefore,
the remainder of this chapter introduces you to each component: the
kernel, the shell, and user programs or commands.

Kernel

The heart of the UNIX system is called the kernel. Figure 1-2 gives an overview
of the kenel's activities. Essentially, the kernel is software that controls access to
the computer, manages the computer's memory, and allocates the computer's
resomces to one user, then to another. From your point of view, the kernel
performs these tasks automatically. The details of how the kenel accomplishes
this are hidden from you. This arrangement lets you focus on your work. not on
the computer's.

Manages
memory

Allocates
system

resources

Controls
access to
computer

Maintains
file system

Figure 1-2. Functional view of kernel

On the other hand, you will become increasingly familiar with another feature of
the kernel; this feature is referred to as the file system.

C)

0

0

PRODUCT OVERVIEW

The file system is the cornerstone of the UNIX operating system. It
provides you with a logical, straightforward way to organize, retrieve,
and manage information electronically. If it were possible to see this
file system, it might look like an inverted tree or organization .chart
made up of various types of files Figure 1-3. The file is the basic unit
of the UNIX system and it can be any one of three types:

Q .. orraclori••
0 "' Ordln•ry Fllos
"\7 .. s�ror FU••

Figure 1 .. 3, Branching directories and files give the UNIX system
its treelike structure

• An ordinary file is simply a collection of characters. Ordinary files
are used to store information. They may contain text or data for
the letters or reports you type, code for the programs you write,
or commands to run your programs. In the UNIX system,
everything you wish to save must be written into a file.

In other words, a file is a place for you to put information for
safekeeping until you need to recall or use its contents again.
You can add material to or delete material from a file once you
have created it, or you can remove it entirely when the file is no
longer needed.

1·9

PRODUCT OVERVIEW

1-10

• A directory is a file maintained by the operating system for
organizing the treelike structure of the file system. A directory
contains files and other directories as designated by you. You
can build a directory to hold or organize your files on the basis
of some similarity or criterion, such as subject or type.

For example, a directory might ho ld

Files containing memos and reports you write pertaining to a
specific project or client.

Files containing research specifications and programming source
code for product development

Files of executable code allowing you to run your computing jobs.

Files representing any combination of these possibilities.

• A special file represents a physical device, such as the terminal on
which you do your computing work or a disk on which ordinary
files are stored. At least one special file corresponds to each
physical device supported by the UNIX system.

In some operating systems, you must define the kind of file you will
be working with and then use it in a specified way. You must
consider how the files are stored since they can be sequential,
random-access, or binary files. To the UNIX system, however, all files
are alike. This makes the UNIX system file structure easy to use. For
example, you need not specify memory requirements for your files
since the system automatically does this for you. Or if you or a
program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of your files. In
the UNIX system, there is only one interface for all input from you
and output to you; this simplifies your interaction with the system.

The source of the UNIX system file structure is a directory known as
root, which is designated with a slash {/). All files and directories in
the file system are arranged in a hierarchy under root. Root normally
contains the kernel as well as links to several important system
directories that are shown in Figure 1-4:

/bin Many executable programs and utilities reside in this
directory.

I dev This directory contains special files that represent
peripheral devices, such as the console, the line
printer, user terminals, and disks.

CJ

0

i "

�
i • "

ODC>

PRODUCT OVERVIEW

-0 1

1-11

PRODUCT OVERVIEW

1-12

I etc Programs and data files for system administration can
be found in this directory.

/lib This directory contains available program and
language libraries.

/tmp

/usr

This directory is a place where anyone can create
tern porary files.

This directory holds other directories, such as mail (which
further holds files storing electronic mail), news (which
contains files holding newsworthy items), and rje (which
contains files needed to send data via something called the
remote job entry communication link).

In summary, the directories and files you create comprise the portion
of the file system that is structured and, for the most part, controlled
by you. Other parts of the file system are provided and maintained
by the operating system, such as bin, dev, etc, lib, tmp and usr, and
have much the same structure on all UNIX systems.

The "Using the File System" chapter of this manual shows how to organize a
file system directory structure and how to access and manipulate files. "Unix
System Capabilities" gives an overview of UNIX system capabilities. The
effective use of these capabilities depends on your familiarity with the file
system and your ability to access information stored within it. The "Screen
Editor Tutorial" is designed to teach you how to create and edit files to meet your
computing and information management needs.

Shell

The shell is a unique UNIX system program or tool that is central to
most of your interactions with the UNIX system. Figure 1-1 illustrates
how the shell works. The drawing shows the shell as a circle
containing arrows pointing away from the kernel and the file system
to the outer circle that contains programs and then back again. The
arrows indicate that a two-way flow of communication is possible
between you and the computer via the shell.

0

0

0

PRODUCT OVERVIEW

When you enter a request to the UNIX system by typing on the terminal key
board, tl>e shell translates your request into language the computer understands.
If your request if vali� the computer honors it and carries out an instruction or
set of instructions. Because of its job as translator, the shell is called the comand
language interpreter.

As the command language interpreter, the shell can also help you to
manage information. The shell's ability to manage information stems
from the design of the UNIX system. Each program in the UNIX
system is designed to do one thing well. In a sense, a UNIX system
program is a building block or module that you can use in tandem
with other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the sP,ell is
_ ��-�!':C!gf!immill:g __ languag�_ C()mplete :With v_ar�ables an� c':ntrol flow

capabilities
-
:

-- - -- -- -- -- - - - - -- - - -��=�-�� --��-�-��-� ---�=---���- ��- --�-� - -�� =�

A section of tl1e next chapter describes each of the shell's capabilities. Any
reference work on shell programming techniques can teach you how to use these
capabilities to write simple shell programs called shell scripts and how to
custom-tailor your computing environment.

Commands

A program is a set of instructions that the computer follows to do a specific job.
In the UNIX system, programs that can be executed by the computer without
need for translation are called executable programs or commands.

As a typical user of the UNIX system, you have many standard
programs and tools available to you. If you also use the UNIX system
to write programs and to design and develop software, you have
system calls, subroutines, and other tools at your disposal. And you
have, of course, the programs you write.

This book introduces you to approximately 40 of t11e most frequently used
programs and tools that you will probably use on a regular basis when you
interact with the UNIX system. If you need additional information on these or
other standard UNIX system programs, check section 1 of the Runtime System
manual.

1-13

PRODUCT OVERVIEW

If you want to use tools and routines that relate to programming and software
development, you should consult the Software Development System manual.

The details contained in the two reference manuals may also be available via
your tennjnal in what is called the on-line version of the UNIX system reference
manuals. This on-line version is made up of formatted text files that look
exactly like the printed pages in the manuals. You can summon pages in this
electronic manual using the command man, which stands for manual page, if
the electronic version of the manuals is available on your computer. The man
command is documented in your copy of the Runtime System manual.

What Commands Do

The outer circle of Figure 1-1 organizes UNIX system programs and
tools into general categories according to what they do. The
programs and tools allow you to:

• Process text. This capability includes programs, such as, line and
screen editors (which create and change text), a spelling checker
(which locates spelling errors), and optional text formatters
(which produce high-quality paper copies that are suitable for
publication).

l-14

• Manage information. The UNIX system provides many programs
that allow you to create, organize, and reinove files and
directories.

• Communicate electronically. Several programs, such as mail,
provide you with the capability to transmit information to other
users and to other UNIX systems.

• Use a productive programming and software development environment.
A number of UNIX system programs establish a friendly
programming environment by providing UNIX-to-programming
language interfaces and by supplying numerous utility programs.

• Take advantage of additional system capabilities. These programs
include graphics, a desk calculator package, and computer games.

n

0

0

PRODUCT OVERVIEW

How Commands Execute

Figure 1-5- gives a general idea of what happens when the UNIX
system executes a command.

PROGRAM EXECUTION

DIRECTORY SEARCH

Figure 1�5. Flow of control between you and computer when
you request program to run

When the shell signals it is ready to accept your request, you type in
the command you wish to execute on the keyboard. The command is
considered input, and the shell searches one or more directories to
locate the program you specified. When the program is found, the
shell brings your request to the attention of the kernel. The kernel
then follows the program's instructions and executes your request.

After the program runs, the shell asks you for more information or
tells you it is ready for your next command.

This is how the UNIX system works when your request is in a format that the
shell understands. The structure that the shell understa nds is called a cvommand
line. "Using the File System" explains wha you ne e d to know about the
command line so you can request a program to run.

This chapter has outlined some basic principles of the UNIX operating system
and explained how they work. The following chapters will help you begin to
apply these principles according to your computing needs.

Chapter 2, "Installation Instructions," shows you how to install the UNIX
system on your hard disk . . Chapter 3, "System Vision," conta ins a set of menus
and fonns which you can use to set up and maintain your system.

1·15

0

0

()

PRODUCT OVERVIEW

Appendix A

USEFUL SYSTEM FEATURES

This appendix explains several implementation-specific feamres of Microport
System VI AT, and provides valuable infonnation for new and experienced users.

Vinual Consoles

On Microport's System V /AT, you can use the system monitor to log in to
three additional pseudo-terminals, called 11virtual consoles." This feature gives
you the same effect as having three additional terminals sitting on your desk!
This multiple login session capability is similar to Berkeley UNIX "job control 11

capability and allows you, for example, to keep a root login for system
administration on screen-I while editing a file in screen-2, and run your favorite
UNIX application in screen-3; or, switch to screen-4 to check the spelling of a

��-file> name-you needfor·your-edit-···-----�---��---�--�·--- - �---�-------·---- ____ ---

To access the virtual consoles from your system monitor, press the SYS REQ
key on your keyboard, or use the ALT-Fl through ALT-F4 keys to access
Screen-! through Screen-4 directly. Each keypress gives you a new login
prompt, and the fourth keypress returns you to your original login screen. To
learn more about virtual consoles, see CONSOLE(?).

System Vision

The UNIX Operating system can often be difficult for a new user to master. Our
System Vision option provides users with a set of menus and forms that can be
used to perform a large variety of system administrator functions quickly and con
veniently. Chapter 3, System Vision, explains how you can make use of these
menus to add a new user to the system, unmount, chec� and remount your file
systems, communicate with other system users, and for many other functions.

Berkeley C Shell

Although the standard user interface to UNIX System V is the Bourne Shell,
described in Chapter 4, "UNIX System Capabilities," another popular shell is
the C Shell, from the University of California at Berkeley. Because of its many
capabilities, Microport has provided the C Shell as an option.

To use the C Shell, supply the pathname /bin/csh instead of the normal /bin/sh
pathuame when setting up a new user (see the chapter on System Vision). The
syntax of the C Shell is explained in the Commands Section of this manual,
"Section 1"; the reference is CSH(l).

- 1 -

PRODUCT OVERVIEW

UNIX !disk utility and format command

Since Microport System V/AT runs in a hard disk environment often shared by
the DOS operating system, Microport has provided a DOS compatible /disk
utility to manage the partition of the hard disk. To execute this utility to ex
amine your hard disk partition structure, log on as root, then type "fdisk." Be
ware of changing the structure of your active partition through fdisk without re
installing! This utility is documented in Section 1, Commands, as FDISK(l).

Aoother command which structures the hard disk is the System V/AT format
command. Format erases any data on the disk; including the partition table
created by fdisk. It is a low-level format of the hard disk, and is not parallel to
the DOS format command, which is a "high-level" formatter, similar to the
UNIX m!cfs command.

The Nodename command

The system "nodename" is a name up to six characters long, used for uucp con
nection. Iu System V/AT, the default nodename is "systemS". Iu order to display
the system nodename, type "uname -a". This gives your system nodename as
the second field. The system nodename is also displayed above the login prompt.
Aoother way to display the system nodename is through the use of the nodename
command. When logged in as "root", typing nodename gives you the current
name, and typing nodename .xyzz changes_ the system nodename to xyzz. Note
that the name is changed both in memory and on the hard disk; no re-boot is
required.

()

PRODUCT OVERVIEW

Appendix B
UNIX DOCUMENTATION CONVENTIONS

UNIX reference documentation, which describes the specific syntax of commands
and system calls, etc., is divided into several logical parts, called sections. In this
manual, Section 1 describes commands you will use to operate the system.

Locating Commands and System Calls

To learn how to locate a command, let's use as an example the command cp
(copy), which copies one fllenarne onto another. Any reference to the cp com
mand is given as CP(l). The number (1) after the command name means that
you will find a total syntactical description of cp in Section 1.

Shuilarly, a system call such as link would be found in Section 2, and referenced
_ _ �-.!!ElWK(21 . This !_cyle of reference helps you to distinguish the command link,

referred -tO a8 LINK(!)� fiom�iheliiik�systemciilTLINK(2).- --�-�� ------� �- - --

0

0

(Note that Sections 2-5 are part of the Software Development manuals and are
not found in the Runtime manual.)

Locating Maintenance Commands

In addition to user level commands, such as cp, Section 1 of this manual also
contains references to the System Administration commands, such as mount and
umoun.t. These comm$lds, sometimes referred to as Maintenance commands, are
referenced as MOUNT(lM) and UMOUNT(!M). The (1M) commands are alpha
betized together with the (!) commands in Section 1.

- 1 -

I_

PRODUCT OVERVIEW

APPENDIX C

UNIX SYSTEM V RELEASE 2.0 ()1 INTEL iAPX 286 PROCESSOR VERSION 1

0 :

UPDATES AND IMPROVEMENTS
UNIX System V Release 2, iAPX 286 Processor Version 1' is being
provided for the Intel iAPX 286 processor.

System V Release 2 includes feature updates and improvements in the
following areas:

--.---software-Generation-Systems--���--

Commands and Utilities

Perlormance

Processor-dependent Features

Documentation

Record and File Locking

File System Hardening

The software generation system, command, and utility changes made for
this release incorporate several features of the University of California at
Berkeley Software Distribution of the UNIX System (BSD). Also, some
Software Generation System changes have been made to take ad
vantage of the iAPX 286 processor architecture.

UNIX System V Release 2, iAPX 286 Processor Version 1 is also referred to
as "UNIX System V/286" in this and other UNIX system documents.

Page 1

INSTALLATION INSTRUCTIONS

List of Examples

Example I.
Example2.

Example3.

Example4.

ExampleS.
Example6.

Example?.

ExampleS.

Example9.

Example 10.
Example II.
Example 12.

Example 13.

Example 14.

Example 15.

Example 16.

Example 17.

Example 18.

Example 19.

System Boot
Loading Disk Parameters with fdisk
Choosing to Display Partitions

Returning to fdisk Operations Menu

Choosing to Create a Partition
Creating a UNIX Partition

Creating a DOS Partition

Returning to fdisk Operations Menu
Making the UNIX Partition Active

Returning to fdisk Operations Menu
Scanning for Bad Tracks

Leaving fdisk
Viewing Default Allocation with divvy
Updating the Hard Disk with Changes

Down-Loading Files

Installing runtime.l
Installing runtime.2
Logging in as root
Installing exruntime.l

�
\ I '-_j

0

0

INSTALLATION INSTRUCTIONS

STEP 1

Overview and Introduction

Installation of the complete system should take one to two hours
depending upon the size of your hard disk.

-
Note that a minimum of 512k bytes of RAM memory is required for the
installation of System V/AT.

There are two installation procedures available on the System V/AT boot
floppy: easyinstall and installit.

Both easyinstall and instal/it are fairly easy to use. 1f you undersland how
to partition the hard disk by cylinder number ranges, similar to the DOS
FDISK utility you probably want to use instal/it. Otherwise, use

-- ---�syinstalLUNLESS .. you."dsb to do.any of the following:_ -------- _ ------------- _

1. You wish to change the default allocations for the root and /usr file
systems, or the system swap area. The defaults are as follows:

12000 blocks (6 megabytes)
4000 blocks (2 megabytes)
the remainder of the disk

- for root
- for the system swap area
-for/usr

2. You wish to install System V/AT on the secondary as well as the
primary hard disk, or

3. You wish to preserve a System V partition on your hard disk.

To use easyinstall, follow the installation procedures through Step 2 of
this chapter. At this point, you will be inslructed to type easyinstall
instead of continuing through the Steps.

2·1

INSTALLATION INSTRUCTIONS

2·2

Installing System V/AT is a fairly straight-foward operation, but we
recommend that you first read the entire procedure.

The basic installation consists of the following components:

I) Inserting your System V/AT boot disk into your floppy drive;
2) Rebooting your system;
3) Formatting of your hard disk (ONLY if needed) with format;
4) Configuring your hardware with setup; and
5) Actually installing System VI AT with installit which:

Creates your disk partitions and bad track table with fdisk,
Allocates disk space for your UNIX file system with divvy
and mkfs, and
Copies System Y/AT files to your hard disk.

If you do not know the specifications of your hard disk drive(s), check the
drive's owner's manual.

Instructions are provided for systems with different configurations.

Example consoles can be found after the portion of the installation
procedure they are intended to illustrate. They represent a typical
installation of System V/AT on an IBM PC-AT or an AT-compatible
with a single 20-megabyte formatted hard disk. Roughly 17 megabytes
will be used for an active UNIX partition and the remainder for a DOS
partition.

Before you begin this installation procedure, it is advisable to be backed up
on your hard disk files. Use a backnp procedure such as the cpio com
mand (as documented in Section I of the Runtime System manual), to
copy to floppy disks whichever files you wish to save from your hard
disk. You can then reload them after the installation is completed.

0

0

INSTALLATION INSTRUCTIONS

STEP 2

Booting System V/AT
Instructions

If you have previously installed Sysrem V/AT and now only wish to
upgrade your UNIX kernel, see Appendix #I of this chaprer.

If possible, back up your boot floppy before attempting to boot up
System V/AT. You may do this by using the DOS diskcopy utility as
described in your DOS documeniation. Always use a double sided double
density (1.2MB) diskette for the target media. Depending on your DOS
version, the copy you make using the diskcopy utility may nO! perform
satisfactorally as Sysrem V/AT media. You can also make a backup copy
or your boot floppy nuder UNIX after you are installed.

Remove�ifie disiClaoeied�"oooliliS!iT'Irom1!S jaCket anhe ooginningor�
the Section I of the Runtime System manual and insert it into your
floppy disk drive.

This must be a 1.2 megabyte drive.

You should NOT place a write-prorect tab (thereby covering the
rectangular notch) on the boot floppy.

Reset the machine by pressing the Ctrl, Alt and Del keys
simultaneouSly.

The Sysrem V/ATbanner should apppear on your screen within two
minutes.

If, after you first get the "#" prompt, your screen flickers, type "uuflicker"
to configure System V/AT fot your particular display hardware.

IMPORTANT NOJE: When you see the "#" prompl, your system is
rooted in the boot floppy file system. System V /AT lreats this file system
just like a hard disk rooted file system, and you should never remove the
boot floppy from the drive without properly shutting down.

2-3

INSTALLATiON INSTRUCTIONS

At the end of the boot floppy installation procedure, you will be properly
shut down aud you will be instructed to remove the floppy and reboot If
you wish to shut down and remove the boot floppy at any other thne, you
must issue the following command, which will also initiate the re-boot
procedure for your system:

PROMPT
RESPONSE

il
sync; sync; sync; init 0

This is the ONLY recommended way to remove the boot floppy before the
end of the installation procedure.

Using setup

2-4

When you get the# prompt, type setup to see a list of options that .
allows you to configure your hardware, as follows:

PROMPT il
RESPONSE setup

Use setup to display or configme your hard disk drive type as follows:

Type setup fiXed 1 to display the pthnary hard disk drive type currently
stored in cmos on your system.

Type setup irxed 1 [1-99] to change the value stored for the primary
hard disk drive type to the type recommended by the manufacturer of your
drive.

If your hard disk drive is a non-standard drive and the drive's manufacturer
does not specify a drive type number to use, use a type which specifies the
same number of heads as your drive. A table of some manufacturer's drive
parameters, and the values for the pre-stored ("standard") types are fouud in
Appendix 5 to this chapter.

0

0

INSTALLATION INSTRUCTIONS

If your hard disk drive is a non-standard drive and the drive's manufacturer
specifies a drive type number to use, use that number.

PROMPT
RESPONSE

setup fiXed 1 #

where the final number (#) is the number you have chosen for your hard
disk drive type number.

PROMPT
RESPONSE

Are you sure? (type y or n)
y

If you are uncertain about the present condition of your bad track table,
type showbad to display it, as follows:

PROMPT
RESPONSE

showbad

_ _____ Jf.Y".U also plan to install System V/AT on a secondary hard disk, see - AppeiidiXli2oi!h1scliprei':- · --�- ·----- - ---- --
-- -

Use other setup options as needed to configure your hardware.

Using easyinstall

If you are using easy install (see Step I), proceed as follows:

PROMPT
RESPONSE

easyinstall

The easyinstall procedure will interactively guide you through
the installation.

Otherwise, continue the installation using the following instructions.

2-5

INSTALLATION INSTRUCTIONS

Formatting the hard disk

Instructions

2-6

You may now fonnat your (primary) hard disk.

Fonnatting of a hard disk is usually done by the. disk manufacturer before
the disk is sold; therefore, only furmat your hard disk if you kaow that you
need to do so. If you are in doubt as to whether you need to furmat your
hard disk, then DO NOT do s6.
If you have any files on yOur hard disk that you wish to save, be Sure to do
so before fonnatiing it. Furmatting destroys ALL files currently on your
hard disk.

Fonnatting your hard disk is done with System V/AT's format command.
For your primary hard disk use the following syntax:

/etdformat -s /dev/rdsk/OslO

If you get errors using the above syntax, you may need to use the follow
ing procedure. First fonnat your drive wihtout using the -o option:

/etdformat /dev/rdsk!OslO

Then run the fdisk utility wlh the -o option to copy the boot block onto
the hard disk, after i

'
onnatting. The syntax is:

PROMPT #
RESPONSE fdisk -o

After runningjd!sk, and changing partition data, so that/disk wdtes its
changes to the hard disk, you can go on to the next step, the installit
command.

CJ

0

INSTALLATION INSTRUCTIONS

STEP 3
Beginning Installation of System V/AT
Instructions

The installit command first invokes lhe fdisk utility and lhen later lhe
divvy utility, in order to set up lhe hard disk file system.

To return to lhe operating system level (i.e., to get back lhe "#" prompt),
press lhe Del key.

To begin lhe inslallation, you are prompted wilh:

1. PROMPT
RESPONSE

2. PROMPT

installit

Are lhe hard disk partitions set up correctly?
(y oriJ): " � �� � ��"

Type y ONLY IF lhe following four conditions are ALL true:

a) you have already established a bad track table under lhe fdisk utility,

b) you have not changed lhe disk partitions since lhe lhne at which that
bad track table was established,

c) you do not wish to now change either lhe disk partitions or lhe bad
track table, and

d) you do not wish to partition a secondary hard disk.

RESPONSE y

If you typed y, skip to Step 8 (Beginning the Use of the divvy Utility
- Viewing Default Allocation of UNIX Partition) of Ibis chapter.

Otherwise, to invoke fdisk:

ALTERNATE
RESPONSE n

I

2-7

INSTALLATION INSTRUCTIONS

Example

Example Console I
System Boot

Microport's System V/AT Release 2 AT Version 1 .3.6
Copyright (c) 1 985 AT & T ·All Rights Reserved
Copyright (c) 1 985 Microport ·All Rights Reserved

!NIT: SINGLE USER MODE

To install Microport's System V/AT, type the following
commands:

unflicker · if your console screen flickers
setup ·to configure your hardware
installit ·to set up and install your System V software

setup fixed 1 2
Set first fixed disk drive as type 2
Are you sure? (type y or n) y
Cmos changed
installit
Are the hard disk partitions set up correctly ? (y or n) : n

Notes

2-8

The above assumes that your primary hard disk is a standard type-2 hard
disk drive or has the same number of heads as a standard type-2 drive.

INSTALLATION INSTRUCTIONS

STEP 4
Beginning the use of the fdisk Utility -

!'\ Loading Parameters of Your Hard Disk '·"-._j

0

Instructions

The fdisk utility allows you to modify the hard disk partitions and build a
table of bad tracks.

If your hard disk drive is a standard type,

when fdisk comes up, it displays that drive type on your screen.

PROMPT
RESPONSE

Is this correct
y

and continue the installation procedure with Step 5 (Displaying Current
� Configuration of Partitions for¥our Hard Disk) ·ofthis chapter.·� ·

2-9

INSTALLATION INSTRUCTIONS

Example

Example Console 2
Loading Disk Parameters with fdisk

Executing /etclfdisk, to establish the hard disk partitions
(one moment please)

drive 0 type= 2

NO PARTITION TABLE
drive 1 type= 0

Untt 0 Drive Type in CMOS RAM is 2
This will cause the system to assume the following drive

parameters:

Cylinders Tracks/Cylinder
615 4

Landing Zone
615

Wrtte Precomp
300

All drives must be formatted wtth 1 7 512-byte sectors per track.

Is this correct: y

Notes

2-10

The above instructions assume that your primary hard disk drive is a
standard type-2 drive.

0

0

0

INSTALLATION INSTRUCTIONS

Using a Non-standard type disk drive

Instructions

Notes

If you have a non-slandard-type llard disk drive:
when fdisk comes up, it should display that drive type on your screen and
ask you:

I. PROMPT
RESPONSE

2. PROMPT
RESPONSE

3. PROMPT
RESPONSE

L.J'ROMPT
RESPONSE

5. PROMPT
RESPONSE

6. PROMPT
RESPONSE

Is this CO(reCt:
n

enter drive type:
0

enter number of cylinders:
type the correct number of cylinders
for your drive

_ eJ1ter n}ll11ber of heads per cylinder: _ __
type the correct number of heads for
your drive

type the co;rrect landing zone cylinder
ljumber for your drive

enter cylinder no, for write precompensation:
type the correct write precompe��
sation cylinder number for you drive (if
yoqr ctp_ve has ·no write precompensation�
type -1; if in doubt about the correct
number, use the corresponding value of the
comparable IBM drive type)

When the new drive paraJ]leters are displayed:
RESPONSE y

The terms heads and tracks are used interchangeably.

2·11

INSTALLATION INSTRUCTIONS

STEP S

Displaying Current Configuration of Partitions
for Your Hard Disk

Instructions

2-12

The fdisk utility displays a partition's size in 512-byte blocks. The
number of blocks per cylinder is found by multiplying the number of
tracks per cylinder by 17.

fdisk requires one active UNIX partition on your primary hard disk. The
minimum partition size recommended for the installation of the complete
system is 37,020 blocks for your primary hard disk. If you also wish to
create a UNIX file system on a secondary hard disk, you must create an
active UNIX partition on that disk and set aside au additional l,020 blocks
for the overhead tracks for that disk. (For a given partition on a hard disk,
tlie actual number of blocks available for the UNIX file systems and the
system swap area is equal to the partition size in blocks minus the 1,020
blocks used for overhead tracks. So, in order to provide UNIX with
36,000 blocks, a partition of 37,020 blocks must be created.)

The number and size of the active partitions you need to create depends
upon the number and size of the different systems you wish to simul
taneously reside on your hard disk. If, at some point in the future, you
decide you need to change the partitioning of your hard disk, you can do
that by repeating this installation procedure. The type of your drive will
determine the number of cylinders that must be allocated to create a
partition of a desired size.

fdisk displays the following menu (see Example Console 3):

PROMPT Enter choice <er>: :
RESPONSE 4

0

0

INSTALLATION INSTRUCTIONS

Example

Example Console 3
Choosing to Display Partitions

Invalid Partition Table ! Clearing !

Microport's Fixed Disk Setup Program

FDISK Options:

Choose one of the following:
1 . Create a Partition
2. Change Active Partition

. ��3.DeJete.aPartition .
4. Display Partition Information
5. Scan and Assign Bad Tracks
6. Advance to next disk unit-Current unit is [0]

Press 'x' to return to UNIX
Enter Choice <cr>: ..•.................. : 4

Instructions

Choose 4 to view the Displaying Partition !nfonnation Menu
(Example Console 4)

PROMPT Press 'x' to return to FDISK options
RESPONSE x

N01E: In the ahove display, menu option "Advance to next disk unit"
refers to installing System V/AT on a secondary (as well as a primary)
hard disk. To partition your secondary hard disk, see Appendix #2.

I

2-13

INSTAL!-ATJON INSTRUCTIONS

Example

Example Console 4
Returning to fdisk Options .Menu

Micro port's Fi�ed Disk Setup Program

Display Partition Information

Partition Status Type Start End
4 N unknown 0 0
3 N unknown 0 0
2 N unknown 0 0
1 N unknown 0 0

Press ·�· to return to FDISK options: x

Notes

Size Blocks
0 0
0 0
0 0
0 0

The above screen will be displayed if your hard disk has no partitions. If
there is already a DOS partition on your hard disk it will be displayed at
this time.

2·14

INSTALLATION INSTRUCTIONS

STEP 6

Partitioning Your Hard Disk

0 Instructions

0

0

If your hard disk already has a partition iable (there is at least one non-zero
integer in the blocks column of the partition iable display) but you wish
to change it, each partition you wish to change must first be deleted.
Otherwise continue the installation on the following page, "Creating a
UNIX partition on your hard disk."

1. PROMPT
RESPONSE

2. PROMPT
RESPONSE

3. PROMPT

Enter choice <cr>: ... :
3 (from the fdisk menu)

Which partition do you wish to delete?
Type the appropriate integer between
4 and 1. (Note the reversed order in which
the partitions are displa:yed.)

Do you want to continue ... ?:

If you do not wish to delete another partition,

RESPONSE n

2-15

INSTALLATION INSTRUCTIONS

Creating a UNIX partition on your hard disk.

PROMPT
RESPONSE

Enter choice <c:r>: ••• :
1 (from the fdisk menu)

Example

2·16

Example Cousole 5
Choosing to Create a Partition

Microport's Fixed Disk Setup Program

FDISK Options:

Choose one of the following:
1 . Create a Partttion
2. Change Active Partaon
3. Delete a Partition
4. Display Partaion Information
5. Scan and Assign Bad Tracks
6. Advance to next disk unit-Current unit is [0]

Press 'x' to return to UNIX
Enterchoice <cr>: . : 1

0

0

Instructions

1. PROMPT

RESPONSE

2. PROMPT
RESPONSE

3. PROMPT
RESPONSE

INSTALLATION INSTRUCTIONS

Which partition would you like to create
[1-4]? ... :
You may type any single integer from
1 to 4. (Note lhe reversed order in which lhe
partitions are displayed. It makes no
difference which partition number you use.)

Enter Starting Cylinder Value:
Type lhe appropriate positive integer.
(Note that a partition may not begin at
cylinder 0.)

Enter Ending Cylinder Value:
Type lhe appropriate positive integer
(less lhau lhe total number of cylinders

· ·�·��·�� . �· �� llVI!il�ble on yqur drive}

4. PROMPT
RESPONSE

Wbat operating system (!=DOS, 5=UNIX)?:
5

2-17

INSTALLA llON INSTRUCTIONS

Example

Example Console 6
Creating a UNIX Partition

Microport's Fixed Disk Setup Program

Create a Partition

Partition
4
3
2
1

Status
N
N
N
N

Type
unknown
unknown
unknown
unknown

Start
0
0
0
0

Press 'x' to return to FDISK options

End
0
0
0
0

Which partition would you like to create [1·4]? ... : 4
Enter Starting Cylinder Value: 1
Enter Ending Cylinder Value: 510
What operating system (1 =DOS, 5=UNIX)?: 5

Size
0
0
0
0

Blocks
0
0
0
0

Notes

2·18

You may choose to create a UNIX partition in any of the four partitions.
Partition 4 has been arbitrarily chosen for this example. The above will
result in a !?-megabyte (approximately) UNIX partition. If a DOS
partition already exists, and the space it occupies allows the proper sized
System V/AT to be created, you may leave the DOS partition on your
drive. If you do leave a DOS partition on your drive, you should make sure
your DOS data is backed up, just in case of problems with the installation.

0

0

INSTALLATION INSTRUCTIONS

Creating a DOS Partition

Instructions

Creating a DOS partition on your hard disk is optional, The number and
size of the active partiiions you need to create depends upon the number
and size of the different systems you wish to simultaneously reside on
your hard disk. If, at some point in the future, you decide you need to
change the partitioning of your hard disk, simply repeat this installation
procedure.

If you wish to create a pos partition in any of the remaining partitions,
repeat the above procedure except:

PR()MPT What operating system (!=DOS, 5=UNJX)?

Example

RESPONSE 1

Example Console 7
Creating a DOS Partition

Microport's Fixed Disk Setup Program

Create a Partition

Partition
4
3
?
1

Status
N
N
N
N

Type
SystemS
unknown
unknown
unknown

Press 'x' to return to FPISK options

Start
1
0
0
0

End
51 0

0
0
0

Whiqh partnion would you like to create [1-4]? ... : 3
Enter Starting Cylinder Value: 51 1
Enter Ending Cylinder Value: 614
What operating system (1 =DOS, 5=UNIX)?: 1

Size
51 0

0
0
0

Blocks
34680

0
0
0

2-19

INSTALLATION INSTRUCTIONS

Notes

The cylinder values of the partitions may NOT overlap.

Creating a DOS partition is optional, and you can do so in any one of
the remaining partitions. Partition 3 has been arbitrarily chosen for !his
example. The above will result in a 3.5-megabyte DOS partition.

The maximum cylinder number used must be eqnal to 1 less !han the
total number of cylinders on lhe dtive, which are numbered from zero.

If a DOS partition already exists, and lhe space it occupies allows the
proper sized System V/AT to be created, you may leave the DOS partition
on your dtive. If you do leave a DOS partition on your dtive, you should
make sure your DOS data is backed up, just in case of problems wilh lhe
installation.

To return to the fdisk options menu:

RESPONSE x

Example

2-20

Example Console 8
Returning to fdisk Options Menu

Microport's Fixed Disk Setup Program

Create a Partition

Partition
4
3
2
1

Status
N
N
N
N

Type
SystemS

DOS
unknown
unknown

Start
1

511
0
0

Press 'x' to return to FDISK options

End
510
614
0
0

Which partition would you like to create [1-4]? ... : X

Size
510
104

0
0

Blocks
34680
7072

0
0

0

0

INSTALLATION INSTRUCTIONS

Activating the UNIX partition

1. PROMPT
RESPONSE

2. PROMPT

RESPONSE

Enter choice <cr>: ... :
2 (from the fdisk menu)

Enter the nmnber of the partition you want
to make active (1-4) ... :
Type the number of the UNIX
partition. (Note the reversed order in which
the partitions are displayed)

Example

Notes

Example Console 9
Making the UNIX Partition Active

F>ress'x'foreiiTrnloUNlx- �-- �-- -- · �- �------

Enter choice <CI'>: : 2
Micro port's Fixed Disk Setup Program

Change the Active Partttion

Partition Status Type Start End
4 N SystemS 1 510
3 N DOS 511 614
2 N unknown 0 0
1 N unknown 0 0

Type 'x' to return to FDISK Options

Size
510
104
0
0

Enlerthe number of the partttion you wantto make active
(1-4) : 4

Blocks
34680
7072

0
0

The operating system that resides in the active partition will be used
each thne you boot your computer.

If you are also installing System V/AT on a secondary disk drive,
that drive will also require one active partition.

2·21

INSTALLATION INSTRUCTIONS

Again, you will be asked:

PROMPT

RESPONSE

Enter the number of the partition you want
to make active (1-4) ... :
X

This returns you to the fdisk menu.

Example

2-22

Example Console 10
Returning to fdisk Options Menu

Microport's Fixed Disk Setup Program

Qhange the Active Parti�ion

Partition Status Type Start End
4 A SystemS 1 510
3 N DOS 51 1 614
2 N unknown 0 0
1 N unknown 0 0

Type 'x' to return to FDISK Options

Size Blocks
510 34680
104 7072

0 0
0 0

Enter the number ofth� partition you want to make active 1 -4) : x

() '-
-
-

:-�-- - ---- - - - - - - -

0

INSTALLATION INSTRUCTIONS

STEP 7

Creating a Bad Track Table for Your Hard Disk

Instructions

The bad track table is a listing of bad tracks on your hard disk which also
specifies alternate tracks to be used instead. If you have not established a
bad track table under the fdisk utility since the last time you changed your
disk partitions, but have an active UNIX partition on your hard disk, you
must now create a new bed track table. This may be done either automati
cally but slowly (10-90 minutes) by having the system scan the entire hard
disk for bad tracks, or else done quickly, if the data is already known, by
entering it manually. The manufacturer's list of known bad tracks is
usually found attached to the physical drive inside your machine.

- -�,6 au!dmatically ouiltl a had track table, scan for bad tracks (IJad llf<;l!S on
your hard disk).

I. PROMPT
RESPONSE

Enter choice <cr.>: ... :
5

2. PROMPT
RESPONSE

Is a complete bad track table to be wriuen:

y

3. PROMPT Do you wish to scan the disk for had tracks:

If you already know the location of each bad track on your hard disk drive
and wish to manually enter this information:

RESPONSE n

Otherwise:

ALTERNATE
RESPONSE y

If you choose y, the scanoing process will now take place (anywhere from
20 to 90 minutes will be required for this, depending upon the size of your
hard disk drive). You may wish to write down the location of each of the
bad tracks discovered by the scan. Thus, if you ever need to rebuild your
bad track table, you can do so more quickly by manually entering the
necessary information.

2-23

INSTALLATION INSTRUCTIONS

Example

2-24

FDISK Options:

Example Console 11
Scanning for Bad Tracks

Choose one of the following:
1 . Create a Par@on
2. Change Aclive Partttion
3. Delete a Partition
4. Display Partition lnformalion
5. Scan and Assign Bad Tracks
6. Advance to next disk unit-Current untt is [OJ

Press 'x' to return to UNIX
Enter choice <Cr>: : 5

Is a complete new bad tracktableto be written: y

Do you wish to scan the disk for bad tracks: y

0

INSTALLATION INSTRUCTIONS

Instructions

You can now manually build your bad track table, or enter any bad tracks
which appear on the bad track list supplied with your drive, but were not I found by fdisk. If you don't have such a list, assume for now that the
scan was able to discover all the bad tracks. Note that you must terminate
the process of entering additional bad tracks by pressing Ctri-d.

!. PROMPT Do you wish to type in bad tracks:

If you have no additional bad track information:
RESPONSE n

and continue the installation procedure at the next step of this chapter.

Otherwise:

ALTERNATE

�RESPONSE -�

2. PROMPT

y

Enter bad track as: cylinder, track:

If you have an additional bad track to enter:

RESPONSE Type the cylinder number followed
by a comma and its track number.

For example, to enter cylinder 128, track 2 into the bad track list, type

RESPONSE 128,2

When you have no additional bad track infonuation:

3. PROMPT
RESPONSE

Enter bad track as: cylinder, track:
ctrl-d

This returns you to the fdisk options menu.

2-25

INSTALLATION INSTRUCTIONS

Leaving fdisk

2-26

If you do NOT wish to partition an additional hard disk, you may now exit
rom the fdisk utility.

!. PROMPT
RESPONSE

2. PROMPT

Enter choice <cr>: ... :
X

Leaving FDISK - Do you want your changes
installed on the previous unit? (y or n)?
(Note that "previous unit" here refers to the
hard disk for which you have just created
a partition.)

RESPONSE y

3. PROMPT Are the hard disk partitions set up correctly .
NOW? (y or n):

RESPONSE y

()

0

INSTALLATiON INSTRUCTIONS

Example

Notes

Scancyl 614trk3

Example Console 12
Leaving fdisk

Do you wish to type in bad tracks: n
Bad Track Updale Complete

Microport's Fixed Disk Setup Program

FDISK Oplions:
Choose one of the following:

1 . Create a Partition
2. Change Active Partition

· 3. 1:ielete a Partition
4. Display Partition Information
5. Scan and Assign Bad Tracks
6. Advance to next disk untt-Current unit is [0[

Press 'x' to return to UNIX
Enterchoice <cr>: : x

Leaving FDISK - Do you want your changes installed oh the
previous unit?

- (y orn)? y
Updating disk unit 0 the hard disk will now be reinttialized
Are the hard disk partttions set upcorreclly NOW? (yorn): y

The above assumes that there is not additional bad track information
available.

If you wish to partition an additional hard disk, see Appendix #2 at the end
of this chapter.

I

2-27

INSTALLATION INSTRUCTIONS

STEP 8

Beginning the Use of the divvy Utility
Viewing Default Allocation of UNIX Partition

Instructions

2-28

It is assumed throughout the following that you wish to establish new file
systems for the active System V partition. You must re-establish new file
systems whenever you change the bonndades of the System V partition, or
create a new bad track table. If you do not wish to establish or re-establish
new file systems, proceed to Step 10.

PROMPT

RESPONSE

Have you set up the file systems correctly?
(y or n):
n

divvy will be invoked, and default disk space allocations will be displayed
for the /root and /usr file systems, and for the system swap area
(note that any zero size allocation, such as the default allocation for the
/tmp file system, does not show up on your screen).

Note that normally if you are now told, NO PARTITION TABLE,
tltis will refer to your secondary hard disk.

PROMPT Do you wish to change any allocation?
(y or n):

If you wish to use the default allocations:

RESPONSE n

For information to consider if you do not wish to use the default disk
space allocations, see Appendix #3 of tltis chapter.

0

:� -�-

0

()

INSTALLATION INSTRUCTIONS

Example

Notes

Example Console 13
Viewing Default Allocation with divvy

Have you set up the file systems correctly: (y or n): n
Executing /etc/divvy, to establish the filesystems (one moment

please)
drive 0 type= 2
drive 1 type= 0

DEVICE

!root

/swap

UNIT

0

0

BLOCKS

12000

4000

176W ���.��

Do you wish to change any allocation? (y or n): n

The above creates a 6-megabyte /root file system, a 2-megabyte system
swap area, and an 8.5-megabyte /nsr file system (roughly) in the UNIX
partition.

2-29

INSTALLATION INSTRUCTIONS

STEP 9

Continuing the Use of the divvy Utility -
Making the File Systems

Instructions

divvy will now invoke the mkfs utility to make the UNIX file systems:

1. PROMPT Shall I update the disk? (y or n):
RESPONSE y

2. PROMPT Shall I proceed? (y or n):
RESPONSE y

3. PROMPT Shall I proceed? (y or n):
RESPONSE y

2-30

0

0

0

INSTALLATION INSTRUCTIONS

Example

Notes

Example Console 14
Updating the Hard Disk with Changes

Ready to wr�e unit #0-
Shall I update the disk? (y or n): y

the hard disk will now be reinnialized

Ready to make the following file system:
mkfs/dev/dsk/OsO 12000:1200 2 68

Shall I proceed? (y or n): y
drive 0 type= 2
drive 1 type= 0

. . Mkfs: /dev/dsk!OsO? ___ .•..
(DEL n wrong)
bytes per logical block= 1 024

cylinder size (physical blocks) = 68

Ready to make the following file system:
mkfs/dev/dsk/Os2 17660:1766 2 68

Shall I proceed? (y or n): y

Once the process of making the file system has actually begnn, if an
error is detected, you can stop the process by striking the Del key.

The " ... " in the above example indicates a portion of the actual console
display that has been deleted for the sake of brevity.

2-31

INSTALLATION INSTRUCTIONS

STEP 1 0
Down-Loading Files from the Boot Disk
to Your Hard Disk

Instructions

PROMPT Have you set up the file systems correctly
NOW? (y or n):

RESPONSE y

Example

2-32

Example Console 15
Down-Loading Files

gap (physical blocks) = 2
cylinder size (physical blocks) = 68
Have you set up the file systems correctly NOW? (y or n): y

The hard disk is now configured tor systemS
Copying overthe necessary files:
+ label it /dev/rdsk/OsO root OsO
Currenttsname: , Current volname: , Blocks: 1 2000,

lnodes: 1200
FS Units: 1 Kb, Date last mounted: Man Jul 7 20:14:13 1986

+ Set +X
The hard disk is now initialized.
Please waitforthe message 'The system can now be rebooted'.
After the system has come to a stop, remove the floppy in

drive A, and reboot your computer (via control-att-del).
When you see the# prompt, type 'install it' to finish the

installation.

IN IT: New run level: 0
The system can now be rebooted

0

0

0

INSTALLATION INSTRUCTIONS

Notes

The y response begins the process of down-loading the files from the boot
disk. Once the process of down-loading the files from the boot disk has
aclnally begun, if an error is detected, down-loading can be stopped by
striking the Del-key. Note that as each file is down-loaded, its path name
will appear on your screen.

The " •• " indicates a portion of the aclnal console display that has been
deleted for the sake of brevity.

When the console message appears "The system can now be rebooted" it is
safe to remove the boot floppy from the drive and re-set your system.

2-33

INSTALLATION INSTRUCTIONS

STEP 1 1
Installing Runtime System

· Instructions

When you see the # promp� you may continue with the installation.

!. PROMPT #

ACFION

RESPONSE

2. PROMPT

Insert the floppy disk labeled runtime.!

installit

Is this ok? (y or n)

RESPONSE y

Example

2·34

Example Console 16
Installing "runtime. I"

Microport's System VI AT Release 2 AT Version 2.2
Copyright (c) 1985AT&T -All Rights Reserved
Copyright (c) 1 985 Micro port . All Rights Reserved

!NIT: SINGLE USER MODE

To continue installing M icroport's Sylem VI AT, insert the floppy
labeled 'runtime.1' and type 'installit'

installit
1 blocks

Installing from #1 of set runlime

Copyright (c) 1985 AT&T
All Rights Reserve

Is this OK? (y or n) y

0

0

0

Instructions

Example

PROMPT

ACTION

ACTION

RESPONSE

usr/adm/sa

usr/bin

usr/bin/at
usr/bin/banher
usr/bin/batch
usr/bin/bfs
usr/bin/cal
usr/bin/calendar
usr/bin/camm
usr/bin/cpset
usr/bin/crontab
usr/bin/ct
usr/bin/cu
usr/bin/getopt
ust/bin/id
usr/bin/logname
usr/bin/man
1915 blocks

INSTALLATION INSTRUCTIONS

Insert floppy set runtime #2 then type
installit

Remove the floppy disk that is currently in
drive A.

Insert the floppy disk labeled runtime.2

installit

Example Console 17
Installing 11runti.me.2"

I

insert floppy set runtime #2then type 'installit'
installit

2-35

INSTALLATION INSTRUCTIONS

After the installation of runtime is complete, you will be logged out as
the system goes into multi-user mode.

Remove the floppy disk from drive A.

Example

+
+
+
+
+
+
+
+
+
+
+

Example Console 18
Logging in as "root"

chmod 775 /usr
mv /etc/release/.profile I
mv /etc/release/mold /etc
chown root /.profile
chgrp sys /.profile
chmod 444 /.profile
chown root /etc/motd
chgrp sys /etc/mold
chmod 644 /etc/motd
/bin/rm -r /etc/release
chmod 444 /etc/install.date

+ set +X
runtime set loaded, going mu�i-user. You may load any package
by inserting the floppy and typing installtt.

/NIT: New run level: 2
cron not started

System name: systemS

Console Login: root

Instructions

2-36

You may now log on as root (super-user) and install the extra runtime
disk, the "utility" disk, and any of the other System V/AT packages you
wish (assuming yon have sufficient space on your hard disk). If you wish
to list the contents of any of these diska, insert that disk into drive A and
then type

cpio -it < /dev/rdsk/Os25.
Specific installation instructions appear on succeeding pages.

0

INSTALLATION INSTRUCTIONS

If you wish to install the extta runtime disk, or the "utility" disk

I. PROMPT Insert tl1e floppy disk labeled "exruntime.J"
or "utility. I"

RESPONSE

2. PROMPT
RESPONSE

installit
Is this ok? (y or n)

y

After the installation of the exruntime.l disk, or the "utility" disk is
complete, remove the floppy disk from drive A.

Example

Notes

Example Console 19
Installing "exruntime.l"

Microport's System V/AT
System V Release 2 for PC-AT compatible systems

including
File Hardening & Record Locking Features

Release 2.2
Please report to Microport Systems, Inc.

10 Victor Square, Scotts Valley, CA 95066
(408) 438-8649

news: releasenotes
installit
1 blocks

Installing from #1 of set exruntime

Copyright (c) 1985 AT&T
All Rights Reserved

Is this ok? (y or n) y

If you are also installing System V/AT on a secondary hard disk,
see Appendix #2 of this chapter.

2-37

INSTALLATION INSTRUCTIONS

STEP 1 2
Installing Software Development System

Insiructions

2-38

If you are not alrelltly logged in as root, do so now.

1. PROMPT
ACTION
RESPONSE

2. PROMPT
RESPONSE

3. PROMPT

ACTION

ACTION
RESPONSE

4. PROMPT

ACTION

ACTION
RESPONSE

Insert the floppy disk labeled progdev.l.
installit

Is this ok? (y or n)
y

Insert floppy set progdev 112 then type
installit
Remove the floppy disk currently in
drive A.
Insert the floppy disk labeled progdev.2.
installit

Insert floppy set progdev it3 then type
installit
Remove the floppy disk cinrently in
drive A,
Insert the floppy disk labeled progdev.3.
installit

After the installation of progdev is complete, remove the floppy disk
from drive A.

To also install the extra progdev disk:

1. ACTION Insert the floppy disk labeled exprogdev.l
RESPONSE installit

2. PROMPT Is this ok? (y or n)
RESPONSE y

3. ACTION Remove the floppy disk from drive A.

If you wish to install an upgrade disk, which updates your runtime and
software development utilities to a new version level, you should do so at
this time, by typing installit.

INSTALLATION INSTRUCTIONS

Step 1 3
Installing Text Preparation System

0 Instructions

0

0

If you are not already logged in as root, do so.

I. ACTION Insert the floppy disk labeled text.l.
RESPONSE installit

2. PROMPT
RESPONSE

Is this ok? (y or n)

y

After the installation of text is compleoo, remove the floppy disk from
drive A.

To also in�tall the exira ooxt disks:

·-- - -I. - -ACTION �---- - Insert the floppy disk labeled extext.t-
RESPONSE installit

2. PROMPT Is this ok? (y or n)
RESPONSE y

3. PROMPT Insert floppy set extext #2 then type
installit

ACTION Remove the floppy disk currently in
drive A.

ACTION Insert the floppy disk labeled extext.2.
RESPONSE installit
ACTION Remove the floppy disk from drive A.

- - - - --�-

2·39

INSTALLATION INSTRUCTIONS

STEP 1 4
Ready to Go

The hard disk installation of System V/AT is now completed. Rehoct and
log in as root. At this point no password is needed for the root login, bu�
in order to avoid unauthorized use of your system, one should be assigned
by using the passwd command as documented in Section 1 of the
Runtime System manual.

Additional System Options

2-40

To add new login names to the system, see Appendix # 4 of this
chapter.

To install a modem, see sio IJ) in the Runtime System manual.

0

0

INSTALLATION INSTRUCTIONS

Appendix 1
Upgrading UNIX Kernel

Instructions

The kernel is a file called /systemS on your system; !he filename /unix
is symbolically linked to lhe filename /systemS.

1.1 To upgrade your UNIX kernel, and appropriate utilities from lhe
boot floppy

Boot your system from lhe boot floppy, and type installit; answer y
to lhe question "do you wish to upgrade an existing System V/AT
installation"

--PROMPT
RESPONSE

PROMPT
RESPONSE

installit

uprgrade an existing System V/AT
y

When you see lhe message IN 10 "The system can now be rebooted" you
can safely remove lhe boot floppy from 1he drive, and reset your system.
To continue wilh lhe upgrade, follow lhe Release Notes to install any
additioual floppies, usually by inserting lhe floppy in the drive and typing
instal/it.

1.2 An alternative melhod of upgrading only your UNIX kernel to !he
"small" kernel version on lhe boot floppy is given below. Note !hat
!his is not lhe normal melhod of upgrading your UNIX kernel.

1. ACTION Mount lhe boot floppy on /mnt:
RESPONSE mount /dev/dsk/Os2S /mnt

2. ACTION Copy lhe new kernel onto lhe old one:
RESPONSE cp /mnt/systemS I

3. ACTION Patch lhe new kernel to boot properly:
RESPONSE etc/hdrt.patch /systemS

4. ACTION Uurnount the boot floppy:
RESPONSE nmount /dev/dsk/Os2S

Shutdown and reboot from your bard disk.

2-41

INSTALLATION INSTRUCTIONS

Appendix 2
lnstallating System V/AT on a
Secondary Hard Disk

Instructions

2-42

2.1 You may need to format your secondary hard disk.
Formatting of a hard disk is usually done by the disk manufacturer
before the disk is sold; therefore, only format your hard disk if you
know that you need to do so.

Formatting your hard disk is done witlt System V/AT's format
command. For your secondary hard disk use Ute following command.
For your secondary hard disk use Ute following syntax:

/etc/format /dev/rdsk/ls10

For further information, check Section 1 of the Runtime System
manual.

2.2 Run setup for your secondary hard disk.
If your secondary hard disk drive is a standard drive, type:

setup fJXed 2 [1-99]

where the final number is your drive type number.

If your secondary hard disk drive is a non-standard drive, type:

setup fiXed 2 [1·99]

where the final number is either Ute manufacturer's suggested drive
type number (if one is available) or else a drive number you have
selected for your drive. See Appendix 5.

PROMPT
RESPONSE

Are you sure? (type y or n)

y

The installation procedure may be continued witlt Step 3, (Beginning
Installation of System VIA1) , of this chapter.

0

0

0

INSTALLATION INSTRUCTIONS

2.3 Create an active UNIX partition on your secondary hard disk (nnit !).

I. PROMPT
RESPONSE

2. PROMPT

RESPONSE

Enter choice <cr>: ... :
6
Do you want your changes installed on t)le
previous unit? (y or n)?
y

Note that" "previous unit" here refers to the hard disk for which you have
just created a partition.

For your secondary hard disk, execute the following set of procedures as
described earlier in this chapter:

Step 4: Beginning the Use of thefdisk Utility -Loading Parameters
of Your Hard [)isk (note that after you are told "Updating disk

. _ _ . _ 1111it Q", ;ill subsequent prompts requesting disk Partitioning PaiameteJS _
will be referting to your secondary disk),

·

Notes

Step 5: Displaying Current Configuration of Partitions for Your
Hard Disk,

Step 6: Creating an Active UNIX Partition on Your Hard Disk, and

Step 7: Creating a Ba4 Track Table for Your Hard Disk.

You can continue the installation procedure at Step 8 (Beginning the Use
of the divvy Utility - Viewing Default Allocation of UNIX Partition) of
this chapter.

To create and mount the file systems on your secondary hard disk, use the
mkfs and mount commands, respectively. For further ioformation, see
the Runtime System manual.

2-43

INSTALLATION INSTRUCTIONS

Appendix 3
Changing Allocation of UNIX Partition

2-44

The UNIX partition must now be divided between the /root file system,
the /usr file system, and the system swapping area. The total number
of blocks that the divvy command allocates is equal to the number of
blocks in the UNIX partition minus 1,020 blocks for overhead tracks. Of
this amount, you should allocate at least 12,000 blocks for /root and 4,000
blocks for /swap. Increasing the system swap area beyond 4,000 blocks
will have no effect unless you are running several users.

In deciding how many blocks of disk space to allocate to the system swap
area, you should take into consideratiOn: 1) the number of users you will
be running, 2) the size of the programs and data bases that will be used,
and 3) the total amount of disk space available for allocation.

The /usr file system will be allocated whatever disk space remains after
space has been allocated for the other file systems and the swap area.

When you are prompted: ''Enter Device,Unit,Size in 512- byte blocks: ",
note that here "device" means the logical name of the file system, that
"unit" is "0", and that your response should include a single space, or

comma, between each of the requested pieces of information.

If you attempt to increase the size of any file system or the swap area, you
will be told:

Allocation exceeds unit 0 size by ...

Note that this message is for information purposes only. In general when
you change the size of any file system or the swap area, divvy automati
cally adjusts the sizes of the other allocations to insure that the total
allocated never exceeds what is available.

0

0

INSTALLATION INSTRUCTIONS

If you choose to allocate blocks for the /tmp file system, after you have
completed the installation procedure, you must change /etdfstab to
include the entry:

/dev/dsk/Os3 /tmp

so that the /tmp file system will be auto-mounted.

Alternately, you may choose to mount the tllird file system, (desigoated as
/tmp by divvy), on another path such as /usrl. If you wish this file
system to be auto-mounted at boct time, you must add the following entry
to /etdfstab:

/dev/dsk/Os3 /usrl

3.1 If you do not wish to use the default disk space allocations and
ONLY wish to ch"!lze !he space allocation for the /root or /11sr
file system of the UNIX partition, you are asked:

I. PROMPT

RESPONSE

Do you wish to change any allocations?
(y oro):

y

2. PROMPT
RESPONSE

Enter Device,Unit,Size in 512- byte blocks:

3. PROMPT

Set the size of the /root file system to the
size that you wish to be allocated for it (the
/usr file system will be automatically
allocate whatever space is not allocated to
either /root or /swap)

Do you wish to change any allocation?
(y or n):

RESPONSE n

Continue the installation procedure at Step 9 (Continuing the Use of the
divvy Utility - Makng the File Systems) of this chapter.

2-45

INSTALLATION INSTRUCTIONS

2·46

3.2 If you DO NOT wish to:

A) use the default disk space allocations, and
B) allocate space for a /Imp file system,

but you DO wish to:

A) change t!>e space allocation for the system swap area, and
B) possibly changing the /root or /usr file systems of the UNIX

partition:

I . PROMPT

R.ESPONSE

2. PROMPT
RESPONSE

3. PROMPT

RESPONSE

4. PROMPT
RESPONSE

5. PROMPT

Do you wish to �hange any allOC{ltion?
(y or n):
y

Enter Device,Unit,Size in 512- byte blocks:
Set size of /swap to the size that you wish
to be allocated to the system swap area
Do you wish to change any allocation?
(y or n):
y

Enter Device,Unit,Size in 512- byte blocks:
Set the size of the /root file system to tl)e
size that you wish to be allocated for it
(the /usr file system will be automatically
allocated whatever gpace is not allocated to
either /root or /swap)

Do you wish to change any allocation?
(y or n):

RESPONSE n

COI)tinue the installation procedure at Step 9 (Continuing the use of the
divvy Utility - Making the File Systems) of this chapter.

0

0

0

- �-�---------

INSTALLATION INSTRUCTIONS

If you do not wish to use the default disk space allocations, and you wish
to allocate disk space for a /Imp file system AS WELL AS possibly
changing the system swap area or the /root or /usr file system of the
UNIX partition, you are asked:

1. PROMPT Do you wish to change any allocation?
(y or n):

RESPONSE y

2. PROMPT Enter Device,Unit,Size in 512- byte blocks:
ACTION Initially, you will need to create a /tmp file

system which overshoots in size the /tmp
file system you u11huately wish to create, so
set the size of the swap area to the total
number of blocks available minus twice the
number of blocks that you wish to finally
allocate to the /tmp file system

3. cPROMPT · - Do you wish to change any allocation?
(y or n):

RESPONSE y

4. PROMPT Enter Device,Uni�Size in 512- byte blocks:
RESPONSE Initially, set the size of the /root me

system to zero blocks.

5. PROMPT Do you wish to change any allocation?
(y or n):

RESPONSE y

6. PROMPT Enter Device,Unit,Size in 512- byte blocks:
RESPONSE Request that the size of the /tmp me

system be set to twice the size that you
u11huately desire

7. PROMPT Do you wish to change any allocation?
(y or n):

RESPONSE y

2·47

INSTALLATION INSTRUCTIONS

8. PROMPT
RESPONSE

9. PROMPT

RESPONSE

10. PROMPT
RESPONSE

11. PROMPT

RESPONSE

Enter Device,Unit,Size in 512- byte blocks:
Set size of /swap to the size that you wish
to be finally allocated to the system swap
area
Do you wish to change any allocation?
(y orn):
y

Enter Device,Unit,Size in 512- byte blocks:
Set the size of the /root file system to the
size that you wish to be finally allocated
to it

Do you wish to change any allocation?
(y orn):
n

Continue the installation procedure at Step 9 (Continuing the use of the
divvy Utility - Making the File Systems) of this chapter.

Notes

2-48

Any zero size allocation, such as !he default allocation for the /tmp flle
system, does nnt show up on your screen.

INSTALLATION INSTRUCTIONS

Appendix 4
Adding new login names to the System

,1\ ____) If you choose not to allow the SysVision user shell to add new login
names, proceed with these inslructions. Otherwise, see Chapter 3.

0

Instructions

In order to create a new user (login name) on your system:

1. ACTION login as root

Edit the /etc/passwd file to create an entry for the new login name, as
follows:

PROMPT
RESPONSE

vi /etc/passwd

Using the entry for gnest as a mOdel, create a new entry with a null
password field and a new user id field. Note that you can specify a shell
pathname, such as /bin/csh for the C Shell, in the last field entry. This
shell will he invoked at start-up. The default entry is /binlsh (Bourne
Shell). For further information, see passwd (4) in the Software
Development System manual, Vol II.

To serve as an example for adding a new login name to the system, we
will use the login name bernie in the following procedures:

2. ACTION Create a directory for the new login- name,
bernie, as follows:

PROMPT #
RESPONSE mkdir /usr/bernie

3. ACTION Change owner of the created directory to the
new login -name, bernie, as follows:

PROMPT #
RESPONSE chown bernie /usr/bernie

4. ACTION Copy over :relevant files to the new user's
directory:

PROMPT #
RESPONSE cp /.profile /usr/bernie

Note that tl1e .login and .cshrc files are used by the C Shell.

ALTERNATE
RESPONSE

cp /.login /usr/bernie
cp /.cshrc /usr/bernie

2-49

INSTALLATION INSTRUCTIONS

Appendix 5
The drive type parameter which is referenced in the setup utility is an index into
a table which is located in the ROM BIOS on your machine. If the table entry is
not fonnd by thefdisk utility, for types 1-14 thefdisk utility will assume the
following hard disk parameters.

Table 1

Table of Standard Drive Types

type heads cyls landing write
zone precomp

4 306 305 128
2 4 615 615 300

3 6 615 615 300

4 8 940 940 512

5 6 940 940 512

6 4 615 615 -1
7 8 462 511 256

8 5 733 733 -1

9 15 900 901 -1
10 3 820 820 -1

1 1 5 855 855 -1

12 7 855 855 -1

13 8 306 319 128

14 7 733 733 -1

2-50

INSTALLATION INSTRUCTIONS

The following !able gives some manufacturer's drive par;uneters. If you do not
have appropriate ROMs in your machine, you should attempt to match the
number of heads to one of the standsrd types, and correct the values displayed by

I� the /disk utility to !he correct values for your drive. &I __)
Table 2

Table of Manufacturer's Parameters

Manufacturer Model NumPer suggested capacity cyls heads landing write
lype zone precomp

ATASI 3046 12 37.4 645 7 644 323
3051 12 41 704 7 703 352
3051+ 12 42.6 733 7 732 368
3085 4 68.0 1024 8 1023 -1

Computer CM-6426-S 2 20.4 615 4 615 300
Memories Inc.- CM-6426 2 213 640 4 640 256
(CMI) CM-6640 3 :01.9 640 6 640 256

CM-6853 7 425 640 8 640 256

Control Data CDC 94155-86 * 69.1 925 9 925 0
COI:p. CDC 94155-48 11 38.4 925 5 925 0

0 (COC) CDC 94155-51 11 41.0 989 5 989 0

Max tor XT1065 12 53.3 918 7 918 -1
XTI085 4 68.0 1024 8 1024 -1
XT1105 * 83.8 918 11 918 -1
XT1065 9 114.3 918 15 918 -1

Micro science HH1050 11 44.0 1024 5 1024 -1
HHx25 2 21.4 615 4 615 -1

Miniscribe 6032 10 255 1024 3 1024 512
6053 11 42.5 1024 5 1024 512
6032 12 59.5 1024 7 1024 512
6032 4 68.0 1024 8 10:14 512

Rodime 202E 2 21.3 640 4 640 0
203E 3 31.9 640 6 640 0
204E 7 42.5 640 8 640 0

Seagatc ST 4026 2 20.4 615 4 615 300
ST 4038 8 30.4 733 5 733 300
ST 4038M 8 30.4" 733 5 733 -1
ST 4051 11 40.5 977 5 977 -1

1,....---.\ ST 225 2 20.4 615 4 615 300 0 ST 4096 * 76.5 1024 9 1023 -1

2·51

INSTALLATION INSTRUCTIONS

Manufacturer Model Number suggested capacity cyls heads landing write
type zone precomp

Tandon TM-703 8 28B 695 5 695 -I
(Microtek) TM-755 11 40.7 981 5 981 -I

TM-703AT 8 30.4 733 5 733 -I
TM-702AT 6 120.4 615 4 615 -1

Toshiba MK56FB •• 68.9 830 10 830 -I
MK54FB 12 48.2 830 7 830 -1
MK53FB 8 34.4 830 5 830 -I

Tulin TL-226 6 213 640 4 656 -1
TL-240 3 31.9 640 6 656 -1

Vertex V150 11 41 987 5 987 -I
V170 12 57.4 987 7 987 -I
V130 10 245 987 3 987 -1
VI85 12 59.5 1024 7 1023 -I

Priam ID40 11 41.0 987 5 987 -I
ID60 12 57.4 987 7 987 -1
ID130 9 127.5 1024 15 1024 -I

*These drives do not have an entry with the same number of heads :in the standard drive
tables.

**This drive has a switch (#8) which allows heads 8 and 9 to be disabled. When this
switch is set on this drive may be used as a type 7.

2-52

l I

.·"\
-�

SYSVISION

Chapter 3

SysVision

Sys Vision is a helpful group of menus and fonns that aids the novice and Sys
tem Administrator alike when using the UNlX system.

To begin using SysVision type sysviz <return> after your prompt. You can ac
cess SysVision from the C-shell and the Bourne shell.

After signing onto SysVision. the following menu is displayed:

mpmain(t a) SysVision byTaskForce(1 b) 01/31/B?(tc) 09:30(1d)

User Functions Administrator Functions

A Applications Menu ·u User& Group Menu (2)

c Communications Menu •F Floppy Disk Menu

p Printer Control Menu •R Save/Restore Menu

H Hard Disk Functions Menu •s System Functions Menu

•M Machine Management Menu

Quit-' X Help-'W More Keys-'Y (3)
Select Function by entering letter or using arrow keys and pressing
RETURN (4)

This is referred to as the main menu or system entry point All the Sys Vision
menus have the same format which consists of:

1. TITLE LINE

The title line is the first line on the menu and consists of four fields. The menu's
name (Ia) is displayed in the upper left comer, its tide (!b) is centered and high
lighted, and the system date (!c) and system time (!d) are displayed in d1e upper
right corner.

3-1

SYSVISION

3-2

2. MENUS AND COMMANDS AVAILABLE

Each menu has a list of commands that are available. Select by pressing the
letter 41 front of the option, or use arrow keys· to position the arrow next to the
option and press RETURN. Some functions are :reserved for the e�clusive use of
the system administrator (root) and other users are deoied access to them. The
menu program will prevent you from moving the arrow next to these options or
selecting them with their letter. They usually are displayed in a different color or
intensity on your screen. They are denoted in tltis documentation by an asterick
(*) next to the option. Note that all of the functions in the right column of the
previous menu are restriC):ed.

3. CONTROL KEY FUNCTIONS A V AILAI)LE TO USE ON TillS
SCREEN

NOTE: • is the symbol for the control key, located on the]eft side of your
keyboard. To enter a control key function, hold down the control key (like a
shift key) and then press the letter next to it. For example, to enter AX (read
Control X), hold down the control key and strike the X key. The shift key does
not have to be depressed as there is no difference between AX and "x.

On the ma.iJ1. menu above the con,trol key functions available are AX, AW and AY.
Below � an additional list of control key functions that are used by the menu.

KEY FUNCTION

AX Quit

AW Help

DESCRIPflON

Exit SysVision. Will ask YIN.

Addition� information about a menu option.
Position the arrow at the option in question
and press the help key (AW) and a help
window will replace the menu. More than
one page of help is signified by a plus :;;ign
(+) in the bottom right corner of the help
window. You may advance the text by presS
ing the Roll Down key (AD). You may re
display the previous page by pressing the
Roll Up key (AU) when the plus sign is dis
played in the upper right comer of the help
window. Press Exit (AE) to clear the help
screen and redisplay the menu.

'
I '

c:

SYSVISION

Ap

AU

I

AF

More Keys

Exit

Previous Menu

Roll Down

Roll Up

Additional control keys and their descrip
tions. Press Exit (AE) to clear the help screen
and redisplay the menu.

This will exit you out of any special mode
you may be in.

This will display the previous menu. If you
are using the main menu, it will ask you if
you wish to quit.

More information is available. Only avail
ahle in help windows when the plus sign (+)
is displayed in the bottom right comer.

Review previously displayed information.
Only available in help windows when the - · · �P\us-sign-(+)iiidispiayed-in tlie uwerrigb.i
comer.

Change Directoxy This function displays your current working
directory and Wlows you to select a new
directory.

Shell Command

Execute

This function allows you to execute a single
Bourne shell command. An input area is
opened on the message line and you may
type the command you wish to execute.
When RETURN is pressed, the screen is
cleared and the command is executed.

H it is shown on the screen as an available
control key, it must be entered to start the
function.

4. MESSAGE LINE

Additional information, prompts, and warnings are displayed here. It is also re
placed by the input area for the Change Directory and Shell Command functions.

Select the letter next to the function you wish to perform and proceed to the
corresponding section in the manual.

3-3

SYSVISION

3-4

COMMUNICATIONS MENU

INTRODUCTION

The Communications Menu allows you to send and receive messages, or type
messages directly onto another tenninal. It also allows you to "log on" to other
computers, allowing your PC to function as a remote workstation.

mpcomm COMMUNICATIONS 01/31/87 09:30

Local Remote

s Send Mail c Log onto another system

R Receive Mail M Mail to another system

w Write a message to a user u List of known systems

H Who is logged in?

Quit-" X Help.AW More Keys-"Y

Select Function by entering letter or us'1ng arrow keys and pressing
RETURN

Select the letter or character for the function you wish to perform and proceed to
tire corresponding command in this section.

S - SEND MAIL

This conunand is used to send a message, such as an interoffice memo, to
another user on the system. You can also have copies of your message sent to
other users.

Send to :

Subject

Date:

Message:

Send copies to:

SYSVISION

/\
)

To use Send Mail, simply fill in 1he blanks and use ei1her 1he RETURN key or
1he down arrow key to go from line to line.

Enter the user's login name on the Send to: line. If you do not know the user's
login name, press AW (Help) for a list of users on the system.

Next, enter the subject of your message, as you would on a memo. This is a
short phrase that describes the text of the memo.

Enter 1he date in month. day, year format. for example: 12/31/86.

Enter your message. The field will automatically extend up to seven more lines
for your message.

If you want to send copies of your message to other users who are on the sys
tem, enter their LOGIN NAMES on the line. Separate the names with a space
or a comma. Again, if you are unsure of the user's names, press AW (Help) for a �list OfrUSefS'OJCthe�systern;-·"·"'"w�=�--�, ��- -�--�'"-�--�-�-� - ·-o� _,. �· � ·�--�oc ��"�· -

Press AF to execute 1he command and send 1he memo.

(\
"---./ R - RECEIVE MAIUREAD MAIL

r)
�··

This command is used to receive messages/interoffice memos sent to you from
other users.

Display mail wi1hout asking questions?

Display mail in First fu - First Out order?

Name of alternate mail file

Normally, when displaying your mail, a question mark (?) will appear on 1he
screen after each item of mail you receive. This prompt allows you to choose
what you would like to do wi1h 1hat item. To use any of 1he options, answer N
to the first question. If you would simply like to view the messages displayed on
1he screen, one right after 1he o1her, answer Y and you will not be prompted after
each message.

3-5

SYSVISION

3·6

Key

<RETURN>
+
d
p

s[FILE]

w[FILE]

m[USER]
q
X

Action

Go to next item
Go to next item
Delete and go to next item
Print item (on screen) again
Go back to previous item
Save the item in the file given [FllE]
(mbox is the default)
Save the item in the file given [FILE]
without the header information
Mail the message to [USER](s) named
Put undeleted mail back in the mail file and quit
Put all mail back in the mail file and quit

Mail is usually displayed last-in, ftrst-out order. This means that your newest
messages will be displayed firs� and your oldest last. If you would like to have
your mail displayed in first-in, first-out order (oldest firs� newest last), answer
Y.

If you have, in previous receipts of mail, used the options s[FILE] or w[FILE]
(descn'bed above), you will have saved items of mail in alternate mail files
(mbox by default). You em again retrieve messages from these alternate files by
specifying their name in the third blank ou the screen.

Press "F to execute the command. Your mail will be displayed on the screen. If
you did not respond with a Y to the frrst question, a question mark will be dis
played after each message. Please select the appropriate response from the above
table.

W - WRITE A MESSAGE TO A USER

Tills command allows you to send a message directly to the screen of another
user. You might use this to send information or a warning quickly.

Enter the name of the person to write to

Indicate which terminal to write to if
the user is logged in more than once

On the first line, enter the person's LOGIN NAME. If you want to know who
is logged in, press AW (Help) to list all users and the terminals they are using.
If that user has logged in to more than one terminal, fill in the name of the
tenninal they sre currently using in the second input field.

I
I

SYSVISION

Press AF to execute the command.

The screen will be cleared. and the text will appear:

•fJ Type the message to be sent (tenni!late by pressing AD)

Begin lyping in the message. When you are through, press RETURN to take the
cnrsor to the beginning of a blank line, thea press AD.

When you are through you will be prompted to press RETURN to go back to
the menu.

NOTE: There is a way a user can prevent you from writing onto their terminal.
If this is the case, the message Permission Denied will be displayed on your
screen. For more information, please refer to the mesg(l) corrunand in the
System V/AT Rnntime System Manual.

H · WHO IS LOGGED IN?

This command allows you to fihd out quickly who is logged in to the computer
system, which tenninal they are using, and What time they logged in. It is an

�1 informational screen only. An example Screen showing the format of the display
\..__) follows (your output will be different):

Login Name Tenninal Date Logged In

root console Feb 8 16:24
paul cons2 Feb 8 14:44
bill ttyO Feb 8 13:21
markc tty1 Feb 8 18:55

You will be asked to press RETURN to redisplay the menu.

C • LOG ONTO ANOTHER SYSTEM

This comrrumd allows you to call and log onto another computer system. You
can use your tenninal as a workstation for another computer. not just the one
you normally use.

Q System to be called

Enter the nllllle of the system you wish to access. If you don't know the name of
the system ptess AW (Help} for a list of computer systems that are avallable for

3-7

SYSVISION

3-8

you to log onto. A list of system names and associated descriptions will be
displayed in the help window.

Once you have entered the appropriate system name, press AF to execute the
command.

After you have finished using the remote system, be sure to logout and then
tenninate the session by typing "".<RETURN> which will instruct your
system to break off communications with the remote system. For more infor
mation, please refer to the cu(l) command in the System V/AT Runtime
System Manual.

M • MAIL TO ANOTHER SYSTEM

_ _ This command is used to �ertd a ;mes_::;age to a user on another system. You cart -·-----
also have copies of your message sent to other users.

Send to :
(address as "s)rsname!sysname!user")

Subject:

Date:

Message

Send copies to:

Enter the user's name on the "Send to:" line. Notice that you can address the
user as "sysname!sysname!user". Each system name, separated by a "!" (known
as a "bang"), indicates a step in the network of interconnected systems which
must be traversed to reach the user.

For example: tsc!baysys!markc

This address indicates that first the system named "tsc" must be called which in
tum will call the system named ''baysys" on which the user "markc" can be
found.

You can press AW (HELP) for a list of systems immediately accessible to your
system.

Next. enter the subject of your message.

SVSVISION

Enter the date in month, day, year format, for example: 12/31/86.

Enter your message.

If you want to send copies of your message to other users who are on other
systems, enter their "names" the same way as above. Separate the names with a
space or a conuna. You may send copies to users on your own system as well as
on other systems. For users on your local system, you must omit the system
name.

Press AF to execute the command and send the mail.

U • DISPLAY A LIST OF KNOWN SYSTEMS

This command allows you to find out quickly what computer systems are
available to log onto. The screen will display the available systems by System � - ---- ·- , -, -� 'NaiDi-8nd DeSCilptiOil.-ThiS is �an informailonaf ScieenOniy. 7\ii e:Xaniple-sereen-- �- -· � �

0

0

showing the format of the display follows (your output will he different):

System Name

tsc
uport

Description

TaskForce Software Corporation
Microport Systems Inc.

You will be asked to press RETURN to redisplay the menu.

3-9

SYSVISION

3-10

HARD DISK MENU

INTRODUCTION

The Hard Disk Funptions Menu allows you to perform many "housekeeping"
tasks fat the hard disk. It enables you to make a new directory, change to another
directory, or remove a directory. it alsO allows you to move files around on the
hard disk, copy them, rename them, or remove them entirely.

mpdisk Hard Disk Functions 01/31/87 09:30

Directory FunctiOns File Functions

D Display Current Directory p Display a File

L List Current Directory M Move a File

I Change Directory R Rename a File

M Make a Directory c Make a Copy of a File

R Remove a Directory z Copy a File to a Directory

X Remove a File

Quit-" X Help..AW More Keys_AY Previous-"P

Select the letter or character for the function you wish to perform and proceed to
the corresponding command in this section.

D • DISPLAY CURRENT DIRECTORY

This command allows you to display the name of the directory in which you are
curreridy positioned It is Useful in reminding you of your location in the sys
tem's directory hierarchy.

When you press D from the menu, the screen will be cleared and the name of the
directory at which you are currently positioned will be displayed at the bottom
left. Simply press RETURN to redlsp!ay the menu.

. !)

0

Cl

SYSVISION

L • LIST CURRENT DIRECTORY

This command allows you to display the contents of the current directory. You
can specify how detailed you want this information to be .

Detailed listing of files?

Display file types?

Answer Y or N to these two questions. The default is N.

A detailed listing of files includes the file's ownership, its size in bytes, and the
date on which it was created. If you do not select a detailed listing of the file,
only its name will be displayed.

File types are displayed, if they are requested, as special characters at the end of
the file name. The types are:

'? "= clirectory " * "= executable file " " (blank) = text file

Press AF to execute the command

I · CHANGE DIRECTORY

You can change your poSition in the 1rlerarchy of directories from any menu.
The directory in which you are presently positioned is referred to as your "cmrent
directory". By simply pressing the "f' (slash) key, you can change your position
from one directory to another.

When you press the "/", two lines appear at the bottom of the screen. The first is
the name of your current directory (your current position).

Next appears a prompt line which reads:

Enter new directory name-----------

Type in the name of the directory you wish to move to and press RETURN.
You will then be moved to this new directory. If, however, the directory you
specified does not exist, or was entered incorrectly, you will receive the message:

"Directory does not exist"
"Could not perform requested function. Press RETURN to continue or AE
to exit."

3-11

SYSVISION

3-12

You can simply press RETURN to try again, or press AE to abandon your
attempt to change your current directory position.

Examples:

You are located in /usr/tmp. You move to directory /usr/acctby pressing the "/"
key, and then typing "/usr/acct" and pressing RETURN.

Suppose further that after moving to /usr/acct, you wish to change to a sub
directory that is called fusr/acct/'oob. All you need to enter is "bob".

To change back to the former directory, you must enter "/usr/acct".

M - MAKE A DIRECTORY

This command allows you to create new directories (or subdirectories).

Directories to be created

You will generally only be creating new directories as subdirectories of your
home position. To see a list of the files and directories contained within your
current directory Press AW (Help).

Enter the name of the directory to be created. For example, enter "proposals".
You will create a subdirectory contained within your current directory. In it you
might create or store proposals.

Enter "F to execute the command.

R - REMOVE A DIRECTORY

This command allows you to remove unused or tmwanted directories. In order for
a directory to be removed, it must be empty. It must not contam any files or
subdirectories.

Directories to be removed

Force the removal of all files and tl
subdirectories within the directory
to be removed

You will often be removing subdirectories of your current directory. It is there
fore often helpful to press AW (Help) to display the contents of your current
directory.

SYSVISION

0

Enter the name of the directory to be removed.

At times you will wish to remove a directory along with its contents. You can
cause the system to remove a directory and all the files and subdirectories it
contains by answering Y to the next prompt Notice that this blank is filled in
with a default value of N. This will help to remind you that you must USE
CAUTION when removing IDes in this manner.

Enter Af to execute the command.

P - DISPLAY A RLE

This command allows you to display a text file on the screen. The file will be
displayed one page or screen full at a time.

If you want to select a IDe from within you current directory press AW (Help) to
display a list of these IDe names.

Enter the name of the file to be displayed. You can enter more than one file
name by simply separating their names with spaces or commas. The files will
be displayed sequentially.

Enter Ap to execute the command.

Each IDe is displayed as a series of pages (screen fulls) of text. At each you will
be prompted to press RETURN to proceed to the next page. If you do not wish
to continue paging through the file, press Q and then press the RETURN key.
The display of the IDe will be interrupted and you will be prompted to press
RETURN to go back to the menu.

V - MOVE A FILE

This command allows you to move a file from one directory to another. 1bis is
useful when you want to place files of the same type tngether in one directory.

Name of llie(s) to be moved

t:::J Target directory name

3·l3

SYSVISION

3-14

Enter the name or names of the files that you want to move. If you have more
than one file to move, separate the me names with a space or a comma. Enter
the name of the directory that is the destination (or target directory) of the files.

Enter AF to execute the command.

N - RENAME A FILE

This command allows you to change the name of a file.

Current file name

New file name

If you are renaming files within your current directory, you can press AW (Help)
to display a list of their current names.

First enter the file name that you want to change.

Next enter a unique new name for the file.

Enter AF to execute the command.

C - MAKE A COPY OF A FILE

This command allows you to make a duplicate of a file.

From file:

To file:

If you are copying a file in your current directory, press AW (Help) to display a
list of those file names.

First enter the name of the file that you wish to copy.

Next enter the file name that you wish to give the new copy. It should be a new
name, not one that already exists. If you do enter an existing file name, you will
be warned with the message,

SYSVISiON

Target file already exists - Cannot destroy

Simply enter a unique name for the new file and press RETURN.

r� Enter IIF to execute the command. \ __ �;

Z - COPY A FILE TO A DIRECTORY

This command allows you to make a duplicate of a file and store it in another
directory. Both files will have the same name, but be contained within different
directories.

Name of file(s) to be copied

Target directory name

;--�--���lfl:lieDies you are copymg ftom are contained�Uryou:r-current�directory;-pressc-�� -��. -'
AW (Help) to display a Jist of their names.

0

0

Enter the name(s) of the files that you want to copy. If you have more than one
file to copy, separate the file names with a space or a cortuna. Enter the name of
the directory that is the destination or target of the flles.

Enter AF to execute the command

X - REMOVE A FILE

This command allows you to remove files from the disk. Since deleting files
accidentally can be a problem, safeguards have been placed in thiS command.

Ask for confmnation before deleting
each file?

Remove flies for which you have no
write permission withOut asking
for confmnatiort?

Files to be removed

By answering yes "Y" to this first prompt. you will cause the system to ask for
confirmation from you before removing each file. Each file name Will appear on
the screen and you cause its removal by entering a "y". This makes it possible
for you to change your mind about removing a file.

3-15

SYSVISION

3·16

Sometimes in UNIX. files are created to which your access is limited in different
ways. For instance, you may be allowed to look at file, but you cannot change
it. (These files are often special tables that a program uses or some other infor
mation that is important to keep untouched.) Normally when removing these
ftles, you will be asked for confirmation first By answering "Y" to the second
prompt on this screen, you will cause the system to remove these kinds of files
without asking for confirmation. USE CAUTION WHEN SELECTING THIS
OPTION.

Enter the name(s) of the file(s) to be removed. Separate each file name with a
space or a comma

If you are removing .f!les that are in your current directory press AW (Help) to
display a list of these file names.

Enter Ap to execute the command.

0

0

SYSVJSJON

PRINTER CONTROL MENU

INTRODUCTION

The Printer Control Menu allows you to control the UNIX print spooler. You
may send a file that you want to print to a printer queue. When the printer
becomes available, the file is printed. This allows you to make print requests
any time and have the system manage the availability of the device.

Printer Control allows several printers to be shared among many users. Printers
can be grouped together in "classes", for example, letter quality printers in one
class, dot-matrix in another. Print requests can be queued by class, allowing
your file to be printed on the next available printer in the class you requested.

Print requests can be cancelled if not needed. Printers may be stopped if there is a
jam or a paper out problem. Printers can be prevented from accepting requests if
theY are out ofservice andpCan ·accepftliem again--vt'lien ilie prOb1em�}ias Peen����-=����
resolved.

mpadmlp Printer Control 01/31/87 09:30

User Functions Spooler Control

p Printa File c Cancel Spool Entry

s Display Printer Status E Enable a Printer

Scheduler F Disable a Printer

L Start Printer Scheduler J Accept a Printer Request

T Stop Printer Scheduler R Reject a Printer Request

Quit-"' X Help-"W More Keys..AY Previous-"P

Select the letter or character for the function you wish to perform and proceed to
the corresponding command in this section.

3-17

SYSVISION

3-18

P • PRINT A FILE

Press F to Print a File. This command allows you to print a text tile on the
printer.

Destiit.ation (printer or class) name

Send message when printing complete?
ni - via tnail system
w - notify immediately

(write nisg. on your screen)

Number of copies to print

Tide for banner page

Name of the ille to be printer

_I _

First enter the name of the printer (or class of printers) at which you want the
rue to be prinied. If you don't know an appropriate name, press AW (HELP) to
display a list of printer names.

Often you wish to be notified when your file has finished printing. if so, enter
"M" to be notified via the mail system, or "W" to be notified more iriunediately
by a message written directly to your screen.

Enter the number of copies you wish printed. The default is one copy.

Enter the text which will appear on the banner (leading) page of your output
(The interface program associated with some printers does rtot accomodate a
banner page, so this option will not work with all printers.)

Enter the !larb.e(S) of the text file(s) you wish to print. You can press AW (HELP)
for a list of the files in your current directory. If you specify more than one file,
seperate their names with a space or a cOmma.

Enter "F to execute the command.

S • DISPLAY PRINTER STATUS

Press S td Display Printer Status. Information about the printers you have aVail
able will appear on the screen.

0

SYSVISION

Example:

scheduler is running.
system default destination: p1
device for lp: /devflp
device for p1: /devftr;O

lp accepting requests since Jan 25 11:13
pl not accepting requests since Jan 26 17:50

AlP Checks mounted

printer lp disabled since Jan 26 18:01
januned

printer p1 is idle, enabled since Jan 25 02:38

From this display, you can detennine:

1. The status Of the print schedtileL'I'lie-sdleaiileTJ.Sllie·program tli1tfcontrols
the printers. If it is active, enabled devices will print spool entries that are
in the print queue. If the scheduler is off, no printing will occur at any de
vice.

2. The system default printer. This is the destination that user output is routed
to if a specific printer is not requested.

3. Which print devices are connected to your system and their stai.US.

4. Printer's acceptance starus. Printers that accept requests will allow the user
to route output to them using the lp conunand. Printers that reject requests
will notify the user that they are not available when they try to route output
to their destination. Control over acceptance status is set by the accept and
reject commands which are explained in this section. For further informa
tion on these commands, you may also reference the System V /AT Runtime
System manual.

S. Printer's enable status. Printers that are enabled are actively controlled by the
print scheduler program. They will print output as it becomes available in
the print queue. Control over enable status is set by the enable and
disable commands which are explahled in this section. For further infor
mation on these conunands. you may also reference the System V /AT
Runtime System manual.

Press RETURN to redisplay the Printer Control Menu.

3-19

SYSVISION

3-20

L • START PRINTER SCHEDULER

The Scheduler controls all of the printers that are attached to your system. AB
each job is completed the scheduler takes the next job request in the queue and
routes it to the appropriate printer to be printed. While the Scheduler is numing,
print jobs that are routed to an enabled device will be printed. If it is not run
ning, jobs will not be printed on any printer.

The Printer Scheduler is started automatically each time the system is turned on.
However, if the Scheduler has been stopped it must be restarted before any print
ing will occur.

To Start the Printer Scheduler press L.

T • STOP PRINTER SCHEDULER

Occasionally it is necessary to reconfigure the printer system using commands
that carmot be executed unless the Scheduler is inactive. The Stop Printer
Scheduler command preveots the Scheduler from starting any new print jobs.
Any requests currently printing will be completed.

Stopping the scheduler prevents the computer from attempting to use all print
ers. Specific printers may be stopped using the disable command.

To Stop the Printer Scheduler press T.

C • CANCEL SPOOL ENTRY

Press C to cancel requests in the print queue.

This command is used to remove one or more print jobs from the queue. It may
be used before a job begins to print or after it has already started.

Request ID(s) to be cancelled

Cancel request now printing on printer

The Cancel command can be used one of two ways.

SVSVISION

1. To cancel specific spool requests:

Enter the request id for the entry you wish to cancel. If necessary, press the AW
(Help) 10 display a list of your spool entries. The help window will contain a
display in the following format. (your information will he different)

Request ID User Name

pl-1117 paul
pl-1119 paul

Size

1167
2107

Date Submitred

Feb 8 09:17 on pi
Feb 8 09:23

Leave the second field blaok and press AF to execute the command.

2. To cancel the job that is curreruly printing on a particular printer.

Enter the printer name, e.g. pl, that is currently printing the job that you want
·�-�-��to�canc.el.Xne.c:e��-ary,J>r���tb!' AW.(Help) 10 displa� the list ofprinters that are

available, and their status. The help wmdow will contain a display m the follow- -
ing format: (your information will he different)

0

0

printer lp disabled since Jan 26 18:01
jarruned

printer pl now printing pl-1117, eoabled since Jan 25 02:38

Leave the frrst field blaok and press AF to execute the command.

E • ENABLE A PRINTER

The enable command activates the printer to start printing print jobs that are in
the queue.

Printer(s) 10 he enabled

Enter the names of the printers you want to activate. To enter more than one,
put a space or a comma between each printer name. If necessary, press AW (Help)
to display a list of printers attached to your system and their current status.

Press AF to execute the command.

3-21

SYSVISION

3-22

F - DISABLE A PRINTER

The disable conunand deactivates a printer from printing spool requests. This
will prevent the printer from printing any jobs that are in the queue. This com
mand is especially useful if a paper jam or hardware problem occurs.

If a printer is in use at the time it is disabled, then the request that was printing
will be reprinted in its entirety when the printer is enabled. Print requests can
still be routed to a printer that is disabled. They go into the queue and will print
when the printer is enabled.

Reason for disabling printer

Cancel any request currently printing

Printer(s) to be disabled

Enter a reason for disabling the printer, such as paper jam, hardware problem,
paper out, etc. Thls will be shown on the screen status report. and will let other
users know what has happaned to the printer(s).

Answer Y or N after Cancel any request currently printing. If you answer Y, the
entry currently printing will be removed from the print queue. If you answer N,
the entry will be reprinted in its entirety when the printer is enabled.

Enter one or more printer device names, with a space or comma separating them.
If necessary, press AW (Help) for a list of printers available.

Press "F to execute the conunand.

J - ACCEPT PRINTER REQUESTS

Accept Printer Requests allows the named printer destinations to begin accepting
user print requests. Destination is the name of a printer or a class of printers.

The accept command allows users to reference a printer and route output to il
The enable command determines whether the print scheduler will initiate printing
at the device.

Destination(s) to begin accepting
requests (printers or class names)

SYSVISION

Enter one or more printer or class names with a space or conuna between them.
If necessary, press AW (Help) for a list of available printers and class names.

Enter AF to execute the command.

R • REJECT PRINTER REQUESTS

Reject Printer Requests prevents the scheduler from accepting requests for the
nam¢ print destinati-ons, For example, if too large a bacl4og has built up at ;t.
certain printer or if the printer has l?een removed, it would be necessary to
prevent user requests from being TO'!Ited to that d�tination.

·

Any requests that are :in the queue will remain there until they are printed,
cancelled, or moved to another queQe. When the condition �at caused the reject

. has been corrected. use the accept command to �ow requests to be received at
I that destination again. ,-·�·� -��- · -"--���

0

0

Reason for causing destination to reject
lp requests

Destination(s) to reject
(Printer or class names)

Enter a reason for rejection of lp requests, such as too many �equests or print:?r
out for repair. This will be shown on the screen status report, and will let other
users know what has happened to 1he printer(s).

Enter one or more printers/class names with a space or comrp.a between them.
If necessary, press AW (Help) for a list of printers/class names available.

Enter Ap to execute the command.

3-23

SYSVISION

3-24

USER AND GROUP MENU

INTRODUCTION

The User and Group Menu allows the System Administrator to add new user
accounts and groups to the system, or change or delete existing user accounts and
groups. The administrator can also change passwords for the accounts or force all
users to change their password the next time they log in.

mpadmusr Administer Users 01131/87 09:30

User Maintenance Group Maintenance

u Add a User Account G Add a Group

c Change a User Account Delete a Group

D Delete a User Account Setup

p Change a User Password M Modify addusr defaults

F Force aJI new Passwords

Quit-" X Help-"W More Keys..AY Previous-"P

Select function by entering letter or using-arrow keys and pressing
RETURN

Select the letter or character for the function you wish to perform and proceed to
the corresponding command in this section.

U - ADD A USER ACCOUNT

This cqmmand allows the System Administrator to add new user accounts to the
system. The Add User conunand can be customized for your installation by
running the Modify-Add User command which is explained at the end of this
section. You may determine what values will be prefilled for the Group ID and
Shell fields as well as which directory is used for creating home directories for
new users. The values that may appear on your screen may be different from
those that follow. For more information, please refer to the Modify Add User
conunand at the end of this section.

SVSVISION

User ID number

Group iD

1\ _____) User name and phone number

Home directory

Shell

Account Name

bin/sh

Enter a user id number, or the system will automatically assign the next
available number. Leaving this field blank and letting the system assign the next
available number is recommended. This will prevent you from inadvertently
assignjng duplicate User ID numbers.

-�-�"�&;!�iihe-giOliiJICfiiumli<r: The<le1auit -giOiip-idis ooplayea ilriUyOumayarange����
it if you wish. If you want to know what the available group ids are, press A W

0

0

(Help} and a list showing GROUP NAME, ID, and MEMBERS will be dis-
played in the help window. Select the id corresponding to the group of which
you which the user to be a member.

Enter the user name and phone number. This is considered a comment field and
is used for infonnational purposes only. All characters except a colon (:) are
accepted.

The user's home directory is where he will be placed when logging in. If no
directory name is entered here, the system will create a subdirectory in the default
home directory. which is displayed at the bottom of the screen when the cursor is
in this field. It is initially setup as /usr/acct and may be modified by using the
Modify Add User commarid.

There are two main shells that are used in UNIX; the Bourne Shell and the C
Shell. Enter either /binlsh, for Bourne Shell or /bin/csh, for C Shell or the
full path name of the user's initial program.

Each user must have a password in order to log on to the system. The
administrator can assign a password to the account by entering Y to "Assign an
initial password?'\ or the user will assign his own password when he first logs
onto the system. The administrator has more control of the account if he first
assigns the password

3-25

SYSVISION

3-26

Enter the Account Name, which is also referred to as the LOGIN NAME. If an
accotmt already exists for that name, an error message will appear at the bottom
of the screen: "Account already exists for that name". Press "'C to clear the line
and enter a new, unique name.

Enter Ap to execute the command. It will take a few seconds and a message
"Working ... " will display on the screen.

If you �wered Y to assigning a password to the account the screen will be
cleared and you will be prompted:

Assigning password for user: ACCOUNTNAME

New Password:

(ACCOUNTNAME is the name that you previously assigned the user.) Enter
the password, then re-enter it when prompted. You will notice that the password
is not displayed when you type it. To ensure that you typed it correctly, the
computer !equires that you retype it and compares it against your first response.
If there are �y differenCes, it will required you to enter it again. When complete,
the USI;IR and GROUP M:ENU will rennn.

.

C - CHANGE A USER ACCOUNT

This command allows the System Administrator to change information on a user
account

Account Name to be changed

Enter the Account Name to be changed. For more informatioo, press AW (Help)
to display a list of users. The infomiation is displayed in the format: LOGIN
NAME, ID, GROUP, AND COMMENT. The WGIN NAME is the same as
the ACCOUNT NAME. COMMENT is the information that was eotered as the
name and phone number.

Enter AF to execute the command. The system will retrieve the information for
tha� �er and in a few seconds a new �creen will be displayed.

SYSVISION

Group iD

User name and phone number

() Home directory

Shell

Account Name

The lines will contain the information that was entered when the user account
was first added. Move to the line or lines that are to be changed. Enter the new
information.

Enter AF to execute the connnand. When complete, the USER and GROUP
MENU will return.

I . -�-�� -�-
D - DELE�E A USER ACCOUNT

-

0

0

This command allows the System Administrator to delete a user account and
optionally his home directory and all files and subdirectories contained within it.

Remove home directory and all files? _

User name(s)

If all flies belonging to the user account(s) should be totally eliminated answer
Y to the first prompt. This will recursively delete the user's home directory and
all files and subdirectories contained within it. IF YOU ELECT TO
SELECT THIS OPTION, BACKING UP THE F1LES BEFORE
PROCEEDING IS HIGHLY RECOMMENDED. If other users share
the directory and flies or you wish to preserve their information, answer N.

Enter the user name(s) that are to be deleted. If there is more than one name,
separate the names with a space or a comma.

Enter AF to execute the command.

If you selected Y for the frrst prompt, the screen will be cleared, and the
following prompt displayed for each user name specified:

About to delete home directory: HOME DIRECTORY for user:
ACCOUNT NAME
Enter 'y' to continue or 'n' to bypass directory and f:rle removal

I

,3-27

SYSVISION

3-28

Enter y to delete this user's files and directories and n to bypass delete and
proceed with the next user. When complete, the USER and GROUP MENU will
return.

P • CHANGE A USER PASSWORD

This menu allows the System Administrator to change a user's login password.

Login name

Enter the login name ot the user you wish to change or press AW (Help) to
display a list of users. The information is in the format: LOGIN NAME, ID,
GROUP, AND COMMENT. The LOGIN NAME is the same as the
ACCOUNf NAME. COMMENT is the information that was entered as the
name and phone nwnber.

Enter Ap to execute the command. hnmediately the screen will clear and you will
be prompted:

New password:

Enter the new password, then re-enter it when prompted. If they do not match
you will have to enter it again. Wben complete, the USER and GROUP MENU
will return.

F • FORCE ALL NEW PASSWORDS

This command allows the System Adntinistrator to force ALL the user accmmts
to select a new password the next time they sign on. This enables a feature of
UNIX called password aging. The system password file is updated with a code
that requires all users (except root and other secured administrative logins) to
pick a new password the next time that they sign onto the system.

Are you sure you want each user to
select a new password?

The default is Y. Use caution when executing this command and make sure
users are notified of your actions.

Enter AF to execute the command. When complete, the USER and GROUP
MENU will return.

()
\.______/

SYSVISION

G • ADD A GROUP

This corrunand allows the System Administrator to add groups to the system
group file.

Numerical Group ID

Group Members

Group Name

Enter an id number for the group, or the system will search for the highest id
that currently exists, increase it by one, and assign it to the group.

Enter the WGIN NAMEs of the users that are to be in the group. If necessary,
press AW (Help) to display a list of users. The information is in the format:
LOGIN NAME, ID, GROUP, AND COMMENT. COMMENT is the

, .. ���--- -- ·iiifomla:fion'Thatwas enterect�as-1]fe-���an-g-phone·number.�Jfmore·_than""One,��--��. ·
name is entered, separate the names with commas or blanks.

0

0

The Group Name is 1 - 8 characters long and must be unique (not already used
by the system).

Enter AF to execute the conunand. When complete, the USER and GROUP
MENU will return.

I • DELETE A GROUP

This conunand allows the System Administrator to delete groups from the
system.

Group Name(s)

Enter the name of the group(s) to be deleted. If necessary, press AW (Help) to
display a list of available groups, with the GROUP NAME, ID, and
MEMBERS. If more than one group is to be deleted, separate the names with
commas or blanks.

Enter the AF to execute the conunand. When complete, the USER and GROUP
MENU will return.

3·29

SYSVISION

3-30

M - MODlFY ADDUSER DEFAULTS

This command allows the System Administrator to create defaults that are used
when user accounts are added. This saves time when many of the users are being
placed in the same main/parent directory, group, or shell.

Parent Directory for new accounts

Default Group ID

Default Shell

Enter the directory that is to be 115ed as the parent directory, such as "/usr/acct."
This will appear as the default on the message line (at the bottom of the screen)
in the add user command. (If this directory does not exis� it will be created)

Enter the id of the default group. If necessary, press AW (Help) to display a list
of available groups, displaying the GROUP NAME, ID, and MEMBERS. New
user accounts that are added will belong to that group unless you override this
value when executing the add user command.

Enter the name of the shell you wish to be default. This may be either
lbin/sh for the Bourne shell, lbin/csh for the C shell or the name of any
executable program.

Enter AF to execute the command. Wheo complete, the USER and GROUP
MENU will return.

NOTE: Once the defaults are changed, you need to exit Sys Vision and restart the
program for them to take effect. This is because the values are stored in envir
onment variables that are set at program starlnp time.

0

(\ __j

0

SYSVISION

FLOPPY DISK MENU

INTRODUCTION

This menu allows you to prepare and use floppy disks as extensions your
computer's hard disk. It allows you to construct file systems on a floppy disk
which UNlX treats the s3111e as a file system on the hard disk. Fin;t the floppy
disk must be formatted, then a file system must be made on it. � order to access
a file stored on a floppy disk file system. it must be mounted, then when
fmished, unmounted. This menu will also allow you to copy files to and from
the floppy disk file system while it is mounted.

mpflop Floppy DiskFunctions 01/31/87 09:30

F Format a Floppy

s Make a Floppy File System

c Check a Floppy File System

M Mount a Floppy File System

U Unmount a Floppy file Sy�em

X File/Dirto Floppy

y File/Dirto Hard Disk

Other Floppy Media Commands

D Duplicate a FloPPY

Quit-'X Help"'W More Keys-"Y Previous-"P

Select function by entering letter or using arrow keys and pressing
RETURN

Select the letter or character for the function you wish to perform and proceed to
the �rresponding command in this section.

F · FORMAT A FLOPPY DISK

This command allows you to format a floppy disk, which prepares it for use on
your floppy disk drive.

Name of device contahting floppy
to be formatted

·

3-31

SYSVISION

3-32

First you must select the name of the device which contains the disk. You may
press AW (Help) to display the list of devices available. Enter the two character
name of the device you wish to use. A table of devices is listed below.

Description

Oh /dev/rdsk/fd096 1.2MB High Density Floppy in Drive 0
Od /dev/rdsk/fd048 360 KB Double Density Floppy in Drive 0
1h /dev/rdsk/fd196 1.2MB High Density Floppy in Drive 1
1d /dev/rdsk/fd148 360 KB Double Density Floppy in Drive 1

Make sure the floppy disk is loaded correctly and the door closed.

Enter AF to execute the command.

The screen will display the message that the formatting process is taking place, -
and on which device. When formatting is complete, you will be prompted to
press RETURN to go back to the menu.

S • MAKE A FLOPPY FILE SYSTEM

This command allows you to create a ftle system on a floppy disk allowing the
floppy to be used as an extension of the hard disk system.

Name of device for making flle system

You may press AW (Help) for a list of the devices that are available. Enter the
two character name corresponding to the the device in which the floppy disk has
been placed.

Enter "F to execute the command.

The screen will display a message that the file system is being created. You will
be prompted to press RETURN when it is complete.

C • CHECK A FLOPPY FILE SYSTEM

This command allows you to check a floppy file system that you have created
earlier. It lets you make sure that the disk has no errors after a period of pro
looged use.

Name of device for checking file system

SYSVJSJON

Next enter 1he name of 1he device in which 1he floppy disk has been placed.
Press AW (Help) for a Jist of 1he devices 1hat are available. Enter 1he two
character name corresponding to the the device in which the floppy disk has been
placed.

Enter AF to execute the coJJUnand.

The screen will display a message that the file system is being checked. You
will be prompted to press RETURN when it is complete.

For more about checking file systems, refer to fsck(l) in 1he System V/AT
Runtime System manual.

M • MOUNT A FLOPPY FILE SYSTEM

1 .. ��=��1-J!i:sr�9�anct�P-��xopJ&._mo�t_ a flp_p_py fj.k, �y��� �Q �_!_!J'Ol!_can_������� I the programs or flies that are on that diSk. "MoUTI.tirig" inforins the systeffi that a --
�-�-

0

device (a disk or a tape) is now available for use.

Name of device with floppy to be mounted

Directory on which to mount the floppy

Mount file system as read-only?

First you must select the name of the device in which the floppy disk has been
placed. You may press AW (Help) for a list of mountable devices. Enter the two
character name corresponding to the the device in which the floppy disk has been
placed.

Next; enter 1he directory on which to monot 1he floppy. Normally, 1he directory
"/mnt" is used. This is a directory created specifically for the purpose of
mounting.

The file system can be mounted as read-only preventing the user from making
changes to the files 1hat are on 1he floppy disk. Simply answer Y(es) to 1he next
prompt to mount the floppy file system in a "read�only" manner.

Enter Ap to execute the command.

A message will display Qn the screen that the file system is being mounted.
When it has completed, you will be able to access the files on the floppy disk.

3-33

SYSVISION

3-34

U - UNMOUNT A FLOPPY FILE SYSTEM

Tiris comman4 allows you to unmount a floppy file systetii when you are
through usi!Ig the programs or illes on that disk.

Name of device to be unmmm�?

You may press AW (Help) for a list of mountable devices. Enter the two
character name corresponding to the the device in which the floppy disk has been
placed.

Enter Ap to execute the command.

A message will dispJay on the screen that the device has been unmounted.

X- [COPY] FILEIDIR TO FLOPPY

'I'lti$ command allows you to coPY illes and/or directories from the hard disk to
the currently mounted floppy ille system disk.

Name of device at which floppy is
currently mounted

Fj]es/directories to be copied

Fi,st you must en� the name of the device in which the floppy disk has been
placed. You may press AW (ijelp) for a list of mountable devices. Enter the two
character name corresponding to the the device in which the floppy disk has been
placed.

On the next line, you may press AW (Help) again, to display the contents and
name of the current dir�ctory. Enter the flle names and/or directories to be copied
to the floppy disk. lf there is more than one file, separate the files names with a
space or a comma.

Enter Af to execute the command.

The screen will display the file names as they are copied.

SYSVISION

() \ ___ ./

Y - [COPY] FILE/DIRECTORY TO HARD DISK

This command allows you to copy files and/or directories from the currently
mounted file system to 1he hard disk.

Name of device at which floppy is
currently mounted

Files/directories to be copied.
(located on the mounted floppy)

Target directory on hard disk
to which files will be copied

First you must specify the name of the device on which the floppy file system
has been mounted. You may press AW (Help) for a list of mountable devices.

! Enter the two character name corresponding to the the device in which the floppy :���msl<-hasoeeriplaced. · · ��--�-� · ·-· · - -- ·----�-� �-��--�-- -----�-�

On the next line, you may press AW (Help) again, to display the contents and
name of the current directory. Enter the file names and/or directories to be copied
from the floppy disk file system. If there is more than one file, separate the files

o names with a space or a comma.

0

Enter the directory name on the hard disk to which you want to copy the files.
That is the target directory. If no directory name is entered the files will be
copied into your current directory.

Enter Ap to execute the command.

The names of the files will be displayed on the screen as they are being copied.

D - DUPLICATE A FLOPPY

This command will allow you to make a duplicate of a floppy disk. It is not
necessary to first mount a floppy in order to duplicate it. It will contain exactly
the same information as the original disk.

Name of device for floppy duplication

You may press AW (Help) or a list of devices. Enter the two character name
correspondiog to the the device in which the floppy disk has been placed.

3-35

SYSVISION

3.J6

Insert the "original" disk into the disk drive. Enter AF to execute the command.
The system will begin to store the information which is on the disk onto the
hard disk. This will take several minutes. You will then be prompted to take out
the original disk, and insert a new blank disk into the same diak drive. The blank
disk will be automatically foonatted and then the stored information will be
placed on that disk. When the process is complete, you will have two identical
diska;

0

0

SYSVISION

SAVE/RESTORE MENU

INTRODUCTION

The Save/Restore Menu allows you to prepare floppy disks to be used for back
ups, perform the backup procedure (which is copying files onto the floppy disk
or tape for safe keeping), and also restore the files back onto the hard disk system
when they are needed.

mpadmsave Save/Restore Operations 01/31/87 09:30

Save Data Restore Data

A Files and/or Directory R Single File/Directory

PrepareNerily Media Change Directory

F Fonnata FJoppy Disk

C Catalog Floppy Disk(s)

Quit�"X Help'""W More Keys-"Y Previous-"P

Select function by entering letter or using arrow keys and pressing
RETURN

I · CHANGE DIRECTORY

From any menu you can change your position in the hierarchy of directories.
The directory in which you are presently positioned is referred to as your "current
directory". By simply pressing the "/" (slash) key, you can change your position
from one directory to another.

When you press the "/", two lines appear at the bottom of the screen. The first is
the name of your current directory (your current position).

Next appears a prompt line which reads:

Enter new directory name-----------

&I

3-37

SYSVISION

3.J8

Type in the name of the directory you wish to move to and press RETURN.
You will then be moved to this new directory. If, however, the directory you
specified does not exist. or was entered incorrectly, you will receive the message:

''Directory does not exist"
ncould not perform requested functioiL Press RETURN to continue or AE
to exit."

You can simply press RETURN to try again. or press AE to abandon your
attempt to change your current directory position.

Examples:

You are located in /usr/trnp. You move to directozy /usr/acct by pressing the "/'
key, and then typing "/usr/acct" and pressing RETURN.

Suppose further that after movillg to /usr/acct, you wish to change to a sub
directory that is called /usr/acct/'oob. All you need to enter is "bob".

To change back to the former directory, you must enter "/usr/acct".

A · [SAVE] FILES AND/OR DIRECTORIES

This command allows you to backup files or whole directories onto floppy disks
or a tape. MAKE SURE YOU HAVE ENOUGH DISKS FORMATTED
BEFORE YOU BEGIN TillS PROCEDURE. You will need at least one high
density disk (which can hold 1.2 megabytes), or three standard DSDD 360K
disks for every megabyte (1024 kbytes).

Name of device for baclcup

File/Directory name(s) to be backed up

First specify the device containing the floppy disk. You may press AW (HELP)
for a list of backup devices. Enter the two character name of the device in which
the floppy disk has been placed. WRITE DOWN ON A PIECE OF PAPER
THE FULL NAME OF THE DEVICE YOU SELECTED, such as
"/dev/rdsk/fd096". Press AW (HELP) again, when you are on the next line, to
display the contents of the current directory.

If you want to backup the contents of the directory you are currently positioned
in, and all of its subdirectories, enter a period "." on the line.

0

SYSVISION

If you want to backrip specific files, enter those names, with a space or a comtna
separating each name.

If you want to backup a directory, other than the directory you are iD., enter the
directory name, such as "/tmp".

Enter AF to execute the commarid.

The backup procedure will begin. The file names are displayed on the screen as
they are backed up. As each disk is filled up a message will appear on the screen.
It will say:

errno 6 Can't write output If you want to go on, type
devicefflle bame when ready.

Take the disk out, number and label it, and load the next one. Type in the FULL
DEVICE NAME THAT YOU WROTE DOWN. Press RETURN to continue.
Wben finished, store the disks in a safe place.

S · [SAVE THE] COMPLETE SYSTEM

This command allows you to backup the complete hard disk system onto
formatted floppy disks. MAKE SURE YOU HAVE ENOUGH DISKS

(',1 FORMATTED BEFORE YOU BEGIN THIS PROCEDURE. You will need at
v least one high density disk (which can hold 1.2 megabytes), or three standard

DSDD 360K disks for every megabyte (1024 kbytes) .

0

. Name of device for backup

Specify the device containing the floppy disk. You may press AW (HELP) for a
list of backup devices. Enter the two character name of the device iii which the
floppy disk has been placed. WRITE DOWN ON A PIECE OF PAPER THE
FULL NAME OF THE DEVICE YOU SELECTED; such as "/dev/rdsk/fd096".

Make sure the floppy disk.or tape is loaded correctly.

Enter Ap to execute the command.

The backup procedure will begin. The file names are displayed on the screen as
they are backed up. As each disk is filled up a message will appear on the screen.
It will say:

errno 6 Can't write output If you want to go on, type
device/file name when ready.

Take the diak out, number and label it, and load the next one. Type in the FULL
DEVICE NAME THAT YOU WROTE DOWN. Press RETURN to continue.
Wben fmished, store the disks in a safe place.

3-39

SYSVISION

340

F - FORMAT A FLOPPY DISK

This command allows you to format a floppy disk, which means to prepare it for
use on your floppy disk drive.

Name of device containing floppy
to be formatted

First you must select the name of the device which contains the disk. You may
press AW (HELP) to display the list of devices avallable. Enter the two character
NAME of the device you wish to use.

Make sure the floppy disk is loaded correctly.

Enter Ap to execute the command.

The screen will display the message that the formatting process is taking place,
and on which device. When formatting is complete, you will be prompted to
press RETURN to go back to the menu.

C - CATALOG FLOPPY DISK(S)

This command allows you to display a list of all the files stored on a floppy
disk.

Name of device for cataloguing

You may press AW (HELP) to display the list of devices available. Enter the
two character NAME of the device in which the floppy has been placed.

Mske sure the floppy disk or tape is loaded correctly.

Enter Ap to execute the command.

The information will appear on the screen. The file name is on the far right, next
is the date it was crea� then the f:tle size in bytes, and then the ownership of
the file. The nwnbers on the left are the file owner's identifiers. When the listing
is complete you will be prompted to press RETURN to go back to the menu.

SYSVISION

R - [RESTORE] SINGLE FILE/DIRECTORY

Tills conunand allows you to restore files or whole directories back to the hard
disk after they have been backed up onto a floppy disk. You can indicate where r\) you want the files to be restored, and choose which files you want restored '-j

Name of device for restore

Destination directory for files being
restored (optional)

Names of files/directories to be
restored (optional)

i You may press AW (HELP) to display the list of backup devices available. Enter
, the two character NAME of the device in 'which the floppy disk has been placed.

,l� �� ��l)��.��;:,?.�v�r�g;��6��,
F

�
P

�
AP

�
E� 2:_':� FULL �J\11E OF THE

I

I ,

()i

If you do not enter a destination directory for the files, they will be restored in
the current directory that you are in. If you want the files to be restored in
another directory, enter that name, such as n/tmp". (If files were backed up using
complete path names, then they will be restored at these same locations).

If you do not enter the name of files/directories to be restored, everything on the
floppy disk will be restored to the destination that you specified. If you want
only certain files or directories, enter those names.

A short cut to restoring certain files is the use of patterns for file name
matching'. The "*" (asterisk or star, located above the 8) is a "wild card". It will
allow you to match many files by just specifying part of the file name. For
example, you want to restore all files that end with the letters "prop" (for
proposal). You had saved SMITHPROP, JONESPROP, and BROWNPROP.
Now, instead of entering each file name, you can match the PROP, by
specifying "*PROP". All files that end in PROP will be restored. Here's
another example; you could restore all files that begin with the letter C, by
specifying "C*".

Make sure that the floppy disk is loaded correctly.

Enter Ap to execute the command.

The screen displays the message that the restore is in process. The names of the
files that are being restored are displayed along with the number of blocks (the
space) that they occupy. As each disk is completed a message will appear on the
screen. It will say:

3-41

SYSVISION

3-44

Display information about all processes?

Generate a summary listing?

Generate a very detailed listing? '"-
These prompts require Y(es) or N(o) answers. (Leaving a line empty is the same
as entering No). As you go down the screen, each Y answer is a request for more
infonnation. The first will display information about all processes rather than
only those associated with the terminal at which you are worldng. The second
prompt will cause this list to contain some detailed information about each
process. The third prompt, will produce an even more detailed account of process
activity.

Display process associated with terminal

Display selected process ids

Display selected processes for user

The next three prompts allow you to restrict this list to particular sets of
processes. For each, you can press AW (HELP) for a list of processes and users
that are on the system.

You can specify that process information be restricted to those associated with a
given tenninal(s), user(s), or a specific process.

Press AF to exec1J.te the command.

T · TERMINATE USER PROCESSES

This command allows the System Administrator to terminate/kill a process. It is
often used to terminate a process which has caused a terminals to become locked

(hung).
Process IDs

To help you detennine the ID of the offending process press AW (HELP) for the
list of processes and users that are on the system.

Enter the Process ID number(s) that you want to terminate on the line. If there is
more than one, separate the information by commas or spaces.

Press AF to execute the command.

SYSVISION

B , SEND BROADCAST MESSAGE

This command allows 1he System Administrator to send a message to all 1he
�- users on the system. i \
\ ' _J'

Message to be sent

Enter 1he message you want to send on 1he line. Up to 8 lines are available.

If you wish ro know who is logged on to 1he system press AW (HELP) for a list
of these users.

Press AF to execute the command.

W • SEND MESSAGE TO A USER

'This cOmmand allows you to send (write) a message directly to the screen of
another user.

Enter the name of the person to
write to

Indicate which tenninal to write to if
the user is logged in more than once

You can press AW (Help) to list all users and 1he terminals 1hey are cnrrently
using.

Next enter the login name of the message's intended recipient. H that user has
logged in at more than one terminal. fill in the next line with the name of the
terminal 1hey are cnrrently using.

Press AF to execute the command.

R • DISPLAY RUN LEVEL

This conunand allows 1he System Administrator to display 1he run level of 1he
system. The run level detennirtes at which terminals users may log in. Refer to

t· ., the Machine Management Menu for more about setting up terminals to run at
v specified run levels.

When you press R. the screen will be cleared and the current nm level of the
system will be displayed. Press RETURN to 1hen go back to 1he menu.

3-45

SYSVISION

346

D • SET THE SYSTEM DATE

This command allows the Administrator to set the internal clock of the system
to a specified date and time. You can press AW (HELP) to display the curreut
date and time. \,,

Enter the number of the current month

Enter the day of the month

Enter the hour in military time

Enter the minutes

Enter the year number (last 2 digits)

Fill in the blanks with the correct two digit information and press "F to execute
the command.

S • SINGLE USER MODE

This command allows the System Administrator to bring the system down to
single user mode. In this mode only the system console is online.

Grace period (seconds) before shutdown
to single user mode

Are you sure you want to proceed

You can specify the number of seconds which this command will wait before
entering single user mode. If no grace period is specified, a 60 second grace
period will be observed.

You must answer Y(es), that you want to proceed, in order for this command to
execute.

Press Ap to execute the command.

\ '

SYSVISION

F • CHECK FILE SYSTEM FOR ERRORS

This command allows the System Admiilistrator to the check the luSt- me sys
tem for errors. It is recommended that. the system be iri a Single uset state when
this procedure is run. You must position yourself in the root directury (/) by
using ihe Change Directory coinn1and (press the I key and respond with a slash
(/) before you start this proeedure). If you don't change to the toot directory, the
procedure will autOmatically terminate with an error message.

Check the /usr me system?
!device /dev/dsk/Os2)

y

To check a file system, it must fust be unmonnted by the computer. If there are
other users logged on and currently using the /dev/dsk/Os2 device (or if you are
not is the root directory), the coffinuind will terminate and disPlay an eiTor
mesSage. Otherwise, the screen will be cleared and the system Will report its

- ·
-

- �-�progress in ·cb.eclililg-thelllsr!'Iie system.��-�- �- �-��- --�- - • - -��-� �-- - - - - - � -

You must answer Y(es), that you want io proceed, in order for this command to
execUte.

1:.) Press "F to exeCute the command.

Z · SHUTDOWN THE SYSTEM

This command allows the System Administrator to shutdown the system.

Grace period (seconds) before shutdown

Are you sme you want to proceed

You can press AW (HELP) to list those users that are presently logged on to the
system.

You can specify the number of seconds which this comritand will wait before
Shutting down the sys,tem. If no grace period is specified, a 60 seCond gtace
period will be observed.

You must answer Y(es), that you want to proceed, in order for the conunand to
execute.

Press "F to execute the conunand.

3-47

SYSVISION

3-50

P • PATCH KERNEL FOR TTY TERMINALS

The Sysiem Adminlsttator can use tlris utility to modify the kernel to recognize
additionW. TfY pOrts. The specific parameters are dependent oh the communica
tions board being installed as well as the number of blards. For more infor
mation refer to the TiYP ATCH (1) oortunand in the UNIX reference manual and
the board manufacturer's docutnentation.

A • ADD A PRINtER

This command allows the System Administ:iatot to add and/or COnfigure a printer
in the system.

Printer narrie

Type of printer

Type of printer (P=Parallel, S=Serial) _

Communication Speed
(serial connection only)

DeviCe to associate with printer

Set as system default destination

Enter the :fliin\e of the new printer to be added to the system. If necessary, press
AW (HELP) to display a list of printers already on the system and their status.

Enter printer type. If nec.Ssaty, press AW (HELP) to display a list of supported
priOter typeS. The default is "dutnb" and it is recommended that you use this
value . . This associateS a printer driver With the device. The model drivels are
stored in the directory /usr/spool/lp/model.

Enter either P or S for porallel or seriai printer. The default is "P" (for parallel).

Enter the comm.unication speed. If neCessary, press AW (Help) for a list Of avail
able speed codes.

Enter the name of tlie device the printer is eonnected to. Press AW (HELP) to
display a list of devices that are available. The default is " /devflp" which is
usually oorinected to the first parallel port. Serial ports are designated ttyO
through tty16. The nurn�r of serial ports available on yOur system is
d.Cterrnined by the nUmber of communications boards installed. Most systems
usually are configUred with one or two ports as standard.

I ' ' SYSVISION

Answer with a Y or N to set as the system default destination. The default is
"N".

This command will configure the printer and then instruct it to begin accepting
requests and then enable it so it may begin printing immediately. The printer
scheduler is stopped at the

.
start of configuration and restarted when the command

has completed.

Enter Ap to execute the command.

If you wish to administer more sophisticated kinds of printer con:figmations, con
struct custom interface programs or group several printers into a class, please
refer to the LP Spooling system description in your System V/AT Runtime
System manual.

This command allows the System Administrator to remove a printer from the
system. The command will automatically send the necessary PRJNTER
CONTROL information to the system.

0 Name of printer to be deleted

Enter the name of the printer that is to be removed as a destination. If necessary,
press AW (Help) to display a list of printers and their statos.

For the system to delete a printer, it is necessary for it to temporarily shut down
the print scheduler. When it is complete, the scheduler will be restarted auto
matically.

Enter AF to execute the command.

X - SET SYSTEM DEFAULT

This command allows the System Administrator to set a new system default
printer/destination. 'This will route all user output that does not specify a printer
to this location. The defa.uk location is sometimes referred to as the system
printer.

CJ Name of new system default destioation (printer)

3-51

SYSVISION

3-52

Enter the name of the printer that is to be the new system default printer. If
necessary, press AW (HELP) to display a list of printers and their status.

Enter Ap to execute the command.

U • UUCP SETUP MENU

This menu allows the System Administrator to manage system and
communication device definitions. Enter U and the UUCP Setup Menu will be
displayed.

SYSVISION

n � . -

U • UUCP SETUP MENU

INTRODUCTION

This menu allows the System Administrator to set up UNIX to UNIX (UUCP)
communications by deflning the entries for remote systems and communication
devices.

mpadmuucp UUCP Configuration 01/31/87 09:30

Systems Devices

S Add a System R Add a Device

D Delete a System X Delete a Device

C Calla System

N SetUUCP Nodename

/1 Quit-• X Help-"W More Keys-"Y Previous-"P
'--./

, Q

Select function by entering letter or use arrow keys and pressing RETURN

Select the letter or character for the function you wish to perform and proceed to
the corresponding command in this section.

S • ADD A SYSTEM

'flW; �o:rnrmmd allows a, new system defmition to be added to the system. This
adds an entry to the L.sys file which is located in the /usr/lib/uucp directory.
Much of the information that is entered into this screen must be provided to you
by the system administrator of the remote system that you are de:fullng.

3-53

SYSVISION

3-54

System Name

Description of System

Connection type to remote system

Communication line speed setting

Phone mnnber of remote system
(If direct line, leave blank)

Name of comrmmication port to
use for directly connected
systems (if dialup, leave blank)

Enter user account name for UUCP.

Enter password for account name

Enter the System N arne. Press AW (Help) for a list of known systems with the
NAME and DESCRIPTION to see what systems are already available. This
must be the name by which the remote system identifies itself when dialed up.

Enter the Description of the system. 11ris can be the name of the system or
owner of the system.

Enter the connection type. This will be either a "1" for a dialup link, or ''2" for a
direct connection.

Enter the communication line speed. You can press "'W (Help) for a list of
communication ports and their associated speeds.

If the system is connected via a dialup link, enter the phone number. If not,
leave blank.

If the system is directly connected, enter the name of the port that will be used.
Press AW (Help) for the list of ports available.

For example:

Connect

ACU
DIR

Port

ttyO
tty!

Modem Type

hayes
direct

Speed

1200
9600

0

0

SYSVISION

In this example, port "t1yl" would be entered. The first column indicates what
type of connection iJ; defmed for this port. ACU (Automatic Call Unit) usually
means that an autodial modem iJ; attached to the po!(. DIR signifies that a direct
poDJlection to another system is att&ched to this �ort

Enter the u:;er account name for UUCP. This information s)loujd qe provided to
you by the System Admipistrator of the system you are configljriiig.

Enter the password for the Accouot name. This infonnatiou should be provided
to you by the System A�trator of the system you arc configuring.

Enter "F to execute the function.

D - DELETE A SYSTEII/I

System to be deleted

Enter the System Name to be deleted, If necessary, press AW (Help) to displ�y a
list of systems available for deletion.

En� 11F to execute the command.

C - LOG ONTO ANOTHER SYSTEM

This command allows you to call a,nd log onto another computer system. You
can use your temUnal 3$ a workst_ation for anorlter �m�utef, not just the one
you nonnally use.

System to be called

Enter the name of the system you wish tp access. If you don't know the name of
the system press AW (Help} for a list of computer systell)IO that are available for
you to log onto. A list of system names an4 �ociated d�criptions will be
displayed in the help window.

Once you have en�red the appropriate system n�Qne. press "F to execute the
cornm8nd.

·

3-55

SYSVISION

3..56

After you have finished using the remote system, be sure to logout and then
terminate the session by typing ""'· followed by a carriage return, which will
instruct your system to break off communications with the remote system. For
more information. please refer to the cu(l) command in the System V/AT
Runtime
System Manual.

N - SET UUCP NODE NAME

This command allows the System Administrator to change the UUCP (UNIX to
UNIX Copy) Node name of his system.

Enter the new name of your system

Press AW (Help) to display the current system name and a list of other known
systems. Enter the new name of your system. It cannot duplicate the name of
any of the other known systems.

Enter Af to execute the corrunand.

R - ADD A DEVICE

This command allows you to add a new communication device to the system.
This adds an entry to the L-devices file which is located in the /usr/lib/uucp
directory.

Communication device type
(defaults to I)

Port name

Enter Modem Type

Communication line speed setting

Enter the communication device type. The coxm.ection type will be either a "1"
for a dialup link. or "2" for a direct connection. The default is 1.

Enter the port name. If necessary, press AW (Help) for a list of available ports.

Enter the modem type. If necessary, press AW (Help) for a list of available
modem types. For example:

f",
'·�,

SYSVISION

Name Description

direct
uhayes
hayes
Vadic

Direct communication link (no modem)
Unix Hayes
Hayes
Racal Vadic 3451

Enter the communication line speed setting. The allowed speeds are 300, 1200,
2400, and 9600 baud. This is dependent on the cype of device or system attached
to the port. Check the modem documentation or consult with the system
administrator of the system you are connecting.

Enter Ap to execute the command

X - DELETE A DEVICE

Port name

Enter the port name of the device. to he deleted. If necessary, press AW (Help) for
a list of devices and their ports.

For example:

Connect Port

ACU ttyO
DIR tty1

Modem Type

hayes
direct

Enter "F to execute the command.

Speed

1200
9600

3-57

�
I

Chapter 3

WHAT IS THE UNIX SYSTEM?

WHAT THE UNIX SYSTEM IS

The UNIX system is a set of programs, called software, that acts as the
link between a computer and you, its user. The UNIX system is
designed to control the computer on which it is running so the
computer can operate efficiently and smoothly and to provide you
with an uncomplicated, efficient, and flexible computing
environment.

UNIX system software does three things:

• It controls the computer,

• It acts as an interpreter between you and the computer, and

• It provides a package of programs or tools that allows you to do
your work.

The UNIX system software that controls the computer is referred to as
the operating system. The operating system coordinates all the
details of the computer's internals, such as allocating system resources
and making the corhputer available for general purposes. The
nucleus of this operating system is called the kernel.

In the UNIX system, the software that acts as a liaison betwe�n yo�
and the computer is called the shell. The shell interprets your
requests and, if valid, retrieves programs from the computer's
memory and executes them.

The UNIX system software that allows you to do your work includes
�-- programs and packages of programs called tools for electronic

.r) communication, for creating and changing text, and for writing
� programs and developing software tools.

WHAT IS THE UNIX SYSTEM?

Put simply, this package of services and utilities called the UNIX
system offers:

• A general purpose system that makes the resources and capabilities _
of the computer available to you for performing a wide variety of
jobs or applications, not simply one or a few specific tasks.

• A computing environment that allows for an interactive method
of operation so you can directly communicate with the computer
and receive an immediate response to your request or message.

• A technique for sharing what the system has to offer with other
users, even though you have the impression that the UNIX
system is -giving you its undivided attention. This is called
timesharing. The UNIX system creates this feeling by

'
allowing

you and other users--multiusers--slots of computing time
measured in fractions of seconds. The rapidity and effectiveness
with which the UNIX system switChes from working with you to
working with other users makes it appear that the system is
working with all users simultaneously.

• A system that provides you with the capability of executing more
than one program simultaneously, this feature is called
multitasking.

The UNIX system, like other operating systems, gives the computer
on which it runs a certain profile and distinguishing capabilities. But
unlike other operating systems, it is largely machine-independent;
this means that the UNIX system can run on mainframe computers as
well as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer
you are using, your computing environment will be the same. In
fact, the integrity of the computing environment offered by the UNIX
system remains intact, even with the addition of optional UNIX
system software packages that enhance your computing capabilities.

3-2

;,
\

(\
\,_ - J

c

HOW THE UNIX SYSTEM WORKS

HOW THE UNIX SYSTEM WORKS

After reading the past few pages, you know that the UNIX system
offers you a set of software that performs services--some
automatically, some you must request. You also know that the system
creates a certain environment in which you can use its software. But
before you can ask the UNIX system to do something, you need to
know what it is capable of doing.

Look at Figure 1-1. It shows a set of layered circles in graduated sizes.
Each circle represents specific UNIX system software, such as:

• Kernel,

• Shell, and

0 • Programs-/toolS thcit ruri -on command:

'!,.'b-�'":1
q'<.O�

e' Programl'!'llng �� �on�ent
:::_::-: :_:::·;:: .. ::·::·!;_!:;_;::;.:.::}::::::::::::

�o��·�;��!:;on 6�:����
L

.
·
·
.
•
.
·
.
·
.
· • . ·
.
·
.
·
.
·
.
•· .. ' ..•.

.• ·.·.
·
.
'-.·•
.
·
..

·
.
·
..
. ·. "'.
·
..

•

..
·
.
•

..
·
.
··.
·
.
•
.
� ..
.
..
•
..
•
.
· ..
.
•..•

.
•.•
.

.
•
..
•.· .

.
• .
.
·.•·
••
·

)/

�\/.· ..
·
· ·.· .·.·!

·
. · ..
·
··.�.··.···. ·

·· ··· ··
·
··· · �

"<___ y

Text
Processing

Additional
Utility

Progrems
information
Management

Figure 1·1. UNIX system model

3-3

WHAT IS THE UNIX SYSTEM?

You should know something about the major components of UNIX
system software to communicate with the UNIX system. Therefore,
the remainder of this chapter introduces you to each component: the
kerneL the shell, and user programs or commands.

Kernel

The heart of the UNIX system is called the kernel. Figure 1-2 gives an
overview of the kernel's activities. Essentially, the kernel is software
that controls access to the computer, manages the computer's
memory, and allocates the computer's resources to one user, then to
another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are
hidden from you. This arrangement lets you focus on your work, not
on the computer's.

Manages

memory

Allocates

system

resources

Controls
access to

computer

Maintains
file system

Figure 1-2. Functional view of kernel

On the other hand.. you will become increasingly familiar with
another feature of the kernel; this feature is referred to as the file
system.

3-4

HOW THE UNIX SYSTEM WORKS

The file system is the cornerstone of the UNIX operating system. It
provides you with a logical, straightforward way to organize, retrieve,
and manage information electronically. If it were possible to see this 1fj file system, it might look like an inverted tree or organization chart

____ � , made up of various types of files Figure 1-3. The file is the basic unit
of the UNIX system and it can be any one of three types:

O =Diroclorlo•
D = Ordlnaryflleo
\l =S.,.eloiFllo•

0 Figure 1-3. Branching directories and files give the UNIX system
its treelike structure

0

• An ordinary file is simply a collection of characters. Ordinary files
are uSe� to store information. They may contain text or data for
the letters or reports you type, code for the programs you write,
or commands to run your programs. In the UNIX system,
everything you wish to save must be written into a file.

In other words, a file is a place for you to put information for
safekeeping until you need to recall or use its contents again.
You can add material to or delete material from a file once you
have created it, or you can remove it entirely when the file is no
longer needed.

3-5

I

WHAT IS THE UNIX SYSTEM?

• A directory is a file maintained by the operating system for
organizing the treelike structure of the file system. A directory
contains files and other directories as designated by you. You
can build a directory to hold or organize your files on the basis
of some similarity or criterion, such. as subject or type. �

For example,. a directory might hold files containing memos and
reports you write pertaining to a specific project or client. Or a
directory might hold files containing research specifications and
programming source code for product development. A directory
might hold files of executable code allowing you to run your
computing jobs. Or a directory might contain files representing
any combination of these possibilities.

• A special file represents a physical device, such as the terminal on
which you do your computing work or a disk on which ordinary
files are stored. At least one special file corresponds to each
physical device supported by the UNIX system.

In some operating systems, you must define the kind of file you will
be working with and then use it in a specified way. You must
consider how the files are stored since they can be sequential,
random-access, or binary files. To the UNIX system, however, all files
are alike. This makes the UNIX system file structure easy to use. For
example, you need not specify memory requirements for your files
since the system automatically does this for you. Or if you or a
program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of your files. In
the UNIX system, there is only orte interface for all input from you
and output to you; this simplifies your interaction with the system.

The source of the UNIX system file structure is a directory known as
root, which is designated with a slash (/). All files and directories in
the file system are arranged in a hierarchy under root. Root normally
contains the kernel as well as links to several important system
directories that are shown in Figure 1-4:

3-6

/bin Many executable programs and utilities reside in this
directory.

I dev This directory contains special files that represent
peripheral devices, such as the console, the line
printer, user terminals, and disks.

C\
\

r,
.'- j

(-'\ \) �

. • .

i " � I ..
l w " "

O D C>

HOW THE UNIX SYSTEM WORKS

I
" ... " -"'
E -..
e .2! .. "' .. �
"
03
-.. "' ·� "' "' -
... 0
" -"'
8 .. rJl

... • '"
� " ""
..:

3 -7

WHAT IS THE UNIX SYSTEM?

/etc Programs and data files for system administration can
be found in this directory.

/lib This directory contains available program and
language libraries.

/Imp

/usr

This directory is a place where anyone can create
temporary files.

This directory holds other directories, such as mail
(which further holds files storing efectronic mail),
news (which contains files holding newsworthy
items), rje (which contains files needed to send data
via something called the remote job entry
communil;:ation link), and games (whil;h_ co.ntr;�.\ns_ files
holding electronic games).

In summary, the directories and files you create comprise the portion
of the file system that is structured and, for the most part, controlled
by you. Other parts of the file system are provided and maintained
by the operating systemi such as bin, dev, etc, lib, tmp and usr, and
have much the same structure on all UNIX systems.

The "Using the File System" chapter of this manual shows how to organize a
file system directory structure and how to access and manipulate flles. "Unix
System Capabilities" gives an overView of UNIX system capabilities. The
effective use of these capabilities· depends on your familiarity with the file
system and your ability to access information stored within it. The "Screen
Editor Tutorial" is designed to teach you how to create and edit files to meet your
computing and information management needs.

Shell

The shell is a unique UNIX system program or tool that is central to
most of your interactions with the UNIX system. Figure 1-1 illustrates
how the shell works. The drawing shows the shell as a circle
containing arrows pointing away from the kernel and the file system
to the outer circle that contains programs and then back again. The
arrows indicate that a two�way .flow of communication is possible
between you and the computer via the shell.

3-8

r \ �I

HOW THE UNIX SYSTEM WORKS

When you enter a request to the UNIX system by typing on the
terminal keyboard, the shell translates your request into language the
computer understands. If your request is valid, the computer honors
it and carries out an instruction or set of instructions. Because of its
job as translator, the shell is called the command language
interpreter.

As the commarid language interpreter, the shell can also help you to
manage information. The shell's ability to manage information stems
from the design of the UNIX system. Each program in the UNIX
system is designed to do one thing well. In a sense, a UNIX system
program is a building block or module that you can use in tandem
with other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is
- .a programming language- complete -with variables and control flow

capabilities.

A section of the next chapter describes each of the shell's capabilities. Any
reference work on shell programming techniques can teach you how to use these
capabilities to write simple shell programs called shell scripts and how to
custom�tailor your computing environment.

Commands

A program is a set of instructions that the computer follows to do a
specific job. In the UNIX system, programs that can be executed by
the computer without need for translation are called executable
programs or commands.

As a typical user of the UNIX system, you have many standard
programs and tools available to you. If you also use the UNIX system
to write programs a:{ld to design and develop software, you have
system calls, subroutines, and other tools at your disposal. And you
have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently used
programs and tools that you will probably use on a regular basis when you
interact with the UNIX system. If you need additional infonnation on these or
other standard UNIX system programs, check section I of the Runtime System
manual.

3-9

I

WHAT IS THE UNIX SYSTEM?

If you want to use tools and routines that relate to programming and software
development, you should consult the Software Development System manual.

The details contained in the two reference manuals may also be available via
your terminal in what is called the on-line version of the UNIX system reference
manuals. This on-line version is made up of formatted text files that look
exactly like the printed pages in the manuals. You can summon pages in this
electronic manual using the command man, which stands for manual page, if
the electronic version of the manuals is available on your computer. The man
command is documented in your copy of the Runtime System manual.

What Commands Do

The outer circle of Figure 1-1 organizes UNIX system programs and
tools into general categories according to what they do. The
programs and tools

.
allow you to:

• Process text. This capability includes programs, such as, line and
screen editors (which create and change text), a spelling checker
(which locates spelling errors), and optional text formatters
(which produce high-quality paper copies that are suitable for
publication).

• Manage information. The UNIX system provides many programs
that allow you to create, organize, and reinove files and
directories.

• Communicate electronically. Several programs, such as mail,
provide you with the capability to transmit information to other
users and to other UNIX systems.

• Use a productive programming and software development environment.
A number of UNIX system programs establish a friendly
programming environment by providing UNIX-to-programming
language interfaces and by supplying numerous utility programs.

• Take advantage of addiUonal system capabr1ities. These programs
include graphics, a desk calculator package, and computer games.

3·10

C' /

HOW THE UNIX SYSTEM WORKS

How Commands Execute

Figure 1-5 gives a general idea of what happens when the UNIX
system executes a command.

YOUR

PROGRAM EXECUTION

Figure 1-5. Flow of control betweeJt you and computer when
you request program to run

When the shell signals it is ready to accept your request, you type in
the command you wish to execute on the keyboard. The command is
considered input, and the shell searches one or more directories to
locate the program you specified. When the program is found, the
shell brings your request to the attention of the kernel. The kernel
then follows the program's instructions and executes your request.
After the program runs, the shell asks you for more information or
tells yoq. it is r�pdy for yovr next c:;;pmrna;nd.

This is how the UNIX system works when your request is in a format that !he
shell understands. The structure that the shell understands is called a command
line. "Using the File System" explains what you need to know about the
command line so you can request a program to run.

This chapter has outlined some basic princi pies of the UNIX
operating system ahd explained how they work. The following
chapters will help you pegin to apply these prinCiples according to
your computing needs.

3-11

I

-1
I

0
Chapter 4

UNIX SYSTEM CAPABILITIES

INTRODUCTION

This chapter serves as a transition between the first three chapters in �� the overview part of this guide and the four tutorials that follow. ..
The material in this chapter combines basic, fundamental concepts
about the UNIX system covered in the first three chapters of this
guide with information about system capabilities that you may use to
do your computing work efficiently and effectively.

ThiS Chapter prOvides- an overview of the following UNIX system capabilities:
text editing, worlcing in the shell1 communicating electronically, and
programming in the UNIX system environment. In addition, it serves as an
introduction to the 11Screen Editor Tutorial" and "Communication Tutorial"
chapters.

TEXT EDITING

You have read a good deal about files up to this point simply because
using the file system is a way of life in a UNIX system environment.
'the information in this section will enhance your knowledge about
manipulating files by introducing you to a software tool called a text
editor. A text editor provides you with the ability to create and
modify files: it will help you to fare well in the UNIX system since a
considerable amount of your computing time may be spent writing
and revising letters, memos, reports, or source code for programs that
will be stored in files.

This section contains information that tells you what a text editor is
and how it works. In addition, this sectiort acquaints you with two
types of text editors supported on the UNIX system: the line editor
and the visual, or screen, editor. Since you will probably come to
prefer one of these editing programs over the other--even if you
learn to use them equally well--the line editor and the screen editor

4·1

UNIX SYSTEM CAPABILITIES

4-2

are briefly compared to help you to assess their capabilities. For detailed
information on the line editor and the screen editor, see "Screen Editor Tutorial."

What Is a Text Editor?

When you write or type letters, memos, and reports and then decide
to change what you have written or typed, you will use skills
required in text editing. These skills include inserting new or
additional material, deleting unneeded material. transposing material
(sometimes called cutting and pasting)., and finally preparing a clean,
corrected copy. Text editors perform these tasks at your direction
making writing and revising text much easier and quicker than if
done by hand oi on a typewriter.

In the UNIX system, a text editor is much like the UNIX system shell.
Both a text editor and the shell are programs that accept your
commands and then perform the requested functions--essentially,
they are both interactive programs. A major difference between a text
editor and the shell, however, is the set of commands that each
recognizes. All the commands you have learned up to this point
belong to the shell's command set. A text editor, on the other hand,
has its own distinct set of commands that allow you to create, move,
add, and delete text in files, as well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works you need information about
the environment created when you use an editing program and the
modes of operation understood by a text editor.

Text f;diting Buffers

To create a new file, you must ask the shell to put the editor in
co:n.trol of your computing session. When you do, a temporary work
space is allocated to you by the editor. This work space is called the
editing buffer, in it you can enter information you want the file to
hold and modify it if you wish.

Because you are in a temporary work space when using a text editor,
the file you are creating along with the changes you make to it are
also temporary. This work space allptment and what it is holding

C) '

0

TEXT EDITING

will exist only as long as you work in the editing program. If you
wish to save the file, you must tell the text editor to write the
contents of the buffer into a storage area. If you do not tell the editor
to write or record what you have done during the editing session, the
buffer's contents will disappear when you leave the editing program.
If you forget to write a new file or update an existing one, the text
editors remind you to do so when you attempt to leave the editing
environment.

To modify an existing file, the procedure is almost identical to the
one you follow when creating a new file. First, call the editor and
give it the name of the file you wish to change. In tum, the editor
makes a copy of the file that is in the storage area and places it in the
buffer so you can work on it.

When you finish editing the file, you can write the buffer's contents
into storage and leave the editing program knowing the file is
updated and ready to be recalled when you need it again. Or you
can chose to leave the editor without writing the file if you have
made a critical mistake or you are unhappy with the edited version.
This step leaves the original file intact and the edited copy
disappears.

Regardless of whether you are creating a new file or updating an
existing one, the text you put in the buffer is organized into lines. A
line of text is simply the series of characters that appears horizontally
across a row of typing that is ended by pressing the <CR> key.
Occasionally, files may contain a line of text that is too long to fit on
the terminal monitor. Some terminals will automatically display the
continuation of the line on the next row of the monitor, whereas
others will not.

Modes of Operation

Text editors are capable of understanding two modes of operation :
the command mode and the text input mode.

When you begin an editing session, you will automatically be placed
in command mode. In command mode, all your input is interpreted
as a command. Typical editing commands allow you to move about
in a file, search for patterns in the file's contents, or print a portion of
a file on the terminal monitor. The input mode is entered when you

4-3

UNIX SYSTEM CAPABILITIES

4-4

use a command to create text. Once in input mode, what you type on
the keyboard is placed into the buffer as part of the text file until you
send the appropriate instruction to the editor that returns you to
command mode.

You may occasionally lose track of the mode in which you are working by
attempting to enter text while in command mode or by trying to enter a
command while in input mode. This is something even experienced users do
from time to time. It will not take long to recognize the mistake and it will be
apparent what to do to remedy these situations as you work through the "Screen
Editor Tutorial" chapter of this manual.

Line Editor

i, ..

The line editor, accessed by the ed command, is a fast, versatile
program for preparing text files. This editor gets its name because it
operates on the lines of text a file holds. For example, to change a
single character in a file, you specify the line of the file that contains
the character you wish to change and then specify the change.

Put simply, you manipulate text on a line-by-line basis with the line editor . .._
CommandS for this text editor can change lines, print lines, read and write files,
and initiate text entry. In addition, you can specify the line editor to run from a
shell program; something you cannot do with the screen editor. (See an outside
reference on UNIX shell programming for information on basic shell pro
gramming techniques.)

The line editor· works equally well on paper printing terminals and
video display terminals. It will also obligingly accommodate you if
you are using a slow-speed telephone line.

If you are interested in a comparison of line editor (ed) and screen editor (vi)
features, see Table 4-1.

(\ ' ' '

n
"'-...../

TEXT EDITING

TABLE 4-1

Comparison of Line (ed) and Screen (vi) Editors

Feature Line Editor (ed) Screen Editor (vi)

Recommended Paper-printing or VDT,.. VDT
terminal type

Speed Accommodates high- Works best via high-
and low-speed data speed data
transmission lines. transmission lines

(1,200+ baud).

Versatility Can be specified to run Must be used
from shell scripts as well interactively during
as used during editing editing sessions.
sessions.

Sophistication Changes text quickly. Changes text easily.
Uses comparatively However, can_ make
small amounts of heavy demands on
processing time. computer resources.

Power Provides a full set of Provides its own
editing commands. editing commands and
Standard UNIX system recognizes all line
text editor. editor commands as

well.

• VDT = video display terminal

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool. When you use the screen editor, your
terminal acts as a window to let you view the file you are editing a
screenful or page at a time. This editor works most efficiently and
effectively when used on a video display terminal operating at 1,200
or higher baud.

For the most part, modifications to a file (such as, additions, deletions,
and changes) are accomplished by positioning the cursor at the point
in the window where the modification is to be made and then
making the change. In other words, the screen editor displays the
effects of editing changes in the context in which you make them.

4·5

UNIX SYSTEM CAPABILITIES

4-6

Because of this feature, the screen editor in considered to be much
more sophisticated than the line editor.

Furthermore, the screen editor offers a replete collection of
commands. For example, a number of S{:reen editor commands allow '"

you to move the cursor around within the window to a file. Other
commands move the window up or down through a page or more of
the file. Still other commands allow you to change existing text or to
create new text. In addition to its own set of commands, the screen
editor has access to all the commands offered by the line editor. This
arsenal of commands accounts for the screen editor's tremendous
power.

There is, however, a trade-off- for the screen editor's speed, visual
appeal, efficiency, and power, which is the heavy demand that it
places on the computer's processing time. For example, a simple
change might cause an entire screen to need updating. Moreover, if
simple changes lead to long delays while you wait for a screen to be
updated, the pleasant experience of using a visual-oriented editor can
be somewhat diminished.

Refer to the n Screen Editor Tutorial chapter" for instructions on how to use this
software. And see vi(l), which contains a summary of screen editor commands.
If you wish to compare the features of the line editor (ed) and the screen editor
(vi) see Table 4-1 of this chapter.

WORKING IN THE SHELL

Every time you log into the UNIX system you will be communicating
directly with a program called the shell. You will continue to
interact with the shell until you log off the system, unless you use a
program, such as a text editor, that temporarily suspends your
dealings with the shell until you are finished using that particular
program.

The shell is much like other programs, except that instead of
performing one job, as cat or Is does, it is central to most of your
interactions with the UNIX system. This is because the shell's
primary function is to act as an interpreter between you and the
computer on which the UNIX system is running. As an interpreter,

WORKING IN THE SHELL

th� shell translates your requests into language the computer
understands, calls requested programs into memory, and executes
them.

r\ '"" J This section acquaints you with some of the ways you can use the

(�\
(�

shell as the command language interpreter to simplify a computing
session and to enhance your ability to use system features. In
addition to running a single program for -you, you can also use the
shell to:

• interpret the name of a file or a directory you input in an
abbreviated way using a type of 11shell shorthand,"

• redirect the flow of input and output of the programs you run,

• execute multiple programs, and

• tailor your computing environment to meet your individual
needs and preferences.

In addition to being the command language interpreter, the shell is also a
programming language. If you would like an overview of shell programming
capabilities, see the section entitled Programming in the System at the end of
this chapter. Or refer to an outside reference for detailed information on how to
use the shell as a command language interpreter and as a programming language.
A separate document, UNIX System Shell Commands and Programming, should
be consulted for complete, unabridged information on shell programming.

Using Shell Shorthand

M�ny ·UNIX system c::omm!3.nds require that you name a file or a
directory as an argument to it on a command line, such as mkdir
directory nam�(s)<CR> or rm filename(s) <CR > . Easy enough!
But suppose you have 12 files to remove corresponding to monthly

reports for 1983 named reptl, rept2, rept3, rept4, and so on? Or
suppose you need to move 2.4 fjJes corresponding to file names sect1,
sect2, ... sect 24 to a different directory?

4-7

UNIX SYSTEM CAPABILITIES

4-8

Typing the file name for each monthly report after the rm command
or the file name for each section after the mv command is still easy,
but all the repetition gets tedious after inputting four or five names.

In instances like these, you should consider using shorthand notation
when specifying file or directory names. If the file or directory
names have some part in common, you can use a type of shorthand to
tell the shell that you are referring to all of them on the basis of the
similarity without specifying each one individually. Or, if a file has a
unique character or sequence of characters within a group of similarly
named files, you can use this shorthand notation to locate the file on
the basis of the difference.

The UNIX system recognizes several charac.ters as having special
meanings when they are used in place of a directory name or when
they appear as part of a file or directory name on a command line.
These characters allow you to specify the names of files and
directories in a rapid, abbreviated way. Some of the characters are
referred to as metacharacters because of their special meanings to the
shell.

The special characters are . .. ? "' [] - \ and their meanings are
summarized in Table 4-2. When you specify file or directory names,
you can substitute various characters within them with the
appropriate shorthand abbreviation. Any part of the name that is not
a special character is taken at its literal value.

For example, for the possibilities described at the beginning of this
section, typing rm rept"' <CR> would remove all the files in the
current directory starting with the characters rept followed by any
other characters corresponding to monthly reports for 1983, and
typing mv sect"' .. /chapter3<CR> would move all the files from the
current directory beginning with the letters sect and followed by any
other characters to another directory named chapter3 belol).ging to its
parent directory.

Details on how to use the special characters . and .. appear in the chapter called
"Using the File System." The other special characters are called "shell
metacharacters" and more detailed infonnation on their use can be found in an
outside reference work on UNIX shell programming.

(,

0.
"'--·

i

WORKING IN THE SHELL

TABLE 4-2

Shorthand Notation for File and Directory Names

Special
Character

?
•

I I

Meaning

CUrrent directory -

Parent directory

Match any single character

Match any number of characters

Designate a sequence of characters to
be matched, such as [abc] or [628]

Specify a character range within
[], such as A-Z

\ Remove meaning of special characters

0 Redirecting the Flow of Input and Output

Up to this point in this chapter, any request to ask the sheli to execute
.
a

conimand was done by inputting the command and the necessary argument(s) on
the terminal keyboard. In turn, the output, if any, was displayed on the terminal
monitor. This pattern illustrates the idea of standard input and standard output.

In general, the place from which a program expects to receive its input is called
the standard input. A UNIX system command called mail, which you will learn
more about in the "Communication Tutorial" chapter, provides a good example
of this and warrants mentioning here. For example, to use mail, you would
simply type mail jmrs <CR> and the mail command takes everything you
type on you keyboard after <CR> until you type <'d> as input. After you
type <Ad>, mail sends your input to the person with the login name jmrs. The
place to which a program writes iLs results, in this case the login name jmrs, is
referred to as the standard output.

In the UNIX system, most commands expect to receive their input
from the keyboard and then display output on the terminal monitor.

4-9

UNIX SYSTEM CAPABILITIES

4-10

By default, then, the standard input is the keyboard and the standard
output is the terminal monitor (Figure 4-1).

Figure 4-1. Standard input/output flow. A program's standard
input and standard output are usually assigned to your terminal.

You can, if you wish, use a feature called redirection to change these
defaults. Put simply, redirection is a UNIX system feature that allows
you to request the shell to reassign standard input and/ or standard
output to other files or devices.

With the redirection feature, you can request the shell to do the
following:

• reassign to a file any output that a program would ordinarily
send to your terminal,

• have a program take its input from a file rather than from your
terminal keyboard, or

• use a program as the source of data for another program.

You request the shell to redirect input and output using a set of
operators, which are > (greater than sign), > > (two greater than
signs), < (less than sign), and J (a pipe). Now let's take a look at what
each of these operators can do for you.

________ I

WORKING IN THE SHELL

Redirecting the Standard Output (>)

The > operator allows you to redirect the output of a command (or
program) into a file (Figure 4-2).

G
Figure 4-2. Standard output can be redirected

from your terminal to a file.

To use the > operator, follow the command line format:

command > newfHe<CR>

in which you can choose to surround the > operator with spaces as
indicated in the command line or leave the spaces out
(command>newfile<CR>); either method is correct.

For example, if you have two files, named group1 and group2 each
containing a list of names with telephone extension numbers that you
would like to sort alphabetically and then interfile into a separate file
called members, you would type:

sort groupl group2 > members<CR>

(�- \ __..) When you do, the UNIX system first alphabetically sorts and then
interfiles the contents of the files group1 and group2 and redirects the

4-11

UNIX SYSTEM CAPABILITIES

4-12

output into the file called members rather than displaying it on your
terminal. If you wish to read the contents of the members file, you
could use the cat or pg command.

Therefore, if the contents of the file groupl is:

Smith, Allyn 101
Jones, Barbara 203
Cook, Karen 52!
Moore, Peter 180
Wolf, Robert 125

and the contents of the file group2 is:

Frank, M. jay 118
Nelson, james 210
West, Donna 333
Hill, Charles 256
Morgan, Kristine 175

then the file members would appear as follows on your terminal when
displayed with the cat command.

$ sort phase! phase2 > members<CR>
$ cat members<CR>
Cook, Karen 521
Frank, M. Jay 118
Hill, Charles 256
Jones, Barbara 203
Moore, Peter 180
Morgan, Kristine 175
Nelson, James 210
Smith, Allyn 101
West, Donna 333
Wolf, Robert 125
$

Keep in mind that if the file to which you are redirecting the
standard output already exists, its contents will be replaced with the
output of the redirection command.

WORKING IN THE SHELL

(\,

Redirecting and Appending the Standard Output (> >)

Occasionally, you might like to add information to the end of an
existing file. You can use the > > operator to do so. Simply input
the following command line: '\..__ I

n

command > > file<CR>

For example, if the file members that was created in the previous
section was subject to additions and deletions, it might be a good idea
to date the list so you know at a glance what version of the list you
are using. You could do so by typing

date > > members<CR>

on the command line and the date and time would be printed at the
- end of the file members. Or instead of adding the date to the end of

the file members, you could have appended another file containing
even more names.

'--/ Redirecting the Standard Input (<)

0

Standard input can be redirected as well as standard output with the
< operator. The general command line format for input redirection
is:

command < file<CR>

in which the < operator informs the command (or program} to take
input from the file you specify rather than from the terminal
keyboard (Figure 4-3).

4-13

UNIX SYSTEM CAPABILITIES

4-14

Figure 4-3. You can ask the shell to take a program's
input from a file rather than from your terminal.

For example, if you would like to send a copy of the file members to
co-workers who work on your UNIX system and who have the login
names mary2 and jmrs, typing

mail mary2 jmrs < members<CR>

will accomplish the task. The mail command, however, does not know whether
it received its input from the fJ.Ie members (which it did) or from your keyboard.
Rather, input/output redirection is a service provided by the UNIX system shell
and is available to every program. (Y au will learn more about the mail command
in the "Communications Tutorial" chapter.)

Connecting Commands with the Pipe (/ J
The pipe operator is a powerful, yet flexible, mechanism for doing
computing tasks quickly and without the need to develop special

WORKING IN THE SHELL

purpose tools. You can use it to redirect the standard output of one
program to be the standard input of another (Figure 4-4). Generally,
the format for using the pipe is:

'

command I command <CR>

Figure 4 .. 4. You -can use the output from one
program to be the input for another.

A popular example of this is taking the output of the who command
{which you were introduced to in Chapter 2) and using it as input to
the we command {which counts lines, words, and/or characters) as
follows:

who J wc -I<CR>

This example shows that the standard output of the who command
was passed to the we �1 commaild (�1 is the option that counts the
number of lines output by the who command., each corresponding to
a user who is logged into your UNIX system.)

4-15

UNIX SYSTEM CAPABILITIES

4-16

Summary

Table 4-3 summarizes which operator performs which redirection task and what
general format should be followed in using it.

TABLE 4-3

Options for Redirecting Input and/ or Outputt

Action Operator General Format

Redirecting output to a file > command > filename

Redirecting and appending
output to a file > > command > > filename

Redirecting inputf from a file < command < filename

Redirecting output of first
command to be input for
second command I command

* See Chapter 7 oft he UNIX System Release 2.0 User's Gw:tk, available from AT Jr;T for
complete details on how to use th.2se options.

t Blank spaces immediately beforeand after redirection operators are optional.

Running Multiple Programs

There are two methods for running multiple programs: you can
specify more than one command to execute in sequence from a single
command line or you can run commands simultaneously.

Executing Commands in Sequence

Up to this point, the command lines to which you have been
introduced and examples for using them have dealt with asking the
shell to run a single request or program. For example, each of the
command lines cat filename<CR>, date<CR>, and Is -1
directoryname<CR> requests the shell to perform one task. You
can, however, ask the shell to -execute more than one request per
command line. Sequential execution allows you to enter as many
commands as you wish on one command line and have them execute
in the order in which you input them.

---j '

c

C!

WORKING IN THE SHELL

· To do so, you should first be familiar with the general rules for command line
syntax, given in the "Using the File System" chapter. Briefly, command line
syntax orders elements in the command line so that the command name, any
options you wish to specify, and the data on which the command i� to operate
(usually the name of a file or directory) follow one another.

To execute more than one command on a line, simply separate the
request sequences with semicolons (;) as follows:

command option(s) argument(s); command option(s) argument(s); ••• <CR>

For example, to determine where you are in the file system and then
list the contents of the directory in which you are working, you can
type pwd; ls<CR> and the terminal monitor might read:

$pwd; Is< CR >
I userl/ starship I bin
dir
list
tools
$

As you can see, the output of the multiple commands is ordered the
same way the input is: first, the current working directory .is given
(in response to pwd) and, then, the names of the files and/ or
directories it holds follow (in response to Is).

You could just as easily type who am i; date; who<CR> or
mkdir directoryabc; cd directoryabc; pwd <CR> or any
combination of commands that you wish to use.

Executing Commands Simultaneously

In addition to running programs sequentially, you can choose to run
them simultaneously. To do so, you need to know the difference
between foreground and background commands. When a program
runs in the background, the computer is executing that program
concurrently with the commands that you enter or with the program

4-17

UNIX SYSTEM CAPABILITIES

4-18

that you run in the foreground. However, the_ computer considers
your foreground work more important, in a sense, than your
background program. This difference has no perceivable effect on the
execution of most programs, but running a job in the background is a
useful technique when you. wish to rt..m a lengthy or time-consuming
job without tying up your terminal.

All the command lines used in this guide until now have been
examples of foreground commands. This means that they were
initiated and run to completion before other commands could be
executed and before the shell would return the $ prompt for you to
continue. However, you also have the option of running a command
in the background so you can continue to work in the foreground.

You can run a command in the background by placing an ampersand
(&) at the end of the command line as follows:

command option(s) argument(s) &<CR>

When the shell reads the &, it starts running the program, prints an
identification number, and displays the $ prompt so you can use the
terminal immediately for other work.

To save the output from the job you are running in the background,
you must redirect the results of the execution into another file so you
can look at or use the output when you are ready. For example, if
you input the command cat filel file2 > file3 &<CR>, the shell
would first give you an identification number .. and then the prompt.
It will also save the results of cat filel file2 in a file named file3.
When you are ready to peruse file3, simply use cat or pg. If you do
not redirect the output, then no output is saved.

When a program is running in the background, it ignores interrupt
and break signals, but if you log off, the shell terminates the
background program along with the computing session. If you
would like to stop a background command while you are still logged
into the UNIX system, type kill id <CR>, where id is the
identification number of the command. On the other hand, to have a
program continue to run after you log off, you can use the nohup
command (which stands for "no hang up") in the following way

nohup command &<CR>

.(.

c:

WORKING IN THE SHELL

When you do, the command will continue to run until completion
and its output is saved in a file called nohup.out (which stands for
nohup output).

Customizing Your Computing Environment

The information in this section deals with another dimension of
control provided to you by the shell called your environment. When
you log into the UNIX system, the shell automatically sets up a � computing environment for you. You can choose to use it as
supplied by the system or you can tailor it to meet your needs. "

By default, the environment set up by the shell includes the
variables:

HOME� your login directory,

PATH = route the shell takes to search for executable files
or commands (typically PATH�:/bin:/usr/bin), and

(\ LOGNAME - your login name.
"-· /'

If you find the default environment satisfactory, simply leave it as it
is and go on with your work. However, if you would like to modify
it, you must have a file in your login directory named .profile. If you

,do not, you can create one with a text editor like ed or vi.

To determine if you have a .profile, move to your login directory and
type cat .profile <CR> and its contents should appear on the
terminal monitor. Typically, the .profile tests for mail and sets data
parameters, system variables, and terminal settings.

Possible modifications to your login environment might include changing your
login prompt, setting tab stops, and changing erase and kill characters. (If you
would like to customize your .profile, see the section entitled CHANGING
YOUR ENVIRONMENT in the "Screen EdiiDr TuiDrial" chapter,

4-19

UNIX SYSTEM CAPABILITIES

4-20

COMMUNICATING ELECTRONICALLY

Before the days of office automation, you would probably have
thought of relaying a message or information to someone either
personally or by way of a letter, note, or telephone conversation. '-..
Now as a UNIX system user, you can choose to communicate
electronically with other UNIX system users by way of the computer.

You can send messages or transmit iitformation stored in files to other
users who work on your system or on another UNIX system. To do
so, your UNIX system must be able to communicate with the UNIX
system to which you wish to send information. In addition, the
command you use to send information depends on what you are
sending.

This guide- introduces you to these communication programs:

mail -- This command is typically used for sending messages
to others and reading the messages sent to you. You
can use mail to send messages or files to other UNIX
system users using their login names as addresses.
And, at your convenience, ·you can use the mail
command to read messages sent to you by other users.
With mail. the recipient can choose when to read it.

uuto/uupick -- These commands are used to send and retrieve files.
You use the uuto command to send a fi.le(s) to a
public directory; when its available to the recipient.
the person is sent mail telling him/her that the .file(s)
has arrived. The recipient then can use the uupick
command to copy the file(s) from the public directory
to the directory of choice.

mailx - This command is a sophisticated, more powerful
spin-off of mail. It offers a number of options for
managing the electronic mail you send and receive.

The "Communications Tutorial" chapter teaches you how to use the mail,
unto, and uupick commands. It also introduces you to the mailx command
so you can begin to use it

0

PROGRAMMING IN THE SYSTEM

PROGRAMMING IN THE SYSTEM

The UNIX system provides an efficient, effective, and convenient
environment for programming and software development. This
section briefly describes the environment and your programming
options when working in it.

If you are not a programmer, your immediate reaction might be to
skip this section. But you need not be a programmer or software
developer to enjoy some of the capabilities that fall under the realm
of programming.

For example, you can use the shell as a command level programming
language as well as the command line interpreter. Shell
programming capabilities are useful and usable techniques that allow
you to take simple, existing programs and make them more powerful.
So why not read on.

On the other hand, if you're interested in sophisticated programming
and software development capabilities, this section can serve as a
springboard to using them.

What you can expect to find in the next few pages is an overview of
shell and C language programming and a mention of other languages
that can be used on the UNIX system. In addition, an overview of
some UNIX system tools for software development is included.

Programming in the Shell

Most interactive users of the UNIX system think of the shell solely as
the command language interpreter. The shell, however, is also a
command level programnting language. What this means is that you
can let the shell continue to act as your liaison with the computer or
you can program the shell to repeat sequences of instructions and to
test certain considerations for you automatically. When you program
the shell to perform a task, you use the shell to read and to execute
commands that you place in art executable file. These files are
sometimes called shell scripts or shell procedures.

When you use the shell in this manner, it provides you with features,
like variables, control structures, subroutines, and parameter passing

4-21

UNIX SYSTEM CAPABILITIES

4-22

that are very similar to those offered by programming languages.
These features provide you with the ability to create your own tools
by linking together system commands.

For example, you can write a simple shell procedure from existing
UNIX system programs that tells you the date and time along with
the number of users working on your UNIX system. One way to do
so is illustrated in the following screen:

$ cat > users<CR>
date; who I we -I <CR>
<Ad>
$ chmod u+x users<CR>
$

A file called users is created using the > redirection operator. In the
example, cat is taking as input everything you type after <CR> on
the command line and placing it in a file named users. Then the file
is made executable with the chmod command. If you type the
command users<CR>, your terminal monitor would look something
like the next screen.

$ users<CR>
Tues May 22 10:29:09 CDT 1984

7
$

The output tells you that seven users were logged into the system
when you typed the command at approximately 10:30 A.M. on
Tuesday, May 22.

r '-..._ __ j

PROGRAMMING IN THE SYSTEM

For additional information on shell procedures an� for mbre sophisticated shell
programming techniques, see other references on UNIX shell programming.

Programming in the 'C Language

C is a _general _purpose _program�ing lan_g_uage. It is a _ r_elatively
"low level" language, which means that C deals with the same Sort of
objects that most computers do, namely characters, numbers, and a· addresses. These may be combined and moved about with the usual
arithmetic and logic operators. "'

C is closely associated with the UNIX system because it was
developed on the UNIX system and because UNIX system software is
largely written in C.

Although the C programming language is implemented on many
computers, it is independent of any particular machine architecture.
With a little care, it is easy to write portable programs, that is,
programs that can be run without change on a variety of computers if
the machine supports a C compiler.

The C programming language comprises the following main
elements:

• Types, operators, and expressions--Constants and variables are the
basic data objects manipulated in a program. Const.ints are data
objects that do not change during the execution of a program,
while variables are assigned new values throughout execution.
Declarations list variables, state type, and perhaps initial values.
Operators specify what is to be done on them. Expressions
combine variables and constants to produce hew values.

• Control flow--Control flow statements of a language specify the
order in which computations are done. In C, these include if
else, else-if, and switch statements, and while, for, and do-while
loops. In addition, break, continue, and goto statements can be
used. Labels can be used as well.

4-23

UNIX SYSTEM CAPABILITIES

4-24

• Functions and program structure--C programs generally consist of
numerous small functions rather than a few big ones. These
functions break large computing tasks into smaller ones and
enable you to build on what others have done.

• Pointers and arrays--A pointer is a variable that contains the
address of another variable. Pointers are frequently used when
programming in C because oftentimes they provide the only way
to express a computation and partly because their use typically
leads to more compact and efficient code than can be obtained in
other ways.

• Structures--A structure is a collection of one or more variables,
possibly of different types, that are grouped together under a
single name for convenient handling. Structures help to
organize complicated data because they permit a group of related
variables to be treated as a unit instead of separate entities.

• Input and output--A standard I/0 library containing a set of
functions designed to provide a standard input and output
system is available for C programs. This library is a UNIX
system feature available for programming in C.

These elements are covered in detail in The C Programming Language by B.W.
Kernighan and D.M. Ritchie (Prentice-Hall, 1978). Additional information is
also available in the Software Development System manual.

Other Programming Languages

In addition to Ci other programming languages are available for use
on the UNIX system, such as FORTRAN-77, BASIC, Pascal, COBOL,
APL, LISP, and SNOBOL.

You can obtain details on FOR1RAN-77 in the Software Development System
manual. Or contact Microport Sytems for document availability and ordering
information on the others.

(\ \)

PROGRAMMING IN THE SYSTEM

Tools to Aid Software Development

This section highlights some sophisticated software development
tools available on the UNIX system. The tools are designed to make
development of software easier and to provide you with a systematic
approach to programming.

There are numerous software develop�ent aids provide!l by the
UNIX operating system. This section introduces you to five of them
to give you an idea of what you can expect development utilities to
do. They are:

SCCS -- Source Code Control System,

RJE -- Remote job entry,

make -- Maintaining programs,

lex -- Generating programs for simple lexical tasks, and

yacc -- Generating parser programs.

I' I \ .. __ j Refer to the Software Development System manual for more infonnation.

Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a collection of UNIX
system commands that helps you to control and report changes to
source code files or text files. sees allows you to access different
versions of the same file while maintaining only one file. The way
this works is that sees stores the original file on a disk. Whenever
modifications are made to the file sees stores only those changes as a
set in something called a delta. Each delta or set of changes is
numbered to reflect the different versions of a file. You can then
choose to retrieve either the origina� file or a version of the original
file.

·

4-25

UNIX SYSTEM CAPABILITIES

4-26

By allowing SCCS to store and control all iterations of a file, space
allocations for storage are minimized and administration of different
versions of the same program or document is efficient and simplified.
Updates to files can be made qqickly and the original version of a
program or document is retained if you should need to recall it later.

For additional information, see the "SCCS User's Guide" in the Software
Development System manual.

Remote Job Entry (RJE)

Remote job entry (RJE) is a software package designed to facilitate
communication between a UNIX operating system and an IBM
System/360 or an IBM System/370 computer. The R)E software
allows the UNIX operating system to communicate with the IBM Job
Entry Subsystem by mimicking an IBM System/360 remote
multileaving work station. A set of background processes support
RJE, and the UNIX system uses these processes to submit jobs for
remote execution on the networked IBM system.

When RJE software runs, it does so in the background. It transmits
jobs (consisting of job control statements [JCL] and input data) that
you queue with the send command and status reports you request
with the rjestat command. In turn, the RJE software subsystem
receives print and punch data sets and message output from the ffiM
system.

Maintaining Programs (make)

The make command is a tool for maintaining, supporting, and
regenerating large programs or documents on the basis of smaller
ones. Since it is easier to handle and modify small programs, it is
recommended that if you wish to develop a large program, you start
by creating a series of smaller ones that work together to produce the
large one.

PROGRAMMING IN THE SYSTEM

The make command provides you with a method to store all the
information you need to assemble small programs or modules into a
large, more sophisticated one. A file called a makefile holds the file
names of the small programs, the steps necessary to generate the
large program, and specifies the dependencies among the files.

When make executes the makefile, the date and time you last
modified any of -the small programs are checked and the operations
needed to update them are performed in sequence. Then, make goes
on to create the overall large program.

For details on the operation of make, see the "Make" and "Augmented Version
of Make" chapters in the Software Development System manual.

Generating Programs for Lexical Tasks (lex)

The lex utility generates programs to be used in simple lexical
analysis of text. Lexical analysis is done by evaluating a stream of
characters and constructing the forms that are acceptable to the
language. Proper forms are defined in the lex program and usable
forms can be defined by lex defaults or by you. Lex produces a
subroutine as output that must be compiled and combined with other
programs to use the lexical analyzer.

The processing done by the lex command can be the first step in
creating a compiler-type program. In addition, it can be useful as a
preprocessing tool for many different software generation functions.

For additional information on the lex command, see the "Lexical Analyzer
Generator" in the Software Development System manual.

Generating Parser Programs (yacc)

The yacc program, short for yet another compiler compiler, is
primarily used in the generation of software compilers. Essentially,
yacc is a utility for creating parser subroutines. The way this works
is that first yacc uses specified syntax and produces source code for a
parser subroutine. Then, the parser subroutine is compiled, and
finally used with a program that calls it to parse input. In this way,

4-27

UNIX SYSTEM CAPABILITIES

4-28

structure can be imposed on the input to a program and the desired
language can be created from defined rules.

See the "Yacc" chapter in the Software Development System manual for details ,
,

on the yacc command. Or refer to section "1" of the Runtime System manual.

(i

0

Chapter 5
SINGLE USER AND MULTIUSER

INTRODUCTION

There are two main modes of operation of a UNIX operating system: single user
(level S) and multiuser (Ievel 2). The run level has 8 possible values: 0-6, and s
(or S). Single user is always s or S. Although multiuser is normally level 2,
your system administrator can configure the /etc/inittab file to run multiuser
at any level from 0 to 6. Furthermore, the inittab file can be configured so that
certain procedures are followed automatically only the first time a certain run
level is entered. For example, normally you will be asked to verify date and file
systems the first time you change your system to multiuser. This is caused by
an entry in the inittab file. Subsequent changes in run level will not perform
this procedure automatically unless you specifically change the inittab file. For
more iriformation on init refer to init(!M) in the Runtime System manual,
inittab(4) in the Software Development System manual, or consult your local
UNIX system administrator.

When in single user mode, all dial-up ports and hard-wired terminals
are disabled and. only the console terminal may interact with the
processor. This mode of operation allows you to make necessary
changes to the system without any other processing taking place.
However, you will normally run the UNIX operating system in
multiuser mode. Consult the chapter for your processor before
proceeding with any of these procedures.

SINGLE USER ENVIRONMENT

(In single user mode, you may type any available UNIX system
"--' command (followed by a <cr>). When the system has completed

execution of the command, it will prompt with the u#" again on the
next line. You use the single user environment primarily to do
filesaves, system maintenance, modification, or repair operations.

5-l

SINGLE USER AND MULTIUSER

The typical sequence of commands to change the system to multiuser
mode is:

• fsck

• telinit 2

The fsck Command

The command fsck will interactively repair any damaged file systems that result
from a crash of the operating system. You should also use it to ensure that the
file systems are not damaged before going into multiuser mode or taking
fi!esaves. Usually, you will want to respond "yes" to all the prompts; however,
in the event of a system crash, the damage may be extensive enough to warrant
recovery from a backup pack. The procedure for this is discussed under
FILESAVES in this chapter. See fsck in the Runtime System manual for
details on the various options available and the different errors that can occur.

An example of a check of a consistent file system is illustrated below:

fsck /dev/rdsk/Os6
/dev/rdsk/6sl
F i l e System:
•• Phase 1
• • Phase 2
• • Phase 3
. . Phase 4
. . Phase 5

usr Volume: p0603
Check Blocks and Sizes
Check Pathnames
Check Connect i v i ty
Check Reference Counts
Check Free List

2441 f i les 16547 blocks 31889 free

A file system that has been damaged can be repaired as shown below.
The y is your response. When checking a file system, you can avoid
the questions asked by fsck concerning inconsistencies found by
using the y option. This option will automatically attempt repairs as
though you answered yes to the questions. Use this with caution
the corrections usually involve some data loss. Use the following
example if you decide to interactively repair the file system.

5-2

C'

SINGLE USER AND MULTIUSER

fsck /dev/rdsk/6s0

The UNIX operating system responds:

/dev/rdsk/Os6

F i l e System: fsl Volume : p0603
• • Phase 1 � Check Blocks and S i zes
POSSIBLE FILE SIZE ERROR 1=2500
•• Phase 2 Check Pathnames
• • Phase 3 - Check Connectivity
• • Phase 4 - Check Reference Counts
UNREF FILE 1•2500 OWNER•255 MODE•l 00755
SIZEzO MTIME•Dec 31 19830 1983
CLEAR? y
• • Phase 5 - Check Free List
2441 fi les 16547 blocks 889 free
• • • • • FILE SYSTEM WAS MODIFIED • • • • •

/', All mountable file systems should be listed in the file /etc/checklist

�------) which fsck uses, and you should check these file systems each time
the system is rebooted.

II I
' J

A faster alternative to using fsck is checkall. The checkall command uses
dfsck (a font end for fsck) to simultaneously check two file systems in
different disk drives. Therefore, you can check file systems faster with checkall
than you can with fsck. Included in checkall are the file system names that
normally appear in /etc/checklist (see checkall in Section "1" of the
Runtime System manual).

WARNING: Never execute fsck on a mounted file system; it
will have a bad effect since you are repairing only the
physical disk. The only exception to this is the root file
system, which is always mounted.

An example of repairing the root file system follows:

fsck /dev/dsk/Os6

/dev/dsk/Os6
File System: root Volume : pODOl
• • Phase 1 . Check Blocks and S izes
POSSIBLE FILE SIZE ERROR 1=416

5-3

SINGLE USER AND MULTIUSER

POSSIBLE FILE SIZE ERROR I = 6 1 0
POSSIBLE FILE SIZE ERROR 1=614
POSSIBLE FILE SIZE ERROR 1=618
POSSIBLE FILE SIZE ERROR I=625
• • Phase 2 Check Pathnames
•• Phase 3 - Check Connect i v i ty
* * Phase 4 - Check Reference Counts
UNREF FILE 1 = 4 1 6 OWNER=uucp MODE = l 00400
SIZE=O MTIME=Nov 20 1 6 : 23 1983
CLEAR? y
UNREF FILE 1 = 6 1 0 OWNER=csw MODE= l 00400
SIZE=O MTIME=Nov 20 1 6 : 26 1983
CLEAR? y
UNREF FILE 1=625 OWNER=cath MOD£= 1 00400
SIZE=O MTIME=Nov 20 1 6 : 26 1983
CLEAR? y
FREE INODE COUNT WRONG IN SUPERBLK
FIX? y
• • Phase 5 - Check Free L i s t
1 DUP BLKS IN FREE LIST
BAD FREE LIST
SALVAGE? y
* * Phase 6 - Salvage Free L i st
585 f i les 5463 blocks 4223 free
* * * * * BOOT UNIX (NO SYNC !) * * * * *

At this time you must immediately halt the processor and then
reboot the system (see the chapter concerned with operations on your
processor for start-up procedures).

The telinit 2 Command

After you have checked the file systems, you may change the UNIX
operating system to multiuser. Do this by entering the command
telinit 2. This command activates processes that allow users to log
in to the system, turn on the accounting and error logging, mount
any indicated file systems, and start the cron and any indicated
daemons. Depending upon the type of data set your site has, you
may have to manually flip the toggles or pop the buttons on the data
sets to allow users to log in.

S-4

-1

(\
'.__J

SINGLE USER AND MULTIUSER

MULTIUSER ENVIRONMENT

There are two ways to get to this level: by typing telini t 2; or,
specifying a run level of 2 after the boot. Users are permitted to
access all mounted file systems and execute all available commands.
In this --mode,-- you can perform file - restore -procedures -and take
periodic status checks of the system. Some of these periodic status
checks can include:

• A check of free blocks (df) remaining on all mounted file systems
to ensure that a file system does not run out of space.

• A check on mail to root or whatever login receives requests for
file restores.

• A check on the number of users on the system (who).

• A check of all running processes (ps -eaf or whodo) to
determine if there is some process using an abnormally large
amount of CPU time.

If your site has other run levels defined, yoii can use the telinit command to
change to those run levels. Finally, to change a multiuser system to single user,
refer to SYSTEM SHUTDOWN in this chapter, and to Shutdown (IM).

5-S

SINGLE USER AND MULTI USER

5-6

fs : : sysinit : /etc/bcheckrc </devjconsole >fdev/coru;ole 2>&1
mt : :sysinit : /etr;Jbrc </dev/console >/dev/console 2>&1
ck : :sysinit: /etc/bsetdate </dev/conso'Je >/dev/console 2>&1
is . 2 : initdefault : il iAPX286 @ (#) inittab.sh 1.3
pf: : powerfail : /etc/powerfail >/dev/console 2>&.1 #power fail routines
sO : 056 : wait : /etc/reO </dev/console >/dev/coru;ole 2>&1
s2: 2 : wait : /etc/rc2 </dev/comole >/dev/console 2>&1
s3 : 3 : wait : /etc/rc3 </dev/console >/dev/console 2>&1
dl : 056 : wait : /bin/kill -15 -I > /dev/oonsole </dev/console 2>&1
d2 : 056 : wait: sleep 5

·

d3 : 056 : wait : /bin/kill -9 -I > /dev/oonsole 2>&1
d4 : 056 : wait : sleep 5
Q5 : 056 : wait : /etc/umountall > /dev/console 2>&1
d6: 056-: wait : echo ' \nThe system is down.' > /dev/console
rO : 0 : wait : /etc/uadmin 2 1 # halt and reboot if possible
r5 : 5 : wait : /etc/uadmin 2 2 # return to fl!lllware if possible
r6 : 6 : wait : /etc/uadmin 2 1 # reboot if possible
co : 1234 : respawn : /etc/getty console console
cl : 2 : respawn : /etJ;;/getty cons! virtcon
c2 : 2 : respawn : /etc/getty cons2 virtcon
c3 : 2 : respawn : /etc/getty cons3 virtcon
tO : 2 : off: /etc/getty ttyO 9600
tl : 2 : off: /etc/getty tty! 9600
12 : 2 : off : /etc/getty tty2 9600
t3 : 2 : off: /etc/getty tty3 9600
t4 : 2 : off : /etc/getty tty4 9600
t5 : 2 : off : /etc/getty tty5 9600
t6 : 2 : off: /etc/getty tty6 9600
t7 : 2 : off : /etc/getty tty? 9600

Figure 5-1. Sample inittab with no serial ports enabled.

I
!

ACCESSING AND MANIPULATING FILES

from copying this file, you could deny them read perm1ssmn by
typing ch,mod go-r display<CR>. The g and o stand for group
members and all other system users, respectively, and the -r denies ,� them permission to read or copy the file. Check the results with the

..........___ - Is -1 command.

$ chmod go-r display<CR>
$ Is -l<CR>
total 35

-rwx--x--x
-rwx--x--x
drwx--x--x
$

1 starship project
1 starship project
2 starship project

9346 Nov 1
6428 Dec 2

32 Nov 8

08:06 display
10:24 list
15:32 tools

A Note on Permissions and Directories. If you read the preceding
pages describing the chmod command, you might have gathered that
you can use this command to grant or deny permission for directories

� as well as files. It is true, you can. To do so, simply use the directory
I name instead of � file name on tlte GO:romand line.

The impact� however, of granting or denying permLss10ns for
directories to various system users ls worth considering. For example,
if you grant read permission for a directory to yourself (u), members
of your group (g), and other system users (o), every user who has
access to the system can read the names of the files that directory
contains by using the ls -1 command. Similarly, granting write
permission allows the designated users to create new files in the
directory and change and remove existing ones. And granting
permission to execute the directory allows the designated users the
ability to move to that directory (and make it their working directory)
by using the cd command.

An Alternate Method. The chmod method described in the
preceding pages is one of two ways to change permissions to read,
write, and execute files and directories. The method previously (- '\ described uses symbols, such as r, w, x and u, g, o, to specify

\ -.. ...__ ..) instructions to chmod. Hence, it is called the symbolic method.

6-55

USING THE FILE SYSTEM

The alternate method uses a number system called octal that is
different than the decimal number system we typically use on a
day-to-day basis. This method uses three octal numbers ranging from
0 through 7 to assign permissions. If you wish to use the octal �
method when changing permission, see the description of chmod in
Section I of this manual.

Summary. The command recap that follows provides a quick
reference on how chmod works.

Command Recap

chmod - change permission modes for files (and directories}

6-56

command

chmod

Description:

Remarks:

instruction

who + - permission

arguments

filename(s)
directoryname(s)

chmod gives (+) or removes (-) read, write, and
execute permissions for three types of system
users: user (you}, group {members of your group),
and other (all other users able to access the system
on which you are working).

The instruction set can be represented in either
octal or symbolic terms.

Advanced Commands

You will become more and more familiar with the file system as you
use the commands thus far discussed in this chapter. As this
familiarity increases so might your need or interest for more

<

, -

ACCESSING AND MANIPULATING FILES

sophisticated information processing techniques when working with
files. This section introduces you to three commands that give you

�: just that. These commands and their capabilities are listed as follows:
I

diff -- Finds difference between two files,

grep -- Searches a file for a pattern, and

sort -- Sorts and merges files.

The following discussion only scratches the surface on information processing
techniques available with the UNIX system. You may refer to section I of the
Runtime System manual for additional information.

(
"', Identifying Differences Between Files (dijf)

_ __) The diff command locates all the differences between two files and
proceeds to tell yo� how to change the first file to be a carbon copy
of the second. It reports all differences between the files.

c;

The basic format for the command is:

diff file! file2<CR>

Iffilel andfi/e2 are identical, the system returns the $ prompt to you. If not, the
diff command instructs you on how to bring the first file into agreement with
the second by using line editor (ed) commands. The UNIX system flags lines in
file 1 with the < symbol and the file 2 with the > symbol.

6-57

USING THE FILE SYSTEM

6-58

For example, if you use the diff command to identify differences
between the files johnson and sanders, the system would respond as
follows:

$ diff johnson sanders<CR>
2,3c2,4
< to Mr. Johnson on the topic of
< office automation.

> to Mrs. Sanders inviting her to
> speak at your departmental
> meeting.
$

The first line of the system response is

which means lines 2 through 3 in the file johnson must be changed
{designated by c) to lines 2 through 4 in the file sanders. The system
then displays lines 2 through 3 in the file johnson as follows:

< to Mr. Johnson on the topic of
< office automation.

and lines 2 through 4 in the file sanders

> to Mrs. Sanders inviting her to
> speak at our departmental
> meeting.

If you make these changes (using the ed or the vi text editing
program), the file johnson will be identical to the file sanders.
Remember, the diff command tells you exactly what the differences
are between the named files. If you simply want an identical copy of
a file, use the cp command.

j

(

(�\

ACCESSING AND MANIPULATING FILES

Refer to the recap that follows for a summary of what you can expect the diff
command to do when no options are specified. See the reference to section 1 of
the Runtime System manual for details on available options.

Command Recap

diff - finds differences between two files

command

diff

Description:

Remarks:

options arguments

available* filel file2

diff reports what lines are different in two files
and what you must do to make the first file
identical with the second.

Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (cl:tange), or d
(delete). Numbers given with a, c, or d indicate
the lines to be -modified. Also used - are the
symbols < (indicating a line from the first file)
and > (indicating a line from the second file).

* See section 1 of the Runtime System manual for all available options and an explanation of

their capabilities.

Searching a File for a Pattern (grep)
You can request the UNIX system to search through fil�s for a specific
word, phrase, or group of characters by using the grep command.
Technically, grep means globally search through a file or files to
locate a regular expression and print the lines that contain the
regular expression. Put simply, a regular expression is. the pattern of
characters��be it a word, a phrase, or an equation��that you stipulate.

.,'--__ __,--' The basic format for the command line is:

grep pattern file(s)<CR>

6-59

USING THE FILE SYSTEM

6-60

Thus, to locate the line containing the word automation in the file
johnson, you would type:

grep automation johnson< CR>

and the system would respond as follows:

$ grep automation johnson <CR>
office automation
$

The output gives you all the lines in the file johnson that contain the
pattern for which you were searching, which is the word automation.

If the pattern contains multiple words or any characters that have a special
meaning to the UNIX system, such as $, I, *, ? , and so on, the entire pattern
must be enclosed in single quotes. (For a complete explanation of the special '
meaning for these and other characters see an outside reference work on shell
programming.) For example, if you are interested in locating the lines
containing the pattern office automation, the command line and system response
would read:

$ grep 'office automation· johnson<CR>
office automation.
$

But what if you could not recall to whom you sent a letter on the
topic of office automation in the first place --Mr. Johnson or Mrs.
Sanders? You could type:

grep 'office automation' johnson sanders<CR>

ACCESSING AND MANIPULATING FILES

If you did, the system would respond in the following manner:

$ grep 'office automation' johnson sanders<CR>
johnson:office automation.
$

The output tells you that the pattern office automation is found once in
the file johnson.

In addition to the capabilities of the grep command that are snrnrnarized in the
recap that follows, the UNIX system provides variations to the basic grep
command, called egrep and fgrep, along with several options that further
enhance the searching powers of the command. See section 1 of the Runtime
System manual if you are interested in learning more.

command

grep

Description:

Remarks:

Command Recap

grep - searches a file for a pattern

options arguments

available• pattern file(s)

grep searches the file or files you name for lines
containing a pattern and then prints the lines
that match. If you name more than one file� the
name of the file containing the pattern is given
also.

If the pattern you give contains multiple words
or special characters, enclose the pattern in single
quotes on the command line.

/'• / I * See section 1 of the Runtime System manual for all available options and an explanation of
'-----'; their capabilities.

6-61

USING THE FILE SYSTEM

6-62

Sorting and Merging Files (sort)
The UNIX system provides you with an efficient tool called sort for
sorting and merging files. The basic form of the command line is:

sort file(s)<CR>

which causes lines in the specified files to be sorted and merged in
the order defined by the ASCII representations of the characters in
the lines.

• Lines beginning with numbers are sorted by digit and listed
before letters in the output,

• Lines beginni!lg wit�_ :uppercase letters are listed before lines
beginning with lowercase letters,-a:rld

• Lines beginning with symbols, such as *, %, or @, are sorted on
the basis of the symbol's

.
ASCII representation.

To get an idea of how the sort command works, let's say that you
have two files, named phase1 and phase2, each containing a list of
names that you wish to sort alphabetically and finally interfile into
one list. First, display the contents of each file using the cat
command.

$ cat phasel <CR>
Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert
$ cat phase2<CR>
Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine
$

l
I

C:

l)

(Note: we could
cat phasel phase2<CR>
separately.)

ACCESSING AND MANIPULATING FILES

have used the command line
instead of listing the contents of each file

Now, sort and merge the cOntents of the two fileS using the sort
command. Note that the output of the sort program will print on the
terminal monitor unless you specify otherwise.

$ sort phasel phase2<CR>
Cook, Ktiren
Frank, M. Jay
Hill, Charles
I ones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert
$

In addition to putting together simple listings as in the previous examples, the
sort command can rearrange the lines and parts oflines (called fields) according
to a number of other specifica.tions you can desigilate on the command line. The
possible specifications are complex and are not within the scope of this text.
You should consult section I of the Runtime System manual for a full rundown
on the available options.

However, the following command recap summarizes the capabilities
of the sort program.

6-63

USING THE FILE SYSTEM

6-64

command

sort

Description:

Remarks:

Command Recap

sort - sorts and merges files

options arguments

available"' file(s)

sort sorts and merges lines from the file or files
you name and displays the result on your
terminaL

If no options are specified on the command line�
lines are sorted and merged in the -order defined
by the ASCII representations of the characters in
the lines.

* See section 1 of the Runtime System manual for all available options and an explanation of
their capabilities.

SUMMARY

This chapter described the structure of the file system and presented ways to use
and to navigate through the file system via UNIX system commands. The
"UNIX System Capabilities" chapter gives you an overview of a variety of
UNIX system capabilities; such as text editing, using the shell as a command
language, communicating electronically with other system users, and
programming and developing software.

0

c:

Chapter 7

SCREEN EDITOR TUTORIAL (vi)

GETTING ACQUAINTED WITH vi

The screen editor, accessed by the vi command, is a powerful and
sophisticated tool for creating and editing files. The video display
terminal is used as a window to view the text of a file. Within this
window, you can add, delete, or change text in much the same Way as
you would on a typewriter or with paper and pencil. How�ver,
making corrections in vi does not involve white out, correction tape,
or cutting and pasting. A few simple commands change the text, and
these changes are quickly reflected in the text on the screen.

The vi editor displays from 1 to several lines of text. The cursor can
be moved to any point on the screen and text can be created,
changed, or deleted from that point. The text in the file can be
scrolled forward to reveal the lines below the current window, the
window that is on the screen now. Or, the file can be scrolled
backward to reveal lines above the current window. (See the display
on page 6-2.) Other commands can place you at the beginning or end
of the file, paragraph, line, or word.

Besides the convenience of editing portions of text within the
window, vi also gives you the advantage of some line editor
commands, such as the powerful global commands that make the
same change throughout the whole file.

7-1

SCREEN EDITOR TUTORIAL (vi)

7-2

TEXT FILE

You are in the screen editor.

This portion of the file is above
the display window. You can scroll
backward to place this part on the
screen.

/ "'\

This portion of the file
is in the display window.

This part of the file in
dlsplay window can be edited.

" ./
This is another part of the file
which is below the display window.

You can scroll the screen forward
to place this text in the
display window.

Editing window of vi displaying part of a file

HOW TO READ THIS TUTORIAL

This chapter is a tutorial on how to access and use vi. Although
there are more than 100 commands within vi, this tutorial covers
only the basic commands that will enable you to effectively use vi.
The following basics will be covered:

• How to set up your partictdar type of terminal so you can access
vt

(', ' '

0

HOW TO READ THIS TUTORIAL

• How to get started creating a file, deleting some of your mistakes,
writing the text into a UNIX system file, and then leaving vi to
go back to the shell command mode,

• How to move around within the file, so that you can create,
delete, or change text,

• How to electronically cut and paste your text,

• How to use some special commands and shortcuts,

• How to temporarily escape to the shell to perform some shell
commands and then return to edit the current window of text,

• How to use some line editing commands within vi,

• How to quit vi,

• How to edit several files in the same session,

• How to recover a file lost by an interruption to an editing
session, and

• How to change your shell environment to automatically set your
terminal configuration, and set an automatic carriage return.

In this tutorial, commands printed in bold should be typed into the
system exactly as shown. UNIX system responses to those commands
are printed in italic. The vi editor commands that do not print out on
the screen will be enclosed in < > . For example, <CR> denotes
carriage .return, meaning press the RETURN key.

The vi editor has several commands executed by holding down the
"control" or CTRL key while you press another key. These are called
control characters. A " and a letter denote a control character in the
text. For example, "d means hold down the control key and press the
"d" key. Since "d is a command that does not appear on the screen, it
will appear in the text as <"d>, meaning you should execute vi
command <"d>. As you read the text you may want to glance back
for a quick review of these conventions, which are summarized next.

7-3

SCREEN EDITOR TUTORIAL (vi)

7-4

bold command (Type in exactly as shown.)

italic response (The system's response to a command.)

roman (Text that is being typed in
a file.)

<CR> (Commands that are typed in,
but not reflected on the screen
are enclosed in < > .)

"g {A control character. Hold down the
control key, CTRL, while you press "g".)

In the following sections, a full or partial screen may be used to
display the examples showing how the commands are executed. An
arrow will point to the letter that is over the cursor. Cursor
movements on the screen are depicted by arrows pointing in the
direction that the cursor will move.

The keys on your keyboard may be depicted as shown in the example
of the "m" key.

Notice that the letter on the key appears as it does on your keyboard.
However, when you press the key it will appear in lowercase in your
text. If you need an uppercase letter, the example will include the
SHIFT key.

The commands discussed in each section are reviewed at the end of the section. A
summary of all the vi commands is found in vi (1).

l
I

u

GETTING STARTED

At the end of some sections, exercises are given for you to experiment
with those commands covered in the section. The answers to all of
the exercises are at the end of this chapter.

GETTING STARTED

The best waY to learn vi is to log-intO
-the· UNIX -system afid do the

examples and the exercises as you read the tutorial. If you
experiment with the commands, they will become familiar to you and
you will soon be adept at editing in vi.

You should be logged into the UNIX system, and ready to create a
file in your current directory, the directory you are in now.

How to Set Terminal Configuration

Before you access vi, you must set your terminal configuration. That
is, you must tell the system what kind of terminal will display the
editing window of your file. Each type of terminal has a code name
that can be recognized by the system. The code for your terminal is
in the UNIX system file /etc/termcap. The termcap file contains
information about different terminals. You only need to know the
code for your terminal, which is the first two letters of the line
containing information about your terminal.

To find the code for your type of terminal, use the grep command to
search the /etc/termcap file for your terminal type. For example, if
you have a TELETYPE 5420 terminal, type in the following from your
login directory:

$ grep "teletype 5420" /etc/lermcap<CR>
Tl 1 5420 I tty5420 I teletype 5420 80 columns:
$

7-5

SCREEN EDITOR TUTORIAL (vi)

7-6

The code for a Teletype 5420 is T7.

To set the terminal configuration, type in:

TERM-code <CR>
export TERM<CR>

TERM must be typed in uppercase and there are no spaces on either
side of the equal sign. "code" will be the first two letters on the line
for your terminal from the termcap file. In this command sequence,
the export· command assigns the terminal type to your login
environment for this session while you are logged in to the UNIX

System. You can learn more about exporting variables such as TERM in an
outside reference. on Bourne shell progrmnming.

In the example below, you have logged into the UNIX system and
have gotten your $ prompt from the system. Then, you set your
terminal configuration for the Teletype 5420.

$ TERM-T7<CR>
$ export TERM<CR>
$

Look up your terminal code in the termcap file, or ask your system
administrator for the code. If you set your terminal configuration
now, you qm do the examples as you read the text.

Do not experiment typing in terminal configurations that do not
match your terminal, since you may confuse the UNIX system, and
you will either have to log off, hang up, or get the help of the system
administrator to restore your login environment.

Later in this chapter, you will learn how to set your shell
environment so that you do not have to set the terminal
configuration each time that you log in to the UNIX system.

GETTING STARTED

HOw to Access vi

Now you are ready to accesS vi.

(\ _ , Type in: vi filenante<CR>

where filename is the name of the file you wish to edit, Or the name of
the file you are a:b_put to create.

After you have set your terminal .configuration, you want tO create a
file called stuff- For the purpose of this example, TERM is set to T7.

$ TERM-T7<CR>
$ export TERM<CR>
$ vi stuff<CR>

(--.._·; The vi command will clear the screen arid display the window for the
_ j screen editor. It should look like this:

0
"stuff' [new file}

The vi editor window initially displays some lines of text. Iri this
example there are no lines of text. The screen editor displays a - on
each line to indicate the file is empty. The cursor is at the beginning

7-7

SCREEN EDITOR TUTORIAL (vi)

7-8

of the file waiting for the first command. In this example, the cursor
appears as a short line. Your video display terminal may indicate the
cursor by a blinking line or a reverse color block.

Problem:
If you access vi and get the following message you have forgotten to
set the terminal configuration.

$ vi stuff< CR>
I don't know what kind of terminal you are on - all I have is unknown
[Using open mode}
'stuff' IN ew file}

Type in: :q<CR>

This returns you to the shell command mode, now you can set your
terminal configuration.

How to Create Text

If you have successfully accessed
.
vi, you are in the command mode of

the screen editor, and Vi is waiting for your commands. How do you
create some text?

• Press the "a" key, <a>. Now you are in the append mode of vi.
You can add text to the file. The a does not print out on the
screen.

• Start typing in some text .

• To begin a new line press the carriage return key <CR>.

• Notice as you get close to the right margin a bell sounds to
remind you to press the carriage return. Terminals which do not
have a bell, niay warn you another way, such as flashing the
screen.

n '- j

()

()

GETTING STARTED

It is possible to set the carriage return so that it is automatic; this is
discussed later in this chapter in the section on changing your
environment.

How to Leave the Append Mode

If you are finished creating text, you need to leave the append mode
and return to the command mode of vi to edit any text you have
created, or to write the text into a UNIX system file. Press the escape
key, ESC or DEL, denoted by <ESC>. You are now back in the
command mode.

Problem:

<a>
Create some text < CR>
in the screen editor <CR>
and return to the <CR>
command mode. <ESC>

If you press <ESC> and a bell sounds, vi is telling you that you are
already in command mode. It will not affect the text in the file if you
press <ESC> several times. The vi editor will only sound a bell
each time that you press <ESC>.

7-9

I

SCREEN EDITOR TUTORIAL (vi)

7-10

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the
screen where you will begin the correction. This is easily done with
four keys that are next to each other on the keyboard, "h, j, k, l".

<h> Moves the cursor one character to the left.

<j> Moves the cursor down one line.

<k> Moves the cursor up one line.

<I> Moves the cursor t o the right one character.

k

h ..---

l
Right now try moving the cursor around. Watch the cursor on the
screen while you press the keys <h>, <j>, <k>, and <I>. If you
want to move two spaces to the right, press <1> twice. If you want
to move up four lines., press <k> four times. If you cannot go any
farther in the direction you have indicated, vi will sound a bell.

GETTING STARTED

Many people who use vi find it helpful to mark these four keys with
arrows indicating the direction that each key moves the cursor. Mark
an arrow on each of four small pieces of white correction tape and
place a left arrow on the front of the "h" key, a down arrow on the ')"
key, an up arrow on the "k'' key, and a right arrow on the "1" key.

Some terminals have special cursor control keys that are marked with
arrows. These may be used as "h, j, k, and 1" keys are used.

Problem:
If you are trying to move the cursor around on the screen and the
letters h, j, k, and 1 print out on the screen, you are still in the
append mode of vi. Press <ESC>. Most of the commands in the
screen editor are silent, that is they do not print out. If the screen
editor commands are printing out on the screen you are still in
append mode. Press <ESC> and try the commands again.

7-11

11

SCREEN EDITOR TUTORIAL (vi)

7-12

Ho.w to Delete Text

If you have put in an extra character in the text, you will want to
delete that character. Move the cursor to that character, and press the
"x" key. Watch the screen. The letter will disappear and the line will ·"
readjust to the change. If you want to erase three letters in a row,
press <x> three times. In the examples below, the position of cursor
is depicted by the arrow under the letter.

Hello Wurldi t

Hello Wrld! t

1\ \�_

c

GETTING STARTED

How to Add Text

If you need to add text at a certain point in the text that is in the
window, move the cursor to that point using <h>, <j>, <k>, and
<1>. Then, press <a> and text will be created after that point. As
you append text,· the characters to the right will move over on the
screen to make room for the new characters. The vi editor will
continue adding all characters that you type in, until you press
<ESC>. -If necessarY the characters to the right will even wrap
around onto the next line.

Hello Wrld! t
Press

Hello World! t

Moving around on the screen, or scrolling through the file to add or
delete characters, words, or lines, is discussed in detail later in this
tutoriaL

7-13

11

SCREEN EDITOR TUTORIAL {vi)

7-14

How to Quit vi

The vi command creates a temporary buffer for you. This is
equivalent to giving you a piece of scratch paper. When the text or
data on the scratch pad is in the form you want for this editing 1 . ,,
session, you must write it to a UNIX system file. If you are done
editing your test file, you will want to put this file in a file called stuff
in the current directory and get back into the shell command mode.

Hold down the SHIFT key and press the "z" key twice, <ZZ>. The
vi editor remembers the file name given to the vi command at the
beginning of the editing session, and moves the text from the buffer
of the editor to the file named stuff. You will get a notice at the
bottom of the screen giving the file name, a:nd the number of lines
and characters in the file. Then, you are returned to the shell
command level, and the UNIX system displays the shell prompt '$.
Since stuff is a new file, the notice at the bottom of the screen will
include this fact.

<a>
This is a test file. <CR>
I am adding text to <CR>
a temporary buffer and <CR>
now it is perfect. <CR>
I want to write this file, < CR>
and return to the shell command <CR>
mode, <ESC> <ZZ>

"stuff' [New filel 6 lines, 151 characters

$

EXERCISE 1

SUMMARY OF GETTING STARTED

(';
\ _ TERM-code

export=TERM Set the terminal configuration.

vi filename

<a>

<h>

<j>

< k >

<I>

<x>

<CR>

<ESC>

<ZZ>

:q

Enter vi editor to edit the file called filename.

Add text after the cursor.

Move one character to the left.

Move down one line.

Move up one line.

Move to the right one character.

Delete a character.

Carriage return.

Leave the append mode, and return to vi
command mode.

Write to a file, and quit vi.

Quit vi.

EXERCISE 1
There is often more than one way to perform a task in vi. If the way
you tried worked, then your answer is correct. Watch the screen as
you give the commands, and see how it changes or how the cursor
moves.

The answers to the exercises are at the end of this chapter.

1-1. If you have not logged in yet, do so now, and set your terminal
configuration.

7-15

SCREEN EDITOR TUTORIAL (vi)

7-16

1-2. Enter vi and append the following five lines of text to a new
file called exer1.

This is an exercise!
Up, down
left, right,
build your terminal's
muscles bit by bit.

1-3. Move the cursor to the first line of the file and the seventh
character from the right. Notice as you move up the file, the
cursor moves "in" to the last letter of the file, but it does not
move "out" to the last letter of the next line.

1-4. Delete the seventh and eighth character from the right.

1-5. Move the cursor to the last line of the text, and the last
character of that line.

1-6. Append a new line of text.

and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file ex_erl.
What does the notice at the bottom of the screen say once you
have reentered vi to edit exerl?

POSITIONING THE CURSOR IN THE WINDOW

Until now you have been positioning the cursor with the keys "h, j, k
and, 1". However, there are several commands to help you move the
cursor quickly around the·window.

This section on positioning the cursor in the window will look at:

• Positioning by characters on a line,

POSITIONING THE CURSOR IN THE WINDOW

• Positioning by lines,

• Positioning by text objects

- By words,

By sentences, and

By paragraphs, and

• Positioning in the window.

There are also several commands that position the cursor within the
vi editing buffer. These commands will be looked at in the next
section, Positioning in the File.

The vi editor provides two very helpful patterns in cursor movement.

• Instead of pressing a key such as "h"- or "k" a certain number of
times, you can precede the command with that number. For

f"- example, <7h> moves the cursor seven characters to the left .

0

• Many lowercase commands have an uppercase equivalent that
will slightly modify or enhance the command. For example,
<a> appends text after the cursor, but <A> appends text after
the last character at the end of the line.

The uppercase commands will be mentioned briefly in the text,
and will be defined in the summary. As you try out the
lowercase commands, experiment with the uppercase commands
and see what they can do.

If you have not logged into the UNIX system and have not accessed
vi to edit a file, please do so now. You will want a file that has at
least 40 lines in it. If you do not have one, create one now, because
you will want to try out each of these cursor movements as you read
this section of the tutorial. Remember, to execute these commands,
you must be in the command mode of vi. Press <ESC> to make
sure you aie out of the append mode, and are in the command mode
of vi.

7-17

SCR!:EN EDITOR TUTORIAL (vi)

7-18

Character Positioning

There are three ways to position the cursor by a character on a line.

• You can move the cursor right or left to a character,

• You can specify the character at either end of the line, or

• You can search for a character on a line.

Positioning the Cursor to the Right or Left

The commands, <h>, <I>, the space bar, and the BACK SPACE key
m<?ve the cursor right or left to a character on the current line.

You are a�ready familiar with the "h" and "1" keys.

<h>

<nh>

<I>

<nl>

Move the cursor to the left.

� Move the cursor one character to the left.

Move the cursor "n" characters to the left.

Move the cursor to the right.

� Move the cursor one character to the ·right.

Move. the cursor "n" characters to the right.

POSITIONING THE CURSOR IN THE WINDOW

Try typing in a number before the command key. Notice that the
cursor moves the specified number of characters to the left or right.
In the example below, the cursor movement is depicted by the

(-"\, arrows.
'___)

To quickly move the cursor
left or right on the screen,
prefix a number to the command.

Move the cursor left 7 spaces.
- <7h>

Move the cursor right three spaces.
<31>-

('-, Even if there are not 100 characters in � line, if you type in <1001>,
'- _/ the cursor will simply travel to the end of the line. If you type in

<lOOh> the cursor will travel to the beginning of the line.

By now, you have probably accidentally discovered that you can
move the cursor back and forth on a line using the space bar and the
BACK SPACE key.

� space bar
moves one
�pace to the
right

<space bar> ----=- Move th� cursor one character to the
right.

<nspace bar> Move the cursor "n11 characters to the right.

7-19

SCREEN EDITOR TUTORIAL (vi)

7-20

BACK
SPACE

<BS>

<nBS>

Move the cursor one character to the left.

� Move the cursor one character to the
left.

Move the cursor "n" characters to the left.

You can type in a number befoi-e the space bar or <BS>. The cursor
will move that many characters to the left or right.

Positioning the Cursor at the End or Beginning of a Line

The second method of positioning the cursor on the line is shown
below. These commands will place you at the first character or last
character of a line.

Position the cursor on the last character of
the line.

The number zero positions the cUrsor on the
first character of the line.

The carat key positions the cursor on the first
character of the line that is not a blank.
(This is not a control character.)

POSITIONING THE CURSOR IN THE WINDOW

The next examples show the movement of the cursor for each of the
three commands.

Go to the back of the line!

<S>

Go to the front of the line!

<O> (The number zero)

Go to the first character
of the line that

is not blank!

Searching for a Character on a Line

The third way to position the cursol' on a line is to search for a
specific character on the current line. If the character is not on the
current line, a bell will sound and the cursor will not move. There is
a command that will search the file for patterns. It is discussed in the
next section of this tutorial.

7·21

SCREEN EDITOR TUTORIAL (vi)

7-22

<fx>

<Fx>

<;>

Moves the cursor to the right
to find the specified letter
on the current line.

� Move the cursor to the right to
the specified character x.

E-- Move the cursor to the left to the
specified character x.

The <;> will continue the search. It will
remember the character and seek out the 11.ext
occurrence of that character on the current
line.

In the next example, vi is searching to the right for the first
occurrence of the letter "A" on the current line.

Go forward to the letter A on this line.

<fA>

You may also find the <tx> command usefuL

<tx>

<Tx>

� Move the cursor to the right, to the
character just before the specified
character x.

-E-- Move the cursor left to the character
just after the specified character x.

Try
.

the search commands on one of your files. Notice the difference
between the uppercase and lowercase commands.

- i

POSITIONING THE CURSOR IN THE WINDOW

Line Positioning

Besides the <j> and <k> commands that you have already used,
the "+", ''-'' and RETURN keys will move the cursor line by line. The
cursor will try to remain �t the same position on the line. If the
cursor is on the seventh character from the left in the current line, it
will try to go to the seventh character on the new line. If there �s no
seventh character, the cursor will move to the' last chara_cter.

Move the cursor down one line.

Move the cursor up on line.

Since you have already tried out <j> and <k> and know how they
react, try adding a number of lines to the command as you did with
<h> and <1>.

Type in: 7k

The cursor will move up seven lines above the current line. If there
are not seven lines above the current line, a bell will sound and the
cursor will remain on the current line.

Type in: 35j

The screen will clear and redraw. The cursor will be on the 35th line
below the current line. The new line will be located in the middle of
the new window. If there are not 35 lines below the current line, the
bell will sound and the cursor will remain on the current line. Try
the following command.

Type in: 35k

Did the screen clear and redraw?

7-23

SCREEN EDITOR TUTORIAL (vi)

7-24

Now� try out the following three easy ways to move up or down in
the file.

Type in: 13-

The minus sign moves the
cursor up a line.

The cursor will travel up 13 lines. If some of those 13 lines are above
the current window, the window will move up to reveal those lines.
This is a rapid way to move quickly up the file. Try the following
command.

Type in: 100-

What happened to the window? If there are less then 100 lines above
the current line, a bell will sound telling you that you have made a
mistake, and the cursor will remain on the current line.

or RETURN Move the cursor
down a line.

Now, try moving down the lines of the file with +.

Type in: 9+

The cursor will move down· nine lines below the current line.

Try moving down line by line in the file with the RETURN key.

Type in: S<CR>

Did the RETURN key give the same response as the "+" key?

POSITIONING THE CURSOR IN THE WINDOW

Word Positioning

The vi editor considers a word a string of characters that are either
numbers or letters. The word positioning commands, <w>, ,
and <e>, consider that any other character is a delimiter, telling vi
it is the beginning or end of a word. Punctuation before or after a
blank is considered a word. The beginning or end of a line is also a
delimiter.

The uppercase word positioning commands, <W>, , and <E>,
consider that the punctuation is part of the word and define a word
by all the characters within two blank spaces, that is, the word is
delimited by blanks.

<w>

<nw>

<W>

Move the cursor to the right by words.

Move the cursor forward to the first character in the
next word. You may press the "w" key as many times
as you wish to reach the word you want, or you can
prefix the number to the <w> command as shown
below.

Move the cursor fOrward "n" number of words to the
first character of that word,. The end of the line does
not stop the movement of the cursor, it will wrap
around and continue to count words from the
beginning of the next line.

Ignore all punctu_a_tion, and move the cursor forward
to the word after the next blank.

7-25

SCREEN EDITOR TUTORIAL (vi)

<nb>

7-26

The w command
leaps word by word through the
file. Move from this word forward

<6w>
six words to this word.

Move the cursor backwards, to the left,
by words.

Move the cursor backward one word to the first
character of that word.

Move the cursor backward "n" number of words to
the first character of the nth word. The < b >
command does not stop at the beginning o f a line,
but moves to the end of the line above and continues
to move backward.

Can be used just like the command, except that
it delimits the word only by blank spaces. It treats
all other punctuation as letters of a word.

Leap backward wo:J;"d by word through
the file. Go back four words from here.

<4b>

POSITIONING THE CURSOR IN THE WINDOW

Move forward to the end of the word.

The <e> command acts like <w> moving forward in the file by
words, except that it moves the cursor to the end of the word. This
makes it easy to add punctuation or add "s" to the end of a word.

The <E> command ignores all punctuation except blanks, delimiting
the words only by blanks.

Go forward one word to the end of
the next word in this line

<e>

Go to the end of the third word.
<3e>

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vt a sentence ends in
"! or . or ? 1'. If they appear in the middle of a line, they must be
followed by two blanks spaces for vi to recognize them. You should
get used to the vi convention of putting two spaces at the end of each
sentence, because you can- also delete, change, or yank whole
sentences, which will be discussed later in this tutorial.

Move the cursor to the beginning
of a sentence.

7-27

SCREEN EDITOR TUTORIAL (vi)

7-28

< (>

Move the cursor to the beginning
of the next sentence.

Move the cursor to the beginning of the current
sentence.

< n(> Move the cursor to the beginning of the "nth"
sentence above the current sentence.

<) > Move the cursor to the beginning of the next
sentence.

< n) > Move the cursor to the beginning of the "nth"
sentence below the current sentence.

In the next example, the arrows show the movement of the cursor.

This sentence ends in the middle of
a line. Followed by two blank spaces.

<(>

You can go t o the end of a sentence.
<)> �------------------�

Now, precede the command with a number.

Type in: 3(or 5)

Did the cursor move the correct number of sentences?

()

POSITIONING THE CURSOR IN THE WINDOW

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line, or
after the paragraph formatting command • P. If you want to be able
to move the cursor to the beginning of a paragraph (or later in this
tutorial, delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

< { >

Move the cursor to the beginning
of the current paragraph.

Move the cursor to the beginning
of the next paragraph.

Move the cursor to the beginning of the current
paragraph, which is delimited by a blank line above
it.

< n(> Move the cursor to the beginning of the paragraph,
"n'' number of paragraphs above the current
paragraph.

< } > Move the cursor to the beginning of the next
paragraph.

< p.} > Move the qrrsor to the "nth'' paragraph below the
current line.

The next example uses arrows to show the cursor ·moving down to
the beginning of the paragraph.

7-29

SCREEN EDITOR TUTORIAL (vi)

7-30

The end of a paragraph is
a blank line.

This is a new paragraph.
It also ends in a blank
line. <)>
Go to the beginning
of the .next paragraph.

This is the third paragraph.

Try moving the cursor with the following commands.

Type in: {
3{
6)

Did you have enough blank lines in your file to test out the last two
commands?

Positioning in the Window

The next three commands help you quickly position yourself in the
window. Try out each of the commands.

Move the cursor to the first line
on the screen.

r. /

------- ,
(___)

POSITIONING THE CURSOR IN THE WINDOW

Move the cursor to the middle line
on the screen.

Move the cursor to the last line
on the screen.

This is the text of the file
above the current window.

'\
This is the first line of the screen: HOME

t <H>

This is the MIDDLE line

t <M>

of the screen

This is the LAST line of the screen

t <L>

/
This is the portion of text
in the file that is below the
current window.

7-31

SCREEN EDITOR TUTORIAL (vi)

7-32

SUMMARY OF POSITIONING IN THE WINDOW

Character Positioning Commands

< h >

<I>

<BS>

<space bar>

<fx>

<Fx>

<;>

<tx>

<Tx>

Positioning by Lines

<j>

- Move the cursor one character to the
left.

- Move the cursor one character to the
right.

- Move the cursor one character to the
left.

� Move the cursor one thara!;teJ;" __ to the
right.

-sao Move the cursor to the right to
the specified character x.

-E- Move the cursor to the left to the
specified character x.

Continue the search. It will remember
the character and seek out the next
occurrence of the character on the
current line.

-=-- Move the cursor to the right, to
the character just before the
specified character x.

E-- Move the cursor left to the
character just after the specified
character x.

Move the cursor down one line in the same
column, if possible.

(Continued on next page)

-I

I "--- -

POSITIONING THE CURSOR IN THE WINDOW

SUMMARY OF POSITIONING IN THE WINDOW (continued)

<k>

<->

<+>

<CR>

Word Positioning

<w>

<W>

<e>

<E>

Move the cursor up one line in the same
column, if possible.

Move the Ctitsor up one line.

Move the cursor down one line.

Move the cursor down one line.

Move the cursor forward to the first
character in the next word.

Ignore all punctuation, and move the cursor
forward to the next word delimited
only by blanks.

Move the cursor backward one word to the
first character of that word.

Move the cursor to the left one word,
which is delimited only by blanks.

Move the cursor to the end of the
current word.

Delimit the words by blanks only. The
cursor is placed on the last character
before the next blank space, or end of
the line.

(Continued on next page)

7-33

SCREEN EDITOR TUTORIAL (vi)

7-34

SUMMARY OF POSITIONING IN THE WINDOW (continued)

POsitioning by Sentences

< (>

<) >

Move the cursor to the beginning of the
current sentence.

Move the cursor to the beginning of the
next sentence.

Positioning by Paragraphs

< (>

< } >

Move the cursor to the beginning of the
current paragraph.

Move the cursor to the beginning of the
next paragraph.

Positioning in the Window

<H>

<M>

<L>

Move the cursor to the first line on the
screen� or fthome".

Move the cursor to the middle line on the
screen.

Move the cursor to the last line on the
screen.

POSITIONING THE CURSOR IN THE FILE

How do you move the cursor to text that is not in the current editing
window? You can type in the commands <20j> or <20k> .
However, if you are editing a large file, you need to move quickly

()

POSITIONING THE CURSOR IN THE FILE

and accurately to another place in the file. This section covers those
commands that help you move around within the file. You can:

• Scroll forward or backward in a file,

• Go to a specified line in the file, or

• Search for a pattern in the file.

Scrolling the Text

Four basic commands scroll the text of the file. <"f> and <"d>
scroll the screen forward. <"b> and <"u> scroll the screen
backward.

<"£>

' ' tr;
Scroll the text forward one full window, revealing
the window of text below the current window.

To scroll the file forward, vi clears the screen and redraws the
window. The last two lines that were at the bottom of the current
window are placed at the top of the new window. If there are not
enough lines left in the file to fill the window, the screen will display
the - to indicate the empty lines.

7-35

I

SCREEN EDITOR TUTORIAL (vi)

7-36

Type in:

These last two lines of the current window
become the first two lines of the new window

This part of the file
is below the display
window.

You can scroll forward
to place this text in the ln display window.

''--------------'��/

vi clears the screen and redraws the new screen shown next.

'�
" _)

POSITIONING THE CURSOR IN THE FILE

These last two lines of the current window
become the first two lines of the new window

This part of the file
is below the display
-window.

You can scroll forward
to place this text in the
display window.

Scroll down a half screen
to reveal lines below the window.

<'d> Scroll down a half screen to reveal text below the
window.

When you use <"d>, it seems as if the text is being rolled up at the
top and unrolling at the bottom to allow the lines below the screen to
appear on the screen, while the lines at the top of the screen
disappear. If there are not enough lines in the file, a bell will sound
indicating there are no more lines.

7-37

SCREEN EDITOR TUTORIAL (vi)

7-38

/

<"b> Scroll the screen back a full window to reveal the
text above the current window.

The <"b> command clears the screen and redraws the window with
the text that is above the current screen. Unlike the <"£> command,
<"b> does not leave any reference lines from the previous window.
Also, it does not use the - to indicate space above the top of the file.
If there are not enough lines above the current window to fill a full
new window, a bell will sound and the current window will remain
on the screen.

/

/
This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the window.

POSITIONING THE CURSOR IN THE FILE

Type in:

vi clears the screen and redraws the new screen shown next.

/
This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the window.

Any text that was in the display window is placed below the current
window.

<"u>

Scroll up a half screen to reveal
lines above the window.

Scroll up a half window of text to reveal the lines
just above the window. At the same time, the lines at
the bottom of the window will be erased.

7-39

SCREEN EDITOR TUTORIAL (vi)

7-40

When you use < "'u>, it appears as though the text in the file is on a
scroll that is being unwound at the top and wound up at the bottom
of the screen.

When the cursor is near the top of the file, it will move to the first
line of the file and then sound a bell,. alerting you it cannot scroll any
farther. Try the <"u> and <"'d> commands now. Watch the file
scroll through the window.

Go to a Specified Line

The <G> command will position the cursor on a specified line in
the window., or it will clear the screen and redraw the window
around that line. If yo11 «;lo not specify a line, <G> will go to the
last line of the file.

<G> Go to the last line of the file.

<nG> Go to the "nth" line of the file.

Line Numbers

Each line of the file has a line number, that corresponds to the
number of lines in the buffer. How can you find out the line
numbers? There are two basic ways. One way is to use a line editor
command, which you will learn about in the section on the line
editor commands. The other way is to position the cursor on the line
and type in a < ... g> command. Try the <''g> command now.

POSITIONING THE CURSOR IN THE FILE

The <"g> command will give you a status notice at the bottom of
the screen. The notice tells you:

- Name of the file,

- H the line has been changed [modified],

Line number,

Number of the last line in the file, and

Percent the current line is of the total lines in the buffer.

This line is the 35th line of the buffer.
The cursor is on tfis line.

<·g>

There are several more lines in the
buffer.
The last line of the buffer is line 116.

"file.name" [modified] line 36 of 116 --34%--

Search for a Pattern of Characters

The fastest way to reach a specific place in your text is to use one of
the search commands. You can search forward or backward for the
first occurrence of a specified pattern of characters or words in the
buffer. The search pattern is ended by <CR>.

7-41

SCREEN EDITOR TUTORIAL (vi)

7-42

The search commands, I and ? , are not silent. They will print out on
the bottom of the screen along with the search pattern. However, the
command to repeat the search <n> is silent it does not print out on
the bottom of the screen.

Search forward in the buffer.

Search backward in the buffer.

Repeat the previous search.

/pattern<CR>

Search forward in the buffer for the next occurrence
of the characters pattern. Position the cursor ofi the
first character of the pattern.

/Hello world<CR>

Find the next occurrence in the buffer of the two
words Hello world. Position the cursor under the H.

?pattern< CR >

Search backward in the buffer for the first occurrence
of the pattern. Position the cursor under the first
character of the pattern.

POSITIONING THE CURSOR IN THE FILE

?data set design <CR>

<n>

<N>

Search backward in the buffer until the first
occurrence of data set design. Position the cursor
under the "d'' of data.

Repeat the last search command.

Repeat the search command in the opposite direction.

The search commands will not wrap around the end of the line in
searching for two words. If you are searching for "Hello world", and
11Hello'' is at the end of one line, and 11world" is at the beginning of
another line, the search commands will not find that occurrence of
"Hello world". However, the search commands will wrap around the
end or the beginning of the buffer to continue the search. For
example, if you are toward the end of the buffer, and the pattern you
are searching for with the I command is at the top of the buffer, I
will find that pattern.

(--.,, The <n> command continues the last search, remembering the
'"- pattern and direction of the search.

The following example shows the results of first typing in ?the and
then typing in < n > .

Search backward for the character
pattern "the".

Not_ice that " here" also qualifies

<n>

?the

7-43

SCREEN EDITOR TUTORIAL (vi)

Experiment for a minute. What happens if you try to type in a
number before ? or I or <n>? Experiment with commands in a file
called junk. If you tried to type in a number before I or ?, you found
out it does not work. However, if you tried to type in <7n>, you
found out that it searched for the seventh identical pattern.

SUMMARY OF POSITIONING IN THE FILE

Scrolling

<.f>

<'d>

<.b>

<"u>

Scroll the screen forward a full window, revealing the
window of text below the current window.

Scroll the screen down a half window, revealing lines
below the current window.

Scroll the screen back a full window, revealing the
window of text above the current window.

Scroll the screen up a half window, revealing the lines
of text above the current window.

Positioning on a Numbered Line

<G> Go to the last line of the file.

<·g> Give the line number and status.

Searching for a Pattern

7-44

I pattern Search forward in the buffer for the next occurrence of the
pattern. Position the cursor on the first character of the
pattern.

(Continued on next page)

(·

()

EXERCISE 2

SUMMARY OF POSITIONING IN THE FILE (continued)

?pattern Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

EXERCISE 2
2-1. Create a file called exer2. Type a number on each line,

numbering the lines from 1 to 50. Your files should look
similar to the following.

2-2.

1
2
3
4
5

45
46
47
48
49
50

Try using each of the scroll commands, notice how many lines
scroll through the window. Try the following:

<"f>
<"b>
<"u>
<"d>

7-45

SCREEN EDITOR TUTORIAL (vi)

7-46

2-3. Go to the end of the file. Append the following line of text.

123456789 123456789

What number .does the command 7h place the cursor on? What
number does the command 31 place the cursor on?

2-4. Try the command $ and the command 0 (number zero)

2-5. Go to the first character on the line that is not a blank. Move
to the first character in the next word. Move back to the first
character of the word to the left. Move to the end of the word.

2-6. Go to the first line of the file. Try the commands that place the
cursor on the middle of the window, on the last line of the
window, and on the first line_ of the window.

2-7. Search for the number 8. Find the next occurrence of number
8. Find 48.

CREATING TEXT

There are three basic commands for creating text:

• Append command <a>,

• Insert command < i >, and

• Open command that creates text on a new line <o>.

After you finish creating text with any one of these commands, you
can return to the command mode of vi with the <ESC> command.

The ESC key ends the text
input mode.

CREATING TEXT

Append Text

Append text.

<a> Create text to the right of the cursor, or after the
cursor.

<A> Append text at the end of the current line.

You have already experimented with the <a> command in the
section on Getting Started. Make a new file named junk2. Append
some text using the <a> command. Escape or return to the
command mode of vi by pressing the ESC key. Then, compare the
<a> command with the <A> cOmmand.

Insert Text

Insert text.

<i> Insert text to the left of the cursor, or before the
cursor.

<I> Create text at the beginning of the current line before
the first character that is not a blank.

In the example below, the arrow shows where the new text will be
created.

7-47

SCREEN . EDITOR TUTORIAL (vi)

7-48

Insert before the H of Here.
Insert before the H of�

<i>

Here. ·

To end the insert mode and return to the command mode of vi, press
the "ESC" key. In the next example you can compare the append
command with the insert command.

Append after the H of Here.
Append after the H of H(ere.

<a>

Insert before the H of Here.
Insert before the H of �Here.

<i>

Remember to end the append mode and the insert mode with the
<ESC> command.

<o>

<0>

CREATING TEXT

Create a new line of text.

The open command <o> creates text at the
beginning of a new line below the current line. The
cursor can be on any character in the current line.

To create text at the beginning of a new line above
the current line, use the <0> command.

In the next screen the < o > command opens a new line below the
current line and begins creating text at the beginning of the new
line.

Create text with the open line command.

Create text below j
(- - - -�-- - - - -

the current line.

<o>

7-49

SCREEN EDITOR TUTORIAL (vi)

7-50

SUMMARY OF CREATE COMMANDS

<a> Create text after the cursor.

<A> Create text at the end of the current line.

< i > Create text in front of the cursor.

<I> Create text before the .first character on the current line
that is not a blank.

<o> Create text at the beginning of a new line below the
current line.

<0> Create text at the· beginning of a new line above the
current line.

<ESC> Return vi to the command mode from any of the above
text input modes.

EXERCISE 3

3-1. Create a test file exer3.

3-2. Insert the following four lines of text.

Append text
Insert t�xt
a computer's
job is boring.

3-3. Create a line of text

financial staterp.ent and

above the last line.

3-4. Create a line of text

Delete text

above the third line using an insert command.

(
\,

(',

DELETING TEXT

3-5. Create a line of text

byte of the budget

below the current line.

3-6. Using an append command create a line of text

But, it is an exciting machine.

below the last line.

3-7. Move to the first line and append "some" before ''text".

Now, practice each of the six commands for creating text until
you are familiar with using them.

3-8. Leave vi and go on to the next section to find out how to
delete any mistakes you made in creating text.

\. . DELETING TEXT

You can delete text from the text in put mode or the command mode
of vi. In addition, you can undo the effect of your most recent
command that changed the buffer.

Delete Commands In the Text Input Mode

To delete text in the text input mode, you will use < BS> .

<BS> Delete the current character, the character indicated
by the cursor.

BACK
SPACE

Delete a character in the create
mode of vi.

7-51

SCREEN EDITOR TUTORIAL (vi)

7-52

The BACK SPACE key <BS> backs up the cursor in the create mode
and deletes each character that the cursor backs across. However, the
deleted characters are not erased from the screen until you type over
them, or use <ESC> and return to the command mode of vi.

In the next examples, the arrows show the movement of the cursor.

Press

<a>

BACK
SPACE

Back space 3 spaces
......

<a>
Back space 3 spa

-

three times.

DELETING TEXT

Notice that the characters do not erase from the screen until you
press the ESC key.

There are two other commands that delete text in the text input
mode. Although you may not use them often, you want to be aware
that they are commands in the text input mode and need a special
command to type them into your text, see the section on special
commands.

-

<@>

Delete the current word, or a specified portion of the
word from the cursor to the end of the word.

Delete all of the portion of the line that is currently
being created.

Undo the Last Command

Before you experiment with the commands that can delete a good I portion of your text, you will want to try out the ''undo" command,
which will undo the last command.

Undo the last command.

<u> Undo the last command.

<U> Erase the last change on the current line.

If you deleted a line, <u> will bring it back on the screen. If you
hit the wrong command, <u> will undo that command.

If you press the "u" key twice, it will undo the "undo". That is, if you
delete a line, the first <u> will restore the line. If you press <u>
again, it will delete the line again.

7-53

SCREEN EDITOR TUTORIAL (vi)

7-54

Delete Commands in the Command Mode

You know that you can precede a number before the command.
Many of the commands in vi, such as the delete and change
commands .. allow an argument after the command. The argument can
specify a text object such as a word, or a line, or a sentence, or a \ ..
paragraph. The general form of a vi command is:

[number]command(argument)

The brackets around objects in the general form of the command line
denote optional parts of the command. They are not part of the
command line.

You will see many examples of this form for the delete and change
commands.

All of the delete commands in the command mode of vi immediately
remove the deleted text from the screen and redraw that part of the
screen.

<x>

<nx>

Delete one character.

Delete "n" characters, where n is the number of
characters you want to delete.

You used <x> in the Getting Started section of this chapter. Now try
preceding <x> with the number of characters you want to delete.

(

DELETING TEXT

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark feep depths of the lake.

Put the cursor on the first letter you want to delete, in this example
the "d" of the second "deep".

Type in: 5x

The screen will delete "deep", plus the extra space, and readjust the
text on the screen so that it will now read:

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark fepths of the lake.

You can also use the delete word command, which is discussed next.

Delete Text Objects

The delete command follows the general form of a vi command.

[number)dltext object)

7·55

SCREEN EDITOR TUTORIAL (vi)

1-56

Delete a word, a line, a
sentence, or a paragraph.

Delete a word.

You can delete all of a word or part of a word with <dw> by
moving the cursor to the first character you want deleted. Pressing
<dw> deletes that character and all characters up to and including
the next space or punctuation character.

To delete part of thisill word. t
Type in: dw

To delete part of thisword.

t
You can delete one word with <dw> or several words by prefixing
the "dw" with a number. The cursor must be on the first character of
the first word to be deleted. To delete five words, you would type in
Sdw. An example of how to do this follows.

(

()

DELETING TEXT

Type in:

The quick red fox jumped over
the lazy black turtle or an ox

t E J

Sdw

The quick red fox jumped over
the lazy

+

Try typing in the arguments for other text objects that you learned in
the section on positioning the cursor.

Type in: d(or d)

Observe what happens to your file. Remember, you can restore the
text that you just deleted with <u> .

<dd> Delete a line of text.

To delete a line, press the "d" key twice. You do not need to worry
about deleting text if you press the "d" key once. Nothing will

7-57

SCREEN EDITOR TUTORIAL (vi)

1·58

happen, unless you press the space bar. The <d space bar> acts like
the <x> command and deletes one character. If you accidentally
press "d" key in the command mode .. press the ESC key. The ESC key
will cancel the previous typed command.

Try to delete ten lines.

Type in: !Odd

The lines will be deleted from the screen. If some of the lines are
below the current window, vi will display a notice on the bottom of
the screen:

10 lines deleted

If there are not ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

Delete the line from the cursor to the end
of the line.

If you are erasing the end of a line, use the <D> command. Put the
cursor on the first character to be deleted, hold down the SHIFT key
while you press the "d" key.

Type in: D

The <D> command will not allow you to specify more than the
current line. You cannot type in "3D". However, you could type in
<3d$>. Remember the general form of a vi command? The $ refers
to the end of the line in vi.

(\
\.

CJ

DELETING TEXT

SUMMARY OF DELETE COMMANDS

For the CREATE Mode:

<BS>

<"h>

<"W>

<@>

Delete the current character.

Delete the current character.

Delete the current word.

Delete the current line of new text, or delete all new
text on the current line.

For the COMMAND Mode:

<u>

<U>

<x>

<ndx>

<dw>

<dd>

<D>

<d)>

<d)>

Undo the last command.

Erase the last change on the current line.

Delete the current character.

Delete "n 11 number of text objects ''x".

Delete the word at cursor through the next space or to
the next punctuation mark.

Delete the current line.

Delete the line at the cursor to the end of the line.

Delete the current sentence.

Delete the current paragraph.

7·59

SCREEN EDITOR TUTORIAL (vi)

7-60

EXERCISE 4
4-1. Create a file exer4 containing the following four lines:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line 2 and append to the end of that line:

tedious and unsavory.

Delete "unsavory" while in the append mode.

Delete ''boring" in the command mode.

What is another way you could have deleted "boring"?

4-3. Insert at the beginning of line 4:

congenial and computerized.

Delete the line.

How could you delete the line and leave it blank?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your
directory.

CHANGING TEXT

Instead of deleting text using a delete command and then creating
text with a text input command, the three basic commands, <r>,
<s>, and <c> both erase the text and then create new text.

('\

CHANGING TEXT

Replacing Text

<r>

<nr>

<R>

Replace one character that is typed over.

Replace the current character, the character pointed
to by the cursor. This is not a text input mode. It
does not need to be ended by <ESC>.

Replace "n '' characters with the same letter. This
command automatically terminates after "nth"
character is replaced. It does not need the <ESC > .

Replace only those characters typed over until the
<ESC> command is given. If the end of the line is
reached, this command will then begin appending
new text.

The <r> command will replace the current character with the next
character that is typed in. For example, in the sentence below you
want to change "acts" to "ants".

The circus has many acts.

Place the cursor under the "c" of "acts".

Type in: rn

The sentence becomes:

The circus has_many ants.

To change "many" to "6666", place the cursor under the "m" of "many".

Type in: 4r6

The <r> command changes the four letters of "many" to 6s.

The circus has 6666 ants.

7-61

SCREEN EDITOR TUTORIAL (vi)

7-62

Substituting Text

The substitute command replaces characters, but then allows you to
continue to create text from that point until you press <ESC>.

<s>

<ns>

<S>

Substitute for a character of text.

Delete the character the cursor is on and append text.
End the text input mode with the ESC key.

Delete "n" characters and append text. End the text
input mode with <ESC>.

Replace aU the characters in the line.

The <s> command indicates the last character in the substitution
with a $. The characters are not erased from the screen until you ,
type over them, or leave the text input mode with the <ESC> \..: ...
command.

Notice that you cannot use an argument with either <r> or <s>.
Did you try?

Suppose you want to substitute "million" for "hundred" in the
following example.

My salary is one hundred

i
dollars.

Put the cursor under the h of hundred.

CHANGING TEXT

Then type in: 7s

Notice where the $ is placed. (\
\,

My salaxy is one hundre$

t
dollars.

Now type in: million

Press the ESC key, and you will owe the Internal Revenue Service
$500,000.

Changing Text

The substitute command replaces characters. The change command
replaces text objects, and then continues to append text from that
point until you press <ESC>. To end the change command and
return to the command mode in vi, you must press the ESC key.

Change. Replace a text object with
new text.

The change command can take an argument. You can replace a
character, word, or an entire line with new text.

<cw> Replace a word or the remaining characters in a word
with new text. The vi editor prints a $ indicating the
last character to be changed.

<new> Replace "n" number of words with new text.

7-63

SCREEN EDITOR TUTORIAL (vi)

7-64

<cc>

<nee>

Replace all the characters in the line.

Replace all the characters in the current line and up
to "n" lines of text.

<itcx> Replace "n" number of text objects "x", such as
sentences) and paragraphs } .

<C> Replace the remaining characters in the line .. from
the cursor to the end of the line.

<nC> Replace the remaining characters from the cursor in
the current line and replace all the lines under the
current line up to "n" lines.

For the <cw> command and the <C>, a $ will indicate the last
letter that will be replaced. The characters will remain on the screen
until you have pressed the ESC key. When used to change one or
more lines of text, the change command simply deletes the lines that
are to be replaced, and then places you in the text input mode of vi.

To change a word, use the <cw>
command. In the next line change
the word "chang$" to "replace".

t
<cw>

In the example, notice that "replace" has more letters then "change".
Once you have executed the change command you are in the text
input mode of vi and you can add as much text as you want, until
you press <ESC> .

To change a word, use the <cw>
command. In the next line change
the word "replace11 to "replace".

t
<ESC>

CHANGING TEXT

Try the other change commands. Watch the screen. When you use
<C> the $ will appear at the end of the line. Try using other
arguments.

Type in: c(
Since you know the undo command, do not hesitate to experiment
with different arguments, or preceding the command with a number.
You must press <ESC> before you can use <u> since <c> places
you in a text input mode.

c--;, Compare <S> to <cc>. The results should be the same for both
commands.

<r>

<R>

<s>

<S>

()

SUMMARY OF CHANGE COMMANDS

Replace only the current character.

Replace only those characters typed over with new
characters until the <ESC> command is given.

Delete the character the cursor is on and append text.
End the append mode with the ESC key.

Replace all the characters in the line.

(Continued on next page)

7-65

SCREEN EDITOR TUTORIAL (vi)

7-66

SUMMARY OF CHANGE COMMANDS (continued)

<cw>

<cc>

<ncx>

<C>

Replace a word or the remaining characters in a word
with new text.

Replace all the characters in the line.

Replace "n" number of text objects "x", such as
sentences) and paragraphs } .

Replace the remaining characters in the line .. from the
cursor to the end of the line.

CUTTING AND PASTING TEXT ELECTRONICALLY

There is a set of commands that will cut and paste text in a file.'<......_
Another set of commands will copy a portion of text and place it in
another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by
deleting the lines and then placing them at the spot in the text that
you want them. The last text or lines that were deleted go into a
temporary buffer. If you move the cursor to that part of the file
where you want t_he deleted lines to be placed and press the "p" key,
the deleted lines will be added below the current line.

The put command < p > puts the last
yank or delete in the proper place.

CUTTING AND PASTING TEXT ELECTRONICALLY

<p> Place the contents of the temporary buffer after the
cursor.

<np> Place "n" number of copies of the temporary buffer
after the cursor.

A parti�l. §_�nt�n<;!=' _th�t _ \YaS _df?!�tet!_ !'Y_ !_h_�--:C:.�_;> command can be
placed in the middle of another line. Position the CUrsor irl thf space
between two words, then press "p". The partial line is placed after
the cursor.

Characters deleted by < nx> also go into a temporary buffer. Any
text object that was just deleted can be placed somewhere else in the
text with <p>.

The · < p > command should be used right after a delete command
since the temporary buffer only stores the results of one command at
a time. The <p> command also places a copy of text after the cursor
that had been placed in the temporary buffer by the yank command.
Yank <y> is discussed next in Copying Text.

Fixing Typos

A quick way to fix typos that consist of transposed letters is to
combine the <x> and the <p> commands as <xp>. <x> deletes
the letter. <p> places it after next character.

Notice the error in the next line.

A line of tetx

This error can be quickly changed by placing the cursor under the "t"
in "tx" and then pressing first "x" and then "p" keys. The result is:

A line of text

Make a typing error in your file. Then use <xp > .

7-67

SCREEN EDITOR TUTORIAL (vi)

7-68

Copying Text

You can "yank" (copy) a part of the text into a temporary buffer, then
move the cursor to that part of the file where you want to place a
copy of the text, and place it there. <p> places the text after the "

' current line.

The "yank" command follows the. general form of a vi command. It
allows you to specify the number of text objects that you want copied.

[number)y[text object)

The "yank" command <y> saves a copy
of the text object.

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line into a temporary \.
buffer to be placed below another line.

<nyy> Yank "n" lines into a temporary buffer to be placed
below the current line. "n" is the number of lines.

<y)> Yank a copy of a sentence.

< y} > Yank a copy of the paragraph.

<nyx> Yank "n" number of text objects "x", such as sentences
) and paragraphs } .

Try the following command lines and see what happened to your
screen. Of course you can undo the last command.

Type in: Syw

Move the cursor to another spot.

Type in: p

CUTTING AND PASTING TEXT ELECTRONICALLY

Try yanking a paragraph <y}> and placing it after the current
paragraph, then move to the end of the file <G> and place that
same paragraph at the end of the file.

Copying or Moving Text Using Registers

If you have several sections of text that you wish moved or copied to
a different part of the file, it would be tedious to move each portion
one at a time. vi has named registers, which are electronic storage
boxes where you can store the text until you want to place it into a
specific spot in the file. These registers are named for each letter of
the alphabet, a through z. You can either yank or delete text to one
of these registers.

These commands are handy if you have an example that you want to
use several times in the text. The example will stay in the specified
register until you end the editing session or yank or delete another
section of text to that register.

(\ The general form of the command is:
\

(,

[number"l)commandjtext object]

The 1 represents any letter, and is the name of the register. You can
precede the command with a number to indicate how many text
objects, such as words or lines, that you want to save in the register.

Place the cursor at the beginning of a line.

Type in: 3"ayy

Now, type in more text. Then, go to the end of the file.

Type in: "ap

Did the lines you saved in register "a" appear at the end of the file?

7-69

SCREEN EDITOR TUTORIAL (vi)

7-70

SUMMARY OF CUT AND PASTE COMMANDS

<p> Place the contents of the temporary buffer containing
the last delete or yank command into the text after the
cursor.

<yy>

< nyx>

< "lyn>

<"lp>

Yank a line of text and place it into a temporary buffer.

Yank a copy of 11n" number of text objects "x" and place
them in a temporary buffer.

Place a copy of text object "n" in the register named by
a letter "1".

Place the contents of register 1 after the cursor.

EXERCISE 5
5-l. Edit the file exer2. Notice that this is the same file you created

in Exercise 2.

Go to line 8 and change that line to read '1lND OF FILE".

5-2. Yank the first eight lines of the file and place them in register
"z". Put the contents of register "z" after the last line of the file.

5-3. Go to line· 8 and change that line to read "8 is great".

5-4. Go to line 18 and make the same change as you did in 5-3.

S-5. Go to the last line of the file. Substitute "EXERCISE" for "FILE".
Replace "OF" with "TO".

SPECIAL COMMANDS

SPECIAL COMMANDS

There are some special commands that you will find useful.

<.> Repeat the last command.

<J> Join two lines together.

<\>
or

< "v> Print out non printing character.

< "1> Clear the screen and redraw it.

< -> Change lowercase to uppercase and vice versa.

Repeating the Last Command

Repeat the last
change command.

You may have already accidentally pressed the "," key, thinking that
you were adding a period at the end of your sentence. If you were in
the command mode of vi, you were unpleasantly surprised by the last
text change suddenly appearing on the screen.

The period repeats the last change command. This is a very handy
command when it is used with the search command. For example,
you forgot to capitalize the "S" in United States. However, you do
not want to capitalize the "s" in "chemical states". One way you could
correct this problem is search for "states". The first time you found
"states" in United statesr you would change the "s" to "5". The next
oc(:'urrence you found, yciu would simply press the "." key and vi
would remember to change the "s" to "S".

The <. > will repeat change, or create, or delete, or put commands.
Experiment with the commands. Watch the screen to see how the
text is affected.

7-71

SCREEN EDITOR TUTORIAL (vi)

7-72

Joining Two Lines

Join the line below the current line
with the current line.

The <J> command joins lines. Place the cursor on the current line,
hold down the SHIFT key and press the "j" key. The line below the
current line is joined to the current line at the end of the current
line.

Now is the time to join
forces.

To join these two lines into one line, place the cursor under any
character in the first line.

Type in: J

Those two lines become:

Now is the time to join forces.

Notice that vi automatically places a space between the last word on
the first line and the first word on the second line.

Typing Nonprinting Characters

In the section of this tutorial on deleting in the text input mode, two
commands were mentioned that are probably seldom used, but act as
commands and will not print out in your text. How do you get
characters that are commands in the text input mode to type out in
your text? Precede them with a \ .

SPECIAL COMMANDS

Type in nonprinting characters.

What happens when you want to type in the @ character? Try -it. Jt
erased the line you are working on. How do you type in the @
character?

Type in: \@

Clearing and Redrawing the Window

Clear and redraw the current screen.

One of the frustrating things that can happen to you in vi is that
another user in your UNIX system decides to send you a message
using the write command. If you have not turned off your messages
in the shell. the message will appear right at the spot where you are
editing in the current window. After you have read the message,
how do you restore the current window? If you are in the text input
mode, you must end it with the <ESC> command to get you into
the command mode of vi. Then, hold down the CTRL key and press
the "1" key. vi will clear away the garbage, and redraw the window
exactly as it was before the message arrived.

Changing Lowercase to Uppercase and Vice Versa

Change uppercase to lowercase,
or lowercase to uppercase.

7-73

SCREEN EDITOR TUTORIAL (vi)

7·74

A quick way to change any lowercase letter to a capital letter or any
capital letter to lowercase is the < - > command. To change a to A,
or B to b press --. This command does not allow you type in a
number before the command and change several letters with one
command.

<.>

<J>

<\x>

<"v>

<"I>

< - >

SUMMARY OF SPECIAL COMMANDS

Repeat the last command.

Join the line below the current line with the current
line.

Print the nonprinting character x that does not print
out in the text input mode.

Print characters that do not normally print out in the
text input mode.

Clear and redraw the current window.

Change lowercase to uppercase, or vice versa.

LINE EDITING COMMANDS

The screen editor vi also has same line editing capabilities. The line editor
associated with vi is talled ex. However, the ex commands are very similar to
the ed commands. If you know the ed commands, you may want to experiment
on a test file and see how many will work in vi.

There are many commands in the ex editor that can be called from vi. Only a
few of the most useful commands are discussed here.

. 1

('

'

LINE EDITING COMMANDS

Call in the line editor commands .

To call in -the line editor commands, type in a ":" from the comrp,and
mode of vi. The cursor will drop down to the bottom of the screen
and display the 11:". As you try out the line editing commands notice
that they print out at the bottom of the editing window.

A powerful and useful command of ex is the command that
temporarily returns you to the shell. You can return to the shell,
perform some shell commands (even edit and write another file in vi)
and then return to th� current window of vi.

:sh <CR> Temporarily return to the shell, leaving the vi buffer
with the cursor on the current line.

< 'd> After you have executed the shell commands, hold
CTRL and press "d". You will return to the exact line
and window you were editing before you left vi.

Even if you change directories while you are temporarily in the shell
and then execute <"d>, you will return to the vi buffer in the
directory where you were editing the file.

Write Text to a New File

What do you do if you want only part of the file in the editing buffer
placed in a UNIX system file?

Many of the commands in ex will accept a line number or a range of
line numbers typed in before the coinmand w. Try to write the third
line of the buffer to a file named three.

Type in: :3w three < CR>

� Notice the system response.

11tllree" {New file] 1 line, 20 characters

7-75

SCREEN EDITOR TUTORIAL (vi)

7-76

The " . " is the special character that indicates the number of the
current line.

Type in: :.w junk<CR>

A new file called junk will be created containing only the current line
in the vi buffer.

You can also specify the range of lines. To write lines 23 through 37
to a file, type in:

23,37w newfile<CR>

Finding the Line Number

If you want to specify a range of lines, you can find out the line
number of that line by moving the cursor to that line.

Type in: :.-<CR>

The editor will come back with the response that is the number of
that line.

If you want to know the number
of this line, type in :.-<CR>

As soon as you press RETURN, the bottom line will dear and give
you the number of the line in the buffer.

If you want to know the number
of this line, type in :.-<CR>

34

LINE EDITING COMMANDS

You can move the cursor to any line in the buffer by typing in a ":"
and the line number.

(:n <CR> Go to the "nth" line of the buffer.
\.

Deleting tho Rest of the Bufter

One of the easiest ways tO delete all the lines from the cUrrent line to
the end of the buffer is to use the line editor command to delete
lines.

Type in: :.,$d <CR>

The " " is the current line, and the last line is $.

Adding a File to the Bufter

If you have a file with some data or text in it that you would like to I add below a specific line in the editing buffer, you can do so with the
:r command. To read in the file data place the cursor on the line

{ , above the desired insertion.

C:

Type in: :r data<CR>

You may also specify the line number instead of moving the cursor.
Insert the file data below line 56 of the buffer.

Type in: :56r data<CR>

Do not be afraid to experiment, <u> will undo the ex commands
too.

Making Global Changes

One of the most powerful commands in ex is the global command.
The global command is given here to help those users who are
familiar with the line editor. Even if you are not familiar with a line
editor, you may want to try the command on a test file.

If you had typed in several pages of text about the DNA molecule,
calling its structure a "helix", you would have to change each
occurrence of the word "helix" to "double helix". This could be a long

7-77

SCREEN EDITOR TUTORIAL (Vi)

7-78

involved process searching for each one and probably using the "."
command of vi to repeat the change. If you are sure you want every
"helix" changed, you can use the global command of ex. You need to
understand a series of commands to do this. Let's take one at a time.

:g/ characters< CR>

Search for these exact characters.

Type in: :g/helix<CR>

The line editor does a global search for the first
instance of the characters "helix" on a line.

:s/text/new words/ <CR>

This is the substitute command. Instead of writing
over the word text, as the screen editor would have
done, the line editor searches for the first instance of
the characters text on the current line, and changes
them to new words. You must tell ex what word you
are looking for and it must appear between the first
two delimiters, /. It will then replace only those
exact characters with the exact characters, new words, '
between the last two delimiters.

:s/text/new words/g<CR>

By adding a "g11 at the end of the last delimiter of this
command line, ex will chaitge every occurrence on
the current line.

:g/helix/s//double helix/g<CR>

This command line searches for the word helix. Each
time helix is found, the substitute command
substitutes double helix for every instance of helix
on that line. The delimiters after the s do not need
to have helix typed in again. The command
remembers the word from the delimiters after the
global command g.

LINE EDITING COMMANDS

This is a very powerful command. If it is confusing to you, but you
still want to add it to your vi command knowledge, read Chapter 5 on
the line editor ed for a more detailed explanation of the global and
substitution commands.

SUMMARY OF LINE EDITOR COMMANDS

:sh<CR>

<"d>

:n<CR>

:x,zw data<CR>

:$<CR>

:.,$d<CR>

:r shell.file < CR >

:s/text/new words/ <CR>

:s/text/new words/g<CR>

Indicates that the next commands are
line editor commands.

Temporarily return to the shell to
perform some shell commands.

Escape the temporary shell and return
to edit the current window of vi.

Go to the "nth" line of the buffer.

Write lines from the number "x"
through the number ''z'' into a new file
called data.

Go to the last line of the buffer.

Delete all the lines in the buffer from
the current line to the last line.

Insert the contents of shell.file under
the curr�nt line of the buffer.

Replace the first instance of the
characters text on the current line
with new words.

Replace every occurrence of text on
the current line with new word.

:g/text)s//new word/g<CR> Change every occurrence of text to
new word.

7-79

SCREEN EDITOR TUTORIAL (vi)

7-80

QUITTING VI

There are six basic command sequences to quit the vi editor.

<ZZ> Write the contents of the vi buffer to the UNIX "
system file currently being edited and quit vi.

:wq<CR> Write the contents of the vi buffer to the UNIX
system file currently being edited and quit vi.

:w filename<CR>
:q <CR> Write the temporary buffer to a new file named

filename and quit vi.

:wr filename<CR>
:q <CR> Overwrite an existing file called filename with the

contents of the buffer and quit vi.

:q!<CR> Quit vi without writing to the shell file.

:q <CR> Quit vi without writing the buffer to a UNIX system
file. This command� without the write command w,
can only be used in special cases, such as the view
command discussed in the next section, or if the
buffer has not been changed.

The commands that are preceded by a ":," are line editor commands.

The <ZZ> command and :wq command sequence both write the
buffer to a UNIX system file, then quit vi, and return you to the shell
command level. You have tried the <ZZ> command, now try to exit
vi with :wq.

Type in: :wq<CR>

The system response is the same as it is for the <ZZ> command. It
gives you the name of the .file, and the number of lines and
characters in the file.

vi remembers the file name of the file currently being edited, so you
do not have to reiterate the file name when you want to write the
buffer of the editor back into that file. What do you do if you want
to give the file a different name?

•
r� '

('
\. ...

QUITTING VI

If you want to write to a file called junk:

Type in: :w junk< CR >

After you write to a new file, you can leave vi by just typing in the
:q.

Type in: :q<CR>

If you try to write to a file called letter that already exists in the shell�
you will receive a warning:

"letter" File exists - use "w! letter" to overwrite

Type in: :w! letter< CR >

You will erase the current file called letter and overwrite it with the
new file.

If you began editing a file called memo, made some changes to the
file, and then decided you_ didn't want to make the changes, or you
accidentally pressed a key that gave vi a command you could not
undo, you can leave vi without writing to the file.

Type in: :q!<CR>

SUMMARY OF QUIT COMMANDS

<ZZ> Write the file and quit vi.

:wq<CR> Write the file and quit vi.

•

:w filename< CR >
:q<CR> Write the editing buffer to a new file named

filename and quits vi.

(Continued on next page)

7-81

SCREEN EDITOR TUTORIAL (vi)

7-82

SUMMARY OF QUIT COMMANDS (continued)

:w! filename<CR>
:q<CR>

:q!<CR>

:q<CR>

Overwrite an existing file called filename with the
contents of the editing buffer and quits vi.

Quit vi without writing to the buffer.

Quit vi without writing the buffer to a UNIX
system file.

SPECIAL OPTIONS FOR vi
The vi command has some special options. It allows you to:

• Recover a file lost by an interrupt to the UNIX system,

• Place several files in the editing buffer and edit each in sequence,
and

• View the file with the vi cursor positioning commands.

Recovering a File Lost by an Interrupt

There are times when an interrupt or a disconnect will cause the
system to exit the vi command without writing the temporary buffer
to the UNIX system file. Or, you may become confused or have a
problem with the vi editor that you cannot solve. If that happens,
one solution is simply to hang up, or disconfiect from the UNIX
system. In both of these cases, the UNlX system will store a copy of
the buffer for you. When you log back into the UNIX system you
will want to restore the file with the -r option for the vi command:

Type in: vj -r filename<CR>

(

SPECIAL OPTIONS FOR vi

The changes you made to the file filename, before the interrupt
occurred, are now in the vi buffer. You can continue editing the file,
or you can write the file and quit vi. The vi editor will remember
the file name and write to that file.

Editing Multiple Files

If you wish to edit more than one file in the same editing session,
type in the vi command followed by each file name.

Type in: vi filel file2 < CR>

vi will respond by telling you how many files you are going to edit.

2 files to edit

After you have edited the first file, file!, you need to write the
changes to the shell file.

Type in: :w<CR>

\, The system response to the :w <CR> command will be a message at
the bottom of the screen giving the name of the file, and how many
lines and characters are in that edited file. Then you must ask for the
next file in the editing buffer with the :n command.

Type in: :n<CR>

The system response to the command :n<CR> is a notice at the
bottom of the screen with the name of the next file to be edited and
the character and line count of that file.

Pick two of the files in your current directory and enter vi to place
the two files in the editing buffer at the same time. Notice the
system responses Lo the commands at the bottom of the screen.

7-83

SCREEN EDITOR TUTORIAL (vi)

7-84

SUMMARY OF SPECIAL OPTIONS FOR vi

vi filel file2 file3<CR>

:w<CR>
:n<CR>

vi -r filel <CR>

Enter three files into the vi buffer to be
edited. Those files are filel, file2, and file3.

Write the current file and call the next
file in the buffer.

Restore the changes made to the file filel.

EXERCISE 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6.

Turn off your terminal without writing to a file or leaving vi.

Log back in to your terminal.

Try to get back into vi and edit the exer6 file.

6-2. Place exerl and exer2 in the vi buffer to be edited.

Write exerl and call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Try out the command:

vi exer"' <CR>

What happens? To quit vi:

Type in: ZZ ZZ

CHANGING YOUR ENVIRONMENT

6-4. Look at exer4 in read only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

CHANGING YOUR ENVIRONMENT

If you are going to edit with vi you will want to change your login
environment so that you do not have to reconfigure your terminal
each time you login. Your login environment is controlled by a file � in your login directory called the .profile. The .profile is explained in
more detail in the shell tutorial in Chapter 7.

You are about to edit your .profile that sets up your environment each
time you login. If you are concerned that you might cause a problem
with your .profile in the editing process, you may want to keep a
backup copy of your original .profile for safekeeping.

From your login directory, type in:

cp .profile safe.profile<CR>

Now that you have a copy of your .profile in a safe place, safe.profile,
you can edit your .profile just like any other file in Vi.

Type in: vi .profile<CR>

Go to the last line of the file, ignoring all the lines currently in the
file.

Type in: G

You are going to add two lines to the bottom of the file, the same
terminal configuration you typed in at the beginning of your login
session so that you could enter vi.

7-85

SCREEN EDITOR TUTORIAL (vi)

7-86

Type in: <o>

Now you are ready to append text to the end of the file.

Type in: TERM-code<CR>
export TERM<CR>

Remember "code" is the special code characters for your type of
terminal.

Write and quit vi. Now., the next time that you log into the UNIX
system TERM is automatically set and you can immediately begin
editing with vi.

Setting the A�tomatic Carriage Return

If you want an automatic carriage return� create a new file .exrc. The
.exrc file controls the editing environment for vi. There are several
options you can set in this file. If you want to know more about .exrc,
read the Editing Guide. {See Appendix A.)

Type in: vi .exrc<CR>

Add one line to this file.

Type in: wm-n<CR>

"n" is the number of characters from the right side of the screen
where the carriage return will occur. If you want a carriage return at
20 characters from the right edge of the screen,

Type in: wm-20<CR>

Write and quit that file. The next time you login this file will give
you an automatic carriage return.

You can check on these settings, the terminal setting and the
wrapmargin (automatic carriage return) when you are in vi.

Type in: :set<CR>

CHANGING YOUR ENVIRONMENT

vi will tell you the terminal type and the wrapmargin. You can also
use the :set command to create or change the wrapmargin. Try (� experimenting with it.

Now you know the basics of vil Experiment with the commands,
find the ones that work best for you.

7·87

SCREEN EDITOR TUTORIAL (vi)

7-88

ANSWERS TO EXERCISES

There is often more than one way to perform a task in vi. If the way
you tried worked., then your answer is correct. Below are suggestions(
for performing the task given in the exercise. ""

Exercise 1

1-1. Look up your terminal code with the following command. Type in:

grep "your type of terminal" /etc/termcap<CR>

The first two letters of of the system response are your terminal code.
Type in:

1-2. Type in:

TERM=code <CR>
export TERM<CR>

vi exert <CR>
<a>
This is an exercise! <CR>
Up, down<CR>
left, right <CR>
build your terminal's<CR>
muscles bit by bit.<ESC>

1-3. Use the <k> and the <h> commands.

1-4. Use <x>.

1-5. Use the <j> and <I> commands.

1-6. Type in:
<a> <CR>

and byte by byte<ESC>

Use <j> and <I> to move to the last line and character of the file.
Use <a> to add text. <CR> will create. the new line. <ESC> will
end the create mode.

1-7. Type in:
zz

(
1-8. Type in:

vi exert< CR >

Exercise 2

2-1. Type in:

2-2. Type in:

System response:
"exer1" 6 lines, 100 characters

vi exer2<CR>
<a>l<CR>
2<CR>
3<CR>

48<CR>
49<CR>
SO<ESC>

<"f>
<"b>
<"u>
<"d>

ANSWERS TO EXERCISES

Notice the line numbers as the screen changes.

2-3. Type in:
<G>
<o>
123456789 123456789<ESC>

2-4. $ -= end of line
0 - first character in the line

2-5. Type in:

C; 2-6. Type in:

< " >
<w>

<e>

<IG>
<M>
<L>
<H>

7-89

SCREEN EDITOR TUTORIAL (vi)

7-90

2-7. Type in:

Exercie:e 3

3-1. Type in:

3-2. Type in:

/8
<n>
/48

vi exer3<CR>

<a> Append text <CR>
Insert text<CR>
a computer's <CR>
job is boring. < ESC>

3-3. Type in:
<0>
financial statement and <ESC>

3-4. Type in:
<3G>
<i> Delete text<CR> <ESC>

The text in your file now reads:

Append text
Insert text
Delete text
a computer's
financial statement and
job is boring.

3-5. The current line is "a computer's". To create a line of text below that
line use the <o> command.

3-6. The current line is "byte of the budget".
<G> will put you on the bottom line.
<A> will begin appending at the end of the line.
<CR> will create the new line.
Then, type in the text "But, it is an exciting machine."
<ESC> ends the append mode.

c:

ANSWERS TO EXERCISES

3-7. Type in:

3-9.

<lG>
/text
<i>some<space bar> <ESC>

<ZZ> will write the buffer to exer3 and put you in the command mode
of the shell.

Exercise 4

4-1. Type in:
vi exer4<CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.<ESC>

4-2. Type in:
<2G>
<A> tedious and unsavory<CR>
< SBS>
<ESC>

Press <h> until you get to the "b" of "boring" then press
<dw>. Or, you could have used <6x>.

4-3. You are at the second line. Type in:
<2j>
<I> congenial and computerized <ESC>
<dd>

To delete the line and leave it blank, type in:
<O> (zero to place you at the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

<ZZ>

Remove the file.

rm exer4<CR>

7-91

SCREEN EDITOR TUTORIAL (vi)

7·92

Exercise 5

5-l. Type in:

5-2. Type in:

5-3. Type in:

S-4. Type in:

5-5. Type in:

Exercise 6

6-1. Type in:

vi exer2<CR>
<SG>
<cc> END OF FILE <ESC>

<lG>
<S!'zyy>
<G>
<"zp>

<SG>
<cc> 8 is great<ESC>

<18G>
<.>

< /FI>
<cw> EXERCISE<ESC>

<?OF>
<R>TO<ESC>

vi exer6<CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal.

Turn on the terminal.
Log into the UNIX system. Type in:

vi -r exer6<CR>
:wq<CR>

6-2. Type in:

6-3. Type in:

6-4. Type in:

vi exert exer2 <CR>
:w<CR>
:n<CR>

:w junk<CR>
zz

vi exer•<CR>

(Response)
8 files to edit (vi calls in all files with

names that begin with exer.)

zz
zz

view exer4<CR>
<"f>
<"d>
<"b>

(< "u>

'--

CJ

ANSWERS TO EXERCISES

7-93

Chapter 8

ADMINISTRATIVE ADVICE
(INTEL PROCESSORS)

PAGE

GENERAL . · · · · · · · · · · · · • · · · · • · 1

ADMINISTRATOR'S ROAD MAP . . , , , 1

CONFIGURATION GUIDELINES . . 2

DISK FREE SPACE . . 2

A FEW WORDS ABOUT SYSTEM TUNING , , 3

PROTECTING USER FILES . • . . . 4

FILE SYSTEM BACKUP PROGRAMS . . 4

CONTROLLING DISK USAGE . . 5

REORGANIZING FILE SYSTEMS . . 7

KEEPING DIRECTORY FILES SMALL . . . 8

ADMINISTRATIVE USE OF "CRON" . . : , , , , . . , , 8

WATCH OUT FOR FILES AND DIRECTORIES THAT

GROW . . 9

ALLOCATING RESOURCES TO USERS . . 10

THE MATTER OF ACCOUNTING AND USAGE 10

DIAL· LINE UTILIZATION . , , 1 1

"BIRD-DOGGING" . . 11

TERMINALS . . 1 1

LINE PRINTERS . . 1 1

SECUIDTY . . 12

COMMUNICATING WITH THE USERS . . 12

TROUBLESHOOTING . . 13

DATA SET OPTIONS . , ,. 16

NULL MODEM WIRING . . 17

I

f '·
'---��

(� \
"'--··

ADMINISTRATIVE ADVICE
(INTEL PROCESSORS)

GENERAL

The information contained in this chapter is relative to the Intel
iAPX 286 processor.

ADMINISTRATOR'S ROAD MAP

This chapter contains administrative advice based on the eXperience
and suggestions of many system administrators. Other reasonable
approaches may be taken to solve many of the problem areas
described.

Getting started as a UNIX system a!iministrator is hard work. There
are no real shortcuts to a working knowledge of the system. The
system administrator will need ti'me for reading, studying, and
hands-on experimenting. The system administrator should not go
"live" with the system until he/she have had several weeks to learn
the job and get the initial hardware quirks ironed out.

The administrator should be familiar with a lot of the distributed documentation.
The "Introduction" and "UNIX System Capabilities" sections of the this manual
should be studied.

Throughout this chapter, each rererence of the fonn name(N), where "N" is the
number I or 7 possibly followed by a letter, refer to entry name in section N of
the Runtime System manual. If "N" is a number 2 through 5 possibly followed
by a letter, refer to entry name in section N of the Software Development
System manual.

8-1

ADMINISTRATIVE ADVICE

In these manuals, pay special attention to: acct(lM), checkall(lMO,
chmod(l), chown(l), config(lM}, cpio(l), date(l), dcopy(lM), df(lM),
don(lM), du(l), ed(l), env(l), errpt(IM), find(!), format(IM), fsck(IM),
fuser(lM), kill(l), mail(!), mkdir(l), mkfs(IM), ncheck(IM), ps(l),
rm(l), rtndir(l), shutdown(lM), stty(l), su(l), sync(IM), time(!),
volcopy(IM), wall(lM), who(!), and write(!); acct(4); all of Section 7;
and crash(l).

CONFIGURATION GUIDELINES

Minimum configuration requirements for the iAPX 286 are shown in
Figure 2-1.

COMPONENT MINIMUM CAPACITY REQUIRED
Memory: 384 kilobytes, plus 64 kilobytes per terminal.*
Disk space: 10 megabytes, plus 2.5 megabytes per user.*

* terminal is the number of users who can be on the system at the same time, and
user is the number of" averageMactivity'' user accounts.

Figure 2-1. Recommended Configurations

DISK FREE SPACE

Making files is easy under the UNIX operating system. Therefore,
users tend to create numerous files using large amounts of file space.
It has been said that the only standard thing about all UNIX systems
is the message-of-the-day telling users to clean up their fiies.
Administratively, both free disk blocks and free inodes (UNIX system
talk for file headers) can be a problem. If the free inode count falls
below 100, the system spends most of its time rebuilding the free

8-2

I

ADMINISTRATI)IE ADVICE

inode array. If a file system runs out of space, the system prints
"no-space" messages and does little else. To avoid problems, the
following start-of-day free counts should be maintained:

• The file system containing ltmp (temporary files):

-1000 free kilobytes.

• The file system containing /usr:

-2000 free kilobytes.

• Other user file systems:

-6 to 10 percent free depending on user habits.

This brings up an associated problem: how big should file systems

(> be? The preference is to set aside space on each drive for a copy of
\...__j root/swap and use the rest of the pack for a single file system.

However, if you have user groups that fight over disk space, it may
be better to split them up arbitrarily (i.e., divide a pack into more
than one file system).

Warning: If different disk drives are set up with
differing cylinder partitions between file systems, it
will eventually lead to an operatlonal blunder.

A FEW WORDS ABOUT SYSTEM TUNING

A file system reorganization can help throughput but at the expense
of down time. If the reorganization is done dufing non prime time, it
can help.

If normal shutdown and filesave procedures are used, the file system
check program [fsck(lM), -S option] will help keep the disk free list
in reasonable order. Try to keep disk drive usage balanced. If there
are over 20 users, the root file system (/bin, /tmp, and /etc) deserves
a drive of its own. If there is a noisy modem (poorly executed do-it
yourself null-modem) or a disconnected modem cable, the UNIX
system will spend a lot of CPU time trying to get it logged in. A
random check of systems uncovers a lot of this going on.

8-3

ADMINISTRATIVE ADVICE

PROTECTING USER FILES

Users, especially inexperienced ones, occasionally remove their own
files. Open files are sometimes lost when the system crashes. Once
in a great while, an entire file system will be destroyed (picture a
disk controller that goes bad and writes when it should read). Here
is a suggested file backup procedure:

• Each day copy all changed user files to backup disks. Keep
these disks 3 to 5 days before reusing them.

• Once a week copy each file system to a set of "weekly" disks.
Keep weekly disks for 8 weeks.

• Keep bimonthly disks "forever" (they should be recopied once a
year).

The most recent weekly disks should be kept off premises. The other
disks should be in a fireproof safe if available and not too expensive.

When the UNIX system goes down, active files can get scrambled. Yonr users
will not want to start the day over every time the system fails. In addition to
good backnp, you must have file system patching expertise available (on-site or
on-call). If the system is ever rebooted for general use without first checking the
file systems, tertible things will happen. Study checkall(IM), fsck(!M), and
crash(!) as well as the "File System Checking" chapter for more information.

FILE SYSTEM BACKUP PROGRAMS

The following backup programs are distributed:

8·4

• Find/cpio: The UNIX system is distributed in cpio format.
The -cpio option of the find command can be used for saving
only those files that have changed or been created over a
definite period.

• Volcopy: Physical file system copying to disk. For those with
a spare drive, volcopy to disk provides convenient file restore
and quick recovery from disk disasters.

{\ \.. .

f\ \

()

ADMINISTRATIVE ADVICE

Figure 2-2 summarizes attributes of these programs. In the figure,
the file system size is 10,000 KB in all cases; times are in minutes;
judgments are subjective.

FIND/CPIO VOLCOPY (DISK) · VOLCOPY- (FLOPPYI

Full dump time 80 4 60
Incremental dump time 12
Full restore time 100 4 60
Incremental restore time 15
Ease of restoring:

one file fair good fair
a directory fair good fair
scattered files poor good fair
full restore fair very good good

Needs floppy drive yes no yes
Needs spare file system

(two CPUs can share) yes
Maintains pack/tape labels no yes
Handles multiple floppies yes yes
512-byte Blocks per record 10 22 2
Interactive

(i.e., ties up console) yes yes yes

Figure 2-2. File System B8.ckup Programs

The spare disk drive is strongly recommended. The speed and
convenience of volcopy are by no means the only advantage of a
spare drive. It is strongly recommended that the administrator
modify the /etc/filesave and /etc/checklist files to meet the
operational needs and upd_ate the local operator's manual accordingly.
Remember, the more the administrator automates and documents
operational procedures the less downtime will be encountered.

CONTROLLING DISK USAGE

If the UNIX system is a success, disk space will soon become limited.
During the long delay before more drives become available, usage
should be controlled. Try to maintain the start-of-day counts
recommended. Watch usage during the day by executing the df(l)
command regularly.

8-5

ADMINISTRATIVE ADVICE

The du(l) command should be executed (after hours) regularly (e.g.,
daily), and the output kept in an accessible file for later comparison.
In this way, users rapidly increasing their disk usage may be spotted.
This can also be accomplished by running the accounting system's
acctdusg program [see acct(lM)] as shown in "The UNIX System
Accounting" chapter.

The find(l) command can be used to locate inactive (or large) files.
For example:

find I -mtime +90 -atime +90 -print >somefile

records in somefile the names of files neither written nor accessed in
the last 90 days.

The administrator will also have to balance usage between file
systems. To do this, user directories must be moved. Users should be
taught to accept file system name changes (and to program around
them-preferably ahead of time). The user's login directory name
(available in the shell variable HOME) should be utilized to
minimize pathname dependencies. User groups with more extensive
file system structures should set up a shell variable to refer to the
file system name (e.g., FS).

8-6

C:

r �

()

ADMINISTRATIVE ADVICE

The find(l) and cpio(l) commands can be used to move user
directories and to manipulate the file system tree. The following
sequence is useful (it moves the directory trees userx and usery from
file system fiksysl to file system filesys2 where, presumably, more
space is available):--

cd /filesysl
find userx usery -print I cpi� -pdm /filesys2
Make sure new copy is OK.
Change userx and usery login directories
in the /etc/passwd file.
Notify Userx and usery via mail(l) that
they have been moved and that pathname
dependencies in their .profile and shell
procedures may need changing. See the
discussion on $HOME abov�.
rm -rf /filesysl/userx /filesysllusery

When moving more than one user in this way, keep users wlth
common interests in the same file system (these users may have
linked files) and move groups of users who may have linked files with
a single cpio command (otherwise linked files will be unlinked and
duplicated).

REORGANiZING FILE SYSTEMS

There is a new file system reorganization utility called dcoj>y(lM).
On an otherwise idle system, a reorganized file system has almosi
twice the 1/0 throughput of a randomly organized file system. This
applies to file copying, finds, fscks, etc. Dcopy can take up to 2.5
hours to initially reorganize (Copy) a large file system. DUring
reorganization, the system can be up, but the file system being copied
must be unmounted.

For those who can afford the operator time, root reorganization once
a Week (requires system reboot) and user file system reorganization
once a month will improve system performance. Dcopy is ail
interim step.

8-7

ADMINISTRATIVE ADVICE

KEEPING DIRECTORY FILES SMALL

Directories larger than 5K bytes (320 entries) are very inefficient
because of file system illdirection. A UNIX system user once
complained that it took the system 10 minutes to complete the login
process; it turned out that his login directory was 25K bytes long, and
the login program spent that time fruitlessly looking for a
nOnexistent .profile file. A large /usr/mail or /usr/spool/uucp
directory can also really slow the system down. The following will
ferret out Such directories:

find I -type d -size + 10 -print

Reinoving files from - directories does not make the directories get
smaller (the empty directory entries are available for reuse). The
following will "compact" /uir/mail (or any other directory):

mv /usr/mail /uSr/omail
mkdir /usflmail
chmod 777 /usr/mail
cd /usr/omail
find . -print I cpio -plm . ./mail
cd . .
rm -rf omail

ADM�NISTRATIVE USE OF "CRON"

The program cron(lM) is useful in the administration of the system.
It can be uSed to run the follOwing programs off-hours:

-accounting;
-file system administration;
-long-running, user-written shell procedures.

8-8

- I

C'l

ADMINISTRATIVE ADVICE

WATCH OUT FOR FILES AND DIRECTORIES
THAT GROW

Most of the files listed below are restarted automatically by entries
in /etc/r·c at system reboot.

Accounting Files:

• /etc/wtmp-login information; grows extremely fast with terminal
line difficulties; use acctcon(lM) to determine the offending
line(s) .

• /usr/adrn/pacct-per process accounting records; gets big quickly; /�
monitored automatically by ckpacct from cron(lM).

• /usr/lib/cron/log-status log of commands executed by cron(lM);
also watch this file for error messages from the programs being
executed in /usr/spool/cron/crontabl* .

• /us:t/adm/enfile-hardware error logging info; also read login 1!1
adm's mail periodically. II

• lusr/adm/ctlog-a log of the people who use ct(lC) command.

• /usr/admlsulog-a log of those who execute the superuser
command.

• /usr/adm/Spacct-process accounting files left over from an
accounting failure; remove these files unless the accounting files
that failed are to be rerun.

Other Files:

• /usr/spool-spooling directory for line printers, uucp(lC), etc.,
and whose subdirectories should be compacted as described above.

8-9

ADMINISTRATIVE ADVICE

ALLOCATING RESOURCES TO USERS

A prospective user should first obtain authorization to use the system
and then apply for a login by providing the following information to
the "system administrator":

• User's name.

• Suggested login name (not more than eight characters,
beginning with a lowercase letter and not containing special or
uppercase letters).

• Relationships to other users (this influences the choice of the
file system).

• Estimate of required file space (this also influences the choice
of the file system) and connect hours. This aids in hardware
growth planning.

Users must have passwords with at least six characters. (Only the
first eight characters are significant.) Also, every password must
have at least two alphabetic characters and one numeric or special
character. The password must differ from the user's login name and
any reverse or circular shift of it. Refer to passwd(l) and
passwd(4) for more information on password selection and password
aging.

THE MATTER OF ACCOUNTING AND USAGE

You should run the accounting programs even if there is not a "billn
for service. Otherwise, users' habits (especially bad habits) will be a
mystery to you. Accounting information can also help you find
performance bottlenecks, unused logins, bad phone lines, etc.

8-10

ADMINISTRATIVE ADVICE

DIAL-LINE UTILIZATION

If prime-time dial-line utilization gets much over 70 percent, users
will start to encounter busy signals when dialing in. This, in turn,
will l�ad to "line hogging". TP,e only �olutiO!JS are to a<;!quire more
dial-up ports, get a larger (another) machine, or get rid of users.
Manual policing will help some, but "automatic" policing wi11 be
invariably subverted by users.

"BIRD-DOGGING"

When the system is busy (lines busy and/or slow response), someone
should determine why this is so. The who(l) command lists the
people logged in. The ps(l) command shows what they are doing.
Unfortunately, ps operates from heuristics that can consistently fail
to report certain processes in a busy system. That is, one must be
careful about hanging up an apparently inactive line. The
acctcom(lM) command can read the process accounting file �
/us1'/adm/pacct backwards from the most recent entry. It will print
entries for selected lines or login names. ••

TERMINALS

Do not use uppercase only terminals. Use full-duplex, full-ASCII
asynchronous terminals. Hardware horizontal tabbing is very
desirable because it increases output speed and lowers system
overhead. A fair proportion of the terminals should provide for
correspondence-quality hard copy output to take advantage of the
UNIX system word processing capabilities; see term(5).

LINE PRINTERS

Most line printers are troublesome and impose considerable overhead
on the system. Most also lack hardware tabs, character overstrike
capability, etc. A printer that will work over an asynchronous link
(DC1/DC3 protocol required) is the best bet.

8-11

ADMINISTRATIVE ADVICE

SECURITY

The current UNIX operating system is not tamperproof. The system
administrator cannot keep people from "breaking" the system but
can usually detect that they have done so. The following command
will mail (to root) a list of all "set user ID" programs owned by root
(superuser):

find I -user root -perm -4100 -exec Is -1 { } \; I mail root

Any surprises in root's mail should be investigated. In dealing with
security,

• Change the superuser password regularly. Do not pick obvious
passwords (choose 6-to-8 character nonsense strings that
combine alphabetics with digits or special characters).

• Dial ports that do not require passwords usually cause trouble.

• The chroot(lM) and su(l) commands are inherently
dangerous as are group passwords.

• Login directories, .profile files, and files in /bin, /usr/bin,
/lbin, and /etc that are writable by others than their
respective owners are security weak spots; police the system
regularly against them.

• Remember, no time-sharing system with dial ports is really
secure. Do not keep top secret information on the
system.

COMMUNICATING WITH THE USERS

The directory /us·r/news and the news(l) command are provided as
a way to get "brief" announcements to your users. More pressing
items (one-liners) can be entered in the /etc/motd (message of the
day) file; motd and (new to the user) news are announced at login
time.

8-12

n

ADMINISTRATIVE ADVICE

To reach users who are already logged in, use the wall(lM) (write
all) command. Do not use wall while logged-in as superuser, except
in emergencies.

The /usr/news directory should be cleaned- out once a week by
removing everything older than 2 months. It has been found that on
most systems a file in /usr/news will reach 50 percent of the users
within a day and over 80 percent within a week; motd should be
cleaned out daily.

TROUBLESHOOTING

It would be easy to write a book on troubleshooting. The following is
some effective advice in dealing with troubles. In dealing with
hardware support service personnel,

• Be sure that the contractor agrees to get along with the UNIX I software before you take out a hardware service contract ("It's
the hardware," says you; 11It's the software," says the ••

hardware service contractor).

• Keep on top of problems. Remember that an unreported
problem is getting no priority at all. If a problem persists,
escalate it through the contractor's local management chain; it
may also be effective to complain to the contractor's sales
representative.

• Know the details of the support service offering applicable to
the installation. In particular, make sure that preventive
maintenance is scheduled in advance and that it is completed.

• A "site log" should be maintained for the hardware. All
troubles should be recorded in the log by the support service
personnel and/or the operating personnel.

• Before changing the approved hardware configuration, make
sure that the hardware vendor (as well as the hardware service
contractor, if the two are different) agrees to the presence of
nonstandard equipment on your system.

8-13

ADMINISTRATIVE ADVICE

• Run error logging and maintain console sheets. Make sure
error messages are shown to support service personnel.

• Take core dumps after system crashes and have them available
for support service personnel.

• Keep records of downtime and make sure that support service
personnel know about them.

Telephone problems are most apt to occur when rearranging or
adding equipment. Occasionally, central office, trunking, or modem
failures occur. In dealing with the telephone services vendor, _

• Be specific with repair operators. Tell the operators that the
trouble involves data equipment.

• If the first call fails to get results, ask for the "supervisor" on
the second call, and if necessary, escalate further to get the
problem solved.

Some of the obvious problem areas are:

8-14

• Disk Drives-Over 50 percent of the problems are likely to be
related to the disk subsystem. As mentioned earlier, the way
to keep the system up is to have a spare disk drive. Remember
that preventive maintenance of disk drives is very important.
Make sure that the support service personnel who service the
hardware see the error-logging printouts and console error
messages produced by the UNIX system (and that they
understand them). Disk failure can ruin a file system. The
only defense is to make a complete, daily file backup! (See the
part "Protecting User Files".)

• Dial Ports-In the dial-in interface area, there is room for
finger-pointing among all involved vendors. Check for obvious
things such as is the system in "multiuser" mode, is the
/etc/inittab file OK, or are any cables loose (both ends)? In
some telephone offices, trunk hunting is based on 10-number
groups. Hunting between such groups can fail independently of
anything else. The possibilities for trouble are many. Figure
2-3 attempts to describe some alternatives; it is meant

CJ

ADMINISTRATIVE ADVICE

primarily for users of serial communication devices. As an
example of the format, (vertical) Rule 3 reads: "If line rings
and ring light shows and computer does not answer and
switching the modem solves the problem, then it is likely to be
a telephone company problem; al�o, busy_ out t_h�t line.11

Rules: 1 2 3 4 5 6 7 8 9 0

Condition:

Line rings N y y y y y y y y y
Ring light shows on telephone console - N y y y y y y y y

Computer answers - - N N y y y y y y
Login message received on terminal - - - - N N y y y y

Switching modem solves problem - - y N y N - - - -
User can login - - - - - - N N N y

Telephone console shows data received - - - - - - y y N -
Problem affects whole serial controller - - - - - - y N - -

Diagnosis and/or Action:

No problem - - - - - - - - - X
Processor hardware problem likely - - - X - X X - - -

Telephone problem likely X X X - X - - - X -
May be a problem with user's terminal - - - - - - - X - -

Busy out bad line(s) X X X X X X X - X -

Figure 2-3. Asynchronous Line Problems

• Power Supply Modules-There are a lot of them, and they do
fail, more or less regularly. Hard failure can be detected at
the console; voltage drift is tougher.

8-15

ADMINISTRATIVE ADVICE

DATA SET OPTIONS

The following data set options seem to work with the UNIX system:

The 801C-L1 (Auto-Call Unit):
Jumpers:

E2 to E3
E6 to E5

Options:
Y, X, T, B,
ZG, ZP, G,
R, ZT

Switches (0 = open, 1 = closed, i.e., side next to number is down):
81 � 1000[1] (Bracketed switches are missing on some models.)
82 � 0101
83 � 11010
84 � 11[00]

The 212A-L1 (1200-baud full duplex):

8-16

Options:
E, ZF, YF, YC,
YG, YJ, YK,
S, V, A, T, ZH,
W, YP, YR

Switches:
81 � [0]001
82 � 110001000
83 � 11110000 (10100000 on 212AR-Ll)
85 � 00

c)

() ' ' �/

ADMINISTRATIVE ADVICE

NULL MODEM WIRING

Improperly wired null modems can cause spurious interrupts,
especially at higher baud rates. A single bad modem on a 9600-baud
line can waste 15 percent of your CPU power. The following
(symmetrical) wiring plan will prevent -such problems:

pin 1 to 1
pin 2 to 3
pin 3 to 2
strap pin 4 to 5 in the same plug
pin 6 to 20
pin 7 to 7
pin 8 to 20
pin 20 to 6 and 8
ground unused pins

8-17

ADMINISTRATIVE ADVICE

8-18

ADMINISTRATIVE FILES

/etc/motd

This file contains the message-of-the-day. It is printed by /etc/profile
after every successful login; therefore, it should be kept short and to
the point.

/etc/brc

This file is executed prior to entering any of the numbered init states
for the first time after a reboot. The file is generally used to clear
the file letc/mnttab. It is important to remember this file is executed
once per reboot and is controlled by /etc/inittab.

/etc/powerfail

This shell script is executed according to its line in /etc/inittab.

/etc/'TIMEZONE

This shell script is executed by several initialization procedures. It
should be modified to set the correct time zone information for your
system.

/etc/bsetdate

This shell script is executed according to its line in /etc/inittab.

/etc/reO

This shell script is executed according to its line in /etc/inittab to run
procedures needed to cleanly halt the system.

c

(

C:

ADMINISTRATIVE ADVICE

/etc/rc2

This shell script is executed according to its line in /etc/inittab to run
procedures to bring the system into multiuser mode.

/etc/shutdown.d/*

These shell scripts are executed by /etc/reO.

/etc/rc.d/f

These shell scripts are executed by /etc/rc2.

/etc/inittab

This file is used by /etc/init to determine the processes to create or
terminate in each init state. By convention, state 's' is single user
and state '2' is multiuser.

The following line may be used to indicate the default init state, that
is, the state the system is to come up in (most likely multiuser).

is:2:initdefault:

To enable line /dev/ttyO for use by 9600-baud asynchronous
terminals, change the following:

0:2:off:/ etc/ getty ttyO 9600

to

0:2:respawn:/etc/getty ttyO 9600

The arguments to getty are the device name optional speed settings
which refer to an entry in /etc/gettydefs, optional type of terminal
referenced in getty(lM), and optional line discipline.

8-19

ADMINISTRATIVE ADVICE

8-20

To add or delete getty-login processes while the system is in multiuser
mode, make the appropriate changes to /etc/inittab then issue the
command /etc/init q. This forces /etc/init to reread /etc/inittab
without having to change init states.

Again, this file must be edited for local conditions; see getty(8),
init(8), gettydefs(4), and inittah(5).

/etc/passwd

This file is used to describe each user to the system. A new line must
be added for each new user. Each line has seven fields separated by
colons:

1. Login name: normally 1 to
alphabetic, the remainder
characters.

8 characters, first character
alphanumeric, no uppercase

2. Encrypted password: initially null, filled in by passwd(l). The
encrypted password contains 13 bytes while the actual password
is limited to a maximum of 8 bytes. The encrypted password
may be followed by a comma and up to four more bytes of
password "age" information.

3. User ID: a number between 0 and 65,535; 0 indicates the
superuser. User IDs 0 through 99 are reserved.

4. Group ID: the default is group 1 (one). Group IDs 0 through 99
are reserved.

5. Accounting information: this field is used by various accounting
programs. It usually contains the user name, department
number, and account number.

6. Login directory: full path name (keep them reasonably short).

7. Program name: if null, /bin/sh is invoked after a successful logi-n.
If present, the named program is invoked in place of lbin/sh.

(,

ADMINISTRATIVE ADVICE

For example,

ghh::138:1:6824-G .H.Hurtz(4357):/usr I ghh:
grk::244:1:6510-S.P.LeName(4466):/usr/grk:/bin/rsh

See also passwd(4), login(!), and passwd(l).

/etc/group

This file is used to describe each group to the system. The system
administrator must adcl a new li

'
ne for each new group. Ea�h

.
line has

four fields separated by colons:

1. Group name: normally 1 to 8 characters, first character
alphabetic, · t:Q.e remainder ;:tlphanumei-ic, 'no uppercase
characters.

2. Encrypted password: contains 13 bytes while the actual password
is limited to a maxlmum of 8 byt�s.

3. Group ID: a number between 0 and 65,535. Group IDs 0 through
99 are :r;-eserved.

4. Login names: list of all logi.n p.ames in the group, separated by
com

.
mas; list of all login names that may use newgrp(l) to

become a me�ber of the group.

Group passwords are strongly discouraged. See also group(4).

8-21

ADMINISTRATIVE ADVICE

/etc/profile

When the shell is executed and is the leader of a process group, as is
the case when it is invoked by login, it will read and execute the
commands in /etc/profile before executing commands in the user's
.profile file. This allows the system administrator to set up a
standard environment for all users (e.g., executing umask, setting
shell variables, etc.) and take care of other housekeeping details
(such as news -n). Note that in /etc/profile the shell variable $0
indicates the invocation-normal shell (-sh), restricted shell (-rsh),
or su command (-su).

/etc/checklist

This file contains a list of default devices to be checked for
consistency by the fsck(lM) program. The devices normally
correspond to those mounted when the system is in multiuser mode.
For example, a sample checklist would be:

/dev/dsk/Os6
/dev/rdsk/Os7

Note that the root device is specified as a block device while all others
are specified as character devices. Character devices can be checked
faster than block devices. The root device is specified as a block
device in order for the fsck program to detect when the root is being
checked, so that any modifications to this file system will result in an
immediate reboot request.

/etc/fstab

This file contains a list of devices and mount points that are used by
/etc/rc.d/MOUNT.rc to check and mount all of the file systems
except root. This file must be modified whenever the set of file
systems to be mounted at boot time changes.

8-22

c

ADMINISTRATIVE ADVICE

/etc/shutdown

This file contains procedures to gracefully shut down the system in
preparation for file save or scheduled downtime. Beware that no
procedures appear after the transition to single-user mode, as it may
not be completed before the transition occurs.

/etc/filesave

This file contains prototypes for local file saves.

/usr/adm/pacct

This file contains the process accounting information; see acct(lM).

/etc/wtmp

This file is the log of login processes.

8-23

Chapter 9
FILE SYSTEM CHECKING

PAGE

GENERAL . 1
System Administrator Advice , , , , 2

UPDATE OF THE FILE SYSTEM . 2
Superblock . 2
!nodes . 3
Indirect Blocks . 3
Data Blocks , , . . . , . • 3
First Free-List Block . 3

CORRUPTION OF THE FILE SYSTEM • , , 4
Improper System Shutdown and Startup . 4
Hardware Failure • • • 4

DETECTION AND CORRECTION OF CORRUPTION , , , 4
Superblock ·. 5
I nodes . 6
Indirect Blocks , , , . , , . 9
Data Blocks . , , , , , . , , , , . . , , , 10
Free-List Blocks , • • . 1 1

FSCK Error Conditions . 13

FILE SYSTEM CHECKING
The File System Check Program (fsck) is-an interactive file system
check and repair program. Fsck uses the redundant structural
information in the UNIX system file system to perform several
consistency checks. If an inconsistency is detected, it is reported to
the operator, who may elect to fix or ignore each inconsistency.
These inconsistencies result from the permanent interruption of the
file· system updates, which are performed every time a file is
modified. Fsck is frequently able to repair corrupted file systems
using procedures based upon the order in which the UNIX system
honors these file system update requests.

The purpose of this chapter is to describe the normal updating of the
file system, to discuss the possible causes of file system corruption,
and to present the corrective actions implemented by fsck. Both the

i�- program and the interaction between the program and the operator
\, are described.

Appendix 6-1 contains the fsck error conditions. The meanings of
the various error conditions, possible responses, and related error
conditions are explained.

GENERAL

When a UNIX operating system is brought up, a consistency check of
the file systems should always be performed. This precautionary
measure helps to ensure a reliable environment for file storage on
disk If an inconsistency is discovered, corrective action must be

taken.

The updating of the file system and file system corruption is
described in this chapter. Finally, the set of heuristically sound
corrective actions used by fsck are presented.

9-1

FSCK

System Administrator Advice

Remember that system buffers are 1024 bytes. When configuring the
operating system, take into consideration that the same number of
buffers as before will use more main memory. Weigh this against
reducing the number of buffers, which reduces the cache hit ratio and
degrades performance.

UPDATE OF THE FILE SYSTEM

Every working day hundreds of files are created, modified, and
removed. Every time a file is modified, the UNIX operating system
performs a series of file system updates. These updates, when
written on disk, yield a consistent file system. To understand what
happens in the event of a permanent interruption in this sequence, it
is important to understand the order in which the update requests
were probably being honored. Knowing which pieces of information
were probably written to the file system first, heuristic procedures
can be developed to repair a corrupted file system.

There are five types of file system updates. These involve the
superblock, inodes, indirect blocks, data blocks (directories and files),
and free-list blocks.

Superblock

The superblock contains information about the size of the file system,
the size of the inode list, part of the free-block list, the count of free
blocks, the count of free inodes, and part of the free-inode list.

The superblock of a mounted file system (the root file system is
always mounted) is written to the file system whenever the file
system is unmounted or a sync command is issued.

9-2

FSCK

I nodes

An inode contains information about the type of inode (directory,
data, or special), the number of directory entries linked to the inode,
the list of blocks claimed by the inode, and the size of the inode.

An inode is written to the file system upon closure of the file
associated with the inode. (All "in" core blocks are also written to
the file system upon issue of a sync system call.)

Indirect Blocks

There are three types of indirect blocks-single-indirect, double
indirect, and triple-indirect. A single-indirect block contains a list of
some of the block numbers claimed by an inode. Each one of the 128
entries in an indirect block is a data-block number. A double-indirect
block contains a list of single-indirect block numbers. A triple
indirect block contains a list of double-indirect block numbers.

Indirect blocks are written to the file system whenever they have
been modified and released by the operating system. More precisely,
they are queued for eventual writing. Physical I/0 is deferred until
the buffer is needed by the UNIX system or a sync command is
issued.

Data Blocks

A data block may contain file information or directory entries. Each
directory entry consists of a file name and an inode number.

Data blocks are written to the file system whenever they have been
modified and released by the operating system.

First Free-List Block

The superblock contains the first free-list block. The free-list blocks
are a list of all blocks that are not allocated to the superblock, inodes,
indirect blocks, or data blocks. Each free-list block contains a count
of the number of entries in this free-list block, a pointer to the next
free-list block, and a partial list of free blocks in the file system.

9·3

FSCK

Free-list blocks are written to the file system whenever they have
been modified and released by the operating system.

CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. Improper
shutdown procedures and hardware failures are the most common.

Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown
procedures are not observed, e.g., forgetting to sync the system prior
to halting the CPU, physically write-protecting a mounted file
system, or taking a mounted file system off-line.

File systems may also become further corrupted by allowing a
corrupted file system to be used (and, thus, to be modified further)
can be disastrous.

Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle
as a bad block on a disk platter or as blatant as a nonfunctional disk
controller.

DETECTION AND CORRECTION OF
CORRUPTION

A quiescent file system (an unmounted system and not being written
on) m�y be checked for structural integrity by performing
consistency checks on the redundant data intrinsic to a file system.
The redundant data is either read from the file system or computed
from other known values. A quiescent state is important during the
checking of a file system because of the multipass nature of the fsck
program.

9-4

('
\,_

FSCK

When an inconsistency is discovered, fsck reports the inconsistency
for the operator to chose a corrective action.

Discussed in this part are how to discover inconsistencies (and
possible corrective aCtions) fOr the superblOck, the ihOdes, the- inairect
blocks, the data blocks containing directory entries, and the free-list
blocks. These corrective actions can be performed interactively bY
the fsck command under control of the operator.

Superblock

One of the most common corrupted items is the superblock. The
superblock is prone to corruption because every change to the file
system's blocks or inodes modifies the superblock.

The superblock and its associated parts are most often corrupted
when the compUter is halted a:nd the last command involving output

,,----- ·, to the file system was not a sync command.

(;

The superblock can be checked for inconsistencies involving file
system size, inode-list size, free-block list, free-block count, and the
free-inode count.

File System Size and !node-List Size

The file system size must be larger than the number of blocks used
by the superblock and the number of blocks used by the list of inodes.
The number of inodes must be less than 65,535. The file system size
and inode-list size are critical pieces of information to the fsck
program. While there is no way to actually check these sizes, fsck
can check for them being within reasonable bounds. All other checks
of the file system depend on the correctness of these sizes.

Free-Block List

The free-block list starts in the superblock and continues through the
free-list blocks of the file system. Each free-list block can be checked
for a list count out Of range, for block numbers out of range, and for
blocks already allocated within the file system. A check is made to
see that all the blocks in the file system were found.

9-5

FSCK

The first free-block list is in the superblock. Fsck checks the list
count for a value of less than 0 or greater than 50. It also checks
each block number for a vaiue of less than the first data block in the \,
file system or greater than the last block in the file system. Then it
compares each block number to a list of already allocated blocks. If
the free-list block pointer is nonzero, the next free-list block is read
in and the process is repeated.

When all the blocks have been accounted for, a cheek is made to see
if the number of blocks used by the free-block list plus the number of
blocks claimed by the inodes equals the total number of blocks in the
file system.

If anything is wrorig with the free-block list, then fsck may rebuild
the list, excluding all blocks in the list of allocated blocks.

Free-Block Count

The superblock contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of
blocks it found free within the file system. If the counts do not
agree, then fsck may replace the count in the superblock by the
actual free-block count.

Free-Jnode Count

The superblock contains a count of the total number of free inodes
withiri the file system. Fsck compares this count to the number of
inodes it found free within the file system. If the counts do not
agree, then fsck may replace the count in the superblock by the
actual free-iriode count.

Inodes

An individual inode is not as likely to be corrupted as the superblock.
However, because of the great number of active inodes, there is
almost as likely a chance for corruption in the inode list as in the "<
superblock.

9-6

c

(

()

FSCK

The list of inodes is checked sequentially starting with inode 1 (there
is no inode 0) and going to the last inode in the file system. Each
inode can be checked for inconsistencies involving format and type,
link count, duplicate blocks, bad blocks, and inode size.

Format and Type

Each inode contains a mode word. This mode word describes the type
and state of the inode. !nodes may be one of four types:

• Regular

• Directory

• Special block

• Special character.

If an inode is not one of these types, then the inode has an illegal
type. Inodes may be found in one of three states-unallocated,
allocated, and neither unallocated nor allocated. This last state II
indicates an incorrectly formatted inode. An inode can get in this
state if bad data is written into the inode list through, for example, a •
hardware failure. The only possible corrective action is for fsck to
clear the inode.

Link Count

Contained in each inode is a count of the total number of directory
entries linked to the inode. Fsck verifies the link count of each
inode by traversing down the total directory structure, starting from
the root directory, and calculating an actual link count for each
inode.

If the stored link count is nonzero and the actual link count is zero, it
means that no directory entry appears for the inode. If the stored
and actual link counts ·are nonzero and unequal, a directory entry
may have been added or removed without the inode being updated.

9-7

FSCK

If the stored link count is nonzero and the aCtual link count is zero,
fsck can, under operator control, link the disconnected file to the
lost+found directory. If the stored and actual link counts are nonzero
and unequal, fsck can replace the stored link count by the actual link
count.

Duplicate Blocks

Contained in each inode is a list or pointers to lists (indirect blocks)
of all the blocks claimed by the inode. Fsck compares each block
number claimed by an inode to a list of already allocated blocks. If a
block number is already claimed by another inode, the block number
is added to a list of duplicate blocks. Otherwise, the list of allocated
blocks is updated to include the block number. If there are any
duplicate blocks, fsck will make a partial second pass of the inode
list to find the inode of the duplicated block. This is necessary
because without examining the files associated with these inodes for
correct content there is not ertough information available to decide
which inode is corrupted and should be cleared. Most of the time, the
inode with the earliest modify time is incorrect and should be
cleared. This condition can occur by using a file system with blocks
claimed by both the free-block list and by other parts of the file
system.

A large number of duplicate blocks in an inode may be due to an
indirect block not being written to the file system. Fsck will prompt
the operator to clear both inodes.

Bad Blocks

Contained in each inode is a list or pointer to lists of all the blocks
claimed by the inode. Fsck checks each block number claimed by an
inode for a value lower than that of the first data block or greater
than the last block in the file system. If the block number is outside
this range, the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due
to an indirect block not being written to the file system. Fsck will
prompt the operator to clear both inodes.

9-8

- I

(

c -·-

FSCK

Size Checks

Each inode contains a 32-bit (4-byte) size field. This size indicates
the number of characters in the file associated with the inode. This
size can be checked for inconsistencies, e.g., directory sizes that are
not a multiple of 16 chB.racf:ers or fhe number of blOcks aciUaiiY used
not matching that indicated by the inode size.

A directory inode within the file system has the directory bit on in
the inode mode word. The directory size must be a multiple of 16
because a directory entry contains 16 bytes (2 bytes for the inode
number and 14 bytes for the file or directory name).

Fsck will warn of such directory misalignment. This is only a
warning because not enough information can be gathered to correct
the misalignment.

A rough check of the consistency of the size field of an inode can be
performed by computing from the size field the number of blocks that
should be associated with the inode and comparing it to the actual
number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an
inode by dividing the number of characters in an inode by the
number of characters per block and rounding up. Fsck adds one
block for each indirect block associated with the inode. If the actual
number of blocks does not match the computed number of blocks,
fsck will warn of a possible file-size error. This is only a warning
because the UNIX system does not fill in blocks in files created in
random order.

Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in
indirect blocks directly affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by
another inode and block numbers outside the range of the file system.

9-9

I

FSCK

For a discussion of detection and correction of the inconsistencies
associated with indirect blocks, see parts "Duplicate Blocks" and
"Bad Blocks".

Data Blocks

The two types of data blocks are plain data blocks and directory data
blocks. Plain data blocks contain the information stored in a file.
Directory data blocks contain directory entries. Fsck does not
attempt to check the validity of the contents of a plain data block.

Each directory data block can be checked for inconsistencies
involving directory inode numbers pointing to unallocated inodes,
directory inode numbers greater than the number of inodes in the file
system, incorrect directory inode numbers for "." and " .. ", and
directories disconnected from the file system. .In addition, the
validity of the contents of a directory's data block is checked.

If a directory entry inode number points to an unallocated inode,
then fsck may remove that directory entry. This condition probably
occurred because the data blocks containing the directory entries
were modified and written out while the inode was not yet written
out.

If a directory entry inode number is pointing beyond the end of the
inode list, fsck may remove that directory entry. This condition
occurs if bad data is written into a directory data block.

The directory inode number entry for "." should be the first entry in
the directory data block. Its value should be equal to the inode
number for the directory data block.

The directory inode number entry for " .. " should be the second entry
in the directory data block. Its value should be equal to the inode
number for the parent of the directory entry (or the inode number of
the directory data block if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them
with the correct values.

9-10

c

�.
(.

(

FSCK

Fsck checks the general connectivity of the file system. If
directories are found not to be linked into the file system, fsck will
link the directory back into the file system in the lost+found
directory. This condition can be caused by inodes being written to
the file_ system with the corresponding directory d�ta blocks not
being written to the file system.

Free-List Blocks

Free-list blocks are owned by the superblock. Therefore,
inconsistencies in free-list blocks directly affect the superblock.

Inconsistencies that can be checked are a list count outside of range,
block numbers outside of range, and blocks already associated with
the file system.

For a discussion of detection and correction of the inconsistencies
associated with free-list blocks, see part "Free-Block List".

9-11

(BLANK)

9-12

CJ

0

FSCK

FSCK ERROR CONDITIONS

A. Conventions

Fsck is a multipass file system check program. Each file system
pass invokes a different phase of the fsck program. After the initial
setup, fsck performs successive phases over each file system
performing cleanup, checking blocks and sizes, path names,
connectivity, reference counts, and the free-block list (possibly
rebuilding it).

When an inconsistency is detected, fsck reports the error condition
to the operator. If a response is required, fsck prints a prompt
message and waits for a response. This appendix explains the
meaning of each error condition, the possible responses, and the
related error conditions.

The error conditions are organized by the "Phase'l of the fsck
program in which they can occur. The error conditions that may
occur in more than one phase will be discussed under Part B.

B. lnitializa tion

Before a file system check can be performed, certain tables have to be
set up and certain files opened. This section describes the opening of
files and the initialization of tables. Error conditions resulting from
command line options, memory requests, opening of files, status of
files, file system size checks, and creation of the scratch file are listed
below.

C option?

C is not a legal option to fsck; legal options are -y, -n, -s, -S, -t, -b,
-r, -q, and -D. Fsck terminates on this error condition. See the
fsck(lM) entry in the Runtime System manual for further details.

Bad -t option

The -t option is not followed by a file name. Fsck terminates on this
error condition. See the fsck(lM) entry in the Runtime System
manual for further details.

9-13

•

FSCK

Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks-per-cylinder: blocks
to-skip. Fsck assumes a default value of 400 blocks-per-cylinder
and 9 blocks-to-skip. See the fsck(lM) entry in the Runtime System
manual for further details.

Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the
fil e system. Fsck terminates on this error condition. See the
fsck(lM) entry in the Runtime System manual for further details.

Can not fstat standard input

Fsck's attempt to fstat standard input failed. The occurrence of
this error condition indicates a serious problem which may require
additional assistance. Fsck terminates on this error condition.

Can not get memory

Fsck's request for memory for its virtual memory tables failed. The
occurrence of this error condition indicates a serious problem which
may require additional assistance. Fsck terminates on this error
condition.

Can not open checkall file: F

The default file system checkall file F (usually /etc/checkall) cannot
be opened for reading. Fsck terminates on this error condition.
Check access modes of F.

Can not stat root

Fsck's request for statistics about the root directory ''/" failed. The.
occurrence of this error condition indicates a serious problem which
may require additional assistance. Fsck terminates on this error
condition.

Can not stat F

Fsck's request for statistics about the file system F failed. It
ignores this file system and continues checking the next file system
given. Check access modes of F.

9-14

FSCK

r " F is not a block or character device

Fsck has been given a regular file name by mistake. It ignores this
file system and continues checking the next file system given. Check
file type of F.

Can not open F

The file system F cannot be opened for reading. It ignores this file
system and continues checking the next file system given. Check
access modes of F.

Size check: fsize X isize Y

More blocks are used for the in ode list Y than there are blocks in the
file system X, or there are more than 65,535 inodes in the file system.
It ignores this file system and continues checking the next file system
given.

Can not create F

Fsck's request to create a scratch file F failed. It ignores this file
(� system and continues checking the next file system given. Check

access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck's request for moving to a specified block number B in the file
system failed. The occurrence of this error condition indicates a
serious problem which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES

NO

Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check
of the file system. A second run of fsck should
be made to recheck this file system. If block
was part of the virtual memory buffer cache,
fsck will terminate with the message "Fatal
1/0 error11•

Terminate program.

9-15

FSCK

CAN NOT READ: BLK B (CONTINUE)

Fsck's request for reading a specified block number B in the file "-
system failed. The occurrence of this error condition indicates a
serious problem which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES

NO

Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check
of the file system. A second run of fsck should
be made to recheck this file system. If block
was part of the virtual memory buffer cache,
fsck will terminate with the message "Fatal
1/0 error".

Terminate program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number B in the file
system failed. The disk is write-protected.

Possible responses to CONTINUE prompt are:

YES

NO

9-16

Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check
of the file system. A second run of fsck should
be made to recheck this file system. If block
was part of the virtual memory buffer cache,
fsck will terminate with the message "Fatal
110 error".

Terminate program.

(�

FSCK

C. PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This part lists error
conditions resulting from checking inode types, setting up the zero
link-count table, examining inode block numbers for bad or duplicate
-blocks, checking inode size, and-checking-inode- format.

UNKNOWN FILE TYPE 1=1 (CLEAR)

The mode word of the inode I indicates that the inode is not a special
character inode, regular inode, or directory inode.

Possible responses to CLEAR prompt are:

. YES

NO

Deallocate inode I by zeroing its contents. This
will always invoke the UNALLOCATED error
condition in Phase 2 for each directory entry
pointing to this inode.

Ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link
count of zero has no more room. Recompile fsck with a larger value
of MAXLNCNT.

Possible responses to CONTINUE prompt are:

YES

NO

Continue with program. This error condition
will not allow a complete check of the file
system. A second run of fsck should be made
to recheck this file system. If another allocated
inode with a zero link count is found, this error
condition is repeated.

Terminate program.

9-17

FSCK

Inode I contains block number B with a number lower than the
number of the first data block in the file system or greater than the
number of the last block in the file system. This error condition may
invoke the EXCESSIVE BAD ELKS error condition in Phase 1 if
inode I has too many block numbers outside the file system range.
This error condition will always invoke the BAD/DUP error
condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I�I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a
number lower than the number of the first data block in the file
system or greater than the number of the last block in the file
system associated with inode I.

Possible responses to CONTINUE prompt are:

YES

NO

B DUP I� I

Ignore the rest of the blocks in this inode and
continue checking with next inode in the file
system. This error condition will not allow a
complete check of the file system. A second run
of fsck should be made to recheck this file
system.

Terminate program.

Inode I contains block number B which is already claimed by another
inode. This error condition may invoke the EXCESSIVE DUP ELKS
error condition in Phase 1 if inode I has too many block numbers
claimed by other inodes. This error condition will always invoke
Phase 1b and the BAD/DUP error condition in Phase 2 and Phase 4.
EXCESSIVE DUP BLKS I�I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed
by other inodes.

Possible responses to CONTINUE prompt are:

YES

9-18

Ignore the rest of the blocks in this inode and
continue checking with next inode in the file

c\

(. , _ _ _ /

NO

FSCK

system. This error condition will not allow a
complete check of the file system. A second run
of fsck should be made to recheck this file
system.

Terminate progra!ll.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no
more room. Recompile fsck with a larger value of DUPTBLSIZE.

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition
will not allow a complete check of the file
system. A second run of fsck should be made
to recheck this file system. If another duplicate
block is found, this error condition will repeat.

NO Terminate program.

POSSIBLE FILE SIZE ERROR I�I

The inode I size does not match the actual nUmber of blocks used by
the inode. This is only a warning. If the -q option is used, this
message is not printed.

DIRECTORY MISALIGNED I�I

The size of a directory inode is not a multiple of the size of a
directory entry (usually 16). This is only a warning. If the -q option
is used, this message is not printed.

PARTIALLY ALLOCATED INODE I�I (CLEAR)

lnode I is neither allocated nor unallocated.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

9·19

FSCK

D. PHASE l B: RESCAN FOR MORE DUPS

When a duplicate block is found in the file system, the file system is
rescanned to find the inode which previously claimed that block.
This part lists the error condition when the duplicate block is found.

B DUP 1�1

Inode I contains block number B which is already claimed by anothe!'
inode. This error condition will always invoke the BAD/DUP error
condition in Phase 2. !nodes with overlapping blocks may be
determined by examining this error condition and the DUP error
condition in Phase 1.

E. PHASE 2: CHECK PATHN AMES

This phase concerns itself with removing directory entries pointing to
error conditioned inodes from Phase 1 and Phase lb. This part lists
error conditions resulting from

'
root inode mode and status, directory

inode pointers in range, and directory entries pointing to bad inodes.

ROOT !NODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocate · mode bits.
The occurrence of this error condition indicates a serious problem
which may require additional assistance. The program will
terminate.

ROOT !NODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type.

Possible responses to FIX prompt are:

YES

NO

9-20

Replace the root inode's type to be a directory.
If the root inode's data blocks are not directory
blocks, a very large number of error conditions
will be produced.

Terminate program.

. /'

FSCK

DUPS/BAD IN ROOT IN ODE (CONTINUE)

Phase 1 or Phase lb have found duplicate blocks or bad blocks in the
root inode (usually inode number 2) for the file system.

Possible responses to CONTINUE prompt are:

YES Ignore DUPS/BAD error condition in root inode
and attempt to continue to run the file system
check. If root inode is not correct, then this
may result in a large number of other error
conditions.

NO Terminate program.

I OUT OF RANGE 1�1 NAME�F (REMOVE)

A directory entry F has an inode number I which is greater than the
end of the inode list .

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED I� I OWNER�O MODE�M SIZE�S
MTIME�T NAME�F (REMOVE)

A directory entry F has an inode I without allocate)!lOde bits. The
owner 0, mode M, size S, modify time T, and file name F are printed.
If the file system is not mounted and the -n option was not specified,
the entry will be removed automatically if the inode it points to is
character size 0.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

9-21

FSCK

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks
associated with directory entry F, directory inode I. The owner 0,
mode M, size S, modify time T, and directory name F are printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T
FILE=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks
associated with directory entry F, inode I. The owner 0, mode M,
size S, modify time T, and file name F are printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

BAD BLK B IN DIR 1=1 OWNER=O MODE=M SIZE=S
MTIME=T

This message only occurs when the -q option is used. A bad block
was found in DIR inode I. Error conditions looked for in directory
blocks are nonzero padded entries, inconsistent "." and " .. " entries,
and imbedded slashes in the name field. This error message indicates
that the user should at a later·time either remove the directory inode
if the entire block looks bad or change (or remove) those directory
entries that look bad.

F. PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in
Phase 2. This part lists error conditions resulting from unreferenced
directories and missing or full lost+j<YUnd directories.

9-22

FSCK

r , UNREF DIR I�I OWNER�O MODE�M SIZE�S MTIME�T 1,
(RECONNECT)

The directory inode I was not connected to a directory entry when t4e
file _system was traversed. The owner 0, mode M, size S, and modify
time T of elf rectory in Ode

-
I are prillted. Fsck wHI - force the

reconnection of a nonempty directory.

Possible responses to RECONNECT prompt are:

YES

NO

Reconnect directory in ode I to the file system in
directory for lost files (usually lost+found),
This may invoke lost+jound error condition in
Phase 3 if there are problems connecting
directory inode I to lost+found. This may alsO
invoke CONNECTED error condition in Phase 3
if link was successful.

Ignore this error condition. This will always
invoke UNREF error condition in Phase 4.

SORRY, NO lost+found DIRECTORY

There is no lost+found directory in . the root directory of the file I system; fsck ignores the request to link a directory in lost+jound. •
This will always invoke the UNREF error condition in Phase 4.
Check access modes of lost+ found. See fsck(lM) in the UNIX System
V Administrato·r Reference Manual for further details.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+jound directory in
the root directory of the file system; fsck ignores the request to link
a directory in lost+found. This will always invoke the UNREF error
condition in Phase 4. Clean out unnecessary entries in lost+jound or
make lost+found larger, See fsck(lM) in the UNIX System V
Adrninistt-atm· Reje?"ence Manual for further details.

DIR I�Il CONNECTED, PARENT WAS I�I2

(1 This is an advisory message indicating a directory inode Il was
�-- J successfully connected to the lost+found directory. The parent inode

!2 of the directory inode ll is replaced by the inode number of the
lost+found directory,

9-23

FSCK

G. PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in
Phase 2 and Phase 3. This part lists error conditions resulting from
unreferenced files; missing or full lost+found directory; incorrect link
counts for files, directories, or special files; unreferenced files and
directories; bad and duplicate blocks in files and directories; and

incorrect total free-inode counts.

UNREF FILE I�I OWNER�O MODE�M SIZE�S MTIME�T
(RECONNECT)

Inode I was not connected to a directory entry when the file system
was traversed. The owner 0, mode M, size S, and modify time T of
inode I are printed. If the �n option is not set and the file system is
not mounted, empty files will not be reconnected and will be cleared
automatically.

Possible responses to RECONNECT prompt are:

YES

NO

Reconnect inode I to file system in the directory
for lost files (usually lost+found). This may
invoke lost+found error condition in Phase 4 if
there are problems connecting inode I to
lost+ found.

Ignore this error condition. This will always
invoke CLEAR error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file
system; fsck ignores the request to link a file in lost+found. This
will always invoke CLEAR error condition in Phase 4. Check access
modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in
the root directory of the file system; fsck ignores the request to link
a file in lost+found. This will always invoke the CLEAR error
condition in Phase 4. Check size and contents of lost+found.

9-24

FSCK

(CLEAR)

The inode mentioned in the immediately previous error condition
cannot be reconnected.

Possible responses to CLEAR prompt are:

YES Deallocate inode mentioned in the immediately
previous error condition by zeroing its contents.

NO Ignore this error condition.

LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S
MTIME=T COUNT= X SHOULD BE Y (ADJUST)

The link count for inode I, which is a file, is X but should be Y. The
owner 0, mode M, size S, and modify time T are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of file inode I with Y.

NO Ignore this error condition.

LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S
MTIME=T COUNT= X SHOULD BE Y (ADJUST)

The link count for inode I, which is a directory, is X but should be Y.
The owner 0, mode M, size S, and modify time T of directory inode I
are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of directory inode I with Y.

NO Ignore this error condition.

9-25

FSCK

LINK COUNT F 1�1 OWNER�O MODE�M SIZE�S
MTIME�T COUNT� X SHOULD BE Y (ADJUST)

The link count for F inode I is X but should be Y. The file name F,
owner 0, mode M, size S, and modify time T are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of inode I with Y.

NO Ignore this error condition.

UNREF FILE 1�1 OWNER=O MODE�M SIZE�S MTIME�T
(CLEAR)

Inode /, which is a file, was not connected to a directory entry when
the file system was traversed. The owner 0, mode M, size S, and
modify time T of inode I are printed. If the -n option is not set and
the file system is not mounted, empty files will be cleared
automatically.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

UNREF DIR I� I OWNER�O MODE=M SIZE=S MTIME=T
(CLEAR)

Inode I, which is a directory, was not connected to a directory entry
when the file system was traversed. The owner 0, mode M, size S,
and modify time T of inode I are printed. If the -n option is not set
and the file system is not mounted, empty directories will be cleared
automatically. Nonempty directories will not be cleared.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

9-26

c;

BAD/DUP FILE I= I OWNER=O MODE=M SIZE=S
MTIME=T (CLEAR)

FSCK

Phase 1 or Phase lb have found duplicate blocks or bad blocks
associated with file inode I. The owner 0, mode M, size S, and
modify time T of in ode I are printed.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S
MTIME=T (CLEAR)

Phase 1 or Phase lb have found duplicate blocks or bad blocks
associated with directory inode I. The owner 0, mode M, size S, and
modify time T of in ode I are printed.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

FREE IN ODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the
superblock of the file system. If the -q option is specified, the count
will be fixed automatically in the superblock.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

9-27

FSCK

H. PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This part lists
error conditions resulting from bad blocks in the free-block list, bad
free-blocks count, duplicate blocks in the free-block list, unused
blocks from the file system not in the free-block list, and the total
free-block count incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually
10) of blocks with a value less than the first data block in the file
system or greater than the last block in the file system.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore rest of the free-block list and continue
execution of fsck. This error condition will
always invoke "BAD BLKS IN FREE LIST"
error condition in Phase 5.

Terminate program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually
10) of blocks claimed by inodes or earlier parts of the free-block list.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore the rest of the free-block list and
continue execution of fsck. This error
condition will always invoke "DUP BLKS IN
FREE LIST" error condition in Phase 5.

Terminate program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less
than 0. This error condition will always invoke the "BAD FREE
LIST" condition in Phase 5.

9·28

\

c�:

FSCK

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the
first data block in the file system or greater than the last block in
the file system. This error condition will always invoke the "BAD
FREE LIST" condition in Phase 5.

X DUP BLKS IN FREE LIST

X blocks claimed by in odes or earlier parts of the free-list block were
found in the free-block list. This error condition will always invoke
the "BAD FREE LIST" condition in Phase 5.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block
list. This error condition will always invoke the "BAD FREE LIST"
condition in Phase 5.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the
superblock of the file system.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks
in the free-block list, or blocks missing from the file system. If the
-q option is specified, the free-block list will be salvaged
automatically.

Possible responses to SALVAGE prompt are:

YES

NO

Replace actual free-block list with a new free
block list. The new free-block list will be
ordered to reduce time spent by the disk
waiting for the disk to rotate into position.

Ig�ore this error condition.

9-29

I

f'SCK

I. PHASE 6: SALVAGE FREE LIST

This phase concerns itself with the free-block list reconstruction.
This part lists error conditions resulting from the blocks-to-skip and
blocks-per-cylinder values.

Default free-block list spacing assumed

This is an advi::;ory message indicating the blocks-to-skip is greater than the
blocks-per-cylinder, the blocks-to-skip is less than I, the blocks-per-cylinder is
less than I, or the blocks-per-cylinder is greater than 500. The default values of
9 blocks-to-skip and 400 blocks-per-cylinder are used. See fsck(IM) in section
I of the Runtime System manna! for further details.

J. CLEANUP

Once a file system has been checked, a few cleanup functions are
performed. This part lists advisory messages about the file system
and modify status of the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system checked
contained X files using Y blocks leaving Z blocks free in the file
system.

***** BOOT UNIX (NO SYNC!) *****

This is an advisory message indicating that a mounted file system or
the root file system has been modified by fsck. If the UNIX system
is not rebooted immediately without sync, the work done by fsck
may be undone by the in-core copies of tables the UNIX system
keeps.

***** FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current file system
was modified by fsck.

9-30

(1 "' . . Chapter 10

LP SPOOLING SYSTEM

PAGE

GENERAL ... 1

OVERVIEW OF LP FEATURES ... 2
Definitions... 2
Commands.. 3

LP SCHEDULER STARTUP .. 5

CONFIGURING LP-THE "Ipadmin" COMMAND 5

Introducing New Destinations... 5

Modifying Existing Destinations... 7
Specifying the System Default Destination................................ 9
Removing Destinations... 9

MAKING AN OUTPUT REQUEST-THE "lp" COMMAND 10
FINDING LP STATUS-LPSTAT ... 12
CANCELING REQUESTS-CANCEL ... , 12

ALLOWING AND REFUSING REQUESTS-ACCEPT AND

REJECf 13
ALLOWING AND INHIBITING PRINTING-ENABLE AND

DISABLE

MOVING REQUESTS BETWEEN DESTINATIONS

LP MOVE

STOPPING AND STARTING THE SCHEDULER-LPSHUT AND

LPSCHED 16
PRINTER INTERFACE PROGRAMS 17
SETTING UP HARD·WIRED DEVICES AND LOGIN

TERMINALS AS LP PRINTERS ... 19
Hard-wired Devices.. .. 19
Login Terinals.. .. 21

SUMMARY .. 22

(\ \ ' �- LP SPOOLING SYSTEM

GENERAL

The line printer (LP) progra:in is a. series of commands that perform
diverse spooling functiOns under the UNIX operating system. _ Since
the primary LP application is off-line printing, this document focuses
mainly Dn spooling to line printers. LP allows administrators to
cuStomize the system to spool tO a collectiori of line printers of any
type and to grOup printers into logical classes in order to maximize
the throughput of the devices. Users are provided the capabilities of:

• Queuing arid canceling print requests

• Preventing and allowing queuing to devices

• Starting and stopping LP from processing requests

• Changing configuration of printers

• Finding status of the LP system.

This chapter describes the role of an LP administrator in performirig
restricted functions and overseeing the smooth operation of LP.

Throughout this chapter, each reference oft11e fonn name(N), where "N" is the
number I or 7 possibly followed by a letter, refer to entry name in section N
Of the Runtime System manual. If '1Nn is a Tiumber 2 through 5 pOssibly
followed bY a letter, refer to entry name in section N of the Software
Development System manual.

10·1

LP SPOOLING

OVERVIEW OF LP FEATURES

Definitions

Several terms must be defined before presenting a brief summary of
LP commands. The LP was designed with the flexibility to meet the
needs of users on different UNIX systems. Changes to the LP
configuration are performed by the lpadmin(lM) command.

LP makes a distinction between printers and printing devices. A
device is a physical peripheral device or a file and is represented by a
full UNIX system pathname. A printe-r is a logical name that
represents a device. At different points in time, a printer may be
associated with different devices. A class is a name given to an
ordered list of printers. Every class must contain at least one
printer. Each printer may be a member of zero or more classes. A
destination is a printer or a class. One destination may be designated
as the system default destination. The lp(l) command will direct all
output to this destination unless the user specifies otherwise. Output
that is routed to a printer will be printed only by that printer,
whereas output directed to a class will be printed by the first
available class member.

Each invocation of lp creates an output request that consists of the
files to be printed and options from the lp command line. An
interface program which formats requests must be supplied for each
printer. The LP scheduler, lpsched(lM), services requests for all
destinations by routing requests to interface programs to do the
printing on devices. An LP configuration for a system consists of
devices, destinations, and interface programs.

10·2

LP SPOOLING

Commands

Commands for General Use

The Ip(I) command is used to request the printing of files. It creates an output
request and returns a request id of the form

dest-seqno

to the user, where seqno is a unique sequence to that printer, dest
seqno is a unique sequence number across the entire LP system,
and dest is the destination where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as
returned by lp or printer names, in which case the currently printing requests on
those printers are canceled.

Disable prevents lpsched from routing output requests to printers.

Enable(l) allows lpsched to route output requests to printers.

10-3

LP SPOOLING

Commands for LP Administrators

Each LP system must deSignate a person or persons as LP admiTiistratbr to
perform the restricted functions listed below. Either the superuser or any user
who is logged into the UNIX system as lp qualifies as an LP administrator. All
LP files and commands are owned by Ip except for Ipadmin and lpsched
which are owned by root. The following commands will be described in mote
detail later in this chapter.

Ipadmin(IM)

Ipsched(IM)

Ipshut

accept(1M)

reject

lpmove

10·4

Modifies LP configuration. Maoy features of this
command cannot be ilsed when ipsched is running.

Routes output requests to interface programs which do
the printing on devices.

Stops Ipsched from running. All printing activity is
halted, but other LP commands may still be used.

AIIows Ip to accept output requests for destinations.

Prevents lp froin accepting requeSts for destinations.

Moves Output requests froin one destination to another.
Whole destinations may be moved. at one time. This
coinmand carmel be used when Ipsched is running.

LP SPOOLING

LP SCHEDULER STARTUP

f l You should find the following code in fetcfrc.d!lp.rc:

"- --

() ' /

rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo "LP scheduler started'1

This starts the LP scheduler each time that the UNIX system is restarted.

PRECAUTIONS

1. Some LP commands invoke other LP commands. Moving them
after they are installed will cause some commands to fail.

2. The files under the SPOOL directory should be modified only by
LP commands.

3. All LP commands require set-user-id permission. If this is
removed, the commands will fail.

CONFIGURING LP-THE "Ipadmin" COMMAND

Changes to the LP configuration should be made by using the
Ipadmin command and not by hand. Lpadmin will not attempt to
alter the LP configuratiori when lpsched is running, except where
explicitly noted below.

Introducing New Destinations

The following information must be supplied to lpadmin when
introducing a new printer:

1. The printer name (-p printer) is an arbitrary name which must
conform to the following rules:

• It must be no longer than 14 characters.

• It must consist solely of alphanumeric characters and
underscores.

• It must not be the name of an existing LP destination
(printer or class).

10-5

LP SPOOLING

2. The device associated with the printer (-v device). This is the
path name of a hard-wired printer, a login terminal, or other
file that is writable by lp.

3. The printer interface program. This may be specified in one of
three ways:

• It may be selected from a list of model interfaces
supplied with LP -m model).

• It may be the same interface that an existing printer
uses (-e printer).

• It may be a program supplied by the LP administrator
(-i interface).

Information which need not always be supplied when creating a
new printer includes:

1 . The user may specify -h to indicate that the device for the
printer is hardwired or the device is the name of a file (this is
assumed by default). If, on the other hand, the device is the path
name of a login terminal, then -1 must be included on the
command line. This indicates to lpsched that it must
automatically disable this printer each time lpsched starts
running. This fact is reported by lpstat when it indicates printer
status:

$ lpstat -pa
printer a Oogin terminal) disabled Oct 31 11:15 -

disabled by scheduler: login terminal

This is done because device names for login terminals can be
(and usually are) associated with different physical devices
from day to day. If the scheduler did not take this action,
somebody might log in and be surprised that LP is spooling to
his/her terminal!

2. The new printer may be added to an existing class or added to a
new class (-cclass). New class names must conform to the
same rules for new printer names.

10-6

/"'-,

LP SPOOLING

EXAMPLES

The following examples will be referenced by further examples in
later sections.

1. Create a printer called prl whose device is /<lev/printer and
whose interface program is the model hp interface:

$ /usr/!ib/lpadmin -pprl -v/dev/printer -mhp

2. Add a printer called pr2 whose device is /dev/tty22 and whose
interface is a variation of the model prx interface. It is also a
login terminal:

$ cp /usr/spool/lp/modellprx xxx
< edit XXX >

$ /usr/lib/lpadmin -ppr2 -v/dev/tty22 -ixxx -1

I 3. Create a printer called pr3 whose device is /devltty23. The pr3
will be added to a new class called ell and will use the same
interface as printer pr2:

$ /usr/lib/lpadmin -ppr3 -v/dev/tty23 -epr2 -cell

Modifying Existing Destinations

Modifications to existing destinations must always be made with
respect to a printer name (-pprinter). The modifications may be one
or more of the following:

1 . The device for the printer may be changed (-vdevice). If this is
the only modification, then this may be done even while lpsched
is running. This facilitates changing devices for login terminals.

2. The printer interface program may be changed (-mmodel,
- eprinter, -iinterface).

3. The printer may be specified as hardwired (-h) or as a login
terminal (-1).

10·7

LP SPOOLING

4. The printer may be added to a new or existing class (-cclass).

5. The printer may be removed from an existing class (-rclass).
Removing the last remaining member of a class causes the class
to be deleted. No destination may be removed if it has pending
requests. In that case, lpmove or cancel should be used to
move or delete the pending requests.

EXAMPLES

These examples are based on the LP configuration created by those in
the previous section.

1. Add printer pr2 to class ell:·

$ /usr/lib/lpadmin -ppr2 -cell

2. Change pr2's interface program to the model prx interface,
change its device to /dev/tty24, and add it to a new class called
cl2:

$ /usr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -ccl2

Note that printers pr2 and pr3 now use different interface
programs even though pr3 was originally created with the same
interface as pr2. Printer pr2 is now a member of two .classes.

3. Specify printer pr2 as a hard-wired printer:

$ /usr/lib/lpadmin -ppr2 -h

4. Add printer prl to class cl2:

10-8

$ I usr /li b/1 padmin -ppr 1 -ccl2

The members of class cl2 are now pr2 and prl, in that order.
Requests routed to class cl2 will be serviced by pr2 if both pr2
and prl are ready to print; otherwise, they will be printed by the
one which is next ready to print.

II
\-- I

5. Remove printers pi-2 and pr3 from class ell:

$ /usr/lib/lpadmin -ppr2 -rcll
$ /usr/lib/lpadmin -ppr3 -rcll

LP SPOOLING

Since pr3 was the last remaining member of class cl11 the class is
removed.

6. Add pr3 to a new class called cl3.

$ /usr/lib/lpadmin -ppr3 -ccl3

Specifying the System Default Destination

The system default destination may be changed even when lpsched
is running.

EXAMPLES

1. Establish class ell as the system default destination:

$ /usr/lib/lpadmin -dell

2. Establish no default destination:

$ /usr/lib/lpadmin -d

Removing Destinations

Classes and printers may be removed only if there are no pending
requests that were routed to them. Pending requests must either be
canceled using cancel or moved to other destinations using lpmove
before destillations may be removed. tf the removed destination is
the system default destination, then the system will have no defaUlt
destination until the default destination is respecified. When the last
remaining member of a class is removed, then the class is also
removed. The removal of a class never iinplies the removal of
printers.

10-9

L P SPOOLING

EXAMPLES

1. Make printer prl the system default destination:

$ /usr/lib/lpadmin -dprl

Remove printer prl:

$ /usr/lib/lpadmin -xprl

Now there is no system default destination.

2. Remove printer pr2:

$ /usr/lib/lpadmin -xpr2

Class cl2 is also removed since pr2 was its only member.

3. Remove class cl3:

$ /usr/lib/lpadmin -xcl3

Class cl3 is removed, but printer pr3 remains.

MAKING AN OUTPUT REQUEST
THE "lp" COMMAND

Once LP destinations have been created, users may request output by
using the lp command. The request id that is returned may be used
to see if the request has been printed or to cancel the request.

The LP program determines the destination of a request by checking
the following list in order:

10-10

• If the user specifies -ddest on the command line, then the
request is routed to dest.

LP SPOOLING

• If the environment variable LPDEST is set, the request is
routed to the value of LPDEST .

• If there is a system default destination, then the request is
routed there.

• The request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on the
system default destination:

lp I etclpasswd
lp < I etclpasswd
cat letclpasswd I lp
lp -c letclpasswd

All four methods produce a printed copy of the file. The last method creates
a duplicate of the file and then prints a copy of the duplicate. The duplicate
file is removed after the print job is completed. Thus, with the first three
methods if the f!le is modified between the time the request is made and the
time it is actually printed, then the changes will be reflected in the output.

2. Print two copies of file abc on printer xyz and title the output
"my file":

pr abc I lp -dxyz -n2 -t" my file"

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-pitch and
write to the user's terminal when _printing has completed:

lp -dzoo -ol2 -w xxx

"' Registered trademark of Xerox Corporation

10-11

LP SPOOLING

In this example, "12" is an option that is meaningful to the
model Diablo 1640 interface pr,ogram that prints output in 12-

pitcb mode [see lpadinin(1M)].

FINDING LP STATUS-LPSTAT

The lpstat command is used to find status information about LP
requests, destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

lpstat

The status information for a request includes the request id, the
log name of the user, the total number of characters to be
ptinted, and the date and time the request was made.

2. List the status of printers p1 and p2:

lpstat -pp1,p2

CANCELING REQUESTS-CANCEL

The LP requests may be canceled using the cancel command. Two
kinds of arguinents may be given to the command-request ids and
printer names. The requests named by the request ids are canceled
and requeSts that are currently printing oh the named printers are
canceled. Both types of arguments may be intermixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that made
the request, then mail is sent to the owner of the request. LP allows
any user to cancel requests in order to eliminate the need for users to

10-12

{', \ '

0

LP SPOOLING

find LP administrators when unusual output should be purged from
printers.

ALLOWING AND REFUSING REQUESTS
ACCEPT AND REJECT

When a new destination is created, lp will reject requests that are
routed to it. When the LP administrator is sure that it is set up
correctly, he or she should allow lp to accept requests for that
destination. The accept command performs this function.

Sometimes it is necessary to prevent lp from routing requests to
destinations. If printers have been removed or are waiting to be
repaired or if too many requests are building for printers, then it
may be desirable to cause lp to reject requests for those destinations.
The reject command performs this function. After the condition
that led to the rejection of requests has been remedied, the accept
command should be used to allow requests to be taken again.

The acceptance status of destinations is reported by the -a option of
lpstat.

EXAMPLES

1. Cause lp to reject requests for destination xyz:

/usr/Iib/reject -r" printer xyz needs repair" xyz

Any users that try to route requests to xyz will encounter the
following:

$ lp -dxyz file
lp: can not accept requests for destination " xyz"

-- printer xyz needs repair

10-l;l

LP SPOOLING

2. Allow lp to accept requests routed to destination xyz:

/usr/lib/accept xyz

ALLOWING AND INHIBITING PRINTING
ENABLE AND DISABLE

The enable command allows the LP scheduler to print requests on
printers. That is, the scheduler routes requests only to the interface
programs of enabled printers. Note that it is possible to enable a
printer and at the same time prevent further requests from being
routed to it.

The disable command will undo the effects of the enable command. It
prevents the scheduler from routing requests to printers, independently of whether
or not Ip is allowing them to accept requests. Printers may be disabled for
several reasons including malfunctioning hardware, paper jams, and end of day
shutdowns. If a printer is busy at the time it is disabled, then the request that
was printing will be reprinted in its entirety either on another printer (if the
request was originally routed to a class of printers) or on the same one when the
printer is reenabled. The -c option causes the currently printing requests on busy
printers to be canceled in addition to disabling the printers. This is useful if
strange output is causing a printer to behave abnormally.

EXAMPLE

Disable printer xyz because of a paper jam:

$ disable -r" paper jam•• xyz
printer " xyz" now disabled

Find the status of printer xyz:

10-14

$ lpstat -pxyz
printer " xyz" disabled since Jan 5 10:15 -

paper jam

n

0

LP SPOOLING

Now, reenable xyz:

$ enable xyz
printer " xyz" now enabled

MOVING REQUESTS BETWEEN
DESTINATIONS-LPMOVE

Occasionally, it is useful for LP administrators to move output
requests between destinations. For instance, when a printer is down
for repairs, it may be desirable to move all of its pending requests to
a working printer. This is one way to use the lpmove command.
The other use of this command is to move specific requests to a
different destination. Lpmove will refuse to move requests while
the LP scheduler is running.

EXAMPLES

1. Move all requests for printer abc to printer xyz:

$ /usr/lib/lpmove abc xyz

All of the moved requests are renamed from abc-nnn to xyz-nnn.
As a side effect, destination abc is no longer accepting further
requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

$ /usr/lib/lpmove zoo-543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

10-15

LP SPOOLING

STOPPING AND STARTING THE
SCHEDULER-LPSHUT AND LPSCHED

Lpsched is the program that routes the output requests that were
made with lp through the appropriate printer interface programs to
be printed on line printers. Each time the scheduler routes a request
to an interface program, it records an entry in the log file,
/usr/spool/lp/log. This entry contains the log name of the user that
made the request, the request id, the name of the printer that the
request is being printed on, and the date and time that printing first
started. In the case that a request has been restarted, more than one
entry in the log file may refer to the request. The scheduler also
records error messages in the log file. When lpsched is started, it
renames /usr/spool/lp/log to /usr/spool/lp/oldlog and starts a new
log file.

No printing will be performed by the LP system unless lpsched is
running. Use the command

lpstat -r

to find the status of the LP scheduler.

Lpsched is normally started by the /etc/rc.d/lp.rc program as
described above and continues to run until the UNIX system is shut
down. The scheduler operates in the /usr/spool/lp directory. When
it starts running, it will exit immediately if a file called
SCHEDLOCK exists. Otherwise, it creates this file in order to
prevent more than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler in order to
reconfigure LP or to rebuild the LP software. The command

/usr/lib/lpshut

causes lpsched to stop running and terminates all printing activity.
All requests that were in the middle of printing will be reprinted in
their entirety when the scheduler is restarted.

10-16

0

LP SPOOLING

To restart the LP scheduler, use the command

/usr/lib/lpsched

Shortly after this command is entered, lpstat should report that the
scheduler is running. If not, it is possible that a previous invocatia

·
n

of lpsched exited without removing SCHEDLOCF;, so try the
following:

rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

The scheduler should be running now.

PRINTER INTERFACE PROGRAMS

Every LP printer must have an interface program which does the
actual printing on the device that is currep.tly associateQ with the
printer. Interface programs may be shell procedures, C programs, or
any other executable program. The LP model interfaces are all
written as shell procedures and can be found in the
/usr/spool/lp/model directory. At the time lpsched routes an output
request to a printer P, the interface program for P is invoked in the
directory /usr-/spool/lp as follows:

interface/P id user title �opies options file ...
where
id is the request id returned by lp
user is log name of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options sp�cified by user
file is th� full path name of a file to be printed

10-17

LP SPOOLING

EXAMPLES

The following examples are requests made by user "smith" with a
system default destination of printer "xyz". Each example lists an lp
command line followed by the corresponding command line generated
for printer xyz's interface program:

1. lp /etc/passwd /etc/group
interface/xyz xyz-52 smith " " 1 " " /etc/passwd /etc/group

2. pr /etc/passwd l ip -t" users" -n5
interface/xyz xyz-53 smith
I usr I spoolllp/req uest/ xyz/ d0-53

3. lp I etc/passwd -oa -ob

users

interface/xyz xyz-54 smith " " 1 " a b" /etc/passwd

5

When the interface program is invoked, its standard input comes
from /dev/null and both the standard output and standard error
output are directed to the printer's device. Devices are opened for
reading as well as writing when file modes permit. In the case where
a device is a regular file, all output is appended to the end of the file.

Given the command line arguments and the output directed to a
device, interface programs may format their output in any way they
choose. On serial printers, interface programs must ensure that the
proper stty modes (terminal characteristics such as baud rate, output
options,etc.) are in effect on the output device. This may be done in a
shell interface only if the device i s opened for reading:

stty mode . . . <&1

That is, take the standard input for the stty command from the
device. Stty commands are not applicable to parallel printers.

When printing has completed, it is the responsibility of the interface
program to exit with a code indicative of the success of the print job.
Exit codes are interpreted by lpsched as follows.

10-18

LP SPOOLING

CODE

0

1 to 127

greater than 127

MEANING TO LPSCHED

The print job has completed successfully.

A problem was encountered in printing this
particular request (e.g., too many
nonprintable character8). This problem will
not affect future print jobs. Lpsched
notifies users by mail that there was an error
in printing the request.

These codes are reserved for internal use by
lpsched. Interface programs must not exit
with codes in this range.

When problems that are likely to affect future print jobs occur (e.g.,
a device filter program is missing), the interface programs would be
wise to disable printers so that print requests are not lost. When a
busy printer is disabled, the interface program will be terminated
with signal 15.

SETTING UP HARD-WIRED DEVICES AND
LOGIN TERMINALS AS LP PRINTERS

Hard-wired Devices

As an example of how to set up a hard-wired device for use as an LP
printer, consider using tty line 15 as printer xy_z, _A_s Sllperuser,
perform the following:

1. Avoid unwanted output from non-LP processes and ensure that
LP can write to the device:

$ chown lp /dev/tty15
$ chmod 600 /dev/tty15

2. Change /etclinittab so that tty15 is not a login terminal. In
other words, ensure that /etc/getty is not trying to log users in at

10-19

I

LP SPOOL!NG

this terminal. Change the entries for tty15 to:

15:2:off:/etc/getty -t60 tty15 1200

Enter the command:

$ telinit Q

If there is currently an invocation of /etc/getty running on tty15,
kill it. When the UNIX system is rebooted, tty15 will be
initialized with default stty modes. Thus, it is up to LP interface
programs to establish the prOper baud rate and other stty modes
for correct printing to occur.

3. Introduce printer xyz to LP using the model prx interface
program:

$ /usr/lib/lpadmin -p�yz -v/dev/tty15 -mprx

4. When xyz is created, it will initially be disabled and lp will be
rejecting requests routed to it. If it is desired, allow lp to accept
�equests for xyz:

/usr/lib/accept xyz

This will allow requests to build up for xyz and to be printed
when it is enabled at a later time.

5. When it is desired for printing to occur, be sure that the printer is ready to
receive output. For some printers, this means that the top of form has been
adjusted and that the printer is on-line. Enable printing to occur on xyz:

enable xyz

When requests have been routed to xyz, they will begin printing.

10-20

(. \ I

LP SPOOLING

Login Terminals

Login terminals may also be used as LP printers. To do this for a
Diablo 1640 terminal called abc, perform the following:

1. Introduce printer abc to LP using the model 1640 interface
program:

$ /usr/lib/lpadmin -pabc -v/dev/null -m1640 -l

Note that /dev/null is used as abc's device because we will
specify the actual device each time that abc is enabled. This
device may be different from day to day. When abc is created, it
will initially be disabled; and lp will be rejecting requests routed
to it. If it is desired, allow lp to accept requests for abc:

/usr/lib/accept abc

This will allow requests to build up for abc and to be printed
when it is enabled at a later time. It is not advisable to enable
abc for printing, however, until the following steps have been
taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(l) command reports that this terminal is
/dev/tty02, associate this device with printer abc:

$ /usr/lib/lpadmin -pabc -v/dev/tty02

Note that Ipadmin may be used only by an LP administrator. If
it is desired for other users to routinely perform this step, then
an LP A may establish a program owned by lp or by root with
set-user-id permission that performs this function.

10-21

I

LP SPOOLING

4. When it is desired for printing to occur, be sure that the printer is ready to
receive output. For some printers, this means that the top of form has been
adjusted. Enable printing to occur on abc:

enable abc

When requests have been routed to abc, they will begin printing.

5. When all printing has stopped on abc or when you want it back
as a regular login terminal, you may prevent it from printing
more output:

$ disable abc
printer " abc" now disabled

If abc is enabled when the UNIX system is rebooted or when
lpsched is restarted, it will be disabled automatically.

SUMMARY

The administrative functions of the LP administrator have been
described in detail. These functiens include configuring and
reconfiguring LP; maintaining printer interface programs; accepting,
rejecting, and moving print requests; stopping and starting the LP
scheduler; and enabling and disabling printers. LP offers
administrators the following advantages over other centrally
supported printer packages:

10-22

• Printers may be grouped into classes .

• LP may be configured to .meet the needs of each site.

• Administrators may supply interface programs to format
output in any way desirable.

• LP functions are performed by simple commands and not by
hand.

()
Chapter 11

COMMUNICATION TUTORIAL

INTRODUCTION ••••.••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••

COMMUNICATING ON THE UNIX SYSTEM

HOW CAN YOU COMMUNICATE? ••

SENDING AND RECEIVING MESSAGES (mail) ••.•••••••••
Sending Mall .•••.......•........•••••••••.•••

Basics of Sending Mall •••••.••••••••••••••••.•••••••••.•.•.•.••........•..•.••••.•..•.•••••••••
Sending Mall to One Person
Sending Mall to Several People Simultaneously •••••••••••••••••••••••••••••••••

Sending Mall to Remote Systems (uname, uuname)

Receiving Mall .. .

SENDING AND RECEIVING FILES .. .

Sending Small Files (mail)
Sending Large Files (uuto) .. .

Have You Got Permission?
Sending a File (uuto -m. uustat)
Receiving Files (uupick)

ADVANCED MESSAGE AND FILE HANDLING (uucp, mailx)

PAGE

2

3

4
4
4
5
7

8
12

17

17

19

19

21 I 26

29

' · COMMUNICATION TUTORIAL

INTRODUCTION

Sooner or later, you will want to use the UNIX system to get in touch
with other UNIX system users. You may want to send a message to
someone; the message may be one that must be read immediately.
Perhaps you might need to send another user information from a file
in your login.

Whatever the case, this chapter teaches you how to use the
communication tools available to you on the UNIX system. The
chapter begins with a brief overview of just who you might want to
communicate with on the UNIX system. You learn how to send basic
messages to users on your system and other UNIX systems, and also

, .. .------.. how to deal with messages you receive. You also learn about
commands that enable you to send files to other users.

The following list is a review of the text conventions that are used in this
chapter:

bold (Commands typed in exactly as shown.)

italic (UNIX system prompts and responses.)

roman (Input other than commands.)

< > (Commands that are typed in, but are not
reflected on the screen, are enclosed in
angle brackets.)

11-1

I

COMMUNICATION TUTORIAL

11-2

COMMUNICATING ON THE UNIX SYSTEM

You can use the UNIX system to communicate with just about anyone
else who uses the UNIX system. This means that your terminal does
more than serve as a work station--it becomes your personal '
message-handling center as well, with the electronic equivalent of
transmission, routing, and storage facilities.

Who would you want to communicate with over the UNIX system?
Here are some examples to consider:

• The person in your office who needs to know about a department
meeting tomorrow,

• Other users on your UNIX system who should see a postep.
message concerning their use of the system after office hours,

• The supervisor who wants a copy of your last two reports by 2:30
this afternoon,

• The supervisor who wants to review the memo you are presently
working on as soon as you have finished it,

• A person working with you on the UNIX system to modify
several files you both have in common; you need to be in touch
from time to time, but the phones are being used as links from
your terminals to the computer and you would rather not shout
down the halls, and

• A coordinator who wants your daily operations records (all in
very large files), but does not want to have to wade through
them all at once when he receives them on the terminal.

As you can see, you can keep in touch with any number of people for
any number of reasons through the UNIX system. The remainder of
this chapter shows you how to use the various communication tools
provided by the UNIX system to reach these people.

HOW CAN YOU COMMUNICATE?

HOW CAN YOU COMMUNICATE?

The UNIX system offers several commands for user-to-user

(- communication. This chapter explains the most important commands

\ to know and suggests how to select the one to use in a given
situation. The basic choice is between sending (or receiving) a
message and sending (or receiving) a file.

('

(

To expand on one of the previous examples, suppose you are working
at your terminal and you remember that you are giving a
presentation at an officewide meeting tomorrow. You want to remind
someone in your office about the presentation, but you do not want to
take the time for a phone call or a walk to the other person's office.
What can you do?

If the other person has a login on your UNIX system, you can use the
mail command to send a brief message. When the recipient of your
message finishes whatever task he or she is using the UNIX system
for, a notice is posted that there is mail waiting to be read. The
recipient can then read your message and send a reply back to your
login.

To take another example, what if you need to send other people
copies of things you already have on file--memos, reports, saved
messages, documents, and the like? You can send such files using the
mail command; however, this may not be the best way to send long
files. For sending files over a page in length, you should use the
uuto command. This command sends the file to a public directory on
the recipient's system instead of sending it straight to the recipient's
login. The recipient can then deal with it at his or her own leisure.

These are the important communication tools available to you. (Two
other tools, the uucp and mailx commands, are discussed briefly at
the end of the chapter.) Now that you have a general idea of how to
communicate in the UNIX system, let's move on to the specifics.

11-3

COMMUNICATION TUTORIAL

ll-4

SENDING AND RECEIVING MESSAGES (mail!
The mail command works in two ways--it lets you send messages to
other UNIX system users, and it lets you read messages sent to you.
This section deals first with sending messages, both to users on youK,
UNIX system and to users on other UNIX systems that can
communicate with yours.

Sending Mail

It is easy to send mail to another user. The basic command line
format for sending mail is

mail login<CR>

where login is the recipient's login name on the UNIX system. This
login name can be either of the following:

• A login name if the recipient is on your system, or

• A system name and login name if the recipient is on a system
that can communicate with yours. ',_

For the moment, assume that the recipient is on your system (known
as the local system); we will deal with sending mail to users on other
systems (known as remote systems) a little later.

Basics of Sending Mail

Since the recipient is on your system, you type the mail command as
follows at the system prompt ($):

mail login<CR>
text

where login is the recipient's login name. Then you type in the text
of the letter, as many lines as you need. When your message is "'-.
complete, you send the message on its way by typing a dot (.) at the<'
beginning of a new line.

c

\

c

SENDING AND RECEIVING MESSAGES

The resulting message looks like this:

$ mail login<CR>
After you enter the command line, <CR>
type in as. many lines _of _ _text as you need<CR>.
to get the message across.< CR >
When you're done,<CR>
type in a control-d or a dot<CR>
on a line by itself, as shown on the next line.< CR>
. <CR>
$

The system prompt returns to notify you that your message has been
queued (placed in line) and will be sent .

. Sending Mall to One Person

Let's look at a sample situation. You have to notify another person in
your office of a meeting later this afternoon, but he is not in and you
have to leave your office. He has a login on your UNIX system with
the login name tommy, so you can leave a message for him to read the
next time he logs into the system:

$ mail tommy<CR>
Tom,<CR>
There's a meeting of the review committee<CR>
at 3:00 this afternoon. D.F. wants your<CR>
comments and an idea of how long you think<CR>
the project will take to complete. <CR>
B.K.<CR>

$

11-5

COMMUNICATION TUTORIAL

11-6

When Tom logs in at his terminal (or while he is already logged in),
he receives a message that tells him he has mail waiting:

(you have mail

To see how tommy can read his mait see the section titled Receiving
Mail.

You can practice using the mail command by sending mail to
yourself. This may sound strange at first, but it is the easiest way to
practice sending messages. Simply type in the mail command and
your own login name, then write a short message to yourself. When
you type in the dot, the mail will be sent to your login and you will
receive the notice that you have mail.

Sending mail to yourself can also serve as a handy reminder system.
Suppose your login name is rover; you are ready to log off of the
system for the day and you want to leave a reminder to call someone
first thing the next morning. You might enter the following:

$ mail rover<CR>
Remember to call Accounting and find out<CR>
why they haven't returned my 1984 figures!<CR>

$

(

SENDING AND RECEIVING MESSAGES

When you log in the next day, you will get a notice of messages
awaiting you. Reading your mail then brings up the reminder
message (and any other messages you may have received).

Sending MIJ// to Sevt>ral People Sitrrunaneous/y

If you need to send the same message to more than one person,
simply place their login names after the mail command on the
command line, with a space between each one, in the following
format:

mail loginl login2 ... <CR>

where loginl, login2, and ... are the different login names. You can
mail messages to as many logins as you wish.

For example, if you send a notice about the department softball game
to team members with login names tommy, switch, wombat, and dave, it
might look like this:

$ mail tommy switch wombat dave<CR>
Diamond cutters,<CR>
The game is on for tonight at diamond three.< CR>
Don't forget your glovesJ<CR>
Your Manager<CR>
. <CR>
$

To provide you with a quick summary of what you can expect when
using the mail command to send messages, a recap of how to use it
follows.

11·7

COMMUNICATION TUTORIAL

11-8

C!lmmand Recap

mail - sends a message to another user's login

command

mail

Description:

Remarks:

options arguments

none login

mail followed by one or more login names, sends
the message typed on the lines following the
command line to the specified login{s).

Typing a dot at the beginning of a new line
sends the message.

Sending Mail to Remote Systems (uname, uuname)

We have assumed to this point that you are sending messages to
recipients on your (local) UNIX system. You may have occasion, "'
however, to send messages to recipients on other (remote) UNIX
systems. For example, your office may have three separate systems,
each in a different part of the building. Or perhaps you may have
offices in several different locations, each with its own system.

How do you send mail to someone on a remote system? The UNIX
system you are on must be able to communicate with a remote UNIX
system before mail can be sent between the two. So, if you plan to
send a mail message to someone on a remote system, you need to do
a little legwork to find out the following information:

• Recipient's login name,

• Name of the remote system, and

• If your system and the remote system can communicate.

Two commands are available to help you answer these questions--the '·\
uname and uuname commands.

SENDING AND RECEIVING MESSAGES

(
You can get the login name and the remote system name from the
recipient. If it happens that the recipient does not remember the
system name, have him or her log into the system and type the

.· following at the system prompt:

uname -n<CR>

The uname -n command responds with t.he name of the system you
are logged into. For example, if you are logged into a system named
sys10 and you type in uname -n, your screen should look like this:

$ uname -n<CR>
sys10
$

�-·�., Once you know the remote system name, the uuname command
\ ' helps you find out if your system can communicate with the remote

system. At the prompt, type:

uuname<CR>

This generates a list containing the names of remote systems with
which your system can communicate. If the recipient's system is in
that list, then you can send messages there by mail.

The uuname command may respond with a large list of names if your
System can communicate with many other systems. To avoid having
that long list scroll quickly up your screen, use the pipe and grep
command in conjunction with uuname. At the prompt, type:

uuname I grep system <CR>

(__ / where system is the recipient's system name. This generates the same
list, then searches for and prints only the specified system name if it
is found in the list.

11-9

COMMUNICATION TUTORIAL

11-10

For example, if you want to find out whether a system called syslO
can communicate with your system., type:

$ uuname I grep syslO<CR>

If this is the case, the system name is printed in response:

$ uuname I grep syslO<CR>
sys10
$

If you get only the system prompt back, then the two systems cannot '"'
communicate:

$ uuname I grep syslO<CR>
$

Once you determine that you can send messages to a login on a
remote system, your mail command line is slightly different than it is
for sending mail to someone on your local system. The command
line format for remote systems is:

mail system!Iogin<CR>

where system is the remote system name and login is the redpient's �
login name. The two parts of the address are separated by an
exclamation point (!).

(\)

SENDING AND RECEIVING MESSAGES

Now that you have all the parts, let's put them together into an
example. Assume that you have a message for someone on a different
system in another part of your office. You know from the recipient
her login name, sarah, and her system name, sys10. To find out if her
system can communicate with yours, use the uuname command:

$ uuname I grep syslO < CR >
sys10
$

The system response tells you that your system is indeed networked
to system syslO. Now all you have to do is send the message, using
the expanded address format given previoll.Sly:

$ mail syslO!sarah <CR>
Sarah,<CR>
The final counts for the writing seminar<CR>
are as follows:< CR >
<CR>
Our department - lB<CR>
Your department - 20<CR>
<CR>
Tom <CR>
- <CR>
$

Following is a quick summary of the two commands intrOduced in
this section and what you can expect them to do.

11-11

COMMUNICATION TUTORIAL

Command Recap

uname - displays the system name

command options arguments

uname -n and others"' none

Description: uname -n displays the name of the system on
which your login resides.

See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Command Recap

uuname - displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that can
communicate with your system.

Receiving Majl

Once you learn to send messages, you may be anxious to read what
others are sending your way. As stated earlier, the mail command
also allows you to read messages sent by other UNIX system users.

11-12

SENDING AND RECEIVING MESSAGES

After logging in, you may receive the following message at your
terminal:

. (you have mail

This tells you that one or more messages are being held for you in a
UNIX system directory named usr I mail, usually referred to as the the
mailbox. Entering the ritail command by itself allows you to read
these messages.

To read your maiL type the mail command by itself at the system
prompt:

mail<CR>

(> This display5 the waiting messages at your terminal, one message at a
- 1 time, with the most recently received message displayed first. In

other words, as you read your messages, you go from the ''newest"
message to the "oldest" message.

c;

A typical mail message looks like this:

$ mail
From tommy Man May 21 15:33 CST 1984
B.K.
Looks like the meeting lzas been canceled.
Do you still want the technical review material?
Tom

?

11-13

COMMUNICATION TUTORIAL

11-14

The first line, called the header, displays information about a
particular message--the login name of the sender, the date sent .. and
the time sent. The following lines (except for the last line) are the
body of the message.

Notice the question mark (?) on the last line of the message. After
displaying each message, the mail command displays a ? and a space,
and waits for a response from you before going on to the next
message. There are several responses; we will look at the most
common responses and what they do.

After reading a message, you may want to delete it. To do so, type a
d after the question mark.

(? d<CR>

This response deletes the message from the mailbox and displays the
next message waiting in the mailbox (if there is one). If there are no \"
other messages, the system prompt returns to indicate that you've
finished reading your messages.

If you would rather display the next message without deleting the
message being displayed, type a carriage return after the question
mark.

(? <CR>

The current message goes back into the mailbox and the next message
is displayed. If there are no more messages in the mailbox, the system
prompt returns.

,/

c/

SENDING AND RECEIVING MESSAGES

You may want to save the message for later reference. To do so, type
an s after the question mark:

(? s<CR>

This response saves the mail message by default in a file called mbox
in your login directory. If you would rather save the message in
another file, follow the s response with a file name or with a path
name ending in a file name.

For example, to save the message in a file called mailsave in your
current directory, enter the following response after the question
mark:

r ? s mailsave<CR>

If you use the Is command to list the contents of this directory, you
will find the file mailsave.

You can also save the message in a file under another of your
directories. If you have a mail message about a particular project or
piece of work that you keep in a certain directory, you may want to
save that message in the same directory. Let's say you have such a
directory, named projectl, under your login directory. If a mail

11-15

COMMUNICATION TUTORIAL

11-16

message comes in that you want to place in directory projectl, under a
file named memo, enter the following response after the question
mark:

(? s proje�tl/memo<CR>

If you use the cd command to change directories from your login directory to
project] and then use the ls command, you will find that the file memo is now
listed. (You can use other, more complete path names as well; refer to the "Unix
System Capabilities" chapter for instruction on using path names.)

If you want to quit reading messages, enter the following response
after the question mark:

(? q<CR>

Any messages that you have left unread are put back in the mailbox
until the next time you use the mail command.

If a long message is being displayed at your terminal, you can
interrupt it by pressing the BREAK key. This stops the message
display, prints the ? , and waits for your response.

Other responses are available; these are listed in section 1 of the Runtime
System manual. The following command recap summarizes what you can expect
when using the mail command to read messages.

SENDING AND RECEIVING MESSAGES

Command Recap

mail - reads messages sent to your login

command

mail

Description:

Remarks:

options arguments

available"" none

mail entered by itself displays any messages
waiting in the system file usr/mail (the mailbox).

The question mark (?) at the end of a mesSage
indicates that a response is expected. A full list
of responses is given in the UNIX System User
Reference Manual.

* See section 1 of the Runtime System manual for all available options and an explanation of

their capabilities.

SENDING AND RECEIVING FILES

.Jn several examples cited so far in this chapter, the need to send files
from your UNIX system login to another UNIX system user has come
up. Memos, reports, stories, baseball scores--there are numerous
items that you can keep in your files. What do you do to send copies
of those files to other UNIX system users?

Sending Small Files (mail)

The mail command uses the redirection symbol < to take its input
from a specified file instead of from the keyboard. (For more detailed
information on the use of redirection symbols, see Chapter 7.) The
general format is as follows:

mail login < filename< CR >

where login is the recipient's login name and filename is the name of
the file containing the information to be sent.

11-17

COMMUNICATION TUTORIAL

For example, assume you keep a standard meeting notice iri a file
named meetnote. If you want to send the letter to the owner of login
sarah using the mail command, type the following at the prompt:

$ mail sarah < meetnote<CR>
$

The system prompt returns to let you know that the contents of
meetnote have been sent. When sarah types in the mail command to
read her messages, she will receive the standard meeting notice.

Likewise, if you want to send the same file to several users on your
system, type in the mail command followed by the login names of
the users, and then follow these with the < file redirection operator
and the file name. It might look like this:

$ mail sarah tommy dingo wombat < meetnote<CR>
$

The system prompt tells you that the messages have been sent.

If the recipient for your file is on a remote system that can
communicate with yours, simply redirect the file with the < operator:

mail system!Iogin < filename<CR>

11-18

(_)

SENDING AND RECEIVING FILES

For example:

$ mail syslO!wombat < meetnote<CR>
$

Again, the system prompt notifies you that the message has been
queued for sending.

Sending Large Files (uuto)

When you need to send large files, you should use the uuto
command. This command can be used to send files to both local and
remote systems. When the files arrive at their destination, the
recipient receives a mail message announcing its arrival.

The basic format for the uuto command is

uuto filename system!login < CR>

where filename is the naine of the file to be sent, system is the
recipient's system, and login is the recipient's login name. The
filename may be the name of a file or a path name ending in a specific
file.

If you send a file to someone on your local system, you may omit the •
system name and use the following format: El

uuto filename login<CR>

HaVe You Got Permission?

Before you actually send a file wilh lhe unto command, you need to find out
whether or not the file is transferable. To do lhat, you need to check the file's
permissions. If they are not correct, you must use the chmod command to
change them. (Permissions and the chmod command are covered in detail in the
''Using lhe File System" chapter of this manual.)

11-19

COMMUNICATION TUTORIAL

11-20

There are two permission criteria that must be met before a file can
be transferred using uuto:

• The file to be transferred must have read permission (r) for others,
and

• The directory that contains the file must have read (r) and
execute (x) permission for others.

This may sound confusing, but an example should clarify the matter.

Assume that you have a file named chicken, under a directory named
soup, that you Want to send to another user with the uU.to command.
First you check the permissions on soup, which is under your login
direCtory:

$ Is -I<CR>
total 35
-rwxr-xr-x
drwxr--r-
drwxr-xr-x
$

1 reader group1
2 reader groupl
2 reader groupl

5598
477
45

Mar 313:00 memos
Mar 109:08 lists
Feb 9 10:43 soup

Checking the line that contains the information for directory soup
shows that it has read {r) and execute (x) permissions in all three
groups; no changes have to be made. Now you use the cd command
to change from your login directory to soup and then check the
permissions on the file chicken:

$ Is -I chicken<CR>
total 4
-rw------- 1 reader group1 3101 Mar 1 18:22 chicken
$

SENDING AND RECEIVING FILES

The output informs you that the file chicken has read permission for
you, but not for the rest of the system. To add those read
permissions, you use the chmod command:

� $ chmod go+r chicken<CR>

This adds read permissions to the rest of the system--group (g) and
others (o)--without changing the previous permissions. Now,
checking again with the Is -1 command reveals the following:

$ Is -1 chicken<CR>
-nv-r--r-- 1 reader group1 3101 Mar 1 18:22 chicken
$

This confirms that the file is now transferable using the uuto
command. After you send copies of the file, you can reverse the
procedure and replace the previous permissions .

.
sending a File (uuto -m, uustat)

Now that you know how to determine if a file is transferable, let's
take an example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job. When
you enter a uuto command, your job is not sent immediately. First it
is stored in a queue (a waiting line of jobs) and assigned a job
number. When the job's number comes up, it is transmitted to the
remote system and placed in a public directory there. The recipient
is notified by mail message and must use the uupick command to
retrieve the file (this command is discussed later in the chapter).

11-21

COMMUNICATION TUTORIAL

For the following discussions, assume this information:

wombat Your login name.
sys10 Your system name.
marie Recipient's login name.
sys20 Recipient's s)rstem name.
money File to be sent.

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys20, enter the
following:

$ uuto money sys20!marie<CR>
$

The system prompt returns, notifying you that the file has been sent
to the job queue. The job is now out of your handsi all you can do is
wait for confirmation that the job reached its destination.

How do you know when the job has been sent? The easiest method
is to alter the uuto command line by adding a -m option, like so:

11-22

$ uuto -m money sys20!marie<CR>
$

r �

c

SENDING AND RECEIVING FILES

This option sends a mail message back to you when the job has
reached the recipient's system. The message may look something like
this:

$ mail<CR>
From uucp Tue Apr 3 09:45 EST 1984
file /sys10/wombat/money, system sys10
copy succeeded

?

If you would rather check from time to time while you are working
on the system, you can use the uustat command. This command
keeps track of all the uuto jobs you submit and gives you their status.
For example,

$ uustat<CR>
1 145 wombat sys20 10/05-09:31 10/05-09:33 JOB IS QUEUED
$

The elements of this sample status message are as follows:

• 1 145 is the job number associated with sending file money to marie
on sys20.

• wombat is your login name.

• sys20 is the recipient's system.

• 10/05-09:31 is the date and time the job was queued.

11-23

COMMUNICATION TUTORIAL

• 10/05-09:33 is the date and time of this particular uustat message.

• The final part is the status of the job-in this case indicating that
the job has been queued, but has not yet been sent. \...

If you are interested in just one uuto job, you can use the -j option
and the job number when requesting job status:

uustat -jjobnumber<CR>

In the example, let's say you enter the uustat command with the -j
option (for job 1145) until you receive the following response:

$ uustat -j114S<CR>
1145 wombat sys20 10/05-09:31 10/05-09:37 COPYFINISHED,JOB DELETED

$

This status message indicates that the job was sent and has been deleted from the
job queue-in other words, it has reached the public directory of the recipient's
system. There are other status messages and options for the uustat command
which are described in section I of the Runtime System manual.

That is all there is to sending files. You can practice simply by
sending another UNIX system user a file. You should practice with a
test file until you have the procedures down pat.

The following command recaps give a summary of the uuto and
uustat commands for your convenience.

11-24

SENDING AND RECEIVING FILES

c;ommand

uuto

Description:

Remarks:

Command Recap

uuto - sends files to another login

options arguments

-m and- others,. file system!login

uuto sends the specified file to the public
directory of the specified system. The owner of
the login is notified by mail that a file has
arrived.

Files to be sent must have read permission for
others; the directory above the file must have· read
and execute permissions for others.

The -m option notifies you by mail when the file
arrives at its destination.

(-. "' See section 1 of the Runtime System manual for all available options and an explanation of
their capabilities.

Command Recap

uustat - checks job status of a uuto job

command

uustat

Description:

Remarks:

options arguments

-j and others"" none

uustat checks on the status of all uuto jobs sent
from your login and displays the results.

The �j option, followed by a specific job number,
displays the status of only the specified job.

* See section 1 of the Runtime System manual for all available options and an explanation of (\ their capabilities.

11-25

COMMUNICATION TUTORIAL

11-26

Receiving Files (uupick)

When a file sent by uuto shows up in the public directory on your
UNIX system, you receive a mail message telling you that the file has
arrived and where you can find it. To continue our previous 1_
example, lefs see what the owner of login marie receives when she
types in the mail command, not long after you (login wombat) have
sent her the file money:

$ mail
From uucp Man May 14 09:22 EST 1984
fusr/spool/uucppublic/receive/marie/ sys10//money from sys10!wombat arrived
$

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The second line up to the two slashes (/ /) gives you the path
name to the part of the public directory where the file has been '.,__
stored.

• The second line after the two slashes tells you the name of the
file and who sent it.

Once you have disposed of the mail message, you can use the uupick
command to store the file where you want it. Type

uupick<CR>

at the system prompt. The command searches the public directory for
any files sent to you. If it finds any, it prompts you with a ? to do
something with the file (much like the mail command).

(�
\

SENDING AND RECEIVING FILES

Continuing with our previous example, if the owner of login marie
enters the uupick command, she receives the following response:

$ uupick<CR>
from system syslO: file money
?

After the question mark (?), the command goes to the next line and
waits for your response. There are several available responses; we
will look at the most common responses and what they do.

The first thing you should do is move the file from the public
directory and place it in your login directory so you can see what it
is. To do so, type an m after the questioD mark.

This response moves the file into your current directory. If you wish
to put it in some other directory instead, follow the m response with
the directory name:

� � direclory<CR>

If there are other files waiting to be moved, the next one is displayed,
followed by the question mark. If not, the prompt returns.

11-27

COMMUNICATION TUTORIAL

If you would rather display the next message without doing anything
to the current file, press the carriage return key after the question
mark.

The current file remains in the public directory until you next use the
uupick command. If there are no mo�e messages, the system prompt
returns.

If you already know that you do not want to save the file, you can
delete it by typing in a d after the question mark:

This response deletes the current file from the public directory and
displays the next message (if there is one). If there are no additional
messages about waiting files, the prompt returns.

Finally, if you want to stop the uupick command, type a q after the
question mark:

H-28

ADVANCED MESSAGE AND FILE HANDLING

I

Any unmoved or undeleted files will wait in the public directory
until the next time you use the uupick command.

� 1 Other available responses are listed in the UNIX System User Reference
Manual. The following command recap summarizes what you can
expect from the uupick command.

Command Recap
uupick - searches for files sent by uuto

command

uupick

Description:

Remarks:

options options

none none

uupick searches the public directory of your
system for files sent by uuto. If any are found,
the command displays information about the file
and awaits a response.

The question mark (?) at the end of the message indicates
that a response is expected. The full list of responses is
given in section I of the Runtime System Manual.

ADVANCED MESSAGE AND FILE HANDLING (uucp, mailx)
Once you master the mail and uuto/uupick commands, you may
decide that you want commands that are more flexible or efficient. If

__ so, you should try the mailx and uucp commands. ()
The uucp command enables you to send a copy of a file directly to
another user's login directory, instead of to the public directory on
that user's system. In some cases, you can even copy directly from

11-29

COMMUNICATION TUTOflJAL

11-30

files in another login and place the copy in your login directory. The
uucp command also enables you to rename a file when it reaches its
destination.

There are a number of considerations to deal with when using uucp,
such as file permissions and system security procedures. The uucp
system is more complex and requires more experience to use than
uuto and uupick.

If you want an electronic mail facility with more features, there is the
IDOl.ilX command. This command is an interactive message-handling
system that gives you, among other things, th.e following:

• The ability to use either the ed or vi text editor for use on
incoming and outgoing messages,

• A list of waiting messages from which the user can decide which
messages to deal with and in what order,

• Several options for saving fi�es, and

• Commands for replying to specific messages and sending copies ',-:_
to other users (both of incoming and outgoing messages).

As you might gather, these two comrp.ands are complex and are not
recommended for the beginning user. Because of this, we do not
cover the uses of uucp or m!).ilX in this guide. However, these
commands are mentioned here because they may b� available in your
UNIX system package and are useful commands to know about.

Once you are thoroughly familiar with the standard tools for user com
munication, you may want to experiment with the uucp and mailx
commands. Refer to the next chapter for more informaPon on using these
commands.

I '

Chapter 12

UUCP ADMINISTRATION

PAGE

INTRODUCTION • 1
PLANNING . 1

Extent of the Network • . 1
Hardware and Line Speeds , . 2
Maintenance and Administration . 2

UUCP SOFTWARE • • • • • • . • • • • • • • . • . • • . • • . • • • • • • • • 3
INSTALLATION • 3

Object Modules . , , . .

Password File , , , . . . , •
Lines File . ,

System File , , . . . , , . . . ,

3
4
5
6

Dialing Prefixes • . • . 9
Userfile • • . 9
Forwarding File • • • . 1

ADMINISTRATION • 12
Cleanup • • 12
Polling Other Systems . 13
Problems • • . 13

DEBUGGING 14

�"• ' '

UUCP ADMINISTRATION

INTRODUCTION

This chapter describes how a uucp network is set up, the format of
control files, and administrative procedures. Administrators should
be familiar with the manual pages for each of the uucp ·related
commands.

PLANNING

In setting up a network of UNIX systems, there are several
considerations that should be taken into account before configuring
each system on the network. The following parts attempt to outline
the most important considerations.

Extent of the Network

Some basic decisions about access to processors in the network must
be made before attempting to set up the configuration files. If an
administrator has control over only one processor and an existing
network is being joined, then the administrator must decide what
level of access should be granted to other systems. The other
members of the network must make a similar decision for the new
system. The UNIX system password mechanism is used to grant
access to other systems. The file /usr/lib/uucp/USERFILE restricts
access by other systems to parts of the file system tree, and the file
/usr/lib/uucp/L.sys on the local processor determines how many
other systems on the network can be reached.

(--...., When setting up mor.e than one processor, the administrator has

' , _�_) control of a larger Portion of the network and can make more
decisions about the setup. For example, the network can be set up as
a private network where only those machines under the direct control
of the administrator can access each other. Granting no access to
machines outside the network can be done if security is paramount;

12·1

UUCP

however, this is usually impractical. Very limited access can be
granted to outside machines by each of the systems on the private
network. Alternatively, access to/from the outside world can be
confined to only one processor. This is frequently done to minimize
the effort in keeping access information (passwords, phone numbers,
login sequences, etc.) updated and to minimize the number of security
holes for the private network.

Hardware and Line Speeds

There are only two supported means of interconnection by uucp(lJ,

1. Direct connection using a null modem.

2. Connection over the Direct Distance Dialing (DDD) network.

In choosing hardware, the equipment used by other processors on the
network must be considered. For example, if some systems on the
network have only 103-type (300-baud) data sets, then communication
with them is not possible unless the local system has a 300-baud data
set connected to a calling unit. (Most data sets available on systems
are 1200-batid.) If hard-wired connections are to be used between
systems, then the distance between systems must be considered since
a null modem cannot be used when the systems are separated by
more than several hundred feet. The limit for communication at
9600-baud is about 800 to 1000 feet. However, the RS232 specification
and AT&T Computer Systems Support Groups only allow for less
than 50 feet. Limited distance modems must be used beyond 50 feet
as noise on the lines becomes a problem.

Maintenance and Administration

There is a minimum amount of maintenance that must be provided
on each system to keep the access files updated, to ensure that the
network is running properly, and to track down line problems. When
more than one system is involved, the job becomes more difficult
because there are more files to update and because users are much
less patient when failures occur between machines that are under
local control.

12-2

,,
'

\

('

UUCP

Lines File

The file /usr/lib/uucp/L-devices contains the Jist of all lines that are
directly conn.acted to other systems or are available for calling other
systems. The file contains the attributes of the lines and whether the
line is a permanent Connection or can call via a dialer. The forffiai of
t)le file is

type line call-device speed protocol

where each field is

type

line

call-device

speed

protocol

Two keywords are used to describe whether a line
is directly connected to another system (DIR) or
uses an automatic calling unit (ACU). An X.25
permanent virtual circujt would use the DIR
keyword.

This is the device name for the line (e.g., ttyab for
a direct line, culO for a line co�nected to �n ACU).

If the ACU keyword is specified, this field
contains the device name of the ACU. Otherwise,
the field is ignored; however, a placeholder must
be us�d in this field so that the protocol field can
be interpreted.

The line speed that the connection is to run at.
(The speed field is currently ignored if an X.25
link is used.)

This is an optional field that needs only be filled
in if the connection is for a protocol other than
the default terminal protocol. The X.25 protocol
is the only other protocol supported and the single
character x is used to select 'this protocol.

12·3

UUCP

The following entries illustrate various types of connections:

DIR ttyab 0 9600
ACU cu!O cuaO 1200
D!R x25.s0 0 300 x

The first entry is for a hard-wired line running at 9600-baud between
two systems. Note that the acu-device field is zero. The second entry
is for a line with a 1200-baud ACU. The last entry is for an X.25
synchron9us direct connection between systems. Note that the
protocol field is filled in and that the acu-device and line speed fields
are meaningless.

· -

Na,ing Conventions

It is often useful when naming lines that are directly connected
between systems or which are dedicated to calling other systems to
choose a naming scheme that conveys the use of the line. In the
earlier examples, the name ttyab is used for the line that directly
connects two .systems named a and b. Similarly, lines associated with
Calling units are best given nameS that relate them to the calling unit
(note the names culO and cuaO to specify the line and calling unit,
respectively).

System File

Each entry in this file represents a system that can be called by the
local uucp programs. More than one line may be present for a
particular system. In this case, the additional lines represent
alternative communication paths that will be tried in sequential
order. The fields are described below.

12-4

system. name N arne of the remote system.

time This is a string that indicates the days-of-week
and times-of-day when the system should be
called (e.g., MoTuTh0800-1730).

The day portion may be a list containing Su, Mo,
Tu, We, Th, F1·, Sa; or it may be Wk for any
week-day or Any for any day. The time should be
a range of times (e.g., 0800-1230). If no time
portion is specified, any time of day is assumed to

,r- .
\

device

class

phone

UUCP

be allowed for the call. Note that a time range
that spans 0000 is permitted; 0800-0600 means all
times are allowed other than times between 6 arid
8 am. An optional subfield is available to specify
the - minimum-- time --(minutes) before a retry
following a failed attempt. The subfield separator
is a ",'' (e.g., Any,9 means call- any time but wait
at least 9 minutes before retrying the call after a
failure has occurred).

This is either ACU or the hard-wired device name
to be used for the call. For the hard,wired case,
the last part of the special file name is used (e.g.,
ttyO).

This is usually the line speed for the call (e.g.,
300).

The phone number is made up of an optional
alphabetic abbreviation (dialing prefix) and a
numeric part. The abbreviation s�·10uld be one
that appears in the L-dialcodes file (e.g., mbl212,
boston555-1212), For the hard-wired devices, this
field contains th"e same string as used for the
device field.

login The login information is given as a series of fields
and subfields in the format

[expect send] . . .

where expect is the string expected to be read and
send is the string to be sent when the expect
string is received.

The expect field may be made up of subfields of
the form

expect[-send-expect] . . .

12-5

UUCP

where the send is sent if the prior expect is not
successfully read and the expect following the
send is the next expected string. (For example,
login--login will expect login; if it gets it, the
program will go on to the next field; if it does not
get login, it will send null followed by a new line,
then expect login again.) If no characters are
initially expected from the remote machine, the
string " " (a null string) should be used in the
first expect field.

There are two special names available to be sent
during the login sequence. The string EOT will
send an EOT character, and the string BREAK
wj]] try to send a BREAK character. (The
BREAK character is simulated using line speed
changes and null char�cters and may not work on
all devices and/or systems.) A number from 1 to 9
may follow the BREAK (e.g., BREAK 1, will send
1 null character instead of the default of 8). Note
that BREAK! usually works best for 800-/1200-
baud lines.

There are several character strings that cause specific actions when
they are a part of a string sent during the login sequence.

\s Send a space character.

\d Delay one second before sending or reading more
ch�racters.

\c If at the e)ld of a string, suppress the new-line that is
normally sent. Ignored otherwise.

\N Send a null character.
Thes� character stri:p.gs are useful for making uucp communicate via
direct lines to data switches.

A typical entry in the L.sys file would be

sys Any ACU 800 mh7654 login uucp ssword: word

12-6

UUCP

r , The expect algorithm matches all or part of the input string as
,, illustrated in the password field above,

(.

Dialing,Prefixes

This file contains the dial-code abbreviations used in the L.sys file
(e,g., py, mh, boston). The entry format is

abb dial-seq

where abb is the abbreviation and dial-seq is the dial sequence to call
that location.

The line

py 165-

would be set up so that entry py7777 would send 165-7777 to the dial
unit.

Userfile

This file contains user accessibility information. It specifies four
types of constraints:

1. Files that can be accessed by a normal user of the local machine.

2. Files that can be accessed from a remote computer.

3. Login name used by a particular remote computer.

4. Whether a remote computer should be called back in order to
confirm its identity.

Each line in the file has the format

login,sys [c 1 pathname [pathname 1

12-7

UUCP

where

login is the login name for a user or the remote computer.

sys is the system name for a remote computer.

c is the optional call-back required flag.

pathna:me is a pathname prefix that is acceptable for sys.

The constraints are implemented as follows:

1. When the program is obeying a command stored on the local
machine, the pathnames allowed are those given on the first line
in the USERFILE that has the login name of the user who
entered the command. If no such line is found, the first line with
a null login name is used.

2. When the program is responding to a command from a remote
machine, the pathnames allowed are those given on the first line
in the file that has the system name that matches the remote
machine. If no such line is found, the first one with a null
system name is used.

3. ·when a remote computer logs in, the login name that it uses
must appear in the USERFILE. There may be several lines with
the same login name but one of them must either have the name
of the remote system or must contain a null system name.

4. If the line matched in (3.) contains a "c", the remote machine is
called back before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of
files whose names start with /usr/xyz. The line

you, /usr/you

12-8

UUCP

�� allows the ordinary user you to issue commands for files whose name
'--· starts with /usr/you. (This type restriction is seldom used.) The

lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u . If its system name
is not m, it can only ask to transfer files whose names start with
/usr/spool. If it is system m, it can send files from paths /ui1·/xyz
as well as /uS?;/spool. The lines

root, I
, /usr

allow any user to transfer files beginning with /usr but the user with

(-· login root can transfer any file. (Note that any file that is to be
1 • transferred must be readable by anybody.)

Forwarding File

There are two files that allow restrictions to be placed on the
forwarding mechanism. The format of the entries in each file is the
same,

system
or

system,user,user2, ...

The file ORIGFJLE (/usr/lib/uucp/ORIGFILE) restricts the access
of systems that are attempting to forward through the local system.
The file contains the list of systems (and users) for whom the local
system is willing to forward. Each entry refers to the system that
was the sou·•·ce of the original job and not the name of the last
system to forward the file. The second file, FWDFILE
(/us•·/lib/uucp/FWDFILE), is a list of valid systems that a job can
be forwarded to. (It is not necessarily the name of the destination of

12-9

UUCP

a job, but merely the next valid node.) This file will be a subset of the
L.sys file and can be used to prevent forwarding to systems that are
very expensive to reach but to which access by local users is allowed
(e.g., links to overseas universities). If neither of these files exist,
uucp will be perfectly happy to forward for any system. As an
example, if the entry for system australia were in the ORIGFILE but
not in the FWDFILE on system mhtsa, it would mean that system
austt·alia would be capable of forwarding jobs into the network via
system mhtsa. However, no systems in the network could forward a
job to austJ·alia via system mhtsa.

ADMINISTRATION

The role of the uucp administrator depends heavily on the amount of
traffic that enters or leaves a system and the quality of the
connections that can be made to and from that system. For the
average system, only a modest amount of traffic (100 to 200 files per
day) pass through the system and little if any intervention with the
uucp automatic cleanup functions is necessary. Systems that pass
large numbers of files (200 to 10,000) may require more attention
when problems occur. The following parts describe the routine
administrative tasks that must be performed by the administrator or
are automatically performed by the uucp package. The part on
problems describes what are the most frequent problems and how to
effectively deal with them.

Cleanup

The biggest problem in a dialup network like uucp is dealing with the
backlog of jobs that cannot be transmitted to other systems. The
following cleanup activities should be routinely performed by shell
scripts started from cron(l).

Cleanup of Undeliverable Jobs

The uudemon.day procedure usually contains an invocation of the
uuclean command to purge any jobs that are older than some fixed "\
time (usually 72 hours). A similar procedure is usually used to purge
any lock or status files. An example invocation of uuclean(lM) to
remove both job files and old status files every 48 hours is:

/usr/lib/uucp/uuclean -pST -pC -n48

12-10

(Cleanup of the Public Area

UUCP

In order to keep the local file system from overflowing when files are
sent to the public area, the uudemon.day procedure is usually set
up with a find command _to r:�move any files that are ol4_er than 7
days. This interval may need to be shortened if there is not
sufficient space to devote to the public area.

Compaction of Log Files

The files SYSLOG and LOGFILE that contain logging information
are compacted daily (using the pack command from the shell script
uudemon.day) and should be kept for 1 week before being
overwritten.

Polling Other Systems

Systems that are passive members of the network must be polled by
other systems in order for their files to be sent. This can be
arranged by using the uusub(l) command as follows:

uusub -cmhtsd

which will call mhtsd when it is invoked.

Problems

The following sections list the most frequent problems that appear on
systems that make heavy use of uucp(l).

Out of Space

The file system used to spool incoming or outgoing jobs can run out
of space and prevent jobs from being spawned or received from
remote systems. The inability to receive jobs is the worse of the two
conditions. When file space does become available, the sYstem will be
flooded with the hac} log of traffic.

12-11

UUCP

Bad ACU and Modems

The ACU and incoming modems occasionally cause problems that
make it difficult to contact other systems or to receive files. These
problems are usually readily identifiable since LOGFILE entries will
usually point to the bad line. If a bad line is suspected, it is useful to
use the cu(l) command to try calling another system using the
suspected line.

Administrative Problems

Some uucp networks have so many members that it is difficult to
keep track of changing passwords, changing phone numbers. or
changing logins on remote systems. This can be a very costly
problem Since ACU's will be tied up calling a system that cannot be
reached.

DEBUGGING

In order to verify that a system on the network can be contacted, the
uucico daemon can be invoked from a user's terminal directly. For
example, to verify that mhtsd can be contacted, a job would be queued
for that system as foliows:

uucp -r file mhtsd!-/tom

The -r option forces the job to be queued but does not invoke the
daemon to process the job. The uucico command can then be
invoked directly:

/usr/lib/uucp/uucico -rl -x4 -smhtsd

The -rl option is necessary to indicate that the daemon is to start
up in maste:r mode (i.e., it is the calling system). The -x4 specifies
the level of debugging that is to be printed. Higher levels of ,
debugging can be printed (greater than 4) but requires familiarity
with the internals of uucico. If several jobs are queued for the
remote system, it is not possible to force uucico to send one
particular job first. The contents of LOGFILE should also be

12-12

()

UUCP

monitored for any error indications that it posts. Frequently,
problems can be isolated by examining the entries in LOGFILE
associated with a particular system. The file ERRLOG also contains
error indications.

12-13

I

UUCP

12-14

INTERCONNECTION

SYSTE� A �EOIA

SPOOL

WORKLIST AREA

Figure 10-1. Uucp Network Daemon

SYSTEM B

SPOOL

AREA

/ I \)

UUCP

UUCP SOFTWARE

Figure 10-1 (at the end of this chapter) is an illustration of the
daemons used by the uucp network to communicate with another
system. The uucp(1) or uux(1) command� queues users requests and
spawns the uucico daemon to call another system. Figure 10-2 (at
the end of this chapter) illustrates the structure of uucico and the
tasks that it performs in communicating with another system.
Uucico initiates the call to another system and performs the file
transfer. On the receiving side, uucico is invoked to receive the
transfer. Remote execution jobs are actually done by transferring a
command file to the remote system and invoking a daemon

.
(uuxqt)

to execute that command file and return the results.

INSTALLATION

The uucp(1) package is delivered as part of the standard UNIX
� system distribution. It resides in its own subdirectory (called uucp)
\ in the commands area and has its own make file (uucp.mk). The

uucp package is installed as part of the normal distribution;
however, if it must be reinstalled for any reason, then the_ sequence

make -f uucp.mk install

should be executed.

Object Modules

The following object modules are installed as part of the uucp make
procedure.

1. Uucp-The file transfer command.

2. Uux-The remote execution command.

3. Uucico-The uucp network daemon.

4. Uustat-Network status command.

12-15

UUCP

5. Unclean-Cleanup command.

6. Uusub-The command for monitoring and creating a
subnetwork.

7. Uuxqt-The remote execution daemon.

8. Uudemon.day-A shell procedure that is invoked each day to
maintain the network. Shell scripts for execution each week
(uudemon.wk) and each hour (uudemon.hr) are also
distributed.

Password File

To allow remote systems to call the local system, password entries
must be made for any uucp logins. For example,

nuucp:zaaAA:6:1:UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

Note that the uucico daemon is used for the shell, and the spool
directory is used as the working directory.

There must also be an entry in the passwd file for an uucp
administrative login. This login is the owner of all the uucp object
and spooled data files and is usually " uucp" . For example, the
following is a entry in /etc/passwd for this administrative login:

uucp:zA v LCKp:5:1: UUCP.Admin:/usr /lib/uucp:

Note that the standard shell is used instead of uucico. If an owner
other than " uucp" is chosen, the make file for uucp
(/usr/src/cmd/uucp/uucp.mk) must be edited. The line
" OWNER=uucp" must be changed to reflect the new owner login.

12·16

�
';' �

·�
: '-.. __)

WORKLIST

·D SEQUENCE

AND

INTERLOC�
I -

__J

UUCICO DAEMON

I� J ' .

DIALING

�
000 -I

OATAKIT

(X . 25)

J

I
�

-

I I r I I I FILE

TRANSFER
INITIAL I

PROTOCOL
CONNECTION

I _j _j
I -

� I
BYTE I PACKET

STREAM I PROTOCOL

I

-
UNIX SYSTEM� �uAnnuAn�

Figure 10-2. Uucico Daemon Functional Blocks

,/"'""' \1
�-/

c: c: 0 ,

(' I

Chapter 13

ADDING DEVICE DRIVERS
USING THE LINK KIT

PAGE

INTRODUCTION ... 1
What is a UNIX Device Driver?... 1

THE GENERIC UNIX DRIVER .. 2

Driver Activities and Responsibilities....................................... 2
System Buffers... 3
Data Transfer Between System and User Space............................ 3
Sleeping and Waking Processes... 4

Kernel Timers.. 5
Synchronous and Interrupt Sections of a Driver.......................... 6
Interrupt Processing... 6
Critical Sections of the Driver

How Data Moves Between the Kernel and the Device.

UNIX DRIVER SPECIFICS .. .

Types of Devices

Special Files

Major and Minor Numbers .. .

The /dev Directory .. .
The System and Master Files .. .

STRUCTURE OF THE DEVICE DRIVER SOURCE FILES

Include Files .. .

General System Data Structures.

Drh·er Specific Data Structures
FUNCTION SPECIFICATIONS (Driver Entry Points)

Open

7

8 9 9 9 10 10 11 12 12 13
151 15 15

Close.. 16
Read and Write.. 16
Strategy.. 1�
Ioctl......... 19

CODE FOR BRINGING A DEVICE INTO SERVICE...................... 20

Interrupt Handler... 20

Use of Line Disciplines... 22

Function Naming Conventions • • • • . • ••••••.•.•••••• ,............................. 22

SYSTEM UTILITY FUNCTIONS ... 22

Sleep and Wakeup ... 22

Setting Processor Priority Levels... 23
Sleep Priorities... 26

Timeout.. 28

Allocating Buffer Space... 29

Buffer Pool... 29

Clists ... 31

Dynamic Memory Allocation... 32

DMA Controller Operations... 34

KERNEL CONFIGURATION .. 35

ADDING DEVICE DRIVERS

'"' __ .. '

(J

ADDING DEVICE DRIVERS
TO SYSTEM V/AT

INTRODUCTION

This chapter contains the rules and procedures that should be followed when
using the Microport SYSTEM V/AT Link Kit to write device drivers for Micro
port SYSTEM V/AT UNJX. It is assumed that the reader has user level exper
ience with the UNIX system, some general knowledge of UNIX system con
cepts. and the capability to write sophisticated C languag� programs. Writing a
device driver carries a heavy responsibility. As part of the UNIX kerp_el, it is
assumed to always take the correct action. Few ljmits are placed on the driver by
the other parts of the kernel, and the driver must be written to never compromis�
the system's stability.

This chapt�r contains general information on "genexi.c11 UNIX device drivers and
descn"bes the scheme for installing drivers in SYSTEM V/AT. Necessary files
are obtained via a floppy diskette containing a SYSTEM V/AT Link Kit. When
installing a new device driver, u�ers will step through procedures that are
consistent with other SYSTEM V/AT software installation and system adminis
tration functions.

In addition to the material presented in this chapter, you will find other driver
level information specific to Microport's implementation of UNIX ip the files
"README" and "doc/link.doc" on the Link Kit diskette.

What is a UNIX Device Driver?

The UNJX operating system can be divided into two parts: one part deals with
rp_anagement of the file system and processes and the second part deals with the
management of physical devices such as terminals, disks, tape drives, and net
work media. To simplify the terminology, this chapter will refer to the frrst part
as the kernel, although strictly speaking, drivers are part of the kernel. The
discussion will focus on the second part that contains the driver, sometimes
called the I/0 subsystem.

:._ ___) Associated with each device is a piece of code, called the device driver, that
m�ages the device hardware. The device driver is responsible for bringing the
device into and out of service, setting hardware parameters in the device, trans
mitting data from the kernel to the device, receiving data from the hardware
writing device and passing it back to the kernel, and handling device errors.

13-1

ADDING DEVICE DRIVERS

13-2

One strength of the UNIX system is the ease with which new hardware can be
integrated with existing software. The integration process is simple, because the
operating system architecture provides a uniform software interface to every de
vice. Processes use the same model when communicating with disks, terminals,
printers, or even "pseudo" devices that exist only in software. Every device on a
UNlX System looks like a file. In fact, the user-level interface to the device is
called a "special flle."

The device special files reside under the ldev directory, and a simple Is command
will tell you quite a bit about the device. For example, the command ls -l
!dev!/p might yield the following on SYSTEM V/AT:

crw-rw-rw 2 root sys 7, 0 Nov 26 12:33 /dev/lp

This says that the "lp" (lineprinter) is a character special device (the first letter of
the file mode field is "c") and that major device number 7 and minor device
number 0 are assigned to the device. More will be said later about device types,
and major and minor numbers.

The Generic UNIX Driver

1bis section of the chapter addresses issues relevant to drivers on any UNIX
system. 1broughout this section references are made to how things work on a
"generic" or traditional UNIX system, along with some specific details on how
the SYSTEM V/AT_ UNIX system is implemented. The areas of device inter
rupts and priority levels, in particular, are heavily machine dependent and reflect
the SYSTEM V/AT implementation.

UNIX device drivers for different computer systems have many identical charac
teristics. However, even on the same machine, one driver may be very different
from another because of the wide spectrum of functions that drivers perform.
Let's first discuss some design issues and examine the conunon features.

Driver Activities and Responsibilities

A user process runs in a space isolated from critical system data and other pro
grams, protecting the system and other programs from its mistakes. In contrast,
a driver executes in the kernel mode, placing few limits on its freedom of action.
The driver is simply assumed to be correct and responsible.

This level of responsibility and reliability cannot be avoided. A ddver must be
part of the kernel before it can service interrupts and access device hardware. The
existence of the driver is one of the major factors that permits the kernel to
present a uniform interface for all devices and to protect processes from some
kinds of errors.

ADDING DEVICE DRIVERS

The importance of reliable driver code is clear. The driver must not make mis
takes that affect any other portion of the system. It should process interrupts
efficiently to preserve the scheduler's ability to balance demands on the system.
It should use system buffers responsibly to avoid degrading system performance,
or requiring that more space be devoted to buffers than is really needed.

This section provides a broad overview of what device drivers do inside the
UNIX kernel. The-specifiC details are mentioned later iil this chapter. The pUr
pose of the overview is to introduce issues of significance and establish a

common language for further discussion. Experienced driver developers will be
familiar with much of the information., but those new to UNIX device drivers
may find the implications of a multi-tasking enviromnent more complex than
expected.

System Buffers

A feature common to most drivers is their use of buffers. There are two types of
buffers in a standard System V kernel: clists and system buffers. They differ
greatly in size and structure and are meant to fulfill different needs.

System buffers are the size of the largest file system block, 1024 bytes. This
(\ buffer pool primarily supports disk I/0 operations. The clist manages groups of · J buffers of much smaller size, typically holding only 64 bytes each. They were

created to support l/0 typified by lower data rates (i.e., tenninal I/0). While
drivers may allocate independent buffer pools, this increases the size of the
driver, and thus the size of the kernel.

(' I I '-/

The buffers are a commonly used UNIX resource. The pools are of fiXed sizes,
though the number of buffers is controlled by constants in the kernel. Whether
it uses a private buffer or the public pools, every driver should be written with
the finite nature of the machine in mindi space, used for buffering, is taken away
from the user processes, so intense buffer use by a driver can reduce the perfor
mance of other drivers or require more memory to be devoted to buffers. If more
memory must be allocated to buffers, this decreases the memory available for
user processes. More information will be provided in the Buffer Pool section on
how to obtain and return buffers.

Data Transfer Between System and User Space

The kernel instruction and data spaces are strictly segregated from those of user
processes. The need for the kernel to protect itself is obvious. This protection
creates the need for a way to transfer information from user space to kernel space
and back to user space.

I

13·3

ADDING DEVICE DRIVERS

13-4

There are several routines for transferring data across the user/system bmmdary.
Some transfer bytes, some words, and others arbitrary size buffers. Each type of
operation implies a pair of routines: one for transfers from user space to system
space and one for transfers from system space to user space.

At this time, it would be helpful to consider a representative I/0 operation and
the information transfer across the user/kernel boundary it engenders. As an ex
ample, take a request from a process to write a buffer on the disk. The write
routine takes the file descriptor, the buffer address in user space, and the leQ-gth
of the data in the buffer as parameters.

The system call causes the processor to transfer from user to kernel mode and to
exeq.J.te the write routine in the gen�c file interface. Wh.en write() realizes that
the file is "special" (a device), it uses the appropriate switch table to select the
corresponding routine associated with the device. The write routine of the device
driver is then faced with a decision.

Since the disk is a shared resource, the device driver may not fmd it convenient
or possible to do the reque.::;ted write when it is requested However, when the
system call returns, the process assumes that the operation is complete and may
do whatever it wishes with its buffer. If the ke111el wishes to defer the write to
the disk, it mpst take a copy of the informati.on from user space, keeping it in
system sp� Witil the write can be done.

Sleeping and Waking Processes

In the previous section, an example of a write operation to the disk introduced
several basic concepts. A process might have to wait for the requested informa
tion to be read from or written to the disk before continuing. One way that pro
cesses can coordinate their actions with events is through the sleep() and
wakeup() calls.

Let's consider a read operation in greater detail. When the request is made, the
driv� has some calculations and setup functions to perform. After these are com
plete, the request for the information can be m�e. but there will be a delay
before the information is av<!ilable. The delay, at a minimum, will be due to the
retrieval time for the disk. However, it could be much longer if other requests are
queued ahead of this one.

Since the UNIX System is a multiuser, multitasking, operating system, it is
possible that another job is ready to run and is waiting for the use of the
machine. One process should not keep the machine idle while another process is
ready to run, so some way must be found to have the first process wait until its
information is available. The Sleep/Wakeup mechanism �;an coordinate this. In
the disk access example., the read routine in the disk's driver set would issue a
request for the information and put the process to "sleep."

ADDING DEVICE DRIVERS

A sleeping process is still considered to be an active process; 'sleeping' is the
state or mode of a queue of jobs whose execution is suspended while they wait
for a particular event. When the process goes to sleep, it specifies the event that

(\. must occur before it may continue its task. This event is represented by a

__ number, typically an address of a structure associated with the transaction. The
sleep() call records the process number and the event, then places it on the list of
sleeping processes. Control of the machine is then transferred to the highest pri
ority runnable process. Data transfer in this period can be done by using a DMA
(Direct Memory Access) channel to directly move the data between the device and
user memory, if the physic() routine is called from the driver read and write
routines. 1his direct transfer is possible as the physic() routine locks the process
in memory so that it will not be swapped to disk while waiting for the hardware
to complete the 1/0 operation.

When the data transfer is completed, the disk will post an interrupt, causing the
interrupt routine in the driver to be activated. The interrupt routine will do what
ever is required to properly service the device and issue a wakeup() call It must
lmow what number was used by the process as the sleeping event in order to
wake it This scenario for coordination between asynchronous events appears
throughout the kernel.

() Kernel Timers ' '

0, ' . '-__/

The timeout() facility is available for situations that require a sleeping limit for a
process. In some cases, a driver must be sure that it is awakened after a maxi
mum period.

This routine takes three arguments: an integer function pointer, a character
pointer, and an integer. The integer specifies the period of time in "ticks." Each
tick is one-sixtieth of a second in cmmtries where there is sixty-cycle current.
The defined constant HZ* (see param.h) gives the line frequency used by a given
kernel. When this period of time has passed, the function pointed to by the frrst
argument to timeout() will be called with the second argument as its· parameter.

A driver can ensure that it will be able to resume its execution even if no call to
wakeup() is made by frrst calling timeout() and then sleep(). However, this
should be done only if truly necessary; as it carries some heavy processing re
quirements. When the call to timeout() is made, it inserts the specified event into
the callout table. This data structure is a list of events in a simple array.
Insertion of the event requires copying all elements of the list following the
inserted event.

* In SYSTEMV/AT a patcltable variable hz, should be used instead of the constant HZ. Its value
can be examined using the command: paJch system5 hz, (see PATCH(l)).

•

13-5

ADDING DEVICE DRIVERS

13-6

If the sleeping process is not awakened before the "timeout" event, the specified
function will be called. The second argument to the timeoutO routine could be
the event the driver was about to sleep on. 'When the function is called, it can
use this information to call wakeup() to wake the driver. The fimction called
from the callout table should also set some internal flag to pennit the driver to
distinguish between the two ways it can be awakened.

For situations in which the driver must wait for a hardware function to complete,
a delay() fimction is provided. This fimction allows the system to handle other
tasks while the driver is delaying. It is not used if an interrupt will be generated
when the hardware operation is completed.

Synchronous and Interrupt Sections of a Driver

As described earlier, the system uses system buffers and routines to transfer
information across the user or system boundary. Drivers provide the cOimection
between two frames of reference; the process and real-time realms.

The portion of the driver that deals with real-time events is driven by interrupts
from devices, and is thus called the interrupt section. The rest of the driver
executes only when the process calling the driver is the active process. The
execution of this part of the driver is synchronized with the process it serves and
will be called the synchrooous portion of the driver.

The synchronous portion of the driver, since it has the proper process context, is
responsible for orgaiiizing the information required for the requested operation. It
is responsible for any transfer of information across the user or system boundary.
When the request has been properly submitted, the synchronous portion of the
drive can do nothing but wait until the requested operation is complete, so it
sleeps.

The interrupt driven section of the driver responds to the demands of the device as
they come. The synchronous part must leave enough information in common
data structures to permit the interrupt routine to figure out what is happening.
The interrupt routine is called when an operation is complete. It is responsible
for servicing the device, and waking the process waiting on the event Note that
the interrupt routine can be called at any time. It cannot engage in any activity
that depends on process context

Interrupt Processing

The previous section defined the interrupt and synchronous portions of a driver
and mentioned that the intenupt portion is driven by real-time events. The events
are demands for attention from the controlled devices.

(J

ADDING DEVICE DRIVERS

When a device requests some software service, it generates an interrupt. Each
device can interrupt the system at a specific priority level. If the currently
executing code has not blocked interrupts at that level, it will immediately save
its status and trap to an interrupt handler. The interrupt routine in the driver must
detennine the cause of the interrupt and take appropriate action. If the
synchronous portion of the driver was waiting for this event, the interrupt
routine should issue a call to wakeup().

Critical Sections of the Driver

So far, the discussion has been centered around a particular interrupt occurring in
isolation. Though helpful, this view is unrealistic and potentially misleading.
Interrupts from all the devices on the system can occur at any time, and the
implications of this are important. The relationship between the synchronous
and interrupt portions of the driver is affected, as are those between drivers
sharing data.

When two sections of kernel code have a common interest in specific data, they
must be careful to coordinate their efforts. If an intenupt switches control of the
system to the interrupt driven portion of the driver, then manipulation of the
common data may be caught in the midst of its work. This could render the infor
mation invalid and inconsistent

These concerns are grouped under the general heading critical sections. The
importance of the issue is clear; the integrity and accuracy of the data used by
drivers is at stake. The word sections refers to the portions of code that manipu
late the common data, rather than the data itself. Thus, a critical section of code
is one that manipulates data that is of concern to another piece of code capable of
interrupting the firsL

A routine in the kernel that has a critical section must have a way to protect
itself from interruption when manipulating critical data. A set of subroutines
that pennit code to Set the Priority Level (spl) of the processor solves the
problem, and are listed under "Setting Processor Priority Levels" in the "System
Utility Functions" section of this chapter. A clear understanding of the need for
these routines can be achieved by examirung a detailed scenario.

Imagine a section of code in the synchronous portion of a driver that manipulates
status flags. Such flags are frequently used to communicate between the
synchronous and interrupt portions of a driver. Consider also, that the interrupt
portion has code that manipulates those flags. Finally, realize that the manipu
lations do not take place in a single machine operation.

Consider what happens if the synchronous portion of the driver receives a request
that requires it to manipulate the values of several flags, but in the midst of the

I

13-7

ADDING DEVICE DRIVERS

13-8

manipulation the device gives an interrupt. transferring control to the interrupt
portion of the driver. The interrupt routine decides that it must consult the flag
values to make some decision and then set them to new values.

The flags are in a positively incorrect state, because the synchronous routine has
only partially finished changing the flags when the intenupt routine took over.
This may cause the interrupt routine to take appropriate action, or it may make a
harmless. but incorrect decision. Assume that the interrupt routine does not run
amok. ·but simply looks at the flags, makes decisions, and changes a couple of
flag values. Then when the interrupt returns, the synchronous portion of the
code, nnaware that it was interrupted, finishes the changes it had started.

The section of code in the synchronous routine that manipulated data of interest
to the interrupt routine is the critical section. Whether the data manipulated in a
critical section is changed by the interrupting routine is unimp::>rtant. The fact
that the interrupting routL'"le uses the critical section is sufficient. It proves that
any p:>rtion of code that can be interrupted and that manipulates data of interest
to the interrupting code, is a critical section. When a critical section is identified,
it can be protected from interruption by a call to an spl ro,;tine of the proper
level.

How Data Moves Between the Kernel and the Device

The previous discussions assume that the data moves magically between the
memory accessible to the kernel and the device itself. Tiris is a machine depen
dent detail, but it instructive to examine how this is done. Some machines
require the Central Processing Unit (CPU) to execute special 1/0 instructions to
move data between a device register and the addressable memory or to set up a
block transfer bewteen the 1/0 device and memory (this process is often called
DMA - Direct Memory Access). Another scheme, known as memory mapped
1/0, implements the device interface as one or more locations in the memory
address space.

In either case, the operating system usually provides function calls that let
drivers access the data in a general way. The SYSTEM V/AT UNIX System
implemeotation provides inb() to read a single byte from an I/0 address and
outb() to write a single byte. The syotax of these function calls is shown below:

and

inb(addr)
int addr;

outb(addr, data)
int addr;
char data;

0

ADDING DEVICE DRIVERS

As described earlier, it is� the driver's job to copy this data between the kernel
address space and the user program's address space whenever the user makes a
read() or write() system call.

The SYSTEM V/AT implementation also supports DMA controller functions
for certain devices wired to a DMA channel which can transfer a block of data at
a time. The DMA controller has control registers defining DMA start address
and word (or Qyte) _cQunt that_ t1re Priver I_llnst manip�ate. For more detail on
DMA operations see the section on "DMA Controller Operations" later in this
chapter.

UNIX Driver Specifics

Types of Devices

There are two classes of devices: block and character. Block devices are addres
sable. AI:. the term implies, the data on the device is formatted and addressed in
"blocks." The term 11character device" is a misnomer that should be "raw device,"
1m plying that the data being read is raw or unformatted; the device drivers and
uset programs assign semantics to the data, not the UNIX file system. A physi
cal device could be represented as both a block and a character device in a system
configuration, implying that the system can access the device in two ways.

Although some device drivers are normally associated with hardware devices,
some drivers may have no hardware counterpart. These devices are often referred
to as pseudo devices. For example, a trace driver may log certain classes of
events. User programs write to the driver to record the events and read from the
driver to recall the information. The trace driver would malloc a large buffer for
storing the data. No hardware is associated with the driver, and the driver inter
faces with software only.

Special Files

The UNIX system treats a device as if it were a file. That is, when a user pro
gram wishes to access a device, it accesses the file that is associated with that
device. These special files are sometimes called nodes or device nodes. The sys
tem calls that access regular UNIX system files such as etclmotd, or /etclpasswd
are, therefore. the same calls that access device (such as ldevlconsole). The
system calls are open(), close(), read(), write(), and ioctl(). See the "Function
Specifications (Driver Entry Points)" section in this chapter that describes the
system calls at the driver level in detail. Note that devices which are represented
as both a block device and a character (raw) device have two special files asso
ciated with them, one of each type.

13-9

ADDING DEVICE DRIVERS

13-10

Major and Minor Numbers

The device major numbers are used by the system to determine which device
driver to execute when a user reads or writes to or from the special file. The
system maintains two tables for mapping I/0 requests to the drivers. There is
one table for "character special," and a second table for "block special." This
implies that there are two sets of major numbers: one for character devices and
the second for block devices. Both start at zero and are numbered up to the last
used major number (with an upper limit of 32 for SYSTEM V/AT). If you do
an Is -IR ldev, you may find that two very different devices have the same major
number. That's probably because one is a "block special," using the block major
number, and the other is "character special," using the character major number.
For those ddvers that are both block and character devices, (for example, the
floppy driver), one major number of each type must be assigned. In this case,
the actual numbers may be different and generally are different (the floppy disk
may be assigned block major number 1 and character major number 6).

The minor number is entirely under control of the driver writer and usually refers
to "subdevices" of the device. These subdevices may really be separate units at
tached to a controller. For example, a disk device driver may talk to a hardware
controller (the deVice) to which several disk drives (subdevices) may be attached.
The UNIX system accesses different subdevices using the different minor num
bers.

Major numbers are assigned by the driver writer or the system administrator. The
mknod command is used to create the files (or nodes) to be associated with the
device. The device is configured in the kernel by modifying the System and
Master files described below.

The ldev Directory

The Device file may exist anywhere in the UNIX file system, but by con
vention. all device files are contained under the directory ldev. The names of the
files are generally derived from the names of the hardware; a convention that
allows users to know what the device is by looking at the filename. It would be
confusing if the file idevltty were a disk. Part of the name of the Device file
usually corresponds to the unit number of the device to be accessed via the file,
or specifically. the minor nwnber.

A new convention of SYSTEM V/AT and other UNIX systems is that ldev can
contain subdirectories that hold the nodes for all the subdevices of a particular
type. This reduces the clutter in the ldev directory. For example, /devldsk
contains all the "block special" files for the floppy and hard disks, and /devlrdsk
contains all the "character special" files.

ADDING DEVICE DRIVERS

The Device file may exist in the file system even though the device is not
configured in the running system. If a user attempts to access the device, or
more specifically, the special file, an error will result on the system call. Con
versely, the device may be configured into the running operating system without
the Device file in the file system, in which case the device is inaccessible.

The System and Master Files

Associated with device drivers are two device configuration files: the Master file
and the System Device flle (also known as the dfile). See Section 1 for manual
page on CONFIG(lM) and Section 4 of the Software Development manual
on MASTER(4) for a description of the System Device flle and Master file
formats.

The Master file contains the device name (8 characters or less), definition of
what functions the device supports (field 3 has an "r" if the read function is im
plemented, w if write is implemented, etc.), definition of block and/or character
major number, and other descriptive information about the driver.

The System Device file contains information on how the device is installed in
the system. That is, the number of units (subdevices), interrupt vector numher
(IVN) used, and other local information. In SYSTEM V/AT, if you add a driver
to the system you must create a one-line entry for the driver in each of the
Master and System Device files.

In the Master file the driver is defmed by a line containing nine fields separated
by tabs. For instance, to add a driver for a cartridge tape to Microport SYSTEM
V /AT, we might create the following Master file line:

tape 47 ocrwi c ct 0 9 2

where
tape is the driver name

47 is tl1e Interrupt Vector Number (IVN) assigned to the cartridge
tape device.

ocrwi are the handlers provided by the drive_r: open. close, read, write
and ioctl.

c

ct

0

defines the driver as a raw (character) type device.

is the driver prefix used in driver functions and data structures
to differentiate them from names used by other device drivers.

is the block major device number. In this case, there is no
block tape device, so tlris field is 0.

9 is the character major device number.

2 indicates there can be a maximum of two tape units controlled
by this driver.

13-11

ADDING DEVICE ORIVE:IiS

13-12

In the System Device file, the tape driver requires the following line:

tape 0 2

where

tape is the driver name as defined in the Master file.

0 is the Interrupt Vector Number, usually 0 io indicate that the
Master file IVN should be used.

2 is the number of tape units attached to the tape controller, or 0
to indicate that the value should be the maxlmu±n number of
units defined in the Master file.

The kernel configuration procedure is described in the section "Kernel Con
figuration," later in this chapter.

Structure of the Device Driver Source Files

Include File$

Every file in the operating system source code includes header files containing
declarations of glObal data structures. De facto coding standards prohibit nesting
One include file inside another. The source code for device drivers need not be
contained in a single file, and indeed, programmers should subdivide the driver
among several illes if it is large. EVen if the driver is cOntained in a single file,
programmers should follow convention and declare the driver data structures in
new, driver-specific header (.h) flies. The definition of the data structures (the
place in the source code where the compiler allocated merllory storage) should be
of the fonn extern in a .c me, usually the driver souce me.

Sometimes data structures defmed in the driver are configuration dependent. That
is, if the driver needs to aliocilte storage for each subdevice, a method is needed
to allocate based on the number configured. For SYSTEM V/AT, both a #define
and a global variable for the driver m:rlt count are created at configuration time.
The #define is made availshle to the driver source file by including the file
cficonfig.h. Each driver defined in the System Device file has a #define in
cficonfig.h that consists of the prefix as defined by the first field in the Master
file entry followed by "_0". For instance, for the cartridge tape driver defined
above, the cficonfig.h file contains the line:

#define TAPE_O 2

I
I '
I c\

ADDING DEVICE DRIVERS

If the driver contains a 512 byte buffer for reading and writing tape blocks, it is
necessary to create a different buffer for each tape unit. so that both units can be
used simultaneously without interfering with each other. The two buffers would
be defmed in the Driver Source file with the following code segment

#include cftconfig.h.

unsigned char ct_buf [TAPE_O];

In this example TAPE_O is defmed as 2.

The configuration process also defmes a global variable consisting of the driver
prefix followed by _ cnt. For the tape driver, the following external declaration
could be placed in the driver source files:

extern int ct_cnt;

With the master and dfile lines given above, ct _ cnt is initialized to 2.

Driver filenames conventionally contain the device name as part of their names.
Assume the streaming cartridge tape driver consists of two .c files, ct.c and
ctint.c, and one header file, ct.h. The names suggest that the flles are associated
with the new tape device, and that the ctint.c file contains a protocol for the
device. The header file., ct.h, may contain a declaration such as the followffig
example:

struct ct_state {

);

char ct_flags;
int ct_port;
int ct_chan;
char ct_status [ct_stat_512];

and the .c flies should contain the line
#include "sys/ct.h"

General System Data Structures

Driver programmers must not change standard system header files such as the
proc file., the user file, or the inode file. Since the drivers are a separate part of
the system, it is unacceptable to introduce new data structures and new "hooks"
into standard system data structures to accomodate a private driver. In addition,
changing system data structures could cause user level programs to work incor
rectly if they rely on the system data structure. For example, changes to the
process table usually require recompilation of the ps command. Driver program
mers should likewise refrain from tampering with kernel source flies.

13-13

ADDING DEVICE DRIVERS

13-14

Unfortunately, driver source code must contain some standard "include" files to
allow the driver access to system utilities and data structures commonly used to
return information to the kernel. These include files are provided in the sys
directory on the Link Kit diskette or in the /usr!include!sys directory. The list
below defines a few of the more commonly used include files.

sysltypes.h - Basic system data types

syslparam.h - Fundamental system psrameters

sysldir.h - Directory structure definition

syslsignal.h - Definition of system signals

Used if the driver sends signals to user processes.

sysluser.h - The user structure def'il!ition

The driver must include dir.h and user.h if the error field u.u_error is set
in the driver or if the fields u.u _base or u.u _count are used (see the
"Read and Write" section in this chapter). The error field gives error
information to the kernel, and the information later returns to the user
program. If the driver includes user.h, it must first include signal.h and
dir.k because of interdependencies between the three header files.

syslcotf.h - Definition of device switch tables

Needed if the driver uses line disciplines (see "Use of Line Disciplines"
section in this chapter).

sysifi/e.h - Definition of file structure

Needed if the driver nses control flags such as "no delay" (FNDELAY).

sys!bufh - Definition of the bnf (system buffer) structure

Needed if the driver uses the system buffer pool (see the "'Buffer Pool"
section in this chapter), or will initiate DMA operations directly to and
from user memory.

sysliobufh - Definition of the driver state structure

This is needed if the driver uses the system buffer pool or initiates
DMA operations. It maintains the driver state and active I/0 buffer.

sys/tty.h - DefUrition of the clist structure

Needed if the driver uses clists (see the "clists" section in this chapter).

syslsysmacros.h - Useful macros for units conversion, extraction of
major and minor device numbers, etc.

syslerrno.h - System wide error numbers

In the event a driver returns an error, it sets u.u _error field of the user
structure (see user .h) to one of these errors.

ADDING DEVICE DRIVERS

sys!8259.h - Defines the default interrupt masks for each processor
interrupt priority revel (see section "Setting Processor Priority
Levels").

1] sysf8237.h - Defines used when the driver initiates DMA operations
\�_....-; (see section on "DMA Controller Operations").

syslfile.h - Defines I/0 block flags passed to the driver open and close
fu.TJ.ctions.

sys/iixtl.h --The ioctl union-definitiori used by all deVice driver iOctl
routines.

Driver Specific Data Structures

Naming Conventions
The names of driver data structures and variables should have the driver name in
the prefix to ease program readability and debugging and to avoid conflict with
other variables in the system with the same name. For example, in the case of
the cartridge tape driver containing the data structure ct state, the prefix ct iden-
tifies them as belonging to the cartridge tape driver.

- -

Unit Numbers
Ali; previously mentioned, drivers frequently "drive" several hardware units, as a
tenninal driver may "drive" many tenninals. Each terminal has a unit number
corresponding to the minor number of the device file. Drivers typically contain a
data structure that contains a flag field to record the device status, such as opet'4
sleeping, waiting for data to drain, etc. Except for the inclusion of a flag field,
the contents of the data structure are device dependent However, there should be
one entry per unit defmed in the driver source file and declared in the header file.
A sample declaration of the data structure for the cartridge tape device, ct, was
defined previously. Each ct device should have one of these data structures. For
devices using the system buffer pool this data structure can be the iobuf
structure defmed in iobuf.h.

Function Specifications (Driver Entry Points)

This section describes the functions that form the driver interface to the kernel.
For a raw device, they are open, close, read, write, and ioctl. For a block device,
they are open, close, and strategy. A driver need not contain every routine if it is
irrelevant (a lineprinter driver usually does not have a read routine). If a device is
represented as both raw and block, the driver must contain all the functions as
appropriate.

Open

The kernel calls the driver open function as a result of an open system call for
the device file.

ctopen(dev ,flag)
int dev, flag;

13-15

ADDING DEVICE DRIVERS

13-16

The parameters of the driver open function are the minor device number of the
device file and the flags supplied in the "oflag" field of the open system call,
corresponding to flag values in the header file "file.h." The minor device number
usually corresponds to the unit number of the physical device being opened. The
responsibility of the open routine is to establish a "connection" between the user
and the device. The first time the open function is called the driver might need to
initialize the device. If multiple opens do not make sense, it is the responsibility
of the driver open fimction to return an error by setting the u.u _error field:

u.u _error = ENXIO;

Close

The kernel calls the driver close function with the minor number of the device
file as its parameter.

ctclose(dev)
int dev;

The responsibility of the close function is to end the connection between the
user process and the previously opened device and to "clean up" the device
(hardware and software) so that it is ready to be openad again.

Read and Write

The kernel calls the driver read and write routines to read (write) data from (to)
the device specifiad by the unit number, the only parameter.

and

ctread(dev)
int dev;

ctwrite(dev)
int dev;

Drivers for "raw" devices contain these routines. Because user programs and the
operating system execute in different address spaces, the 1/0 cannot take place
directly from the device to the user program (unless the device is also a "block"
device, as will be explained at the end of this section). There must be a system
buffer between them. When reading, the driver must receive the data from the
device in a read buffer, and then copy the data from the buffer to the local buffer
of the user process.

When writing, the driver must copy the data from the local buffer of the user
process, and then transmit the data from the buffer to the device. The buffers can
be a private driver struco.ne or one obtained by use of the system utility routines
described in the "Allocating Buffer Space" section in this chapter.

c�

/'. I I

ADDING DEVICE DRIVERS

In the driver read routine. the system variable u.U _base is the address of the buf
fer in the user program address space, and the variable u.u_count is the number
of bytes remaining to be read.

The functions copyout() or subyte() should be used to copy the data from the
driver buffet to the user's local buffer:

eopyout(ptr_to_driver_buffer, u.u_base, n)
subyte(u.u_base, char_c)

where n is the number of bytes the function copies from the buffer (pointer)
ptr_to_driver_buffer in the copyout() function, and char_c is the single character
that suhyte() copies to the user buffet. The driver should use copyout() for
copying more than one byte of data, and it should use subyte() for copying one
byte of data. After the function calls, the driver should increment the value of
u.u _base by n and decrement the value of u.u _count by n (the number of bytes
traruferred). (For subyte(), the value of n is 1.) If either function returns a non
zero value, then u.u _error shoUld be set to EFAULT to indicate the error.

The driver write routine is similar to the read routine, except that the routines
copyin andfubyte are used to copy data from the user buffer to a system buffer.

copyin(u.u_base,ptr_to_driver_buffer,n);
fubyte(u.u_base);

The system is nOt resporu:ible for "bad" addresses set in a u.u _base (set as a
result of the user system call). H the. user is reading in 512 bytes from the deVice
into a user data structure that is 256 bytes long, it is not the system's job to
detect the error. The user program must make sure that the data returning from a
read system call will not overflow the user buffer.

The read and write routines are responsible for resetting the deVice hardware: so
that later calls work cOrrectly. They are also responsible for "cleaning up" errors,
and keep appropriate statistics.

Raw devices that are also block devices can avoid copying data into an inter
mediate buffer by using the physic() routine and the strategy() routine.

physio(strategy, bp, dev, rdwr_flag);
int (*strategy)();
struct buf *bp;
int dev;
int rdwr_f!ag;

The strategy parameter is the name of the strategy() routine for the device,
described in the next section. The buffer header pointer, bp, is a locally allocated
buffer header, not one allocated from the buffer pool (see the "Buffer Pool"
section) because the physio() routine assigns the data pointer, in the buffer, to

13-17

ADDING DEVICE DRIVERS

13-18

the location in the user program (u.u_base) where the data transfer should come
from or go to. If the bp parameter is null, the physic() routine assigns a buffer
internally (probably a safer way to invoke it). The dev parameter is the device
number, and the rdwr_flag should be B_READ orB_ WRITE, appropriately. The
physic() routine will call the device strategy routine internally and set up the data
transfer directly between the device and user space. This can only be done if the
device is a block device as well as a raw device.

The copyin and copyout fimctions should not be used by the interrupt handler,
rather they should be used in the Read and Write routines after the process wakes
up, that is, after physic() returns. The interrupt handler should just wake up the
process by cslling iodone().

Strategy

Drivers of block devices must define a strategy routine to start 1/0 to and from
the devices.

ctstrategy(bp)
struct buf *bp;

The kernel calls the strategy routine with a parameter that is a pointer to a buffer
header containing all the information about the 1/0 operation. For example, the
definition of a strategy function for the disk driver called dsk would look like the
following:

#include "sys/buf.h"

dskstrategy(bp)
struct buf *bp;

(
/* body of strategy routine */

}
The strategy routine uses the following fields in the buffer, but it should not set
them.

dev_t b_dev;

b_dev contains the major and minor number of the device where the I/0 is
to occur. The minor number is contained in the 8 low order bits, and the
major number is contained in the 5 next low order bits. The 3 high order
bits should not be used.

dsddr_t b_blkno;

b_blkno is the block number on the device where the I/0 is to occur.

0

ADDING DEVICE DRIVERS

unsigned int b_bcount;

b_bcount is the number of bytes to be transferred by the I/0 operation.

caddr_t b_un.b_eddr

b_.un.b_addr is the address of the data in the buffer. The data array is
SBUFSIZE bytes long.

int b_flags

b_f!ags gives the buffer statos. If the B__READ bit is se� then the I/0
operation is to reed from the device; if the B_ WRITE bit is se� then the
IJO operation is to write the device.

If the strategy routine fincfs an error in setting up the 1/0 or if the device reports
an error via an interrupt, the driver should set the following fields.

foeti

int b_llags

b_flags should have the B_ERROR bit or'ed in. The driver should not
assign a value to b_flags because that may erase other bit patterns that the
kernel relies on.

char b_error

b_error should be set to an appropriate error value. Typical values are EIO
for some physical I/0 error, ENXIO for attempting I/0 on bad device or
bed device eddress, or EACCES for attempting to access a device illegally.
The kernel later sets u.u_error with the value of b_error so any
appropriate value for u.u_error could be set.

unsigned int b_resid;

b_resid should be set to the number of bytes that have not been
transmitted.

The driver ioctl routine controls hardware parameters and the interpretation of
data as it passes tlrrough the driver via read and write.

ctioctl(dev, cmd, arg, mode)
int dev, cmd, arg, mode;

The routine takes 4 parameters:

dev - the minor device (unit) number

cmd - A command argument from which the driver ioctl function interprets
the type of operation the driver should perlonn. The command types vary
across the range of devices. Drivers that use an ioctl function typically

13-19

ADDING DEVICE DRIVERS

13-20

have a command to "read" the current ioctl settings and at least one other
that sets new .settings. The kernel does not interpret the command type; so
a driver is free tO define its own commands.

By convention. ioctl commands are set to complex munbers to help guard
against accidental misUse by users. A common technique is to pick the
first letter of the devioe name and left shift the ASCII code by 8, then "or"
in a corrunand code into the lower 8 bits. The values for ioctl commands
are usually defined in the driver header file so that both the driver and user
prOgrams can access the commands via#defines.

arg - An arbitrary argument that can pass parameters between a user
program and the driver. The argwnent can be the address of a structure in
the nser program that contains settings for the ddver or hardware. The
ddver reads the settings from the user program via the copyin() function
and does the appropriate operations. Similarly, the ddver collects current
settings and uses the copyout() ftmction to write the data into the user
program structure. Alternatively, the argwnent may be an arbitrary integer
that has some meaning to the driver. The interpretation of the argument is
ddver dependent and nsoally depends on the command type; the kernel does
not interpret the argument.

mode - An argument (need not be used) that contains values set when the
device was opened. The driver can use the mode to determine if the device
unit was opened for reading or writing, if necessary, by checking the
FREAD or FWRITE setting.

Code for Bringing a Device into Service

There may be requirements fot writing an initialization code to bring a device
into serVice. Often this can be done in the open routine by creating a flag to
determine if this is the first open (generally after a reboot of the system) of the
device. If such code is necessary, the driver should contain an initialization
function which follows the naming convention previously described. For our
example, the initialization function would be called ctinit().

If the initialization rOutine must be called at system initialization time, the
Master file entry for the driver should contain an "s" in field 3, in addition to the
other driver functions that are supported.

Interrupt Handler

As previously described, hatdware interrupts cause the processor to stop itE
current execution stream and to start executing an instruction stream that
services the interrupt. The system identifies the device caus.ing the .interrupt and
accesses a table of interrupt vectors to lransfer control to the interrupt handler for
the device.

c)

0

ADDING DEVICE DRIVERS

The exact mechanism of associating intermpt vectors with interrupt handlers
varies on different UNJX systems. The discussion here assumes the system finds
the correct interrupt routines on receipt of the device interrupt, and it assumes
that the system executes the interrupt routine at a processor execution level high
enough to prevent more interrupts of that type.

It is important to note that the device driver open, close, read, write and ioctl
functions are called as the .result of _the user process .performing __ a_ system _call.
This means that they are executed only when the currently running process is the
riser process, and the u area fields correspond to the calling process. In contrast,
when the device driver interrupt routine executes, the currently running process
is probably not the user process (it is probably sleeping, waiting to be awakened
in I/0 completion). Thus the interrupt handler should only set flags and then
awaken the user process by calling iodone(). lodone() will cause the user process
to become ready to nm after the interrupt handler rerums.

For the SYSTEM V/AT, there are a limited number of available interrupts. For
more information on this and other machine dependent aspects of SYSTEM
VI AT interrupt architecture, see the "Setting Processor Priority Levels" section
in this chapter.

The device interrupt handler routines handle device interrupts, which are the
device responses to data transfers and requests. System software cannot predict
when a device will interrupt the system. Typically, a system call blocks, or
sleeps, on an event, awaiting the device to interrupt. The device interrupt causes
the system to invoke the interrupt handler that in turn awakens the blocked
system call. For instance, device open routines may block until the device
interrupts and "announces" its cmmection. Or device read routines may block
until the device interrupts and "announces" that data has arrived and can be read
into the system.

Upon receipt of the interrupt, the kernel evokes the driver interrupt handler.

ctintr(dev)
int dev;

where dev indicates the subdevice associated with the interrupt. The intenupt
handler must identify the reason for the interrupt (device connect, write acknowl
edge, data available) and set or clear device state bits as appropriate. It can also
awaken processes that are sleeping (see the "Sleep and Wakeup" section in this
chapter), waiting for the event corresponding to the interrupt. Interrupt handlers
must not set any fields in the u area, particularly u.u_error, because the inter
rupted process is independent from the interrupt. For the same reason, interrupt
handlers must not call sleep(), delay(), subyte(), fubyte(), copyin() or copyout().

13·21

ADDING DEVICE DRIVERS

13-22

Use of Line Disciplines

Line disciplines are modules that interact with a driver to massage the data as it
passes between the kernel and the device driver. The driver controls the hardware,
but software manipulation of the data takes place in the line discipline module.
It would be natural to think of networking drivers such that the networking
driver controls the hardware medium, and the network protocol is contained in a
line discipline. But historically, line disciplines have been associated mostly
with terminals. Although used by the SYSTEM V/AT console and drivers, de
tailed discussion of line disciplines is beyond the scope of this chapter.

Function Naming Conventions

The names of the driver open, close, read, write, ioctl, strategy, init, and inter
rupt routines must be prefaced by the generic driver name. For example, the
names of the routines for the tape driver are ctopen(), ctread(), ctwrite(), ctioct!(),
and ctintr(). There are no restrictions on names for other functions in the driver,
but it is best to preface the function names with the driver name for identi
fication purposes. This will help avoid defining a function already defmed in
other parts of the operating system.

System Utility Functions

The driver calls kernel routines to perform system level functions, many of
which were introduced in the "Driver Activities and Responsibilities" section in
this chapter. The following paragraphs describe the syntax and the use of these
kernel functions.

Steep and Wakeup

As described in the "Sleeping and Waking Processes" section in this chapter,
drivers must sometimes suspend or block their execution to await certain events,
where an event is a system state in hardware or software. The driver waits by
calling the sleep ftmction, and the system does a context switch and schedules
another process.

The sleep function takes two parameters: the address (signifying an event) upon
which the process will sleep, and a priority value that is assigned to the process
when it is awakened.

sleep(addr,pri)
caddr_t addr;
int pri;

I '
(' .. ·•.) '

(\ ·.· J ' -

C·.i , f

ADDING DEVICE DRIVERS

The address used for sleeping is an arbitrary address that has no meaning except
to the corresponding wakeup() function call. The sleep addresses are usually
taken from the entry in the device data structure of the device that the process is
accessing to guarantee uniqueness across the system. When a process goes to
sleep awaiting an event, the driver should set a flag in the device data structure
indicating the reason to sleep.

driver.s�te l�o!l4i_ti.on; _
sleep(&driver.state, PRIORITY);

Someone, either an interrupt handler or another process, will later call the
wakeup() function to awake the sleeping process. The code invoking the
wakeup() function should check for a particular flag bit, indicating the reason
that the process is sleeping. The driver then calls wakeup() with one parameter,
namely the address where a process could be sleeping.

wakeup(addr)
caddr_t addr;

It is best for code readability and for efficiency to have a one-to-one correspon
dence between events and sleep addresses: one address should not be used for
sleeping for two events. Again for clarity, there should be one bit in the flag
field corresponding to every sleep event, and hence, to every sleep address. The
wakeup() fimction awakes all processes sleeping on the address, enabling them
to execute when the scheduler chooses them after the interrupt reoutine exits. If
no process is sleeping on the address when wakeup() is called, wakeup() returns
with no bad side effects.

It is illegal to call sleep when handling an interrupt, since a process independent
of the device could have been executing when the device interrupted. If the
interrupt handler goes to sleep, the process that was interrupted is effectively put
to sleep for reasons beyond its control. Additionally, and far more important,
sleeping in an interrupt handler could cause the system to crash in some UNIX
system implementations because of the interdependency of the process context
switch mechanism and interrupt levels. The interrupt handler must, therefore,
not invoke other functions that could lead to a call to sleep().

Setting ProC9ssor Priority Levels
As described in the "Critical Sections of the Driver'' section in this chapter, the
system allows devices to interrupt the processor and handles the interrupts
immediately. The integrity of system data structures could be destroyed if an
interrupt handler were to manipulate the same data structures as a process exe
cuting in the driver.

To prevent such problems, the system has special functions that set the proces
sor execution priority level (spl) to inhibit interrupts below a specific level.

13-23

ADDING DEVICE DRIVERS

13·26

Without use of the spl ftmction, the process could check the condition bit, find
it true, and attempt to call sleep. But if an interrupt occurred before the process
called sleep, and the interrupt handler checked the condition bit to determine if a
process was sleeping, it would assume the process was asleep and call wakeup to 1 -,,
awake it Consider the following code: �)

if (dtiver.state & condition)
{

driver.state &= -condition;
wakeup(&driver.state);

By the time the interrupted process calls sleep(), it will have ntissed the
wakeup() call, and another wakeup call may never come. By bracketing the calls
to sleep() with spl() ftmction calls, the driver prevents the race condition.

spl5();
driver .state I= condition;
while (dtiver.state & condition)

sleep(&dtiver.state, PRIORITY);
splO();

The ftmction splbio() should be used for block devices doing physical I/0, such
as disk and tape drives. In System V/AT, the splbio() ftmction is equivalent to
spl4().

Sleep Priorities

The second parameter to the sleep() function, a scheduling parameter used when
the process awakes from its sleep, must be a constant and not a variable. The
parameter, called the sleep priority, has critical effects on the reaction of the
sleeping process to signal&: if it is less than the manifest constant PZERO (25
on most systems); that is, if it is greater than PZERO (lower value priorities
mean greater priority in the UNIX System), then the system does not awake
sleeping processes on receipt of a signal. However, if it is less than PZERO,
then the system awakes sleeping processes "prematurely." If the PCATCH bit
(discussed later) is not set, the process immediately finishes the system call; that
is, it executes a longjmp()* out of the driver.

* Sleep calls the longjmp() function. When the system executes longjmp(). it <Joes not follow
the conventional C function call/return sequence, but instead resets the program counter, stack
pointer, and data registers to the values they had when the most recent seljmp() function call
was done.

ADDING DEVICE DRIVERS

For instance, if a signal is sent to a process sleeping in the following sleep call,
the system call will end immediately without returning to the code that called
sleep.

C: sleep((caddr_t)&tp->t_rawq, PZERO + 5);

0

When a driver must call sleep, how should the driver programmer determine the
sleep priority? The first decision is whether the process should ignore the receipt
of signals or not: if the driver puts the process to sleep for an event that is "sure"
to happen. than it should ignore receipt of signals and sleep at priority greater
than PZERO (mnnerically, Jess than PZERO).

An example of an event that is "sure" to happen is waiting for a locked data
slructure to be unlocked.

if (tp->t_state & T_LOCKED)
sleep(&tp->t_state, PZERO - 5);

In that case, another process locked the data structure and went to sleep, but it
left the data strucn.tre locked so that no other process could change it before it
awoke. Since that process will eventually awake and unlock the data structure
and then awake all other processes waiting for the lock to clear, the event (the
wakeup call announcing the unlock) is sure to happen Otherwise. the driver has
a bug.

If the driver puts a process to sleep while it awaits an event that may not hap
pen., the process must sleep at a priority less than PZERO (numerically greater
than PZERO). An example of an event that may not happen is waiting for data
to arrive from a remote device. For example, when the system reads data from a
tenninal, the read system call sleeps in the terminal driver waiting for data to
arrive from the terminal. If data never arrives, the read will sleep indefinitely.

When a user at the terminal hits the break key or even hangs up, the terminal
driver interrupt handler sends a signal to the reading process, still asleep, and the
signal causes the reading process to finish the system call without having read
any data. If the driver has slept at a priority value that ignores signals, the pro
cess could have been awakened only by a specific wakeup call. If that wakeup
call could never happen (the user hung up the terminal), then the process would
sleep forever, clearly an undesirable characteristic.

Priority values range between 0 (highest priority) and the constant PUSER
(lowest system priority, usually around 60). When the driver programmer decides
whether the process should ignore signals or not, he or she must choose the pri
ority values so as not to affect process scheduling adversely. The system should
be benclunarked using several sleep priority values to tune system performance
with the new driver.

I

13-27

ADDING DEVICE DRIVERS

13-28

Driver& m�st occasionally "clean up" before doing the lqngjmp() an r�eipt of a
signal while sleeping. Since the longjmp(), as discussed so f,., takes place
directly from the sleep function call, the priority parameter to the sleep function
call has additional mea.rring: if the priority parameter is or'ed with the mMifest
constant PCATCH, the sleep call returns the value 1, if awaken on n;ceipt of a
signal. But if the sleeping process is awakened by an explicit Wak�p call rather
than by a signal, �en the ·sleep call returns 0. �The code sequence:

if (sleep(sleep_address, condition I PCATCH))
(

/* driver code cleanup */

Iongjmp(u.u_qsav, 1);
}

allows the driver to clean up before doing the longjmp().

The kernel saves the field u.u _qsav for use in a Iongjmp() f\mction call. No other
parameter should be used, nor should the driver contain a setjmp() function call.
The second parameter of the Iongjmp(} function call should always be 1.

Timeout

Sometimes, a driver arri.ves at a state where it wishes to reenter its�f after a
specified time. The driver uses the timeoutO function for this purpose. Timeout
takes three parameters; first, the function to be invoked when the time increment
expires, second, the value of a parameter with which the function should be
called. and third, the number of clock cycles to wait before the function is called.
The following display is a sample timeout call.

timeout(repeat. n. hz)

where n is the parameter of repeat(), to be called after hz clock cycles.

If the clock interrupts the pmcessor 60 times a second, the value of hz will be
60, and the system will exe,:ute the function repeat() in I second real time, as a
result of t4e above timeout() call. The e�act time until the timeout takes effect
may not be precise because of the interaction Of other parts of the system. The
compiler requires prior declaration of the function name parameter to timeout, as
in depending where the function repeat() is defined.

extern char *repeat();

timeout(repeat. n. hz);

ADDING DEVICE DRIVERS

In some cases, it is necessary for the driver to wait until some device operation
completes. This should not be done by timing loops, especially if the driver has
disabled any interrupt levels, as this would prevent other processes from running

r\ while 1he driver is waiting. Instead, SYSTEM V/AT provides a delay function.
l,) Delay(n) is callad, where n is 1he number of hz units to delay. After n * hz clock

ticks the function relllrnS. This function should ouly be called from 1he system
call level, that is, not from an interrupt handler.

()

Allocating Buffer Space

As mentioned in the discussion on the driver read() and write() routines, drivers
may require buffers for passing data around. The following utility routines in the
operating system provide buffer space.

Buffer Pool
The system provides a set of buffers that are normally used for file system I/0,
but they can be "borrowed" by drivers if they follow the following rules. The
driver must include the header file sys/buf.h. The size of the buffers in the
SYSTEM V/AT UNIX system is 1024 bytes. The functions 1hat drivers may
use to manipulate the buffers are listed below:

struct buf *geteblk0;

Allocates a buffer, and return a pointer to a buffer header that in tum,
points to 1he data buffer.

brelse(bp) struct buf *bp;

Releases a previously allocated buffer.

iowait(bp) struct buf *bp;

Sleeps on the buffer awaiting an event, such as completion of JJO.

iodone(bp) struct buf *bp;

Awakes a process sleeping via iowait().

c!rbuf(bp) struct buf *bp;

Clears 1he contents of 1he buffer (set every byte in 1he buffer to 0) whose
header is 1he pointer-bp.

The driver may access the buffer header field b_flags to access buffer state flags
and the field b _ un.b _ addr to get 1he address where 1he data buffer resides. The
following are acceptable flags to use in the b_flags field:

13-29

ADDING DEVICE DRIVERS

13-30

B_ WRITE when writing data from the buffer to the device.

B_READ when reading data from the device.

B_DONE set by the function iodone(), used to indicate that the f/0
operation has completed.

B_ERROR to indicate an error in use of the buffer.

B_BUSY to lock the buffer and prevent other processes from accessing the
buffer. Use of the B_BUSY flag prevents other processes from accessing
the buffer, if they rrrst check the flag to see if it is busy.

while (bp->b_flags & B_BUSY)
sleep(bp, DRIPRI);

bp->b_flags I= B_BUSY;

B_ WANTED indicates that a process is sleeping, awaiting the buffer. The
function bre!se() clears the flags, B_ WANTED and B_BUSY, and the
function geteblk() sets the B_BUSY flag. It is best to "or" and "and" the
flags in, rather than just setting them, to avoid changing flag bits used by
other routines.

Below is an example of the use of buffers in a tape driver.

tapecntl(dev, flag, opcode, argl, arg2)
(

register struct bug *bp;
register int rcode;
bp = (struct buf *) geteblk();
/* CNTL flag is used to indicate this is a control buffer */
bp->b_flags I= B_CNTL;
/* set async flag so buffer will be released */
if (flag = FNDELAY)

bp->b_flags I= B_ASYNC;
bp->b_dev = (MT0«8)1dev;
tapestrategy(bp);
rcode = 0;
if(flag != FNDELA Y) (

iowait(bp);
if(bp->b_flags&B_ERROR)

rcode = -1;
bp->b_flags &= -B_CNTL;
brelse(bp);

return(rcode);

I ')

ADDING DEVICE DRIVERS

Cllsts

By including the header file sys/tty.h, drivers can use clists and cblocks (generic
names for character lists and character blocks) to buffer small bursts of data from
slow speed devices. DriveFS should use clists if they are interested in character-by
character processing of data, as in terminal drivers. The only field in the cblock
that a driver may access directly is shown below:

char c_delim

and the driver can use it to record status of the cblock. The size of the cblock data
buffer is CLSIZE bytes, usually set between 64 and 256 bytes, compared to the
buffer sizes of 1024 bytes.

The driver should not access fields in the clist or cblock data structure (except for
c_delim) unless it uses the following routines:

getc(p) s!ruct clist *p;

Returns a character (really an int) from the clist pointed to by p, but it
returns -1 if the clist is empty.

putc(c, p) char c;

S!ruct clist *p; places the character at the end of the clist point to be p.
If system resources are exhausted. putc returns -1 (error); otherwise. it
returns 0.

struct cblock *getcf()

Returns a new cblock to the called, returning NULL if no cblocks are
available in the system.

putcf(cp) s!ruct cblock *cp;

Returns the cblock pointed to by cp to the system.

struct cblock *getcb(p) struct clist *p;

Returns a pointer to the first cblock on the clist p, but it returns NULL
if the clist is empty.

putcb(cp, p) struct cblock *cp; struct clist *p;

Places the cblock pointed to by cp on the end of the clist p.

Here is an example of the use of clists that have been taken from a routine to
read the "canonical" input from a terminal (note, the routine is not given here in
its entirety). The tty structure contains the clists t_canq and t_rawq.

13-31

ADDING DEVICE DRIVERS

13-32

canon(tp)
register struct tty *tp;
(

register struct cblock *cp;

spl5();
if (tp->t_rawq.c_cf = NUlL)

tp->t_delct = 0;
while (tp->t_delct = 0) (

}

if(!(tp->t_state&CARR_ON) II (u.u__fmode&FNDELAY)) (
splO();
return;

}
tp->t_state � IASLP;
sleep((caddr_t)&tp->t_rawq, TTIPRI);

if(!(tp->t_lflag&ICANON)) (
yp->t_canq = tp->t_rawq;
tp:>t_rawq = t1nulq;
tp->t_delct = 0;

}
splO();

splO();
ren.rrn;

while((cp = getcb(&tp->Uawq)) != NULL) (
putcb(cp, &tp->t_canq);
if(cp->c_delim)

break;

tp->t_delct-;

Dynamic Memory Allocation

In the SYSTEM V/AT system, it is possible for driver routines to allocate data
space by using the kernel malloc() function. 'This is the preferred way to get a
large buffer, as static memory allocation increases the size of the kernel image.

The kernel malloc() function takes two parameters, a memory map structure and
the amount of memory to allocate from the map. Driver routines should only
allocate memory from the core map. This is the same memory pool from which
user processes allocate memory, so driver allocations directly reduce available
memory to use processes. The driver must include the header file syslmap.h
which defines the map structure.

()

0

ADDING DEVICE DRIVERS

The memory is allocated in map Wlits or clicks. fu the SYSTEM V/AT system
a click is 512 bytes, although map unit conversion should always be done using
the following macros defmed in the h�er file syslsysmacros.h:

etas (c) int c;

Converts core clicks to segments (64KB).

stoc (s) int s;

Converts segments to core clicks.

ctod (c) int c;

Converts core clicks to disk blocks.

long ctob (c) int c;

�onverts core clicks to bytes;

btoc (b) long b;

Converts bytes (b) to core clicks.

The malice() function cannot be called at system initialization time as the core
map is undefined until after system initialization. The malloc() returns the click
address at which the requested memory was �ocated This is a physical address
and a kernel data seleptor must be mapped to it before it can be accessed by the
driver. fu the SYSTEM V/AT system the BUFSEL selector has been defmed in
the header file sys/mmu.h for use by drivers for dynamic memory tilJ.ocation. The
mapin() function maps the physical address returned by malloc() into this
selector. The mfreeO function is used to free the memory.

A trace driver might allocate a buffer for storing trace information in its tropen()
routine. The following code segment allocates a buffer of 256 clicks (128KB), if
it is available in the core map. The memory is guaranteed to Qe contiguous.

int cad;

cad = malloc (coremap, 256);
if (cad = NULL)

u.u_error = ENOMEM;

In its trwrite() function, the trac� driver can copy data from the user program into
the buffer as shown in the code segment below:

int x;
paddr_t tip;
x = splbio();
tip = ctob ((long) cad); /* convert tu a physical adress */
if (copyin (u.u_base, mapin (tip, BUFSEL), u.u_count) !=0)

u.u_error = EFAULT;
splx(x);

13-33

ADDING DEVICE DRIVERS

13·34

The processor interrupt priority level should be set to mask block I/0 device
interrupts when BUFSEL selector is used.

In the trace driver trread() function, the following code segment reads the data
back from the buffer:

x = splbio();
lip = ctob ((long) cad);
if (copyout (mapin (lip, BUFSEL), u.u_base, u.u_count) !=0)

u.u_error = EFAULT;
splx(x);

The trace driver close routine, trclose(), might free the trace buffer with the
following code segment:

mfree (corernap. 256, cad);

The amount of memory freed, in this example, 256 clicks, must be the same
amount that was allocated with the malloc() function.

DMA Controller Operations

The SYSTEM VI AT UNIX system implementation provides functions allowing
device drives to use available DMA channels. Eight DMA channels are con
trolled by two INTEL"' 8237 A DMA Controllers. The following table sununar
izes the usage of these chsnnels in the base SYSTEM V/AT implementation:

CHANNEL
0
1
2
3
4
5
6
7

FUNCTION
Spare; 8-bit transfer
Spare; 8-bit transfer
Floppy controller
Spare; 8-bit transfer
Cascsde for DMA Contoller 1
Spare; 16-bit transfer
Spare; 16-bit transfer
Spare; 16-bit transfer

Default Mode
SINGlEMODE
SINGlEMODE
SINGlEMODE
SINGIEMODE
CASCADEMODE
SINGLEMODE
SINGLEMODE
SINGLEMODE

DMA channels 0. 1 and 3 are available for byte DMA operations, while chan
nels 5, 6 and 7 are available for word transfers. To use a DMA channel the
device driver must use the functions listed below:

opendma (chaonel) int chsnnel;

Initialize DMA channel, returns a DMA descriptor (dmad) if successful, or
-1, if the channel is not available. This should be done when the device is
opened

ADDING DEVICE DRIVERS

setdma (dmad, mode, address, count)

int dmad; - returned by opendma().

('\ char mode; - DMA �ntroller modes are defmed in sys!8237.h.

_ __ paddr_t address; - physical address to DMA to/from.

int count; - count of bytes/words

This function is called to ·set Up for a DMA tiansferjust before initiating
1he device I/0. Returns 0 if snccessf1Jl-l otherwise.

resdma (dmad) int dmad;

Returns the residual DMA count after a transfer. This is the number of
bytes/words not transferred.

closedma (dmad)

This is called if no further DMA transfers will be performed, typically in
the device close function.

The DMA count passed to setdma() and returned by resdma(), is an integer count
of bytes for DMA channels 0-3 and of words for DMA channels 5-7. The adrhess
passed to setdma() must be a physical address such as that returned by

(�) phys_address = physaddr (u.u_base);

Kernel Configuration

The SYSTEM V/AT system is configured by changing parameters in the master
and dfile files in the cf directory of the Link Kit Device driver sources are kept
in the io directory, and the device driver object flies are placed in the lib2 archive
(see AR(l)). The procedure for this is listed below:

1. fustall the SYSTEM V/AT "Link Kit" and the Software Development
system.

2. The Link Kit is located in the directory lusrlsrc!linkkit. In the directory
lusrlsrcllinkkitlcf you can add a new device driver by creating new entries in
the master and dfile.wini files. The dfileflop file is only used for creating a
floppy rooted kernel and should not contain entries for drivers not required for
system installation. The dfjle is described in CONFIG(lM) and the Master
file is described in MASTER(4). Each driver in the system requires a 1 line
entry ill each of these files. There are also a number of turnable constant<; in
these flies.

If the driver includes an interrupt routine, the Interrupt Vector Number (IVN)
used must be specified. The relationship of the NN to the PC/AT interrupt
lines is shown in tl1e table in the section "Setting Processor Priority Levels"
in this chapter.

13-35

ADDING DEVICE DRIVERS

13-36

3. Compile the new driver to be tested, and archive the objects in the lib2
archive in the linkkit directory with the ar command

4. In the cf directory type the command "make" to build a winchester rooted
kernel in the linkkit directory. This new kernel will have the filename
lusr/src!linkkit/system5. This file can be tested on the hard disk, provided the
following precautions are observed:

1. Be sure you have a working boot floppy to use to restore a working kernel
should the new kernel fail to boot

2. Copy the current working kernel to a another file (systemS .last) with the
command:

cp /systemS/ system5.last

5. You can test the new kernel by copying it to the root directory and rebooting
(assmne you are in the cf directory).

cp .Jsystem5 I

cd /

press Ctl-Alt-Del to reboot

If the new kernel fails, the previous working kernel can be restored by
hooting the hoot floppy an<! typing the following conunands:

mount /dev/dsk/OsQ /mnt

cd /mnt

cp systemS .last systemS

cd I

umount /dev/dsk/OsO
sync
press Ctl-Alt-Del to reboot

i

TABLE OF CONTENTS OF COMMANDS

1. Commands and Application Programs, Including (IC) and (1M)
intro. ... introduction to commands and application programs
300 ... handle special functions of DASI 300 and 300s terminals
4014 ... ;paginator for the TEKTRONIX 4014 terminal
450handles special functions of the DASI 450 terminal

() accept. ... allow/prevent LP requests
adntin ... create and administer sees files
ar , .. archive and library main taller for portable archives
as .. common assembler
asa. .. .interpret ASA carriage control characters
-at .. ; ,; ; ... ;execute commands at a later time
awk. ... pattem scanning and processing language
banner ... make posters
basename.. .. deliver portions of path names
bcarbitrary-precision arithmetic language
bdblk. print, initialize, update or recover bad sector information on disk packs
bdiffbig diff

=:::��-��·;;·wti-�li���i�� :t;:l��=�
bs ... a compiler/intetpreter for modest-sized programs
cal. .. print calendar
calendar .. reminder service cat .. .concatenate and print files
ch ... C program beautifier
cc. C compiler
cd -.. change working directory
ai:. .. change the delta commentary of an sees delta
cflow ... , ... ,., ... , generate C flow graph
checkall ... faster file system checking procedure
chmcxl .. change mode
cho\Vl'l. .. change owner or group
chrootchange root directory for a command
clri .. .clear i-node
cmp .. .cotnpare two files
col ... filter reverse line-feeds
combcombine sees deltas
comm ... select or reject lines common to two sorted files
con:figconfigure a UNIX system
cp ... copy, link or move files
cpio .. copy file archives in and out
cpp .. the e language preprocessor

���:::�.��� .. �-����--�!��::t�::a:�:
cron.clock daemon
crontah .. user crontab file
csh .. a shell (command intetpreter) with C-like syntax
csplitcontext split
ct. .. .,, .. ,,., .. ,,,.,.,,spawn getty to a remote tenninal
ciiace ... C pro grwn debugger
cu .. call another UNIX system
cutcut out selected fields of each line of a file
cxref ... generate C progrwn cross-reference
date. , .. -.. print and set the date
dc. desk calculator
dcopy .. copy file systems for optimal access time
d:l. .. convert and copy a file
delta ... J11ake a delta (change) to an sees file
dev:run. .. , ... device nrune
dfreport nUinber of free disk blocks
diff , .. differential file comparator

dif£3 ...•...•...••..••.•••......•.••.•••.......•..•..•..•..........•........•......•••.....•.••.... 3-way differential flle comparison
dllfrnk: .•...•.••••.••...••..••......••....•••..•.••..•..•.•.•.•.•.•..•..••.•••..•...•••••.•..••.•.•.•••• mark differences between files
clircrnp clirectory comparison
dis .•..............••..•.............................•..•..................................•.•..••.•.•.••••.•....•..•....••.• .80286 disassembler
diskusg ... generate disk accounting data by user ID
divvy ... divide disk allocation between file systetns
doscat ..•...••••••.•.•..•••..•......••.••.••••.•.....•..•.•.•.•.••••.•.•••..•••.•...•••••••••••.•... concatentate and print DOS files
doscp. •.•••..•••.•...•..•••........•...••..••..•...•........•.•.••••.•...•..•....•... copy flies to and from DOS file systems
dosdir emulate "dir" conunand for DOS file systems
du.•..............................•••.....••.....•.........................•.....•.•.••••.•....•.••.•....• summarize disk usage
dtnnp .. .dump selected parts of an object file
echo .. echo arguments
ed. ..•.......•..••......••••.•...••••.•.•...•..•......•.••....•........•.••..•.•.••••••.....•.••..•.••••.•.•.••••.•...•••..•.•..•..•.••...•.... text editor
edit. ... text editor (variant of ex for casual users)
efl. -.. Extended Fortram. Language
enable ... enable/disable LP printers
env set envirorunent for conunand execution
errdeadextract error records from duJnp
errdemon. .. error-logging daemon
errpt. .. process a report of logged errors
errstop .. tenninate the error-logging daemon
ex .. text editor
expr ... evaluate arguments as an expression
m .. .Fortran 77 compiler
factor .. iactor a :number
f<lisk•...•..........•.•.........•..•.•.•.•......•.••• fixed <fisk utility
:ff ... list file names and statistics for a file system
:file .. detemtine a file type
:filesave .. daily/weekly UNIX system file system backup
finc. .. fast incremental backup
:find. i'md files
fonnat. ... fonnat floppy and hard disk tracks
free. .. .recover files from a backup device
fsck. _ file system consistency check and interactive repWr
fsdb.file system debugger
fsplit. ... split f/7, ratfor, or efl files
fsstat .. file system status
:fuser; .. identify processes using a file or file structure
fwbnp .. man.ipulate connect accounting records
get. ... get a version of an sees file
getopt .. .parse conunand options
getty .. set tenninal type, modes, speed and line discipline
greek. .. select ternrinal filter
grep ... search a file for a pattern
help -... ask for help
hp handle special functions of Hewlett-Packard 2640 and 2621-series terminals
hpio ... Hewlett-Packard 2645A tennina1 tape file archiver
hyphenfind hyphenated words
ib ... install boot image

���::i::::,:.:.:::���·:::�::��·:::��::::,:::.:::��:::::.::::::::.::::::=:·::.:::=:::�::·:�=-�:��=�=;.�;:;
install -... install commands
installit ... :package installation
ipcnn. -............. remove a message queue, semaphore set or shared memory id
ipcs .. report inter-process conununication facilities status
join ... relational database operator
keyset. ... progranunable function keys
kill. ... terntinate a process
killall .. kill all active processes
ld. link editor for conunon object files
lex .. generate programs for simple lexical tasks

(;

n

line ... read one line Jink ... exercise link and unlink system calls

:1�::��-�-=-����-�r;�:
lognan1e ... get login nrune
lorder ... find ordering relation for an object library
lp .. send/cancel requests to an LP line printer
Ipadmin ... configure the LP spooling system
lpget,lpset ... initialize the parallel printer driver
lpsched. .. start/stop the LP request scheduler and move requests
lpstat .. print LP status information
ls .. list contents of directory
m4 .. _._:"'"'":'"':""'_ _ :""""":""""'"':·:· : macro proceSS()£
machid.: : : .. provid-e truth value about youi Processor type mail send mail to users or read mail
mailx .. interactive message processing system
make. .. .maintain, update, and regenerate groups of programs
man .. print entries in this manual
mesg ... permit or deny messages
mkclir .. .lllake a directory mkfs ... construct a flle system
mknod .. build a special file
mount ... mount and dismount file system
mvdir .. move a directory
ncheck .. .generate nan1es from i-nurnbers
newfoiDl. .. change the format of a text ftle
newgrp ... log in to a new group
news ... print news items
nice. ... run a command at low priority
nl ... line numbering filter
nm. ... ,,.,,.,,,.,,.,,,.,, print nan1e list of conunon object ftle
nodeiUI1Ile. ... change or display systetn node nan1e
nohup ... IUn a command inunune to hangups and quits
adoctal dump
pack .. .compress and expand files
passwd ... change login password
passwd-passwd file fonnat , ... password flle
paste .. merge same lines of several files or subsequent lines of one file
patch M .. inspect or modify an STL- or eOFF-format binary ftle
pg M .. file perusal filter for soft-copy terminals
pr ... print flies
prof -.. display profile data
proftler. .. operating system profller
pm print an sees file
psreportprocess status
ptxpermuted index
pwck. ... password/group file checkers
pwd working directory name
ratfor .. rational Fortran dialect
regcmp. .. regular expression compile
Ijestat .. RJE status report and interactive status console
nn. .. remove flies or directories
IDl.del ... remove a delta from an sees ftle
sact ... print current sees ftle editing activity
sadp ... disk access profiler
sar ... systetn activity reporter
sccsdiff.. ... compare two versions of an sees file
sdb , , , _,,, .. symbolic debugger
sdiff .. side-by-side difference progran1
sed. ... streanl editor
send .. .gather flies a:nd/or submit RJE jobs
setcolorset foreground and background colors

setrnnt ... establish mount table
setup ... define device characteristics
sh ... shell, the standard/restricted corrunand programming language
shl .. .shell layermanager
shmcreate. ... user-mode access to console graphics
showbad. ... display bad track table for hard disk partition

�=���::�;;;·����1��-����or:: ����::!
sleep ... suspend execution for an interval
sno SNOBOL interpreter
sort .. .sort and/or merge files

��i�:::::::::::::::::::::::::::::�:::�;:: :s:lf:� ;::
sdboot. ... system load bootstrap program
stripstrip symbol and line number infonnation from a conunon object file
stty .. set the options for a terminal
su .. become super-user or another user
sum ... :print checksum and block count of a file
sync .. update the super block
sysdef ... systerrJ. definition
tabs .. set tabs on a terminal
tail ... deliver the last part of a file
tar ... tape file archiver
lee.oooooOooooooooooooooooooooooooooON000000000000o0'"''''"''''"'''000000000"00000oooooooooooooooooooooo""'"'"'"''"'00000000000"pipe fitting
test .. condition evaluation co:rrunand

��:::·���:0::�
timextime a conunand; report process data and system activity
touch -.. update access and modification times of a file
tput ... query tenninfor database
tr .. translate characters
true. ... ;provide truth values
tsort .. topological sort
tty ... get the name of the terminal
ttypatch ... patch a kernelfor tty parameters
uadtninadministrative control
urnaskset ffie-creationmode mask
unarneprint nante of current lJNIX systent
unget ... undo a previous get of an sees file
uniq .. reportrepeated lines in a flle uni� .. _. : �versio��gr�
untic ... uncompile tenninfo tenninal descnpuon files
uuclean. .. uucp spool directozy clean-up
uucp.lJNIX system to UNIX systeJn copy
uustat .. uucp status inquiry and job control
uusuh .. .monitor uucp network
uuto .. ,; .. ,.public UNIX-to-UNIX system file copy
uux ... lJNIX-to-liNIX system command execution
val .. validate sees file
vc ... version control
vi ... screen-oriented (visUal) display editor based on ex
volcopy N .. copy file systems with label checking
vprnsave ... save and print VPM event traces
wait .. await completion of process
wall .. write to all users
wc. word count
what ... identify �CCS flies
who .. who is on the system

��:::.��c:a
i
���!;�:

xargs .. construct argument list(s) and execute conunand
yacc. .. yet another compiler -compiler

I i
I

r1 ' j
I
i

I
i I
I I

�
'1

I d

!
The 300 command can �
is necessary to insert pal
ment. Instead of hitting
feed key to get any respq1
In many (but not all) caJ

nroff -TJOO fileJ
nroff -T300-12J

The use of 300 can thuJ
required; in a few cases; i
may produce better-alignj
The neqn names of, and 1
supported by 300 are sho

SEE ALSO �
450(1), graph(IG), mesg(1
"Nroff and Troff User m
Formatting Program" (tbl)

BUGS I
Some special characters�
print head cannot be mo
If your output contains
ten instead of a forms tra:
tendency to slip when '
misaligning the first line q

I
• aftt.

I

INTR0(1)

NAME
intra - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:
(1) Commands of general utility.
{IC) Commands for communication with other systems.
(1M) Sy�_tem l?ait:�� �mmands (may be restricted to superuser)

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and
other arguments according to the following syntax:
name (oplion(s)] (cmdarg(s)]
where:
name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.
- noargletter(s) or,
- argletter < > optarg
where < > is optional white space.
A single letter representing an option without an argument.
A single letter representing an option requiring an argument.
Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with
or, - by itself indicating the standard input.

SEE ALSO
getopL(1).
exit(2), wait(2), getopt(3C) in the Software Development System manual.
"Introduction" and "Unix System Capabilities" at the front of this volwne.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal"
termination) one supplied by the program [see wait (2) and exit (2) 1. The
former byte is 0 for normal termination; the latter is customarily 0 for success
ful execution and non-zero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is
called variously "exit code", "exit status", or "return code", and is described
only where special conventions are involved.

Regretfully, many commands do not adhere to the aforementioned syntax.
WARNINGS

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a nuU character _ (the string ter
minator) within a line.

- 1 -

300(1)

NAME
300, 300s - handle special'

SYNOPSIS I
300 l +12 I l -n I l �
JOOs l +12 I [-n I [I

DESCRIPTION
The 300 command suppor�
300 (GSI 300 or DTC 300)
DASI 300s (GSI 300s or I
half-line reverse, and full-!
It also attempts to draw �
convenient use of 12-pitch
300 command can be used

neqn file • • • I nrof[
WARNING: if your termi\
before 300 is used.
The behavior of 300 can b\
12-pitch text, fractional linl
+ 12 permits use of 1

mally allow onl
pitch, 8 lines/inc
tion, the user sh
option.

-n controls the size �
to 4 vertical plot �
an inch, a 10-pitq
line-feed needs ol
value, thus allowil
scripts and supers�
to act as quarte�
appropriate half-U
option -3 alone,�

-dr,l,c controls delay fac
terminals someti
long lines, too m�
identical character
for every set of t
blank, non-tab ch
length) /20 nulls
omitted from the 1'
Also, a Value of ze

. acter). The form
files like /etc/passli
the specific chara�
may have to experi
-d option exists o
otherwise print pro
printed using -d3,::
programs that havel
Note that the dela�
riage return and li

,�
cr3 are recommend�

ACCEPT(1M)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr/lib/accept destinations
/usrllib/reject [-r[reason]] destinations

DESCRIPTION

FILES

Accept allows Jp(l) to accept requests for the named destinations. A destina

tion can be either a printer or a class of printers. Use lpstat (1) to find the
status of destinations.

Reject prevents lp (1) from accepting requests for the named destinations. A

destination can be either a printer or a class of printers. Use lpstat (I) to find
the status of destinations. The following option is useful with reject.

-r[reason] Associates a reason with preventing lp from accepting requests.
This reason applies to all printers mentioned up to the next -r

option. Reason is reported by lp when users direct requests to
the named destinations and by lpstat (1) . If the -r option is not
present or the -r option is given without a reason, then a
default reason will be used.

/usr/spool/lp/•
SEE ALSO

enable(!), lp(l), lpadmin(lM), lpsched(lM), lpstat(l).

- I -

(')

ADMIN(1)

NAME
admin - create and administer Sees files

SYNOPSIS
admin [-n] [-i[name]) [-rrel] [-t[name)] [�ff!ag[f!ag-val]]
[-dflag[flag-val)] [-alogin] [-elogin] [-m[mrlist]] [-y[comment)] [-h)
[-z] files

DESCRIPTION
Admin is used to create new sees files and change parameters of existing
ones. Arguments to admz·n, which may appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that sees
file names must begin with the charaCters s.). If a named file does not
exist, it is created, and its parameters are initialized according to the
specified keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does exist, param
eters corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the direc
tory were specified as a named file, eXcept that non-sees files (last com
ponent .of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file to be
processed. Again, non-sees files and unreadable files are silently
ignored.
The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each narried file.

-n

-i[name]

-rrel

-t [1�U71W]

This keyletter indicates that a new sees file is to be
created.
The na,me of a file from which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see -r keyletter for delta
numbering scheme). If the i keyletter is used, but
the file name is omitted, the text is obtained by
reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the
sees file is created empty. Only one sees file may
be created by an admin command on which the i
keyletter is supplied. Using a single adrnin to
create .two or more sees files requires that they be
created empty (no -i keyletter). Note that the -i
keyletter implies the -ri keyletter.
The release into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter
is also Used. If the -r keyletter is not used, the ini
tial delta is inSerted into release 1. The level of the
initial delta is always 1 (by default initial deltas are
named 1.1).

The nmne of a file from which descriptive text for
the sees file is to be taken. If the -t keyletter is
used and adrnin is creating a new sees file (the -n
and/or -i keyletters also used), the descriptive text
file name must also be supplied. In the case _ of
existing sees files: (1) a -t keyletter without a file
name causes removal of descriptive text (if any)

- 1 -

ADMIN(1)

-fflag

b

currently in the sees file, and (2) a -t keyletter
with a file name causes text (if any) in the named
file to replace the descriptive text (if any) currently
in the sees file.

This key letter specifies a flag, and, possibly, a value
for the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin com
mand line. The allowable flags and their values are:

Allows use of the -b keyletter on a get(l) command
to create branch deltas.

cceil The highest release (i.e., "ceiling"), a number less
than or equal to 9999, which may be retrieved by a
get(l) command for editing. The default value for
an unspecified c flag is 9999.

fjloor The lowest release (i.e., "floor"), a number greater
than 0 but less than 9999, which may be retrieved
by a get(l) command for editing. The default value
for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a
get(l) command.

i[str] Causes the " No id keywords (ge6)" message issued
by get(l) or delta(l) to be treated as a fatal error.
In the absence of this flag, the message is only a
warning. The message is issued if no sees identifi
cation keywords [see get(l)] are found in the text
retrieved or stored in the sees file. If a value is
supplied, the keywords must exactly match the
given string, however the string must contain a key
word, and no embedded newlines.

Allows concurrent get(l) commands for editing on
the same SID of an sees file. This allows multiple
concurrent updates to the same version of the sees
file.

llist A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::= <range> 1 <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specify
ing all releases for the named sees file.

n Causes delta(l) to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1
after delta 2.7, releases 3 and 4 are skipped). These
null deltas serve as "anchor points" so that branch
deltas may later be created from them. The absence
of this flag causes skipped releases to be non
existent in the sees file, preventing branch deltas
from ·being created from them in the future.

qtext User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get(!).

- 2 -

(' .)

[: ·�

-dflag

-alogin

-elogin

ADMIN(1)

mmod Mod ule name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get(l). If the m flag is not specified,
the value assigned is the name of the sees file with
the leading s. removed.

ttype Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get(l).

v[pgm]
Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifie:,; Lhe name of an MR
number validity checking program [see delta(l)]. (If
this flag is set when creating an sees file, the m
keyletter must also be used even if its value is null).
Causes removal (deletion) of the specified flag from
an sees file. The -d keyletter may be specified
only when processing existing sees fil_es. Several
-d keyletters may be supplied on a single adrnin
command. See the -f keyletter for allowable flag
names.

llist A list of releases to be "unlocked". See the -f
key letter for a description of the I flag and the syn
tax of a list.

A login name, or numerical UNIX system group ID,
to be added to the list of users which may make del
tas (changes) to the sees file. A group ID is
equivalent to specifying all login names common to
that group ID. Several a keyletters may be used on
a single admin command line. As many logins, or
numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas. If login or group ID is pre
ceded by a ! they are to be denied permission to
make deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on
a single admin command line.

-y(comment] The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical
to that of delta(!). Omission of the -y keyletter
results in a default comment line being inserted in

-m [mrlist]

the form: I date and time created YY!MM/DD 1-IH:MM:SS by
login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (i.e., a new sees file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating

- 3 -

ADMIN(1)

FILES

-h

-z

the initial delta in a manner identical .to delta(l).
The v flag must be set and the MR numbers are
validated if the v flag has a value (the name of an
MR number validation prograin). Diagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees file
[see sccsfile(5)], and to compare a newly computed
check-sum (the sum of all the characters in the
sees file except those in the first line) with the
check-sum that is stored in the first line of the Sees
file. Appropriate error diagnostics are produced.
This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

The sees file check-sum is recomputed and stored in
the first line of the sees file (see -h, above).
Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all sees file names must be of the form s,file
name. New sees files are given mode 444 [see chmod(l)]. Write permis
sion in the pertinent directory is, of course, required to create a file. All
writing done by admin is to a temporary x-file, called xJile-name, [see
get(l)]; created with mode 444 if the admin coinmand is creating a new
sees file, or with the same mode as the sees file if it exists. After suc
cessful execution of admin, the sees file is removed (if it exists), and the
x-file is renamed with the name of the sees file. This ensures that
changes are niade to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and
that sees files themselves be mode 444. The mode of the directories
allows only the owner to modify sees files contained in the directories.
The mode of the sees files prevents any modification at all except by
sees commands.

If it should be necessary io patch an sees file for any reason, the mode
ma,y be changed to 644 by the owner allowing use of ed(l). Care must be
taken! The edited file should always be processed by an admin -h to
cheek for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the sees file
is valid.

Admin also makes use of a transient lock file (called zJile-name), which
is used to prevent simultaneous updates to the sees file by different
users. See get(l) for further information.

SEE ALSO
delta(!), ed(l), get(!), help(!), prs(l), what(!).
sccsfile(4) in the Software Development System manual.

Source. Code Control System User Guide in the Software Development System
manual.

DIAGNOSTICS
Use help(l) for explanations.

- 4 -

,� ' '
�)

AR(1)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. It can
be used, though, for any similar purpose.
When ar creates an archive, it creates headers in a format that is port
able across all machines. The portable archive format -and structure is
described in detail in ar(4). The archive symbol table [described in m·(4)]
is used by the link editor lld(l)j to effect multiple passes over libraries of
object files in an efficient manner. An archive symbol table is only
created and maintained by a1· when there is at least one object file in the
archive. The archive symbol tab�e is in a specially named file which is
always the first file in the archive. This file is never mentioned or acces
sible to the user. Whenever the ar command is used to create or update
the contents of an archive, the symbol table is rebuilt. The symbol table
can be forced to be rebuilt by the s option described below.

Key is an optional -, followed by one character from the set drqtpmx,
optionally concatenated with one or more of vuaibcls. Afile is the
archive file. The names are constituent files in the archive file. The
meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional char
acter u is used with r, then only those files with modified dates
later than the archive files are replaced. If an optional position
ing character from the set abi is used, then the posname argu
ment must be present and specifies that new files are to be placed
after (a) or before (b or i) posname. Otherwise, new files are
placed at the end.

q Quickly append the named files to the end of the archive file.

t

p

m

X

v

Optional positioning characters are invalid. The command does
not check whether the added members are already in the archive.
This command is useful only to avoid quadratic behavior when
creating a large archive piece-by-piece.
Print a table of contents of the archive file. If no names are
given, all files in the .archive are tabled. If names are given, only
those files are tabled.
Print the named files in the archive.
Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.
Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive
file.
Give a verbose file-by-file description of the making of a new
archive file from the old archive and the constituent files. When
used with t, it gives a long listing of all information about the
files. When used with x, it precedes each file with a name.

c Suppress the message that is produced by default when afile is
created.

- 1 -

AR(1)

FILES

Place temporary files in the local current working directory,
rather than in the directory specified by the environment variable
TMPDIR or in the default directory /tmp .

s Force the regeneration of the archive symbol table even if a·r is
not invoked with a command which will modify the archive con
tents. This command is useful to restore the archive symbol table
after the strip(!) command has been used on the archive.

/tmp/ar* temporaries

SEE ALSO

BUGS

ld(l), !order(!), strip(!),
tmpnam(3S), a.out(4), ar(4) in the Software Development System manual.

If the same file is mentioned twice in an argument list, it may be put in
the archive twice.

- 2 -

()

AS(1)

NAME
as - assembler

SYNOPSIS
as [-o objfile) [-n] [-m] [-R] [-V] [-u] [-Ms] [-Ml] file-name

DESCRIPTION

FILES

The as command assembles the named file. The following options may be
specified in any order:
-o objfile Put the output of the assembly in obifile. By default, the out

put file_ nam_e_ is_ formed by removin�_ the .s suffix, if there is
one-. fiom the illpUffii€- rlame and aPpending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro preprocessor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-V Write the version number of the assembler being run on the
standard error output.

-u Remove unreferenced debugging symbols from the output sym
bol table. This option may be used in conjunction with the -g
option of cc(l). This will make object files smaller and
decrease the debugger startup time, but will require more time
to assemble the file.

-Ms,-Ml Generate small model object code (default) and generate large
model object code, respectively. This option is used simply to
pass the correct magic number to the loader via the UNIX sys
tem header. Actual code assembled is not affected.

/usr/tmp/as[l-6)XXXXXX temporary files
SEE ALSO

ld(l), m4(1), mn(l), strip(!).
a.out(4) in the Software Development System manual.

WARNING

BUGS

If the input file does not contain a .file assembler directive and the -m
flag was specified, the file name given by the assembler when an error
occurs is one of the temporary files (/usr/tmp/asXXXXXX).

If the m4 macro preprocessor (the -m option) is used, keywords for m4
[see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

The .even assembler directive is not guaranteed to work in the .text sec
tion when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

- 1 -

ASA(1}

NAME
asa - int�rpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage con
trol characters. It processes either the files whose names are given as argu
ments or the standard input if no file names are supplied. The first character
of each line is assumed to be a control character; their meanings are:

(blank) single new line before printing
0 double new line before printing
1 new page before printing
+ overprint previous line.
Lines beginning with other than the above characters are treated as if they
began with ' '. The fitst character of a line is not printed. [f any such lines
appear, an appropriate diagnostic will appear on standard error. This program
forces the first line of each input file to start on a new page.
To view correctly the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thus:

a.out I asa l ip

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file
SEE ALSO

ell (I), f/70), fsplit(I), ratfor(I).

- I -

AT(1)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -r job ...
at -I [job ... 1
batch

DESCRIPTION
At -and hatch -read commands from standard _input to be_ executed at a later
time. At allows you to specify when the commands should be executed, while
jobs queued with batch will execute when system load level permits. The -r
option removes jobs previously scheduled with at. The -I option reports all jobs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The shell environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use at if their names appear in the file
/usr/Iib/cron/atallow. If that file does not exist, the file /usr/lib/cron/at.deny
is checked to determine if the user should be denied access to at. If neither file
exists, only root is allowed to submit a job. If either file is at.deny, global usage
is permitted. The allow/deny files consist of one user name per line.

The time may be specified as I, 2, or 4 digits. One and two-digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alter
nately be specified as two numbers separated by a colon, meaning hour:minute.
A suffix am or pm may be appended; otherwise a 24-hour clock time is under
stood. The suffix zulu may be used to indicate GMT. The special names noon,
midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day
of the week (fully spelled or abbreviated to three characters). Two special
"days", today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and no
year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the fOllowing:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to "at now", but not quite.
For one, it goes into a different queue. For another, "at now" will respond with
the error message too late.

The -r option removes jobs previously scheduled by at or batch . The job
number is the number given to you previously by the at or batch command.
You can also get job numbers by typing at -1. You can only remove your own
jobs unless you are the super-user.

- 1 -

I

AT(1)

EXAMPLES

FILES

The at and batch commands read from standard input the commands to be
executed at a later time. Sh(l) provides different ways of specifying standard
input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename >outfile
<centroi-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is use
ful in a shell procedure (the sequence of output redirection specifications is
significant):

batch < <!
nroff'.fi/ename 2>&1 >outfile I mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the followin_g within the sh

.
ell file:

echo "sh she/lfile" l at 1900 thursday next week

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/Iib/cron/queue
/usr/spoollcron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
kill(!), mail(!), nice(!), ps(l), sh(l).
cron(lM).

DIAGNOSTICS
Complains about various syntax errors and times out of range.

- 2 -

r

AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fe] [prog] [parameters] [files]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified
in prog. With each pattern in prog there can be an associated action that will
be performed when a line of a file matches the pattern. The set of patterns
may appear literally as prog, _or _in a file spe�ified as -f file. The prog !>t�ing
should be en-closed in single quotes (') to protect it from the shell.
Parameters, in the form x-... y-... etc., may be passed to awk.
Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.
An input line is made up of fields separated by white space. (This default can
be changed by using FS; - see below). The fields are denoted $1, $2, . . . ; $0
refers to the entire line.
A pattern-action statement has the form:

pattern { action }
A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement [. . . }
variable - expression
print [expression-list] [> expression]
printf format [, expression-list] [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, •, /, %, and
concatenation (indicated by a blank). The C operators + +, - -, +-, - - ,
• = , /""" , and % - are also available in expressions. Variables may be scalars,
array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and ter
minated by the output record separator. The print/ statement formats its
expression list according to the format [see printf(3S)].

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and int. The last truncates its argument to an integer;
substr(s, 'm, 'n) returns the n-character substring of s that begins at position m.
The function sprintf(fmt, 'expr, 'expr, • . . .) formats the expressions according to
the printf(3S) forniat given by fmt and returns the resulting string.

- I -

I

AWK(1)

Patterns are arbitrary Boolean combinations (!, I I , & & , and parentheses) of
regular expressions and relational -expressions. Regular expressions must be
surrounded by slashes and are as in egrep Isee grep(I)J. Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or r (for does not contain). A conditional is an arith
metic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

A single character c may be used to separate the fields by starting the program'
with:

BEGIN (FS - c)

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,
the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default % .6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

(print $2, $1)

Add up first column, print sum and average:

(s +- SI)
END { print nsum is", s, " average is", s/NR }

Print fields in reverse order:

(for (i - NF; i > 0; --i) print $i)

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 !- prev { print; prev - $1 }

Print file, filling in page numbers starting at 5:

/Page/ ($2 - n++;)
(print)

command line: awk -f program n-5 input

- 2 -

c\

AWK(1)

SEE ALSO

BUGS

grep(ij, lex(l), sed(!).
malloc(3X) in the Software Development System manual.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null-string (-"") to -it.

. 3 .

BANNER(1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on .<
the standard output.

SEE ALSO
echo(!).

- I -

c;

BASENAME(1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in I and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used

- inside substitution--marks--{)-within shell--procedures.
Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, com
piles the named file and moves the output to a file named cat in the current
directory:

cc $ 1
mv a.out basename $1 \.c

The following example will set the shell variable NAME to /usr/src/cmd:

NAME-dirname /usr/src/cmd/cat.c
SEE ALSO

sh (I).
BUGS

The basename of I is null and is considered an error.

- I -

BC(1)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-c [[-I 1 [file ... 1

DESCRIPTION
Be is an interactive processor for a language that resembles C but provides "
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The -1 argument stands for the name of an arbitrary pre
cision math library. The syntax for be programs is as follows; L means letter
a-z, E means expression, S means statement.
Comments

are enclosed in /• and •/.

Names
simple variables: L
array elements: L [E]
The words "ibase", ''abase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L (E , ... , E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - • I % ... (% is remainder; ... is power)
+ + - - (prefix and postfix; apply to names)
= = < - > = !- < >
= = + ... - =· -I • % _ ...

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S
return { E)

Functions in -1 math library
s{x) sine
c(x) cosine
e(x) exponential
l(x) log
a {x) arctangent
j {n,x) Bessel function

All function arguments are passed by value.

- I -

(�
\

BC(1)

The value of a statement that is an expression is printed unless the main opera�
tor is an assignment. Either semicolons or new�lines may separate statements.
Assignment to scale influences the number of digits to be retained on arith
metic operations in the manner of dc(l) . Assignments to ibase or obase set
the input and output number radix respectively.

The same Jetter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables are
pushed down during function calls. When using arrays as function arguments
or __ de�nin� them as automatic variables, empty square brackets must follow the
array name.
Be is actually a preprocessor for de(I), which it invokes automatically, unless
the -c (compile only) option is present. In this case the de input is sent to the
standard output instead.

EXAMPLE

FILES

scale ""' 20
define e(x){

auto a, b, c, i, s
a - 1
b - 1
s - I
forO-! ; 1--1; i++) l

a ""' a•x
b - b•i
c = a/b
if(c ==== 0) return (s)
s = s+c

defines a function to compute an approximate value of the exponential function
and

forO-!; i <- 10; i++) eO)

prints approximate values of the exponential function of the first ten integers.

/usr/libllib.b
/usr/bin/dc

mathematical library
desk calculator proper

SEE ALSO
de(!) .

BUGS
No & & , I I yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

- 2 -

BDBLK(1)

NAME
bdblk print, ioitialize, update or recover bad sector information on disk
packs

SYNOPSIS
/etclbdblk option unit [sector ...]

DESCRIPTION
Bdblk can be used to print, initialize, update or recover the bad block informa
tion stored on disk that is used by the disk drivers to implement bad sector
replacement.
The bad sector information on 3B20 computers is located in the last sector of
the first cylinder of the disk pack. The bad sector information on DEC is
located in the last sector of the last cylinder of the disk pack. The bad sector
information on Intel 286 systems is located in the last sector of the < < <T B
D> > > cylinder of the disk pack.

Replacement sectors are allocated starting with the first sector before the bad
sector information and working backward towai-d the beginning of the disk. A
maximum of 126 bad sectors are supported. The position of the bad sector in
the bad sector table determines which replacement �ector it corresponds to.
The bad sector information structure is as follows:

struct badblk {

};

int bb_magic; /• bad block information magic number •/
int bb count; /• number of bad sectors in table •I
daddr

-
bb_blkno[l26]; /• sector number of bad sector •/

Bdblk is invoked by giving an option and the unit number of the disk drive "
number. The option is specified by one of the following letters:

p It reads the bad sector information from the specified unit and
prints out the bad sector information.

It verifies the format of the specified unit and initializes the bad
sector information on disk.

u It verifies the format of the specified unit and updates the bad sec
tor information on disk.

r It may be invoked by giving a list of bad sectors. It will then write
the supplied information onto the disk. This option should only be
used to restore known bad sector information which was destroyed.

SEE ALSO
format(IM), wn(7).

WARNINGS
After having changed the bad sector information on disk, the disk should be
put out of service to insure the system bad block information table fOr that unit
is current.

- I -

NAME
bdilf - big cliff

SYNOPSIS
bdill file! file2 [n] [-•I

BDIFF(1)

(, \)ESCRIPTION
Bdijf is used in a manner analogous to diff(J) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow pro�
cessing of files which are too large for diff. Bdiff ignores lines common to the
�eg!nll�!l_& q(b�th fiJes1 _ sR!i_ts _!he re�11ind:�r of �ac!t !i]e in!(} n_�l!ne _seg�_en!s!
and invokes diff upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line segments are
too large for dijJ, causing it to fail. lf file I (file2) is -, the standard input is
read. The optional -s (silent) argument specifies that no diagnostics are to be
printed by bdiff (note, however, that this does not suppress possible exclama�
tions b:y diff. If both optional arguments are specified, they must appear in the
order indicated above.

FILES

The output of bdiff is exactly that of dijJ, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the files,
bdi.ff does not necessarily find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
dii!(I). "' ' .I>IAGNOSTICS
Use help(!) for explanations.

- 1 -

BFS(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION I The Bfs command is (almost) like ed(l) except that it is read-only and \.
processes much larger files. Files can be up to 1 024K bytes (the maximum
possible size) and 32K lines, with up to 512 characters, including new-line, per
line (255 for 16-bit machines). Bjs is usually more efficient than ed for scan
ning a file, since the file is not copied to a buffer. It is most useful for identify
ing sections of a large file where cSplit(l) can be used to divide it into more
manageable pieces for editing.
Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes.
Input is prompted with • if P and a carriage return are typed as in ed.
Prompting can be turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if prompting is turned on.
All address expressions described under etj are supported. In addition, regular
expressions may be surrounded with two symbols besides I and !: > indicates
downward search without wrap-around, and < indicates upward _search without
wrap-around. There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.
The e, g, v, k, p, q, w, -. ! and null commands operate as described under ed.
Commands such as - - -, + + + -, + + + -, -12, and +4p are accepted.
Note that 1,10p and 1,10 will both print the first ten lines. The f command
only prints the name of the file being scanned; there is no remembered file
name. The w command is independent of output diversion, truncation, or ;
crunching (see the xo, xt and xc commands, below). The following additional "
commands are available:

xfjile
Further commands are taken from the named file. When an end
of-file is reached, an interrupt signal is received or an error occurs,
reading resumes with the file containing the xf. The xf commands
may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).
xo [file l

Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is miss
ing, output is diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

(. , •)xb/regular expression/label
A jump (either upward or downward) is made to label if the com
mand succeeds. It fails under any of the following conditions:

- I -

(
\

��
\

BFS(1)

I . Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line
in the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to
label. This com_mand is the only one that does not issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note that
the command

xbrt label
is an unconditional jump.
The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit fol1owing the X'f, The com
mands X1'5100 or xvS 100 both assign the value 100 to the variable
S. The command X1'61,100p assigns the value 1,100p to the vari
able 6. To reference a variable, put a % in front of the variable
name. For example, using the above assignments for variables S
and 6:

l ,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p
would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of % , a \ must
precede it.

g/". '\%[cds]/p
could be used to match and list lines containing printf of characters,
decimal integers, or strings.
Another feature of the xv command is that the first line of output
from a UNIX system command can be stored into a variable. The
only requirement is that the first character of value be an !. For
example:

.w junk
xv5!cat junk
!rm junk
!echo H%5"
xv6!expr %6 + 1

would put the current line into variable S, print it, and increment
the variable 6 by one. To escape the special meaning of ! as the
first character of value, precede it with a \.

- 2 -

BFS(1)

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These- two commands Will test the last saved return code from the �
execution of a UNIX system command (!command) or nonzero
value, respectively, to the specified label. The two examples below
both search for the next five lines containing the string size.

xe [switch]

xv55
: I
/size/
xv5!expr %5 - 1
!if 0%5 !- 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 - 0 exit 2
xbz I

It switch is I, outpUt from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xe reverses switch. lni·
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(l), ed(!).
regcmp(3X) in the Software Development System manual.

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

- 3 -

(

BRC(1)

NAME
brc, bcheckrc, rc, powerfail - system initialization shell scripts

SYNOPSIS
/etc/brc
/etc/bcbeckrc
/etc/rc _ �etc/powerfail

DESCRIPTION
Except for powerfai/, these shell pr:ocCdures are eXecuted via entries in
/etc/inittab by init(IM) when the system is changed· out of SINGLE USER
mode. Powerfail is execUted .whenever a .system power failur'e is detected.
The brc procedure clears the moUnted file system · tcible, /etc/mnttab [see
mnttab (4)], and loads any progtammable micl-oprocessors with their appropri
ate scripts.
The bcheckrc procedure ,performs all the necessary consistency checks to
prepare the systein to change into multiuser mode. It will prompt to set the
system date and to cheCk the file systems withfsck(lM).
The rc procedure starts all system daemons before the terminal lines are
enabled for multiuser mode. In addition, . file systems .ate mounted arid
acCounting, error logging, system activity logging and the Remote Job Entry
(RJE) system are activated in this procedure.
The powerfail procedure' is involced when the system deteCts a power failure
condition. Its chief duty is to reload any programmable microproc6ssoi's with
their appropriate scripts, if suitable. It also logs the fact that a power failure
occurred.

SEE ALSO
fsck(!M), initOM), shutdown(IM), inittab(4), mnttab(4).

- 1 -

BS(1)

NAME
bs - a compilet/interpreter for modest�sized programs

SYNOPSIS
bs [file [args I I

DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program development
time is as important as the resulting speed of execution. Formalities of data
declaration and file/process manipulation are minimized. Line-at-a-time
debugging, the trace and dump statements, and useful run-time error messages
all. simplify program testing. Furthermore, incomplete programs can be
debugged; _inner functions can be tested before outer functions have been writ
ten and vice versa.
If the command line file argunient is provided, the file is used for input before
the coilsole is read. By default, statements read frotn the file argument are
compiled for later execution. LikewisC, statements entered from the console are
normallY executed immediately (see compile and execute below). Unless the
final operation is assignment, the result of an immediate expression statement is
printed.
Bs programs are made up of input lines. If the last character on a line is a \,
the line is continUed. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can
have the same name.
A bs statement is either an expression or a keyword followed by zero or more
expressionS. Some keywords (clear I compile, ! 1 execute, include, ibase, obase,
and run) are always executed as they are compiled.
Statement Syntax:

expression
The exprt:=ssion is executed fo_r its side effects (value, assignment, or function
call). The details of expressions follow the description of statement types
below.

brUk
Break exits from the inner-most for/while loop.

clear
Clears the symbol table aild compiled statements. Clear is executed
immediatelY.

compile [expression]
SucCeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name for
further input. A clear is associated with this latter case. Compile is exe
cuted imniediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dulnp l name I
The narile and current value of every non-local variable is printed. Option
ally, only the named variable is reported. After an error or interrupt, the
number of the last statement and (possibly) the user-function trace are
displayed.

. I .

!__.-..._'

c:

BS(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

-next

for expression , expression , expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group
of statements (second form) under control of a named variable. The vari�
able takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment) .

fun f([a, . . .]) [v, . . . [
nuf

Fun defines the function name, arguments, and local variables for a user
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be 1/0 associated. Function
definitions may not be nested.

fretum
A way to signal the failure of a user-written function. See the interrogation
operator (?) below. If interrogation is not present, freturn merely returns
zero. When interrogation is active, freturn transfers to that expression
(possibly by-passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
/base sets the input base (radix) to N. The only supported values for N are
8, 10 (the default), and 16. Hexadecimal values I0-15 are entered as a-f.
A leading digit is required G.e., fOa must be entered as OfOa). /base (and
obase, below) are executed immediately.

if expression statement
if expression

[else

fi
The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. The strings 0 and "" (null) evaluate
as zero. In the second form, an optional else allows for a group of state
ments to be executed when the first group is not. The only statement per
mitted on the same line with an else is an if; only other ft's can be on the
same line with a fl. The elision of else and if into an elif is supported.
Only a single fi is required to close an if . . . ebf . . . [else . . .] sequence.

- 2 -

I

BS(1)

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. SUch statements become part of the program being com
piled. Include statements may not be nested.

Obase N
Obase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause bs
to terminate.

return [expression)
The expression is evaluated aDd the result is passed back as the value of a
function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first inter�
rial statement. If the run statement is contained in a file, it should be the
last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression 1
The trace statement controls function tracing. If the expression is null (or
evaluates to zero), tracing is turned off. Otherwise, a record of user�
function calls/returns will be printed. Each return decrements the trace
expression value.

while expressiOn statement
while expression

next
While is similar to for except that only the conditional expression for loop�
continuation is given.

t shell command
An immediate escape to the Shell.

. . .
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared in
fun statements, all riames are global to the program. Names can take on
numeric (double float) values, string values, or can be associated with
input/output [see the built-in function open() below].

name ([expression [, expression] . . . 1)
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built�in functions Oisted
below), the name must be defined with a fun statement. Arguments to
functions are passed by value.

- 3 -

85(1)

name I expression [, expression] . . . I
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer and
used as a specifier for the name. The resulting array reference is syntacti
cally identical to a name; all,21 is the same as aUII21. The truncated
expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
FORTRAN style, and contains digits, an optional decimal point, and possibly
a·· scale factor consisting ·of an e fo11owed by a possibly signed exponent.

string
Character strings are delimited by • characters. The \ escape character
allows the double quote (V), new-line (\n), carriage return (\r), backspace
(\b), and tab (\t) characters to appear in a string. Otherwise, \ stands for
itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression . . .]) I expression I
The bracketed expression is used as a subscript to select a comma-separated
expression from the parenthesized list. List elements are numbered from
the left, starting at zero. The expression:

(False, True)[a -- b 1
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than
its value. At the moment, it is useful for testing end-of-file (see examples in
the Programming Tips section below), the result of the eva/ built-in func
tion, and for checking the return from user-written functions (see [return).
An interrogation "trap" (end-of-file, etc.) causes an immediate transfer to
the most recent interrogation, possibly skipping assignment statements or
intervening function levels.

- expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The result is the
new value.

- - name
Decrements the value of the variable. The result is the new value.

! expression

exp::�::g:�:,:::,a:::,:,
::: expr�sion. Watch out for the shell escape com- �

Common functions of two arguments are abbreviated, by the two arguments
separated by an operator denoting the function. Except for the assignment,
concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.

Binary Operators (in increasing precedence):

• is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right to
left, all other operators bind left to right.

- 4 ·

BS(1)

_ (underscore) is the concatenation operator.

& I
& Oogical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; I (logical or) has result
zero if both of its arguments are zero. It bas result one if either of its argu-
ments is non-zero. Both operators treat a null string as a zero. \,_

< < = > > � - - !•

+

The relational operators (< less than, < • less than or equal, > greater
than, > - greater than or equal, • • equal to, !• not equal to) return one
if their arguments are in the specified relation. They return zero otherwise.
Relational operators at the same level extend as follows: a>b>c is the
same as a>b & b>c. A string comparison is made if both operands are
strings.

Add and subtract.

• I %
Multiply, divide, and remainder.

Exponentiation.

Built�in Functions:

Dealing with arguments

arg(i)
is the value of the i�th actual parameter on the current level of function
call. At level zero, arg returns the i·th command-line argument [arg(O)
returns bsJ .

nargO
returns the number of arguments passed. At level zero, the command argu
ment count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(xl
is the arctangent of x. Its value is between -7r/2 and 1rl2.

ceil(x)
returns the smallest integer not less than x.

cos(x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor(x)
returns the largest integer not greater than x.

Iog(x)
is the natural logarithm of x.

-5-

('

randO
is a uniformly distributed random number between zero and one.

sin(x)
is the sine of x (radians).

sqrt(x)
is the square root of x.

size(s) -

String operations

the size (length in bytes) of s is returned.

format(f, a)

BS{1)

returns the formatted value of a. F is assumed to be a format specification
in the style of printf(3S). Only the % • • . f, % • • • e, and % • . • s types are
safe.

index(x, y)
returns the number of the first position in x that any of the characters from
y matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a
character in the same position in t. Source characters that do not appear in
f are copied to the result. If the string f is longer than t, source characters
that match in the excess portion off do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

matcb(string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(I) com
mand. The characters ., [, I, A (inside brackets), • and S are special. The
mstring function returns the n�th (1 <- n <- 10) substring of the subject
that occurred between pairs of the pattern symbols \(and \) for the most
recent call to match. To succeed, patterns must match the beginning of the
string (as if all patterns began with A) . The function returns the number of
characters matched. For example;

match("al23abl23", ".•\{[a-z]\) ") -- 6
mstring (I) -- "b"

open(name, file, function)
close(name)

File handling

The name argument must be a bs variable name (passed as a string). For
the open, the file argument may be 1) a 0 (zero), 1, or 2 representing stan
dard input, output, or error output, respectively; 2) a string representing a
file name; or 3) a string beginning with an ! representing a command to be
executed (via sh -c). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the
name reverts to being an ordinary variable. The initial associations are:

open("get", 0, "r")
open("put", 1, "w")
open("puterr", 2, "w'')

Examples are given in the following section.

access (s, m)
executes access (2).

- 6-

85(1)

ftype(s)
returns a single character file type indication: f for regular file, p for FIFO
(i.e., named pipe), d for directory, b fOr block special, or c for character
special.

Tables

table(name, size) "-
A table in b.s is an associatively accessed, single-dimension array. "Sub
scripts" (called keys) are str.ings (numbers are converted). The name argu
ment must be a bs variable name (passed as a string). The size argument
sets the minimum number of elements to be allocated. Bs prints an error
message and stops on table overflow.

item(name, 0
keyO

The item function accesses table elements sequentially (in normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the "subscript" of the- previous item call.
The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table; for
example:

table("t", 100)

If word contains "party", the following expression adds one
to the count of that word:
++t[word]

To print out the the key/value pairs:
for i - 0, ? (s - item (t, i)), ++i if key() put - key() _:':"_s

iskey(name, word)
The iskey function tests whether the key word exists in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy
for converting numeric strings to numeric internal form. Eva/ can also be
used as a crude form of indirection, as in:

name - "xyz"
eval("++"_ nilme)

which increments the variable xyz. In addition, eva/ preceded by the inter
rogation operator permits the user to control bs error conditions. For exam
ple:

?eval("open(\•x\", \"XXX\", Vr\")")

returns the value zero if there is no file named "XXX" (instead of halting
the user's program). The following executes a go to to the label L (if it
exists):

label-"L" "'�
if !(?evat(•goto "_labe0) puterr - "no label" \--.

plot(request, args)
The plot function produces output on devices recognized by tplot(lG). The
requests are as follows:

- 7-

(
\

('

B5(1)

Call Function

plot(O, term)

plot(4)

plot (2, string)

plot(3, xi, yl, x2, y2)

plot(4, x, y, r)

plot(5, xi, yl, x2, y2, x3, y3)

plot(6)

plot(?, x, y)

plot (8, x, y)

plot(9, x, y)

plot (I 0, string)

plot(I I , xl , yl , x2, y2)

plot02, xl, yl, x2, y2)

caw".s further plot output to be piped
into tplot (lG) with an argument of
-Tterm.
"erases" the plotter.

labels the current point with string.

draws the line �etween (xJ,yJ) and
(x2,y2).

draws a circle with center (x,y) and
radius r.

draws an arc (counterclockwise) with
center (�J.yl) and endpoints (x2.y2)
and (x3.y3).

is not implemen�ed.

makes the current point (x ,y).

draws a line from the current point to
(x,y).

draws a point at (x,y).

sets the line mode to string.

makes (xi ,yl) the lower left corner of
tl}e · plotting area and (x2,y2) the
upper right corner of the plotting area.

causes subsequent x (y) coordinates to
be multiplied by xl (yl) and then
added to x2 (y2) before they are plot
ted. The initial scaling is plot(l2, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplpt (I G). See plot (4) for
more details.

last()
in immediate mode, last returQS the most recently computed val\}e.

PROGRAMMING TIPS
Using bs as a calculator:

$ hs
Distance (inches) light travels in a nanosecond.
186000 • 5280 • 12 / Ie9
11.78496

Compound interest (6% for 5 years on $1 ,000).
int - .06 / 4
hal - 1000
for i - I 5•4 bal - bal + bal•int
hal - 1000
346.855007

exit

- 8 -

I

BS(1)

The outline of a typical bs program:

initialize things:
varl - I
open("read", "infile", "r")

compUte:
while ? <str read)

next
clean up:
close("read")

last statement executed {exit or stop):
exit
last input line:
run

Input/Output examples:

Copy "oldfile" to "newfile";
open("read", "oldfile", "r")
open("write", "newfile", "w")

while 7 (write - read)

close "read" and "write":
close(nread")
close("write")

Pipe between commands.
open("ls", "Us •", "r")
open(�pr", "!pr -2 -h 'List'", "w")
while ?(pr """ Is) . . .

be sure to close (wait for) these:
close("ls")
close("pr")

SEE ALSO
ed(l), sh(l), !plot(! G).
access(2), printf(3S), stdio(3S), plot(4) in the Software Development System manual.
See Section 3 of the Software Development System manual for a further description of
the mathematical functions fpow on exp(3M) is used for exponentiation]; bs uses the
Standard Input/Output package.

-9-

(
\

CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month I year I

DESCRIPTION

BUGS

Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for
the present month is printed. Year can be between I and 9999. The month is
a number between··t and -12. The calendar ·produced is that -for England and
her colonies.
Try September 1752.

The year is always considered to start in January even though this is histori
cally naive.
Beware that "cal 83" refers to the early Christian era, not the 20th century.

I
- I -

CALENDAR(1)

NAME
calendar - reminder service

SYNOPSIS
calendar [- I

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines
that contain today's or tomorrow's date anywhere hi the line. Most reasonable
month�day dates such as "Aug. 24," "august 24," "8/24/' etc., are recognized,
but not "24 August" or "24/8". On weekends "tomorrow" extends through
Monday.

When an argument is present, calendar does its job fpr every user who has a
flle calendar in the login directory and sendS them any positive results by
mai/(1). Normally this is done daily by facilities ip t)Je UNIX· operating sy�
te�.

/usr/lib/calprog to figure out today's and tomorrow's dates

/etc/passwd

/tmp/cal•

SEE ALSO

BUGS

mail(!).

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not accOunt for holidays.

-1 -

(�

CAT(1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u I [-s I [-v [-t] [-el I file

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the_ file, and: _

cat filet file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from
the standard input file. Output is buffered unless the -u option is specified.
The -s option makes cat silent about non�existent files.

The -, option causes non-printing characters (with the exception of tabs,
new-lines and form-feeds) to be printed visibly. Control characters are printed
"X (control-x); the DEL character (octal 0177) is printed "?. Non-ASCII
characters (with the high bit set) are printed as M-x, where x is the character
specified by the seven low order bits.

When used with the _, option, -t causes tabs to be printed as '"rs, and -e
causes a $ character to be printed at the end of each line (prior to the new
line). The -t and -e options are ignored if the _, option is not specified.

WARNING
Command formats such as

cat filet file2 >filet
will cause the original data in file I to be lost; therefore, take care when using
shell special characters.

SEE ALSO
cp(J), pg(I), pr(J).

- I -

I

CB(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s 1 [-j 1 [-I !eng 1 [file ... 1

DESCRIPTION
Cb reads C programs either from its arguments or from the standard input and
writes them on the standard output with spacing and indentation that displays
the structure of the code. Under default options, cb preserves all user new·
lines. Under the -s flag cb canonicalizes the code to the style of Kernighan
and Ritchie in The C Programming Language. The -j flag causes split lines
to be put back together. The -1 flag causes cb to split lines that are longer
than /eng.

SEE ALSO
ceO).

BUGS

The C Programming LangUage by B. W. Kernighan and D. M. Ritchie.

Punctuation that is hidden in preprocessor statements will cause indentation·
errors.

- 1 -

f\
\� 1

()

CC(1)

NAME
cc - C compiler

SYNOPSIS
cc [options 1 files

DESCRIPTION
The cc command is the interface to the C Compilation System. The com
Pilation tools consist of a preprocessor, compiler, optimizer, assembler
and link-editor. The cc command processes the supplied options and then
executes the various tools with the proper arguments. The cc command
accepts several -types Of files as argUments:

Files whose names eri.d with .c are taken to be C source programs and
may be preprocessed, compiled, optimized, assembled and link-edited. The
compilation process may be stopped after the completion of any pass if
the appropriate options are supplied. If the compilation process runs
through the assembler then an object program is Produced and is left on
the file whose name is that of the source with .o substituted for .c. How
ever, the .o file is normally deleted if a single C program iS compiled and
link-edited all at one go. lri the same way, files whose names end iri .s
are taken to be assembly source programs, and, may be assembled and
link-edited; and files whose names end in .i are taken to be preprocessed
C source programs and may be compiled, optimized, assembled and link
edited. Assembly sourCe programs are also run through the C preprOces
sor before being handed to the assembler. Files whose names do not end
in .c, .s or .i are handed to the link editor.
Since the cc command usually createS files in the current directory during
the compilation process, it is typically necessary to run the cc command
iri a directory in which a file can be created.

The following options are interpreted by cc.

-c Suppress the link-editing phase of the compilation, and do not
remove any produced object files.

�o outfile
Produce an output object .file by the name outfile. The name bf
the default file is a.oU.t. This is a link-editor optiori.

-p Arrange for the compiler to produce code that Counts the number
of times each routine is called; also, if link. editing takes place,
profiled versions of libc.a and libm.a (With -lm option) are linked
and monitor(3C) is automatically called. A mon.out file . Will
theri be produced at normal termination of execution of the object
program. An execution profile can then be generated by use of
prof(l).

-Bstring
-t[p02al}

-E

-0

These options will be removed in the next release. Use the -Y
option.

Run only cpp(l) on the na:lned C programs, and send the reSult to a· .
the standard output.

bo compilation phase optimization. This option will not have any
affect on .s files.

-P Run only cpp{l) on the nanied C programs and and leave the
result on correspronding files suffixed .i. This option is passed to
cpp(l).

- 1 -

CC(1)

-8 Compile and do not assemble the named C programs, and leave
the assembler-language output on corresponding files suffixed .s.

-q Causes the complier to generate additional information needed for
the use of sdb(l).

-V Print the version of the compiler, optimizer, assembler and/or
link-editor that is invoked.

-Wc,argl[,arg2 ...]
Hand off the argument[s] argi to pass c where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or
link editor, respectively. For example: -Wa,-m passes -m to the
assembler.

-Y [p02albSILU], dirname
Specify a new pathname, dirname, for the locations of the tools
and directories designated in the first argument. [p02albSILU]
represents:

p preprocessor
0 compiler
2 optimizer
a assembler
1 link editor
b basicblk (used by -ql and -qx)
S directory containing the start-up routines
I default include directory searched by cpp(l)
L first default library directory searched by ld(l)
U second default library directory searched by ld(l)

If the location of a tool is being specified, then the new pathname
for the tool will be <dirname>/<tool>. If more than one -Y
option is applied to any one tool or directory, then the last
occurrence holds.

-# The -# options provide information about the execution of cc. The
-# option prints, for each tool called, the name of the tool followed
by each option which is passed to the tool. The -## option prints
the output of the -# option followed by the absolute pathname of
the tool. The -### option prints the same output as the -## option
but does not exec the tool. The output format of these options is
not guaranteed from one release to the next though the content
will be the same.

-Ms,-Ml
Generate small memory model code {16 bit addressing) and gen
erate large memory model code (32 bit addressing), respectively.
Small model is the default. Small and large model outputs are
incompatible. Refer to the SW Dev. Guide - Programming on the
85.

The cc command also recognizes -C, -D, -H, -I and -U and passes these
options and their arguments directly to the preprocessor without using
the -W option. Similarly, the cc command recognizes -a, -k, -1, -m, -o, -r,
-s, -t, -u, -x, -z, -K, -L, and -V and passes these options and their argu
ments directly to the loader. See the manual pages for cpp(l) and ld(l)
for descriptions.

Other arguments are t�ken to be C-compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C-compatible rou
tines and are passed directly to the link editor. These programs, together
with the results of any compilations specified, are link-edited (in the

- 2 -

(,, \ ___ .I

CC(1)

order given) to produce an executable program with name a.out unless
the -o option of the link-editor is used.

If the cc command is put in a file prefixcc the prefix will be parsed off
the command and used to call the tools, i.e., prefixtool. For example,
OLDcc will call OLDcpp, OLDcomp, OLDoptim, OLDbasicblk, OLDas, and
OLDld and will link OLDcrto.o. Therefore, one MUST be careful when
moving the cc command around. The prefix will apply to the preproces
sor, compiler, optimizer, assembler, link-editor and the start-up routines.

The C language standard was extended to allow arbitrary length variable
-- -- - names. -The option- pair-"-:-Wp, ..,-_T __ -:-WO, -::-XT'� _will_ cause __ cc to truncate

arbitrary length variable names.

FILES
file.c C source file
file.i preprocessed C source file
file.o object file
file.s assembly language file
a.out link-edited output
crtO.o start-up routine
TEMPDIR/* temporary
LIBDIRI basic analyzer
LIBDIR!cpp preprocessor, cpp(l)
LIBDIR/comp compiler
LIBDIR/optim optimizer
BINDIR!as assembler, as(l)
BINDIR!ld link editor, ld(l)
LIBDIR!libc.a library

LIBDIR is usually /lib; BINDIR is usually /bin; and TEMPDIR is usu
ally /usr/tmp.

SEE ALSO
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.
Kernighan, B. W., Programming in C-A Tutorial.
Ritchie, D. M., C Reje1·ence ManuaL
as(l), ld(l), cpp{l), lint(l), prof(l), sdb(l).

DIAGNOSTICS

NOTES

The diagnostics produced by the C compiler are intended to be self
explanatory. Occasional messages may be produced by the assembler or
link-editor.

By default, the return value from a C program is completely random. The
only two guaranteed ways to return a specific value is to explicitly call
exit(2) or to leave the function main() with a "return expression;" con
struct.

- 3 -

CD(1)

NAME
cd - change working directory

SYNOPSIS
cd [directorY]

DESCRIPTION
If directory is not specified, the value of shell parameter SHOME is used as the
riew working directory. If directory Specifies a complete path starting with /, .,
. . , directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by
the SCDPATH shell variable. SCDPATH has the same syntax as, and similar
semantics to, the SPATH shell variable. Cd must have execute (search) permis�
sian in directory .
Because a new process is created to execute each command, cd would be
ineffective if it Were written as a normal command; therefore, it Is recognized
and is internal to the shell.

SEE ALSO
pwd(l), sh(l).
chdir(2) in the Software Development System rilanual.

- I -

CDC(1)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS .
cdc -rSID [-m[mrlist1l [-y[comment]] files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the -r keyletter,
of each named sees file.

Delta __ comm_ent_ary is_ defi_ned to _be _the_ M_oc;lift_c_atiQJl __ R_�ue�! JMRl and _ccu:n
ment information normally specified via the delta (I) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files Oast component of the
path name does not begin with s.) and unreadable files are silently ignored. If
a name of - is given, the standard input is read [see WARNINGS}; each line of
the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu
ments and file names.

All the described keyletter arguments apply independently to each named file:

-rS/D Used to specify the SCCS IDentification (SID) string of
a delta for which the delta commentary is to be
changed.

-m[mrlistJ If the sees file has the v flag set [see admin (I)] then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta (1) . In order to delete an MR,
precede the MR nuinber with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a "com
ment" line. A list of all deleted MRs is placed in the
comment section of the delta commentary and preceded
by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see -y
keyletter).

MRs in a list are separated by blanks and/or tab charac
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value fsee admin (l)] , it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number
validation program, cdc terminates and the delta com
mentary remains unchanged.

-y[comment] Arbitrary text used to replace the comment (s) already
existing for the delta specified by the -r keyletter. The
previous comments are kept and preceded by a comment

- I -

CDC(1}

line stating that they were changed. A null comment
bas no effect.

If -y is not specified and the standard input is a termi�
nal, the p�mpt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes· 1
caped new .. line character terminates the comment text. "-

The exact permissions necessary to modify the sees file are documented
in the Source Code Control SyStem User Guide. Simply stated, they are
either (I) if you made the delta, you can change its delta commen�ry; or
(2) if you own the file and directory you can modify the delta commen
tary.

EXAMPLES
cdc -r!.6 -m"bl78-12345 !b!77·5432! bl79-0000I ' -ytrouble s.file

adds bl78-!2345 and bl79·00001 to the MR list, removes bl77-5432! from the
MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc -rl.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-0000I
comments? trouble

does the same thing.

WARNINGS

FILES

If sees fiJe na�es are supplied to the cdc command via the standard input (
on the command line), then the - m and - y keyletters must also be used.

Xafile
z-file

[see delta (I) I
[see delta(!) I

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l).
sccsfile(4) in the Software Development System manual.

"Source Code Control System User Guide" in the Software Development System
manual.

DIAGNOSTICS
Use help(l) for explanations.

- 2 -

(

c

CFLOW(1)

NAME
cftow - generate C flow graph

SYNOPSIS
cflow [-r] [-ix] [-i_ I [-dnum] files

DESCRIPTION
Cjlow analyzes a collection of C, YACC, LEX, assembler, and object files and
attempts to build a graph charting the external references. Files suffixed in .y,
.1, .c, and .i are Y ACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as
appropriate and then run -through the first pass of /int (l).- - (The _,...I, ..,.D,- and
-U options of the C-preprocessor are also understood.) Files suffixed with .s
are assembled and information is extracted (as in .o files) from the symbol
table. The output of all this nontrivial processing is collected and turned into
a graph of external references which is displayed upon the standard output.
Each line of output begins with a reference (i.e., line) number, followed by a
suitable number of tabs indicating the level. Then the name of the global (nor
many only a function not defined as an external or beginning with an under
score; see below for the -i inclusion option) a colon and its definition. For
information extracted from C source, the definition consists of an abstract type
declaration (e.g., char •) , and, de1imited by angle brackets, the name of the
source file and the line number where the definition was found. Definitions
extracted from object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in C-style exter
nal names are deleted.
Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may be
found. For undefined references, only < > is printed.
As an example, given the following in file.c:

int i·

main()
{

[()
{

the command

fO;
gO;
f{);

i - h0;

cflow -ix file.c

produces the output

1 main: intO, <file.c 4>
2 f: intO, <file.c I I >
3 h: < >
4 i: int, <file.c 1 >
5 g: <>

When the nesting level becomes too deep, the - e option of pr(J) can be used

- I -

CFLOW(1)

to compress the tab expansion to something less than every eight spaces.
The following options are interpreted by cjlow:

-r Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexi-
cographical order by callee. "-.

-ix Include external and static data symbols. The default is to include
only functions in the ftowgraph.

-i_ Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The nurn decimal integer indicates the depth at which the ftowgraph
is cut off. By default this is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be met with contempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used
(e.g., the C-preprocessqr).

SEE ALSO

BUGS

as (I), ceO), cpp(!l, lex (I), lint(!), nm(I), pr(I), yacc(I),

Files produced by lex(I) and yacc{J) cause the reordering of line number
declarations which can confuse cflow. To get -proper results, feed cjiow the
yacc or lex input.

- 2 -

(

CHECKALL(1 M)

NAME
checkall - faster file system checking procedure

SYNOPSIS
/etc/checkall

) DESCRIPTION
The checkall procedure is a prototype and must be modified to suit local condi
tions. The following will serve as an example:

#- check -the root file system by itself
fsck /dev/dsk/OsO

dual fsck of drives 0 and 1
dfsck /dev/rdsk/Os[12345] - /dev/rdsk/lsl

In the" above example (where /dev/rdsk/lsl is 320K blocks and
/dev/rdsk/Osll234S) are each 65K or less), a previous sequential fsck took 19
minutes. The checka/1 procedure takes 11 minutes.
Dfsck is a program that permits an operator to interact with two fsck(IM)
programs at once. To aid in this, dfsck will print the file system name for each
message to the operator. When answering a question from dfsck, the operator
must prefix the response with· a 1 or a 2 (indicating that the answer refers to
the first or second file system group) .
Due to the file system load balancing required for dual checking, the dfsck
command should always be executed through the checka/1 shell procedure.
In a practical sense, the file systems are divided as follows:

dfsck file _systems_ on_ drive_ 0 - file _systems_ on_ drive _1
dfsck file _systems_ on_ drive_ 2 - file _systems _on_ drive _3

A three-drive system can be handled by this more concrete example {assumes
two large file systems per drive):

dfsck /dev/dsk/lsl /dev/dsk/Os[I4] - /dev/dsk/ls[I4] /dev/dsk/3s4
Note that the first file system on drive 3 is first in the filesystemsl list and is
last in the filesystems2 list assuring that references to that drive will not over
lap at execution time.

- I -

CHECKALL(1 M)

WARNINGS
1. Do not use dfsck to check the root file system.

2. On a check that requires a scratch file (see - t above), be careful not to use
the same temporary file for the two groups (this is sure to scramble the file
systems� . \"--

3. The djsck procedure is useful only if the system is set up for multiple physi
cal 1/0 buffers.

SEE ALSO
fsck(!M).
"Single User and Multiuser" .in this manual.

- 2 -

CHMOD(1)

NAME
chmod - change mode

SYNOPSIS
chmod mode files

i DESCRIPTION
The permissions of the named files are changed according to mode, which may
be absolute or symbolic. An absolute mode is an octal number constructed
from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g
(group) and o (other) . The letter a stands for ugo, the default if who is omit·
ted.
Op can be + to add permission to the file's mode, - to take away permission,
or = to assign permission absolutely (all other bits will be reset).
Permission is any combination of the letters r (read), w (write), x (execute), s
(set owner or group ID) and t (save text, or sticky); u, g, or o indicate that per�
mission is to be taken from the current mode. Omitting permission iS only
useful with = to take away all permissions.
Multiple symbolic modes separated by commas may be given. Operations are
performed in the order specified. Th� letter s is only useful with u or g and t
only works with u.

Only the owner of a file (or the super�user) may change its mode. Only the
super-user may set the sticky bit. In order to set the group JD, the group of the
file must correspond to your current group ID.

EXAMPLES
The first example denies write permission to others, the second makes a file
executable:

SEE ALSO
ls(l).

chmod o-w file
chmod +x file

chmod(2) in the Software Development System manual.

- 1 -

CHOWN{1)

NAME
chown, chgrp - change owner or group

SYNOPSIS
cbown owner file .. .

chgrp group file .. .

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a
decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-10 and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

/etc/passwd
/etC/group

SEE ALSO
clnnod(l).
chown(2), group(4), passwd{4) in the Software Development System mahual.

- I -

CHROOT(1M)

NAME
chroot - change root directory for a command

SYNOPSIS
/etc/cbroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of any
initial slashes (/) in path names is changed for a command and any of its chit

- _ d��� _t'? !'elY!_OC!_I. _ _f�rt�t;:-��-�r�, _t�e i�iti�_l �-�!l:c_i�g _di�C?-�t-��y i�_ n��roo_(.
Notice that:

chroot new root command > x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root: even if a chroot
is currently in effect, the newroot argument is relative to the current root of the
running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files in the new
root file system.

- I -

CLRI(1M)
CLRI(JM)

NAME
clri - clear i-node

SYNOPSIS
/etc/clri file-system i-number ...

DESCRIPTION
Clri writes zeros on the 64 bytes occupied by the i-node numbered i-number.
File-system must be a special file name referring to a device containing a file
system. After c/ri is executed, any blocks in the affected file will show up as
'"missing" in an fsck (1M) of the file-system. This command should only be
used in emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system device. The
i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason
appears in no directory. If it is used to zap an i-node which does appear in a
directory, care should be taken to track down the entry and remove it. Other
wise, when the i-node is reallocated to some new file, the old eritry will still
point to that file. At that point removing the old entry will destroy the new file.
The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
fsck(IM), fsdb(IM), ncheck(IM), fs(4).

BUGS
If the file is open, clri is likely to be ineffective.

- I -

(

(
�---

CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1 1 [-s 1 file! file2

DESCRIPTION
The two files are compared. (If file/ is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ,
it announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the other, that fact is noted.

Options:

-I Print the byte number (decimal} and the differing bytes (octal} for each
difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
commO), diff(I).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inac
cessible or missing argument.

- I -

COL(1)

NAME
col - filter reverse line�feeds

SYNOPSIS
col [-bfpx 1

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It per
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and
by forward and reverse half-line feeds <Esc-9 and ESC..S). Col is particularly
usef!ll for filtering multicolumn output made with the .rt command of nrojf and
output resulting from use of the tbl(I) preprocessor.

If the -b option is given, col assumes that the output device in use is not capa
ble of backspacing. In this case, if two or more characters are to appear in the
same place, only ihe last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full·line boundary. This treatment can be suppressed by the -f
(fine) option; in this case, the output from col may contain forward half·lirie
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters so (\016) and SI (\017) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO charac
ters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new·line, Sl, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT
character is an alternate form of full reverse line·feed, included for compatibil·
ity with some earlier programs of this type. All other non-printing characters
are ignored.

Normally, col will ignore any unknown -to-it escape sequences found in its
input; the -p Qption may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO

NOTES

BUGS

"Nroff and Troff User manual", "Mathematics Typesetting Program" (eqn), and ''Table
Formatting Program" (tbl) in the Text Preparation System manual.

The input format accepted by col matches the output produced by nroff with
either the -T37 or -Tip options. Use -T37 (and the -f option of coO if the
ultimate disposition of the output of col will be a device that can interpret
half-line motions, and -Tip otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any super·
scripts.

- 1 -

COMB(1)

NAME
comb - combine sees deltas

SYNOPSIS
comb [-ol [-sl [-psid] [-clistl files

DESCRIPTION

FILES

Comb generates a shell procedure [see sh (1) 1 which, when run, will reconstruct
the given sees files. The reconstructed files will, hopefully, be smal1er than
the original files. The arguments may be specified in any order, but all
keyletter arguments_ apply_ to __ all named SC.CS _file�;_, lf _ll directory _ i_$_ n�un�I;J.
comb· behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read; each line of the input is taken to be the name
of an sees file to be processed; non-sees files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-pSJD The SeeS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-clist A list [see get(l) for the syntax of a list] of deltas to be preserved.

-o

All other deltas are discarded.

For each get -e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to· be created, otherwise
the reconstructed file would be accessed at the most recent ancestor.
Use of the -o keyletter may decrease the size of the reconstructed
sees file. It may also alter the shape of the delta tree of the original
file.

-s This argument causes comb to generate a shell procedure which, when
run, will produce a report giving, for each file: the file name. size (in
blocks) after combining, original size (also in blocks), and percentage
change computed by:

100 • (original - combined) I original
It is recommended that before any sees files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

s.COMB
comb?????

The name of the reconstructed sees file.
Temporary.

SEE ALSO
admin(l), delta(I), get(I), help(!), prs(l), sh(l).
sccsfile(4) and "Source Code Control System User Guide" in the Software Development
System manual.

DIAGNOSTICS

BUGS

Use help(I) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actuaUy be larger than
the original. - 1 -

COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123 I I file! file2

DESCRIPTION
Comm reads file I and file2, which should be ordered in ASCII collating '
sequence (see sort (L)), and produces a three�column output: lines only in file/;
lines only in fi/e2; and lines in both files. The file name - means the standard
input.

Flags I, 2, or 3 suppress printing of the corresponding column. Thus comm
-12 prints only the lines common to the two files; comm -23 prints only lines
in the first file but not in the second; comm -123 is a no-op.

SEE ALSO
cmp(I), diff(l), sort(!), uniq(l).

- I -

NAME
config - configure a UNIX system

SYNOPSIS

CONFIG(1M)

(· /etc/config [-t 1 [-I file I [-c file 1 [-m file 1 dfiie

(

' -- '
\�

DESCRIPTION
Config is a program that takes a description of a UNIX system .and generates
two files. One file provides information regarding the interface between the
hardware -and device handlers. The_ other .file is a C program defining the
configuration tables for the various devices on the system.

The -I optiori specifies the name of the hardware interface file; bandlers.c is
the default name.

The -c option specifies the name of the configuration table file; conf.c is the
default name.

The -m option specifies the name of the file that contains all the information
regarding supported devices; /etc/Master is the default name. This file is sup
plied with the UNIX system and should not be modified unleSs the user fully
understands its construction.

The -t option requests a short table of major device numbers for Character
and block type devices. This can facilitate the creation of Special files.

The user must supply dfi/e; it must contain device information for the user'S
system. This file is divided into two parts. The first part contains physical dev·
ice specifications. The second part contains system-dependent information.
Any line with an asterisk (•) in column 1 is a comment.

First Part of dfi/e
Each line contains up to 3 fields, delimited by blanks and/or tabs in the follow
ing format:

devname vector number

where devname is the name of the device (as it appears in the /etc/master dev
ice table), vector is the interrupt vector number (decimal) in the range 32 to
255 or a zero to specify that a default value should be supplied from the
/etc/master file, number is the number (deCimal) of devices associated with the
corresponding contro11er. Number is optional, and if omitted, a default value
which is the maximum value for that controller is used.

There are certain drivers that may be provided with the system, that are actu
ally pseudo-device drivers; that is, there is no real hardware associated with the
driver. Drivers of this type are identified on their respective manual entries.
When these devices are specified in the description file, the interrupt vector
musl be zero.

Second Part of djile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbitrary.

1 . Root/pipe/dump device specification

Three Jines of three fields each:

root devname
pipe devname
dump devname

minor
minor
minor

where minor is the minor device number (in decimal).

2. Swap device specification

- I -

CONFIG(1M)

One line that contains five fields as follows:

swap devname minor swplo nswap

where swplo is the lowest 512-byte diSk block (decimal) in the swap area and
nswap is the number of disk blocks (decimal) in the swap area.

3. Parameter specification

Several iines of two fields each as follows (number is decimal):

EXAMPLE

buffers number
inodes number
mes number
mounts number
coremap number
swapmap number
caDs number
procs number
niilxproc nurilber
texts number
clists number
bashbuf number
pbysbuf number
mesg 0 or l
sema 0 or 1
shmem 0 or I

To configure an Iniel System 286/310 with one disk drive controller with one
16-Mb Winchester disk, and one floppy drive, the following parameter informa
tion must be specified:

roOt device is a Winchester(drive 0, section 6)
pipe device is a Winchester(drive 0, section 6)
swap. device is a Winchester(drive 0, section 6),

with a swplo of 8192 and an nswap of 4096
du.mp device is a floppy(drive 0, section 24),
number of buffers is 63
number of processes is 75
maximum number of processes per user ID is 25
humber of mounts is 8
number Of in odes is 7 5
number of files is 75
number of calls is 50
number of texts is 40
number'of character buffers is 150
number of coremap entries is 75
number of swapmap entries is 75
shared memory is to be included
inessages are to be included
semaphores are to be included

The actual system configuration would be specified as follows:
wini 0 I
flp 0 I
root wini 6
pipe wini 6
swap wini 6 8192 4096
dump flp 24
• Comments may be inserted in this manner
buffers 63

- 2 -

'
"

FILES

procs 75
maxproc 25
mounts 8
inodes 75
files 75
calls 50
texts 40
clists ISO

--��re_��- 75 - - - - - �
swapmap 75
shmem
msg
sema

/etc/master
handlers.c
conf.c

I
I
I

default input master device table
default output hardware interface file
default output configuration table file

CONFIG(1M)

SEE ALSO
sysdef(JM), maste>\4),

DIAGNOSTICS

BUGS

Diagnostics are routed to the standard output and are self-explanatory.

The -t option does not know about devices that have aliases. For example, a
dsk (an alias for a wini) will show up as a wini; however, the major device
numbers are always correct.

- 3 -

I

CP(1)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp file! [file2 . . . 1 target
In [, -f 1 file! [file2 ... 1 target
mv [-f 1 file! [file2 .. .1 target

DESCRIPTION
File/ is copied Oinked, moved) to target. Under no circumstance can file! and
target be the same [take care when using sh (l) metacharacters]. If target is a
directory, then one or more files are copied (linked, moved) to that directory.
If target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the
mode [see chmod(2)], ask for a response, and read the standard input for one
line; if the line begins with y, the mv or In occurs, if permissable; if not, the
command exits. No questions are asked and the mv or In is done when the -f
option is used or if the standard input is not a terminal.

Only mv will allow file! to be a directory, in which case the directory rename
will occur only if the two directories have the same parent; file/ is renamed
target. If file/ is a file and target is a link to another file with links, the other
links remain and target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same
mode as file I except that the sticky bit is not set unless you are super-user; the
owner and group of target are .those of the user. If target is a file, copying a
file into target does not change its mode, owner, nor group. The last
modification time of target (and last access time, if target did not exist) and
the last access time of file/ are set to the time the copy was made. If target is
a link to a file, all links remain and the file is changed. "-

SEE ALSO

BUGS

cpio(l), nn(l).
clunod(2) in the Software Development System manual.

If file! and target lie on different file systems, mv must copy the file and delete
the original. In this case any linking relationship with other files is lost.

Ln will not link across file systems.

- 1 -

CPI0(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBv]
cpio -i [BcdmrtuvfsSb6] [patterns

cpio -p [adlmruv] directory

DESCRIPTION
Cpio -o (copy out) reads the standard input to obtain a list of path names and
copies -those files onto -the- standard output -together with ·path name· and status
information. Output is padded to a 512-byte boundary.
Cpio -i (copy in) extracts files from the standard input, which is assumed to
be the product of a previous cpio -o. Only files with names that match pat
terns are selected. Patterns are given in the name-generating notation of
sh(J). In patterns, meta-characters ?, •, and 1 . . .1 match the slash I charac
ter. Multiple patterns may be specified and if no patterns are specified, the
default for patterns is • G.e., select all files). The extracted files are condition�
ally created and copied into the current directory tree based upon the options
described below. The permissions of the files will be those of the previous cpio
-o. The owner and group of the files will be that of the current user unless
the user is super�user, which causes cpio to retain the owner and group of the
files of the previous cpio -o.
Cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply

to the pass option; meaningful only with data directed to or from
/dev/rmt/??).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a newer
file with the same name).

v Verbose: causes a list of file names to be printed. When used with the
t option, the table of contents looks like the output of an Is -1 com·
mand [see /sO)].
Whenever possible, link files rather than copying them. Usable only
with the -p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.
b Swap both bytes and halfwords. Use only with the -i option.
6 Process an old (i.e., UNIX System Sixth Edition format) file. Only

useful with -i (copy in).

EXAMPLES
The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

. I .

CPI0(1)

Is I cpio -o >ldev/mt/Om

cd olddir
find . -depth -print I cpio -pdl newdir

The trivial case ''find . -depth -print I cpio -oB > /dev/rmt/Om" can be
handled more efficiently by: ��

find . -cpio /dev/rmt/Om

SEE ALSO

BUGS

ar(l), find(!), Is(!).
cpio(4) in the Software Development System manual.

Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files. The -B option does not work with certain magnetic tape drives.

- 2 -

0

0

0

CPP(1)

NAME
cpp - the C language preprocessor

SYNOPSIS
/lib/cpp [option ...] [ifilc [ofile]]

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of
any C compilation using the cc(l) command. Thus the output of cpp is
designed to be in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, cpp and the rest of the C compila
tior� package will be modified to follow these changes. Therefore, the use
of cpp other than in this framework is not suggested. - The preferred way
to invoke cpp is through the cc(l) command since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general macro proces
sor.

Cpp optionally accepts two file names as arguments. !file and ofile are
respectively the input and output for the preprocessor. They default to
standard input and standard output if not supplied.
The following options to cpp are recognized:

-P Preprocess the input without producing the line control informa
tion used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is
specified, all comments (except those found on cpp directive lines)
are passed along.

-Una me
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor.

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given,
name is defined as 1 . The -D option has lower precedence than
the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of
the order of the options.

-Idir Change the algorithm for searching for #include files whose
names do not begin with I to look in dir before looking in the
directories on the standard list. Thus, #include files whose
names are enclosed in " " will be searched for first in the direc
tory of the ijile argument, then in directories named in -1
options, and last in directories on a standard list. For #include
files whose names are enclosed in <>, the directory of the ifile
argument is not searched.

-H Print, one per line on standard error, thP. full path names of
included files.

-T Preprocessor symbols are no longer restricted to eight characters.
The -T option forces cpp to use only the first eight characters for
distinguishing different preprocessor names. This behavior is the
same as previous preprocessors with respect to the length of
names and is included for backwards compatibility.

Two special names are understood by cpp. The name __ LINE __ is
defined as the current line number (as a decimal integer) as known by
cpp, and __ FILE __ is defined as the current file name (as a C string) as
known by cpp. They can be used anywhere (including in macros) just as
any other defined name.

- 1 -

CPP(1)

All cpp directives start with lines whose first character is #. Any
number of blanks and tabs are allowed between the # and the directive.
The directives are:
#define name token-string

Replace subsequent instances of name with token-string.

#define name(a?'{J, ••• , arg) token-string
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a list of
comma-separated tokens, and a) by token-string where each
occurrence of an arg in the token-string is replaced by the
corresponding set of tokens in the comma-separated list. When a
macro with arguments is expanded, the arguments are placed into
the expanded token-string unchanged. After the entire token
string has been expanded, cpp re-starts its scan for names to
expand at the beginning of the newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filenarnrt'
#include <filename>

Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used,

filename is only searched for in the standard places. See the -I
option above for more detail.

#line integer-constant " filename"

#end if

Causes cpp to generate line control information for the next pass
of the C compiler. Integer-constant is the line number of the next
line and filename is the file where it comes from. If "filename''
is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and ody if name
has been the subject of a previous #define without being the sub
ject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if
name has been the subject of a previous #define without being
the subject of an intervening #undef.

#if constant-expression
Lines following will appear in the output if and only if the
constant-expression evaluates to nonzero. All binary nonassign
ment C operators, the ?: operator, the unary -, !, and - operators
are all legal in constant-expression. The precedence of the opera
tors is the same as defined by the C language. There is also a
unary operator defined, which can be used in con::rtant-exp1·ession
in these two forms: defined (name) or defined name. This
allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by
cpp should be used in constant-expression. In particular, the
sizeof operator is not available.

#elif constant-expression
An arbitrary number of #elif directives are allowed between a #if

- 2 -

c

FILES

CPP(1)

(or #ifdef or #ifndef) directive and a #else or #endif directive.
The lines _following the #elif directive will appear in the output if
and only if the preceding test directive evaluated to zero, all inter
vening #elif directives evaluated to zero, and if the constant
expression evaluates to nonzero. If constant-expression evaluates
to nonzero, all succeeding #elif and #else directives will be
ignored. Any constant-expression allowed in an #if directive is
allowed in a #elif directive.

#else The lines following will appear in the output if and only if all of
the previous #if, #ifdef, #ifndef, and #elif directives evaluated
to zero.

The test directives and the possible #else directives can be nested.

/usr/include
SEE ALSO

standard directory for #include files

cc(l), m4(1).
DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

When new-line characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the new-lines as they were
found and expanded. The current version of cpp replaces these new-lines
with blanks to alleviate problems that the previous versions had when
this occurred.

- 3 -

CPSET(1M)

NAME
cpset - install object files in binary directories

SYNOPSIS
cpset l-oJ object directory [mode owner group]

DESCRIPTION
Cpset is used to install the specified object file in the given directory. The
mode, owner, and group, of the destination file may be specified on the com
mand line. If this data is omitted, two results are possible:

If the user of cpset has administrative permissions (that is, the user's
numerical ID is less than 100), the following defaults are provided:

mode - 0755
owner - bin

group - bin

If the user is not an administrator, the default, owner, and group of the
destination file will be that of the invoker.

An optional argument of -o will force cpset to move object to OLDobject in
the destination directory before installing the new object.

For example:

cpset echo /bin 0755 bin bin

cpset echo /bin

cpset echo /bin/echo

All the examples above have the same effect (assuming the user is an adminis
trator) . The file echo will be copied into /bin and will be given 0755, bin, bin
as the mode, owner, and group, respectively.

Cpset utilizes the file /usr/src/destinations to determine the final destination of
a file. The locations file contains pairs of path names separated by spaces or
tabs. The first name is the "official" destination (for example:. /bin/echo). The
second name is the new destination. For example, if echo is moved from /bin
to /usrlbin, the entry in /usr/src/destinations would be:

/bin/echo /usr/bin/echo

When the actual installation happens, cpset verifies that the "old" path name
does not exist. If a file exists at that location, cpset issues a warning and con
tinues. This file does not exist on a distribution disk; it is used by sites to track
local command movement. The procedures used to build the source will be
responsible for defining the "official" locations of the source.

Cross Generation
The environment variable ROOT will be used to locate the destination file On
the form $ROOT/usr/src/destinations) . This is necessary in the cases where
cross generation is being done on a production system.

SEE ALSO
instal!OM), make(!), mk(B).

- I -

c

CRASH(1M)

NAME
crash - examine system images

SYNOPSIS
/etc/cr�sh [system] [namelist]

DESCRIPTION
Crash is an interactive utility for examining an operating system cqre
image. It has facilities for interpreting and formatting the various con
trol structures in the system and certain miscellaneous functions that are
useful when perusing a dump.
The arguments to crash are_ the file name where the systern image can be
found and a namelist file to be used for symbol valQes.

·

The default values are /dev/me� and /unix; hence, crash with no argu
ments can be used to examine an active �ystem. If a system image file is
given, it is assumed to be a system core dump and the default proc!'!SS is
set to be that of the process running at the time of the crash. This is
determined by a value stored in a fixed location by th� dump mechani!3m.

COMMANDS ·
Inpqt to crash is typically of the form:

command [options 1 [structures to be printed].
When allowed, optionr; ·will modify the format of the printout. If no
specific structure elements are specified, all valid entries will be used. As
an example, proc - 12 15 3 would print process table slots 12, 15, �md 3
in a long format, while prOc would print the entire process table in stan-
dard format. · '

In general, those commands that perform J/0 with addresses assume hex
adecimal on 32-bit machi

'
nes and octal on 16-bit machines.

The current repertory consists of:

user I list of process table entries]
Aliases: uarea, u_area, u.
Print the user structure of the named process as deterrpined by
the information contained in the process table entry. If no entry
number is given, the information from the last executing process
will be printed. Swapped processes produce an 13rror message.

t;race [-r] [list of process table entries]
Aliases: t.
Generate a kernel stack trace of the current process. If the -r
option is used, the trace begins at the saved stack frame pointer
in kfp. Otherwise the trace starts at the bottom of the stack and
attempts to find valid stack frames deeper in th€ stack. If no
entry npmber is given, the information from the last executing
process will be printed.

kfp [st�ck frame pointer]
Aliases: fp
Print the program's idea of the start of the current stack frame
(set initiapy from a fix:ed location in the dump) if no argument is
given or set the frame pointer to the supplied value.

stack [list of process table entries 1
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process. The addresses
show11 are virtual system data addresses rather than true physi
cal locations. If no entry number is given, the information from
the last executing prOCE)SS will be printed.

- 1 -

CRASH(1M)

proc [-[r] J [list of process table entries]
Aliases: ps, p.
Format the process table. The -r option causes only runnable
processes to be printed. The - alone generates a longer listing.

pcb [list of process table entries]
Print the process control block of the current process. If no entry
number is given, the information from the last executing process
will be printed.

gdt [selector in hex] [number in decimal]
Print Global Descriptor Table. If no parameters are specified,
then the expanded form of the Global Descriptor Table is printed.
All non-zero segment entries are printed. If the selector parame
ter is given, the non-zero segments are expanded and printed from
this point until either the end of the table is reached or the
number of segments specified is reached, whichever comes first.
(UNIX System V /286 only.)

ldt [process number in decima.j [selector in hex] [number in
decimal]
Print Local Descriptor Table. If no parameters are specified, then
the current Local Descriptor Table is expanded and printed. All
non-zero segment entries are expanded. If the process number is
specified, then the Local Descriptor Table for that process is
printed. Other parameters are treated in the same manner as in
the gdt function. (UNIX System V /286 only.)

idt [selector in hex] [number in decimal J
Print Interrupt Descriptor Table. If no parameters are specified,
then the expanded form of the Interrupt Descriptor Table is
printed. All non-zero segment entries are printed. If the selector
parameter is given, the non-zero segments are expanded and
printed from this point until either the end of the table is reached
or the number of segments specified is reached, whichever comes
first. (UNIX System V /286 only.)

stkbase [process number in decimal]
Print bottom of kernel stack. This function allows the user to
format the bottom of the kernel stack. The area printed is the
interface from the user to kernel by means of a system call or an
interrupt while in user mode. If a process number is specified, the
kernal stack interface for the process is printed. If no process
number is specified, then the current interface is printed. (UNIX
System V /286 only.)

i-node r -] (list of i-node table entries J
Aliases: ino, i.
Format the i-node table. The - option will also print the i-node
data block addresses.

file [list of file table entries]
Aliases: files, f.
Format the file table.

lck Aliases: I
Print the active and sleep record lock tables; also verify the
correctness of the record locking linked lists.

mount [list of mount table entries]
Aliases: mnt, m.

• 2 .

C)

0

Format the mount table.
text [list of text table entries l

Aliases: txt, x.
Format the text table.

tty [type] [-] [list of tty entries]

CRASH(1M)

Aliases: term (also sio and con are aliases on Intel machines).
Print the tty structures. The type argument determines which
structure will be used (such as sio, con, on Intel equipment). No
default type is provided. However, once specified, the last type is
remembered. The - option prints the stty(l) parameters for the
given line.

stat Print certain statistics found in the tlump. These include the
panic string (if a panic occurred), time of crash, system name, and
the registers saved in low memory by the dump mechanism.

var Aliases: tunables, tunable, tune, v.
Print the tunable system parameters.

buf [list of buffer headers 1
Aliases: hdr, bufhdr.
Format the system buffer headers.

buffer I format] [list of buffers]
Alias: b.
Print the data in a system buffer according to format. If [01·mat
is omitted, the previous format is used. Valid formats include
decimal, octal, hex, character, byte, directory, i-node, and
write. The last creates a file in the current directory (see FILES)
containing the buffer data.

callout
Aliases: calls, call, c, timeout, time, tout.
Print all entries in the callout table.

map [list of map names]
Format the named system map structures.

nm [list of symbols]
Print symbol value and type as found in the namelist file.

ts [list of text/data addresses]
Find the closest text or data symbols to the given addresses.

ds [list of text/data addresses]
Same function as ts.

od [symbol name or address 1 [count] [format]
Aliases: dump, rd.
Dump count data values starting at the symbol value or address
given according to /Mmat. Allowable formats are octal,
longoct, decimal, longdec, character, hex, or byte.

odl [process number in decimal] [address in hex] [count in
decimal] [format]
Dump count data values for the local space defined by the process
number and the address according to fo1'mat. Allowable formats
are octal, longoct, decimal, longdec, character, hex, or
byte. (UNIX System V /286 only.)
Escape to shell.

q Exit from cmsh.

- 3 -

CRASH(1M)

? :Print synopsis of commands.

ALIASES

FILES

There are built-in aliases for many of the formats as well as those listed
for the commands. So:rp_e of them are:

byte b.
character char, c.
decimal dec, e.
directory 4irect, dir, d.
hexajlecimal hexadec, hex, h, x.
i-node ino , i.
longdec ld, D.
longoct lo, 0.
octal oct, o.
write w.

/usr/include/ sys/* .h
/dev/mem

header files for table and structure info
default system image file

/unix default namelist file
buf.# files created conta�ning buffer data

SEE ALSO

BUGS

mount(lM), nm(l), ps(l), sh(l), stty(l).

Most flags are abbreviated and will have littlt;! meaning to the uninitiated
user. A source listing of the system header files at hand would be most
useful while using crash.

Stack tracing of the current process on a running system does not work.

- 4 -

CRON(1M)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions found in crontab files;
users can submit their own crontab file via the crontab command. Commands

- Which -are--to be ·executed ·only once -may be submitted --via--the at -command.
Since cron never exits, it should only be executed once. This is best done by
running cron from the initialization process through the file /etc/rc [see
init(S)] .

Cron only examines crontab files and at command files during process initializa·
tion and when a file changes. This reduces the overhead of checking for new or
chansed files at regularly scheduled intervals.

/usr/lib/cron
/usr/lib/cron/log
/usr/spoollcron

main cron directory
accounting information
spool area

SEE ALSO
at(l), crontab(l), sb(l).

DIAGNOSTICS
A history of all actions taken by cron are recorded in /usrllib/cron/Iog.

- 1 -

CRONTAB(1)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -1

DESCRIPTION

FILES

Crontab copies the specified file, or standaid input if no file is specified, into a
directory that holds all users' crontabs. The -r option removes a user's crontab
from the crontab directory. Crontab -I will list the crontab file for the invok
ing user.

Users are permitted to use crontab if their names appear in the file
/usrllib/cron/cron.allow. If that file does not exist, the file
/usrllib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
either file is at.deny, global usage is permitted. The allow/deny files consist of
one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (I-31),
month of the year (I-12).
day of the week (0-6 with 0-Sunday).

Each of these patterns may be either an asterisk (meaning all legal values), or
a list of elements separated by commas. An element is either a number, or two
numbers separated by a minus sign (meaning an inclusive range). Note that
the specification of days may be made by two fields (day of the month and day
of the week). If both are specified as a list of elements, both are adhered to.
For example, 0 0 1 ,15 • 1 would run a command on the first and fifteenth of
each month, as well as on every Monday. To specify days by only one field, the
other field should be set to • (for example, 0 0 • • I would run a command only
on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by\) is
translated to a new-line character. Only the first line (up to a % or end of line)
of the command field is executed by the shell. The other lines are made avail
able to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file.
Cron supplies a default environment for every shell, defining HOME, LOGNAME,

SHELL(=Ibin/sh), and PATH(•:/bin:/usr/bin:/usrllbinl.

NOTE: Users should remember to redirect the standard output and standard
error of their commands! If this is not done, any generated output or errors
will be mailed to the user.

/usr/lib/cron
/usr/spool/cron/crontabs
/usr/lib/cron/log
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny

- 1 -

main cron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO
sh(l).
cron(lM).

-2 -

CRONTAB(1)

I

CSH(1) CSH(1)

NAME
c.sh - a shell (command .intezpreter) with C-like syntax

SYNOPSIS

csh [-cefinstvVxX] [arg •••]
DESCRIPTION

Csh is a first implementation of a command language interpreter inco:rporating a history
mechanism (see History Substitutions) job control facilities (see Jobs) and a C-like
syntax.
Note that although job control facilities are a standard function of
Berkeley Csh, Microport System V/AT does not support Berl,eley job
control at this time.

An instance of csh begins by executing conunands from the file '.cshrc' in the IIane
directory of the invoker. If this is a login shell then it also executes commands from the
file ' login'.

In the normal case, the shell will then begin reading commands from the terminal,
prompting with '%'. Processing of arguments and the use of the shell to process files
Cf)ntaining command scripts will be descnbed later.
The shell then repeatedly perfonns the following actions: a line of command input is read
mid broken into words. This sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is executed.
When a login shell terminates it executes commands from the file '.logout' in the users
home directory.
Lexical structure
The shell splits input lines into words at blanks and tabs with the following exceptions.
The characters '&' 'I' ';' '<' '>' '(' ')' form separate words.Ifdoubledin '&&', 'I I','<<'
or '>>' these pairs form single words. These parser metacharacters may be made part of
other words, or prevented from their special meaning by preceding them with '\'. A new
line preceded by a '\' is equivalent to a blank.

In addition. strings enclosed in matched pairs of quotations, '"', ·� · or '"', fonn parts of a
word; metacharacters in these strings, including blanks and tabs, do not form separate
words. These quotations have semantics to be described subsequently. Within pairs of '"'
or '"' characters a newline preceded by a '\' gives a true newline character.

When the shell's input is not a terminal, the character '#' introduces a conunent which
continues to the end of the input line. It is prevented from this special meaning when
preceded. by '\' and in quotations using '"', '' ', and "".
Commands
A simple conunand is a sequence of words, the first of which specifies the conunand to
be executed. A simple command or a sequence of simple conunands separated by 'I'
characters forms a pipeline. The output of each command in a pipeline is connected to
the input of the next. Sequences of pipelines may be separated by ';', and are then
executed sequentially. A sequence of pipelines may be executed wihout inunediately
waiting for it to terminate by following it with an ' & '.

Any of the above may be placed in '(' ')' to form a simple command (which may be a
component of a pipeline, etc.) It is also possible to separate pipelines with 'I I' or ' && '
indicating, as in the C language, that the second is to be executed only if the first fails
or succeeds respectively. (See Expressions.)

- I -

CSH(1)

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs, printed by
the jobs command, and assigns them small integer numbers. When a job is started
asynchronously with ' & ', the shell prints a line which looks like:

[1] !234

indicating that the job started asynchronously was job number 1 and had one (top-level)
process, whose process id was 1234.

If)iOu-arelllDJiing-ajob-and wish-to do-something else you may hit the key -"'Z (control
Z) which sends a STOP signal to the current job. The shell will then normally indicate
that the job has been 'Stopped', and print another prompt. You can then manipulate the
state of this job, putting it in the background with the bg command, or run some other
commands and then eventually bring the job back into 'QJ.e foreground with the
foreground conunandfg. A 11Z takes effect immediately, and is like an .interrupt in that
both pending output and unread input are discarded when it is typed. There is another
special key, "Y, which does not generate a STOP signal until a program attempts to
read(2) it 11tis can usefully be typed ahead when you have prepared some commands for
a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal.
BackgroWldjobs are normally allowed to produce outpUt, but this can be disabled by
giving the command "stty tostop". If you set this tty option, background jobs will stop
when they try to produce output, just as they do when trying to read input.

There are several ways to refer to jobs in the shell. The character '%' introduces a job
name, If you wish to refertojob number 1, you can name it '%1'. Naming a job brings
it to the foreground; thus '%1' is a synonym for 'fg %1 ', bringing job 1 back into the
foreground. Similarly saying '%1 &' resumes job 1 in the background Jobs can also be
named by prefixes of the string typed in to start them, if these prefixes are unambiguous.
Thus, '%ex' would normally restart a suspended ex(l) job, if there were only one
suspended job whose name began with the string 'ex'. You can also say '%?string',
which specifies a job whose text contains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to
jobs, the current job is marked with a '+' and the previous job with a '-'. The abbre
viation '%+' refers to the current job and '%-' refers to the previous job. For close
analogy with the syntax of the history mechanism (described below), '%%' is also a
synonym for the current job.

Status reporting
This shell learns inunediately whenever a process changes state. It nonnally informs you
whenever a job becomes blocked so that no further progress is possible, but only just
before it prints a prompt, so that it does not otherwise disturb your work. If, however,
you set the shell variable notify, the shell will notify you immediately of changes of
status in background jobs. There is also a shell command notify which marks a .single
process so thal its status changes will be immediately reported, By default notify marks
the current process; simply say 'notify' after starting a background job to mark it.

When you tJy to leave the shell while jobs are stopped, you will be warned that 'You
have stopped jobs.' You may use the jobs command to see what they are. If you do this
or inunediately try to exit again, the shell will not warn you a second time, and the
suspended jobs will be terntinated.

NOTE: Although job control facilities are a standard function of Berkeley Csh.
Microport System V /AT does not support Berkeley job control at this time.

- 2 -

CSH(1)

Substitutions
We now describe the various transfonnatioils the shell perfonns on the input in the order
in which they occur.

History substitutions
History substitutions place words from previous command input as portions of new
commands, making it easy to repeat commands, repeat arguments of a previous
conunand in the current command, or fix spelling mistakes in the previous command
with little typing and a high degree of confidence. History substitutions begin with the
character '!' and may begin anywhere in the input stream (with the provison that they
do not nest.) This '!' may be preceded by an '\' to prevent its special meaning; for
convenience, a '!' is p;:tSSed unchanged when it is followed by a blank, tab, newline, '='
or'('. (Histo:ry substitutions also occur when an input line begins with 'A'. This special
abbreviation will be deScribed later.) Any input line which contahts history substitution
is echoed on the terminal before it is executed as it could have been typed without
history substil.lltion.

Commands input from the tenninal which consist of one or more words are saved on the
histmy list. The history substitutions reintroduce sequences of words from these saved
comTDands into the input stream. The size is controlled by the history variable; the
previous command is always retained, regardless of its value. Commands are numbered
sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
1 1 cat oldwrite.c
12 cliff *write.c

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but the current event number can be made part of the prompt by placing
an 'I' in the prompt string.

With $e current event 13, we can refer to previous events by event number ' !11 ',
relatively as 'l-2' (referring to the same event), by a prefix of a command word as in '!d'
for event 12 or '!wri' for event 9, or by a slring contained in a word in the command as
in '! ?mic?' also referring to event 9. These forms, without further modification, simply
reintroduce the words of the specified events, each separated by a single blank. As a
special case '!!' refers to the previous command; thus '!!' alone is essentially an:do.

To select words from an event we can follow the event specification by a ':' and a
designator for the desired words. The words of an input line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being 1, etc. The
l:lasic word designaton; are:

0 lin;t(command)word
n n'th argwnent
A first argument, i.e. '1'
$ last argm:nent
% wOidmat<:lled by (immediately preceding) ?s? search
x-y range of words
..:y abbreviates '0-y'
� abbreviates '"-$', or nothing if only 1 word in event
x* abbreviates 'x-$'
x- like 'x *' but omitting word '$'

- 3 -

(' ' '

CSH(1)

The ':' separating the event specification from the word designator can be omitted if the
argument selector begins with a 'II', '$', '*' '-' or '%'. A sequence of modifiers, each
preceded by a ':', can be placed after the optional word designator. The following
modifiers are defined:

It Remove a trailing pathname component, leaving the head.
r Remove a trailing '.xxx' component, leaving the root name.
e Remove all but the extension '.xxx' part.
s 1-11 r I Substitute J for r
t Remove all leading patlmame components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g. 'g&'.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tab> and new lines.

Unless preceded by a 'g' the modification is applied only to the fliSt modifiable word.
With substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors,
but rather strings. Any character may be used as the delimiter in place of"/'; a '\' quotes
the delimiter into the l and r strings. The character '&' in the right hand side is replaced
by tlte text from the left A '\' quotes ' & ' also. A null 1 uses the previous string either
from an l or from a contextual scan string s in ' !? s?'. The trailing delimiter in the
substitution may be omitted if a newline follows inunediately, as may the trailing '?' in
a contextual scan.

A history reference may be given without an even specification, e.g. '!$'.In this case the
reference is to the previous command unless a previous history reference occurred on the
same line, in which case this form repeats the previous reference. Thus '!?foo?A !$'
gives the frrst and last arguments from the command matching '?foo?'.

A special abbreviation of a history reference occurs when the first non-blank character of
an input line is a 'A'. This is equivalent to '!:sA' providing a convenient shorthand for
substitutions on the text of the previous line. Thus '"Ib�'�lib' fixes the spelling of 'lib' in
the previous command. Finally, a history substitution may be surrounded with ' { ' and
' } ' if necessary to insulate it from the characters which follow. Thus, after 'Is -ld -paul'
we might do '! {3}a' to do 'Is -ld -paula', while '!3a' would look for a command starting
'3a'.

Quotations with #and 11
The quotation of strings by "' and "" can be used to prevent all or some of the
remaining substitutions. Strings enclosed in •n are prevented from any further interpre
tation. Strings enclosed in '"' are yet variable and command expanded as described below.

In both cases dte resulting text becomes (all or part of) a single word; only in one
special case (see Command Substitution below) does a '"' quoted string yield parts of
more than one word; '" quoted strings never do.

Alias substitution
The shell maintains a list of aliases which can be established, displayed and modified by
the alias and unalias commands. After a command line is scanned, it is parsed into
distinct conunands and the first word of each conunand, left-to-right, is checked to see if
it has an alias. If it does, then the text which is the alias for that command is reread wih
the history mechanism available, as though that conunand were the previous input line.
The resulting words replace the command and argument list. If no reference is made to
the history list, then the argument list is left unchanged.

- 4 -

CSH(1)

Thus if the alias for 'Is' is 'Is -1' the command 'Is /usr' would map to 'Is -1 usr', the
argument list here being undisturbed. Similarly if the alias for 'lookup' was 'grep !A
/et£/passwd' then 'lookup bill' would map 1D 'grep bill /elc/passwd'.

H an alias is found. the word transfonnati�>n of the input teXt is perfonned and the
aliasUt,g process begins again on the refonned input line. If the first word of the new text
is the same as the old. looping is prevented by flagging it to prevent further aliasing. ·�
Other loops are detected and cause an error message.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can
'alias print �pr \!* l lpr�' to make a command which pr's its arguments to the line
prinler.

Variable substitution
The shell maintains a set of variables, each of which has as value a list of zero or more
words. Some of these variables are set by the shell or referred to by it For instance, the
argv variable is an image of the shell's argument list, and words of this variable's value
are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
conunands. Of the variables refened to by the shell, a number are toggles; the shell does
not care what their value is; only whether they are set or not. For instance, the verbose
variable is a toggle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The '@' command permits numeric
calculations to be performed and the result assigned to a variable. Variable values are,
however, always iepresented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and subsequent words
of multi. word values are ignored.

After the input line is aliased and parsed, and before each command is executed. variable
substib.Jtion is performed keyed by '$' characters. This expansion can be prevented by
preceding the '$' with a '\' except within '"'s where it always occurs, and within '"'s
where it never occurs. Strings quoted by ''' are interpreted later (see Canmand
substitution below) so '$' substib.Jtion does not occur there until later, if at all. A '$' is
passed unchanged if followed by a blank, lab, or end-of·Iine.

Input/output reclirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the conunand name and entire argument list are expanded
together. It is thus possible for the first (command) word to this point to generate more
than one word, the first of which becomes the command name, and the rest of which
become argumeniS.

Unless enclosed in '"' or given the ':q' modifier, the results of variable substitution may
evenb.Jally be conunand and filename substituted. Within ''", a variable whose value
consists of multiple words expands to a (plrtion of) a single word, with the words of the
variables value separated by blanks. When the ':q' modifier is applied to a substitution,
the variable will expand to multiple words with each word separated by a blank and
quoted to prevent later conunand or filename substitution.

The following metasequences are provided for introducing variable values into the shell
input. Except as noted, it is an error to reference a variable which is not set.

- 5 .

CSH{1)

$name
$[name)

Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from following characters which would otherwise be part of it
Shell variables have names consisting of up to 20 letters and digits starting with a
letter. The undezscore character is considered a letter.

If name is not a shell variable, but is set in the environment, then that value is
returned (but : modifiers and the other forms given below are not available in this
caset

$name[selector]
$[name[selectm]}

May be used to select only some of the words from the value of name. The selector
is subjected to '$' substitution and may consist of a single number or two nwnbers
separated by a '-'. The first word of a variables value is numbered '1'. If the first
number of a range is omitted it defaults to '1'. If the last member of a range is
omitted it defaults to '$#name'. The selector '*' selects all words. It is not an error
for a range to be empty if the second argwnent is omitted or in range.

$#nmne
$[#name}

$0

Gives the number of words in the variable. This is useful for later use in a
'[selector]'.

Substitutes the name of the flle from which command input is being read. An error
occurs if the name is not known.

$number
$[number}

Equivalent to '$argv[number]'.
$*

Equivalent to '$argv[*]'.
The modifiers ':h', ':t', ':r', ':q• and ':x' may be applied to the substitutions above as
may ':gh', ':gt' and ':gr'.Hbraces '{' '}' appearinthecommand fonn then the modifiers
must appear within the braces. The current implementation allows only one
': ' modifier on each '$' expansion.

The following substitutions may not be modified with ':' modifiers.
$?name
$[?name}

Substitutes the string '1' if name is set. '0' if it is not.
$10

Substitutes '1' if the current input filename is known. '0' if it is not

$$ Substitutes the (decimal) process number of the (parent) shell. I $<
Substitutes a line from the standard input, with no further interpretation thereafter.
It can be used to read from the keyboard in a shell script.

- 6 -

CSH(1)

Command and filename substitution
The remaining substitutions, command and fllename substitution, are applied selectively
to the arguments of built-in conunands. This means that portions of expressions which
are not evaluated are not subjected to these expansions. For commands which are not
internal to the shell, the conunand name is substituted separately from the argument list
This occurs very late. after input-output redirection is performed, and in a child of the
main shell.
Command substitution
Command substitution is indicated by a command enclosed in '''. The output from such
a COIIlJlUllld is normally broken into separate words at blanks, tabs and new lines, with
null words bemg discarded, this text then replacing the original string. Withln ""s, only
new lines force new words; blanks and tabs are preserved
In any case, the single final newline does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the conunand
outputs a complete line.

Filename substitution
If a word contains any of the characters '*', '?', '[' or '{' or begins with the character ·-·,
then that word is a candidate .for filename substitution. also known as 'globbing'. This
word is then regarded as a pattern, and replaced with an alphabetically sorted list of file
names which match the pattern. In a list of words specifying filename substitution it is
an error for no pattern to match an existing file name, but it is not required for each
pattern to match. Only the metacharacters '"'', '?' and '[' imply pattern matching; the
characters '-' and '{' being more akin. to abbreviations.

In tnatching filenames, the character '.' at the beginning of a filename or immediately
following a '/', as well as the character '/' must be matched explicitly. The character '*'
matches any string of characters, including the null string. The character '?' matches any
single character. The sequence '[...]' matches any one of the characters enclosed. Within
' [.•.]', a pair of characters separated by '-' matches any character lexically between the
two.
The character '-' at the beginning of a fllename is used to refer to home directories.
Standing alone., i.e. ·-· it expands to the invokers home directory as reflected in the value
of the variable home. When followed by a name consisting of letters, digits and '-'
characters the shell searches for a user with that name and substitutes their home
directory; thus '-ken' might expand to '/usr/ken' and '-ken/chmach' to
'/usr/ken/chmach'. H the character '-' is followed by a character other than a letter or 'f
does not appear at the beginning of a word, it is left undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abc ace ade'. Left to right order is
preserved, with results of matches being sorted separately at a low level to preserve this
order. This construct may be nested. Thus, '-source/sl/{oldls,ls}.c' expands to
'/usr/source/sl/oldls.c /usr/source/slfu.c' whether or not these files exist. without any
chance of error if the home directory for 'source' is '/usr/source'. Similarly
'.J{meni.o,"'box}' might expand to • . ./memo .. /box .. /mbox'. (Note that 'memo' was
not sorted with the results of matching '*box'.) A:; a special case '{', '} ' and '{} ' are
passed undisll.lrb<d.
Input/output
The standard input and standard output of a command may be redirected with the
following syntax:
<name

Open file name (which is first variable, command and filename expanded) as the
standard ll1put.

- 7 -

CSH(1)

<<word
Read the shell input up to a line which is ide'r<tical to word. Word is not subjected
to variable, filename or command substitution, and each input line is compared to
word before any substitutions are done on this input line. Unless a quoting '\', '"',
"'' or '" appears in word, variable and command substitution is performed on the
intervening lines, allowing '\' to quote '$ ', '\' and '' '. Commands which are
substituted have all bll!llks, tabs, and new lines preserved, except for the final
newline which is dropped. The resultant text is placed in an anonymous temporary
file which is given to the command as standard input.

> name
>! name
>& name
>&!name

The file name is used as standard output. If the file does not exist then it is created;
if the file exists, it is tnmcated. and previous contents are lost.

If the variable 1WClobber is set, then the file must not exist or be a character special
flle (e.g. a terminal or '/dev/null ') or an errorresults. This helps pi"event accidental
destruction of files. In this case the 'l' forms can be used and suppress this check.

The forms involving ' & ' route the diagnostic output into the specified flle as well
as the standard output. Name is expanded in the same way as '<' input filenames
are.

>>name
>>& name
>>l name
>>&! name

Uses file tuJme as standard output like '>' but places output at the end of the file. If
the variable noclobber is set, then it is an error for the file not to exist unless one df
the '!' fonns is given. Olherwise similar to '>'.

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus, unlike
some previous shells, commands run from a file of shell conunands have no access to
the text of the commands by default; rather they receive the original standard input of the
shell. The '<<' mechanism should be used to present inline data. This pennits sheli
command scripts to function as components of pipelines and allows the shell to block
read ils input. Note that the default standard input for a command run detached is not
modified to be the empty file '/dev /null'; rather the standard input remains as the original
standard input of the shell. If this is a tenninal and if the process attempts to read from
the terminal, then the process will block and the user will be notified (see Jobs above).

Diagnostic output may be direcetd tluough a pipe wilh the standard output. Simply use
the forrn 'I&' rather than just 'I'.

Expressions
A number of the built-in commands (to be described subsequently) take expressions, in
which the operators are similar to those of C, with the same precedence. These
expressions appear in the@, exit, if, and while commands. The following operators are
available:

11 && I A & = = I= =- ! <= >= < > << >> + - * I % ! - ()

- 8 -

CSH(1)

Here the precedence increases to the right. '=' '!=' '=-' and '!-', '<=' '>=' '>', '<<' and
'>>', '+' and'-' , ••• 'f and'%' being, in groups, atthe same level. The '=' '!=' '=-'
and 'I-' operil.tors compare their arguments as strings; all others operate on numbers. The
operators '=-' and '!-' are like '!=' and '=' except that the right hand side is a paJiem
(containing, _e.g. '*'s, ''!'s and instances of '[...] ') against which the left hand operand is
matched. This reduces the rteed for use of the switch statement in shell scripts when all _� that is really needed is pattern matching.

Strings whiCh begin with '0' are considered octal numbers. Null or missing arguments
are considered '0'. The result of all expressions are strings, which represent decimal
numbers. It is important to note that no two Components of an expression can appear in
the same word; except when adjacent to components of expressions which are
syntactically significant to the parser ('&' 'I' '<' '>' '(' ')') they should be SUITOWlded by
spaces.
Also available in expressions as primitive operands are Command executions enclosed in
'{' and '}' andfileenqujries of the form '-l name' where /is one of:

r reo:! access
w write access
X execute access
e existence
0 ownezship
z """ '""'
f plmn file
d direcOJiy

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. '0'. Command executions succeed, returning true, i.e. '1', if
the command exits with status 0; otherwise they fail, returning false, i.e. '0'. If more
detailed status information is required, then the command should be executed outside of
an expression and the Variable status exanllned.
Control flow
The shell contains a number of commands which can be used to regulate the flow of
control in command files (shell scripts) and (in limited but useful ways) from tenninal
input. These conunands all operate by forcing the shell to reread or skip in its input and,
due to the implementation, restrict the placement of some of the commands.
The[oreach, switch, and while statements, as well as the if-then-else form of the if
statement require that the major keywords appear in a single simple conunand on an
input line as shown below.

Ifthe shell's input is not seekable, the shell buffers up input whenever a loop is being
read and pefonns seeks in this internal buffer to accomplish the rereading implied by the
loop. (To the extent that this allows, backward goto's will succeed on non-seekable
inputs.)
Built-in commands
Buil�-in conunmds are executed wihin the shell. If a built-in command occurs as any
comJXHlent of a pipeline except the last then it is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second fonn prints the alias for name. The
final form assigns the specified wordlist as the alias of 1UJJne; wordlist is command
and filename substituted. Name is not allowed to be alias or unalias.

- 9 ·

CSH(1)

alloc

bg

Shows the amount of dynamic core in use, broken down into used and free core, and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address, size, and
whether it is used or free. This is a debugging command and may not work in
production versions of the shell; it requires a modified version of the system
in.emory allocator.

bg %job ...
Puts the current or specified jobs into the background, continuing them if they were stoppOd.

break
Causes execution to resume after the end of the nearest enclosing foreach or while.
The remairting conunands on the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resurrllng after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to a directory name. If no argument is given
then change to the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not begin
with '/', 'J' or '.J'), then each component of the variable cdparh is checked to see if
it has a subdirectory name. Finally, if all else fails, but name is a shell variable
whose value begins with '/', then this is tried to see if it is a directOry.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the
conunands on the current line are executed.

default:

dirs

Labels the default case in a switch statement. The default should come after all calr!'
labels.

Prints the directory stack; the top of the stack is at the left, tl1e first directory in the
stack being the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output, separated by spaces,
and terminated with a newline unless the-n option is specified.

else
end
endif
endsw

See the description of theforeach, if, switch, and while statements below.

- 10 -

I

CSH(1)

eval arg ...
(As in sh(l).) The arguments are read as input to the shell and the resulting
conunand(s) executed. This is usually used to execute commands generated as the
result of conunand or variable substitution, since parsing occurs before these
substitutions. See tset(l) for an example of using eva/.

exec command
The specified conunand is executed in place of the current shell.

exit
exlt(expr)

fg

The shell exits either with the value of the status variable (first form) or with the
value ofthespecifiedexpr (secondfonn).

fg %job ...
Brings the current or specified jobs into the foreground, contiriuing them if they
were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence
of commands between this commnd and the matching end are executed. (Both
for each and end must appear alone on separate lines.)
The built-in command continue may be used to continue the loop prematurely and
the built-in conunand break to terminate it prematurely. When this conunand is read
from the terminal, the loop is read up once prompting with '?' before any
statements in the loop are executed. If you make a mistake typing in a loop at the
terminal you can rub it out

glob wOrdlist
Like echo but no '\' escapes are recognized and words are delimited by null characters
in the output. Useful for programs that wish to use the shell to filename expand a
list of words.

gotoword
The specified word is filename and connnand expanded to yield a string of the form
'label'. The shell rewinds its input as much as possible and searches for a line of
the form 'label:' possibly preceded by blanks or tabs. Execution continues after the
specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at
locating commands (and avoiding exec's). An exec is attempted for each component
of the path where the hash function indicates a possible hit, and in each component
which does not begin with a '/'.

history
history n
history -r n

Displays the history event list; if n is given only the n most recent events are
printed. The -r option reverses the order of printout to be most recent first rather
than oldest first

if (expr) command
If the specified expressiort evaluates true, then the single command with arguments
is executed. Variable substitution on command happens early, at the same time it
does for the rest of the if command. Command must be a simple conunand. not a
pipeline, a conunand list, or a parenthesized command list. Input/output redirection
occurs even if expr is false, when command is not executed (this is a bug).

- 11 -

0

CSH{1)

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands to the [II'Stelse are executed; else if
expr2 is true then the commands to the second else are executed, etc. AJty number
of else-if pairs_ are possible; only on-e em! if_ is peed¢. T,he_else_ p;rrt i!i Ukeyv'i¥e
optional. (The words else and end if must appear at the beginning of input lines; the
if must appear alone on its input line or after Bnelse.)

jobs .
jobs -1

Lists the active jobs; given the -1 options lists process id's in addition to the
nonnal information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill -!

Sends either the TERM (tenninate) signal or the specified signal to the specified
jobs or processes. Signals are either given by number or by names (as given in
/usrlincludelsignal .h, stripped of the prefix "SIG'�. The signal names are listed by
"lcill -1". There is no default. saying just 'kill' does not send a signal to the current
job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or
process will be sent a CONT (continue) signal as well.

limit
limit resource
limit resource maximum-use

Limits the consumption by the current process and each process it creates to not
individually exceed maximum-use on the specified resource. If no maximum-use is
given, then the current limit is printed; if no resource is given, then all limitations
are given.

Resources controllable currently include cputime (the maximum number of cpu
seconds to be used by each process), filesize (the largest single file which can be
created), datasize (the maximum growth of the data +stack region via sbrJd..2) beyond
the end of the program text), stacksize (the maximwn size of the automatically
extended stack region), and coredumpsize (the size of the largest core dump that will
be created).
The maximum-use may be given as a (floating point or integer) number followed
by a scale factor. For all limits other than cputime the default scale is 'k' or
'kilobytes' (1024 bytes); a scale factor of 'm' or 'megabytes' may also be used. for
cputime the default scaling is 'seconds', willie 'm' for minutes or 'h' for hours, or a
time of the form 'mm:ss' giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one
way to log off, included for compatibility with sh(l).

- 12 -

I

CSH(1)

logout
Terminate a login shell. Especially useful if ignoreeojjs set.

newgrp

nice

Changes the group identification of the caller; for details see newgrp(l). A new shell
is executed by newgrp so that the shell state is lost

nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second fonn sets the nice to the
given number. The f"mal two forms run command at priority 4 and PUJmber
respectively. The super-user may specify negative niceness by using 'nice -number
... '. Command is always executed in a sub-shell, and the restrictions placed on
commands in simple if statements apply.

nohup
nohup conunand

The frrst form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script The second fonn causes the specified conunand to be run·
with hangups ignored. All processes detached with '&' are effectivelynohup' ed.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the cument
or specified jobs changes; normally notification is presented before a prompt This
is automatic if the shell variable notify is set

oitintr
onintr -
onin tr label

Control the action of the shell on interrupts. The ftrst form restores the default
action of the shell on interrupts, which is to terminate shell scripts or to return to
the terminal command input leveL The second form 'onintr -· causes all interrupts
to be ignored. The final form causes the shell to execute a 'goto label' when an
interrupt is received or a child process tenninates because it was interrupted

In any case, if the shell is rwming detached and interrupts are being ignored, all
fonns of onintr have no meaning and interrupts continue to be ignored by the shell
and all invoked commands.

popd
popd +n .

Pops the directo:ry stack, returning to the new top directory. With an argument '+n'
discards the nth entry in the stack. The elements of the directozy stack are numbered
from 0 starting at the top.

pushd
pushdname
pushd+n

W1th no arguments, pushd exchanges the top two elements of the directo:ry stack.
Given a nmne argument, pushd changes to the new directory (ala cd) and pushes the
old current working di:rect:ory (as in csw) onto the directory stack With a numeric
argument, rotates the nth argument of the directory stack around to be the top
element and changes to it The members of the directory stack are numbered from
the top starting at 0.

- 13 -

(' . \

()

CSH(1)

rebasb
Causes the internal hash table of the contents of the directories in the path variable
to be recomputed. This is needed if new commands are added to directories in the
path while you are logged in. This should only be necessary if you add commands
to one of your own directories, or if a systems programmer changes the contents of
one of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the command in
the one line if statement above, is executed count times. 1/0 reilirections occur
exactly once, even if count is 0.

set name
set name=word
set name[index]=word
set name=(wordlist)

The first fonn of the command shows the value of all shell variables. Variables
which have other than a single word as value print as a parenthesized word list. The
second form sets name to the null string. The third fonn sets name to the single
word. The fourth form sets the index' th component of name to word; this
component must aheady exist. The fmal form sets name to the list of words in
wordlist. In all cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set conunand.
Note. however, that variable expansion happens for all arguments before any setting
occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most
commonly used environment variable USER, TERM, and PATH are automatically
imported to and exported from the csh variables user, term, and polh; there is no
need to use setenv for these.

shift
shift variable

The members of argv are shifted to the left, discarding argv [1]. It is an error for argv
not to be set or to have less than one word as value. The second form performs the
same function on the specified variable.

source name

stop

The shell reads commands from name. Source commands may be nested; if they are
nested too deeply the shell may run out of file descriptors. An error in a source a1
any level terminates all nested source commands. Input during source commands is
never placed on the history list.

stop %job ...
Stops the current or specified job executing in the backgroood

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with
"'Z. This is most often used to stop shells started by su(l).

- 14 -

CSH(1)

switch (string)
case strl:

break.sw

default:

breaksw
endsw

Each case label is successively matched, against the specified string which is first
command and filename expanded. The file metacharacters '*', '?' and '[...]' may be
used in the case labels, which are variable expanded. If none of the labels match
before a 'default' label is found, then the execution begins after the default label.
Each case label and the default label must appear at the begimllng of a line. The
command breaksw causes execution to continue after the endsW. Otherwise control
may fall through case labels and default labels as in C. If no label matches and there
is no default. execution continues after the endsw.

time
time conunand

With no argwnent, a summary of time used by this shell and its children is printed.
If arguments are given, the specified simple command is timed and a time summary
as described under the time variable is printed.lf necessary, an extra shell is created
to print the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (fJISt form) or set to the specified value (second
form). The mask is given in octal. Common values for the mask are 002 giving all
aCcess to the group and read and execute access to others, or 022 giving read and
execute access formers in the group or others.

unali2s pattern
All aliases whose names match the specified pattern are discarded. Tiws all aliases
are removed by 'unalias*'. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimlt resource
unlimit

Removes the limitation on resource. If no resource is specified, then all resource
limitations are removed.

unset pattern
All variables whose names match the specified pattern are removed. Thus all
variables are removed by 'unset*'; this has noticeably distasteful side-effects. It is
not an error for nothing to be unset.

unsetenv pauem
Removes all variables whose name match the specified pattern from the
envirorunent. See also the setenv conunand above and printenv(l).

wait
All background jobs are waited for. If the shell is interactive, then an interrupt can
disrupt the wait, at which time the shell prints names and job numbers of all jobs
known to be outstanding.

- 15 -

c/

CSH(1)

while (expr)

end
While the specified expression evaluates non-zero, the commands between the while
and the matchlng end are evaluated. Break and conlinue may be used to tenninate or
continue the loop prematurely. (The while and end must appear alone on their input
lines.) Prompting occurs here the first time through the loop as for the jrna:h
statement if the input is a terminal.

%job
Brings � �ifJ._e4j91?_��-the foregroun�

%job &
Continues the specified job in lhe background.

@
@ name= expr
@ name[mdex] = expr

The first form prints the values of all the shell variables. The second form sets the
specified name to the value of expr. If the expression contaffis '<', '>', '&' or '1'
then at least this part of the expression must be placed within '(' ')'. The third form
assigns the value of expr to the index'th argument of name. Both name and its
index' th component must already exist.

The operators '*=', '+=', etc are available as in C. The space separating the name
from the assignment operator is optional. Spaces are, however, mandatory in
separating components of expr which would otherwise be single words.

��ial pos;tix '++' and '-' operators increment and decrement name respectively,
1.e. @ 1++ .

Pre-defined and environment variables
The following variables have special meaning to the shell. Of these, argv, cwd, home,
path, prompt, shell and status are always set by the shell. Except for cwd and status this
setting occurs only at initialization; these variables will not then be modified unless this
is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into
term, and HOME into lwme, and copies these back into the environment whenever the
nonnal shell variables are reset. The envirorunent variable PATH is likewise handled; it
is not necessary to worry about its setting other than in the file .cshrc, as inferior ah
processes will import the definition of path from the environment, and re-export it if you
then change it. (It could be sel once in the .login except that commands through net(l)
would not see the definition.)

argv

cdpath

cwd

echo

Set to the arguments to the shell, it is from this variable that positional
parameters are substituted, i.e. '$1' is replaced by '$argv[l]', etc.

Gives a list of alternate directories searched to fmd subdirectories inchdir
commands.
The full pathname of the current directory.

Set when the -x conunand line option is given. Causes each command
and its argwnents to be echoed just before it is executed. For non-built-in
commands all expansions occur before echoing. Built-in commands are
echoed before command and filename substitution, since these
substitutions are then done selectively.

- 16 -

CSH(1}

history

home

ignoreeof

Can be given a numeric value to control the size of the history list Any
command which has been referenced in this many events will not be
discarded. Too large values of history may run the shell out of memory.
The last executed command is always saved on the history list

The home directory of the invoker, initialized from the environment. The
filename expansion of '-' refers to this variable.

If set the shell ignores end-of-file from input devices which are temtinals.
'This prevents shells from accidentally being killed by control-D's.

mail The files where the shell checks for mail. This is done after each
conunand completion which will result in a prompt, if a specified
interval has elapsed. The shell says 'You have new mail.' if the file
exists with an access time not greater than its modifY time.

If the frrst word of the value of mall is numeric it specifies a different
mail checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says 'New mail in
name'when there is mail in the file-name.

noclobber As described in the section on Input/output, restrictions are placed on
output redirection to insure that files are not accidentally destroyed, and
that '>>' redirections refer to existing files.

noglob If set, filename expansion is inhibited. This is most useful in shell
scripts which are not dealing with filenames, or after a list of fllenames
has been obtained and further expansions are not desirable.

nonomatch If set, it is not an error for a filename expansion to not match any
existing files; rather the primitive pattern is returned. It is still an error
for the primitive pattern to be malformed, i.e. 'echo [' still gives an
error.

notify

path

prompt

shell

If set, the shell notifies asynchronously of job completions. The default
is to rather present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies the current
dhectory .If there is no path variable then only full path names will
execute. The usual search path is '.', '/bin' and '/usr/bin', but this may
vary from system to system. For the super-user the default search path is
'/etc', '/bin' and '/usr/bin'. A shell which is given neither the -c nor the
-t option will normally hash the contents of the directories in the path
variable after reading .cshrc, and each time the path variable is reset. If
new commands are added to these directories vvh.ile the shell is active, it
may be necessary to give the rehash or the commands may not be foWld.

The string which is printed before each command is read from an
interactive temtinal input. If a '! ' appears in the string it will be replaced
by the current event number unless a preceding '\' is given. Default is
'%', or '#' for the super-user.

The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not executable
by the system. (See the description of Non-built-in command Execution
below.) Initialized to the (system-dependent) home of the shell.

- 17 -

(
" - /

(__)

status

time

verbose

CSH(1)

The status returned by the last command. If it tei'Illlnated abnonnally,
then 0200 is added to the status. Built-in conunands which fail return exit
status '1', all other built-in commands set status '0'.

Controls automatic timing of commands. If set, then any command
which takes more than this many cpu seconds will cause a line giving
user, system, and real times and a utilization percentage which is the
ratio of user plus system times to real time to be printed when it
tenninates.

Set by the v command line option, causes the words of each command
to be printed after history substitution.

Non-built-in command execution
When a command to be executed is found to not be a built-in command the shell
attempts to execute the command via exec(2). Each word in the variable paJh names a
directory from which the shell will attempt to execute the command. If it is given neither
a -c nor a -t option, the shell will hash the names in these directories into an internal
table so that it will only try an exec in a directory if there is a possibility that the
command resides there. This greatly speeds command location when a large number of
directories are present in the search path. If Lhis mechanism has been turned off (via
unhash), or if the shell was given a-c or -t argument, and in any case for each directory
component of path which does not begin with a '/', the shell concatenates with the given
command name to form a path name of a ftle which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus '(cd ; pwd) ; pwd'
prints the home directory; leaving you where you were (printing this after the home
directory), while 'cd ; pwd' leaves you in the home directory. Parenthesized commands
are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it
is assumed to be a file containing shell commands and a new shell is spavmed to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument
list to form the shell command. The first word of the alias should be the full path name
of the shell (e.g. '$shell'). Note that this is a special, late occuring, case of alias
substitution, and only allows words to be prepended to the argument list without
modif1cation.

Argument list processing
If argument 0 to the shell is '-' then this is a login shell. The flag arguments are
interpreted as follows:

-c Commands are read from the (single) following argument which must be present.
Any remaming arguments are placed inargv.

-e The shell exits if any invoked command terminates abnormally or yields a non�zero
exit status.

-f The shell will start faster, because it will neither search for nor execute commands
from the me '.cshrc' in the invokers home directory.

-I The shell is interactive and prompts for its top-level input, even if it appears to not
be a terminal. Shells are interactive without this option if their inputs and outputs
are terminals.

-n Commands are parsed, but not executed This may aid in syntactic checking of shell
scripts.

- 18 -

CSH(1)

-s Command input is taken from the standard input
-t A single line of input is read and executed. A '\' may be used to escape the newline

at the end of this line and continue onto another line.
-v Causes the verbose variable to be set, with the effect that conunand input is echoed

after history substitution.
.'Causes the echo variable to be set, so that commands are echoed inunediately before -X

execution
-V Causes the verbose variable to be set even before '.cshrc' is executed.
-X Is to -x as -V is to -v.
After processing of flag arguments if arguments remaiD but none of the-e, -1, -s, or -t
options was given, the first argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for possible resubstitution by
'$0'. Since many systems use either the standard version 6 or version 7 shells whose
shell scripts are not compatible with this shell, the shell will execute such a 'standard'
shell if the first character of a script is a ':' or a newline. Remaining arguments initialize
the variable argv.
Signal handling
The shell normally ignores quit signals. Jobs nmning detached (either by '&' or the bg or
% ••. & conunands) are inunune to signals generated from the keyboard, including
hangups. Other signals have the values which the shell inherited from its parent. The
shells handling of interrupts and terminate signals in shell scripts can be controlled by
onintr. Login shells catch the terminate signal; otherwise this signal is passed on to
children from the state in the shell's parent. In no case are interrupts allowed when a
login shell is reading the file '.logout'.

NOTE: Although job control facilities are a standard ftmction of Berkeley Csh,
Micro port System V /AT does not support Berkeley job control at this time.

AUTHOR

FILES

William Joy. Job control and clirectory stack features firSt implemented by J.E. Kulp of
U.A.S.A, Laxenburg, Austria, with different syntax than that used now.

-/.c.brc
-/.login
-/logout
/bin/sh
/Unp/sh•
/etc/passwd

Read at beginning of execution by each shell.
Read by login shell, after '.cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary flle for '<<'.
Source of home directories for '--name'.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists to 10240
characters. The number of arguments to a command which involves filename expansion
is limited to 1/6th the number of characters allowed in an argument list. Command
substirutions. may substitute no in ore characters than are allowed in an argument list. To
detect looping, the shell restric;:ts the number of alias substitutions on a single line to 20.

- 19 -

CSH(1)

SEE ALSO

BUGS

sh{l), access(2), exec(2), fork{2), pipe{2), umask(2), wait{2), ttty{4), a.out(S),
environ(5), 'An introduction to the C shell'

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (i.e. wrong) as the job
may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form
-'a ; b ; c'- are also not handled gracefully_when stopping_is a�p�, :rf YQ!l �u�p_tmct'b',
the shell will then immediately execute 'c'. This is especially noticeable if this
expansion results from an alias. It suffices to place the sequence of commands in ()'s to
force it to a subshell, i.e. '(a ; b ; c)'.

Control over tty output after processes are started is primitive; perhaps this will inspire
someone to work on a good virtual terminal interface. In a virtual terminal interface
much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell
procedures should be provided rather than aliases.

Commands within loops, prompted for by '?', are not placed in the history list. Control
structure should be parsed rather than being recognized as built-in commands. This would
allow control commands to be placed anywhere, to be combined with 'I', and to be used
with '&' and ';' metasyntax.

It should be possible to use the ':' modifiers on the output of command substitutions.
All and more than one ':' modifier should be allowed on '$' substitutions.

- 20 -

CSPLIT(1)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [. . • argn)

DESCRIPTION
CspUt reads file and separates it into n+l sections, defined by the arguments �
argl . . . argn. By default the sections are placed in xxOO . . . xxn (n may not
be greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line refer·
enced by argl .

0 1 : From the line referenced by argl up to the line referenced by
arg2.

n+l : From the line referenced by argn to the end of .file.

If the file argument is a - then standard input is used.

The options to csplit are:

-s Csplit normally prints the character counts for each file
created. If the -s option is present, csplit suppresses the
printing of all character counts.

-k Csp/it normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefixOO \
. . . prejixn. The default is xxOO . . . xxn. ,

The arguments (argl . . . argn) to csplit can be a combination of the follow
ing:

lrexpl A file is to be created for the section from the current line up
to (but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some
number of lines (e.g., /Pagel-S) .

%rexp% This argument is the same as lrexpl, except that no file is
created for the section.

lnno A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

{numJ Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument
is applied num more times. If it follows lnno, the file will be
split every lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters mean
ingful to the Shell in the appropriate quotes. Regular expressions may not con-
tain embedded new-lines. Csplit does not affect the original file; it is the users "
responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /par5./ /parl6./

This example creates four files, cobolOO . . . cobol03. After editing the "split"
files, they can be recombined as follows:

. J .

CSPLIT(1)

cat coboi0[0-3] > file

Note that this example overwrites the original file.

CS)•Iit -k file 100 (99}

This example would split the file at every 100 lines, up to 10,000 lines. The
-k option causes the created files to be retained if there are less than 10,000
lines; however, an error message would still be printed.

·· -csplit"-k piog.c '%miin(%' · 'r}/+I' (20}

Assuming that prog.c follows the normai C coding convention of ending rou
tines with a } at the beginning of the line, this example will create a file con
taining each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(I).
regexp(5) in the Software Development System manual.

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

- 2 -

CT(1C)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-h l [-• l [-wn l [-sspeed l telno ...

DESCRIPTION (. Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. If more than one telephone number is specified, ct will try each in suc
cession until one answers; this is useful for specifying alternate dialing paths.

FILES

Ct will try each line listed in the file /usr/lib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait before it gives up. Ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The dialogue may be
overridden by specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

Normally, ct will hang up the current line, so that that line can answer the
incoming call. The -h option will prevent this action. If the -, option is
used, ct will send a running narrative to the standard error output stream.

The data rate may be set with the -s option, where speed is expressed in
baud. The default rate is 300:

After the user on the destination terminal logs out, ct prompts, Reconnect? If
the response begins with the letter n the line will be dropped; otherwise, getty
will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

/usr/lib/uucp/L-devices
/usr/adm/ctlog

SEE ALSO
cu(IC), login(!), uucp(IC).

- I -

,---

(

CTRACE(1)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION
Ctrace allows you to follow the execution of a C program, statement by state
ment. The effect is similar to executing a shell procedure with the -x option.
Ctrace reads the C program in file (or from standard input if you do not
�p�cify file), inserts statements to print the text of each executable statement
and the values of all variables referenced or rilodified, and writes the modified
program to the standard output. You must put the output of ctrace into a tem
porary file because the ceO) command does not allow the use of a pipe. You
then compile and execute this file.
As each statement in the program executes it will be listed at the terminal, fol
lowed by the name and value of any variables referenced or modified in the
statement, followed by any output from the statement. Loops in the trace out
put are detected and tracing is stopped until the loop is exited or a different
sequence of statements within the loop is executed. A warning message is
printed every 1000 times through the loop to help you detect infinite loops.
The trace output goes to the standard output so you can put it into a file for
examination with an editor or the bfs(l) or tai/(1) commands.
The only options you will commonly use are:
-f functions Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and
pointer variables are always printed as signeQ integers. Pointers to character
arrays are also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. Double
variables are printed as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if appropriate, with
these options:

-o Octal
-x Hexadecimal
-u Unsigned
-e Floating point
These options are used only in special circumstances:
-1 n Check n consecutively executed statements for looping trace output,

instead of the default of 20. Use 0 to get all the trace output from
loops.

-s Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by
use of the = operator in place of the =- operator.

-t n Trace n variables per statement instead of the default of 10 (the max
imum number is 20). The Diagnostics section explains when to use this
option.

-P Run the C preprocessor on the input before tracing it. You can also
use the -D, -I, and -U cc (l) preprocessor options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX system environment:
-b Use only basic functions in the trace code, that is, those in ctype(3C),

printf(3S), and string(3C). These are usually available even in cross
compilers for microprocessors. In particular, this option is needed when

- 1 -

CTRACE(1)

-p 's'

-r f

EXAMPLE

the traced program runs under an operating system that does not have
signa/(2), or setjmp(3C}.
Change the trace print function from the default of 'printf('. For
example, 'fprintf(stderr,' would send the trace to the standard error
output.
Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and lead
ing arguments (see the -p option).

If the file /c.c contains this C program:
I #include <stdio.h>
2 mainO I* count lines in input *I
3 (
4 int c, nl;
5
6 nl � 0;
7 while ((c - getcharO) !� EOF)
8 if (c - 'In')
9 ++nl; 10 printf("%d\n", nO; 1 1 } and you enter

these commands and test data: cc lc.c a.out I (cntl-d), the program will be
compiled and executed. The output of the program will be the number 2,
which is not correct because there is only one line in the test data. The error in
this program is common, but subtle. If you invoke ctrace with these com
mands: ctrace lc.c >temp.c cc temp.c a.out the output will be:
2 main()
6 nl = 0;

I* nl -= 0 *I
7 while ((c = getcharO) !- EOF) The program is now waiting for input.

If you enter the same test data as before, the output will be:
I* c == 49 or 'I' *I

8 if (c � �n')
I* c =- 10 or '\n' *I

9 ++nl;
I* nl - 1 */

7 while ((c � getcharO) !- EOF)
I* c == 10 or '\n' */

8 if (c � 'In')
I* c == 10 or '\n' *I

9 ++nl;
/* nl -- 2 *I

7 while ((c = getcharO) t- EOF) If you now enter an end of file char-
acter (cntl-d) the final output will be:

I* c == - I *1 10 _printf("%d\n", nO�
/* nl = = 2 *12 return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the trace
output. This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value 'I' in line 7, but in
line 8 it has the value '\n'. Once your attention is drawn to this if statement,
you will probably realize that you used the assignment operator (=) in place of
the equal operator (=-) . You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you
use the -f or -v options to trace specific functions. This does not give you

- 2 -

(

(

CTRACE(1)

statement-by-statement control of the tracing, nor does it let you turn the trac
ing off and on when executing the traced program.

You can do both of these by adding ctroff() and ctronO function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus,
you can code arbitrarily complex criteria for trace control with if statements,
and you can even conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdef CTRACE

#endif

if (c -- '!' && i > 1000)
ctronO;

You can also call these functions from sdb(I) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroffO
main: I I b ctron 0

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and
1 , respectively. This is useful if you are using a debugger that cannot call these
functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(I), since the
trace<! code often gets some cc warning messages. You can get cc error mes
sages in some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler
"out of tree space; simplify expression" error. Use the -t option to
increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the en� of a #define
preprocessor statement.

'If ... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -p option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -1, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.

- 3 -

CTRACE(1)

compiler tpkes size of junction
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace '"if .•. else if sequence too long" message above.

out of tree space; simplify expression
Use the ... t option to reduce the number of traced variables per state
ment from the default of 10. Ignore the "ctrace: too many variables to
trace" warnings you will now get.

redec/aration of signal
Either correct this declaration of signa/{2), or remove it and #include
<signal.h> .

unimplemented structure assignment
This is caused by a bug in the C compiler for the PDP-11 .

offset xxxx in control section ...
This is caused by a problem in the current UNIX System/370 C com
piler. Use the cc(l) -b2,2 option.

expression causes compiler loop: try simplifying
This is caused by a bug in the UNIX System/370 C compiler. Unfor
tunately, the only way to avoid it is to use the ctrace -v option to not
trace the function containing this line.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of the
last element declaration in a structure or union, just before the right brace (}).
This is optional in some C compilers.

Defining a function with the same name as a system function may cause a syn
tax error if the number of arguments is changed. Just use a different name.

Ctrace assumes that BADMAG is a preprocessor macro, and that EOF and
NULL are #defined constants. Declaring any of these to be variables, e.g. "int
EOF;", will cause a syntax error.

Ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregat� when an assignment is made to the entire aggregate. Ctrace may
choose to print the address of an aggregate or use the wrong format {e.g., %e
for a structure with two integer members) when printing the value of an aggre
gate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multifile
program. This can result in functions called from a loop still being traced, or
the elimination of trace output from one function in a file until another in the
same file is called.

runtime.c run-time trace package

SEE ALSO
signa1(2), ctype(3C), printf(3S), setjump(3C) in the Software Development System <
manual.

- 4 -

I

(

CU(1 C)

NAME
cu - call another UNIX system

SYNOPSIS
cu 1 -sspeed] 1 -IIine] 1 -b] I -t] 1 -d] 1 -m l 1 -o l 1 -e] 1 -n] telno
l systemname I dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system.
It manages an interactive conversation with possible transfers of ASCII files.
cu accepts the folJowing options an� arguments.
-sspeed

Specifies the transmission speed(liO, 150, 300, 600, 1200, 4800, 9600);
300 is the default value. Most modems are either 300 or 1200 baud.
Directly connected lines may be set to a speed higher than 1200 baud.

-Jline Specifies a device name to use as the communication line. This can be
used to override searching for the first available line having the right
speed. When the -I option is used without the -s option, the speed of a
line is taken from the file /usrllib/uucp/L-devices. When the -1 and
-s options are used simultaneously, cu will search the L-devices file to
check if the requested speed for the requested line is available. If so,
the connection will be made at the requested speed; otherwise an error
message will be printed and the call will not be made. The specified
device is generally a directly connected asynchronous line (e.g.,
/dev/ttyab); in this case a phone number is not required but the string
dir may be use to specify a null acu. If the specified device is associ-

-h

-t

-d
-e

-o

-m
-n

telno

ated with an auto dialer, a phone number must be provided.
Emulates local echo, supporting calls to other computer systems which
expect terminals to be set to half-duplex mode.
Used when dialing an ASCII terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage-return
line-feed pairs is set.
Causes diagnostic traces to be printed.
Designates that even parity is to be generated for data sent to the
remote.
Designates that odd parity is to be generated for data sent to the
remote.
Designates a direct line which has modem control.
Will request the phone number to be dialed from the user rather than
taking it from the command line.
When using an automatic dialer. the argument is the telephone number
with equal signs for secondary dial tone or minus signs for delays, at
appropriate places.

systemname
A uucp system name may be used rather than a phone number; in this
case, cu will obtain an appropriate direct line or phone number from -
/usr/lib/uucp/L.sys (the appropriate baud rate is also read along with
phone numbers). Cu will try each phone number or direct line for sys
temname in the L.sys file until a connection is made or all the entries
are tried.

dir Using dir insures that cu will use the line specified by the -I option.

- I -

I

CU(1C)

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with -,
passes it to the remote system; the receive process accepts data from ti1e remote
system and, except for lines beginning with -, passes it to the standard output.
Normally, an automatic DC3/DC1 protocol is used to control input irom the
remote so the buffer is not overrun. Lines beginning with - have special mean�
� �
The transmit process interprets the following:

terminate the conversation.

-t escape to an interactive shell on the local system.

-!cmd... run cmd on the local system (via sb -c).
-scmd. . . run cmd locally and send its output to the remote sys·

tern.

-% cd change the directory on the local system. NOTE: '1cd
will cause the command to be run by a sub-shell; prob
ably Dot what was intended.

-%take from (to J copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

-%put from [to J copy file from (on local system) to file to on remote sys
tem. If to is omitted, the from argument is used in
both places.

-% break
-%nostop

send the line -. . . to the remote system.

transmit a BREAK to the remote system.

toggles between DC3/DC 1 input control protocol and no
input control. This is useful in case the remote system
is one which does not respond properly to the DC3 and
DC! characters.

The receive process normally copies data from the remote system to its stan
dard output. A line from the remote that begins with -> initiates an output
diversion to a file. The complete sequence is:

->[>]:.file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file. The
trailing -> terminates the diversion.

The use of -%put requires stty(l) and cat(l) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted at
appropriate places.

The use of -% take requires the existence of echo(l) and cat(l) on the remote
system. Also, stty tabs mode should be set on the remote system if tabs are to
be copied without expansion.

- 2 -

(

CU(1 C)

When cu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using --. For example, uname can be executed on Z, X, and Y as follows:

uname
z
-!uname
X
--!uname
y
In general, - causes the command to be executed on the original machine, -
causes the command to be executed on the next machine in the chain.

EXAMPLES

FILES

To dial a system whose number is 9 201 555 1212 using 1200 baud:
cu -s1200 9-2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:
cu -1 /dev/ttyXX dir

To dial a system with the specific line and a specific speed:
cu -sl200 -1 /dev/ttyXX dir

To dial a system using a specific line:
cu -1 /dev/cu!XX 2015551212

To use a system name:
cu YYYZZZ

/usr/lib/uucp/L.sys
/usr/lib/uucp/L-devices
/usr I spool/uucp/LCK .. (tty-device)
/dev/null

SEE ALSO
cat(!), ctOC), echo(!), stty(l), uname(l), uucp(lC).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the -%put operation
so that loss of data is unlikely.

-3 -

I

CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file! file2 ...]
cut -flist [-debar] [-s] [file! file2 .. .l

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a punched
card (-c option) or the length can vary from line to line and be marked with a
field delimiter character like tab (-f option). Cut can be used as a filter; if no
files are given, the standard input is used.

The meanings of the options are:

list A comma�separated list of integer field numbers Gn increasing order) ,
with optional - to indicate ranges as in the -o option of nroffltroff
for page ranges;_e.g., 1,4, 7; 1 -3,8; -5,10 (short for 1 -5,10); or 3-
(short for third through last field) .

-clist The list following -c (no space) specifies character positions (e.g.,
-cl -72 would pass the first 72 characters. of each line).

-flist The list following -f is a list of fields assumed to be separated in the
file by a delimiter character (see -d); e.g., -fl,7 copies the first
and seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -s is specified.

-debar The character following -d is the field delimiter (-f option only).
Default i.s tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

Use grep (l) to make horizontal .. cuts" (by context) through a file, or paste(l)
to put files together column-wise (i.e., horizontally). To reorder columns in a
table, use cut and paste.

EXAMPLES
cut -d: -fl,5 /etc/passwd

name=who am i I cut -fl -d" "

DIAGNOSTICS

mapping of user IDs to names

to set name to current login name.

line too long A line can have no more than 1023 characters or fields.

bad list for elf option Missing -c or -f option or incorrectly specified list.

no fields

SEE ALSO
grep(l) , paste(!).

No error occurs if a line has fewer fields than the list
calls for.

The list is empty.

- I -

)

��--
\.

CXREF(1)

NAME
cxref - generate C program cross· reference

SYNOPSIS
cxref [options] files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross-reference
table. Cxref utilizes a special version of cpp to include #define'd information in
its symbol table. It produces a listing on standard output of all symbols (auto,
static, and _global) in -�-a,.:b _fij� �ep�rately, or with the -c option, in combina
tion. Each symbol contains an asterisk (•) before ihe declariiig reference: -

In addition to the -D, -I and -U options [which are identical to their
interpretation by cc(l)], the foUowing options are interpreted by cxref:

-c Print a combined cross·reference of all input files.
-w<num>

Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not sp�cified or
is less than 51 .

- o file Direct output to named file.

-s Operate silently; does not print input file names.
-t Format listing for SO-column wid,th.

/usrllib/xcpp special version of C·preprocessor.

SEE ALSO
cc(l).

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot com
pile these files, anyway.

Cxref considers a formal argument in a #define macro definition to be a
declaration of that symbol. For example, a program that #includes ctype.h, will
contain many declarations of the variable c.

- I -

DATE(1)

NAME
date - print and set the �ate

SYNOPSIS
date [mmddhhmm[yyl I [+format l

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date "'--
and time are printed. Otherwise, the current date is set. The first mm is the
month number; dd is the day number in the month; hh is the hour number (24-
hour system); the second mm is the minute number; yy is the last 2 digits of
the year number and is optional. For example:

date 10080045
sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. Date takes care of the conversion to
and from local standard a!ld daylight time.

If the argument begins with +, the output of date is under the control of the
user. The format for the output is similar to that of the first argument to
printf(3S). All output fields are of fu<ed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % % . All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 1 2
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 00 l to 366
w day of week - Sunday - 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:
DATE: 08/0!/76
TIME: 14:45:05

DIAGNOSTICS
No Pf/rmission

bad conversion
bad format character

FILES
/dev/kmem

SEE ALSO

if you are not the super-user and you try to change the
date;
if the date set is syntactically incorrect;
if the field descriptor is not recognizable.

printf(3S) in the Software Development System manual.
WARNING

.

It is a bad practice to change the date while the system is running multiuser .

. I .

DC(1)

NAME
de - desk calculator

SYNOPSIS
de [file 1

,---- DESCRIPTION

�� .
'

\........._ __ _/

De is an arbitrary prec1s1on arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. (See be(I), a preprocessor for de that
provides infix notation and a C-like syntax that implements functions. Be also
provides reasonable _control _structures _f9r prQgr£l!!ls_.1_ Tl!_e_ Qy_er�ll _structure _ _ of
de is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following
constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbro
ken string of the digits 0-9. It may be preceded by an underscore (j
to input a negative number. Numbers may contain decimal points.

+ - / • % "
The top two values on the stack are added (+), subtracted (-), multi
plied (•) , divided (/), remaindered (%), or exponentiated ("). The two
entries are popped off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where

Jx

d

p

f

q

X

X
l . .. I
<x

'

x may be any character. If the s is capitalized, x is treated as a stack
and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized, regis
ter x is treated as a stack and its top value is popped onto the main
stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the
string execution level is popped by that value.

treats the top element of the stack as a character string and executes it
as a string of de commands.

replaces the number on the top of the stack with its scale factor.
puts the bracketed ASCII string onto the top of the stack.

>x -x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

interprets the rest of the line as a UNIX system command.

c All values on the stack are popped.

- 1 -

I

DC(1)

0

0
k

z
z
?

; :

The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.
The top value on the stack is popped and used as the number radix for
further output.
pushes the output base on the top of the stack.

." the top of the stack is popped, and that value is used as a non�negative
scale factor: the appropriate number of places are printed on output,
arid maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.
The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.
A line of input is taken from the input source (usually the terminal) and
executed.
are used by be for array operations.

EXAMPLE
This example prints the first ten varues of n!:

SEE ALSO
�c(I).

[Ia J +dsa•pla IO>y)sy
Osal
Jyx

DIAGNOSTICS
x is unimplemented

where x is an octal number.
stack empty

for not enough elements on the stack to do what was asked.
Out of space

when the free list is exhausted (too many digits).
Out of headers

for too many numbers being kept around.
Out of pushdown

for too many items on the stack.
Nesting Depth

for too many levels of nested execution.

- 2 -

I \

DCOPY(1 M)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/etc/dcopy [-sX] [-an] [-d] [-v] [-ffsize[:isize11 inputfs outputfs

DESCRIPTION
Dcopy copies file system inputjs to outputfs. lnputfs is the existing file system;
outpurjs is an appropriately sized file system, to hold the reorganized result.
For best results inputfs should be the raw device and outputfs should be the
blOCk-device: Dcopy shotild be run on unmounted file--systems (in· the case of
the root file system, copy to a new pack). With no arguments, dcopy copies
files from inputfs compressing directories by removing vacant entries, and spac�
ing consecutive blocks in a file by the optimal rotational gap. The possible
options are

-sX supply device information for creating an optimal organization of
blocks in a file. The forms of X are the same as the .-s option of
fsck (I M).

-an place the files not accessed in n days after the free blocks of the
destination file system (default for n is 7). If no n is specified then
no movement occurs.

-d leave order of directory entries as is (default is to move sub
directories to the beginning of directories) .

-v currently reports how many files were processed, and how big the
source and destination freelists are.

-fjsize[:isize]
specify the outputfs file system and inode list sizes (in blocks). Jf
the option (or :isize) is not given, the values from the inpuifs are
used.

Dcopy catches interrupts and quits and reports on its progress. To terminate
dcopy send a quit signal, and dcopy will no longer catch interrupts or quits.

SEE ALSO
fsck(IM), mkfs (I M), ps(J) .

- I -

00(1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option-value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conver·
sions. The standard input and output are used by default. The input and out·
put block size may be specified to take advantage of raw physical I/0.

option
if-file
of-file
ibs-n
obs-n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and obs;
also, if no conversion is specified, it is particularly efficient since
no in-core copy need be done

cbs-n conversion buffer size
skip-n skip n input blocks before starting copy
seek-n seek n blocks from beginning of output file before copying
count • n copy only n input blocks
conv-ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lowercase
ucase map alphabetics to uppercase
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input block to ibs
• . • , • • • several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case
cbs characters are placed into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before sending the line to the out
put. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per block into the ASCII file x :

dd if-/dev/rmt/Om of-x ibs-800 cbs-80 conv-ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physi
cal devices because it allows reading and writing in arbitrary block sizes.

SEE ALSO
cp(I}.

- 1 -

CJ

00(1}

DIAGNOSTICS

BUGS

j+p blocks in(out) numbers of full and partial blocks read(written)

The ASCII/EBCDIC conversion tables are taken from the 256�character stan
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There is no
universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC. These should be separate options.

- 2 -

DELTA(1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-nl [-glistl [-m[mrlistll [-y[commentll [-p] files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes that
were made to the file retrieved by get(I) (called the g-file, or generated file). \"-
Delta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that nan-sees files Oast component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read [see WARNINGS]; each line of the standard input is
taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags [see admin(l)] that may be present in the sees
file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSJD Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is necessary only if
two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person (login
name) . The SID value specified with the -r keyletter
can be either the SID specified on the get command line
or the SID to be made as reported by the get command
[see get(l)]. A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the com
mand line.

-s

-n

-glist

-m[mrlist]

Suppresses the issue on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-jile (normally
removed at completion of delta processing).

Specifies a list [see get (l) for the definition of list] of
deltas which are to be ignored when the file is accessed
at the change level (SID) created by this delta.

If the sees file has the ' flag set [see admin (I)] then a
Modification Request (MR) number must be supplied as
the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab charac
ters. An unescaped new-line character terminates the
MR list.

Note that if the Y flag has a value [see admin(I)], it is
taken to be the name of a program (or shell procedure)
which will validate the correctness of the MR numbers.
If a non-zero exit status is returned from MR number
validation program, delta terminates Cit is assumed that

- I -

-1
I
I

FILES

DELTA(1)

the M R numbers were not all valid).
-y[comment] Arbitrary text used to describe the reason for making

the delta. A null string is considered a valid comment.

-p

If -y is not specified and the standard input is a termi
nal, the prompt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes
caped new-line character terminates the comment text.
Causes delta to print (on the standard output) the sees
file-diff6renC6s b-efore a:nd ·after- the -delta· is -applied in a
di.ff(I) format.

All files of the form ?-file are explained in the Source Code Control System
User Guide. The naming convention for these files is also described there.

Existed before the execution of delta; removed after comple�
tion of delta.

p-file Existed before the execution of delta; may exist after comple�
tion of delta.

q-file Created during the execution of delta; removed after comj:>le�
tion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the exe�
cution of delta.

d-file Created during the execution of delta; removed after comple�
lion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and
the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in
the sees file unless the SOH is escaped. This character has special meaning to
sees [see sccsfile(4)] and will cause an error.
A get of many sees files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.
If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.
Comments are limited to text strings of at most 5 1 2 characters.

SEE ALSO
admin(l), bdiff(l), cdc(!), get(!), help(!), prs(l), nndcl(I).
sccsfilc(4) and "Source Code Control System User Guide'' in the Software lJcvclopmcnl
System manual.

C\. DIAGNOSTICS J Use help (l) for explanations.

- 2 -

DEVNM(1M)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names]

DESCRIPTION
Devnm identifies the special file associated with the mounted file system where
the argument name resides. (As a special case, both the block device name and
the swap device name are printed for the argument name I if swapping is done
on the same disk section as the root file system.) Argument names must be full
path names.
This command is ffiost commonly used by /etc/rc [see brc(I M)] to construct a
mount table entry for the root device.

EXAMPLE

FILES

The command:
/etc/devnm /usr

produces
dsk/Osl /usr

if /usr is mounted on /dev/dsk/Osl.

/dev/dsk/•
/etc/mnttab

SEE ALSO
brc(IM), setmntOM).

- I -

c

DF(1M)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t] [-f] [file-systems]

DESCRIPTION

FILES

Df prints out the number of free blocks and free i-nodes available for on-line
file systems by examining Lhe counts kept in the super blocks; file-systems may
be specified either by device name (e.g., /dev/dsk/Osl) or by mounted directory
name (e.g., /usr). If the file-systems argument is unspecified, the free space
on ali of the mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is
made (free i-nodes are not reported). With this option, df will report on raw
devices.

/dev/dsk/•
/etc/mnttab

SEE ALSO
fs(4), mnttab(4).

. I .

DIFF(1)

NAME
diff - differential file comparator

SYNOPSIS
dilf [-efbh] file I file2

DESCRIPTION

FILES

Dijf tells what lines must be changed in two files to bring them into agreement. �
If file] (/ile2) is -, the standard input is used. If filel (/ile2) is a directory,
then a file in that directory with the name fi/e2 (,file!) is used. The normal
output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl ,n2 c n3,n4

These lines resemble ed commands to convert file! into .filel. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into file/ . As in ed,
identical pairs, where nl ,., n2 or n3 ""' n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by < , then all the lines that are affected in the secorid file flagged by
>.

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of bl<inks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate file2 from file/ . The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the following
shell program may help maintain multiple versions of a (ile. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2,$3, .. .) made by di.ff
need be on hand. A .. latest version" appears on the standard output.

(shift; cat $•; echo 'l,$p') I ed - $1

Except in rare circumstances, dil/ finds a smallest sufficient set of file
differences.

Option -h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

/tmp/d?????
/usr/Iib/diflh for -b

SEE ALSO
cmp(l), comm(l), ed(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -r option are naive about creating
lines consisting of a single period (.).

WARNINGS
Missing newline at end of file X

indicates that the last line of file X did not have a new-line. If the lines
are different, they will be flagged and output; although the output will
seem to indicate they are the same.

- 1 -

� '
I '
\ '

0

DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
dil£3 [-ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

-"'-"I
----2

----3

all three files differ
- -- jileJ -is different

file2 is different

ji[e3 is different

The lype of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f : nl a Text is to be appended after line number nl in file j,
where j - 1, 2, or 3.

f : nl , n2 c Text is to be changed in the range line nl to line n2.
If nl - n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower
numbered file is suppressed.

Under the -e option, dijj3 publishes a script for the editor ed that will incor
porate into file] all changes between file2 and fi/e3, i.e., the changes that nor
maiiy would be flagged -=-== and ----3. Option -x (-3) produces a
script to incorporate only changes flagged ---- (=====3). The following
command will apply the resulting script to file] .

(cat script; echo ' l ,$p') I e� - filt:l

/tmp/d3•
/usr/lib/diff3prog

SEE ALSO

BUGS

diff(l),

Text lines that consist of a single , will defeat -e.
Files longer than 64K bytes wi11 not work.

- I -

DIFFMK(1)

NAME
diffmk - mark differences between files

SYNOPSIS
difl'mk namel name2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes 1·"-
"change mark" commands for nroffor troff(l). Name! and name2 ar·e the old
and new versions of the file. Diffmk generates name3, which contains the lines
of name2 plus inserted formatter "change mark" (.me) requests. When name3
is formatted, changed or inserted text is shown by J at the right margin of each
line. The position of deleted text is shown by a single •.

If anyone is so inclined, diffmk can be used to produce listings of C (or other)
programs with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file macs contains:

.pi I

.II 77

.nf

.eo

.nc

The .11 request might specify a different line length. depending on the nature of
the program being printed. The .eo and .nc requests are probably needed only
for C programs.

If the characters I and • are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

SEE ALSO
diff(l).

BUGS

"Nroff and Troff User Manual" in the Text Preparation System Manual.

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output,
i.e., replacing .sp by .sp 2 will produce a .. change mark" on the preceding or
following line of output.

- I -

0

DIRCMP(1)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d 1 [-s 1 [-wn l dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to each
directory are generated for all the options. If no option is entered, a list is out
put indicating whether the file names common to both directories have the same
contents,

-d Compare the contents of files with the same name in both directories
and output a list te11ing what must be changed in the two files to bring
them into agreement. The list format is described in diff(l).

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width
is 72.

SEE ALSO
cmp(J), dilf(J).

- I -

015{1)

NAME
dis - 80286 disassembler

SYNOPSIS
dis [-o] [-V] [-L [-dsec] [-dasec] [-tsec] [-1 string] tiles

DESCRIPTION
The dis command produces an assembly language listing of each of its object flle
arguments The listing includes assembly statements and the binary that produced those
statements.

The following options are interpreted by the disassembler and may be specified in any
Oitier.

-L

-dsec

-dasec

-tsec

-1 string

Will print numbers in octal. Default is hexadecimal.

Invokes a lookup of C source labels in the symbol table for subsequent
printing.

Disassembles the named section as data, printing the offset of the data
from the beginning of the section.

Disassembles the named section as data, printing the actual address of the
data.

Disassembles the named section as teXt.

Will disassemble the library file specified as string. For example, one
would issue the command dis -1 x -1 z to disassemble libx.a and libz.a.
All libraries are assumed to be in /usr/lib.

If the -d, -da, or -t options are specified, only those named sections from each user
supplied file name will be disassembled. Otherwise, all sections conta.inhtg text wil be
disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
represents that the C breakpointable line number, starts with the following instruction.
An expression such as <40> in the operand field, following a relative displacement for
control transfer instructions, is the computed address within the section to which conlrol
will be transferred. A C function name will apear in the first column, followed by 0.

SEE ALSO
as(1), cc(1), Id(1).

DIAGNOSTICS
The self explanatory diagnostics indicate errors in the conunand line or problems
enCOWltered with the specific files.

- 1 -

DIVVY(1 M)

NAME

divvy -divide disk allocation between file systems

SYNOPSIS

divvy

DESCRIPTION

The divvy utility facilitates the making of file systems on the System V /AT partition of
both the primary and the secondary hard disk, and is usually invoked from the inrtallit
script after hard <fisk partitioning has been completed [see fdisk(lM)]; the utility can also
he invoked independently.

Divvy prOmpts the user to accept default allocations or to re�organize the allocation of
existing disk space between the /root, jusr and /Imp file systems, and the system swap
area. Allocations are given by hard disk unit number, 0 or 1, in quantities of 512-byte
blocks. Total allocations for each hard disk unit are cross-checked against System V/AT
partition size minus overhead tracks. When allocation has been accepted, mkfs(lM) is
invoked to create the specified file systems.

SEE ALSO

fdisk(lM), mkfs(lM), showbad(!M) .

. 1 .

This page intentionally left blank.

(. \

('\

(
�

DOSCAT(1)

NAME

do scat � concatenate and print DOS files

SYNOPSIS

doscat [-bzS] [-D dev_<lir] [dev:] file [flies]

DESCRIPTION

Dose at reads each argwnent file in sequence and writes it on the standard output. If the
specified file name is a DOS subclirectozy, it will be skipped (with a message printed on
the standard error-all messages will go to standard error, so only file contents should
_appear on the standard_ou!puJ.). Rul�.s (9r rpetBfh�ters, the DOS device prefiX, and the
default DOS device directol)' are the same as for dosdir(l).
-b Binary mode - print every byte up to the maximum file size listed in the

DOS directory. Without this option operation is like OOS "Ascii mode";
i.e., all ctl-M, ctl-J (<CR> <LF>) sequences will be mapped to ctl-J only,
and printing will be terminated if a ctl-Z character is encountered (without
printing the ctl-Z).

-z Ignore EOF - "Ascii mode" but ctl-Z will not tenninate the print-out. This
option has no effect if -b is specified as well.

-Dp Device directory changed to path p - same as dosdir(l).

-S Separator changed to '"\' - same as dosdir(l).

- 1 -

DOSCP(1)

NAME

doscp � copy ftles to and from DOS file systems

SYNOPSIS
doscp [-bfmzS] [-D dev_dir] [dev:] file [l!les] [dev:] target_dir

DESCRIPTION '>
Doscp is somewhere between DOS COPY and System V cp(l). Unlike either of these � !
commands, however, doscp does not rename files; i.e., there may be from 2, up to an
arbitrazy number of arguments, but in any case the last argument must specify a
directory. Thus, except for the final path name, the tail (base) of each argument path
name must specify a file, and this file name will be the name of the file copied into the
target directory. File names may contain metacharacters which will be expanded according
to System V rules if the direction of the copy is System V to DOS, and according to
DOS rules if the direction of the copy is OOS to System V.

The direction of file copy is determiii.ed by the placement of the DOS device prefix (e.g.
A:). The DOS prefix will only be recognized as such if it precedes either the first
argument (flle name) or the last argument (target directory name); there is no default
DOS prefix. There must be at least one DOS prefix (no System V-to-System V copy)
but no more than one DOS prefix (no DOS-to-DOS copy).

The rules for metacharacters and the default DOS device clirectoty path are the same as for
dosdir(l). Examples:

(a) doscp A:.asm test/d* Jusr/trnp

(b) doscp /etc/[p-r]* B:dhl

The first line (a) above would cause all files with an "asm" extension, in the root
directory, and all files beginning with the letter "d" in the subdirectory "test" to be copied
from OOS device A to the local (System V) /usr/trnp directory. The second command (b)
would copy all files beginning with either "p''. "q" or "r" in the System-V /etc directory
to the "dhl" subdirectory of DOS device B. Note that the meta characters in the second
example are intended for expansion by the shell, sh(l), and therefore the "[-]" non-DOS
meta characters may be used. By the same token, the "*" in the first example risks shell
expansion (if there were a subdirectory "test" in the Systerh V current working directory),
and might need to be quoted.

-b "Binary mode" - see doscat(l) --without this option copy tenninates if a
control-Z character is encountered (without copying the ctl-Z), and a copy
from DOS maps all ctl-M, ctl-J (<CR><LF>) pairs to ctl-J only, while a
copy to DOS perfonns the inverse mapping.

-f Ignore read-only attribute of DOS file- without this option, an attempt
to overwrite a read-only DOS file will fail with an explanatory message.
When a read-only DOS file is overwritten. lhe read-only attribute will
remain. 'This option has no effect on a copy from DOS to System V. If the
target System V f:tle is read-only, a separate clunod(l) command will be
required.

-m Preserve modification date of source file -otherwise the current System V
time is used to stamp the copy.

-z Ignore EOF - allows Ascii mapping without control-Z tennination. No
effect if -b has been specified.

-Dp Device directory changed to pathp - same as dosdir(l).

-S Separator changed !0 '\" - same as dosdir(l).

- I -

0

0

DOSDIR(1)

NAME

dosdir - emulate "cfu" conunand for DOS file systems
SYNOPSIS

dos<lir [-alvwS] [·C widlh] [-D dev_dir] [dev:] [palh] [palhs]
DESCRIPTION

Dosdir provides a "DOS-like" listing for one or more files or directories specified in t;he
argument list, differing from DOS in that it will process an arbitrary number of such
arguments. The "*" ap.d "?" metacharact!'7s are handled according to DOS rules; i.e., they
will not match a directory in the head of a path name, and if they match � directory in the
tail (base) ofpathnaine, theinatch will result in a one-line listing of the diiectmy in the
dil:play of its parent. Thus, the only way to invqke a full listing of the contents of a
directory is to. �ecify the exact nam� in the tail of a path name (except fo:r the root
directory, which will be listed by default if no arguments are given). The metacharacters
are also DOS-like in that they are applied separately to the b� and extension portions of
a file-name (e.g., "name?com" will not match "name.com" -but it will, on the Other
hand, match "namelcom.exe" using the DOS convention that a name with no extension
is equivalent to "name.*", while, �imilarly, ".bat" is the saffie as "*.bat"; aitd "name." �s
used to ask for a file "name" which actually has no extension). Of course, the metas are
intended to match DOS files, but they can accidentally match System V files !!J14 be
expanded by the shell. This can be avoided by placing arty argwnent con�g metas in
double quotes:

dosclir "???*" "/bin/*" (quo�s very important here!)
dosclir A:f* .com f* .asm (not likely to match a local file)

The DOS device (drive) is &peci:fied by pref"lXing the first argumep.t with the name of il
System V fi.l� (presumably a special device file, though the image of a DOS file system
might be placed in an ordinary file) followed by a colon, ":", as in DOS. The program
expects to find this file in the directory /dev/dos, so DOS-like operation can be
conveniently arranged by making links from � appropriate device files, and naming the
links "A", "B11, etc. For example:

mkdir /dev/dos
link /dev/dsk/fd /dev/dos/A
link /dev/dsk/fd048 /dev/rfus/G

In general� linlcing from hard disk special name dev/rdsk/OsX, where K is replaced by 6,
7, 8, or 9, corre:;;ponds to DOS partitions 1 through 4. For example, DOS partition 1
corresponds to Os6, partition 2 with Os7, etc.

When no device prefix is fpundon the first argument, it defaults to "A"; a prefix will not
be recognized on any other argwnent.

-a "Hidden" DOS files will appear in the J,isting of their parent directory;
otherwise, a hidden file w� only be listed if it is �lied out in the tail of a
path name argwnent; a hidden flle will not be matched Qy a metacharacter.

-1 The normal DOS line for each file will be lengthened to include the file
"attrib�tes" which can be �itheror all of "rhs", where "r" is Read- Only, "h"
is Hidden, and "s" is "System".

-v The first line of standard output will give the DOS OEM name and
vep;io�.

- 1 -

DOSDIR(1)

-w Same as DOS; i.e., the DOS "dir'' command defaults to along listing, and
this option gives a "wide" listing where only the file name and extension
are shown in a multi-column display.

-Cn Change default display width (80 columns) to n colUllUlS; this option has
no effect mUess -w is also specified.

-Dp Change default device directory (!dev/dos) to path p.

-S Change default DOS path-name separator to "'\'. Since the back-slash char
acter '"\' must be escaped to be passed through the shell-sh(l) - com
mand line, dos<lir normally expects DOS path names to be separated by the
forward slassh "f', so they look the same as System V path names. If this
option is used the conunand line might look like this:

dosdir -S B:levell\\level2\\file

SEE ALSO
wn(7), fl(7) in the Runtime System manual.

- 2 -

DU(1)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively)
directories within each directory and file specified by the na?nes argu�
ment. The block count includes the indirect blocks of the file. If narnes
is missing, . is used.
The optional argument -s causes only the grand total (for each of the
specified names) to be given. The optional argument -a causes an entry
to be generated for each file. Absence of either causes an entry to be
generated for each directory only.

· Du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate messages
in such instances.

·

A file with two or more links is only counted once.

If the -a option is not used, nondirectories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

- 1 -

DUMP(1)

NAME
dump - dump selected parts of a common object file

SYNOPSIS
dump [-a�fghlorstV] [-z name] files

DESCRIPTION
Th� dump command dumps selected parts of each of its object file argu
ments.
This comm�:j.nd will accept al� object files in the common object file for
mat. It will also accept archiv

.
es of object file's. It processes each file

argument according to one or more of the following options:

-a Dump the archive header of each member of each archive

-c
-f
-g

-h
-I
-o
-r
-s

-t
-z name
-v

file arg11ment.
Dump the string table.

Dump each file header.

Dump the global symbols in the symbol table of a UNIX
System V Release 2.0 archive.
D�mp section headers.
Dump line number ir�.formation.
Pump each optional header.
Dump relocation information.
Dump section contents.

Dump symbol table entries.

Dump lin� number f;:!ntries for the name� function.

Output a message giving information about the version of
dump being used.

The following modifiers are used in conjunction with the options listed
above to modify their ca:pabilities.

-d nt].mber Dump the section nu:rpber or range of sections starting at
number and ending either at the last section number or
number specified bY +d.

+d number Dump sections in the range either beginning with fir�t sec
tion or beginning with section specified by -d.

-n name Dump information pertaining only to the named entity.
This mo(lifier applies to -h, -s, -r, -1, and -t.

-p Suppress printing of the headers.

-t index Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table
entries.

+t index Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table
entry or at the entry specified by the -t option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather than
numeric (e.g., C_STATIC inst�ad of OX02). This modijie1·
can be used with all the above options except -s and -o
options of dump.

- I -

() '-�

C'

DUMP(1)

-zname,number
Dump line number entry or range of line numbers starting
at number for the named function.

+znumber Dump line numbers starting at either function name or
number specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be
replaced by a blank.

The -z and -n options that take a name modifier will only work with
object files that contain debugging information.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal, or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4) :in the Software Development System manual.

- 2 -

ECH0(1)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a
new-line on the standard output. It also understands C-like escape con
ventions; beware of conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\1 tab
\ v vertical tab
\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit

octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for send
ing known data into a pipe.

SEE ALSO
sh(l).

- 1 -

ED(1 }

NAME
ed, red - text editor

SYNOPSIS
etl [-] [file]

retl [-] [file]

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited. The optional - suppresses the printing of char
acter counts by e, r, and w commands, of diagnostics from e and q commands,
and of the ! prompt after a !shell command. Ed operates on a copy of the file
it is editing; changes made to the copy have no effect on the file until a w
(write) command is given. The copy of the text being ediLed resides in a tem
porary file called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell command.
Attempts to bypass these restrictions result in an error message (restricted
sheW.
Both ed and red support the fspec(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal
in stty -tabs or stty tab3 mode [see stty(t)], the specified tab stops will
automatically be used when scanning file. For example, if the first line of a file
contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10 and 15, and a maximum line length of
72 would be imposed. NOTE: while inputting text, tab characters when typed
are expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to specify
portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:
The following one-character REs match a single character: I 1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-

character RE that matches itself. .

1 .2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., •. [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([) ; see 1.4 below) .

- 1 -

ED(1)

b. (caret or circumflex), which is special at the beginning of an entire
RE (see 3.1 and 3.2 below), or when it immediately follows the left
of a pair of square brackets (()) (see 1.4 below).

c. S (currency symboO, which is special at the end of an entire RE (see
3.2 below). '(

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets (I)) is a
one-character RE that matches any one character in that string. If, how·
ever, the first character of the string is a circumflex 0, the one-<:haracter
RE matches any character except new-line and the remaining characters
in the string. The has this special meaning only if it occurs first in the
string. The minus (-) may be used to indicate a range of consecutive
ASCII characters; for example, [0 -9) is equivalent to [0123456789). The
- loses this special meaning if it occurs first (after an initial , if any) or
last in the string. The right square bracket (I) does not terminate such a
string when it is the first character within it (after an initial , if any);
e.g., lla -f) matches either a right square bracket (J) or one of the
letters a through f inclusive. The four characters listed in 1.2.a above
stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (•) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \(m\1, \lm,\1, or \(m.n\1 is a RE that
matches a range of occurrences of the one-character RE. The values of
m and n must be non-negative integers less than 256; \(m\} matches
exactly m occurrences; \(m, \} matches at least m occurrences� \{m,n\}
matches any number of occurrences between m and n inclusive. When
ever a choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \ (and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched
by an exprc5Sion enclosed between \(and \) earlier in the same RE.
Here n is a digit; the sub-expression specified is that beginning with the
n-th occurrence of \ (counting from the left. For example, the expression
\ C.•\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both):

3.1 A circumflex 0 at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

- 2 -

c

ED(1)

The construction entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., I/) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is
a current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

I . The character . addresses the current line.

2, The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which
must be a lowercase letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE.
If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (1) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line, See also
the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by
a decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, -5 is understood to mean , -5.

9. If an address ends with + or -, then I is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character in addresses is entirely equivalent to -.) Moreover, trailing
+ and - characters have a cumulative effect, so - - refers to the

current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

- 3 -

E0(1)

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addres�es is given; if more addresses are given than such a command
requires, the last one(s) are used.

Typically, addresses are separated from each .other by a comma (,). They may \.-:.
also be separated by a semicolon (;). In the latter case, the current line (.) is
set to the first address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward and backward
searches (see rules 5. and 6. above}. The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How·
ever, any command (except e,J, r, or w) may be suffixed by I, n or p, in which
case the current line is either listed, numbered or printed, respectively, as dis·
cussed below under the /, n and p commands.

<.Ja
<text>

(.)c
<text>

(. , .)d

ejile

Ejile

The aPpend command reads the given text and appends it after the
addressed line; • is left at the last inserted line, or, if there were none,
at the addressed line. Address 0 is legal for this command: it causes
the "appended" text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal
is 256 per line (including the new-line character).

The change command deletes the addressed lines, then accepts input
text that replaces these lines; • is left at the last line input, or, if there
were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (see the/ command). The number of characters
read is typed; file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced by !, the rest
of the line is taken to be a shell [sh (l)] command whose output is to
be read. Such a shell command is not remembered as the current file
name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to
see if any changes have been made to the buffer since the last w com
mand.

- 4 ·

I
I !

(�
')

()

f file

ED(1)

If file is given, the file-name command changes the currently
remembered file name to file; otherwise, it prints the currently
remembered file name.

(J , $)g/RE/command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given command
list is executed with . initia1Iy set to that line. A single command or
the first of a list of commands appears on the same line as the global
command. All lines of a multi line list except the last line must be
ended with a \;- a; 1; and -c -cOmmands and associated input" are permit
ted; the • terminating input mode may be omitted if it would be the
last line of the command list. An empty command list is equivalent to
the p command. The g, G, v, and V commands are not permitted in
the command list. See also BUGS and the last paragraph before FILES
below.

(I ,$)GIREI

b

H

(.)i
<text>

In the interactive Global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and any one command (other than
one of the a, c, i, g, G, v, and V commands) may be input and is exe
cuted. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed within the
current invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages
are printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; .
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the placement
of the input text. Address 0 is not legal for this command. The max
imum number of characters that may be entered from a terminal is
256 per line (including the new-line character).

(. , .+I)j

Ukx

The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command
does nothing.

The mark command marks the addressed line with name x, which
must be a lowercase letter. The address X then addresses this line; •
is unchanged.

. 5·

ED(1)

(.,.)1

(.,.)rna

(.,.)n

(.,.)p

p

q

Q

The list command prints the addressed lines in an unambiguous way:
a few non-printing characters (e.g., tab, backspace) are represented by
(hopefully) mnemonic overstrikes, all other non-printing characters are
printed in octal, and long lines are folded. An I command may be
appended to any other command other than e, f, r, or w. '�
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file; it is an error if address
a falls within the range of moved lines; • is left at the last line moved.

The number command prints the addressed lines, preceding each line
by its line number and a tab character; . is left ·at the last line printed.
The n command may be appended to any other command other than e,
f, r, or w.

The print command prints the addressed lines; • is left at the last line
printed. The p command may be appended to any other commarld
other than e, f, r, or w; for example, dp deletes the current line and
prints the new current line.

The editor will prompt with a • for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is
done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line. If
no file name is given, the currently-remembered file name, if any, is
used (see e and f commands). The currently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by !, the rest of the line is taken to be a shell [sh (I)] com
mand whose output is to be read. For example, "$r !Is" appends
current directory to the end of the file being edited. Such a shell com
mand is not remembered as the current file name.

(. , .)s/RE!rep/acementl or
(. , .)s/ RE /replacement /g

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the replacement
if the global replacement indicat<;>r g appears after the command. If
the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on
all addressed lines. Any character other than space or new-line may
be used instead of I to delimit the RE and the replacement; , is left at
the last line on which a substitution occurred. See also the last

. 6·

u

(.,.)ta

u

ED(1)

paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by \. As a more
general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n·th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions
are present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in the
replacement,- the replacement used in the most recent substitute com·
mand is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of
more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); • is left at
the last line of the copy.

The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c, d, g,
i,j, m, r, s, t, v, G, or V command.

(1 , $h/RE!command list
This command is the same as the global command g except that the
command list is executed with . initially set to every line that does not
match the RE.

(I,$)V/REI
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do
not match the RE.

(1 ,$)w file

{$) -

The write command writes the addressed lines into the named file. If
the file does not exist, it is created with mode 666 (readable and writ
able by everyone), unless your umask setting [see sh(I)] dictates oth
erwise. The currently-remembered file name is not changed unless file
is the very first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is used (see
e and f commands); . is unchanged. If the command is successful, the
number of characters written is typed. If file is replaced by !, the rest
of the line is taken to be a shell [sh (I) 1 command whose standard
input is the addressed Jines. Such a shell command is not remembered
as the current file name.

The line number of the addressed line is typed; . is unchanged by this
command.

!shell command
The remainder of the line after the ! is sent to the UNIX shell [sh(I)]
to be interpreted as a command. Within the text of that command, the
unescaped character % is replaced with the remembered file name; if a
! appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus, !! will repeat the

- 7-

ED(1)

FILES

last shell command. If any expansion is performed, the expanded line
is echoed; , is unchanged.

(.+1) <new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to . +tp; it is useful for stepping forward
through the buffer. "

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns
to its command level.

Some size limitations: 512 characters per line, 256 characters per global com
mand list, 64 characters per file name, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory: each line
takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after
the last new-line. Files (e.g., a.out) that contain characters not in the ASCII
set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case
the addressed line is printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?s1 ?sl?

/tmp/e#
ed.hup

DIAGNOSTICS

temporary; # is the process number.
work is saved here if the terminal is hung up.

?
?file

for command errors.
for an inaccessible file.
(use the heJp and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroy ed's buffer
via the e or q commands: it prints ? and allows one to continue editing. A
second e or q command at this point will take effect. The - command-line
option inhibits this feature.

SEE ALSO
grep(I), sed(!), sh(l), suy(I), fspec(4), regexp(5).
A Tutorial Introduction to the UNIX System Text Editor by B. W. Kernighan.
Advanced Editing on the UNIX System by B. W. Kernighan.

CA YEATS AND BUGS
A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be
used if the the editor is invoked from a restricted shell [see sh (I)].
The sequence \n in a RE does not match a new-line character.
The I command mishandles DEL.
Characters are masked to 7 bits on input.

- 8 -

EDIT(1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS

(-� edit [-r] name ...

�ESCRIPTION
Edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. The following brief introduction
should help you get started with edit. If you are using a CRT terminal you may
want to learn __ a_b_out_ the _display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the command "edit
name" to the shell. Edit makes a copy of the file which you can then edit, and
tells you how many Jines and characters are in the file. To create a new file,
just make up a name for the file and try to run edit on it; you will cause an
error diagnostic, but do not worry.

Edit prompts for commands with the character ':', which you should see after
starting the editor. If you are editing an existing file, then you will have some
lines in edit's buffer Gts name for the copy of the file you are editing). Most
commands to edit use its "current line" if you do not tell them which line to
use. Thus if you say print (which can be abbreviated p) and hit carriage return
(as you should after all edit commands) this current line will be printed. If
you delete (d) the current line, edit will print the new current line. When you
start editing, edit makes the last line of the file the current line. If you delete
this last line, then the new last line becomes the current one. In general, after
a delete, the next line in the file becomes the current line. (Deleting the last
line is a special case.)

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you give this command (typing a carriage
return after the word append) edit will read lines from your terminal until you
give a line consisting of just a ".", placing these lines after the current line.
The last line you type then becomes the current line. The command insert (j)
is like append but places the lines you give before, rather than after, the current
line.

Edit numbers the Jines in the buffer, with the first line having number 1 . If
you give the command "1" then edit will type this first line. If you then give
the command delete edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line I) so you can see where you are.
In general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the sub
stitute (s) command. You say "sf old /new/" where old is replaced by the old
characters you want to get rid of and new is the new characters you want to
replace it with.

The command file (f) will tell you how many lines there are in the buffer you
are editing and will say "[Modified}" if you have changed it. After modifying
a file you can put the buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit (q) command. If
you run edit on a file, but do not change it, it is not necessary (but does no
harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been "No write
since last change" and edit will await another command. If you wish not to
write the buffer out then you can issue another quil command. The buffer is
then irretrievably discarded, and you return to the shell.

EDIT(1)

By using the delete and append commands, and giving line numbers to see lines
in the file you can make any changes you desire. You should learn at least a
few more things, however, if you are to use edit more than a few times.

The change (c) command will change the current line to a sequence of lines
you supply (as in appemd you give lines up to a line consisting of only a ".").
You can tell change to change more than one line by giving the line numbers of (_
the lines you want to change, i.e., "3,5change". You can print lines this way
too. Thus " 1 .23p" prints the first 23 lines of the file.

The ••ndo (u) command will reverse the effect of the last command you gave
which changed the buffer. Thus if you give a substitute command which does
not do what you want, you can say undo and the old contents of the line will be
restored. You can also undo an undo command so that you can continue to
change your mind. Edit will give you a warning message when commands you
do affect more than one line of the buffer. If the amount of change seems
unreasonable, you should consider doing an undo and looking to see what hap
pened. If you decide that the change is ok, then you can undo again to get it
back. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look
at a number of Jines hit "D (control key and, while it is held down D key, then
let up both) rather than carriage return. This will show you a half screen of
lines on a CRT or 1 2 lines on a hardcopy terminal. You can look at the text
around where you are by giving the command "z.". The current line will then
be the last line printed; you can get back to the line where you were before the
"z." command by saying """. The z command can also be given other follow
ing characters "z-" prints a screen of text (or 24 lines) ending where you are;
"z+" prints the next screenful. If you want less than a screenful of lines, type
in "z.12" to get 1 2 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the command
"delete 5''.

To find things in the file, you can use line numbers if you happen to know
them; since the line numbers change when you insert and delete lines this is
somewhat unreliable. You can search backward and forward in the file for
strings by giving commands of the form /text/ to search forward for text or
?text? to search backward for text. If a search reaches the end of the file
without finding the text it wraps, end around, and continues to search back to
the line where you are. A useful feature here is a search of the form /"text/
which searches for text at the beginning of a line. Similarly /text$/ searches
for text at the end of a line. You can leave off the trailing I or ? in these com
mands.

The current line has a symbolic name "."; this is most useful in a range of lines
as in ''.,$print" which prints the rest of the lines in the file. To get to the last
line in the file you can refer to it by its symbolic name "$". Thus the com
mand "$ delete" or "$d" deletes the last line in the file, no matter which line
was the current line before. Arithmetic with line references is also possible.
Thus the line "$-5" is the fifth before the last, and ".+20" is 20 lines after the
present.

You can find out which line you are at by doing ".=". This is useful if you
wish to move or copy a section of text within a file or between files. Find out
the first and last line numbers you wish to copy or move (say 10 to 20). For a
move you can then say "10,20delete a" which deletes these lines from the file
and places them in a buffer named a. Edit has 26 such buffers named a
through z. You can later get these lines back by doing "put a" to put the con
tents of buffer a after the current line. If you want to move or copy these lines
between files you can give an edit (e) command after copying the lines,

- 2 -

(�\ \

EDIT(1)

following it with the name of the other file you wish to edit, i.e., "edit
chapter2". By changing delete to yank above you can get a pattern for copying
lines. If the text you wish to move or copy is all within one file then you can
just say "10,20move $" for example. It is not necessary to use named buffers
in this case (but you can if you wish).

SEE ALSO
ex(!), vi(!).

- 3 -

EFL(1)

NAME
efl - Extended FORTRAN Language

SYNOPSIS
en [options l [files l

DESCRIPTION . ·
Eft compiles a program written in the EFL language into clean FORTRAN on\..
the standard output. Efl provides the C-like control constructs of ratfor(I):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, FORTRAN do, repeat, and repeat . . . 110til loops;
multilevel break and next.

EFL has C-Iike data structures, e.g.:

struct
(
integer Hags(J)
character(S) name
long real coords(2)
] table(!OO)

The language offers generic functions, assignment operators (+ •, & • , etc.>,
and sequentially evaluated logical operators (& & and I I) . There is a uniform
input/output syntax:

write(6,x,y:f(7,2), do i-1,10 (aGj),z.bG)])
EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line� automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > - . & , etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
inelude.file

Eft understands several option arguments: -w suppresses warning messages,
-# suppresses comments in the generated program, and the default option -C

causes comments to be included in the generated program.

An argument with an embedded - (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target
machine may be selected by one of the choices: system-unix, system•geos, or-,_
system•cray. The default setting of the system option is the same as the
machine the compiler is running on.

Other specific options determine the style of input/output, error handling, con
tinuation conventions, .the number of characters packed per word, and default
formats.

- 1 -

EFL(1)

Efl is best used witbj77(1).

SEE ALSO
ceO), !77(1), ratfor(l).

(•
______ /

- 2 -

ENABLE(1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c I [-r(reason 1 1 printers

DESCRIPTION

FILES

Enable activates the named printers, enabling them to print requests taken by
/p(l), Use lpstat(l) to find the status of printers.

Disable deactivates the named printers, disabling them from printing requests
taken by lp(l). By default, any requests that are currently printing on the
designated printers will be reprinted in their entirety either on the same printer
or on another member of the same class. Use lpstat (1) to find the status of
printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r[reason] Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r option.
If the -r option is not present or the -r option is given without
a reason, then a default reason will be used. Reason is reJX)rted
by lpstat(I).

/usr/spool/lp/•

SEE ALSO
Ip(I), lpstatOJ.

- I -

(_j

ENV(1)

NAME
env - set environment for command execution

SYNOPSIS
env (-] [name-value] ... [command args

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of the
form name =value are merged into the inherited environment before the com
mand_is _execut¢, T_Qe - _flag_��us_� th�_ inherited �nvironment to be ignored
com]Jletely, so that the command is execUted with exactlY the envirOnment specified by the arguments.
If no command is specified, the resulting environment is printed, one name
value pair pe� line.

SEE ALSO
sh(!).
exec(2), profile(4), envirion(5) in the Software Development System manual.

- I -

ERRDEAD(1 M)

NAME
errdead - extract error records from dump

SYNOPSIS
/etc/errdead dumpfile [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record that contains
information pertinent to the error is generated. If the error-logging daemon
errdemon (1M) is not active or if the system crashes before the record can be
placed in the error file, the error information is held by the system in a local
buffer. Errdead examines a system dump (or memory), extracts such error
records, and passes them to errpt (1M) for analysis.

The dumpfile specifies the file (or memory) that is to be examined. The sys
tem name list is specified by name/ist; if not given, /unix is used.

/unix
/usr/bin/errpt
/usr/tmp/errXXXXXX

system name list
analysis program
temporary file

DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In either case, they are
intended to be self-explanatory.

SEE ALSO
errdemon (I M), errpt(l M).

- I -

0

c;

ERRDEMON(1 M)

NAME
errdemon - error-logging daemon

SYNOPSIS
/usr/lib/errdemon [file]

DESCRIPTION

FILES

The error Jogging daemon errdemon collects error records from the operating
system by reading the special file /dev/error and places them in file. If file is
not specified when the daemon is activated, /usr/adm/errfile is used. Note that
file is creat�Q jf it dges �-Qt exist; otherwise,_ error records are appended to it, so
that no previous error data is lost. No analysis of the error records is done by
errdemon; that responsibility is left to errpt(IM). The error-logging daemon is
terminated by sending it a software kill signal [see ki/1(1)1. Only the super
user may start the daemon, and only one daemon may be active at any time.

/dev/error
/usr/adm/errfile

source of error records
repository for error records

DIAGNOSTICS
The diagnostics produced by errdemon are intended to be self-explanatory.

SEE ALSO
errpt(IM), errstop(IM), kill(!), err(?).

- I -

ERRPT(1 M)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [options I (files 1

DESCRIPTION

FILES

Errpt processes data collected by the error logging mechanism [errdemon (!M)]
and generates a report of that data. The default report is a summary of all
errors posted in the files named. Options apply to all files and are described
below. If no files are specified, errpt attempts to use /usr/adm/errfile as file.

A summary report notes the options that may limit its completeness. records
the time stamped on the earliest and latest errors encountered, and gives the
total number of errors of one or more types. Each device summary contains
the total number of unrecovered errors, recovered errors, errors unabled to be
logged, I/0 operations on the device, and miscellaneous activities that occurred
on the device. The number of times that errpt has difficulty reading input data
is included as read errors.

Any detailed report contains, in addition to specific error information, all
instances of the err.or logging process being started and stopped, and any time
chcmges [via date(I)] that took place during the interval being processed. A
summary of each error type included in the report is appended to a detailed
report.

A report may be limited to certain records in the following ways:

-s date

-e date

- a

- d dev/ist

-p n

-f

Ignore all records posted earlier than date, where date has
the form mmddhhmmyy, consistent in meaning with the
date(l) command.

Ignore all records posted later than date, whose form is as
described above.

Produce a detailed report that includes all error types.

A detailed report is limited to data about pevices given in
devlist, where dev/ist can be one of two forms: a list of dev
ice identifiers separated from one another by a comma, or a
list of device identifiers enclosed in double quotes and
separated from one another by a comma and/ or more spaces.
Errpt is familiar with the common form of identifiers (e.g.,
rs03, RS04, hs; see Section 7 of this volume). For the 3820
computer the devices for which errors are logged are DFC,
lOP, and MT. For Digital Equipment Corporation machines,
the (block) devices for which errors are logged are RP03,
RP04, RP05, RP06, RP07, RS03, RS04, TS I I, TU!O, TUI6,
TU78, RKOS, RK06, RK07, RM05, RM80, and RFI I . Addi·
tiona! identifiers are int and mem which include detailed
reports of stray-interrupt and memory-parity type errors,
respectively.

Limit the size of a detailed report to n pages.

In a detailed report, limit the reporting of block device errors
to unrecovered errors.

/usr/adm/errfile default error file

SEE ALSO
date(I), errdead(IM), errdemon(IM), errfile(4) .

• j .

l

C'

I
-j

0

ERSTOP(1M)

NAME
errstop - terminate the error-logging daemon

SYNOPSIS
/etc/errstop [namelist]

DESCRIPTION

FTLES

The error-logging daemon errdemon (1M) is terminated by using errstop. This
is accomplished by executing ps(l) to determine the daemon's identity and
then sending it a software kill signal [see signal (2)]; /unix is used as the sys
tem namelist -if none-is specified. Only the super-user __ may use errs top.

/unix default system namelist

DIAGNOSTICS
The diagnostics produced by errstop are intended to be self-explanatory.

SEE ALSO
errdemonOM), ps(l), ki11(2), signa!(2).

- 1 -

I

EX(1)

NAME
ex - text editor

SYNOPSIS
ex [- I I -v I I -t tag I I -r I [-R I [+command I [-1 I name

DESCRIPTION
Ex is the root of a family of crditors: ex and vi. Ex is a superset of ed, with �
the most notable extension being a display editing facility. Display based edit-
ing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this
case see vi(l), which is a command which focuses on the display editing por
tion of ex.

DOCUMENTATION
The Ex Reference Manual is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the editor by read
ing it. For an introduction to more advanced forms of editing using the com
mand mode of ex see the editing documents written by Brian Kernighan for the
editor ed; the material in the introductory and advanced documents works also
with ex.

An Introduction to Display Editing with Vi introduces the display editor vi
and provides reference material on vi. The Vi Quick Reference card summar
izes the commands of vi in a useful, functional way, and is useful with the
Introduction. The vi(I) manual page can also be used as reference.

FOR ED USERS
If you have used ed you wi11 find that ex has a number of new features useful
on CRT terminals. Intelligent terminals and high-speed terminals are very
pleasant to use with vi. Generally, the editor uses far more of the capabilities
of terminals than ed does, and uses the terminal capability data base ter
minfo (4) and the type of the terminal you are using from the variable TERM
in the environment to determine how to drive your terminal efficiently. The
editor makes use of features such as insert and delete character and line in its
visual command (which can be abbreviated vi) and which is the central mode of
editing when using vi(I).

Ex contains a number of new features for easily viewing the text of the file.
The z command gives easy access to windows of text. Hitting �D causes the
editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just hitting return. Of course, the screen-oriented visual
mode gives constant access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. Ex gives you a lot
of feedback, normally printing changed lines, and indicates when more than a
few lines are affected by a command so that it is easy to detect when a com
mand has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited
them so that you do not accidentally clobber with a write a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally hang
up the phone, you can use the editor recover command to retrieve your work.
This will get you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files to be dealt with. In
general, file names in the editor may be formed with full shell metasyntax. The

- 1 -

c:

EX{1)

metacharacter •%• is also available in forming file names and is replaced by the
name of the current file.

For moving text between files and within a file the editor has a group of
buffers, named a through z. You can place text in these named buffers and
carry it over when you edit another file.

There is a command & in ex which repeats the last substitute command. In
addition there is a confirmed substitute command. You give a range of substi
tutions to be done and the editor interactively asks whether each substitution is
desired.

It is possible to ignore case of letters in searches and substitutions. Ex also
allows regular expressions which match words to be constructed. This is con
venient, for example, in searching for the word "edit" if your document also
contains the word .. editor."

Ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option which allows the editor to
automatically supply leading white space to align text. You can then use the
�D key as a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command
which supplies white space between joined lines automatically,- commands <
and > which shift groups of lines, and the ability to filter portions of the buffer
through commands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

-v

-t tagfR

-r file

-R

+command

-I

Suppress all interactive-user feedback. This is useful in pro
cessing editor scripts.

Invokes vi

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.

Readonly mode set prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or posi
tioning command.

LISP mode; indents appropriately for lisp code, the 0 0 ll
and H commands in vi are modified to have meaning for lisp.

The name argument indicates files to be edited.

Ex States
Command

Insert

Visual

Normal and initial -state. Input prompted for by :. Your kill
character cancels partial command.

Entered by a i and c. Arbitrary text may be entered. Insert
is normally terminated by line having only • on it, or abnor
mally with an interrupt.

Entered by d, terminates with Q or "\.

- 2 -

I

EX(1)

Ex command names and abbreviations
abbrev ab
append a
args ar
change c
copy co
delete d
edit e
file r
global g
insert i
join
list
map
mark rna
move m

Ex Command Addresses
n line n

current
$ last
+ next

previous

next n
number nu

preserve pre
print p
put pu
quit q
read re
recover rec
rewind rew
set se
shell sh
source so
stop st
substitute s

/pat
?pat
x-n
x,y
'x

unabbrev una
undo u
unrnap unm
version ••
visual vi
write w
xit X
yank ya
window z
escape
!shift <
print next CR
resubst &
rshift >
scroll ·o

next with pat
previous with pat
n before x
x through y
marked with x

+n n forward previous context
% 1,$

Initializing options
. EJUNIT

SHOME/.exrc
./.exrc
set x
set nox
set x-val
set
set all
set x?

Most useful options
auto indent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
showmatcb
sbowmode
slow open
window
wrapscan
wrapmargin

place set's here in environment var .
editor initialization file
editor initialization file
enable option
disable option
give value val
show changed options
show all options
show value of option x

ai
aw
ic

nu
para

sect
SW
sm
smd
slow

WS
wm

supply indent
write before changing files
in scanning
() { } are s-exp's
print "I for tab, $ at end
• (-. special in patterns
number lines
macro names which start ...
simulate smart terminal
command mode lines
macro names ...
for < >, and input "D
to) and } as typed
show insert mode in vi
stop updates during insert
visual mode lines
around end of buffer?
automatic line splitting

- 3 -

\\..

C. /

0

EX(1)

Scanning pattern formation " beginning of line
$ end of line

\<
\>
lstrl
(jSirl
lx -yl
•

any character
beginning of word
end of word
any char in str
... not in str
... between x and y
any number of preceding

AUTHOR

FILES

Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

/usr/lib/ex?. ?strings
/usr/lib/ex?. ?recover
/usr/lib/ex?. ?preserve
/usr!lib/terminfo
$HOME/ .exrc
./.exrc
/tmp/Exnnnnn
ltmp!Rxnnnnn
/usr/preserve

error messages
recover command
preserve command
describes capabilities of termimils
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO
awk[l), ed[l), edit(!), grep(l), sed(!), vi(l).
curses(3X), term(4), tenninfo(4) in tlte Software Development System manual.

CAVEATS AND BUGS
The version of ex that runs on the PDP-11 does not support the ful1 command
set due to space limitations. The commands which are not supported are
detailed in the "Ex Reference Manual." The most notable commands which
are missing are the macro and abbreviation facilities.

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More
than a screenful of output may result if long lines are present.

File input/output errors do not print a name if the command line '.-' option is
used.

There is no easy way to do a single scan ignoring case.
The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

- 4 -

I

EXPR(1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is writ- �
ten on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is
returneQ to indicate a zero value, rather than the null string. Strings contain-
ing blanks or other special characters should be quoted. Integer-valued argu
ments may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, 2s complement numbers.
The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \ I expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \ & expr .
returns the first expr if neither expr is null Or 0, otherwise returns 0.

expr { -. \>, \> -, \<, \< """, !- } expr
returns the result of an iriteger comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

"expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { \•, /, % } e:Xpr \<
multiplication, division, or remainder of the integer-valued arguments.

expr : expT

EXAMPLES
I.

The mli.tching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed(l), except that all patterns are
"anchored" (i.e., begin with '") and, therefore, .. is not a special char
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the
\<. . . \) pattern symbols can be used to return a portion of the first
argument.

a-expr $a +

adds I to the shell variable a.

2. # For $a equal to either "/usr/abc/file" or just "file"
expr $a ; .•1\(.o\) \ I $a

returns the last segment of a path name (i.e., file). Watch out
for I alone as an argument: expr wiii take it as the division
operator (see BUGS below).

3. # A better representation of example 2.
expr //Sa : .•!\(.•\)

4. expr

The addition of the I I characters eliminates any ambiguity
about the division operator and simplifies the whole expression.

$VAR : .•
returns the number of characters in $VAR.

- I -

-I

EXPR(1)

SEE ALSO
ed(!), sh(l).

EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:

0 if the expression is neither null nor 0
I if the expression is null or 0
2 for inValid expressions.

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

-for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shel1, expr cannot tell the difference between
an operator and an operand except by the value. If Sa is an =, the command:

expr $a """ -=
looks like:

expr

as the arguments · are passed to expr (and they will all be taken as the
operator). The following works:

expr X$a = X=

- 2 -

F77(1)

NAME
n1 - FORTRAN 77 compiler

SYNOPSIS
f17 [options] files

DESCRIPTION \c_
F77 is the UNIX System FORTRAN 77 compiler; it accepts several types of
file arguments:

Arguments whose names end with .f are taken to be FORTRAN 77
source programs; they are compiled and each object program is left in
the current directory in a file whose name is that of the source, with .o
substituted for .r.

Arguments whose names end with .r or .e are taken to be RATFOR or
EFL source programs, respectively. These are first transformed by the
appropriate preprocessor, then compiled by Pl. producing .o files.

In the same way, arguments whose names end with .c or .s are taken to
be C or assembly source programs and are compiled or assembled, pro
ducing .o files.

The following options have the same meaning as in ccCO [see !d(l) for link
editor options]:

-c
-p
-o
-s

-ooutput
-g

Suppress link editing and produce .o files for each source file.
Prepare object files for profiling [see prof(I)].
Invoke an object-code optimizer.
Compile the named programs and leave the assembler-language
outPut in corresponding files whose names are suffixed with .s.
(No .o files are created.)
Name the final output file output, instead of a.out.
Generate additional information needed for the use of sdb(l).

The following options are peculiar toj77:

-onetrip

-I
-66
-c
-u

-u

-v
-w

-F

-m

-E

-R

Compile DO loops that are performed at least once if reached.
(FORTRAN 77 DO loops are not performed at all if the upper
limit is smaller than the lower limit.)
Same as -onetrip.
Suppress extensions which enhance FORTRAN 66 compatibility.
Generate code for run-time subscript range-checking.
Do not "foldn cases. F77 is normally a no-case language (i.e., a is
equal to A). The -U option causes j77 to treat upper and lower
cases to be separate.
Make the default type of a variable undefined, rather than using
the default FORTRAN rules.
Verbose mode. Provide diagnostics for each process during com
pilation.
Suppress all warning messages. If the option is -w66, only
FORTRAN 66 compatibility warnings are suppressed.
Apply EFL and RATFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .f. (No .o
files are created.)
Apply the M4 preprocessor to each EFL or RATFOR source file
before transforming with the ratfor(t) or ejl(I) processors.
The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.
The remaining characters in the argument are used as a RATFOR
flag argument whenever processing a .r file.

- I -

0

FILES

F77(1)

Other arguments are taken. to be either link-editor option arguments or j77-
compilable object programs (typically produced by an earlier run), or libraries
of j77-compilable routines. These programs, together with the results of any
compilations specified, are linked (in the order given) to produce an executable
program with the default name a.out .

file.[fresc]
file.o
a.out

. ./fortlpid].1
/usr/lib/f77passl
/usrllib/n7pass2
/lib/c2
/usr/lib/ <model> /libF77.a
/usr/lib/ <model> /libl77.a
/lib/ <model> /libc.a

input file
object file
linked output

_ ___ temporary
compiler
pass 2
optional optimizer
intrinsic function library
FORTRAN 1/0 library
C library; see Section 3 of this Manual.

where "<model>" is small, large, or huge.

SEE ALSO
asa(l), cc(l), efl(I), fsplitO), Id(I), m4(I), profU), ratfor(I), sdb(I).

DIAGNOSTICS
The diagnostics produced by p7 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor ld(l).

- 2 -

FACTOR(1)

NAME
factor - factor a number

SYNOPSIS
factor [number 1

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed
in. If you type in a positive number less than 256 (about 7 .2X 1016) it will fac·
tor the number and print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

Maximum time to factor is proportional to � and occurs when n is Pfime or
the square of a prime. It takes 1 minute to factor .a prime near 101 on a
PDP- I I .

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

- I -

(:

FDISK(1M)

NAME
fdisk-fixed disk utility

SYNOPSIS
fdlsk

DESCRIPTION
F disk initializes a DOS or System VI AT partition on either the primary or the secondary
hard disk. The initialization process takes two steps to complete: assigrunent of partition
and bad trnck mappffig.

The fdisk partition Scheme is compatible with DOS, and it is possible for a DOS
partition to co-exist on the hard disk with System V /AT. Mter partition initialization,
file systems must be made on the hard disk partition. The diwy(lM) utility is provided
to assist in this process.

The fdiskutilty is menu driven with six options;

1. Create a partition
2. Change Active partition
3. Delete a partition
4. Display partition information
5. Bad track mapping
6. Advance current disk to next

SEE ALSO
divvy(IM), mkfs(!M), seblp(!M), showbad(!M).

- I -

FF(1 M)

NAME
ff - list file names and statistics for a file system

SYNOPSIS
/etc/ff [options} special

DESCRIPTION ""
Ff reads the i-list and directories of the special file, assuming it to be a file sys-
tem, saving i-node data for files which match the selection criteria. Output
consists of the path name for each saved i-node, plus any other file information
requested using the print options below. Output fields are positional. The out-
put is produced in i-node order; fields are separated by tabs. The default line
produced by ffis:

path-name i-number
With all options enabled, output fields would be:

path-name i-number size uid
The argument n in the option descriptions that follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less than,
n, and n means exactly n. A day is defined as a 24-hour period.
-I Do not print the i-node number after each path name.
-I

-s

-u

-a-n

-m-n
-e-n

-n-file

Generate a supplementary list of all path names for multiply
linked files.
The specified prefix will be added to each generated path name.
The default is •.
Print the file size, in bytes, after each path name.
Print the owner's login name after each path name.
Select if the i-node has been accessed in n days.
Select if the i-node has been modified in n days.
Select if the i-node has been changed in n days.
Select if the i-node has been modified more recently than the
argument file.

-n-node-list
Generate names for only those i-nodes specified in i-node-list.

EXAMPLES
To generate a list of the names of all files on a specified file system:

ff -I /dev/diskroot
To produce an index of files and i-numbers which are on a file system and have
been modified in the last 24 hours:

ff -m - I /dev/diskusr > /Jog/incbackup/usr/tuesday

To obtain the path names for i-nodes 451 and 76 on a specified file system:

ff -i 451,76 /dev/rdsk/Os7
SEE ALSO

fine(! M), find{l), free(! M), neheek(! M) .

. I .

' '

(I "-- �

(\ I ' ' /

BUGS

FF(1 M)

Only a single path name out of any possible ones will be generated for a multi·
ply linked ipnode, unless the -1 option is specified. When -1 is specified, no
selection criteria apply to the names generated. All possible names for every
linked file on the file system will be included in the output.

On very large file systems, memory may run out before ff does.

- 2 -

FILE(1)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f flile l [-m mfile l arg ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If \�
an argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file will print the
version stamp, provided it is greater than 0 (see /d(l)).
If the -f option is given, the next argument is taken to be a file containing the
names of the files to be examined.
File uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates
its type.' Commentary at the beginning of /etc/magic explains its format.
The -m option instructs file to use an alternate magic file.
The -c flag causes file to check the magic file for format errors. This valida
tion is not normally carried out for reasons of efficiency. No file typing is done
under -c.

SEE ALSO
ld(l).

- 1 .

\,,_

FILESAVE(1 M)

NAME
filesave - daily/weekly UNIX system file system backup

SYNOPSIS
/etc/filesave.?

DESCRIPTION
This shell script is provided as a model. It is designed to provide a simple,
interactive operator environment for file backup. Fi/e.save.? is for daily disk·
to-di�k backup.
The suffix .? can be used to name another system where two (or more)
machines share disk drives and one or the other of the systems is used to per
form backup on both.

SEE ALSO
shutdown(] M), volcopy(l M).

- I -

FINC(1M)

NAME
fine - fast incremental backup

SYNOPSIS
fine [selection-criteria] file-system raw-device

DESCRIPTION
I\ Fine selectively copies the input file-system to the output raw-device. The "

media must be formatted as a backup and labeled by labelit [see format (1M)
in this manual]. The ca!}tious will want to mount the input file-system read-
only to insure flO accurate backup, although acceptable results can be obtained
in read-write mode. The selection is controlled by the selection-criteria,
accepting only t�ose i-nodes/files for whom the conditions are true.
It is recommended that production of the fine media be preceded by the ff com
inand, and the Output of .If be saved as an index of the media's contents. Files
on a .fine media may be recovered with the free command.

The argument n in the selection-criteria which follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less than
n, and n means exactly n. A day is defined as 24 hours.
-a n

-m n

-e n

-njlle

EXAMPLES

True if the file has been accessed in n 4ays.
True if the file has been modified in n days.
True if the i-node has been changed in n days. •
True for any file which has been modified more recently than
the argument file.

To write a floppy disk consisting of all files from file-system /usr modified in
the last 48 hours:

fine -m -2 /dev/rdsk/Os7 /dev/rdsk/Os24

SEE ALSO
cpio(I), tf(IM), frec(!M), volcopy(lM).

-1 -

FIND(1)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the
path-name-list G.e., one or more path names) seeking files that match a
Boolean expression written in the primaries given below. In the descriptions,
the argument n is used as a decimal integer where _+n means mo_re than n, --n
means less than n and n means exactly n.

-name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for (, ?
and •) .

-perm onum

-type c

-links n

True if the file permission flags exactly match the octal
number onum [see chmod(I)]. If onum is prefixed by a
minus sign, more flag bits [01 7777, see stat(2)] become
significant and the flags are compared.
True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file respectively.
True if the file has n links.

-user una me True if the file belongs to the user uname. If una me is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gnome True if the file belongs to the group gnome. If gnome is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

-size n[c] True if the file is n blocks long (512 bytes per block) . If n is
followed by a c, the size is in characters.

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-print

-cpio device

-newer file

-depth

True if the file has been accessed in n days. The access time
of directories in path-name-list is changed by find itself.
True if the file has been modified in n days.
True if the file has been changed in n days.
True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi
colon. A command argument 0 is replaced by the current
path name.
Like -exec except that the generated command line is
printed with a question mark first, and is executed only if the
user responds by typing y.
Always true; causes the current path name to be printed.
Always true; write the current file on device in cpio (4)
mat (5120-byte records) . ·
True if the current file has been modified more recently than
the argument file.

Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio (1) to transfer files that are contained in directories
without write permission.

- I -

FIND(1)

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators Gn order of
decreasing precedence):

l) The negation of a primary (! is the unary not operator).
·�

2) Concatenation of primaries (the and operation is implied by the juxtaposi
tion of two primaries).

3) Alternation of primaries (-o is the or operator).

EXAMPLE

FILES

To remove all files named a.out or •.o that have not been accessed for a week:

find I \(-name a.out -o -name '•.o' \) -atime +7 -exec rm 0 \;

/etc/passwd
/etc/group

SEE ALSO
chmod(l), cpio(l), sh(l), tes«l).
stat(2), cpio(4), fs(4) in the Software Development System manual.

- 2 -

c \

FORMAT(1 M)

NAME

fonnat-format floppy and hard disk tracks

SYNOPSIS

/etc/format {�f first} {-llast) Hinterleave} {-s} device

DESCRIPTION

Format fonnats floppy and Winchester hard disks. Unless otherwise specified, formatting
starts at track 0 and continues until an error is retmned at the end of a partition.

The -f and -1 options specify the first and last cylinder to be formatted. The default
ID.terleave of3 may be changed by using the -i option for hard disks only. There is no
IDterleave option possible for formats of floppy disks.

The -s option will make the hard disk boatable. It creates the master boot block, and is
similar to the DOS format command options '/SN'. This option is only useful for hard
disks.

Device must specify a raw (character) device.

EXAMPLES

FILES

format-s /dev/rdskftlslO

format /dev/rdSk/fd(J)6

formats the entire disk, and makes it boatable.

formats a 96 tpi floppy.

/dev Jrdsk/* raw device for partition to be formatted

FREC(1M)

NAME
free - recover files from a backup device

SYNOPSIS
/etc/free [-p path] [-f reqfile 1 raw-device i-number:name

DESCRIPTION
Free recovers files from the specified raw-device backup written by
vo/copy(lM) or .finc(lM), given their i-numbers. The data for each recovery
request will be written into the file given by name.

The -p option allows you to specify a default prefixing path different from
your current working directory. This will be prefixed to any names that are not
fully qualified, i.e., that do not begin with I or ./. If any direc�ories are miss
ing in the paths of recovery names they will be created.

-p path Specifies a prefixing path to be used to fully qualify any
names that do not start with I or./.

-f reqfile Specifies a file which contains recovery requests. The format
is i-number:newname, one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a file named junk in
your current working directory:

free /dev/rdsk/Os24 1216:junk
To recover files with i-numbers 14156, 1232, and 3141 into files
/usr/src/cmd/a, /usr/src/cmd/b and /usr/joe/a.c:

free -p /usr/src/cmd /dev/rdsk/Os24 141 56:a 1232:b
3141:/usr/joe/a.c

SEE ALSO

BUGS

cpio(I), ff(IM), finc(IM), volcopy(IM).

While paving a path (i.e., creating the intermediate directories contained in a
path name) free can only recover i-node fields for those directories contained on
the device and requested for recovery.

- 1 -

0

0

FSCK(1M)

NAME
fsck1 dfsck - file system consistency check and interactive repair

SYNOPSIS
/etclfsck [-y] [-n] [-sX] [-SX] [-t file] [-q] [-D] [-f] [-b]
[file-systems]
/etc/dfsck [optionsl I filsysl . . . - [options2] filsys2 . . .

DESCRIPTION
Fsck

Fsck audits and interactively repairs inconsistent conditions for UNIX
syste_m fUes. If the file system is consistent, then the number of files,
number of blocks used, and -number of blocks free are reported. If the file
system is inconsistent, the operator is prompted for concurrence before
each correction is attempted. It should be noted that most corrective
actions will result in some loss of data. The amount and severity of data
lost may be determined from the diagnostic output. The default action
for each consistency correction is to wait for the operator to respond yes
or no. If the operator does not have write permission fsck will default to
a -n action.
Fsck has more consistency checks than its predecessors check, dcheck,
fcheck, and icheck combined.

The following options are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by fsck; do not open
the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new
one by rewriting the superblock of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not continue to be used
or written on the file system.

-SX

-t

The -sX option allows for creating an optimal free-list C'rganiza
tion. The following forms of X are supported for the following dev
ices:

-s3 (RP03)
-s4 (RP04, RP05, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was created
are used. If these values were not specified, then the value 1,.00:7 is
used.
Conditionally reconstruct the free list.. This option is like -sX
above except that the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -8 will force a
no response to all questions asked by fsck. This option is useful for I forcing free list reorganization on uncontaminated file systems.

If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the -t flag,
fsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked, and if it
is not a special file or did not a,lready exist, it is removed when
jsck completes.

- 1 -

FSCK(1M)

-q Quiet fsck. Do not print size-check messages in Phase 1. Unrefer
enced fifos will silently be removed. If jsck requires it, counts in
the superblock will be automatically fixed and the free list sal
vaged.

-D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check. Check block and sizes (Phase 1) and check the free list
(Phase 5). The free list will be reconstructed (Phase 6) if it is
necessary.

-b Reboot. If the file system being checked is the root file system and
modifications have been made, then either remount the root file
system or reboot the machine. A remount is done only if there was
minor damage.

If no file-!Jijstems are specified, fsck will read a list of default file systems
from the file /etc/checklist.
Inconsistencies checked are as follows:

1. Blocks- claimed by more than one i-node or the free list.
2. Blocks claimed by an i-node or the free list outside the

range of the file system.
8. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad i-node format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated i-node.
!-node number out of range.

8. Superblock checks:
More than 65536 i-nodes.
More blocks for i-nodes than there are in the file sys
tem.

9. Bad free block list format.
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+found
directory, if the files are nonempty. The user will be notified if the file or
directory is empty or not. If it is empty, fsck will silently remove them.
Fsck will force the reconnection of nonempty directories. The name
assigned is the i-node number. The only restriction is that the directory
lost+found must preexist in the root of the file system being checked
and must have empty slots in which entries can be made. This is accom
plish�d by making lost+found, copying a number of files to the direc
tory, and then removing them (before fsck is executed).
Checking the raw device is almost always faster and should be used with
everything but the root file system.

Dfsck
Dfsck allows two file system checks on two different drives simultane
ously. optionsl and options2 are used to pass options to fsck for the two
sets of file systems. A - is the separator between the file system groups.

The dfsck program permits an operator to interact with two /sck(lM) pro
grams at once. To aid in this, dfsck will print the file system name for
each message to the operator. When answering a question from dfsck,
the operator must prefix the response with a 1 or a 2 (indicating that the

- 2 -

(, I I__./

FILES

answer refers to the first or second file system group).

Do not use djsck to check the root file system.

FSCK(1M)

I etc/ checklist
I etc/ check all

contains default list of file sYstems to check.
optimizing dfsck shell file.

SEE ALSO

BUGS

checkall(IM), clri(IM), ncheck(IM), uadmin(2), checklist(4), fs(4), crash(IM).

Administrative Advice in the Runtime System manual.

1-node numbers for . and . . in each directory should be checked fOr vali
dity.

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

I
- 3 -

FSD8(1M)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [- [

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It has "-
conversions to translate block and i�numbers into their corresponding disk
addresses. Also included are mnemonic offsets to access different parts of an i�
node. These greatly simplify the process of correcting control block entries or
descending the file syStem tree.

Fsdb contains several error�checking routines to verify i�node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional - argument or by the use of the 0 symbol. CFsdb reads the i-size and
f-size entries from the super block of the file system as the basis for these
checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. During any assignment operation, numbers are checked for a pos
sible truncation error due to a size mismatch between source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as block
1/0. A buffer management routine is used to retain commonly used blocks of
data in order to reduce the number of read system calls. All assignment opera
tions result in an immediate write-through of the corresponding block.

The symbols recognized by fsdb are:
absolute address
i convert from i-number to i-node address
b convert to block. address
d directory slot offset
+ - address arithmetic
q quit
>, < save, restore an address

numerical assignment
= + incremental assignment

decremental assignment
=- " character string assignment
0 error checking flip flop
p general print facilities
f file print facility
B byte mode
W word mode
D double word mode

escape to shell

The print facilities generate a formatted output in various styles. The current
address is normalized to an appropriate boundary before printing begins. It
advances with the printing and is left at the address of the last item printed.
The output can be terminated at any time by typing the delete character. If a
number follows the p symbol, that many entries are printed. A check is made
to detect block boundary overflows since logically sequential blocks are gen
erally not physically sequential. If a count of zero is used, all entries to the end
of the current block are printed. The print options available are:

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words

- I -

I
i l

I
c
b

print as characters
print as octal bytes

FSDB(1 M)

The f symbol is used to print data blocks associated with the current i-node.
If followed by a number, that block of the file is printed. (Blocks are num
bered from zero.) The desired print option letter follows the block number, if
present, or the f symbol. This print facility works for small as well as large
files. It checks for special devices and that the block pointers used to find the
data are not zero.

- Dots, -tabs, -and spaces may be used as_ function delimiters but__are not nec_es
sary. A line with just a new-line character will increment the current address
by the size of the data type last printed. That is, the address is set to the next
byte, word, double word, directory entry or i-node, allowing the user to step
through a region of a file system. Information is printed in a format appropri·
ate to the data type. Bytes, words and double words are displayed with the
octal address followed by the value in octal and decimal. A .B or .D is
appended to the address for byte and double word values, respectively. Direc·
tories are printed as a directory slot offset followed by the decimal i-number
and the character representation of the entry name. 1-nodes are printed with
labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

EXAMPLES
386i

ln-4

In=+ I

fc

2i.fd

d5i.fc

md mode
In link count
uid user ID number
gid group ID number
sz file size
a# data block numbers (0 - 12)
at
mt
maj
min

access time
modification time
major device number
minor device number

prints i-number 386 in an i-node format. This now becomes
the current working i-node.

changes the link count for the working i-node to 4.

increments the link count by 1 .

prints, in ASCII, block zero of the file associated with the
working i-node.

prints the first 32 directory entries for the root i-node of this
file system.

changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the above
command. The first logical block of the file is then printed
in ASCII.

5 1 2B.p0o prints the super block of this file system in octal.

2i.a0b.d7=3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7 .nm="name" changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

- 2 -

FSSTAT(1M}

NAME
fsstat - file system status

SYNOPSIS
/etc/fSstat file-system

DESCRIPTION
Fsstat reports on the status Of file-system. During startup, this com- ""�'"
mand is used to decide if the file System needs che'cking before it is \:_ ;
qwunted. It succeeds if the file system is unmOunted and appears okay.
For the root file system, it succeeds if it is active and not marked bad.

SEE ALSO
fs(4) in the Software Development system manual.

DIAGNOSTICS
If successful; the command has an exit status of 0. Otherwise, the com
mand has an exit status of 1 if the file system needs to be checked, 2 if
mounted, and 3 for other failures.

- 1 -

" < I '- :. '

__)

0

FUSER(1M)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/etc/fuser [-ku I files [- I [[-ku I files I

DESCRIPTION
Fuser lists the process IDs of the processes using the files specified as argu
ments. For block special devices, all processes using any file on that device are
listed. The process ID is followed by c, p or r if the process is using the file as
its current directory, the parent of its current directory (only when in use by
the system), or its root directory, respectively. If the -u option is specified, the
login name, in parentheses, also follows the process ID. In addition, if the -k
option is specified, the SIGKILL signal is sent to each process. Only the super
user can terminate another user's process [see kil/(2)]. Options may be
respecified between groups of files. The new set of options repl(:!.ces the old set,
with a lone dash canceling any options currently in force.
The process IDs are printed as a single line on the standard output, separated
by spaces and terminated with a single new line. All other output is written on
standard error.

EXAMPLES

FILES

fuser -ku /dev/dsk/ls?
will terminate all processes that are preventing disk drive one from
being unmounted if typed by the super-user, listing the process ID and
login name of each as it is killed.

fuser -u /etc/passwd
will list process IDs and login names of processes that have the pass
word file open.

fuser -ku /dev/dsklls? -u /etc/passwd
will do both of the above examples in a single command line.

/unix
/dev/kmem
/dev/meiiJ.

for name list
for system image
also for system image

SEE ALSO
mount OM), ps(l), kill(Z), signal(2).

- 1 -

I

This page intentionally left blank.

FWTMP(1M)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]
/usr /Iib/acct/wtmpfix [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output, con
verting binary records of the type found in wtmp to formatted ASCII records.
The ASCII version is useful to enable editing, via ed(l), bad records or general
purpose maintenance of the file.
The argument -ic is used to denote that input is in ASCII form, and output is
to be written in binary form.

Wtmpfix

FILES

Wtmpjix examines the standard input or named files in wbnp format, corrects
the time/date stamps to make the entries consistent, and writes to the standard
output. A - can be used in place of files to indicate the standard input. If
time/date corrections are not performed, acctconl will fault when it encounters
certain date-change records.
Each time the date is set, a pair of date change records are written to
/etc/wtmp. The first record is the old date denoted by the string old time
placed in the line field and the flag OLD_ TIME placed in the type field of the
<utmp.b> structure. The second record specifies the new date and is denoted
by the string new time placed in the line field and the flag NEW _TIME placed in
the type field. Wtmpfix uses these records to synchronize all time stamps in
the file.
In addition to correcting time/date stamps, wtmpfix will check the validity of
the name field to ensure that it consists solely of alphanumeric characters or
spaces. If it encounters a name that is considered invalid, it will change the
login name to INVALID and write a diagnostic to the standard error. In this
way, wtmpfix reduces the chance that acctconl will fail when processing con·
nect accounting records.

/etc/wtmp
/usr/include/utmp.h

SEE ALSO
acct{l M), acctcms (1M), acctcom (I) , acctcon (I M), acctmerg(l M),
acctprcOM), acctsh(IM), runacctOM), ed(l), acct(2), acct(4), utmp(4).

- 1 -

GET(1)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutolfl [-ilistl [-xlistl [-wstringl [-aseq-no.l [-kl
[-el [-l[p]] [-pl [-ml [-n] [-sl [-b] [-g] [-tl file . • .

DESCRIPTION
Get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter' arguments, which begin with -. The argu
ments may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line
of the standard input is taken to be the name of an sees file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-jile whose name
is derived from the sees file ilame by simply removing the leading s.; (see also
FILES, below).

Each of the keyletter arguments is explained below as though only one sees
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

-rSID The sees IDentification string (SID) of the version (delta) of an
sees file to be retrieved. Table I below shows, for the most useful
cases, what version of an sees file is retrieved [as well as the SID
of the version to be eventually created by delta (I) if the -e
keyletter is also used], as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

-·

YYIMM[DD[HH[MMISS]J]]]

No Changes (deltas) to the sees file which were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -c75022823S9S9.
Any number of non-numeric characters may separate the various
2-digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "-c77/212 9:22:25". Note that
this implies that one may use the %E% and %U% identification
keywords (see below) for nested gets within, say the input to a
send(lC) command:

-!get "-c%E% %U%" s.file

Indicates that the get is for the purpose of editing or making a
change (delta) to the sees file via a subsequent use of delta {I) .
The -e keyletter used in a get for a particular version (SID) of the
sees file prevents further gets from editing on the same SID until
delta is executed or the j (joint edit) flag is set in the sees file
[see admin(IH Concurrent use of get -e for different SIDs is
always allowed.

If the g-jile generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re
executing the get command with the -k keyletter in place of the
-e keyletter.

- I -

'"'

c

(
'-.__ ____ ... /

-b

GET(1)

sees file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file [see admin (1)] are enforced when
the -e keyletter is used.
Used with the -e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table I . This keyletter is
ignored if the b flag is not present in the file [see admin (l)] or if
the retrieved delta is not a leaf delta. (A leaf delta is one that has
no successors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

-ilist A list of deltas to be included (forced to be applied) in the creation
of the generated file. The list has the following syntax.:

-xlist

-k

-HpJ

<list> ::- <range> I <list> , <range>
<range> ::- SJD I SID - SID

SID, the SCCS Identification of a delta, may be in any form shown
in the "SID Specified" column of Table 1 . Partial SIDs are inter
preted as shown in the .. SID Retrieved" column of Table I .
A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyletter for the list for
mat.
Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The -k keyletter is implied by
the -e keyletter.
Causes a delta summary to be written into an /-file. If -lp is used
then an /-file is not created; the delta summary is written on the
standard output instead. See FILES for the format of the /-file.

-p Causes the text retrieved from the sees file to be written on the
standard output. No g-jile is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless
the -s keyletter is used, in which case it disappears.

-s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

-m Causes each text line retrieved from the sees file to be preceded
by the SID of the delta that inserted the text line in the sees file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

-n

-g

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the -m
keyletter generated format.
Suppresses the actual retrieval of text from the sees file. It is pri
marily used to generate an /-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created ("top") delta in a given
release (e.g., -rl), or release and level (e.g., -r1.2).

-w string Substitute string for all occurrences of @ (#)get.l
gering the file.

- 2 -

6.2 when

I

GET(1)

SlD*

-aseq-no. The delta sequence number of the sees file delta (version) to be
retrieved [see sccsfile(4) 1. This keyletter is used by the combO)
command; it is not a generally usefui keyletter, and users should
not use it. If both the -r and -a keyletters are specified, the -a
keyletter is used. Care should be taken when using the -a
keyletter in conjunction with the -e keyletter, as the SID of the (_ 1
delta to be created may not be what one expects. The -r keyletter
can be used with the -a and -e keyletters to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.
If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x
keyletter is used, excluded deltas are listed following the notation "Excluded".

TABLE 1 . Determination of sees Identification String
-b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
none:!:
none:!:
R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B
R.L.B.S
R.L.B.S
R.L.BS

•

••

•••

no R defaults to mR mR.mL mR.(mL+U
yes R defaults to mR mR.mL mR.mL. (mB+ I) . I
no R > mR mR.mL R.l ***
no R - mR mR.mL mR.(mL+I)
yes R > mR mR.mL mR.mL.(mB+I).I
yes R = mR mR.mL mR.mL.(mB+I).I

R < mR and hR.mL** hR.mL.(mB+ I) . I R doe_s not exist
Trunk succ.#
in release > R R.mL R.mL.(mB+I).I
and R exists

no No trunk succ. R.L R.(L+I)
yes No trunk succ. R.L R.L.(mB+I).I

Trunk succ. R.L R.L. (mB+ I).! in release ;;at: R
no No branch succ. R.L.B.mS R.L.B.(mS+!)
yes No branch succ. R.L.B.mS R.L.(mB+I).I
no No branch succ. R.L.B.S R.L.B.(S+!)
yes No branch succ. R.L.B.S R.L.(mB+l).I

Branch succ. R.L.B.S R.L.(mB+I).I

"R", "L", «B", and "S" are the "release", ''level", "branch", and
''sequence" components of the SID, respectively; "m" means "maximum".
Thus, for example, "R.mL" means "the maximUm level number within
release R"; "R.L.(mB+l).l" means "the first sequence number on the
new branch (i.e., maximum branch number plus one) of level L within
release R". Note that if the SID specified is of the form ••R.L", ••R.L.B",
or ••R.L.B.S", each of the specified components must exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R.
This is used to force creation of the first delta in a new release .
Successor.

- 3 -

GET(1)

t The -b keyletter is effective only if the b flag [see admin (I)] is present
in the file. An entr,y of - means "irrelevant".

t This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICA TJON KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an sees file:

Keyword
%M%

%1%

%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Value
Module name: either the value of the m flag in the file [see
admin (I)], or if absent, the name of the sees file with the leading
s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved
text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD) .
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file [see admin (l)].
sees file name.
Fully qualified sees file name.
The value of the q flag in the file [see admin (l)].
Current line number. This keyword is intended for identifying mes
sages output by the program such as "this should not have hap
pened" type errors. It is not intended to be used on every line to
provide sequence numbers.
The 4-character string @ (#) recognizable by what (I) .
A shorthand notation for constructing what (l) strings for UNIX sys
tem program files. %W% - %Z%%M%<horizontal-tab>%1%
Another shorthand notation for constructing what (1) strings for
non-UNIX system program files.
%A% - %Z%%Y% %M% %1%%Z%

Several auxiliary files may be created by get. These files are known generically
as the g-file, /-file, p-file, and z-file. The letter before the hyphen is called
the tag. An auxiliary file name is formed from the sees file name: the last I component of all sees file names must be of the form s.module-name, the aux-
iliary files are named by replacing the leading s with the tag. The g-file is an
exception to this scheme: the g-file is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary file names would be xyz.c, l.xyz.c, p.x:yz.c, and
z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc
tory (unless the -p keyletter is used). A g-file is created in all cases, whether
or not any lines of text were generated by the get. It is owned by the real user.
If the -k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current directory.

GET(1)

The /Mfile contains a table showing which deltas were applied in generating the
retrieved text. The /-file is created in the current directory if the -I keyletter
is used; its mode is 444 and it is owned by the real user. Only the real user
need have write permission in the current directory.
Lines in the /-file have the following format:

a. A blank character if the delta was applied; '\,..
• otherwise.

b. A blank character if the delta was applied or was not applied
and ignored;
• if the delta was not applied and was not ignored.

c. A code indicating a .. special" reason why the delta was or was
not applied:

"[": Included .
.. X": Excluded .
.. C": Cut off (by a -c keyletter) .

d. Blank.
e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form YY /MM/DD HH:MM:SS) of crea�

tion.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents ar� also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint
edit flag, j, [see admin(l)] is set in the sees file. The p-file is created in the
directory containing the sees file and the effective user must have write per
mission in that directory. Its mode is 644 and it is owned by the effective user.
The format of the p-file is: the gotten SID, followed by a blank, followed by
the SID that the new delta will have when it is made, followed by a blank, fol
lowed by the login name of the real user, followed by a blank, followed by the
date-time the get was executed, followed by a blank and the -i keyletter argu
ment if it was present, followed by a blank and the -x key letter argument if it
was present, followed by a riew-Iine. There can be an arbitrary number of lines
in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the sees file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-fi/e. The z-file is created mOO.e 444.

SEE ALSO
admin(l), delta(!), help(!), pn;(!), what(!).
sccsfile(4) and "Source Code Control System" in the Software Development System
manual.

DIAGNOSTICS
Use help(I) for explanations.

- 5-

BUGS

GET(1)

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, then only one file
may be named when the -e keyletter is used.

- 6 -

GETOPT(1)

NAME
getopt - parse command options

SYNOPSIS
set - - getopt optstring S•

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. Optstring is a string of recognized
option letters [see getopt(3C)t, if a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated from it by
white space. The special option - - is used to delimit the end of the options.
If it is used explicitly, getopt will recognize it; otherwise, getopt will generate
it; in either case, getopt will place it at the end of the options. The positional
parameters ($1 $2 . . .) of the shell are reset so that each option is preceded by
a - and is in its own positional parameter; each option argument is also parsed
into its own palitional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option o, which
requires an argument:

set -- getopt abo: $•
if [$? !- 0 l
then

fi

echo $USAGE
exit 2

for i in $•
do

done

case $i in
-a I -b)
-o)
--)
esac

FLAG-$i; shift;;
OARG-$2: shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh (I), getopt (3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

- I -

i .
"

(
\

GETTY(1M)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
/etc/getty [-h] [-t timeout] line [speed [type [linedisc]]]
/etc/getty -c file

DESCRIPTION
Getty is a program that is invoked by init (IM). It is the second process in the
series, (init-getty-login-she/l) that ultimately connects a user with the UNIX
system. - Initially getty ·generates ·a system- identification message -from --the
values returned by the uname(2) system call. Then, if /etc/issue exists, it out
puts this to the user's terminal, followed finally by the login message field for
the entry it is using from /etc/gettydefs. Getty reads the user's login name and
invokes the login (I} command with the user's name as argument. While read
ing the name, getly attempts to adapt the system to the speed and type of ter
minal being used.

Line is the name of a tty line in /de11 to which getty is to attach itself. Gelly
uses this string as the name of a file in the /de11 directory to open for reading
and writing. Unless getty is invoked with the -b flag, getty will force a
hangup on the line by setting the speed to zero before setting the speed to the
default or specified speed. The -t flag plus timeout in seconds, specifies that
getty should exit if the open on the line succeeds and no one types anything in
the specified number of seconds. The optional second argument, speed, is a
label to a speed and tty definition in the file /etc/gettydefs. This definition tells
getty at what speed to initially run, what the login message should look like,
what the initial tty settings are, and what speed to try next should the user
indicate that the speed is inappropriate (by typing a <break> character).
The default speed is 300 baud. The optional third argument, type, is a charac
ter string describing to getty what type of terminal is connected to the line in
question. Getty understands the following types:

none
vt61
vtlOO
hp45
ciOO

default
DEC vt61
DEC vt100
Hewlett-Packard HP45
Concept 100

The default terminal is none; i.e., any crt or normal terminal unknown to the
system. Also, for terminal type to have any meaning, the virtual terminal
handlers must be compiled into the operating system. They are available, but
not compiled in the default condition. The optional fourth argument, linedisc,
is a character string describing which line discipline to use in communicating
with the terminal. Again the hooks for line disciplines are available in the
operating system but there is only one presently available, the default line dis
cipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface to
baud, specifies that raw mode is to be used (awaken on every character),
echo is to be suppressed, either parity allowed, new-line characters will be
vertcd to carriage return-line feed, and tab expansion performed on the stan
dard output. It types the login message before reading the user's name a char
acter at a time. If a null character (or framing error) is received, it is assumed
to be the result of the user pushing the "break" key. This will cause getty to
attempt the next speed in the series. The series that getty tries is determined
by what it finds in /etc/gettydefs.

The user's name is terminated by a new-line or carriage-return character. The
latter results in the system being set to treat carriage returns appropriately [see
ioct/(2)].

- I -

GETTY(1M)

FILES

The user's name is scanned to see if it contains any lowercase alphabetic char�
acters; if not, and if the name is non�empty, the system is told to map any
future uppercase characters into the corresponding lowercase characters.
In addition to the standard UNIX system erase and kill characters (# and @},
getty also understands \b and "U. If the user uses a \b as an erase, or ... U as a (_
kill character, getty sets the standard erase character and/or kill character to
match.
Getty also understands the .. standard" ESS2 protocols for erasing, killing and
aborting a line, and terminating a line. If getty sees the ESS erase character, ...)
or kill character, $, or abort character, & , or the ESS line terminators, / or !, it
arranges for this set of characters to be used for these functions.
Finally, login is called with the user's name as an argurhent. Additional argu
ments may be typed after the login name. These are passed to login, which
will place them in the environment [see login(!)].

A check option is provided. When getty is invoked with the -c option and file,
it scans the file as if it were scanning /etc/gettydefs and prints out the results
to the standard output. If there are any unrecognized modes or improperly
constructed entries, it reports these. If the entries are correct, it prints out the
values of the various flags. See ioct/(2) to interpret the values. Note that
some values are added to the flags automatically.

/etc/gettydefs
/etc/issue

SEE ALSO

BUGS
ct(lC), init(lM), login(!), ioctl(2), gettydefs(4), inittab(4), tty(7).

While getty does understand simple single character quoting conventions, it is
not possible to quote the special control characters that getty uses to determine
when the end of the line bas been reached, which protocol is being used, and
what the erase character is. Therefore it is not possible to login via getty and
type a #, @, I, !, ..J backspace, "U, "D, or & as part of your login name or
arguments. They will always be interpreted as having their special meaning as
described above.

- 2 -

GREEK(1)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION
Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE® Model 37 termi
nal [which is the nrojJ(l) default terminal] for certain other terminals. Special
characters are simulate<Lby overstriking, if necessary and po_ssibl_e, If _th� �rgu
ment is omitted, greek attempts to use the environment variable STERM [see
environ (5)]. The following terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-1 2 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 1 2-pitch.
1620 DIABLO 1620 (alias DASI 450).
1620-12 DIABLO 1620 (alias DASI 450) in 1 2-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 TEKTRONIX 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek TEKTRONIX 4014.

(
, FILES \ /usr/bin/300

c;

/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), hp(1), tplot(!G).
environ(5). greek(5), tenn(5) in the Software Development System manual.

"Mathematics Typesetting Program" (egn), "Memorandum Macros User Guide" and
"Nroff and TroffUser manual" in the Text Preparation System manual.

- 1 -

GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options I [expression] [files 1

fgrep [options l [strings] [files l

DESCRIPTION
Commands of the grep family search the input files {standard input default)
for lines matching a pattern. Normally, each line found is copied to the stan
dard output. Grep patterns are limited regular expressions in the style of
ed(l); it uses a compact non-deterministic algorithm. Egrep patterns are full
regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact.
The following options are recognized:

-y All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (Jgrep only).
-c Only a count of matching lines is pril):ted.
-i Ignore upper/lowercase distinction during comparisons.
-I Only the names of files with matching lines are listed (once), separated

by new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This

is sometimes useful in locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are

suppressed (grep only).
-e expression

,'-Same as a simple expression argument, but useful when the expression
begins with a - (does not work with grep).

-f file
·

The regular expression (egrep) or strings list (Jgrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using the characters $, •, I, "', I , (,), and \ in expression,
because they are also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes ' . . . '.
Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(I), except for \(and \), with the
addition of:

I . A regular expression followed by + matches one or more occurrences of
the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is II, then •? +, then concatenation, then
I and new-line.

SEE ALSO
ed(I), sed(!), sh(I).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac
cessible files (even if matches were found).

- I -

(
\

BUGS

GREP(1)

Ideally there should be only one grep, but we do not know a single algorithm
that spans a wide enough range of space�time tradeoffs.
Lines are limited to 3UFSIZ characters; longer lines are truncated. (BUFSIZ is
defined in /usr/include/stdio.b.)
Egrep does not recognize ranges, such as (a -zl, in character classes.
If there is a line with embedded nulls, grep will only match up to the first null;
if it matches, it wil1 print the entire line.

- 2 -

HELP(1)

NAME
help - ask for help

SYNOPSIS
help [args]

DESCRIPTION
Help finds information to explain a message from a command or explain the "
use of a command. Zero or more arguments may be supplied. If no arguments

FILES

are given, help will prompt for one.
The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

type I

type 2
type 3

Begins with non-numerics, ends in numerics. The non
numeric prefix is usually an abbreviation for the pro
gram or set of routines which produced the message
(e.g., ge6, for message 6 from the get command).
Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the
argument, if there is any.
When all else fails, try "help stuck".

/usr/Iib/help
/usr/lib/help/helploc

directory containing files of message text.
file containing locations of help files not in
/usr/lihlhelp.

DIAGNOSTICS
Use help (l) for explanations.

- I -

c·

(\
\

HP(1)

NAME
hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS
hp [-e 1 [-m 1

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of terminals,
with the primary purpose of producing accurate representations of most nroff
output. A typical use is:

nrolf -h files . . . I bp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the "display
enhancements" feature, subscripts and superscripts can be indicated in distinct
ways. If it has the "mathematical-symbol" feature, Greek and other special
characters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements"

feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super�
scripts are shown in Half-bright mode, and subscripts in Ha1f�bright,
Underlined mode. If this flag is omitted, hp assumes that your termi�
nal lacks the "display enhancements" feature. In this case, all over�
struck characters, subscripts, and superscripts are displayed in Inverse
Video mode, i.e., dark-on-light, rather than the usual light�on-dark.

-m Requests minimization of output by removal of new-lines. Any con
tiguous sequence of 3 or more new-lines is converted into a sequence of
only 2 new-lines; i.e., any number of successive blank lines produces
only a single blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides the same set as
does 300(1), except that "not" is approximated by a right arrow, and only the
top half of the integral sign is shown. The display is adequate for examining
output from neqn.

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1 ,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO

BUGS

300(1), col(!), greek(!).

"Nroff and TroffUsermanual", "Mathematics Typesetting Program" (eqn), and "Table
Fonnatting Program" (tbl) in the Text Preparation System manual.

An "overstriking sequence" is defined as a printing character followed by a I backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text "disappear"; in
particular, tables generated by tb/(1) that contain vertical lines will often be
missing the lines of text that contain the "foot" of a vertical line, unless the
input to hp is piped through co/(1),
Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

- I -

HPI0(1)

NAME
hpio - HP 2645A terminal tape file archiver

SYNOPSIS
bpio -o[rcl file ...

bpio -i[rtal [-n count]

DESCRIPTION
Hpio is designed to take advantage of the tape drives on Hewlett-Packard
2645A terminals. Up to 255 UNIX system files can be archived onto a tape
cartridge for off-line storage or for transfer to another UNIX system. The
actual number of files depends on the sizes of the files. One file of about
1 15,000 bytes will almost fill a tape cartridge. Almost 300 1-byte files will fit
on a tape, but the terminal will not be able to retrieve files after the first 255.
This manual page is not intended to be a guide for using tapes on HP 2645A
terminals, but tries to give enough information to be able to create and read
tape archives and to position a tape for access to a desired file in an archive.

Hpio -o (copy out) copies the specified .file(s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tape mark). The
left tape drive is used by default. Each file is written to a separate tape file
and terminated with a tape mark. When hpio finishes, the tape is positioned
following the last tape mark written.

Hpio -:i (copy in) extracts a file(s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a hpio -o).
The de�ault action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off. "'
To rewind a tape depress the green function button, then function key 5, and
then select the appropriate tape drive by depressing either function key 5 for
the left tape drive or function key 6 for the right. If several files have been
archived onto a tape, the tape may be positioned at the beginning of a specific
file by depressing the green function button, then function key 8, followed by
typing the desired file number (1-255) with no RETURN, and finally function
key 5 for the left tape or function key 6 for the right. The desired file number
may also be specified by a signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.
c Include a checksum at the end of each file. The checksum is always

checked by hpio -i for each file written with this option by bpio -o.
n count The number of input files to be extracted is set to count. If this

option is not given, count defaults to l . An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.
Print a table of contents only. No files are created. Printed informa·
tion gives the file size in bytes, the file name, the file access modes,
and whether or not a checksum is included for the file.

a Ask before creating a file. Hpio -i normally prints the file size and
name, creates and reads in the file, and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name are printed followed by a ? . Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

- I -

('
\

HPI0(1)

FILES
/dev/tty?? to block messages while accessing a tape

SEE ALSO
cu(IC).

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.
Can't create 'file'.

File system access permissions did not allow file to be created.
Can't get ttY optiOns on stdOut.

Hpio was unable to get the input-output control settings associated
with the terminal.

Can't open 'file'.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the. usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present.

'file' not a regular file.
File is a directory or other special file. Only regular files will be copied
to tape.

Readcnt - rc, termcnt - tc.
Hpio expected to read rc bytes from the next block on the tape, but
the block contained tc bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interference
from other terminal 1/0.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.

WARNINGS

A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

Tape 110 operations may copy bad data if any other 1/0 involving the terminal
occurs. Do not attempt any type ahead while hpio is running. Hpio turns off
write permissions for other users while it is running, but processes started asyn
chronously from your terminal can still interfere. The most common indication
of this problem, while a tape is being written, is the appearance of characters
on the display screen that should have been copied to tape.
The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.
Hpio must have complete control of the attributes of the terminal to communi
cate with the tape drives. Interaction with commands such as cu(lC) may
interfere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.
An hpio -i that encounters the end of data mark on the tape (e.g., scanning
the entire tape with hpio -itn 300), leaves the tape positioned after the end of
data mark. If a subsequent· hpio -o is done at this point, the data will not be
retrievable. The tape must be repositioned manually using the terminal FIND
FILE ..., 1 operation (depress the green function button, function key 8, and then
function key 5 for the left tape or function key 6 for the right tape) before the

- 2 -

HPI0(1)

bpio -o is started.
If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal's RESET
TERMINAL key will unlock the keyboard.

- 3 -

(\)

HYPHEN(1}

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files 1

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and prints them on
the standard output. If no arguments are given, the standard input is used;
thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nro.ff hyphenation in textfile.

mm textfile I hyphen

SEE ALSO

BUGS

''Memorandwn Macros User Guide" and ''Nroff and Troff User manual" in the Text
Preparation System manual.

Hyphen cannot cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious
extra output.

- I -

IB(1M)

NAME
ib - install boot image

SYNOPSIS
ib device 1 device2 I bootfile I

DESCRIPTION

FILES

Ib creates a bootstrap file from bootfile and installs it on the specified device(s).
If the b.ootfile is not specified, ib creates a bootstrap file from /etc/stlboot.
If the bootstrap file is installed on a floppy disk, then device 1 should specify the
single-sided, single density, 128-byte sectored first track; followed by device2.
which should specify the next track of the floppy disk. If the bootstrap file is
installed on a hard disk, then device} should specify the 1024-byte sectored first
track; followed by device2, which should specify the device on which the root
file system is to be placed by mkfs(IM).

For example, to install the bootstrap file, letclmyboot, onto a floppy you can
enter:

ib /dev/rdsk/Os1 5 /dev/dsk/Os24 /etc/myboot

the file is installed split across the end of the first 512 bytes, which are used to
contain a media label.

/etc/stlboot
/dev/rdsk/•

SEE ALSO
stlboot(IM).

the normal bootstrap file
the raw disk devices

- I -

c

(\

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

10(1)

Jd writes a message on the standard output giving the user and group IDs and
the corresponding names of the invoking process. If the effective and real IDs
do not match, both are printed.

SEE ALSO
logname(J).
getuid(2) in the Software Development System manual.

- 1 -

I

INIT(1M)

NAME
init, telinit - process control initialization

SYNOPSIS
/etclinit [0123456SsQq I
/etc/telinit [Oll3456sSQqabc I

DESCRIPTION
In it

/nit is a general process spawner. Its primary role is to create processes from a
script stored in the file /etc/inittab [see inittab(4)]. This file usually bas init
spawn getty's on each line that a user may log in on. It also controls auto
nomous processes required by any particular system.

/nit considers the system to be in a run-level at any given time. A run-level
can be viewed as a software configuration of the system where each
configuration allows only a selected group of processes to exist. The processes
spawned by init for each of these run-levels is defined in the inittab file. !nit
can be in one of eight run-levels, 0-6 and S or $. The run-level is changed by
having a privileged user run /etc/lnit (which is linked to ktc/telinit). This
user-spawned init sends appropriate signals to the orginal init spawned by the
operating system when the system was rebooted, telling it which run-level to
change to.

!nit is invoked inside the UNIX system as the last step in the boot procedure.
The first thing init does is to look for /etc/inittab and see if there is an entry of
the type initdefault [see inittab(4)). If there is, init uses the run-level
specified in that entry as the initial run-level to enter. If this entry is not in
inittab or inittab is not found, init requests that the user enter a run-level from
the virtual system console, /dev/syscon. If an S (s) is entered, init goes into the
SINGLE USER level. This is the only run-level' that doesn't require the
existence of a properly formatted inittab file. If /etc/§nit!ab doesn't exist, then
by default the only legal run-level that init can enter is the SINGLE USER
level. In the SINGLE USER level the virtual console terminal /dev/syscon is
opened for reading and writing and the command /hin/su is invoked immedi
ately. To exit from the SINGLE USER run-level one of two options can be
elected. First, if the shell is terminated (via an end-of-file), init will reprompt
for a new run-level. Second, the init or telinit command can signal init and
force it to change the run-level of the system.

When attempting to boot the system, failure of init to prompt for a new run
level may be due to the fact that the device /dev/syscon is linked to a device
other than the physical system teletype (/dev/systty). If this occurs, init can
be forced to relink /dev/syscon by typing a delete on the system teletype which
is collocated with the processor.

When init prompts for the new run-level, the operator may enter only one of
the digits 0 through 6 or the letters S or s. If S is entered init operates as pre·
viously described in SINGLE USER mode with the additional result that
/dev/syscon is linked to the user's terminal line, thus making it the virtual sys
tem console. A message is generated on the physical console, /de'l/systty, say
ing where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SINGLE USER
state to normal run states, it sets the ioct/(2) states of the virtual console,
/de,/syscon, to those modes saved in the file /etc/ioctl.syscon. This file is writ·
ten by init whenever SINGLE USER mode is entered. If this file does not exist
when init wants to read it, a warning is printed and default settings are
assumed.

- 1 -

c

INIT(1M)

If a 0 through 6 is entered init enters the corresponding run-level. Any other
input will be rejected and the user will be re-prompted. If this is the first time
init has entered a run-level other than SINGLE USER, init first scans inittab for
special entries of the type boot and bootwait. These entries are performed,
providing the run-level entered matches that of the entry before any normal
processing of inittab takes place. In this way any special initialization of the
operating system, such as mounting file systems, can take place before users are
allowed onto the system. The inittab file is scanned to find all entries that are
to be processed for that run-level.

Run-level - 2 is usUally d(dirled bY the User to contain au of the terminal
processes and daemons that are spawned in the multi user environment.

In a multiuser environment, the inittab file is usually set up so that init will
create a process for each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an end·
of-file either typed explicitly or generated as the result of hanging up. When
init receives a child death signal, telling it that a process it spawned has died, it
records the fact and the reason it died in /etc/utmp and /etc/wtmp if it exists
[see who (I)]. A history of the processes spawned is kept in /etc/wtmp if such
a file exists.

To spawn each process in the inittab file, init reads each entry and for each
entry which should be respawned, it forks a child process. After it has spawned
all of the processes specified by the inittab file, init waits for one of its descen
dant processes to die, a powerfail signal, or until init is signaled by init or te/
init to change the system's run-level. When one of the above three conditions
occurs, init re-examines the inittab file. New entries can be added to the init
tab file at any time; however, init still waits for one of the above three condi
tions to occur. To provide for an instantaneous response the init Q or init q
command can wake init to re-examine the inittab file.

If in{t receives a powerfail signal (SJGPWR) and is not in SINGLE USER mode,
it scans inittab for special powerfail entries. These entries are invoked (if the
run-levels permit) before any further processing takes place. In this way init
can perform various cleanup and recording functions whenever the operating
system experiences a power failure.

When init is requested to change run-levels (via telinit), init sends the warning
signal (SIGTERM) to all processes that are undefined in the target run-level.
!nit waits 20 seconds before forcibly terminating these processes via the kill sig
nal (SIGKILL).

Telinit
Telinit, which is linked to /etchnit, is used to direct the actions of init. It takes
a one-character argument and signals init via the kill system call to perform
the appropriate action. The following arguments serve as directives to in it.

0-6 tells init to place the system in one of the run-levels 0-6.

a,b,c

Q,q

s,S

tells init to process only those /etc/inittab file entries having
the a, b or c run-level set.

'

tells init to re-examine the /etc/inittab file.

tells init to enter the single user environment. When this
level change is effected, the virtual system teletype,
/de\'/syscon, is changed to the terminal from which the com�
mand was executed.

Telinit can only be run by someone who is super-user or a member of group
sys.

- 2 -

INIT(1M)

FILES
/etc/inittab
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon
/dev/systty

SEE ALSO
getty(IM), login(!), sb(I), who(!), kill(2), inittab(4), utmp(4).

DIAGNOSTICS
If init finds that it is continuously respawning an entry from /ete/inittab more
than 10 times in 2 minutes, it will assume that there is an error in the com
mand string, and generate an error message on the system console, and refuse
to respawn this entry until either 5 minutes bas elapsed or it receives a signal
from a user init (telinit). This prevents init from eating up system resources
when someone makes a typographical error in the inittab file or a program is
removed that is referenced in the inittab.

- 3 -

I
\)

/�\
\

INIT(1 M)·INITTAB

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher.
The process that constitutes the majority of init's process dispatching activities
is the line process /etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a new-line; however, a backslash (\) preceding a
new-line indicates a continuation of the entry. Up to 5 1 2 characters per entry
are permitted. Comments may be inserted in the process field using the sh (I)
convention for comments. Comments for lines that spawn gettys are displayed
by the who (I) command. It is expected that they will contain some informa
tion about the line such as the location. There are no limits (other than max
imum entry size) imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely identify an entry.

rsrate

action

This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in the
system. That is, each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run-levels are
represented by a nUmber ranging from 0 through 6. As an example,
if the system is in run-level 1, only those entries having a 1 in the
rstate field will be processed. When inil is requested to change run
levels, all processes which do not have an entry in the rstate field for
the target run-level will be sent the warning signal (SIGTERM) and
allowed a 20-second grace period before being forcibly terminated by
a kill signal (SIGKILL) . The rstate field can define multiple run
levels for a process by selecting more than one run-level in any com
bination from 0-6. If no run-level is specified, then the process is
assumed to be valid at all run-levels 0 -6. There are three other
values, a, b and c, which can appear in the rstate field, even though
they are not true run-levels. Entries which have these characters in
the rstate field are processed only when the telinit [see init (1M)} pro
cess requests them to be run (regardless of the current run-level of
the system). They differ from run-levels in that inft can never enter
run-level a, b or c. Also, a request for the execution of any of these
processes does not change the current run-level. Furthermore, a pro
cess started by an a, b or c command is not killed whep init changes
levels. They are only killed if their line in /etc/inittab is marked off
in the ac

.

tion field, their line is deleted entirely from /etc/inittab, or I (nit goes into the SINGLE USER state.

Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

res pawn If the process does not exist then start the process, do not
wait for its termination (continue scanning the inittab
file), and when it dies restart the process. If the process
currently exists then do nothing and continue scanning
the inittab file.

wait Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its

- 1 -

INIT(1 M)-INITTAB

once

termination. All subsequent reads of the inittab file while
init is i_n the same run-level will cause init to ignore this
entry.

Upon init's entering a run-level that matches the entry's
rState. start the process, do not wait for its termination.
When it dies, do not restart the process. If upon entering
a- new run-level, where the process is still running from a
previous run-level change, the program will not be res
tarted.

boot The entry is to be processed only at init's boot-time read
of the inittab file. !nit is to start the process, not wait for
its termination; and when it dies, not restart the process.
In order for this instruction to be meaningful, the rstate
should be the default or it must match init's run-level at
boot time. This action is useful for an initialization func
tion following a hardware reboot of the system.

bootwait The entry is to be processed only at init's boot-time read
of the inittab file. /nit is to start the process, wait for its
termination and, when it dies, not restart the process.

powerfail Execute the process associated with this entry only when
init receives a power fail signal {SIGPWR see signal (2)].

powerwait Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR) and wait until
it terminates before continuing any processing of inittab.

off If the process associated with this entry is currently run
ning, send the warning signal (SIGTERM) and wait 20
seconds before forcibly terminating the process via the kill
signal (SIGKILLL If the process is nonexistent, ignore the
entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run-levels. This is used only with the a, b or c values
described in the rstate field.

initdefault An entry with this action is only scanned when init ini
tially invoked. /nit uses this entry, if it exists, to deter
mine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate field
and using that as its initial state. If the rstate field is
empty, this is interpreted as 0123456 and so init will
enter run-level 6. Also, the initdefault entry cannot
specify that init start in the SINGLE USER state. Addi
tionally, if init does not find an initdefault entry in
/etc/inittab, then it will request an initial run-level from
the user at reboot time.

sysinit Entries of this type are executed before init tries to access
the console. It is expected that this entry will be only
used to initialize devices on which init might try to ask
the run-level question. These entries are executed and
waited for before continuing.

- 2 -

r ,
"

FILES

INIT(1 M)-INITT AB

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c exec com�
mand'. For this reason, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #comment syntax.

/etc/inittab

SEE ALSO
exec(2), open(2), signal(2) in the Software Development System manual.
gecy(IM), init(IM) sh(l), who(!).

-3 -

I

INSTALL(1 M)

NAME
install - install commands

SYNOPSIS
/etc/install [-c dira] [-I dirb] [-il [-n dire] [-o] [-s] file [dirx . .]

DESCRIPTION <_
Install is a command most commonly used in .. makefiles" [see make(l)] to
install a file (updated target file} in a specific place within a file system. Each
file is installed by copying it into the appropriate directory, thereby retaining
the mode and owner of the original command. The program prints messages
telling the user exactly what files it is replacing or creating and where they are
going.

If no options or directories (dirx . . . } are given, install will search a set of
default directories (/bin, /usr/bin, /etc, !lib, and /usr/lib, in that order) for a
file with the same name as file. When the first occurrence is found, install
issues a message saying that it is overwriting that file with file, and proceeds to
do so. If the file is not found, the program states this and exits without further
action.

If one or more directories (dirx . . .) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

SEE ALSO

-c dira Installs a new command (file) in the directory specified
by dira, only if it is not found. If it is found, install
issues a message saying that the file already exists, and
exits without overwriting it. May be used alone or with
the -s option.

-f dirb

-i

-n dire

-o

-s

Forces file to be installed in given directory, whether or
not one already exists. If the file being installed does
not already exist, the mode and owner of the new file
will be set to 755 and bin, respectively. If the file
already exists, the mode and owner will be that of the
already existing file. May be used alone or with the -o
or -s options.

Ignores default directory list, searching only through the
given directories (dirx . . .>. May be used alone or with
any other options other than -c and -f.

If file is not found in any of the searched directories, it
is put in the directory specified in dire. The mode and
owner of the new file will be set to 755 and bin, respec�
tively. May be used alone or with any other options
other than -c and -f.

If file is found, this option saves the "found" file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a normally
text busy file such as lbin/sh or /etc/getty, where the
existing file cannot be removed. May be used alone or
with any other options other than -c.

Suppresses printing of messages other than error mes�
sages. May be used alone or with any other options.

cpsetOM), make (I), mk(8).

- 1 -

(_)

INSTALLIT(1)

NAME

installit-package installation

SYNOPSIS

installit

DESCRIPTION

FILES

Installit performs package installation. Certain package installations may
require the presence of other programs and or utilities. Check package
descriptions under the Installation Information.

The following files are created during the installation process;

/makelink
/execflle
/diskdata

SEE ALSO

divvy(lM), fdisk(lM), showbad(lM).
''Installation Instructions.''

- 1 -

IPCRM(1)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options 1

DESCRIPTION
!perm will remove one or more specified messages, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

-q msqid removes the ritessage queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with it
are destroyed after the last detach.

-s semid removes the semaphore identifier semid from the system and des·
trays the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data str-uc
ture associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data struc
ture associated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are described in msgctl(2), shmctl(2), and
semctl(2). The identifiers and keys may be found by using ipcs(l). \.:__

SEE ALSO
ipcs(l).
msgctl(2), msgget(2), msgop(2), semct(2), semget(2), semop(2), schmctl(2), shmget(2),
shmop(2) in the Software Development System manual.

- 1 -

c;

JPC5(1)

NAME
ipcs - report interprocess communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
!pes prints certain information about active interprocess communication faciJi
ties. Without options, information is printed in short format for message
queues, shared memory, and semaphores that are currently active in the sys
tem. Otherwise, the information that is displayed is control1ed by the following
options:
380.sp40u
-q Print information about active message queues.

-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only
those indicated will be printed. If none of these three are specified, information
about all three will be printed.

-h Print biggest al1owable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

-c
-·

Print creator's login name and group name. See below.
Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and · number of processes attached to shared memory seg
ments.)

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for ali facilities. Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -o,
-p, and -t.)

-C corefile
Use the file corefile in place of /dev/k.mem.

-N namelist
The argument wil1 be taken as the name of an alternate namelist
(/unix is the default).

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; aU means that the heading always appears.
Note that these options only determine what information is provided for each

- 1 -

IPCS(1)

facility; they do not determine which facilities will be listed.

T (aiO

ID

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

(aiO

(all)

(aiO

(aiO

Type of the facility;
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.

The key used as an argument to msgget, seinget, or shmget
tO create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE when the sege
ment bas been removed until all processes attached to the
segment detach it.}

The facility access modes and flags: The mode consists of 1 1
characters that are interpreted as follows:
The first two characters are:

R if a process is · waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has

been removed. It will disappear when the Jast
process attached to the segment detaches it;

C if the associated shared memory segment is to
be cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions; the
next to permissions of others in the user-group of the facility <
entry; and the last to aU others. Within each set, the first
character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and
the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

The login name of the owner of the facility entry.
(all)

The group name of the group of the owner of the facility
entry.

(a, c)
The login name of the creator of the facility entry.

(a, c)
The group name of the group of the creator of the facility
entry.

(a,o)
The number of bytes in messages currently Outstanding on
the associated message queue.

(a,o)
The number of messages currently outstanding on the associ
ated message queue.

- 2 -

r\
\

()

FILES

QDYTES

J.SPID

LRPID

STIME

RTIME

CfiME

NATTCH

SEGSZ

CPID

LPID

A TIME

DTIME

NSEMS

OTIME

/unix
/dev/kmem

IPCS(1)

(a, b)
The maximum number of bytes allowed in messages out�
standing on the associated message queue.

(a,p)
The process lD of the last process to send a message to the
associated queue.

(a,p)

(a,t)

The process lD of the last process to receive a message from
the associated queue.

The time the last message was sent to the associated queue.
(a,t)

(a,t)

The time the last message was received from the associated
queue.

The time when the associated entry was created or changed.
(a,o)

The number of processes attached to the associated shared
memory segment.

(a, b)
The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory entry.

(a,p)

(a,t)

(a, I)

The process lD of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associated
shared memory segment.

(a,b)

(a,t)

The number of semaphores in the set associated_ with the
semaphore entry.

The time the last semaphore operation was completed on the
set associated with the semaphore entry.

system name list
memory

/etc/passwd user names
_ /etc/group group names

SEE ALSO

DUGS

msgop(2), semop(2), shmop(2) in the Software Development System manual.

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

- 3 -

JOIN(1)

NAME
join - relational database operator

SYNOPSIS
join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the �
lines ofjilel andfi/e2. Ifjilel is -, the standard input is used.
FUel and ji/e2 must be sorted in increasing ASCll collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines injilel and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from file I , then the rest of the line from fi/e2.
The default input field separators are blank, tab, or new-line. In this case, mul·
tiple separators count as one field separator, and leading separators are ignored.
The default output field separator is a blank.
Some of the below options use the argument n. This argument should be a 1
or a 2 referring to either file! or file2, respectively. The following options ai'e
recognized:
-an In addition to the normal output, produce a line for each unpairable

line in file n. where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in
each file. Fields are numbered starting with 1.

-o list Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c
in a line is significant. The character c is used as the field separator
for both input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -jl 4 -j2 3 -o 1 . 1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk(l), commO), sort(!), uniq(I).

With default field separation, the collating sequence is that of sort -b; with
-t, the sequence is that of a plain sort.
The conventions of join, sort, comm, uniq and awk(l) are wildly incongruous.

File names that are numeric may cause conflict when the -o option is used
right before listing file names.

- 1 -

(. J

KEYSET(1)

NAME
keyset, also called setkey -programmable function keys

SYNOPSIS
setkey [shift-mod] [shift-mod] ... key 'newstr'
setkey -p
setkey -dkey

DESCRIPTION

BUGS

Setkey programs the following special keys on the system console:

center del down errl home ins left
pgdn pgup plus prtsc right tab up
f2 13 f4 f5 f6 fl f8
flO f11 112 !13 114 115 116
118 119 f20 !21 122 f23 f24
!26 f17 f18 f19 flO

minus
f1
f9
f17
!25

The key 'center' is the '5' key on the numeric keypad. 'Left', 'right', 'up', and 'down'
refer to the arrow keys. The 'shift-mod' argument may be any combination of 'shift',
'alt' and 'control' (or 'ctrl') separated by spaces. The function keys fll through f20 are
the corresponding fl through flO keys with a shfit modifier of 'shift'. The function
keys f21 through f30 are the corresponding fl through flO keys with a shift modifier of
'control'.

The 'newstr' argument is the replacement string to be sent when the corresponding key
combinatiori is pressed. To insert control characters in the 'newstr' argument, use the
'AX' form for control character 'X' (and 'M' for 'A'), If the 'newstr' argument is not
present, the current value for the key is printed (to stdout). If the 'newstr' is a NULL
string (ie., ''), the replacement string is deleted.

The 'setkey -p' command prints the values of all the key settings. It inserts the
command name as the first argument so you can redirect the output to a file, edit the
file, and execute the flle to change the keymap settings.

The 'setkey -d key' conunand deletes the keymap setting for 'key'. If 'key' is not
specified, all the keymap settings are deleted.

'Setkey' by itself prints a help message, with the text of the message printed on stderr
and the list of keys printed onstdout so it can be redirected to a flle.

There are a number of default settings, corresponding to the ANSI sequences, that are
initialized for the system console in the /etc/rc.d/keybrd.rc flle when the system comes
up multi-user. In addition, the setkey affects only the current virtual console unless it's
on the system console, in which case it's also the default for the other consoles. This
also implies deleting the keymap on a virtual console (other than the system console)
causes the keymap to revert to the defaults established for the system console.

There is no way to distinguish the keys fll tluough f30 with their shifted counterparts
(ie., fll is the same as shiftfl). Therefore, the following (for example) can occur:

Setting:
Printing (selkey -p):

setkey fll 'fonnat/dev/rdsk/Os24AM'
setkey shiftfl 'fonnat/dev/rdsk/Os24AM'

- 1 -

KILL(1)

NAME

kill -terminate a process
SYNOPSIS

kill [-signo] PID ...

DESCRIPTION

Kill sends signa1 15 (tenninate) to the specified processes. This will normally kill
processes that do not catch or ignore the signal. The process number of each
asynchronous process started with & is reported by the shell (unless more than one
process is started in a pipeline, in which case the number of the last process in the
pipeline is reported). Process numbers can also be found by usingps(l).
The details of the kill are described in kill(2). For example, if process number 0 is
specified, all processes in the process group are signaled.
The killed process must belong to the current user unless he is the super�user.
If a signal numbet preceded by- is given as first argument. that signal is sent instead
of tenninate (see signal(Z)). In particular ''kill-9 ... " is a sure kill.

SEE ALSO
ps(l), sh(l).
kil1(2), signal.(2) in the Software Development System manual.

- I -

_____ J

KILLALL(1 M)

NAME
killall - kill all active processes

SYNOPSIS
/etc/killall [signal I

(DESCRIPTION
"'----- Killa/1 is a procedure used by /etc/sbutdOwri to kili all active processes not

i:lirectly related to the shutdown procedure.

FILES

Ki/la/1 is chiefly used to terminate all _processes with open files sO that the
mounted-file systems will be unbusied and can -be unmounted.

Killa/1 sends.signal [see kill(l)] to all remaining processeS not belonging to the
above group of exclusions. If no signal is specified, a default of 9 is used.

/etc/shutdoWn

SEE ALSO
fuser(IM), kill(!), ps(l), shutdown(lM), signal(2).

- I -

I

LD(1)

NAME
ld - link editor for object files

SYNOPSIS
ld [options] filenames ...

DESCRIPTION ,,
The ld command combines several object files into one, performs reloca- ·."'
tion, resolves external symbols, and supports symbol table information
for symbolic debugging. In the simplest case, the names of several object
programs are given, and ld combines them, producing an object module
that can either be executed or used as input for a subsequent ld run. The
output of ld is left in a.out. This file is executable on the target machine
if no errors occurred during the load. If any input file, filename, is not
an object file, ld assumes it is either a text file containing link editor
directives or an archive library. (See The Link Editor User's Manual for
a discussion of input directives.)

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. The order of library members
is unimportant because ld passes through each library's (archive) symbol
table [see ar(4)] as many times as necessary until no new external symM
bois are resolved and no new references are generated. Ld will only load
together files with the same magic number (large model code cannot be
loaded with small model code).
The following options are recognized by ld.

-a

-e epsym

-f fill

-lx

-m

-o outfile

-r

Produce an absolute executable file; give warnings for
undefined references. Relocation information is stripped
from the output object file unless the -r option is given.
The -r option is needed only when an absolute file should
retain its relocation information (not the normal case). If
neither -a nor -r is given, -a is assumed.
Set the default entry point address for the output file to be
that of the symbol epsym. This option forces the -X
option to be set.

Set the default fill pattern for "holes" within an output
section as well as initialized bss sections. The argument

fill is a two-byte constant.

Search a library libx.a, where x is up to seven characters.
A library is searched when its name is encountered, so the
placement of a -1 is significant; -1 options should appear
on the command line after any files that reference symbols
defined in the library. By default, libraries are located in
/lib and /usr/lib/.

Produce a map or listing of the input/output sections on
the standard output.
Produce an output object file by the name ouifile. The
name of the default object file is a.out.
Retain relocation entries in the output object file. Reloca
tion entries must be saved if the output file is to become an
input file in a subsequent ld run. Unless -a is also given,
the link editor will not complain about unresolved refer
ences, and the output file will not be executable.

- 1 -

(

FILES

LD(1)

-s Strip line number entries and symbol table information
from the output object file.

-t Turn off the warning about multiply-defined symbols that
are not the same size.

-u symname Enter syrnname as an undefined symbol in the symbol
table. This is useful for loading entirely from a library,
since initially the symbol table is empty and an unresolved
reference is needed to force ihe loading of the first routine.
This option must precede the library where the symbol is
defined.

-x Do not preserve local (non-.globl) symbols in the output
symbol table; enter external and static symbols only. This
option saves some space in the output file.

-k nn For small model programs, specifies the size of the run
time stack. Nn is the number of bytes to be allocated. The
default is OX200.

-K For large model programs, specifies that sizes of text, data,
and bss should be actual byte counts rather than byte
counts rounded up to the nearest "click" size {"click size"
as defined in /usr/include/sys/sysmacros.h). This option �s
provided for operating system support only.

-L dir Change the algorithm of searching for libx.a to look in dir
before looking in /lib and /usr/lib. This option is effective
only if it precedes the -1 option on the command line.

-M

-N

-v

-vs num

Print a warning message for each multiply-defined symbol.

Put the data section immediately following the text in the
output file.

Output a message giving information about the version of
ld being used.
Use num as a decimal version stamp identifying the a.out
file that is produced. The version stamp is stored in the
optional header.

LlBDIR/libx.a libraries

a.out output file

SEE ALSO
as(!), cc(l).
a.out(4), ar(4) in the Software Development System manual.

CAVEATS
Through its options and input directives, the link editor gives users great
flexibility; however, those who use the input directives must assume some
added_ responsibilities. Input directives and options should insure the fol
lowing properties for programs:

C defines a zero pointer as null. A pointer to wl:ich zero has been
assigned must not point to any object. To satisfy this, users must
not place any object at virtual address zero in the data space.

When the link editor is called through cc(l), a startup routine is
linked with the user's program. This routine calls exit() [see
e:r:it(2)] after execution of the main program. If the user calls the
link editor directly, then the user must insure that the program

- 2 -

LD(1)

BUGS

always calls exit() rather than falling through the end of the entry
routine.

The symbols etext, edata, and end are reserved, and if referred to, are
�et to the first location above the program text, the first location above
initialized data, and the first location above all data respectively. These
symbols are defined by the link editor and it is erroneous for a user pro-
gram tO redefine them. \._
If the link editor dOes not recognize an input file as an object file or an
archive file, it will assume it· co;ntains link editor directives and attempt
to parf'?e it. This will occasionally produce an error message complaining
about " syntax errors" .

The -VS num option has an effect only when the -X option is also
selected.

- 3 -

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-reno I [file I ...

LEX(1)

--(D DESCRIPTION l� Lex generates programs to be used in simple lexical analysis of text.

(

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.
A file lex.yy.c is generated which, when - loaded with the library, copies the
input to the output except when a string specified in the file is found; then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the strings in
the file. The strings may contain square brackets to indicate character classes,
as in labx-z) to indicate a, b, x, y, and z; and the operators •, +, and ? mean
respectively any non-negative number of, any positive number of, and either
zero or one occurrences of, the previous character or character cl8ss. The char
acter _ is the class of all ASCII characters except new-line. Parentheses for
grouping and vertical bar for alternation are also supported. The notation
r(d,e] in a rule indicates between d and e instances of regular expression r. It
has higher precedence than I. but lower than • , ? , +, and concatenation. The
character " at the beginning of an expression permits a successful match only
immediately after a new-line, and the character S at the end of an expression
requires a trailing new-line. The character I in an expression indicates trailing
context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An opera-
tor character may be used as an ordinary symbol if it is within • symbols or
preceded by\. Thus [a -zA -ZI + matches a string of letters.
Three subroutines defined as macros are expected: input() to read a character;
UDput(c) to replace a character read; and olitput(c) to place an output charac
ter. They are defined in terms of the standard streams, but you can override
them. The program generated is named· yylexO, and the library contains a
main() which calls it. The action REJECT on the right side of the rule caJ}Ses
this match to be rejected and the next suitable match executed; the function
yymoreO accumulates additional characters into the same yytext; and the func
tion yyless(p) pushes back the portion of the string matched beginning at p,
which should be between yytext and yytext+yyleng. The macros input and
output use files yyin and yyout to read from and write to, defaulted to stdin
and stdout, respectively.
Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the external definition area of the
lex.yy .c file. All rules should follow a % % , as in Y ACC. Lines preceding % %
which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with 0. Note
that curly brackets do not imply parentheses; only string substitution is done.

- 1 -

I
LINK(1M)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
/etc/link pathl path2
/etc/unlink path

DESCRIPTION
Pathl names lJil existing file; path2 names a-new directory entry to be created. Link
creates a new link (directory entry) for the existing file. Unlink removes the named
directory entry. When the last directory entry for a file has been removed (and no process
has the flle open), the file ceases to exist.

SEE ALSO
rm(l).
link(2), unlink(2) in the Software Development System manual.

WARNINGS
Link and unlink perform their respective system calls on their argumen�, abandocing all
error checking. These commands may only be executed by the super�user, who (iris
hoped) knows what he or she is doing.

- 1 -

r)
_______;

LINT(1)

NAME
lint - a C program checker

SYNOPSIS
lint [option] ... file ...

DESCRIPTION
Lint attempts to detect features of the C program files that are likely to be
bugs, non�portable, or wasteful [t also checks type usage more strictly than
the compilers. Among the things that are currently detected are unreachable
statements, loops not entered at the top, automatic variables declared and not
used,- and- logical expressions .whose value is_ constant. Moreover,_ the usage _of
functions is checked to find functions that return values in some places and not
in others, functions called , with varying numbers or types of arguments, and
functions whose values are not used or whose values are used but none
returned.
Arguments whose names end with oc are taken to be C source files. Arguments
whose names end with .ln are taken to be the result of an earlier invocation of
lint with either the -c or the -o option used. The .In files are analogous to .o
(object) files that are produced by the cc(l) command when given a .c file as
input. Files with other suffixes are warned about and ignored.
Lint will take all the .c,.ln, and llib-lx.ln (specified by -lx) files and process
them in their command line order. By default, lint appends the standard C lint
library (llib-lc.ln) to the end of the list of files. However, if the -p option is
used, the portable C lint library {llib-port.ln) is appended instead. When the
-c option is not used, the second pass of lint checks this list of files for mutual

compatibility. When the -c option is used, the .In and the llib-lx.ln files are
ignored.

Lint now refers to a 'small' model version of the appropriate library, or a 'large' model
version, depending on the -M command line argument. For -Ml, the large model
version is chosen. The 'small' model libraries are located in usrflib/small, and the 'large'
model libraries in /usr/lib/large.

Any number of lint options may be used, in any order, intermixed with file
name arguments. The following options are used to suppress certain kinds of
complaints:

-a

-b

-h

-u

-·
-x

Suppress complaints about assignments of long values to variables that
are not long.
Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in many such com
plaints).
Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.
Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run
ning lint on a subset of files of a larger program).
Suppress complaints about unused arguments in functions.
Do not report variables referred to by external declarations but never
used.

- I -

LINT(1)

The following arguments alter lint's behavior:

-lx Include additional lint library llib-Ix.ln. For example, you can include
a lint version of the Math Library llib-lm.ln by inserting -Im on the
command line. This argument does not suppress the default use of
llib-lc.ln. These lint libraries must be in the assumed directory. This
option can be used to reference local lint libraries and is useful in the
development of multifile projects. '

-n Do not check compatibility against either the standard or the portable
lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external names
to be truncated to eight characters and all external names to be trun
cated to six characters and one case.

-c Cause lint to produce a .In file for every .c file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for interfunction compatibility.

-o lib Cause lint to create a lint library with the name llib-1/ib.ln. The -c
option nullifies any use of the -o option. The lint library produced is
the input that is given to lint's second pass. The -o option simply
causes this file to be saved in the named lint library. To produce a
llib-1/ib.ln without extraneous messages, use of the -x option is sug
gested. The -v option is useful if the source file(s) for the lint library
are just external interfaces (for example, the way the file llib-lc is writ
ten). These option settings are also available through the use of "lint
comments" (see below).

-Ml Check the program for compatability using the large memory model. See
Programming Procedures for UNIX System V/AT.

-Ms Check the program for compatibility using the small memory model. Tills
model is used by default when no memory model is specified. See
Programming Procedures for UNIX System V/AT.

The -D, -U, and -I options of cpp (l} and the -g and -0 options of cc(l)
are also recognized as separate arguments. The -g and -0 options are
ignored, but, by recognizing these options, lint's behavior is closer to that of the
cc(t) command. Other options are warned about and ignored. The pre
processor symbol "lint" is defined to allow certain questionable code to be
altered or removed for lint. Therefore. the symbol "lint" should be thought of
as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of
lint:

/•NOTREACHED•/
at appropriate points stops comments about unreachable code.
lThis comment is typically placed just after calls to functions
like exit (2)].

/•VARARGSn•/
suppresses the usual checking for variable numbers of argu
ments in the following function declaration. The data types of
the first n arguments are checked; a missing n is taken to be 0.

/•ARGSUSED•/
turns on the -v option for the next function.

- 2 -

\ I

()

FILES

LINT(1)

/•LINTUBRARY•/
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

Lim produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been pro
cessed. Finally, if the -c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is not
clear whether a complaint stems from a given source file or from one of its
included files, -the source file name will be printed-followed -by a question mark.
The behavior of the -c and the -o options allows for incremental use of lint
on a set of C source files. Generally, one invokes lint once for each source file
with the -c option. Each of these invocations produces a .In file which
corresponds to the .c file, and prints all messages that are about just that source
file. After all the source files have been separately run through lint, it is
invoked once more (without the -c option), listing all the .In files with the
needed -lx options. This will print all the interfile inconsistencies. This
scheme works well with make(l); it allows make to be used to lint only the
source files that have been modified since the last time the set of source files
were /inted.

/usr/lib/small
usr}lib/large
Jinr[l2]
llib-lc.ln

llib-port.ln

llib-hn.In

/usr/tmp/*Iint*

the directorys where the lint libraries specified by the option
-Ix option must exist
first and second passes
declarations for C Library funcitons (bffiary format; source is in
/usrllib/IIIb·lc)
declarations for portable functions (binary format; source is in
/usrillb/IIib·port)
declarations for Math Library functions (binary format; source
is in /usr/lib/llib-lm)
temporaries

SEE ALSO

BUGS

cc(J), cpp(J), make(!).

Exit (2) and other functions that do not return are not understood; this causes
various lies.

. 3 .

LOGIN(1)

NAME
login - sign on

SYNOPSIS
login [name [env-var . . .]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a command
or by the system when a connection is first established. Also, it is invoked by
the system when a previous user has terminated the initial shell by typing a
cntrl-d to indicate an "end-of-file." (See How to Get Started at the beginning
of this volume for instructions on how to dial up initially.)

If login is invoked as a command it must replace the initial command inter
preter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if
appropriate, your password; Echoing is turned off (where possible) during the
typing of your password, so it will not appear on the written record of the ses
sion.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and
will be prompted by the message .. dialup password:". Both passwords are
required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute) , you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure /etc/profile
is performed, the message-of-the-day, if any, is printed, the user-10, the group
ID, the working directory, and the command interpreter [usually sh (1)] is ini
tialized, and the file .profile in the working directory is executed, if it exists.
These specifications are found in the /etc/passwd file entry for the user. The
name of the command interpreter is - followed by the last component of the
interpreter's path name (i.e., -sb). If this field in the password file is empty,
then the default command interpreter, lbin/sh is used. If this field is , then
a chroot(2) is done to the directory named in the directory field of the entry.
At that point login is re-executed at the new level which must have its own root
structure, including /etc/login and /etc/passwd.

The basic environment [see environ (5) 1 is initialized to:

HOME-your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=Iusr/mail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional argu
ments to login, either at execution time or when login requests your login
name. The arguments may take either the form xxx or xxx=yyy. Arguments
without an equal sign ate placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed into the environment
without modification. If they already appear in the environment, then they
replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. This prevents people, logging into restricted shell

- I -

I "

I)

0)

FILES

LOGIN{1}

environments, from spawning secondary shells which are not restricted. Both
login and getty understand simple single-character quoting conventions. Typing
a backslash in front of a character quotes L .md allows the inclusion of such
things as spaces and tabs.

/etc/utmp accounting
/etc/wtmp accounting
/usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passw<i - --- password -file
/etc/profile system profile
.profile user's login profile

SEE ALSO
mail(!), newgrp(!), sh(l), su(!).
passwd(4), profile(4), environ(5) in the Software Development System manual.

DIAGNOSTICS
Logfn incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX system
programming counselor.
No utmp entry. You must exec "login" from the lowest level Msh". if you
attempted to execute login as a comma.nd without using the shell's exec inter
nal command or from other than the initial shell.

-2 -

I

LP(l) LP(l)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddest] [-m] [-nnumber] [-o option] [-s] [-ttitle] [-w]
files
cancel [ids] [printers] ·:'

DESCRIPTION
Lp arranges for the named files and associated information (collectively
called a 1·equest) to be printed by a line printer. If no file names are
mentioned, the standard input is assumed. The file name - stands for
the standard input and may be supplied on the command line in conjunc
tion with named files . The order in which files appear is the same order
in which they will be printed.

Lp associates a unique id with each request and prints it on the standard
output. This id can be used later to cancel (see cancel) or find the status
[see lpstat(l)J of the request.

The following options to lp may appear in any order and may be inter
mixed with file names:
-c Make copies of the files to be printed immediately when lp is

invoked. Normally, files will not be copied, but will be linked
whenever possible. If the -c option is not given, then the
user should be careful not to remove any of the files before
the request has been printed in its entirety. It should also be
noted that in the absence of the -c option, any changes made
to the named files after the request is made but before it is
printed will be reflected in the printed output.

-ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed
only on that specific printer. If dest is a class of printers,
then the request will be printed on the first available printer
that is a member of the class. Under certain conditions
(printer un'availability, file space limitation, etc.), requests for
specific destinations may not be accepted [see accept(lM) and
lpstat(l)]. By default, dest is taken from the environment
variable LPDEST (if it is set). Otherwise, a default destina
tion (if one exists) for the computer system is used. Destina
tion names vary between systems [see lpstat(l)].

-m Send mail [see mail(l)] after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

-nnumber Print numbe1· copies (default of 1) of the output.
-a option Specify printer-dependent or class-dependent options. Several

-s
-ttitle

such options may be collected by specifying the -o keyletter
more than once. For more information about what is valid
for options, see Models in lpadmin(lM).

Suppress messages from lp(l) such as " request id is ... " .
Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have
been printed. If the user is not logged in, then mail will be
sent instead.

Cancel cancels line printer requests that were made by the lp(l) com
mand. The command line arguments may be either request ids [as

- 1 -

0

" ' v

FILES

LP(1)

printer cancels the request which is currently printing on that printer. In either
case, the cancellation of a request that is currently printing frees the printer to
print its next available request.

/usr/spool/lp/•

SEE ALSO
enable{!), lpstal{l), mail(!).
accep«lM), lpadmin(lM), lpsched{lM).

- 2-

I I

LPSET,LPGET(1M)

NAME

lpset. lpget-initialize the p�allel printer driver

SYNOPSIS

lpget deyice
lpset device indentation colum1J,s lines [transparency]

DESCRIPTION

These utilities are used to get and set the current values in th13 LP driver that defme
the following:

·

column indent
columns per line
lines per pag�
t:ran.Sp�nC?' on or off

Tr�parency mode prevents the LP driver from interpreting control characters and
non-printip.g-characters "for graphics printers. Any value in the [transparency] field sets
transparency on.

· ·

EXAMPLE

FILES

lpset /devflp 0 1n 66
would set the values in the driver to their default settings.

lpset /dev/lp 0 132 66 on sets transparency on

lp�j.et fde.v/lp 0 1�266 off sets transp�ency off

'
/dev/lp

SEE ALsO
lp(7) in the Runtime manual.

- I -

(l _ /

LPSTAT(1)

NAME
Jpstat - print LP status information

SYNOPSIS
lpstat [options]

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer system.
If no options are given, then lpstat prints the status of all requests made to
lp (1) by the user. Any arguments that are not options are asstmed to be
request ids (as returned by Jp). Lpstat prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
nther arguments. Some of the keyletters below may be followed by an optional
list that can be in one of two forms: a list of items separated from one another
by a comma, or a list of items enclosed in double quotes and separated from
one another by a comma and/or one or more spaces. For example:

-u "user 1 , user2, user3"
The omission of a list following such keyletters causes all information relevant
to the keyletter to be printed, for example:

lpstat -o
prints the status of all output requests.
-a[/ist] Print acceptance status (with respect to lp) of destinations for

requests. List is a list of intermixed printer names and class names.
-c[list] Print cla'lS names and their members. List is a list of class names.
-d Print the system default destination for lp.

-o[list] Print the status of output requests. List is a list of intermixed
printer names, class names, and request ids.

-p[list 1 Print the status of printers. List is a list of printer names.
-r Print the status of the LP request scheduler
-s Print a status summary, including the status of the line printer

scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

-t Print all status information.
-u[list] Print status of output requests for users. List is a list of login

names.
-v[list] Print the names of printers and the path names of the devices associ

ated with them. List is a list of printer names.

/usr/spoolllp/•
SEE ALSO

enable(!), Ip(l).

- I -

This page intentionally left blank.

NAME
Is - list contents of directory

SYNOPSIS
Is [-RadCxmlnogrtucpFbqisf] [names]

LS(1)

(- DESCRIPTION

/'�-

For each directory argument, Is lists the contents of the directory; for each file
argument, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their con�
tents.
There are three major listing formats. The default format is to list one entry
per line, the -C and -x options enable multi column formats, and the -m
option enables stream output format in which files are listed across the page,
separated by commas. In order to determine output formats for the -C, -x,
and -m options, Is uses an environment variable, COLUMNS, to determine the
number of character positions available on one output line. If this variable is
not set, the terminfo data base is used to determine the number of columns,
based on the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

There are an unbelievable number of options:

-R

-a

-d

-c
-x

-m
-I

Recursively list subdirectories encountered.

List all entries; usually entries whose names begin with a period (.)
are not listed.

If an argument is a directory, list only its name (not its contents);
often used with -1 to get the status of a directory.

Multicolumn output with entries sorted down the columns.

Multicolumn output with entries sorted across rather than down the
page.

Stream output format.
List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will instead contain the major and minor
device numbers rather than a size.

-n The same as -1, except that the owner's UID and group's GID
numbers are printed, rather than the associated character strings.

-o The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time modified (latest first) instead of by name.

-u

-c

Use time of last access instead of last modification for sorting (with the
-t option) or printing (with the -I option).

Use time of last modification of the i�node (file created, mode changed,
etc.) for sorting (-t) or printing (-1).

-p Put a slash ({) after each file name if that file is a directory.
-F Put a slash ({) after each file name if that file is a directory and put an

asterisk (•) after each file name if that file is executable.

- I -

LS(1)

FILES

-b Force printing of non�graphic characters to be in the octal \ddd nota
tion.

-q Force printing of non-graphic characters in file names as the character
(1).

-i

-s

For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and
turns on -a; the order is the order in which entries appear in the
directory.

The mode printed under the -1 option consists of 10 characters that are inter
preted as follows:

The first character is:

d if the entry is a directory,
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions
of others in the user-group of the file; and the last to all others.
Within each set, the three characters indicate permission to read, to
write, and to execute the file as a program, respectively. For a direc4
tory, .. execute" permission is interpreted to mean permission to search
the: directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set4
group-ID mode; likewise, the user4execute permission character is given
as S if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the 1000 (octal) bit of the mode is on; see
chmod(l) for the meaning of this mode. The indications of set4ID and
1000 bits of the mode are capitalized (S and T respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

/etc/passwd

/etc/group

/usr/Iib/terminfo/•

to get user IDs for Is -I and Is -o.

to get group IDs for Is -1 and Is -g.
to get terminal information.

SEE ALSO
chmod(l), find(!).

BUGS
Unprintable characters in file names may confuse the columnar output options.

- 2 -

'"-

M4(1)

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

undivert

divnum

dnl

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of Sn in the
replacement text, where n is a digit, is replaced by the n-th argu
ment. Argument 0 is the name of the macro; missing arguments
are replaced by the null string; S# is replaced by the number of
arguments; S• is replaced by a list of all the arguments separated
by commas; $@ is like S•, but each argument is quoted (with the ·"'-..
current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argurnent(s), exposing the previ·
ous one, if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is
null. The word unix is predefined on UNIX system versions of
m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be per·
formed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote without
arguments restores the original values (i.e., ' ').

change left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker becomes
the argument and the right marker becomes new-line. With two
arguments, both markers are affected. Comment markers may be
up to five characters long.

m4 maintains 10 output streams, numbered 0·9. The final output
is the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The divert macro changes the
current output stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu·
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new
line.

ifelse has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is '\,
repeated_ with arguments 4, 5, 6 and 7. Otherwise, the value is \:,. either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by I . The value of
the argument is calculated by interpreting an initial digit-string
as a decimal number.

- 2 -

r'

('
\

deer

eva I

len

index:

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

SEE ALSO

M4(1)

returns the value of its argument decremented by l.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, •, /, % , .. (exponentiation),
bitwise & , 1 . ", and �; relationals; parentheses. Octal and hex
numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument
may be used to specify the minimum number of digits in the
result.

returns the number of characters in its argument.

reiU.rD.s the pOsition in its first argument where the second argu
ment begins (zero origin), or -1 if the second argument does not
occur.

returns a substring of its first argument. The second argument is
a zero origin number selecting the first character; the third argu�
ment indicates the length of the substring. A missing third argu�
ment is taken to be large enough to extend to the end of the first
string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX system command given in the first argument.
No value is returned.

is the return code from the last call to syscmd.

fi11s in a string of XXXXX in its argument with the current pro·
cess ID.

causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is 0.
argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup() ')

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for
aU if no arguments are given.

with no arguments, turns on tracing for all macros (including
built·ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by tracean can be untrace-d only by specific
calls to traceoff.

ceO), cpp(I).

c-�- The M4 Macro Pracessar by B. W. Kernighan and D. M. Ritchie.

- 3 -

MACHID(1)

NAME
pdp l l , u3b, u3b5, vax, iAPX286 - provide truth value about your processor
type

SYNOPSIS
pdpll
uJb
u3b5
vax

iAPX286

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on
a processor that the command name indicates.

pdp11 True if you are on a PDP-11145 or PDP-1 1/70.

u3b True if you are on a 3820 computer.
u3b5 True if you are on a 385 computer.

vax True if you are on a VAX-111750 or VAX-1 1 /780.
iAPX286 True if you are on an iAPX286 processor.

The commands that do not apply will return a false (non-zero) value. These
commands are often used wiUJ.in make(l) makefiles and shell procedures to
increase portability.

SEE ALSO
make(!), sh(!), test(!), true(!).

- I -

(
\

c

MAIL(1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-epqr I [-f file I
mail [-t] persons

rmail [-t 1 persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last-in,
first-out order; For each message, the user is prompted with -a ? , and -a line is
read from the standard input to determine the disposition of the message:

<new-line>
+

d
p

s [files I
w [files I

m [persons 1

Go on to next message.
Same as < new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the namedfi/es (mbox is default).
Save message, without its header, in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default).

q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.
X Put all mail back in the mailfile unchanged and

stop.
!command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-·

-p
-q

-r
-!file

causes mail not to be printed. An exit value of 0 is returned if the user
has mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes mail to use .file (e.g., mbox) instead of the default mailjile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person's mailjile.
The message is preceded by the sender's name and a postmark. Lines that look
like postmarks in the message, (i.e., "From . . . ") are preceded with a > . The
-t option causes the message to be preceded by all persons the mail is sent to.
A person is usually a user name recognized by login (I). If a person being sent
mail is not recognized, or if mail is interrupted during input, the file dead.letter
will be saved to allow editing and resending. Note that this is regarded as a
temporary file in that it is recreated every time needed, erasing the previous
contents of dead.letter.

To denote a recipient on a remote system, prefix person by the system name
and exclamation mark [see uucp(lC)]. Everything after the first exclamation
mark in persons is interpreted by the remote system. In particular, if persons
contains additional exclamation marks, it can d�note a sequence of machines
through which the message is to be sent on the wa'y to its ultimate destination.
For example, specifying a!b!cde as a recipient's name causes the message to be
sent to user b!cde on system a. System a will interpret that destination as a
request to send the message to user cde on system b. This might be useful, for
instance, if the sending system can access system a but not system b, and

- 1 -

MAIL(1)

FILES

system a has access to system b. Mail will not use uucp if the remote system
is the local system name (i.e., localsystem!user).

The mailji/e may be manipulated in two ways to �Iter the function of mail.
The other permissions of the file may be read-write, read-only, or neither read
nor write to allow different levels of privacy. If changed to other than the
default, the file will be preserved even when empty to perpetuate the desired '"\._
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to
person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment. In order for forwarding to work
properly the mailfile should have wmail" as group ID, and the group permission
should be read-write.

Rmail only permits the sending of mail; uucp(IC) uses rmail as a security pre
caution.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

/ctc/passwd
/usrlmail/user
$HOME/mbox
$MAIL
/tmp/ma•
/usr/mailf•.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mai/fi/e
saved mail
variable containing path name of mai/fi/e
temporary file
lock for mail directory
unmailable text

SEE ALSO

BUGS

login(!), mailx(I), uucp(IC), write(!).

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 2 -

MAILX(1)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options) lname .. .l

,-- - DESCRIPTION
The command rnailx provides a comfortable, flexible environment for sending
and receiving messages electronically. When reading mail, mailx provides com�
mands to facilitate saving, deleting, and responding to messages. When sending
mail, mailx allows editing, reviewing and other modification of the message as
it is entered.

Incoming mail is stored in a standard file for each user, called the system mail
box for that user. When mailx is called to read messages, the mailbox is the
default place to find them. As messages are read, they are marked to be moved
to a secondary file for storage, unless specific action is taken, so that the mes
sages need not be seen again. This secondary file is called the mbox and is nor
mally located in the user's HOME directory [see "MBOX" (ENVIRONMENT
VARIABLES) for a description of this file)]. Messages remain in this file until
forcibly removed.

On the command line, options start with a dash (-) and any other arguments
are taken to be destinations (recipients). If no recipients are specified, mailx
will attempt to read messages from the mailbox. Command line options are:

-d Turn on debugging output. Neither particularly
interesting nor recommended.

-e Test for presence of mail. Mailx prints nothing and
exits with a successful return code if there is mail to
read.

-f [filename] Read messages from filename instead of mailbox. If
no filename is specified, the mbox is used.

-F Record the message in a file named after the first reci
pient. Overridc!s the "record" variable, if set (see
ENVIRONMENT VARIABLES).

-b number The number of network "hops" made so far. This is
provided for network software to avoid infinite delivery
loops.

-H Print header summary only.
-i Ignore interrupts. See also "ignore" (ENVIRONMENT

VARIABLES).
-n Do not initialize from the system default Mailx.rc file.
-N Do not print initial header summary.
-r address Pass address to network delivery software. All tilde

commands are disabled.
-s subject Set the Subject header field to subject.
-u user Read user's mailbox. This is only effective if user's

mailbox is not read protected.
-U Convert uucp style addresses to internet standards.

Overrides the "conv" environment variable.

When reading mail, mailx is in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating mailx can
accept regular commands (see COMMANDS below). When sending mail,
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. As the message is typed, mailx will read the
message and store it in a temporary file. Commands may be entered by

- I -

MAILX(1)

beginning a line with the tilde (•) escape character followed by a single com
mand letter and optional arguments. See TILDE ESCAPES for a summary of
these commands.

At any time, the behavior of mailx is governed by a set of environment vari
ables. These are flags and valued parameters which are set and cleared via the
set and unset commands. See ENVIRONMENT VARIABLES below for a sum- (
mary of these parameters. �
Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network address,
including mixed network addressing. If the recipient name begins with a pipe
symbol (!). the rest of the name is taken to be a shell command to pipe the
message through. This provides an automatic interface with any program that
reads the standard input, such as lp (1) for recording outgoing mail on paper.
Alias groups are set by the alias command (see COMMANDS below) and are
lists of recipients of any type.
Regular commands are of the form

[command] [msg/ist] [arguments 1

If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not treated
as commands are taken as input for the message.
Each message is assigned a sequential number, and there is at any time the
notion of a 'current' message, marked by a '>' in the header summary. Many
commands take an optional list of messages (msglist) to operate on, which
defaults to the current message. A msglist is a list of message specifications
separated by spaces, which may include:

n

$
•
n-m
user
/string
:c

Message number n.
The current message.
The first undeleted message.
The last message.
AU messages .
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this
type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the com
mand involved. File names, where expected, are expanded via the normal shell
conventions [see sh (1)]. Special characters are recognized by certain com
mands and are documented with the commands below.
At start-up time, mailx reads commands froin a system-wide file
(/usrllib/mailx/mailx.rc) to initialize certain parameters, then from a private _
start-up file ($HOME/.mailrc) for personalized variables. Most regular com
mands are legal inside start-up files, the most common use being to set up ini-
tial display options and alias lists. The following commands are not legal in the
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. Any errors in the start-up file cause the remaining

- 2 -

r
\

(
\

MAILX(1)

Jines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See �SHELL" (ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful in .mai/rc files.

Print the current message number:

?
Prints a summary of commands.

alias alias name .. .
group alias name .. .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a Jist of alternate names for your login. When responding to
a message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter
nate names. See also "allnet" (ENVIRONMENT VARIABLES).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved.
Otherwise equivalent to the save command.

Copy [msglistl
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next mes
sage after the last one deleted is printed (see ENVIRONMENT VARI
ABLES)_

discard [header-field .. .1 IJI
ignore [header-field .. .1 II Suppresses printing of the specified header fields when displaying mes-

sages on the screen. Examples of header fields to ignore are "status"
and "cc." The fields are included when the message is saved. The
Print and Type commands override this command.

dp [msglist1
dt [msglist]

Delete the specified messages from the mailbox and print the next
message after the last one deleted. Roughly equivalent to a delete

- 3 -

MAILX(1)

command followed by a print command.

echo string ...
Echo the given sttirtgs [like echo (I) 1.

edit (msg/istl

exit
xit

Edit the given messages. The messages are placed in a temporary file �
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIA_BLES). Default editor is ed(I).

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Defau_lt file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable
(see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" vari
able, if set. See also the Followup, Save, and Copy commands and
"outfolder" (ENVIRONMENT VARIABLES).

Followup [msglist1
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from
the first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the followup,
Save, and Copy commands and "outfolder" (ENVIRONMENT VARI
ABLES).

from [msglist1
Prints the header summary for the specified messages.

· group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted_
when alias is used as a recipient. Useful in the .mailrc file.

headers [message]
Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRON
MENT VARIABLES). See also the z command.

- 4 -

C)

MAILX(1)

help
Prints a summary of commands.

bold [msglist1
preserve [msglist]

Holds the specified messages in the mailbox.

if ..y
mail�commands
else
mail-commands
end if

Conditional execution, where s will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r causes the
mail-commands to be executed only in receive mode. Useful in the
.mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying mes
sages on the screen. Examples of header fields to ignore are "status"
and "cc." All fields are included when the message is saved. The Print
and Type commands override this command.

Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

mbox [msg/ist]
Arrange for the given messages to end up in the standard mbox save
file when mailx terminates normally. See nMBOXn (ENVIRONMENT
VARIABLES) for a description of this file. See also the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be specified,
but in this case the first valid message in the Jist is the only one used.
This is useful for jumping to the next message from a specific user,
since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of
possible message specifications.

,Pipe [msg/ist] [shell-command]
I [msg/ist] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current mes
sage is piped through the command specified by the value of the ncmdn
variable. If the npage" variable is set, a form feed character is inserted
after each message {see ENVIRONMENT VARIABLES).

preserve [msglist]
bold [msglist]

Preserve the specified messages in the mailbox.

- 5 -

MAILX(1)

Print [msglist1
Type (msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist]
type (msg/istl <

quit

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the "PAGER" variable. The default com
mand is pg(I) (see ENVIRONMENT VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in
a file are deleted.

Reply (msglistl
Respond [msglistl

Send a response to the author of each message in the msg/ist. The
subject line is taken from the first message. [f "record" is set to a
filename, the response is saved at the end of that file (see ENVIRON
MENT VARIABLES).

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the
message. If "record" is set to a filename, the response is saved at the
end of that file (see ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with aU network addressing stripped off. See also the
Copy, followup, and Followup commands and "outfolder" (ENVIRON
MENT VARIABLES).

save (filename]
save [msglist]filename

set

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx
terminates unless "keepsave" is set (see also ENVIRONMENT VARI
ABLES and the exit and quit commands).

set name
set name-string
set name-number

shell

Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables and "
their values. See ENVIRONMENT VARIABLES for detailed descrip-
tions of the mailx variables.

Invoke an interactive shell [see also "SHELL" (ENVIRONMENT VARI
ABLES)].

- 6 -

(
\.

MAILX(1)

size [msglist1
Print the size in characters of the specified inessages.

source filename
Read commands from the given file -and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the "toplines" vari
able is set, it is taken as the number of lines to print (see ENVIRON
�ENT Y_ARJABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox upon normal
termination. See exit and quit.

Type [msg/ist]
Print [msg/ist]

Print the specified messages on the screen, including aU header fields.
Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the "PAGER" variable. The default com
mand is pg(l) (see ENVIRONMENT VARIABLES).

undelete [msglistl
Restore the specified deleted messages. Will only restore messages
deleted in the current mai1 session. If "autoprint" is set, the last mes
sage of those restored is printed (see ENVIRONMENT VARIABLES).

unset name ...

l'ersion

Causes the specified variables to be erased. If the variable was
imported from the execution environment (i.e., a shell variable) then it
cannot be erased.

Prints the current version and release date.

l'isual [msg/ist]
Edit the given messages with a screen editor. The messages are placed
in a temporary file and the "VISUAL" variable is used to get the name
of the editor (see ENVIRONMENT VARIABLES).

write [msglist] ftlename I Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

xit
exit

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit). ·

- 7 -

MAILX(1)

TILDE ESCAPFS

Scroll the header display forward or backward one screen f\11. The
numbe.r of headers displayed is set by the •screen" variable (see
ENVIRONMENT VARIABLES).

The foliowing commands may be entered only from inpUt mode, by beginning a ,
line with the tilde escape character (}. See "escape" (ENVIRONMENT VARI- '(\.
ABLES) for changing this special character.

, shell-command
Escape to the shell.

Simulate end of file (terminate message input).

-: mail-command
- mail-command

-.

Perform the command-level request. Valid only when sending a mes
sage while reading mail.

Print a summary of tilde escapes.

Insert the autograph striilg ''Sign" into the message (see ENVIRON
MENT VARIABLES).

Insert the autograph string "sign" into the message (see ENVIRON
MENT VARIABLES).

"'b name ...
Add the names to the blind carbon copy (Bee) list.

-c name ...

-.

Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See "DEAD• (ENVIRONMENT VARI·
ABLES) for a description of this file.

Invoke the editor on the partial message. See also nEDITOR"
(ENVIRONMENT VARIABLES).

-r [msglistl

,

, string

Forward the specified messages. The messages are inserted into the
message, without alteration.

Prompt for Subject line and To, Cc, and Bee lists. If the field is
displayed with an initial value, it may be edited as if you bad just
typed it.

Insert the value of the named variable into the text of the message.
For example, -A is equivalent to 'I Sign.'

- 8 -

(
\

MAILX(1)

wm [msglistl
Insert the specified messages into the Jetter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.Jetter. -See
"DEAD" (ENVIRONMENT VARIABLES) for a description of this file.

-r filename
-< filename
-< !she/1-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

-t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES) .

-w filename
Write the partial message onto the given file, without the header.

-.
Exit as with -q except the message is not saved in dead.letter.

"1 shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com
mand replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mai/x.

HOME-directory
The user's base of operations.

MAILRC=fi/ename
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be imported
from the execution environment or set via the set command at any time. The
unset command may be used to erase variables.

allnet
All network names whose last component Oogin name) match are
treated as identical. This causes the msglist message specifications to

- 9 -

MAILX(1)

append

askcc

asksub

behave similarly. Default is noallnet. See also the alternates commarid
and the "metoo" variable.

Upon termination, append messages to the end of the mbox file instead
of prepending them. Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with the
-s option. Enabled by default.

auto print

bang

Enable automatic printing of messages after delete and undelete com
mands. Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell escape com
mand lines as in vi(l). Default is nobang.

cmd=she/1-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program con
forming to the RFC822 standard for electronic mail addressing. ·-"�
Conversion is disabled by default. See also "sendmail" and the -U
command line option.

crt= number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable [pg(I) by defaultl
Disabled by default.

DEAD= filename

debug

dot

The name of the file in which to save partial letters in case of untimely
interrupt or delivery errors. Default is $HOME/dead.letter.

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

Take a period on a line by itself during input from a terminai as end
of-file. Default is nodot.

EDITOR=shell-command "
The command to run when the edit or -e command is used. Default is \:-,.
ed(l).

escape=c
Substitute c for the - escape character.

- 10 -

(

MAILX(1)

folder-=directory

bea!ler:

bold

ignore

The directory for saving standard mail files. User specified file names
beginning with a plus (+) are expanded by preceding the filename with
this directory name to obtain the real filename. If directory does not
start with a slash (/), $HOME is prepended to it. In order to use the
plus (+) construct on a mailx command line, "folder" must be an
exported sh environment variable. There is no default for the "folder"
variable. See also "outfolder" below.

En3.bie printing of the header sUmmary When enterilt& -mailX. Enabled
by default.

Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignoreeof

keep

Ignore end-of-file during message input. Input must be terminated by
a period (.) on a line by itself or by the -. command. Default is noig
noreeof. See also "dot" above.

When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX-fllename

me too

The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message explicitly
in another file. Default is $HOME/mbox.

If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER-shell-command

onehop

The command (and options) to use when listing the contents of the
"folder" directory. The default is Is (I).

When responding to a message that was originally sent to several reci
pients, the other recipient addresses are normally forced to be relative
to the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines {i.e., one
hop away).

MAILX(1)

outfolder

page

Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is abso·
lute. Default is nooutfOider. See "folder" above and the Save, Copy,
followup, and Followup commands.

Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PAGER-shell-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(l).

prompt-string

quiet

Set the command mode prompt to string. Default is "� ".

Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

'

record-filename

save

Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

Enable saving of messages in dead.letter on interrupt or delivery error.
See "DEAD" for a description of this file. Enabled by default.

screen-number
Sets the number of lines in a screen full of headers for the headers
command.

sendmail-she/1-command
Alternate command for de1ivering messages. Default is mai/(1).

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL-shell-command

showto

The name of a preferred command interpreter. Default is sh(l).

When displaying the header summary and the message is from you,
print the recipient's name instead of the author's name.

sign-string
The variable inserted into the text of a message when the -a (auto
graph) command is given. No default [see also I (TILDE ESCAPES)].

Sign==string
The variable inserted into the text of a message when the -A command
is given. No default [see also -i (TILDE ESCAPES) I.

- 12-

- (�
\

�
\

(

FILES

MAILX(1)

toplines-number
The number of lines of header to print with the top command. Default
is 5.

VISUAL-shell·command
The name of a preferred screen editor. Default is vi(I) .

$HOME/.mailrc
$HOME/mbox
/usr/mail/*
/usr/Iib/mailxlmailx.belp*
I usr /lib/ mailx/mailx.rc
/tmp/R[emqsx]•

personal start-up file
secondary storage file
post office directory
help message files
global start-up file
temporary files

SEE ALSO

BUGS

mail (I), pg(I), Is (I),

Where shell-command is shown as valid, arguments are not always allowed.
ExP,erimentation is recommended.
Internal variables imported from the execution environment cannot be unset.
The full internet addressing is not fully supported by mailx. The new stan
dards need some time to settle down.
Attempts to send a message having a line consisting only of a ... " are treated
as the end of the message by mai/(1} (the standard mail delivery program).

- 13 -

I

MAKE(1)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefilel [-pi [-II [-kl [-sl [-rl [-nl [-bl [-el [-ml
[-tl [-dl [-ql [names I

DESCRIPTION
The following is a brief description of all options and some special names:
-f makefile Description file name. Makefile is assumed to be the name of a

description file. A file name of - denotes the standard input.
The contents of m,ake.file override the built-in rules if they are
present.

-p Print out the complete set of macro definitions and target descrip
tions.

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the descrip
tion file.

-k Abandon work on the current entry, but continue on other
branches that do not depend on that entry.

-s Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in
the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.
-e Environment variables override assignments within makefiles.
-m Print a memory map showing text, data, and stack. This option

is a no-operation on systems without the getu system call.
-t Touch the target files (causing them to be up-to-date) rather

than issue the usual commands.
-d Debug mode. Print out detailed information on files and times

examined.

-q Question. The make command returns a zero or non-zero status
code depending on whether the target file is or is not up-to-date .

• DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or inter-
rupt are hit.

.SILENT Same effect as the -s option .
• IGNORE Same effect as the -i option.
Make executes commands in makefile to update one or more target names.
Name is typically a program. If no -f option is present, makefile, Makefile, '·>..
s.makefile, and s.Makefile are tried in order. If makefi/e is -, the standard
input is taken. More than one - makefi/e argument pair may appear.
Make updates a target only if its dependents are newer than the target. All
prerequisite files of a target are added recursively to the list of targets. Missing
files are deemed to be out-of-date.

- I -

_ _ _ I

(
" -

C'

MAKE(1)

Makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then a
(possibly null) list of prerequisite files or dependencies. Text following a ; and
all following lines that begin with a tab are shell commands to be executed to
update the target. The first line that does not begin with a tab or # begins a
new dependency or macro definition. Shell commands may be continued across
lines with the <backslash> <new-line> sequence. Everything printed by
make (except the initial tab) is passed directly to the shell as is. Thus,

echo a\
- b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefi/e says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.c) and a comf
mon file incl.b:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one
or two characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If - is present, make ignores
an error. A line is printed when it is executed unless the -s option is present,
or the entry .SILENT: is in makefi/e, or unless the initial character sequence
contains a @. The -n option specifies printing without execution; however, if
the command line has the string $(MAKE) in it, the line is always executed (see
discussion of the MAKEFLAGS macro under Environment). The -t (touch)
option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in makeji/e, or the initial char
acter sequence of the command contains -. the error is ignored. If the -k
option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make)
to run without errors. The difference between the old version of make and this
version is that this version requires all dependency lines to have a (possibly null
or implicit) command associated with them. The previous version of make
assumed, if no command was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a depen
dent of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option causes the environ
ment to override the macro assignments in a makefile.

- 2 -

MAKE(1}

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f, -p, and -d) defined for the command line.
Further, upon invocation, make "invents" the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This ,_
proves very useful for "super-makes". In fact, as noted above, when the -n(1 '.
option is used, the command $(MAKE) is executed anyway; hence, one can per- "'-- 1
form a make -n recursively on a whole software system to see what would
have been executed. This is because the -n is put in MAKEFLAGS and passed
to further invocations of S(MAKE). This is one way of debugging all of the
makefiles for a software project without actually doing anything.

Macros
Entries of the form string/ - string2 are macro definitions. String2 is defined
as all characters up to a comment character or an unescaped new-line. Subse
quent appearances of $Cstringl[:substl-[subst2]]) are replaced by string2.
The parentheses are optional if a single character macro name is used and
there is no substitute sequence. The optional :substl-subst2 is a substitute
sequence. If it is specified, all non-overlapping occurrences of subst/ in the
named macro are replaced by subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line characters, and beginnings
of lines. An example of the use of the substitute sequence is shown under
Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules
for building targets.

$• The macro S• stands for the file name part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$ < The S < macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out-of-date with respect to the target (i.e.,
the .. manufactured" dependent file name) . Thus, in the .c.o rule, the $ <
macro would evaluate to the .c file. An example for making optimized .o
files from .c files is:

.c.o:
cc -c -0 $•.c

or:
.c.o:

cc -c -0 $ <

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of•date with respect
to the target; essentially, those modules which must be rebuilt.

$ % The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and $%
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an uppercase D or F , ,
is appended to any of the four macros, the meaning is changed to "directory \:c_
part" for D and "file part" for F. Thus, $(@0) refers to the directory part of
the string $@. If there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $?. The reasons for this are debatable.

- 3 -

0

0

MAKE(1)

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites
such as .c, .s, etc. If no update ·commands for such a file appear in makefi/e,
and if an inferable prerequisite exists, that prerequisite is compiled to make the
target. In this case, make has inference rules which allow building files from
other files by examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o Y.o

.y.c .y-.c .I.e .c.a .c-.a .s-.a .h-.h

The internal rules for mQke are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompilation,
the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output· is the (null) string which printf(3S) prints
when handed a null string.

A tilde in the above rules refers to an sees file [see sccsfile (4)]. Thus, the
rule .c-.o would transform an sees C source file into an object file (.o).
Because the s. of the sees files is a prefix, it is incompatible with make's suffix
point of view. Hence, the tilde is a way of changing any file reference into an
sees file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets from
only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXFS: .o .c .y .1 .s

Here again, the above command for printing the internal rules will display the
list of suffixes implemented on the current machine. Multiple suffix lists accu
mulate; .SUFFIXFS: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefi/e.

Certain macros are used by the default inference rules to permit the inclusion
of optional matter in any resulting commands. For example, CFLAGS, LFLAGS,
and YFLAGS are used for compiler options to edt), lex(i), and yacc(l),
respectively. Again, the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .o from a file with suffix .c is specified as an entry with .c.o: as the target
and no dependents. Shell commands associated with the target define the rule
for making a .o file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

- 4 -

MAKE(1)

Libraries

FILES

If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library. Thus Ub(file.o) and S(UBHfile.o) both refer to an archive library
which contains file.o. (This assumes the LIB macro has been previously
defined.) The expression S(UB) (filel.o filel.o) is not legal. Rules pertaining to 1 ,
archive libraries have the form .xx.a where the XX is the suffix from which the """
archive member is to be made. An unfortunate byproduct of the current imple
mentation requires the XX to be different from the suffix of the archive
'member. Thus, one cannot have lib(file.o) depend upon file.o explicitly. The
most common use of the archive interface follows. Here, we assume the source
files are all C type source:

lib: lib(filel .o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ s•.o
rm -f s•.o

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o-.c)
ar rv lib $'?
rm $? @echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object file names (inside lib) whose C source files are
out-of-date. The substitution mode translates the .o to .c. (UnfortUnately, one
cannot as yet transform to .c-; however, this may become possible in the
future.) Note also, the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

[Mm)akefile and s.[Mm]akefile

SEE ALSO

BUGS

cc(l), cd(l), lex(l), sh(l), yacc(l).
printf(3S), sccsfile(4) in the Software Development System manual.

Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. File names with the characters - : @ will not work. Commands
that are directly executed by the shell, notably cd(I), are ineffectual across
new-lines in make. The syntax Iib(filel.o filel.o file3.o) is illegal. You cannot
build lib(file.o) from file.o. The macro S(a:.o-.c-) does not work.

- 5 -

0

0

NAME
man - print on-line documentation

SYNOPSIS
man command

DESCRIPTION

MAN(1)

Man is a shell command file which prints on-line documentation for the
commands.

DIAGNOSTICS

FILES

"man: command not found"

/usr/catman/?_ma.n/man[l-81/*
preformatted manual entries

- 1 -

I

MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [Y]

DESCRIPTION
Mesg with argument n forbids messages via write(l) by revoking nonuser
write permission on the user's terminal. Mesg with argument y rein
states permission. All by itself, mesg reports the current state without
changing it.

FILES
/dev/tty*

SEE ALSO
write(!).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- I -

0

0

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(1)

Mkdir creates specified directories in mode 777 (possibly altered by
umask (I)). Standard entries, ., for the directory itself, and •• , for its parent,
are made automatically.
Mkdir requires write permission in the parent directory.

SEE ALSO
sh(J), rmO), umaskO).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfu1ly made; otherwise, it
prints a diagnostic and returns non-zero.

- 1 -

MKFS(1M)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special blocks[:i-nodes] [gap blocks/cyl]
/etc/mkfs special proto [gap blocks/cyl]

DESCRIPTION .\c_
Mkfs constructs a file system by writing on the special file according to the
directions found in the remainder of the command line. The command waits
10 seconds before starting to construct the file system. If the second argument
is given as a string of digits, mkjs builds a file system with a single empty
directory on it. The size of the file system is the value of blocks interpreted as
a decimal number. This is the number of physical disk blocks the file system
will occupy. The boot program is left uninitialized. If the optional number of
i-nodes is not given. the default is the number of logical blocks divided by 4.
If the second argument is a file name that can be opened, mkfs assumes it to
be a prototype file proto, and will take its directions from that file. The proto
type file contains tokens separated by spaces or new-lines. The first token is the
name of a file to be copied onto block zero as the bootstrap program. The
second token is a number specifying the size of the created file system in physi
cal disk blocks. Typically it will be the number of blocks on the device,
perhaps diminished by space for swapping. The next token is the number of i
nodes in the file system. · The maximum number of i-nodes configurable is
65500. The next set of tokens comprise the specification for the root file. File
specifications consist of tokens giving the mode, the user ID, the group ro, and
the initial contents of the file. The syntax of the contents field depends on the
mode.
The mode token for a file is a 6-character string. The first character specifies
the type of the file. (The characters -bed specify regular, block special, char
acter special and directory files respectively.) The second character of the type
is either u or - to specify set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a 3-digit octal number giving the
owner, group, and other read, write, execute permissions [see chmod(l)].
Two decimal number tokens come after the mode; they specify the user and
group IDs of the owner of the file.
If the file is a regular file, the next token is a path name whence the contents
and size are copied. If the file is a block or character special file, two decimal
number tokens follow which give the major and minor device numbers. If the
file is a directory, m/ifs makes the entries • and •. and then reads a list of
names and (recursively) files specifications for the entries in the directory. The
scan is terminated with the token $.
A sample prototype specification follows:

lstand/diskboot
4872 1 1 0
d--777 3 1
usr d--777 3 I

$

sh ---755 3 1 /bin/sh
ken d--755 6 1

$
bO b--644 3 I 0 0
cO c--644 3 I 0 0
$

- I -

MKFS(1M)

In both command syntaxes, the rotational gap and the number of blockslcyl
can be specified. The default will be used if the supplied gap and blockslcyl
are considered illegal values or if a short argument count occurs.

/'1 SEE ALSO
' ' chmod(l), dir(4), fs(4).

BUGS

0

If a prototype is used, it is not possible to initialize a file larger than 64K bytes,
nor is there a way to specify link�.

- 2 -

I

MKNOD(1M)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name c [b major minor
/etc/mkood name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special file.
The first argument is the name of the entry. In the first case, the .second is b if
the special file is block-type (disks, tape) or c if it is ch,aracter-type (other dev
ices). The last two arguments are numbers specifying the major device type
and the minor device (e.g., unit, drive, or line number), which may be either
decimal or octal.
The assignment of major device numbers is specific to each system. They have
to be dug out of the system source file conf.c.

Mknod can also be used to create fifo's (a.k.a named pipes) (second case in
SYNOPSIS above).

SEE ALSO
mknod(2).

- I -

c

0

MOUNT(1M)

NAME
mount, umopnt - mount �nd dismount file system

SYNOPSIS ·
/etc/�ount [spe�ial directory [-r]]

/etc/umount special

DESCRIPTION

FILES

Mount announces to the syf:ltem that a remQvable file system is present
oil the device spedal. The directory nwst exist already; it becomes the
name of the ·root of the newly moUnted file system.
These oommands maintain a table of mounted devices. If invoked with no
ar�\lments, mount prints the �ble.

·

The optional last argument indicate& that the file is to be mounted read
only. A file system on a· physically write-protected media can only be
mounted read-only.

Umount announc�s to the system that the removable file system previ
ously mouri.ted on device sper;ial is to be rempved.

/etc/:mnttab mount table
SEE ALSO

setmnt(lM), mount(2), mnttab(4).

DIAGNOSTICS
Mount issues a w;arning if the file system to be mounted is currently
mounted under another name.
Umount coJI!pl�ins if the spet;:ial file is not mounted or if it is busy. The
file sYs.tem is busy if it contains ap open file or $Orne user's working
directory.

- 1 -

MVDIR(1M)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dirname name

DESCRIPTION
Mvdir moves directories within a file system. Dirname must be a directory;
name must not exist. Neither name may be a sub-set of the other (/x/y can
not be moved to /x/y /z, nor vice versa).
Only super-user can use mvdir.

SEE ALSO
mkdidt).

- I -

(', I I

0

NCHECK(1 M)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-i numbers 1 [-a] [-s 1 [file-system]

DESCRIPTION
Ncheck with no argument generates a path name vs. i-n umber list of all flies on
a set of default file systems. Names of directory files are followed by /.. The
-i option reduces the report to only those files whose i-numbers follow. The
-a option allows printing of the names • and •• , which are ordinarily
suppressed. The -s option reduces the report to special files and files with
set-user-ID mode; it is intended to discover concealed violations of security pol
icy.
A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(IM), sort(!).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the ''parent" of a
parentless file and a path name beginning With .•• denotes a loop.

I
- 1 -

NEWFORM(1)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-sl [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-cchar] [-In] [files 1

DESCRIPTION \,_
Newform reads lines from the named files, or the standard input if no input file
is named, and reproduces the lines on the standard output. Lines are reformat·
ted in accordance with command line options in effect.
Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order ·specified. This means that option sequences
like "-elS -160'' will yield results different from " -160 -el5". Options are
applied to alljiles on the command line.

-itabspec Input tab specification: expands tabs to spaces, accotding to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs (1). In addition, tabs pee may be - -, in which
newform assumes that the tab specification is to be found in the
first line read from the standard input [see fspec(4)J. If no tabspec
is given, tabspec defaults to -8. A tabspec of -0 expects no tabs;
if any are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A
tabspec of -0 means that no spaces will be converted to tabs on
output.

-In Set the effective line length to n characters. If n is not entered, -1
defaults to 72. The default line length without the -1 option is 80
characters. Note that tabs and backspaces are considered to be one
character (use -i to expand tabs to spaces).

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -ln). Default is
to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform -11 -b7 file�name

The -11 must be used to set the effective line length shorter than
any existing line in the file so that the -b option is activated.

-en Same as -bn except that characters are truncated from the end of
the line.

-ck Change the prefix/append character to k. Default character for k
is a space.

-pn Prefix n characters (see -�:k) to the beginning of a line when the
line length is less than the effective line length. Default is to prefix
the number of characters necessary to obtain the effective line
length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output
before any other lines are output. The tab specification format line
which is printed will correspond to the format specified in the last

- I -

()

c

0

NEWFORM(1)

-·

-o option. If no -o option is specified, the line which is printed
will contain the default specification of -8.
Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a • and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
sav� internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -s -i -I -a -e file-name

DIAGNOSTICS
All diagnostics are fatal.
usage: . . .
not -s format
can't open file
internal line too long

tahspec in error

tabspec indirection illegal

Newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being expanded
in the internal work buffer.
A tab specification is incorrectly formatted, or
specified tab stops are not ascending.
A tabspec read from a file (or standard input) may
not contain a tabspec referencing another file (or
standard input).

EXIT CODES
0 - normal execution
1 - for any error

SEE ALSO

BUGS

csplit(l), tabs(!).
fspec(4) in the Software Development System manual.

Newform normally only keeps track of physical characters; however, for the -i
and -o options, newform will keep track of backspaces in order to line up tabs
in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -i - - or -o--).

If the -f option is used, and the last -o option specified was -o- -, and was
preceded by either a -o- - or a -i- -, the tab specification format line will
be incorrect.

- 2 -

I

NEWGRP(1)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [- I [group I

DESCRIPTION
Newgrp changes a user's group identification. The user remains logged in and \::..._
the current directory is unchanged, but calculations of access permissions to

FILES

files are performed with respect to the new real-and effective group IDs. The
user is always given a new shell, replacing the current shell, by newgrp, regard·
less of whether it terminated successfully or due to an error condition G.e., un
known group).

Exported variables retain their values after invoking newgrp; however, all unex
ported variables are either reset to their default value or set to null. System
variables (such as PSI, PS2, PATJI, MAIL, and HOME), unless exported by
the system or explicitly exported by the user, are reset to default values. For
example, a user has a primary prompt string (PSl) other than S (default) and
has not expoited PSI. After an invocation of newgrp, successful or not, their
PSI will now be set to the default prompt string $. Note that the shell com
mand export [see sh(l)] is the method to export variables so that they retain
their assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the group
specified in the user's password file entry.

If the first argument to newgrp is a -, the environment is changed to what
would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user does not, or
if the group has a password and the user is not listed in /etc/group as being a
member of that group.

/etc/group
/etc/passwd

system's group file
system's password file

SEE ALSO

BUGS

login(!), sh(l).
group(4), passwd(4), environ(5) in the Software Development System manual.

There is no convenient way to enter a password into /etc/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future .

• J •

--j
I

I
0

c

NEWS(1)

NAME
news - print news items

SYNOPSIS
news [-a 1 [-n) [-s 1 [items 1

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files
in /usr/news, most recent first, with each. preceded by an appropriate header.
News stores the "currency" time as the modification date of a -file named
.news_ time in the user's home directory (the identity of this directory is deter�
mined by the environment variable $HOME); only files more recent than this
currency time are cOnsidered "current."
The -a option causes news to print all iteins, regardless of currency. In this
case, the stared time is not Changed.
The -n option causes news to report the names of the current items without
printing their contents, and without changing the stored tinie.
The -s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one's .profile file or in the
system's /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.
If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within one second of the first causes the
program to terminate.

/etc/profile
/usr/news/•
SHOME/.news_time

SEE ALSO
profile(4), environ(5) in the Software Development System manual.

- 1 -

I

NICE(1)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments l

DESCRIPTION \ '· Nice executes command With a lower CPU scheduling priority. If the incre- '
ment argument (in the range 1-19) is given, it is used; if not, an increment of
10 is assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., - - 10.

SEE ALSO
nohup(l).
nice(2) in the Software Development System manual.

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19,

- I -

c

0

NL{1)

NAME
nl - line numbering filter

SYNOPSIS
nl [-btype] [-btype] [-rtype] [-vstart#] [-iincrl [-p] [-Inurn] [-ssep]
[-wwidth] [-nrormatl [-ddelim] file

DESCRIPTION
Nl reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

Nl views the text it reads in terms of logical-pages.- Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and
a footer section. Empty sections are valid. Different line numbering options
are independently available for header, body, and footer (e.g., no numbering of
header and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s):

Line contents Start of

\:\:\: header

\:\: body

\: footer

Unless optioned otherwise, n/ assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recog
nized types and their meaning are: a, number all lines; t, number
lines with printable text only; n, no line numbering; pstring, number
only lines that contain the regular expression specified in string.
Default type for logical page body is t (text lines numbered).

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

-ftype Same as -btype except for footer. Default for logical page footer
is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

-vstart# Start# is the initial value used to number logical page lines.
Default is 1.

-iincr /ncr is the increment value used to number logical page lines.
Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text Hne. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; rn, right justified, leading
zeroes supressed; rz, right justified, leading zeroes kept. Default
format is rn (right justified).

- I -

I

NL(1)

-lnum

-dxx

EXAMPLE

Num is the number of blank lines to be considered as one. For
example, -ll results in only the second adjacent blank being num
bered (if the appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

The delimiter charaCters specifying the start of a logical page sec-
tion may be changed from the default characters (\:) to two user- :�
specified characters. If only one character is entered, the second
character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a
backslash, use two backslashes.

The command:

nl -vlO -ilO -d!+ file!

will number fi.Iel starting at line number 10 with an increment of ten. The log
ical page delimiters are !+.

SEE ALSO
pr(I).

- 2 -

c

0

NM(1)

NAME
nm - print name list of common object files

SYNOPSIS
nm [options] file�names

DESCRIPTION
The nm command displays the symbol table of each common object file
file-name. File-name may be a relocatable or absolute common object
file; or it may be an archive of relocatable or absolute common object
files. For each symbol, the following information will be printed. Note
that the object file must have been compiled with the -g option of _the
cc(l) command for there to be Type, Size, or Line information.
Name

Value

Class

Type

Size

Line

The name of the symbol.

Its value expressed as an offset or an address depending on its
storage class.

Its storage class.

Its type and derived type. If the symbol is an instance of a
structure or of a union, then the structure or union tag will be
given following the type (e.g., struct-tag). If the symbol is an
array, then the array dimensions will be given following the
type (e.g., char[nJm]}.
Its size in bytes, if available.

The source line number at which it is defined, if available.

Section For storage classes static and external, the object file section
containing the symbol (e.g., text, data, or bss).

The output of nm may be controlled using the following options:

-d Print the value and size of a symbol in decimal (the default).

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text, .data, and
.bss), normally suppressed.

-h Do not display the output header data.

-n Sort external symbols by name before they are printed.

-o Print the value and size of a symbol in octal instead of hexade-
cimal.

-p Produce easily parsable, terse output (similar to pre-5.0 nm).

-r

-u

-v

-x

-T

Each symbol name is preceded by its value (blanks if undefined)
and one of the letters U (undefined), A (absolute), T (text seg
ment symbol), D (data segment symbol), S (user-defined seg
ment symbol), R (register symbol), F (file symbol), or C (com
mon symbol). If the symbol is local (nonexternal) the type
letter is in lowercase.
Prepend the name of the object file to each output line.

Print undefined symbols only.
Sort external symbols by value before they are printed.

Print the value and size of a symbol in hexadecimal.
By default, nm prints the entire name of the symbols listed.
Since object files can have symbols names with an arbitrary
number of characters, a name that is longer than the width of
the column set aside for names will overflow its column, forcing
every column after the name to be misaligned. The -T option

- 1 -

NM(1)

causes nm to truncate every name which would otherwise over
flow its column and place an asteris¥: as the last character in
the displayed name to mark it as truncated.

-V Print the version of the nm corpmand executing on the standard
error output.

·

Options may be Qsed in any qrder, either singly or in combination, and
may appear anywhere in the command line. Therefore, both nm name ""'-
-e -v and n� -ve name print the static and external symbols in
name, with external symbols sorted by value.

CAVEATS
When all the symbols are pr:inted, they must be printed in the order they
appear in the symbol table in order to preserve · >;:coping information.
Therefo:re, the -v and -n options should be used only in conjunction with
the -e option.

SEE ALSO
as(l), cc(l), ld(l).
a.out(4), �(4) in the Softwar� Development System manual.

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.
"nm: p.ame: bad magic"

if nq.me is not an appropriate common object file.

"nm: name: no symbols"
if the symbol� have been stripped from n�m�.

- 2 -

()

c

NAME

/etc/nodename - change or display system node name

SYNOPSIS

/etc{nodename [string]

DESCRIPTION

NODENAME(1)

Noden.ame, with no parameters, displays the current system node name for uucp connecR
tions. The default system node name is "system5."

Nociename string invokes the patch utility in order to change the system node name-to
"string'' in the System V/AT kernel residing in the root directory of the hard disk. The
system must be rebooted to activate the new node name, which will then be displayed
above the "login:" prompt.

SEE ALSO
usr/include/sys/utsnameh

- 1 -

NOHUP(1)

NAME
�ohup - run a command immune to hangups and quits

SYNOPSIS
nobup command [arguments 1

DESCRIPTION
Nohup executes command with hangups and quits ignored. If output is not '�
re-directed by the user, both standard output and standard error are sent to
nohup.out. If nohup.out is not writable in the current directory, output is
redirected to SHOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single file,
called a shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the she11 procedure file is to be
executed often, then the need to type sh can be eliminated by giving file exe
cute permission. Add an ampersand and the contents of file are run in thC
background with interrupts also ignored [see sh (1)]:

nohup file &

An example of what the contents of file could be is:

tbl ofile I eqn I nroff > nfile
SEE ALSO

chmod(l), nice(!), sh(l).
signal(2) in the Software Development System manual.

WARNINGS
nohup command!; command2 nohup applies only to command!
nohup (command I ; command2) is syntactically incorrect.

Be careful of where standard error is redirected. The following command may
put error messages on tape, making it unreadable:

nohup cpio -o <list >ldev/rmt/tm&
while

nohup cpio -o <list >/dev/rmt/lm 2>errors&

puts the error messageA into file errors.

- I -

(i
'

c

00(1)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx I [file I [[+]offset[•][b I I

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the
first argument is missing, -o is default. The meanings of the format options
are:
-b Interpret bytes in octal.
-c Interpret bytes in ASCII. Certain nongraphic characters appear as C

escapes: null-\0, backspace-\b, form�feed-\f, new-line-\n, return-\r,
tab-\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.
-o Interpret words in octal.
-s Interpret 16-bit Words in signed decimal.
-x Interpret words in hex.
The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.
The offset argument specifies the offset in the file where dumping is to com
mence. This argument is normally interpreted as octal bytes. If . is appended,
the offset is interpreted in decimaL If b is appended, the offset is interpreted in
blocks of 512 bytes. If the file argument is omitted, the offset argument must
be preceded by +.

Dumping continues until end-of-file.
SEE ALSO

dump(I).

- I -

PACK(1)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name . . .

peat name . . .

unpack name . . .

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever pos
sible (and useful), each input file name is replaced by a packed file name.z
with the same access modes, access and modified dates, and owner as those of
name. The -f option will force packing of name. This is useful for causing
an entire directory to be packed even if some of the files will not benefit. If
pack is successful, name will be removed. Packed files can be restored to their
original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If
the - argument is used, an internal flag is Set that causes the number of times
each byte is used, its relative frequency, and the code for the byte to be printed
on the standard output. Additional occurrences of - in place of name will
cauSe the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each .z file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of char·
acters, show little compression, the packed versions being about 90% of the ori
ginal size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an 1/0 error occurred during processing.

The last segment of the file name must contain no more than 12 characters to
allow space for the appended .z extension. Directories cannot be compressed.

Peat does for packed files what cat<O does for ordinary files, except that peat
cannot be used as a filter. The specified files are unpacked and written to the
standard output. Thus to view a packed file named name .z use:

peat name.z
or just:

peat name

- I -

c:

c

PACK(1)

To make an unpacked copy, say nnn, of a packed file named name.z (without
destroying name.z) use the command:

peat name >non

Peat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .z) has more than 1 2 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name ends
in .z) . If this fi1e appears to be a packed file, it is replaced by its expanded ver�
sian. The new file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of the packed
file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for the
following:

SEE ALSO
cat(!).

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSWD(1)

NAME
passwd - change login password

SYNOPSIS
passwd [name 1

DESCRIPTION

FILES

This command changes or installs a password associated with the login name.

Ordinary users may change only the password which corresponds to their login
name.

Passwd prompts ordinary users for their old password, if any. It then prompts
for the new password twice. The first time the new password is entered passwd
checks to see if the old password has .. aged" sufficiently. If "aging" is
insufficient the new password is rejected and passwd terminates; see
passwd(4).

Assuming "aging" is sufficient, a check is made to insure that the new pass
word meets construction requirements. When the new password is entered a
second time the two copies of the new password are compared. If the two
copies are not identical the cycl� of prompting for the new password is repeated
for at most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first eight
characters are significant.

Each password must contain at least two alphabetic characters and at
least one numeric or special character. In this case, .. alphabetic"
means upper and lowercase letters.

Each password must differ from the user's login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are equivalent.

New passwords must differ from the old by at least three characters.
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

One whose effective user ID is zero is called a super�user; see id(l), and su(l).
Super�users may change any password; hence, passwd does not prompt super
users for the old password. Super-users are not forced to comply with password
aging and password construction requirements. A super-user can create a null
password by entering a carriage return in response to the prompt for a new
password.

/etc/passwd

SEE ALSO
login(!), id(l), su(l).
crypt(3C), passwd(4) in the Software Development System manual.

- I -

NAME
passwd - password file

DESCRIPTION

PASSWD(1)·PASSWD FILE FORMAT

c\ Passwd contains for each user the following information:

login name
encrypted password

c

FILES

numerical user lD
numerical group ID
GCOS job number; box number, -optional GCOS user 10
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the
next by a colon. The GCOS field is used only when communicating with that
system, and in other installations can contain any desired information. Each
user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can
and does have general read permission and can be used; for example, to map
numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (., /, 0-9, A-Z, a -z), except when the password is null, in which
case the encrypted password is also null. Password aging is effected for a par
ticular user if this encrypted password in the password file is followed by a
comma and a non-null string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks
for which a password is valid. Users who attempt to log in after their pass
words have expired will be forced to supply a new one. The next character, m
say, denotes the minimum period in weeks which must expire before the pass
word may be changed. The remaining characters define the week (counted
from the beginning of 1970) when the password was last changed. (A null
string is equivalent to zero.) M and m have numerical values in the range
0-63 that correspond to the 64-character alphabet shown above (i.e., I == I
week; z = 63 weeks). If m - M - 0 (derived from the string . or ••) users
will be forced to change their passwords the next time they log in (and the
"age" will disappear from their entries in the password file). If m > M
(signified, e.g., by the string .n only the super-user will be able to change the
password.

/etc/passwd

SEE ALSO
a641(3C), crypt(3C), gelpwent(3C), group(4).
login(!� passwd(l) in lhe Runtime System manual.

- 1 -

PASTE(1)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste filet flle2 . . .
paste -dlist filel file2
paste -s [-dlistl filet file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files file/, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the coun
terpart of cat (I) which concatenates vertically, i.e., one file after the other. In
the last form above, paste replaces the function of an older command with the
same name by combining subsequent lines of the input file (serial merging). In
all cases, lines arc glued together with the tab character, or with characters
from an .optionally specified list. Output is to the standard output, so it can be
used as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the la&t file
(or last line in case of the -s option) are replaced by a tab character.
This option allows replacing the tab character by one or more alternate
characters (see below).

list One or more characters immediately following -d replace the default
tab as the line concatenation character. The list is used circularly, i.e.,
when exhausted, it is reused. In parallel merging (i.e., no -s option),
the lines from the last file are always terminated with a new-line char·
acter, not from the list. The list may contain the special escape
sequences: \o (new-line), \t (tab), \\ (backslash), and \0 (empty \
string, not a null character). Quoting may be necessary, if characters
have special meaning to the sheLL (e.g., to get one backslash, use
-d"\\\\").

-s Merge subsequent lines rather than one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regardless
of the list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the stan·
dard input. (There is no prompting).

EXAMPLES
Is I paste -d" • -

ls i paste - - -

paste -s -d"\t\n" file

SEE ALSO
cut(!), grep(I), pr(I).

DIAGNOSTICS
line too long

too many files

list directory in one column

list directory in four columns

combine pairs of lines into lines

Output lines are restricted to 5 I I char
acters.

Except for -s option, no more than 12 "
input files may be specified. \�

. 1 -

0

c

PATCH(1)

NAME
patch - inspect or modify an STL- or COFF-fonnat binary file

SYNOPSIS
patch [-k] file [-lbisc] [i<>ffset] symbol [dalum] [dalum]

DESCRIPTION
Patch displays or modifies parts of an STL or COFF format. o or a.out file. The -k
option llispects or modifies /dev}lanem instead of the binacy file, and when used with a
kernel binary ftle (usually /systemS) may be used to hot-patch the running operating
system. When used with no data arguments, patch simply prints out the contents of
symbol or symbol +offset in -the fonnat given-by one of -lbisc,--which denote long, byte,
integer, string, char, respectively. Integer is O,.e default data size. When used with one or
more data argwnents, patch modifies successive locations starring from symbol or
symbol+offset with the given data. Long, integer, and byte data are nwneric and may be
preceded with a 0 or Ox to denote octal or hexadecimal data. A numeric address may be
used instead of symbol. Character data may be one character long or in backslash fonn:

\123 style strings are collapsed into a single character.
'000 denotes 0.
'< gets replaced by a tab
\n gets replaced by a newline
'< gets replaced by a carriage return
\b gets replaced by a backspace

String data may be one or more characters, with the above escape sequences. A null is
always placed after each siring datum.

- 1 -

PG(1)

NAME
pg - file perusal filter for soft�copy terminals

SYNOPSIS
pg [-number) [-p string) [-cefnsl I +linenumberl (+I pattern /I [files •..]

DESCRIPTION
The pg command is a filter which allows the examination of files one screenful � at a time on a soft-copy terminal. (The file name - and/or NULL arguments
indicate that pg should read from the standard input.) Each screenful is fol
lowed by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for doing
this is explained below.

·

In order to determine terminal attributes, pg scans the terminfo(4) data base
for the terminal type specified by the environment variable TERM. If TERM is
not defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains· a
"%d". the first occurrence of "%d" in the prompt will be replaced by
the current page number when the prompt is issued. The default
prompt string is ":".

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clear_screen is not defined for this terminal
type in the terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (e.g., escape
sequences for underlining) generate undesirable results. The -j option
inhibits pg from splitting Jines.

-n Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a com·
mand letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment. �
Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or

- I -

0

c

PG(1)

line, and an unsigned address specifies an address relative to the beginning of
the fiJe. Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+l) <newline> or <blank>
This causes one page to be displayed. The address is specified in
pages.

(+ 1) I With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified 1ine.

(+1) d or ·n
Simulates ·scrolling half a screen forward or backward.

The following perusal commands take no address .

• or "L Typing a single period causes the current page of text to be
redisplayed.

S Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed(l) are available. They must
always be terminated by a <newline> , even if the -n option is specified.

ilpattern/
Search forward for the ith (default ;-I) occurrence of pattern.
Searching begins immediately after the current page and continues to
the end of the .;urrent file, without wrap-around.

i"'pattern ..
i?pattern?

Search backward for the ith (default i-1) occurrence of pattern.
Searching begins immediately before the current page and continues to
the beginning of the current file, without wrap-around. The .. notation
is useful for Adds 100 terminals which will not properly handle the ?.

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from now on.
The suffix t can be used to restore the original situation.·

The user of pg can modify the environment of perusal with the following com
mands:

in Begin perusing the ith next file in the command line. The i is an
unsigned number, default value is 1 .

ip Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1.

iw Display another window of text. If i is present, set the window size to
i.

sfilename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a <newline> , even if the -n
option is specified.

b Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

- 2 -

FG(1)

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if
the -n option is specified.

At any time when output is being sent to the terminal, the user can hit the quit � key (normally control-\) or the interrupt (bn;:ak) key. This causes pg to stop
sending output, and display the prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(l), except
that a header is printed before each file (if there is more than one).

EXAMPLE

NOTES

FILES

A sample usage of pg in reading system news would be

news I pg ·p "(Page %d):"

While waiting for terminal input, pg responds to BREAK, DEL, and " by ter
minating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to ter
minate the other commands in the pipeline.

Users of Berkeley's more wil1 find that the z and f commands are available, and
that the terminal /, or ? may be omitted from the searching commands.

/usrnib/terminfo/•

/tmp/pg•

Terminal information data base

Temporary file when input is from a pipe

SEE ALSO

BUGS

ctypt(l), ed(l), grep(l).
tenninfo(4) in the Software Development System manual.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal 1/0
options [e.g., crypt (1)], terminal settings may not be restored correctly .

. 3 .

0

PR(1)

NAME
pr - print files

SYNOPSIS
pr (options 1 [files 1

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files are
specified, the standard input is assumed., By default, the listing is separated
into pages, each headed by the page number, a date and time, and the name of
the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The below options may appear singly or be combined in any order:

+k Begin printing with page k (default is 1) .

-k Produce k-column output (default is 1} , The options -e and -i are
assumed for multicolumn output.

-a Print multicolumn output across the page.

-m Merge and print all files simultaneously, one per column (overrides the
-k, and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k+l , 2•k+l, 3•k+l, etc. If
k is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to
character positions k+l, 2•k+l, 3•k+I, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If r (any
non-digit character) is given, it is treated as the output tab character
(default for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occu
pies the first k+ 1 character positions of each column of normal output
or each line of -m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for
equal-width multicolumn output, no limit Otherwise).

-ok Offset each line by k character positions (default is O). The number
character positions per Jine is the sum of the width and offset.

-lk Set the length of a page to k lines (default is 66).
-b Use the next argument as the header to be printed instead of the file

name.

-p Pause before beginning each page if the output is directed to a termi
nal (pr wi11 ring the bell at the terminal and wait for a carriage
return).

- I -

PR(1)

-f Use form·feed character for new pages (default is to use a sequence of
line-feeds). Pause before beginning the first page if the standard out
put is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line idef)tifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of _
each file without spacing to the end of the page. ·

-sc Separate columns by the singfe character c instead of by the appropri
ate number of spaces (default for c is a tab).

EXAMPLES

FILES

Print filet and filel as a double-spaced, three-column listing headed by .. file
list":

pr -3dh "file list" file! file2

Write ftlel on filel, expanding tabs to columns 10, 19, 28, 37, . . . :

pr -e9 -t <file! >file2

/dev/tty•

SEE ALSO
�at(I).

to suspend messages

- 2 -

PROF(1)

NAME
prof - display profile data

SYNOPSIS
prof [-tcao] [-ox] [-g) [-zl [-h) [-sl [-k] [-m mdata] [prog]

(; DESCRIPTION
_ Prof interprets a profile file produced by the monitor(3C) function. The sym·

bol table in the object file prog (a.out by default) is read and correlated with a
profile file (mon.out by default). For each external text symbol the percentage
of time spent executing between the address of that symbol and the address of
the next is printed, together-with the number ·of times ·that function- was called
and the average number of milliseconds per ca11.
The mutually exclusive options t, c, a, _and n determine the type of sorting of
the output lines:
-t Sort by decreasing percentage of total time (default).
-c Sort by decreasing number of calls.
-a Sort by increasing symbol address.
-n Sort lexically by symbol name.
The mutually exclusive options o and x specify the printing of the address of
each symbol monitored:
-o Print each symbol address (in octal) along with the symbol name.
-x Print each symbol address (in hexadecimal) along with the symbol

name.
The fo11owing options may be used in any combination:
-g Include non-global symbols (static functions).

-k Include information on program stack usage at end of table.
-z Include all symbols in the profile range [see monjtor(�C)], even if

associated with zero number of calls and zero time.
-h Suppress the heading normal1y printed on the report. (This is useful if

the report is to be processed further.)
-s Print a summary of several of the monitoring parameters and statistics

on the standard error output.
-m mdata

Use file mdata instead of mon.out as the input profile file.
A program creates a profile file if it has been loaded with the -p option of
cdl). This option to the cc command arranges for calls to monitor(3C) at the
beginning and end of execution. It is the call to monitor at the end of execu-
tion that causes a profile file to be written. The number of caUs to a function is
tallied if the -p option was used when the file containing the function was I compiled.
The name of the file created by a profiled program is controlled by the environ
ment variable PROFDIR. If PROFDIR does not exist, .. mon.out .. is produced in
the directory current when the program terminates. If PROFDJR - string,
"string/pid.progname .. is produced, where progname consists of argv[O] with
any path prefix removed, and pid is the program's process id. If PROFDIR -
nothing, no profiling output is produced.
A single function may be split into subfunctions for profiling by means of the
MARK macro [see prof(5)].

- 1 -

PROF(1)

FILES
mon.out for profile
a.out for namelist

SEE ALSO
ceO).
exit(2), profil(2), moni1Dr(3C), prof(5) in the Software Developmeot System manual.

WARNING

BUGS

The times reported in successive identical runs may show variances of 20% or
more:-because of varying cache·hit ratios due to sharing of the cache with other
processes. Even if a program seems to be the only one using the machine, hid·
den background or asynchronous processes may blur the data. In rare cases,
the clock ticks initiating recording of the program counter may ''beat" with
loops in a program, grossly distorting measurements.

Call counts are always recorded precisely, however.

Only programs that call exit(2) or return, from m,ain will cause a profile file to
be produced, unless a final call to monitor is explicitly coded.

The use of the -p option cc(l) to invoke profiling imposes a limit of 600 (300
on the PDP-II) functions that may have call counters established during pro
gram execution. For more counters you must call monitor(3C) directly. If
this limit is exceeded, other data will be overwritten and the mon.out file will be
corrupted. The number of call counters used will be reported automatically by
the prof command whenever the number exceeds 5/6 of the maximum.

- 2 -

I "'

C'

()

PROFILER(lM)

NAME
prftd, prfstat, prfdc, prfsnap, prfpr - operating system profiler

SYNOPSIS
/etc/prlld [namelist 1
/etc/prfstat on
/etc/prfstat off
/etc/prfdc file [period [olf_hour 1 1
/etc/prfsnap file
/etc/prfpr file [cutoff[namelist 1 1 .

DESCRIPTION

FILES

Prjld, prfstat, prfdc, prfsnap, and prfpr form a system of programs to facili�
tate an activity study of the UNIX operating system.

Prjld is used to initialize the recording mechanism in the system. It generates
a table containing the starting address of each system subroutine as extracted
from name list.

Prfstat is used to enable or disable the sampling mechanism. Profiler overhead
is less than 1% as calculated for 500 text addresses. Prfstat will also reveal the
number of text addresses being measured.

Prfdc and prfsnap perform the data collection function of the profiler by copy
ing the current value of all the text address counters to a file where the data
can be analyzed. Prfdc will store the counters into file every period minutes
and will turn off at off_ hour (valid values for off_ hour are 0-24). Prfsnop col
lects data at the time of invocation only, appending the counter values to file.

Prfpr formats the data collected by prfdc or prfsnap. Each text address is con
verted to the nearest text symbol (as found in name list) and is printed if the
percent activity for that range is greater than cutoff.

/dev/prf interface to profile data and text addresses

/unix default for namelist file

SEE ALSO
prf(7).

- I -

PRS(l)

NAME
prs - punt an sees file

SYNOPSIS
prs [-d[dataspecll [-r[SJDJ] [-e] [-I] [-c[date·timell [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file [see sccsjile(4)] '� , in a user-supplied format. If a directory is named, prs behaves as though each
file in the directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.), and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file or directory
to be processed; non-sees files and unreadable files are silently ignored.
Arguments to prs, which may appear in any order, consist of key/etter argu-
ments, and file names.
All the described keyletter arguments apply independently to each named file:

-d[dataspec 1 Used to specify the output data specification. The
dataspec is a string COnsisting of sees file data key
words (see DATA KEYWORDS) interspersed with
optional user supplied text.

-r[SJD] Used to specify the Sees IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e

-I

Requests information for all deltas created earlier than
and including the delta designated via the -r keyletter
or the date given by the -c option.
Requests information for all deltas created later than
and including the delta designated via the -r keyletter
or the date given by the -c option.

-ddate-time] The cutoff date-time -cfcutoffJJ is in the form:

-a

DATA KEYWORDS

YY[MM[DD[HH[MM[SSI!lll

Units omitted from the date-time default to their max
imum possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric charac
ters may separate the various 2-digit pieces of the cutoff
date in the form: " -c77 /2/2 9:22:25".

Requests printing of information for both removed, i.e.,
delta type - R, [see rmde/(1)] and existing, i.e., delta
type = D, deltas. If the -a keyletter is nOt specified,
information for existing deltas only is provided.

Data keywords specify which parts of an sees file are to be retrieved and out
put. All parts of an sees file [see sccsfile (4)J have an associated data key
word. There is no limit on the number of times a data keyword may appear in
a dataspec. \,\.
The information printed by prs consists of: (l) the user-supplied text; and (2)
appropriate values (extracted from the sees file) substituted for the recog-
nized data keywords in the order of appearance in the dataspec. The format of

- 1 ·

PRS(l)

a data keyword value is either Simple (S), in which keyword substitution is
direct, or Multi-line (M), in which keywon:l s� Jstitution is followed by a car-
riage return.

1\ User-supplied text is any text other than recognized data keywords.

"-)
A tab is specified by \t and carriage return/new-line is specified by \n. The
default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

TABLE 1. sets Fil!'S Data Keywords
Keyword Data Item File Section Value Fnrmat

:Dt: Della information Delta Table See below• s
:DL: Delta line statistics :Li:/:Ld:/:Lu: s
:U: Lines inserted by Delta nnnnn s
:IE 11nes deleted by Delta nnnnn s
:Lu: Lines unchanged by J)elta nnnnn s
:DT: Della type D or R s
:I: SCCS ID string (SID) :R:.:L:.:B:.:S: s
:R: Release number nnnn s
:L: Le'el number nnnn s
:B: Branch number s
:S: Sequence number nnnn s
:D: Dale Delta created :Dy:/:Dm:/:Dd: s

:Dy: Year Delta created •• s
:Dm: Month Delta create4 nn s

I :D!I: Day Delta created •• s
:T: Time Delta created :Th:::Tm:::Ts: s

_ :Tb: Hour Delta creatft) •• s
:Tm: Miautes Delta created •• s
:Ts: Seconds Delta created •• s
:P: Programmer who created Delta logname s

:DS: · De)ta sequence number nnnn s
:DP: Predecessor Delta seq�no. nnnn s

:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: s
:Dn: Veltas included (seq #) :DS: :DS: ••• s
:Dx: Debas excluded (seq #) :DS: :DS: • • • s
:Dg: Deltas ignored (seq #) :DS: :DS: ••• s
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Fl!gs text M
:Y: Module type flag text s

:MF: MR validation flag yes or no s
:MP: MR l'alidation pgm name text s I :KF: Keyword error/warning flag yes or no s
:KV: Keyword validation string text s
:BF: Branch flag yes or no s

c ,J: Joint edit flag yes or no s
:LK: Locked releases :R: ••• s
:Q: Usero.de6ned keyword text s
:M: Module name text s
:FB: Floor �oundary :R: s
:CB: Ceiling boundary :R: s
:0.: Deraull SID :1: s
:ND: Null delta flag yes or no_ s
:FD: File descriplil'e text Comments text M

·2·

PRS(l)

:BD: Body
:GB: Getlen body
:W: A form of whatU) string

Body text
text

N/A :Z:oM:\1:1:

:A: A form of what (1) string N/A :Z::Y: :M: :I::Z:

:Z: what (1) string delimiter
:F: sees lile name

:PN: SCCS file path name
• :Dt: • :DT: :1: :D: :T: :P: :DS: :DP:

EXAMPLES

N/A

N/A
N/A

prs -dnUsers and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.fi.le are:
xyz
131
abc

@(#)
''"'
text

prs -d"Newest delta for pgm :M:: :1: Created :0: By :P:� -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.fi.le

may produce on the standard output:

D 1 . 1 77112/1 00:00:00 cas I 000000/00000/00000
MRs:
bl78-12345
bl79·54321
COMMENTS:
this is the comment line for s.file initial delta

M
M
s
s
s
s '(s

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the -a key letter.

FILES
/tmp/pr'l?'!??

SEE ALSO
admin(l), della(!), get(!), help(!).
sccsfile(4) and "Source Code Control System User Guide" in the Software Development
System manual.

DIAGNOSTICS
Use help (I) for explanations.

- 3 -

c

cj

PS(1)

NAME
ps - report process status

SYNOPSIS
ps [options 1

DESCRIPTION
Ps prints certain information about active processes. Without options, infor�
mation is printed about processes associated with the current terminal. The
output consists of a short listing containing only the process ID, terminal
iden_tifier, cumulative e�ecution time, and the command name.. O!herwise, the
information that is displayed is controlled by the selection of options.

Options using lists as arguments can have the list specified in one of two forms:
a list of identifiers separated from one another by a comma, or a list of
identifiers enclosed in double quotes and separated from one another by a
comma and/or one or more spaces.
The options are:

-e
-d

-a

-f

-I
-c corefile
-s swapdev

-n name/ist

-t termlist

Print information about aU processes.
Print information about all processes, except process group
leaders.
Print information about all processes, except process group
leaders and processes not associated with a terminal.
Generate a full listing. (See below for meaning of columns in a
full listing).
Generate a long listing. See below.
Use the file corefile in place of /dev/mem.
Use the file swapdev in place of /dev/swap. This is useful when
examining a corefile; a swapdev of /dev/null will cause the user
block to be zeroed out.
The argument will be taken as the name of an alternate system
namelist file in place of /unix.
Restrict Jisting to data about the processes associated with the
terminals given in termlist. Terminal identifiers may be specified
in one of two forms: the device's file name (e.g., tty04) or if the
device's file name starts with tty, just the digit identifier (e.g.,
04).

-p proclist Restrict listing to data about processes whose process 1D numbers
are given in proclist.

-u uidlist Restrict listing to data about processes whose user 1D numbers or
login names are given in uidlist. In the listing, the numerical
user ID will be printed unless the -f option is used, in which case
the login name will be printed.

-g grplist Restrict listing to data about processes whose process group
leaders are given in grplist.

The column beadings and the meaning of the columns in a ps listing are given
below; the letters f and I indicate the option (full or long) that causes the
Corresponding heading to appear; all means that the heading always appears.
Note that these two options determine only what information is provided for a
process; they do not determine which processes will be listed.
F (I) Flags (octal and additive) associated with the process:

0 swapped;
I in core;
2 system process;
4 locked�in core (e.g., for physical I/O);

10 being swapped;

- I -

I

PS(1)

FILES

s (I)

UID (f,l)

PID (all)

PPID (f,l)
c (f,l)
PRI (I)

Nl (I)
ADDR (I)

sz co
WCHAN (I)
STIME (I)
TTY (all)
TIME (a!O
CMD (all)

20 being traced by another process;
40 another tracing flag;
I 00 3820 computer: swapin segment expansion;

VAX-111780 and iAPX 286: text pointer valid;
200 3820 computer: process is child (during fork

swap);
V AX-111780: process is partially swapped.

The state of the process:
0 non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped;
X growing.

The user ID number of the process owner; the login name is
printed under the -r option.
The process ID of the process; it is possible to kill a process if
you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
The priority of the process; higher numbers mean lower
priority.
Nice value; used in priority computation.
The memory address of the process (a pointer to the segment
table array on the 3820 computer), if resident; otherwise, the
disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if
blank, the process is running.
Starting time of the process.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and its argu
ments are printed under the -r option.

A process that has" exited and has a parent, but has not yet been waited for by
the parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and arguments
given when the process was created by examining memory or the swap area.
Failing this, the command name, as it would appear without the -r option, is
printed in square brackets.

/unix
/dev/mem
/dev/swap
/etc/pa,!!swd
/etc/ps_data
/dev

system name list
memory
the default swap device
supplies UID information
internal data structure
searched to find terminal («tty") names

SEE ALSO

BUGS

acctcom(I), kill(!), nice(!).

Things can change while ps is running; the picture it gives is only a close
approximation to reality. Some data printed for defunct processes are
irrelevant.

- 2 -

CJ

PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output 1 1

DESCRIPTION

FILES

Ptx generates the file output that can be processed with a text formatter to
produce a permuted index of file input (standard input and output default). It
has three phases: the first does the permutation, generating one line for each
keyword. in an input line. The keyword is rotated to the front. _ The permuted
file is then sorted. Finally, the sorted Jines are rotated so the keyword comes at
the middle of each line. Ptx output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"
where .xx is assumed to be an nrof! or troff(l) macro provided by the user, or
provided by the mptx (5) macro package. The before keyword and keyword
and after fields incorporate as much of the line as will fit around the keyword
when it is printed. Tail and head, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused space at the
opposite end of the line.
The following options can be applied:
-f Fold upper and lower case letters for sorting.
-t Prepare the output for the phototypesetter.
-w n Use the next argument, n, as the length of the output line. The

-g n

default line length is 72 characters for nroff and 100 for troff.

Use the next argument, n, as the number of characters that prx
will reserve in its calculations for each gap among the four parts of
the line as finally printed. ·The default gap is 3.

-o only Use as keywords only the words given in the only file.
-i ignore Do not use as keywords any words given in the ignore file. If the

-i and -o options are missing, use /usr!Iib/eign as the ignore file.
-b break Use the characters in the break file to separate words. Tab, new-

line, and space characters are always used as break characters.
-r Take any leading non-blank characters of each input line to be a

reference identifier (as to a page or chapter), separate from the
text of the line. Attach that identifier as a 5th field on each out
put line.

The index for this manual was generated using ptx.

/bin/sort
/usr/lib/eign
/usr/lib/tmac/tmac.ptx

SEE ALSO

BUGS

mm(5), mptx(5) in the Software Development System manual.
"Nroff and Troff User Manual" in the Text Preparation System manual.

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes c-> are botched, because ptx uses that character inter
nally.

- 1 -

PWCK(1M)
PWD(l)

NAME
pwck, grpck - password/group fi.Je checkers

SYNOPSIS
/etc/pwck [file)
/etc/grpck [file)

DESCRIPTION

FILES

Pwck scans the password file and notes any inconsistencies. The checks include
validation of the number of fields, login name, user ID, group 10, and whether
the login directory and optional program name exist. The criteria for determin
ing a valid login name is derived from Setting up the UNIX System in the
UNIX System V Administrator Guide. The default password file is
/�/passwd.

Grpck verifies all entries in the group file. This verification includes a check of
the number of fields, group ·name, group ID, and whether all login names
appear in the password file. The default group file is /etc/group.

/etc/group
/etc/passwd

SEI! ALSO
group(4), passwd(4) in the Software Develapnrent System manual.

DIAGNOSTICS
Group entries in /ete/group with no login names are flagged .

. I .

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l).

DIAGNOSTICS

PWD(l)

"Cannot open . .'' and "Read error in .. " indicate possible file system trouble
and should be referred to a UNIX system programming counselor.

- I -

RATFOR(l)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [options] [files 1

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational fortran.
Ratfor provides control flow constructs essentially identical to those in C

statement grouping:
{ statement; statement; statement }

decision-making:

loops:

if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default: l statement

while (condition) statement
for (expression; condition; eltpression) statement
do limits statement
repeat statement [until (condition)
break
next

and some syntactic sugar to make programs easier to read and write;
free form input:

multiple statements/line; automatic continuation
comments:

this is a comment.
translation of relationals:

>. > •, etc., become .GT., .GE., etc.
return expression to caller from function:

return (expression)
define:

define name replacement

include:
include file

The option -h causes quoted strings to be turned into 27H constructs. The
-C option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column I; the option
-6x makes the continuation character x and places it in column 6.

Ratfor is best used with j77(1).
SEE ALSO

efl(l), f77(1) .

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

- 1 -

I .
_ .. .

REGCMP(li

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp (3X) from C pro
grams. This saves on both execution time and program size. The command
regcmp compiles the regular expressions in file and places the output in jile.i.
If. the _ - option _is_ used,_ the_ output __ will _ be placed __in_fi/e_.c. __ The __ format of
entries in file is a name (C variable) followed by one or more blanks followed
by a regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char vec
tors. File.i files may thus be included into C programs, or file.c files may be
compiled and later loaded. In the C program which uses the regcmp output,
regex(abc,line) will apply the regular expression named abc to line. Diagnos
tics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-z0-9_1•)$0"

telno '\({O, J)([2-9][0J][J-9ll$O\)(O,l) •"
"([2-9][0-91{2))$1[-]{O,I)"
•([o-91!4))$2"

In the C program that uses the regcmp output,

reg ex (telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X) in the Software Development System manual.

- I -

RJESTAT(lC)

NAME
rjestat - RJE status report and interactive status console

SYNOPSIS
rjestat [host] . . . [-shost 1 [-chost cmd I [-jhost jobname] . .

DESCRIPTION
Rjestat provides a method of determining the status of an RJE link and of
simulating an IBM remote console (with UNIX system features added). When
invoked With no arguments, rjestat reports the current status of all the RJE
links connected to the UNIX system. The options are:
host

-shost

Print the status of the line to host. Host is the pseudonym for a
particular IBM system. It can be any name that corresponds to
one in the first column of the RJE configuration file.
After all the arguments have been processed, start an interactive
status console to host.

-chost cmd
Interpret cmd as if it were entered in status console mode to host.
See below for the proper format of cmd.

-jhost jobname
Print all status pertaining to a user job with name jobname that
has been sent by the host system to the rje system.

In status console mode, rjestat prompts with the host pseudonym followed by :
whenever it is ready to accept a command. Commands are terminated with a
new-line. A line that begins with ! is sent to the UNIX system shell for execu
tion. A line that begins with the letter q terminates rjestat. All other input
lines are assumed to have the form:

ibmcmd [redirect]

Jbmcmd is any IBM JES or HASP command. Only the super-user or rje login
can send commands other than display or inquiry commands. Redirect is a
pipeline or a redirection to a file (e.g., "> file" or " I grep ... "). The IBM
response is written to the pipeline or file. If redirect is not present, the
response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress and
cause rjestat to return to the command input mode.

EXAMPLE
The following command reports the status of all the card readers attached to
host A, remote 5. JES2 is assumed.

rjestat -cA '$du,rmt5 I grep RD'

DIAGNOSTICS

FILES

The message "RJE error: ... " indicates that rjestat found an inconsistency in
the RJE system. This may be transient but should be reported to the site
administrator.

/usr/rje/lines RJE configuration file

� I

resp host response file that exists in the RJE subsystem directory ·,·-, (e.g., /usr/rjel).

SEE ALSO
send(!C).

-1 -

RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS

r- rm [-fri 1 file ...
"- rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was
thc .. last- link .to -the file,_ the_ file is destroyed . _ Rcm_ov_al__of_a_ fi_lc _requires write
permission in its directory, but neither read nor write permission on the file
itself.
If a file has no write permission and the standard input is a terminal, its per·
missions are printed and a line is read from the standard input. If that line
begins with y the file is deleted, otherwise the file remains. No questions arc
asked when the -f option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes the
entire contents of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file,
and, under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2) in th.e Software Development System manual.

DIAGNOSTICS
Generally self�explanatory. It is forbidden to remove the file .. merely to avoid
the antisocial consequences of inadvertently doing something like:

rm -r .•

- I -

RMDEL(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named SCCS file. The
delta to be removed must be the neWest (most recent) delta in its branch in the
delta chain of cacti named SCCS file. In addition, the specified must not be
that of a version being edited for the purpose of making a delta (i. c., if a p-jile
(see get(!)) ex_ists for the named sees file, the specified must not appear in
any entry of the p-.file).

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files Oast component of the
path name ddes not begin with s.) and unreadable files arc silently ignored. If
a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of ·an sees file to be processed; non-sees files
and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User Guide. Simply stated, they are either (I) if
you make a delta you can remove it; or {2) if you own the file and directory
you can remove a delta.

x.file (see delta (I))
z.file (see delta (!))

� A� �.
delia(!), get(!), help(!), pn;(l).
sccsfile(4) and "Source Code Control System User Guide" in the Software Development
System manual.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

SACT(1)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named SCCS file. This
situation occurs when get(!) with the -e option has been previously executed
without a subsequent execution of delta (I) . If a directory is named on the
command line, sact behaves as though each -file in the directory were -specified
as a named file, except that non�SCCS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1 specifies the SID of a delta that currentij exists in the SCCS
file to which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
G.e., executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta(!), get(!), unget(I) .

DIAGNOSTICS
Use help(l) for explanations.

- I -

SADP(1M)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-tb I [-d device[-ctlrnumber I I s [n I

DESCRIPTION
""-Sadp reports disk access location and seek distance, in tabular or histogram

form. It samples disk activity once every second during an interval of s
seconds. This is done repeatedly if n is specified. Cylinder usage and disk dis
tance are recorded in units of 8 cylinders.

The only valid value of device is wn. Ctlrnumber specifies the disk controller.
The -d option may be omitted, if only one device is present.

The -t flag causes the data to be reported in tabular form. The -h flag pro
duces a histogram on the printer of the data. Default is -t.

EXAMPLE

FILES

The command:

sadp -d wn -0 900 4

will generate 4 tabular reports, each describing cylinder usage and seek dis
tance of Winchester disk controller 0 during a 1 5-minute interval.

/dev/kmem

- I -

\._

SAR(1M)

NAME
sal, sa2, sadc - system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]

/usr/lib/sa/sal [t n]
/usr/lib/sa/sa2 [-ubdycwaqvmA] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user [see
sar(l)J and automatically on a routine basis as described here. The
operating system contains a number of counters that are -incremented as
various system actions occur. These include CPU utilization counters,
buffer usage counters, disk 1/0 activity counters, TTY device activity
counters, switching and system�call counters, file-access counters, queue
activity counters, and counters for interprocess communications.
Sadc and shell procedures, sal and sa2, are used to sample, save, and
process this data.

Sadc, the data collector, samples system data n times every t seconds and
writes in binary format to ofile or to standard output. If t and n are
omitted, a special record is written. This facility is used at system boot
time to mark the time at which the counters restart from zero. The
/etc/rc entry:

su sys -c " /usr/lib/sa/sadc /usr/adm/sa/sadate + % d"

writes the special record to the daily data file to mark the system restart.
The shell script sal, a variant of sadc, is used to collect and store data in
binary file /usr/adm/sa/sadd where dd is the current day. The
arguments t and n cause records to be written n times at an interval of t
seconds, or once if omitted. The entries in crontab [see cmn(1M)J:

0 * * * 0,6 su sys -c " /usr/lib/sa/sa1"
0 8-17 * * 1-5 su sys -c '' /usr/lib/sa/sa1 1200 3"
0 18-7 * * 1-5 su sys -c " /usr/lib/sa/sa1"

will produce records every 20 minutes during working hours and hourly
otherwise.
The shell script sa2, a variant of sa1·(l), writes a daily report in file
/usr/adm/sa/sardd. The options are explained in sar(1). The crontab
entry:

5 18 * * 1-5 su adm -c " /usr/Iib/sa/sa2 -s 8:00 -e 18:01 -i 3600
-A"

will report important activities hourly during the working day.

- 1 -

SAR(1M)

FILES

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; /* see /usr/include/sys/sysinfo.h •I
int szinode; /• current entries of i-node table •I
int szfile; I• current entries of file table •I
int sztext; I• current entries of text table •I
int szproc; I• current entries of proc table */ "'-.
int szlckf; /* current size of file record header table •I
int szlckr; /* current size of file record lock table •I
int mszinode; I* size of i-node table */
int mszfile; I• size of file table •I
int msztext; I• size of text table */
int mszproc; I• size of proc table •I
int mszlckf; /* maximum size of file record header table */
int mszlckr; /• maximum size of file record lock table *I
long inodeovf; f* cumul. overflows of i-node table •I
long fileovf; I* cumul. overflows of file table *I
long textovf; I* cumul. overflows of text table *I
long procovf; I* culnul. overflows of proc table *I
time_t ts; I* time stamp, seconds *I
long devio[NDEVSJ[4]; I* device info for up to NDEVS units *I

#define IO_OPS 0 I* cumul. IIO requests *I
#define IO_BCNT 1 I* cumul. blocks transferred *I
#define IO_ACT 2 I* cumul. drive busy time in ticks *I
#define IO_RESP 3 I* cumul. 110 resp time in ticks *I
};
lusrladmlsalsadd
lusrl admlsalsardd
ltmplsa.adrfl

daily data file
daily report file
address file

SEE ALSO
cron(lM), sag(lG), sar(l), timex(l).

- 2 -

SAR(1M)

NAME
sa 1, sa2, sa de - system activity report package

SYNOPSIS
,� /usrllib/sa/sadc [t n) [ofile]

/usr/lib/sa/sat [t n]
/usr/lib/sa/sa2 [-ubdycwaql'mA] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed- at--the special request of a user [see
sar(l)] and automatically on a routine basis as described here. The operating
system contains a number of counters that are incremented as various system
actions occur. These include CPU utilization counters, buffer usage counters,
disk 110 activity counters, TTY device activity counters, switching and system�
call counters, file-access counters, queue activity counters, and counters for
interprocess communications.
Sadc and shell procedures, sal and sa2, are used to sample, save, and process
this data.
Sadc, the data collector, samples system data n times every t seconds and
writes in binary format to ofile or to standard output. If t and n are omitted, a
special record is written. This facility is used at system boot time to mark the
time at which the counters restart from zero. The /etc/rc entry:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sadate +%d"

writes the special record to the daily data file to mark the system restart.
The shell script sal, a variant of sadc, is used to collect and store data in
binary file /usr/adm/sa/sadd where dd is the current day. The arguments t
and n cause records to be written n times at an interval of t seconds, or once if
omitted. The entries in crontab [see cron (l M)]:

0 • • • 0,6 su sys -c "/usr/lib/sa/sal"
0 8-17 • • l-5 su sys -c "/usr/lib/sa/sal 1 200 3"
0 18-7 • • 1-5 su sys - c "/usr/lib/sa/sal"

will produce records every 20 minutes during working hours and hourly
otherwise.
The shell script sa2, a variant of sar(I), writes a daily report in file
/usr/adm/sa/sardd. The options are explained in sar(I). The crontab entry:

5 18 • • 1-5 su adm -c ''/usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600
-A"

will report important activities hourly during the working day.

- I -

SAR{1M)

FILES

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; I• see /usr/include/sys/sysinfo.h •/
int szi·node; I• current entries of i-node table •I
int szfile; /• current entries of file table •/
int sztext; /• current entries of text table •/
int szproc; /• current entries of proc table •/
int mszi-node; /• size of i-node table •I
int mszfile; /• size of file table •I
int msztext; I• size of text table •/
int mszproc; /• size of proc table •I
long i-nodeovf; b cumul. overflows of i-node table •/
long fileovf; I• cumul. overflows of file table •/
long textovf; /• cumul. overflows of text table •/
l?ng procovf; /• cumul. overflows of proc table •/
tlme_t ts; /• time stamp, seconds •/
long devio[NDEVS][4]; /• device info for up to NDEVS units •/

#define IO_OPS 0 I• cumul. I/O requests •/
#define 10 BCNT 1 /• cumul. blocks transferred •I
#define IO=ACT 2 I• cumul. drive busy time in ticks •/
#define IO_RESP 3 /• cumul. I/0 resp time in ticks •I
);

/usr/adm/sa/sadd
/usr/adm/sa/sardd
/tmp/sa.adrfl

daily data file
daily report file
address file

SEE ALSO
cron(IM), sag(! G), sar(l), timex(!).

- 2 -

(

SCCSDIFF(1)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSIDl -rSJD2 [-p] [-sn) files

DESCRIPTION

FILES

Sccsdiff compares two versions of an SCCS file and generates the differences
between the two versions. Any number of SCCS files may be specified, but
arguments apply to all files.

-rSJD?

-p

-sn

SriJJ and -Sm2 specify the deltas of an sees ·fite that are to
be compared. Versions are passed to bdijf(l) in the order
given.
pipe output for each file through pr(l).

n is the file segment size that bdiff will pass to dijJ(I).
This is useful when diff fails due to a high system load.

/tmp/get????? Temporary files
SEE ALSO

bdiff(l), get (I), help(!), pr(l).
"Source Code Control System User Guide" in the Software Development System
manual.

DIAGNOSTICS
''file: No differences" If the two versions are the same.
Use help (l) for explanations.

- I -

SDB(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-wl [-WI [objfil [corfil [directory-list I I I

DESCRIPTION
Sdb is a symbolic debugger that can be used with C and F77 programs. It \:...
may be used to examine their object files and core files and to provide a con-
trolled environment for their execution.
Objfil is normally an executable program file which has been compiled with the
-g (debug) option; if it has not been compiled with the -g option, or if it is
not an executable file, the symbolic capabilities of sdb will be limited, but the
file can slill be examined and the program debugged. The default for objfil is
a.out. Corfi/ is assumed to be a core image file produced after executing objfil;
the default for corfil is core. The core file need not be present. A - in place
of corfil will force sdb to ignore any core image file. The colon separated list
of directories (directory-list) is used to locate the source files used to build
objfil.

It is useful to know that at any time there is a current line and current file. If
corfil exists then they are initially set to the line and file containing the source
statement at which the process terminated. Otherwise, they are set to the first
line in main U. The current line and file may be changed with the source file
examination commands.
By default, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfi/. This checking feature and the
accompanying warnings may be disabled by the use of the -W flag.
Names of variables are written just as they are in C or F77. Note that names
in C are now of arbitrary length, sdb will no longer truncate names. Variables
local to a procedure may be accessed using the form procedure:variable. If no
procedure name is given, the procedure containing the current line is used by
default.
It is also possible to refer to structure members as variab/e.member, pointers to
structure members as variable->member and array elements as
variablelnumberl. Pointers may be dereferenced by using the form pointeriOJ.
Combinations of these forms may also be used. F77 common variables may be
referenced by using the name of the common block instead of the structure
name. Blank common variables may be named by the form .variable. A
number may be used in place of a structure variable name, in which case the
number is viewed as the address of the structure, and the template used for the
structure is that of the last structure referenced by sdb. An unqualified struc
ture variable may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display the values of
all the elements of a structure when it is requested to display a structure. An
exception to this interpretation occurs when displaying variable addresses. An
entire structure does have an address, and it is this value sdb displays, not the
addresses of individual elements.
Elements of a multidimensional array may be referenced as
variablelnumberllnumberl ... , or as variab/e[number,number, .. .l. In place of
number, the form number;number may be used to indicate a range of values, •
may be used to indicate all legitimate values for that subscript, or subscripts
may be omitted entirely if they are the last subscripts and the full range of
values is desired. As with structures, sdb displays all the values of an array or
of the section of an array if trailing subscripts are omitted. It displays only the
address of the array itself or of the section specified by the user if subscripts

- I -

SDB(1)

are omitted. A multidimensional parameter in an F77 program cannot be
displayed as an array, but it is actually a pointer, whose value is the location of
the array. The array itself can be accessed symbolically from the calling func
tion.
A particular instance of a variable on the stack may be referenced by using the
form procedure:variable,number. All the variations mentioned in naming vari
ables may be used. Number is the occurrence of the specified procedure on the
stack, counting the top, or most current, as the first. If no procedure is
specified, the _proced!lre current!y_ exec_utin�_ is used by default.
It is also possible to specify a variable by its address. All forms of integer con
stants which are valid in C may be used, so that addresses may be input in
decimal, octal or hexadecimal.
Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of the
file. If no procedure or file name is given, the current file is used by default. If
no number is given, the first line of the named procedure or file is used.
While a process is running under sdb, all addresses refer to the executing pro
gram; otherwise they refer to objfil or corjil. An initial argument of -w per
mits overwriting locations in objjil.

Addresses
The address in a file associated with a written address is determined by a map
ping associated with that file. For the iAPX286, which has areas of up to 64k,
the mapping is performed effectively by an array of triples. These triples are
interpreted as follows:

(-' blil - address (32 bits)
\.. ' e[i) ""' size of area

flil - file address for this area
For a.out and core files, the address will be interpreted as an iAPX286
selector/displacement, where the top 13 bits are used as an index into the array
of triples. Normally, the user will not have to form this address as it will be
provided by the SOB mechanism. The privilage and system bit part of the
address will be ignored, which will cause an error if they are incorrectly
specified in a running system.
For files other than a.out and core files, where the user wishes to look at the file
with no address translation, the system will set up an array of 64k-byte triples
to cover the maximum file size. The last entry will contain the residue if the
maximum file size is not a multiple of 64k bytes. When you specify addresses
for these files, the address must be linear. The top 16 bits of the address wi11
be used to index the array of triples.
In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program are:
t Print a stack trace of the terminated or halted program.
T Print the top line of the stack trace.
variable I elm

I
Print the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers are:

b one byte

• 2 •.

SDB(l)

b
I

two bytes (half word)
four bytes (long word)

Legal values for m are:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point

SDB (I)

s Assume variable is a string pointer and print characters
starting at the address pointed to by the variable.

a Print characters starting at the variable's address. This
format may not be used with register variables.

p pointer to procedure
i disassemble machine-language instruction with addresses

printed numerically and symbolically.
disassemble machine-language instruction with addresses
just printed numerically.

The length specifiers are only effective with the formats c, d, u, o and x.
Any of the specifiers, c, I, and m, may be omitted. If all are omitted, sdb
chases a length and a format suitable for the variable's type as declared
in the program. If m is specified, then this format is used for displaying
the variable. A length specifier determines the output length of the value
to be displayed, sometimes resulting in truncation. A count specifier c
tells sdb to display that many units of memory, beginning at the address
of variable. The number of bytes in one such unit of memory is deter
mined by the length specifier I, or if no length is given, by the size associ
ated with the variable. If a count specifier is used for the s or a com
mand, then that many characters are printed. Otherwise successive char
acters are printed until either a null byte is reached or 128 characters are
printed. The last variable may be redisplayed with the command .1.

The sh (1) metacharacters • and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no pro
cedure name is given, variables local to the current procedure and global
variables are matched; if a procedure name is specified then only vari
ables local to that procedure are matched. To match only global vari
ables, the form :pattern is used.

/inenumber?lm
variable:? lm

Print the value at the address from a.out or I space given by linenumber
or variable (procedure name), according to the format lm. The default
format is 'i'.

variable =1m
linenumber""" /m
number =lm

Print the address of variable or line number, or the value of number, in
the format specified by lm. If no format is given, then lx is used. The
last variant of this command provides a convenient way to convert
between decimal, octal and hexadecimal.

variable!value
Set variable to the given value. The value may be a number, a character
constant or a variable. The value must be well defined; expressions which
produce more than one value, such as structures, are not allowed. Char
acter constants are denoted 'character. Numbers are viewed as integers

- 3 -

X

508(1)

as having the type double. Registers are viewed as integers. The vari
able may be an expression which indicates more than one variable, such
as an array or structure name. If the address of a variable is given, it is
regarded as the address of a variable of type int. C conventions are used
in any type conversions necessary to perform the indicated assignment.
Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.
The commands for examining source files are:
e procedure
efile-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure or
to file-name. The current line is set to the first line in the named pro·
cedure or file. Source files are assum� to be in directory. The default is
the current working directory. The latter two forms change the value of
directory. If no procedure, file name, or directory is given, the current
procedure name and file name are reported.

/regular expression/
Search forward from the current line for a line containing a string match·
ing regular expression as in ed(l). The trailing I may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regula� expression as in ed(l). The trailing 1 may be deleted.

p Print the current line.
z Print the current line followed by the next 9 lines. Set the current line to

the last line printed.
w Window. Print the 10 lines around the current line.
number

Set the current line to the given line number. Print the new current line.
count +

Advance the current line by count lines. Print the new current line.
count-

Retreat the current line by count lines. Print the new current line.
The commands for controlling the execution of the source program are:
count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument beginning
with < or > causes redirection for the standard input or output, respec
tively. If count is given, it specifies the number of breakpoints to be
ignored.

/inenumber c count
/inenumber C count

Continue after a breakpoint or interrupt. If count is given, it specifies the
breakpoint at which to stop after ignoring count - 1 breakpoints. C con
tinues with the signal which caused the program to stop reactivated and c
ignores it. If a line numbet is specified then a temporary breakpoint is
placed at the line and execution is continued. The breakpoint is deleted

- 4 -

508(1)

when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line. If
count is given, it specifies the number of breakpoints to be ignored.

s count
S count

Single step the program through count lines. If no count is given then \\,._
the program is run for one line. S is equivalent to s except it steps
through procedure calls.

i
I Single step by one machine-language instruction. I steps with the signal

which caused the program to stop reactivated and i ignores it.

variab/e$m count ·
address:m count

Single step (as with s) until the specified location is modified with a new
value. If count is omitted, it is effectively infinity. Variabk must be
accessible from the current procedure. Since this command is done by
software, it can be very slow.

level v
Toggle verbose mode, for use when single stepping with S, s or m. If
level is omitted, then just the current source file and/or subroutine name
is printed when either changes. If level is l or greater, each C source
line is printed before it is executed; if level is 2 or greater, each assembler
statement is also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debugged.

procedure(arg 1 ,arg2, .. .)
procedure(arg l ,arg2, .. J lm

Execute the named procedure with the given arguments. Arguments can
be integer, character or string constants or names of variables accessible
from the current procedure. The second form causes the value returned
by the procedure to be printed according to format m. If no format is
given, it defaults to d.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g., "proc:"), a breakpoint is placed at the first line in
the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, executiOn stops just before the breakpoint and con
trol is returned to sdb. Otherwise the commands are executed when the
breakpoint is encountered and execution continues. Multiple commands
are specified by separating them with semicolons. If k is used as a com
mand to execute at a breakpoint, control returns to sdb, instead of con
tinuing execution.

8 Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or
d then the breakpoint is deleted.

D Delete all breakpoints.

- 5 -

c\

FILES

5013(1)

Print the last executed line.

Jinenumher a
Announce. If /inenumber is of the rorm proc:number, the command
effectively does a linenumber b I. If linenumber is of th� form proc:, the
command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh (I).

new-line
If the previous command printed a source line, then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location, then display the next memory location.

controi-D
Scroll. Print the next I 0 lines of instructions, source or data depending
on which was printed last.

< filename
Read commands from filename until the end of file is reached, and then
continue to accept commands from standard input. When sdb is told to
display a variable by a command in s�ch a file, the variable name is
displayed along with the value. This commanP may not be nested; <
may not appear as a command in a file.

M Print the address maps.

M l?/Jl•l b e f
Record new values for the address map. For the iAPX286, the parame
ters will be interpreted as follows:

?
I
•
b

e

f

represents a.out image
represents core image
will be ignored
will be an address interpreted as in the address section depen
dept on the file type; the bottom 16 bits will normally be zero.
wHI be the extent size and can cover more than 64k bytes, as
this will modify the required number of the array elements.
will be the file store address for the start of the area.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.
The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged. I Y Toggle debug output.

a.out
core

SEE ALSO
cc(l), f77(1), sh(l).
a.out(4), core(4) in the Software Development System manual.

- 6 -

SDB(1}

WARNINGS

BUGS

User variables which differ by only an initial underscore cannot be dis
tinguished, as sdb recognizes both internal and external names.

When sdb prints the value of an external variable for which there is no debug·
ging information, a warning is printed before the value. The value is assumed
to be int (integer).

Data which are stored in text sections are indistinguishable from functions.
\.:,_ 1

Line number information in optimized functions is unreliable, and some infor-
mation may be missing.

If a procedure is called when the program is not stopped at a breakpoint (such
as when a core image is being debugged), all variables are initialized before the
procedure is started. This- makes it impossible to use a procedure which for
mats data from a core image.

The default type for printing F17 parameters is incorrect. Their address is
printed instead of their ·value.

Tracebacks containing F77 subprograms with multiple entry points may print
too many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be 1 to n, where n is the
dimension corresponding to that subscript. This is only significant when the
user omits a subscript, or uses • to indicate the full range. There is no problem
in general with arrays having subscripts whose lower bounds are not I .

On the 3820 computer there is no hardware trace mode and single stepping is
implemented by setting pseudo breakpoints where possible. This is slow. The
s, S, i, and I commands do not always convert on the 3820 computer due to
pseudo�breakpointing. Thus sdb will not allow single-stepping from an indirect
jump, a switch instruction, or a switdt instruction.

The entry point to an optimized function cannot be found on the 3820 com
puter. Setting a breakpoint at the beginning of an optimized function may
cause the middle of some instruction within the function to be overwritten.
This problem can be circumvented by disassembling the first few instructions of
the function, and manually setting a breakpoint at the first instruction after the
stack pointer is adjusted.

- 7 -

c;

0

SDIFF(1)

NAME
sdiff - side�by�side difference program

SYNOPSIS
sdiff [options ...] file} file2

DESCRIPTION
Sdiff uses the output of di.ff(I) to produce a side�by�side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a < in the gutter if
the line only exists in.fi/f!/ , __ a _> in the gutter_ if the line only ex!sts in file2, and
a I for lines that are different.
For example:

X
a
b
c
d

<
<

y
a

d
> c

The following options exist:
-w n

-I
-s

Use the next argument, n, as the width of the output line. The
default line length is 130 characters.
Only print the left side of any lines that are identical.
Do not print identical lines.

-o output Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of filel and file2. Identical
lines of jilel and jile2 are copied to output. Sets of differences, as
produced by diff(l), are printed; where a set of differences share a
common gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the following
user-typed commands:

SEE ALSO

append the left column to the output file
r append the right column to the output file
s turn on silent mode; do not print identical lines
v turn off silent mode
e I call the editor with the left column
e r call the editor with the right column

e b call the editor with the concatenation of left and
right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

diff(l), ed(l).

- I -

SED(1)

NAME
sed - stream editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files 1

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, <
edited according to a script of commands. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one -e
option and no -f options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands, one per
line, of. the following form:

[address [, address 1] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save ail or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, i.e., a
/regular expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression?, where ?
is any character, is identical to /regular expression/. Note
that in the context address \xabc\xdefx, the second x stands
for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period • matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from

the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function ! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in
the replacement string of an s command, and may be used to protect initial "
blanks and tabs against the stripping that is done on every script line. The rfile
or wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can
be at most 1 0 distinct wfile arguments.

- I -

c:.··

0

SED(1)

(!)a\
text Append. Place text on the output before reading the next input

line.
(2) b label Branch to the : command bearing the label. If label is empty,

branch to the end of the script.
(2) c\
text Change. Delete the pattern space. With 0 or 1 address or at the

end of a 2-address range, place text on the output. Start the next
cycle.

(2) d Delete the pattern space. Start the next cycle.
(2) D Delete the initial segment of the pattern space through the first

new-line. Start the next cycle.
(2) g Replace the contents of the pattern space by the contents of the

hold space.
(2) G Append the contents of the hold space to the pattern space.
(2) h Replace the contents of the hold space by the contents of the pat

tern space.
(2) H Append the contents of the pattern space to the hold space.
{I) i\
text
(2) I

(2).

(2)N

(2) p
(2)P

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.
Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embed
ded new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(l) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading

the next input line.
(2) sf regular expression/replacement/flags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of /. For a fuller description see ed(I). Flags is zero or
more of:

n n- I - 512. Substitute for just the_ n th occurrence
of the regular expression.

g Global. Substitute for all nonoverlapping inst;mces
of the regular expression rather than just the first
one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfi/e if a

replacement was made.
(2) t label Test. Branch to the : command bearing the label if any substitu

tions have been made since the most recent reading of an input line
or execution of a t. If label is empty, branch to the end of the
script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y!stringl lstring21

Transform. Replace all occurrences of characters in string/ with
the corresponding character in string2. The lengths of string/ and
string2 must be equal.

- 2 -

SED(1)

(2)! function
Don't. Apply the function (or group, if function is 0 only to lines
not selected by the address(es).

(O) : label This command does nothing; it bears a label for b and t commands
to branCh to.

(I) 1- Place the current line number on the standard output as
}
a line.

\·.
(2) Execute the following commands through a matching only when "

the pattern space is selected.
(0) An empty command is ignored.
(0) # If a # appears as the first character on the first line of a script file,

then that entire line is treated as a comment, with one eXception. If
the character after the # is an 'n', then the default output will be
suppressed. The rest of the line after #n is also ignored. A script
file must contain at least one non�comment line.

SEE ALSO
awk(l), edO), grep(I).

- 3 -

-I
!

C'

r. \

0

SEND(1 C)

NAME
send, gath - gather files and/or submit RJE jobs

SYNOPSIS
gath [-ih] file . . •
send argument

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard output.
Tabs are expanded into spaces according to the format specification for each
file (see fspec(4)). The size limit and margin parameters of a format
specification are also respected. Non�graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains no
tabs unless the -b flag is set, in which case the output is written with standard
tabs (every eighth column).
Any line of any of the files which begins with - is interpreted by gath as a con
trol line. A line beginning .. - " (tilde,space) specifies a sequence of files to be
included at that point. A line beginning �! specifies a UNIX system command;
that command is executed, and its output replaces the -! line in the gath out
put.
Setting the -i flag prevents control lines from being interpreted and causes
them to be output literally.
A file name of - at any point refers to standard input, and a control line con
sisting of -. is a logical EOF. Keywords may be defined by specifying a replace
ment string which is to be substituted for each occurrence of the keyword.
Input may be collected directly from the terminal, with several alternatives for
prompting. In fact, all of the special arguments and flags recognized by the
send command are also recognized and treated identically by goth. Several of
them only make sense in the context of submitting an RJE job.

Send
Send is a command-level interface to the RJE subsystems. It allows the user to
collect input from various sources in order to create a run stream consisting of
card images, and submit this run stream for transmission to an IBM host com
puter. Output from the IBM system may be returned to the user in either
ASCII text form or EBCDIC punch format (see pnch (4)). How output is to be
disposed of once it returns from the host is determined by a "usr-" specification
which should be embedded in each job that a user submits for transmission. A
detailed description of RJE operation and the "usr-" specification is given in
UNIX System Remote Job Entry User Guide.

Possible sources of input to send are: ordinary files, standard input, the termi
nal, and the output of a command or shell file. Each source of input is treated
as a virtual file, and no distinction is made based upon its origin. Typical input
is an ASCII text file of the sort that is created by the editor ed(J). An optional
format specification appearing in the first line of a file (see fspec(4)) deter
mines the settings according to which tabs are expanded into spaces. In addi
tion, lines that begin with - are normally interpreted as commands controlling
the execution of send. They may be used to set or reset flags, to define key
word substitutions, and to Qpen new sources of input in the midst of the current
source. Other text lines are translated one-for-one into card images of, the run
stream.
The run stream that results from this collection is treated as one job by the RJE
subsystem_s. Send prints the card count of the run stream, and the queuer that
is invoked prints the name of the temporary file that holds the job while it is
awaiting transmission. The initial card of a job submitted to a host must have

.) .

SEND(1C)

a I I in the first column. Any cards preceding this card will be excised. If a
host computer is not specified before the first card of the runstream is ready to
be sent, send will select a reasonable default. All cards beginning with /*$ will
be excised from the runstream, because they are HASP command cards.
The arguments that send accepts are described below. An argument is inter·
preted according to the first pattern that it matches. Preceding a character �
with \ causes it to loose any special meaning it might otherwise have when
matching against an argument pattern.

+

:spec:

:message

-:prompt

+:prompt

-flags

+flags

-flags

!command

$line

@directory

-comment

?:keyword

? keyword- • xx

? keyWord -string

-:keyword

keyword •'"xx

keyword-string

Close the current source.
Open standard input as a new source.
Open the terminal as a new source.
Establish a default format specification for included
sources,
e.g., :m6t -12:

Print message on the terminal.
Op;en standard input and, if it is a terminal, print
prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.
Reset the specified flags.
Restore the specified flags to their state at the previM
ous level.
Execute the specified UNIX system command via the
one·line shell, with input redirected to /del'/null as a
default. Open the standard output of tile command
as a new source.
Collect contiguous arguments of this form and write
them as consecutive lines to a temporary file; then
have the file executed by the shell. Open the stanM
dard output of the shell as a new source.
The current directory for the send process is changed
to directory. The original directory will be restored
at the end of the current source.
Ignore this argument.
Prompt for a definition of keyword from the termiM
nal unless keyword has an existing definition.
Define the keyword as a twoMdigit hexadecimal charM
acter code unless it already has a non-null replace·
ment.
Define the keyword in terms of a replacement string
unless it already has a non-null replacement.
Prompt for a definition of keyword from the termi·
nal.
Define keyword as a twoMdigit hexadecimal character
code.
Define keyword in terms of a replacement string.

-2 -

SEND(1 C)

host The host machine that the job should be submitted
to. It can be any name that corresponds to one in
the first column of the RJE configuration file
(/usr/rje/lines).

file-name Open the specified file as a new source of input.

When commands are executed via $ or ! the shell environment [see
environ (5)] will contain the values of all send keywords that begin with $
and have the syntax: of a shell variable,

The flags recognized by send are described in terms of the special processing
that occurs when they are set:

-1 List card images on standard output. EBCDIC characters are
translated back to ASCII.

-q Do not output card images.

-f Do not fold lowercase to ·upper.

-t Trace progress on diagnostic output, by announcing the opening of
input sources.

-k Ignore the keywords that are active at the previous level and erase
any keyword definitions that have been made at the current level.

-r Process included sources in raw mode; pack arbitrary S�bit bytes one
per column (80 columns per card) until an EOF.

-i Do not interpret control lines in included sources; treat them as text.

-s Make keyword substitutions before detecting and interpreting control
lines.

-y Suppress error diagnostics and submit job anyway.

-g Gather mode, qualifying -1 flag; list text lines before converting
them to card images.

-h Write listing with standard tabs.

-p Prompt with • when taking input from the terminal.

-m When input returns to the terminal from a lower leVel, repeat the
prompt, if any.

-a Make -k flag propagate to included sources, thereby protecting
them from keyword substitutions.

-c List control lines on diagnostic output.

-d Extend the current set of keyword definitions by adding those active
at the end of included sources.

-x This flag guarantees that the job will be transmitted in the order of
s-ubmission (relative to other jObs sent with this flag).

Control lines are input Jines that begin with -. In the default mode +ir,
they are interpreted as commands to send. Normally they are detected
immediately and read literally. The -s flag forces keyword substitutions
to be made before control lines are intercepted and interpreted. This can
lead to unexpected results if a control line uses a keyword which is defined
within an immediately preceding -s sequence. Arguments appearing in
control lines are handled exactly like the command arguments to send,
except that they are processed at a nested level of input.

The two possible formats for a control line are: "-argument" and
"-##argument# •.. " . .In the first case, where the - is not followed by a
space, the remainder of the line is taken as a single argument to send. In

- 3 -

SEND(1 C)

the second case, the line is parsed to obtain a sequence of arguments del
imited by spaces. In this case the quotes ' and • may be employed to pass
embedded spaces.

The interpretation of the argument • is chosen so that an input line con
sisting of -. is treated as a logical EOF. The following example illustrates
some of the above conventions:

send## =##argument ...

This sequence of three lines is equivalent to the command synopsis at the
beginning of this description. In fact, the - is not even required. By con
vention, the send command reads standard input if no other input source is
specified. Send may therefore be employed as a filter with side-effects.
The execution of the send command is controlled at each instant by a
current environment, which includes the format specification for the input
source, a default format specification for included sources, the settings of
the mode flags, and the active set of keyword definitions. This environ
ment can be altered dynamically. When a control line opens a new source
of input, the current environment is pushed onto a stack, to be restored
when input resumes from the old source. The initial format specification
for the new source is taken from the first line of the file. If none is pro
vided, the established default is used or, in its absence, standard tabs. The
initial mode settings and active keywords are copied from the old environ
ment. Changes made while processing the new source will not affect the
environment of the old source, with one exception: if -d mode is set in
the old environment, the old keyword context will be augmented by those
definitions that are active at the end of the new source.
When send first begins execution, all mode flags are reset, and the values
of the shell environment variables become the initial values for keywords of
the same name with a $ prefixed.
The initial reset state for all mode flags is the + state. In general, special
processing associated with a mode N is invoked by flag -N and is revoked
by flag +N. Most mode settings have an immediate effect on the process
ing of the current source. Exceptions to this are the -r and -i flags,
which apply only to included source, causing it to be processed in an unin
terpreted manner.

A keyword is an ar);)itrary 8-bit ASCII string for which a replacement has
been defined. The replacement may be another string or the hexadecimal
code for a single 8-bit byte. At any instant, a given set of keyword
definitions is active. Input text lines are scanned, in one pass from left to
right, and longest matches are attempted between substrings of the line
and the active set of keywords. Characters that do not match are output,
subject to folding and the standard translation. Keywords are replaced by
the specified hexadecimal code or replacement string, which is then output
character by character. The expansion of tabs and length checking,
according to the format specification of an input source, are delayed until
substitutions have been made in a line.
All of the keywords definitions made in the current source may be deleted
by setting the -k flag. It then becomes possible to reuse them. Setting
the -k flag also causes keyword definitions active at the previous source
level to be ignored. Setting the +k flag causes keywords at the previous
level to be ignored but does not delete the definitions made at the current
level. The -k argument reactivates the definitions of the previous level.

- 4 -

l

()

SEND(1C)

When keywords are redefined, the previous definition at the same level of
source input is lost, however the definition at the previous level is only hid
den, to be reactivated upon return to that level unless a -d flag causes the
current definition to be retained.
Conditional prompts for keywords, ?:A,/p which have already been defined
at some higher level to be null or have a replacement will simply cause the
definitions to be copied down to the current level; new definitions will not
be solicited.
Keyword substitution is an elementary macro facility that is easily
explained and that -appears- useful enough - to warrant its inclusion in the
send command. More complex replacements are the function of a general
macro proce::;sor [m4(I), perhaps]. To reduce the overhead of string cum·
parison, it is recommended that keywords be chosen so that their initial
characters are unusual. For example, let them all be uppercase.
Send performs two types of error checking on input text lines. Primarily,
only ASCII graphics and tabs are permitted in input text. Secondly, the
length of a text line, after substitutions have been made, may not exceed
80 bytes. The length of each line may be additionally constrained by a
size parameter in the format specification for an input source. Diagnostic
output provides the location of each erroneous line, by line number and
input source, a description of the error, and the card image that results.
Other routine errors that are announced are the inability to open or write
files, and abnormal exits from the shell. Normally, the occurrence of any
error causes send, before invoking the queuer, to prompt for positive
affirmation that the suspect run stream should be submitted.
Before submitting a job to a host, send translates 8-bit ASCII characters
into their EBCDIC equivalents. The conversion for 8-bit ASCII characters
in the octal range 040·176 is based on the character set described in
"Appendix H" of IBM System/370 Principles of Operation (IBM SRL
GA22·7000). Each 8-bit ASCII character in the range 040·377 possesses
an EBCDIC equivalent into which it is mapped, with five exceptions:# -
into .,, 0345 into -, 0325 into t, 0313 into ! . 0177 (DEL) is illegal. In
listings requested from send and in printed output returned by the subsys
tem, the reverse translation is made with the qualification that EBCDIC
characters that do not have valid 8-bit ASCII equivalents are translated
into ".
Additional control over the translation process is afforded by the -f flag
and hexadecimal character codes. As a default, send folds lowercase
letters into uppercase. Setting the -f flag inhibits any folding. Non
standard character codes are obtained as a special case of keyword substi
tution. The users should check with the remote IBM system to be sure the
special processing will be accepted.

SEE ALSO

BUGS

m4(1), rjestat(IC), sh(!).
lseek(2), fspec(4), pnch(4), ascii(S), environ(S) in the Software Development

System manual.

Standard input is read in blocks, and unused bytes are returned via /seek (2).
If standard input is a pipe, multiple arguments of the form - and -:prompt
should not be used, nor should the logical EOF (-.) .

- 5 -

SETCOLOR(1)

NAME
setcolor-Set foregrotm.d and background colors

SYNOPSIS
setcolor [[-bBIF] color!] [-bBIF] color2

DESCRIPTION
Set color sets the text mode foreground and background colors on the Color, Enhanced,
and Professional Graphics Adapters.

Setcolor -b denotes a dark background color, setcolor -B a bright one, -fa dark foreground
color, and -Fa bright one.

If no options, color! is assumed to be a dark background color, and color2 is assumed to
be a dark foreground color. Thus, setcolor color is assumed to mean setcolor -f color, and
setcolor color! color2 is assumed to mean set color -b color -f color.

The available colors are: black, red, green, yellow, brown. blue, maganta, cyan and
white.

- I -

SETMNT(1M)

NAME
setmnt - establish mount table

SYNOPSIS
/etc/setmnt

DESCRIPTION

FILES

Setmnt creates the /etc/mnt�b table fsee mnttab (4)], which is needed for both
the mount(lM) and umount commands. Setmnt reads standard input and
creates a mnttab entry for each line. Input lines have the format:

filesys node
where filesys is the name of the file system's special file (e.g., "dsk/?s?") and
node is the root name of that file system. Thus filesys and node become the
first two strings in the mnttab(4) entry.

/etc/mnttab
SEE ALSO

BUGS

mountOM), mnttab(4).

Evil things will happen if fi/esys or node are longer than 32 characters.
Setmnt silently enforces an upper limit on the maximum number of mnttab
entries.

- 1 -

SETUP(1M)

NAME
setup-change CMOS parameters

SYNOPSIS
setup [-d] [keyword [options]]

DESCRIPTION
Setup lists or changes the permanent parameters in the PC/A T's CMOS ram, and also "'-.
changes the time-<>f-day clock.

Here is a list of all available keywords and their effects:

setup -d.
setup all
setup base
setup base 512

setup base 640
setup ext
setup ext number
setup date
setup date mm/rlrl/yy
setup date mm/rlrl/yyyy
setup time
setup time hh:mm:ss
setup flop
setup flop ! low/high
setup flop 2 none
setup flop 2 low/high
setup fixed
setup ftxed 1 [1-99]
setup fiXed 2 none
setup fixed2 [1-99]
setup con
setup con mono
setup con colr40
setup con co1r80
setup con ega

print date & time in date(I) format
show all current values
pimts Kbytes of base memory
sets base memory to 512 Kbytes
(assumes OK extended memory}
sets base memroy to 640 Kbytes
prints Kbyies of extended memory
sets extended memory to number Kbytes
prints current date setting
sets date to rnrn/dd/yy
sets date to mm/dd/yyyy
prints current time setting
sets time to hh:nun:ss
prints current floppy configuration
sets first floppy drive to 48196 tpi
sets no second floppy drive
sets second floppy drive to 48/96 tpi
prints current fixed disk configuration
sets first :fixed drive to type 1-99
sets second fixed drive as not installed
sets second fixed drive to type 1-99
prints current console
sets console to monochrome adapter, 80x25
sets console to·color adapter, 40x25
sets console to color adapter, 80x25
sets console to enhanced adapter, 80x25

Setup prints out the old setting, the new setting, and then ''Are you sure? (y orn)." The
user must type y or Y. Setup then either does the change, prints "Setup confinned" and
exits, or prints "Serup aborted" and exits.

The command string

date 'selllp -d'

sets the UNIX software clock to the date and time in the battezy-operated real-time clock.
This is not done automatically, as the real-time clocks in many AT -compatible machines
are quite unreliable.

- 1 -

(' ,_ -�

CJ

SH(1)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh (-acefbiknrstu'x] [args]
rsh [-acefhiknrstufX 1 [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a
terminal or a file. Rsh is a restricted version of the standard command inter�
preter sh; it is used to set up login names and execution environments whose
cipabilities are more controlled than those of the standard shell. See Invoca-
tion below for the meaning of arguments fo the shell.

'

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or under
scores beginning with a letter or underscore. A parameter is a name, a digit,
or any of the characters •, @, #, ! , -, S, and !.

Commands
A simple-command is a sequence of non·blank words separated by blanks.
The first word specifies the name of the command to be executed. Except as
specified below, the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 [see exec (2)]. The
value of a simple-command is its exit status if it terminates normally, or (octal)
200+status if it terminates abnormally [see signa/(2) for a list of status
values].

A pipeline is a sequence of one or more commands separated by I (or, for his
torical compatibility, by "). The standard output of each command but the last
is connected by a pipe(2) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to
terminate. The exit status of a pipel_ine is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, & , &. & , or I I ,
and optionally terminated by ; or & . Of these four symbols, ; and & have
equal precedence, which is lower than that of & & and I I · The symbols & &
and I I also have equal precedence. A semicolon (;) causes sequential execu
tion of the preceding pipeline; an ampersand (&) causes asynchronous execu
tion of the preceding pipeline (i.e., the shell does not wait for that pipeline to
finish). The symbol & & (I I) causes the list following it to be executed only
if the preceding pipeline returns a zero (non·zero) exit status. An arbitrary
number of new·1ines may appear in a list, instead of semicolons, to delimit
commands.

·

A command is either a simple-command or one of the following. Unless other
wise stated, the value returned by a command is that of the last simple
command executed in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word . . . is omitted, then the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below) . Execution ends when there
are no more words in the list.

case word in I pattern [I pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation) except that a slash, a
leading dot, or a dot immediately following a slash need not be
matched explicitly.

- I -

SH(1)

if list then list [elif list then list I ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the Jist following the next then
is executed. Failing that, the else list is executed. If no else list or
then list is executed, then the if comrrland returns a zero exit status.

while list do list done

(list)

(list;}

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth
erwise the loop terminates. If no commands in the do list are exe
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

Execute list in a sub-shell.

list is siMply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the func
tion is the list of commands between { and } . Execution of functions is
described below (see Execution).

The follo�ng words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up
to a new-line to be ignored. '

Command Substitution -"�
The standard output from a command enclosed in a pair of grave accents ('")
inay be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution
The characte'r $ is used to introduce substitutable parameters. There are two
types of parameters, positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters may be assigned values by set.
Keyword parameters (also known as variables) may be assigned values by writ·
ing:

name =value [name=value] . . .

Pattern-matching i s not performed on value. There cannot be a function and a
variable with the same name.

${parameter}
The Vl:!-lue, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or under
score that is not to be interpreted as part of its name. If parameter is
• or @, all the positional parameters, starting with $1, are substituted
(separated by spaces) .. Parameter $0 is ·set from argument zero when
the shell is invoked.

${paramet�r: -word}
If parameter is set and is non-null, substitute its value; otherwise sub
stitute word.

${parameter:= word}
If parameter is not set or is null set it to word; the value of the param
eter is substituted. Positional parameters may not be assigned to in
this way.

-2-

()

SH(1)

S{parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message "param
eter null or not set'' is printed.

${parameter: +word}
If parameter is set and is non-null, substitute word; otherwise substi
tute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or
is null:

echo ${d:-•pwd•)

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set or not.
The following parameters are automatically set by the shell:

The number of positional parameters in decimal.
Flags supplied to the shell on invocation pr by the set com�
man d.

? The decimal value returned by the last synchronously executed
command.

S The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The

user may not change PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the

MAILPATH parameter is not set, the shell informs the user of
the arrival of mail in the specified file.

MAILCHECK
.

This parameter specifies how often Gn seconds) the shell will
check for the arrival of mail in the files specified by the MAIL�
PATH or MAIL parameters. The default value is 600 seconds
(10 minutes). If set to 0, the shell will check before each
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is
set, the shell informs the user of the arrival of mail in any of
the specified files. Each file name can be followed by % and a
message that will be printe,d when the modification time
changes. The default message is you have mail.

PSl Primary prompt string, by default '"S ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.
SHACcr

If this parameter is set to the name of a file writable by the
user, the shell will write an accounting record in the file for
each shell procedure executed. Accounting routines such as
acctcom (l) and acctcms (lM) can be used to analyze the data
collected.

- 3 -

SH(1)

SHELL When the shell is invoked, it scans the environment (see
Environment below) for this name. If it is found and there is
an 'r' in the file name part of its value, the shell becomes a
restricted shell.

The shell gives default values to PATH, PSI, PSl, MAILCHECK and IFS. HOME
and MAIL are set by login (!). \.,__

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal fiefd separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu�
ments (u or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters •, ?,
and [. If one of these characters appears the word is regarded as a pattern.
The word is replaced with alphabetically sorted file names that match the pat
tern. If no file name is found that matches the pattern, the word is left
unchanged. The character • at the start of a file name or immediately follow
ing a /, as well as the character I itself, must be matched explicitly.

Quoting

• MatcheS any string, including the null string.
? Matches any single character.
[. . . I Matches any one of the enclosed characters. A pair of charac

ters sepa,rated by - matches any character lexically between
the pair, inclusive. If the first character following the opening
"(" is a "!" any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termi·
nation of a word unless quoted:

; & (_) I " < > new-Une space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with
a \. The pair \new-line is ignored. All characters enclosed between a pair of
single quote marks (''), except a single quote, are quoted. Inside double quote
marks (""), parameter and command substitution occurs and \ quotes the char
acters \, ', ", and $. •s·• is equivalent to "$1 $2 . . . ", whereas •s@" is
equivalent to "st• "Sr

Prompting
When used interactively, the shell prompts with the value of PSI before reading
a command. If at any time a new-line is typed and further input is needed to
complete a command, the secondary prompt (i.e., the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere
in a simple-command or may precede or follow a command and are not passed
on to the invoked command; substitution occurs before word or digit is used:

<wold Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor I). If the file

does not exist it is created; otherwise, it is truncated to zero
length.

>::>word Use file word as standard output. If the file exists output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

- 4 -

c;

SH(1)

<<[-]word The shell input is read up to a line that is the same as word, or
to an end-of-file. The resulting document becomes the stan
dard input. If any character of word is quoted, no interpreta
tion is placed upon the characters of the document; otherwise,
parameter and command substitution occurs, (unescaped)
\new-line is ignored, and \ must be used to quote the characters
\, $, •, and the first character of word. If - is appended to
<<, all leading tabs are stripped from word and from the
document.

< & digit Use the file associated with file descriptor digit as standard
input. Similarly for the standard output using > &digit.

< & - The standard input is closed. Similarly for the standard output
using > & -.

If any of the above is preceded by a digit, the file descriptor which will be asso
ciated with the file is that specified by the digit (instead of the default 0 or 1).
For example:

. . . 2>&1
associates file descriptor 2 with the file currently associated with file descriptor
1.
The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

. . . l >xxx 2>&1
first associates file descriptor 1 with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (i.e. xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
file descriptor 1 had been) and file descriptor 1 would be associated with file
XXX .
If a command is followed by & the default standard input for the command is
the empty fi1e /del'/null. Otherwise, the environment for the execution of a
command contains the file descriptorS of the invoking shell as modified by
input/output specifications.
Redirection of output is not allowed in the restricted shell.

Environment
The environment (see environ (5)) is a list of name-value pairs that is passed to
an executed program in the same way as a normal argument list. The she11
interacts with the environment in several ways. On invocation, the she11 scans
the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters
or creates new parameters, none of these affects the environment unless the
export command is used to bind the shell's parameter to the environment (see
also set -a). A parameter may be removed from the environment with the
unsetcommand. The env�ronment seen by any executed command is thus com
posed of any unmodified name-value pairs origina11y inherited by the
minus any pairs removed by unset, plus any modifications or additions, all
which must be noted in export commands.
The environment for any basb -r command is executed (see below).

Special Commands
Input/output redirection is now permitted for these commands. File descriptor
I is the default output location.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing .file.

- 5 -

SH(1)

break [n 1
Exit from the enclosing for or while loop, if any. If n is specified break
n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop. '< •. cd [arg 1
Change the current directory to arg. The shell parameter HOME is the
default arg. The shell parameter CDPATH defines the search path for
the directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a I the search path is not used. Otherwise, each directory
in the path is searched for arg. The cd command may not be executed
by rsh.

echo [arg . . . 1
Echo arguments. See echo(l) for usage and description.

el'al [arg . . . 1
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg . . . 1
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n l
Causes a shell to exit with the exit status specified by n. If n is omit�
ted the exit status is that of the last command executed (an end�of-file
will also cause the shell to exit.)

export [name . . . 1
The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given, a list
of all names that are exported in this shell is printed. Function names
may not be exported.

hasb [-r 1 [name . . . 1
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The -r
option causes the shell to forget all remembered locations. If no argu
ments are given, information about remembered commands is
presented. Hits is the number of times a command has been invoked
by the shell process. Cost is a measure of the work required to locate a
command in the search path. There are certain situations which
require that the stored location of a command be recalculated. Com
mands for which this will be done are indicated by an asterisk (•)
adjacent to the hits information. Cost wiJI be incremented when the
recalculation is done.

newgrp [arg . . . I
Equivalent to exec newgrp arg • . . . See newgrp(l) for usage and "\
description. \ ,_
The given names are marked readon/y and the values of the these
names may not be changed by subsequent assignment. If no argu
ments are given, a list of all readonly names is printed.

return [n 1
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

- 6 -

I
I

c

SH(1)

set [- -aefhkntm•x [arg . . .]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit

status.
-f Disable file name generation
-h Locate and remember function commands as functions are

defined (function commands are normally located when the
function is executed).

-k All keyword arguments are placed in the environment for a
command,-not just those ·that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell. The current set of flags
may be found in $-. The remaining arguments are positional parame
ters and are assigned, in order, to $1, $2, If no arguments are
given the values of all names are printed.

shift [n 1

test

times

The positional parameters from Sn+l . . . are renamed $1 If n is
not given, it is assumed to be 1 .

Evaluate conditional expressions. See test (I) for usage and description.

Print the accumulated user and system times for processes run from
the shell.

trap [arg] [n] . . •
The command arg is to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on sig
nal 1 1 (memory fault) produces an error. If arg is absent all trap(s) n
are reset to their original values. If arg is the null string this �ignal is
ignored by the shell and by the commands it invokes. If n is 0 the
command arg is executed on exit from the shell. The trap command
with no arguments prints a list of commands associated with each sig
nal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a com
mand name.

ulimit [-fp 1 [n 1 I imposes a size limit of n
-f imposes a size limit of n bloqks� on files written by chjld

processes (files of any size may .. be read) . With no argument,
the current limit is printed.

-p changes the pipe size to n (UNIX System/RT only).
If no option is given, -f is assumed.

umask r nnn]
The user file-creation mask is set to nnn [see umask(2)]. If nnn is
omitted, the current value of the mask is printed.

- 7 -

SH(1)

unset [name . . .]
_For each name, remove the corresponding variable or function. The
variables PATH, PSI, PSl, MAILCHECK and IFS cannot be unset.

wait [n)
Wait for the sp�fied process and report its termination status. If n is
not given all currently active child processes are waited for and the
return code is zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero
is -, commands are initially read from /etc/profile and from SHOME/.profile,
if such files exist. Thereafter, commands are read as described below, which is
also the case when the shell is invoked as /bln/sb. The flags below are inter·
preted by the shell on invocation only; Note that unless the -c or -s flag is
specified, the first argument is assumed to be the name of a file containing
commands, and the remaining arguments are passed as positional parameters to
that command file:

-c string If the -c flag is present commands are rea<J from string.
-s

-i

-r

If the -s flag is present or if no arguments remain commands are
read from the standard input. Any remaining arguments specify
the positional parameters. Shell output (except for Special Com
mands) is written to file descriptor 2.
If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this case TER
MINATE is ignored (so that kill 0 does not kill an interactive shell)
and INTERRUPT is caught and ignored (so that wait is interrupti
ble). In all cases, QUIT is ignored by the shell.
If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

Rsh Only
Rsh is used to set up login names and execution environments whose capabili
ties are more controlled than those of the standard shell. The actions of rsh
are identical to those of sh, except that the following are disallowed:

changing directory [see cd(l)],
setting the value of SPATH,
specifying path or command names containing /,
redirecting output (> and > >).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a lim
ited menu of commands; this scheme assumes that the end-user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con
trol over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e.,
/usr/rbin) that can be safely invoked by rsh. Some systems also provide a res
tricted editor red.

- 8 -

�
'
!

C'

()

SH(1)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the exit command above).

/etc/profile
$HOME/.profile
/tmp/sh•
/dev/null

SEE ALSO
acctcom(I), cd(I), echo(!), env(l), login(!), newgrp(l), pwd(l), test(!),
umask(l).

dup(2), exec(2), fork(2), pipe(2), signa1(2), ulimit(2), umask(2), wait(2), a.out(4),
proflle(4), environ(S) in the Software Development System manual.

CAVEATS
If a command is executed, and a command with the same name is insta11ed in a
directory in the search path before the directory where the original command
was found, the shell wi11 continue to exec the original command. Use the bash
command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

- 9 -

SHL(1)

NAME
shl - shell layer manager

SYNOPSIS
sbl

DESCRIPTION
Shl allows a user to interact with more than one shell from a single terminal. \:.._
The user controls these shells, known as layers, using the commands described
below.

The current layer is the layer which can receive input from the keyboard.
Other layers attempting to read from the keyboard are blocked. Output from
multiple layers is multiplexed onto the terminal. To have the output of a layer
blocked when it is not current, the stty option loblk may be set within the
layer.

The stty character swtch (set to AZ if NUL) is used to switch control to shl
from a layer. Shl has its own prompt, >>>, to help distinguish it from a
layer.

A layer is a shell which has been bound to a virtual tty device (/dev/sxt???).
The virtual device can be manipulated like a real tty device using stty (1) and
ioct/ (2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line.
Only the first eight characters are significant. The names (l) through (7) can·
not be used when creating a layer. They are used by shl when no name is sup
plied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any unique
prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argu·
ment is given, a layer wiil be created with a name of the form (#)
where # is the last digit of the virtual device bound to the layer. The
shell prompt variable PSI is set to the name of the layer followed by a
space. A maximum of seven layers can be created.

block name [name ...]
For each name, block the output of the corresponding layer when it is
not the current layer. This is equivalent to setting the stty option loblk
within the layer.

delete name [name . . . 1
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP signal [see signa/(2)].

help (or ?)
Print the syntax of the shl commands.

layers [-I I [name . . . 1
For each name, list the layer name and its process group. The -I
option produces a ps(I).Jike listing. If no arguments are given, infor
mation is presented for all existing layers.

resume [name 1
Make the layer referenced by name the current layer. If no argument
is given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.

- I -

SHL(1)

unblock name [name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
stty option loblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.

,� name Make the layer referenced by name the current layer.

�- / FILES

0

/dev/sxt???
$SHELL

SEE ALSO
sh(l), stty(l).

Virtual tty devices
Variable containing path name of the shell to use
(default is /bin/sh).

ioctl(2), signa1(2) in the Software Development System manual.
sxt(?) in the Runtime System manual.

Microport System V/AT does no currently support SHL. However, we plan to
support it in the future.

- 2 -

I

SHMCREATE(1)

NAME
shmcreate - user -mode access to console graphics

SYNOPSIS

shmcreate key address size
DESCRIPTION

Shmcreate allows direct access to the screen memory section of PC/AT graphics
adapter. It builds a shared memory segmerit (see shmctl(2), slnnget(2), and slunop(2) in
the Software Development Manual Part m which is mapped to a given physical
address. It is only intended for bit-mapped screen use, but could theoretically be used as
part of the memory management for an intelligent peripheral. For example, to make
the default page of Hercules graphics available, nm:
slunc:reate OxbOOOO bOOOO 32768

This creates a segment whose "key" is hex BOOOO, mapped to physical address hex
BOOOO, and whose length is 32768 bytes. This corresponis to the first screen on a
Hercules graphics adapter. To make all the ffiM cards available, place this in flle
/etc/rc.d/shm.rc:

/etc/sluncreate OxaOOOO
/etc/shmcreate OxbOOOO
/etc/sluncreate Oxb8000
/etc/slunc:reate Oxc8000

EXAMPLE

aOOOO 65535
bOOOO 65535
b8000 32768
c8000 4096

il ega hlgb res
#ega low res
#ega
#pga

Shmcreate must be nm by the super-user. After it is run, any program may contain the
following three lines to access, for example. the CGA:

extern char *shmat();

int shmid = slunget (Oxb8000, 32768, 0);

char *slunaddr = slunat (slunid, (char *) 0);

The shmget "opens" the physically mapped segment created by shmcreate. The slunget
line returns an address which allows the user program to access the graphics memory
on the screen adapter. On the Hercules board, the pointer refers to a line of dots at the
upper left-hand comer of the screen. Refer to the Hercules manual for addressing
information.

NOTES
The key value does not need to be the same as the physical address. This is simply a
convenience to avoid conflicts with other shared memory keys. These keys are also
referenced by Microport's graphics programs.

This program cannot be run Wlless shared memory is supported in your system. The
shared-memory scheme for screen access is being upgraded and the application devel
oper should assume that it will be replaced, in the future, by a more graphics-specific
approach.

- I -

c�

�-� I I
'-)

0

DUGS

SHMCREATE{1)

A seginent which is 64K long cannot be created. thus the last byte of the screen
memory may hot be used.

SEE ALSO , ,
shmctl(2); shmget(2), shmop(2) in the Software Development Manual. Part IT.

The user should also cohsult the programming manual aVailable for the particular card
being used. ffiM's manuals are in the Options and Adapters Manual Set.

- 2 -

I

SHOWBAD(1 M)

NAME
showbad- display bad track table for hard disk partition

SYNOPSIS
showbad [-1]

DESCRIPTION
Showbad with no options displays bad track table infonnation for the System V/AT
partition on the primary drive. Showbad 1 displays the table for the secondary hard
disk, unit I.

The bad track table is created by option 5 of the fixed disk utility [seefdzSk(lM)]. The
bad track table lists cylinder number and head (track) for each track with one or more
errors together with alternate cylinder number and head to be used in place of the bad
track, when that track is encountered

- I -

I I

c

SHUTDOWN(1 M)

NAME
shutdown - shut down system

SYNOPSIS
/etc/shutdown [-y] [-ggrace-period [-iinit-state]

DESCRIPTION
This command is executed by the super-user, " root" , to change the state
of the machine. By default, it brings the system to a state where only
the console has access to the UNIX system. This " root-only" state is
traditionally called " single-user" .

The command sends a warning message and a final message before it
starts actual shutdown activities. By default, the command asks for con
firmation before it starts shutting down daemons and killing processes.
The options are used as follows:

-y pre-answers the question so the command can be run without user
intervention. By default, the time periods between the warning
message and the final message and between the final message and
the confirmation are 60 seconds.

�ggmce�period
allows the super-user to specify a different number of seconds.

-iinit�state
specifies the state that init(lM) is to be put in following the
warnings, if any. By default, init state " s" is used.

NOTE: THIS VERSION OF SHUTDOWN IS DIFFERENT FROM PRE
VIOUS VERSIONS.

In the past, the shutdown procedure performed process-killing and file
system unmounts before changing init state. This proved unreliable.
Now, the new init state defines what state the machine is to be in and is
responsible for making it that way. Recommended definitions are:

state 0
Shut the machine down so it is safe to remove the power. Have the
machine remove power if it can.

state 2
Bring machine to state traditionally called multiuser.

state 5
Stop the UNIX system and go to the firmware monitor.

state 6
Stop the UNIX system and reboot.

SEE ALSO
init(lM).

. 1 -

I

SIZE(1)

NAME
size - print section sizeS of common object files

SYNOPSIS
size [-o] [-x] [-dl [-V] files

DESCRIPTION
The size cOmmand produces section size information for each section in
the object files in the comriton object file format. If an archive file is
input to Size, the information for all archive members is displayed.

The size of the ,text, .data, and .bss (up.initialized data) 3ections are
printed along with the total size of the object file. If there are seCtions
other than .text, .d�til, and .bss that are loaded when the program is
executed, the name of each sectiori will be printed along with its size.

Numbers will be printed in decimal unless either the -o or the -x option
is uSed, in which case they will be printed in octal or in hexadecimal,
respectively.

The -V flag will supply the version informa:.tion oil the size command.

SEE ALSO
as(!), cc(l), ld(l).
aout(4), ar(4) iri the Software Development System manual.

DIAGNOSTICS
" size: nB.me: cannot Open"

if name cannot be read.

" size: name: bad magic"
if name is not a common object file.

- 1 -

'
'o.

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(1)

Sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

SEE ALSO

while true
do

done

command
sleep 37

alann(2), sleep(3C) in the Software Development Manual

- 1 -

SN0(1)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [files I

DESCRIPTION l Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named files and the standard input.
All input through a statement containing the label end is considered program
and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the folloWing ways:

SEE ALSO
awkO) .

There arc no unanchored searches. To get the same effect:

a •• b unanchored search for b.
a •x• b - x c unanchored assignment

There is no back referencing.

x - "abc"
is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non
unique) label define. Execution of a function call begins at the state·
ment following the define. Functions cannot be defined at run time.
and the use of the name define is preempted. There is no provision for
automatic variables other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In partic
ular. the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define is
not an executable statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies.
Because of this, the arithmetic operators I and • must be set off by
spaces.

The right side of assignments must be non-empty.

Either ' or • may be used for literal quotes.

The pseudo-variable sysppt is not available.

- I -

c

(
_�

SORT(1)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl
[-pos2ll [filesl

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the stan·
dard output. The standard input is read if - is used as a file name or no input
files are named.
Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
lexicographic by bytes in machine collating sequence.
The following options alter the default behavior:
-c Check that the input file is sorted according to the ordering rules; give no

output unless the file is out of sort.
-m Merge only, the input files are already sorted.
-u Unique: suppress all but one in each set of lines having equal keys.
-ooutput

The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs. There
may be optional blanks between -o and output.

-ykmem
The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to use more space as needed. If this option is
presented with a value, kmem, sort will start using that number of kilo
bytes of memory, unless the administrative minimum or maximum is
violated, in which case the corresponding extremum will be used. Thus,
-yO is guaranteed to start with minimum memory. By convention, -y
(with no argument) starts with maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the -c or -m options, a popular system default size will be used. Lines
longer than the buffer size will cause sort to terminate abnormally. Sup
plying the actual number of bytes in the longest line to be merged (or
some larger value) will prevent abnormal termination.

The following options override the default ordering rules.
-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are

-r

-i

-M

significant in comparisons.
Fold lower case letters into upper case.
Ignore characters outside the ASCII range 040-0176 in non-numeric com
parisons.
Compare as months. The first three non-blank characters of the field are
folded t6 upper case and compared so that "JAN" < "FEB" < . . . <
"DEC". Invalid fields compare low to .. JAN". The -M option implies
the -b option (see below).

-n An initial pumeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by

- 1 -

SORT(1)

arithmetic value. The -n option implies the -b option (see below).
Note -that the -b option is only effective when restricted sort key
specifications are in effect.

-r Reverse the sense of comparisons.
When ordering options appear before restricted sort key specifications, the '(
requested ordering rules are applied globally to all sort keys. When attached to
a specific sort key (described below), the specified ordering options override all
global ordering options for that key.
The notation +posl -pos2 restricts a sort key to one beginning at posl and
ending at pos2. The characters at positions posl and pos2 are included in the
sort key (provided that pos2 does not precede posl). A missing -pos2 means
the end of the line.
Specifying posJ and pos2 involves the notion of a field, a minimal sequence of
characters followed by a field separator or a new-line. By default, the first
blank (space or tab) of a sequence of blanks acts as the field separator. All
blanks in a sequence of blanks are considered to be part of the next field; for
example, all blanks at the beginning of a line are considered to be part of the
first field. The treatment of field separators can be altered using the options: '
-tx Use x as the field separator character; x is not considered to be part of a

field (although it may be included in a sort key). Each occurrence of x is
significant (e.g., xx delimits an empty field) .

-b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the -b option is specified before the first
+posl argument, it will be applied to all +posl arguments. Otherwise,
the b flag may be attached independently to each +posl or -pos2 argu-
ment (see below). '"-

Posl and pos2 each have the form m.n optionally followed by one or more of
the flags bdfinr. A starting position specified by +m.n is interpreted to mean
the n+lst character in the m+lst field. A missing .n means .0, indicating the
first character of the m+ 1st field. If the b flag is in effect n is counted from
the first non-blank in the m+ 1st field; +m.Ob refers to the first non-blank
character in the m+lst field.

A last position specified by -m.n is interpreted to mean the nth character
(including separators) after the last character of the m th field. A missing .n
means .0, indicating the last character of the mth field. If the b Hag is in effect
n is counted from the last leading blank in the m+lst field; -m.lb refers to
the first non-blank in the m+lst field.
When there are multiple sort keys, later keys are compared only after all ear
lier keys compare equal. Lines that otherwise compare equal are ordered with
all bytes significant.

EXAMPLES
Sort the contents of infile with the second field as the sort key:

sort + 1 -2 infile
Sort, in reverse order, the contents of infilel and infile2, placing the output in
outfile and using the first character of the second field as the sort key:

sort -r -o outfile +1.0 -1.2 infilel infile2
Sort, in reverse order, the contents of infilel and infile2 using the first non
blank character of the second field as the sort key:

sort -r + l .Ob -1 . 1 b infilel infile2

- 2 -

FILES

SORT(1)

Print the password file [passwd(4)] sorted by the numeric user' ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -um with just one
input file make the choice of a unique representative from a set of equal lines
predictable):

sort -urn +2 -3 infile

/usr/tmp/stm???

SEE ALSO
comm(I), join(!), uniq(l).

DIAGNOSTICS
Comments and exits with non-zero status for various trouble conditions (e.g.,
when input lines are too long), and for disorder discovered under the -e
option. When the last line of an input file is missing a new-line character, sort
appends one, prints a warning message, and continues.

- 3 -

SPELL(1)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v I [-b I [-x I [-1 I [-i I [+local_file I [files I

/usr llib/spelllhasbmake

/usrllib/spell/speUin n

/usrllib/speU/hasbcbeck spelling_list

DESCRIPTION
Spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are printed
on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most troff(I), tb/(1), and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and
plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with • for each word.

By default, spell [like deroff(l)] follows chains of included files [.so and .nx
troff(l) requests] , unless the names of such included files begin with /usrllib.
Under the -1 option, spell will follow the chains of all included files. Under
the -i option, spell will ignore all chains of included files.

()

Under the +local_jile option, words found in local_file are removed from \,c_
spell's output. Local _file is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a set of
words that are correct spellings (in addition to spell's own spelling list) for
each job.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below
with their default settings (see FILES). Copies of all output are accumulated in
the history file. The stop list filters out misspellings (e.g., thier-thy-y+ier)
that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

basbmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin n Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output. Information
about the hash coding is printed on standard error.

basbcbeck Reads a compressed spelling_list and recreates the nine-digit hash ,
codes for all the words in it; it writes these codes on the standard \,..
output.

- I -

[;

�-·

(\
\�./

SPELL(1)

EXAMPLES

FILES

The following example creates the hashed spell list hlist and checks the result
by comparing the two temporary files; they should be equal.

cat goodwds J /usr/lib/spell/hashmake I sort -u >tmpl
cat tmpl j /usr/lib/spell/spellin 'cat tmpl I we -1'" >hlist
cat hlist J /usr/Jib/spell/hashcheck > tmp2
cliff tmpl tmp2

D SPELL-/usr/lib/spell/hlist(ab)
s -SPELV""/usr/Jib/spen/hstop
H SPELL-/usr/Iib/spell/spellhist
/Usr/lib/spell/spellprog

hashed spelling lists, American & British
hlished stop liSt
history file
program

SEE ALSO

BUGS

sed(!), sort (I), tee(!) .
"Nroff and Troff User manual", "Mathematics Typesetting Program" (egn), and ''Table
foiiTlB.tting Program" (tbl) in the Text Preparation System manual.

The spelling list's coverage is uneven; new instaJJations will probably wish to
monitor the output for several months to gather local additions; typically, these
are kept in a separate local file that is added to the hashed spelling_list via
spellin.
The British spelling feature·was done by an American.

- 2 -

SPLIT(1)

NAME
split - split a file into pieces

SYNOPSIS
spUt [-n I [file [name 1 1

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000 lines) onto a set of ·\:,_ 1
output files. The name of the first outPut file is name with � appended, and so
on lexicographically, up to �� (a maximum of 676 files). Name cannot be
longer than 12 characte_rs. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file
is used.

SEE ALSO
bfs(I), csplit(Il.

- I .

�!

(!

STRIP(!) STRIP(1)

NAME
strip - strip symbol and line number information from common object
files

SYNOPSIS
strip [-b] [-1] [-r] [-s] [-x] [-V] file�names

DESCRIPTION

FILES

The strip command strips the symbol table and line number information
from common object files, including archives. Once this has been done,
no symbolic debugging access will be available for that file; therefore,
this command is normally run only on production modules that have been
debugged and tested.

The amount of information stripped from the symbol table can be con�
trolled by using the following options:

-b Same as the -x option but also do not strip scoping information
(i.e., beginning and end of block delimiters).

-1 Strip line number information only; do not strip any symbol
table information.

-r Reset the relocation indices into the symbol table.

-s Reset the line number indices into the symbol table (do not
remove). Reset the relocation indices into the symbol table.

-x Do not strip static or external symbol information.

-V Print the version of the strip command executing on the stan-
dard error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping file-name unless the -r flag is used.

If the strip command is executed on an archive file [see ar(4)] the archive
symbol table will be removed. The archive symbol table must be restored
by executing the ar(l) command with the s option before the archive can
be link-edited by the ld(l) command. St1·ip(l) will instruct the user with
appropriate warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken
by the object file.

/usr/tmp/ str??????

SEE ALSO
ar(l), as(!), cc(l), ld(l).
a,out(4) in the Software Development System manual.

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not a common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is not used,
and any symbol table information was to be stripped .

. I .

I

This page intentionally left blank.

STTY(1)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a 1 [-g 1 [options 1

DESCRIPTION
Stty sets certain terminal 110 options for the device that is the current standard
input; without arguments, it reports the settings of certain options; with the -a
option, it reports all of the option settings; with the -g option, it reports
current settingsJn __ a _form-that .can be- used as an -argument--to another- stty
command. Detailed information about the modes listed in the first five groups
below may be found in terrnio(1) for asynchronous lines, or in stermio (7) for
synchronous lines. Options in the last group are implemented using options in
the previous groups. Note that many combinations of options make no sense,
but no sanity checking is performed. The options are selected from the follow
ing:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parocld) select odd (even) parity.
csS cs6 cs7 cs8 select character size [see termio (7)].
0 hang up phone line immediately.
50 75 110 134 I 50 200 300 600 1200 1800 2400 4800 9600 exta extb

bupd (-bupd)

bup (-hop)
cstopb (-cstopb)
cread (-cread)
clocal (-clocaO
loblk (-loblk)

Input Modes
ignbrk (-ignbrk)
brkint (-brldnt)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (-istrip)
inlcr (-inlcr)
igncr (-igncr)
icrnl (-icrnl)
iuclc (-iuclc)

ixon (-ixon}

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

olcuc (-olcuc)

Set terminal baud rate to the number given, if possible.
(All speeds are not supported by all hardware inter·
faces.)
hang up (do not hang up) DATA-PHONEII connection on
last close.
same as bupcl (-bupcl).
use two (one) stop bits per character.
enable (disable) the receiver.
n assume a line without (with) modem control.
block (do not block) output from a non-current layer.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors [see termio (7)].
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) uppercase alphabetics to lower case
on input.
enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by send·
ing an ASCII DCI.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

post-process output (do not post-process output; ignore
all other output modes).
map (do not map) lowercase alphabetics to uppercase
OJl output.

- I -

I

STTY(1)

onlcr (-onlcr)
ocml (-ocrDI)
onocr (-onocr)
onlret (-oolretl

ofiU (-ofiU)
ofdel (-ofdeO
crO crl crl cr3
DIO Dll
tabO tabl tab2 tab3

bsO bsl
rro m
vtO vtl

Local Modes
isig (-isig)

icanon (-icanon)

xcase (-xcase)
echo (-echo)
ecboe (-ecboe)

ecbok (-ecbokl
lfkc (-lfkc)
ecboDI (-ecbonO
noflsb (-noflsb)
stwrap (-stwrap)

stflusb (-stflusbl

stappl (-stappO

Control Assignments
control-character c

line i
Combination Modes

map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the CR
function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns [see termio (7)].
select style of delay for line-feeds [see termio(1)].
select style of delay for horizontal tabs [see termio(1) or
stermio (7)].
select style of delay for backspaces [see termio (7) l.
select style of delay for form-feeds [see termio (7)].
select style of delay for vertical tabs [see termio(1)].

enable (disable) the checking of characters against the
special control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL pro�
cessing).
canonical (unprocessed) upper/lowercase presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace�
space�backspace string. Note: this mode will erase the
ERASEed character on many CRT terminals; however, it
does not keep track of column position and, as a result,
may be confusing on escaped characters, tabs, and back
spaces.
echo (do not echo) NL after KILL character.
the same as echok (-echok); obsolete.
echo (do not ecbol NL.
disable (enable) flush after INTR, QUIT, or SWTCH.
disable (enable) truncation of lines longer than 79 char�
acters on a synchronous line.
enable (disable) flush on a synchronous line after every
write(2).
use application mode (use line mode) on a synchronous
line.

set control�character to c, where control-character is
erase, kill, intr, quit, swtcb, eof, ctah, min, or time [ctab
is used with -stappl; see stermio (7)], [min and time are
used with -icanon; see termio (1)]. If c is preceded by
an (escaped from the shell) caret ("'), then the value
used is the corresponding CTRL character (e.g., "'"d" is
a CfRL..CO; ""?" is interpreted as DEL and ""-" is
interpreted as undefined.
set line discipline to i (0 < i < 1 27).

evenp or parity enable parenb and cs7.
oddp enable parenb, cs7, and parodd.
-parity, -eveop, or -oddp

raw (-raw or cooked)
disable parenb, and set cs8.

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, SWTCH, EOT, or output post pro
cessing).

- 2 -

(
'

nl (-nil
lease {-lease)
LCASE (-LCASE)
tabs (-tabs or tabJ)
ek

sane
term

SEE ALSO
tahs(l).

STTY(1)

unset (set) icrnl, onlcr. In addition -nl unse� inlcr,
igner, ocrnl, and onlret.
set (unset) xcase, iuclc, and olcuc.
same as lease (.,...lease).
preserve (expand to spaces) tabs when printing.
reset ERASE and KIL� characters back to normal # and
@.
resets all modes to some reasonable values.
set all modes suitable for the terminal type term, where
te�� is �ne �f_tty33,_tty37, 1't0�. _ _ tn3�. �7_00, or �ek.

ioct1(2) in the Software Development System manual.
stermio(7), tennio(7).

- 3 -

SU(1)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg . . .]]

DESCRIPTION
Su allows one to become another user without logging off. The default user
name is root (i.e., super-user).
To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user ID set to that of the specified user. The new shell will be ·the
optional program named in the shell field of the specified user's password file
entry [see passwd(4)J, or lbin/sh if none is specified [see sh(l)]. To restore
normal user ID privileges, type an EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the pro
gram invoked as the shell. When using programs like sh(l), an arg of the
form -c string executes string via the shell and an arg of -r will give the user
a restricted shell.

The following statements are true only if the optional program named in the
shell field of the specified user's password file entry is like sh(l}. If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first character
is -, thus causing first the system's profile {/etc/profile} and then the specified
user's profile (.profile in the neW HOME directory} to be executed. Otherwise,
the environment is passed along with the possible exception of SPATH, which is
set to lbin:/etc:/usrlbin for root. Note that if the optional program used as the
shell is lbin/sb, the user's .profile can check argO for -sb or -su to determine \,
if it was invoked by Jogin(l} or su(l), respectively. If the user's program is
other than lbin/sb, then .profile is invoked with an argO of -program by both
login(!) and su(i).

All attempts to become another user using su are logged in the log file
/usr/adm/sulog.

EXAMPLES
To become user bin while retaining your previously exported environment, exe
cute:

su bin

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

su - bin

To execute command with the temporary environment and permissions of user
bin, type:

su - bin ·C "command args"

" 1 "

c
FILES

/etc/passwd
/etc/profile
SHOME/.profile
/usr/adm/sulog

SEE ALSO
env(l), login(!), sh(l).

system's password file
system's profile
user's profile
log file

passwd(4), proflle(4), environ(5) in the Software Development System manual.

-2-

SU(1)

SUM(1)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r J file

DESCRIPTION '"
Sum calculates and prints a 16�bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line. The option -r
causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the
block count. '

- I -

(\

SVNC(1)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously unwrit
ten system buffers out to disk, thus assuring that all file modifications up to
_that point will be saved. See synd2) __ for_ details. _ ____ _

SEE ALSO
sync(2) in the Software Development System manual.

I
- I -

. SYSDEF(1 M)

NAME
sysdef - system definition

SYNOPSIS
/etc/sysdef l opsys [master 1]

DESCRIPTION
Sysdef analyzes the named operating system file and extracts configuration

1�

FILES

information. This includes all hardware devices as well as system devices and
all tunable parameters.

The output of sysdef can usually be used directly by config(lM) to regenerate
the appropriate configuration files.

/unix
/etc/master

default operating system file
default table for hardware specifications

SEE ALSO

BUGS

config(lM), master(4).

For devices that have interrupt vectors but are not interrupt�driven, the output
of sysdef cannot be used for config. Because information regarding config
aliases is not preserved by the system, device names returned might not be
accurate.

- 1 -

TABS(1)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec 1 [+mn 1 [-Ttype 1

(- DESCRIPTION
"--- � Tabs sets the tab stops on the user's terminal according to the tab specification

tabspec, after clearing any previous settings. The user's terminal must have
remotely-settable hardware tabs.

c

_users _ of GE __ TermiNet terminals _should __ _be _aware_ that__ _they behave in a
different way than most other terminals for some tab settings. The first
number in a list of tab settings becomes the left margin on a TermiNet termi
nal. Thus, any list of tab numbers whose first element is other than 1 causes a
margin to be left on a TermiNet, but not on other terminals. A tab list begin
ning with I causes the same effect regardless of terminal type. It is possible to
set a left margin on some other terminals, although in a different way (see
below).
Four types of tab specification are accepted for tabspec: "canned," repetitive,
arbitrary, and file. If no tabspec is given, the default value is -8, i.e., UNIX
system "standard" tabs. The lowest column number is I. Note that for tabs,
column I always refers to the leftmost column on a terminal, even one whose
column markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Gives the name of one of a set of "canned" tabs. The legal codes and
their meanings are as follows:

-· 1,10,16,36,72
Assembler, IBM S/370, first format

-al 1,10,16,40,72
Assembler, IBM S/370, second format

-c I,8,I2,16,20,55
COBOL, normal format

-c2 I ,6, 10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the
first typed character corresponds to card column 7, one space gets you
to column 8, and a tab reaches column 12. Files using this tab setup
should include a format specification as follows:

<:t-el m6 s66 d:>
-c3 I ,6, I 0, 14, 1 8,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs than
-cl. This is the recommended format for COBOL. The appropriate
format specification is:

<:t-c3 m6 s66 d:>
-f 1,7,11,15,19,23

FORTRAN
-p I.5.9.I3.I7.2I.25.29.33.37.4I.45.49.53.57.6I I PLII
-s I,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1 100 Assembler
In addition to these "canned" formats, three other types exist:
-n A repetitive specification requests tabs at columns l+n, 1+2•n, etc.

Note that such a setting leaves a left margin of n columns on Ter
miNet terminals only. Of particular importance is the value -8: this
represents the UNIX system �·standard" tab setting, and is the most
likely tab setting to be found at a terminal. It is required for use with

- 1 -

TABS(1)

the nrojf -h option for high-speed output. Another special case is the
value -0, implying no tabs at all.

nl,n2 ,... The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre- ""'
ceded by a plus sign, it is taken as an increment to be added to the \'::,_ previous value. Thus, the tab lists 1,10,20,30 and 1 , 10,+10,+10 are
considered identical.

- -file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets the
tab stops according to it, otherwise it sets them as -8. This type of
specification may be used to make sure that a tabbed file is printed
with correct tab settings, and would be used with the pr(l) command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins. Type is a name
listed in term(5). If no -T flag is supplied, tabs searches for the
STERM value in the environment [see environ (5)]. If no type can be
found, tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n +I the left
margin. If +m is given without a value of n, the value assumed is 10.
For a TermiNet, the first value in the tab list should be 1, or the mar�
gin will move even further to the right. The normal (leftmost) margin
on most terminals is obtained by +mO. The margin for most termi�
nals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbitrary
specification.
when a "canned" code cannot be found.
if - -jile option used, and file can't be opened.
if - -file option used and the specification in that file
points to yet another file. Indirection of this form is not
permitted.

SEE ALSO
pr(l).

BUGS

environ(S), term(S) in the Software Development System manual.

There is no consistency among different terminals regarding ways of clearing
tabs and setting the left margin.
It is generally impossible to usefully change the left margin without also setting
tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is wil� -.....,
ling to set 64.

-2-

(
'-

TAIL(1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number lllbc[fl I I [file I

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.
Copying begins at distance _ +number from t_he beginning, or

_
-number from

- -the -eitd of the input (if number is -nun, -the vliluC 10 is- 35-suined). -Nuinber is
counted in units of lines, blocks, or characters, acCording to the appended
option I, b, or c. When no units are specified, counting is by lines.
With the -f ("foilow") option, if the input file is not a pipe, the program will
not terminate after the line of the input file has been copied, but Will enter an
endless loop, wherein it sleeps for a second and then attempts to read and copy
further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process. For example, the com
mand:

tail -f fred
will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred
will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(I).

BUGS
Tails relative to the end of the file are treasured up .in a buffer, and thus lire
limited in length. Various kinds of anomalous behavior may happen with char
acter special files.

- I -

I

TAR(1)

NAME
tar - tape file archiver

SYNOPSIS
tar [key I [files I

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are controlled by the
key argument. The key is a string of characters containing at most one func
tion letter and possibly one or more function modifiers. Other arguments to the
command are files (or directory names) specifying which files are to be
dumped or restored. In all cases, appearance of a directory name refers to the
files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function
implies. this function.

x The named files are extracted from the tape. If a named file matches
a directory whose contents had been written onto the tape, this direc·
tory is (recursively) extracted. If a named file on tape does not exist
on the system, the file is created with the same mode as the one on
tape except that the set·user·ID and set-group·ID bits are not set
unless you are super·user. If the files exist, their modes are not
changed except for the bits described above. The owner, group, and
modification time are restored (if possible). If no files argument is
given, the entire content of the tape is extracted. Note that if several
files with the same name are on the tape, the last one overwrites all
earlier ones.
The names of all the files on the tape are listed.

u The named files are added to the tape if they are not already there, or ',.:..
have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape, instead
of after the last file. This command implies the r function.

The following characters may be used in addition to the letter-that selects the
desired function:

#s Where #is a tape drive number (0, . . . , 7), and s is the density (I • low
(800 bpi), m • medium (1600 bpi), or h • high (6250 bpill. This
modifier selects the drive on which the tape is mounted. The default
is Om.

v Normally, tar does its work silently. The v (verbose) option causes it
to type the name of each file it treats, preceded by the function letter.
With the t function, v gives more information about the tape entries
than just the name.

w Causes tar to print the action to be taken, followed by the name of
the file, and then wait for the user's confirmation. If a word begin·
ning with y is given, the action is performed. Any other input means
"no".

f Causes tar to use the next argument as the name of the archive
instead of /dev/mt/??. If the name of the file is -, tar writes to the
standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipeline.
Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

· 1 .

(\

C'

b

m

0

TAR(1)

Causes tar to use the next argument as the blocking factor for tape
records. The default is 1, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key letters
x and t) .
Tells tar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.
Tells tar not to restore the modification times. The modification time
of the file will be the time of extraction.
Causes extracted files to take on the user and group identifier of the
user iunnirig the program rather than thoSe on the tape.

EXAMPLES

FILES

tar tvf /dev /rdsklfd

tar xvf /dev /rdsklfd

/dev/mt/*
/tmp/tor*

table of conten�
(high density floppy)

restore files to hard disk

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a .file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The cUITent magnetic tape driver cannot backspace raw magnetiC tape. lf the archive is
on a disk file, the b option should not be used at all, because updating an archive stored
on disk can destroy it.
The current limit on file-name length is 1 00 characters.
Note that tar cOm is not the same as tar cmO.

- 2 -

I

TEE(1)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i I [-a I [file I ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copieS in \..
the files. The -i option ignores interrupts; the -a option causes the output to
be appended to the files rather than overwriting them.

- 1 -

r
\

TEST(1)

NAME
test - condition evaluation command

SYNOPSIS
test expr
I expr 1

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero (true)
exit status; otherwise, a non�zero (false) exit status is returned; test also returns
a non-zero exit status if there are no arguments. The following primitives are
used to construct expr:

-r file true if file exists and is readable.

-w file true if file exists and is writable.

-x jl/e

-fji/e

-dji/e

-c jlle

-bji/e

-pjile

-ujl/e

-gjile

-k ji/e

-sjl/e

-t (fildes I

true if file exists and is· executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-10 bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes
default) is associated with a terminal device.

-z s/ true if the length of string s/ is zero.

-n sl true if the length of the strings/ is non-zero.

s/ - s2 true if strings sl and s2 are identical.

sl !- s2 true if strings s} and s2 are not identical.

sl true if sl is not the null string.

,,

(! by

nl -eq n2 true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -le may be used in place
of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a

-o

(expr)

binary and operator.

binary or operator (-a has higher precedence than -o).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice
also that parentheses are meaningful to the shell and, therefore, must be
escaped.

- I -

TEST(1)

SEE ALSO
find(!), sh(l).

WARNING
In the second form of the command (i.e., the one that uses [), rather than the
word test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command. \..

- 2 -

� -
(

r. \ /

(_;

TIC (IM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-•[n]] file ...

DESCRIPTION

FILES

Tic translates terminfo files from the source format into the compiled format.
The results are placed in the directory /usr/lib/terminfo.

The -v (verbose) option causes tic to output trace information showing its pro
gress._ If the optional .integer is __ appended, __ _the level of verbosity can be
increased.
Tic compiles all terminfo descriptions in the given files. When a use- field is
discovered, tic searches first the current file, then the master file, which is
.. ./terminfo.src".
If the environment variable TERMINFO is set, the results are placed there
instead of /usr/lib/terminfo.

Some limitations: total compiled entries cannot exceed 4096 bytes. The name
field cannot exceed 128 bytes.

/usr/lib/terminfo/•t• compiled terminal capability data base

SEE ALSO

BUGS

curses(3X}, terminfo(4}.

Instead of searching ./terminfo.src, it should check for an existing compiled
entry.

- 1 -

TIME(1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in exe�
cution of the command. Times are reported in seconds.
The times are printed on standard error.

SEE ALSO
timex(!).
tirnes(2) in the Software Development System manual.

CAVEATS
When time is used on a 3BiOA dual computer system the sum of system and
user time could be greater than real time. This is the result when command is a
multi-threaded task-runnirig oh a 3820A system with both processors active.

- 1 -

c

I
\

TIMEX(1)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total

-syStCrif-aCtiVitY dlliiilg tne-ex-ecutitiif interval can -be-reported.
The output of timex is written on standard error.

Options are:
-p List process accounting records for command and all its children.

Suboptions f, b, k, m, r, and t modify the data items reported, as defined
in acctcom (l). The number of blocks read or written and the number
of characters transferred are always reported.

-o Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data items
listed in sar(l) are reported.

SEE ALSO
acctcom(t), sar(l).

CAVEATS
When timex is used on a 3B20A dual computer system the sum of system and
user time could be greater than real time. This is the result when command is
a multi-threaded task runing on a 3B20A system with both processors active.

WARNING
Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available. Back·
ground processes having the same user-id, terminal-id, and execution time win·
dow will be spuriously included.

EXAMPLES
A simple example:

timex -ops sleep 60
A terminal session of arbitrary complexity can be measured by timing a sub
shell:

timex -opskmt sh
session commands

EDT

- I -

I

TOUCH(1)

NAME
touch - update access and modification times of a file

SYNOPSIS
toucb [-amc I [mmddbbmm[yyl I files

DESCRIPTION
Touch causes the access and modification times of each argument to be
updated. The file name is created if it does not exist. If no time is specified
[see date (l)] the current time is used. The -a and -m options cause touch to
update only the access or modification times respectively (default is -am).
The -e option silently prevents touch from creating the file if it did not previ
ously exist.

The return code from touch is the number of files for which the times could not
be successfuUy modified (including files that did not exist and were not
created).

SEE ALSO
date(!).
utime(2) in the Software Development System manual.

- 1 -

(
\

1 \
\. _ _/

TPUT(1)

NAME
tput - query terminfo data base

SYNOPSIS
tput (-Ttype J capname

DESCRIPTION
Tput uses the terminfo(4) data base to make terminal-dependent capabilities
and information available to the shell. Tput outputs a string if the attribute
(capability name) is of type string. or an integer if the attribute is of type
integer. If the attribute is of type Boolean, tput simply sets the exit code (0 for
TRUE, 1 for -FALSE), and aaes-no o-utpUt. - - -

-Ttype

Cap name

indicates the type of tenninal. Normally this flag is unnecessary,
as the default is taken from the environment variable STERM.
indicates the attribute from the terminfo database. See ter
mi'!fo(4).

EXAMPLES

FILES

tput clear
tput cols
tput -T450 cols
bold -'tput smso'

tput be

Echo clear-screen sequence for the current terminal.
Print the number of columns for the current terminal.
Print the number of columns for the 450 terminal.
Set shell variable "bold" to stand·out mode sequence for
current terminal. This might be followed by a prompt:
echo 'S(bold)Piease type in your name: \c'
Set exit code to indicate if current terminal is a hardcopy
terminal

/etc/term/?/*
/usr/include/term.h
/usr/include/curses.h

Terminal descriptor files
Definition files

DIAGNOSTICS
Tput prints error messages and returns the following error codes on error:
-1 Usage error.
-l Bad terminal type.
-3 Bad capname.

In addition, if a capname is requested for a terminal that has no value for that
capname (e.g., tput -T4SO lines), -1 is printed.

SEE ALSO
st1y(l).
tenninfo(4) in the Software Development System manual.

- I -

TR(1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds I [string 1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard oUtput with substitution or dele
tiori of selected characters. InpUt characters found ih string! are mapped into
the C')rresponding characters of string2. Any combination of the options -cds
may be used:
-c Complements the set of characters in string! with respect to the

universe of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string! .

-s Squedes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be Used to introduce ranges of
characters or repeated characters into the strings:
[a -zl Stands for the string flf characters whose ASCII codes run from char

acter a to character z, inclusive.

la•nl Stands for n repetitions of a. If the first digit of n is 0, n is con
sidered octal; otherwise, n is taken to be decimal. A zero or missing n
is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by I , 2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.
The following example creates a list of all the words in file/ one per line in
file2, where a word is taken to be a maximal string of alphabetics. The strings
are quoted to protect the special characters from interpretation by the shell;
012 is the ASCII code for newline.

tr -cs "[A-Z](a-z]" "[\012•]" <file! >file2

SEE ALSO

BUGS

ed(l), sh(l).
ascii(5) in the Software Development System manual.

Will not handle ASCII NUL in string/ or sti'ing2; always deletes NUL from
input.

- 1 -

''_ J

(

(
\._ _

c:

NAME
true, false - provide truth values

SYNOPSIS
true

false
DESCRIPTION

TRUE(1)

True does nothing, successfully. False does nothing, unsuccessfully. They are
typica\ly__l!S�d _i_!! j_!_QUt _t� s_b (_1 �- su�::_h _!-�:�=-

SEE ALSO
sh(J) .

DIAGNOSTICS

while true
do

command
done

True has exit status zero, false nonzero.

- 1 -

TSORT(1)

NAME
tsort - topological sort

SYNOPSIS
tsort [file I

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent �
with a partial ordering of items mentioned in the input file. If no file is
specified, the standard input is understood.
The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate pres�
ence, but not ordering.

SEE ALSO
!order(!).

DIAGNOSTICS

BUGS

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of ordering a
library archive file.

- I -

CJ

TTY(1)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1 1 [-s 1

DESCRIPTION
Tty prints the path name of the user's terminaL The -1 option prints the syn
chronous line number to which the usei''s terminal is connected, if it is on an
active synchronous line. The -s option inhibits printing of the terminal path
name, allowing one to test just the exit code.

EXIT CODES
2
0
1

DIAGNOSTICS

if invalid optjorts were specified,
if standard input is a terminal,
otherwise.

"not ori an active synchronous line" if the standard input is iiot a synchronous
terminal and -1 is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

- 1 -

I

TTYPATCH(1)

NAME
ttypatch- patch a kernel for tty parameters

SYNOPSIS
ttypatch [-ked) [-t (tty#)] [-i (mterrupt)] [-a (addr)]
[-n (count)] [-v (vector)] [-m (modem ctl value)]

DESCRIPTION
""-

FILES

ttypatch makes dev/tty* node(s) as needed and patches kernel parameters. By default, the
filename /systemS is patched.

--k patches the dev/kmem (running) version of the kernel. Note that the disk flle is
not patched.

-c clears (zeros) the kernel parameters.

--d prints the current values of the kernel parameters.

-t# starting tty number (i.e. 0 for /dev/ttyO).

-i# interrupt line number (i.e. 4 for COMl, 3 for COM2).

-all address of 16450/8250 UARTbase (i.e. 1016 for COM!, 760 for COM2).

-n# number of consecutive UARTS (8 jjo locations apart) on this interrupt line.

-v# port address to enable interrupts, latch individual interrupt lines (0 if not
necessary to read/write).

-m# Modem Control Register value (values for OUTl & OUT2 are board/port
dependent, default� OxOc).

Nwnbers and addresses should be in decimal for expr compatability.

/dev/tty??, /dev/ttym??, /dev/ttyM??

SEE ALSO
patch(!), mknod(1)

EXAMPLES
Standard COM! (ttyO atmt4 and address Ox3!8):

"nypatch -tO -al016 -i4"

StandardCOM2 (tty! atmt3 and address Ox2!8):

"ttypatch -t1 -a760 -i3"

8 port Digiboard using COM2's interrupt. Devices ttyO through tty7 are created:

"ttypatch -tO -n8 -a256 -i3"

4 port Digiboard. Tiris conunand assumes the link kit has been used to allow interrupt
5 for serial service. Devices tty2 through ttyS are created:

"nypatch -t2 -iS -a256 -n4"

4 port AST board. This command assumes the link kit has been used to allow interrupt
7 for serial service. Devices tty6 through tty9 are created:

"ttypatch -t6 -i7 -a416 -n4 -v447 -mO"

- 1 -

UADMIN(1)

NAME
uadmin - administrative control

SYNOPSIS
uadmin cmd fen

DESCRIPTION
The uadmin command provides control for basic administrative functions.
This command is tightly coupled to the system administration procedures
and is not intended for general use. It may be invoked only by the
super-user.

The ar_guments_ are converted_to.Jntegers and __ passed_ to _ _ the .uadmin sys
tem call.

SEE ALSO
uadmin(2) in the Software Development System manual.

- 1 -

UMASK(1}

NAME
umask - set file-creation mOde mask

SYNOPSIS
um.ask [ooo]

DESCRIPriON
The user file-creation mode mask is set to ooo. The three octal digits refer to \:...
read/write/execute permissions for owner, group, and others, respectively (see chmod(2)
and umask(2)). The value of eaCh specified digit is subtracted froni the corresPonrung
"digit" specified by the system for the creation of a file (see creat(2)). For example,
umask 022 removes group. and others Write permission (file� rionnally created with
ina de 777 become mode 755; files Created with mode 666 become mode 644).
If ooo is omitted. the cmrent value of the mask is printed.
Umask is recognized and executed by the shell.

SEE ALSO
chmod(l), sh(l).
clunod(2), creat(2), umask:(2) in the Software Development System manual .

. 1 .

(
\

(
"- - '

UNAME(1)

NAME
uname - print name of current UNIX system

SYNOPSIS
un�rne [-snnma]

DESCRIPTION
Uname prints the current system name of the UNIX system on the standard
output file. It is mainly useful to determine which system one is using. The
options cause selected information returned by uname(2) to be printed:

-s -print- the- system -name--(default)-.--

-n print the nodename (the nodename may be a name that the system is
known by to a communications network).

-r print the operating system release.

_, print the operating syste� version.

- m print the machine hardware name.

-a print all the above information.

SEE ALSO
uname(2) in the Software Development .System manual

- 1 -

UNGET(1)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSID) [-sl [-ol files

DESCRIPTION '
Unget undoes the effect of a get -e done prior to creating the intended new � J
delta. If a directory is named, unget behaves as though each file in the direc-
tory were specified as a named file, except that non-sees files and unreadable
files are silently ignored. If a name of - is given, the standard input is read
with each line being taken as the name of an sees file to be processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

-·

SEE ALSO

Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the ''new delta ..) . The
use of this keylettcr is necessary only if two or more out
standing gets for editing on the same sees file were done
by the same person (login name). A diagnostic results if
the specified SID is ambiguous, or if it is necessary and
omitted on the command line.

Suppresses the printout, on the standard output. of the
intended delta's SID.

Causes the retention of the gotten file which would nor·
mally be removed from the current directory.

delta(I}, get(I}, help(!), sact(I).

DIAGNOSTICS
Use help(l) for explanations.

- I -

UNIQ(1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq I -udc I +n) I -n) 1 I input I output 1 1

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeedirig copies of repeated lines are removed; the remainder is
written on the output file. Input and output should always be different. Note
that repeated lines must be adjacent in order to be found; see sort (1). If the
-u flag--is used, just -the lines -that are -not-repeated-in- the original -fi1e are out

put. The -d option specifies that one copy of just the repeited lines is to be
written. The normal mode output is the union of the -u and -d· mode out
puts.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times it
occurred.

The n arguments specify skipping an initial portion of each line in th� com
parison:

-n The first n fields toge�er with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

'

+n The first n characters are ignored. Fields are skipped before charac
ters.

SEE ALSO

(�', comm(l), sort(!).

- I -

UNITS(1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inCh
You want: em

• 2.540000e+OO
I 3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally pre�
ceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

·

You have: �S lbs force/inl
You want: atm

• 1.020689e+OO
I 9.797299e-OI

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and
metric prefix� are recognized, together with a generous leavening of exotica
and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge;: on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water.
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (e.g., ligbtyear). British units that differ from their U.S. counterparts
are prefixed thus:· brgallon. For a complete list of units, type:

cat /usr/lib/unittab

/usr/lib/unittab

- I -

()

0

0

UNTIC(1)

NAME
untie - UD.compile tenninfo tenninal description files

SYNOPSIS
untie terminal-name ...

DESCRIPTION
Untie converts the terminfo file which corresponds to the specified t:enrUna1. name into a
file that can be processed by tic.

If multiple terminal names are given, a terminal description is generated for each of the
named tenninals. The output is written on standard output.

lt is wise to backup the original terminal description (from /usr!liblterminfo) before
compiling the generated file.

EXAMPLES

To uncompile the terminal description for a ''vt100", type:

untie vt100 >vt100

To gg_mp_il� � geqeratecl fiJe, y_ou probably need root permissions and type:

tic vt100

NOTES

FILES

If new capabilities are added to the tenninfo database, the untie program will need to be
modified.

Most of the capabilities are in the tables in the order that the capabilities are
documented. There are a few exceptions in the string variables.

/srcfuntic.c
/usr/lib/terminfo/? /*

AUTHOR

Dave Regan

- 1 -

This page intentionally left blank.

l
I I I

C!

- '
I

(_)

UUCLEAN(1 M)

NAME
unclean - uucp spool directory clean-up

SYNOPSIS
/usr nib/uucp/uuclean [options]

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified prefix and
delete all those which are older than the specified number of hours.
The following options are available.
-ddirectory Clean directory instead of the spool directory. If directory is not

a valid spool directory it cannot contain •work files" i.e., files
whose names start with "C.". These files have special meaning to
uuc/ean pertaining to uucp job statistics.

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments
may be specified. A -p without any pre following will cause ail
files older than the specified time to be deleted.

-ntime Files whose age is more than time hours will be deleted if the
prefix test is satisfied (default time is 72 hours).

ocwfile

-ssys

The default action for uuc/ean is to remove files which are older
th:lR

-
a· SPecified time (see -n option). The -w option is used to

find those files older than time hours, hOwever, the files are not
deleted. If the argument file is present the warning is placed in
file, otherwise, the warnings will go to the standard output.
Only files destined for system sys are examined. Up to 10 -s
arguments may be specified.

-mfile The -m option sends mail to the owner of the file when it is
deleted. If a file is specified then an entry is placed in file.

This program is typically started by cron(lM).

/usr/Jib/uucp
/usr/spoolluucp

SEE ALSO

directory with commands used by uuclean internally
spool directory

cron(IM), uucp(IC), uux(IC).

- I -

I

UUCP(1C)

NAME
uucp, uulog, uuname - UNIX system-to-UNIX system copy

SYNOPSIS
uucp [options 1 source-files destination-file

uulog [options 1

uuname [-1 I [-v I

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have the
form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-nnme may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to Send the file via the specified route, and
only to a destination in PUBDIR (see below). Care should be taken to insure
that intermediate nodes in the route are willing to foward information.

The shell metacharacterS 7, • and [• • .) appearing in path·name will be
expanded on the appropriate system.

Path names may be one of:

(I) a full path name;

(2) a path name preceded by -user where user is a login name on
the specified system and is replaced by that user's login direc
tory;

(3) a path name preceded by -/user where user is a login name on
the specified system and is replaced by that user's directory
under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the C<JPY will fail.
If the destination-file is a directory, the last part of the source..jile name is
used.

Uucp preserves execute permissions across the transmission and gives 0666 read
and write permissions [see chmod(2)].

The following options are interpreted by uucp:

-d Make all necessary directories for the file C<lpy (default).

-f Do not make intermediate directories for the file C<Jpy.

-c Use the source file when copyina: out rather than copying the file to
the spool directory (default).

-c Copy the source file to the spool directory.

-mjile Report status of the transfer in file. If file is omitted, send mail to the
requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there. (Note:
this will only be successful if the remote machine allows the uucp
command to be executed by /usrllib/uucp/uuxqt.)

- I -

� }

(' \ _j

0

0

-r

-j

UUCP(1C)

Queue job but do not start the file transfer process. By default a file
transfer process is started each time uucp is evoked.

Control Writing of the uucp job number to standard outpUt (see
below).

Uucp associates a job number with each request. This job number can be used
by uustat to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the
listing of the uucp job number on standard output. If the environment variable
JOB NO is undefined or set to OFF, the job number will not be listed (default).
If uucp is then invoked with the -j option, the job number will be listed. If
the environment variable JOBNO is set to ON and is exported, a job number
will be written to standard output each time uucp is invoked. In this case, the
-j option will supress output of the job number.

Uulog
Uulog queries a summary log of uucp and uux(lC) transactions in the file
/U!lr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys. If sys is not
specified, then logging information for all systems will be printed.

-uuser Print information about work done for the specified, user. If user is
not specified then logging information for all users will be printed.

Uuname.

FILES

Uuname lists the uucp names of known systems. The -1 option returns the
local system name. The -v option will print additional information about each
system. A description will be printed for each system that has a line of infor
mation in /usr/lib/uucp/ADMIN. The format of ADMIN is: sysname tab
description tab.

/usr/spool/uucp
/usr/spool/uucppublic
/usr/lib/uucp/•

spool directory
public directory for receiving and sending (PUBDIR)
other data and program files

SEE ALSO
mail(l), uux(lC).
chmod(2) in the Software Development System manual.

WARNING

NOTES

The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch
files by path name; ask a responsible person on the remote system to send them
to you. For the same reasons, you will probably not be able to send files to
arbitrary path names. As distributed, the remotely accessible files are those I whose names begin /usr/spoo�/uucppublic (equivalent to -nuuep or just -).

In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof*, .profit? are correct; whereas
•prof*, ?profile are incorrect.

Uucp will not generate a job number for a strictly local transaction.

- 2 -

UUCP(1C)

BUGS
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving
multiple files specified by special sheH characters ? • 1 . • • 1 will not activate the
-m option.

The -m option will not work if all transactions are local or if uucp is executed
remotely via the -e option. �-
The -n option will function only when the sOlJlCC and destination are not on
the same machine.
Only the first six characters of a system·name are significant. Any excess
characters are ignored.

- 3 -

(: _ '

C:

U USTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options]

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp com�
mands, or provide general status on uucp connections to other systems. The
following options are recognized:

-jjobn Report the status of the uucp request john. If all is used for john,
the status of a11 uucp requests is reported. An argument must be
supplied otherwise the usage message will be printed and the

-kjobn

-rjobn

-chour

-uuser
-ssys

-ohour

-yhour

-mmch

-Mmch

-o

-q

request will fail.
Kill the uucp request whose job number is john. The killed uucp
request must belong to the person issuing the uustat command
unless one is the super-user.
Rejuvenate john. That is, john is touched so that its modification
time is set to the current tirp.e. This prevents uuclean from deleting
the job until the jobs modification time reaches the limit imposed by
uuclean.
Remove the status entries which are older than hout hours. This
administrative option can only be initiated by the user uucp or the
super�user.
Report the status of all uucp requests issued by user.
Report the status of all uucp requests which communicate with
remote system sys.
Report the status of all uucp requests which are older than hour
hours.
Report the status of all uucp requests which are younger than hour
hours.
Report the status of accessibility of machine mch. If mch is
specified as aU, then the status of all machines known to the local
uucp are provided.
This is the same as the -m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.
Report the uucp status using the octal status codes listed below. If
this option is not specifie4, the verbose description is printed with
each uucp request.
List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of crea�
tion is listed.

When no options are given, uustat outputs the status or all uucp requests I issued by the current user. Note that only one of th'e options -j, -m, -k,
-c, -r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hdc to com
municate with system mhtsa within the last 72 hours. The meanings of the job
request status are:

job-number user remote-system command�time status-time status

where the status may be either an octal number or a verbose description. The
octal code corresponds to the following description:

- 1 -

UUSTAT(1C)

FILES

OCTAL
000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

STATUS
the copy failed, but the reason cannot be determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated
remote system cannot create temporary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary file
cannot execute uucp
copy (partially) succeeded
copy finished, job deleted
job is queued.
job killed !incomplete)
job killed (complete)

The mea,nings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory description
of the machine status.

/usr/spooUuucp
/usr/lib/tiucp/L _stat
/usr/lib/uucp/R_stat

spool directory
system status file
request status file

SBB ALSO
uucp(IC).

-2 -

'(_

0

0

UUSUB(1M)

NAME
uusub - monitor uucp network

SYNOPSIS
/usrllib/uucp/uusub [options]

DESCRIPTION

FILES

Uusub(lM) defines a uucp subnetwork and monitors the connection and traffic
among the members of the subnetwork. The following options are available:

-asys
-dsys
-I
-r
-r
-uhr
-csys

Add sys to the subnetwork.
Delete sys from the subnetwork.
Report the statistics on connections.
Report the statistics on traffic amount.
Flush the connection statistics.
Gather the traffic statistics over the past hr hours.
Exercise the connection to the system sys. If sys is specified as aU,
then exercise the connection to all the systems in the subnetwork.

The meanings of the connections report are:

sys #call #ok time #dev #login #nack #other

where sys is the remote system name, #call is the number of times the local
system tries to call sys since the last ftush was done, and #ok is the number of
successful connections, time is the latest successful connect time, #dev is the
number of unsuccessful connections because of no available device (e.g., ACU),
#login is the number of unsuccessful connections because of login failure,
#nack is the number of unsuccessful connections because of no response (e.g.,
line busy, system down), and #other is the number of unsuccessful connections
because of other reasons.

The meanings of the traffic statistics are:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent
over the period of time indicated in the latest uusub command with the -uhr
option. Similarly, rfile and rbyte are the numbers of files and bytes received.

The command:

uusub -c all -u 24

is typically started by cron(IM) once a day.

/usr/spoolluucp/SYSLOG
/usr/Iib/uucp/L _sub
/psr/Jib/tmcp/R _sub

system log file
connection statistics
traffic $tatistics

SEE ALSO
uucp(IC), uustat(IC).

- 1 -

UUT0(1C)

NAME
uuto. uupick - public lJNIX·to-UNIX system file copy

SYNOPSIS
unto [options 1 source-files destination
uupick [-s system]

DESCRIPTION

FILES

NOTES

Uuto sends source-files to destination. Uuto uses the uucpOC) facility to
send files, while it allows the local system to control the file access. A source
file name is a path name on your machine. Destination has the form:

system!user
where system is taken from a list of system names that uucp knows about (see
uuname). Logname is the login name of someone on the specified system.
Two options are available:
-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.
The files (or sub-trees if directories are specified) are sent to PUBDIR on sys
tem, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBDIR/receiveluser/mysystem/files.
The destined recipient is notified by mai/(1) of the arrival of files.
Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUB�IR for files destined for the user. For e�ch entry (file or direc·
tory) found, the following message is printed on the standard output:

from system: [file .file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition
of the file:
<new-line> Go on to next entry.
d Delete the entry.
m [dir] Move the entry to named directory dir (current directory is

default).
a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.
q Stop.
EOT (control-d) Same as q.
!command Escape to the shell to do command.
* Print a command summary.
Uupick invoked with the -ssystem option will only search the PUBDIR for files
sent from system.

PUBDIR/usr/spool/uucppublic public directory

In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof*, .profil? are correct; whereas
prof, ?profile are incorrect.

SEE ALSO
mail(!), uucp{!C), uustat(!C), uux{!C).
uuclean(!M).

- 1 -

c�

UUX(1 C)

NAME
uux - UNIX·to·UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
Uux will gather zero or more files from various systems, execute a command on
a specified system and then send standard output to a file on a specified system.
Note that, for security reasons, many installations will limit the list of com
mands executable on behalf of an incoming request from uux. Many sites will
Perrilit little more than the receipt of mRil (see mai/(1)) via uux.

The command-string is made up of one or more arguments that look like a
shell command line, except that the command and file names may be prefixed
by system-name!. A null system-name is interpreted as the local system.
File names may be one of

(I) a full path name;
(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;
(3) anything else is prefixed by the current directory.

As an example, the command
uux "!diff usg!lusr/dan/fl pwba!/a4/dan/fl > !fl .diff"

will get the fl files from the .. usg" and "pwba" machines, execute a diff com
mand and put the results in fl.difJ in the local directory.
Any special shell characters such as < >; I should be quoted either by quoting
the entire command-string, or quoting the special characters as individual
arguments.
Uux will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses. For example, the
command

uux a!uucp b!/usr/file \(c!/usr/file\)
will send a uucp command to system "a" to get /usr/file from system .. b., and
send it to system ••c".
Uux will notify you if the requested command on the remote system was disal
lowed. The response comes by remote mail from the remote machine. Execut
able commands are listed in /usr/Jib/uucp/L.cmds on the remote system. The
format of the L.cmds file is:

cmd,machinel,machine2, ...
If no machines are specified, then any machine can execute cmd. If machines
are specified, only the listed machines can execute cmd. If the desired com
mand is not listed in L.sys then no machine can execute that command.

Redirection of standard input and output is usually restricted to flles in PUB-DIR.
Directories into which redirection is allowed must be specified in
/usrllib/uucp/USERFILE by the system administrator. See "'UUCP."'

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

-n Send no notification to user.

- I -

UUX(1 C)

FILES

-mjile Report status of the transfer in file. If file is omitted, send mail to the
requester when the copy is completed.

-j Control writing of the uucp job number to standard output.

Uux associates a job number with each request. This job number can be used
by uustat to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the list- ��
ing of the uux job number on standard output. If the environment variable
JOBNO is undefined of set to OFF, the job number will not be listed (default).
If uuco is then invoked with the -j option, the job number will be listed. If
the environment variable JOBNO is set to ON and is exported, a job number will
be written to standard output each time uux is invoked. In this case, the -j option will suppress output of the job number.

/usr/spool/uucp
/usr/spool/uucppublic
/usr/lib/uucp/*

spool directory
public directory (PUBDIR)
other data and programs

SEE ALSO

BUGS

mail(!), uuclean(IM), uucp(IC).

Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.
The use of the shell metacharacter • will probably not do what you want it to
do. The shell tokens < < and > > are not implemented.
Only the first six characters of the system-name are significant. Any excess
characters are ignored.

- 2 -

0

0

()

VAL(1)

NAME
val - validate sees file

SYNOPSIS
val -
val [-sl [-rSJD] [-mname] [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a -,
and named files.

Val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently pro
cessed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command
line and file processed, and also returns a single 8-bit code upon exit as
described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-rSJD

-mname

-ytype

The presence of this argument silences the diagnostic
message normally generated on the standard output for
any error that is detected while processing each named
file on a given command line.

The argument value SID (Sees IDentification String) is
an sees delta number. A check is made to determine if
the SID is ambiguous (e. g., rl is ambiguous because it
physically does not exist but implies 1.1, 1.2, etc., which
may exist) or invalid (e. g., rl.O or r l . l .O are invalid
because neither case can exist as a valid delta number).
If the SID is valid and not ambiguous, a check is made
to determine if it actually exists.

The argument value name is compared with the sees
%M% keyword in file.

The argument value type is compared with the sees
%Y% keyword inji/e.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can
be interpreted as a bit string where (moving from left to right) set bits are
interpreted as follows:

bit 0 - missing file argument;
bit l - unknown or duplicate keyletter argument;
bit 2 - corrupted sees file;
bit 3 - cannot open file or file not sees;
bit 4 - SID is invalid or ambiguous;
bit 5 - SID does not exist;
bit 6 - %Y%, -y mismatch;
bit 7 - %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned - a logical OR of the codes gen
erated for each command line and file processed.

- I -

VAL(1)

SEE ALSO
admin(I), delta(!), get(!), help(!), prs(i).

DIAGNOSTICS

BUGS

Use help(I) for explanations.

Val can process up to 50 files on a single command line. Any number above 50 l_
will produce a core dump.

- 2 -

c

VC(1)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword =value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the standard output
under control of its arguments and control statements encountered in the stan�
dard input. In the process of performing the copy operation, user declared key�
words may be replaced by their string value when they appear in plain text
and/or control statements.
The copying of lines from the standard input to the standard output is condi·
tiona!, based on tests Gn control statements) of keyword values specified in con·
trol statements or as vc command arguments . •
A control statement is a single line beginning with a control character, except
as modified by the -t keyletter (see below). The default control character is
colon (:), except as modified by the -c keyletter (see below) . Input lines
beginning with a backslash (\) followed by a control character are not control
lines and are copied to the standard output with the backslash removed. Lines
beginning with a backslash followed by a non�control character are copied in
their entirety.
A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed(l); a numeric value is
an unsigned string of digits. Keyword values may not contain blanks or tabs.
Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a
keyletter (see below) forces replacement of keywords in all lines of text. An
uninterpreted control character may be included in a value by preceding it with
\. If a literal \ is desired, then it too must be preceded by\.
Keyletter Arguments

-a

-t

-cchar

-s

Forces replacement of keywords surrounded by control
characters with their assigned value in all text lines and
not just in vc statements.
All characters from the beginning of a line up to and
including the first tab character are ignored for the pur·
pose of detecting a control statement. If one is found,
all characters up to and including the tab are discarded.
Specifies a control character to be used in place of :.
Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements
:del keyword[, ... , keyword]

Used to declare keywords. All keywords must be declared.
:asg keyword-value

Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line and
all previous asg's for that keyword. Keywords declared, but not assigned
values have null values.

:if condition

:end
- I -

VC(1)

::text

:on
:off

Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end _statement are copied to
the standard output. If the condition is false, all intervening lines at:e dis
carded, including control statements. Note that intervening if statements
and matching end statements are recognized solely for the purpose of
maintaining the proper if-end matching. 1�
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::- ["not" 1 <or>
::- <and> I <and> "I" <or>
::- <exp> I <exp> "&" <and>
::- "e <or> ")" I <value> <op> <value>
::- "-" I "!-" I "<" l ">"
::- <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The > and < operate only on unsigned integer values (e.g., : 012 > 12
is false). All other operators take strings as arguments (e.g., : 012 !- 12
is true). The precedence of the operators (from highest to lowest) is:

- !- > < all of equal piecedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one
blank or tab.

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and keywords
surrounded by control characters in text are replaced by their value
before the line is copied to the output file. This action is independent of
the -a keyletter.

Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

- 2 -

()

0

VC(1)

:err message
Prints the given message followed by:

ERROR: err statement on line ••• (915)
on the diagnostic output. Vc halts execution, and returns an exit code of
I.

SEE ALSO
ed(l), help(!).

DIAGNOSTICS
Use he/p(t) for explanations.

EXIT CODES
0 - normal
I - any error

- 3 -

Vl(1)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag I [-r file I [-1 I [-wn I [-x I [-R I [+command I
name ...
view [-t tag I [-r file I [-1 I [-wn I [-x I [-R I [+command
] name ...
vedit [-t tag I (-r file I [-1 I [-wn I [-x I [-R I [+com
mand I name ...

DESCRIPTION
Vi (visual) is a display-oriented text editor based on an underlying line editor
ex(I). It is possible to use the command mode of ex from within vi and vice
versa.
When using vi, changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor ori the screen indicates the
position within the file. The Vi Quick Reference card, the Introduction to
Display Editing with Vi and the Ex Reference Manual provide full details on
using vi.

INVOCATION
The following invocation options are interpreted by vi:

-t tag Edit the file containing the tag and position the editor at its
definition.

-rfile

-I

-wn

-x

-R

+command

Recover file after an editor or system crash. If file is not
specified a list of all saved files will be printed.
LISP mode; indents appropriately for lisp code, the 0 0 ll and
]) commands in vi and open are modified to have meaning for
lisp .
Set the default window size to n. This is useful when using
the editor over a slow speed line.
Encryption mode; a key is prompted for allowing creation or
editing of an encrypted file.
Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.
The specified ex command is interpreted before editing
begins.

The name argument indicates files to be edited.
The view invocation is the same as vi except that the readonly flag is set.
The vedit invocation is intended for beginners. The report flag is set to 1, and
the showmode and novice flags are set. These defaults make it easier to get
started learning the editor.

"VI MODES"
Command

Input.

Last line

Normal and initial mode. Other modes return to command
mode upon completion. ESC (escape) is used to cancel a par
tial command.
Entered by a i A I o 0 c C s S R. Arbitrary text may then be
entered. Input mode is normally terminated with ESC charac
ter, or abnormally with interrupt.
Reading input for : I ? or !; terminate with CR to execute,
interrupt to cancel.

- I -

()
COMMAND SUMMARY

Sample commands
� ! 1 -h j k I
irexrESC

cwnewESC

easESC

X
dw

dd

3dd

u
zz
:q!CR
!texrCR
"U "D
:ex cmdCR

Counts before vi commands

arrow keys move the cursor
same as arrow keys
insert text abc
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text

scroll up or down
any ex or ed command

Vl(1)

Numbers may be typed as a prefix to some commands. They are interpreted i n
one of these ways.
line/column number z G I
scroll amount "D '"U
repeat effect most of the rest

Interrupting. canceling
ESC end insert or incomplete cmd
"? (delete or rubout) interrupts
"L reprint screen if "? scrambles it
"R reprint screen if "L is - key

File manipulation
:wCR
:qCR
:q!CR
:e nameCR
:e!CR
:e + nameCR
:e +nCR
:e #CR

write back changes
quit
quit, discard changes
edit file name
reedit, discard changes
edit. starting at end
edit starting at line n
edit alternate file
synonym for :e #

:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
"G show current file and line
:ta tagCR to tag file entry tag
"] :ta, following word is tag

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a CR.

- 2 -

Vl(1)

Positioning within file
"F forward screen
"B backward screen
"D scroll down half screen
"'U scroll up half.screen
G go to specified line (end default)
/pat next line matching pat
?pat prev line matching pat
n repeat last I or ?
N reverse last I or ?
/pat/ +n noth line after pat
tpat? -n noth line before pat
11 next section/function
II previous section/function
(beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matching () (or }

Adjusting the screen
.L clear and redraw
·a
zCR
z -CR
z.CR
/patlz-CR
zn.CR
.E
·y

retype, eliminate @ lines
redraw, current at window top
... at bottom
... at center
pat line at bottom
use n line window
scroll window down I line
scroll window up 1 line

Marking and returning "'
move cursor to previous context
... at first non-white in line

mx mark current position with letter x
'x move cursor to mark x
·x ... at first non-white in line

Line positioning
H
L
M
+

CR
I or j
I or k

top line on screen
last line on screen
middle line on screen
next line, at first non-white
previous line, at first non-white
return, same as +
next line, same column
previous line, same column

- 3 -

Character positioning � first non-white
0 beginning of line
$ end of line
h or
l or -
"H
Sp(\.Ce
fx
Fx
tx
Tx

i
%

forward
backwards
same as
same as
find x forward
f backward
upto x forward
back upto x
repeat last f F t or T
inverse of;
to specified column
find matching (() or)

Words, sentences, paragraphs
w word forward
b back word
e end of word
) to next sentence
] to next paragraph
(back sentence
{ back paragraph
W blank delimited word
8 back W
E to end ofW

Commands for LISP Mode
) Forward s-expression
} ... but do not stop at atoms
(Back s-expression
{ ... but do not stop at atoms

Corrections during insert
"H erase last character
"W erase last word
erase your erase, same as "H
kill your kill, erase input this line
\ quotes "H, your erase and kill
ESC ends insertion, back to command
"? interrupt, terminates insert
"D backtab over autoindent
ro kill autoindent, save for next
o·n ... but at margin next also
·v quote non-printing choracter

Insert and replace
a
i
A
I
0
0
rx
RtextESC

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
open above
replace single char with x
replace characters

- 4 -

Vl(1)

Vl(1)

Operators
Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the word
that would be moved over. Double the operator, e.g., dd to affect whole lines.
d delete '>
c change '\,.__ ;
y yank lines to buffer
< left shift
> right shift

filter through command
indent for LISP

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (db)
Y yank lines (yy)

Yank and Put
Put inserts the text most rece"tly deleted or yanked. However, if a buffer is
named, the text in that buffer is put instead.
p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"dp retrieve d'th last delete

AUTHOR
Vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Com�
puter Science.

SEE ALSO
ex(!).
"Screen Editor Tutorial (vi)."

CAVEATS AND BUGS
Software tabs using "T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make "Use of insert and delete character
operations in the tenninal.

There should be an interactive help facility and a tutorial suited for beginners .

. 5 -

VOLCOPY(1 M)

NAME
volcopy, labelit - copy file systems with label checking

SYNOPSIS
/etc/volcopy [options] fsname speciall volnamel special2 volname2
/etc/labelit special [fsname volume [-n 1]

DESCRIPTION

FILES

Volcopy makes a literal copy of the file system using a blocksize matched to
the device. Options are:

-a invoke a verification sequence requiring a positive operator
response instead of the standard 10-second delay before the
copy is made

-s (default} invoke the DEL if wrong verification sequence.
Other options are used only with floppy disks:

-flopnum beginning floppy number for a restarted copy,
-buf use double buffered 1/0.

If the- file system is too large to fit on one floppy disk, volcopy will prompt for
additional floppies. Labels of all floppy disks are checked. If volcopy is inter
rupted, it will ask if the user wants to quit or wants a shell. In the latter case,
the user can perform other operations (e.g.,: /abe/it) and return to volcopy by
exiting the new shell.
The fsname argument represents the mounted name (e.g.,: root, ul, etc.) of
the file system being copied.
The special should be the physical disk section (e.g.,: /de,/rdsk/Os7).

The volname is the physical volume name (e.g.,: pk3, t0l22, etc.) and should
match the external label sticker. Such label names are limited to six or fewer
characters. Volname may be - to use the existing volume name.
Specia/J and volnamel are the device and volume from which the copy of the
file system is being extracted. Specia/2 and volname2 are the target device
and volume.
Fsname and volname are recorded in the last 12 characters of the super block
(char fsnamel6l, 1'olnamel6);) .

Labe/it can be used to provide initial labels for unmounted disk or floppy file
systems. With the optional arguments omitted, /abe/it prints current label
values. The -n option provides for initial labeling of new backup floppies only
(this destroys previous contents).

/etc/Iog/filesave.log
SEE ALSO

a record of file systems/volumes copied

-
sh(!l, fs(4).

- I -

WAIT(1)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION ·
Wait until all processes started with & have completed, and report on abnor-

'� 1
mal terminations.

Because the wait (2) system call must be executed in the parent process, the
shell itself executes wait, without creating a new process.

SEE ALSO
•h(l).

BUGS

wait(2) in the Software Development System manual.

Not all the processes of a 3- or more-stage pipeline are children of the shell,
and thus cannot be waited for.

- 1 -

'
i

-I I

NAME
wall - write to all users

SYNOPSIS
/etc/wall

WALL(1 M)

(\ DESCRIPTION
, _ _ / Wall reads its standard input until an end�of-file. It then sends this message to

all currently logged-in users preceded by:

0

FILES

Broadcast Message from . • •
It is used 1o warn all users, typically prior to shutting down the-system.

The sender must be super-user to override any protections the users may have
invoked [see mesg(l)].

/dev/tty•

SEE ALSO
mesg(I), write(!).

DIAGNOSTICS
«Cannot send to when the open on a user's tty fi1e fails.

- I -

WC(1)

NAME
we - word count

SYNOPSIS
we [-lwc] [names I

DESCRIPTION
We counts lines, words, and characters in the named files, or in the standard
input if no names appear. It also keeps a total count for all named files. A
word is a maximal string of characters delimited by spaces, tabs, or new�lines.
The options I, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -Iwc.
When names are specified on the command line, they will be printed along with
the counts.

- 1 -

'
I

CJ

WHAT(1)

NAME
what - identify sees files

SYNOPSIS
what [-sl files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1) sub
stitutes for %Z% (this is @(#) at this printing) and prints out what follows
until the first R' > , new-line, \, or null character. For example, if the C pro
gr�m in file f.c contains

char ident[] - " @ (#)identification information n;
and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out
will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get (l), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each
file.

SEE ALSO
get(!), help(!).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, otherwise 1. Use help (1) for expla·
nations.

It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

- I -

WH0(1)

NAME
who - who is on the system

SYNOPSIS
who [-uTHipdbrtasq] [file l
who am i

who am I

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-10 of the command interpreter
(shell) for each current UNIX system user. It exaniines the /etc/utmp file to
obtain its information. If file is given, that file is examined. Usually, file will
be /etc/wtmp, which contains a history of all the logins since the file was last
created.

·

Who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options are:

-u This option lists only those users who are currently logged in. The name
is the user's login name. The line is the name of the line as found in the
directory /dev. The time is the time that the user logged in. The
activity is the number of hours and minutes since activity last occurred
on that particular line. A dot (.) indicates that the terminal has seen
activity in the last minute and is therefore ''current". If more than
twenty-four hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying to deter
mine whether a person is working at the terminal or not. The pid is the
process-10 of the user's shell. The comment is the comment field associ
ated with this line as found in /etc/inittab [see inittab (4)]. This can
contain information about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, etc.

-T This option is the same as the -u option, ex.cept that the state of the
terminal line is printed. The state describes whether someone else can
write to that terminal. A + appears if the terminal is writable by any
one; a - appears if it is not. Root can write to all lines having a + or a
- in the state field. If a bad line is encountered, a ? is printed.

-1 This optiOn lists only those lines on which the system is waiting for
someone to log in. The name field is LOGIN in such cases. Other fields
are the same as for user entries except that the state field does not exist.

-H This option will print column headings above the regular output.

-q This is a quick who. displaying only the names and the number of users
currently logged on. When this option is used, all other options are
ignored.

-p This option lists any other process which is currently active and has been
previously spawned by init. The name field is the name of the program
executed by init as found in /etc/inittab. The state, line, and activity
fields have no meaning. The comment field shows the id field of the line
from /etc/inittab that spawned this process. See inittab(4).

- I -

'

0

FILES

WH0(1)

-d This option displays all processes that have expired and not been
respawned by in it. The exit field appears for dead processes and con·
tains the termination and exit values [as returned by wait (2)], of the
dead process. This can be useful in determining why a process ter·
minated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process.

-t This option indicates the last change to the system clock [via the
date(!) command] by root. See su(I).

-a This option processes /etc/utmp or the named .file with all options turned
on.

-s This option is the default and lists only the name, line, and time fields.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
date(!), init(lM), Jogin(l), mesg(l), su(l).
wait(2), inittab(4), utmp(4) in the Software Development System manual.

I
-2-

WHOD0(1M)

NAME
whodo - who is doing what

SYNOPSIS
/etc/wbodo

DESCRIPTION
Whodo produces merged, reformatted, and dated output from the who(I) and �

ps (1) commands.

FILES
etc/passwd

SEE ALSO
ps(i), who(!).

- 1 -

c

(j

WRITE(1)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname (tty??) [date] . • •
to the person you want to talk to. When it has ·successfully completed the con
nection, it also sends two bells to your own terminal to indicate that what you
are typing is being sent.

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal, an interrupt is sent, or
the recipient has executed "mesg n". At that point write writes EOT on the
other terminal and exits.

If you want to write to a user who is logged in more than once, the line argu
ment may be used to indicate which line or terminal to send to (e.g., ttyOO);
otherwise, the first writable instance of the user found in /etc/utmp is assumed
and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(l) command.
Writing to others is normally allowed by default. Certain commands, in partie�
ular nro.ff(l) and pr(l) disallow messages in order to prevent interference with
their output. However, if the user has super�user permissions, messages can be
forced onto a write-inhibited terminal.

If tlie character ! is found at the beginning of a line, write calls the shell to exe
cute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal [i.e., (o) for .. over"] so that the
other person knows when to reply. The signal (oo) (for "over and out") is sug·
gested when conversation is to be terminated.

/etc/utmp to find user
/bin/sh to execute !

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(!).
"Nroff and TroffUser Manual" in the Text Preparation System manual.

DIAGNOSTICS
"user is not logged on" if the person you are trying to write to is not logged on.
"Permission denied" if the person you are trying to write to denies that permis

sion (with m2sg).
"Warning: cannot respond, set mesg -y" if your terminal is set to mesg n and

the recipient cannot respond to you.
"Can no longer write to user" if the recipient has denied permission (mesg n)

after you had started writing.

- 1 -

I

XARGS(1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xares [flags] [command [initial-arguments I 1

DESCRIPTION ""- 1
Xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of
arguments read for each command invocation and the manner in which they

• are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH. If
command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, followed
by some number of arguments read from standard input (Exception: see -i
flag). Flags -i, -1, and -n determine how arguments are selected for each
command invocation. When none of these flags are coded, the initial
arguments are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with the accumu
lated args. This process is repeated until there are no more args. When there
are flag conflicts (e.g., -1 vs. -n), the last flag has precedence. Flag values
are:

-lnumher

-ireplstr

-nnumber

Command is executed for each non-empty number lines
of arguments from standard input. The last invocation
of command will be with fewer lines of arguments if
fewer than number remain. A line is considered to end
with the first new-line unless the last character of the
line is a blank or a tab; a trailing blank/tab signals con
tinuation through the next non-empty line. If number is
omitted, 1 is assumed. Option -x is forced.

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also
forced. (} is assumed for replstr if not specified.

Execute command using as many standard input argu
ments as possible, up to number arguments maximum.
Fewer arguments will be used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining. If
option -x is also coded, each number arguments must
fit in the size limitation, else xargs terminates execu
tion.

- I -

()

-t

-p

-x

-ssize

-eeofstr

XARGS(1)

Trace mode: The command and each constructed argo�
ment list are echoed to file descriptor 2 just prior to
their execution.
Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed, fol
lowed by a ? • • • prompt. A reply of y (optionally fol·
lowed by anything) will execute the command; anything
else, including just a carriage return, skips that particu
lar invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options
-i and -I. When neither of the options -i, -I, or -n
are coded, the total length of all arguments must be
within the size limit.
The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.
Eofstr is taken as the logical end-of-file string. Under
bar () is assumed for the logical EOF string if -e is
not cOded. The value -e with no eofstr coded turns off
the logical EOF string capability (underbar is taken
literally). Xargs reads standard input until either end
of-file or the logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -I from, or if it can
not execute, command. When command is a shell program, it should explicitly
exit [see sh(l)] with an appropriate value to avoid accidentally returning with
-I.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 I xargs -i -t mv $1/{} $2/{]
The following wi11 combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

(logname; date; echo $0 $•) I xargs > >log
The user is asked which files in the current directory are to be archived and
archives them into arch (t.) one at a time, or (2.) many at a time.

2. Is xargs -p -I I xargs ar r arch
1. Is I xargs -p -1 ar r arch I The following will execute d;jf(l) with successive pairs of arguments originally

typed as shell arguments:
echo $• I xargs -n2 diff

SEE ALSO
sh(l).

DIAGNOSTICS
Self-explanatory.

- 2 -

YACC(1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple automa
ton which executes an LR(I) parsing algorithm. The grammar may be ambigu
ous; specified precedence rules are used to break ambiguities.
The output file, y.tab.c, must be compiled by the C compiler to produce a pro
gram yyparse. This program must be loaded with the lexical analyzer pro
gram, yylex, as well as main and yyerror, an error handling routine. These
routines must be supplied by the user; /ex(l) is useful for creating lexical
analyzers usable by yacc.
If the -v flag is given, the file y.output is prepared, which contains a descrip
tion of the parsing tables and a report on conflicts generated by ambiguities in
the grammar.
If the -d flag is used, the file y.tab.b is generated with the #define statements
that associate the yacc-assigned "token codes" with the user-declared "token
names". This allows source files other than y.tab.c to access the token codes.
If the -1 flag is given, the code produced in y.tab.c will not contain any #line
constructs. This should only be used after the grammar and the associated
actions are fully debugged.
Runtime debugging code is always generated in y.tab.c under conditional com
pilation control. By default, this code is not included when y.tab.c is compiled.
However, when yacc's -t option is used, this debugging code will be compiled \:._
by default. Independent of whether the -t option was used, the runtime
debugging code is under the control of YYDEBUG, a pre-processor symbol. If
YYDEBUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and eXecution time
of a program produced without the runtime debugging code will be smaller and
slightly faster.

y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp,
yacc.debug, yacc.acts temporary files
/usr/lib/yaccparparser prototype for C programs

SEE ALSO
lex(!).
malloc(3X) and "YACC -Yet Another Compiler Compiler" in the Software Devebp
ment System manual.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the stan- �
dard error output; a more detailed report is found in the y.output file. Simi
larly, if some rules are not reachable from the start symbol, this is also
reported.

Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

- 1 -

' I

----i

TABLE OF CONTENTS OF SPECIAL FILES

7. SPECIAL FILES

intro .. .introduction to special files

console. ... screen driver interface

en: ..•..•.•. .error-logging interface
fl .. floppy disk drive

io_op .. perform 286 I/0 operations

Jp •..•.....•.............................•..•..•.•...•.••.•.•..•.............•...•..••.•..•..•............•........••..•..•............•••... line printer

mem .. .core memory

null .. .the null flle

prf. .. oper:ating system proiller

sio .. serial interface

tennio .. general tenninal interface

ey .. .controlling terminal interface

/,..------._\ wn. ... hard disk interface
\.

,, '
"- '

JNTR0(7)

NAME

intro - introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware peripherals and
System V/AT system device drivers. The names of the entries are generally derived from
names for the hardware, as opposed to the names of the special files themselves.
Characteristics of both the hardware device and the corresponding System V/AT system
device driver are discussed where applicable.

Disk device file names are in the following format:

/dev/{r)dslq(c#d)#s#

where r indicates a raw interface to the disk, the c#d indicates the controller number, and
4/s# indicates the drive and section numbers.

- I -

CONSOLE(?)

NAME

console- screen driver interface

DESCRIPTION
The console driver controls the character attribute and screen mode settings for the
system console. Both color and·monochrome graphics boards are supported. Virtual
console definitions are located in the /dev file and may contain alternate settings that
the user may define. To access the virtual consoles from your system monitor, press
the SYS REQ key on your keyboard, or use the ALT-Fl through ALT-F4 keys to
access Screen-1 through Screen-4 directly. Each keypress gives you a new login
prompt, and the fourth keypress returns you to your original. login screen ..

Standard ANSI terrncap entries are supported along with some additional
settings. These settings are listed as follows;

Character attribute settings

Esc[Om
Esc[lm
Esc[2x;ym

Esc[3;0m
Esc[3;1m
Esc[4m
Esc[5m
Esc[7m
Esc[Bm
Esc[10m
Esc[llm
Esc[12m
Esc[30m

Switch to normal characters (white on black)
BolQface (brighten foreground color)
Sets color graphic mode:
320 x 200, x = foreground and y = background
640 x 200, y = foreground and x = background
Switch from blink mode to bright background mode
Switch from bright background mode to blink mode
Underscore (monochrome only)
Blink characters or brighten background color
Reverse video (white on black)
Invisible characters
Set primary font to normal ASCII
Set first alternate font
Set second alternate font
Black foreground

Screen mode settings

Esc[h
Esc[Oh
Esc[2h
Esc[3h
Esc[4h
Esc[5h
Esc[6h

Switch to default mode (CMOS setting)
Switch to 40 x 25 black & white
Switch to 80 x 25 black & white
Switch to 80 x 25 color
Switch to 320 x 200 color
Switch to 320 x 200 black & white
Switch to 640 x 200 black & white

MAJOR, MINOR DEVICE NUMBERS

Maj., min Special filename Semantics

0, 0 /dev/console console
0, 1 /dev/cons1 virtual console 1
o. 2 /dev/cons2 virtual console 2
0, 3 /dev/cons3 virtual console 3

- 1 -

0

C·

ERR(7)

NAME
err - error� lo�ging interface

DESCRIPTION

FILES

Minor device 0 of the err driver is the interface between a process an.d the system's
error-record collection routines. The Qriv� �ay be opened only' for reading by a single
process with super-user permipsions. Each read causes an entire error record to be
retrieved; the record is truncated if the r�adrequest is for less than· the record'S length.

/dev /error special file

SEE ALSO
ernlemon(IM)

- 1 -

FL(7)

NAME

fl.-floppy disk drive

DESCRIPTION
The floppy driver provides an interface to popular disk drives compatible with a 512
byte sector disk funnat The floppy driver lists minor devices as follows:

name minor drive lpi sectors capacily (KB) sides densily

ft! 70 0 96 15 1200 2 high
fd096 70 0 96 15 1200 2 high
fd096ds15 70 0 96 15 1200 2 high
Os24 70 0 96 15 1200 2 high

* Os25 198 0 96 15 1200 2 high
fd048 23 0 48 9 360 2 low
fd048ds9 23 0 48 9 360 2 low
fd096ds9 87 0 % 9 720 2 high
fdl48 91 I 48 9 360 2 low
ft!148ds9 91 I 48 9 360 2 low
fdl96 78 I % 15 1200 2 high
fd196ds!5 78 % 15 1200 2 high

* = one cylinder offset (boot floppies and installit floppies use this device)

For block device access, the major device number is 1 and its special flle is located in
ltkv!dsk.

For raw device access, the major device number is 6 and its special file is located in
itkv!rdsk.

For example, to make a node for raw access to a high-density (iouble-sided 1.2 MB
floppy in the primaly floppy drive, 1ype "mknod !dev!rdsk!fd c 6 70". See mknod(l)
for details of making nodes.

MAJOR, MINOR DEVICE NUMBERS

Maj., min. Special filename Semantics

I, 70 /dev/dsk/fd high (1.2MB) #0

I, 198 /dev/dsk/Os25 high (1.2MB) #0
(cylinder 1 onward)

I, 23 /dev /dsk/fd048 low (360KB) #0

I, 78 /dev/dsk/fd196 high (1.2MB) #I

l, 91 /dev/dsk/fd!48 low (360KB) #I

6, 70 /dev /rdsk!fd raw high (1.2MB) #0

6, 198 /dev /rdskf0s'25 raw high (1.2MB) #0

6, 23 /dev /rdsk/fd048 raw low (360KB) #0

6, 78 dev/rdsk/fdl96 raw high (1.2MB) #I

6, 91 dev/rdsk/fdl48 raw low (360KB) #I

- 1 -

,. '

IO_OP(7)

NAME
io_op � perform 2&6 I/0 operations

SYNOPSIS
#include <sys/io_op.h>

iocll (fd, io_op, code);
int fd, code;
struct {

} *io_op;

unsigned int
unsigned int
unsigned char

#defme IOCIOP _RB
#define IOCIOP _RW
#defme!OCIOP_WB
:#define IOCIOP _ WW

DESCRIPTION

-io_port;
io_word;
io_byte;

(('!'«8) I 0)
((1'«8) I 1)
((1'«8) I 2)
((1'«8) I 3)

/* Port number .,
I* Word data stored here .,
/"' Byte data in here .,

/* Read a byte *I
I* Read a word .,
/* Write a byte 'I
J+ Write a word .,

The io_op interface allows user programs to perform 286 I/0 operations, through an
ioctl(2) call on/dev/mem. Code denotes whether a byte or a word is to be written or read.
lo _port contaffis the port number to be used, which must be in the range O-Ox3ff.
lo _word is the data to be written or read, for word operations. lo _byte is the data to be
written or read, for byte operations.

- 1 -

LP(7)

NAME

lp -parallel line printer

DESCRIPTION
Lp provides the in):erface to any of the standard parallel line printers. When it is opened or
closed, a suitable number of page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the devtce Is
treated as having a 96- or 64-character set. In half-ASGII mode, lowercase
h;tters are turned into uppercase, and certain characters are es�aped according
to the following table:

{ -f
) .,.

+

The c;lriver correctly interprets carriage reD.l.qls, backspaces, tabs, and form-feeds. A new
line that extends over the end of a page is turned into a fortn-feed. The default Une
length is 132 characters, indent is 0 characters and lines per page is 6·6. Lines longer
than the line 1� minus th� indent (i.e., l28 characters, using the above defaults) are
truncated.

'

These Qefaults can be overridden with the lpset(l) command. Lpset(l) can also be used
to set transparent mode which diSables int�etation of charac�srs and suppresses page
ejection whenever the lp device is open�· or closed. Lpget(l) retrieves the current
settings.

Two iQctl(2) system calls are available:

#include <sys/lprio.h>
ioctl' (fild�. command, arg)
struct lprio •atg;

The commands are:
LPRGET Get the current indent, t;:olumns per line, li1tes per page, and mode

and store m the lprio structure referenced by arg.

LPRSET Se� the current indent, columns per line, lines per page, and mode
from the structure referenced by arg.

Thus, indent, page width, page length, and mode can be set with an e�temal program.
Two utilitie� can be used for this capability;

lpget device
lpset device indentation col� lines �transparency]

MAJOR, MINOR DEVICE NUMBERS

SEE ALSO

M�j., min.

7, 0
7, I
7, 2

Special filename

/devnp o
/devnp 1
/devnp 2

ioctl(2), lpset(l), lpget(l).

Semantics

parailel port on monochrome adaptor board
parallel port 1 or par<illel/si!I:ial card
parallel port 2 or parallel/serial card,

- I -

MEM(7)

NAME

mem,kmem-core memory

(-,, DESCRIPTION

FILES

Mem is a special file that is an image of the core memory of computer. It
may be used, for example, to examine, and even to patch the system.

Byte addresses in mcim are interpreSted as memory addresses. References to
non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather
than physical memory is accessed.

/dev/mem
/dev/kmem

- I -

NULL(7}

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

- I -

c,

0

0

PRF(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The filt;: prj provides access to activity information in the operating system.
Writing the file loads the measurement facility with text addresses to be moni
tored. Reading the file returns these addresse:; and a set of counters indicative
of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the pro
gram counter at li�e frequency, Samples that catch the operating system are
inatcl;led against the stored text addresses and increment corresponding
counters for later processing.
The file prj is a pseudo-device with no associated hardware.

/dev/prf

SEE ALSO
config(IM), profilerOM).

I

This page intentionally left blank.

u

NAME
sio - serial interface

SYNOPSIS
slo

DESCRIPTION

510(7)

Each line attached to the serial adaptor card behaves as described in tennio(7). Input and
output for each line may independently be set to run at 110, 150, 300, 600, 1200,
2400, 4800, and 9600 baud. Only 7- and 8-bit character sizes are supported. Output
speed is always input speed.

There are 3 device names for each port: fdev/ttyO, /dev/ttymO, and /dev/ttyMO, all refer
to DOS COM!:; and similarly /dev/ttyl, /dev/ttyml, and /dev/ttyMl all refer to
COM2:.

/dev/ttyO is to be used for 'cu', 'kermit', and 'uucp', serial printers, and gettys for directly
cmmected tenninals.

/dev/ttyMO is normally to be used for gettys on an auto-answer modem.

/dev/ttyMO is to be used when simultaneously allowing gettys and 'cu' or 'uucp' dial
out usage on an auto-dial/auto-answer modem or direct connection to another computer.

/dev/ttyO totally ignores all four modem input lines. It asserts DTR when opened, and,
if HUPCL is set- see tennio(7), drops it when closed.

/dev/ttyMO waits for DCD when opened, but if /dev/ttyO is in use, /dev/ttyMO waits
until it is not. If /dev/ttyMO is open and in use, /dev/ttyO will simply return an I/0
error on open. The first mechanism allows 'uucp' and 'cu' to dial out on a modem
(using ttyO), while the getty(!) blocks in its open(2) waiting for the modem to assert
DCD (on ttyMO). The second mechanism disallows 'cu' or 'uucp' (on ttyO) if someone
is already logged in (on ttyMO). These dial programs also lock out each other using
/usr/spoo]/uucp/LCK ... files.

Discover the type of interface (DTE or DCE) for the equipment you are trying to
connect, and use a cable that will interface from that to the DTE type interface on
nearly all PC serial ports. Modems and "Null Modems" are DCB (Data
COMMUNICATIONS Equipment), Terminals, PC serial ports, printers and computer
ports are DTB (Data TERMINAL Equipment). With a "straight through" cable, one end
must look like DTE, and the other must be DCE. A "Null Modem" presents a DCE
interface to two DTE devices, but cannot supply RI (Ring Indicator) of course. The
standard 8250/16450-based serial port adapters have a serious design flaw: they do not
place tennination resistors on modem input lines. Internal Modem cards are especially
notorious for this. Some cards have a problem where the modem input lines between
UART & phone interface will oscillate, thus continually interrupting the operating
system, effectively halting the system. /dev/ttyO and /dev/ttyl do not have this problem,
as they ignore modem interrupts; but /dev/ttym and /dev/ttyM do. For best results, use
the following wiring schemes for building serial cables:

Tenninal/printer: Modom: Anofu.er PC/AT:
From To From To From To
9-pin 25-pin 9-pin 25-pin 9-pin remote 9-pin
1,6 20 I 8 1,6 4
2 2 2 3 2 3
3 3 3 2 3 2
4 6,8 4 20 4 1,6
5 7 5 7 5 5
7 5 6 6 7 8
8 4 7 4 8 7

8 5
9 22

- I .

510(7)

Refer to the following pin description while deciphering the above:

PC/AT 9-pm(DTE): RS-232 25-pm DTE; RS-232 25-pm DCE;
shell/shield 1 frame ground 1 frame grmmd
3 TD out 2 TD out 2TDin
2 RD in 3 RD in 3 RD out
7 RTS out 4 RTS out 4 RTS m
8 CTS m 5 CTS m 5 CTS out
6 DSR m 6 DSR m 6 DSR out
5 signal GND 7 signal GND 7 signal GND
1 DCDm 8 DCD m 8 DCD out
4 DTR out 20 DTR out 20 DTR m
9 RI in 22 Rl in 22 Ri out

Connectors on the card are typically male and numbered (looking into back):

1 13
14 25

1 5 Type DB-25/9 P
6 9

HOW TO INSTALL A MODEM
To connect a modem to an asychronous communications line, use the following
procedures. The Hayes smart modem 1200 is used as an example of how to install a
modem. An External type of modem is recommended over an internal card (Ext
Modems can be moved to a smart serial board) as the control over line termination and
loop back is usually limited to a few jumpers on the card.

1. Set your modem switches for auto answer or originate only (Switch #5).
The Hayes settings which are important for proper operation are:

Hayes auto
switch # answer originate new semantics

1 up up monitor DTR & 02 (on 2400)
(drop oonnection if CWCAL)

2 up up display result codes as words
(for use with dial programs)

3 up up 'quiet' mode: no cmd response
down down OK, CONNECT, etc.

4 up up commands echoed

5 up down auto answer

6 up up monitor CD & C1 (on 2400)
(allows use of tty MD)

2. Patch the operating system if neccessary with thettypatch(l) shell script and power
down the PC-AT with Cntrl-Alt-Del.

3. Install serial interface and/or multipart cards as desired with interrupt and address
jumpers set as patched in (2).

4. Connect the modem cable between the card's connector and that on the back of lhe
Hayes 1200.

- 2 -

(J

0

510(7)

�- l'ower up the PC-AT.

6. /dev/ttyO is minor device 0, /dev/ttymO is minor d�vice 128, /dev/ttyMO is minor
device 192. Add 1 fat ttyl, 2 for tty2 a.p_d so on. If you are planning to use eithyr
the special files /dev/ttymO,/dev/ttyMO (or /dev/ttyml, /dev/tzyMI) which are
already on your system.

The major, minor device numbers and the semantics are as follpws:

Major=5, �Minor(0-32): M=l28+64+# m=l28+# for /dev/tzy#

5,0 /dev/ttyO originate only-mode
5,128 /dev/ttymO answer only mode
5,1Q2 /dev/ttyMO answer/originatemodc

(:recommended for getty)
5,1 /dev/ttyl originate only rilode
5,129 /dev/ttyml answer only mode
5,193 /dev/ttyMl answer/originatemode

7. Set up an entry in /etc/i,nittab using the editor, !lS follows;

To lj.llow both answer � ori�inate modes:

t0:23:respawn:/etc/getty tt.yMO 1?00

To allow �y cu/uucp dial:-outs (originate mode)

t0:23:off:/et<>/getzy tzyO 1200

After leaving the editor, type:

telinit q

to tell init(lM) to rereaQ. (query) the updated /etp/inittab file. This can be verified by
typing "ps -ef" (which should shoW /etc/getty runnlllg on the tty in the etc/getty
line of iri.ittab). If the baud rate is changed jn init�:ab aftet' getty was already spawned
for the old speed, you must kill(l) it so that the new getty will use the new iirittab
value.

· ·

8. As of the 2.2 release of System V/AT, cu(l) and -qucp(l) have been upgraded. A
public domain version of the standard Sys�em V "dial" subroutine replaces the older

version.
· ·

A new dialing information file, called /usr/lib/uucp/dialinfo, now supports operation
of different types of modems. The format is documented in the Software
Development System man-q.al, see dialinfo(4). As a consequence of the new dial
support, you will need to change the kdevices file. The tJWd field now designates
the modem type. Here ls an example L-devices entry for a ;HB.yes c;ompatibl�
modem

·

operated at 1200 b�ud on ttyO:

L-devi�s (single line string):

ACU ttyO haye� 1200

Any direct connection should specify "direct'' forth� modem type:

DJR tty! direct 9600

'fhe syntax "cu systemname" is also supported in the new software so that cu(l)
will automatically call out according to the telephOne number represented in the
Lsys entry for systemname. You must eti!lble result responses ip. english (Hayes
SW3 down) for this to work.

- 3 -

510(7)

9. Because automatic dialing is now supported you may wish to change your L.sys
entries to operate wih the ACU device rather than as hardwired cormections. Refer
to the discussion of the system flle in Chapter 12, "Uucp Administration." An
example follows:

L.sys (single line string):
sysname Any ACU 1200 xxxxxxxx ogin: nuucp ssword: yyyyy

where sysname is replaced with the name of the system being called, xxxxxxxx is
replaced with the phone number of the system, and yyyyy is replaced with the uucp
password for that system.

10. In order to support the older version of uucp, which was distributed with the
Microport 1.3 release, use the following fonnat for L.sys:

sysname Any ttyO 1200 ttyO "'' "" "" A1D1\sxxxxxxx\r ECT @ ogin: nuucp
ssword: yyyyy

- 4 -

' "

I \

TE;RMI0(7)

NAME
terrnio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general interface,
no matter what hardware is involved. The remainder of this section discusses
the common features of this interface.
When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, users' programs seldom open these files;

_ they-are-opened by .getty and .become a-user's standard input, output, and error
files. The very first terminal file opened by the process group leader of a termi�
nal file not already associated with a process group becomes the control termi
nal for that process group. The control terminal plays a special role in han
dling quit and interrupt signals, as discussed below. The control terminal is
inherited by a child process during a fork(2). A process can break this associa
tion by changing its process group using setpgrp (2).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output 'is occurring,
and are only lost when the system's character input buffers become completelY
fuJI, which is rare, or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is reached, all the
saved characters are thrown away without notice.
Normally, terminal input is processed in units of lines. A line is delimited by a
new-line (ASCII LF) character, an end-of-file (ASCII EOT) character, or an
end-of-line character. This means that a program atteinpting to read will be
suspended until an entire line has been typed. Also, no matter how many char
acters are requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of characters
may be requested in a read, even one, without losing information.
During input, erase and kill processing is normally done. By default, the char
acter # erases the last character typed, except that it will not erase beyond the
beginning of the line. By default, the character @ kills (deletes) the entire
input line, and optionally outputs a new�line character. Both these characters
operate on a key-stroke basis, independently of any backspacing or tabbing that
may have been done. Both the erase and kill characters 'may be entered
literally by preceding them with the escape character (\). In this case the
escape character is not read. The erase and kill characters may b� changed.
Certain characters have special functions on input. These functions and their
default character values are summarized as follows:
INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent

to all processes with the associated control terminal. Normally, each
such process is forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to an agreed-upori
location; see signa/(2).

QUIT (Control- I or ASCII FS) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiving process
has made other arrangements, it will not only be terminated but a
core image file (called core) will be created �n the current working
directory.

SWTCH ASCII.SM NUL is used by the job control facility, sh/, to change the
current layer to the control layer. (Not on PDP-I I).

- I -

TERM10(7)

ERASE (#) erases the preceding character. It will not erase beyond the start
of a line, as delimited by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL char·
acter.

EOF

NL

(Control-d or ASCII EOT) may be used to generate an end-of-file
from a terminal. When received, all the characters waiting to be
read are immediately passed to- the program, without waiting for a
new-line, and the EOF is discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at the beginning of a line,
zero characters will be passed back, which is the standard end-of-file
indication.

(ASCII LF) is the normal line delimiter. It can not be changed or
esCaped.

EOL (AS<;:II NUL) is an additional line delimiter, like NL. It is not nor
mally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output.
It is useful with CRT terminal,s to prevent output from disappearing
before it can be read. While output is suspended, STOP characters
are ignored and not read.

START (Control-q or ASCII ncl) is used to resume output which has been
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The start/stop charac
ters can not be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL
rpay be changed to suit individual tastes. The ERASE, KILL, and EOF charac-
ters may be escaped by a preceding \ character, in which case no special func- "'
tion is done.

When the carrier signal from the data-set drops, a hang-up signal is sent �o all
processes that havC this terminal as the control terminaL Unless other arrange
ments have IJeen made, this signal causes the processes to terminate. If the
hang-up signal is ignored, any subsequent read returns with an end-of-file indi
cation. Thus, programs that read a terminal and test for end-of-file can ter
minate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal
as soon as previously-written characters have finished typing. Input Characters
are echoed by putting them in the output queue as they arrive. If a process
produces characters more rapidly than they can be typed, it will be suspended
when its output queue exceeds some limit. When the queue has drained down
to some threshold, the program is resumed.

Several ioctl (2) system calls apply. to terminal files. The primary calls use the
following structure, defined in <termio.h>:

#define NCC 8
struct termio {

unsigned
unsigned
unsigned
unsigned
char
unsigned

};

short
short
short
short

char

- 2 -

c_ifl.ag;
c_oflag;
c_cfl.ag;
c_lfl.ag;
c line;
c:cc[NCC];

I• input modes •/
I• output modes •/
I• control modes •/
I• local modes •/
I• line cj.iscipline •/
I• control chars •/

\�

· c I ..

I

TERMI0(7)

The special control characters are defined by the array c_cc. The relative posi
tions and initial values for each function are as follows:

0 VJNTR DEL
I VQUJT FS
2 VERASE #
3 VKJLL @
4 VEOF EOT
5 VEOL NUL
6 reserved
7 SWTCH NUL

The c_ijlag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map uppercase to lowercase on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all
zeros) is ignored, that is, not put on the input queue and therefore not read by
any process. Otherwise if BRKINT is set, the break condition will generate an
interrupt signal and flush both the input and output queues. If IGNPAR is set,
characters with other frll_ming and parity errQrs are ignored.
If PARMRK is set, a character with a framing or parity error which is not
ignored is read as the three-character sequence: 0377, 0, X, where X is the
data of the character received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of 0377 is read as 0377, 0377. If PARMRK
is not set, a framing or parity error which is not ignored is read as the charac
ter NUL (0) .
If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without input
parity errors.
If ISTRJP is set, valid input characters are first stripped to 7-bits, otherwise all
8-bits are processed.
If INLCR is -set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.
If IUCLC is set, a received Uppercase alphabetic character is translated into
the corresponding lowercase character. I If IXON is set, start/stop output control is enabled. A received STOP character
will suspend output and a received START character will restart output. All
start/stop characters are ignored and not read. If IXANY is set, any input
character, will restart output which has been suspended.
If IXOFF is set, the system wiii transmit START/STOP characters when the
input queue is nearly empty/full.

- 3 -

TERMI0(7)

The initial input control value is all-bits-clear.
The c_ojiag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lowercase to upper on output.
ONLCR 0000004 Map NL to CR-NL on qutput.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.

ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDL Y 0000400 Select new-line delays:
NLO 0

NLI 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CRI 0001000

CR2 0002000

CRJ 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0

TAB! 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0

BSI 0020000

VTDLY 0040000 Select vertical-tab delays:
VTO 0

VT! 0040000

FFDLY 0100000 Select form-feed delays:
FFO 0

FFI 0100000

If OPOST is set, output characters are post-processed as indicated by the
remaining flags, otherwise characters are transmitted without change.
If OLCUC is set, a lowercase alphabetic character is transmitted as the
corresponding uppercase character. This function is often used in conjunction
with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair.
If OCRNL is set, the CR character is transmitted as the NL character. If
ONOCR is set, no CR character is transmitted when at column 0 (first posi
tion). If ONLRET is set, the NL character is assumed to do the carriage-return
function; the column pointer will be set to 0 and the delays specified for CR will
be used. Otherwise the NL character is assumed to do just the line-feed func
tion; the column pointer will remain unchanged. The column pointer is also set
to 0 if the CR character is actually transmitted.
The delay bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all cases
a value of 0 indicates no delay. If OFILL is set, fill characters will be transmit
ted for delay instead of a timed delay. This is useful for high baud rate termi
nals which need only a minimal delay. If OFDEL is set, the fill character is
DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

- 4 -

TERMI0(7)

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return
delays are used instead of the new-line delays. If OFILL is set, two fill charac
ters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type
2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set,
delay type 1 transmits two fill characters, and type 2, four fiJI characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type
2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded into
spaces. If OFILL is set, two fill characters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cjlag field describes the hardware control of the terminal:

CBAUD
80
850
875
8 l !O
8134
8150
8200
8300
8600
81200
81800
82400
84800
89600
EXTA
EXTB
CSIZE
css
CS6
CS7
CS8
CSTOPB
CREAD
PARENB
PAR ODD
HUPCL
CLOCAL
LOBLK

0000017
0
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
000001 1
0000012
0000013
0000014
0000015
0000016
0000017
0000060
0
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000
0010000

Baud rate:
Hang up
50 baud
75 baud
1 10 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
External A
External B
Character size:
5 bits
6 bits
7 bits
8 bits
Send two stop bits, else one.
Enable receiver.
Parity enable.
Odd parity, else even.
Hang up on last close.
LOcal line, else dial pup.
Block layer output.

The CBAUD bits specify the ·baud rate. The zero baud rate, BO, is used to
hang up the connection. If BO is specified, the datapterminal-ready signal will
not be asserted. Normally, this will disconnect the line. For any particular
hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not includ_e the parity bit, if any. If CSTOPB is set,
two stop bits are used, otherwise one stop bit. For example, at 1 1 0 baud, two
stops bits are required.

- 5 -

I

TERMI0(7)

If PARENB is set, parity generation and detection is enabled and a parity bit is
added to each character. If parity is enabled, the PARODD flag specifies odd
parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be
received. ",
If HUPCL is set, the line will be disconnected when the last process with the �
line open closes it or terminates. That is, the data-terminal-ready signal will
not be assertc;d.

If CLOCAL is set, the line is assumed to be a local, direct connection with no
modem control. Otherwise modem control is assumed.

If LOBLK is set, the output of a job control layer will be blocked when it is not
the current layer. Otherwise the output generated by that layer will be multi
plexed onto the current layer. (Not on PDP-11).

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

The c_jjlag field of the argument structure is used by the line discipline to con
trol terminal functions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control char
acters INTR, SWTCH, and QUIT. If an input character matches one of these
control characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus these special input functions are pos
sible only if ISIG is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible value
(e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and
kill edit functions, and the assembly of input characters into lines delimited by
NL, EOF, and EOL. If ICANON is not set, read requests are satisfied directly
from the input queue. A read will not be satisfied until at least MIN characters
have been received or the timeout value TIME has expired between characters.
This allows fast bursts of input to be read efficiently while still allowing single
character input. The MIN and TIME values are stored in the position for the
EOF and EOL characters, respectively. The time value represents tenths of
seconds.

If XCASE is set, and if !CANON is set, an uppercase letter is accepted on
input by preceding it with a \ character, and is output preceded by a \ charac
ter. In this mode, the following escape sequences are generated on output and
accepted on input:

for: use:
\

!
(
I
\

\!
,.
\(
\)
\\

- 6 -

('

FILES

For example, A is input as \a, \n as \\n, and \N as \\\n.
If ECHO is set, characters are echoed as rect..�ed.

TERMI0(7)

When !CANON is set, the following echo functions are possible. If ECHO and
ECHOE are set, the erase character is echoed as ASCII BS SP BS, which will
clear the last character from a CRT screen. If ECHOE is set and ECHO is not
set, the erase character is echoed as ASCII SP BS. If ECHOK is set, the NL
character will be echoed after the kill character to empl!.asize that the line will
be deleted. Note that an escape character preceding the erase or kill character
removes any- special function.- If ECHONL is set; -the -NL- character wip be
echoed even if ECHO is not set. This is useful for terminals set to local echo
(so-called half duplex). Unless escaped, the EOF character is not echoed.
Because EOT is the default EOF character, this prevent� terminals that respond
to EDT from hanging up.
If NOFLSH is set, the normal flush of the input and output queues associated
with the quit, switch, and interrupt characters will n'?t be done.
The initial line-discipline control value is all bits clear.
The primary ioctl (2) system calls have the form:

ioctl (tildes, command, arg)
struct termio •arg;

The commands using this form are:
TCGET A Get the parameters associated with the terminal and

store in the termio structure referenced by arg.

TCSET A Set the parameters associated with the terminal from the
structure referenced by arg. The change is immediate.

TCSETAW Wait for the output to drajn before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF W�it for the output to drain, then flush the input queue
and set the new parameiers.

Additional ioct/(2) calls have the form:
ioctl (tildes, command, arg)
int arg;

The commands using this form are:
TCSBRK Wait for th� output to drain. If arg is 0, then send a

brea}c (zero bits for 0.25 seconds).
TCXONC

TCFLSH

Start/stop control. If arg is 0, suspend output; if 1, res
tart suspended output.
If arg is 0, flush the input queue; if I , flush the output
queue; if 2, flush both the input and output queues.

/dev/tty•
SEE ALSO

stty(l), fork(2), ioctl(2), setpgrp(2), signal(2).

- 7 -

I

TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file /dev/tty is, in each process, a synonym for the control terminal associ
ated with the process group of that process, if any. It is useful for programs or
shell sequences that wish to be sure of writing messages on the terminal no �
matter how output has been redirected. It can also be used for programs that
demand the name of a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.

/dev/tty
/dev/tty•

- I -

� �
""

WN(7)

NAME

wn-hard disk interface

DESCRIPTION
The format for the disk files is described in intra(?). Files are accessed via the system's
normal buffering mechanism and may be read and written without regard to physical disk
records. There is also a raw interface {r) that provides for direct transmission between the
disk and the user's read/wrile buffer.

MAJOR, MINOR DEVICE NUMBERS
Maj. min. Special filename Semantics

0, 0 /dev /dsk/OsO for drive #0: /root filesystem
0, I /dev /dsk/Os 1 system swap area
0, 2 /dev /dsk/Os2 /usr file system
0, 3 /dev /dsk/Os3 /tmp file system
0, 4 /dev /dsk/Os4 reserved
0, 5 /dev /dsk/Os5 DOS partition
0, 6 /dev /dsk/Os6 partition number 1
0, 7 /dev/dsk/Os7 partition number 2
0, 8 /dev /dsk/Os8 partition number 3
0, 9 /dev /dsk/Os9 partition number 4

0, !0 /dev/dsk/Os!O entire disk
0, 11 /dev/dsk/Osll last track of active partition

0, 255 /dev/dsk/Os255 last track of active partition

0, 20 /dev/dsk/lsO for drive #1: same as minor 0 to 11 above
to /dev/dsk/lsl

0, 31 etc.

4, 0 /dev /rdsk/OsO raw interface
4, 1 /devfrdsk/Osl to minor 0�31, above
etc.

- I -

1, , \ ")

NOTES

(. ' _/

NOTES

NOTES

NOTES

' \

\::..._)

NOTES

\c_)

NOTES

\.)

NOTES

NOTES

..... _ _ /

NOTES

\ '

)

