
Smx�the Solaris port of MINIX

Paul Ashton �paul�cosc�canterbury�ac�nz�

September ��th� �		


� Introduction

Solaris MINIX �smx� is a version of the MINIX operating system that runs as a user process
under Solaris ��x �SunOS ��x� on SPARC�based Suns� The set of user commands� library
functions and system calls is virtually identical to that of standard �PC� MINIX �which we
will refer to simply as 	MINIX
 in this document�� Because smx runs as a user process�
multiple copies can run simultaneously on one Sun� quite independent of each other and of
any other workload present at the time� This �exibility means that smx can be used for
laboratory work in OS courses in situations where it would be infeasible to have students
modify a native operating system�

This document concentrates on the di�erences between MINIX and smx �those wanting
information on MINIX should see 
���� We begin with an overview� and follow that with
installation instructions� We then go on to describe smx from two viewpoints�the user
viewpoint and the internal viewpoint� We �nish the main body of the report by describing
the interaction network monitor that has been added to smx� Three appendices contain�
manual pages for the small number programs that run under SunOS� advice for using smx
with a class� and an overview of the source code changes made in smx�

Those wanting more information about smx and about interaction network monitoring
�including information on the SunOS and Amoeba monitors� should follow the appropriate
links from�

http���www�cosc�canterbury�ac�nz��paul

� Overview

To the user� smx seems much the same as MINIX� Most of the MINIX commands are available�
The same library and system calls are available� although compilation is done under SunOS
rather than under smx� The reason that smx seems much the same is that it is much the
same� Nearly all source code in the memory manager� the �le system� the internet server and
the user commands and the libraries is identical to the MINIX code� Most smx�speci�c code
is concentrated in two areas�the kernel and the bootstrap program� and even then the smx
kernel contains a substantial amount of code that is unchanged from the MINIX kernel�

The 	hardware
 that smx runs on is the virtual machine de�ned by a SunOS process� The
CPU time distributed by the smx scheduler consists of the CPU time given by the SunOS
scheduler to the SunOS process running smx� The memory managed by the smx memory
manager is part of the address space of the SunOS process running smx� The interrupts are

�



SunOS signals� with the alarm signal used to simulate the hardware clock� Each smx �le
system is stored as a SunOS �le� with the �le formatted as a �xed length MINIX �le system�
The smx console is the controlling terminal of the SunOS process running smx� One way to
think of smx is as a complex threads package for SunOS�

The minix program �which runs under SunOS� is used to bootstrap smx� by setting up
the smx devices� loading the operating system� and then jumping into smx proper to begin
the standard MINIX booting sequence� The standard booting messages appear and the user
can then login when prompted for a usercode� Additional terminal sessions can be attached
to a running instance of smx using the �SunOS� mlogin program� This means that smx is a
multi�user system� and that it is easy to experiment with having multiple users�

The only area in which smx su�ers from a lack of realism is in its low�level device drivers�
Disk accesses are simulated by �rst calling the SunOS lseek system call to move to the
appropriate �le position� and then making a read or write system call to transfer the data�
The system calls are synchronous� so there is no chance to run another smx process while
the transfer is taking place� Similarly terminal input and output is done via read and write

system calls� In the case of input� a SunOS signal is generated whenever input becomes
available�

This lack of reality is con�ned to a very small part of the system� The kernel must still
face up to asynchronous interrupts �from the clock� keyboard and ethernet�� and the potential
for race conditions that results� The kernel code for CPU scheduling and message passing�
and all code for the memory manager� �le system and internet server is virtually identical to
that of MINIX� Consequently� smx provides good support for a wide range of OS laboratories�

The standard set of MINIX manual entries are available from within smx� New entries
have been added for smx�speci�c commands� but otherwise the manual pages have not been
changed� Manual pages describing commands speci�c to the PC should be ignored� Manual
entries for the smx programs and scripts that run under SunOS can be found in Appendix A
in this document�

��� History and acknowledgements

Solaris MINIX has been chie�y developed in the Department of Computer Science at the
University of Canterbury� Christchurch� New Zealand� In the �southern hemisphere� summer
of �������� Peter Smith �psmith�cs�ubc�ca� then a student at Canterbury� created the �rst
version of SunOSMINIX by porting Macintosh MINIX ������ to SunOS � running on SPARC�
based Sun systems� SunOS MINIX was developed further by Paul Ashton and released �as
a set of di�s to MINIX ������� in ����� Bill Bynum �bynum�cs�wm�edu� contributed a Sun
� version� Over the �southern hemisphere� summer of �������� Peter Smith developed an
initial port of SunOS MINIX to Solaris �� At that point� the SunOS MINIX distribution
contained SPARC�SunOS �� SPARC�Solaris � and Sun � versions�

Late in ����� Paul Ashton took the initial Solaris port of SunOS MINIX� and the �now
publicly available� MINIX ����� release� and from them produced Solaris MINIX� Considerable
further development has taken place since then� including integration of the changes in MINIX
����� to ����

Finally� thanks to Kees Bot �kjb�cs�vu�nl� for considerable amounts of information on
MINIX ����x and ��x� and for his timely updates�

�



� Installing smx

Smx is distributed �over the internet and on CD�ROM� as a compressed tar �le� This section
tells you how to reach the point at which you can run smx� Note that this version of smx has
been developed under Solaris ���� and has also been tested under Solaris ���� Smx may run
on earlier versions of Solaris �� but will not run on Solaris ��

The steps involved in setting up smx are described in the following sub�sections�

��� Installing the SunOS programs

There are a number of SunOS binaries and scripts that you need in your search path before
going any further�

�� Check your search path for install and gcc using the commands�

which gcc

which install

If which fails to locate gcc then you will need to install gcc before proceeding� The
MINIX CD�ROM contains a gcc distribution in a single compressed tar �le� gcc is
available for anonymous FTP from prep�ai�mit�edu in the �pub�gnu directory�

Smx installation relies on the SVR� version of install� so if which reports that install
is picked up from �usr�ucb you must change your path so that the SVR� version of
install �in �usr�sbin� is the one used�

�� Create a directory for smx� Change to that directory�

�� Type

m��pwd�

At this point the variable �m refers to the directory you are now in� If you are using
csh then you will have to type the following instead�

setenv m �pwd�

�� Untar the smx tar �le using the command line�

tar xvf TARFILENAME

where TARFILENAME is the name of the smx tar �le�

�� Edit Makefile in �m�src�Solaris so that DESTDIR speci�es the directory that you
want to install the SunOS binaries and scripts in� Create DESTDIR if it doesn�t already
exist�

�� Inside �m�src�Solaris� type�

�



make install

�� Ensure that the smx binary directory �DESTDIR from step �� is on your search path�

For each of the following programs� use which to check that the the program picked up
from your search path is the program in the smx binary directory� combine� elf	smx�
make map file� mcc� minix� mlogin� next prog addr� relay�

��� Completing the installation process

�� Set the MX INCL and MX LIB environment variables�

The mcc script and some Makefiles rely on the correct setting of the MX INCL and MX LIB

environment variables� MX INCL should be set to the full pathname of the �m�include

directory and MX LIB to the full pathname of the directory into which the library �les
will be installed� This might be the �m�src�lib directory itself� so long as you are
happy having any library changes installed immediately�

If you would rather have a separate �	production
� library directory� then set MX LIB to
a di�erent pathname ��m�lib perhaps�� If you take this option� it will be up to you to
copy new libraries from �m�src�lib to MX LIB� This can be done by a make install

in �m�src�lib� or by entering the appropriate copy commands from the shell�

�� Next� the libraries must be created� Change directory to �m�src�lib� If �MX LIB is
�m�src�lib then do a make all� otherwise do a make install� The libraries will now
be present in the �MX LIB directory�

�� The smx load image consists of � programs�kernel� mm� fs� inet and init� All � can
be generated by doing a make image in �m�src�tools� This creates an OS boot image
in the �le �m�src�tools�image�

Note that if networking is disabled �by setting the ENABLE NETWORKING constant to �
in �m�include�minix�config�h�� then the smx load image consists of � programs�all
of the above except for inet� In the remainder of the document� where the � programs
in the smx load image are discussed� remember that there are only � if networking is
disabled�

�� All of the smx command sources are under �m�src�commands� Simple� one source
�le commands are in the simple directory� with more complex ones having their own
directories� If you do a make all in �m�src�commands then all of the program binaries
will be created� Smx comes with �le systems that contain all of the standard program
binaries� so you needn�t do a make all for the commands as part of the installation
process� If you modify a standard program� the best way to load it onto an smx �le
system is to use the sunload command from within smx�

� Smx from the outside

Now that you have installed smx� here are instructions about how to run it� For details
on smx internals� see section �� A laboratory exercise used to introduce students to smx is
available from the �m�doc directory�

�



��� Running smx

The major �SunOS� �les and programs involved in running smx are�

� The bootstrap program minix� This program is linked to run under SunOS�

� The smx con�guration �le� that speci�es �amongst other things� the locations of the
image �le and of all of the smx �lesystems�

� The image �le� which is a concatenation of �ve smx executables� kernel� mm� fs� inet
and init�

� One or more smx �lesystems� which are mounted to form a single hierarchy in the
standard Unix fashion�

When minix is executed� it begins by reading the con�guration �le� It loads the programs
from the image �le into smx memory� and opens all of the smx �lesystems speci�ed in the
con�guration �le� The hdx
 �le system is taken to be the root �lesystem� Any other �lesys�
tems are either mounted by the smx �etc�rc script from within smx� or are left unmounted�
in which case the user can mount them using the smx mount command�

To run smx for the �rst time� change to the �m�src�tools directory and run smx using
the minix command �with no command line arguments�� Standard MINIX boot messages
appear�ignore the error messages from the networking software as networking is not enabled
in the supplied con�guration �le� When you are prompted for a usercode log into smx as root�
Most of the standard MINIX commands are available� In addition� sunread and sunwrite

are available to transfer �les between SunOS and smx� and uemacs �Microemacs� and tcsh

are also available� The command shutdown now shuts down smx in a controlled fashion�
ensuring that all �le systems are sync�ed before smx terminates�

As no con�guration �le was speci�ed on the command line above� smx reads con�gu�
ration information from ���minix� The �le �m�src�tools��minix speci�es the image �le
to be ��image �this �le was created during installation�� and the three disks to be �les in
������disks� The default �etc�rc mounts �dev�hdx� on �usr�bin� and �dev�hdx	 on
�usr�man�

At some point you may want to have a �minix �le in your home directory that contains
full pathnames so that you can run smx without needing to change to �m�src�tools�

��� Compilation for smx

C programs can be compiled for smx using the mcc script as the C compiler and linker� mcc
provides most of the standard Unix C compiler options� as described in Appendix A��� mcc

relies on the environment variables MX INCL and MX LIB to locate the smx include �les and
libraries�

mcc uses gcc to compile C code and ld to link it� It also uses the smx program elf	smx

to translate the ELF executable produced by ld into the smx a�out format� By default� mcc
deletes the ELF executable once the smx executable has been produced� Having compiled
and linked your program using mcc� you can transfer the executable to smx using sunread

make it executable using chmod� then run it�
At present� the two MINIX programs �bc and flex� that rely on yacc and lex are not

available under smx because the SunOS yacc and lex versions used to compile bc and flex

expect di�erent library functions to those provided in MINIX�

�



��� Multi�user smx

To allow additional login sessions� you must specify a hostname in the smx con�guration
�le� If you select minix� as the host name� then the following line should appear in the
con�guration �le�

host minix�

Once you have booted an instance of smx that uses the con�guration �le� additional logins
are performed using the command

mlogin minix�

executed on the same Sun that the target smx instance is running on� mlogin terminates
when the smx instance it is connected to is shutdown� It will also exit if the user types the
�Q�U�I�T sequence of four control characters�

Note that every instance of smx running on a single Sun must have a di�erent host name�

��� Multiple instances of smx

Each smx instance needs its own root �le system and con�guration �le �which speci�es the
location of the root �le system� amongst other things�� but the image �le and the �usr�bin
and �usr�man �le systems can be shared� To allow sharing of �usr�bin and �usr�man� edit
�etc�rc under smx so that these �le systems are mounted read�only �add a 
r to the end of
the mount command lines�� Sharing �usr�bin and usr�man read�only between all members
of a class can save a lot of disk space� If a student runs out of space on their root �le system�
they can always create another �le system and mount that somewhere�

To create a new root �le system� just copy an existing one under SunOS� For details on
how to create a root �le system of a di�erent size� see section ������

If you want to create �les to support a second instance of smx �perhaps because you want
to network together two smx instances by following the instructions in section ��� below��
then you should�

�� Under smx� change �etc�rc so the �usr�bin and �usr�man are mounted read�only� Do
this by adding the 
r option to the end of the appropriate mount command lines� Then
exit smx�

�� Create a second root �lesystem by copying �m�disks�root to �say� �m�disks�root	�

�� Create a new minix con�guration �le by copying the �le �m�src�tools��minix to �say�
�m�src�tools��minix	�

�� Change the new con�guration �le so that the value of the hdx
 option is the name of
the new root �lesystem�

�� Start up your new smx instance by using the command line�

minix new
config
file

where new
config
file is the name of the new con�guration �le that you have just
created�

�



��� Networked smx

Once you have several smx instances� they can be connected using a simulated ethernet� This
involves doing the following�

�� Choose a di�erent internet number for each smx instance� Stick to using one class C
network number �that is� vary only the last component of the internet number��

�� Edit the �etc�rc�net �le on each smx instance� and change the internet number on
the �rst line to be the one selected for that smx instance�

�� Decide on host names for all of your smx instances�

�� Edit the �etc�hosts �les on all smx instances so that they all contain all of your
�internet number� host name� pairs�

�� Shutdown all smx instances�

�� Decide on the name of the 	relay �le
 that will be used to inform each smx instance of
the UDP address of the packet relay program�

�� Add the line below to the con�guration �les of all smx instances�

relay�file FILENAME

where FILENAME is the name you selected in step � above�

�� Start relay using the command line�

relay FILENAME

where FILENAME is the name you selected in step � above�

�� Now you can start your smx instances� and they will be able to communicate via telnet�
ftp� and so on�

Note that the hostnames used in �etc�hosts are totally independent of the hostnames
used in conjunction with mlogin� If you don�t want to have network support compiled into
smx� set NETWORKING ENABLED to � in �m�include�minix�config�h� and comment the make
inet line out of �m�src�tools�Makefile�

��� Security and smx

There are a number of security issues that arise when using smx� These include�

�� The security provided within smx itself� A lot of e�ort has been put into making the
�le protections in smx the same as those in MINIX� The issues here are basically the
same as in MINIX�

�



�� Other �SunOS� users logging in via mlogin� As explained further below� the connection
between smx and mlogin is made through SunOS FIFOs created in a directory under
�tmp� The permissions on those FIFOs will determine whether other users can use
mlogin to connect to a running smx� If another user does have access to the FIFOs�
then mlogin will connect them to your instance of smx� They will then have to go
through the standard MINIX login process �so it�s a good idea to have set passwords
for the root and bin accounts� which have no passwords by default���

If another user can login to your running smx� then their actions within smx will be
governed by the standard MINIX security system� The fact that they can run sunread

and sunwrite means that they can read and write your SunOS �les� because smx is
running as one of your processes� Also� they can load their own smx programs that
make SunOS system calls directly that may do things like delete SunOS �les�

You could make sunread and sunwrite executable by root only� but the very deter�
mined cracker could still use a binary editor to create an executable that made SunOS
system calls� Also� given the relative lack of memory protection that exists by default�
data structures in the operating system could be corrupted�

In summary� you don�t want hostile users logging into your smx instances because once
logged in they can easily be disruptive� If you don�t specify the host option in the
con�guration �le� then mlogin is impossible� If the host option is speci�ed� then the
permissions on the FIFOs� and the passwords on your smx usercodes are your two lines
of defence�

�� The smx ethernet emulation is another potential security problem� The relay program
your smx instance is communicating through may have been started by another user�
which means your ethernet tra�c is under the control of another user� If you are using
your own relay� then there is nothing to stop other smx instances from connecting
to it �although if the SunOS �le containing the UDP address of the relay program is
not world�readable a would�be cracker will have to �nd the port number by trial and
error�� If a cracker does connect to your relay program� then they will be able to direct
arbitrary ethernet packets at your smx instances�

� Smx from the inside

The preceeding sections described how to install smx� and how to use it� In this section we
look inside smx and see how MINIX has been changed to produce smx� We �rst discuss the
compilation and linking of smx programs� which is done outside smx� We then go on to discuss
the booting process� management of the address space �what goes where� and protection
issues�� 	interrupt
 handling� emulation of devices� new smx programs� and debugging of
smx�

��� Compilation

We will break the discussion of compilation into two parts� The �rst deals with compilation
and linking of the small number of programs that run under SunOS� The second deals with

�Note that some of the internet remote login programs will not work for usercodes that do not have a

password�

�



compilation and linking of smx executables� and covers both the operating system and user
programs� Finally we give some guidelines on porting software to smx�

����� Compilation of SunOS executables

The new directory �m�src�Solaris contains scripts and programs for use under SunOS� The
purposes of the minix� mlogin and relay programs have already been described� The remain�
ing �ve programs and scripts� mcc� elf	smx� combine� make map file and next prog addr�
support the creation of smx executables in some way� as described in the next sub�section�

The programs in �m�src�Solaris are compiled into standard SunOS ��x executable pro�
grams �in ELF format� by gcc� The standard SunOS header �les are used �for stdio�h�
etc�� Where an smx header �le is to be included� a relative pathname �to ���kernel or
������include� is used� One rami�cation of this is that if students copy a program from
�m�src�Solaris to modify it� then ���kernel and ������include must contain the appro�
priate header �les �the easiest way to do this is to setup two symbolic links��

The installation procedure includes doing a make install in �m�src�Solaris to compile
and install the scripts and binaries in the desired directory�

����� Compilation of smx executables

With the execption of the programs in �m�src�Solaris� and a small number of programs that
are run to produce source �les during creation of smx executables� all other smx programs
are compiled using the smx header �les �in �MX INCL� and library �les �in �MX LIB�� and are
converted to smx executable format� The mcc script is used to compile all �c and �s �les
to �o �les� and to link all smx user programs �except init�� mcc acts as a wrapper for gcc�
as and ld� ensuring that in each case appropriate options are supplied� mcc accepts most
	standard
 Unix compilation options� passing them on to the programs it invokes as needed�

Every smx executable program �le is created by elf	smx from a statically linked ELF
executable� Consider the following command line�

mcc 
o blarg blarg�o

When mcc links the program� it puts the ELF executable produced by ld into blarg�elf�
then converts blarg�elf to blarg using elf	smx� If the 
N option has been speci�ed to mcc

then blarg�elf will not be deleted� otherwise it will be deleted� One use of blarg�elf is
that it contains a symbol table� whereas smx executables do not�

The smx �lesystems supplied with smx contain compiled versions of all smx user programs�
so the installation process does not involve compiling them� A make all in �m�src�commands

compiles all user programs �except init�� Compilation of individual programs is also provided
for� New versions of standard smx executables can be loaded into smx using sunload�

The libraries and C startup �les are created during installation by a make install in
�m�src�lib�

Executables of the programs in �m�src�test are found in �usr�test under smx� They
can be compiled with a make all in �m�src�test� and loaded into smx using the smx script
testload in �usr�test� Note that you will have to edit both sunload and testload so that
each sets sunosdir to the name of the appropriate SunOS directory �it is unlikely that your
path names will be the same as mine���

�



The mcc script is used to compile all C and SPARC assembler �les for the smx executables
loaded from the image �le by minix �kernel� mm� fs� inet� init�� and linking is performed
by ld� with each of the �ve Makefiles containing a custom ld invocation� The custom
ld invoction is needed because the kernel has its own special entry point� and the other
programs use a non�standard C startup routine� which is found in �MX LIB� The start�ups for
these �ve programs are non�standard because they are loaded from the image �le� and not
exec�ed� In the case of the kernel� multiple stacks are needed �the layer � stack� and � stack
per layer � task�� These are all found in the kernel data segment� so the MINIX 	gap
 is
�� For the other four programs� the stack size to use is speci�ed in the Make�le� and this is
written to the gap �eld in the smx executable header by elf	smx� Smx allows for growth of
data and stack segments in user processes� so the gap �eld in the smx executable header is
ignored for these programs �although the old gap values are still set by most Makefiles��

If you want an ELF executable kept for one of the 	image
 programs� comment out the
rm command from the appropriate Makefile� Each of the �ve Makefiles runs the combine

script after re�linking the program� If all executables are present� combine concatenates them
to create a new image �le as �m�src�tools�image�

����� Using ld map �les to assign virtual addresses

As will be dicussed below in ���� smx user programs �including init� are linked to run at
reasonably standard virtual addresses for SunOS processes� At present� ld links each smx user
program to have its text segment at 
x�



� and its data segment aligned on an 
x	




byte boundary� kernel� mm� fs and inet are linked to run in distinct address ranges at
much higher addresses� The kernel is linked to start executing at an address speci�ed in
�m�src�kernel�map� mm must be linked to execute at the address that immediately follows
kernel� fs must be linked to follow mm� and inet must be linked to follow fs�

The mm� fs and inet Makefiles are set up to regenerate the respective map �les �and re�
link the executable according to the new map �le�� whenever the executable of the preceding
program changes� The script make map file is used to generate a new map �le� and it uses
next prog addr to determine where the previous executable ends in virtual memory� If you
change kernel in a way that causes its size to grow and do a make in �m�src�kernel only�
then the resulting image �le will contain a kernel and an mm that overlap in virtual memory�
The minix program detects such situations and aborts the boot if it discovers one� If you do
a make in �m�src�tools� then the �ve �les necessary for the the image �le are created in the
right order� and the address assignment will be correct� As well as speci�ying the starting
addresses of the respective text segments� the kernel� mm� fs and inet map �les specify that
the data segment is aligned on an �Kb boundary�

The data segment is aligned on an �Kb boundary by including A���	 as a data segment
attribute in the �m�src�lib�smx userprog�map and �m�src�kernel�kernel�map �les� and
the map �les generated by make map file� I wanted the data segment to begin at the next
�Kb boundary after the end of the text segment� The A���	 attribute doesn�t actually do
this�it leaves an �Kb gap in the address space �perhaps a little more so that the data
segment starts on a double�word boundary�� This leaves more unused space than if you have
the data segment begin at the next �Kb boundary� If you add in the R���	 data segment
attribute� then the data segment does begin at the next �Kb boundary� Sadly� the Solaris ���
ld doesn�t support this attribute� so I had to remove it from the three places listed above� If
you�re running on Solaris ���� then you can add the R���	 back in �in addition to the A���	��

��



and save an average of �Kb per program �on disk and in memory��

����� Porting software to smx

Although most existing MINIX software can be ported to smx without alteration� there are
some areas where changes may be needed� The following list of observations should be used
as a guide when porting software to smx�

� In smx executables� read�only data �such as string constants� is stored in the text
segment� which is not writable� Changes have been needed to the small number of
MINIX programs discovered �so far� that write to a string constant�

� In the SPARC architecture� N byte primitive objects �integers and �oating point vari�
ables of di�erent sizes� and pointers� must be aligned on N byte boundaries� A few
pieces of MINIX software weren�t su�ciently careful when doing some non�portable
pointer casting and had to be modi�ed to run under smx�

� In smx� dereferencing �following� a null pointer causes a segmentation violation� This
doesn�t happen in MINIX� and many pieces of MINIX software have had to be �xed to
remove null pointer dereferences�

� Any function that has a variable number of arguments might cause problems if it relies
on all arguments being on the stack� This is because on the SPARC the �rst � parame�
ters are passed in registers� rather than on the stack� Programs that use �stdarg�h�
correctly will be OK�

� In smx� int�s are �� bits and shorts �� bits� This di�erence in length has caused some
problems for MINIX code in the past�

� Any assembly language code must be rewritten�

��� The booting process

Smx booting proceeds in two phases� The minix program gets things to the point at which ex�
ecution inside smx is possible� Execution then switches inside the smx kernel� which executes
a somewhat modi�ed version of the standard MINIX bootstrap code�

����� Booting	the minix phase

The �rst boostrap phase is carried out by the minix �SunOS� program� The minix program
gets most of its con�guration information from a �le� The debug �ag and memory protection
can be speci�ed on the command line� overriding any settings in the con�guration �le�

The main functions of the minix program are to�

�� Read the con�guration �le� and open various smx devices on well�known �to minix and
kernel� SunOS descriptors� Every smx �lesystem listed in the con�g �le is opened on its
own descriptor� Descriptors for the controlling terminal are opened� If the host option
appears in the con�guration �le� a sub�directory is created in �tmp containing FIFOs�
These FIFOs are opened on well known descriptors� If a network relay is speci�ed then
a UDP�IP socket is opened on a well�known descriptor and connected to the relay

��



program� The UDP address of the socket created is registered with the relay program
so that broadcasts are relayed to this smx instance� If a log�le is speci�ed it is opened
for writing on a well known descriptor�

As well� various settings are read from the con�guration �le� including the name of the
image �le� the smx memory size� the debug �ag and the memory protection setting�

�� A child process is created that will run smx� The parent waits for the child to exit�
and then tidies up by restoring the settings of the controlling terminal� and deleting the
FIFO directory in �tmp �if one was created��

�� The child creates a temporary �le that is the same size as smx 	physical
 memory� and
maps it into the child�s address space at the virtual address assigned to the beginning
of kernel�s text segment� This mapped area is the physical memory of smx� The �ve
programs in image are then read into this memory�

�� An smx bootinfo structure at the start of kernel data segment is �lled in� It contains
the physical memory size of smx� the debug �ag� the protection level� the ethernet
address �which is the UDP address of the socket created to send and receive ethernet
packets� and details of all the programs loaded �text and data segment sizes� text
and data segment virtual addresses� and entry point�� �m�src�kernel�main�o must
be the �rst object �le speci�ed to ld when kernel is linked so as to ensure that the
smx bootinfo structure comes at the start of the kernel data segment�

�� Execution then switches to the kernel entry point�

����� Booting	the kernel phase

The kernel entry point is in a small piece of SPARC assembler code that sets the stack
pointer to point into the layer � stack� and then calls the C function main� The main pieces
of smx�speci�c code added to the standard boot sequence involve setting up the handling of
SunOS signals� and setting up of memory protection �both are described further below��

��� Management of the address space

As discussed above in ������ kernel� mm� fs and inet are linked to run in contiguous chunks
of address space starting well above address � �at present� kernel is linked to start ��Mb
into the address space�� During the boot sequence� smx 	physical
 memory is mapped into
the smx SunOS process starting from the address at which kernel has been linked to begin
at� and kernel� mm� fs and inet are loaded into the addresses they were linked to run at�

User processes in smx occupy three areas of physical memory� which contain a text seg�
ment� a data segment and a stack segment� All user programs are linked to run at reasonably
standard SunOS virtual addresses� which are very near the bottom of the address space�
When kernel is about to switch execution to a user process� it maps the virtual address
ranges where the smx user program has been linked to run to the appropriate areas of the
mapped temporary �le that contain the three chunks of 	physical
 memory allocated to that
particular smx process� The �rst smx user process to run wipes out the mappings to the text
and data segment of the minix program� but it has done its job and execution never returns
to it�

��



In MINIX� one chunk of memory is allocated for the data�gap�stack area� with the space
left for growth of the data and stack segments speci�ed in the header of the executable� In
smx� separate data and stack segments are supported �for user processes only�the MINIX
approach is used for kernel� mm� fs and inet�� and they can grow as needed� Initially the
data segment of a user process is large enough to contain the data and bss� and the stack is
large enough to hold the initial stack� The stack of each user process is mapped so that it
immediately precedes the kernel text segment� which leaves a large gap in virtual memory
that both data and stack segments can expand into�

The SunOS mprotect system call gives us the ability to go some way towards protecting
the various smx address spaces from each other� There are three protection levels� as described
below� The protection level to use can be speci�ed in the smx con�guration �le� and on the
minix command line� The levels are�

� none� All smx 	physical
 memory is rwx at all times� 	virtual
 memory mappings for
user processes are rwx�

� half �the default�� kernel� mm� fs and inet have their text segments in physical memory
set to be r
x� the rest of 	physical memory
 is rwx at all times� Virtual memory
mappings are r
x for text� rwx for data and stack�

� full� When execution is in kernel� the kernel text segment is r
x and the data segment
is rwx� The rest of physical memory is 


� except for when kernel is copying data to
or from other address spaces during which the source memory is made readable and the
destination writable�

When execution is in a process outside the kernel� the virtual mapping for the process�
text segment is r
x and for the data and stack is rwx �the mappings in physical memory
remain at 


� except when mm or fs or inet is running when the protection on phys�
ical memory is changed because their virtual addresses are the same as their physical
addresses�� Much of kernel is 


� Some code and data structures �su�cient to turn
kernel access on and o�� are accessible� but not writable� The layer � stack is rwx�
but contains nothing of relevance while execution is outside kernel� The kernel cannot�
therefore� be corrupted�

Because of the amount of context switching done by smx� full protection is not the default
because it is slow� Full protection is useful in tracking down memory corruption problems�
however�

One �nal memory�related point� The click size in smx is �Kb� as that is the largest page
size on current Suns�

��� Interrupt handling

In smx� execution is forced into layer � by SunOS signals rather than by hardware traps and
interrupts� The bulk of the signal handling code is in the �les �m�src�kernel�mpx�c and
�m�src�kernel�sunsighandle�c� The latter �le includes the standard SunOS �signal�h�
and contains functions that draw heavily on the information in that header �le� To avoid
type clashes� many of the standard smx header �les cannot be included by sunsighandle�c�

The SunOS signal mask used when execution is in layer � allows only 	error
 signals �such
as illegal instruction� to be delivered� so what MINIX calls 	nested interrupts
 cannot occur�

��



A single signal handler �SunOSsig� is installed to handle all SunOS signals� SunOSsig

is responsible for enabling kernel access �if full protection is on�� saving the context of the
interrupted smx process� calling the appropriate smx handler within layer �� picking a process
to resume� and resuming that process �which enables delivery of all SunOS signals��

There are two SunOS signals that arise asynchronously in ordinary smx operation� and
one that arises synchronously� The alarm signal is delivered regularly �currently �� times a
second� to simulate clock ticks� The IO signal is received whenever terminal or ethernet input
becomes available� The three smx system calls �send� receive and sendrec� force execution
into kernel by sending a USR� signal to the SunOS process running smx� The ALRM� IO
and USR� signals have their own smx handlers�

The exception handler is called for all other SunOS signals� If a segmentation violation
occurs in a user process� and the address being accessed might be on the stack �the address
being accessed lies between the data and stack segments� then a SIGSTKFLT is relayed to the
memory manager to have the stack extended� Otherwise� if the signal is an 	error
 signal and
arose in an smx user process� exception maps the SunOS signal number to a MINIX signal
number and has the memory manager deliver the signal to the o�ending smx user process� If
an 	error
 signal occurs in layer �� � or � code then smx is aborted and various dumps are
produced to aid debugging� If the SunOS TERM signal is received then smx immediately
terminates� All other SunOS signals are quietly ignored�

In smx� the stackframe s type �used in MINIX to hold a process context� is de�ned
to be the same size as SunOS ucontext t structure� which holds a SunOS context� Be�
cause of clashes between the smx and SunOS header �les� we decided not to include the
SunOS �ucontext�h� �le directly into smx kernel source �les� Instead� the program
�m�src�kernel�make offset�c is used to create the uc offset�h header �le from�ucontext�h��
The uc offset�h �le speci�es the size of the SunOS ucontext t and gwindows structures�
as well as the o�sets of many �elds within the ucontext t structure� Smx kernel sources
include uc offset�h without introducing con�icts with smx header �les�

A gwindows structure is only part of the context of an smx process if� when a signal
occurs� it is not possible to �ush the contents of the in�use SPARC register windows to the
stack� One way of handling such events would be to have a gwindows structure as part of
the saved context of every process� Because the gwindows structure is large �currently ����
bytes� as against ��� for a ucontext t� and seldom used �only needed while a user process
is having its stack extended� an alternative �though less elegant� approach was taken� There
is a single save area for a gwindows sturcture� When a SunOS signal arrives� and the saved
context contains a gwindows structure� the structure is saved and gwin proc is set to point
to the relevant process� No user processes can run while gwin proc is non�zero �as we only
have one save area�� Soon after� mm gets to run� It expands the stack of gwin proc which
then becomes runnable again� gwin proc is the next user process to run� When execution
switches to gwin proc� the registers in the saved gwindows structure are restored �removing
the restriction on scheduling user processes� and gwin proc is set to zero�

Another issue in this area is delivery of smx signals to signal handlers in smx processes�
When an smx signal occurs that is being handled in the smx process the signal is destined
for� the smx kernel copies the saved context of the smx process onto the stack of the smx
process� A stack frame is then allocated for the signal handler� and the context of the smx
process saved in the kernel process table is adjusted so that�

� The program counter is set to the address of the library function sigreturn in the

��



smx process�

� Register �o
 is set to the smx signal number� register �o� is set to �� and register �o	
is set to point to the saved context on the stack� These are the three parameters for
the signal handler�

� Register �o� is set to the address of the signal handler�

When the kernel next switches to the smx process� execution resumes from the begin�
ning of sigreturn� It saves a copy of the pointer to the context� then calls the handler
�whose address is in �o��� When the handler returns� sigreturn calls the standard MINIX
sigreturn function� passing to it the address of the saved context� sigreturn makes a
MINIX system call to MM to have the saved context restored so that the smx process re�
sumes at the point it was at when the signal occurred�

��� Devices

All smx devices are somehow emulated using SunOS system calls� Here we will discuss
emulation of disks� the ethernet interface� terminals� the hardware clock and the various
memory device �les� Printing is not provided by smx� the smx printer device driver simply
replies with EINVAL to any messages sent to it�

����� Disks

Each smx �le system is stored as a single SunOS �le� Mappings between smx �le systems and
SunOS �les are recorded in the smx con�guration �le� Up to eight �le systems� hdx
 to hdx��
are currently provided for� In the con�guration �le� a mapping between a �le system and a
SunOS �le is speci�ed by giving the �le system name as the option name� and the SunOS �le
name as its value� The hdx
 �le system is the root �le system� and this option must always
be speci�ed� In the standard setup� hdx� is mounted as �usr�bin and hdx	 is mounted as
�usr�man� These �le systems are stored in �les in �m�disks�

The minix program opens �le system hdxN on SunOS �le descriptor DISK FD � N� When
the disk device driver goes to access a disk with minor device number N� it uses SunOS �le
descriptor DISK FD � N� The MINIX �oppy disk driver has been converted to the smx disk
driver� and the winchester driver has been omitted from smx�

It is easy to create new smx �le systems� One way to create a new �le system is to simply
take a copy of an existing �le system of the appropriate size� This new �le system can then be
mounted� and any existing �les deleted� under smx� If this is not possible� a new �le system
can be created by doing the following�

�� Decide on the device name to use� Let�s imagine that hdx� is selected�

�� Add the following line to the smx con�guration �le�

hdx� filename

where filename is the SunOS �le name of the �le that is to hold the new �le system�

�� Create the SunOS �le filename using touch��� under SunOS�

��



�� Enter smx� Create the �le system using�

mkfs 
b fs�size �dev�hdx�

where fs size is the number of �Kb blocks in the �le system�

�� Mount the new �le system�

mount �dev�hdx� mount�point

where mount point is the name of the smx directory that you want to mount the new
�le system on�

Creating a new root �le system requires some care� If the new root �le system is to be the
same size as an existing root �le system� then the SunOS cp command can be used to create
the new root �le system� Otherwise� the new root �le system should be created as described
above� and initialised by doing the following �in all cases use the 
p option of cp to preserve
�le attributes��

�� Copy all dot �les from � to the root directory of the new �lesystem�

�� Copy the �bin and �etc directories to the new root� Use the 
r option of cp �as well
as 
p� to copy recursively� and preserve the hard link structure�

�� Create dev� mnt� root� tmp� usr� usr�bin� usr�man and usr�adm directories in the new
root� and make the permissions� owner and group of each new directory the same as the
corresponding directory in ��

�� Copy �
r 
p� all sub�directories from �usr �except for �usr�bin� �usr�man and usr�adm�
into the usr on the new root�

�� Change to the dev directory in the new root� and use the command�

MAKEDEV sun

to create the new device �les�

The new root �lesystem is now ready for use� If you want a login record to be kept on it�
create an empty usr�adm�wtmp�

It is possible to mount an smx �le system read�only �to facilitate this� the minix bootstrap
tries to open a �le containing an smx �lesystem read�only if the �le cannot be opened read�
write��

��



����� Ethernet emulation

The ethernet task uses the UDP�IP socket opened by minix on ETHER FD �and connected
to an instance of the relay program� as an ethernet port� The ethernet task returns the
UDP�IP address bound to ETHER FD as its ethernet address �consequently rarpd cannot be
used because ethernet addresses are not constant�� It is very handy that ethernet addresses
and UDP addresses are both � bytes long�

Outgoing packets are written immediately to ETHER FD� and a �MINIX� reply message is
sent back to inet to that e�ect� Whenever a packet arrives� a SunOS SIGIO is received by
smx� The incoming packet is read into a bu�er if there is room� and is discarded if there is
no room�

One problem struck in compiling the MINIX networking software for smx was that the
inet process casts pointers into a packet bu�er to be pointers to various sorts of struc�
tures� The fact that the ethernet header is �� bytes was leading to alignment problems for
pointers to the various IP headers� For this reason� two bytes of padding have been added
to smx ethernet headers to make them �� bytes� The header expansion involved changes to
�m�include�net�gen�ether�h� �m�include�net�gen�eth hdr�h and �m�src�inet�generic�arp�c�
Because the present implementation involves exchanging ethernet packets between smx in�
stances only over a simulated ethernet� this expansion in the ethernet packet header hasn�t
caused any problems�

It may seem strange that all packets go via the relay program� given that it would be
possible to send a �non�broadcast� ethernet packet direct to the smx instance it is destined
for �the UDP�IP address of the destination port is� after all� in the packet header�� Smx
can make use of SunOS system calls only� and not SunOS library calls� It is easier to just
have the ETHER FD socket connected by the bootstrap� and just to call write in the ethernet
driver� than it is to emulate the SunOS library calls needed to individually address each UDP
message from the ethernet driver� Also� having all ethernet messages go through one program
is somewhat similar to having all messages sent over a shared bus�

����� Terminals

When kernel and minix are compiled� the number of consoles supported �NR CONS� is com�
piled into both programs� When smx is being booted� if the host option appears in the
con�guration �le then the directory �tmp�hostname is created� In this directory� the follow�
ing �les are created�

� lock� which contains two integers in binary form� the number of consoles available
via mlogin �NR CONS � � because the system console is not implemented through
mlogin�� and a bit map recording which of the NR CONS � � 	lines
 is currently
available�

� For each line I �� � I � NR CONS � ��� a pair of FIFOs called in�I and out�I�
Smx reads input for terminal I from the FIFO in�I� and sends output to terminal I to
out�I�

For terminal line I� minix sets up descriptor TERMINAL FD � 	I for reading input from I

and TERMINAL FD � 	I � � for writing output to I� Line � is the console� so its descriptors
refer to the controlling terminal of the SunOS process that is running smx� For the other
lines� the descriptors refer to the FIFOs created in �tmp�hostname�

��



For both the console and additional logins via mlogin� the controlling SunOS terminal is
set to do no input or output processing� leaving those functions to smx� The SunOS terminals
are setup to interrupt �with the IO signal� when new input is available� The terminal input
handling done by the smx terminal device driver is quite simple�if input does not �t into
the terminal�s input bu�er then it is discarded�

At the user level� an entry for xterm has been added to �etc�termcap� and all terminal
type entries in �etc�ttytab have been set to xterm� The termcap entry for xterm speci�es
�� lines� you can change it if your xterm windows are larger� If you use a di�erent X terminal
emulator� then you will need to add an entry for it to �etc�termcap�

����� Memory

The MINIX memory device driver is responsible for four special �les��dev�null� �dev�mem
�physical memory�� �dev�kmem �kernel virtual memory� and �dev�ram �the RAM disk�� The
null device works just as in MINIX� and the RAM disk is not implemented in smx �there is
no need for it�� so neither is discussed further�

As we saw in ���� the 	physical
 memory of smx is an area mapped into the address space
of the SunOS process well above address �� The kernel� mm� fs and inet programs are all
linked to run at the addresses they are loaded into in this mapped area� while user processes
are mapped to run much lower in the address space�

For both the mem and kmem device special �les� location � corresponds to address � in the
SunOS address space� In the case of kmem� the special �le extends to the end of the kernel
data segment� and in the case of mem to the end of smx 	physical
 memory� At �rst glance�
this approach of having a large gap at the start of the mem and kmem special �les may seem
strange� It has been done this way so that programs like ps that compute physical addresses
then retrieve data from those addresses can operate in the same way as in standard MINIX�
that is by doing an lseek on the appropriate device to the physical address computed� followed
by a read�

����� Clock

The main change to clock handling introduced by smx is that in the clock task main loop
realtime is updated by �nding the current SunOS time using gettimeofday� rather than
by having pending ticks added to it� This is done because the frequency of SunOS ALRM
signals is likely to be much less stable than that of the hardware clock available in native
MINIX versions�

��� New smx programs

A few smx programs have been added to the standard MINIX ones� Man pages are available
under smx�

��
�� sunread and sunwrite

This is actually one program with two hard links to it� A single command line argument
is expected� which speci�es the pathname of a SunOS �le� When invoked as sunread� the
program copies the SunOS �le to stdout� When invoked as sunwrite� the program copies
stdin to the SunOS �le�

��



��
�� sunload

This shell script installs the standard binaries �plus any support �les� into ��usr� ��usr�bin
and ��usr�lib� If you want to overwrite the current standard binaries� run sunload from ��
If you are creating a new set of binaries� run sunload from the appropriate directory�

sunload is needed because the smx programs are compiled and linked under SunOS� and
the Makefiles under SunOS cannot install software into smx �le systems� See the manual
page under smx for more details�

��
�� tcsh and uemacs

These programs have been added to smx because I like using them� Be warned that the
support for shell script execution is built into sh and not into the memory manager� so shell
scripts cannot be executed from tcsh by just giving the script name as a command �though
of course you can still enter the command line sh scriptname��

��	 Debugging

There is some debugging support provided in smx� This includes�

�� When starting minix� debugging output can be enabled via the 
d command line op�
tion� or by specifying the debug option in the con�guration �le with a value of on�
When debugging is enabled� minix prints various pieces of debugging information� and
also passes on the debug �ag to kernel� which causes some information to be printed
during system startup� At present� no debugging information is printed once booting
is completed� Within kernel the functions debug int� debug str and debug char are
called to produce the debugging information� They produce output only if debugging
is enabled�

�� Calls to printf can be added to kernel� mm� fs and inet� Output appears on the
console�

�� If a SunOS error signal is received while execution is in kernel� or a kernel panic
occurs� then various dumps are printed containing information on the location of the
error� and on the state of smx at the time of the error� If the system locks up then
control�underscore can be typed at the console to induce a panic�

�� When a SunOS error signal is received while execution is in an smx user process then� in
addition to the appropriate smx signal being delivered� details of the signal are printed
on the console� I have found this a useful debugging aid� If it becomes annoying� just
comment out the printf statement in �m�src�kernel�sunexception�c�

�� The interaction network monitor �see section �� records details of some aspects of system
operation� with particular emphasis on message passing� By default it records the events
that occur as a direct result of each user input� This means that no events are recorded
until the user starts entering a usercode during login� To have all events recorded�
remove the comments around the de�nition of LOG ALL in �m�src�kernel�logging�c�

Be warned that log �les grow very quickly�

��



�� The full set of MINIX test programs are provided in �m�src�test under SunOS� and
�usr�test in smx� All of the binaries can be created with a make all in �m�src�test�
Under smx� running testload in the �usr�test directory loads all of the test �les
�remember to modify the testload script to re�ect the SunOS path of the �m�src�test
directory�� To run the tests� execute the command ��run in �usr�test�

The test programs are best run by the bin usercode� as several tests abort if run by
root� On the other hand� some of the test programs perform additional tests when run
by root� so running the tests from bin and from root gives the best coverage�

The current version of smx passes all of the tests� although one or two race conditions
exist in the test suite that sometimes result in spurious errors being reported� None of
the test programs has been changed in a material way� The two test scripts have been
modi�ed to remove references to commands that are not available under smx �such as
cc�� While the test suite isn�t really a debugging tool� it will help to uncover bugs
introduced into the OS�

If an smx program falls over� then you will often be left with the address of the instruction
where the program crashed� and you will want to �nd the function that contains that address�
The kernel� mm� fs and inet text segments occupy unique address ranges �as reported by
minix with debugging enabled�� so it is easy to determine whether a crash occurred in one
of them� Once you have determined which program has crashed� you can locate the function
that contains the address where the crash occurred by running the SunOS nm command on
the ELF version of the executable� You can disassemble the ELF executable to �nd out more
about what the program was doing at the point it crashed� By default the ELF executables
are deleted after the smx executable has been produced� See ����� for details on how to stop
the ELF version of an smx executable being deleted�

� The interaction network monitor

Interaction network recording is a technique developed for monitoring distributed systems�
Substantial prototypes have been developed for SunOS ��� 
�� and more recently for Amoeba

��� The third implementation of the monitor is for smx�

The idea behind the interaction network approach is that it should be possible to record�
for each user input� all events that result from the input� The interaction network approach
is aimed at providing improved understanding of interactive processing done by complex
systems� and in particular is aimed at providing performance information�

The smx kernel contains event recording probes and an event recorder� The minix

bootstrap program opens a SunOS log �le if the logfile option appears in the con�guration
�le� and the event recorder in kernel writes event records relating to �by default� interactive
processing to the log �le if monitoring is enabled� In the other IN monitors� monitoring can
be turned on and o� during system operation� This is not yet possible in the smx version�
where monitoring can only be enabled or disabled for an entire smx session�

At the end of an smx session during which logging was enabled� you will be left with a �le
�whose name was speci�ed as the value for the logfile option� containing all of the event
records recorded during that session� Four programs are available in �m�src�Solaris�IN for
analysis of the interaction networks present in the session log �le� The logdump program
gives a text dump of all event records in a speci�ed log �le� The insplit program takes

��



a speci�ed session log �le and groups the event records into interaction networks� one per
user input� Each interaction network is written to a separate task log �le� Each of the task
log �les produced by insplit has a name that consists of � hex digits� The totcl program
takes a speci�ed task log �le and from it produces an input �le �with a tcl in extension�
for browser� The browser program takes the speci�ed tcl in �le and uses it to produce a
graphical display of an interaction network�

Doing a make all in �m�src�Solaris�IN compiles and links logdump� insplit and
totcl� The browser program is written in TCL�Tk� You will have to change browser

so that the �rst line speci�es the full path�name of the wish program on your system� See
�m�doc�tr
cosc�
���� ps for examples of interaction networks recorded for smx ����� �all
of which should be the same as those recorded for smx �����

The IN monitoring package is something of an 	optional extra
� and so is not yet docu�
mented as well as the rest of smx�

Appendix A� Manual pages for SunOS commands

Smx involves use of eight SunOS programs� Three of the eight �combine� make map file and
next prog addr� exist only to support production of the image �le in various ways� They are
invoked when needed by the relevant Makefiles� Because they are not invoked directly by
the user� and because they have been adequately explained in section ������ they will not be
discussed here� In this appendix we give information on use of three programs that support
execution of smx �minix� mlogin and relay�� and two program that support compilation and
linking of smx executables �mcc and elf	smx��

Appendix A��
 minix

The syntax for the minix command is�

minix �
d� �
m �none�half�full�� �config
file�

This program opens smx devices� loads the smx kernel� memory manager� �le system�
internet and init programs into memory and passes control to the smx kernel� A con�guration
�le is used to specify how the smx system is to be set up� If a config
file appears on the
command line� then that is the name of the con�guration �le� Otherwise� minix looks for the
con�guration �le in ���minix� and if that �le doesn�t exist then it looks for ���minix�

The con�guration �le is processed by minix in a line�oriented fashion� Blank lines are
ignored� and lines that start with a � are treated as comment lines� All other lines begin with
an option name which is followed by the option value� Currently� all options and option values
are a single word� Some options �debug and protect� can be speci�ed on the command line�
The 
d option is equivalent to debug on in the con�guration �le� and 
m value is equivalent
to protect value� An option value on the command line takes precedence over a value in
the con�guration �le�

The options that can appear in the con�guration �le are�

� hdxI� where I is in the range � to �� The value is the pathname of a SunOS �le that
contains an smx �le system� The speci�ed �le system is made available as �dev�hdxI
under smx� The hdx
 option must appear in every smx con�guration �le� as it speci�es

��



the root �le system� An attempt to access �dev�hdxI under smx where there was no
hdxI option in the con�guration �le will result in an 	Unrecoverable disk error
 being
reported�

� image� The option value is the name of a SunOS �le that contains a 	boot image
�
which consists of the smx kernel� mm� fs� inet and init programs� The image option
must appear in every con�guration �le�

� host� This option is needed to give your smx system a 	host name
 so that the mlogin
program can be used to provide additional logins� If the option value is �say� paulminix�
then the directory �tmp�paulminix is created� A �le to control terminal allocation
��tmp�paulminix�lock� is created� as well as FIFOs to provide data transfer between
mlogin instances and smx� The default is for there to be no host name� and no mlogin

capability�

� relay file� Speci�es the name of a �le written by a running relay program� If this
option is speci�ed then networking is enabled� The relay process �contacted at the
UDP address speci�ed in the �le whose name is the relay option value� relays packets
between smx instances� thereby emulating an ethernet segment�

� memory� Speci�es the amount of memory to be allocated for smx� The units used
are kilobytes� Because the current �ve 	system
 programs require nearly ���Mb� the
memory speci�ed must be at least ���� ����Mb�� The current maximum is �����
���MB�� but this could easily be increased if needed� The default is ���� ��Mb��

� protect� Speci�es the level of memory protection between smx processes� Basically�
level none gives no protection� level half prevents writes to text segments� and level
full gives almost complete protection� by giving each smx process access only to its own
address space� The default is half� because the full option introduces considerable
overhead�

� debug� Either on or off can be speci�ed as values� If debugging is enabled� additional
messages are printed by minix and kernel during the booting process� By default�
debugging is o��

� logfile� The value for this option is the name of a SunOS �le to hold event records
produced by the interaction network monitor� Its presence enables monitoring� If the
logfile option is not speci�ed� then no logging is performed�

To be able to run minix no matter what your current directory is� put a �minix �le in
your home directory� and make sure that all SunOS pathnames in the �le are full pathnames�

If smx locks up� and you are unable to terminate it using shutdown� and control�underscore
on the console won�t terminate smx� then you will have to use kill under SunOS to terminate
smx� Remember to kill the child process so that the parent process can tidy up�

Appendix A��
 mlogin

The syntax for the mlogin command is�

mlogin hostname

��



where hostname is the name speci�ed for the host option in the con�guration �le of an
instance of smx that is currently running on the Sun on which mlogin is invoked� If such
an smx instance exists� and a terminal line is available� and the user invoking mlogin has
write permission on the �les in �tmp�hostname� then mlogin provides a terminal line to the
relevant smx instance� To exit from mlogin� hold down the control key and type quit�

Appendix A��
 relay

The syntax for the relay command is�

relay relayfile

relay opens a UDP socket� and writes the name of the host it is running on and the UDP
port number of its socket to relayfile� Instances of smx use this information in connecting
to a running relay program via the relay file option in the con�guration �le�

After writing relayfile� the relay program enters a packet processing loop� Packets
come in three �avours�

� packets whose destination 	ethernet
 address is the UDP address of the relay program�
Such a packet is sent by the minix bootstrap program to register with the relay program
the 	ethernet
 address of the sending smx instance �which is actually the UDP address
of a socket created by the smx instance�� The 	ethernet
 address registered is the source
address in the ethernet header�

� broadcast packets� These are forwarded to all registered smx instances except the
sender�

� packets addressed to another smx instance� Such packets are forwarded to the appro�
priate smx instance� as per the destination UDP address in the ethernet destination
address of the ethernet packet header�

At the moment� no 	de�registration
 occurs when an smx instance is shut down� This will
leave the relay program forwarding broadcasts to smx instances that no longer exist� If this
turns out to be a problem in practice then we might have to add some sort of de�registration�

Appendix A��
 mcc

mcc is a shell script used for compilation of all smx source �les �except the few that execute
directly under SunOS�� and to link all smx user programs �except init�� mcc uses gcc to
compile C programs� as to assemble SPARC assembler �les� ld to link ELF executables� and
elf	smx to convert ELF executables to smx executables� In general� mcc behaves much as a
standard Unix compiler� taking very similar options� There are three options that are special
to mcc�

� If the 
v option is speci�ed� then mcc simply echoes the commands that it would execute�
rather than executing them�

� If the 
S stacksize option is speci�ed� then stacksize is saved and supplied to
elf	smx �if 
S is not speci�ed� the stack size supplied to elf	smx is ��Kb�� Note
that the stacksize is now ignored by the smx memory manager� as it can extend
dynamically the data and stack segments of user processes�

��



� If the 
N option is speci�ed� then the ELF executable �if one is created� is not deleted
after elf	smx has produced the smx executable from it�

mcc deals with remaining options in the following way�

� The 
c option prevents linking �that is� compile only��

� The 
o option speci�es the smx executable to create if linking takes place� the object
�le name if it doesn�t�

� Any 
l options are collected to supply to ld�

� If 
E is speci�ed� it is added to the 	compiler options
� and linking is suppressed�

� All other options are simply added to the 	compiler options
 to pass to gcc and as�

All other arguments on the command line should be names of �c� �s and object �les�
Each of these arguments is considered in turn� and handled in the following way�

� Each �c �le is compiled by gcc� Some standard options are supplied by mcc� Certain
options are supplied to all 	compiles
 �C and SPARC assembler�� These consist of
options to make the �MX INCL directory the only standard header �le directory� and
de�nes to mimic the word size� long size and pointer size de�nes provided by the ack

C compiler� In addition� certain options are supplied to all gcc compiles� These are

funsigned
char �some MINIX library functions assume that the char type is un�
signed�� 
fno
common �elf	smx can�t handle program sections produced from common
areas� and 
O	� Also passed to gcc are the list of 	compiler options
 present on the
mcc command line�

In the very rare circumstance that a standard SunOS header �le is needed� the full
pathname must be speci�ed in the source �le as the standard SunOS header directories
are not searched�

� Each �s �le is assembled by as� The standard options common to gcc and as �listed
above� are supplied to as� as are the 	compiler options
 speci�ed on the command line�

Once all compilations and assemblies have occurred� linking is performed unless it is
inhibited by one of the command line options� The ld command is supplied with the name
of the executable to create� the name of the �o �le containing the standard smx C startup�
the names of all of the �o �les produced by the compilations and assemblies� the names of
any other �le names �usually �o and �a� from the command line� all 
l options from the
command line� and the name of the smx standard C library� Again� there are a standard set
of ld options� including 
dn to have the executable statically linked� an option specifying the
name of the entry point in the startup �le� an option specifying the map �le to use� and an
option specifying that �MX LIB is the only default directory that should be searched when
looking for a library�

If the smx executable blarg is being produced� then the ELF executable is produced in
blarg�elf by ld� The elf	smx program is used to convert blarg�elf to blarg� The stack
size is passed as an option� The �le blarg�elf is then deleted unless 
N was speci�ed on
the mcc command line� Finally all objects produced by compiles and assemblies are deleted
unless the 
c option was given�

��



Appendix A��
 elf�smx

The syntax for the elf	smx command is�

elf	smx �
d� �
S stacksize� ELF
executable smx
executable

elf	smx creates an smx�format executable from an ELF�format executable� The smx
executable consists of an smx header� a text segment �containing text and read�only data�
and a data segment� The text segment is click�aligned� and a multiple of the click size in
length� If the 
d option is speci�ed then some debugging messages are printed�

If 
S is speci�ed� then stacksize speci�es the MINIX 	gap
 �the amount of space to
reserve for heap and stack when a program begins executing�� The stacksize value is
no longer relevant for user processes� as their data and stack segments can be expanded
dynamically� The stacksize value is still relevant for kernel� mm� fs� inet and init� The
minix bootstrap uses the stacksize value in allocating stack space for the programs it loads
�in the case of init only� the stack space can be subsequently expanded��

Appendix B� Class use of smx

This document has mainly concentrated on installing smx for a single user� Where smx is to
be used by students� each student could be given a complete smx distribution� This requires
quite a lot of disk space� so it will usually be preferable to give them copies of only the parts
of the system that they need to change�

For a student to boot their own copy of smx� they will need their own con�guration �le�
and their own root �le system �section ����� describes one way of setting up smx �lesystems so
that each student has a root �le system� and �usr�bin and �usr�man are provided as shared
�le systems common to all students�� Also� they must have the eight SunOS smx executables
�minix� mlogin� and so on� on their search path� With MX INCL and MX LIB set appropriately�
students can compile their own programs for smx� load them into their own smx �le systems�
and run them�

Where students need to modify smx source code� parts of the smx src hierarchy can
be made available as needed� In the case of the kernel the students could be given the
entire �m�src�kernel directory� Because changes in the size of the kernel executable a�ect
the addresses at which mm� fs and inet are linked to run� students must be able to re�link
these programs� Students could have complete copies of these directories� or could have in
each case a directory that contains symbolic links to a single collection of �o �les and the
Makefile� Each student would also need their own tools directory �containing copies of
init and Makefile� or symbolic links to them� where their own image �le is created�

Nearly all smx commands can be copied as individual �les �in the case of commands
in �m�src�commands�simple� or directories �for other commands�� Source �les for some
commands use relative pathnames to include header �les from kernel and�or mm and�or fs�
These include the smx user commands de� df� fsck� fsck�� mkfs� ps and readfs� and the
smx commands elf	smx� minix� mlogin and next prog addr �this second group also uses
relative pathnames to include standard smx header �les from �MX INCL��

In summary� if disk space is an issue then smx �lesystems� sources� object �les and binaries
should be shared as much as possible� This can be done by copying only what students need
to change� and setting up symbolic links to related directories or individual �les� In the past�

��



where students have been asked to modify the kernel� I have given them a script to setup
symbolic links to all kernel �les� and when a student wanted to modify a �le they removed
the symbolic link and replaced it with a copy of the �le to be modi�ed�

Smx �in its various forms� has been used in several student projects since ����� In one
course� students used smx without looking at its internals� This gave them the chance to play
at being sys admins of there very own Unix�like system� They also used de to investigate
the structure of smx �lesystems� In a more advanced course� the older �MINIX �������based�
SunOS MINIX has been used in four assignments�

� In ����� students had to add memory protection to smx� The current smx memory
protection is a legacy of this assignment�

� In ����� students had to carry out a 	race condition audit
 on the smx kernel� The
scope of the audit was to describe how smx dealt with race conditions� and to describe
any race conditions that still existed�

� In ����� students were asked to document the smx kernel�

� In ����� students were asked to use the interaction network monitor to record various
	interesting
 message passing patterns� and to use displays of these interaction networks
as the basis for a report designed to explain various aspects of the operation of MINIX�
Technical report ����� was a direct result of this assignment�

In ����� students were asked to modify smx to support separate� expandable data and
stack segments�

Finally� the smx lab exercises in �m�doc may be useful for introducing students to smx�

Appendix C� Overview of source code changes

The smx directory hierarchy that is installed under SunOS is a slightly modi�ed version of the
standard MINIX hierarchy� Some directories have been added� and some new �les added to
existing directories� Some things are not relevant to smx �such as PC�speci�c source �les and
directories� and these have by and large been removed from the hierarchy� Some directories
contain MINIX �les that while not currently used in smx� may well be added to smx in the
future�

For the most part� smx�speci�c code in existing C source �les is conditionally compiled�
In a few �les� however� changes have been su�ciently extensive that all code not related to
smx has been removed �examples include break�c� exec�c and forkexit�c in �m�src�mm��

Below is an overview of new �les� and �les that have been substantially modi�ed� All
pathnames are relative to �m�

� disks� A new directory containing smx �le systems�

� doc� A new directory for smx documentation�

� include�sun� A new directory for smx�speci�c include �les�

� man�man
� New manual pages added for smx�speci�c commands� sunload� sunread�
sunwrite�

��



� src�Solaris� A new directory containg programs and scripts that run under SunOS�
The IN sub�directory contains the interaction network analysis programs�

� src�commands�scripts�sunload�sh� An smx script for installing standard smx bina�
ries from SunOS�

� src�commands�sun�� A new directory containing smx�speci�c commands �the sunread
command��

� src�commands�tcsh� A new directory containing sources for tcsh�

� src�commands�uemacs� A new directory containing sources for Microemacs�

� src�etc� Files modi�ed somewhat for smx�

� src�kernel� Substantial changes� Many new source �les� most of the remaining �les
were changed in some way�

� src�lib�math�add sun libc obs and src�lib�sun��add sun libc obs� These scripts
extract some �les from the SunOS C library� and include them in the smx C library�

� src�lib�smx userprog�map� Map �le given to ld to control virtual address allocation
when linking executables that are to become smx user programs�

� src�lib�sun�� SPARC assembler sources needed by the library �MINIX message pass�
ing functions� setjmp�longjmp� making system calls to SunOS�� and the standard C
startup �les for smx user executables and system servers�

� src�lib�sunsyscall� SPARC assembler wrappers for all of the POSIX functions� Only
sigreturn�s is anything more than a simple wrapper�

� src�mm� Small changes to support separate data and stack segments that can be ex�
tended dynamically�

� src�test�testload� Script to load the binaries from the src�test directory into smx�

� src�tools��minix� An smx con�guration �le�

In addition� all Makefiles have been changed to support compilation under SunOS�

References


�� Paul Ashton� An interaction network monitor for Amoeba� Technical Report TR�
COSC������ University of Canterbury� Department of Computer Science� October �����
URL� http���www�cosc�canterbury�ac�nz��paul�tr
cosc��
����ps�gz�


�� Paul Ashton and John Penny� A tool for visualising the execution of interactions on a
loosely�coupled distributed system� Software�Practice and Experience� ����������� �����
October �����


�� Andrew S� Tanenbaum and Albert Woodhull� Operating Systems� Design and Implemen�

tation� Prentice�Hall� Englewood Cli�s� NJ� second edition� �����

��


