
MINIX 1.5 REFERENCE MANUAL

ANDREW S. T ANENBAUM

FRANS MEULENBROEKS

RA YMOND MICHIELS

JOST MULLER

JOSEPH PICKERT

STEVEN REIZ

JOHAN W. STEVENSON

PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY 07632

© 1991 by PRENTICE-HALL, INC
A Division of Simon & Schuster

Engle\\ood Cliffs, N.J. 07632

All rights reserved.

10 9 8 7 6 5 4 3 2 I

Printed in the United States of America

CONTENTS

1 INTRODUCTION

1.1 HISTORY OF UNIX I

1.2 HISTORY OF MINIX 3

1.3 STRUCTURE OF THIS MANUAL 5

iii

1

2 INSTALLING MINIX ON THE IBM PC, XT. AT, 386, AND PS/2 6

2.1 MINIX HARDWARE REQUIREMENTS 6

2.2 HOW TO START MINIX 7

2.3 HOW TO INSTALL MINIX ON A HARD DISK 10

2.4 TESTING MINIX 20

2.5 TROUBLESHOOTING 22

3 INSTALLING MINI X ON THE ATARI ST

3.1 THE MINIX-ST DISTRIJ3UTION 25

3.2 NATIONAL KEYBOARDS 26

3.3 BOOTING MINIX-ST 27

3.4 INCREASING THE SIZE OF YOUR RAM DISK 30

3.5 ADAPTING PROGRAMS TO USE EXTRA RAM 31

3.6 USING SINGLE-SIDED DlSKEITES 32

3.7 USING A HARD DISK 33

24

iv CONTENTS

3.8 USING A MEGA ST 40

3.9 USING A DISK CONTROLLER BASED CLOCK 40

3.10 BOOT PROCEDURE OPTIONS 41

3.11 UNPACKING THE SOURCES 42

3.12 THE TOS TOOLS 43

3.13 TROUBLESHOOTING 45

4 INSTALLING MINIX ON THE COMMODORE AMIGA

4.1 MINIX HARDWARE REQUIREMENTS 51

4.2 HOW TO START MINI X 52

4.3 A MORE DETAILED LOOK 54

4.4 TROUBLESHOOTING 58

5 INSTALLING MINIX ON THE APPLE MACINTOSH

5.1 MACMINIX HARDWARE REQUIREMENTS 59

5.2 THE MACMINIX DISTRIBUTION 59

5.3 NATIONAL KEYBOARDS 60

5.4 BOOTING MACMINIX 60

5.5 INCREASING THE SIZE OF YOUR RAM DISK 63

5.6 ADAPTING PROGRAMS TO USE EXTRA RAM 64

5.7 USING A HARD DISK 65

5.8 UNPACKING THE SOURCES 69

5.9 THE MENUS 70

5.10 SETTING CONFIGURATION OPTIONS 71

5.11 MACINTOSH SYSTEM CALLS 72

5.12 RUNNING MACMINIX WITH MULTIFINDER 72

5.13 TROUBLESHOOTING 73

51

59

CONTENTS

6 USING MINIX

6.1 MAJOR COMPONENTS OF MINIX 74

6.2 PROCESSES AND FILES IN MINIX 79

6.3 A TOUR THROUGH THE MINIX FILE SYSTEM 84

6.4 HELPFUL HINTS 88

6.5 SYSTEM ADMINISTRATION 93

7 RECOMPILING MINIX

7.1 REBUILDING MINIX ON AN IBM PC 97

7.2 REBUILDING MINIX ON AN ATARI ST 103

7.3 REBUILDING MINIX ON A COMMODORE AMIGA 109

7.4 REBUILDING MINIX ON AN APPLE MACINTOSH 109

8 MANUAL PAGES

9 EXTENDED MANUAL PAGES

9.1 ASLD-ASSEMBLER-LOADER [IBM] 189

9.2 BAWK-BASIC AWK 198

9.3 DE-DISK EDITOR 202

9.4 DIS88-DISASSEMBLER FOR THE 8088 [IBM] 207

9.5 ELLE-FULL-SCREEN EDITOR 208

9.6 ELVIS-A CLONE OF THE BERKELEY VI EDITOR 216

9.7 IC-INTEGER CALCULATOR 236

9.8 INDENT-INDENT AND FORMAT C PROGRAMS 239

9.9 KERMIT-A FILE TRANSFER PROGRAM 243

9.10 M4-MACRO PROCESSOR 246

9.11 MDB-MINIX DEBUGGER [68000] 249

9.12 MINED-A SIMPLE SCREEN EDITOR 253

9.13 NROFF-A TEXT PROCESSOR 257

v

74

97

1 15

189

vi CONTENTS

9.14 PATCH-A PROGRAM FOR APPLYING DlFF LISTINGS TO UPDATE FILE� '66

9.15 ZMODEM-FILE TRANSFER PROGRAM 269

10 SYSTEM CALLS

10.1 I NTRODUCTION TO SYSTEM CALLS 274

10.2 LIST OF MINIX SYSTEM CALLS 275

11 NETWORKING

I J.J INTRODUCTION 277

11.2 OBJECTS 279

1 1 .3 OVERVIEW OF TRANSACTIONS 281

11.4 SYNTAX AND SEMANTICS OF TRANSACTION PRIMITIVES 282

11.5 SERVER STRUCTURE 286

11.6 CLIENT STRUCTURE 287

11.7 S IGNAL HANDLING 287

11.8 I MPLEMENTATION OF TRANSACTIONS I N MINIX 288

11.9 COMPILING THE SYSTEM 289

11.10 HOW TO INSTALL AMOEBA 289

11.1 I NETWORKING UTILITIES 290

11.12 REMOTE SHELL 290

I J.J 3 SHERVERS 292

I J.J 4 MASTERS 292

I J.J 5 FILE TRANSFER 293

I J.J 6 REMOTE PIPES 293

11.17 THE ETHER NET INTERFACE 293

A MINI X SOURCE CODE LISTING

B CROSS REFERENCE MAP

274

277

296

637

COI\,DITS vii

NOTE

The only pieces of MINI X software not included in this package are the C com
piler sources. These were made using the Amsterdam Compiler Kit (see Communi
cations of the ACM, Sepl. 1 983, pp. 654-660), which has also been used to make
compilers for many other languages and machines. The compiler sOl/rees can be
ordered from the following companies:

In North and South America:

UniPress Software
2025 Lincoln Highway
Edison, NJ 088 1 7
U.S.A.
Telephone: (20 I) 985-8000
FAX: (201) 287-4929

In Europe and elsewhere

Transmediair Utrecht BY
Melkweg 3
3721 RG Bilthoven
Holland
Telephone: +3 1 30 28 1 820
FAX: +3 1 30292294

In addition, these companies also have a Pascal compiler for MINIX

1

INTRODUCTION

Every computer needs an operating system to manage its memory, control its
I/O devices, implement its file system and provide an interface to its users. Many
operating systems exist, such as MS-DOS, OS/2, and UNIX. This manual describes yet
another operating system called MINIX. Although MINIX is entirely new, it was
inspired by UNIX, and has many features in common with UNIX. For this reason it is
fining that we begin this introduction with a brief history of UNIX, and its ancestors.
This will be followed by an equally brief history of MINIX. Finally, the chapter con
cludes with a summary of the rest of the manual.

LL HISTORY OF UNIX

Prior to 1 950, all computers were personal computers. At least in the sense that
only one person could use a computer at a time. Only research laboratories owned
computers in those days. The usual method of operation was for the programmer to
sign up for an hour of machine time on a sign-up sheet posted on the bulletin board.
When his time came, the programmer chased everybody else out of the machine
room and went to work.

During the 1950s, batch systems were invented. With a batch system, the pro
grammers punched their programs onto 80-column cards, and deposited them in a
tray in the computer room. Every half hour or so, the computer operator would go

I

2 INTRODUCTION CHAP. I

to the tray, pick up a batch of jobs, and read them in. The printed output was
brought back later for the programmers 10 collect at their leisure.

While the batch system made more efficient use of the computer, it was not
wildly popular with programmers, who often lost hOllrs due 10 a single typing error
that caused their compilations 10 fail. In the early 1960s, researchers at Dartmouth
College and M.I.T. devised timesharing systems, in which many users could log
into the same computer at once from remote terminals. The Danmouth project led
to the development of BASIC; the M.LT. project was the great grandfather of
MINIX.

The M.LT. system, called CTSS (Compatible Time Sharing System) because
it was more-or-Iess compatible with the batch system then in use at M.I.T., was a
success beyond the wildest expectations of its designers. They quickly decided to
build a new and much more powerful timesharing system on what was then one of
the largest computers in the world, the GE 645, a machine about as fast as a modem
PC/AT. This project, called MULTICS (MUL Tiplexed Information and Com
puting Service) was a joint effon of M.LT., General Electric (then a computer ven
dor), and AT &T Bell Labs.

To make a long story short, the project was so ambitious that the system was
difficult to program. Bell Labs eventually pulled out and GE sold its computer
business to Honeywell. M.LT. and Honeywell went on to complete MULTICS, and it
ran al many installations for 25 years. In a way, it continues to live, since OS/2 has
many ideas and features taken straight from MULTICS

Meanwhile, one of the Bell Labs researchers who had worked on MULTICS, Ken
Thompson, was hunting around for something interesting to do next. He spied an
old PDP-7 min icomputer at Bell Labs that nobody was using, and decided to imple
ment a stripped down version MULTICS on his own on this tiny minicomputer. The
system he produced, while clearly not full MULTICS, did work and supported one
user (Thompson). One of the other people at the Labs, Brian Kernighan, somewhat
jokingly called it UNICS (UNiplexed Information and Computing Service).
Bell Labs management was so impressed that they bought Thompson a more
modem minicomputer, a PDP-I I , to continue his work.

The initial implementation was in PDP-7 assembly code. When this had to be
completely rewrinen for the PDP- I I , it became clear that it would be much bener to
write the system in a high level language to make it portable. At this point, another
Bell Labs Researcher, Dennis Ritchie, designed and implemented a new language
called C in which the two of them rewrote the system, whose spelling had now
changed to UNIX.

In 1974, Ritchie and Thompson wrote a now-classic paper about UNIX that
attracted a great deal of attention. Many universities asked them if they could have
a copy of the system, including all the source code. AT &T agreed. Within a few
years, UNIX had become established as the de facto standard in hundreds of univer
sity departments around the world. The source code was widely available, and
often studied in university courses. International meetings were organized, in

SEC. 1.1 HISTORY OF UNIX 3

which speakers would get up and describe how they had modified some system rou
tine to be a bit fancier. UNIX had by now become something of a cult item, with
numerous fanatically devoted followers.

As UNIX kept spreading, AT &T began to see how valuable it was and began res
tricting access to the source code of new versions, starting with the Seventh Edition
(usually referred to as V7). It was no longer permitted for universities to teach
courses using the source code as an example, and public discussions of the internal
workings of the code were severely restricted.

Nevertheless, UNIX' fame continued to spread. The University of California at
Berkeley got a contract to port V7 it to the VAX, adding virtual memory and
numerous other features in the process. This work led to 4.x BSD. AT&T itself
modified V7 extensively, leading to System V. It took a decade before these two
versions could be partially reconciled, under the auspices of the IEEE, which led to
the POSIX standard.

Although UNIX was now more popular, without the source code, it was also a lot
less fun, especially for the people whose initial enthusiasm had made it a big suc
cess. The time was ripe for a new system.

1.2. HISTORY OF MINIX

Many university professors regretted that UNIX could no longer be taught in
operating systems courses, but there appeared to be no choice. One of them,
Andrew Tanenbaum, at the Vrije Universiteit in Amsterdam, The Netherlands, went
out and bought an IBM PC, and like Ken Thompson a decade earlier, set out to
write a new operating system from scratch. Just as Thompson was inspired by
MULTICS, but ultimately wrote a new and much smaller operating system, Tanen
baum was inspired by UNIX, but ultimately also wrote a new and much smaller
operating system-MINI x-which stands for Mini-UNIX.

Since MINIX contains no AT&T code whatsoever, it falls outside the AT&T
licensing restrictions. The source code has been made widely available to universi
ties for study in courses and otherwise. Like UNIX, MINIX quickly acquired an
enthusiastic following and began to occupy the same niche that UNIX had filled in
its early days-a small operating system available with all the source code that peo
ple could study and modify as they wished.

Within a month of its release (Jan. 1 987), there was already so much interest in
MINIX worldwide, that a news group (comp.os.minix) was set up on USENET, a
computer network accessible to most universities and computer companies in North
America, Europe. Japan, Australia, and elsewhere. A few months later, the news
group had over 10,000 people reading and contributing to it.

The initial release of MINIX was for the IBM PC and PC/AT only. It did not
take long before people with other kinds of computers began thinking about porting
it to their machines. The first port was to a 68000-based machine, the Atari ST,

4 I i':TRODUcrION CHAP. I

done primarily by 10han Stevenson, with assistance from lost Miiller The hard part
was making MINIX, which, like Ui':IX, allows multiple processes to run simultane
ously, run on a bare 68000, with no memory management or relocation hardware.
Once this problem had been solved and new I/O device drivers were written for the
Atari 's keyboard, screen, disk, etc., MINIX-ST became a reality. The 1.5 Atari ver
sion was prepared by Frans Meulenbroeks.

The port to the Commodore Amiga was done by Raymond Michiels and Steven
Reiz. The Macintosh port was done by Joseph Pickert. Unlike all the other ports,
the Macintosh version does not replace the manufacturer's operating system and run
on the bare machine. Instead, it runs on top of the Macintosh operating system,
allowing the facilities of both systems to be used simultaneously. Of course, there
is a price to to paid, in tenns of both size and perfonnance.

The contribution of USENET cannot be underestimated in the MINIX develop
ment. Hundreds of individuals have donated ideas, bug fixes, and software, many
of which are included in this release. One person stands out above all the others
though, Bruce Evans, who has produced improvements too numerous to count, and
all of them in a very professional way. The authors are credited in the code for their
contributions, where that is technically feasible.

MINIX is still a vigorous on-going development, with new software, ports to new
machines (e.g. the SPARC), and many other activities in progress. In this respect,
MINIX is very different from most software products. The usual model is that a
company gets an idea for a product, writes the software, and then sells executable
binaries for customers to use. Users are not able to modify the program, and
requests for the source code are rejected out of hand. Worldwide public discussion
of the system internals is not welcome.

MINIX, in contrast takes a more open approach. The source code for the entire
operating system is included in the basic software package, and users are
encouraged to tailor the system to their own specific needs. Thousands of people on
USENET have done just that. The internal workings of the system are described in
detail in the following book:

Title: Operating Systems: Design and Implementation
Author: Andrew S. Tanenbaum
Publisher: Prentice Hall
ISBN: 0- 1 3-637406-9

However, please note that the book describes a somewhat earlier version of the sys
tem. Nevertheless, the basic principles are still intact in this version.

MINIX was originally written to be system call compatible with V7 UNIX, the
last of the small UNICES. This is the version described in the book.

Future versions of MINIX will migrate towards at least partial confonnance with
the ANSI C and IEEE POSIX standards. Complete confonnance is unlikely, as
confonnant systems are necessarily so huge that no one person can possibly under
stand them. Making MI NIX fully confonnant would defeat the goal of having a

SEC. 1.2 HISTORY OF MINIX 5

system that is small enough that people can actually understand it. It would also
require much larger and more expensive hardware than is currently the case. MINIX

1.5 is an intermediate form: it still supports the V7 system calls and has a Ker
nighan and Ritchie C compiler, but virtually all the individual files are ANSI C con
formant (and also K&R conformant). Furthermore, all of the header files provided
in lusrlinclude conform to both the ANSI and POSIX standards. This makes port
ing programs from conformant systems to MINIX 1.5 and vice versa much easier.

1 .3. STRUCTURE OF THIS MANUAL

Chapters 2 through 5 tell how to install MINI X on the IBM PC, Atari, Amiga,
and Macintosh, respectively. You should read the one appropriate for your
machine. Then skip to Chap. 6 to learn more about how to use MINIX.

For people interested in modifying the operating system itself, Chap. 7 has been
provided. It discusses things needed by people who want to recompile the system.
If you do not plan to do this (initially), you may safely skip this chapter for the time
being.

Chapter 8 contains the manual pages for the commands that come with MINIX.

Each entry describes one utility program (or sometimes several closely related
ones). Every MINIX user, even though intimately familiar with UNIX, should read
Chap. 8 very carefully. Some of the commands have extended manual pages.
These are present in Chap. 9.

Chapter 10 discusses the MINIX system calls. The treatment here i s brief, since
most of the system calls should be familiar to UNIX users.

Chapter I I contains information about networking in MINIX.

Appendix A contains a (nearly complete) listing of the MINIX 1.5 operating sys
tem code. The kernel l isting is for the Intel (IBM) line, but the file system and
memory manager are identical for all versions, as is the general structure of the ker
nel. Parts of the kernel, especially the I/O device drivers, are different for each ver
sion. Most of these machine-dependent parts (mostly de ice drivers) have not been
listed here, but since the sources are present on the disks, you can easily make your
own listing of the missing pieces. The MINIX program mref can be used, for exam
ple. Appendix B is a cross reference map of the source code listing.

One final note. There is a large MINIX user group on USENET with over 1 6,000
people. It is called comp.os.minix. Thousands of messages have been posted to this
group dealing with bugs, improvements, suggestions, and new software. Unfor
tunately, USENET is not a public network, so one cannot just join, but over a mil
lion people are on it, mostly at universities and companies in the computer industry
in the U.S., Canada, Europe, Japan, Australia, and other countries. If you are
interested in following all the latest developments on the MINIX front, and there are
many in the works (e.g., ANSI and POSIX conformance), it is worthwhile trying to
find someone who has access.

2

MINIX ON THE IBM PC, XT, AT, 386, AND PS/2

This chapter tells you how to install and run MINIX on a computer powered by
the Intel 8088, 80286, 80386 or related chips. If you have an Atari, Amiga, or
Macintosh, you should skip this chapter and go direclly to chapter 3, 4, or 5, respec
tively.

Five sections are present in this chapter. The first section discusses the kind of
hardware you need to run MINIX. The second seclion tells you how to boot your
computer to get MINIX running. The third one tells you how to install MINIX on
your hard disk. The fourth one is about testing MINIX The final one gives hints
about troubleshooting. If during the installation you have problems, please check
the troubleshooting section to see if your problem is discussed there. When you
have finished reading this chapter and have successfully installed �lINIX, please skip
10 Chap. 6 to learn about using your newly installed MINIX system.

2.1. MINIX HARDWARE REQUIREMENTS

MINIX will run on the original IBM PC, XT, and AT, and on all other machines
that are 100 percent hardware compatible with one of these machines. This point
deserves some explanation. Many manufacturers have brought out machines that
are similar to their IBM counterparts in some ways, but different in other ways.
MINIX will not necessarily run on all these machines. Like all versions of UNIX for

6

SEC. 2.1 :.1INIX HARDWARE REQUIREMENTS 7

Ihe IBM PC, MINIX normally does not use the B[OS (because the BIOS is not
interrupt-driven, making il unsuitable for timesharing). Instead, it programs all the
I/O chips direclly. Therefore it will only run on machines using Ihe same I/O chips
as the IBM Pc. MINI X will not run on a machine whose manufacturer says that it is
" IBM compatible" or "MS-DOS compatible" unless the hardware i s IBM compa
tible; having different hardware but masking this in the BIOS will not work since
MINIX does not use Ihe BIOS (with one exception).

Experience has shown that most problems occur in two areas: video boards and
hard disks. MINIX supports the original IBM PC monochrome display interface, the
CGA interface, the Hercules interface, and the EGA interface. The EGA support is
done in software and is enabled by hitting the F3 function key. If you have an EGA
board and the screen goes blank periodical ly, hitting the F3 key will solve the prob
lem by enabling software scrolling. Hitting it again will disable it. Other video
boards can be used, provided that they accurately and completely emulate one of the
above interfaces.

The other problem area is the hard disk controller. IBM used differenl (and
incompatible) controllers in the XT and AT. Both of Ihese are supported in MINIX.

[n fact, the only difference between the PC Boot Diskette (#1) and the AT Boot
Diskette (#2) is the hard disk controller used. As an emergency measures, the
Universal Boot Diskette (#3) is also provided. Unlike the other ones, this one uses
the BIOS for disk I/O. [t is slow and cannot run in prolected mode, but should work
on most machines.

MINIX requires a minimum of 5 1 2K RAM to work. However, if more RAM is
available, il can and will be used, up to a maximum of 16M on the 80286 and
80386.

Up to two RS-232 ports are supported. They may be used for either additional
terminals, to run MINIX as a multiuser timesharing system, or to connect to modems,
printers, or other devices. In addilion, one Centronics parallel port is supported.

2.2. HOW TO START MINI X

Before running MINIX for the first time, make a backup of all the diskettes, to
prevent disaster if one of them should be subsequently damaged. They are not copy
protected. However, they are also not MS-DOS disks, so do not use a copy program
that expects that. Instead use one that copies entire disks, sector by sector.

Throughout the discussion below, lines printed in Ihe Helvetica typeface are
either commands you should type on the keyboard, or are lines that the computer
will display for you. [n a few of the examples, italics characters or words appear in
a command. These represent values that you are to fill in.

To boot MINIX, proceed as follows. If you make a Iyping error, use the back
space key to erase it, or the @ sign to erase the current line.

8 MINIX ON THE IBM pc, XT, AT, 386, AND PS/2 CHAP. 2

1 . Choose one of the various boot diskettes that come with MINIX. If your
machine uses the standard hard disk present on the original IBM
PC/XT, try the PC Boot Diskette (#1) first. If your machine uses the
standard hard disk present on the original IBM PC/AT, try the AT Boot
Diskette (#2) first. If you have a nonstandard hard disk or no hard disk
at all, use the Universal Boot Diskette (#3). If you have a PS/2 with a
Microchannel and an ST-506 disk interface, try the PS/2 Boot Diskette
(#12,3.5 inch only). With an ESDI drive, you have to use #3. In gen
eral, it is better to avoid #3 if possible, since the others run in protected
mode (on 80286 and 80386 CPUs) and are faster. If you have prob
lems, boot on a friend's machine and try recompiling the system with
the various drivers in the kernel directory. One might work. There are
drivers there for which no boot diskette is provided.

2. Turn off the PC, then insert the chosen boot diskette in drive 0, and
then turn on the PC. You can also type CRTL-ALT -DEL to boot a run
ning Pc. However, if that fails, turn the power off and then on again.

3. You should get a message like: .. Booting MINIX 1 .5" as soon as the
power-on self-tests have finished.

4. After the operating system has been completely read in, you will get a
menu on the screen offering you several options. Remove the boot
diskette from drive 0, insert the root file system (diskette #4) in its
place, and hit the = (equal sign) key (or one of the others, depending on
your keyboard). If you get a message about an invalid root file system,
you probably forget to put the root file system diskette in. Turn off the
power and start again.

5. MINIX will now erase the screen and display a line at the top telling
how much memory the machine has, how large the operating system
(including all its tables and buffers) is, how large the RAM disk is, and
how much memory is available for user programs (the first number
minus the next two). Check to see that the available memory is at least
positive. MINIX will not run with negative memory. To do anything
useful, however, at least 200K of available memory i s needed.

6. Now the root file system will be copied from drive 0 to the RAM disk.
The MINIX root device is initially on the RAM disk, but later you can
put it on the hard disk.

7. When the RAM disk has been loaded, the system initialization file,
letcire, is executed. It asks you to remove the root file system and then
insert the lusr file system (diskette #5) in drive 0 and type a carriage
return. Do so.

SEC. 2.2 HOW TO START MINIX

8. After IlIsr has been mounted. you may be requested to enter the date
and time of day. If so. please enter a 1 2-digit number in the form
MMDDYYhhmmss. followed by a carriage return. For example. 3 :35
p.m. on July 4. 1 976 was 0704761 53500. (If the system is able to
locate a suitable real-time clock. it will not ask.)

9. You will now get the message:

login:

on the screen. Type:

ast

and wait for the system to ask for your password. Then type:

Wachtwoord

being careful to type the first letter in upper case. Lower and upper
case letters are always distinct in MINIX. Do not use an upper case
letter when a lower case one is called for or vice versa. Like UNIX.
MINIX regards "a" and " A " as two distinct characters.

10 . If you have successfully logged in. the shell will display a prompt (dol
lar sign) on the screen. Try typing:

Is -I /bin

to see what is in the bin directory. Note that there is a space after Is. In
all commands given below. be sure to insert spaces where they are
shown in the text. Then type:

Is -I lusr/bin

to see what is on the drive 0 diskette. To stop the display from scrol
ling out of view. type CfRL-S; to restart it. type CTRL-Q. (Note that
CTRL-S means depress the "control" key on the keyboard and then hit
the S key while "control" is still depressed.)

1 1 . If you have two diskette drives. you can mount one of the other
diskettes by inserting it into drive 1 and typing:

letc/mount Idevlfd1 luser

Use Is to inspect luser. You can now try out other commands. How
ever there is so little free disk space available at this point. that once
you are convinced that MINIX works. it is best to start thinking about
installing MINIX on your hard disk.

9

10 MI :--:IX O:-l THE IBM PC. XT. AT, 386. AND PS/2 CHAP. 2

12 . When you are finished working, type:

sync

and then CTRL-D to log out. The

login:

prompt will be displayed. If you want to shut the computer down,
make sure all processes have finished, if need be, by killing them with
kill, before issuing the sync command. When the disk light goes out,
you can turn the computer power off. Never, ever turn the system off
without first running sync. Failure to obey this rule will generally
result in a garbled file system and lost data. If you forget and just turn
off the computer, next time you boot, be sure to run fsck to repair the
file system.

2.3. HOW TO INSTALL MINIX ON A HARD DISK

Many MINI X users have a hard disk. This section describes how to set up MINIX
on such a system. If you do not have a hard disk, you may skip this section.

2.3.1. Step 1 : Backup the Hard Disk

If you are already using your hard disk for another operating system, such as
MS-DOS or XE:-lIX, before even contemplating installing MINIX, you should make a
complete backup of the contents of your hard disk onto diskette or another medium.
As a bare minimum, installing M INIX will require erasing one partition of your hard
disk, and possibly two. However, to prevent disaster in the event that you make an
error during the setup procedure, it is highly desirable that you backup the entire
disk before you even start. Your files are too valuable to put at risk.

It is worth noting that MINIX has a program, dosread, that can read MS-DOS
diskettes. Thus if you make your backup on diskettes, you will be able to read the
files into the MINIX file system after you have completed the hard disk installation.

2.3.2. Step 2: Verify that Your Hard Disk is IBM Compatible

The vendors of all MS-DOS machines claim that their machines are IBM compa
tible. Unfortunately, some machines have different hardware than their IBM coun
terparts, with these differences being compensated for by the BIOS. Since MINIX
does not normally use the BIOS, but, like XENIX, directly controls the I/O chips, it
may not work on some of these machines. The device most prone to compatibility
problems is the hard disk controller.

.'

SEC. 2.3 HOW TO INSTALL MINIX ON A HARD DISK 1 1

To verify that MINIX is indeed able to correctly access your hard disk, boot
MINIX as described above, but instead of logging in as ast, log in as root, using
Ceheim as password (note the upper case C). If you are already logged in as ast,
use C fRL-D to log out, then log in again as root (without rebooting). Logging in as
root makes you the superuser and gives you the sharp sign (#) as prompt instead of
the usual dollar sign. The superuser is the system administrator and has special
privileges denied ordinary users. To install �IINIX on your hard disk, you will need
these privileges. Once the installation is complete, you should always log in as ast,
or create your own login name as described later in this manual.

Once you are successfully logged in as root, type:

dd if=/dev/hdO of=/dev/nuII count=200

After a short time, you should get the message:

200+0 records in
200+0 records out

If you get an error message instead, MINIX cannot use your hard disk controller.
Please reboot with one of the other MINIX boot diskenes. If none of them work,
your hard disk controller is not compatible with any of those used by IBM, unless
you have a PS/2 Model 30/286, in which case you should try installing MlNlX on a
friend's machine, and then rebuilding the kernel after first copying pLwini.c to
wini.c. Compile it using -DPS30.J86.

2.3.3. Step 3: Partition the Hard Disk

Hard disks may be divided up into sections called partitions. MINIX supports
disks with up to four partitions, some of which may be allocated to MS-DOS or other
operating systems. To discover how your hard disk is currently partitioned, log into
MINIX as root and type:

fdisk -hm -SI1 Idev/hdO

where m is the number of heads the hard disk has and n is the number of sectors per
track. For example:

fdisk -h4 -s 17 Idev/hdO

Note that the values follow the hand s flags directly, with no spaces in between. If
you omit either the h or s flags, the default values of 4 and 1 7, respectively, are
used.

If you are not sure how many heads and sectors your disk has, examine the data
sheet that came with the disk, ask your computer dealer or make a guess. For disks
up to 40M, 4 heads and 1 7 sectors are common. For larger disks, 9 heads and 1 7
sectors are common. For RLL disks, 25 or 26 sectors are usual, depending on the
controller. If you guess wrong, fdisk will complain and tell you what it thinks the

12 MINIX ON THE IBM pc, XT, AT, 386, AND PS/2 CHAP. 2

parameters are. Usually its opinion is wonh listening to. Type a q to quit fdisk and
try again with the new parameters.

When fdisk is called with the correct number of heads and sectors, it gives a
display with one line for each partition, each line containing 1 2 or 1 3 columns. For
example, a disk with four MINIX partitions might show:

------first------ -------Iast------ -----------sectors-----------
Soned Active Type Cyl Head Sec Cyl Head Sec Base Last Size
I 1 MINIX 0 0 2 4 1 8 8 1 7 1 + 64106 641 06
2 2 MINIX 4 1 9 0 837 8 1 6 64 1 07+ 1 2821 2 64106
3 3 MINIX 838 0 905 8 1 7 1 2821 4 1 3861 7 1 0404
4 4 MINIX 906 0 1 023 8 1 7 1386 1 8 1 56671 1 8054

(Enter 'h' for help. A null line will abon any operation)

To get a list of the fdisk commands, type an h followed by a carriage return.
The first two columns give the partition number, both absolute and soned. To

avoid confusion, always partition your disk with the lowest numbered cylinders in
partition I. the next lowest in panition 2, and so on. To do otherwise is looking for
trouble, since other operating systems may not agree on which panition is which.

A partition can be made active (bootable) using the a command, in which case it
will be marked in the Active column. MtNIX does not care, but MS-DOS does.

There are almost 20 partition types recognized by fdisk. To get a list of them,
type a t followed by a carriage return.

The remaining information in the display gives the star! and end of each parti
tion, both in terms of cylinderlhead/sector notation and in terms of sector number
starting at the beginning of the disk. Note that MINIX follows the IBM convention
of numbering cylinders and heads staning at 0, but sectors staning at I.

Now you must decide how many panitions you want and how big they should
be. It is suggested that you allocate either partition I or 2 as your MINIX partition,
and the other as an MS-DOS panition, if you wish. To use MINIX conveniently, you
should allocate at least 5 megabytes to its panition, 10 if you want to keep the
sources on line, and more if at all possible, Partition sizes up to 32M should work
without problems, as should disks up to 1024 cylinders.

If you have a 80286 or 80386 CPU with I M or more, you will get the best per
formance by allocating some of your memory as a RAM disk. This memory will
operate as a high-speed, low-latency disk, and can be used for keeping binary pro
grams, user files or other data to which you want quick access. If you want to use a
RAM disk, you must now decide how much memory will be allocated to executing
programs (including the 150K operating system), and how much to RAM disk. The
larger the program memory, the more programs that can execute at once, With a
total of I M memory, 5 1 2K for programs and 5 1 2K for RAM disk is a reasonable
choice. With 1 .5M memory, 768K for each is a good choice. With 2M or more,
allocate I M for programs and the rest for the RAM disk.

SEC. 2.3 HOW TO INSTALL MINIX ON A HARD DISK 13

If you have decided to have a RAM disk, you should use partition 3 to store its
image. Partition 3 must be greater or equal to the size of the RAM disk. When the
system is booted, the contents of partition 3 will be copied to the RAM disk before
the login prompt is displayed. The RAM disk is not copied back to partition 3 when
you stop MINIX, so any changes you make to the RAM disk will be lost when you
next boot, unless you explicitly mount partition 3 and copy the changes back to it.
Most users put the system binaries, libraries, compilers, etc. on the RAM disk, so
there is usually no need to copy them back to the hard disk when stopping, as they
are rarely changed.

Once you have decided how many partitions you need, and how big they must
be, you can partition the hard disk using fdisk. Type a c and answer all the ques
tions it asks (partition number, starting and ending cylinders, etc.). When you are
all done creating partitions, examine the partition table very carefully to see that it
is correct . If you have made a mistake, just type c again to change partitions. In
particular, be sure that all partitions are marked with the correct type. The m com
mand can be used to mark a partition as being of type MINIX. MINIX partitions must
begin at an even sector address and contain an even number of sectors, something
fdisk will arrange for you by rounding the base up I sector or the size down I sector
if need be (but only for MINIX partitions). Fdisk also allocates the first two sectors
in partition I (and only partition I) to the boot block.

When you have double checked the partition table, triple check it. If you are the
nervous type, quadruple check it. An incorrect partition table will cause you more
trouble than you want to hear about now. When you are convinced it is correct,
type a w to write it back to the disk. After doing the write, fdisk will automatically
exit back to the shell and you will get a prompt.

Now type:

sync

and re boot the computer so the kernel can read the new partition table. To reboot,
insert your boot diskette in drive O. Then depress the CTRL and AL T keys, and
while holding them down, hit the DEL key. After you have brought MINIX back up,
log in as root again and rerun fdisk. Check that the partition table is correct . If not,
fix it and reboot. If it is correct, proceed with the next step.

2.3.4. Step 4: Make a MINIX File System on Each MINIX Partition

Now that the disk is physically partitioned, it is time to put a MINIX file system
on each MINI X partit ion. To do this, determine the number of sectors in each parti
tion by examining the last column in the fdisk output. This may not be quite what
you had expected due to the use of entire cylinders and rounding effects. Also, the
first two sectors of partition I (and only partition I) are reserved for the partition
table and do not count. Compute the number of I K blocks in each MINIX partition
by dividing the number of sectors by 2 (one block is two 512-byte sectors).

14 MINIX ON THE IBM PC. XT. AT. 386. AND PS/2 CHAP. 2

To create a file system of, say, 32000 blocks on partition 2 and 2048 blocks on
partition 3, log in as root and type:

mkfs Idev/hd2 32000
mkfs Idev/hd3 2048

For other MINIX partitions (or sizes) type the analogous commands. Do not run
mkJs on MS-DOS or other partitions. Be very careful not to make a typing error here,
as making a new file system destroys all information on the partition specified.

You can verify that the file systems have been made by typing:

df Idev/hd2
df Idev/hd3

which will report on the i-nodes and blocks present on each file system. The total
number of blocks should agree with the number you used in the mkJs command.

You can now mount your new file systems. To mount Idevfhd2 (partition 2) on
fuser, type:

letclmount Idev/hd2 luser

To Change to fdel'fhd2, type:

cd luser

This puts you in the root directory of the partition 2 file system.

2.3.5. Step 5: Check for Bad Blocks

With current manufacturing technology, it is nearly impossible for disk vendors
to deliver perfect drives. Almost every drive has some bad blocks on it. If MINIX
were to use a bad block in one of your files, you might lose some valuable data, so it
is important to locate all the bad blocks before puning any files on the disk and
make sure they do not cause trouble.

The scheme used in MINIX is to put all the bad blocks into dummy files, so that
the disk space allocator will think they are in use and leave them alone. This
method is more efficient than wasting entire tracks as spares, as is sometimes done.
Suppose that you have allocated partitions 2 and 3 for MINIX. To locate the bad
blocks on partition 2, first log in as root, mount Idevfhd2 on fuser and go to the root
directory by typing:

cd I

It is important that the next command be executed on the root device, since it will
attempt to unmount fdevlhd2, which will fail if your working directory is there. To
locate all the bad blocks, type:

readall -b Idev/hd2 >bad.2

SEC. 2.3 HOW TO INSTALL MINlX ON A HARD DISK 15

Depending on the size and speed of your disk, this operation may take a sub
stantial fraction of an hour. Please be patient. When it is finished, a prompt will
appear on the screen. When it does, you can examine the output files using cat, for
example, by typing:

cat bad.2

You can also examine it with the milled editor. The output will be a shell script that
calls badblocks with up to seven arguments, each one the number of a bad block.
Bad blocks often cluster together. This is normal.

To mark the blocks as bad, type:

sh <bad.2

When this command finishes, several files full of bad blocks may have been created.
You can examine them by typing:

Is -la

They will all have names starting with .Bad_, followed by some numbers. You can
now remove the shell script by typing:

rm bad.2

If you now type:

df Idev/hd2

you will notice that the number of blocks used has increased by the number of bad
blocks found, and the number of free blocks has decreased by the same amount.

If you have more MINI X panitions, go to the root directory and unmount the
current partition. Then mount the next partition and repeat the same process. If the
next partition is 3, the sequence is as follows (where the text staning at the # signs
are just comments):

cd I
letc/umount /dev/hd2
letc/mount Idev/hd3 luser
raadall -b Idev/hd3 >bad.3
sh <bad.3
rm bad.3
letc/umount Idev/hd3

go to the root directory
Note: umount, not unmount (no n)

now mou nt partition 3
find the bad blocks on partition 3
mark the bad blocks on partition 3

remove the shell script

again umount, not unmount (no n)

There is a small chance that a bad block will occur in the i-node list of a new
'--" file system. If this occurs, you must go back to Step 3 and repanition the disk with

different sizes, trying until all of the i-node blocks are good.

16 MINIX ON THE IBM pc, XT, AT, 386, AND PS/2 CHAP. 2

2.3.6. Step 6: Initialize the Root File System

When MINIX boots, it needs a root file system. This file system can be on a
diskette, a hard disk partition, or on the RAM disk. If it is on a hard disk partition,
say partition 2, then certain directories and special files must be created on that par
tition. If it is on RAM disk, then an image of the RAM disk must be created on the
partition that will be copied to the RAM disk, usually partition 3. Either way, a root
file system is needed on some hard disk partition (unless you have a diskette-only
system). In the discussion below, we will assume that a RAM disk is being used, so
we will put the root file system on IdevlhdJ. If you want put it somewhere else, you
will have to change RAMJMAGE infslmain.c and recompile the operating system.

The root file system normally has certain standard directories in it, to be
described later. One of these, Idev, contains all the character and block special files.
To create the directories and special files, first change to the root directory,
unmount all hard disk partitions (using letcll/mount), then type:

letc/setup_foot Idev/hd3 ram hdl hd2 hdJ hd4

where ram is the size of the RAM disk in blocks (1 K), and the next four numbers
are the sizes of the four hard disk partitions, also in blocks. You must be logged in
as root to run letclsetupJoot. As an example, with Idevlhd3 as 2M root device, and
the four hard disk partitions being 32000, 32000, 2048, and 1 4000 blocks, respec
tively, you should type:

letc/setup_foot Idev/hd3 2048 32000 32000 2048 14000

You must specify all four partition sizes. If a partition is used by MS-DOS, use the
actual size of the partition in blocks. (The last column of the fdisk l isting gives the
number of sectors; to get blocks, divide by 2.) If a partition has size zero, use O.

At this point, the new hard disk root will contain the same files as the root file
system diskette. To try it out, type sync, insert the boot diskette in drive 0, and hit
CRL-ALT-DEL. When the menu appears, what you should do depends on whether
you have a RAM disk or not. If you have a RAM disk (and have just set up
Idevlhd3 to contain its image), leave the boot diskette in drive 0 and hit the = key
(equal sign). After a few seconds, MINIX will begin loading the RAM disk from
Idevlhd3. When it is finished, you will be asked to insert the lusr diskette (#5) and
hit the ENTER key. Do so, and then enter the date when you are asked.

On the other hand, if you want the root device on, say, Idevlhd2, when the menu
appears, type:

to change the root device. You will be prompted again. This time type:

h2

to select (for example) hard disk partition 2 as the root device. The menu will

SEC. 2.3 HOW TO INSTALL MINlX ON A HARD DISK 17

appear again, only this time with an important difference: Idevlhd2 will be the
default root device. Now hit the = key to boot MINIX using your new root device.
Subsequent boots should be done the same way as this one, first changing the root
device (if need be).

The initial menu also gives you the possibility of specifying the RAM disk size
and the place where the RAM image is to come from. If the latter is diskette 0, and
the drive still contains the boot diskette, the system automatically uses partition 3 of
the hard disk, as described above.

Having booted from the hard disk, you should type:

df

to see how much space is still available on the new root device. You need l OOK to
200K free for scratch files in Itmp, but if there is more than that available, you may
wish to copy other files from Ibin on one of the other diskettes to the root (meaning
Idevlhd3 if you have a RAM disk). A typical sequence for a RAM disk user might
be first to unmount everything and then type:

letc/mount Idev/fdO luser
letc/mount Idev/hd3 lusr
cd luser/bin
cp filet lusr/bin
cp file2 lusr/bin
cd lusrlbin
chown bin *

cd I
letc/umount Idev/hd3
letc/umount Idev/fdO

mount a diskette on luser
mount RAM image partition on Iusr
change directories
copy a file to the RAM image

copy another file
change to Iusrl bin
change owner to bin
go to the root directory
un mount RAM image
un mount diskette

Again, this should all be done when logged in as root. Files can also be copied
from !lib in an analogous way. However, note that the C compiler expects to find
all its passes in lusrllib rather than /lib. This expectation can easily be changed by
editing and recompiling commandslcc.c.

If the initial setup has copied files to the RAM image that you do not want there,
you should remove them. After modifying the RAM image, do a sync and re boot to
computer to see if all is well.

2.3.7. Step 7: Initialize Iusr

The next step is creating all the directories. A shell script called letc!setup...Jisr
has been provided to do most of the work. It mounts the main hard disk partition
(specified by its argument) and creates a large number of directories. Next, it
copies files from the root file system and from diskette 5 to the Iusr tree on the hard
disk. When it is finished, it asks for more diskettes to be inserted so it can copy files
from them to the hard disk. Just follow the instructions that appear on the screen

18 MINIX ON THE IBM PC, XT. AT, 386, AND PS/2 CHAP. 2

until the "Installation completed" message appears. To perfonn the installation be
sure you are logged in as root and type:

letc/setup�usr Idev/hd2

assuming the main MINIX partition is partition 2. If you are not using a RAM disk,
it is nonnal that the root partition set up in the previous section and the main parti
tion set up in this section are the same.

Except for the three boot diskettes, all the distribution diskettes are nonnal
MINI X file systems that you can mount and inspect if something should go wrong.
When this shell script finishes, the entire MINIX file system will be installed on the
hard disk. Most of the files on the distribution diskettes are compressed files (with
suffix Z) or compressed archives (with suffix .aZ). If, for some reason, installation
fails part way through, you may be left with some .aZ, .a or Z files on the disk A
file}ile.aZ can be decompressed using :

compress --{j file.a.Z

If the result is an archive (with suffix .a), you can extract the files from the archive
with the ar command, for example:

ar x file.a

At this point the files }ile.aZ and }ile.a can be removed. The only archive that you
nIust keep as an archive is libc.a as the C compiler expects it this way. Do not
extract the individual files from it (unless, for some reason, you want to examine
them by hand).

The letclselllp_usr shell script assumes that you will be mounting Idevlhd2 on
lusr, so it creates top-level directories bin, lib and so on. When mounted, these will
become lusrlbin, lusrllib and so on. However, if you are using a hard disk partition
as root device, they will show up in the tree as Ibin, llib and so on, which will cause
problems because the C compiler expects certain binaries and libraries in lusrilib
and many programs expect the shell in lusrlbin. To solve all these problems, it is
necessary to make a directory usr at the top level of the hard disk partition tree and
then move bin, lib and so on into it. A shell script, letclselllpJlJove, has been pro
vided to do this. Thus, if, and only if you are going to use a hard disk partition as
root device (i.e., no RAM disk), type:

letc/setup�move

now. If you are planning to run with a RAM disk and mount the hard disk partition
on Iusr, do not run letc!setupJllOve. Please note that this shell script assumes that
the MINIX hard disk partition is still mounted on IlIsr, which it will be if
letciselllp_usr completes nonnally and you have not unmounted it.

SEC. 2.3 HOW TO INSTALL MINIX ON A HARD DISK 19

2.3.8. Step 8: Set up Diskette Special Files

MINIX supports three kinds of 5.25 inch diskettes, double density (360K), quad
density (nOK), and high density (1 .2M), and two kinds of 3.5 inch diskettes (720K
and 1 .44M). Thus in theory there are 9 combinations of 5.25 inch drive and diskette
and 4 combinations of 3.5 inch drive and diskette (although some are illegal). Since
the same MINIX binary will run on any PC, with 5.25 or 3.5 inch drives, there are
only two ways for the driver to figure out which drive/diskette combination is being
used: (I) it runs experiments on its own, or (2) you tell it.

If you use the special file IdevlfdO to access drive 0, option I is used. The driver
hunts around, trying all the combinations. This can be slow.

Alternatively, you can invoke option 2 by telling the driver which combination
you want. Each legal combination has been assigned four minor device numbers
(for drives 0 through 3) . For example, when drive 0 is a 360K drive and is being
used to read a 360K diskette, minor device 4 can be used to avoid hunting; the
driver knows to try only the parameters for 360K diskettes in 360K drives. Simi
larly, when reading a 360K diskette in a I .2M drive, minor device 20 can be used to
prevent the driver from having to hunt for the correct parameters. The table below
gives the names of names, device numbers, and characteristics of the special files
for diskettes drive 0 and I (drives A and B).

Minor devices for diskette/drive combinations
Name Minor dev. Inches Drive Diskette Size Parameters
/dev/fdO 0 5.25 360K 360K/I .2M All Variable
/dev/fdl I 5.25 360K 360K/1 .2M All Variable

/dev/pcO 4 5.25 360K 360K 360K Fixed
/dev/pc l 5 5.25 360K 360K 360K Fixed
/dev/atO 8 5.25 1 .2M 1 .2M 1 .2M Fixed
/dev/at I 9 5.25 1 .2M 1 .2M 1 .2M Fixed
/dev/qdO 1 2 5 .25 nOK 360K 360K Fixed
/dev/qdJ 1 3 5.25 nOK 360K 360K Fixed
/dev/psO 1 6 3.5 nOK nOK nOK Fixed
/dev/psl 1 7 3.5 720K nOK nOK Fixed
/dev/patO 20 5.25 J .2M 360K 360K Fixed
/dev/patl 2 1 5.25 1 .2M 360K 360K Fixed

/dev/qhO 24 5.25 1 .2M nOK nOK Fixed
/dev/qh l 25 5.25 1 .2M nOK nOK Fixed
/dev/PSO 28 3.5 1 .44M 1 .44M 1 .44M Fixed
/dev/pS I 29 3.5 1 .44M 1 .44M 1 .44M Fixed

20 MINIX ON THE IBM PC. XT. AT. 386. AND PS/2 CHAP. 2

For example, to read a 1 .2M diskette in a 1 .2M drive 0, use IdevlalO. No hunting
will be done. Only the parameters for this combination will be used and under no
conditions will an attempt be made to read data beyond 1 .2M. Reading a 360K
diskette with IdevlatO will fail with errors, in contrast to using IdevljdO where, after
considerable hunting, the driver will discover the correct parameters and be able to
read the diskette correctly. Throughout this manual, whereverldevlfdO is used as an
example, it is permitted (encouraged!) to substitute another block special file for
corresponds to a specific parameter set rather than the general one.

For each combination, four minor device numbers have been reserved, so MINI X

can handle up to four diskette drives. Only drives 0 and I are l isted above, but
drives 2 and 3 are also supported. For example, minor device 6 can be used for a
360K drive 2 reading a 360K diskette. Not all the special files are present in Idev.
You can make new combinations with mknod. For example:

mknod Idev/pc2 b 2 6 360

makes Idevlpc2 as block device with major device number 2 (required for all
diskette devices) and minor device number 6, with a size of 360K.

2.3.9. Step 9: Reading-in MS-DOS Diskettes

If you have MS-DOS diskettes containing files that you want to read in, you can
do so using dosread. For example, to read an ASCll file foobar from drive A and
put it in the MINIX file system as lusrlastlphoobar type:

dosread -a foobar >/usr/asVphoobar

While it is possible to read in MS-DOS executable programs and store them using
MINIX, since the MINIX and MS-DOS system calls are totally different, you cannot
run them.

2.4. TESTING MINIX

After having installed MINIX you should test it to see if everything is working
correctly. To do this, type:

sync

and then log out using CTRL-D. Reboot the computer and log in as root. Logging
out and rebooting is part of the testing process and should not be skipped. During
the boot process you will be asked to insert the lusr diskette (#5), as usual, because
this is part of the standard lete/re. You must obey it.

SEC. 2.4 TESTING MINIX 2 1

However, after having logged in, you can switch to the hard disk (still assuming
partition 2) by typing:

cd f
fetc/umount IdevlfdO
letc/mount Idevlhd2 lusr

At this point you will be running MINI X using the hard disk. Since it is a nuisance
to keep having to log in using the lusr diskette, you may wish to edit letc/re to
replace the line that reads:

letc/mount IdevlfdO lusr # mount the diskette

with a line that mounts the hard disk instead, for example:

letc/mount Idevlhd2 lusr # mount the hard disk

You should then remove the call to getlf since there is no need for human interven
tion when mounting a hard disk. Please note very carefully that editing fetelre is
pointless if it is on the RAM disk. On the next reboot, the letelre file from the
RAM image (e.g., fdevlhd3) will be used, so the changes will be lost. You must
mount the partition containing the RAM image and edit it. On the other hand, if
you are not using a RAM disk, it is sufficient to edit the true letelre on the root dev
ice.

Now go to directory lusrlsreltest and compile the tests (as root) by typing:

cd lusrlsrc/test
make all

This will compile the MINIX test suite. If it compiles correctly, log out and then log
in again as ast to run the tests. You need not reboot the computer. The test pro
grams may not work correctly if you run as root, because in addition to trying legal
operations, they try illegal ones to see if they fail with the proper error codes. As
root some of them will not fail and the test plOgrams will (incorrectly) report errors.
There is also a danger that they may make the file system inconsistent (in which
case run fsek to repair it). After having logged out with CTRL-D and then back in
again as ast, type:

cd lusrlsrc/test
run

to run all the test programs. They should all run and produce no error messages.
The tests may take 1 5 minutes or more on a slow machine. Please do not interrupt
them, as this may leave garbage files all over.

22 MINIX ON THE IBM PC. XT. AT. 386. AND PS/2 CHAP. 2

2.5. TROUBLESHOOTING

Sometimes things can go wrong. In this section we will describe some of the
more common problems and what you can do about them. Far and away, the most
common problem is caused by trying to run MINIX on a machine whose manufac
turer claims that it is 100 percent IBM compatible, but which in reality has some
what different hardware. The machine must have a NEC 765 diskette controller, a
Motorola 6845 video controller, an Intel 8259A interrupt controller, and so on.
Accept no substitutes. For MS-DOS this difference will be masked by a BIOS that
hides the differences. Since MINIX does not use the BIOS, MINIX may not run on
such machines. If you are having trouble getting started at all, one thing to try is
find a friend's machine and try MINI X there. If it works, then the problem is clearly
due to incompatible hardware. Experience shows that virtually all problems boot
ing MINIX are caused by hardware whose manufacturer's idea of "IBM compati
ble" means that it can run MS-DOS.

If you get a message about an invalid root file system while booting, chances are
you have put the wrong diskette in the drive. Turn off the computer and start all
over.

Another problem that often occurs is the presence of nonstandard video cards.
If you are having screen problems, hit the F3 key to enable software scrolling. This
may solve the problems. Hitting F3 again goes back to hardware scrolling.

Nonstandard video cards sometimes give problems with screen editors and other
programs that use the /etcitermcap file. If this happens, again try F3. If that does
not help, you might try removing the DC, dc, DL, and/or dJ entries from
/etc/termcap to try to pinpoint the problem.

Another video problem is the presence of "snow" on the screen when scrolling
when using some older CGA cards. This problem is caused by the fact that these
cards arc not dual ported, which means that the screen can only be written on when
the electron beam is making a vertical retrace, which happens every 1 6.67 msec for
a period of 4 msec. Restricting writing to the video RAM to this interval greatly
slows down the system, so the default is to write whenever there is data. If the
snow disturbs you and you are willing to accept much slower output, go the the file
kernellklih88.s and remove the comment symbols on the three lines starting at the
label vid.2. Then recompile the operating system. Doing this will cause the screen
driver to delay writing until a retrace has begun.

Sometimes the presence of unusual I/O devices causes trouble. If MINIX will
not boot at all, try removing all mice, analog/digital converters, streamer tapes,
modems, printers. and so on, and try again. If this works, replace the devices one at
a time until the guilty party is pinpointed.

Autoconfigure hard disks sometimes give problems because their ROM's store
parameters and scratch variables at the bottom of memory. Although MS-DOS does
not use these locations, MINIX does. If you have an autoconfigure hard disk and are
having problems, try MINIX on a friend's machine that does not have such a disk. If

SEC. 2.5 TROUBLESHOOTING 23

it works there, the problem is probably the disk. The solution is to disable
autoconfigure.

MINIX is supplied with a number of hard disk drivers, all of them ending in
wini.c. If you are having hard disk problems, try building a kernel (on a friend's
machine) using each driver in turn to see if any of them work. Please note that the
PS/2 drivers expect an ST -506 interface. They do not work with ESDI drives. If
you have an ESDI or other non-ST-506 drive, you must write your own driver.
This is not actually as bad as it sounds. After all, quite a few examples of disk
drivers are provided to study.

Some Model 50s use integrated control lers and other Model 50s have different
model bytes in the ROM. This wide variety of possibilities, none of them well
documented, can lead to problems. It is likely that other models have similar trou
bles. The net result is that ML"IX cannot always figure out whether the machine has
an AT bus or a M icrochannel . Consequently, you may have to make minor changes
to the logic of kernellcstart.c to tell the system what kind of a machine you actually
have. By studying the code and doing some experimenting, you should be able to
get MINIX running in protected mode. Of course if you do not mind running in real
mode, like MS-DOS, the BIOS driver should work fine on all models.

3

MINIX ON THE A TARI ST

In this chapter we will describe how to boot and install MINIX on the Atari ST.
It is assumed that the reader is already familiar with MINIX in general. and has at
least some knowledge of UNIX.

Booting and installing MINIX on the Atari ST is complicated by a variety of fac
tors:

• Atari STs are sold with a wide variety of incompatible keyboards

• Some versions can only handle 360K diskettes; others can handle 360K and
nOK diskettes

• Some people have winchester disks (hard disks); others do not

• The amount of memory available ranges from 5 1 2K to 4M

• The Mega ST differs in some ways from the Atari ST 520 and 1040

Together. these different configurations give problems. Our solution has been
to provide a base version that will require at least I MB of memory and one nOK
disk drive. and make it possible for people with larger configurations to adapt the
system to take advantage of their extra hardware. This chapter explains how that is
done.

It is possible to run MINIX on a system with 5 1 2K of memory. but that leaves

24

25

very little space for applications. In this case the best thing to do is to work without
a ram disk at all. and keep the root filesystem on either hard disk or diskette. Run
ning MINIX on a system with only a 360K disk drive is also possible. However in
that case you must first split each nOK diskettes in the distribution into two 360K
ones. Since you do not have a disk drive capable of dealing with nOK diskettes.
you should do this on a friends system. Sec. 3.6 describes how to split a nOK
diskette into two 360K ones.

3.1. THE MINIX-ST DISTRIBUTION

The MINIX-ST distribution consists of ten diskettes. One of them contains a
binary of the operating system and is used for booting MINIX-ST. Eight others con
tain MINIX file systems. Only one of them contains a TOS file system. (We use TOS
as the name for any combination of BIOS. XBIOS. GEMOOS. GEM. AES and
VDI).

All distribution diskettes are double-side. and formatted on both sides. How
ever. two diskettes contain only 360K of information written on one side of the
diskette. In other words. these two diskettes are wrinen as if they were single sided
diskettes. Here is the list of the diskettes:

Name Sides Size File sys. Description
OO.TOS OS nOK TOS utilities that run as TOS programs
O I .BOOT OS 360K special used for booting MINIX
02.ROOT OS 360K MINIX root file system copied to RAM disk
03.USR I OS nOK MINIX most commonly used commands
04.USR2 OS nOK MINIX commands part 2 of 3
05.USR3 OS nOK MINIX commands part 3 of 3
06.ACK OS nOK MINIX compiler binaries and libraries
07.SRCI OS nOK MINIX sources of the MINI X operating system
08.SRC2 OS nOK MINIX sources of commands part 1 of 2
09.SRC3 OS nOK MINIX sources of commands part 2 of 2

We will refer to these diskettes in the rest of this manual by their name in the first
column of this table, for example. O I .BOOT.

Before you start working with these diskettes we urge you to copy all of them.
You can use normal TOS procedures. like dragging icon FLOPPY DISK A onto icon
FLOPPY DISK B. to make the copies. Whenever we refer to diskettes as
O I .BOOT. 02.ROOT, 03.USRI etc. we always mean a write-enabled copy of the

26 MINIX ON THE ATARI ST CHAP. 3

original diskettes. Store the original diskettes after copying and keep them write
protected under all circumstances. Do not use your originals as work diskettes.

3.2. NATIONAL KEYBOARDS

The Atari ST comes with different keyboards in different countries. This lack
of standardization is a major nuisance. Atari solved the problem by providing a dif
ferent version of their operating system for each country. We have chosen a dif
ferent strategy: a single version that can be adapted to the various keyboards. This
section describes how to set up M I N I X for your keyboard.

Unless you have an Atari ST with a United States version of the keyboard, you
must first adapt MINIX to your particular version of the keyboard. Even with a
United States version this procedure can do no harm, so if in doubt proceed. If you
skip this procedure, it is assumed that the keys generate the characters that are
engraved on the key tops of the United States keyboard, that is, the key below the
DEL will generate the ASCII backslash character (\) unshifted, and the ASCII bar
(I) if shifted, irrespective of the character engraved on the key tops of your key
board.

MINIX cannot handle the national characters themselves, like o-umlaut for Ger
many. The adaptations described below only allow you to enter the ASCII charac
ters in the way you are used to with TOS. In this respect MINIX behaves like most
versions ofC:-;IX.

MINIX has its own keyboard translation tables build into the operating system.
A special tool is provided to extract the keyboard tables from a running version of
TOS and to adapt the tables in the binary version of the MINIX kernel accordingly,
without the need to recompile the MINIX kernel. Note that the MINIX keyboard
translation tables have exactly the same format as used by TOS.

Some keyboard versions need so many keys for special non-ASCII characters
that combinations with the Alternate (AL T) key are used to generate some ASCII
characters. For instance, in France the key below the Delete (DEL) generates the
ASCII sharp sign (#), SHIFT-# generates the bar (I), ALT-# generates the at-sign
(@), and ALT-SHIFT-# generates the tilde. The keyboard tables do not take the
AL T key into account, so Atari delivers several national versions of the TOS operat
ing system to cope with these problems. as mentioned above. In order to avoid
national versions of M INIX, we have built into the keyboard driver a little table of
special ALT and ALT-SHIFT combinations for the limited number of national key
board versions that we knew of: United States, United Kingdom, Germany, France
and Spain. If you happen to have another version you can make a simple
modification in the keyboard driver of the kernel, but that takes effect only after
recompiling the kernel . Refer to the chapter on kernel recornpilation.

To adapt the keyboard tables proceed as follows:

SEC. 3.2 NATIONAL KEYBOARDS

I . Boot TOS and insert OO.TOS in drive O.

2. Open a window onto drive 0 by double clicking the FLOPPY DISK A
Icon.

3. Run COMMAND.TOS found on diskette OO.TOS by double clicking.
COMMAND.TOS is a simple line-oriented command interpreter.

4. Run FlXKEYS.PRG by typing

tixkeys a:

5. Insert unprotected 0 1 .BOOT
when you are asked to do so, and confirm by hitting the RETURN key.

6. Wait for the program to reply with

Done

You are now ready to boot MINIX.

3.3. BOOTING MINIX-ST

27

This section presents a boot procedure for MINIX-ST that works on all
configurations of the Atari ST. Following sections describe how to adapt the set of
diskettes so that you can use MINIX effectively on your particular combination of
memory and disk drives. For example, if you have more than 5 1 2K you can
increase the size of the RAM disk from 1 60K to 300K, if you have I M of memory,
or to I M or more if you have even more memory. If you have a hard disk, all of the
diskettes can be copied onto one or more of its partitions. Finally, some of the
options for booting MINIX will be explained. But first the procedure for booting
that works on all configurations is described.

Throughout the discussion below, l ines printed in the Helvetica typeface are
either commands you should type on the keyboard, or are lines that the computer
will display for you. In a few of the examples, italics characters or words appear in
a command. These represent values that you are to fil l in.

Booting is a three stage procedure. First the operating system itself is loaded
into memory. Then the ROOT file system is copied to a RAM disk allocated in
memory. Finally, the script lerclre is executed and a message will be displayed on
the screen asking you to log on.

To boot M I NIX-ST, proceed as follows:

28 MINIX ON THE ATARI ST CHAP. 3

l . Turn off the ST and then insert diskette O l .BOOT in drive O. You
could push the RESET button as well, but that may not free memory
occupied by a crash resistant TOS RAM disk you may have running.
Moreover, it fails if you normally boot from the winchester.

2. Wait ten seconds, then turn on the ST. It will read the operating system
(about 1 53K) from diskette in a few seconds. The screen will turn
black and it will show on the top two lines the message:

Booting MINIX 1 .5. Copyright 1 990 Prentice-Hall, Inc.
Insert ROOT diskette and hit RETURN (or specify bootdev)

3 . Replace O l .BOOT by diskette 02.ROOT and hit RETURN. Alterna
tives will be explained later. The system will respond with:

Memory size =992K MINIX = 1 53K RAM disk = 1 60K Available=679K

for a system with I M of RAM (numbers might deviate a little). Adding
32K (the size of the video memory) to the first number should give the
amount of memory in your ST.

4. A fourth line will be displayed that reads:

RAM disk. To load: 1 20K loaded: OK

(The number 1 20 may vary a little). In rapid succession the number 0
will be increased in steps of 1 8K, until the whole l ine is replaced by:

RAM disk loaded. Please remove root diskette.

5. When the RAM disk is loaded, the system initialization file, letelre, is
executed. It asks you to remove the root file system and insert the lusr
file system (03.USRI) in drive 0 and type a RETURN. Do so.

6. After lusr has been mounted, you will next be requested to enter the
date (and time). Enter a 1 2-digit number In the form
MMOOYYhhmmss, followed by a RETURN. For example, 9:35 p.m.
on June 0 1 , 1990 was 060 1 9021 3500.

7 . You will now get the message:

login:

on the screen. Type:

root

and wait for the system to ask for your password. Then type:

Geheim

being careful to type the first letter in upper case. Lower and upper

SEC. 3.3 BOOTING MINIX-ST

case letters are always distinct in MINIX. Alternatively, you could have
used the name "ast" together with the password "Wachtwoord". This
is much preferred when you use the system normally, but for now it is
troublesome.

8. If you have successfully logged in, the shell will display a prompt
(sharp sign for root, dollar sign otherwise) on the screen. Try typing:

Is -I

to see what is in the root directory. Note that you need six keystrokes:
"I", O 4S", space, u_", "1 ", and a RETURN. Then type

Is -I /bin

to see what is 10 the Ibill directory on the root device (RAM disk).
After that, try:

Is -l lusr/bin

to see what is on the drive 0 diskette. To stop the display from scrol
ling out of view, type CTRL-S; to restart it, type CTRL-Q. (Note that
CTRL-S means depress the "Control" key on the keyboard and then hit
the S key while "control" is still depressed.)

9. You can now edit files, compile programs, or do many other things.
The reference manuals given in chapters 8 and 9 of this manual give a
brief description of the programs available. However, before rushing
off we advise you to adapt the system to your hardware configuration
first, as described in the next sections.

I D. When you are finished working, and want to log out, type CTRL-D.
The

login:

message will appear, and you or another user can log in again.

1 1 . When you want to shut the computer down, make sure all processes
have finished, if need be, by killing them with kill. Then type sync or
just log out. When the disk light goes out, you can turn the computer
power off. Never turn the system off without first running sync or log
ging out (which does an implied sync). Failure to obey this rule will
generally result in a garbled file system and lost data.

29

30 MINI X ON THE ATARI ST CHAP. 3

3.4. INCREASING THE SIZE OF YOUR RAM DISK

If you have I M or more of memory, we advise you to increase the size of the
RAM disk from 1 60K to 300K or more. A larger ramdisk allows you to use the
RAM disk to copy complete or partial file systems from one diskette to another. It
also gives you plenty of space to add a few more utilities to the ROOT file system.
Finally, it allows you to compile much larger programs without running out of disk
space for the intermediate results. On the other hand it leaves you with less
memory to run your MINIX applications. Choosing a RAM disk of 300K leaves you
enough memory to recompile most the sources and perform many other tasks.

It is easiest, to use a 360K diskette to carry this enlarged ROOT file system.
However, it is a little tricky, to use a 360K diskette to carry a larger ROOT file sys
tem. Say you want to make a S I 2K RAM disk. You may wonder how a S I 2K
RAM disk can be initialized by reading it in from a 360K diskette during the boot
procedure. The secret is that the S l 2K RAM disk is not completely full. Part of it is
initially empty so it can be used for scratch files. Only the initialized part (up to
360K) has to be read in. The only problem with this approach is that if you make
new root file systems, you should be careful that they do not exceed 360K of data.
Failing to do so may damage the file system on your diskette severely.

To install a S I 2K RAM disk, you must first make a S I 2K root file system
diskette as described below. When M I N I X is booted, it looks at the size of the root
file system and sets its size accordingly. If you have more than I MB, you might
even consider making a RAM disk larger than S I 2K, although only 360K can be
initialized at start-up time. To do this, proceed as follows.

I . Take an empty, formatted diskette and label it I O.RS I 2

2 . Boot M I N IX-ST as described above and login as root. Then type:

for i in cpdir mkfs; do cp lusrlbin/$i /bin; done
letcJumount Idev/ddO

3. Insert I O.RS I 2 in drive 0 and type:

mkfs -t IdevffdO 5 1 2
letcfmount Idev/fdO fuser
cpdir -msv I luser

4. Logout by typing CTRL-O.

S. Insert O I .BOOT in drive 0 and type CTRL-ALT-OEL to reboot using
O I .BOOT, I O.RS I 2 and 03.USRI .

Do not forget the -I option to mkfs. It suppresses the check if the new file sys
tem fits on the medium. The program cpdir will tell you that it skipped the direc
tory luser to avoid recursion.

SEC. 3.4 INCREASING THE SIZE OF YOUR RAM DISK 31

By changing the argument 512 to mkfs you can adapt the size of the RAM disk.
However, if you take a value less than 250 you will run into the problem that mkfr
allocatcs not enough inodes to store all the entries of the root file system. If you
have I M of memory and you want to recompile the system a RAM disk of 300K is
recommended. Replace the last two occurrences of Idel'lfdO by IdevlddO if you
prefer to use nOK diskettes, or by Idevlhd3, or any other hard disk partition, if you
want to load the RAM disk from the winchester. Read the section on boot options
below if you do.

Note that a copy of the programs cpdir and mt-is will be present in Ihin on your
new ROOT diskette.

3.5. ADAPTING PROGRAMS TO USE EXTRA RAM

As distributed, the C compiler is tuned to work on even the smallest Atari ST
configuration. This causes problems if you want to recompiic (parts of) MINIX.
The first pan of the C compiler proper, lusrllihlcem, as distributed i s configured for
a stack size of 40K, but it needs about 70000 bytes more to compile some of the
larger source files on the distribution diskettes. It is possible to compile small pro
grams on a 5 1 2K machine with the default memory allocation of the compiler.

If you have at least one of the fOllowing:

• morc than 5 1 2K of memory

• two drives, either diskette or hard disk

there are ways to recompile all of MINIX. Note that it is impossible to recompile
some parts of MINIX on an ST with only 5 1 2K of memory and a single drive.

You are strongly advised to execute the following procedure now if you have
more than the minimal 5 1 2K of memory.

I . Boot MINIX-ST and login as root.

2 . Type:

ep lusrlbin/ehmem Ibin
ehmem =35000 lusr/bin/make
letclumount Idev/ddO

3. Insert 06.ACK in drive 0 and type:

lete/mount Idev/ddO lusr
chmem = 1 1 0000 lusr/lib/cem

A similar procedure can be executed if you encounter any other program that
needs more memory.

32 MINIX ON THE ATARI ST CHAP. 3

3.6. USING SINGLE-SIDED DISKETTES

The distribution contains several nOK diskettes. Most, but not all, Atari ST
machines, have a disk drive that can handle nOK diskettes. Only a few older sys
tems can only handle 360K diskettes. If you have one of these systems do not
despair. You can split a single nOK diskette into a pair of 360K diskettes on a sys
tem with a nOK disk drive. Since you do not have such a system you will have to
borrow one from a friend or perhaps your local dealer.

To split 04.USR2 into l 3 .USR2A and l 4.USR2B proceed as follows:

I . Boot MlNIX-ST using O I .BOOT, IO.R5 l 2 and 03.USRl ; login as root.

2. Type:

for i in cpdir mkfs rmdir; do cp lusr!bin!$i !bin; done
letc/umount Idev/ddO

3. Insert 04.USR2 in drive 0 and type:

letc/mount Idev/ddO luser
mkdir Itmp/a

4. Now copy files from luser to Ilmpla. You should add files to /trnp/a
until the command

du -s Itmp/a

repons a value just below 355.

5. Unmount using:

letClumount Idev/ddO

6. Remove 04.USR2 and insert an empty, single-side formatted disk
labeled l 3 .USR2A in drive 0 and type:

mkfs Idev/fdO 360
letc/mount Idev/fdO luser
cpdir -msv Itmp/a luser
letClumount Idev/fdO
rm -rf Itmp/a

7. Repeat the same process for the second half of the files on 04.USR2,
using an empty, single-side formatted disk labeled 1 4.USR2B.

Be careful about the subtle difference between lusr and luser, between Idel'l/dO
and IdevlddO, and between 13.uSR2A, 14.uSR2B and 04.uSR2. The result is two
360K diskettes that contain all of 04.USR2. Similarly, you can divide others.

SEC. 3.6 USING SINGLE-SIDED DISKETIES 33

It may happen that you need more than two 360K disks to contain all files of
one 720K disk, because the file system itself imposes some overhead that is now
doubled. Use three 360K diskettes in those cases.

After you have divided all other nOK diskettes and you have verified your
work, you should make another copy of your root diskette (02.ROOT or IO.R5 1 2)
and modify the file letcirc on that new copy, replacing the line

letc/mount Idev/ddO lusr

by

letc/mount Idev/fdO lusr

Now you can use this new 360K version of MINIX just like the original one. How
ever exercise some care when dealing with examples in this chapter or section 7.2,
since they assume a nOK version.

3.7. USING A HARD DISK

If you have a hard disk and one or more partitions free for MINIX, you can use it
to keep (part of) the distributed diskettes on line. If you have any choice, use a
small (5 1 2K to I M) partition 3 (/devlhd3) to hold the ROOT file system that is
copied to the RAM disk at boot time. See the section on boot options below. One of
the other partitions, for example 4 (/devlhd4), can be as big as 32M and can be
mounted on lusr. It is also possible to keep the root file system on diskette and only
use a partition to store the usr file system. In that case you can skip step 6 below.
The penalty for keeping the root file system on diskette is an additional disk swap
and some additional delay when booting the system. There is no difference in
behavior after booting. You could use the whole disk (/devlhdS) (up to 32 MB) as
one single MINIX file system, but that would make the disk useless for TOS.

This section describes the steps to set up MINIX on such a system.

3.7.1. Step 1: Backup the Hard Disk

If you are already used your hard disk for TOS, before even contemplating ins
talling MINIX, you should make a complete backup of the contents of your hard disk
onto diskette or another medium. As a bare minimum, installing MINIX will require
erasing one partition of your hard disk, and possibly two. However, to prevent
disaster in the event that you make an error during the setup procedure, it i s highly
desirable that you backup the entire disk before you even start. Your files are too
valuable to put at risk.

It is worth noting that MINIX has a program, tos, that can read TOS diskettes.
Thus if you make your backup on diskettes, you will be able to read the files into
the MINIX file system after you have completed the hard disk installation.

34 MINIX ON THE ATARI ST CHAP. 3

3.7.2. Step 2: Verify that Your Hard Disk is Atari Compatible

There are a number of different hardware vendors for the Atari ST. Most of
their disks work with MINIX. However, some hard disks will not co-operate with
MINIX. For example it is known that some of the very first Supra disk controllers
will not work with MINIX. due to a bug in the controller. Newer Supra disks (the
ones with a SCSI out port) do not have this problem.

To verify that MtNIX is indeed able to correctly access your hard disk, boot
MINIX as described above, but instead of logging in as aSI, log in as rool, using
Ceheim as password (note the upper case C). If you are already logged in as aSI,
use CTRL-D to log out, then log in again as rool (without rebooting). Logging in as
rool makes you the superuser and gives you the sharp sign (#) as prompt instead of
the usual dollar sign. The superuser is the system administrator and has special
privileges denied ordinary users. To install MINIX on your hard disk, you will need
these privileges. Once the installation is complete, you should always log in as aSI,
or create your own login name as described later in this manual.

Once you are successfully logged in as rOOl, type:

dd if=/dev/hdS of=/dev/nuli count=200

After a short time, you should get the message:

200+0 records in
200+0 records out

If you get an error message or no response, MINIX cannot use your hard disk con
troller.

3.7.3. Step 3: Partition the Hard Disk

Initialize the hard disk (formatting and partitioning) using the tools supplied by
Atari, notably the HDXPRC utility. If you have already partitioned your disk
before. and you are happy with the partition sizes you can skip this step. Be warned
that partitioning the hard disk will destroy all information on that disk. MINIX is
not equipped to initialize your disk. The MINIX disk driver requires no special set
tings of the pi-flag and pUd fields (see the Atari hard disk manual), mainly because
the Atari hard disk driver code is deficient in properly maintaining the hard disk
information found in sector O. This requires you not to mix up which operating sys
tem should operate on which partition, unfortunately. MINIX checks the super
block on mounts and it is unlikely that a TOS partition will be accepted. However,
writing to a TOS partition by accessing /devlhd? directly, although superuser only, is
not prevented. Be careful. Similarly, avoid TOS accesses to MINIX partitions. It is a
good idea to remove the icons for the MINIX partitions from the TOS desktop.

Another problem is that the HDX.PRC seems not to format the last sector on the
disk properly, so never use the last sector of the last partition. This i s probably a

SEC. 3.7 USING A HARD DISK 35

bug in HDX.PRG. So, whenever you make a MINIX file system on the last parti
tion, subtract I from the real number of sectors of Ihat partition when calling mkfs.

If you have any choice, allocate a small partition 3 of 5 1 2K, and a large parti
tion 4 of at least 1 0M. This setup is assumed in the rest of this section.

3.7.4. Step 4: Make a MINIX File System on Each MINIX Partition

Now that the disk is physically partitioned, it is time to put a MINIX file system
on each MINIX partition. To do this, determine the number of sectors in each parti
tion. HDX.PRG will have told you the number of sector< when partitioning. The
number may not be quite what you had expected due to the use of entire cylinders
and rounding effects. Compute the number of I K blocks in each MINIX partition by
dividing the number of sectors by 2 (one block is two 5 1 2-byte sectors).

An alternative is to use the command readall with the option -t on each parti
tion. For example:

readall -t Idev/rhd4

will tell you the number of I k blocks on Idel'lhd4. It is possible that during the exe
cution of readall you get a few error messages about unrecoverable disk errors.
These error messages can be ignored safely.

To create a file system of, say, 5 1 2 blocks of I K on partition 3 and 1 0239 blocks
of I K on partition 4, log in as root and type:

mkfs Idev/hd3 5 1 2
mkfs Idev/hd4 1 0239

Notice the 10239 (1 0240 minus 1) due to the bug in HDX.PRG mentioned before.
For other MINIX partitions (or sizes) type the analogous commands. Do not run
mkfs on TOS or other partitions. Be very careful not to make a typing error here, as
making a new file system destroys all information on the partition specified.

You can verify that the file systems have been made by typing:

df Idev/hd3
df Idev/hd4

which will report on the i-nodes and blocks present on each file system. The total
number of blocks should agree with the number you used in the mkfs command.

You can now mount your new file systems. To mount Idevlhd3 (partition 3) on
luser, type:

letc/mount Idev/hd3 luser

To change to Idevlhd3, type:

cd luser

This puts you in the root directory of the partition 3 file system.

36 MINIX ON THE ATARI ST CHAP. 3

3.7.5. Step 5: Check for Bad Blocks

With current manufacturing technology, it is nearly impossible for disk vendors
to deliver perfect drive,. Almost every drive has some bad blocks on it. If MINIX
were to use a bad block in one of your files, you might lose some valuable data, so it
is important to locate all the bad blocks before putting any files on the disk and
make sure they do not cause trouble.

The scheme used in MINIX is to put all the bad blocks into dummy files, so that
the disk space allocator will think they are in use and leave them alone. This
method is more efficient than wasting entire tracks as spares, as is sometimes done.
Suppose that you have allocated partitions 3 and 4 for MINIX. To locate the bad
blocks on partition 3, first log in as rOOI, go to the root directory, and unmount the
partition, if mounted, by typing:

cd I
letc/umount Idev/hd3

It is important that the next commands be executed on the root device, since they
will attempt to mount and unmount Idevlhd3, which will fail if your working direc
tory is there. To locate all the bad blocks, type:

readall -b Idev/rhd3 >bad.3

Depending on the size and speed of your disk, this operation may take a sub
stantial fraction of an hour. Please be patient. It is possible that during the execu
tion of readall you get a few error messages about unrecoverable disk errors. These
error messages can be ignored safely. When it is finished, a prompt will appear on
the screen. When it does, you can examine the output files using cal, more, or an
editor, for example, by typing:

cat bad.3

The output will be a shell script that calls badblocks with up to seven arguments,
each one the number of a bad block. Bad blocks often cluster together. This is nor
mal.

To mark the blocks as bad, type:

sh <bad.3

When this command finishes, several files full of bad blocks may have been created
in the root directory of the device containing the bad blocks. In the example above
these files are created in the top level directory of /dev/hd3. After mounting the
disk you can examine them by typing:

Is -la

SEC. 3.7 USING A HARD DISK 37

They will all have names starting with .Bad_, followed by some numbers. Do not
examine or remove the files. You can now remove the shell script by typing:

rm bad.3

If you now type:

df Idevlhd3

you will nOlice that the number of blocks used has increased by the number of bad
blocks found, and the number of free blocks has decreased by the same amount.

If you have more MINIX partitions, go to the roOl directory and unmount the
current partition. Then mount the next partition and repeat the same process. If the
next partition is 4, the sequence is as follows (where the text starting at the # signs
are just comments):

cd I
letc/umount Idev/hd3
readall -b Idev/rdh4 >bad.4
sh <bad.4
rm bad.4
letc/umount Idev/hd4

go to the root directory
if still mounted
find the bad blocks on partition 4
mark the bad blocks on partition 4

remove the shell script

There is a small chance that a bad block will occur in the i-node list of a new
file system. If this occurs, you must go back to Step 3 and repartition the disk with
different sizes, trying until all of the i-node blocks are good.

3.7.6. Step 6: Initialize the Root File System

When MINIX boots, it needs a root file system. By default, this root file system
is read from a 360K diskette and copied into memory as a RAM disk. If you have a
hard disk an easier alternative is to read the root file system from a hard disk parti
tion, preferably ldel·lhd3, and copy it into the RAM disk.

This requires you to make a copy of the root file system onto Idevlhd3. In the
discussion below we will put the root file system on the 5 1 2K partition Idevlhd3 on
which we have already made an empty file system above. However, you could
equally well use another partition, but take care that the size of the file system you
make on that partition (the argument to mkfs) is used as the size of your RAM disk.

The procedure below is actually rather similar to the procedure described before
to increase the size of your RAM disk. Proceed as follows:

38 �I�IX 0:-1 THE ATARI ST CHAP. 3

I . Boot MINIX-ST with O I .BOOT, any ROOT (02.ROOT or IO.R5 1 2) and
03.USR I and login as root. Then type:

for i in cpdir mkfs chmod; do cp lusribinf$i ibin; done
letClumount Idev/ddO
letcfmount Idev/hd3 luser
cpdir -msv I luser

2. Logout by typing CTRL-O.

You can now test if the new root file system really can be used to boot from. Insert
O I .BOOT in drive 0 and type CTRL-ALT-OEL to rcboot. You will be confronted
again with the message:

Insert ROOT diskette and hit RETURN (or specify bootdev)

As alternative for the insertion of 02.ROOT or I O.R5 1 2 as second step in the boot
procedure you now have three option:

I . Keep the O I .BOOT diskel1e in drive 0, and hit RETURN. MINIX-ST

will detect that you have no diskel1e inserted and will try to load the
root file system from hard disk panion 3, precisely where we have
created our new root file system.

2. Reply with

3,3

to override the default by loading the root file system from hard disk
partition 3.

3 . Reply with any other drive specification, l ike

3,2

if you want to load the root file system from partition 2, for instance.

3.7.7. Step 7: Initialize lusr

The next step is creating all the directories. A shell script called lelclselup-usr
has been provided to do most of the work. It creates a large number of directories.
Next, it copies files from the distribution diskettes to the lusr tree on the hard disk.
It asks for 03.USR I to 09.SRC3 in sequence. Just follow the instructions that
appear on the screen until the "Installation completed" message appears. To per
form the installation be sure you are logged in as rool. We assume that you have

SEC. 3.7 USING A HARD DISK 39

setup 'de,'/hd4 as described above, and that Idevlhd4 comains at least t OM. Then,
\..../ proceed as follows:

I . Boot MINIX-ST using O I .BOOT, any ROOT (02.ROOT, 1 0.R5 1 2 or
hd3) and 03.USR I and login as root.

2. Type the commands:

for i in cpdir test echo; do cp lusr/bin/$i Ibin; done
letc/umount Idev/ddO
letc/mount Idev/hd4 lusr
letc/setup_usr

3. Follow the instructions displayed by the setup_usr script. If your pani
tion is smaller than tOM, the best thing to do is to install only the
binaries onto the hard disk. Type quit when the system asks you to
insert disk 07 (07.SRCI). Installing only the binaries will require 4M.

Except for the boot diskette and the tos diskette, all the distribution diskettes are
normal MINIX file systems that you can mount and inspect if something should go
wrong. When this shell script finishes, the entire MINI X file system will be installed
on the hard disk. Most of the files on the distribution diskettes are compressed files

� (with suffix Z) or compressed archives (with suffix .aZ). If, for some reason, ins
tallation fails part way through, you may be left with some .aZ, .a or Z files on the
disk A filejile.aZ can be decompressed using :

compress -<i file.a.Z

If the result is an archive (with suffix .a), you can extract the files from the archive
with the ar command, for example:

ar x file.a

At this point the files jile.aZ andjile.a can be removed. The only archive that you
must keep as an archive is /ibc.a as the C compiler expects it this way. Do not
extract the individual files from it!

From now on you can mount Idevlhd4 at boot time as Iusr by making a small
change in letcire found on the ROOT file system (diskette or winchester). Use
mined (see chapter 9 on how to use milled) to change the first two lines that read:

Ibin/getlf "Please insert lusr diskette in drive O. Then hit RETURN."
letc/mount Idev/ddO lusr

by a single l ine that reads:

letc/mount Idev/hd4 lusr

Inserting diskette 03.USR l will no longer be necessary at boot time.

40 MINI X ON THE ATARI ST CHAP. 3

3.8. USING A MEGA ST

The Mega ST series is internally quite similar to the Atari 520 ST and 1040 ST
machines. It has more memory, which is automatically supported by MINIX·ST. It
has a blitter chip, but currently MINIX·ST does not support it. Another standard
feature is the battery powered real time clock. To eliminate the need to type the
date each time the system is boot, a small program that reads out the current date
and time from the real time clock, and sets the MINIX time accordingly has been
provided. If you have a Mega ST you are advised to adapt the file letelre so that it
will use that program megarte whenever you boot. Replace the l ine that reads:

/usr/bin/date -q </dev/tty

by the following two lines:

/usr/bin/megartc
/usr/bin/date

Note that megarte is found on 03.USR 1 . This change has the following effect. The
program date queries the terminal for the date and then installs the date. The pro
gram megarte takes the date from the real time clock instead of asking for it from
the terminal. The second line causes the date to be printed.

As an aside, please note that any other commands inserted in the file /elc/re will
be executed before the system is booted. However, when inserting commands
there, be sure that they do not require programs or files that are on diskettes that
have not yet been mounted.

3.9. USING A DISK CONTROLLER BASED CLOCK

Since the original Atari ST did not contain a battery powered real time clock,
quite a number of add-on clocks have appeared on the market. MINIX-ST supports
the real time clock from Weide. It also supports the clocks available on various
third party disk controller boards, but only if you recompile your kernel with the
-DC LOCKS option in the kernel Makefile turned on. See chapter 7 for an expla
nation of rebuilding the kernel. For both types of clocks a small program that reads
out the current date and time from the real time clock, and sets the MINIX time
accordingly has been provided. In both cases you are advised to adapt the file
lelc/re so that it will read the real time clock whenever you boot. If you have a
Weide real time clock replace the line that reads:

/usr/bin/date -q </dev/tty

by the following two lines:

/usr/bin/weidertc
/usr/bin/date

SEC. 3.9 USING A DISK CONTROLLER BASED CLOCK 41

If you have a disk controller with a real time clock and have a modified operating
'---' system (MINIX.lMG) on your O I .BOOT diskette, replace the same line by:

/usrlbinldiskrtc concroJler

!usr/bin/date

'--' where controller is one of SI/pro, icd. bmsl (for a BMS l OO controller) or bms2 (for
a BMS 200 controller). Note that also these programs are found on 03.USR I .

3,10, BOOT PROCEDURE OPTIONS

The boot sequence we have described so far always starts with a 360K BOOT
diskette in drive O. followed by a 360K ROOT diskette in drive O. Between the
BOOT and ROOT diskette you have always answered the question:

Insert ROOT diskette and hit RETURN (or specify bootdev)

by hitting RETURN. If the ROOT file system is found on another device you may
specify that device as:

major,minor

'--' where major is a decimal number specifying the device type and minor is a decimal
number specifying the drive and/or partition. These major.minor pairs correspond
with the numbers you see in the output of:

Is -I !dev

Some of the useful combinations are:

Major Minor Device Description
2 0 fdO 360K diskette in drive 0
2 I fdl 360K diskette in drive I
2 8 ddO 720K diskette in drive 0
2 9 ddl 720K diskette in drive I
3 I hdl partition I of hard disk 0
3 2 hd2 partition 2 of hard disk 0
3 3 hd3 partition 3 of hard disk 0
3 4 hd4 partition 4 of hard disk 0
3 5 hd5 complete hard disk 0

42 MINIX ON THE ATARI ST CHAP. 3

So, if ROOT is found on a nOK diskette in drive the second line of your
screen will look like:

Insert ROOT diskette and hit RETURN (or specify bootdev) 2,9

If you specify nothing or anything illegal, MINIX will check two default devices
in sequence. First it tries to read the super block of the ROOT file system on 2,0

(360K diskette in drive 0). Only if that fails (read error or illegal super block) it
tries 3,3 (partition 3 of hard disk 0). That is why we advised you to use Idevlhd3 as
copy of the RAM disk.

One of the more exotic options of the boot sequence is to read the MINIX

operating system itself from a TOS file, not using the BOOT diskette. On the
diskette OO.TOS you find a TOS program MINIX.PRG that takes as first argument
the name of a TOS file, default MINIX.lMG, that contains the operating system.
You can create the file MINIX.lMG yourself by reading enough sectors from the
BOOT diskette, starting with sector 0, but it requires at least one other diskette,
hard or RAM disk besides a: . The procedure below assumes that you have a TOS
RAM disk named m:. Proceed as follows:

I . Start TOS.

2. Insert a copy of OO.TOS, in drive O.

3. Double click icon FLOPPY DISK A.

4. Double click COMMAND.TOS on A:

rflop a: m:lminix.img t ooooo

5. Insert protected O I .BOOT if you are asked and hit RETURN.

6. When done, put MINIX.PRG and MINIX.lMG onto a TOS diskette

The third argument to RFLOP is the number of bytes to read. 1 00000 is more
than sufficient for the operating system as distributed. You can now copy
MINIXPRG and MINIX.IMG to a TOS partition of the hard disk. Assuming that
you normally boot TOS from the hard disk, you can subsequently switch to MINIX

by double clicking MINIXPRG. If you want to switch back to TOS you logout by
typing CTRL-D. If you see the prompt logill: again, type CTRL-ALT-DEL.

3.11. UNPACKING THE SOURCES

The sources, except the compiler and elle, are on the SRC diskettes. These
diskettes are normal MINI X file systems, which you can mount using the command:

mount Idev/ddO luser

SEC. 3.1 1 UNPACKING THE SOURCES 43

The files on the distribution di.ketles are compressed archives (with suffix .0Z). If
you want to extract the sources from a file ftle.oZ you should first copy this file to
either an empty diskette. or to the RAM disk. if the latter is large enough. Typically
about 4 times the size of the compressed file is required when extracting the
sources. If later on you want to recompile the sources even more space may be
required. That is why you first should copy the compressed source file to an empty
diskette. Your copy of ftle.oZ can be decompressed using:

compress -{j file.a.Z

After decompressing you can remove your copy of ftle.oZ. Now you can extract
the files from the archive with the or command. for example:

ar x file.a

At this point all files from the archive are extracted. You can now remove ftle.o
since it is no longer needed.

3.12. THE TOS TOOLS

Several tools have been developed for TOS. In the early stages of the MINIX·ST

port TOS was used as the development environment. That forced us to port tools like
mkfs and build. and to develop the programs minix and relmix. Later. when the
native MINIX-ST C compiler became available. we could use MINIX-ST itself for
further development. Rather than simply discarding the TOS tools. we have
included them in the distribution for the benefit of people wishing to do further
MINIX-ST developments using TOS. Below we describe these tools in the same
style as the MINIX commands.

Command: BUILD.PRG - build MINIX.IMG out of its constituent parts
Syntax: build bootblok kernel mmfs ini! menu minix.img
Flags: (none)

Build takes the six constituent parts and produces the MINIX-ST operating sys
tem image. That image. if written onto a diskette starting at sector O. is bootable on
the Atari ST. Alternatively. the program MINIX.PRG can be used once TOS is up

'-' and running.

44 �IINIX ON THE ATARI ST CHAP. 3

Command:
Syntax:

FIXKEYS.PRG - patch BOOT diskette for TOS keyboard table
fixkeys [-d] [-4l] drive

Flags: -d Double-sided diskette
-4l Accept not only a: and b:

Example: fixkeys a: # Modify BOOT diskette in drive a:
Fixkeys patches the keyboard tables of the currently active version of TOS into

the MINIX·ST operating system image as normally found on the BOOT diskettes. It
can only operate on diskettes. not on file images.

Command: KEYTBL.TTP - display the keyboard tables
Syntax: keytbl.ttp [file]
Flags: (none)

Keytbl writes the keyboard tables to the file whose name is gives as a parameter
(or to standard output if no parameter is present). This file can be used when recom
piling the kernel. Refer to chapter 7 for details on how to recompile the kernel.

Command: MINIX.PRG - boot MINIX-ST from an image on file
Syntax: minix [image]
Flags: (none)
Example: mlnlX mlnIx.lmg # boot MINIX-ST from minix.img

Minix allows you to boot MINIX-ST if TOS is already up and running. It reads
the operating system image from a TOS file into memory. copies the image to
address 0 and jumps to the address found at location 4. There is no way back to
TOS. except by rebooting the machine.

Command:
Syntax:
Flags:

MKFS.PRG - make a MINIX-ST file system
mkfs [-dol] drive prototype
-d Double-sided diskette
-4l Overwrite: accept not only a: and b:
-I Make a l isting on standard output

Examples: mkfs a: proto # Make a file system on drive a:
mkfs -d b: 360 # Make empty 360 block file system

Mkts builds a file system and copies specified files to it. See chapter 8 for a
description of the proto file syntax. The files used to initialize the new file system
should conform to the TOS syntax. including backslashes and drive specifications.

SEC. 3 . 1 2

Command:
Syntax:
Flags:

THE TOS TOOLS

RELMIX.PRG - change loadfile from .68K to .MIX format
relmix [+amollnt] [-amollnt] [=amollnt] prog.68k prog.mix
+ Increase memory allocation
- Decrease memory allocation
= Set memory allocation

Example: relmix =2000 x.68k x.mix # Make MINIX-ST style loadfile

45

The Alcyon 4. 1 4 C compiler, part of the Atari ST developers kit, produces a
loadfile in .68K format. A simple transformation of the header, removal of the sym
bol table, and a transformation of the relocation information as performed by the
RELMOD.PRG program (also part of the developers kit) does the trick.

Command:
Syntax:
Flags:

RFLOP.PRG - read bytes from diskette
rflop [-4][-0] drive file bytes
-4 Double-sided diskette
-0 Accept not only a: and b:

Example: rflop a: minix.img 1 00000 # Read minix.img from BOOT diskette
An arbitrary number of bytes is read from the diskette and written to a TOS file.

Reading always starts at sector O.

Command:
Syntax:
Flags:

WFLOP.PRG - write bytes to diskette
wflop [-4] [-0] drive file
-4 Double-sided diskette
-0 Accept not only a: and b:

Examples: wflop a: minix.img # Make BOOT diskette
A TOS file is written to a diskette, starting at sector O. This overwrites the infor

mation in sector 0 used by TOS to determine the type of the diskette.

3.13. TROUBLESHOOTING

As a user of MINIX-ST you may be confronted· with some of the error messages
the system can produce. The following subsections give guidelines on you how to
react. It also explains how you can use the built-in debugging aids.

If you have problems booting the system, try the following steps: power down
the machine, wait I D seconds, insert the BOOT diskette in drive 0, and power up
the machine. If you have a hard disk and normally boot from the hard disk directly,
you may either force booting from the diskette as described in the Atari hard disk
manual, or start MINIX-ST using the supplied TOS program MINIX.PRG, as
described in section 3.9 of this manual.

46 :v11:\IX ON THE ATARI ST CHAP. 3

Either way, the screen should turn black and you will see two lines printed on
the top of the screen, asking you to insert the ROOT diskette. If these lines do not
appear, the BOOT diskette is probably damaged.

Hitting RETURN at this point should give one more line. If not, you might
suspect the keyboard or the BOOT diskette. Normally, when the root file system is
being read in, regular progress reports appear on the screen. If not, the diskette
drive may not be working correctly with the MINIX-ST diskette driver (e.g., because
your diskette controller does not generate interrupts as it should). This should not
be a problem with all known Atari ST production models, but we have heard about
some problems with very old development machines. If disk error messages appear
on the screen, your drive may need slower step rates than usual. Official Atari
diskette drives should work correctly.

If the system behaves funny or even crashes while loading the root file system,
the ROOT diskette is suspect. It might be corrupted or too big for this machine. If
so, try it with (a copy of) your 02.ROOT diskette.

If you have gone through thesc critical initial steps you should not have any
problems getting MINIX-ST booted, since the essential resources, the diskette, the
keyboard and the screen are probably all right.

3.13.1. Error Messages

Many of the error messages are also found in MINIX-PC. Here we list the
MINIX-ST specific ones. In all cases % followed by a letter gives the print[format
of the number.

Three messages are printed by the kernel if commands running on top of the
operating system itself encounter problems, such as unsolicited hardware traps and
stack overflow. These three are:

• sig=%d to pid=%d at pc=%X
Generated if bus errors, segmentation faults, illegal instructions or funny traps
are encountered,

• Stack low (pid=%d,pc= %X,sp=%X,end=%X)
If a stack overflow has happened or is about to happen, and

• Unexpected trap. Vector = %d
This may be due to accidentally including
a non-MINIX library routine that is trying to make a system call.
If any of the trap instructions is executed that is not used by MINIX-ST. In both
cases, the system will continue, but the program is likely to be aborted with a
core dump generated on the file core.

SEC. 3.1 3 TROUBLESHOOTING 47

A number of messages announce unexpected hardware events, sometimes only a
warning, sometimes more serious, but not immediately fatal. In this category fall:

• fd '?Cd: timeout
:-';0 diskette in drive (you have 15 seconds to insert one)

• fd%d: read: dma status = Ox%x
DMA error on diskette read request

• fd%d: read sector %d: fdc status = Ox%x
Diskette controller error on read request

• fd %d: write protected
Writing to write-protected diskette

• fd%d: write sector %d: fdc status = Ox%x
Diskette controller error on write request

• fd %d: recalibrate failed. status = Ox %x
Cannot find track 0

• hd: read: drive= %d sector=%D status=Ox%x
Hard disk error on read request

• hd: write: drive=%d sector=%D status=Ox%x
Hard disk error on write request

• DMA interrupt discarded
Unsolicited interrupt from device on DMA bus

• midi interrupt: status=%x, data=%x
Unsolicited interrupt from MIDI interface

• Fake interrupt handler for %s. trap = %02x
Unsolicited interrupt from:

timim,OO: timer A of MFP chip
timint,O I : timer B of MFP chip
timint,03: timer D of MFP chip
siaim,OO: MFP RS232: char received
siaint,O I : MFP RS232: receive error
siaint,02: MFP RS232: char transmitted

"-" siaint,03: MFP RS232: transmit error
iob,O I : MFP RS232 Data Carrier Detect

48 �lINIX ON THE ATARI ST

iob,02: MFP RS232 Clear To Send
iob,03: unused
iob,06: MFP RS232 Ring Indicator
iob,07: Monochrome Monitor Detect

• Printer is not available
Ready bit off: not connected or off line

• printer: still busy
Interrupt received, but not ready

CHAP. 3

More serious conditions cause a system panic. A message is printed and an infinite
loop is entered. Only a reset helps: push the RESET button (sometimes CTRL
ALT-DEL works as well). The most important MINIX-ST specific kernel panics
are:

• dma:ASSERT(%s) failed
Consistency checking in stdma.c

• fd:ASSERT(%s) failed
Consistency checking in stfloppy.c

• Nonexisting interrupt. Vector = %d
A trap via one of the vectors that is unassigned

• Unexpected interrupt. Vector = %d
A trap via one of the auto vectors not used by the ST

• trap via vector %d
A synchronous trap in kernel mode

• no shadow?
Two processes share an ORIGINAL, but neither points to a SHADOW

• rmshadow: cannot handle physio shadows
SHADOW with p_physio set must be copied to ORlGINAL.

• only shadow(s)
All that share ORIGINAL have SHADOW set

• tty_init: unknown terminal %d
For all NR-. TIYS an initialization routine must be called

SEC. 3. 13 TROUBLESHOOTING 49

The imponant file system panics are:

• Invalid root file system

• RAM disk is too big. # blocks = %d

• Root file system corrupted. Possibly wrong diskette.

• init: can't load root bit maps

For all these errors retry booting with (a copy of) 02.ROOT.

3.13.2. Debugging Aids

Some of the internal tables can be inspected by special key combinations. The
keyboard driver recogni1.es tne \o\\o�ing ke� com'oinati.on� <md ca\h de'ougging
routines in the kernel :

CTRL-ALT-FI
CTRL-AL T-F2
CTRL-AL T -F3

dump of the process table
dump of the memory map
dump of the status of the current process

The process table shows the current and lowest stack pointer detected, the CPU
time spend in user mode and system mode, and the memory slot occupied for each
process, including kernel tasks. as well as other information.

The memory map shows (for user processes only) the location and length of the
text, data and stack segments, and the shadowing fields p....shadow, p_nflips and
p-physio.

The status of the current process shows the register values most recently saved,
a memory dump around the location of the program counter, and a memory dump
around the location of the stack pointer. The memory dumps can be used to give a
stack trace and, by manual disassembly, the instructions executed most recently.

The CTRL-ALT-F6 key combination toggles an option to dump the same tables
whenever the message

sig=%d to pid=%d at pc=%X

is printed and whenever the system panics. By default the "automatic table dump"
option is OFF.

The CTRL-AL T -F5 key combination toggles an option to send all kernel gen
erated output not only to the screen but also to the line printer. By default the "ker
nel output to printer" option is OFF. If the printer is offtine, the printing is tem
porarily suppressed. If the "kernel output to printer" option is ON, and the printer
switches from online to offline, it may take a few seconds to detect this, since ini
tially it looks similar to a printer buffer full condition. Be patient.

so MINIX ON THE ATARI ST CHAP. 3

The CTRL-AL T -F4 key combination toggles an option to send all kernel gen
erated output to the screen. By default the "kernel output to screen" option is ON.

A good procedure, if you encounter a problem and you want to spot it, is to iso
late the problem such that it is reproducible. Then, insen paper in the printer and
toggle CTRL-ALT-F5 and CTRL-AL T-F6 to capture the debugging information on
paper while you reproduce the error situation.

If the problem is in a command the core file contains a memory dump at the
time of the crash. These post mortem dumps can be analyzed using the mdb
debugger. Refer to chapter 9 for a description of mdb.

If problems are encountered in the MINIX-ST driver, you have a chance that that
driver has debugging statements coded in. By changing either the #DEBUG or
#TRACE definitions, you can effectuate these statements, but only after recompila
tion. Refer to chapter 7 on how to recompile MINIX

4

MINIX ON THE COMMODORE AMIGA

This chapter tells you how to install and run MINIX on a Commodore Amiga.
Four sections are present in this chapter. The first section discusses the kind of
hardware you need to run MINIX. The second section gives an overview of how to
get MINIX running. The third one goes into more details. The fourth one is about
troubleshooting. If during the installation you have problems. please check the
troubleshooting section. You may have run into a common problem whose solution
is well known and described there. When you have finished reading this chapter
and have successfully installed MINIX. please skip to Chap. 6 to learn about using
your newly installed MI:-IIX system.

4.1. MINIX HARDWARE REQUIREMENTS

MINIX should run on any Amiga 500 or Amiga 2000 that has at least I M of
memory. The most common peripherals are supported. except for the hard disk.
Extra memory or a second drive makes programming much more pleasant. While it
is possible to boot MINI X with a 5 1 2K I drive system. it is difficult to do anything

� serious. certainly not recompiling the operating system. To do that. you really
should buy an additional S I 2K .

5 1

52 MINIX ON THE COMMODORE AMIGA CHAP. 4

4.2. HOW TO START MINI X

Throughout the discussion below, l ines printed in the Helvetica typeface are
either commands you should type on the keyboard, or are l ines that the computer
will display for you.

Before running MlNIX for the first time, make a backup of all the diskettes, to
prevent disaster if one of them should be subsequently damaged. They are not copy
protected. However, all of them, except the first one (called: " BOOT"), are not
AmigaDOS disks, so do not use any of the usual AmigaDOS disk copy programs.
Instead use either a copy program that is able to copy IBM·PC disks, or use the sup
plied diskcopy utility. Since MINIX does not come with a format program, use the
transfer utility, which can be found in the C directory of the boot disk and can be
invoked by typing:

BOOT:C/transfer -f

under AmigaDOS. If you do not have a program to copy IBM-PC disks under Ami
gaDOS you can not yet backup your original disks. Please remember to do so once
you have got MINIX working.

To boot MINIX, proceed as follows.

I . Turn on the Amiga, and insert the boot diskette (BOOT) in any drive. If
the Amiga was already powered on, you may also press both Amiga
keys while holding down the control key to reset the Amiga.

2. Because the AmigaDOS diskette does not contain any of the usual utili
ties such as setmap, rename, etc., you have to copy them from your ori
ginal Workbench disk onto the AmigaDOS disk yourself. When you
boot MINI X for the very first time, a little program will show you
exactly how to do so. When you have successfully copied the required
utilities onto the AmigaDOS disk you should re-boot the Amiga. From
now on the Amiga will automatically load MINIX whenever your boot
from the BOOT disk.

3 . About 15 seconds later, MINIX will ask you to either specify a root dev
ice or press return. Insert the root disk (ROOT) and press return. The
RAM-disk will now be loaded into memory.

4. Another 1 0 seconds later MINIX will display a line telling how much
memory the machine has, how large the operating system (including all
its tables and buffers) is, how large the RAM disk is, and how much
memory is available for user programs (the first number minus the next
two). Check to see that the available memory is at least positive.
MINIX will not run with negative memory. To do anything useful, how
ever, at least 200K of available memory is needed.

SEC. 4.2 HOW TO START MINIX

5. When the RAM disk has been loaded, the system initialization file,
letcirc, is executed. It asks you to remove the root file system and then
insert the lusr file system ("USR") in drive 0 and type a carriage
return. Do so.

6. After fusr has been mounted, you will next be requested to enter the
date (and time). Enter a 12-digit number in the form
MMDDYYhhmmss, followed by a carriage return. For example, 3:35

p.m. on July 4, 1 976 was 070476153500.

7. You will now get the message:

login:

on the screen. Type:

ast

and wait for the system to ask for your password. Then type:

Wachtwoord

being careful to type the first letter in upper case. Lower and upper
case leners are always distinct in MINIX. Do not use an upper case
lener when a lower case one is called for or vice versa. Like UNIX,

MINIX regards "a" and "A" as two distinct characters. Please do not
type "a" when you mean " A". It maners.

8. If you have successfully logged in, the shell will display a prompt (dol
lar sign) on the screen. Try typing:

Is -l fbin

to see what is in the Ibin directory on the root device. After that, try:

Is -I lusr/bin

to see what is on the drive 0 diskette. To stop the display from scrol
ling out of view, type CTRL-S; to restart it, type CTRL-Q. (Note that
CTRL-S means depress the "control" key on the keyboard and then hit
the S key while "control" is still depressed.)

9. If you have more than one diskene drive, you can mount one of the
other diskettes by inserting it into drive I and typing:

fetc/mount Idev/dd1 fuser

If you want to use drive 2 or 3, replace Idevlddl by Idevldd2 or
Idevldd3 respectively. Use Is to inspect it. You can now try out other
commands.

S3

54 MINI X ON THE COMMODORE AMIGA CHAP. 4

1 0. When you are finished and want to log out, type: CTRL-D. The

login:

message will appear, and you or another user can log in again.

1 1 . When you want to shut the computer down, make sure all processes
have finished, if need be, by killing them with kill. Then type:

sync

or just log out. When the disk light goes out, you can turn the computer
power off. Never, ever turn the system off without first running sync or
logging out (which does an implied sync). Failure to obey this rule
might result in a garbled file system and lost data. If you forget and
just turn off the computer, next time you boot, be sure to run /fck to
repair the file system.

4.3. A MORE DETAILED LOOK

[n this chapter we will describe some of the details of MINIX. Note: some pro
gramming examples will be presented in the rest of this chapter. You can recognize
them by the prompts: The 1 > prompt indicates that you should type the command in
an AmigaDOS CLl window, the $ indicates a normal MINIX commando and the #
indicates commands that should be run by the superuser (logged in as roor). You
must not type the prompts themselves, just type the commands following them.

The MINIX distribution consists of one disk in the normal 880K AmigaDOS for
mat (which contains some tools and a binary of the operating system and is used for
booting MINIX) plus a number of double-sided 720K MINIX disks. We will refer to
these diskettes in the rest of this manual by their name in the first column of the fol
lowing table. Here is the list of diskettes:

Name Size File system Description
01 BOOT 880K AmigaDOS Used for booting MINIX

02 ROOT 720K MI:-IIX I 60K Root lile system copied to RAM disk
03 USRI 720K �I:-IIX System Binaries 1 (lusr)
04 USR2 720K �INIX System Binaries 2
05 USR3 nOK MINIX System Binaries 3
06 ACK 720K MINIX C compiler
07 SRC I 720K MI:-IIX Operating System Sources
08 SRC2 720K MINIX Commands Sources I
09 SRC3 nOK �I'IIX Commands Sources 2

If you have not already made backups, now is the time to do so. You can use
the normal AmigaDOS procedure to copy BOOT, as is described in the AmigaDOS

SEC. 4.3 A MORE DETAILED LOOK 55

manuals, or you can use any of Ihe available disk copiers. To copy the MINIX disks
you will have to use MINI X itself. Be sure you have 8 formatted (see section 4.2)
disks ready, to copy the original onto. Be sure to follow diskcopy' s instructions and
repeat this 7 more times. You can also use other means, e.g., dos2dos's format
command or a real PC or Atari-ST to format the disks. We will refer to the copies
as BOOT, ROOT, USR, ACK and SRC. Keep the original disks write protected
under all circumstances to prevent accidental loss of the original source.

4.3.1. Keyboards

The Amiga comes with different keyboards in different countries. MINIX solves
this in the normal Amiga-way: keymaps. This section describes how to set up your
keyboard for MINIX.

If you have one of the European keyboards, you must first install a keymap for
your particular version of the keyboard (unless you arc willing to live with the US
key bindings, meaning that the character engraved on the key top will not always
correctly describe which key it is). Life would have been a lot simpler if typewriter
manufacturers had devised an international standard keyboard I ()() years ago.

There are several methods for installing a keymap, increasing in complexity. If
the one you use fails, please try one of the other methods. For all of the methods,
we assume that you are a bit familiar with the CLI. If you are not, please read that
part of the manual that came with your Amiga. Start up your Amiga and boot from
your favoritc Workbench disk. Now put BOOT: in a drive.

Using One of the Prefab Keymap Files.

Find out which one you normally use by typing:

1 > type S:startup-sequence

You should see a line like:

setmap nl

which means you normally use the Dutch (nl) map:

1> cd BOOT:
1 > dir devs/keymaps

You will see several files, all starting with m_, such as "LUsaO. These are keymap
files. You should specify your key map by editing BOOT:S/startup-sequence . To
specify the nl keymap, change BOOT:clsetmap "Lusal to BOOT:c/setmap mJlI.

If you cannot find your favorite map among the nL' files, or it fails for some
other reason proceed with step 2.

56 MlNlX ON THE COMMODORE AMIGA CHAP. 4

Converting Your Keymap.

Patch a keymap using one of the keymap editors available. We'll assume that
you are using KeyMapEd because it is public domain and quite good. If you have
another keymap editor it will probably do just fine.

The only changes necessary are: help, up, left, right, down to \XOO, del to \X7f,
fI to \x l bOP, f2 to \x l bOQ, f3 to \xl bOR, f4 to \x l bOS, f5 to \x 1 bOT, n to
\X l bOU, f7 to \x I bOV, f8 to \X l bOW, f9 to \X l bOX, n o to \X l bOY.

You might change the (shifted) function key definitions: these are the only ones
where it makes sense to select "string." If you do so you can map any of them to an
arbitrary string. Do not to exceed an average length of 20 characters per key
because in the kernel there are only 400 bytes to store their definitions. When
redefining the keys, do not change the definitions of the (unshifted) function keys,
since they are used by the mined editor.

Give up

If you think that this is all quite complicated or you are not so sure about really
doing any of it, you can skip it for now and find out how the default map (m...usal)
works for you. If worst comes to worst, experimentally determine what all the keys
do, and paste paper stickers on the key tops giving their new functions.

4.3.2. The Preferences

When MINIX boots it copies all sorts of information from AmigaDOS such as
the mouse pointer, which will be used as a cursor under MINI X, border and character
colors, the keymap, the memory map, etc. To change the default settings you can
boot from the BOOT disk, hit CTRL-D before MINIX has actually booted and then
run preferences from your Workbench.

4.3.3. Exchanging Files between AmigaDOS and MINIX

Just as in the other versions of MINIX you can exchange files between Amiga
DOS and MINIX. One problem, however, is that AmigaDOS uses a nonstandard
diskette format; not just a different file system, but also a different encoding scheme
for the data. To overcome this problem, we have provided a transfer utility to read,
write and format MINIX diskettes under AmigaDOS. For more information on
transfer consult the manual pages in Chap. 8.

The nOK diskettes used by MINIX on the Amiga conform to the industry stan
dard for 3.5 inch diskettes, and can be read on the Atari ST using MINIX there. Thus
you can make MINIX file systems on your Amiga and then use them on an Atari ST
and vice versa. In fact, binary programs compiled on any of these systems can be
run on any of the others without modification. This makes it easier for you to share

SEC. 4.3 A MORE DETAILED LOOK 57

software with other MINIX users. People who do not believe in standardization are
requested to read Sec. 4.3 . 1 again.

4.3.4. Making Backups of MINIX

Ok, how about your first good deed as a MINIX user? Boot MINIX login, and
type:

cd I
diskcopy

diskcopy asks you to insert the source disk, insert ROOT, the first of the disks, do so
and hit return. After a while diskcopy will ask you for the (fonnatted) destination
disk, insert one of the disks you've just formatted. repeat this process for the others
and then store the original disks together with the original BOOT in a safe place.
You will not need them again unless you accidentally damage one of the new
copies. Diskcopy unmounts the lusr disk so you'll have to remount it when it is
done. First insert the the USR diskette, then type:

lete/mount Idev/ddO lusr

You can check if MINIX is working 1 00% as follows. Type:

cd lusr/test
run

These elaborate tests take over 1 5 minutes. If no error messages appear, the system
is working properly. Be sure the diskette is write enabled.

You can now edit files, compile programs, or do many other things. The refer·
ence manuals given in Chap 8. and the extended ones in Chap 9. tell you about the
programs available and what they do. The descriptions are for reference purposes,
however. They are not tutorials. If you are unfamiliar with UNIX, it is suggested
that you first read one of the many books available on this subject. Any good corn·
puter bookstore will have a wide selection of them.

4.3,5. Boot Procedure Options

While the default boot sequence will probably be just fine most of the time, you
can change the behavior of the MINIX kernel with some useful options. The MINIX

kernel, fs, mm and init, packed together in BOOT:minix.img, contain the MINIX

code. This data file is read in by a l ittle utility program called minix. This is an
ordinary AmigaDOS program, i t finds out some things about your Amiga (how
much RAM you have, what keymap you use, if you have a NTSC 60Hz or PAL
50Hz machine etc.), then it loads minix.img, passes the infonnation to it and starts it
off. For the exact usage of minix, see the manual pages.

58 MINIX ON THE COMMODORE AMIGA CHAP. 4

4.3.6. Even More Details

If you want to know more about the exact differences between the Amiga and
the IBM versions of MINIX, you might also read the Atari specific chapter, since the
Amiga version was derived from the Atari version, which was derived from the
IBM version. The IBM version was not derived from anything. Details about
exactly what devices are available, how the tty driver works, etc. can be found
there.

4,4. TROUBLESHOOTING

Sometimes things can go wrong. If you are having trouble getting started, you
should try to find a friend's machine and try MINIX there. If it works, then the prob
lem is clearly due to incompatible hardware. To verify that this is indeed the prob
lem, remove (or at least disconnect) all optional equipment from your Amiga and
try again. If this works, insert the optional equipment one device at a time, reboot
ing MINIX after each one is installed until the guilty party is located.

If problems arise after you have gained enough experience to recompile the ker
nel, you might compile (parts of) the kernel with the -DDEBUG flag as to allow
extra debugging output to appear when MINIX is running. This option is not very
useful for inexperienced users, however.

5

MINIX ON THE APPLE MACINTOSH

In this chapter we will describe how to boot and install MINIX on the Apple
Macintosh. It is assumed that the reader is already familiar with MINIX in general,
and has at least some knowledge of UNIX. Readers not at all familiar with UNIX

should probably begin by looking at one of the many introductory articles and
books about it, as this manual does not contain any tutorial material on UNIX.

If you plan on running multitinder with MACMINIX, be sure to read the
multitinder section below.

5.1. MACMINIX HARDWARE REQUIREMENTS

MINIX will run on any Macintosh with at least one megabyte of memory and
1 28K (or larger) ROMs. MACMINIX has been tested most extensively with system
software version 6.0 or latter. Earlier versions may present some problems.

5.2. THE MACMINIX DISTRIBUTION

The MACMINIX distribution consists of eight double-sided 800K diskettes. One
of them contains the boot application and the root tile system, and is used for boot
ing MACMINIX. Since MACMINIX tile systems are also ordinary Macintosh operating

co

60 MINIX ON THE APPLE MACINTOSH CHAP. 5

system files, all of the diskettes are readable by the normal Macintosh operating
system. Here is the list of the diskettes:

Name Size File system Description

OO.BOOT 800K MAC OSjMINIX Used for booting MINIX

O I .USRI 800K MAC OSjMINIX Commands
02.USR2 800K MAC OSjMINIX Commands
03.ACK 800K MAC OSjMINIX C compiler
04.SRCI 800K MAC OSjMINIX Sources of MINIX

OS.SRC2 800K MAC OSjMINIX Sources of commands
06.SRC3 800K MAC OSjMINIX Sources of commands
07.SRC4 800K MAC OSjMINIX Editors

We will refer to these diskettes in the rest of this chapter by their name in the first
column of this table, for example, OO.BOOT.

Before you start working with these diskettes we strongly advise you to make
copies of them. You can use normal Macintosh procedures to make these copies. If
you are not familiar with how to copy a diskette, refer to your Macintosh owner's
guide. Keep the original disks write protected under all circumstances. Make sure
that the copies are named identically to the originals, since the following pro
cedures depend on this. Once you have made the copies, place the originals in a safe
place and use the copies.

5.3. NATIONAL KEYBOARDS

The Macintosh has different keyboards for different countries. When booting,
MACMINIX uses the Macintosh Toolbox to assist in the creation of the virtual key
code to ASCII translation table, so assuming that the international resources have
been properly con figured for your machine, the table will be correct for your coun
try.

5.4. BOOTING MACMINIX

This section presents a boO! procedure for MACMINIX that works on all Macin
tosh configurations. Following sections describe how to adapt the set of diskettes so
that you can use MINIX effectively on your particular combination of memory and
disk drives. For example, if you have more than I megabyte of memory but no hard
disk, you may wish to increase the size of the RAM disk to S I 2K. If you have a
hard disk, all of the diskettes can be copied onto one or more of its partitions.

SEC. 5.4 BOOTING MACMINIX 61

Finally, some of the options for booting MINIX will be explained. But first the pro
cedure for booting that works on all configurations.

Throughout the discussion below, lines printed in the HeIvetica typeface are
either commands you should type on the keyboard, or are lines that the computer
will display for you. In a few of the examples, italics characters or words appear in
a command. These represent values that you are to fill in.

Booting is a three stage procedure. First the operating system itself is loaded
into memory. Then the ROOT file system is copied to a RAM disk allocated in
memory. Finally, the script letclre is executed and you are asked to log on.

To boot MACMINIX, proceed as follows:

I . Follow your normal booting conventions to boot your Macintosh.

2. Place the boot diskette, OO.BOOT in drive 0, and launch the boot boot
application (named boot) by double clicking on it. A window will
appear, and the MACMINIX boot application will exhibit a status line as
it loads each of the initial software components of MINIX: the kernel,
memory management (mm), the file system ifs), and process 0 (init).
When loading is complete, this window will disappear.

3. The main console window will then display (approximately):

Booting MACMINIX 1 .5. Copyright 1 990 Prentice-Hall, Inc.
Memory size=775 MINIX = 1 65 RAM disk = 1 60K Available =475K

for a system with I M of RAM. The memory not accounted for is left
for the Macintosh operating system to use. The amount of memory left
can be configured by you. See the Configuration section below.

4. A fourth line will be displayed that reads:

RAM disk. To load: 1 60K Loaded: OK

Again, the number may vary. In rapid succession the number 0 will be
increased in steps of 5K, until the whole line is replaced by:

RAM disk loaded.

5. When the RAM disk is loaded, the system initialization file, letelre, is
executed. It ejects the boot diskette (OO.BOOT) and asks you to insert
the IllSI' file system (OI .USR I) in a drive and type a RETURN. Do so.

6. After lusr has been mounted, you will now get the message:

login:

on the screen. Type:

root

62 MINIX ON THE APPLE MACINTOSH CHAP. 5

and wait for the system to ask for your password. When it does, please
type:

Geheim

being careful to type the first letter in upper case. Lower and upper
case letters are always distinct in MINIX. Alternatively, you could have
used the name "ast" together with the password " Wachtwoord". This
is much preferred when you use the system normally, but for now it is
troublesome.

7 . If you have successfully logged in, the shell will display a prompt
(sharp sign for root, dollar sign otherwise) on the screen. Try typing:

Is -I

to see what is in the root directory. Note that you need six keystrokes:
" I", "s", space, "-", "'' ' , and a RETURN. Then type:

Is -I /bin

to see what is in the tbin directory on the root device (RAM disk).
After that, try:

Is -I /usr/bin

to see what is on the drive 0 diskette. To stop the display from scrol
ling out of view, type CTRL-S; to restart it, type CTRL-Q. (Note that
CTRL-S means depress the "Control" key on the keyboard and then hit
the S key while "control" is still depressed. If your keyboard does not
have a control key, as with the normal Macintosh Plus keyboard, you
may use the option key instead.)

8. You can now edit files, compile programs, or do many other things.
The reference manuals given in chapters 8 and 9 of this manual give a
brief description of the programs available. However, before rushing
off we advise you to adapt the system to your hardware configuration
first, as described in the next section.

9. When you are finished working, and want to log out, type CTRL-D.
The

login:

message will appear, and you or another user can log in again.

1 0. When you want to leave MINIX, make sure all processes have finished,
if need be, by killing them with kill. Then type: sync or just log out.
Your can then select the "Quit" menu item from the "File" menu, and
this will return you to your familiar Macintosh desktop. Never quit

SEC. 5.4 BOOTING MACMINIX

without first running sync or logging out (which does an implied sync).
Failure to obey this rule will generally result in a garbled file system
and lost data.

5.5. INCREASING THE SIZE OF YOUR RAM DISK

63

If you have more then I M of memory, and are not planning on using a hard
disk, we advise you to increase the size of the RAM disk from 1 60K to 5 I 2K. This
allows you to use the RAM disk to copy complete or partial file systems from one
diskette to another. It also gives you plenty of space to add a few more utilities to
the ROOT file system. Finally, it allows you to compile much larger programs
without running out of disk space for the intermediate results. On the other hand it
leaves you with somewhat less memory to run your MINIX applications. But that is
more than sufficient to recompile most the sources and perform many other compli
cated tasks.

To install a 5 1 2K RAM disk, you must first make a 5 1 2K root file system
diskette as described below. When MINIX is booted, it looks at the size of the root
file system and sets its size accordingly. If you have significantly more than 1 MB,
you might even consider making a RAM disk larger than 5 I 2K. To do this, proceed
as follows.

I . Take an empty, formatted, 800K diskette, name it oo.BOOT, and copy
the boot application from your original oo.BOOT onto the new diskette
(in the normal Macintosh way).

2. Boot MACMINIX as above and login as rool. Then type:

for i in cpdir mkfs mknod chmod; do cp lusr/bin/$i /bin; done
lete/umount Idev/hdO
lete/hdclose Idev/hdO
lete/eject

3. Insert the lIew OO.BOOT in drive 0 and type:

lete/maccreate 512 00.BOOT:ROOT
lete/hdopen OO.BOOT:ROOT Idev/hdO
mkfs Idev/hdO 5 1 2
lete/mount Idev/hdO luser
cpdir -msv I luser
lete/setup_root

4. Logout by typing CTRL-D.

64 MINI X ON THE APPLE MACINTOSH CHAP. 5

5. Quit from MACMINIX by selecting "Quit" from the "File" menu. Res
tart MACMINIX using the above booting procedure, but use your newly
created OO.BOOT diskette in place of the original OO.BOOT diskette.

The program cpdir is able to copy the devices in Ide\', so that will not be a prob
lem when executing letclsetupJoot. Cpdir also will tell you that it skipped the
directory luser to avoid recursion.

By changing the argument 512 to mkfs you can adapt the size of the RAM disk.
Note that a copy of the programs cpdir, mkf" mknod and chmod will be present in
Ibin on the new OO.BOOT.

5.6. ADAPTING PROGRAMS TO USE EXTRA RAM

As distributed, the C compiler is tuned to work on even with the smallest
Macintosh memory configuration. This may cause problems if you want to compile
large source files. The first part of the C compiler proper, lusrlliblcem, as distri
buted, will compile most source files, but you may need to increase its memory
allocation for larger source files.

You are strongly advised to execute the following procedure now if you have
more than the minimal 1 M of memory.

1 . Boot MACMINIX and login as root.

2. Type:

cp lusrlbin/chmem Ibin
lete/umount Idev/hdO
lete/hdclose Idev/hdO
letc/eject

3. Insert 03.ACK in drive 0 and type:

lele/hdopen 03.ACK:ACK Idev/hdO
letc/mount Idev/hdO lusr
chmem +50000 lusr/lib/cem

A similar procedure can be executed if you encounter any other program that
needs more memory. chmem takes a little getting use to, but it is difficult to avoid
in a general-purpose multiprogramming system for a machine without a proper
memory management unit.

SEC. 5.7 USING A HARD DISK 65

5.7. USING A HARD DISK

The Macintosh version of MINIX is quite different from the other version in that
it is not a stand-alone operating system. That is, the IBM and other versions com
pletely take over the hardware once they begin execution, while MACMINIX runs in
tandem with the normal Macintosh operating system, even depending on it for cer
tain services, like accessing the hard disk, drawing and manipulating the menus, and
drawing the tty windows. This has some drawbacks, especially with regard to
speed, but it has the attraction that you can still have some of the things that Macin
tosh owner's like about their machine, such as menus and windows. In addition, if
you have enough memory, you can run multi finder and simultaneously still use all
your other Macintosh software.

However, the Macintosh file system is completely incompatible with the MINIX

file system for a number of reasons, and therefore they do not share the same file
name space. Instead, MACMINIX uses the Macintosh operating system to request it
to set aside some number of (if possible, contiguous) disk blocks into a Macintosh
file. The logical blocks of this file are then used as a MACMINIX disk partition.

You can have up to 9 of these Macintosh files (as distributed, that is, you can
recompile the system to get more), and together they make up a logical MACMINIX

disk. A MINIX partition can then mapped onto the file by means of the hdopen
MINIX utility program.

If you so desire, the Macintosh files that make up the disk can also be backed up
onto your tape or diskette with the reSI of your Macintosh files, using your normal
Macintosh backup software and later restored, if necessary. However, if you
choose to do your backups in this way, you must remember that the entire Macin
tosh file will be backed up when any new information is written, so you may want
to carefully consider where you put things.

Therefore, if you have a hard disk and have some available disk space, you can
use it to keep (part of) the distributed diskettes on l ine. This section describes the
steps to set up MINIX on such a system.

5.7.1. Step 1 : Decide How Much of Your Disk Space to Devote to MINIX

The first decision you must make is how much of your disk you want to give
over to MACMINIX. It is really not all that crucial that you be right the first time,
since you can reclaim file space for the Macintosh operating system by using the
finder to remove one or more of the files that correspond your MACMINlX "parti
tions." (Of course, you also lose the information on that "partition").

You can also create a new "partition" at any time (assuming you have the free
disk space), make a MINIX file system on it, and then mount it for use by MAC

MINI X (see the hdcreate, lhdopen, mkfs, and mount manual pages). Keep in mind,
however, that as distributed MACMINIX allows you to mount a maximum of five
such partitions simultaneously.

66 MINIX ON THE APPLE MACINTOSH CHAP. 5

5.7.2. Step 2: Decide How to Logically Partition Your Disk Space

Once you have decided how much disk space you want to use, you must decide
how to split the space into logical disk partitions. This is entirely up to you, but you
should probably create at least one small partition to hold the ROOT file system that
is copied to the RAM disk at boot time.

Remember that how you logically partition your MACMINIX disk, and what you
put on each partition, potentially has great impact on backing up your disk if you
plan on doing so with ordinary Macintosh backup software. (You do back up your
disk, don't you?) Also remember that as distributed MACMINIX will allow a max
imum of 5 of these partitions to be mounted simultaneously.

5.7.3. Step 3: Build a Macintosh File for Each Partition

For each partition that you want, you must create the Macintosh file that will
correspond to that partition. If, for example, you want a MINIX partition that is 160
blocks, boot MACMINIX as above, and type:

maccreate 160 harddisk:file

This will set aside a Macintosh file of 160 blocks (assuming you have 160 free
blocks) that can be used a MINIX disk partition. When you are running the finder,
with the normal Macintosh operating system, these 1 60 blocks will belong to the
Macintosh file called harddisk:.ftle and will have a MACMINIX file system icon on
the desktop.

Follow this procedure for each logical MINIX partition you wish to create,
changing the second and third parameters to maccreale as appropriate. You must
substitute a complete, legal Macintosh file name for the second parameter.
Remember or write down the size and file names for each partition, as you will need
them in the next step.

5.7.4. Step 4: Make a MINI X File System on Each MINIX Partition

Now that your MINIX disk is logically partitioned, it is time to put a MINIX file
system on each partition.

Let us assume, for example, that you have made a partition of 5000 blocks on
the Macintosh file harddisk:filel and a partition of 20000 blocks on Macintosh file
harddisk:file2. Then to create a file system on each, log in as root and type:

hdopen harddisk:file1 Idev/hd2
mkfs Idev/hd2 5000
hdopen harddisk:file2 Idev/hd3
mkfs Idev/hd3 20000

For the other MINI X partitions type the analogous commands.

SEC. 5.7 USING A HARD DISK

You can verify that the file systems have been made by typing:

df Idev/hd2
df Idev/hd3

67

which will report on the i-nodes and blocks present on each file system. The total
number of blocks should agree with the number you used in the mkfs command.

You can now mount your new file systems. To mount Idevlhd2 (partition 2) on
luser, type:

letclmount Idev/hd2 luser

To change to Idevlhd2, type:

cd luser

This puts you in the root directory of the partition 2 file system.

5.7.5. Step 5: Initialize the Root File System

When MINIX boots, it needs a root file system. This file system can be a disk
partition 0 or a RAM disk. If it is on a hard disk partition 0, then certain directories
and special files must be created on that partition. If it is on RAM disk, then an
image of the RAM disk must be created on partition O. Either way, a root file sys
tem is needed on disk partition 0 (unless you have a diskette-only system). In the
discussion below, we will assume that a RAM disk is being used.

The root file system normally has certain standard directories in it, to be
described later. One of these, Idev, contains all the character and block special files.
To create the directories and special files, first change to the root directory,
unmount all hard disk partitions that are currently mounted using letclumount, then
type:

/etc/setup_root rooUile ram hd I hd2 hd3 hd4

where root...jile is the name of the Macintosh file that was used in the hdcreate com
mand in the last step, ram is the size of the RAM disk in blocks (I K), and the next
four numbers are the sizes of the four hard disk partitions, also in blocks. You must
be logged in as root to run letclselllpJOot. As an example, with harddisk:file1 as
the 2M Macintosh file name used in the hdcreate command, IdevlhdO as the root
device, and the four hard disk partitions being 32000, 32000, 2048, and 1 4000
blocks, respectively, you should type:

letclsetup_root harddisk:filel 2048 32000 32000 2048 1 4000

You must specify all four partition sizes. If a partition has size zero, use O.

At this point, the new hard disk root will contain the same files as the root file

68 MINIX ON THE APPLE MACINTOSH CHAP. 5

system diskette. To try it out, type sync, select "Quit" from the "File" menu, copy
the boot application to the hard disk, and reboot.

Having booted from the hard disk, you should type:

df

to see how much space is still available on the new root device. You need lOOK to
200K free for scratch files in limp, but if there is more than that available, you may
wish to copy other files from Ibin on one of the other diskettes to the root. Files can
also be copied from !lih, but note that the C compiler expects to find all its passes in
lusrllib rather than llib. This expectation can easily be changed by editing and
recompiling commandslcc.c.

If the initial setup has copied files to the RAM image that you do not want there,
you should remove them. After mOdifying the RAM image, do a sync and reboot to
computer to see if all is well.

5.7.6. Step 6: Initialize lusr

The next step is creating all the directories. A shell script called lelciselllp...J<sr
has been provided to do most of the work. It mounts the main hard disk partition
and creates a large number of directories. Next, it copies files from the root file sys
tem and from diskettes to the lusr tree on the hard disk. When it is finished, it asks
for more diskettes to be inserted so it can copy files from them to the hard disk. Just
follow the instructions that appear on the screen unlil the " Installation completed"
message appears. To perform the installation be sure you are logged in as rool. For
inslance, let's assume you created a I OM disk partition on Macintosh file
harddisk:filel , and you now want 10 mount it on Idevlhd I, and copy all the diskettes
to it. To do this, proceed as follows:

I . Boot MACMINIX using OO.BOOT and O I .USR I and login as root.

2. Type the following line:

hdopen harddisk:file1 Idev/hd1
mkfs Idev/hd1 1 0240
lelc/mount Idev/hd1 lusr
letc/setup_usr Idev/hd1

3. Follow the instructions displayed by the setllp_usr script.

Loading all the diskettes requires 9M. You can have a smaller partition if you
install only the binaries (4M) onto the hard disk. In order to do so you should
change the value of STOP on the third line of the lelcisetup...J<sr script to 4, before
issuing the commands above.

SEC. 5.7 USING A HARD DISK 69

When this shell script finishes, the entire MINI X file system will be installed on
the hard disk. Most of the files on the distribution diskettes are compressed files
(with suffix Z) or compressed archives (with suffix .aZ). If, for some reason, ins
tallation fails part way through, you may be left with some .aZ, .a or Z files on the
disk. A file jile.aZ can be decompressed using

compress -<J file.a.Z

If the result is an archive (with suffix .a), you can extract the files from the archive
with the ar command, for example:

ar x file.a

At this point the files jile.aZ and jile.a can be removed. The only archive that you
must keep as an archive is libc.a as the C compiler expects it this way. Do not
extract the individual files from it!

From now on you can mount Idevlhdl at boot time as lusr by making a small
change in letc/rc found on the ROOT file system. Use mined (see the section on
editing below) to change the first three l ines that read:

Ibin/getlf " Please insert lusr diskette in drive O. Then hit RETURN."

letclhdopen 01 .USR1 :USR1 Idev/hdO

letclmount Idev/hdO lusr

by two lines that read:

letclhdopen harddisk:file1 Idev/hdO

letc/mount Idev/hdO lusr

Inserting diskette O I .USRI will no longer be necessary at boot time.

S.S. UNPACKING THE SOURCES

All MINIX sources, except the sources for the compiler and the editor, can be
found on the SRC disks. These disks are normal MINIX file systems, which you can
mount using the command

openfs 04.SRC 1 :SRC 1 Idev/hdO

mount Idev/hdO luser

The files on the distribution diskettes are compressed archives (with suffix .aZ). If
you want to extract the sources from a file jile.aZ you should first copy this file to
either an empty floppy, or to the ram disk, if the latter is large enough. Your copy of
jile.aZ can be decompressed using:

compress -<J file.a.Z

70 MINIX ON THE APPLE MACINTOSH CHAP. 5

After decompressing you can remove your copy of file.a.l. Now you can extract
the files from the archive with the ar command, for example:

ar x file.a

At this point all files from the archive are extracted, and the file file.a can be
removed.

5.9. THE MENUS

There are four menus available to MACMINIX user. They are generally self
explanatory, but this section gives a brief description of each.

5.9.1. The Apple Menu

The Apple menu is similar to every other apple menu you have seen. Selecting
the first item on the menu will bring up a simple dialog box, describing MACMINIX.
while the rest of the items are for your desk accessories.

5.9.2. The Edit Menu

The Edit menu exists for the benefit of those desk accessories that can use it.
None of the menu items are used by MACMINIX.

5.9.3. The File Menu

The File menu is used primarily to quit from MACMINIX or to con figure various
aspects of MAO,lINIX operation. Remember to sync the disks before quitting. A
detailed explanation of your configuration options is given below.

5.9.4. The Windows Menu

The WinJows menu is used to manipulate your windows. For example, there are
menu items to enable you to rotate the windows, reopen them once you have closed
them, or selecting individual windows to bring to the front.

5.9.5. The Debug Menu

Once you have MACMINIX running, some of the internal MINIX tables can be
inspected by selecting items from this menu. Below is a table describing the name
of the menu item and what it does,

SEC. 5.9

PROCESS
MEM MAP
CURRENT

THE MENUS

dump of the process table
dump of the memory map
dump of the status of the current process

71

The process table shows the current stack pointer, the CPU time spend in user
mode and system mode, and the memory slot occupied for each process, including
kernel tasks, as well as some other information.

The memory map shows (for user processes only) the location and length of the
text, data and stack segments, as well as some other fields.

The status of the current process shows the register values most recently saved,
a memory dump around the location of the program counter, and a memory dump
around the location of the stack pointer. The memory dumps can be used to give a
stack trace and, by manual disassembly, the instructions executed most recently.

5.10. SETTING CONFIGURATION OPTIONS

Selecting the "Configuration" menu item in the "File" menu will bring up a dia
log box that allows you to set various operating parameters of MACMINIX . This sec
tion describes each of your options.

5.10.1. Heap Space

The dialog item entitled " Heap Space" allows you to specify how much of the
application heap should be left by MACMINIX to support normal Macintosh opera
tion, such as desk accessories and dialog boxes. The smaller you make this number,
the more memory you will have available for MACMINIX processes. On the other
hand, if this number is too small, the Macintosh operating system may run out of
heap space, in which case the machine will crash. As distributed, this number is
fairly generous so that it has the best chance of working with your configuration.
You may want to experiment to see what is best for you. If you plan on using
multifinder with MACMINIX, you can get away with making this number somewhat
smaller, since desk accessories are not generally loaded into the currently running
application's heap under multifinder.

5.10.2. Keyboard Mappings

There is also a check box labeled " Use Builtin Keyboard Mappings." As noted
earlier, MACMtNIX uses the Macintosh ROMs to set up the initial virtual keycode to
ASCII mapping. If you prefer, however, you can select this check box and MAC·

MINIX will use the mapping that has been compiled into the kernel. You may want
to try this if you experience problems with your keyboard. As distributed, the US
keyboard mapping has been compiled into the kernel.

72 MINIX ON THE APPLE MACINTOSH CHAP. 5

5.10.3. The ROOT Partition

The final option you may set in this dialog box have to do with what Macintosh
file is initially mapped to the MACMINIX hdO disk panition. This is the partition
used to initially read the ROOT file system. As distributed, this is set to
"OO.BOOT:ROOT" meaning that it will attempt to use the Macintosh file called
ROOT on the volume named OO.BOOT. Clicking the mouse button on top of the
box that displays the name will bring up a standard file dialog box, and you can
select a new Macintosh file to use as the ROOT panition.

5.10.4. Effecting The Changes

Once you have made the desired changes to he configuration, the new
configuration take effect the next time you boot MACMINIX. The "Cancel" button
will cause any changes you made to be ignored.

You may also con figure MACMINIX previous to booting by holding down the
mouse button as you launch the boot application. If you do this, the configuration
dialog box appears immediately, and you can set the various items as above. In this
case, the new configuration is used immediately.

5.11 . MACINTOSH SYSTEM CALLS

Supplied with MACMINIX is a panial interface with the Macintosh ROMs. You
can find the include files in lusrlincludelmac, and the interface routines in
lusrlliblmac. The library routines were built automatically from a program that
uses the include file prototypes as a guide. A complete interface will be available
sometime in the future.

A MACMINIX process may make calls to the ROMs, but please keep in mind that
MACMINIX will not preempt a MINIX process when it has made a ROM call, since
the ROMs are non-reentrant, and preempting may cause major problems.

5.12. RUNNING MACMINIX WITH MULTIFINDER

Before multi finder, there was not much of a distinction between the currently
running application and the operating system. Since only one application could run
at a time, the Macintosh operating system could be viewed simply as a set of sup
port routines for the application. With the introduction of multfinder, this view
changed somewhat, since now a Macintosh could have several applications in
memory at any one time. The Macintosh operating system would transparently
switch between them, although it could only do so at times when the application
agreed to "give up" the processor.

SEC. 5 . 12 RUNNING MACMlNIX WITH MULTIFINDER 73

MACMINIX will work with multi finder, giving up the processor at various times
so that your other applications may run. In order 10 give MACMINIX a larger
multifinder memory partition, sel the memory size of the boot application the same
way you do for any other application (see your owner's guide for a more complete
description). There is one thing to remember here however and that is that MAC

MINIX does not run at all while another Macintosh application is running, so you
may find that you have inconsistent results when running MINIX programs if they
are time dependent.

5.13. TROUBLESHOOTING

As a user of MACMINIX you may be confronted with some of the error messages
the system can produce. The following sections gives guidelines on you how to
react. It also explains how you can use the built-in debugging aids.

5,13,1. Booting Problems

If you have problems there can be many causes. and listed here are some of pos
sibilities.

5.13.2. Exhausted Heap Space

If you experience some unexplainable crashes, especially when you do simple
things like selecting a menu. the Macintosh operating system may be running out of
usable heap space. You can increase this with the "Configuration" menu item.
described above. Since you might be having a problem getting running in the first
place. you can bring up the configuration dialog box before anything else happens if
you hold down the mouse button when you initially launch MACMINIX.

5.13.3. System Software I ncompatibilities

If you are running an old version of the Macintosh system software. you may
want 10 bring it up to date in order to minimize incompatibility problems.

5.13.4. Init Incompatibilities

If you experience unexplained crashes and are using some inits on your system.
you may wish to temporarily remove them 10 see if it solves your problem. One or
more of them may be incompatible with MACMINIX.

6

USING MINIX

By now you should have installed MINIX and gotten to the point where you can
use it. In this chapter we will discuss some basic and some less basic points about
using it. Once again, if you are not already reasonably familiar with using UNIX,

you should first read one of the many books about it.
As a general rule, most aspects of MINI X work the same way as they do in UNIX.

When you log in, you get a shell, which is functionally similar to the standard V7
shell (Bourne shell). Most programs are called the same way as in UNIX, have the
same flags, and perform the same functions as their UNIX counterparts. The
(default) keyboard editing conventions are also similar to V7 UNIX: the backspace
key (CTRL-H) is used to correct typing errors, the @ symbol is used to erase the
current input line, CTRL-S is used to stop the screen from scrolling out of view,
CTRL-Q is used to start the screen moving again, and CTRL-D is used to indicate
end-of-file from the keyboard., for example, to log out. These key bindings can be
changed using the IOCfL system call and Slty program, the same way as in UNIX.

6.1. MAJOR COMPONENTS OF MINIX

Although MINIX consists of hundreds of files, programs, and procedures, from
the user's perspective, a few of them stand out as being especially important. In
this section we will take a quick look at a few of the most important ones.

74

SEC. 6.1 MAJOR COMPONENTS OF MINIX 75

6.1.1. The Shell

The MINIX command interpreter is functionally identical to the Version 7 com
mand interpreter, known as the shell (or the Bourne shell in honor of its inventor,
S. R. Bourne). When a user logs in, the shell stans out by displaying the prompt, a
character such as a dollar sign, wh ich tells the user that the shell is waiting to accept
a command. If the user now types:

date

for example, the shell sees to it that the date program is run. When dale finishes,
the shell types the prompt again and tries to read the next input iine.

The user can specify that standard output be redirected to a file by typing, for
example:

date >file

Similarly, standard input can be redirected, as in:

sort <file1 >file2

which invokes the son program with input taken fromftlel and output sent toftle2.
The output of one program can be used as the input for another program by con

necting them with a pipe. Thus

cat file1 file2 file3 I sort >outfile

invokes the cal program to concalenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sarI is redirected to the file
outfile.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it jusI gives a prompt immediately. Consequently :

cat file1 file2 file3 I sort >outfile &

stans up the sort as a background job, allowing the user to continue working nor
mally while the sort is going on.

lt is possible to collect several commands together in a file called a shell script
and have them executed by just typing the name of the shell script. The shell also
recognizes some programming constructs, such as if, for, while, and case, so it is
possible to write shell scripts that act like programs. For more infonnation about
the MINIX shell, consul! any book about the UNIX system because the MINIX and
Bourne shells are practically indistinguishable to the user (although they are very
different internally).

76 USING MINIX CHAP. 6

6.1.2. Editors

MINIX comes with several editors, among them a line-oriented editor called ed,
a simple full-screen editor called mined, a powerful multifile, multiwindow editor
called el/e, and a clone of the well-known Berkeley vi editor, called elvis. People
often have very strong, almost emotional, attachments to particular editors, so we
have provided a wide choice. Try them all and see which you like best.

The ed editor is based on the V7 editor used on old mechanical teletypes.
Although it still useful under certain circumstances, for daily use, it is rarely used
nowadays.

In contrast, mined is a simple, but modern full-screen editor. Its greatest virtue
is that it can be learned in about 1 0 minutes. When you type an ordinary ASCII
character, that character is inserted on the screen (and in the file being edited) at the
position of the cursor. This may sound obvious, but many editors require you to
first enter a special " insert mode," enter the text, and then leave insert mode.

Commands to mined, such as moving the cursor or terminating the edit session,
are handled by control characters, such as CfRL-F (go forward one word) or by the
keys such as the four arrows on the numeric keypad at the right-hand side of the
IBM PC keyboard. There are about three dozen commands in all, mostly chosen for
their mnemonic value (e.g., CTRL-A moves the cursor to the start of the current
line; CTRL-Z moves it to the end of the line).

Some of the commands move the cursor around the screen, scroll the screen for
ward or backward, or position it at the beginning or end of the file. Other com
mands delete text around the cursor (e.g., delete the word to the left or right of the
cursor, or delete the tail of the current line). There are also commands available to
manipulate blocks of text, such as deleting a block of text or saving it in a buffer to
be copied to another part of the file. Finally, there are commands for searching for
ward or backward for a given text pattern, where the text pattern may contain a
mixture of ordinary ASCII characters and "wild card" characters for matching sets
of characters, end-of-line, and so on.

Another editor is el/e, which can be thought of as a fast, simplified version of
the famous emacs editor. It has about 100 commands, and can edit multiple files in
full-screen or split-screen mode. Many sophisticated users regard emacs as the last
word in editing.

Finally, there is elvis, an editor that has nearly all the features of the Berkeley vi
and ex editors. All four editors have different properties. If you do not already
have a preference, try them all until you find one you like.

6.1.3. The C Compiler

MINIX comes with a C compiler that accepts programs written in C as described
in the Kemighan and Ritchie book. It also accepts many nonstandard features that
are commonly used, but gives a warning message about each of them when asked

SEC. 6.1 MAJOR COMPONENTS OF MINIX 77

to. It also provides the standard header files normally provided with C compilers.
The command:

cc prog.c

compiles the program on the file prag.c and leaves the executable binary program
on a file called a.alll.

The compiler knows about most of the standard C compiler flags, including -<

(compile but do not link), -i) (put the compiler output on a specific file instead of
a.alll), -D (define a macro), and -I (search a given directory for include files). Like
the Version 7 compiler, this one also has a preprocessor for #define, #inciude, and
#ifdef statements.

One minor difference between the MINIX compiler for the IBM PC and most
other C compilers is that this one produces .s rather than .a files as a result of the -<
flag. Furthermore, the assembler and linker are combined into a single program,
asld, that reads a list of .s files and possibly some l ibrary archives, and produces an
executable file. The members of the library archives are also .s files, although both
they and the compiler output are compacted to save time and space. The programs
libpack and Iibllpack are provided to convert assembly language files from ASCII to
compact format and back. The C compilers for the 68000 machines produce normal
.a files.

6.1 .4. The Utility Programs

MINIX comes with more than 175 utility programs. One rough grouping is to
classify them into five categories as follows:

I . Compiler utilities.

2. File and directory manipulation.

3. Text file processing.

4. System administration.

5. Miscellaneous.

The compiler utilities are programs such as make, for keeping track of inter
dependent source and object files; ar, for maintaining libraries; and size, for deter
mining the size of the various segments in a binary program.

The file and directory manipulation programs include cat, cp, dd, mv, and pr, for
moving files around; mkdir, rmdir, and Is, for managing directories; and chmad, and
chawn, for dealing with protection.

A variety of programs are present for working with text files in addition to the
.� editors, including the well-known filters grep, rev, sart, tr, uniq, and wc. The pro

gram gres searches a set of files for a pattern, and replaces occurrences with a given

78 USING MINIX CHAP. 6

pattern. The MINIX text justifiers are roff, and nroff, which have a wide variety of
commands for controlling page layout.

Some utility programs deal with system administration. These include dj, for
determining how much space a file system has, mkfs, for making new file systems,
mount and umollnt for attaching and detaching file systems to the main file tree,
passwd for changing passwords, and su for becoming superuser.

The last category is for programs thaI do not fit in anywhere else. Among these
are date, for setting and displaying the date and time, pwd, for printing the working
directory, and slty, for setting the terminal parameters. There are many more.

6.1.5. The Library Procedures

MINtX also comes with over 200 library procedures that can be called from C
programs. Like the utilities, these can also be divided into several rough groups:

I . System calls.

2. ANSI C procedures.

3. Miscellaneous.

The system call procedures allow C programs to issue system calls. There are
more than 40 system calls available, including OPEN, READ, WRtTE, CLOSE, LSEEK,

PIPE, FORK, and EXEC. For almost every system call, there is a library procedure
with exactly the same parameters and results as in Version 7. It should be possible
to take almost any portable C program that runs under Version 7 and compile and
run it on MINIX. Funhermore, most reasonable C programs written for other ver
sions of UNIX should also work on MINI X, provided that they do not use any of the
more bizarre system calls available in other versions and do not make any implicit
assumptions about the sizes of integers and pointers (which are not the same on the
68000 versions of MINIX).

The second category is the set of procedures defined ANSI C. The collection is
not yet complete, but most of the more common procedures are present, including
standard I/O and string handling. Calls such as jopen, jread, jwrite, jdose, and
jprinif are all present, as are strcat, stremp, strcpy, and str/en, to name just a few.

The last category consists of a mixture of other procedures, which span a wide
range, from encryption (crypt) to temporary file creation (mktemp).

6.1.6. Relation with Other Operating Systems

Like UNIX, MINIX is a complete operating system. It does not require any other
operating system to help it. On the IBM PC, Atari, and Amiga, when MINIX is run
ning it takes over the entire computer and runs on the bare hardware. For the
Macintosh version, this is not true. There MINtX runs as a user program on top on

SEC. 6. 1 MAJOR COMPONENTS OF MINIX 79

the Macintosh operating system. Since MINIX has different system calls than MS

DOS, TOS, and AMIGA-DOS, it is nOI possible to run programs written for other
operating systems on MINIX.

Nevertheless, it is possible to panition your hard disk with one or more parti
tions for MINIX and on� or more partilions for other operating systems. Further
more, you can transport files back and forth between MINIX and MS-DOS, TOS, or
AMIGA-DOS, using utility programs have been provided for this purpose. The utili
ties reside in lusrlbin and are invoked in the usual way, by just typing their names
and arguments. The first program for the IBM PC, dosdir, reads an MS-DOS diskette
and tells what is on it. The program can also be told to list a specific directory on
the diskette.

The second program, dosread, reads a file from an MS-DOS diskette and copies it
to standard output, which, of course, can be redirected to a file. When the -a flag is
given, the MS-DOS conventions for ASCII files are converted to the MINIX conven
tions, so Ihe resulting file appears to be a normal text file.

The third program, doswrite, copies its standard input to a diskette containing an
MS-DOS file system, again doing format conversion if requested. It does not create
directories, however, so all the necessary directories must be in place on the
diskette when it is inserted into the drive. As an aside, these three programs are all
links to the same file, which checks to see how it was called to see what it should
do.

For the 68000-based systems, analogous programs are provided to get files back
and forth.

6.2. PROCESSES AND FILES IN MINIX

Two key concepts in MINI X are processes and files. S ince these may not be
immedialely familiar to people who are accustomed to other operating systems,
below we give a brief introduction to them. Processes and files are accessed by sys
tem calls , services provided by the operating system. Some of the more important
process and file system calls will be discussed below.

6_2.1 . Processes

A process is basically a program in execution. [t consists of the executable pro
gram, the program 's data and stack, its program counter, stack pointer, and other
registers, and all the other information needed to run the program.

The easiest way to get a good intuitive feel for a process is to think about a
timesharing system. Periodically, the operating system decides to stop running one
process and start running another, for example, because the first one has had more
than its share of CPU time in the past second.

When a process is temporarily suspended like this, it must later be restarted in

80 USING MINIX CHAP. 6

exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, if the process has several files open, the exact position in the files where
the process was must be recorded somewhere, so that a subsequent READ given
after the process is restarted will read the proper data. In many operating systems,
all the information about each process, other than the contents of its own address
space, is stored in an operating system table called the process table, which is an
array (or l inked list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the core
image (in honor of the magnetic core memories used in days of yore), and its pro
cess table entry, which contains its registers, among other things.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typical example. The shell reads com
mands from a terminal. The user has just typed a command requesting that a pro
gram be compiled. The shell must now create a new process that will run the com
piler. When that process has finished the compilation, it executes a system call to
terminate itself.

If a process can create one or more other processes (referred to as child
processes) and these processes in turn can create child processes, we quickly arrive
at the process tree structure of Fig. 6-1 .

Fig. 6-1. A process rree. Process A created two child processes, B and C. Process
B created three child processes, D. E. and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program with
a different one.

Occasionally, there is a need to convey information to a running process that is
not sitting around waiting for it. For example, a process that is communicating with
another process on a different computer does so by sending messages over a net
work. To guard against the possibility that a message or its reply is lost, the sender
may request that its own operating system notify it after a specified number of
seconds, so that it can retransmit the message if no acknowledgement has been
received yet. After setting this timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends a
signal to the process. The signal causes the process to temporarily suspend what
ever it was doing, save its registers on the stack, and start running a special signal

SEC. 6.2 PROCESSES AND FILES IN MINIX 81

handling procedure, for example, to retransmit a presumably lost message. When
the signal handler is done, the running process is restarted in the state it was just
before the signal. Signals are the software analog of hardware interrupts, and can
be generated by a variety of causes in addition to timers expiring. Many traps
detected by hardware, such as executing an illegal instruction or using an invalid
address, are also converted into signals to the guilty process.

Each person authorized to use MINIX is assigned a uid (user identification) by
the system administrator. Every process started in MINIX has the uid of the person
who started it (except for so-called setuid programs). A child process has the same
uid as its parent. One uid, called the superuser, has special power, and may violate
many of the protection rules. In large installations, only the system administrator
knows the password needed to become superuser, but many of the ordinary users
(especially students) devote considerable effort to trying to find Haws in the system
that allow them to become superuser without the password.

6.2.2. Files

A major function of the operating system is to hide the peculiarities of the disks
and other I/O devices, and present the programmer with a nice, clean abstract model
of device-independent files. System calls are obviously needed to create files,
remove files, read files, and write files. Before a file can be read, it must be opened,
and after it has been read it should be closed, so calls are provided to do these
things.

In order to provide a place to keep files, MINlX has the concept of a directory as
a way of grouping files together. A student, for example, might have one directory
for each course he was taking (for the programs needed for that course), another
directory for his electronic mail, and still another directory for his computer games.
System calls are then needed to create and remove directories. Calls are also pro
vided to put an existing file in a directory, and to remove a file from a directory.
Directory entries may be either files or other directories. This model also gives rise
to a hierarchy-the file system, as shown in Fig. 6-2.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels is
unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally a few minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also
differ for processes and files. Typically, only a parent process may control or even
access a child process, but mechanisms exist to allow files and directories to be read
by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 6-2, the

Sl \)\',\1'\<:' M\1'\\"l\.

Aoot directory

Students Faculty

Prof White

Fig. 6-2. A file sysrem for a university department.

path for file CSJOJ is /FaCIIlty/ProJ.Brown/Courses/CSJOJ . The leading slash indi
cates that the path is absolute, that is, starting at the root directory (as opposed to a
relative path starting at the working directory).

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. In Fig. 6-2, if
/Faculty/ProJ.Brown were the working directory, then use of the path name
Courses/CSJOJ would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Files and directories in MINIX are protected by assigning each one a 9-bit binary
protection code. The protection code consists of three 3-bit fields, one for the
owner, one for other members of the owner's group (users are divided into groups
by the system administrator), and one for everyone else. Each field has a bit for
read access, a bit for write access, and a bit for execute access. These 3 bits are
known as the rwx bits. For example, the protection code rwxr-x--x means that the
owner can read, write, or execute the file, other group members can read or execute
(but not write) the file, and everyone else can execute (but not read or write) the file.
For a directory, x indicates search permission. A dash means that the corresponding
permission is absent.

Before a file can be read or written, it must be opened, at which time the perm is
sions are checked. If the access is permitted, the system returns a small integer

SEC. 6.2 PROCESSES AND FILES IN MINIX 83

called a tile descriptor to use in subsequent operations. If the access is prohibited,
an error code is returned.

Another important concept in MINIX is the mounted tile system. To provide a
clean way to deal with removable media (e.g. diskettes), MINIX allows the file sys
tem on a diskette to be attached to the main tree. Consider the situation of Fig. 6-
3(a). Before the MOUNT call, the RAM disk (simulated disk in main memory) con
tains the primary, or root tile system, and drive 0 contains a diskette containing
another file system.

However, the file system on drive 0 cannot be used, because there is no way to
specify path names on it. MINIX does not allow path names to be prefixed by a drive
letter or number; that would be precisely the kind of device dependence that operat
ing systems ought to eliminate. Instead, the MOUNT system call allows the file sys
tem on drive 0 to be attached to the root file system wherever the program wants it
to be. In Fig. 6-3(b) the file system on drive 0 has been mounted on directory b,
thus allowing access to files /b/x and /b/y. If directory b had contained any files
they would not be accessible while drive 0 was mounted, since /b would refer to the
root directory of drive O. (Not being able to access these files is not as serious as it
at first seems: file systems are nearly always mounted on empty directories.)

Root Drive 0

{.I {bl

Fig. 6-3. (a) Before mounting, the files on drive 0 are not accessible. (b) After
mounting, they are pan of the file hierarchy.

Another important concept in MINI X is the special file. Special files are pro
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: block special tiles and character special tiles. Block
special files are used to model devices that consist of a collection of randomly
addressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Programs that do system
maintenance often need this facility. Access to special files is controlled by the
same rwx bits used to protect all files, so the power to directly access I/O devices
can be restricted to the system administrator, for example.

Character special files are used to model devices that consist of character
streams, rather than fixed-size randomly addressable blocks. Terminals, line

84 USING MINIX CHAP. 6

printers, and network interfaces are typical examples of character special devices.
The normal way for a program to read and write on the user's terminal is to read
and write the corresponding character special file. When a process is started up, file
descriptor 0, called standard input, is normally arranged to refer to the terminal for
the purpose of reading. File descriptor I , called standard output, refers to the ter
minal for writing. File descriptor 2, called standard error, also refers to the termi
nal for output, but normally is used only for writing error messages.

All special files have a major device number and a minor device number.
The major device number specifies the device class, such as diskette, hard disk, or
terminal. The minor device number specifies which of the devices in the class is
being addressed, for example, which diskette drive. All devices with the same
major device number share the same device driver code within the operating sys
tem. The minor device number is passed as a parameter to the device driver to tell
it which device to read or write. The device numbers can be seen by listing Idev
with the Is -I command.

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudo-file that can be used to con
nect two processes together, as shown in Fig. 6-4. When process A wants to send
data to process B, it writes on the pipe as though it were an output file. Process B
can read the data by reading from the pipe as though it were an input file. Thus,
communication between processes in MINIX looks very much like ordinary file
reads and writes. Stronger yet, the only way a process can discover that the output
file it is writing on is not really a file, but a pipe, is by making a special system call.

Process Process

8='==='p, �8
Fig. 6-4. Two processes connected by a pipe.

6.3. A TOUR THROUGH THE MINIX FILE SYSTEM

The MINIX file tree is organized the same way as the standard UNIX file tree.
The standard MINIX file system contains the following directories:

Name
!bin
/dev
/etc
/doc
/lib
/tmp

- Description
- Most common system binaries can be copied here from lus,lb •••

- Special files for I/O devices
- Miscellaneous system administration
- Place to put (user-supplied) online documentation
- Most common libraries can be copied here from lus,lIib
- Some utilities generate their temporary files here

SEC. 6.3 A TOUR THROUGH THE MINIX FILE SYSTEM 85

/user
/usr
/usr/adm
/usr/ast
/usr/bin
/usr/etc
/usr/include
/usr/include/minix
/usr/include/sys
/usrllib
/usrllib/tmac
/usr/man
/usr/spool
/usr/spool/at
/usr/spoolllpd
/usr/spool/mail
/usr/spool/uucp
/usr/src
/usr/src/commands
/usr/src/fs
/usr/srcllib
/usr/srcllib/amiga
/usr/srcllib/ansi
/u sr /srcll i b/atari
/usr/srcllib/ibm
/usr/srcllib/mac
/usr/srcll ib/other
/usr/srcll ib/posix
/usr /srcllib/stri ng
/usr/src/kernel
/usr/src/mm
/usr/src/test
/usr/src/tools
/usr/tmp

- Empty; can be used for mounting file systems
- Root of the user file system (usually mounted file system)
- The lusrladmlwtmp file records logins
- Home directory for user ast
- System binaries are kept here
- Main system administration directory
- System header files
- MINIX-specific header files
- More header files
- Libraries, compiler passes, miscellanea
- Holds macro packages for nroff
- Place to put user-written manual pages for man (if any)
- Holds specialized spooling directories
- Spooling directory for the at program
- Spooling directory for line printer daemons (future)
- Spooling directory for local mail
- Spooling directory for kermit and uucp (future)
- Start of the source tree
- Sources for the utility programs (has many subdirectories)
- Sources for MINIX file system
- Holds library directories
- Sources for Amiga-specific procedures
- Sources for ANSI C procedures
- Sources for Atari-specific procedures
- Sources for IBM PC-specific procedures
- Sources for Macintosh-specific procedures
- Sources for other library procedures
- Sources for procedures required by POSIX
- Sources for IBM assembly code string procedures
- Sources for MINIX kernel
- Sources for MINIX memory manager
- Sources and binaries for testing MINIX
- Utilities for building MINIX boot diskettes
- Alternative directory for temporary files

Let us briefly examine some of these directories. In Ibin we find the most
heavily used programs such as cat, cp, and Is as well as some programs such as

'-- login and sh needed to bring the system up. If Ibin is being kept on RAM disk, it
will normally contain a subset of lusrlbin. The idea of putting it on the RAM disk is
to speed up access, of course. If a RAM disk is not being used, it is not necessary to
put any files in bin other than the ones it comes with.

The directory Idev contains the special files for the I/O devices, including most
of the following, although not every one is present in each version. Ethernet is not

86 USING MINIX CHAP. 6

supported on the 68000, for example. Also, Idevlhd5-9 are for an (optional) second
hard disk.

Name
/dev/ram
/dev/mem
/dev!kmem
/dev/null
/dev/port
/dev/fdO
/dev/fd I
/dev/hdO
/dev/hd l
/dev/hd2
/dev/hd3
/dev/hd4
/dev/hd5
/dev/hd6
/dev/hd7
/dev/hd8
Idev/hd9
/dev/console
/dev/ttyO
/dev/tty I
/dev/tty2
/dev/tty
/dev/lp
/dev/netO

1 , 0
I , I
1 , 2
1 , 3
1 , 4
2, 0
2, I
3, 0
3, I
3, 2
3, 3
3, 4
3, 5
3, 6
3, 7
3, 8
3 , 9
4, 0
4, 0
4, I
4, 2
5, 0
6, 0
7 , 0

Description
- RAM disk
- Absolute memory
- Kernel memory
- Data written here vanishes; reads yield end of file
- Access to I/O ports
- Diskette drive 0
- Diskette drive I
- IBM: Entire hard disk 0; Atari: boot block
- Hard disk 0, partition I
- Hard disk 0, partition 2
- Hard disk 0, partition 3
- Hard disk 0, partition 4
- IBM : Entire hard disk I ; Atari entire hard disk °
- Hard disk I , partition I
- Hard disk I , partition 2
- Hard disk I , partition 3
- Hard disk I , partition 4
- Terminal 0 (main keyboard and screen)
- Same as Idevlconsole
- RS232-C port I
- RS232-C port 2
- Current terminal
- Line printer (Centronics port)
- Ethemet

(The IBM diskette combinations are given in Chap. 2.) When Idevlram is opened
and read, for example, by the command

od -x Idev/ram

the contents of the RAM disk are read out, byte by byte, starting at byte O. Simi
larly, reading Idevlmem reads out absolute memory, starting at address 0 (the inter
rupt vectors). The file Idevlkmem is similar to Idevlmem, except that it starts at the
address in memory where the kernel is located. The next file, Idevlnull, is the null
device. It is used as a place for redirecting program output that is not needed. Data
copied to Idevlnull are lost forever. The final file in this group, Idevlport, is used to
access I/O ports in protected mode on the 80286 and 80386 CPUs.

The next group of files are for the diskette drives, with different names provided
for different sizes (see Chap. 2).

Next come the special files for the hard disks. The first one refers to the entire
device, with regard for the partition structure on it. It is occasionally used for

SEC. 6.3 A TOUR THROUGH THE MlNlX FILE SYSTEM 87

reading the boot block, or for copying one raw hard disk to another. The other
entries refer to specific partitions. They are used in commands such as dfto exam
ine the amount of available space on a partition.

Groups 4 and 5 are for the terminals. The Idevl/tyX entries are used to access a
specific device, such as a modem or serial printer. In contrast, Idevltty refers to the
current terminal, whatever its number may be.

The character special file Idev/lp is for the line printer. It is write only. Bytes
wrinen to this file are sent to the line printer without modification (to make it possi
ble to send escape sequences to graphics printers). Users normally print files by
using the lpr program, rather than copying files directly to Idev!lp. The laner
method takes care of converting line feed to carriage return plus l ine feed, expand
ing tabs to spaces, etc., whereas the former method does not. Finally, Idevlnet is for
networking.

To prevent problems, it is recommended that you remove entries in Idev that
correspond to nonexistent devices. For example, if you have only I diskette drive,
you should remove Idevlfdl , etc to eliminate the possibility that you inadvertently
use one of them and thus hang the system (which will patiently wait until you insert
a diskette in drive I). If you have only 360K drives, you can remove IdevlatX, but
if you have 1 .2M drives, you should not remove IdevlfdX since they are needed
when using 360K diskettes in your 1 .2M drive.

Another important directory is letc. This directory contains files and programs
used for mounting and unmounting file systems, the system profiles, the termcap
data base, and general system files. For users who have lete on the RAM disk,
lusrletc can be used to maintain a copy on the lusr partition.

The directory llib holds libraries, such as Jibe.a, passes of the C compiler that
are not normally directly called by users, and certain miscellaneous files related to
compiling. As with bin, the full set of programs is kept in lusrllib, and the most
important ones copied into /lib. Please note that the cc program, which calls the
compiler passes, has built-in path names using lusrflib. If you want to install parts
of the compiler in !lib, you will have to edit cc and recompile it.

The Itmp and lusrltmp directories are used by many programs for temporary
files. By putting Itmp on the RAM disk, these programs are speeded up.

The directories luser and lusr are empty. They should be used for mounting file
systems. Frequently, lusr will be partition I or 2 of the hard disk, and will contain
all the directories listed above, including all the sources.

6.3.1. Mounted File Systems

When MINIX is first started up, the only device present is the root device
(default: RAM disk). After the files and directories that belong on the root device
are copied there from the root file system diskette, MINIX prints a message asking

'-" the user to remove the diskette. It then executes the shell script fetc/re as the final
step in bringing up the system.

88 USING MINIX CHAP. 6

The file letcire first prints a message asking the user to put the lusr diskette in
drive O. Then it pauses to allow the diskette to be inserted and the date entered.
The shell script now executes the command:

letc/mount IdevlfdO lusr

to mount the system disk on lusr. From this point on, all the files in lusr, including
the binary programs in lusrlbin, are available.

On a PC with two diskette drives and no hard disk, you should insert a file sys
tem diskette in drive I and type:

latc/mount /dav/ld t /user

If you want to mount the same diskette in drive I whenever the system is brought
up can modify /erclre to perform the mount on drive I analogously to the mount on
drive O. Alternatively, a hard disk partition can be mounted. Note, however, that
changes made to letclre on the RAM disk will be lost when the system is next
booted unless they are also made to the root file system diskette, which can be
mounted and modified, just l ike any other diskette.

If it is desired to remove the diskette in drive I during operation, first type the
command:

letc/umount Idevlfdl

and wait for the prompt. (Note that the program is called umount, just as it is in
UNIX, not unmount.) There is no n in umount. You cannot unmount a device hold
ing the working or root directory of any process, or which is otherwise in use.

If you remove a diskette while it is still mounted, the system may hang, but it
can be brought back to l ife by simply re-inserting the same diskette. If you remove
a diskette while it is still mounted and insert another in its place, the contents of
both file systems will be seriously damaged and information may be irretrievably
lost (see below about repairing damaged file systems). Experienced MS-DOS users

who are used to constantly switching diskettes without telling the operating system
should post discrete KEEP OFF signs on their drives as a reminder.

Although it is permitted to insert a non-MINtX diskette in a drive (e.g., to read
an MS-DOS diskette), only MINIX file system diskettes can be mounted. Attempts to
mount a diskette not containing a MtNIX file system will be detected and rejected.

6.4. HELPFUL HINTS

In this section we will point out several aspects of MINI X that will frequently be
useful . Most of these relate to areas in which MINIX is different from UNIX, so even
experienced UNIX users should read it carefully.

SEC. 6.4 HELPFUL HINTS 89

6.4.1. Making Backups

As a starter, it is wise to back up your files periodically. To make a backup, first
format a diskette as you usually do. If you want to back up a diskette and you have
two diskette drives, unmount the file systems in drives 0 and 1 . It is possible to
back up a mounted file system, but only if no background processes are running. To
be doubly safe, give a sync command. Insert the newly formatted diskette in drive
I , and then type:

cp /dev/fdO /dev/fd1

to copy information from drive 0 to drive I , assuming you want to copy 360K
diskettes. For 1 .2M diskettes on the IBM PC, use /devlalO and Idevlall . When the
drive lights go out, the diskettes can be removed.

If you have one diskette drive and a hard disk, to back up a diskette, insert the
diskette to be backed up, and copy it to the hard disk. Then insert the new diskette
and copy the image back. The following three commands will do the job:

cp Idev/fdO lusr/tmp/image

cp lusrltmp/image /dev/fdO

rm /usr/tmp/image

This command sequence presumes that enough free space exists in lusrllmp.
To back up a hard disk, it is best to do it directory by directory. Format enough

blank diskettes, and put empty file systems on them using mkfs. Mount one of these
diskettes. Then use the backup program. For example, one might use the sequence:

mkfs Idev/fdO 360

letclmount Idev/fdO luser

backup -jmvz /usr/ast /user/ast

/etclumount /dev/fdO

The backup program has a variety of useful flags. The -j flag suppresses the copy
ing of useless junk, like old core images. The -m flag is used to backup large direc
tories over multiple diskettes. The -v flag enables verbose mode. In this mode the
names of the files are printed as they are backed up. Finally, the -z flag arranges for
compress to be called to compress the files as they are backed up. While compres
sion slows up backup considerably, it also doubles the effective capacity of each
diskette. Note that backup also backs up all the subdirectories in the directory it is
working on (i.e., it is recursive).

Suppose a directory is backed up onto a diskette Monday evening. On Tuesday,
a number of files are changed in that directory. If the backup diskette from Monday
is mounted (instead of a blank diskette) and backup called, only those files that have
changed since the previous backup will be copied. Be sure to use the same flags
(i.e., do not mixed compressed and uncompressed).

90 USING MINIX CHAP. 6

6.4.2. Printing

Files can be printed using the lpr program. It can be given an explicit list of
files. as in

Ipr filet file2 file3 &

If no arguments are supplied, lpr prints its standard input, for example:

pr filet file2 file3 I Ipr &

Note that lpr is not a spooling daemon. It sits in a loop copying files to /dev/lp . For
this reason, it should be started off in the background with the ampersand, so the
user can continue working while printing is going on. Only one lpr at a time may
be running.

6.4.3. Checking on Disk Space

Disk space always seems to be in short supply, no matter how big the disks are.
To find out how much space and how many i-nodes are left on diskette 0, type:

df Idev/fdO

Similar commands can be used for other devices, including /dev/ram and the hard
disk panitions. When df is called with no arguments, it checks /ete/mtab and prints
the statistics for the root device and all mounted file systems.

6.4.4. Profiles

When you log in, the shell checks to see if there is a file .profile in your home
directory. If it finds one, it executes the file as a shell script. This file is commonly
used to set shell variables, my parameters, and so on. See /llsr/ast/.profile as a sim
ple example. The system profile, /etclre is executed when MINIX is booted.

6.4.5. Stack Size

The IBM PC does not have any protection hardware. Neither do the Atari,
Amiga, or Macintosh. As a result, if a program's stack overruns the area available
for it, it will overwrite the data segment. This usually results in a system crash.
When a program crashes unexpectedly or acts strange, it is probably worthwhile to
find out how much memory is allocated for it (see the "memory" column in the
output of si:e). In many cases, increasing the stack space with chmem will make it
work again. On the IBM PC, the largest executable program has 64K instruction
space and 64K data space; the 68000 versions have no limit. To get separate
instruction and data spaces, the -i flag should be used when compiling programs.
When working with unreliable programs, doing syllcs frequently is advisable.

SEC. 6.4 HELPFUL HINTS 91

The problems with memory allocation are due to a large chunk of memory
being taken up by the operating system, its buffers. and the RAM disk. plus the fact
that mUltiple programs can be running at once. This. plus the lack of hardware pro
tection, requires that a more economical approach be taken to memory use than the
standard MS-DOS method of just giving each program the whole machine to itself.
In practice. once the sizes have been set right for a given configuration, they need
not be fiddled with any more.

It sometimes happens that a program (or a compiler pass) cannot be executed
due to lack of memory for it. When this happens, the shell may a message of the
form program: cannot execute. The solution is to run fewer programs at once. or
reduce the program's size with chmem. The amount of stack space assigned to the
shell, make. etc. in the standard distribution may not be optimal for all applications.
Change it if problems arise. To see how much is currently assigned, type

size lusrlbinl* I mined

In general, if a program goes berserk or the compiler gives nonsensical error mes
sages, the first thing to suspect is stack overrun, which can be tackled with chmem.

6.4.6. Compilation Problems

Space is often tight. especially when the amount of program memory is only
S I 2K. It can happen that the C compiler fails due to lack of space, in which case
the -F flag should be used.

Although an individual compilation can get into space problems, far more likely
is that make will be unable to run the compiler. The problem is that in addition to
the login shell and make itself. several other programs may be running simultane
ously, including other shells started by make. If problems arise, several approaches
can be taken. One is to run:

make -n >s

sh s

to find out what make wants to do, put it on a shell script. and then execute it
without make. Often this helps.

Another method is to fiddle with the stack sizes of make. sh, and the compiler
passes, cpp, eem. opt, eg, and asld (some of which can be found in IlIsrllib). By
reducing the stack allocated to some of these programs using ehmem it is frequently
possible to solve the problem. Of course if they are given too little stack, they may
go berserk. Thus fine tuning the sizes requires some patience.

One last note in this regard, sometimes it is necessary to do something as root.
There are two ways to become root: to log in as root and to use the Sll program.
They are not quite identical. When using SlI an additional shell is created. taking up
memory. If space problems occur after having become root using SlI, it is best to hit
CTRL-D twice to log out, then log in as root directly.

92 USING MINIX CHAP. 6

6.4.7. Temporary Files

Several of the utility programs, including the C compiler, create their temporary
files in lImp, on the RAM disk. If the RAM disk fills up, a message will be printed
on the terminal. The first thing to do is check lImp to see if there is any debris left
over from previous commands, and if so, remove it. If that does not solve the prob
lem, temporarily removing some of the larger files from Ibin or /lib will usually be
enough. These files can be restored later by mounting the root file system on any
drive and copying the needed files from it. In a pinch, you can mount a diskette on
lemp to provide more space for a command that needs a lot of it. When cc fills up
lImp, the -T flag can be used to put the temporary files in another directory.

6.4.8. Aborting Commands

MINIX, like UNIX, will not break off a system call part way through just because
the DEL key has been struck. When the system call in question happens to be an
EXEC, which is loading a long program from a slow diskette, it can take a few
seconds before the shell prompt appears. Be patient. Hitting DEL again makes
things worse, rather than beller.

6.4.9. System Status Reporting

Although it is really intended as a debugging aid, rather than a permanent part
of the system, on the IBM PC version the FI and F2 function keys cause dumps of
some of the internal tables to be printed on the screen. (For the 68000s, other keys
are used, as described later.) FI gives a dump like ps, but instantly. Frequently, the
system appears to be stopped, but it is actually thinking its lillle head off and using
the RAM disk, which, unlike the other disks, is not accompanied by whirring and
clicking noises and flashing l ights. The nervous user can press F I to see the internal
process table to verify that progress is still being made. The Ft and F2 keys are
intercepted directly by the keyboard driver, so they always work, no matter what
the computer is doing. The values in the columns user and sys are the number of
clock ticks charged to each process. By hilling Ft twice, a few seconds apart, it is
possible to see where the CPU time is going.

6.4.10. Escape Sequences

MINIX supports AN SI escape sequences as well as Berkeley termcap entries.
The laller can be found in the file leecllermcap. The entries use the ANSI escape
sequences. The TERM variable should be set to minix to use these entries. A
l ibrary routine, rermcap.c is provided to manipulate them.

SEC. 6.4 HELPFUL HINTS 93

6.4.11 . Serial Lines

Communication with the outside world over a modem is possible. The number
of RS232 ;Jorts supported in controlled by the constant NRJ?S-.LINES defined in
kernelltry.h . This constant should be set to the proper number of ports for your
configuration, since each port requires about I K of table space in the kernel. To log
into other systems or transfer files, see the manual pages for kermit, rz, sz, and term.
On the Atari, strerm is also available.

6.4.12. Transferring Files to and from Other Operating systems

It is possible to copy files from an MS-DOS disk to MINIX or vice versa. See the
description of dosread and doswrite for details. Similarly, see tosread and toswrite
for the Atari, macread and mac write for the Macintosh, and trails fer for the Amiga.

6.4.13. Keyboard Mapping

The ASCII codes produced by the IBM PC keyboard are determined by
software, not hardware. A mapping has been chosen to try to produce a unique
value for each key, so programs can see the difference between, ror example, the +
in the top row and the + in the numeric keypad. Since the keyboards of the various
machines differ, the mappings are not identical. To see which code or codes a
given key produces, use od -b, and then type the key or keys followed by a carriage
return and a CTRL-D.

6.5. SYSTEM ADMINISTRATION

Since MINIX is in principle a multiuser timesharing system, not unlike what
large computer centers run, you will have to learn how to administer your system.
Fortunately, doing this is not difficult. System administration tasks have to be done
by the superuser. Superusers have more power than ordinary users. They can
violate nearly all of the system's protection rules. Although there is no Hippocratic
Oath for superusers (yet), tradition requires them to exercise their great power with
care and responsibility. Superusers get a special prompt (#), to remind them of their
awesome power.

To become superuser, login as root using the password Ceheim. (Notice the
capital C). Alternatively, use the SlI program with Ceheim as password. Please
take note that these two methods of becoming superuser are not quite the same.
Using Sll causes an extra shell to be created. If you are short on memory, and intend
to do something complicated as superuser (such as running a large make job), you
may have to log out and log in again as root.

94 USING MINlX CHAP. 6

6.S.1 . Making New File Systems

One of the things that superusers do is make new file systems. This is possible
using the program mkfs (make file system). To make an empty 360 block file sys
tem on diskette 0, type:

mkls IdevlldO 360

When the program finishes, the file system will be ready to mount. On a system
with only one diskette drive and no hard disk, mkfs will first have to be copied to
Ibin, (on the RAM disk), the Idel'!fdO file system unmounted, a blank diskette
inserted into drive 0 and then the file system made.

It is also possible to make a file system that is initialized with files and direc
tories. A command for doing this is:

mkls IdevlldO proto

where proto is a prototype file. The manual entry for mkfs (in Chap. 8) gives an
example of a prototype file.

6.5.2. File System Checking

File systems can be damaged by system crashes, by accidently removing a
mounted file system, by forgetting to run sync before shutting the system down and
in other ways. Repairing a file system by hand is a tricky business, so a program,
called fsck, has been provided to automate the job. It is best to first copy fsck, to the
root file system and then unmount the file system to be repaired, unless it is the root
file system. If the root file system is on a hard disk partition, it is best to reboot
MINI X and run fsck from a diskette so that the root file system is unmounted while
fsck is modifying it.

The simplest way to repair a file system is to run fsck in automatic mode. To
repair Idel'lhdl , for example, just type:

cd I

cp lusrlbinllsck Ifsck

letc/umount Idev/hd 1

fsck -a Idev/hd1

letc/mount Idev/hd1 lusr

Fsck will run, ask some questions, answer its own questions, and fix everything.
When it is done, you can remount the repaired file system and continue. Other
options are described in the manual page for fsck.

SEC. 6.5 SYSTEM ADMINISTRATION 95

6.5.3. The /etc Directory

The fete directory contains several files that superusers should know about.
They are:

Name
gettydefs
group
message
passwd
rc
setup_move
setupJoot
setup_usr
term cap
ttys
ttytype

- Description
- Used for configuring dial in lines using modems
- Contains names of the user groups
- Message of the day
- Password file
- Shell script executed after the system is booted
- Additional hard disk setup (remove after installation)
- U sed to set up the hard disk RAM image (remove after installation)
- Used to set up the hard disk partition for fusr (remove after installation)
- Berkeley termcap entries for MINI X
- Enables/disables RS-232 ports for use as terminals
- Terminal configuration

Probably the most important of these is the password file, fetcfpasswd. You can
enter new users by editing this file and adding a line for each new user. The
entry for a user namedJozzie might be:

lozzie: : 15 : 1 :Fozzie the 8ear:lusr/fozzie:/binlsh

The entry contains seven fields, separated by colons. These fields contain the
login name, password (initially null), uid, gid, name, home directory, and shell
for the new user. When a new user is entered, the corresponding home direc
tory must also be created, using mkdir, and its owner set correctly, using chown
and chgrp. Each user must have a unique uid, but the numerical values are
unimportant. It is probably adequate to put all ordinary users in group 3, unless
there really are distinct groups of users. When the new user logs in for the first
time, he should choose a password and enter it using passwd.

Another important file is fetefre . Each time the system is booted, this file is
run as a shell script just before the

login:

message is printed. It can be used to mount file systems, request the date, erase
temporary files, and anything else that needs to be done before starting the sys
tem. It also forks off update, which runs in the background and issues a SYNC

system call every 30 seconds to flush the buffer cache.
If you do not have a hard disk and want to use two diskette drives during

normal operations, it may be convenient to modify letefre to mount fdevifdl on
fuser during system boot. If you do this, you can also change fetcfpasswd to put
your home directory on fuser instead of fusr. Of course you can also change
fetclre to mount a hard disk partition.

96 USING MINIX CHAP. 6

The file ietclttys contains one line for each terminal in the system. During
startup, init reads this file and forks off a login process for each terminal. When
the console is the only terminal, ttys contains only I line.

Also contained in iete are the programs mOL/fit, and umOL/nt for mounting
and unmounting file systems, respectively.

When any of the files on the RAM disk, such as ieteipasswd, are modified,
the changes will be lost when the system is shut down unless the modified files
are explicitly copied back to the root file system. This can be done by mounting
the root file system diskette and then copying the files with cp.

6.5.4. Miscellaneous Notes

A few MINIX programs can only be executed by the superuser. Some of
these, such as dJ, are owned by the root and have the SETUID bit on, so that
when they are executed, the effective uid is that of the superuser, even though
the real uid is not.

In general, if a program, prog, needs to run as the superuser but is to be
made generally available to all users, it can be made into a SETUID program
owned by the root by the command lines:

chown root prog
ch mod 4755 prog

Needless to say, only the superuser can execute these commands. The shell
script fixbin can be run by the superuser to set all the permissions (and sizes) as
follows:

fixbin /bin /bin

If the two arguments are different, the executable files will be first copied from
the first directory to the second one.

7

RECOMPILING MINIX

This chapter is intended for those readers who wish to modify MINIX or its utili
ties. In the following pages we will tell what the various files do and how the
pieces are put together to form the whole. It should be emphasized that if you sim
ply intend to use MINIX as distributed. then you do not have 10 recompile the system
and you do not have to read this chapter. However. if you want to make changes to
the core of the operating system itself. for example. to add a device driver for a
streamer ta\lC, then)'ou should read this cha\lter.

7.1. REBUILDING MINI X ON AN IBM PC

Although this section is specifically for IBM PC users. it should also be read
carefully by everyone interested in recompiling MINIX. Most of what is said here
applies to all versions of MINIX. The sections about other processors mostly discuss
the differences between recompiling MINIX on an IBM PC and on another system.

The MINIX sources are contained in the following directories. normally all sub
directories of lusrlsrc except for include which goes in lusrlinclude :

97

98 RECOMPlLING MINIX CHAP. 7

Directory Contents
include The headers used by the commands (has two subdirectories)

kernel Process, message, and I/O device handling

mm The memory manager
fs The file s'ystem
tools Miscellaneous tools and utilities

test Testprograms

lib Libraries (has several subdirectories)
commands The util ity programs (has many subdirectories)

Some of the directories contain subdirectories. If you are working on a hard disk,
be sure that all these directories have been set up, and all files copied there from the
distribution diskettes and decompressed and dearchived. If you do not have a hard
disk, format and make empty file systems on five diskettes. On the first one, make a
directory kernel and copy all the kernel files to it. In a similar way, prepare
diskettes for Is, mm, tools, and test as well. If you do not have a hard disk, there are
still three ways you can recompile the system. First, if you have two diskette
drives, use drive 0 to hold the root file system, including the compiler, lusrllib and
lusrlinclllde. Diskettes with programs to be compiled are mounted on drive 1 .

Second, if you have a sufficiently large RAM disk (at least 5 1 2K), you can put
the root file system there, along with the compiler, lusrllib and lusrlinclude.

Third, if you have no hard disk, one diskette drive and insufficient memory for a
5 1 2K RAM disk, you should have at least a 1 .2M diskette drive in which you can
put the root file system, although in a pinch a nOK diskette might work with a lot
of shoehorning. If you use this approach, each of the five diskettes made above
must contain enough of IlIsrlbin, lusrilib, and lusrlinclude to allow compilation of
the kernel, file system, or whatever other files are on that disk. With only 640K
RAM and a single 360K diskette, it is not possible to recompile the system.
Expanded memory (UM standard) is not supported and cannot be used as a RAM
disk.

As a test to see if everything is set up properly, type in, compile, and run the fol
lowing program:

#include <Iimits.h>
mainO

{
printf("PATH_MAX = "Ioc1\n", PATH_MAX);

It should print out the value 255 for PATHJlAX. If it fails to compile, be sure that
the file lusrlincludellimits.h is installed and readable.

SEC. 7.t REBClLDtNG MINI X ON AN IBM PC 99

7.1 .1 . Configuring the System

The file illsriillcllldelminixlconfig.h contains some user-settable parameters.
Examine this file and make any changes that you require. For example. if
LlNEWRAP is set to O. then lines longer than 80 characters will be truncated; with

'--" non zero values they will be wrapped. If you want more information than is pro
vided in this file. examine the system sources themselves. for example. using grep
to locate the relevant files. In any event. be sure MACHINE is set 10 IBMJ'C (or
one of the 68000 types if you have one). If you have an 80386·based processor. use
IBMJ'C. not IBM....386. as that is intended for a future 32·bit version of MINIX. and
will not work at present. The current l 6·bit version works fine on 80386s. but ini
tializes all segment descriptors to l 6·bit mode.

The kernel directory contains a shell script con fig . Before staning 10 compile
the system. examine this file using your favorite edilOr. You will see that it begins
with a case statement that switches on the first argument. Each of the clauses
defines some variables that are used later. The idea here is that you need files called
mp.Lt. klib.x. and >vini.c. For each of these there are several candidates. Which one
you use depends on the your system configuration.

If you have a PC/AT with a PC/AT hard disk controller. type:

conflg at

to set up the files. On the other. if you have a PC/XT (8088). use xl instead of at as
the argument. For a PS/2. use ps. If none of these produce working systems. run
con fig again using bios as the argument this time. If you happen to have a PC with
a PC/AT disk controller or a PC/AT with an XT disk controller. you will have to
build the configuration by hand.

7.1.2. Compiling the Pieces

Once everything has been set uP. actually compiling the pieces is easy. First go
to the kernel directory on you hard disk (or mount the kernel diskette and go to it).
Then type:

make -n

10 see what make is planning to do. Normally it will list a sequence of compilations
to be done. If it complains that it cannot find some file. please install the file.

Now do it for real by typing:

make

The kernel will be compiled. On a 33 MHz 80386 with a fast hard disk. it will take
under 3 minutes. On a 4.77 MHz 8088 with two diskette drives it will take rather
longer. When it is finished. you will be left with a collection of .s files. all of which
can now be removed if space is tight. and a file kernel. which will be needed.

100 RECOMPILING MINI X CHAP, 7

If you have a small system, it is possible that there will not be enough room for
make and the C compiler simultaneously. In that case type:

make -n >script

sh script

If even that fails due to lack of memory, examine script and type in all the com
mands by hand, one at a time.

Now go to Is, If you are using diskettes, first unmount the one containing the
kernel sources and mount the one containing the file system sources. Now type

make -n

to see if everything is all right, followed by:

make

to do the work. Again here, the ,5 can be removed, but the file j, must be kept. In a
similar way, go to mm and use make to produce the mm file.

Finally, go to tools and type:

make

to produce init, bootblok, build, and menu, (Actually a binary version of bootblok is
provided since it is so short, but making a new one does not take very long.) Check
to see that all of them have been made. If one is missing, use make to produce it,
for example:

make init

7.1.3. Building the Boot Diskette

In this section we will describe how the six independently compiled and linked
programs, kernel, fs, mm, illit, bootblok, and menu are forged together to make the
boot diskette using build,

The boot diskette contains the six programs mentioned above, in the order
given. The boot block occupies the first 5 1 2 bytes on the disk. When the computer
is turned on, the ROM gets control and tries to read the boot block from drive 0 into
memory (at address Ox7COO on the IBM pC). If this read succeeds, the ROM
jumps to the boot block to begin the load.

The MINIX boot program first copies itself to an address just below 256K, to get
itself out of the way. Then it calls the BIOS repeatedly to load cylinders of data
into low core. This data is the bootable image of the operating system, followed
directly by menu (on the IBM PC). When the loading is finished, the boot program
jumps to the start of menu, which then displays the initial menu. If the user types an
equal sign, menu jumps to an address in low core to start MINIX.

The boot diskette is generated by tools/build. It takes the six programs l isted

SEC. 7.1 REBUILDING MINI X ON AN IB�I PC 101

above and concatenates them in a special way. The first 5 1 2 bytes of the boot
diskette come from bootblok. If need be, some zero bytes are added to pad bootblok
out to 5 1 2. Bootblok does not have a header, and neither does the boot diskette
because when the ROM loads the bool block to address Ox7COO, it expects the first
byte to be the start of the first instruction.

At position 5 1 2, the bool diskette contains the kernel, again without a header.
Byte 5 1 2 of the boot diskette will be placed at memory address 1 536 by the boot
program, and will be executed as the first MINIX instruction when menu termlllates.
After the kernel comes mm,fs, init, and menu, each padded out to a multiple of 256
bytes so that the next one begins at a click boundary.

Each of the programs may be compiled either with or without separate I and D
space (on the IBM PC; the 68000 versions do not have this feature). The two
models are different, but bllild explicitly checks to see which model each program
uses and handles it. In short, what bllild does is read six files, stripping the headers
off the last five of them, and concatenate them onto the output, rounding the first
one up to 5 1 2 bytes and the rest up to a multiple of 1 6 bytes.

After concatenating the six files, build makes three patches to the output.

I . The last 4 words of the boot block are set to the number of cylinders to
load, and the DS, PC, and CS values to use for running menu. The boot
program needs this information so that it can jump to menu after it has
finished loading. Without this information, the boot program would not
know where to jump.

2. Build loads the first 8 words of the kernel's data segment with the CS
and DS segment register values for kernel, mm, f<, and init. Wilhout
this information, the kernel could not run these programs when the time
came: it would not know where they were. It also sets word 4 of the
kernel's text segment to the DS value needed to run the kernel.

3. The origin and size of init are inserted at address 4 of the file system's
data space. The file system needs this information to know where to
put the RAM disk, which begins just after the end of illit, exactly
overwriting the start of menu.

To have build actually construct the new boot diskette, insert a blank, formatted
diskette in drive 0 and type:

V make image

It will run, build the boot diskette, and display the sizes of the pieces on the screen.
When it is finished, kill any background processes, do a sync, and reboot the sys
tem. After logging in, go the test directory and type:

run

102 RECOMPILING MINIX CHAP. 7

to run all the test programs, assuming they have already been compiled. If they
have not been, log in as root and type:

make all

If you do not have a hard disk, the above procedure has to be modified slightly.
You will have to copy the kernel, fs. and mm files to the tools directory and change
Makefile accordingly.

7.1.4, Installing New Device Drivers

Once you have successfully reached this point, you will now be able to modify
MINIX. In general, if a modification only affects, say, the file system, you will not
have to recompile the memory manager or kernel. If a modification affects any of
the files in lusrlinclllde you should recompile the entire system, just to be safe.

It is conceivable that your modification has increased the size of some file so
much that the compiler complains about it. If this occurs, try to detennine which
pass it is using the -v flag to cc, and then give that pass more memory using the
c"mem program.

One common modification is adding new I/O devices and drivers. To add a new
I/O device to VIINIX, it is necessary to write a driver for it. The new driver should
use the same message interface as the existing ones. The driver should be put in the
directory kernel and Makefile updated. In addition, the entry point of the new task
must be added to the list contained in the array task in kernel/table.c.

Two changes are also required in IlIsrlincllldelminix. In const.h, the constant
NR_TASKS has to be increased by I , and the new task has to be given a name in
com.h.

A new special file will have to be created for the driver using mknod.
To tell the file system which task is handling the new special file, a l ine has to

be added to the array dmap inJsltable.c.

7.1.5. Troubleshooting

If you modify the system, there is always the possibility that you will introduce
an error. In this section, we will discuss some of the more common problems and
how to track them down.

To start with, if something is acting strange, turn the computer off, wait about
one minute, and re boot from scratch. This gets everything into a known state.
Rebooting with CfRL-AL T-DEL may leave the system in a peculiar state, which
may be the cause of the tTouble.

If a message like

Booting MINIX 1 .5

does not appear on the screen after the power-on self-tests have completed (on the

SEC. 7. 1 REBt;ILDING MINI X ON AN IBM PC 103

IBM PC), something is wrong with the boot block. The boot block prints this mes
sage by calling the BIOS. Make a dump of the first block of the boot diskette and
examine it by hand to see if it contains the proper program.

If the above message appears, but the initial menu does not, it is l ikely that
menu is not being started, since the first thing menu does is print the menu. Check
the last 6 bytes of the boot block to see if the segment and offset put there by build
correspond to the address at which menu is located (right after illit).

If the menu appears, but the system does not respond to the equal sign, MINIX is
probably being staned, but crashing during initialization. One possible cause is the
introduction of print statements into the kernel. However, it is not permitted to
display anything until after the terminal task has run to initialize itself. Be careful
about where you put the print statements.

If the screen has been cleared and the message giving the sizes has appeared, the
kernel has initialized itself, the memory manager has run and blocked waiting for a
message, and the file system has started running. This message is printed as soon as
the file system has read the super-block of the root file system.

If the system appears to hang before or after reading the root file system, some
help can be obtained by hitting the F I or F2 function keys (unless the dump routines
have been removed). By hitting F l twice a few seconds apan and noting the times
in the display, it may be possible to see which processes are running. If, for exam
ple, in it is unable to fork, for whatever reason, or cannot open letclttys, or cannot
execute Ibinlsh or Ibillllogill, the system will hang, but process 2 (init) may continue
to use CPU cycles. If the F l display shows that process 2 is constantly running, it is
a good bet that illit is unable to make a system call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message
and each outgoing reply. Recompile and test the system with the new output.

7.2. REBUILDING MINIX ON THE ATARI ST

It is possible to rebuild MINIX-ST on any system with at least 1 MB of memory
and a nOK disk drive. However such a configuration is the bare minimum. Addi
tional hardware greatly speeds up the process.

7.2.1. Configuring the System

In order to rebuild MINIX-ST you must first prepare your system. What you
must do depends on your system. If you have a hard disk, you should install all the
sources and binaries on your disk. Chapter 3 describes how to achieve this.

If you do not have a hard disk, you should create 4 nOK disks. These disks
should contain the unpacked mm, fs, kernel and tools sources respectively. Chapter
3 describes how to unpack the sources.

104 RECOMPILlNG MINIX CHAP. 7

If you want to reconfigure the system you should examine the files
includelminixlconftg.h and inclllde/minixlboot.h . These files are found on 06.ACK,
and contain a number of tunable system parameters. For instance if you keep your
root partition on Idel'lhd3, but you do not want to load this partition into the RAM
disk upon startup, you could change the line

#deline DROOTDEV (DEV_RAM + 0)

in incllldelminixlboot.h into

#define DROOTDEV (DEV_HDO + 3)

If you do not want to copy the root partition, but you want to keep a RAM disk, you
should modify the v:tlue of the constant DRAMSIZE in includelminixlboot.h as well.

If you have a system with a United Kingdom or German keyboard, it is recom
mended to go to the directory with the kernel sources, and substitute in the file
Makeftle, the string us in the line:

KEYMAP = keymap.us.h

by Ilk or ge respectively. If you do this you will generate MINI X for use with your
native keyboard instead of a US one. By doing so, you do not need to runftxkeys on
your boot disk any more.

If you have a system with a real time clock on the disk controller it is recom
mended to go to the directory with the kernel sources, and modify the first few lines
of the file Makeftle so that they read:

CLOCKS = -DCLOCKS

#CLOCKS =

7.2.2. Rebuilding MINIX Using a Hard Disk

Rebuilding MINIX is fairly simple when you have a hard disk. Assuming that
you have installed the sources in lusrlsrc, and that there is enough free space on
your hard disk to accommodate all Object files and results, type:

chmem = 1 1 0000 lusrlliblcem

cd lusrlsrclmm

make

cd lusrlsrclfs

make

cd lusrlsrcikernel

make

cd lusrlsrcltools

make

If disk space is tight you can remove all .0 files after each make. If everything

SEC. 7.2 REBUILDING MINIX ON THE ATARI ST 105

succeeds. you will have a file called minix.img in IlIsrlsrcltools. You can either
write this file to TOS using the ton" rite command. or create a new boot diskette by
inserting an empty. formatted disk into the disk drive and issuing the command:

cp /usr/src/tools/minix.img /dev/fdO

Now you can logout and re boot the system to try your new boot disk. If
required run the TOS program fixkeys to modify the keyboard tables to reflect your
hardware. It is advised to generate a new file letclpsdatabase, which is used by the
ps program. The command:

ps -U

will make this file for you. Do not forget to copy letclpsdatabase to your root disk!
Refer to Sec. 3 . 1 2 if your new boot disk does not function properly.

7.2.3. Rebuilding MINIX Using 1 MB or Two nOK Disk Drives

If your have more than I MB of memory, your should create a huge RAM disk.
The size of the RAM disk is not critical. A RAM disk of I MB will do, but more
does not harm you. In addition to the usual contents of the RAM disk, you should
also copy disk 06.ACK onto the RAM disk. Take care that the various compiler
passes are found in lusr/lib or /lib.

If you have two disk drives you should use one drive to hold the 06.ACK disk.
This disk should be mounted on IlIsr. The other drive will be used to hold the disks
with the sources. You will also need a RAM disk which has at least 1 50 KB free.

In both cases after setting up, execute the following steps:

cd I
chmem = 1 1 0000 /usr/lib/cem

Insert 03.USRl into the disk drive and type:

mount /dev/ddO /user

cp /user/binldd /bin/dd

cp /user/bin/make /bin/make

umount /dev/ddO

Insert the disk with the mm sources into the disk drive and type:

mount /dev/ddO fuser

cd /user/src/mm

make

cp mm.mix IImp/mm.mix

cd /

umount /dev/ddO

106 RECOMPILlNG MINIX

Insert the disk with the tools sources into the disk drive and type:

mount Idev/ddO luser
mkdir luserlsrc/mm
cp Itmp/mm.mix luserlsrc/mm/mm.mix
rm Itmp/mm.mix
umount Idev/ddO

Insert the disk with the fs sources into the disk drive and type:

mount Idev/ddO luser
cd luserlsrC/fs
make
cp fs.mix Itmp/fs.mix
cd l
umount Idev/ddO

Insert the disk with the tools sources into the disk drive and type:

mount Idev/ddO luser
mkdir luserlsrclfs
cp Itmp/fs.mix luserlsrcltS/fs.mix
rm Itmp/fs.mix
umount Idev/ddO

Insert the disk with the kernel sources into the disk drive and type:

mount Idev/ddO luser
cd luserlsrc/kernel
make
cp kernel.mix Itmplkernel.mix
cd I
umount Idev/ddO

Insert the disk with the tools sources into the disk drive and type:

mount Idev/ddO luser
mkdir luserlsrclkernel
cp Itmp/kernel.mix luserlsrc/kernellkernel.mix
rm Itmplkernel.mix
cd luserlsrC/tools
make
cp minix.img Itmp/minix.img
cd I
umount Idev/ddO

CHAP. 7

If everything succeeds, you will have a file called minix.img in lImp. You can
either write this file to TOS using the loswrile command, or create a new boot

SEC. 7.2 REBl:ILDING MINIX ON THE ATARI ST 107

diskette by inserting a blank, formatted diskette into the disk drive and then typing:

cp /tmp/minix.img /dev/fdO

Now you can log out and reboot the system to try your new boot disk. If
required run the TOS program fixkeys to mOdify the keyboard tables to reflect your
hardware. It is advised to generate a new file /elclpsdatabase, which is used by the
ps program . The command:

ps -U

will make this file for you. Do not forget to copy /elc/psdalabase to your root disk!
Refer to section 3 . 1 2 if your new boot disk does not function properly.

7.2.4. Rebuilding MINIX Using 1 MB and a nOK Disk Drive

Rebuilding MINI X with only one nOK disk drive and I MB of memory is some
what more complicated. Therefore it is highly recommended to study this subsec
tion compIelely before even attempting 10 rebuild MINIX. First you have to prepare
a compiler disk. This is done by making a copy of 06.ACK. Remove all but the fol
lowing files from your newly created compiler disk: hin/as, hin/cc, lib/cem, lib/cg,
lib/crlso.o. lih/C\', lib/end.o. lih/head.o, lih/ld, lihllihc.a, Iib/opl, include/- , (all files
in include and its subdirectories) Now mount the USR I disk and copy the following
programs to /Imp: make, mined, dd, cpdir. Then mount your compiler disk, and
copy these programs onto Ihe bin directory of the compiler disk. After doing so you
should remove them from /Imp.

Make a set of source disks as specified in the previous subsection. Reboot the
system with a roOl disk which contains a 400 KB RAM disk. Log in as root.
Unmount the usr filesystem, and mount your compiler disk on /usr.

Now we are ready to start the compilation process. By and large, the next steps
are similar to the one from the previous subsection. However, since you have only
one drive, which holds the compiler disk, the sources are going to be kept in the
RAM disk. During the remainder of this subsection we will assume that your
sources are kept in /Imp/src .

Whenever it is stated that you should insert a disk with sources you should
unmount your compiler disk. Mount the disk which contained the sources on which
you were working. Then copy the contents of /usr/src back to the disk where the
sources came from. This is most easily done through the command:

\....; cpdir -msv limp/src /usr/src

Now erase your source directory by issuing Ihe command:

cd limp/src; rm -rf •

Unmount your old source disk and mount the new one. Copy the sources to the
RAM disk by typing:

108 RECOMPILING MINIX

cpdir -msv lusrlsrc IImplsrc

Whenever the steps tell you to issue the command make, you should type:

make -n >script

followed by the command:

sh -v script

CHAP. 7

Now the sources are being compiled. This can take a substantial amount of time. It
is possible that during the compilation process your RAM disk runs out of space.
This is reported by the message:

No space left on device 1/0

If that happens, you should delete all source files with extension .C that are already
compiled. Do NOT remove files with a .h or .0 extension or files that are not yet
compiled. Modify the l11e script using mined. Remove all lines preceding the line
on which your RAM disk ran out of space. Do not remove the line on which the
error occurred, since that file is not yet completely processed. After modifying the
file script, restart the compilation process by re-issuing the command:

sh -v script

Notice again that all sources which are compiled reside on the RAM disk in the
directory Ilmplsrc . Whenever issuing commands l ike make and rm, be sure that you
are indeed on the RAM disk, and that you are not accidently cluttering up your
compiler disk or one of your source disks.

7.2.5. Installing New Device Drivers

Once you have successfully reached this point, you will now be able to modify
MINIX. In general, if a modification only affects, say, the file system, you will not
have to recompile the memory manager or kernel . If a modification affects any of
the files in IlIsrlinclllde you should recompile the entire system, just to be safe.

It is conceivable that your modification has increased the size of some file so
much that the compiler complains about it. If this occurs, try to determine which
pass it is using the -v flag to cc, and then give that pass more memory using chmem.

One common modification is adding new I/O devices and drivers. To add a new
I/O device to MINI X, it is necessary to write a driver for it. The new driver should
use the same message interface as the existing ones. The driver should be put in the
directory kernel and Makefile should be updated. In addition, the entry point of the
new task must be added to the list contained in the array lask in kernel/lab/e.c.

Two changes are also required in the lusrlincllldelminix directory. In consl.h,
the constant NR_TASKS has to be increased by I , and the new task has to be given a
name in com.h.

SEC. 7.2 REBUILDING MINIX ON THE ATARI ST 109

A new special file will have to be created for the driver. This can be done with
mknod.

To tell the file system which task is handling the new special file. a line has to
be added to the array dmap in/,/rable.c.

7.2.6. Recompiling Commands and Libraries

The procedure for recompiling the commands and the library is similar to the
one for recompiling the kernel.

A major difference between recompiling commands and recompiling the kernel
is that each command (and each library module) can be recompiled independently
of all the others, so that less RAM disk is needed.

In order to run make in the commands directory you should give make 35000
bytes of memory by issuing the command:

chmem =35000 /usr/binlmake

A few command source files are so big that the compiler complains about it. If
this occurs, try to determine which pass it is using the -v flag to cc, and then give
that pass more memory using chmem.

Should the compiler run out of temporary space during a compilation you can
either use a larger RAM disk, or you can tell the compiler to put its temporary files
in another directory (on disk). Add -Tdir to the compile command if you want to
create the temporary files in directory dir.

7.3. REBUILDING MINI X ON THE COMMODORE AMIGA

To rebuild MtNIX on the Amiga, you need at least I M of memory. The pro
cedure is the same as for a I M Atari, as described earlier in this chapter. The only
difference is that instead of copying the minix.img file to /dev/fdO you have to
transfer minix.img to an AmigaDOS floppy, using transfer. The exact details are
given in the manual page of transfer in chapter 8.

7.4. REBUILDING MINIX ON A MACINTOSH

This section describes the procedure for building the boot application and the
kernel programs for the Macintosh version OfMINIX. Before continuing, see section
7 . 1 for a description of the source directories.

If you are working on a hard disk, be sure that all these directories have been set
up, and all files copied there from the distribution diskettes and decompressed and
dearchived.

If you do not have a hard disk, there are a couple of ways you can recompile the

1 10 RECOMPILlNG MINIX CHAP. 7

system. First, if you have two diskette drives, use one drive to hold the root file sys
tem, including the compiler, IlIsr!lib and IlIsrlinclllde. Diskettes with programs to
be compiled are mounted on the other drive.

SeconQ, \\),011 h,,�e enollgh memm)' Im " �IlW\c\el\\\)' \"tge R!\'M Q\�';..,),011 can
put the root file system there, along with the compiler, IlIsr/lib and lusrlinclude.

If you a system with only one diskette drive, no hard disk, and insufficient
memory for a large RAM disk, it is probably not possible to recompile the system.

As a test lo sce if everything is set up properly, type in, compile, and run the fol-
lowing program:

#include <Iimits.h>

mainO

{
printf("PATH_MAX = %d\n", PATH_MAX);

It should print out the value 255 for PATH...MAX.

7.4.1. Configuring the System

The file lusrlillcludelminixlcolljig.h contains some user-settable parameters.
Examine this file and make any changes that you require. For example, if
L1NEWRAP is set to 0, then lines longer than 80 characters will be truncated; with
nonzero values they will be wrapped. If you wanl more information than is pro
vided in this file, examine the system sources themselves, for example, using grep
to locate the relevant files. In any event, be sure MACHINE is set to MACINTOSH.

7.4.2. Corn piling the Pieces

Once everything has been set up, actually compiling the pieces is easy. First go
to the kernel directory on you hard disk (or mount the kernel diskette and go to it).
Then type:

make -n

to see what make is planning to do. Normally it will list a sequence of compilations
to be done. If it complains that it cannot find some file, please install the file.

Now do it for real by typing:

make

The kernel will be compiled.
Now go to Is. If you are using diskettes, fim unmount the one containing the

kernel sources and mount the one containing the file system sources. Now type

make -n

SEC. 7.4 REBUILDING MINIX ON A MACINTOSH 1 1 1

to see if everything is all right, followed by

make

to do the work. In a similar way, go to mm and use make to produce the mm file.
Finally, go to tools and type

make

to produce init. Check to see that all of them have been made. If one is missing,
use make to produce it.

7,4.3. The Boot Sequence

In this section we will describe how the four independently compiled and linked
programs, kernel,fs, mm, and inil, are used in conjunction with the boot application
to boot MINIX on the Macintosh.

Basically, the boot application does the following:

I . It requests some memory from the the Macintosh operating system.
This memory will be used to load the MINIX kernel programs. Anything
remaining after these are loaded will be used by the MINIX kernel to run
MINIX programs.

2. The kernel program is loaded first. The boot application reads this pro
gram from the resource fork (Macintosh resources are explained
below) of the bOOI application, loads it into memory and relocates it so
that the addresses that the kernel use correspond correctly to the place
where it has been loaded in memory.

3. Similarly, mm is loaded, followed by [, and inil. As each program is
loaded, the boot application reports where in memory it has been
loaded and how much memory has been consumed (text and data are
shown separately, and each is padded to a multiple of 256 bytes).

After having loaded the four files, the boot application jumps to the first instruc
tion of the kernel, where execution proceeds normally. Since the kernel needs to
know where each program (mm, fs, and init) has been loaded, the boot application
passes this information on the stack.

7.4.4. The Boot Application

The boot application is a relatively small program that is executed by the
Macintosh operating system. Every application that is executable by the Macintosh
operating system is composed of a number of resources. Each of these resources
describes some aspect of the application. For instance, CODE resources are

112 RECO�PILlNG MINIX CHAP. 7

compiled source code, MENU resources describe menu bars, ICON resources
describe the icon of the program when it is displayed on the desktop, and so on. The
Macintosh operating system contains many system calls to support the use and
manipulation of resources. There are many, many different types of resources. The
idea behind all of this was that the executable code of the application could be
divorced from the user interface aspects, and the application could be easily cus
tomized for different countries and languages.

The boot application, then, consists of three categories of resources: the code for
the boot application itself (CODE resources), a resource for each of the kernel pro
grams (BOOT resources), and other peripheral resources. Included in this latter
category are things l ike the picture that is displayed when you select the "About
M INIX" menu item (the PICT resource). Note that the structure of resource files is
not even slightly related to the structure of a normal MINIX executable, and they
cannot be executed by the MINIX operating system.

7.4.5. Building and Testing a New Boot Application

Once you understand resources, the process of building the boot application
becomes rather straight forward. First the boot code itself is compiled, then each of
the kernel programs are compiled, and then a utility program called rmaker com
poses the actual boO! application from a textual description of the resources.
Rmaker is called a resource compiler; it is a very simple minded one and only
knows how to build a resource file from a limited number of resource types, but it
should be sufficient for most needs.

To build a new boot application, make a copy of the BOOT.OO diskette and set
it aside. Now boot MINIX, make the new kernel programs if you have not already
done so, go to the tools directory and type:

make boot

This will compile the code of boot program (if necessary), and then it will run the
rmaker utility. The rmaker utility reads the resource descriptions from boot.r and
builds the new boot application on the diskette (replacing the old one if necessary,
so only use a COPY of BOOT.OO). When the make is finished, kill any background
processes, do a sync, and re boot the system with the new diskette. After logging in,
go to the test directory and type:

run

to run all the test programs, assuming they have already been compiled. If they
have not been, log in as root and type:

make all

If you do not have a hard disk, the above procedure has to be modified slightly.

SEC. 7.4 REBUILDING MINIX ON A MACINTOSH 113

You will have to copy the kernel, fs, and mm files to the tools directory and change
boot.r to reflect the change.

7.4.6. Installing New Device Drivers

Follow the procedure outlined in the IBM PC section.

7.4.7. Troubleshooting

If you modify the system, there is always the possibility that you will introduce
an error. In this section, we will discuss some of the more common problems and
how to track them down.

To start with, if something is acting strange. turn the computer off, wait about
one minute, and reboot from scratch. This gets everything into a known state.
Rebooting with CTRL-ALT-DEL may leave the system in a peculiar state, which
may be the cause of the trouble.

If a message like

Booting MINIX 1 .5

does not appear on the screen after the power-on self-tests have completed (on the
IBM PC), something is wrong with the boot block. The boot block prints this mes
sage by calling the BIOS. Make a dump of the first block of the boot diskette and
examine it by hand to see if it contains the proper program.

If the above message appears, but the initial menu does not, i t is likely that
menu is not being started, since the first thing menu does is print the menu. Check
the last 6 bytes of the boot block to see if the segment and offset put there by build
correspond to the address at which menu is located (right after init).

If the menu appears, but the system does not respond to the equal sign, MINIX is
probably being starred, but crashing during initialization. One possible cause is the
introduction of print statements into the kernel . However, it is not permitted to
display anything until after the terminal task has run to initialize itself. Be careful
about where you put the print statements.

If the screen has been cleared and the message giving the sizes has appeared, the
kernel has initialized itself, the memory manager has run and blocked waiting for a
message, and the file system has started running. This message is printed as soon as
the file system has read the super-block of the root tile system.

If the systcm appears to hang before or after reading the root filc system, some
help can be obtained by hitting the FI or F2 function keys (unless the dump routines
have been removed) . By hitting Fl twice a few seconds apan and noting the times
in the display, it may be possible to see which processes are running. If, for exam
ple, init is unable to fork, for whatever reason, or cannot open letcittys, or cannot
execute Ibinlsh or Ihinllogin, the system will hang, but process 2 (init) may continue
to use CPU cycles. If the F l display shows that process 2 is constantly running, it is

1 14 RECOMPILING MINIX CHAP. 7

a good bet that inir is unable to make a system call or open a file that is essential.
The problem can usually be localized by putting statements in the main loops of the
file system and memory manager to print a line describing each incoming message
and each outgoing reply. Recompile and test the system using the new output as a
guide.

9

EXTENDED MANUAL PAGES

This chapter contains extended manual pages for selected programs. These pro
grams are sufficiently complex that it was thought wise to produce these documents.
Not every program is present on all versions of MINIX. When a program is only
available on some versions, the names of these versions are given in the section
heading in square brackets.

9.1. ASLD-ASSEMBLER·LOADER [IBM]

The assembly language expected by the MINIX assembler for the 8088, asld, is
identical to that of PC-IX, the version of UNIX IBM originally supported on the Pc.

9.1.1 . Tokens, Numbers, Character Constants, and Strings

The syntax of numbers is the same as in C. The constants 32, 040, and Ox20 all
represent the same number, but are written in decimal, octal, and hex, respectively.
The rules for character constants and strings are also the same as in C. For exam
ple, 'a' is a character constant. A typical string is "string".

189

190 EXTENDED MANUAL PAGES CHAP. 9

9.1.2. Symbols

Symbols contain letters and digits, as well as three special characters: dot, tilde,
and underscore. The first character may not be a digit or tilde. Only the first 8
characters are significant. Thus "hippopotamus" and "hippopotapig" cannot both
be defined as external symbols.

The names of the 8088 registers are reserved. These are:

aI, bl, cl, dl
ah, bh, ch, dh
ax, bX, cx, dx
si, di, bp, sp
cs, ds, ss, es
bLsi, bx_di, bp_si, bp_di

The last group of 4 are used for base + index mode addressing, in which two regis
ters are added to form the effective address.

Names of instructions and pseudo-ops are not reserved. Alphabetic characters in
opcodes and pseudo-ops must be in lower case.

9.1.3. Separators

Commas, blanks, and tabs are separators and can be interspersed freely between
tokens, but not within tokens. Commas are only legal between operands.

9.1.4. Comments

The comment character is "I". The rest of the line is ignored.

9.1.5. Opcodes

The opcodes are listed below. Notes: (I) Different names for the same instruc
tion are separated by "/". (2) Square brackets ([]) indicate that 0 or I of the
enclosed characters can be included. (3) Curly brackets ({ }) work similarly, except
that one of the enclosed characters must be included. Thus square brackets indicate
an option, whereas curly brackets indicate that a choice must be made.

Data Transfer
mov[bl
mov{bwJ
pop
push
xchg
xlat

dest, source
dest, source
dest
source
opl , op2

I Move wordlbyte
I Move wordlbyte from source to dest
I Pop stack
I Push stack
I Exchange wordlbyte
I Translate

SEC. 9.1 ASLD-ASSEMBLER-LOADER IIBMI 191

InputiOutput
in[w] source
in[w]
out[w] dest
outf w]

Address Object
Ids reg,source
les reg,source
lea reg,source
seg reg

Flag Transfer
laM
popf
pushf
sahf

Addition
aaa
add[b]
adc[b]
daa
inc[b]

Subtraction
aas
sub[b]
sbb[b]
das
dec[b]
neg[b]
cmp[b]
cmp (bw)

Multiplication
aam
imul[b]
mul[b]

dest,source
dest,source

dest

dest,source
dest,sQurce

dest
dest
dest,source
dest,source

source
source

I Input from source I/O port
, Input from OX I/O port
, Output to dest I/O port
, Output to OX I/O port

, Load reg and OS from source
I Load reg and ES from source
, Load effect address of source to reg and OS
, Specify seg register for next instruction

, Load AH from flag register
, Pop flags
I Push flags
, Store AH in flag register

, Adjust result of BCD addition
' Add
, Add with carry
, Decimal Adjust acc after addition
, Increment by 1

, Adjust result of BCD subtraction
I Subtract
, Subtract with borrow from dest
, Decimal adjust after subtraction
, Decrement by one
, Negate
' Compare
, Compare

, Adjust result of BCD multiply
, Signed multiply
, Unsigned multiply

192 EXTENDED MANUAL PAGES CHAP. 9

Division
aad
cbw
cwb
idiv[b]
div[b]

Logical
and[b]
not[b]
or[b]
test[b]
xor[b]

Shift
sal [b]/shl [b]
sar[b]
shr[b]

Rotate
rcl[b]
rcr[b]
rol [b]
ror[b]

source
source

dest,source
dest
dest,source
dest,source
dest,source

dest,CL
dest,CL
dest,CL

dest,CL
dest,CL
dest,CL
dest,CL

String Manipulation
cmp[b]
cmp{ bw)
lod { bw)
mov[b]
mov { bw)
rep
repe/repz
repne/repnz
scat bw)
sto {bw)

Control Transfer

I Adjust AX for BCD division
I Sign extend AL into AH
I Sign extend AX into DX
I Signed divide
I Unsigned divide

I Logical and
I Logical not
I Logical inclusive or
I Logical test
I Logical exclusive or

I Shift logical left
I Shift arithmetic right
I Shift logical right

I Rotate left, with carry
I Rotate right, with carry
I Rotate left
I Rotate right

I Compare
I Compare
I Load into AL or AX
I Move
I Move
I Repeat next instruction until CX=O
I Repeat next instruction until CX=O and ZF= I

I Repeat next instruction until CX!=O and ZF=O
I Compare string element ds:di with Al)AX
I Store AL/AX in ds:di

Displacement is indicated by opcode; "jmp" generates a 1 6-bit displacement,
and "j" generates 8 bits only. The provision for "far" labels is described below.

Asld accepts a number of special branch opcodes, all of which begin with "b".
These are meant to overcome the range limitations of the conditional branches,
which can only reach to targets within - 1 26 to + 1 29 bytes of the branch ("near"

SEC. 9.1 ASLD--ASSEMBLER-LOADER [IBM I 193

labels). The special "b" instructions allow the target to be anywhere in the 64K
byte address space. If the target is close enough, a simple conditional branch is
used. Otherwise, the assembler automatically changes the instruction into a condi
tional branch around a "jmp".

The English translation of the opcodes should be obvious, with the possible
exception of the unsigned operations, where "10" means "lower," "hi" means
"higher," and "s" means "or same".

The "call", "jmp", and "ret" instructions can be either intrasegment or inter
segment. The intersegment versions are indicated with the suffix " i" .

Unconditional
br dest
J des!
call [i) dest
jmp[iJ dest
ret[i]

Conditional with 16-bit Displacement
beq
bge
bgt
bho
bhis
ble
bit
blo
bios
bne

Conditional with 8-bit Displacement
ja/jnbe
jae/jnb/jnc
jb/jnae/jc
jbe/jna
jg/jnle
jge/jnl
jl/jnqe
jle/jgl
je/jz
jne/jnz
jno
jo
jnp/jpo

I jump, 1 6-bit displacement, to dest
I jump, 8-bit displacement, to dest
I call procedure
I jump, 1 6-bit displacement, to dest
I return from procedure

I branch if equal
I branch if greater or equal (signed)
I branch if greater (signed)
I branch if higher (unsigned)
I branch if higher or same (unsigned)
I branch if less or equal (signed)
I branch if less (signed)
I branch if lower (unsigned)
I branch if lower or same (unsigned)
I branch if not equal

I if above/not below or equal (unsigned)
I if above or equal/not below/not carry (unsigned)
I if not above nor equal/below/carry (unsigned)
I if below or equal/not above (unsigned)
I if greater/not less nor equal (signed)
I if greater or equal/not less (signed)
I if less/not greater nor equal (signed)
I if less or equal/not greater (signed)
I if equal/zero
I if not equal/not zero
I if overflow not set
I if overflow set
I if parity not set/parity odd

194

jp/jpe
jns
js

Iteration Control
jcxz dest
loop dest
loope/loopz dest
loopne/loopnz

Interrupt
int
into
iret

Flag Operations
clc
cid
cli
cmc
stc
std
sti

External Synchronization
esc source
hit
lock
wait

9.1 .6. Location Counter

EXTENDED MANUAL PAGES

I if parity set/parity even
I if sign not set
I if sign set

I jump if CX = 0

CHAP. 9

I Decrement CX and jump if CX != 0

I Decrement CX and jump if CX = 0 and ZF = 1

destl Decrement CX and jump if CX != 0 and ZF =

I Software interrupt
I Interrupt if overflow set
I Return from interrupt

I Clear carry flag
I Clear direction flag
I Clear interrupt enable flag
I Complement carry flag
I Set carry flag
I Set direction flag
I Set interrupt enable flag

I Put contents of source on data bus
I Halt until interrupt or reset
I Lock bus during next instruction
I Wait while TEST line not active

The special symbol " ." is the location counter and its value is the address of the
first byte of the instruction in which the symbol appears and can be used in expres
sions.

9.1.7. Segments

There are three different segments: text, data and bss. The current segment is
selected using the .text, .data or .bss pseudo-ops. Note that the "." symbol refers to
the location in the current segment.

SEC. 9.1 ASLD-ASSEMBLER-LOADER [IBM] 195

9.1.8. Labels

There are two types: name and numeric. Name labels consist of a name fol
lowed by a colon (:) .

Numeric labels consist of one or more digits followed by a dollar ($) . Numeric
labels are useful because their definition disappears as soon as a name label is
encountered; thus numeric labels can be reused as temporary local labels.

9.1.9. Statement Syntax

Each line consists of a single statement. Blank or comment lines are allowed.

9.1.10. Instruction Statements

The most general form of an instruction is

label: opcode operand I , operand2 I comment

9.1 .11 . Expression Semantics

The fOllowing operator can be used: + - * / & ! < (shift left) > (shift right) -
(unary minus). Sixteen-bit integer arithmetic is used. Division produces a truncated
quotient.

9.1.12. Addressing Modes

Below is a list of the addressing modes supported. Each one is followed by an
example.

8-bit constant
1 6-bit constant
direct access (1 6 bits)
register
index
index + 8-bit disp.
index + 1 6-bit disp.
base + index
base + index + 8-bit disp.
base + index + 1 6-bit disp.

moY ax, *2
mov ax, # 12345
mov ax, counter
mov ax, SI

mov ax, (si)
mov ax. *-6(bp)
mov ax, #400(bp)
movax, (bp_si)
mov ax, * 1 4(bp_si)
mov ax, #-IOOO(bp_si)

Any of the constants or symbols may be replacement by expressions. Direct access,
1 6-bit constants and displacements may be any type of expression. However, 8-bit
constants and displacements must be absolute expressions.

196 EXTENDED MANUAL PAGES CHAP. 9

9.1.13. Call and Jmp

With the "call" and "jmp" instructions, the operand syntax shows whether the
call or jump is direct or indirect; indirection is indicated with an "@" before the
operand.

call Joutine
call @subloc
call @6(bp)
call (bx)
call @(bx)
call i @subloc
calli cseg, offs

I Direct, intrasegment
I Indirect, intrasegment
I Indirect, intrasegment
I Direct, intrasegment
I Indirect, intrasegment
I Indirect. intersegment
I Direct, intersegment

Note that call (bx) is considered direct, though the register is not called, but rather
the location whose address is in the register. With the indirect version, the register
points to a location which contains the location of the routine being called.

9.1.14. Symbol Assigment

Symbols can acquire values in one of two ways. Using a symbol as a label sets
it to " . " for the current segment with type relocatable. Alternative, a symbol may
be given a name via an assignment of the form

symbol = expression

in which the symbol is assigned the value and type of its arguments.

9.1.15. Storage Allocation

Space can be reserved for bytes, words, and longs using pseudo-ops. They take
one or more operands, and for each generate a value whose size is a byte, word (2
bytes) or long (4 bytes). For example:

1 6

.byte 2, 6

.word 3, Ox JO

.long 010

.zerow 20

I allocate 2 bytes initialized to 2 and 6
I allocate 2 words initialized to 3 and

I allocate a long initialized to 8
I allocates 20 words of zeroes

allocates JO (decimal) bytes of storage, initializing the first two bytes to 2 and 6, the
next two words to 3 and 1 6, and the last 4 bytes to a long with value 8 (010 octal).

SEC. 9.1 ASLD-ASSEMBLER-LOADER [IBM I 197

9.1.16. String Allocation

The pseduo-ops .ascii and .asciz take one string argument and generate the
ASCII character codes for the letters in the string. The latter automatically ter
minates the string with a null (0) byte. For example,

.ascii "hello"

.asciz "worlcf\n"

9.1.17. Alignment

Sometimes it is necessary to force the next item to begin at an even address.
The .even pseudo-op generates a null byte if the currem location is odd, and nothing
if it is even.

9.1.18. Segment Control

Every item assembled goes in one of the three segments: text, data, or bss. By
using the .text, .data and .bss pseudo-ops, the programmer can force the next items
to go in a particular segment.

9.1.19. External Names

A symbol can be given global scope by including it in a .globl pseudo-op. Mul
tiple names may be l isted, separate by commas. It can be used for both exporting
symbols defined in the current program, or importing names defined outside.

9.1.20. Common

The .comm pseudo-op declares storage that can be common to more than one
module. There are two arguments: a name and an absolute expression giving the
size in bytes of the area named by the symbol. The type of the symbol becomes
external. The statement can appear in amy segment. If you think this has some
thing to do with FORTRAN, you are right.

9.1.21. Examples

In the kernel directory, there are several assembly code files that are worth
inspecting as examples. However, note that these files, ending with .x, are designed
to first be run through the C preprocessor. Thus they contain numerous constructs
that are not pure assembler. For true assembler examples, compile any C program
provided with MINIX using the -S flag. This will result in packed assembly
language. The file can be unpacked using the libupack filter.

198 EXTENDED MANUAL PAGES CHAP. 9

9.2. BA WK-BASIC A WK

A WK is a programming language devised by Aho, Weinberger, and Kernighan
at Bell Labs (hence the name). Bawk is a basic subset of it. Bawk programs search
files for specific patterns and performs "actions" for every occurrence of these pat
terns. The patterns can be "regular expressions" as used in the ed editor. The
actions are expressed using a subset of the C language.

The patterns and actions are usually placed in a "rules" file whose name must
be the first argument in the command line, preceded by the flag -C. Otherwise. the
first argument on the command line is taken to be a string containing the rules them
selves. All other arguments are taken to be the names of text files on which the rules
are to be applied. with - being the standard input. To take rules from the standard
input, use -C -.

The command:

bawk rules prog . •

would read the patterns and actions rules from the file rules and apply them to all
the arguments.

The general format of a rules file is:

<pattern> { <action> } <pattern> { <action> }

There may be any number of these <pattern> { <action> } sequences in the rules
file. Bawk reads a line of input from the current input file and applies every <pat
tern> { <action> } in sequence to the line.

If the <pattern> corresponding to any { <action> } is missing, the action is
applied to every line of input. The defaul t { <action> } is to print the matched input
line.

9.2,1. Patterns

The <pattern>s may consist of any valid C expression. If the <pattern> consists
of two expressions separated by a comma, it is taken to be a range and the <action>
is performed on all lines of input that match the range. <pattern>s may contain
"regular expressions" delimited by an @ symbol. Regular expressions can be
thought of as a generalized " wildcard" string matching mechanism, similar to that
used by many operating systems to specify file names. Regular expressions may
contain any of the following characters:

x An ordinary character
\ The backslash quotes any character

A circumflex at the beginning of an expr matches the beginning of a line.
$ A dollar-sign at the end of an expression matches the end of a line.

A period matches any single character except newline.

SEC. 9.2

: x
:a
:d
:n

*

+

[]

BA WK-BASIC A WK

A colon matches a class of characters described by the next character:
" :a" matches any alphabetic;
" :d" matches digits;
" :0" matches alphanumerics;

199

": " matches spaces, tabs, and oilier control characters, such as newline.
An expression followed by an asterisk matches zero or more occurrences
of that expression: "fo"''' matches "r', "fo", "foo", "fooo", etc.

An expression followed by a plus sign matches one or more occurrences
of that expression: "fo+" matches "fo", "foo", "fooo", etc.
An expression followed by a minus sign optionally matches the expression.
A string enclosed in square brackets matches any single character in that
string, but no others. If the first character in the string is a circumflex, the
expression matches any character except newline and the characters in the
string. For example, " [xyz]" matches "xx" and "zyx", while
'Txyz]" matches "abc" but not "axb". A range of characters may be
specified by two characters separated by "-" .

9.2.2. Actions

Actions are expressed as a subset of the C language. All variables are global
and default to int's if not formally declared. Only char's and int's and pointers and
arrays of char and int are allowed. Bawk allows only decimal integer constants to
be used-no hex (Oxnn) or octal (Onn). String and character constants may contain
all of the special C escapes (\n, 'v, etc.).

Bawk supports the "if", "else", "while" and "break" flow of control con
structs, which behave exactly as in C.

Also supported are the following unary and binary operators, listed in order
from highest to lowest precedence:

Operator Type Associalivity
O [] unary left to right
! ++ - - * & unary right to left
* / % binary left to right
+ - binary left to right
« » binary left to right
< <= » = binary left to right
== != binary left to right
& binary left to right

binary left to right
I binary left to right
&& binary left to right
11 binary left to right
= binary right to left

200 EXTENDED MANUAL PAGES CHAP. 9

Comments are introduced by a '#' symbol and are tenninated by the first newline
character. The standard ",0" and " o/" comment delimiters are not supported and
will result in a syntax error.

9.2.3. Fields

When bawk reads a line from the current input file, the record is automatically
separated into "fields." A field is simply a string of consecutive characters delim
ited by either the beginning or end of l ine, or a " field separator" character. Ini
tially, the field separators are the space and tab character. The special unary opera
tor '$' is used to reference one of the fields in the current input record (line). The
fields are numbered sequentially starting at I . The expression "$0" references the
entire input line.

Similarly, the "record separator" is used to detennine the end of an input
"line," initially the newline character. The field and record separators may be
changed programatically by one of the actions and will remain in effect until
changed again.

Multiple (up to 10) field separators are allowed at a time, but only one record
separator. In either case, they must be changed by strcpyO, not by a simple equate
as in the real AWK.

Fields behave exactly like strings; and can be used in the same context as a
character array. These "arrays" can be considered to have been declared as:

char ($n)[128);

In other words, they are 1 28 bytes long. Notice that the parentheses are necessary
because the operators [) and $ associate from right to left; without them, the state
ment would have parsed as:

char S(I [1 28));

which is obviously ridiculous.
If the contents of one of these field arrays is altered, the "$0" field will reflect

this change. For example, this expression:

0$4 = 'A';

will change the first character of the fourth field to an upper- case letter ' A' . Then,
when the following input line:

1 20 PRINT "Name address Zip"

is processed, it would be printed as:

1 20 PRINT "Name Address Zip"

SEC. 9.2 BAWK-BASIC AWK 201

Fields may also be modified with the strcpyO function (see below). For example,
the expression:

strcpy($4, "Addr.");

applied to the same line above would yield:

1 20 PRINT "Name Addr. Zip"

9.2.4. Predefined Variables

The following variables are pre·defined:

FS
RS
NF
NR
FILENAME
BEGIN
END

Field separator (see below).
Record separator (see below also).
Number of fields in current input record (line).
Number of records processed thus far.
Name of current input file.
A special <pattern> that matches the beginning of input text.
A special <pattern> that matches the end of input text.

Bawk also provides some useful built-in functions for string manipulation and print·
mg:

print(arg)
printf(arg .. .)
getlineO
nextfileO
strlen(s)
strcpy(s,t)
strcmp(s,t)
toupper(c)
tolower(c)
match(s,@re@)

9.2.5. Limitations

Simple printing of strings only, terminated by '\n'.
Exactly the printfO function from C.
Reads the next record and returns 0 on end of file.
Closes the current input file and begins processing the next file
Returns the length of its string argument.
Copies the string "t" to the string " s " .
Compares the "s" to " t " and returns 0 if they match.
Returns its character argument converted to upper-case.
Returns its character argument converted to lower-case.
Compares the string "s" to the regular expression "re" and
returns the number of matches found (zero if none).

The maximum input line i s 1 28 characters. The maximum action is 4K.

9.2.6. Author

Bawk was written by Bob Brodt.

202 EXTENDED MANUAL PAGES CHAP. 9

9.3. DE-DISK EDITOR

The de program allows a system administrator to examine and modify a MINIX
file system device. Commands are available to move to any address on the disk and
display the disk block contents. This information may be presented in one of three
visual modes: as two-byte words, as ASCII characters or as a bit map. The disk may
be searched for a string of characters. If the -w option is given, de will open the
device for writing and words may be modified. Without this flag, writing is prohi
bited. Lost blocks and files can be recovered using a variety of commands. The -r
option supports automated recovery of files removed by unlink.

9.3.1. Positioning

Disks are divided into blocks (also called "zones") of 1024 bytes. De keeps a
current address on the disk as a block number and a byte offset within the block. In
some visual modes the offset is rounded off, for example, in "word" mode the
offset must be even.

There are different types of blocks on a file system device, including a super
block, bit maps, i-nodes and data blocks. De knows the type of the current block,
but will allow most positioning commands and visual modes to function anywhere
on the disk.

The f command (or PGDN on the key pad) moves forward to the next block,
similarly b (PG UP) moves backwards one block. F (END) moves to the last block
and B (HOME) moves to the first block.

The arrow keys (or u, d, I, and r) change the current address by small incre
ments. The size of the increment depends on the current display mode, as shown
below. The various sizes suit each display and pointers move on the screen to fol
low each press of an arrow key.

Mode
Word
Block

Map

Up
-2

-64
-256

Down
+2

+64
+256

Left
-32

- I
-4

Right
+32

+ 1
+4

The g command allows movement to any specified block. Like all commands that
take arguments, a prompt and subsequent input are written to the bottom line of the
screen. Numerical entry may be decimal, octal or hexadecimal, for example 234,
- 1 , 070, Oxf3, -X3C.

While checking an i-node one may want to move to a block listed as a zone of
the file. The G command takes the contents at the current address in the device as a
block number and indirectly jumps to that block.

The address may be set to the start of any i-node using the command and sup
plying an i-node number. The I command maps a given file name into an i-node
address. The file must exist on the current device and this device must be mounted.

SEC. 9.3 DE-DISK EDITOR 203

9.3.2. The Display

The first line of the display contains the device name. the name of the current
output file (if one is open) and the current search string. If de is being run with the
-w option then the device name is flagged with "(w)." If a string is too long to fit
on the line it is marked with " . . .

. .
.

The second line contains the current block number. the total number of blocks.
and the type of the current block. The types are: boot, super. i-node bit map. zone
bit map. i-nodes and data block. If the current address is within a data block then
the string "in use" is displayed if the block corresponds to a set in the zone bit map.

The third line shows the offset in the current block. If the current address i s
within either the i-node or zone bit maps then the i-node or block number
corresponding to the current bit is shown. If the current address is within an i-node
then the i-node number and " in use" status is displayed. If the address is within a
bit map or i-node block. but past the last usable entry. then the string "padding" is
shown.

The rest of the screen is used to display data from the current block. There are
three visual display modes: "word." " block." and "map." The v command fol
lowed by w. b. or m sets the current display mode.

In "word" mode 1 6 words. of two bytes each. are shown in either base 2. 8. 1 0
or 1 6 . The current base i s displayed to the far right of the screen. I t can be changed
using the 0 command followed by either an h (hexadecimal). d (decimal). 0 (octal)
or b (binary).

De knows where i-nodes are. and will display the contents in a readable format.
including the rwx bits. the user name and the time field. If the current page i s at the
beginning of the super block. or an executable file or an ar archive. then de will also
inform the user. In all other cases the contents of the 1 6 words are shown to the
right as equivalent ASCII characters.

In "block" mode a whole block of 1024 bytes is displayed as ASCII characters.
64 columns by 1 6 lines. Control codes are shown as highlighted characters. If the
high order bit is set in any of the 1 024 bytes then an "MSB" flag is shown on the
far right of the screen. but these bytes are not individually marked.

In "map" mode 2048 bits (256 bytes) are displayed from the top to the bottom
(32 bits) and from the left to the right of the screen. B it zero of a byte is towards the
top of the screen. This visual mode is generally used to observe the bit map blocks.
The number of set bits displayed is written on the far right of the screen.

9.3.3. Searching

A search for an ASCII string is initiated by the I command. Control characters
not used for other purposes may be entered in the search string. for example
CTRL-J is an end-of-line character. The search is from the current position to the
end of the current device.

204 EXTENDED MANUAL PAGES CHAP. 9

Once a search string has been defined by a use of I, the next search may be ini
tiated with the n command, (a I followed immediately by an ENTER is equivalent
to an n).

Whenever a search is in progress de will append one . to the prompt line for
every 500 blocks searched. If the string is found between the end of the file system
and the actual end of the device, then the current address is set to the end of the file
system.

Some of the positioning commands push the current address and visual mode in
a stack before going to a new address. These commands are B, F, g, G, i, I, n, x and
I. The p (previous) command pops the last address and visual mode from the stack.
This stack is eight entries deep.

9.3.4. Modifying the File System

The s command will prompt for a data word and store it at the current address
on the disk. This is used to change information that can not be easily changed by
any other means.

The data word is 1 6 bits wide, it may be entered in decimal, octal or hexade
cimal. Remember that the -w option must be specified for the s command to
operate. Be careful when modifying a mounted file system.

9.3.5. Recovering Files

Any block on the disk may be written to an output file. This is used to recover
blocks marked as free on the disk. A write command will request a file name the
first time it is used, on subsequent writes the data is appended to the current output
file.

The name of the current output file is changed using the c command. This file
should be on a different file system, to avoid overwriting an i-node or block before
it is recovered.

An ASCII block is usually recovered using the w command. All bytes will have
their most significant bit cleared before being written to the output file. Bytes con
taining '\0' or '\177' are not copied. The W command writes the current block
(1 024 bytes exactly) to the output file.

When a file is deleted using unlink the i-node number in the directory is zeroed,
but before its removal, it is copied into the end of the file name field. This allows
the i-node of a deleted file to be found by searching through a directory. The x com
mand asks for the path name of a lost file, extracts the old i-node number and
changes the current disk address to the start of the i-node.

Once an i-node is found, all of the freed blocks may be recovered by checking
the i-node zone fields, using 'G' to go to a block, writing it back out using 'w',
going back to the i-node with p and advancing to the next block. This file extraction
process is automated by using the X command, which goes through the i-node,

SEC. 9.3 DE-DISK EDITOR 205

indirect and double indirect blocks finding all the block pointers and recovering all
the blocks of the file.

The X command closes the current output file and asks for the name of a new
output file. All of the disk blocks must be marked as free, if they are not the com
mand stops and the file must be recovered manually.

When extracting lost blocks de will maintain "holes" in the file. Thus, a
recovered sparse file does not allocate unused blocks and will keep its efficient
storage scheme. This property of the X command may be used to move a sparse file
from one device to another.

Automatic recovery may be initiated by the -r option on the command line.
Also specified is the path name of a file just removed by unlillk. De determines
which mounted file system device held the file and opens it for reading. The lost i
node is found and the file extracted by automatically performing an x and an X com
mand.

The recovered file will be written to lImp. De will refuse to automatically
recover a file on the same file system as lImp. The lost file must have belonged to
the user. If automatic recovery will not complete, then manual recovery may be per
formed.

9.3.6. Miscellaneous

The user can terminate a session with de by typing q, CTRL-D, or the key asso
ciated with SIGQUIT.

The m command invokes the MlNlX sI! shell as a subprocess.
For help while using de use h.

9.3.7. Command Summary

PGUP b Back one block
PGDN f Forward one block
HOME B Goto first block
END F Goto last block
UP u Move back 2/64/256 bytes
DOWN d Move forward 2/64/256 bytes
LEFT I Move back 32/1/4 bytes
RIGHT r Move forward 32/1/4 bytes

g Goto specified block
G Goto block indirectly

Goto specified i-node
I Filename to i-node
/ Search
n Next occurrence

206 EXTENDED MANUAL PAGES

p Previous address
h Help

EOF q Quit
m MINIX shell
v Visual mode (w b m)
0 Output base (h d 0 b)
c Change file name
w Write ASCII block
W Write block exactly
x Extract lost directory entry
X Ex tract lost file blocks
s Store word

CHAP. 9

NOTES: When entering a line in response to a prompt from de there are a couple of
editing characters available. The previous character may be erased by typing
CTRL-H and the whole line may be erased by typing CTRL-U. ENTER terminates
the input. If DELETE or a non-ASCII character is typed then the command request
ing the input is aborted.

The commands G, S and X will only function if the current visual display mode
is "word." The commands i, I and x change the mode to " word" on completion.
The commands G and / change the mode to "block". These restrictions and
automatic mode conversions are intended to aid the user.

The "map" mode uses special graphic characters, and only functions if the user
is at the console.

De generates warnings for illegal user input or if erroneous data is found on the
disk, for example a corrupted magic number. Warnings appear in the middle of the
screen for two seconds, then the current page is redrawn. Some minor errors, for
example, setting an unknown visual mode, simply ring the bell. Major errors, for
example I/O problems on the file system device cause an immediate exit from de.

The i-node and zone bit maps are read from the device when de starts up. These
determine whether " in use" or "not in use" is displayed in the status field at the top
of the screen. The bit maps are not re-read while using de and will become out-of
date if observing a mounted file system.

De requires termcap definitions for "cm" and "cl" . Furthermore, " so" and
"se" will also be used if available. The ANSI strings generated by the keypad
arrows are recognized, as well as any single character codes defined by "ku",
"kd", "kl" and "kr".

9.3.8. Author

The de program was written by Terrence Holm.

SEC. 9.4 DIS88-DISASSEMBLER FOR THE 8088 (IBM(207

9.4. DIS88-DISASSEMBLER FOR THE 8088 [IBM]

Dis88 disassembles 8088 object code to the assembly language format used by
MINIX. It makes full use of symbol table information, supports separate instruction
and data space, and generates synthetic labels when needed. It does not support
8087 mnemonics, symbolic data segment references, or the ESC mnemonic.

The program is invoked by:

dis88 [--<J} infile [outfile}

The -0 flag causes object code to be listed. If no out file is given, stdout is used.
The text segment of an object file is always padded to an even address. In addi

tion, if the file has split I/D space, the text segment will be padded to a paragraph
boundary (i.e., an address divisible by (6). Due to padding, the disassembler may
produce a few spurious, but harmless, instructions at the end of the text segment.

Because the information to which initialized data refers cannot generally be
inferred from context, the data segment is treated literally. Byte values (in hexade
cimal) are output, and long stretches of null data are represented by appropriate
.zerow pseudo-ops. Disassembly of the bss segment, on the other hand, i s quite
straightforward, because uninitialized data is all zero by definition. No data is out
put in the bss segment, but symbolic labels are output as appropriate.

The output of operands in symbolic form is complicated somewhat by the
existence of assembler symbolic constants and segment override opcodes. Thus, the
program's symbol lookup routine attempts to apply a certain amount of intelligence
when it i s asked to find a symbol. If it cannot match on a symbol of the preferred
type, it may output a symbol of some other type, depending on preassigned (and
somewhat arbitrary) rankings within each type. Finally, if all else fails, it will out
put a string containing the address sought as a hex constant. For user convenience,
the targets of branches are also output, in comments, as hexadecimal constants.

9.4.1 . Error Messages

Various error messages may be generated as a result of problems encountered
during the disassembly. They are listed below

Cannot access input file
Cannot open output file
Input file not in object format
Not an 8086/8088 object file
Reloc table overflow
Symbol table overflow
Lseek error
Warning: no symbols
Cannot reopen input file

- Input file cannot be opened or read
- Output file cannot be created
- Bad magic number
- CPU ID of the file header is incorrect
- Relocation table exceeds 1 500 entries
- Symbol table exceeds 1500 entries
- Input file corrupted (should never happen)
- Symbol table is missing (use ast)
- Input file was removed during execution

208 EXTENDED MANUAL PAGES CHAP. 9

9.4.2. Author

Dis88 was written and copyrighted by G. M . Harding and is included here by
permission. It may be freely redistributed provided that complete source code, with
all copyright notices, accompanies any redistribution. This provision also applies to
any modifications you may make. You are urged to comment such changes, giving,
as a minimum, your name and complete address.

9.5. ELLE-FULL-SCREEN EDITOR

ELLE (ELLE Looks Like Emacs) is an Emacs clone for MINIX. ELLE is not
full Emacs but it has about 80 commands and is quite fast.

9.5.1. Key bindings

Mined only has a small number of commands. All of them are either of the
form CTRL-x or are on the numeric keypad. Emacs, in contrast, has so many com
mands, that not only are all the CTRL-x commands used up, but so are all the ESC
x (escape followed by x; escape is not a shift character. like CTRL). Even this is
not enough, so CTRL-X is used as a prefix for additional commands. Thus CTRL
X CTRL-L is a command. and so is CTRL-X K . Note that what is conventionally
wrinen as CTRL-X K really means CTRL-X k. In some contexts it is traditional to
write CTRL-X as ·X. Please note that they mean the same thing.

As a result. many Emacs commands need three or four key strokes to execute.
Some people think 3-4 key strokes is too many. For this reason, Emacs and ELLE
allow users to assign their own key bindings. In ELLE this is done with "user
profiles." A user profile is a file listing which function is invoked by which key
stroke. The user profile is then compiled by a program called ellec into binary
form. When ELLE starts up it checks to see if a file .ellepro.b I exists in $HOME.
If it does, this file is read in and overrides the default bindings.

A user profile that simulates the mined commands fairly well is provided. Its
installation is described later. If you have never used Emacs, it is suggested that
you use the mined profile. If you normally use Emacs, then do not install the mined
profile. You can also make your own using ellec. There is no Mock Lisp.

ELLE has a character-oriented view of the world, not a line oriented view, like
ed. It does not have magic characters for searching. However, you can use line feed
in search patterns. For example, to find a line consisting of the three characters
"foo" all by themselves on a line, using the mined bindings (see below), use the
pattern: CTRL-\ CTRL-J f 0 0 CTRL-\ CTRL-J. The CTRL- means to interpret the
next character literally, in this case it is CTRL-J, which is line feed. You can also

SEC. 9.5 ELLE-FULL-SCREEN EDITOR 209

search for patterns involving multiple lines. For example, to find a line ending in an
"x" followed by a l ine beginning with a "y", use as pattern: x CfRL- CTRL-J y.

9.5.2. Mined Key Bindings

These are the key bindings if the binary user profile, .ellepro.bJ, is installed in
$HOME. The ESCAPE key followed by a number followed by a command causes
that command to be executed "number" times. This applies both to control charac
ters and insertable characters. CTRL-X refers to a "control character." ESC x
refers to an escape character followed by x. In other words, -X is a synonym for
CTRL-X. -X Y refers to CTRL-X followed by y. To abort the current command
and go back to the main loop of the editor, type CTRL-G, rather than CTRL-\

Only a few commands are of the form CTRL-X y, All of these are also bound
to CTRL-X CTRL-Y, so you can hold down CTRL and then hit X Y, or release
control after the X, as you prefer.

The key bindings that are not listed should not be used. Some of them actually
do things. For example, the ANSI escape codes ESC [x are bound to -X Y for a
variety of y.

Some commands work on regions. A region is defined as the text between the
most recently set mark and the cursor.

9.5.3. Mined Commands

If the mined profile, .ellepro.bJ is installed in your home directory, the follow
ing commands will work.

CURSOR MOTION
arrows
CTRL-A
CTRL-Z
CTRL-F
CTRL-B

SCREEN MOTION
Home key
End key
PgUp key
PgDn key
CTRL-U
CTRL-D
ESC .
CfRL-_

Move the cursor in the indicated direction
Move cursor to start of current l ine
Move cursor to end of current line
Move cursor forward word
Move cursor backward to start of previous word

Move to first character of the file
Move to last character of the file
Scroll window up 22 lines (closer to start of the file)
Scroll window down 22 lines (closer to end of the file)
Scroll window up 1 line
Scroll window down 1 line
Move to top of screen
Move to bottom of screen

210 EXTENDED MANUAL PAGES

MODIFYING TEXT
DEL key Delete the character under the cursor
Backsp Delete the character to left of the cursor
CfRL-N Delete the next word
CTRL-P Delete the previous word

CHAP. 9

CTRL-T Delete tail of line (all characters from cursor to end of line)
CTRL-O Open up the line (insert line feed and baclc up)
ESC G Get and insert a file at the cursor position (CTRL-G in mined)

REGIONS
CTRL-
CTRL-C
CTRL-K
CTRL-Y

MISCELLANEOUS
numeric +
numeric -
CfRL-]
CTRL-R
CfRL-L
CfRL-W
CfRL-S
CTRL-G
CTRL-E
CTRL-V
CfRL-Q
ESC X

Set mark at current position for use with CTRL-C and CfRL-K
Copy the text between the mark and the cursor into the buffer
Delete text between mark and cursor; also copy it to the buffer
Yank contents of the buffer out and insert it at the cursor

Search forward (prompts for expression)
Search backward (prompts for expression)
ESC n CTRL-[goes to line n (slightly different syntax than mined)
Global replace pattern with string (from cursor to end)
Replace pattern with string within the current line only
Write the edited file back to the disk
Fork off a shell (use CTRL-D to get back to the editor)
Abort whatever the editor was doing and wait for command (CfRL-)
Redraw screen with cursor l ine positioned in the middle
Visit (edit) a new file
Write buffer to a file
Exit the editor

9.5.4. Non-Mined Commands

CURSOR MOTION
ESC P
ESC]
ESC .

Forward paragraph (a paragraph is a line beginning with a dot)
Backward paragraph
Indent this line as much as the previous one

MODIFYING TEXT
CTRL-\ Insert the next character (used for inserting control characters)
ESC T Transpose characters
ESC W Transpose words
ESC = Delete white space (horizontal space)
ESC I Delete blank lines (vertical space)

SEC. 9.5 ELLE--FULL-SCREEN EDITOR

Mark current paragraph
Exchange cursor and mark

211

REGIONS
ESC M
ESC '
ESC Y
ESC A

Yank back the next-to-the-Iast kill (CTRL-Y yanks the last one)
Append next kill to kill buffer

KEYBOARD MACROS
ESC , Start Keyboard Macro
ESC \ End Keyboard Macro
ESC * View Keyboard Macro (the PrtSc key on the numeric pad is also a *)
ESC E Execute Keyboard Macro

WINDOW MANAGEMENT
'X I Enter one window mode
-X 2 Enter two window mode
·x L Make the current window larger
·x P Make the window more petit/petite (Yes, Virginia, they are English)
·x N Next window
·x W New window

BUFFER MANAGEMENT
numeric 5
ESC B
ESC S
ESC N

Display the list of current files and buffers
Select a buffer
Select an existing buffer
Mark a buffer as NOT modified (even if it really is)

UPPER AND LOW CASE MANIPULATION
ESC I Set first character of word to upper case
ESC C Capitalize current word
ESC 0 Make current word ordinary (i.e., lower case)
ESC U Set entire region between mark and cursor to upper case
ESC L Set entire region between mark and cursor to lower case

MISCELLANEOUS
ESC F
ESC Z
ESC Q
ESC R
ESC H
ESC ;
-x X

Find file and read it into its own buffer
Incremental search
Like CTRL-R, but queries at each occurrence (type ? for options)
Reset the user profile from a file
Help (ELLE prompts for the I or 2 character command to describe)
Insert a comment in a C program (generates '* *' for you)
Exit the editor (same as ESC X and CTRL-X CTRL-X)

212 EXTENDED MANUAL PAGES CHAP. 9

The major differences between ELLE with the mined profile and mined itself are:

I . The definition of a "word" is different for forward and backward word
2. The mark is set with CTRL-' instead of CTRL-@
3. Use CTRL-G to abort a command instead of CTRL-\
4. Use CTRL- to literally insert the next character, instead of ALT
5. CTRL-E adjusts the window to put the cursor in the middle of it
6. To get and insert a file, use ESC G instead of CTRL-G
7. To go to line n, type ESC n CTRL-[instead of CTRL-[n
8 . You exit with CTRL-X CTRL-X and then answer the question with "y".
9. There are many new commands, windows, larger files, etc.

9.5.5. Emacs Key Bindings

If you do not have the mined profile installed. you get the standard Emacs key
bindings. These are l isted below. Commands not l isted are not implemented.

CURSOR MOVEMENT
CTRL-F Forward one character.
CTRL-B Backward one character.
CTRL-H Same as CTRL-B: move backward one character.
ESC F Forward one word.
ESC B Backward one word.
CTRL-A Beginning of current line.
CTRL-E End of current line.
CTRL-N Next line (goes to the next line).
CTRL-P Previous line (goes to the previous line).
CTRL-V Beginning of next screenful.
ESC V Beginning of previous screenful.
ESC 1 Forward Paragraph.
ESC [Backward Paragraph.
ESC < Beginning of whole buffer.
ESC > End of whole buffer.

DELETING
CTRL-D
DELETE
ESC D
ESC DEL
CTRL-K
ESC \
'X CTRL-O

Deletes forward one character (the one the cursor is under).
Deletes backward one character (the one to left of cursor).
Kills forward one word.
Kills backward one word.
Kills the rest of the line (to the right of the cursor).
Deletes spaces around the cursor.
Deletes blank lines around the cursor.

SEC. 9.5

CASE CHANGE
ESC C
ESC L
ESC U
"X CfRL-L
" X CfRL-U

ELLE-FULL-SCREEN EDITOR 213

Capitalizes word : first letter becomes uppercase; rest lower
Makes the whole next word lowercase.
Makes the whole next word uppercase.
Makes whole region lowercase.
Makes whole region uppercase.

SEARCHING (If no string is given, previous string is used)
CfRL-S Incremental Search forward; prompts "I-search:"
CfRL-R Reverse Incremental Search; prompts "R-search:" During an increment

search, the following characters have special effects:

ESC %
'X %

MARKING AREAS
CfRL-"
"X CfRL-X
ESC H
CfRL-W
ESC W
CfRL-Y
ESC Y
ESC CTRL-W

FILLING TEXT
ESC Q
ESC G
"X F
"X .
'X T

WINDOWS
'X 2
"X I
"X O
'X •

" normal"
"G
DEL
"S, "R
ESC or CR

- Begin searching immediately.
- Cancel I-search, return to start.
- Erase last char, return to last match.
- Repeat search (or change direction).
- Exit I-search at current point.

Query Replace. Interactive replace. Type "?" to see options.
Replace String. Like Query Replace, but not interactive

Set mark
Exchange cursor and mark.
Mark Paragraph. Sets mark and cursor to surround a para.
Wipe-out -- kills a "region":
Copy region. Like CTRL-W then CTRL-Y but modifies buffer
Yanks-back (un-kills) whatever you have most recently killed.
Yanks-back (un-kills) the next most recently killed text.
Append Next Kill . Accumulates stuff from several kills

Fill the paragraph to the size of the Fill Column.
Fill the region.
Set Fill Column. ESC Q will use this line size.
Set Fill Prefix. Asks for prefix string
Toggles Auto Fill Mode.

Make two windows (split screen).
Make one window (delete window) (make one screen).
Go to Other window.
Grow window: makes current window bigger.

214 EXTENDED MANUAL PAGES CHAP. 9

BUFFERS
Find a file and make a buffer for it. 'X CTRL·F

'X B
'X CTRL-B
'X K

Select Buffer: goes to specified buffer or makes new one
Show the names of the buffers used in this editing session.
Kill Buffer.

ESC tilde
'X CTRL-M

Say buffer is not modified.
Toggle EOL mode (per-buffer flag).

KEYBOARD MACRO
'X (Start collecting a keyboard macro.
'X) Stop collecting.
'X E Execute the collected macro.
'X * Display the collected macro.

FILES
'X CTRL-I
'X CTRL-R
'X CTRL-V
'X CTRL-W
'X CTRL-S
'X CTRL-E

MISCELLANEOUS

Insert a file where cursor is.
Read a new file into current buffer.
Same as 'X 'R above (reads a file).
Write buffer out to new file name.
Save file: write out buffer to its file name.
Write region out to new file name.

'X CTRL-Z Exit from ELLE.
'X ! Escape to shell (CTRL-D to return)
CTRL-O Open up line
LINEFEED Same as typing RETURN and TAB.
CTRL-T Transposes characters.
ESC T Transposes words.
CTRL-U Makes the next command happen four times.
CTRL-U number Makes the next command happen "number" times.
ESC number Same as CTRL-U number.
CTRL-L Refreshes screen.
CTRL-U CTRL-LRefresh only the line cursor is on.
CTRL-U n CTRL-L Change window so the cursor is on line n
CTRL-Q Quote: insert the next character no matter what it is.
CTRL-G Quit: use to avoid answering a question.
ESC ; Inserts comment (for writing C programs).
ESC I Inserts indentation equal to previous line.
ESC M Move to end of this line's indentation.
CTRL-_ Describe a command (if the command database is online)

SEC. 9.5 ELLE-FULL·SCREEN EDITOR

UNUSED CONTROLS
CTRL·C Not used.
CTRL-Z Not used.
CTRL-) Not used.

9.5.6. Installing ELLE on MINIX

To install ELLE, you will need the following files:

elle - executable binary of the editor
ellec
.ellepro.e
.ellepro.b 1

help.dat

- executable binary of the profile compiler
- mined profile in source fonn
- mined profile in binary fonn
- help file

To install ELLE, please proceed as follows:

1 . Check to see if letcltermcap is present and has an entry for "minix".

2. Set the environment properly by typing:

TERM=minix

You can also put it In the appropriate .profile, but be sure to also
include a line:

export TERM

You can check the current environment with printenv. If the entry:

TERM=minix

does not appear. ELLE will not work.

3 . Install the files e/le and ellec in your Ibin or lusrlbin directory.

4. Install help.dat in lusrlsrc/elle/help.dat

5. If you want to use the mined· like commands, install .ellepro.bJ in your
home directory.

6. Type:

elle filename

and you are up and running.

215

216 EXTENDED MANUAL PAGES CHAP. 9

It is possible to create your own user profile. The mechanism is different from
Emacs, since ELLE does not have Mock Lisp. Proceed as follows.

I . Modify .ellepro.e to suit your taste.

2. Install .ellepro.e in your home directory.

3 . Type:

ellec -Profile

4. Check to see if .ellepro.bl has been created. If it has, you are ready to
go.

9.S.7. Author

ELLE was written by Ken Harrenstien of SRI (klh@sri.com).

9.6. EL VIS-A CLONE OF THE BERKELEY VI EDITOR

Elvis is a full-screen editor closely mode led on the famous Berkeley vi editor. It
provides essentially the same interface to the user as vi, but the code is completely
new, written from scratch. This document provides a brief introduction to vi. It is
not intended as a tutorial for beginners. Most books on UNIX cover vi.

Like vi, elvis can operate as a screen editor (vi mode) or as a line editor (ex)
mode. It can be called either as elvis vi,or as ex, depending on which is desired.
They are all links to the same file.

9.6.1. Vi Commands

Below is a list of the vi commands supported. The following symbols are used
in the table:

count Integer parameter telling how many or how much
key One character parameter to the command
inp Interactive input expected
mv Indicates how much for commands like delete and change:

(Previous sentence
) Next sentence
(Previous paragraph
) Next paragraph (delimited by blank line, .PP, LP, .JP etc.'
[Previous section (delimited by .SH or NH)

A repeated command character means the scope is this line

SEC. 9.6

MOVE
EDIT

ELVIS-A CLONE OF THE BERKELEY VI EDITOR 217

Indicates commands that may also be used where mv is specified
These commands affect text and may be repeated by the . command

In addition to the above notation, the caret Cl is used as an abbreviation for CTRL
For example, 'A means CTRL-A.

Count

count
count

count

count

count
count

count

count

count

count

Command
'A
'B
'C
'D
'E
'F
'G
'H
'J
'J
'K
'I
'M
'N
'0
'p

'Q
'R
'S
'T
-U
'V
'W
'X
'Y
'z
ESC
'\
'j

SPACE
! mv
" key

$
%

Description Type
(Not defined)
Move toward the top of the file by I screenfuI
(NO! defined)
Scroll down count lines (default 1/2 screen)
Scroll up count lines
Move toward the bottom of the file by I screenfuI
Show file status, and the current line
Move left, like h MOVE
(NO! defined)
Move down MOVE
(NO! defined)
Redraw the screen
Move to the front of the next line
Move down
(Not defined)
Move up
(Not defined)
Redraw the screen
(Not defined)
(Not defined)
Scroll up cowu lines (default 1/2 screen)
(Not defined)
(Not defined)
(NO! defined)
Scroll down count lines
(Not defined)
(Not defined)
(Not defined)
If the cursor is on a tag name, go to that tag
(Not defined)
(Not defined)

MOVE
MOVE

MOVE

Move right,like I MOVE
Run the selected lines thru an external filter program
Select which cut buffer to use next
(Not defined)
Move to the rear of the current line
move to the matching 0 () [J character

MOVE
MOVE

218 EXTENDED MANUAL PAGES CHAP. 9

& (Not defined)
,

key Move to a marked line MOVE
count (Move backward count sentences MOVE
count) Move forward count sentences MOVE

• (Not defined)
count + Move to the front of the next line MOVE
count Repeat the previous [!Ftn but the other way MOVE
count Move to the front of the preceding line MOVE

Repeat the previous "edit" command
/ Text search forward for a given regular ex pr MOVE

0 If not part of count, move to I st char of this line MOVE
I Part of count
2 Part of count
3 Part of count
4 Part of count
5 Part of count
6 Part of count
7 Part of count
8 Part of count
9 Part of count

Text. Run single ex cmd
count Repeat the previous [fFtT] cmd MOVE

< my Shift text left EDIT
= (Not defined)
> mv Shift text right EDIT
? text Search backward for a given regular expression MOVE
@ (Not defined)

count A inp Append at end of the line EDIT
count B Move back Word MOVE

C inp Change text from cursor through end of line EDIT
D Delete text from cursor through end of line EDIT

count E Move end of Word MOVE
count F key Move leftward to a gi yen character MOVE
count G Move to line #counr (default is the bottom line) MOVE
count H Move to home row (the line at the top of the screen)
count I inp Insert at the front of the line (after indents) EDIT
count J Join lines, to form one big line EDIT

K Look up keyword
count L Move to last row (the line at the bottom of the screen)

M Move to middle row (the line in the middle)
N Repeat previous search, but the opposite way MOVE

count o inp Open up a new line above the current line EDIT
P Paste text before the cursor

SEC. 9.6 ELVIS-A CLONE OF THE BERKELEY VI EDITOR 219

Q Quit to EX mode
� R inp Overtype EDIT

count S inp Change lines. l ike countcc
count T key Move leftward almost to a given character MOVE

U Undo all recent changes to the current line
V (Not defined)

count W Move forward count Words MOVE
count X Delete the character(s) to the left of the cursor EDIT
count Y Yank text line(s) (copy them into a cut buffer)

Z Z Save the file & exit
[[Move back 1 section MOVE
(Not defined)
1 1 Move forward 1 section MOVE

Move to the front of the current line (after indent)MOVE
(Not defined)

• key Move to a marked character MOVE
count a inp Insert text after the cursor EDIT
count b Move back count words MOVE

c mv Change text EDIT
d mv Delete text EDIT

count e Move forward to the end of the current word MOVE
"- count f key Move rightward 10 a given character MOVE

g (Not defined)
count h Move left MOVE
count i inp Insert text at the cursor EDIT
count J Move down MOVE
count k Move up MOVE
count Move right MOVE

m key Mark a line or character
n Repeal the previous search MOVE

count o inp Open a new line below the current line EDIT
p Paste text after the cursor
q (Not defined)

count r key Replace count chars by a given character EDIT
count s mp Replace ('011111 chars with text from the user EDIT
count t key Move rightward almost to a given character MOVE

'-' u Undo the previous edit command
v (Not defined)

count w Move forward coulll words MOVE
count x Delete the character that the cursor's on EDIT

'-'
y mv Yank text (copy it into a CUI buffer)
z key Scroll current line to the screen's +=top -=bottom .=middle

count { Move back count paragraphs MOVE

220

count
count

I
}

DEL

9.6.2. Ex Commands

EXTENDED MANUAL PAGES CHAP. 9

Move to column count (the leftmost column is I)
Move forward count paragraphs MOVE
Switch a character between upper & lower case EDIT
(Not defined)

Below is a list of the ex commands supported. All can be abbreviated.

General

[line] append
args
cd
chdir

[line][,line] change
[Iine][,line] copy
[line][,line] debug[! j
[line][,line] Delete

edit [!]
ex[! }
file

[line][,line] global
[line] Insert
[line][,line] join
[line] [, l ine] list

map[']
[line] mark

mkexrc
[line][,line] Move

next[!]
Next[!]
previous[']

[line][.line] print
[line] put

quit [!]
[line] read

rewind[!]
set

[line][.line] substitute
tag[']

[line][,line] to
Undo

[files]
[d irectory]
[directory]

line

["x]
[file]
[file]

Iregexpl command

line
[files]

[" x]

file

[options]
Iregexp/replacemen t/[p] [g]
tag name
line

SEC. 9.6

[line][.line]

[line][,line]

[line][.line]
[line][,line]
[line][,line]
[line][.line]
[line][,line]

Text Entry

[line]
[line][,lineJ
[line)

ELVIS-A CLO�E OF THE BERKELEY VI EDITOR

unmap[!] key
validate[!]
version
vglobal
visual
wq
writer !]
xit[!]
yank
!
<
=

>

append
change ["x]
Insert

/regexp/ command

[[»)file]

["x]
command

The (a)ppend command inserts text after the specified line.

The (i)nsert command inserts text before the specified line.

221

The (c)hange command copies the range of lines into a cut buffer, deletes them, and
inserts new text where the old text used to be.

For all of these commands, you indicate the end of the text you're inserting by hit
ting -D or by entering a line which contains only a period.

Cut & Paste

[Iine][,line)
[line][,1ine)
[line)
[line][,line)
[line][,line)
[Iine][.linel

Delete ["x)
yank ["x]
put[!) ["xl
copy line
to line
Move line

The (d)elete command copies the specified range of lines into a cut buffer, and then
deletes them.

222 EXTENDED MANUAL PAGES CHAP. 9

The (y)ank command copies the specified range of lines into a cut buffer, but does
not delete them.

The (pu)t command inserts text from a cut buffer after the specified line-or before
it if the ! is present.

The (co)py and (t)o commands yank the specified range of lines and then immedi
ately paste them after some other line.

The (m)ove command deletes the specified range of lines and then immediately
pastes them after some other line. If the destination line comes after the deleted
text, then it will be adjusted automatically to account for the deleted lines.

Displaying Text

[line][,line] print
[line][,linc] list

The (p)rint command displays the specified range of l ines.

The (I)ist command also displays them, but it is careful to make control characters
visible.

Global Operations

[line][,line]
[line][,line]

global /regexp/ command
vglobal /regexp/ command

The (g)lobal command searches through the lines of the specified range (or through
the whole file if no range is specified) for lines that contain a given regular expres
sion. It then moves the cursor to each of these lines and runs some other command
on them.

The (v)global command is similar, but it searches for l ines that do not contain the
regular expression.

Line Editing

[Iine][,line]
[line][,line]
[Iine][,line]
[line][,line]
[line][,line]

join
! program
<
>
substitute /regexp/replacement![p][g]

SEC. 9.6 EL VIS-A CLONE OF THE BERKELEY VI EDITOR 223

The Oloin command concatenates all lines in the specified range together to fonn
one big line. If only a single line is specified, then the following line is catenated
onto it.

The ! command runs an external filter program, and feeds the specified range of
lines to it's stdin. The lines are then replaced by the output of the filter. A typical
example would be " ; 'a,'z!sort _n" to sort the lines 'a,'z according to their numeric
values.

The < and > commands shift the specified range of lines left or right, nonnally by
the width of 1 tab character. The "shiftwidth" option detenn;nes the shifting
amount.

The (s)ubstitute command finds the regular expression in each line, and replaces it
with the replacement text. The "p" option causes the altered lines to be printed,
and the "g" option permits all instances of the regular expression to be found &
replaced. (Without "g", only the first occurrence is replaced.)

Undo

undo

The (u)ndo command restores the file to the state it was in before your most recent
command which changed text.

Configuration & Status

map[!] [key mapped_to]
unmap[!] key
set [options]
mkexrc

[line] mark x
visual
version

[lineH,line] =

file

The (ma)p command allows you to con figure elvis to recognize your function keys,
and treat them as though they transmitted some other sequence of characters. Nor
mally this mapping is done only when in the visual command mode, but with the
[!]present it will map keys under all contexts. When this command is given with no
arguments, it prints a table showing all mappings currently in effect. When called

224 EXTENDED MANUAL PAGES CHAP. 9

with two arguments, the first is the sequence that your function key really sends,
and the second is the sequence that you want et"is to treat it as having sent.

The (unm)ap command removes key definitions that were made via the map com
mand.

The (se)t command allows you examine or set various options. With no arguments,
it displays the values of options that have been changed. With the single argument
"all" it displays the values of all options, regardless of whether they've been expli
citly set or not. Otherwise, the arguments are treated as options to be set.

The (mk)exrc command saves the current configuration to a file called .exrc in the
current directory.

The mar(k) command defines a named mark to refer to a specific place in the file.
This mark may be used later to specify lines for other commands.

The (vi)sual command puts the editor into visual mode. Instead of emulating ex,
et"is will start emulating vi .

The (ve)rsion command tells you that what version of etvis this is .

The = command tells you what line you specified, or, if you specified a range of
lines, it will tell you both endpoints and the number of lines included in the range.

The file command tells you the name of the file, whether it has been modified, the
number of lines in the file, and the current line number.

Multiple Files

args [files]
next[!] [files]
Next[!]
previous[!]
rewind[!]

When you invoke etvis from your shell ' s command line, any filenames that you give
to etvis as arguments are stored in the args list. The (ar)gs command will display
this list, or define a new one.

The (n)ext command switches from the current file to the next one in the args list.
You may specify a new args list here, too.

SEC. 9.6 ELVIS-A CLO:-;E OF THE BERKELEY VI EDITOR 225

The (N)ext and (prc)vious commands (they're really aliases for the same command)
switch from the current file to the preceding file in the args list.

The (rew)ind command switches from the current file to the first file in the args list.

Switching Files

edit [!] [file]
tag [!] tagname

The (e)dit command allows to switch from the current file to some other file. This
has nothing to do with the args list, by the way.

The (ta)g command looks up a given tagname in a file called "tags". This tells it
whIch file the tag is in, and how to find it in that file. E/vis then switches to the
tag's file and finds the tag.

Exiting

quit[!]
wq
xit

The (q)uit command exits from the editor without saving your file.

The (wq) and (x)it commands (really two names for the same command) both write
the file before exiting.

File 110

[line]
[line][,line I

read file
write [!][[»]file]

The (r)ead command gets text from another file and inserts it after the specified line.

The (w)rite command writes the whole file, or just part of it, to some other file. The
!, if present, will permit the lines to be written even if you've set the readonly
option. If you precede the filename by » then the lies will be appended to the file.

226

Directory

EXTENDED MANUAL PAGES

cd [directory J
chdir [directory J
shell

CHAP. 9

The (cd) and (chd)ir commands (really two names for one command) switch the
current working directory.

The (sh)ell command starts an interactive shell.

Debugging

[line)[, l ineJ debug[!J
validate [' J

These commands are only available if you compile elvis with the -DDEBUG flag.

The de(b lug command lists stats for the blocks which contain the specified range of
lines. If the ! i s present, then the contents of those blocks is displayed, too.

The (va)lidate command checks certain variables for internal consistency. Nor
mally it does not output anything unless it detects a problem. With the ! , though, it
will always produce ·some· output.

9.6.3. Extensions

In addition to the standard commands, a variety of extra features are present in
elvis that are not present in vi. They are described below .

. exrc
Elvis first runs a .exrc file (if there is one) from your $HOME directory. After
that, it runs a .exrc (if there is one) from the current directory. The one in the
current directory may override settings made by the one in the $HOME direc
tory.

:mkexrc
:mk

This EX command saves the current :set and :map configurations in the . . . exrc"
file in your current directory.

SEC. 9.6 ELVIS-A CLONE OF THE BERKELEY VI EDITOR 227

:args
"-'" :ar

You can use the :args command to define a new args list, as in:

:args * h

After you have defined a new args list, the next time you issue a :next command
etvis will switch to the first file of the new list.

:Next
:previous
:�
:pre

zz

K

These commands move backwards through the args list.

In VI, the (Iowercase) " zz" command will center the current line on the screen,
like "z="

The default count value for . is the same as the previous command which . is
meant to repeat. However, you can supply a new count if you wish. For exam
ple, after "3dw", " ." will delete 3 words, but "5." will delete 5 words.

The text which was most recently input (via a "cw" command, or something
similar) is saved in a cut buffer called " . (which is a pretty hard name to write in
an English sentence). You can use this with the "p" or "P" commands thusly:

" .p

You can move the cursor onto a word and press shift-K to have etvis run a refer
ence program to look that word up. This command alone is worth the price of
admission! See the ctags and ref programs.

input
You can backspace back past the beginning of the line. If you type CTRL-A,
then the text that you input last time is inserted. You will remain in input mode,
so you can backspace over part of it, or add more to it. (This is sort of like
CTRL-@ on the real vi, except that CTRL-A really works.)

'-" Real vi can only remember up to 1 28 characters of input, but elvis can
remember any amount.

228

:set charattr
:se ca

EXTENDED MA"IUAL PAGES CHAP. 9

Elvis can display " backslash-f" style character attributes on the screen as you
edit. The following example shows the recognized attributes:

normal boldface italics

NOTE: you must compile elvis without the -DSET YlOCHARA lTR Hag for
this to work.

9.6.4. Omissions

A few vi features are missing. The replace mode is a hack. [t does not save the
text that it overwrites.

Long lines are displayed differently-where the real vi would wrap a long line
onto several rows of the screen, el"is simply displays part of the line, and allows
you to scroll the screen sideways to see the rest of it.

The " :preserve" and " :recover" commands are missing, as is the -r Hag.
" :Preserve" is practically never used and since use of ":recover*(CQ is so rare, it
was decided to implement it as a separate program. There's no need to load the
recovery code into memory every time you edit a file.

LISP support is missing. The "@" and " :@ " commands are missing. You
cannot APPEND to a cut buffer.

9.6.5. Options

A variety of options can be set as described below:

Name Abbr Type Default Description
auto indent as Bool FALSE autoindent during input?
autowrite aw Bool FALSE write file for :n command?
charattr ca Bool FALSE display bold & underline chars?
columns co Number 80 width of screen, in characters
directory dir String /usr/tmp where tmp files are kept
errorbells eb BooI TRUE ring bell on error?
exrefresh er BooI TRUE EX mode calls writeO often?
ignorecase IC BooI FALSE searches: upper/lowercase OK?
keytirne kt Number allow slow receipt of ESC seq?
keywordprg kp String /usr/bin/ref program to run for shift-K
lines In Number 25 height of screen, in lines
list li Bool FALSE show tabs as "T'?
magic ma Bool TRUE searches: allow metacharacters?
paragraphs pa String ppppPApa paragraphs start with .PP, etc.

SEC. 9.6 ELVIS-A CLO:-.lE OFTHE BERKELEY VI EDITOR 229

readonly ro Bool FALSE no file should be written back?
rejXlfl re Number 5 report changes to X l ines?
scroll sc Number 1 2 default #Iines for 'U and 'D
sections se String SEseSHsh sections Start with .SE, etc.
shell sh String /bin/sh shell program, from environment
shiftwidth sw Number 8 width of < or > commands
sidescroll ss Number 8 #chars 10 scroll sideways by
sync sy Bool FALSE call syncO after each change?
tabstop ts Number 8 width of a tab character
term te String

I t')" terminal type, from environment
vbell vb Bool TRUE use visible bell if possible?
warn wa Bool TRUE warn if file not saved for : !cmd
wrapmargin wm Number 0 Insert newline after which col?
wrapscan ws Bool TRUE searches: wrap at EOF?

autoindent
During input mode, the autoindent option will cause each added line to begin
with the same amount of leading whitespace as the line above it. Without
autoindent, added lines are initially empty.

autowrite
When you're editing one file and decide to switch to another-via the :tag com
mand, or :next command, perhaps-if your current file has been modified, then
elvis will normally print an error message and refuse to switch.

However, if the autowrite option is on, then elvis will write the modified version
of the current file and successfully switch to the new file.

charattr
Many text formatting programs allow you to designate portions of your text to
be underlined, italicized, or boldface by embedding the special snings \tU, \!l,
and \fB in your text. The special string \fR marks the end of underlined or bold
face text.

Elvis normally treats those special strings just like any other text. However, i f
the charaltr option i s on, then elvis will interpret those special strings correctly,
to display underlined or boldface text on the screen. (This only works, of
course, if your terminal can display underlined and boldface, and if the
TERMCAP entry says how to do it.)

columns
'-" This is a "read only" option. You cannot change its value, but you can have

elvis print it. It shows how wide your screen is.

230 EXTENDED MANUAL PAGES CHAP. 9

directory
Elvis uses temporary files to store changed text. This option allows you to con
trol where those temporary files will be. Ideally, you should store them on in
fast non-volatile memory, such as a hard disk.

This option can only be set in the " .exrc" file.

errorbells
Normally, elvis will ring your terminal 's bell if you make an error. However, in
noerrorbells mode, your terminal will remain silent.

exrefresh
The EX mode of ell'is writes many l ines to the screen. You can make elvis
either write each line to the screen separately, or save up many lines and write
them all at once.

The exrefresh option IS normally on, so each line IS written to the screen
separately.

You may wish to turn the exrefresh option off (:se noer) if the "write" system
call is costly on your machine, or if you're using a windowing environment.
(Windowing environments scroll text a lot faster when you write many lines at
once.)

This option has no effect in vi mode.

ignorecase
Normally, when elvis searches for text, it treats uppercase letters as being dif
ferent for lowercase letters.

When the ignorecase option is on, uppercase and lowercase are treated as equal.

key time
The arrow keys of most terminals send a multi-character sequence. It takes a
measurable amount of time for these sequences to be transmitted. The key time
option allows you to control the maximum amount of time to allow for an arrow
key (or other mapped key) to be received in ful l .

The default key time value is 2. Because of the way UNIX timekeeping works,
the actual amount of time allowed will vary slightly, but it will always be
between 1 and 2 seconds.

If you set key time to I , then the actual amount of time allowed will be between

SEC. 9.6 ELVIS-A CLONE OF THE BERKELEY VI EDITOR 231

o and I second. This will generally make the keyboard's response be a little
faster (mostly for the ESC key), but on those occasions where the time allowed
happens to be closer to 0 than I second, elvis may fail to allow enough time for
an arrow key's sequence to be received fully. Ugh.

As a special case, you can set key time to 0 to disable this time limit stuff alto
gether. The big problem here is: If your arrow keys' sequences start with an
ESC, then every time you hit your ESC key elvis will wait . . . and wait . . . to see if
maybe that ESC was part of an arrow key's sequence.

NOTE: this option is a generalization of the timeout option of the real vi.

keywordprg
Elvis has a special keyword lookup feature. You move the cursor onto a word,
and hit shift-K, and elvis uses another program to look up the word and display
information about it.

This option says which program gets run. It should contain the full pathname of
the program; your whole execution path is not checked.

The default value of this option is lusrlbinlre!, which is a program that looks up
the definition of a function in C. It looks up the function name in a file called
" refs" which is created by ctags.

You can substitute other programs, such as an English dictionary program or the
online manual. elvis runs the program, using the keyword as its only argument.
The program should write information to stdout. The program ' s exit status
should be 0, unless you want elvis to print "« < failed » >".

lines

list

This "read only" option shows how many lines you screen has.

Normally (in "nolist" mode) elvis will expand tabs to the proper number of
spaces on the screen, so that the file appears the same would it would be if you
printed it or looked at it with more.

Sometimes, though, it can be handy to have the tabs displayed as "T'. In " list"
mode, elvis does this, and also displays a "$" after the end of the line.

magic
The search mechanism in elvis can accept "regular expressions"-strings in
which certain characters have special meaning. The magic option is normally

232 EXTE:-.IDED MANUAL PAGES CHAP. 9

on, which causes these characters to be treated specially. If you turn the magic
option off (:se noma), then all characters except ' and $ are treated literally.

•

and S retam their special meanings regardless of the setting of magic.

paragraphs
The t and) commands move the cursor forward or backward in increments of
one paragraph. Paragraphs may be separated by blank lines, or by a "dot" com
mand of a text formatter. Different text formatters use different "dot" com
mands. This option allows you 10 con figure elvis 10 work with your text for
matter.

It IS assumed [hat your fonnaner uses commands that start with a " ." character
at the front of a line, and [hen have a one- or two-character command name.

The value of the paragraphs option is a string in which each pair of characters is
one possible fonn of your text formatter's paragraph command.

readonly
Nonnally, ell'is will let you write back any file to which you have write pennis
sion. If you do not have write pennission, then you can only write the changed
version of the file 10 a differem file.

If you set the readonly option, then ell'is will pretend you do not have write per
mission 10 any file you edit. It is useful when you really only mean to use elvis
to look at a file, not to change it. This way you cannot change it accidentally.

This option is nonnally off, unless you use the "view" alias of elvis. "View" is
like vi except that the readonly option is on.

report
Commands in elvis may affect many lines. For commands that affect a lot of
lines, elvis will output a message saying what was done and how many lines
were affected. This option allows you to define what "a lot of lines" means.
The default is 5, so any command which affects 5 or more lines will cause a
message 10 be shown.

scroll
The CTRL-U and CTRL-D keys nonnally scroll backward or forward by half a
screenful, but this is adjustable. The value of this option says how many lines
those keys should scroll by.

sections
The [[and II commands move the cursor backward or forward in increment of 1

SEC. 9.6 ELVIS-A CLONE OF THE BERKELEY VI EDITOR 233

section. Sections may be delimited by a { character in column I (which is use
ful for C source code) or by means of a text formatter's "dot" commands.

This option allows you to configure elvis to work with your text formatter's
" section" command, in exactly the same way that the paragraphs option makes
it work with the formatter's "paragraphs" command.

shell
When elvis forks a shell (perhaps for the : I or : shell commands) this is the pro
gram that is uses as a shell. This is Ibinlsh by default, unless you have set the
SHELL environment variable, it which case the default value is copied from the
environment.

shiftwidth
The < and > commands shift text left or right by some uniform number of
columns. The shiftwidth option defines that uniform number. The default is 8 .

sidescroll
For long lines, ell'is scrolls sideways. (This is different from the real vi, which
wraps a single long line onto several rows of the screen.) To minimize the
number of scrolls needed, elvis moves the screen sideways by several characters
at a time. The value of this option says how many characters' widths to scroll at
a time. Generally, the faster your screen can be redrawn, the lower the value
you will want in this option.

sync
If the system crashes during an edit session, then most of your work can be
recovered from the temporary file that elvis uses to Store changes. However,
sometimes MINIX will not copy changes to the hard disk immediately, so
recovery might nOI be possible. The [no]sync option lets you control this. In
nosync mode (which is the default), elvis lets the operating system control when
data is written to the disk. This is generally faster. In sync mode, elvis forces
all changes out to disk every time you make a change. This is generally safer,
but slower.

tabstop
Tab characters are normally 8 characters wide, but you can change their widths
by means of this option.

term
This " read only" option shows the name of the termcap entry that elvis is using

........ for your terminal.

234 EXTENDED MANUAL PAGES CHAP. 9

vbell
If your tenncap entry describes a visible alternative to ringing your tenninal's
bell, then this option will say whether the visible version gets used or not. Nor
mally it will be.

If your tenncap does NOT include a visible bell capability, then the vbell option
will be off, and you cannot turn it on.

warn
Elvis will nonnally warn you if you run a shell command without saving your
changed version of a file. The "nowarn" option prevents this warning.

wrapmargin
Nonnally (with wrapmargin=O) elvis will let you type in extremely long l ines, if
you wish. However, with wrapmargin set to something other that 0 (wrapmar
gin=65 is nice), elvis will automatically cause long lines to be " wrapped" on a
word break for lines longer than wrapmargin's selling.

wrapscan
Nonnally, when you search for something, elvis will find it no matter where it is
in the file. elvis starts at the cursor position, and searches forward. If elvis hits
EOF without finding what you're looking for, then it wraps around to continue
searching from line I .

If you turn off the wrapscan option (:se nows), then when elvis hits EOF during
a search, it will stop and say so.

9.6.6. Cflags

Elvis uses many preprocessor symbols to control compilation. Most of these
flags allow you to disable small sets of features. MINIX-ST users will probably want
all features enabled, but MINIX-PC users will have to disable one or two feature sets
because otherwise elvis would be too large to compile and run.

These symbols can be defined via flags passed to the compiler. The best way to do
this is to edit the Makefile, and append the flag to the "CFLAGS=" line. After you
do that, you must recompile elvis completely by saying

make clean
make

-DM_SYSV
This flag causes elvis to use System-Y ioctlO calls for controlling your tenninal;
nonnally it uses v7/BSD/MINIX ioctlO calls.

SEC 9-6 EL VIS-A CLONE OF THE BERKELEY VI EDITOR 235

-DDATE
TIle symbol DA IT should be defined to look like a string constant, giving the
date ,.hen �h;s was compiled. This date is reponed by the " :version" com
rnan<i

You can also leave DATE undefined, in which case " : version" will not report
the compilation date.

-DCRL�CH
This Hag causes several large often-used macros to be replaced by equivalent
functions. This saves about 4K of space in the " .text" segment, and it does not
cost you any features.

-DDEBCG
ThIs adds many internal consistency checks and the " :debug" and " :validate"
commands. It increases the size of "text" by about 5K bytes.

-D�O_CHARA TTR
ThIs permanenently disables the "charattr" option. It reduces the size of
.. . text" by about 850 bytes.

-D�OJU:CYCLE
:-';ormally, ell';s will recycle space in the temporary file which contains totally
obsolete text. The -DNO_RECYCLE option disables this, making your
" .text" segment smaller by about I K but also permitting the temporary file to
grow very quickly. If you have less than two megabytes of free space on your
disk. then do not even consider using this flag.

-DNO.-SENTENCE
This leaves out the " (" and ") " visual commands, and removes the code that
allows the ' " [[" , " l l" , " (", and ") " commands to recognize nroff macros. The
" [[" and " J J " commands will still move to the stan of the previous/next C
function source code, though, and " (" and ") " will move to the previous/next
blank line. This saves about 650 bytes from the " .text" segment.

-DNO_CHARSEARCH
This leaves out the visual commands which locate a given character in the
current line: " f", Ut", "F", l iT", " ; " , and " , " , This saves about 900 bytes.

-DNO-.EXTENSIONS
This leaves out the " :mkexrc " command, and the " K " and "#" visual corn-

\...; mands. Other extensions are either inherent in the design of ell';s, or are too
tiny to be worth removing. This saves about 500 bytes.

236 EXTENDED MA:-It.:AL PAGES CHAP. 9

-DNO....MAGIC
This permanently disables the "magic" option. so that most meta-characters in
a regular expression are not recognized. This saves about 3K bytes from the
. . . text" segment.

9.6.7. Termcap

Ell'is can use standard term cap entries. but it also recognizes and uses several extra
capabilities. if you give them. All of these are optional.

Capability
:PU=:
:PO=:
:HM=:
:EN=:
:VB=:
:Vb=:

9.6.8. Author

Description
sequence received from the <PgUp> key
sequence received from the <PgOn> key
sequence received from the <Home> key
sequence received from the <End> key
sequence sent to start bold printing
sequence sent to end bold printing

Ell'is was written by Steve Kirkendall. He can be reached by email at:
kirkenda@cs.pdx.edu. or . . . !uunet!tektronix!psueea!eecs!kirkenda for comments
regarding elvis.

9.7. IC-INTEGER CALCULATOR

le is a simple RPN (Reverse Polish Notation) calculator. used for small calcula
tions and base conversions. All calculations are done using 32 bit integers. The
standard input is usually a keyboard and the standard output requires a device with a
"termcap" entry. The program starts by interpreting any <args> as commands.
where the separation between arguments is considered to be the same as the
ENTER key. For example.

ic 692 784+

After reading the arguments input is from the keyboard.

9.7.1. Stack Operations

The operation of this program is similar to an RPN calculator. A six level stack
is used. The ENTER key pushes the stack up one level. For example. " ' 2+5" is
entered as " 12 ENTER 5 +".

The top two entries on the stack are exchanged by the x command. and the stack

SEC. 9.7 le-INTEGER CALCULATOR 237

is rolled down one (popped) by the p key. The top of the stack may be cleared by
pressing the back-space key. The whole stack and the registers are initialized by a z.

9.7.2. Numeric Entry

The input and output bases are initially decimal. but they may be changed using
the i and 0 commands. The i command changes both bases. but the 0 command
changes just the output base. These commands take a one character argument of h.
d. 0 or b to change to Hexadecimal. Decimal. Octal or Binary. While the input base
is hexadecimal the letters a through J are used to represent the decimal values 1 0
through 1 5 .

When the input base i s decimal: multiply. divide and remainder are signed. oth
erwise they are performed unsigned.

The output base may also be changed to ASCll (a). this causes the least
significant 7 bits of a value to be displayed as a character. To input an ASCII value
the translate (I) command may be used. it accepts one character as its argument.

9.7.3. Calculations

The arithmetic operations supported are: Negate (" . "). Add (" + "). Subtract
("-"). Multiply (. . .

..
). Divide ("/"). and Remainder ("%"). The logical (Boolean)

operations available are: NOT (.. "). AND (" &"). OR (" I"). and EXCLUSIVE-OR
(""").

After one of these operations the last top of stack value is saved. It may be
restored by pressing I (L).

9.7.4. Saving Results

Ten temporary registers are available. The Store (s) command followed by a
digit (.. 0 9 . .) will copy the top of the stack to the specified register. The Recall
(r) command pushes the contents of a register onto the top of the stack.

If the Store command is followed by a "+" preceding the digit. then the top of
the stack will be added to the specified "accumulator" register.

Values may also be written to a file. The w command writes the top of the stack.
using the current output base. to a file called "pad" in the current directory. If the
user does not have write access to the current directory then the file
Itmplpad,JUSER is used as the scratch pad. The scratch pad file is erased on the
first use of the w command within each new invocation of .. ic".

238 EXTENDED MANUAL PAGES CHAP. 9

9.7.5. Miscellaneous

The Quit (q) key causes an immediate exit. The m command temporarily leaves
ie by invoking the shell as a sub-process. For help while using ie, hit the h key. If
an erroneous key is pressed the bell will sound.

9.7.6. Command Summary

Note that many commands have an alternative key-code available on the
extended AT keyboard. This aids entry by including most commands on the right
side of the keyboard.

ENTER
BS (DEL)
h

I (PGDN)
m
0

p (DOWN)
q (END)
r (LEFT)
s (RIGHT)
t
w (PGUP)
x (UP)
z (HOME)

+ (+)
- (-)
•

/
% (sh/5)
(tilde)
&
I

9.7.7. Author

Enter (push up)
Clear top of stack
Help
Input base (h, d, 0, b)
Last top of stack
MINIX shell
Output base (h, d, 0, b, a)
Pop stack (roll down)
Quit
Recall (0-9)
Store [+1 (0-9)
Translate (char)
Write top of stack to scratch pad
Exchange top of stack
Zero all state
Change sign
Add
Subtract
Multiply
Divide
Remainder
Not
And
Or
Exclusive-or

le was written by Terrence W. Holm.

SEC. 9.8 INDENT -INDENT AND FORMAT e PROGRAMS 239

9.8. INDENT-INDENT AND FORMAT C PROGRAMS

Indent reads a C program in, rearranges the layout, and outputs a new C pro
gram that will compile to the same executable binary as the original one. The
difference between the input and output is that the output is in a standard layout
determined by a large number of options. For most of the options there are two
choices, one that enables it and one that disables it.

If indent is called with no file files, it operates as a filter. If called with one file
name, that file is reformatted and the result replaces the original file. A backup is
created, however, with the suffix .BAK. If it is called with two file names, the first
one is the input file and the second one is the output file. Only one file can be re for
matted at a time (e.g., one cannot call indent with *.c as argument; this is an error
and will not work.).

9.8.1. Options

Many options are available. If you want to format a program to the "official"
MINIX format, use pretty, which calls indent with the proper options and then post
processes the output. The options listed below control the formatting style.

OPTION: -bad, -nbad
If -bad is specified, a blank line is forced after every block of declarations.

Default: -nbad.

OPTION: -bap, -nbap
If -bap is specified, a blank line is forced after every procedure body. Default:

-nbap .

OPTION: -bbb, -nbbb
If -bbb is specified, a blank line is forced before every block comment.

Default: -nbbb.

OPTION: -bc, -nbe
If -be is specified, then a newline is forced after each comma in a declaration.

-nbe turns off this option. The default is -nbe.

OPTION: -bl, -br
Specifying -bl lines up compound statements l ike this:

if (. ..)
[

code

240 EXTE:-.IDED MANUAL PAGES

Specifying -br (the default) makes them look like this:

if (...) [
code

OPTION: -<n
The column in which comments on code start. The default is 33.

OPTION: -<dn

CHAP. 9

The column in which comments on declarations start. The default is for these
comments to start in the same column as those on code.

OPTION: -<db, -ncdb
Enables (disables) the placement of comment delimiters on blank lines. With

this option enabled, comments look like this:

f*
* this is a comment
*f

Rather than like this:

f* this is a comment *f

This only affects block comments, not comments to the right of code. The default is
-<db.

OPTION: -<e, -nce
Enables (disables) forcing "else"s to cuddle up to the immediately preceding

" } " . The default is -<e.

OPTION: -<in
Sets the continuation indent to be n. Continuation lines will be indented that far

from the beginning of the first line of the statement. Parenthesized expressions
have extra indentation added to indicate the nesting, unless -Jp is in effect. -<i
defaults to the same value as -i.

OPTION: -<Iin
Causes case labels to be indented n tab stops to the right of the containing

switch statement. -<liO.S causes case labels to be indented half a tab stop. The
default is -<liO. (This is the only option that takes a fractional argument.)

OPTION: -<In
Controls the placement of comments which are not to the right of code.

SEC. 9.8 INDENT-INDENT AND FORMAT C PROGRAMS 241

Specifying -d I means that such comments are placed one indentation level to the
left of code. The default -dO lines up these comments with the code. See the sec
tion on comment indentation below.

OPTION: -din
Specifies the indentation, in character positions, from a declaration keyword to

the following identifier. The default is -di 16.

OPTION: -dj, -ndj
-dj left justifies declarations. -ndj indents declarations the same as code. The

default is -ndj.

OPTION: -ei, -nei
Enables (disables) special else-if processing. If enabled, ifs following elses will

have the same indentation as the preceding if statement. The default is -ei.

OPTION: -fe l , -nfe l
Enables (disables) the formatting of comments that stan in column 1 . Often,

comments whose leading ul" is in column I have been carefully hand formatted by
the programmer. In such cases, -nfe I should be used. The default is -fe I .

OPTION: -in
The number of spaces for one indentation level. The default is 8 .

OPTION: -ip, -nip
Enables (disables) the indentation of parameter declarations from the left mar

gin. The default is -ip.

OPTION: -In
Maximum length of an output line. The default is 78.

OPTION: -lp, -nip
Lines up code surrounded by parenthesis in continuation lines. If a line has a

left paren which is not closed on that line, then continuation lines will be lined up to
star! at the character position just after the left paren.

OPTION: -npro
Causes the profile files, .illdentpro in both the current directory and the user's

home directory to be ignored.

OPTION: -pes, -npcs
If true (-pes) all procedure calls will have a space inserted between the name

and the "(" . The default i s -npcs.

242 EXTENDED MANUAL PAGES CHAP. 9

OPTION: -ps, -nps
If true (-ps) the pointer following operator "->" will be surrounded by spaces

on either side. The default is -nps.

OPTION: -psI, -npsl
If true (-psI) the names of procedures being defined are placed in column I -

their types, if any, will be left on the previous lines. The default is -psI.

OPTION: -se, -nse
Enables (disables) the placement of asterisks (*) at the left edge of all com

ments. The default is -se.

OPTION: -sob, -nsob
If -sob is specified, indent will swallow optional blank lines. You can use this

to get rid of blank lines after declarations. The default is -nsob.

OPTION: -sI

Causes indent to take its input from stdin, and put its output to stdoUl.

OPTION: -Ttypename
Adds type name to the list of type keywords. Names accumulate: -T can be

specified more than once. You need to specify all the typenames that appear in your
program that are defined by #typedefs. Nothing will be harmed if you miss a few,
but the program will not be formatted as nicely as it should. This sounds like a
painful thing to have to do, but it is really a symptom of a problem in C: typedef
causes a syntactic change in the language and indent cannot find all typedefs.

OPTION: -ITOff
Causes indent to format the program for processing by troff. It will produce a

fancy listing in much the same spirit as vgrind. If the output file is not specified, the
default is standard output, rather than formatting in place.

OPTION: -v, -nv
The -v flag turns on verbose mode; -nv turns it off. When in verbose mode,

indelll reports when it splits one line of input into two or more lines of output, and
gives some size statistics at completion. The default is -nv.

9.8.2. User Profiles

You may set up your own profile of defaults to indent by creating a file called
.indent pro in either your login directory and/or the current directory and including
whatever switches you like. Switches in .indent.pro in the current directory over
ride those in your login directory (with the exception of -T type definitions, which

SEC. 9 P.',1)D,I-INDENT AND FORMAT C PROGRAMS 243

just accumulate'. If indent is run and a profile file exists, then it is read to set up the
program'S defaults. The switches should be separated by spaces, tabs or newlines.
Sv.,tches on the command line, however, override profile switches.

9.8.3. Comments

Indent assumes that any comment with a dash or star immediately after the start
of comment (that is, "/*-" or "/*''') is a comment surrounded by a box of stars.
Each line of such a comment is left unchanged, except that its indentation may be
adjusted to account for the change in indentation of the first line of the comment.

All other comments are treated as straight text. Indent fits as many words
(separated by blanks, tabs, or newlines) on a line as possible. Blank lines break
paragraphs.

If a comment is on a line with code it is started in the comment column, which
is set by the �n command line parameter. Otherwise, the comment is started at n
indentation levels less than where code is currently being placed, where n is
specified by the -dn command l ine parameter. If the code on a line extends past the
comment column, the comment starts further to the right, and the right margin may
be automatically extended in extreme cases.

9.8.4. Preprocessor Lines

In general, indent leaves preprocessor lines alone. The only reformatting that it
will do is to straighten up trailing comments. It leaves embedded comments alone.
Conditional compilation (#ifdef...#endif) is recognized and indent attempts to
correctly compensate for the syntactic peculiarities introduced.

9.8.5. C Syntax

Indent understands a substantial amount about the syntax of C, but it has a for
giving parser. It attempts to cope with the usual sorts of incomplete and misforrned
syntax. In particular, the use of macros like:

#define forever for(;;)

is handled properly.

9.9. KERMIT-A FILE TRANSFER PROGRAM

This is a slightly lobotomized kermil. The help command, the script facility,
and the automatic dial support have been removed. The ? and ESC commands still
work, so there is still reasonable built-in help. The only V7 kermit feature that does
not work is the ability to see whether there are input characters waiting. This

244 EXTENDED MANUAL PAGES CHAP. 9

means that you will not be able to ask for status during a file transfer (though this is
not critical, because kermit prints a dot every so often and other special characters
whenever there is an error or timeout).

To use kermit on an IBM PC, you must first set the line speed (because kermit
cannot do this) although it cannot hurt to set it on the 68000 as well. To set it to
2400 baud, for example, type:

stty 2400 <ldevlttyl

Now start kermit, and then type

set line Idev/ttyl
set speed 2400
connect

(It is more convenient if you put these commands in .kermrc in your home direc
tory, so that they get done automatically whenever you run kermit.) This will con
nect you to the modem or whatever on the serial port. Now log into the other sys
tem.

When you want to transfer files, run kermit on the other system. To it, type

server

This puts its kermit into a sort of "slave mode" where it expects commands from
the kermit running on your MINIX system. Now come back to the command level
on MINIX kermit, by typing the escape character followed by c. (Kermit will tell
you the current escape character when you do the connect command.) At this point
you can issue various commands. Your kermit will coordinate things with kermit on
the other machine so that you only have to type commands at one end. Common
commands are

getfilename
putfilename
remote dir

Filenames can include wildcards. By default, kermit works in a system
independent, text mode. (In effect it assumes that the whole world is MS-DOS and
converts end of line and file names accordingly.) To send binary files, you will
want to type

set file type bin

on both ends before starting any transfers. This disables CR LF to new line conver
sion. If both of your systems are some flavor of UNIX, you might as well put this in
.kermrc on both ends and run in binary mode all the time. Also, if both systems are
UNIX it is recommended that you use

set file name lit

SEC. 9.9 KERMIT-A FILE TRANSFER PROGRAM 24S

on both ends. This causes it to keep file names unchanged, rather than mapping to
legal MS-DOS names.

Here is a typical .kermrc for use on MINIX:

set line Idev/tly1
set speed 1 200
set esc 29
set file type bin
set file name lit
set retry 90
set prompt MINIX kermit>
connect
On the other end of the line, for example, the host at your local computer center

to which you want to transfer files, a typical profile might be:

set rec packet 1 000
set fil name lit
set fil type bin
server

On the IBM PC, It is not possible to recompile kermit on MINIX because it is so
large that the assembler runs out of memory. However, you may be able to recom
pile it on MS-DOS using one of the C compilers there. You will have to convert the
binary to MINIX format, however.

Kermit has many other options and features. For a pleasant and highly readable
description of it, see the following book:

Title: Kermit: A File Transfer Protocol
Author: Frank da Cruz
Publisher: Digital Press
Date: 1 987
ISBN: 0-932376-88

For information about recent kermit developments, versions for other systems,
and so forth, please contact:

Christine M. Gianone
Manager, Kermit Development and Distribution
University Center for Computing Activities
Columbia University
6 I 2 West I 1 5th Street
New York, N.Y. 1 0025

Over 400 versions of kermit are available, so it is l ikely there is one for any com
puter your MINIX system might want to talk to. Columbia University also publishes
a newsletter about kermit that can be requested from the above address.

246 EXTENDED MANUAL PAGES CHAP. 9

9.10. M4--MACRO PROCESSOR

M4 is a macro processor intended as a front end for Ratfor. Pascal. and other
languages that do not have a built·in macro processing capability. M4 reads stan
dard input. the processed text is written on the standard output.

The options and their effects are as follows:

-D name[=vall
-U name

Defines name to val. or to null in val's absence.
Undefines name.

Macro calls have the form: name(arg l .arg2 • argn)

The " (" must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (it is taken to be a call of that macro with no arguments.
i.e. nameO. Potential macro names consist of alphabetic letters and digits.

Leading unquoted blanks. tabs and newlines are ignored while collecting argu
ments. Left and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized. its arguments are collected by searching for
a matching). If fewer arguments are supplied than are in the macro definition. the
trailing arguments are taken to be null. Macro evaluation proceeds normally during
the collection of the arguments. and any commas or right parentheses which happen
to turn up within the value of a nested call are as effective as those in the original
input text. (This is typically referred as inside-out macro expansion.) After argu
ment collection. the value of the macro is pushed back onto the input stream and
rescanned.

M4 makes available the following built-in macros. They may be redefined. but
once this is done the original meaning is lost. Their values are null unless otherwise
stated.

define " (name [, valD" the second argument is installed as the value of the
macro whose name is the first argument. If there is no second argument. the value
is null. Each occurrence of $ n in the replacement text. where n is a digit. is
replaced by the n -th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

defn "(name [, name ... D" returns the quoted definition of its argument(s).
Useful in renaming macros.

undefine "(name [, name ... D" removes the definition of the macro(s) named.
If there is more than one definition for the named macro. (due to previous use of
pushdef) all definitions are removed.

pushdef "(name [, val])" like define. but saves any previous definition by
stacking the current definition.

popdef " (name [, name ... D" removes current definition of its argument(s),
exposing the previous one if any.

SEC. 9.10 M4-MACRO PROCESSOR 247

ifdef "(name, if-def [, ifnot-defJ)" if the first argument is defined, the value is
the second argument, otherwise the third. If there is no third argument, the value is
null. A word indicating the current operating system is predefined. (e.g. unix or
vms).

shift "(arg, arg, arg, . . .)" retums all but its first argument. The other argu
ments are quoted and pushed back with commas in between. The quoting nullifies
the effect of the extra scan that will subsequently be performed.

changequote "(lqchar, rqchar)" change quote symbols to the first and second
arguments. With no arguments, the quotes are reset back to the default characters.
(i.e., ") .

changeeom " (lcchar, rcchar)" change left and right comment markers from
the default # and newline. With no arguments, the comment mechanism is reset
back to the default characters. With one argument. the left marker becomes the
argument and the right marker becomes new line. With two arguments, both mark
ers are affected.

divert "(divnum)" maintains 1 0 output streams, numbered 0-9. Initially
stream 0 is the current stream. The divert macro changes the current output stream
to its (digit-string) argument. Output diverted to a stream other than 0 through 9 is
lost.

undivert "([divnum [, divnum ...]))" causes immediate output of text from
diversions named as argument(s), or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the diverted text. At the
end of input processing, M4 forces an automatic undivert unless is defined.

divnum "0" returns the value of the current output stream.
dnl "0" reads and discards characters up to and including the next newline.
ifelse "(arg, arg, if-same [, ifnot-same I arg, arg ... D" has three or more argu-

ments. If the first argument is the same string as the second, then the value is the
third argument. If not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth
string, or, if it is not present, null.

incr "(num)" returns the value of its argument incremented by 1 . The value of
the argument is calculated by interpreting an initial digit-string as a decimal
number.

deer "(num)" returns the value of its argument decremented by 1 .
eval "(expression)" evaluates its argument as a constant expression, using

integer arithmetic. The evaluation mechanism is very similar to that of cpp (#if
expression). The expression can involve only integer constants and character con
stants, possibly connected by the binary operators

* / % + » « < > <= >= == ! = & && I1

or the unary operators - ! or tilde or by the ternary operator ? : . Parentheses may be
used for grouping. Octal numbers may be specified as in C.

len "(string)" returns the number of characters in its argument.

248 EXTENDED MANUAL PAGES CHAP. 9

index " (search-string, string)" returns the position in its first argument where
the second argument begins (zero origin), or I if the second argument does not
occur.

substr "(string, index [, length])" returns a substring of its first argument. The
second argument is a zero origin number selecting the first character (internally
treated as an expression); the third argument indicates the length of the substring.
A missing third argument is taken to be large enough to extend to the end of the first
string.

translit " (source, from [, to])" transliterates the characters in its first argu
ment from the set given by the second argument to the set given by the third. If the
third argument is shorter than the second, all extra characters in the second argu
ment are deleted from the first argument. If the third argument i s missing altogether,
all characters in the second argument are deleted from the first argument.

include " (filename)" returns the contents of the file that i s named in the argu
ment.

sinclude "(filename)" is identical to include, except that it says nothing if the
file is inaccessable.

paste "(filename)" returns the contents of the file named in the argument
without any processing, unlike include.

spaste " (filename)" is identical to paste, except that it says nothing if the file is
inaccessibl[De.

syscmd " (command)" executes the UNIX command given in the first argument.
No value is returned.

sysval " 0" is the return code from the last call to syscmd .
. PP maketemp "(string)" fills in a string of XXXXXX in its argument with the

current process ID.
m4exit " ([exitcode])" causes immediate exit from M4. Argument I , if given,

is the exit code; the default is O.
m4wrap " (m4-macro-or-built-n)" argument I will be pushed back at final

EOF; example: m4wrap('dumprableO') .
err print " (str [, str, str, •.•])" prints its argument(s) on stderr. If there is more

than one argument, each argument is separated by a space during the output. An
arbitrary number of arguments may be supplied.

dumpdef " ([name, name, •..])" prints current names and definitions, for the
named items, or for all if no arguments are given.

9.10.1. Author

M4 was written by Ozan S. Yigif.

SEC. 9. 1 1 MDB-MINIX DEBUGGER [68000] 249

9.11 . MDB-MINIX DEBUGGER [68000]

Mdb provides a means of debugging MINIX programs on the 68000. No mM
debugger is available at present. Mdb supports symbolic debugging. The argument
to mdb is a MINIX executable file. This file defaults to a.out.

Once started, mdb will display an asterisk (*) as command prompt. A command
may be entered in the fOllowing form:

[<expression>][<command> [<argumenI>U"

<expression> is a symbolic expression representing a location in memory or a regis
ter, and should be in the form:

[<value> [+1- <value>U

A <value> may be a symbol, a register, or a constant. The symbol may be any
external symbol found in the executable file, or start if the executable file is
stripped. --start represents the beginning address of the program. A register is
specified by a "$" followed by the register' S name, while a constant may be either
an octal, decimal or hex unsigned long integer expressed using standard C notation
(no "L" suffix should be used). A character constant is represented by a single
quote followed by the character.

Not all commands use an address, but those that do have a default value of the
current program counter with the exception of the continue command: "c" and
"C". Not all commands use an argument list, but those that do default to an empty
list. If the argument contains a semi-colon ("; "), then except for the breakpoint
command ("b") the string following the semi-colon is assumed to be a new com
mand.

Following is the list of valid commands. When mdb is first started, no process is
active. Most of the following commands require an active process which may be
created using the run ("r") command.

If the exclamation point begins the command line, then the MINI X program that
follows it is executed. The default command is /bin/sh. Note: full path names
are required.

Example: • !vi mdb.c

If the expression preceding the exclamation point is a valid data address, then
the arguments specify how to modify its contents. The argument is to be in the
form:

[<constanl>] [<size>] [<expression>]

and are interpreted as: "fill the data space starting at the specified address with

250 EXTENDED MANUAL PAGES CHAP. 9

T

t

/

x

x

<constant> values given by <expression> and are of size byte (b), half word (h,
i.e. short), or long word (I)." The default value of constant is I , of size is "h",
and of expression is O.

Example: • -.bul ! 20b 'a'

This command prints the current active function in the program with its argu
ments.

Example: ' T

This command prints the current function invocation hierarchy with their argu
ments.

Example: ' I

This command prints the values starting at the address specified.
The argument is to be in the form:

[<constant>][<size>][dormal>]

format may have the values:

a - Displays chars until a zero is found
c - Displays <constant> values as characters.
d - Displays <constant> values as signed decimal numbers.
I - Disassembles <constant> instructions « size> ignored).

- Disassembles <constant> instructions « size> ignored).
o - Displays <constant> vlaues as octal numbers.
s - Displays string at the location specified
u - Displays <constant> vlaues as unsigned decimal numbers.
x - Displays <constant> vlaues as hexadecimal numbers.

Example: • $a6-2/hx

This command prints the registers and the instructions starting at the specified
address. An optional constant argument limits the number of instructions printed
to the value given by the final argument.

Example: ' x

This command prints the instructions starting al the specified address. An

SEC. 9. 1 1 MDB-MINIX DEBUGGER l680001 251

R

r

c

c

I

optional constant argument limits the number of instructions printed to the value
given by the final argument.

Example: • _start X 1 0

This command starts a process using the execulable given as mdb's first argu
ment. The process will have no arguments and will be stopped prior to execut
ing any instructions.

Example: • R

This command starts a process using the executable given as mdb's first argu
ment. The process will be given the arguments on the command line up to the
first semi-colon. If no arguments are specified, then the arguments supplied
with the last "r" command are used. The processes' standard input and output
may be redirected. The process will be stopped prior to executing any instruc
tions.

Example: • r 3 <input >output

This command results in the stopped process being restarted with a pending sig
nal specified by the constant argument. A breakpoint is placed at the address
specified if one is not already there, and if placed it is deleted when the process
stops for any reason. No default address is assumed.

Example: • C 2

This command results in the stopped process being restarted with all pending
signals canceled. A breakpoint is placed at the address specified if one is not
already Ihere, and if placed it is deleted when the process stops for any reason.
No default address is assumed.

Example: • _func+4 c

This command results in the stopped process executing instructions in single
step mode. The number of instructions executed is given in the constant argu
ment. The signal that Slopped the process will be sent when execution begins.

Example: • I 1 0

This command results i n the stopped process executing instructions i n single

252 EXTENDED MANUAL PAGES CHAP. 9

M

m

k

B

b

d

step mode. The number of instructions executed is given in the constant argu
ment. All pending signals are canceled before execution begins.

Example: • i 1 0

This command results in the stopped process resuming execution until the long
word at the location specified by the address is modified or until the number of
instructions specified in the optional constant argument are executed. The
default number is 65,536. Each executed instruction is displayed prior to execu
tion.

Example: • _var M 100

This command results in the stopped process resuming execution until the long
word at the location specified by the address is modified or until the number of
instructions specified in the obtional constant argument are executed. The
default number is 65,536.

Example: • _var m

This command results in the current active process being terminated.

Example: • k

This command results in all the currently active breakpoints being listed.

Example: ' B

This command results in a breakpoint being placed at the location specified by
the address in program space. The string that follows the command contains the
command(s) that are executed when the breakpoint is hit. It is recommended
that breakpoints be placed at an offset of 4 bytes from the function entry point to
permit a valid frame to be set up for back-tracing.

Example: • _func+4 b t�var/lx

This command results in the breakpoint at the address specified being deleted.

Example: • _func+4 d

SEC. 9. 1 1 MDB-MINIX DEBUGGER [680001 253

D

q

This command results in all breakpoints being deleted.

Example: ' D

This command results in the currently active process being terminated and mdb
exiting.

Example: ' q

9.11 .1 . Author

Mdb was written by Bruce D. Szablak

9.12. MINED-A SIMPLE SCREEN EDITOR

Mined is a simple screen editor. At any instant. a window of 24 lines is visible
on the screen. The current position in the file is shown by the cursor. Ordinary
characters typed in are inserted at the cursor. Control characters and keys on the
numeric keypad (at the right-hand side of the keyboard) are used to move the cursor
and perform other functions.

Commands exist to move forward and backward a word, and delete words either
in front of the cursor or behind it. A word in this context is a sequence of charac
ters delimited on both ends by white space (space, tab. line feed, start of file. or end
of file). The commands for deleting characters and words also work on line feeds,
making it possible to join two consecutive lines by deleting the line feed between
them.

The editor maintains one save buffer (not displayed). Commands are present to
move text from the file to the buffer. from the buffer to the file. and to write the
buffer onto a new file. If the edited text cannot be written out due to a full disk, it
may still be possible to copy the whole text to the save buffer and then write it to a
different file on a different disk with CTRL-Q. It may also be possible to escape
from the editor with CTRL-S and remove some files.

Some of the commands prompt for arguments (file names. search patterns, etc.).
All commands that might result in loss of the file being edited prompt to ask for
confirmation.

A key (command or ordinary character) can be repeated n times by typing ESC
n key where ESC is the "escape" key.

Forward and backward searching requires a regular expression as the search

254 EXTENDED MANUAL PAGES CHAP. 9

pattern. Regular expressions follow the same rules as in the UNIX editor, ed. These
rules can be stated as:

I . Any displayable character matches itself.

2. . (period) matches any character except line feed.

3 . ' (circumflex) matches the start of the line.

4. $ (dollar sign) matches the end of the line.

5. \c matches the character c (including period, circumflex, etc).

6. [SIring) matches any of the characters in the string.

7. ['string) matches any of the characters except those in the string.

8. [x-y) matches any characters between x and y (e.g., [a-z».

9. Pattern* matches any number of occurrences of pal/ern.

Some examples of regular expressions are:

The boy
'$
'.$
'A.*\.$
' [A-Z)*$
[A-Z0-9)
.*X
A.*B

matches the string "The boy"
matches any empty line.
matches any line containing exactly I character
matches any line starting with an A, ending with a period.
matches any line containing only capital letters (or empty).
matches any line containing either a capital letter or a digit.
matches any line ending in "X"
matches any line containing an "A" and then a "B"

Control characters cannot be entered into a file simply by typing them because
all of them are editor commands. To enter a control character, depress the ALT
key, and then while holding it down, hit the ESC key. Release both AL T and ESC
and type the control character. Control characters are displayed in reverse video.

The mined commands are as follows.

CURSOR MOTION
arrows

CTRL-A
CTRL·Z
CTRL·'
CTRL·_
CTRL·F
CTRL.B

Move the cursor in the indicated direction
Move cursor to start of current line
Move cursor to end of current line
Move cursor lO top of screen
Move cursor to end of screen
Move cursor forward to start of next word
Move cursor backward to stan of previous word

SEC. 9. 12 MINED-A SIMPLE SCREEN EDITOR

SCREEN MOTION
Home key
End key
PgUp key
PgDn key
CTRL-U
CTRL-D

Move to first character of the file
Move to last character of the file
Scroll window up 23 lines (closer to start of the file)
Scroll window down 23 lines (closer to end of the file)
Scroll window up I line
Scroll window down I line

MODIFYING TEXT
Del key
Backspace
CTRL-N
CTRL-P
CTRL-T
CTRL-O
CTRL-G

Delete the character under the cursor
Delete the character to left of the cursor
Delete the next word
Delete the previous word
Delete tail of line (all characters from cursor to end of line)
Open up the line (insert line feed and back up)
Get and insert a file at the cursor position

BUFFER OPERATIONS

255

CTRL-@ Set mark at current position for use with CTRL-C and CTRL-K
CTRL-C Copy the text between the mark and the cursor into the buffer
CTRL-K Delete text between mark and cursor; also copy it to the buffer
CTRL-Y Yank contents of the buffer out and insert it at the cursor
CTRL-Q Write the contents of the buffer onto a file

MISCELLANEOUS
numeric +
numeric -
numeric 5
CTRL-J
CTRL-R
CTRL-L
CTRL-W
CTRL-X
CTRL-S
CTRL-\
CTRL-E
CTRL-V

Search forward (prompts for regular expression)
Search backward (prompts for regular expression)
Display the file status
Go to specific line
Global replace pal/ern with sIring (from cursor to end)
Line replace pal/ern with sIring
Write the edited file back to the disk
Exit the editor
Fork off a shell (use CTRL-D to get back to the editor)
Abort whatever the editor was doing and wait for command
Erase screen and redraw it
Visit (edit) a new file

The key bindings on the Atari ST are different. The table below summarizes the
mined commands with the corresponding ST keys, and the PC keys if they differ.

256 EXTENDED MANUAL PAGES CHAP. 9

CURSOR MOTION ST key PC key

up,down,left,right arrows
start of line CTRL·A
end of line CTRL·Z
top of screen CTRL·A
end of screen CTRL·_
next word CTRL·F

previous word CTRL·B

SCREEN MOTION ST key PC key
first char of file Home
last char of file F6 End
scroll window up F4 PgUp
scroll window down F3 PgDn
scroll I ine up CTRL·U
scroll I ine down CTRL·D

MODIFYING TEXT ST key PC key
delete this char Delete
delete previous char Backspace
delete next word CTRL·N
delete previous word CTRL·p
delete tail of line CTRL·T
open up line CTRL·O
get file at cursor CTRL·G

MISCELLANEOUS ST key PC key
search forward F I numeric +
search backward F2 numeric -
file status F5 numeric 5
repeat Esc
goto line CTRL·]
global replace CTRL·R
line replace CTRL·L
write file CTRL·W
exit CTRL·X
fork shell CTRL·S
abort CTRL·\
redraw CTRL·E
new file CTRL·V
escape next char F8 ALT·ESC

SEC. 9. 1 2 MINED--A SIMPLE SCREEN EDITOR

BUFFER OPERATIONS
sel mark
copy to buffer
delete to buffer
insert buffer
write buffer to file

9_12.1. Author

ST key
f7
CTRL-C
CTRL-K
CTRL-Y
CTRL-O

PC key
CTRL-@

Mined was designed by Andy Tanenbaum and written by Michiel Huisjes.

9.13. NROFF-A TEXT PROCESSOR

257

Nroff is a text processor and formatter based on the design provided in Software
Tools by Kemighan and Plauger. It has been modified to resemble the UNIX nroff
command. The text and commands found in the file(s) are processed to generate
formatted text. Note that one (and only one) of the files can be - which reads input
from stdin at that point. The output always goes to stdout which can be redirected
by the shell. The -0 option lets you redirect error output to the specified file rather
than stderr.

The following command line options are available:

-m name
-ofile
-pon
-pnn
-v
+n
-n

Process macro file tmac.name.
Set error log file (default is slderr).
Shift output right n spaces (like .po).
Initial page number (like .pn).
Prints the version information to stdout.
Causes output to start with page n.
Causes output to stop after page 11.

Input from stdin.

Nroff recognizes the following environment variables from the shell. TMAC
DIR is alternate directory to find the files tmac '* (H . " for example). The default is
lusrllibltmac. TMPDIR is an alternate directory to place any temporary files. The
default is the current directory.

9.13.1. Commands

Commands typically are distinguished by a period in column one of the input
followed by a two character abbreviation for the command function. The abbrevia
tion may then be followed by an optional numeric or character argument. The
numeric argument may be an absolute value such as setting the right margin to a

258 EXTENDED MANUAL PAGES CHAP. 9

particular column, or the argument may be preceded by a plus sign or a minus sign
to indicate that the parameter should be modified relative to a previous setting. The
following commands are recognized (those marked "extension" are requests that
may be added some day in the distant future) .

. ad

.af

. bd

Begin line adjustment. If fill mode is not on, adjustment is deferred until it is
back on. If a type indicator is present. the adjustment type is changed as fol
lows:

Indicator
I
r
C

b or n
absent

Type
adjust left margin only
adjust right margin only
center
adjust both margins (default)
unchanged

Assign format to number register. The available formats are:

Formal
I
001

a
A

Numbering Sequence
0, I ,2.3.4 • . . .

000,001 .002, . . .
O,i,ii,iii,iv,v, . . .

O.I.ll,m,IV,V, .. .

O.a,b z,aa,ab zz,aaa
O,A.B, .. . ,Z,AA,AB • . . .zZ,AAA, . . .

The second format above indicates that the field width, i .e. number of digits, is
specified by the number of digits in the format type .

Ignored by nroff.

.bo (extension)
Causes the following lines of text to appear in boldface. The optional argument
specifies the number of lines to be typed in boldface. Boldface and underlining
are mutually exclusive features. The appearance of a boldface command will
cause any underlining to cease .

. bp (extension)
Causes succeeding text to appear at the top of a new page. The optional argu
ment specifies the page number for the new page. The initial value is one and
the default value is one more than the previous page number.

SEC. 9. 13 NROFF-A TEXT PROCESSOR 259

.br
Causes succeeding text to start on a new line at the current left margin. There is
no numeric argument for this command .

. bs (extension)

. cc

. ce

. cs

.cu

. c2

. de

Enables or disables the appearance of backspaces in the output text. Underlin
ing and boldface options are implemented by inserting character-backspace
character combinations into the output buffer. This is fine for devices which
properly recognize the backspace character. Some printers. however. do not
recognize backspaces. so the option is provided to overprint one line buffer with
another. The first line buffer is terminated with just a carriage return rather than
the carriage retum-linefeed combination. A zero argument or no argument to
the backspace command removes backspaces from the output. A non-zero argu
ment leaves them in the output. The default is to remove backspaces .

Changes the nroff command character to that specified by the character argu
ment. If no argument is provided, the default is a period (.) .

Causes the next line of text to appear centered on the output. The optional argu
ment specifies if more than one line is to be centered .

Ignored by nroff.

Causes the next line(s) of text to be continuously underlined. Unlike the under
line command (see .ul) which underlines only alphanumerics, continuous under
lining underlines all printable characters. The optional argument specifies the
number of lines of text to underlined. Any normal underlining or boldface com
mands currently in effect will be terminated .

Changes the nroff no break character to that specified by the character argument.
If no argument is provided, the default is a single quote .

Causes all text and commands following to be used to define a macro. The
definition is terminated by a .en command or the default .. terminator. The first
two characters of the argument following the .de command become the name of
the new command. It should be noted that upper and lower case arguments are
considered different. Thus, the commands .PP and .pp could define two

260 EXTENDED MANUAL PAGES CHAP. 9

. ds

. ec

different macros. Care should be exercised since existing commands may be
redefined.

A macro may contain up to ten arguments. In the macro definition, the place
ment of arguments is designated by the two character sequences, $ 1 , $2, . . . $9.
When the macro is invoked, each argument of the macro command line is sub
stituted for its corresponding designator in the expansion. The first argument of
the macro command is substituted for the $ 1 in the expansion, the second argu
ment for the $2, and so forth. Arguments are typically strings which do not con
tain blanks or tabs. If an argument is to contain blanks, then it should be sur
rounded by either single or double quotes .

Define a string. To initiate the string with a blank or include blanks in the string,
start it with a single or double quite. The string can contain other defined strings
or number registers as well as normal text. Strings are stored on the macro name
space .

Changes the Ilroff escape character to that specified by the character argument.
If no argument is provided, the default is a backslash .

. ef (extension)
Specifies the text for the fooler on even numbered pages. The format is the
Same as for the footer command (see Jo) .

. eh (extension)
Specifies the text for the header on even numbered pages. The format is the
same as for the fOOler command (see .fo) .

. en (extension)

. eo

. fi

• 11

Designates the end of a macro definition .

Turn the escape mechanism off .

Causes the input text to be rearranged or filled to obtain the maximum word
count possible between the previously set left and right margins. No argument
is expected .

Causes the output buffer to be flushed immediately.

SEC. 9.1 3 l'.'ROFF-A TEXT PROCESSOR 261

.fo (extension)

. ft

Specifies text to be used for a footer. The footer text contains three strings
separated by a delimiter character. The first non-blank character following the
command is designated as the delimiter. The first lext string is left justified to
the current indentation value (specified by .in). The second string is centered
between the current indentation value and the current right margin value
(specified by .rm). The third string is right justified to the current right margin
value. The absence of footer text will result in the footer being printed as one
blank line. The presence of the page number character (set by .pe) in the footer
text results in the current page number being inserted at that position. Multiple
occurrences of the page number character are allowed .

Changes the current font. The choices are R (Times Roman), I (Times Italic), B
(Times Bold), S (math special), and P used to request the previous font. P resets
the next previous font to be the one just changed, amounting to a swap .

• he (extension)

. in

Specifies text to be used for a header. The format is the same as for the footer
(see .fo) .

Indents the left margin to the column value specified by the argument. The
default left margin is set to zero .

• ju (extension)

. Il

.Is

• It

Causes blanks to be inserted between words in a line of output in order to align
or justify the right margin. The default is 10 justify .

Sets the current line length. The default is eighty .

Sets the line spacing to the value specified by the argument. The default is for
single spacing .

Set length of three-part titles. Line length and title length are independent.
Indents do not apply to titles but page offsets do .

. m l (extension)
Specifies the number of lines in the header margin. This is the space from the
physical top of page to and including the header text. A value of zero causes the

262 EXTENDED MANUAL PAGES CHAP. 9

header to not be printed. A value of one causes the header to appear at the phy
sical top of page. Larger argument values cause the appropriate number of
blank lines to appear before the header is printed .

. m2 (extension)
Specifies the number of blank lines to be printed between the header line and the
first line of the processed text.

.m3 (extension)
Specifies the number of blank lines to be printed between the last line of pro
cessed text and the footer line .

. m4 (extension)

.na

. ne

. nf

Specifies the number of lines in the footer margin. This command affects the
footer the same way the .m I command affects the header.

Noadjust. Adjustment is turned off; the right margin is ragged. The adjustment
type for .ad is not changed. Output line filling still occurs if fill mode is on .

Specifies a number of lines which should not be broken across a page boundary.
If the number of lines remaining on a page is less than the value needed, then a
new output page is started .

Specifies that succeeding text should be printed without rearrangement, or with
no fill. No argument is expected .

. nj (extension)

• nr

Specifies that no attempt should be made to align or justify the right margin. No
argument is expected .

Causes the value of a number register to be set or modified. A total of twenty
six number registers are available designated \na through \nz (either upper or
lower case is allowed). When the sequence \nc is imbedded in the text, the
current value of number register c replaces the sequence, thus, such things as
paragraph numbering can be accomplished with relative ease .

. of (extension)
Specifies the text for the footer on odd numbered pages. The format is the same
as the fOOler command (see .fo).

SEC. 9 . 13 NROFF-A TEXT PROCESSOR 263

.oh (extension)

. pe

. pl

Specifies the text for the header on odd numbered pages. The format is the
same as the footer command (see .fo) .

Specifies the page number character to be used in headers and footers. The
occurrence of this character in the header or footer text results in the current
page number being printed. The default for this character is the percent sign
(0/0) .

Specifies the page length or the number of lines per output page. The default is
sixty-six .

. pm

. pn

. po

. ps

. rr

.so

. sp

Print macros. The names and sizes of the macros are printed to stdout. This is
useful when building a macro package to see how much of the total namespace
is consumed by the package .

Changes the page number of the current page and all subsequent pages to its
argument. If no argument is given, the command is ignored .

Specifies a page offset value. This allows the formatted text to be shifted to the
right by the number of spaces specified. This fealure may also be invoked by a
switch on the command line .

Ignored by nroff .

Removes a number register.

Causes input to be retrieved from the file specified by the command's character
string argument. The contents of the new file are inserted into the output stream
until an EOF is detected. Processing of the original file is then resumed. Com
mand nesting is allowed .

Specifies a number of blank lines to be output before printing the next line of
text.

264 EXTENDED MANUAL PAGES CHAP. 9

.ti

• 11

. ul

Temporarily alters the indentation or left margin value for a single succeeding
input line .

Specifies text to be used for a page title. The format is the same as for the
header (see .he) .

Causes the next line(s) of text to be underlined. Unlike the .cu command, this
command causes only alphanumerics to be underlined, skipping punctuation and
white space. Underline and boldface are mutually exclusive.

The following nroff commands, normally available, are currently not imple
mented in this version:

Jp . . mkt .rt, . VS, . SV, .OS, .ns, .rs, .am, .as, .nn, .rn, .di, .da, .wh, .ch, .dt, .it, .em, .ta,
.tc, .lc, .fc, .lg, .uf, .tr, .nh, .hy, .hc, .hw, .nm, .nn, .if, .ie, .el, .ev, .rd, .ex, .nx, .pi,
.mc, .!rn, and .ig.

9.13.2. Escape Sequences

Escape sequences are used to access special characters (such as Greek letters)
which may be outside the normal printable ASCII character set. The are also used
to toggle certain actions such as font selection. The escape sequences include:

\ backslash character
\e printable version of escape character
\' acute accent (equivalent to \(aa)
\' grave accent (equivalent to \(ga)
\- mmus sIgn
\. period
\<sp> a single, unpaddable space
\() digit-width space
1& non-printing zero-width character
\" beginning of comment
\% default hyphenation character
\(xx special character named xx
*x insert string named x
\"(xx insert string named xx
\fc font change (c = R,l,B,S,P)
\ox interpolate number register x
\l horizontal tab

SEC. 9. 1 3 NROFF-A TEXT PROCESSOR 265

9.13.3. Predefined General Number Registers

The following number registers are available for both reading and writing.
They are accessed with the \n(xx and \nx escape and can be set with .nr:

% current page number
dw current day of the week (1 -7)
dy current day of the month (1 - 3 1)
h h current hours (0-23)
In current line number
mm current minutes (0-59)
mo current month (1 -1 2)
ss current seconds (0-59)
yr last 2 digits of current year

The following number registers are available for reading only:

.$ number of args available in current macro

.A always I in nroff

.H available horizontal resolution

.T always 0 in nroff

.V available vertical resolution

.c number of lines read from current file

.f current font (1 -4)

.1 current indent

.1 current line length

.0 current page offset

.p current page length

.v current vertical spacing

9.13.4. Notes

There are several missing features, notably diversions, traps, and conditionals.
This means you cannot use some existing macro packages. There are no -ms and
-me packages as a result. The goal is to (eventually) make /lroff work with all the
SunOS macro packages.

9.13.5. Authors

This version of nroff was originally written in BDS C by Stephen L. Browning.
It was adapted for standard C by W. N. Paul. Bill Rosenkranz modified it heavily
and ported it to MINIX.

266 EXTENDED MANUAL PAGES CHAP. 9

9.14. PATCH-A PROGRAM FOR APPLYING DIFF LISTINGS

The MINIX user community on USENET frequently makes improvements to the
MINIX software. The changes are distributed in the form of differences between the
original file and the new one, made with cdiff. To update the original version
(which you must have), use patch. If the original file is called prog.c and the patch
is called prog.cdifthen you should type:

patch prog.c prog.cdif

In some cases, a large number of files in a single directory will be updated at once.
In this case, the difference file may be the concatenation of many individual differ
ence files. The resulting file usually has a name like dir.cdif. To apply all the
patches, type:

patch <dir.cdif

Patch will take a patch file containing any of the three forms of difference l ist
ing produced by the diff program and apply those differences to an original file,
producing a patched version. By default, the patched version is put in place of the
original, with the original file backed up to the same name with a tilde appended, or
as specified by the -b flag. You may also specify where you want the output to go
with a -0 flag. If patchfile is omitted, or is a hyphen, the patch will be read from
standard input.

Upon start up, patch will anempt to determine the type of the diff listing, unless
over-ruled by a -<, --i!, or -n flag. Context diffs and normal diffs are applied by the
patch program itself, while ed diffs are simply fed to the ed editor via a pipe.

Patch will try to skip any leading garbage, apply the diff, and then skip any trail
ing garbage. Thus you could feed an article or message containing a diff listing to
patch and it should work. If the entire diff is indented by a consistent amount, this
will be taken into account.

With context diffs, and to a lesser extent with normal diffs, patch can detect
when the l ine numbers mentioned in the patch are incorrect, and will attempt to find
the correct place to apply each hunk of the patch. As a first guess, it takes the line
number mentioned for the hunk, plus or minus any offset used in applying the previ
ous hunk. If that is not the correct place, patch will scan both forwards and back
wards for a set of lines matching the context given in the hunk. First patch looks
for a place where all lines of the context match. If no such place is found, and it is a
context diff, and the maximum fuzz factor is set to I or more, then another scan
takes place ignoring the first and last line of context. If that fails, and the maximum
fuzz factor is set to 2 or more, the first two and last two lines of context are ignored,
and another scan is made. (The default maximum fuzz factor is 2.) If patch cannot
find a place to install that hunk of the patch, it will put the hunk out to a reject file,
which normally is the name of the output file plus "#". (Note that the rejected
hunk will come out in context diff form whether the input patch was a context diff

SEC. 9.14 PATCH-A PROGRAM FOR APPLYING DIFF LISTINGS 267

or a normal diff. If Ihe input was a normal diff, many of the contexts will simply be
null.) The line numbers on the hunks in the reject file may be different than in the
patch file: they reflect the approximate location patch thinks the failed hunks belong
in the new file rather than the old one.

As each hunk is completed, you will be told whether the hunk succeeded or
failed, and which line (in the new file) patch thought the hunk should go on. If this
is different from the line number specified in the diff you will be told the offset. A
single large offset MAY be an indication that a hunk was installed in the wrong
place. You will also be told if a fuzz factor was used to make the match, in which
case you should also be slightly suspicious.

If no original file is specified on the command line, patch will try to figure out
from the leading garbage what the name of the file to edit is. In the header of a con
text diff, the filename is found from lines beginning with " • • • " or "---" , with the
shonest name of an existing file winning. Only context diffs have lines like that,
but if there is an " Index: " line in the leading garbage, patch will try to use the
filename from that line. The context diff header takes precedence over an Index
line. If no filename can be intuited from the leading garbage, you will be asked for
the name of the file to patch.

(If the original file cannot be found, but a suitable sees or ReS file is handy,
patch will attempt to get or check out the file.)

Additionally, if the leading garbage contains a "Prereq:" line, patch will take
the first word from the prerequisites line (normally a version number) and check the
input file to see if that word can be found. If not, patch will ask for confirmation
before proceeding.

If the patch file contains more than onc patch, patch will try to apply each of
them as if they came from separate patch files. This means, among other things,
that it is assumed that the name of the file to patch musl be determined for each diff
l isting, and that the garbage before each diff listing will be examined for interesting
things such as filenames and revision level, as mentioned previously. You can give
flags (and another original file name) for the second and subsequent patches by
separating the corresponding argument lists by a "+". (The argument list for a
second or subsequent patch may not specify a new patch file, however.)

Patch recognizes the following flages:
The -b flag causes the next argument to be interpreted as the backup extension,

to be used in place of the tilde.
The -B flag causes the next argument to be interpreted as a prefix to the backup

file name. If this argument is specified any argument from -b will be ignored. This
argument is an extension to Larry Wall's patch v2.0. 1 .4, patchIevel 8, made by M.
Greim (greirn@sbsvax.uucp).

The -< flag forces patch to interpret the patch file as a context diff.
The -d flag causes patch to interpret the next argument as a directory, and cd to

'-" it before doing anything else.
The -D flag causes patch to use the "#ifdef...#endif" construct to mark changes.

268 EXTENDED MANUAL PAGES CHAP. 9

The argument following will be used as the differentiating symbol. Note that,
unlike the C compiler, there must be a space between the -D and the argument.

The -e flag forces patch to interpret the patch file as an ed script.
The -f flag forces patch to assume that the user knows exactly what he or she is

doing, and to not ask any questions. It does not suppress commentary, however.
Use -s for that.

The -Fn flag sets the maximum fuzz factor. This flag only applies to context
diffs, and causes patch to ignore up to that many lines in looking for places to install
a hunk. Note that a larger fuzz factor increases the odds of a faulty patch. The
default fuzz factor is 2, and it may not be set to more than the number of lines of
context in the context diff, ordinarily 3.

The -I flag causes the pattern matching to be done loosely, in case the tabs and
spaces have been munged in your input file. Any sequence of whitespace in the pat
tern line will match any sequence in the input file. Normal characters must still
match exactly. Each line of the context must still match a line in the input file.

The -n flag forces patch to interpret the patch file as a normal diff.
The -N flag causes patch to ignore patches that it thinks are reversed or already

applied. See also -R.
The --il flag causes the next argument to be interpreted as the output file name.
The -pn flag sets the pathname strip count, which controls how pathnames

found in the patch file are treated, in case the you keep your files in a different
directory than the person who sent out the patch. The strip count specifies how
many slashes are to be stripped from the front of the pathname. (Any intervening
directory names also go away.) As a simple example, let us suppose that the
filename in the patch file is lulhowardlsrclblurjilblurfi.c setting -p or -pO gives the
entire pathname unmodified, -pI gives ulhowardlsrclblurjilblurji.c without the
leading slash, -p4 gives blurjilblurji.c and not specifying -p at all just gives you
blurji.c. Whatever you end up with is looked for either in the current directory, or
the directory specified by the --<I flag.

The -r flag causes the next argument to be interpreted as the reject file name.
The -R flag tells patch that this patch was created with the old and new files

swapped. (That does happen occasionally, human nature being what it is.) Patch
will attempt to swap each hunk around before applying it. Rejects will come out in
the swapped format. The -R flag will not work with ed diff scripts because there is
too little information to reconstruct the reverse operation.

If the first hunk of a patch fails, patch will reverse the hunk to see if it can be
applied that way. If it can, you will be asked if you want to have the -R flag set. If
it cannot, the patch will continue to be applied normally. (Note: this method cannot
detect a reversed patch if it is a normal diff and if the first command is an append
(i.e. it should have been a delete) since appends always succeed, due to the fact that
a null context will match anywhere. Luckily, most patches add or change lines
rather than delete them, so most reversed normal diffs will begin with a delete,
which will fail, triggering the heuristic.)

SEC. 9.14 PATCH-A PROGRAM FOR APPL YlNG DIFF LISTINGS 269

The -s flag makes patch do its work silently, unless an error occurs.
The -S flag causes patch to ignore this patch from the patch file, but continue on

looking for the next patch in the file. Thus

patch -8 + -8 + <patchfile

will ignore the first and second of three patches.
The -vflag causes patch to print out its revision header and patch level.
The -xnumber flag sets internal debugging flags, and is of interest only to patch

patchers.

9.1S. ZMODEM-FILE TRANSFER PROGRAM

The XMODEM, YMODEM, and ZMODEM family of file transfer programs
are widely used on personal computers. MINI X supports ZMODEM, the most
advanced of the set. The programs sz and rz are used for sending and receiving,
respectively.

The sz Command

S: uses the ZMODEM error correcting protocol to send one or more files over a
dial-in serial pOri to a variety of programs running under MINIX, UNIX, MS-DOS,
CPIM, YMS, and other operating systems. It is the successor to XMODEM and
YMODEM.

ZMODEM greatly simplifies file transfers compared to XMODEM. In addition
to a friendly user interface, ZMODEM provides Personal Computer and other users
an efficient, accurate, and robust file transfer method.

ZMODEM provides complete end-to-end data integrity between application
programs. ZMODEM's 32 bit CRC catches errors that sneak into even the most
advanced networks.

Output from another program may be piped to sz for transmission by denoting
standard input with -:

Is -1 1 sz -

The program output is transmitted with the filename sPlD.sz where PID is the pro
cess ID of the 5Z program. If the environment variable ONAME is set, that is used
instead. In this case, the command:

Is --l 1 ONAME=con sz -ay -

will send a "file" to the PC-DOS console display. The -y option instructs the
receiver to open the file for writing unconditionally. The -a option causes the
receiver to convert UNIX newlines to PC-DOS carriage returns and linefeeds_ On
UNIX systems, additional information about the file is transmitted. If the receiving

270 EXTEl'DED MANUAL PAGES CHAP. 9

program uses this information, the transmitted file length controls the exact number
of bytes written 10 the output dataset, and the modify time and file mode are set
accordingly.

If s: is invoked with $SHELL set and if that variable contains the string rsh or
rksh (restricted shell), sz operates in restricted mode. Restricted mode restricts
pathnames 10 the current direclOry and PUBDIR (usually lusrlspoo/luucppub/ic)
and/or subdirectories thereof.

+

a

b

c

d

e

f

L

The options and flags available are:

Instruct the receiver to append transmitted data to an existing file.

Convert NL characters in the transmitted file to CR/LF. This is done by the
sender for XMODEM and YMODEM, by the receiver for ZMODEM.

Binary override: transfer file without any translation.

Send COMMAND (follows c) to the receiver for execution, return with
COMMAND's exit status.

Change all instances of " ." to "r in the transmitted pathname. Thus,
C.omenBOOOO (which is unacceptable to MS-DOS or CPIM) is transmitted as
C/omenBOOOO. If the resultant filename has more than 8 characters in the stem,
a " . " is inserted 10 allow a total of eleven.

Escape all control characters; normally XON, XOFF, DLE, CR-@-CR, and
Ctrl-X are escaped.

Send Full pathname. Normally directory prefixes are stripped from the
transmitted filename.

Send COMMAND (follows i) to the receiver for execution, return Immediately
upon the receiving program's successful reception of the command.

Use ZMODEM sub-packets of length n (follows L). A larger n (32 <= n <=

SEC. 9.15 ZMODEM-FILE TRANSFER PROGRAM 271

n

N

o

p

1 024) gives slightly higher throughput, a smaller one speeds error recovery.
The default is 128 below 300 baud, 256 above 300 baud, or 1024 above 2400
baud.

Wait for the receiver to acknowledge correct data every n (32 <= n <= 1 024)
characters. This may be used to avoid network overrun when XOFF flow con
trol is lacking.

Send each file if destination file does not exist. Overwrite destination file if
source file is newer than the destination file.

Send each file if destination file does not exist. Overwrite destination file if
source file is newer or longer than the destination file.

Disable automatic selection of 32 bit CRC.

......... Protect existing destination files by skipping transfer if the destination file
exists.

q

r

u

w

Quiet suppresses verbosity.

Resume interrupted file transfer. If the source file is longer than the destination
file, the transfer commences at the offset in the source file that equals the length
of the destination file.

Change timeout. The timeout, in tenths of seconds, follows, the -I flag.

Unlink the file after successful transmission.

Limit the transmit window size to n bytes (nfollows (enw).

Verbose causes a list of file names to be appended to Ilmpl szlog .

272 EXTENDED �ANUAL PAGES CHAP. 9

y

y

Instruct a ZMODEM receiving program to overwrite any existing file with the
same name.

Instruct a ZMODEM receiving program to overwrite any existing file with the
same name, and to skip any source files that do have a file with the same path
name on the destination system.

Examples

Below arc some examples of the use of sz.

sz -a *.c

This single command transfers all .c files in the current directory with conversion
(-a) to end-of-line conventions appropriate to the receiving environment.

sz -Van •. c •. h

Send only the .c and .h files that exist on both systems, and are newer on the send
ing system than the corresponding version on the receiving system, converting
MINI X to MS-DOS text format.

The rz Command

Rz and sz are programs that uses an error correcting protocol to transfer files
over a dial-in serial pon from a variety of programs running under various operat
ing systems. R: (Receive ZMODEM) receives files with the ZMODEM batch pro
tocol. Pathnames are supplied by the sending program, and directories are made if
necessary (and possible).

The meanings of the available options are:

-a

-b

Convert files to UNIX conventions by stripping carriage returns and all charac
ters beginning with the first Control Z (CPIM end of file).

Binary (tell it like it is) file transfer override.

Request 1 6 bit CRe. XMODEM file transfers default to 8 bit checksum.
YMODEM and ZMODEM normally use 16 bit eRe.

SEC. 9. 15 ZMODEM-FILE TRANSFER PROGRAM 273

-D

-p

-I

-v

-y

Output file data to Idev/null; for testing.

Force sender to escape all control characters; normally XON, XOFF, OLE,
CR-@-CR, and Ctrl-X are escaped.

Protect: skip file if destination file exists.

Quiet suppresses verbosity.

Change timeout tenths of seconds (timeout follows flag).

Verbose causes a list of file names to be appended to Ilmplrz/ag. More v's gen
erate more output.

Yes, clobber any existing files with the same name.

SEC. 9. 1 5 ZMODEM-FILE TRANSFER PROGRAM 273

-D

-p

-{J

-t

-v

-y

Output file data to /dev/null; for testing.

Force sender to escape all control characters; normally XON, XOFF, DLE,
CR-@-CR, and Ctrl-X are escaped.

Protect: skip file if destination file exists.

Quiet suppresses verbosity.

Change timeoul tenths of seconds (timeout follows Hag).

Verbose causes a list of file names to be appended to Itmplrzlog. More v 's gen
erate more output.

Yes, clobber any existing files with the same name.

SEC. 10.2 LIST OF MINIX SYSTEM CALLS 275

10.2. LIST OF MINIX SYSTEM CALLS

MINIX has a total of 49 system calls, most of them identical to UNIX V7 calls in
terms of name, function, and parameters. They are listed below alphabetically:

Returns
int
unsigned
char *
int
int
int
iot
int
int
int
int
int
void
int
pilLt
iot
gid_t
uid_t
gilLt
pilLt
uilLt
int
int
int
of Lt
int
int
int
int
int
int
long
int
int
int
int
int

Prototype • Description
access(char *path, int amode) - Determine if access permitted
alarm(unsigned int sec) - Set alarm clock timer
brk(char *addr) - Change size of data segment
chdir(char *path) - Change working directory
chmod(char *path, mode_t mode) - Change mode of file
chown(char *path, uid_t owner, gilLt group) - Change file's group id
chroot(char *path) - Change root directory
close(int fd) - Close file
creat(char *path, mode_t mode) - Create file
dup(int fd) - Duplicate file descriptor
dup2(int fd, int fd2) - Duplicate file descriptor 2
exec(. . .) - Execle, execve, etc.
exit(int status) - Terminate process
fcntl(int fd, int cmd, int arg) - Misc. controls
forkO - Fork
fstat(int fd, struct stat *buj) - Stat file
getegidO - Get effective group id
geteuidO - Get effective user id
getgidO - Get group id
getpidO - Get process id
getuidO - Get user id
ioctl, (int fd, int request, struct sgttyb *argp) - Set tty parameters
kill(pid_t pid, int sig) - Send a signal
link(char *path I , char *path2) - Link file
Iseek(int fd, ofL! offset, int whence) - Seek
mkdir(char *path, mode_t mode) - Make directory
mknod(char *name, int mode, int addr, int size) - Create special file
mount(char *name, char *special) - Mount file system
open(char *path, int oilag, mode_t mode) - Open a file
pauseO - Suspend caller
pipe(int fd[]) - Create pipe
ptrace(int req, pilLt pid, long addr, long data) - Trace a process
read(int fd, char *buf, unsigned nbyte) - Read data from file
rename(char *old, char *new) - Rename file
rmdir(char *path) - Remove directory
setgid(gid_t gid) - Set gid
setuid(uid_t uid) - Set uid

276 SYSTEM CALLS CHAP. 10

void signal(int signr, void (*func())) - Enable signal catching
int stat(char *path, struct stat *buf) - Get file statistics
int stime(long *timep) - Set the wall clock time
int syncO - flush cache to disk
time_t time(time_t *Ioc) - Get time since 1 970
c10cLt limes(strucl trns *buffer) - Get accounting times
mode_t umask(mode_t cm ask) - Set file mask
int umount(char *name) - Unmount file system
int unlink(char *palh) - Unlink file
int utime(char *path, struct utimbuf *times) - Set file times
picLt wait(int *staLloc) - Wait for child to exit
int write(int fd, char *buf, unsigned nbyte) - Write data to file

11

NETWORKING

MINI X supports networking. This chapter describes the kind of support pro
vided, how to use it, and how it should be installed.

1 1.1. INTRODUCTION

Network software can be divided into two general categories differing in the
way the software is integrated into the operating system and the user software.
When networks first developed, they were used over slow wide-area links (56 kbps
or less), so the designers' main concern was using the available bandwidth
efficiently. Programmer convenience was not considered. Later, as higher
bandwidth networks became widespread (especially local area networks, such as
Ethernet), the focus changed from worrying about bandwidth utilization, to worry
ing about making the network interface convenient for the programmers. This evo
lution is very similar to the evolution from assembly language programming, where
the machine came first, to programming in high level languages, where the pro
grammer came first.

Networks of the first type of are said to be connection oriented, and use what are
called sliding window protocols. All older networks, especially wide area net
works, are of this type. Some of the better known protocols are X.25, TCPIIP, and
OSI. Networks of the second type are connectionless, and use what is called remote

278 NETWORKING CHAP. I I

procedure call (RPC). Virtually all modern distributed operating systems are based
on this concept. Some well-known examples are the work of Xerox PARC [I], the
V kernel [2], and Amoeba [3-1 1) . While it is certainly possible to build RPC on top
of a connection-oriented protocol, this approach is inefficient compared to building
the RPC on top of the bare network. For an introduction to connection-oriented
protocols, RPC, and networking in general, see [1 2) .

Networking i n MINIX i s based on RPC. Briefly summarized, communication
between two processes works as follows. One of the processes, called the server,
has some service to offer, such as a file storage. The other process, the client, wants
to use this service. The interface to the service consists of a collection of pro
cedures that the client can call. In the case of a file server, the procedures might be
CREATLFILE, RENAMLFlLE, READ_DATA, WRITEJ)ATA, and so on.
These are library routines available on the client's machine.

When the client calls one of these procedures, the procedure sends a message to
the server containing the procedure name and its parameters. The procedure then
blocks waiting for the reply. When the message gets to the server, it is decoded
there and executed. The reply is sent back to the calling procedure on the client's
machine, which then returns the results to the caller. From the programmer's point
of view, having remote services in the network essentially means that there is a new
collection of procedures to call. The programmer is not burdened with concepts
like opening connections, sending data, or thinking in terms of acknowledgements,
all of which are needed in the connection-oriented model. Nor is the network
software burdened with having to manage connections.

In effect, RPC is based on the abstraction of the procedure call, whereas
connection-oriented networks are based on the much lower-level concept of making
the network look like an input/output device. While at first glance it might seem
that connection-oriented networking could be made to fit with the UNIX/MINIX con
cept of a pipe, pipes are set up in a very different way (by a common ancestor), and
fit very poorly to the most common style of local area network programming, where
the client has a request and the server gives a response. With wide area networks,
this kind of interaction is painfully slow, due to the low bandwidth. so the only ser
vices generally available are mail and file transfer, ... hich are batch-oriented. MINIX
networking has been designed for interactive use on high performance local area
networks, so for this reason, RPC has been chosen over the older connection
oriented style.

In particular, MINIX networking has been designed to be compatible with the
form of RPC used in the Amoeba distributed operating system [3-1 I] . Not only
have the concepts and the implementation been well tested, bUI the performance is
exceedingly good. For example, for doing file transfers, something that
connection-oriented protocols are supposed to be good at, Amoeba running on two
Sun 3s achieves triple the throughput of TCP/IP running on the same hardware.
Data transfers between two Zenith Z-248s running the Amoeba RPC on MINIX have
been measured at 1 65 kbytes/sec, almost as fast as TCP/IP transfers between two

SEC. 1 1 . 1 INTRODUCTION 279

Sun 3/50s. Considering that the Suns are two times as fast as the Z-248s and the
network software is 100% CPU limited (doubling the CPU speed doubles the
throughput), this is a strong argument for the Amoeba RPC. As a final statistic, the
RPC throughput between a client and server located on the same Z-248 is 1 .5
Mbytes/sec, an extremely high figure for this class of machine, and much better
than what Suns and VAXes normally achieve locally, despite their greater CPU
power. In conclusion, although RPC was chosen for its elegance and ease of use, it
turns out that it also has excellent performance, even doing things like bulk transfer,
and certainly doing things like short request-reply interactions.

A few words about Amoeba are probably in order here. It is a distributed
operating system that was developed at the Vrije Universiteit in Amsterdam and is
now being further developed there and at the Centre for Mathematics and Computer
Science in Amsterdam. It currently runs on the Sun 3 (and other 680xO processors),
VAXstations, and 80386s. Note that Amoeba is a complete operating system, just
like UNIX. MINIX or YMS. The only relation between Amoeba and MlNIX is that
MINI X networking uses the Amoeba RPC protocols. Other than that they are quite
different in structure, funtionality, and goals. Amoeba was designed to run on sys
tems consisting of dozens of processors, and yet give the programmer the illusion
that it is a traditional single-CPU time sharing system. For more information about
Amoeba, see the references.

1 1 .2. OBJECTS

Amoeba is an object-based system, and to a considerable extent this orientation
is reflected in the protocol. As a consequence, MINIX also acquires a certain
object-orientation. Very briefly, an object is a programmer defined abstract data
type that has well-defined operations on it. As an example, a file server could
define file and directory objects, and provide operations to read and write the file
objects, and insert files in, and delete files from, directory objects. Clients can per
form these operations by doing RPCs with the file server. Henceforth we will adopt
the Amoeba terminology and call these RPCs transactions. A transaction consists
of a request message from a client to a server, followed by a reply message from the
server back to the client.

It is up to the writer of each server to decide what kinds of objects the server
will support and what operations will be available on them. The structure of the
system guarantees that clients can only perform the operations provided by the
server. This style of networking is intended to force constraints on programmers,
just as high-level languages force constraints on former assembly-language pro
grammers.

Objects are normally protected by capabil ities, which are currently (Amoeba
4.0) 1 28-bit numbers, although in the the next version of Amoeba (Amoeba 5.0)
this will become 256 bits. When a client asks a server to create an object, the server

280 NETWORKING CHAP. 1 1

returns a capability for the object. This capability must be presented by the client to
perform subsequent operations on the object. In Amoeba, capabilities are protected
crytographically. Since the MINIX kernel, unlike the Amoeba kernel, was not
designed from scratch as a distributed system, the protection aspects in MINIX are
not fully implemented.

A capability has 4 fields, described below. These fields are important because
they appear in the Amoeba and MINIX message headers.

Port:
Object:
Rights:
Cksum:

48-bit number used to identify the server owning the object.
24-bit number used by the server to identify the object
8 bits telling which operations are allowed
48-bit check sum to prevent tampering with the capability

The port field is a (random) 48-bit number used for addressing. Any 48-bit number
can be used as a port. In some situations, an ASCll string can be used as a port,
with the first 48 bits taken as the port number. All messages in Amoeba and MINIX
are sent to ports, not to machine addresses. The mapping of ports to machine
addresses is done deep down in the system, and is of little concern to the average
programmer. Thus: a port uniquely identifies a server and provides a logical
address to which all messages for the server are sent.

The remaining three fields are called the private part of the capability. In
theory, each server can use them any way it wants to. In practice, to prevent total
chaos, all existing servers adhere to the following conventions Uust as most UNIX
programs adhere to the convention that certain files contain ASCII characters with a
line feed at the end of each line). The object field is used by the server to identify
the specific object being accessed. For example, when a file server created a new
file on behalf of a client, it could put the i-node number of the new file in this field,
so that when the client later used the capability, the server could tell which file was
being addressed. The field is 24-bits long, providing each server with 16 million
object identifers.

The rights field contains a bit map for up to eight protected operations. Each bit
controls permission to perform one operation. Thus a file server could allocate bit 0
for READ-.DATA, bit I for WR1TE-.DATA, bit 2 for APPEND-.DATA, bit 3 for
DELETEYILE, and so on. When a capability arrives from a client, the server
checks to see if the bit corresponding to the relevant operation is on. If it is not, the
operation is rejected. In this way, a user can create a file, ask the server to turn off
the WRITE-.DAT A and DELETEYILE bits, and then give the capability to
another user. This new user cannot perform WRITE-.DATA and DELETEJLLE
operations, but can perform the operations whose bits are turned on.

A moment's thought will reveal that the above protection scheme is worthless if
users can turn the rights bits on and off by themselves. To prevent this, the cksum
field is used. When creating a new object, the server simultaneously creates a ran
dom number and stores it in its internal tables (e.g., in the i-node). It then combines
the rights bits and the random number, and passes the result through a one-way

SEC. 1 1 .2 OBJECTS 281

cryptographic function. The result of this function is put in the cksum field. When
a capability comes in from a client, the server uses the object number to locate the
original random number. It then combines it with the rights bits present in the capa
bility, and runs the result through the one-way function. If the result disagrees with
the cksum field, the capability is considered invalid, and an error return is sent back.

'- In this way, users who change the rights bits will simply invalidate their capabili
ties. Attempts to break the scheme by finding an inverse to the one-way function
can be handled by choosing a cryptographically strong one-way function. Brute
force does not work either, as picking checksums at random will require, on the
average, 2**47 attempts to guess the 48-bit checksum. Since a null transaction over
a 10 Mbit/sec Ethernet using SUN 3/50s takes about l A msec, about 3000 years are
needed to perform the search. Furthermore, it is easy enough to program a server to
artificially increase the transaction time to I sec after I Q unsuccessful attempts have
been made, thus increasing the mean search time to 3,000,000 years.

1 1 .3, OVERVIEW OF TRANSACTIONS

To summarize what we have covered so far, the normal style of networking in
MINI X (and Amoeba) is to structure dialogues in terms of clients and servers. Each
server manages one or more types of objects, and provides operations for clients to
perform operations on these Objects. When a cl ient asks a server to create an object
for it, the server then returns a capability for the object to the client. This capability
identifies the server, identifies the object, and tells which subset of the operations
the holder of the capability may perform. To have an operation performed, the
client sends a request message to the server (with the capability embedded in the
message header), and the server then sends back a reply. In most cases, the calls to
the server are embedded in l ibrary procedures, called sllIbs, to encapsulate the mes
sage passing and hide it from the users.

Transactions provide a basis for a large number of user services. In MINI X,
users can use them to build arbitrary services. Two key services are provided as
standard for MINIX, remote execution and remote file copying. These services make
use of a process called the shell server, or sherver for short. The sherver accepts
messages from remote (or local) clients, executes the commands in them, and
returns the output.

Communication is implemented as follows. Each server l istens to a unique 48-
bit port. A cl ient that wants service from the server sends a request to that port and
blocks until it receives a reply. (If the client cannot find anyone listening to the port
after a given period, it times out and returns an error status.) When the server is
ready, it returns a reply to the client, which then continues execution. Each transac
tion is independent of the previous transactions; there is no connection or virtual
circuit.

Clients must have some way of discovering a server's port. Under Amoeba a

282 NETWORKING CHAP. 1 1

directory server is used. The directory server stores capabilities for objects and
associates them with an ASCII string. The directory server has a well known port.
Under MINIX you make initial contact with a sherver that has a well known port and
then the sherver creates a secret port for all further transactions on that machine.

There are four stub routines in the user library which provide the basic interface
between user processes and transactions. They are:

I . getreq
2. putrep()
3. trans!!
4. timeoUl

- Get request (used by servers to get a request)
- Put reply (used by servers to send reply)
- Transaction (used by clients to do a transaction)
- Sets the time limit at which trans gives up

GetreqO and pUlrep are used by servers to get a request from a client and to send a
reply. A server may not do a getreq until it has replied to the previous getreq. The
call trans is used by clients to send a request to a server. It blocks until a reply or a
signal arrives. or. if it cannot find a server listening to his port. it times out and
returns an error code. The length of the timeout is set using the function timeoU/.
This timeout has to do with locating servers. not how long they have to do the work.

Messages of up to 30000 bytes can be sent between client and server. This limit
will increase to I Gbyte in the next version of Amoeba but will probably remain at
30000 bytes in MINIX due to the small address space of the IBM Pc. It is possible
to provide security so that servers only execute remote procedure calls for author
ized users. The protection mechanism uses capabilities and is discussed in detail in
the references. It will not be discussed much here. This protection mechanism is
not implemented in the remote shell software available with MINIX. (It requires a
directory server. among other things. The implementation is left as an exercise for
the reader.)

1 1.4. SYNTAX AND SEMANTICS OF TRANSACTION PRIMITIVES

Now we will take a detailed look al the syntax and semantics of the library rou
tines for using transactions. followed by some simple examples to indicate how the
functions are typically used. Remember. that when programming with transactions.
the primitives used in C programs are getreq. putrep. trans. and timeout. These can
be thought of as network system calls. although they are not implemented quite like
that in MIN1X. If you are building a server. it will typically have a main loop with a
getreq at the top. a switch in the middle based on some field of the incoming mes
sage. and a putrep at the bottom. Furthermore. the server writer will generally also
provide a set of stub procedures that contain trans calls to access the server. The
average user will call these library procedures. and will not make trans calls
directly. although he is. of course. free to do so if he wishes.

Transaction messages always begin with a special header. The exact layout of
these messages is defined by the Amoeba protocol. By using this protocol. MINIX

SEC. 1 1 .4 SYNTAX AND SEMANTICS OF TRANSACTION PRIMITIVES 283

machines can communicate with one another, and with Suns and Vaxes running
'---' Amoeba. Device drivers have also been written for UNIX to allow UNIX processes

to speak Amoeba, and have Amoeba clients and servers run on UNIX. At the Vrije
Universiteit, all the Suns, Vaxes, and other machines that run UNIX have such
drivers to communicate with each other and with machines running Amoeba and
M\NDC tt \. tne local \\t\,&ua �tal\\:a,)u.t a. ,c.\'f\\' \. at .ome .\te •.

The Amoeba header is defined in the header file /usr/inc/ude/amoeba.h, which
must be included in all programs using transactions. The header definition is given
below. The types used in the header struct are also defined in amoeba.h .

typedef struct {
port lLport;
port lLsignature;
private lLpriv;
un short lLcommand;
long lLoffset;
un short lLsize;
un short lLextra;

) header;

/* port (i.e., logical address) of the des!. */
/* used for authentication and protection */
/* 1 0 bytes: object, rights, and cksum */
/* code for operation desired/status returned * /
/* parameter field * /
/* parameter field * /
/* parameter field */

The message header contains the port to which the message should be sent, a
command/status field for use by the server and space for some parameters to go
with the command or status . Let us now look at the four network primitives. The
first one, getreq, has the following declaration:

un short getreq(hdr, buffer, size)
header *hdr;
char *buffer;
un short size;

The three parameters refer to the header, the buffer, and the buffer size, respec
tively. In a sense, they are analogous to the parameters of the MINIX READ and
WRITE system calls. The hdr parameter points to a header struct, which i s used to
allow the server to specify which port it wants to listen to. The h-/Jort field of the
header must be initialized with the port number. The buffer parameter is a pointer
to a buffer to hold the incoming message. It can hold a maximum of size bytes,
specified by the third parameter. If successful getreq returns the number of the
bytes of data in the buffer that were actually received. In addition, the other fields
of the header are filled in by the system. If an error occurs then it returns a negative
error code. Possible error codes (defined in amoeba. h) are:

FAILED: - Null port or getreq done before previous putrep
BADADDRESS: - The buffer pointer and/or size was not valid
ABORTED: - A signal was recei ved
TRYAGAIN: - There were no free transaction slots in the kernel tables

284 NETWORKING CHAP. I I

Note that after a getreq, trans may be used to communicate with another server
before doing the pUlrep. In other words, a server may call other servers to help it do
its job, but it may not process multiple transactions simultaneously. (In Amoeba,
server processes may contain multiple threads to allow parallelism, but MINIX does
not allow multiple threads per process.)

The next call is putrep, used by servers to reply to requests and send back
results and status information. The declaration is:

unsh0l1 putrep(hdr, buffer, size)
header *hdr;
char *buffer;
unshon size;

The header returned contains status information, and possibly a new pon (in the
h....signature field). A buffer containing size bytes of data is also returned to the
client. If successful, plllrep returns the number of bytes sent. The reply message is
not acknowledged, so that a successful return from this call does not guarantee that
the client got the reply. In general, it is up to the client to try again if the reply is
not forthcoming quickly enough. Possible error conditions for putrep are defined in
amoeba.h as follows:

FAILED: - No getreq was done first
BADADDRESS: - The buffer pointer and/or size was not valid
ABORTED: - A signal was received

Now we come to the call used by clients to request services and wait for replies.
Servers can also use this call to request services from other servers. Thus at one
instant a process may be acting as a server and at another the same process may be
acting as a client. The client call is:

unshon trans(hdr l , buffer l , size I , hdr2, buffer2, size2)
header *hdr I , *hdr2;
char *bufferl , *buffer2;
unshon size I , size2;

The call has two independent sets of parameters. Those with suffix I are used for
sending the request message to the server. Those with suffix 2 are used for getting
the reply. Both sets have a header, a buffer, and a size. The two Mr pointers point
to structs for message headers. The first one contains parameters copied to the out
going message to the server and the second one contains space for the data to be

SEC. 1 1 .4 SYNTAX AND SEMANTICS OF TRANSACfION PRIMITIVES 285

copied in from the server's putrep. The two buffer parameters are for the outgoing
'-- and incoming data, respectively, and the two sizes tell how large these buffers are.

After making a Irans call, the client blocks until the message has been sent,
received, processed by the server, and replied to. Only then can the client continue
execution. At this point the fields of hdr2 and buffer2 will contain the reply data.

'- Like MINI X itself, transactions support only this synchronous fonn of communica
tion. Experience has painfully shown that asynchronous stream communication is
difficulI for programmers to deal with. After all, everything else in programming
languages is synchronous. (Can you imagine what it would be like to have a pro
cedure call return control to the caller before having finished its work?)

If successful, lrans, returns the number of bytes in the reply. Possible error
codes are:

FAILED: - Null port or server crashed between gelreq and putrep
NOTFOUND: - The port locate failed to find a server before the timeout
BADADDRESS: - A buffer pointer and/or size was not valid
ABORTED: - A signal was received
TRYAGAIN: - There were no free transaction slots in the kernel's tables

The final network primitive deals with setting timeouts. When a client first does a
transaction on a previously unknown port, the kernel broadcasts a locate message to
find the server. It then waits a certain amount of time for a server to reply. If no
server replies before the timer goes off, the lrans fails with NOTFOUND. The
limeout call allows the client to detennine how long to wait for a server to reply.
After a reply has been received, the kernel keeps it in a cache, so that locates will
not be needed subsequently. It is important to realize that the timeout relates to
locating servers, not to how much time servers have to perfonn their work. The
declaration is:

un short timeout(time)
unshort time;

The function sets the length of the locate timeout in tenths of a second. The default
is 300 (30 seconds). A timeout of 0 means do not time out. The limeout call returns

'-' the length of the previous timeout.

286 NETWORKING

1 1.5. SERVER STRUCTURE

A typical server has the following form:

'* Declarations needed by the server. *'

CHAP. 1 1

header hdr; '* header for receiving requests *'
char buffer[BUFSIZE); '* buffer for receiving requests *'
char reply[BUF2SIZE); '* buffer for sending replies *'
un short size, replysize; '* sizes of the two buffers *'
un short getreq; '* function declaration *'
char *strncpyO; '* string function *'

signal(SIGAMOEBA, SIGJGN); '* ignore signals *'

while (I) (

'* Have the server l isten to a 48-bit port equal to ASCII "MyServ" *'
strncpy(&hdr.h_port, "MyServ", HEADER SIZE);

'* Wait for a request to come in for that port. *'
size = getreq(&hdr, buffer, BUFSIZE);

'* If the size returned is negative then an error occurred. *'
if «short) size < 0) (

handle_errorO;
) else (

)
)

performJequestO;
hdr.h..status = OK;
putrep(&hdr. reply, replysize);

'* carry out the work *'
'* or whatever *'
'* send reply back *'

If all the information necessary for the request is in the headers then the buffers in
getreq and plllrep can be replaced by the value NILBUF and the buffer sizes can be
replaced by O .

SEC. 1 1 .5 SERVER STRUCTURE 287

1 1.6. CLIENT STRUCTURE

The structure of a client program is much more variable. A program that deals
with the above server might look like this:

'* Declarations needed by the client. *'
header hdr;
char bufferlBUFSlZE);
short size;
un short trans;
char *strncpyO;

/* header used for request */
/* buffer used for request *'
'* size of the buffer *'
'* function declaration *'
'* string function *'

'* Initialize server port to "MyServ". *'
strncpy(&hdr.h_port, "MyServ", HEADERSlZE);

'* Send request to server l istening to that port. *'
size = (short) trans(&hdr, buffer, BUFSIZE, &hdr, NILBUF, 0);
if (size < 0) {

printf("trans failed %dO, size);
} else {

if (hdr.h_starus != OK) '* nonzero status is an error *'
workJloLdoneO;

else
successf u'-trans;

1 1 .7. SIGNAL HANDLING

It is important for programmers to understand how signalS work. If a client
receives a signal while doing a Irans, the signal propagates to the server. If the
server is also doing a Irans then it propagates again to the next server, and so on.
The aim of this is to request all servers to terminate their transaction as soon as pos
sible.

If the server receiving the signal is not doing a transaction and not already doing
a putrep then the server code must handle the signal. It may choose to catch the sig
nal and send a reply immediately or simply ignore the signal. If it does not catch
the signal then it will die since the signal propagated is SIGAMOEBA (which is
defined as SIGEMT for MINIX). In this case the transaction will fai l (with return
status FAILED for the client).

Once the transaction is completed the cl ient process will be signaled. It in turn
must handle the original signal (not necessarily SIGAMOEBA). The exact transac
tion semantics of Amoeba are not supported under MINI X due to difficulty in

288 NETWORKING CHAP. 1 1

keeping user processes alive umil a transaction terminates after a signal. Signal
propagation does occur, but the client may die before a reply comes in. This should
not matter too much for most applications. In the next rewrite of Amoeba the syntax
and semamics of these functions will change in non-compatible ways, but this will
probably not appear in MINIX.

1 1 .8. IMPLEMENTATION OF TRANSACTIONS IN MINIX

Amoeba transactions are implemented in the MINIX kernel as a number of kernel
tasks. Several alterations were made to the kernel to support these tasks, including
the addition of an (optional) ethernet driver (for the Western Digital EtherCard
l'\us, aho \mown as me 'N\) \ \)\YW.) am\ \ne pos,i'oi\,\y \0 s�I:'\Y \ne "1.e 0\ \t.e
stack for kernel tasks on a per task basis. (Amoeba tasks need larger stacks than the
other MINIX kernel tasks.) There is also an extra system call that is handled by MM.
This is the Amoeba system call and is the interface to the kernel. Special handling
of signals is also provided for in the MM task.

There are five kernel tasks for Amoeba. The first acts as a manager which
accepts asynchronous events. Possible events are:

I . An ethernet packet has arrived
2. A local signal has arrived
3. A user task involved in an active transaction has died
4. A sweep timeout has occurred

(Locate timeouts are implememed using a counler which is decremented every
temh of a second by a sweep routine.) Each of the other four tasks manage a single
user process' transactions. Thus, a maximum of four processes can simultaneously
do transactions under MINIX. The number of transaction tasks is, however, a con
stanl in an include file and can be increased if needed.

In the MINI X kernel there is a table which keeps a record of the current state of a
transaction. This table is called anuask and is declared in the file amoeba.c. This
records many things, including, the process number of the task doing the transac
tion, the current state (iocating, waiting for a reply, waiting for a request, etc.) and
the relevant ports and machine addresses.

The Amoeba network protocol is a stop and wait protocol that guarantees at
most once delivery of a message. A message consists of the concatenation of the
transaction header with the data in the buffer (if any) given to Irons, gelreq or
pwrep. The transaction code divides messages up into packets which fit on the
underlying network medium (which is ethernet in the case of MINIX). It then sends
over the message fragments and they are reassembled on the remote machine before
being given to the recipient.

Each packet begins with an ethernet header (which consists of the source and
destination ethernet addresses) followed by a IO-byte Amoeba internet header

SEC. 1 1 .8 IMPLEMENTATION OF TRANSACTIONS IN MINIX 289

containing data about the source and destination processes to ensure that the mes-

'---- sage is delivered to the correct process. The rest of the packet is used for sending
data.

\....- 11.9. COMPILING THE SYSTEM

There are several interesting things you need to know before you can build a
MINI X kernel with Amoeba transactions in it. First of all, you do not need an Ether
net to use transactions. You can have your clients and servers running on a single
machine. In this mode, it is possible to write and debug network software without
having a network. Later, when you move to a real network, the code will already be
fully debugged, as the system itself makes no distinction between local and remote
transactions.

Second, the transaction code is quite substantial. So much so that it would tend
to overshadow the rest of MINIX if it were fully integrated into it. This fact, com
bined with the knowledge that not all MINIX users are interested in networking has
led to adding a new top-level directory in MINIX, amoeba. This directory and its
subdirectories contain all the networking code. If you are not interested in network
ing, just ignore it.

Installation of networking is largely auto-configurcd using the makefiles pro-
'- vided. Two new -D entries are used in the mm and amoeba/kernel makefiles:

-DAMJ(ERNEL
-DNONET

(used in mm and amoeba/kernel) enables networking
(used in amoeba/kernel) single machine networking

in other words, local transactions only If you use -DAM_KERNEL but not
-DNONET, you get full networking and MUST have a Western Digital Etherplus
card.

If you add a new kernel task of your own then it MUST come between the
Amoeba kernel tasks and the printer task in the file kernel/table.c and should be
numbered relative to AMOEBA_CLASS in the file h/com.h (i.e. The task number
should be AMOEBA_CLASS+ I for the first new task, AMOEBA_CLASS+2 for
the second new task, etc.). Be sure to set N1LTASKS correctly.

To compile and install networking, you must follow the steps below carefully.

1 1.10. HOW TO INSTALL NETWORKING IN MINIX

You must do the following important steps carefully. However, before starting,
make sure that /usr/lib/cpp has at least 50000 bytes of stack space (size will tell
you). If you, use chmem to give it more.

290 NETWORKING CHAP. I I

I . Make sure that you are in the Amoeba directory and that there is plenty
of free disk space. Now edit Makefile to include or exclude NONET
from CFLAGS as you prefer.

2. Type:

make

3. When you are instructed to do so, insert a blank diskette and hit the
return key.

4. Reboot your machine using the new boot floppy.

5. Test the system. The directory amoeba/examples contains several pro
grams to test the reliability of transactions. The READ-.ME file in the
directory gives more details.

6. If you have an ethernet card then install the network tools. The direc
tory amoeba/uti I contains utilities for remote shells, remote file copying
and message sending. These only work with machines that have
Amoeba transactions installed. The READ-.ME file there gives more
details.

l l . l l , NETWORKING UTILITIES

There are several utility programs which you may find useful if you have a net
work connection. They are listed below with a brief outline of their use. Other util
ities are possible and reasonably simple to write as shell scripts that use rsh (remote
shell, described below). The utilities are located in the amoeba/utilities directory.

l l ,12. REMOTE SHELL

One of the main features of MINIX networking is the use of Ihe remote shell.
This utility is a server that accepts commands over the network from clients and
executes them. The syntax of this command is:

rsh [-bei] port command

This program execlIIes the command specified by command on the machine with a
sherver (described below) listening to the port port, which i s an ASCII string of up
to 6 characters. It is used to generate a unique port name for the underlying transac
tion mechanism.

Normally standard output and standard error from the command are written on
standard output of the local process. If the � flag is specified then they are kept

SEC. 1 1 . 12 REMOTE SHELL 291

separate. The -i flag specifies that standard input for the command should come
from the local process. The -b flag specifies that the rsh should be started in the
background. Some examples:

rsh bozo

starts an interactive shell on the machine running a sherver with pon bolO. Subse
quent commands that you type will be fed to the remote shell. You can use cd to
change to a directory on the remote machine, Is to list files in the remote directory,
and any other commands you want. In effect, rsh gives you a simple form of
remote login. Note that to make this work, the remote process l istening on the port
bolO must be a shell server (sherver).

As a second example of rsh, consider

rsh jumbo cat letclpasswd

which displays on your screen the file lelcipasswd from the machine running a
sherver with port jumbo. The rsh command could also have redirected this output to
a local file or pipe.

A slightly more complex example is

rsh -i freddo 'cat >/usr/asUjunk' </etcltermcap

which runs the command

cat >/usr/astljunk

on machine the machine running a shervcr with port freddo and takes as input the
file lelcllermcap from the local machine. Note that by quoting the second argu
ment, it is passed as a string to the remote sherver. If the command contains magic
characters (e.g., " c) the resulting action depends on whether the command is
quoted or not. If it is not quoted, the local shell will expand the magic characters
before rsh is even called. If the command is quoted, the command string is passed
unmodified to the remote sherver, which then expands it in the directory it is
currently working in.

When you log into a remote machine with rsh, you get a shell having the uid
and gid of the sherver (see below). To get your own uid and gid, type

exec su george

assuming that your login is george. If you have a password, SlI will ask for it.
Needless to say, the su program will use lelclpasswd on the remote machine. Do
not forget to use exec, as this eliminates the need for an extra shell. If you do not
need your own uid, do not bother, as it costs memory.

292 NETWORKING CHAP. 1 1

1 1.13. SHERVERS

To enable remote shell operations, it is necessary to have a sherver running on
the destination machine. Shervers can be started up by:

sherver port

assuming that sherver is kept in lusrlbin. This program listens to the port specified
and accepts a single request from the program rsh. It then executes it with the uid
and gid of the sherver. When it is finished, the sherver exits.

The sherver gets its input from a pipe. This means that it can only do those
things possible with a pipe as input. In particular, signals (e.g., DEL), EOF (e.g.,
CTRL-D) , and the ioctl system call do not work properly. Hitting DEL remotely
will kill the sherver. There is no simple solution, except to use stty to change your
DEL character so that you do not hit it out of habit.

1 1.14. MASTERS

Another useful program is master. It is started up as follows:

master count uid gid command

This program starts up count copies of the program specified by command with user
id uid and group id gid. The command may be given parameters. If at any time the
command exits or dies then master will start up a new invocation of it. This was
designed to work with shervers but has other applications as well. For example,

lusr/bin/master 1 2 2 letc/sherver mumbo

will start a single sherver listening to the port mumbo and ensure that there is
always a sherver running. This sherver will have uid=2 and gid=2, so that rsh calls
to mumbo will be executed with this uid/gid combination. It is suggested to start up
master in the letelre file of any machine running shervers. When a sherver finishes
executing a command, it exists. By having master running in the background all the
time, every time a sherver exists, its parent, master, will create a new one. This
mechanism is somewhat akin to in it creating a new login process whenever a shell
exits. Since $PATH is generally not set prior to executing letelre, master should be
specified as lusrlbinlmaster.

The amount of stack space to give to master (and sherver) is important. If it is
too little, the programs will act weird. If it is too much, everything will work fine,
but memory will be wasted and there may not be enough left to run all the pro
grams. Some experimentation is required. In any event, if things act strange, use
ehmem to allocate more stack space to these programs to see if that helps.

SEC. 1 1 . 1 5 FILE TRANSFER 293

11 .15. FILE TRANSFER

The standard MINIX networking provides for file transfer using a shell script
called rcp (remote cp). The syntax of the call is

rcp [port!]from_file [portl]to_file

It can also do local file copy but this is more easily accomplished with cp. Here are
two examples of rcp usage:

rcp jumbolletclpasswd
rcp jumbolletclpasswd freddo!lusr/asVpebble

The first one will copy the file lelclpasswd from the machine running a sherver with
the port jumbo to the file passwd in the current directory. The second one will copy
the file lelcipasswd from the machine running a sherver with the port jumbo to the
file lusrlasllpebble on the machine running a sherver with the portfreddo. Thus it is
possible to issue commands on machine A to copy files from machine B to machine
C.

11 , 16, REMOTE PIPES

It is possible to set up remote pipes using the programs 10 and from. The pro
gram 10 reads from standard input and writes its output to the named port. Simi
larly, from reads from the named port and writes to standard output. For example,
consider the following commands, possibly given on two different machines:

cat F' I sort I to 'port66'
from 'port66' I uniq -c I sort -n

The first command concatenates files beginning with 'F', sorts them, and writes the
output to 'port66' . The second commands reads from 'port66

,
and provides input

to the rest of the pipeline.

1 1.17, THE ETHERNET INTERFACE

The ethemet driver in this version of Minix is for the Western Digital Ethercard
Plus card, which is also known as the WD l OO3E. The ethemet controller chip on
this board is the National Semiconductor DP8390. If you have a different type of
ethernet controller then there are several things you need to know about the inter
face between the driver and the Amoeba transaction layer in order to write a suit
able driver for your card.

There were several fundamental assumptions made while designing the high
level protocol which affect the ethernet driver.

294 NETWORKING CHAP. 1 1

I . The ethemet controller has enough local memory to buffer at least one
incoming packet and one outgoing packet and will not overwrite a
buffer with a new incoming packet until the buffer has been released.

2. Read buffers are released in the same order as they were allocated.
After a read interrupt has occurred and (*bIlJread)O has been called,
then bllJread will not be called again until an etiLrelease has been
done.

3. The ethemet driver generates no write interrupts. This is because we
found that busy waiting was more efficient than doing a context switch
and waiting for an interrupt. By the time the context switch was done,
the interrupt had already happened, so we had to switch back. It's fas
ter to just wait for it. On a very slow machine, a different strategy
might be
appropriate.

There are several routines used by the high level code which should be provided by
the ethernet driver. Unless otherwise stated, these routines are called in the file
amoeba.c.

I . etheraddr - get ethernet address of this host from rom.

2. elh_inil - initialises the ethernet card and sets pointers to routines to be
called on packet arrival and departure.

3. elh_gelbllJ - returns pointer to next write buffer.

4. eth_wrile - writes the current "write buffer" to the net.

5. elhJe/ease - release a read buffer for reuse.

6. elh--slp - shuts up the ethernet chip so that reboot can stop all interrupts
from the chip. The normal reboot procedure does not stop the
WO I 003E from running, so the next time interrupts are enabled it
makes a fuss (called from klib88.s).

The files dp8390.c, dp8390.h, dp8390info.h and dp8390slal.h contain routines
specific to the NS OP8390 chip. These may need some slight changes before work
ing correctly with another manufacturer's board which also uses this chip. The files
elherp/us.c and elherp/us.h contain routines specific to the WOl003E board.

SEC. 1 1 . 1 8 REFERENCES 295

11 .18. REFERENCES

I . Birrell, A.D., and Nelson, B.1.: "Implementing Remote Procedure Calls," ACM
Transactions on Complller Systems, vo!. 2, pp. 39-59, Feb. 1 984.

'--- 2. Cheriton, D .. "The V Kernel : A Software Base for Distributed Systems," IEEE
Software Maga:ine, vo!. I , pp. 1 9-42, April 1 984.

3. Bal, H.E., Renesse, R. van, and Tanenbaum, A.S.: "Implementing Distributed
Algorithms using Remote Procedure Call," Proc. National Computer Confer
ence AFIPS, pp. 499-505, 1 987.

4. Renesse, R. van, Tanenbaum, A.S., Staveren, H., and Hall, J.: "Connecting
RPC-Based Distributed Systems using Wide-Area Networks," Proc. Seventh
Imernational ConI on Distr. Complller Systems, IEEE, pp. 28-34, 1987.

5 . Tanenbaum, A.S., Mullender, S.1., and van Renesse, R.: "Using Sparse Capabili
ties in a Distributed Operating System," Proc. Sixth International ConI on
Distr. Computer Systems, IEEE, 1 986.

6. Mullender, S.1., and Tanenbaum, A.S. : "The Design of a Capability-Based Dis
tributed Operating System," Computer JOllrnal, vo!. 29, pp. 289-299, Aug.
1 986.

7 . Tanenbaum, A.S. , and Renesse, R. van: "Distributed Operating Systems," Com
plIIing SlIrveys, vo!. 17 , pp. 41 9-470, Dec. 1 985.

8. Mullender, S.1., and Tanenbaum, A.S.: "A Distributed File Service Based on
Optimistic Concurrency Control," Proc. Tenth Symp. Oper. Syst. Prin., pp. 5 1 -
62, 1 985.

9. Mullender, S.1., and Tanenbaum, A.S.: "Protection and Resource Control in Dis
tributed Operating Systems," Computer Networks, vo!. 8, pp. 421 -432, Oct.
1 984.

1 0. Mullender, S.1., Rossum, G. van, Tanenbaum, A.S., Renesse, R. van, Staveren,
H. van: "Amoeba-A Distributed Operating System for the 1 990s," IEEE Com
puter Maga:ine, May 1 990.

1 1 . Tanenbaum, A.S., Renesse, R. van, Staveren, H. van, Sharp, G.1., Mullender
S.1., Jansen, A.1., and Rossum, G. van: "Experiences with the Amoeba Distri-

'--- buted Operating System," Communications of the ACM.

	minix summary e chap1
	chap 2
	chap 3
	chap 4
	chap 5
	chap 6
	chap 7
	chap 9
	chap 10
	chap 11

