
®MOTOROLA

68NW9209H48A

SYSTEM V /88 Release 3.2
Programmer's Reference

Manual

(Part 2)

® MOTOROJ,

Motorola welcomes your

Manual Title---�
Part Number-----:

Your Name ____ _

Your Title------:

Company ----­
Address ------

General Information:

Do you read this mant1 :_
D Install the product =

D Reference inforn

In general, how do y01

D Index D Table d

Completeness:
What topic would you

--

®�
0
Ul -I
)>
G)
m

:§
r
r
tJl
m

�
i5
tD
-<
)>
0
0
:D
m
(I)
(I)
m
m

::!]
:D
(I)
-I
0
r
)>
(I)
(I)

tD s::
� c
r �
., z
m m :D en s::
=i en
z ::D 0 m
1\) , (11
Ol r-(11 -<
., �
:X:)> 0 -m r-z
x
)> :D
N
0
z
)>

Presentation: 0 Excellent 0 Very Good 0 Good 0 Fair o Poor

What features of the manual are most useful (tables, figures, appendixes, index, etc.)?

Is the information easy to understand? 0 Yes 0 No If you checked no, please explain:

Is the information easy to find? 0 Yes 0 No If you checked no, please explain:

Technical Accuracy: 0 Excellent 0 Very Good D Good D Fair D Poor

If you have found technical or typographical errors, please list them here.

Pa e Number Descri tion of Error

\

SYSTEM V /88 Release 3.2

Programmer's

Reference Manual

Part 2

(68NW9209H48A)

The information in this document has been carefully checked and is believed to be
entirely reliable . However, no responsibility is assumed for inaccuracies .
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights or the rights of the
others .

PREFACE

The SYSTEM V/88 Release 3 .2 Programmer's Reference Manual, Part 2 is fo1
programmers and technical personnel who have a general familiarity with th(
SYSTEM V/88 operating system.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.
SYSTEM V/88 and SYSTEM V/68 are trademarks of Motorola, Inc.

UNIX is a registered trademark of AT&T.

UniSoft is a registered trademark of UniSoft Corporation.

NFS is a trademark of Sun Microsystems.
Ethernet is a trademark of Xerox Corporation.

�ortions of this document are reprinted from copyrighted documents by
)ermission of UniSoft Corporation: Copyright 1985, 1986, 1987, 1988, 1989,
JniSoft Corporation. All rights reserved.

'ortions of this document have been previously copyrighted by AT&T, Sun
Aicrosystems, and The Regents of the University of California, and are
eproduced with permission .

.YSTEM V/88 Release 3. 2 is based on the AT&T UNIX System V Release 3. 2.
YSTEM V/68 Release 3 is based on the AT&T UNIX System V Release 3 .

.11 rights reserved. No part of this manual may be reproduced, transmitted,
·anscribed, stored in a retrieval system, or translated into any language or
)mputer language, in any form without the prior written permission of Motorola,
\C.

First Edition February 1990

Copyright 1990, Motorola, Inc.

CONTENTS (Part 2)

3. Subroutines (Cont'd)
getpeername (3N) ... gets name of connected peer
nlsgetcall (3N) .. get client's data passed via the listener
nlsprovider (3N) .. get name of transport provider
nlsrequest (3N) format and send listener service request message
cfgetospeed(3P) get or set the value of the output and input baud rate
getgroups (3P) .. get group access list
sigsetjmp (3P) .. non-local jumps
tcdrain(3P) .. line control functions
tcgetattr (3P) get and set terminal state
tcgetpgrp (3P) .. get distinguished process group ID
tcsetpgrp (3P) ... set distinguished process group ID
ctermid(35) .. generate file name for terminal
cuserid (35) .. get character login name of the user
fclose (35) ... close or flush a stream

ferror(35) .. stream status inquiries
fopen(35) . open a stream

\ fread (35) ... binary input/output
fseek (35) .. reposition a file pointer in a stream
getc (35) .. get character or word from a stream
gets (35) .. get a string from a stream
popen(35) ... initiate pipe to/from a process
printf(35) .. print formatted output
putc (35) ... put character or word on a stream
puts (35) .. put a string on a stream
scanf(35) ... convert formatted input
setbuf(35) ... assign buffering to a stream
stdio (35) .. standard buffered input/output package
system(35) ... issue a shell command
tmpfile(3S) ... create a temporary file
tmpnam(35) ... create a name for a temporary file
ungetc(35) .. push character back into input stream
vprintf(35) print formatted output of a varargs argument list

� assert (3X) .. verify program assertion

crypt (3X) .. password and file encryption functions
curses (3X) terminal screen handling and optimization package
directory(3X) ... directory operations
getnum(3X) calculate an integer value from a string of characters

- v -

getperms (3X) ... read the permissions file
getspent (3X) .. get shadow password file entry
ldahread (3X) read the archive header of a member of an archive file
ldclose (3X) .. close a common object file
ldfhread (3X) ... read the file header of a common object file
ldgetname (3X) retrieve symbol name for common object file symbol table entry
ldlread (3X) manipulate line number entries of a common object file function
ldlseek(3X) seek to line number entries of a section of a common object file
ldohseek(3X) seek to the optional file header of a common object file
ldopen (3X) .. open a common object file for reading
ldrseek(3X) seek to relocation entries of a section of a common object file
ldshread(3X) read an indexed/named section header of a common object file
ldsseek(3X) seek to an indexed/named section of a common object file
ldtbindex (3X) compute the index of a symbol table entry of a common object file
ldtbread(3X) read an indexed symbol table entry of a common object file
ldtbseek(3X) seek to the symbol table of a common object file
logname (3X) ... return login name of user
malloc (3X) .. fast main memory allocator
putspent(3X) ... write shadow password file entry
regcmp (3X) ... compile and execute regular expression
sputl(3X) access long integer data in a machine-independf:nt fashion

4. File Formats
intro (4) .. introduction to file formats
a.out(4) ... common assembler and link editor output
acct (4) .. per-process accounting file format
alias(4) . alias file for FACE
ar(4) .. common archive file format
cftime (4) language specific strings for converting times and dates to ASCII

checklist (4) list of file systems processed by fsck and ncheck
core (4) ... format of core image file
cpio(4) ... format of cpio archive
dfile (4) .. device information file
dir (4) .. format of directories
dirent (4) ... file system independent directory entry
env(4) ... system-wide FACE environment variables
errfile (4) ... error-log file format
filehdr (4) .. file header for common object files
filesys (4) permissions file used by the value-added disk access utilities
fs(4) ... format of file system volume
fspec(4) .. format specification in text files

-vi -

fstab (4) . file system table
gettydefs (4) . speed and terminal settings used by getty
group (4) . group file
host (4) . system host name
inittab (4) . script for the init process
inode (4) . format of an i-node
issue (4) . issue identification file
ldfcn (4) . common object file access routines
limits (4) . file header for implementation-specific constants
linenum(4) . line number entries in a common object file
loginlog(4) . log of failed login attempts
master(4) . master device information table
mnttab (4) . mounted file system table
ott(4) . files that hold object architecture information
passwd(4) . password file
profile (4) . setting up an environment at login time
reloc(4) . relocation information for a common object file
rfmaster(4) . Remote File Sharing name server master file
rhosts (4) . user-specified file of equivalent hosts and users
sccsfile (4) . format of sees file
scnhdr(4) . section header for a common object file
scr_dump(4) . format of curses screen image file
syms (4) . common object file symbol table format
system(4) . system configuration information table
term(4) . format of compiled term file
terminfo(4) . terminal capability data base
timezone (4) . set default system time zone
unistd (4) . file header for symbolic constants
utmp (4) . utmp and wtmp entry formats

- vii·

5. Miscellaneous Facilities
intro (S) 0 o 0 0 0 0 0 . . introduction to miscellany
ascii (S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 map of ASCII character set

environ(S) 0 0 o o 0 0 0 0 0 o o o o o 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 user environment
fcntl (S) 0 o file control options
math (S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 math functions and constants
prof(S) 0 o 0 0 o o o o o o o o profile within a function

regexp (S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 regular expression compile and match routines
stat (S) 0 o o o o o data returned by stat system call

term(S) o conventional names for terminals
types (5) 0 0 0 0 o o o o 0 o 0 o primitive system data types
values (S) 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o o o o 0 0 0 o o 0 0 0 0 machine-dependent values

varargs (S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 handle variable argument list

PERMUTED INDEX o PI-1

- viii -

GETPEERNAME (3N) (Internet Utilities)) GETPEERNAME (3N)

I
NAME

getpeername - gets name of connected peer

SYNOPSIS
getpeemame {s, name, namelen)
int s;
struct sockaddr *name;
int *namelenf;

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The
namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return, it contains the actual size of the name
returned (in bytes) .

DIAGNOSTICS
A 0 is returned if the call succeeds; -1 if it fails .

ERRORS
The call succeeds unless:

[EBADF]

[ENOTSOCK]

[ENOTCONN]

[ENOBUFS]

[EFAULT]

SEE ALSO

The arguments is not a valid descriptor.

The arguments is a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system
to perform the operation.

The name parameter points to memory not in a valid
part of the process address space.

bind(2), socket(2), getsockname(2)

- 1 -

NLSGETCALL (3N) (Networking Support Utilities) NLSGETCALL (3N)

NAME
nlsgetcall - get client's data passed via the listener.

SYNOPSIS
#include <sysf/tiuser.h>

struct t_call *nlsgetcall (fd);
int fd;

DESCRIPTION
nlsgetcall allows server processes started by the listener process to access
the client's t_call structure, that is, the sndcall argument of t_connect(3N).
The t_call structure returned by nlsgetcall can be released using tJree(3N).

nlsgetcall returns the address of an allocated t_call structure or NULL i f a
t_call structure cannot be allocated. If the t_alloc succeeds, undefined
environment variables are indicated by a negative len field in the appropri ­

ate netbuf structure . A len field of zero in the netbuf structure is val id and
means that the original buffer in the listener's t_call structure was NULL.

WARNING
The len field in the netbuf structure is defined as being unsigned. In order
to check for error returns, it should first be cast to an int.

SEE ALSO
nlsadmin(1), getenv(3), t_connect(3N), t_alloc(3N), t_free(3N), t_error(3N)

DIAGNOSTICS
A NULL pointer is returned if a t_call structure cannot be allocated by
t_alloc. t_errno can be inspected for further error information. Undefined
environment variables are indicated by a negative length field (len) in the
appropriate netbuf structure .

CAVEATS

FILES

NOTES

The listener process limits the amount of user data (udata) and options
data (opt) to 128 bytes each. Address data addr is limited to 64 bytes. If
the original data was longer, no indication of overflow is given.

/usr/lib/libnsl_s.a

Server processes must call t_sync(3N) before calling this routine .

- 1 -

NLSPROVIDER(3N) (Networking Support Utilities) NLSPROVIDER (3N)

NAME
nlsprovider - get name of transport provider.

SYNOPSIS
char *nlsprovider();

DESCRIPTION
nlsprovider returns a pointer to a NULL terminated character string which
contains the name of the transport provider as placed in the environment
by the listener process . If the variable is not defined in the environment, a
NULL pointer is returned.

The environment variable is only available to server processes started by
the listener process.

SEE ALSO
nlsadmin(lM)

DIAGNOSTICS

FILES

If the variable is not defined in the environment, a NULL pointer is
returned.

/usr/lib/libslan.a (7300)
/usr/libllibnls.a (3B2 Computer)
/usr/lib/libnsl_s.a

NLSREQUEST (3N) (Networking Support Utilities) NLSREQUEST (3N)

NAME
nlsrequest - format and send listener service request message

SYNOPSIS
#include <listen.h>

int nlsrequest (fd, service_code);
int fd;
char *service_code;

extern int _nlslog, t_ermo;
extern char * _nlsrmsg;

DESCRIPTION
Given a virtual circuit to a listener process (fd) and a service code of a
server process, nlsrequest formats and sends a service request message to the
remote listener process requesting that it start the given service . nlsrequest
waits for the remote listener process to return a service request response mes­
sage, which is made available to the caller in the static, null terminated
data buffer pointed to by _nlsrmsg. The service request response message
includes a success or failure code and a text message. The entire message
is printable .

SEE ALSO
nlsadmin(1), t_error(3)

FILES
/usr/lib/libnsl_s.a

DIAGNOSTICS
The success or failure code is the integer return code from nlsrequest. Zero
indicates success, other negative values indicate nlsrequest failures as:

-1: Error encountered by nlsrequest, see t_errno.

Postive values are error return codes from the listener process. Mnemon­
ics for these codes are defined in listen.h:

2: Request message not interpretable .
3: Request service code unknown.
4: Service code known, but currently disabled.

If non-null, _nlsrmsg contains a pointer to a static, NULL terminated cha r­
acter buffer containing the service request response message. Note that both
_nlsrmsg and the data buffer are overwritten by each call to nlsrequest.

If _nlslog is non-zero, nlsrequest prints error messages on stderr. Initia lly,
_nlslog is zero.

- 1 -

NLSREQUEST (3N) (Networking Support Utilities) NLSREQUEST (3N)

WARNING
nlsrequest cannot always be certain that the remote server process has been
successfully started. In this case, nlsrequest returns with no indication of
an error and the caller will receive notification of a disconnect event via a
T_LOOK error before or during the first t_snd or t_rcv call.

-2-

CFGETOSPEED (3P) CFGETOSPEED (3P)

NAME
cfgetospeed, cfgetispeed, cfsetospeed, cfsetispeed - get or set the value of
the output and input baud rate

SYNOPSIS
int cfgetospeed (termio_p)
struct termio •termio_p;

int cfgetispeed (termio_p)
struct termio •termio_p;

int cfsetospeed (termio_p, speed)
struct termio •termio_p;
int speed;

int cfsetispeed (termio_p, speed)
struct termio •termio_p;
int speed;

DESCRIPTION
These routines are used to get and set input and output baud rates.

cfgetospeed returns the output baud rate stored in c_cflag pointed to by
termios_p.

cfgetispeed returns the input baud rate stored in c_cflag pointed to by
termios_p.

The following baud rate values are supported for the value of speed:

0
BSO
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

Hang up
50 baud
75 baud
110 baud
134 baud
150 baud
20p baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

- 1 -

CFGETOSPEED (3P) CFGETOSPEED (3 P)

I
cfsetospeed sets the baud rate stored in c_cflag pointed to by termios_p to
speed. BO is used to terminate the connection; if BO is specified, the
modem control lines will no longer be asserted.

cfsetispeed sets the baud rate stored in c_cflag pointed to by termios_p to
speed. If the speed is 0, the input rate will be specified by the output rate.

For any particular hardware, unsupported baud rate changes are ignored.

cfsetispeed and cfsetospeed only modify the termios structure . For the baud
rate changes to take place, tcsetattr(3P) must be called with the modified
structure as an argument.

RETURN VALUE
cfgetispeed and cfgetospeed return the appropriate baud rate . cfsetispeed and
cfsetospeed returns zero upon successful completion.

SEE ALSO
termios(7), tcgetattr(3P)

- 2 -

GETGROUPS (3P) GETGROUPS(3l'J

NAME
getgroups - get group access list

SYNOPSIS
#include < sys/types.h>
#include < sys/param.h>

int getgroups (gidsetlen, gidset)
int gidsetlen;
gid_t *gidset;

DESCRIPTION
getgroups gets the current group access list of the user process and stores
it in the array gidset. The parameter gidsetlen indicates the number of
entries that may be placed in gidset.

getgroups returns the actual number of groups returned in gidset. No more
than NGROUPS_MAX , as defined in <limits.h> , will ever be returned .
I f gidsetlen i s zero, getgroups returns the number o f supplementary group
IDs associated with the calling process without modifying the array
pointed to by gidset.

RETURN VALUE
If the getgroups is successful the number of groups in the group set will be
returned. If an error is detected, -1 will be returned and erma will be set
to indicate the error.

ERRORS
If any of the following conditions occur, -1 will be returned and errno set
to the corresponding value:

[EINVAL]

[EFAULT]

SEE ALSO

The argument gidsetlen is smaller than the number of
groups in the group set.

The argument gidset specifies an invalid address.

setgroups (2), initgroups (3X)

- 1 -

SIGSETJMP(3P) SIGSETJMP (3P)

I
NAME

sigsetjmp, siglongjmp - non-local jumps

SYNOPSIS
#include < setjmp.h>

int sigsetjmp (env, savemask)
sigjmp_buf env;
int savemask;

void siglongjmp (env, val)
sigjmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

sigsetjmp saves its stack environment in env for later use by siglongjmp . If
the value of savemask is not zero, sigsetjmp also saves the process's current
signal mask as part of the calling environment. The environment type
sigjmp_buf is defined in the <setjmp.h> header file .

siglongjmp restores the environment saved by the last call of sigsetjmp with
the corresponding env argument. If env was initialized by a call to sig­
setjmp with a non-zero value for savemask, siglongjmp also restores the
saved signal mask.

RETURN VALUE
When sigsetjmp has been invoked by the calling process, zero is returned .

After siglongjmp is completed, program execution continues as if the
corresponding call of sigsetjmp (which must not itself have returned in the
interim) had just returned the value val. siglongjmp cannot cause sigsetjmp
to return the value zero. If val is zero, sigsetjmp returns 1 . All accessible
data have values as of the time siglongjmp was called.

WARNING
siglongjmp fails if env was never initialized by a call to sigsetjmp or when
the last such call is in a function which has since returned.

� SEE ALSO
sigaction(3P), sigprocmask(3P), sigsuspend(3P)

- 1 -

TCDRAIN (3P) TCDRAIN (3P)

NAME
tcdrain, tcflow, tcflush, tcsendbreak - line control functions

SYNOPSIS
#include <termios.h>

int tcdrain (fildes)
int fildes;

int tcflow (fildes, action)
int fildes, action;

int tcflush (fildes, queue_selector)
int fildes, queue_selector;
int tcsendbreak (fildes, duration)
int fildes, duration;

DESCRIPTION
tcdrain causes the process to wait until all output written to the object
indicated by fildes has been transmitted.

tcflow will suspend transmission or reception of data on the object indi­
cated by fildes, depending on the value of action. If action is TCOOFF,
output will be suspended. If action is TCOON, suspended output will be
restarted. If action is TCIOF, input will be suspended. If action is TCION,
suspended input will be restarted.

tcflush will discard data written to the object indicated by fildes but not
transmitted, or data received but not read, depending on the value of
queue_selector. If queue_selector is TCIFLUSH, data received but not read
will be flushed. I f queue_selector i s TCOFLUSH, data written but not
transmitted will be flushed. If queue_selector is TCIOFLUSH, both data
received but not read and data written but not transmitted will be flushed.

tcsendbreak will assert a break condition on the serial line associated with
fildes depending on the value of duration. If duration is zero, the break
condition will be asserted for 0.25 seconds. If duration is not zero, break
will last 'duration' milliseconds.

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, -1 is returned
and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, -1 will be returned and errno set
to the corresponding value:

- 1 -

TCDRAIN (3P)

I
[EBADF]

[EINVAL]

[ENOTIY]

TCDRAIN (3P)

fildes is not a valid file descriptor.

The device does not support the function or if the
function called was tcflush, queue_selector is invalid.

The file associated with fildes is not a terminal.

tcdrain will report the following error, in addition to those listed above:

[EINTR]

SEE ALSO
termios(7)

tcdrain was interrupted by a signal.

- ? -

TCGETAITR(3P) TCGETATTR (3 P)

I
NAME

tcgetattr, tcsetattr - get and set terminal state

SYNOPSIS
#include <termios.h>

int tcgetattr (jildes, tennios_p)
int fildes;
struct tennio *tennio_p;

int tcsetattr (jildes, optional_actions, tennio_p)
int fildes, optional_actions;
struct tennio *tennio_p;

DESCRIPTION
tcgetattr retrieves the parameters associated with the device indicated by
fildes and stores them in the tennios structure indicated by termios_p.

tcsetattr sets the parameters associated with the terminal using the infor­
mation in the tennios structure pointed to by termios_p. The action taken
is dependent on the value of optional_actions. If optional_actions is
TCSANOW, the change occurs immediately. If optional_actions is
TCSADRAIN, the change occurs after all output written to fildes has been
transmitted. TCSADRAIN should be used when changing parameters
that affect output. If optional_actions is TCSADFLUSH, the change
occurs after all output written to the object indicated by fildes has been
transmitted; all input that has been received but not read is discarded
before the change is made.

RETURN VALUE
Upon successful completion, zero will be returned. Otherwise, -1 will be
returned and errno set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetattr and tcsetattr will return
-1 and set errno to the corresponding value:

[EBADF] fildes is not a valid file descriptor.

[EINVAL]

[ENOTTY]

[EFAULT]

The device does not support the function called, or
if the function called was tcsetattr, optional_actions
is an invalid value .

The file associated with fildes is not a termina l .

termino_p is an invalid address.

- 1 -

TCGETA TTR(3P) TCGETATTR (3P)

SEE ALSO
cfgetospeed(3P), termios(7)

- 2 -

TCGETPGRP (3P)

NAME
tcgetpgrp - get distinguished process group ID

SYNOPSIS
#include < termios.h>

int tcgetpgrp (jildes)
int fildes;

DESCRIPTION
tcgetpgrp returns the value of the process group ID of the distinguished
process group associated with the terminal.

tcgetpgrp is part of the POSIX Job Control Option.

RETURN VALUE
Upon successful completion, tcgetpgrp returns the process group ID of the
d istinguished process group associated with the terminal. Otherwise, -1
is returned and erma is set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetpgrp will return -1 and set
erm a to the corresponding value:

[EBADF] fildes is not a valid file descriptor.

[EINVAL]

[ENOTIY]

SEE ALSO

tcgetpgrp is not permitted for the device associa ted
with fildes.

The calling process does not have a controlling ter­
minal or the file is not the controlling termina l .

setpgrp(2), setpgid(2), tcsetpgrp(3P)

- 1 -

TCSETPGRP (3P) TCSETPGRP (3P)

NAME
tcsetpgrp - set distinguished process group ID

SYNOPSIS
#include <termios.h>

int tcsetpgrp (jildes, pgrp_id)
int fildes;
int pgrp_id;

DESCRIPTION
If the process has a controlling terminal, tcsetpgrp will set the dis­
tinguished process group ID associated with the terminal to pgrp_id. The
file associated with fildes must be the controlling terminal of the cal l ing
process. There must be at least one process in pgrp_id that has the same
controlling terminal as the calling process.

tcsetpgrp is part of the POSIX Job Control Option.

RETURN VALUE
Upon successful completion, tcsetpgrp returns zero. Otherwise, -1 i s
returned and errno is set to indicate the error.

ERRORS
[EBADF]

[EINVAL]

[ENOTIY]

[EPERM]

SEE ALSO

fildes is not a valid file descriptor.

tcsetpgrp is not permitted for the device associated with
fildes or the value of pgrp_id is less than or equal to zero
or exceeds {PID _MAX}.

The calling process does not have a controlling terminal or
the file is not the controlling terminal.

pgrp_id is greater than zero and less than or equal to
{PID_MAX}, but does not match the process group ID of a
process in the same session as the calling process.

setpgrp(2), setpgid(2), tcgetpgrp(3P)

- 1 -

CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include < stdio.h>
char •ctermid (s)
char •s;

DESCRIPTION

NOTES

ctennid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctennid, and the
address of which is returned. Otherwise, s is assumed to point to a char­
acter array of at least L_ctermid elements; the path name is placed in this
array and the value of s is returned. The constant L_ctermid is defined in
the < stdio.h> header file .

The difference between ctennid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal asso­
ciated with that file descriptor, while ctennid returns a string (/dev/tty)
that will refer to the terminal if used as a file name. Thus, ttyname is use­
ful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C)

- 1 -

,..._ rrogramming Language Utilities) CUSERID (3 S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include < stdio.h>

char *cuserid (s)
char *Si

DESCRIPTION
cuserid generates a character-string representation of the login name that
the owner of the current process is logged in under. If s is a NULL
pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the representation is left in this
array. The constant L_cuserid is defined in the < stdio.h> header file .

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is
not a NULL pointer, a null character (\0) will be placed at s[O].

SEE ALSO
getlogin(3C), getpwent(3C)

- 1 -

\

FCLOSE (3S) l L l'rogramnun0 L..au6 6 �·····---·

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int £close (stream)
FILE *Stream;

int £flush (stream)
FILE *Stream;

DESCRIPTION
fclose causes any buffered data for the named stream to be written out, and
the stream to be closed.

fclose is performed automatically for all open files upon calling exit(2) .

fflush causes any buffered data for the named stream to be written to tha t
file. The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (e .g . , trying to
write to a file that has not been opened for writing) was detected.

- 1 -

- _______ , _, ''- rrogramming Language Utilities) FERROR (3 S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int £error (stream)
FILE *Stream;

int feof (stream)
FILE *Stream;

void clearerr (stream)
FILE *Stream;

int fileno (stream)
FILE *Stream;

DESCRIPTION

NOTES

ferror returns non-zero when an VO error has previously occurred reading
from or writing to the named stream, otherwise, zero.

feof returns non-zero when EOF has previously been detected reading the
named input stream, otherwise, zero.

clearerr resets the error indicator and EOF indicator to zero on the named
stream .

fileno returns the integer file descriptor associated with the named stream;
see open(2) .

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open(2), fopen(3S), stdio(3S)

- 1 -

FOPEN (3S) (C Programming Language Utilities J

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h>

FILE *fopen (filennme, type)
char *filennme, * type;

FILE *freopen (filennme, type, stream)
char *filennme, *type;
FILE *Stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
fopen opens the file named by filennme and associates a stream with it.
fopen returns a pointer to the FILE structure associated with the stream .

filennme points to a character string that contains the name of the file to be
opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append; open for writing EOF, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF

freopen substitutes the named file in place of the open stream . The original
stream is closed, regardless of whether the open ultimately succeeds . [reo­
pen returns a pointer to the FILE structure associated with stream .

freopen is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files .

- 1 -

.I:'UYI:iN(3S) (C Programming Language Utilities) FOPEN (3 S)

fdopen associates a stream with a file descriptor. File descriptors are
obtained from open, dup, creat, or pipe(2), which open files but do not
return pointers to a FILE structure stream . Streams are necessary input for
many of the Section 35 library routines. The type of stream must agree
with the mode of the open file .

When a file is opened for update, both input and output may be done on
the resulting stream . However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file .

When a file is opened for append (i .e . , when type is "a" or "a +"), i t is
impossible to overwrite information already in the file . fseek may be used
to reposition the file pointer to any position in the file, but when output is
written to the file, the current file pointer is disregarded. All output is
written at the end of the file and causes the file pointer to be repositioned
at the end of the output. If two separate processes open the same fi le for
append, each process may write freely to the file without fear of destroy­

ing output being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), stdio(3S)

DIAGNOSTICS
fopen, fdopen, and freopen return a NULL pointer on failure .

- 2 -

FREAD (3S) (C Programming Language uuuues } .l' .l'\.. a.:. r-1 LJ \ o.J� I

I
NAME

fread, fwrite - binary input/output

SYNOPSIS
#include < stdio.h>
#include < sys/types.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *Stream;

int £write (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *Stream;

DESCRIPTION
fread copies, into an array pointed to by ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of length size . fread stops append­
ing bytes if an end-of-file or error condition is encountered while reading
stream, or if nitems items have been read. fread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte read if there
is one . fread does not change the contents of stream .

[write appends at most nitems items of data from the array pointed to by
ptr to the named output stream . [write stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream . [write does not change the contents of the array pointed to by ptr .

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr . If ptr points to a data
type other than char it should be cast into a pointer to char .

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S) ,
puts(3S), scanf(3S), stdio(3S)

� DIAGNOSTICS
fread and [write return the number of items read or written . If nitems is
non-positive, no characters are read or written and 0 is returned by both
fread and [write .

- 1 -

FSEEK(3S) \ L rrograuwuu0 L..cuo0 5 · ·· · · · � � ,

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include < stdio.h>

int fseek (stream, offset, ptrname)
FILE •stream;
long offset;
int ptrname;

void rewind (stream)
FILE •stream;

long ftell (stream)
FILE •stream;

DESCRIPTION
fseek sets the position of the next input or output operation on the stream .
The new position is at the signed distance offset bytes from the beginning,
from the current position, or from the end of the file, according as ptrname
has the value 0, 1, or 2.

rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is
returned.

fseek and rewind undo any effects of ungetc (3S) .

After fseek or rewind, the next operation on a file opened for update may
be either input or output.

ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream .

SEE ALSO
lseek(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S)

DIAGNOSTICS
fseek returns non-zero for improper seeks, otherwise, zero. An improper
seek can be, for example, an fseek done on a file that has not been opened
via fopen; in particular, fseek may not be used on a terminal, or on a file
opened via popen (3S) .

- 1 -

(C Programming Language Utilities) FSEEK (3S)

WARNING
Although on SYSTEM V/88, an offset returned by ftell is measured in
bytes and it is permissible to seek to positions relative to that offset, por­
tability to non-UNIX systems requires that an offset be used by fseek
directly. Arithmetic may not meaningfully be performed on such an offset,
which is not necessarily measured in bytes .

- 2 -

GETC (3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include < stdio.h>

int getc (stream)
FILE •stream;

int getchar ()

int fgetc (stream)
FILE •stream;

int getw (stream)
FILE •stream;

DESCRIPTION
getc returns the next character (i . e . , byte) from the named input stream, as
an integer. It also moves the file pointer, if defined, ahead one character
in stream. getchar is defined as getc(stdin) . getc and getchar are macros .

fgetc behaves like getc, but is a function rather than a macro. fgetc runs
more slowly than getc, but it takes less space per invocation and its name
can be passed as an argument to a function.

getw returns the next word (i .e . , integer) from the named input stream.
getw increments the associated file pointer, if defined, to point to the next
word. The size of a word is the size of an integer and varies from
machine to machine . getw assumes no special alignment in the file .

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S) ,
stdio(3S)

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror(3S) should be used to detect getw
errors .

WARNING
If the integer value returned by getc, getchar, or fgetc is stored into a cha r­
acter variable and then compared against the integer constant EOF, the
comparison may never succeed, because sign-extension of a character on
widening to integer is machine-dependent.

- 1 - .

l L Programming Language Utilities) GETC (3 S)

I
CAVEATS

Because it is implemented as a macro, getc evaluates a stream argument
more than once. In particular, getc(•f+ +) does not work sensibly. fgetc
should be used instead.

Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

- 2 -

GETS (3S) (C Programming Language Utilities)

I
NAME

gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char •gets (s)
char •s;

char *fgets (s, n, stream)
char •s;
int n;
FILE •stream;

DESCRIPTION
gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an EOF condition is
encountered. The newline character is discarded and the string is ter­
minated with a null character.

fgets reads characters from the stream into the array pointed to by s, until
n-1 characters are read, or a newline character is read and transferred to
s, or an EOF condition is encountered. The string is then terminated with
a NULL character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scan£(35), stdio(3S)

DIAGNOSTICS
If EOF is encountered and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened
for reading, a NULL pointer is returned. Otherwise, s is returned.

- 1 - '

POPEN (3 S) (C Programming Language Utilities) POPEN (3 S)

I
NAME

popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include < stdio.h>

FILE *popen (command, type)
char *command, * type;

int pclose (stream)
FILE *Stream;

DESCRIPTION
popen creates a pipe between the calling program and the command to be
executed. The arguments to popen are pointers to null-terminated strings .
Command consists of a shell command line. type is an I/0 mode, either r

for reading or w for writing. The value returned is a stream pointer such
that one can write to the standard input of the command, if the I/0 mode
is w, by writing to the file stream; and one can read from the standard out­
put of the command, if the I/0 mode is r, by reading from the file stream .

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the com­
mand.

Because open files are shared, a type r command may be used as an input
filter and a type w as an output filter.

EXAMPLE
The following is a typical call:

char *cmd = " l s * . c " ;
F I LE *ptr ;
i! ((ptr = popen (cmd , " r ")) ! = NULL)

whi l e (! g e t s (bu! , n , ptr) ! = NULL)
(void) pr int! (" �s " , bu!) ;

This will print in stdout [see stdio (3S)] all the file names in the current
directory that have a " . c" suffix.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), stdio(3S), system(3S)

DIAGNOSTICS
popen returns a NULL pointer if files or processes cannot be created.

pclose returns -1 if stream is not associated with a "popened" command .

- 1 -

POPEN (3S) (C Programming Language Utilities) POPEN (3 S)

I
WARNING

If the original and "popened" processes concurrently read or write a com­
mon file, neither should use buffered 110, because the buffering gets al l
mixed up. Problems with an output filter may be forestalled by careful
buffer flushing, e .g. with !flush (see fclose(3S)) .

- 2 -

PRINTF (3 S) (C Programming Language Utilities) PRINTF (3 S)

NAME
printf, fprintf, sprint£ - print formatted output

SYNOPSIS
#include < stdio.h>

int print£ (format , arg . . .)
char *format;

int £print£ (stream, format , arg . . .
FILE •stream;
char *format;

int sprint£ (s, format [, arg] . . .)
char •s, *format;

DESCRIPTION
print[places output on the standard output stream stdout . fprintf places
output on the named output stream . sprint[places "output," followed by
the NULL character {\0), in consecutive bytes starting at *S; i t is the user' s
responsibility to ensure that enough storage i s available . Each function
returns the number of characters transmitted (not including the \0 in the
case of sprint/), or a negative value if an output error was encountered .

Each of these functions converts, formats, and prints its args under con­
trol of the format . The format is a character string that contains two types
of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient arg s
for the format. If the format is exhausted while args remain, the excess
args are simply ignored .

Each conversion specification is introduced by the character %. After the
%, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion specifi­
cation.

An optional decimal digit string specifying a minimum field width . If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag '-' , described
below, has been given) to the field width. The padding is with blanks
unless the field width digit string starts with a zero, in which case the
padding is with zeros .

- 1 -

PRINTF (3S) (C Programming Language Utilities) PRINTF (3 S)

I
A precision that gives the minimum number of digits to appear for the d,
i, o, u, x, or X conversions, the number of digits to appear after the
decimal point for the e, E, and f conversions, the maximum number of
significant digits for the g and G conversion, or the maximum number
of characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a null
digit string is treated as zero. Padding specified by the precision over­
rides the padding specified by the field width.

An optional 1 (ell) specifying that a following d, i, o, u, x, or X conver­
sion character applies to a long integer arg . An 1 before any other
conversion character is ignored.

A character that indicates the type of conversion to be applied .

A field width or precision or both may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the field
width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or preci­
sion must appear before the arg (if any) to be converted. A negative field
width argument is taken as a '-' flag followed by a positive field width. If
the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field .

+ The result of a signed conversion will always begin with a sign (+
or -) .

blank If the first character of a signed conversion is not a sign, a bla nk
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alter­
nate form."For c, d, i, s, and u conversions, the flag has no effect .
For o conversion, it increases the precision to force the first digit
of the result to be a zero. For x or X conversion, a non-zero result
will have Ox or OX prefixed to it. For e, E, £, g, and G conver­
sions, the result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it) . For g and G
conversions, trailing zeroes will not be removed from the result
(which they normally are) .

- ., -

PRINTF(3S) (C Programming Language Utilities) PRINTF (3 S)

The conversion characters and their meanings are:

d,i,o,u,x,X
The integer arg is converted to signed decimal (d or i), unsigned
octal, (o), decimal (u), or hexadecimal notation (x or X), respec­
tively; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. The default precision is 1 . The result of converting a zero
value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the
style "[-]ddd.ddd," where the number of digits after the decimal
point is equal to the precision specification. If the precision is
missing, six digits are output; if the precision is explicitly 0, no
decimal point appears.

e,E The float or double arg is converted in the style "[-]d.ddde ± dd,"
where there is one digit before the decimal point and the number
of digits after it is equal to the precision; when the precision is
missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number
with E instead of e introducing the exponent. The exponent
always contains at least two digits .

g,G The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the value
converted: style e will be used only if the exponent resulting from
the conversion is less than -4 or greater than the precision. Trail­
ing zeroes are removed from the result; a decimal point appears
only if it is followed by a digit.

c The character arg is printed.

- 3 -

PRINTF (3S) (C Programming Language Utilities) PRINTF (3 S)

I
s The arg is taken to be a string (character pointer) and characters

from the string are printed until a NULL character (\0) is encoun­
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. A NULL value for arg will yield undefined results .

% Print a %; no argument is converted .

In printing floating point types (float and double), i f the exponent is Ox7FF
and the mantissa is not equal to zero, then the output is:

[-]NaNOxdddddddd

where Oxdddddddd is the hexadecimal representation of the leftmost 32
bits of the mantissa. If the mantissa is zero, the output is:

[±] inf.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated
by printf and fprintf are printed as if putc(3S) had been called .

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where week­
day and month are pointers to null-terminated strings:

printf("%s, % s %i, % d:% .2d", weekday, month, day, hour, min);

To print 1r to 5 decimal places:

printf("pi = % .5f", 4 * atan(l .O));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S)

- 4 -

PUTC (3 S) (C Programming Language Utilities) PUTC (3 S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h>

int putc (c, stream)
int c;
FILE *Stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *Stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
putc writes the character c onto the output stream (at the position where
the file pointer, if defined, is pointing) . putchar(c) is defined as putc (c,
stdout) . putc and putchar are macros .

fputc behaves like putc, but is a function rather than a macro. fputc runs
more slowly than putc, but it takes less space per invocation and its name
can be passed as an argument to a function.

putw writes the word (i. e . , integer) w to the output stream (at the position
at which the file pointer, if defined, is pointing) . The size of a word is the
size of an integer and varies from machine to machine . putw neither
assumes nor causes special alignment in the file .

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S),
stdio(3S)

DIAGNOSTICS
On success, these functions (with the exception of putw) each return the

� value they have written. (putw returns ferror (stream)) . On failure, they
return the constant EOF. This will occur if the file stream is not open for
writing or if the output file cannot grow. Because EOF is a valid integer,
ferror (3S) should be used to detect putw errors .

- 1 -

PUTC (3S) (C Programming Language Utilities) PUTC (3 S)

CAVEATS
Because it is implemented as a macro, putc evaluates a stream argument
more than once. In particular, putc(c, *f+ +); doesn' t work sensibly.
fputc should be used instead.

Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

-2 -

PUTS (3S) (C Programming Language Utilities) PUTS (3 S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char •s;

int fputs (s, stream)
char •s;
FILE •stream;

DESCRIPTION
puts writes the null-terminated string pointed to by s, followed by a new­

line character, to the standard output stream stdout.

fputs writes the null-terminated string pointed to by s to the named output
stream .

Neither function writes the terminating NULL character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), print£(35), putc(3S), stdio(3S)

DIAGNOSTICS

NOTES

Both routines return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

puts appends a newline character while fputs does not.

- 1 -

SCANF(3S) (C Programming Language Utilities) SCANF (3 S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include < stdio.h>

int scan£ (format [1 pointer] . . .)
char *format;

int fscanf (stream, format [1 pointer] . . .)
FILE •stream;
char *format;

int sscanf (s, format [, pointer] . . .)
char •s, *format;

DESCRIPTION
scanf reads from the standard input stream stdin . fscanf reads from the
named input stream . sscanf reads from the character string s . Each func­
tion reads characters, interprets them according to a format, and stores
the results in its arguments . Each expects, as arguments, a control string
format described below, and a set of pointer arguments indicating where
the converted input should be stored. The results are undefined in there
are insufficient args for the format. If the format is exhausted while args
remain, the excess args are simply ignored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1 . White-space characters (blanks, tabs, newlines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical maximum
field width, an optional I (ell) or h indicating the size of the receiving
variable, and a conversion code.

- 1 -

SCANF(3S) (C Programming Language Utilities) SCANF (3 S)

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the correspond­
ing argument, unless assignment suppression was indicated by * · The
suppression of assignment provides a way of describing an input field
which is to be skipped. An input field is defined as a string of non­
space characters; it extends to the next inappropriate character or until
the field width, if specified, is exhausted. For all descriptors except
'T' and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For
a suppressed field, no pointer argument is given. The following conver­
sion codes are legal:

% a single % is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should
be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

i an integer is expected; the corresponding argument should be an
integer pointer. It will store the value of the next input item inter­
preted according to C conventions: a leading "0" implies octa l; a
leading "Ox" implies hexadecimal; otherwise, decimal .

n stores in an integer argument the total number of characters
(including white space) that have been scanned so far since the
function call. No input is consumed.

e,f,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float . The input format for floating
point numbers is an optionally signed string of digits, possibly

- ? -

SCANF (3S) (C Programming Language Utilities) SCANF (3 S)

containing a decimal point, followed by an optional exponent field
consisting of an E or an e, followed by an optional + , -, or space,
followed by an integer.

s a character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white­
space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space i s
suppressed in this case; to read the next non-space character, use
%1s. If a field width is given, the corresponding argument should
refer to a character array; the indicated number of characters is
read.

[indicates string data and the normal skip over leading white space
is suppressed. The left bracket is followed by a set of characters,
which is called the scanset, and a right bracket; the input field is
the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex (A), when it appears as
the first character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not contained
in the remainder of the scanset string.

There are some conventions used in the construction of the scan­
set. A range of characters may be represented by the construct
first-last, thus [0123456789] may be expressed [0-9] . Using this
convention, first must be lexically less than or equal to last , or else
the dash will stand for itself. The dash will also stand for itself
whenever it is the first or the last character in the scanset. To
include the right square bracket as an element of the scanset, i t
must appear as the first character (possibly preceded by a circum­
flex) of the scanset, and in this case it will not be syntactical ly
interpreted as the closing bracket. The corresponding argument
must point to a character array large enough to hold the data field
and the terminating \0, which will be added automatically. At
least one character must match for this conversion to be con­
sidered successful .

- 3 -

SCANF(3S) (C Programming Language Utilities) SCANF (3S)

I
The conversion characters d, u, o, x and i may be preceded by 1 or h to
indicate that a pointer to long or to short rather than to int is in the argu­
ment list. Similarly, the conversion characters e, f, and g may be pre­
ceded by 1 to indicate that a pointer to double rather than to float is in the
argument list. The 1 or h modifier is ignored for other conversion charac­
ters .

scanf conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter
case, the offending character is left unread in the input stream.

scanf returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between
an input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES
The call:

int n ; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E- 1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and
name will contain thompson\0 . Or:

int i, j; float x; char name[50];
(void) scanf ("%i%2d%f%•d % [0-9] ", &j, &i, &x, name);

with input:

011 56789 0123 56a72

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name . The next call to getchar [see getc(3S)] will return a. Or:

int i, j, s, e; char name[SO];
(void) scanf ("%i %i %n%s%n", &i, &j, &s, name, &e);

with input:

Oxll Oxy johnson

will assign 17 to i, 0 to j, 6 to s, will place the string :xy\0 in name, and
will assign 8 to e . Thus, the length of name is e - s = 2 . The next call to
getchar [see getc(3S)] will return a blank.

- A

SCANF(3S) (C Programming Language Utilities) SCANF (3 S)

I
SEE ALSO

getc(3S), printf(3S), stdio(3S), strtod(3C), strtol(3C)

DIAGNOSTICS
These functions return EOF, on end of input and a short count for missing
or illegal data items.

CAVEATS
Trailing white space (including a newline) is left unread unless matched in
the control string.

- 5 -

SETBUF(3S) (C Programming Language Utilities } ;:) t ! D U C \ -'., 1

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE •stream;
char •buf;

int setvbuf (stream, buf, type, size)
FILE •stream;
char •buf;
int type, size;

DESCRIPTION
setbuf may be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. I f buf i s the NULL pointer input/output
will be completely unbuffered .

A constant BUFSIZ, defined in the < stdio.h> header file, tells how b ig a n
array i s needed:

char buf(BUFSIZ];

setvbuf may be used after a stream has been opened but before it is read or
written. type determines how stream will be buffered. Legal values for
type (defined in stdio.h) are:

_IOFBF

_IOLBF

_IONBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

causes input/output to be completely unbuffered .

If buf is not the NULL pointer, the array it points to will be used for
buffering, instead of an automatically allocated buffer. size specifies the
size of the buffer to be used. The constant BUFSIZ in < stdio.h> is sug­
gested as a good buffer size. If input/output is unbuffered, buf and size
are ignored.

By default, output to a terminal is line buffered and all other input/output
is fully buffered .

- 1 -

SETBUF (3S) (C Programming Language Utilities) SETBUF (3 S)

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S)

DIAGNOSTICS

NOTES

If an illegal value for type or size is provided, setvbuf returns a non-zero
value. Otherwise, the value returned will be zero.

A common source of error is allocating buffer space as an "automatic"
variable in a code block, and then failing to close the stream in the same
block.

- 2 -

STDI0 (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h>

FILE •stdin, •stdout, •stderr;

DESCRIPTION
The functions described in the entries of sub-class 35 of this manual con­
stitute an efficient, user-level UO buffering scheme. The inline macros
getc(3S) and putc(3S) handle characters quickly. The macros getchar and
putchar, and the higher-level routines fgetc, fgets , fprintf, fputc, fputs , fread,
fscanf, fwrite, gets, getw, printf, puts , putw, and scanf al l use or act as i f
they use getc and putc; they can be freely intermixed .

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE . fopen(3S) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions . Normally, there are three open streams with constant
pointers declared in the <stdio.h> header file and associated with the
standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions
for details) .

An integer constant BUFSIZ specifies the size of the buffers used by the
particular implementation.

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 35 of
this manual are declared in that header file and need no further declara­
tion. The constants and the following "functions" are implemented as
macros (redeclaration of these names is perilous) : getc, getchar, putc,
putchar, ferror, feof, clearerr, and fileno .

- 1 -

_ .._ _ _ _ , ...,!.,J , ' '- rrogramming Language Utilities) STDI0 (3S)

Output streams, with the exception of the standard error stream stderr,
are by default buffered if the output refers to a file and line-buffered if the
output refers to a terminal. The standard error output stream stderr is by
default unbuffered, but use of freopen [see fopen(3S)] will cause it to
become buffered or line-buffered. When an output stream is unbuffered,
information is queued for writing on the destination file or terminal as
soon as written; when it is buffered, many characters are saved up and
written as a block. When it is line-buffered, each line of output is queued
for writing on the destination terminal as soon as the line is completed
(that is, as soon as a new-line character is written or terminal input is
requested) . setbuf(3S) or setvbuf() in setbuf(3S) may be used to change the
stream's buffering strategy.

SEE ALSO
open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S),
gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S)

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly includ­
ing program termination. Individual function descriptions describe the
possible error conditions.

- 2 -

SYSTEM (3S) (L Yrogramrmng Language v uuu'"'" '

I
NAME

system - issue a shell command

SYNOPSIS
#include < stdio.h>

int system (string)
char •string;

DESCRIPTION

FILES

system causes the string to be given to sh (1) as input, as if the string had
been typed as a command at a terminal . The current process waits until
the shell has completed, then returns the exit status of the shel l .

/bin/sh

SEE ALSO
exec(2)
wait(2)
sh(1) in the User's Reference Manual

DIAGNOSTICS
system forks to create a child process that in turn exec's /bin/sh in order to
execute string . If the fork or exec fails, system returns a negative value
and sets errno .

If the shell fails to execute, a status of 127 is returned . If the shell exe­
cutes successfully, a status of 0 is returned.

- 1 -

TMPFILE (3S) (C Programming Language Utilities } .1 1Vlr C l i,..C \ oJ oJ /

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *lmpfile ()

DESCRIPTION
tmpfile creates a temporary file using a name generated by tmpnam(3S),
and returns a corresponding FILE pointer. If the file cannot be opened, an
error message i s printed using perror(3C), and a NULL pointer i s
returned. The file will automatically be deleted when the process using i t
terminates. The file is opened for update ("w+ ") .

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), stdio(3S),
tmpnam(3S)

- 1 -

TMPNAM (3S) (C Programnung Language u uuut::o J .a.& , ,

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include < stdio.h>

char •tmpnam (s)
char •s;

char •tempnam (dir, pfx)
char •dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used for a tem­
porary file .

tmpnam always generates a file name using the path-prefix defined as
P_tmpdir in the < stdio.h> header file. If s is NULL, tmpnam leaves i ts
result in an internal static area and returns a pointer to that area. The
next call to tmpnam will destroy the contents of the area . If s is not
NULL, it is assumed to be the address of an array of at least L_tmpnam
bytes, where L_tmpnam is a constant defined in < stdio.h> ; tmpnam
places its result in that array and returns s .

tempnam allows the user to control the choice of a directory. The argu­
ment dir points to the name of the directory in which the file is to be
created. If dir is NULL or points to a string that is not a name for an
appropriate directory, the path-prefix defined as P _tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, /tmp
will be used as a last resort. This entire sequence can be up-staged by
providing an environment variable TMPDIR in the user's environment,
whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite ini­
tial letter sequences in their names. Use the pfx argument for thi s . This
argument may be NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file name .

tempnam uses malloc(3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from
tempnam may serve as an argument to free (see malloc(3C)) . If tempnam
cannot return the expected result for any reason, i .e . , malloc(3C) failed, or
none of the above mentioned attempts to find an appropriate directory
was successful, a NULL pointer will be returned .

- 1 -

TMPNAM (3S) (C Programming Language Utilities) TMPNAM (3 S)

NOTES
These functions generate a different file name each time they are called .

Files created using these functions and either fopen (3S) or creat(2) are tem­
porary only in the sense that they reside in a directory intended for tem­
porary use, and their names are unique. It is the user's responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S)

CAVEATS
If called more than 17,576 times in a single process, these functions will
start recycling previously used names .

Between the time a file name is created and the file is opened, it i s possi­
ble for some other process to create a file with the same name. This can
never happen if that other process is using these functions or mktemp, and
the file names are chosen to render duplication by other means unlikely.

- 2 -

UNGETC(3S) (C Programming Language UtilitiesJ

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h>

int ungetc (c, stream)
int c;
FILE •stream;

DESCRIPTION
ungetc inserts the character c into the buffer associated with an input
stream . That character, c, will be returned by the next getc(3S) call on that
stream . ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek(3S) erases all memory of inserted characters .

SEE ALSO
fseek(3S), getc(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS

BUGS

ungetc returns EOF if it cannot insert the character.

When stream is stdin, one character may be pushed back onto the buffer
without a previous read statement.

- 1 -

VPRINTF(3S) (C Programming Language Utllltles J

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument
list

SYNOPSIS
#include < stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE •stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *S, *format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by varargs (5) .

EXAMPLE
The following demonstrates the use of vfprintf to write an error routine .
i n c lud e < s td i o . h >
i n c lud e < vararg s . h >

I •
• error should b e c a l l e d l ik e
• error (f u n c t i on_name , f o rmat , arg 1 , arg 2 . . .) ; •I

I •VARARGS •I
v o i d
e r r o r (va_a l i s t)
I • N o t e that th e f u n c t i o n_name and f ormat argume n t s c annot b e

• s e parat e ly d e c l ar e d b e c au s e o f th e d e f i n i t i o n o f vararg s . *I
va_d c l

{
va_l i s t arg s ;
c h ar •fmt ;
va_s tart (ar g s) ;
I • print out n ame of f u n c t i o n c au s ing error •I

- 1 - .

VPRINTF(3S) (C Programming Language Utilities) VPRINTF (3S)

(void) fprintf (a td e rr , " ERROR in � a : • , va_arg (arg s , c h ar •)) ;
fmt = va_arg (arg a , char •) ;
I • print out r emaind e r o f me s s ag e •I
(void) vfprintf (a td e rr , fmt , arg a) ;
Ta_e nd (arg a) ;
(void) abort () ;
}

SEE ALSO
print£(35), varargs(5)

- 2 -

ASSERT (3X) { Specializea uoranes1

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert prints:

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts . In the error message, xyz is the
name of the source file and nnn the source line number of the assert state­
ment.

Compiling with the preprocessor option -DNDEBUG (see cpp (l)) , o r wi th
the preprocessor control statement "#define NDEBUG" ahead of the
"#include <assert.h>" statement, will stop assertions from being com­
piled into the program.

SEE ALSO
cpp(l), abort(3C)

CAVEAT
Since assert is implemented as a macro, the expression may not conta in any
string literals .

- 1 - .

CRYPT (3X) (C Programming Language Utilities) CRYPT (3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag . . .] file . . . -lcrypt

char *Crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, flag)
char *block;
int flag;

char *des_crypt (key, salt)
char *key, *salt;

void des_setkey (key)
char *key;

void des_encrypt (block, flag)
char *block;
int flag;

int run_setkey {p, key)
int p[2];
char *key;

int run_crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p[2);

int crypt_close (p)
int p[2];

DESCRIPTION
des_crypt is the password encryption function. It is based on a one way
hashing encryption algorithm with variations intended (among othe r
things) to frustrate use of hardware implementations of a key sea rch .

- 1 -

CRYPT (3X) (C Programming Language Utilities) CRYPT (3X)

I
key is a user's typed password. salt is a two-character string chosen from
the set [a-zA-Z0-9./]; this string is used to perturb the hashing a lgori thm
in one of 4096 different ways, after which the password is used as the key
to encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to
the actual hashing algorithm. The argument of des_setkey is a character
array of length 64 containing only the characters with numerical value 0
and 1 . If this string is divided into groups of 8, the low-order bi t i n each
group is ignored; this gives a 56-bit key which is set into the machine .
This is the key that will be used with the hashing algorithm to encrypt the
string block with the function des_encrypt .

The argument to the des_encrypt entry i s a character array of length 64 con­
taining only the characters with numerical value 0 and 1 . The argume n t
array i s modified i n place to a similar array representing the bits of the
argument after having been subjected to the hashing algorithm usi ng the
key set by des_setkey . If edflag is zero, the argument is encrypted ; i f non­
zero, it is decrypted.

Note that decryption is not provided in the international vers ion of
crypt(3X) . The intemational version is part of the C Programming Language
Utilities, and the domestic version is part of the Security Administration
Utilities. If decryption is attempted with the international version of
des_encrypt, an error message is printed.

crypt, setkey, and encrypt are front-end routines that invoke des_crypt ,
des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by appl i ca t ions
that need cryptographic capabilities (such as ed(l) and vi(l)) that must be
compatible with the crypt(l) user-level utility. run_setkey establ i shes a
two-way pipe connection with crypt(l), using key as the password a rgu­
ment. run_crypt takes a block of characters and transforms the cleartext or
ciphertext into their ciphertext or cleartext using crypt(l) . OjJ8e t i s the
relative byte position from the beginning of the file that the block of text
provided in block is coming from. e o unt is the number of characters i n
block, and connection i s an array containing indices to a table o f input a n d
output file streams. When encryption i s finished, crypt_close is used to
terminate the connection with crypt(l) .

CRYPT(3X) (C Programming Language Utilities) CRYPT (3X)

run_setlcey returns - 1 if a connection with crypt(1) cannot be established .
This will occur on international versions of UNIX where crypt(l) is not
available. If a null key is passed to run_setlcey, 0 is returned. Otherwise, 1
is returned. run_crypt returns -1 if it cannot write output or rea d input
from the pipe attached to crypt. Otherwise, it returns 0.

DIAGNOSTICS
In the international version of crypt(3X), a flag argument of 1 to des_encrypt
is not accepted, and an error message is printed.

SEE ALSO
getpass(3C), passwd(4)
crypt(l), login(l), passwd(l) in the User's Reference Manual.

CAVEAT
The return value in crypt points to static data that are overwritten by each
call .

- 3 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

NAME
curses - terminal screen handling and optimization package

SYNOPSIS
cc [flag . . .] file . . . -lcurses [library . . .)

#include < curses.h> (automatically includes < stdio.h>,
< termio.h>, and <unctrl.h>) .

The parameters in the following summary are the arguments used by
the curses library routines: they are not global variables . All routines
return the int values ERR or OK unless it is stated otherwise in the
ROUTINES section. Routines that return pointers always return NULL
on error. (ERR, OK, and NULL are all defined in < curses.h> .)

bool bf;

char **area,*boolnames[], *boolcodes[], *boolfnames[], *bp;
char *cap, *capname, codename[2], erasechar, *filename, *fmt;
char *keyname, killchar, * label, *longname;
char *name, *numnames[], *numcodes[], *numfnames[] ;
char *slk_label, *Str, *Strnames[] , *Strcodes[] , *strfnames[] ;
char *term, *tgetstr, * tigetstr, *tgoto, *tparm, *type;

chtype attrs, ch, horch, vertch;

FILE *infd, *OUtfd;

int begin_x, begin_y, begline, bot, c, col, count;
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes;
int (*init()), labfmt, labnum, line;
int ms, ncols, new, newcol, newrow, nlines, numlines;
int oldcol, oldrow, overlay;
int pl, p2, p9, pmincol, pminrow, (*putc()), row;
int smaxcol, smaxrow, smincol, sminrow, start;
int tenths, top, visibility, x, y;
short pair, color, f, r, g, b;

SCREEN *new, *newterm, *Set_term;
TERMINAL *Cur_term, *nterm, *oterm;

va_list varglist;

WINDOW *Curser, *dstwin, •initscr, *newpad, •newwin, *orig;
WINDOW •pad, •srcwin, *stdscr, •subpad, •subwin, *win;

- 1 -

CURSES(3X) (Terminal Information Utilities)

NAME

addch(ch)
addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vertch, horch)
can_ change_ color()
cbreak()
clear()
clearok(win, bf)
clrtobot()
clrtoeol()
color_content(color, &r, &g, &b)
copywin(srcwin, dstwin, sminrow, smincol,

dminrow, dmincol, dmaxrow, dmaxcol, overlay)
curs_set(visibili ty)
def_prog_mode()
def_shell_mode()
del_curterm(oterm)
delay_output(ms)
delch()
deleteln()
del win(win)
doupdate()
draino(ms)
echo()
echochar(ch)
endwin()
erase()
erasechar()
filter()
flash()
flushinp{)
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)

- 2 -

CURSES (3X)

CURSES (3X) (Terminal Information Utilities)

NAME

getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(tenths)
has_colors()
has_ic()
has_il()
idlok(win, bf)
inch()
init_color(color, r, g, b)
init_pair(pair, f, b)
initscr()
insch(ch)
insertln()
intrflush(win, bf)
isendwin()
keyname(c)
keypad(win, bf)
killchar()
leaveok(win, bf)
longname()
meta(win, bf)
move(y, x)
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg . . .])
mvscanw(y, x, fmt [, arg . . .])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, y, x)

- 3 -

CURSE S (3X)

CURSES (3X) (Terminal Information Utilities)

NAME

mvwinch(win, y, x)
mvwinsch(win, y, x, ch)
mvwprintw(win, y, x, fmt [, arg . . .])
mvwscanw(win, y, x, fmt [, arg . . .])
napms(ms)
newpad(nlines, ncols)
newterm(type, outfd, infd)
newwin(nlines, ncols, begin_y, begin_x)
nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)
pair_content(pair, &f, &b)
pechochar(pad, ch)
pnoutrefresh(pad, pminrow, pmincol, sminrow,

smincol, smaxrow, smaxcol)
prefresh(pad, pminrow, pmincol, sminrow,

smincol, smaxrow, smaxcol)
printw(fmt [, arg . . .])
putp(str)
raw()
refresh()
reset_prog__mode()
reset_shell_mode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw(fmt [, arg . . .])
scr_dump(filename)
scr_init(filename)
scr_restore(filename)
scroll(win)
scrollok(win, bf)

- ;1 -

CURSES (3X)

CURSES (3X) (Terminal Information Utilities)

NAME

set_curterm(nterm)
set_ term(new)
setscrreg(top, bot)
setsyx(y, x)
setupterm(term, fildes, errret)
slk_attroff(a ttrs)
slk_attron(a ttrs)
slk_attrset(attrs)
slk_clear()
slk_init(fmt)
slk_label(labnum)
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()
standend()
standout()
start_ color()
subpad(orig, nlines, ncols, begin_y, begin_x)
subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag(code name)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum(cap name)
tigetstr(ca pname)
touchline(win, start, count)
touch win(win)
tparm(str, pl, p2, . . . , p9)
tputs(str, count, putc)
traceoff()
traceon()
typeahead(fildes)
unctrl(c)
ungetch(c)
vidattr(attrs)

- 5 -

CURSES(3X)

I

CURSES (3X) (Terminal Information Utilities)

NAME

vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ch)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt [, arg . . .])
wrefresh(win)
wscanw(win, fmt [, arg . . .])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION

CURSES (3X)

The curses routines give the user a terminal-independent method of updat­
ing screens with reasonable optimization.

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

The file < curses.h> must be included at the beginning of programs that
use any curses routines . In addition, the routine initscr() or newterm()
must be called before any of the other routines that deal with windows
and screens are used. (Three exceptions are noted where they apply.)
The routine end win() must be called before exiting. To get character-at­
a-time input without echoing (most interactive, screen-oriented programs
want this), after calling initscr{) you should call "cbreak{); noecho{);"
Most programs would additionally call "nonl(); intrflush (stdscr, FALSE);
keypad(stdscr, TRUE);".

Before a curses program is run, a terminal's tab stops should be set and its
initialization strings, if defined, must be output. To do this, execute tput
init after the shell environment variable TERM has been set and exported.
For further details, see profile(4), tput(l), and the 'Tabs and Initialization"
subsection of terminfo(4) .

The curses library contains routines that manipulate data structures called
windows that can be thought of as two-dimensional arrays of characters
representing all or part of a terminal screen. A default window called
stdscr is supplied, which is the size of the terminal screen. Others may
be created with newwin() . Windows are referred to by variables declared
as WINDOW •; the type WINDOW is defined in < curses.h> to be a struc­
ture . These data structures are manipulated with routines described
below, among which the most basic are move{) and addch{) . (More gen­
eral versions of these routines are included, with names beginning with
w, allowing you to specify a window. The routines not beginning with w
usually affect stdscr.) Then refresh{) is called, telling the routines to
make the user's terminal screen look like stdscr. The characters in a win­
dow are actually of type chtype, defined in <curses.h>, so that other
information about the character may also be stored with each character.

Special windows called pads may also be manipulated. These are win­
dows which are not constrained to the size of the screen and whose con­
tents need not be displayed completely. See the description of newpad()
under 'Window and Pad Manipulation" for more information.

- 7 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

In addition to drawing characters on the screen, video attributes may be
included which cause the characters to be underlined or shown in reverse
video on terminals that support such display enhancements . Line draw­
ing characters may be specified to be output. On input, curses is also able
to translate arrow and function keys that transmit escape sequences into
single values. The video attributes, line drawing characters, and input
values use names, defined in <curses.h>, such as A_REVERSE,
ACS_HLINE, and KEY_LEFf.

Routines that manipulate color on color alphanumeric terminals are new
in this release of curses. To use these routines start_ color() must be called,
usually right after initscr() . Colors are always used in pairs (referred to
as color-pairs) . A color-pair consists of a foregound color (for characters)
and a background color (for the field the characters are displayed on) . A
programmer initializes a color-pair with the routine init_pair() . Mter it
has been initialized, COLOR_P AIR(n), a macro defined in < curses.h>,
can be used in the same ways other video attributes can be used. If a ter­
minal is capable of redefining colors the programmer can use the routine
init_color() to change the definition of a color. The routines has_color()
and can_change_color() return TRUE or FALSE, depending on whether the
terminal has color capabilities and whether the user can change the colors .
The routine color_ content() allows a user to identify the amounts of red,
green, and blue components in an initialized color. The routine
pair_ content() allows a user to find out how a given color-pair is currently
defined.

curses also defines the WINDOW • variable, curser, which is used only for
certain low-level operations like clearing and redrawing a garbaged
screen. curser can be used in only a few routines. If the window argu­
ment to clearok() is curser, the next call to wrefresh() with any window
will cause the screen to be cleared and repainted from scratch. If the win­
dow argument to wrefresh() is curser, the screen is immediately cleared
and repainted from scratch. This is how most programs would implement
a "repaint-screen" function. More information on using curser is pro­
vided where its use is appropriate .

The environment variables LINES and COLUMNS may be set to override
terminfo's idea of how large a screen is. These may be used in an AT&T
Teletype 5620 layer, for example, where the size of a screen is changeable .

- 8 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in the stan­
dard place. For example, if the environment variable TERM is set to
att4425, then the compiled terminal definition is found in
/usrlliblterminfo/a/att4425 . (The a is copied from the first letter of att4425 to
avoid creation of huge directories .) However, if TERMINFO is set to
$HOME/myterms, curses will first check $HOME!myterms/alatt4425, and, if
that fails, will then check lusr/liblterminfo/a/att4425 . This is useful for
developing experimental definitions or when write permission on
/usrlliblterminfo is not available.

The integer variables LINES and COLS are defined in < curses.h>, and
will be initialized by initscr() with the size of the screen. (For more infor­
mation, see the subsection 'Terminfo-Level Manipulations".) The integer
variables COLORS and COLOR_PAIRS are also defined in < curses.h> and
contain, respectively, the maximum number of colors and color-pairs the
terminal can support. They are initialized by start_color() . The constants
TRUE and FALSE have the values 1 and 0, respectively. The constants
ERR and OK are returned by routines to indicate whether the routine suc­
cessfully completed. These constants are also defined in < curses.h> .

ROUTINES
Many of the following routines have two or more versions . The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to move to
before performing the appropriate action. The mv() routines imply a call
to move() before the call to the other routine. The window argument is
always specified before the coordinates . y always refers to the row (of the
window), and x always refers to the column. The upper left comer is
always {0,0), not {1,1) . The routines prefixed with mvw take both a win­
dow argument and y and x coordinates .

In each case, win is the window affected and pad is the pad affected. (win
and pad are always of type WINDOW * .) Option-setting routines require
a boolean flag bf with the value TRUE or FALSE. (bf is always of type
bool.) The types WINDOW, bool, and chtype are defined in < curses.h> .
See the SYNOPSIS for a summary of what types all variables are .

All routines return either the integer ERR or the integer OK, unless other­
wise noted. Routines that return pointers always return NULL on error.

- 9 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

Sometimes the description of a routine refers to a second routine. If the
routine referred to is prefixed with a w, then you should assume that
other versions of the second routine behave similarly. For example, the
description of initscr() refers to wrefresh() . This implies that the same
result will occur if refresh() is called.

Section 1 : Overall Screen Manipulation
WINDOW •initscr()

The first routine called should almost always be initscr() . (The
exceptions are slk_init(), filter(), and ripoffline() .) This will
determine the terminal type and initialize all curses data struc­
tures. initscr() also arranges that the first call to wrefresh()
will clear the screen. If errors occur, initscr() will write an
appropriate error message to standard error and exit; other­
wise, a pointer to stdscr is returned. If the program wants an
indication of error conditions, newterrn() should be used
instead of initscr() . initscr() should only be called once per
application.

endwin() A program should always call endwin() before exiting or
escaping from curses mode temporarily, to do a shell escape or
system(3S) call, for example . This routine will restore tty(7)
modes, move the cursor to the lower left comer of the screen
and reset the terminal into the proper non-visual mode. To
resume after a temporary escape, call wrefresh() or doup­
date() .

isendwin()
Returns TRUE if end win() has been called without any subse­
quent calls to wrefresh() .

- 10 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

SCREEN •newterm(type, outfd, infd)
A program that outputs to more than one terminal must use
newterm() for each terminal instead of initscr() . A program
that wants an indication of error conditions, so that it may con­
tinue to run in a line-oriented mode if the terminal cannot sup­
port a screen-oriented program, must also use this routine.
newterm() should be called once for each terminal. It returns a
variable of type SCREEN• that should be saved as a reference
to that terminal. The arguments are the type of the terminal to
be used in place of the environment variable TERM; outfd, a
stdio (3S) file pointer for output to the terminal; and infd,
another file pointer for input from the terminal. When it is
done running, the program must also call end win() for each
terminal being used. If newterm() is called more than once for
the same terminal, the first terminal referred to must be the
last one for which end win() is called.

SCREEN •set_term(new)
This routine is used to switch between different terminals . The
screen reference new becomes the new current terminal. A
pointer to the screen of the previous terminal is returned by
the routine. This is the only routine which manipulates
SCREEN pointers; all other routines affect only the current ter­
minal.

Section 2: Window and Pad Manipulation
refresh()
wrefresh (win)

These routines (or prefresh(), pnoutrefresh(), wnoutrefresh(),
or doupdate()) must be called to write output to the terminal,
as most other routines merely manipulate data structures.
wrefresh() copies the named window to the physical terminal
screen, taking into account what is already there in order to
minimize the amount of information that's sent to the terminal
(called optimization) . refresh() does the same thing, except it
uses stdscr as a default window. Unless leaveok() has been

" enabled, the physical cursor of the terminal is left at the loca­
tion of the window's cursor. The number of characters output
to the terminal is returned.

Note that refresh() is a macro.

- 11 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

wnoutrefresh(win)
doupdate()

These two routines allow multiple updates to the physical ter­
minal screen with more efficiency than wrefresh() alone. How
this is accomplished is described in the next paragraph.

curses keeps two data structures representing the terminal
screen: a physical terminal screen, describing what is actually
on the screen, and a virtual terminal screen, describing what
the programmer wants to have on the screen. wrefresh()
works by first calling wnoutrefresh(), which copys the named
window to the virtual screen, and then by calling doupdate(),
which compares the virtual screen to the physical screen and
does the actual update . If the programmer wishes to output
several windows at once, a series of calls to wrefresh() will
result in alternating calls to wnoutrefresh() and doupdate(),
causing several bursts of output to the screen. By first calling
wnoutrefresh() for each window, it is then possible to call
doupdate() once, resulting in only one burst of output, with
probably fewer total characters transmitted and certainly less
processor time used.

WINDOW •newwin(nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new window with the given
number of lines (or rows), nlines, and columns, ncols. The
upper left comer of the window is at line begin_y, column
begin_x . If either nlines or ncols is 0, they will be set to the
value of lines-begin_y and cols-begin_x. A new full-screen win­
dow is created by calling newwin(O, 0, 0, 0) .

mvwin(win, y, x)
Move the window so that the upper left comer will be at posi­
tion (y, x) . If the move would cause any portion of the win­
dow to be moved off the screen, it is an error and the window
is not moved.

CURSES (3X) (Terminal lntormauon u uunes 1

WINDOW •subwin(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new window with the given
number of lines (or rows), nlines, and columns, ncols . The win­
dow is at position (begin_y, begin_x) on the screen. (This posi­
tion is relative to the screen, and not to the window orig .) The
window is made in the middle of the window orig, so that
changes made to one window will affect the character image of
both windows. When changing the image of a subwindow, it
will be necessary to call touch win() or touchline() on orig
before calling wrefresh() on orig.

del win(win)
Delete the named window, freeing all memory associated with
it. If you try to delete a main window before all of its subwin­
dows have been deleted, ERR will be returned.

WINDOW •newpad(nlines, ncols)
Create and return a pointer to a new pad data structure with
the given number of lines (or rows), nlines , and columns, ncols .
A pad is a window that is not restricted by the screen size and
is not necessarily associated with a particular part of the
screen. Pads can be used when a large window is needed, and
only a part of the window will be on the screen at one time.
Automatic refreshes of pads (e .g . from scrolling or echoing of
input) do not occur. It is not legal to call wrefresh() with a
pad as an argument; the routines prefresh() or pnoutrefresh()
should be called instead. Note that these routines require
additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

WINDOW •subpad(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a subwindow within a pad with
the given number of lines (or rows), nlines, and columns, ncols .
Unlike subwin(), which uses screen coordinates, the window
is at position (begin_y, begin_x) on the pad. The window is
made in the middle of the window orig, so that changes made
to one window will affect the character image of both win­
dows. When changing the image of a subwindow, it will be
necessary to call touch win() or touchline() on orig before cal­
ling prefresh() on orig.

- 13 -

LUK�ES(3X) (Terminal Information Utilities) CURSES (3X)

•
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol

These routines are analogous to wrefresh() and wnoutrefresh()
except that pads, instead of windows, are involved. The addi­
tional parameters are needed to indicate what part of the pad
and screen are involved. pminrow and pmincol specify the
upper left comer, in the pad, of the rectangle to be displayed.
sminrow, smincol, smaxrow, and smaxcol specify the edges, on
the screen, of the rectangle to be displayed in. The lower right
comer in the pad of the rectangle to be displayed is calculated
from the screen coordinates, since the rectangles must be the
same size . Both rectangles must be entirely contained within
their respective structures . Negative values of pminrow, pmin­
col , sminrow, or smincol are treated as if they were zero.

Section 3: Output
These routines are used to manipulate text in windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

The character ch is put into the window at the current cursor
position of the window and the position of the window cursor
is advanced. Its function is similar to that of putchar (see
putc(3S)) . At the right margin, an automatic newline is per­
formed. At the bottom of the scrolling region, if scrollok() is
enabled, the scrolling region will be scrolled up one line.

If ch is a tab, newline, or backspace, the cursor will be moved
appropriately within the window. A newline also does a
wclrtoeol() before moving. Tabs are considered to be at every
eighth column. If ch is another control character, it will be
drawn in the AX notation. (Calling winch() on a position in the
window containing a control character will not return the con­
trol character, but instead will return one character of the
representation of the control character.)

- 14 -

CURSES (3X) (Terminal Information Utilities)

Video attributes can be combined with a character by OR-ing them into
the parameter. This will result in these attributes also being set. (The
intent here is that text, including attributes, can be copied from one place
to another using winch() and waddch() .) See wstandout{), below.

Note that ch is actually of type chtype, not a character.

Note that addch(), mvaddch(), and mvwaddch(), are macros .

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

addstr(str)

These routines are functionally equivalent to a call to addch(ch)
followed by a call to refresh(), a call to waddch(win, ch) fol­
lowed by a call to wrefresh(win), or a call to waddch(pad, ch)
followed by a call to prefresh(pad) . The knowledge that only a
single character is being output is taken into consideration and,
for non-control characters, a considerable performance gain can
be seen by using these routines instead of their equivalents . In
the case of pechochar(), the last location of the pad on the
screen is reused for the arguments to prefresh() .

Note that ch i s actually of type chtype, not a character.

Note that echochar() is a macro.

waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr{y, x, str)

These routines write all the characters of the null-terminated
character string str on the given window. This is equivalent to
calling waddch() once for each character in the string.

Note that addstr(), mvaddstr(), and mvwaddstr() are macros .

- 15 -

LUK::iES (3X) (Terminal Information Utilities) CURSES (3X)

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)
standout()
wstandout(win)

These routines manipulate the current attributes of the named
window. These attributes can be any combination of the con­
stants A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, A_BLINK,
A_UNDERLINE, and A_ALTCHARSET, as well as the macro
COLOR_PAIR(n) . These attributes are defined in <curses.h>
and can be combined with the C logical OR (I) operator.

The current attributes of a window are applied to all characters
that are written into the window with waddch() . Attributes
are a property of the character, and move with the character
through any scrolling and insert/delete line/character opera­
tions. To the extent possible on the particular terminal, they
will be displayed as the graphic rendition of the characters put
on the screen.

wattrset(win, attrs) sets the current attributes of the given win­
dow to attrs . wattroff(win, attrs) turns off the named attri­
butes without turning on or off any other attributes.
wattron(win, attrs) turns on the named attributes without
affecting any others . wstandout(win, attrs) is the same as
wattron(win, A_STANDOUT) . wstandend(win, attrs) is the
same as wattrset(win, 0), that is, it turns off all attributes.

Note that wattroff(), wattron(), wattrset(), wstandend(), and
wstandout() return 1 at all times.

Note that attrs is actually of type chtype, not a character.

Note that attrof£(), attron(), attrset(), standend(), and stan­
dout() are macros .

- 16 -

CURSES (3X)

beep()
flash()

(Terminal Information UtllitlesJ

These routines are used to signal the user. beep() will sound
the audible alarm on the terminal, if possible, and if not, will
flash the screen (visible bell), if that is possible . flash() will
flash the screen, and if that is not possible, will sound the
audible signal. If neither signal is possible, nothing will hap­
pen. Nearly all terminals have an audible signal (bell or beep)
but only some can flash the screen.

box(win, vertch, horch)
A box is drawn around the edge of the window, win. vertch
and horch are the characters the box is to be drawn with. If
vertch and horch are 0, then appropriate default characters,
ACS_ VLINE and ACS_HLINE, will be used.

Note that vertch and horch are actually of type chtype, not char­
acters .

erase()
werase(win)

These routines copy blanks to every position in the window.

Note that erase() is a macro.
clear()
wclear(win)

These routines are like erase() and werase(), but they also call
clearok(), arranging that the screen will be cleared completely
on the next call to wrefresh() for that window, and repainted
from scratch.

Note that clear() is a macro.

clrtobot()
wclrtobot(win)

All lines below the cursor in this window are erased. Also, the
current line to the right of the cursor, inclusive, is erased.

Note that clrtobot() is a macro.

clrtoeol()
wclrtoeol(win)

The current line to the right of the cursor, inclusive, is erased.

Note that clrtoeol() is a macro.

- 17 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

delay_output(ms)

delch()

Insert a ms millisecond pause in the output. It is not recom­
mended that this routine be used extensively, because padding
characters are used rather than a processor pause.

wdelch(win)
mvdelch(y, x)
mvwdelch(win, y, x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left
one position and the last character on the line is filled with a
blank. The cursor position does not change (after moving to
(y, x), if specified) . (This does not imply use of the hardware
"delete-character" feature .)

Note that delch() , mvdelch(), and mvwdelch() are macros .

deleteln()
wdeleteln(win)

The line under the cursor in the window is deleted. All lines
below the current line are moved up one line . The bottom line
of the window is cleared. The cursor position does not
change. (This does not imply use of the hardware "delete­
line" feature.)

Note that deleteln() is a macro.

getyx(win, y, x)
The cursor position of the window is placed in the two integer
variables y and x .

Note that getyx() is a macro, so no "&" is necessary before the
variables y and x .

getbegyx(win, y, x)
getmaxyx(win, y, x)

The current beginning coordinates (getbegyx()) or size (get­
maxyx()) of the specified window are placed in the two integer
variables y and x .

Note that getbegyx() and getmaxyx() are macros, so no "&" is
necessary before the variables y and x .

- 18 -

CURSES (3X) (Terminal lntormauon u nnnes1

insch(ch)
winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch{y, x, ch)

The character ch is inserted before the character under the cur­
sor. All characters to the right are moved one space to the
right, losing the rightmost character of the line . The cursor
position does not change (after moving to (y, x), if specified) .
(This does not imply use of the hardware "insert-character"
feature .)

Note that ch i s actually o f type chtype, not a character.

Note that insch(), mvinsch(), and mvwinsch() are macros .

insertln()
winsertln(win)

A blank line is inserted above the current line and the bottom
line is lost. (This does not imply use of the hardware "insert­
line" feature .)

Note that insertln() is a macro.

move{y, x)
wmove(win, y, x)

The cursor associated with the window is moved to line (row)
y, column x. This does not move the physical cursor of the ter­
minal until wrefresh() is called. The position specified is rela­
tive to the upper left comer of the window, which is {0, 0) .

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay text from srcwin on top of text from
dstwin wherever the two windows overlap. The difference is
that overlay() is non-destructive (blanks are not copied), while
overwrite() is destructive.

- 19 -

LUK:::ih:';; l3XJ (Terminal Information Utilities) CURSES (3X)

•
copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow,

dmaxcol, overlay)
This routine provides finer control over the overlay() and
overwrite() routines . As in the prefresh() routine, a rectangle
is specified in the destination window, (dminrow, dmincol) and
(dmaxrow, dmaxcol), and the upper-left-comer coordinates of
the source window, (sminrow, smincol) . If the argument overlay
is true, then copying is non-destructive, as in overlay() .

printw(fmt [, arg . . .])
wprintw(win, fmt [, arg . . .])
mvprintw(y, x, fmt [, arg . . .])
mvwprintw(win, y, x, fmt [, arg . . .])

These routines are analogous to print£(3) . The string which
would be output by print£(3) is instead output using waddstr()
on the given window.

vwprintw(win, fmt, varglist)

scroll(win)

This routine corresponds to vfprintf(3S) . It performs a
wprintw() using a variable argument list. The third argument
is a va_list, a pointer to a list of arguments, as defined in
<varargs.h> . See the vprintf(3S) and varargs(S) manual pages
for a detailed description on how to use variable argument
lists .

The window is scrolled up one line . This involves moving the
lines in the window data structure.

touchwin(win)
touchline(win, start, count)

Throw away all optimization information about which parts of
the window have been touched, by pretending that the entire
window has been drawn on. This is sometimes necessary
when using overlapping windows, since a change to one win­
dow will affect the other window, but the records of which
lines have been changed in the other window will not reflect
the change. touchline() only pretends that count lines have
been changed, beginning with line start .

- 20 -

CURSES (3X) (Terminal Information Utilities) CURSES(3X)

Section 4: Input
getch()
wgetch(win)
mvgetch(y, x)
mvwgetch(win, y, x)

A character is read from the terminal associated with the win­
dow. In NODELAY mode, if there is no input waiting, the
value ERR is returned. In DELAY mode, the program will hang
until the system passes text through to the program. Depend­
ing on the setting of cbreak(), this will be after one character
(CBREAK mode), or after the first newline (NOCBREAK mode) .
In HALF-DELAY mode, the program will hang until a character
is typed or the specified timeout has been reached. Unless
noecho() has been set, the character will also be echoed into
the designated window.

When wgetch() is called, before getting a character, it will call
wrefresh() if anything in the window has changed (for exam­
ple, the cursor has moved or text changed) .

When using getch(), wgetch(), mvgetch(), or mvwgetch(), do
not set both NOCBREAK mode (nocbreak()) and ECHO mode
(echo()) at the same time. Depending on the state of the tty(7)
driver when each character is typed, the program may produce
undesirable results .

If wgetch() encounters a AD, it is returned (unlike stdio rou­
tines, which would return a null string and have a return code
of -1) .

- 21 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

I
If keypad(win, TRUE) has been called, and a function key is pressed, the
token for that function key will be returned instead of the raw characters .
(See keypad() under '1nput Options Setting. ") Possible function keys are
defined in < curses.h> with integers beginning with 0401, whose names
begin with KEY_. If a character is received that could be the beginning of
a function key (such as escape), curses will set a timer. If the remainder of
the sequence is not received within the designated time, the character will
be passed through, otherwise the function key value will be returned. For
this reason, on many terminals, there will be a delay after a user presses
the escape key before the escape is returned to the program. (Use by a
programmer of the escape key for a single character routine is
discouraged. Also see notimeout() below.)

Note that getch(), mvgetch(), and mvwgetch() are macros .

getstr(str)
wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

A series of calls to wgetch() is made, until a newline, carriage
return, or enter key is received. The resulting value (except for
this terminating character) is placed in the area pointed at by
the character pointer str . The user's erase and kill characters
are interpreted. See wgetch() for how it handles characters
differently from stdio routines (especially AD) .

Note that getstr(), mvgetstr(), and mvwgetstr() are macros .

ungetch(c)

flushinp()

Place c onto the input queue, to be returned by the next call to
wgetch() .

Throws away any typeahead that has been typed by the user
and has not yet been read by the program. Note that
flushinp() will not throw away any characters supplied by
ungetch() .

- 22 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

inch()
winch(win)
mvinch{y, x)
mvwinch(win, y, x)

The character, of type chtype, at the current position in the
named window is returned. If any attributes are set for that
position, their values will be OR' ed into the value returned.
The predefined constants A_CHARTEXT and A_ATTRIBUTES,
defined in < curses.h>, can be used with the C logical AND (&)
operator to extract the character or attributes alone.

Note that inch(), winch(), mvinch{), and mvwinch() are mac­
ros .

scanw(fmt [, arg . . .])
wscanw(win, fmt [, arg . . .])
mvscanw{y, x, fmt [, arg . . .])
mvwscanw(win, y, x, fmt [, arg . . .])

These routines correspond to scanf(3S), as do their arguments
and return values. wgetstr() is called on the window, and the
resulting line is used as input for the scan. The return value
for these routines is the number of arg values that are con­
verted by fmt. arg values that are not converted are lost. See
wgetstr() for how it handles strings differently than the stdio
routines (especially AD) .

vwscanw(win, fmt, ap)
This routine is similar to vwprintw() in that it performs a
wscanw() using a variable argument list. The third argument
is a va_list, a pointer to a list of arguments, as defined in
<varargs.h> . See the vprintf(3S) and varargs(5) manual pages
for a detailed description on how to use variable argument
lists .

Section 5: Output Options Setting
These routines set options within curses that deal with output. All options
are initially FALSE, unless otherwise stated. It is not necessary to tum
these options off before calling endwin() .

- 23 -

I
CURSES(3X) (Terminal Information Utilities) CURSES (3X)

clearok(win, bf)
If enabled (bf is TRUE), the next call to wrefresh() with this
window will clear the screen completely and redraw the entire
screen from scratch. This is useful when the contents of the
screen are uncertain, or in some cases for a more pleasing
visual effect.

idlok(win, bf)
If enabled (bf is TRUE), curses will consider using the hardware
"insert/delete-line" feature of terminals so equipped. If dis­
abled (bf is FALSE), curses will very seldom use this feature .
(The "insert/delete-character" feature is always considered.)
This option should be enabled only if your application needs
"insert/delete-line", for example, for a screen editor. It is dis­
abled by default because "insert/delete-line" tends to be visu­
ally annoying when used in applications where it isn't really
needed. If "insert/delete-line" cannot be used, curses will
redraw the changed portions of all lines. Not calling idlok()
saves approximately 5000 bytes of memory.

leaveok(win, bf)
Normally, the hardware cursor is left at the location of the win­
dow cursor being refreshed. This option allows the cursor to
be left wherever the update happens to leave it. It is useful for
applications where the cursor is not used, since it reduces the
need for cursor motions . If possible, the cursor is made invisi­
ble when this option is enabled.

setscrreg(top, bot)
wsetscrreg(win, top, bot)

These routines allow the user to set a software scrolling region
in a window. top and bot are the line numbers of the top and
bottom margin of the scrolling region. (Line 0 is the top line of
the window.) If this option and scrollok() are enabled, an
attempt to move off the bottom margin line will cause all lines
in the scrolling region to scroll up one line . (Note that this has
nothing to do with use of a physical scrolling region capability
in the terminal, like that in the DEC VT100. Only the text of
the window is scrolled; if idlok() is enabled and the terminal
has either a scrolling region or "insert/delete-line" capability,
they will probably be used by the output routines.)

Note that setscrreg() is a macro.

- 24 -

CURSES(3X) (Terminal Information Utilities) CURSES (3XJ

I
scrollok(win, bf)

This option controls what happens when the cursor of a win­
dow is moved off the edge of the window or scrolling region,
either from a newline on the bottom line, or typing the last
character of the last line. If disabled (bf is FALSE), the cursor is
left on the bottom line at the location where the offending
character was entered. If enabled (bf is TRUE), wrefresh() is
called on the window, and then the physical terminal and win­
dow are scrolled up one line. (Note that in order to get the
physical scrolling effect on the terminal, it is also necessary to
call idlok() .)

Note that scrollok() will always retum OK.

Section 6: Input Options Setting
These routines set options within curses that deal with input. The options
involve using ioctl(2) and therefore interact with curses routines . It is not
necessary to tum these options off before calling endwin() .

cbreak()
nocbreak()

echo()

These two routines put the terminal into and out of CBREAK
mode, respectively. In CBREAK mode, characters typed by the
user are immediately available to the program and erase/kill
character processing is not performed. When in NOCBREAK
mode, the tty driver will buffer characters typed until a new­
line or carriage return is typed. Interrupt and flow-control
characters are unaffected by this mode (see termio(7)) . Initially
the terminal may or may not be in CBREAK mode, as it is inher­
ited, therefore, a program should call cbreak() or nocbreak()
explicitly. Most interactive programs using curses will set
CBREAK mode.

Note that cbreak() performs a subset of the functionality of
raw() . See wgetch() under '1nput" for a discussion of how
these routines interact with echo() and noecho() .

noecho() These routines control whether characters typed by the user
are echoed by wgetch() as they are typed. Echoing by the tty
driver is always disabled, but initially wgetch() is in ECHO
mode, so characters typed are echoed. Authors of most
interactive programs prefer to do their own echoing in a

- 25 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

I

nl()

controlled area of the screen, or not to echo at all, so they dis­
able echoing by calling noecho() . See wgetch() under '1nput"
for a discussion of how these routines interact with cbreak()
and nocbreak() .

nonl() These routines control whether carriage return is translated
into newline on input by wgetch() . Initially, this translation is
done; nonl() turns the translation off. Note that translation by
the tty(7) driver is disabled in CBREAK mode.

half delay(tenths)
Half-delay mode is similar to CBREAK mode in that characters
typed by the user are immediately available to the program.
However, after blocking for tenths tenths of seconds, ERR will
be returned if nothing has been typed. tenths must be a
number between 1 and 255. Use nocbreak() to leave half-delay
mode.

intrflush(win, bf)
If this option is enabled, when an interrupt key is pressed on
the keyboard (interrupt, break, quit) all output in the tty driver
queue will be flushed, giving the effect of faster response to
the interrupt, but causing curses to have the wrong idea of what
is on the screen. Disabling the option prevents the flush. The
default for the option is inherited from the tty driver settings .
The window argument is ignored.

keypad(win, bf)
This option enables curses to obtain information from the
keypad of the user's terminal. If enabled, the user can press a
function key (such as an arrow key) and wgetch() will return a
single value representing the function key, as in KEY_LEFT. If
disabled, curses will not treat function keys specially and the
program would have to interpret the escape sequences itself.
If the keypad in the terminal can be turned on (made to
transmit), calling keypad (win, TRUE) will tum it on.

meta(win, bf)
Initially, whether the terminal returns 7 or 8 significant bits on
input depends on the control mode of the tty driver (see ter­
mio(7)) . To force 8 bits to be returned, invoke meta (win,
TRUE) . To force 7 bits to be returned, invoke meta (win,

- 26 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

FALSE) . The window argument, win, is always ignored. If the
terminfo(4) capabilities smm (meta_on) and rmm (meta_off) are
defined for the terminal, smm will be sent to the terminal
when meta (win, TRUE) is called and rmm will be sent when
meta (win, FALSE) is called.

nodelay(win, bf)
This option causes wgetch() to be a non-blocking call . If no
input is ready, wgetch() will return ERR. If disabled, wgetch()
will hang until a key is pressed.

notimeout(win, bf)

raw()
noraw()

While interpreting an input escape sequence, wgetch() will set
a timer while waiting for the next character. If notimeout(win,
TRUE) is called, then wgetch() will not set a timer. The pur­
pose of the timeout is to differentiate between sequences
received from a function key and those typed by a user.

The terminal is placed into or out of RAW mode. RAW mode is
similar to CBREAK mode, in that characters typed are immedi­
ately passed through to the user program; however, in RAW
mode, the interrupt, quit, suspend, and flow control characters
are passed through uninterpreted, instead of generating a sig­
nal as they do in CBREAK mode. The behavior of the BREAK
key depends on other bits in the tty(7) driver that are not set by
curses .

typeahead(fildes)
curses does "line-breakout optimization" by looking for typea­
head periodically while updating the screen. If input is found,
and it is coming from a tty, the current update will be post­
poned until wrefresh() or doupdate() is called again. This
allows faster response to commands typed in advance. Nor­
mally, the file descriptor for the input FILE pointer passed to
newterm(), or stdin in the case that initscr() was used, will be
used to do this typeahead checking. The typeahead() routine
specifies that the file descriptor fildes is to be used to check for
typeahead instead. If fildes is -1, then no typeahead checking
will be done.

Note that fildes is a file descriptor, not a < stdio.h> FILE
pointer.

- 27 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

I
Section 7: Environment Queries

baudrate()
Returns the output speed of the terminal . The number
returned is in bits per second, for example, 9600, and is an
integer.

char erase char()
The user's current erase character is returned.

has_ic() True if the terminal has insert- and delete-character capabili­
ties.

has_il() True if the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions. This might be used
to check to see if it would be appropriate to tum on physical
scrolling using scrollok() or idlok() .

char killchar()
The user's current line-kill character is returned.

char •longname()
This routine returns a pointer to a static area containing a ver­
bose description of the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only
after the call to initscr() or newterm() . The area is overwritten
by each call to newterm() and is not restored by set_ term(), so
the value should be saved between calls to newterm() if long­
name() is going to be used with multiple terminals .

Section 8: Color Manipulation
This section describes the color manipulation routines introduced in this
release of curses.

start_ color()
This routine requires no arguments. It must be called if the
user wants to use colors, and before any other color manipula­
tion routine is called. It is good practice to call this routine
right after initscr() . start_color() initializes eight basic colors
(black, blue, green, cyan, red, magenta, yellow, and white),
and two global variables, COLORS and COLOR_PAIRS (respec­
tively defining the maximum number of colors and color-pairs
the terminal can support) . It also restores the terminal's colors
to the values they had when the terminal was just turned on.

- 28 -

CURSES (3X) (Terminal lntormauon ununes1

I
init_pair(pair, f, b)

This routine changes the definition of a color-pair. It takes
three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color
number. The value of the first argument must be between 1
and COLOR_PAIR5-1 . The value of the second and third argu­
ments must be between 0 and COLORS-1 . If the color-pair was
previously initialized, the screen will be refreshed and all
occurrences of that color-pair will be changed to the new defin­
ition.

init_color(color, r, g, b)
This routine changes the definition of a color. It takes four
arguments: the number of the color to be changed followed by
three RGB values (for the amounts of red, green, and blue
components) . The value of the first argument must be
between 0 and COLORS-1 . (See the section COLOR for the
default color index.) The last three arguments must each be a
value between 0 and 1000. When init_color() is used, all
occurrences of that color on the screen immediately change to
the new definition.

has_colors()
This routine requires no arguments . It returns TRUE if the ter­
minal can manipulate colors, FALSE otherwise. This routine
facilitates writing terminal-independent programs. For exam­
ple, a programmer can use it to decide whether to use color or
some other video attribute .

can_ change_ color()
This routine requires no arguments . It returns TRUE if the ter­
minal supports colors and can change their definitions, FALSE
otherwise. This routine facilitates writing terminal­
independent programs.

color_content(color, &r, &g, &b)
This routine gives users a way to find the intensity of the red,
green, and blue (RGB) components in a color. It requires four
arguments: the color number, and three addresses of shorts for
storing the information about the amounts of red, green, and
blue components in the given color. The value of the first
argument must be between 0 and COLORS-1 . The values that
will be stored at the addresses pointed to by the last three

- 29 -

CURSES(3X) (Terminal Information Utilities) CURSES (3X)

arguments will be between 0 (no component) and 1000 (max­
imum amount of component) .

pair_content(pair, &f, &b)
This routine allows users to find out what colors a given color­
pair consists of. It requires three arguments: the color-pair
number, and two addresses of shorts for storing the fore­
ground and the background color numbers . The value of the
first argument must be between 1 and COLoR_pAIRS-1 . The
values that will be stored at the addresses pointed to by the
second and third arguments will be between 0 and COLORS-1 .

Section 9 : SOFT LABELS
If desired, curses will manipulate the set of soft function-key labels that
exist on many terminals . For those terminals that do not have soft labels,
curses can simulate them by taking over the bottom line of stdscr, reducing
the size of stdscr and the variable LINES . curses standardizes on 8 labels
of 8 characters each. If a curses program changes the values of the soft
labels, it can restore them only to the default settings for that terminal.
(Note also that soft labels are shown in reverse video by default.) There­
fore, if before calling a curses program a user changes the values of the
soft labels, those values cannot be reset when the curses program ter­
minates.

slk_init(labfmt)
In order to use soft labels, this routine must be called before
initscr() or newterm() is called. If initscr() winds up using a
line from stdscr to emulate the soft labels, then labfmt deter­
mines how the labels are arranged on the screen. Setting
labfmt to 0 indicates that the labels are to be arranged in a 3-2-3
arrangement; 1 asks for a 4-4 arrangement.

slk_set(labnum, label, labfmt)
labnum is the label number, from 1 to 8. label is the string to be
put on the label, up to 8 characters in length. A NULL string or
a NULL pointer will put up a blank label. labfmt is one of 0, 1
or 2, to indicate whether the label is to be left-justified, cen­
tered, or right-justified within the label.

slk_refresh()
slk_noutrefresh()

These routines correspond to the routines wrefresh() and
wnoutrefresh(). Most applications would use

- 30 -

CURSES (3X) (Terminal lntormanon uuuut:lii J

slk_noutrefresh() because a wrefresh() will most likely soon
follow.

char •slk_label(labnum)

slk_clear()

The current label for label number labnum is returned, in the
same format as it was in when it was passed to slk_set() ; that
is, how it looked prior to being justified according to the labfmt
argument of slk_set() .

The soft labels are cleared from the screen.

slk_restore()
The soft labels are restored to the screen after a slk_clear() .

slk_touch()
All of the soft labels are forced to be output the next time a
slk_noutrefresh() is performed.

slk_attron(attrs)
slk_attrset(a ttrs)
slk_attroff(attrs)

These routines correspond to attron(), attrset(), and attroff() .
They will have effect only i f soft labels are simulated on the
bottom line of the screen.

Section 10: Low-Level curses Access
The following routines give low-level access to various curses functionality.
These routines typically would be used inside library routines.

def_prog_mode()
def_shell_mode()

Save the current terminal modes as the "program" (in curses)
or "shell" (not in curses) state for use by the
reset_prog_mode() and reset_shell_mode() routines. This is
done automatically by initscr() .

reset_prog_mode()
reset_shell_mode()

resetty()

Restore the terminal to "program" (in curses) or "shell" (out of
curses) state . These are done automatically by endwin() and
do update() after an end win(), so they normally would not be
called.

- 31 -

CURSES (3X) (Terminal Information Utilities) CURSES(3X)

I
savetty() These routines save and restore the state of the terminal

modes. savetty() saves the current state of the terminal in a
buffer and resetty() restores the state to what it was at the last
call to save tty() .

getsyx(y, x)
The current coordinates of the virtual screen cursor are
returned in y and x . If leaveok() is currently TRUE, then -1,-1
will be returned. If lines have been removed from the top of
the screen using ripoffline(), y and x include these lines; there­
fore, y and x should be used only as arguments for setsyx() .

Note that getsyx() i s a macro, so no "&" i s necessary before
the variables y and x .

setsyx(y, x)
The virtual screen cursor is set to y, x . If y and x are both -1,
then leaveok() will be set. The two routines getsyx() and set­
syx() are designed to be used by a library routine which mani­
pulates curses windows but does not want to change the
current position of the program's cursor. The library routine
would call getsyx() at the beginning, do its manipulation of its
own windows, do a wnoutrehesh() on its windows, call set­
syx(), and then call doupdate() .

ripoffline(line, init)
This routine provides access to the same facility that slk_init()
uses to reduce the size of the screen. ripoffline() must be
called before initscr() or newterm() is called. If line is positive,
a line will be removed from the top of stdscr; if negative, a line
will be removed from the bottom. When this is done inside
initscr(), the routine init () is called with two arguments: a
window pointer to the 1-line window that has been allocated
and an integer with the number of columns in the window.
Inside this initialization routine, the integer variables LINES
and COLS (defined in <curses.h>) are not guaranteed to be
accurate and wrefresh() or doupdate() must not be called. It is
allowable to call wnoutrefresh() during the initialization rou­
tine.

ripoffline() can be called up to five times before calling
initscr() or newterm() .

- 32 -

CURSES (3X) (Terminal Information Utilities)

I
scr_dump(filename)

The current contents of the virtual screen are written to the file
filename.

scr_restore(filename)
The virtual screen is set to the contents of filename, which must
have been written using scr_dump() . ERR is returned if the
contents of filename are not compatible with the current release
of curses software. The next call to doupdate() will restore the
screen to what it looked like in the dump file.

scr_init(filename)
The contents of filename are read in and used to initialize the
curses data structures about what the terminal currently has on
its screen. If the data is determined to be valid, curses will base
its next update of the screen on this information rather than
clearing the screen and starting from scratch. scr_init() would
be used after initscr() or a system(3S) call to share the screen
with another process which has done a scr_dump() after its
end win() call . The data will be declared invalid if the ter­
minfo (4) capability nrrmc is true or the time-stamp of the tty is
old. Note that keypad(), meta(), slk_clear(), curs_set(),
flash(), and beep() do not affect the contents of the screen, but
will make the tty's time-stamp old.

curs_set(visibility)

draino(ms)

The cursor state is set to invisible, normal, or very visible for
visibility equal to 0, 1 or 2. If the terminal supports the visibility
requested, the previous cursor state is returned; otherwise, ERR
is returned.

Wait until the output has drained enough that it will only take
ms more milliseconds to drain completely.

garbagedlines(win, begline, numlines)
This routine indicates to curses that a screen line is garbaged
and should be thrown away before having anything written
over the top of it. It could be used for programs such as edi­
tors which want a command to redraw just a single line. Such
a command could be used in cases where there is a noisy com­
munications line and redrawing the entire screen would be
subject to even more communication noise. Just redrawing the

- 33 -

CURSES (3X)

napms(ms)

(Terminal Information Utilities) CURSES (3X)

single line gives some semblance of hope that it would show
up unblemished. The current location of the window is used
to determine which lines are to be redrawn.

Sleep for ms milliseconds.

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

Section 11 : Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal
directly with the terminfo (4) database to handle certain terminal capabili­
ties, such as programming function keys . For all other functionality,
curses routines are more suitable and their use is recommended.

Initially, setupterm() should be called. (Note that setupterm() is automat­
ically called by initscr() and newterm{) .) This will define the set of
terminal-dependent variables defined in the terminfo (4) database . The ter­
minfo (4) variables lines and columns (see terminfo (4)) are initialized by
setupterm() as follows: if the environment variables LINES and
COLUMNS exist, their values are used. If the above environment vari­
ables do not exist and the program is running in a layer (see layers(!)), the
size of the current layer is used. Otherwise, the values for lines and
columns specified in the terminfo (4) database are used.

The header files < curses.h> and <term.h> should be included, in this
order, to get the definitions for these strings, numbers, and flags .
Parameterized strings should be passed through tparm() to instantiate
them. All terminfo (4) strings (including the output of tparm()) should be
printed with tputs() or putp{) . Before exiting, reset_shell_mode() should
be called to restore the tty modes . Programs which use cursor addressing
should output enter_ca_mode upon startup and should output
exit_ca_mode before exiting (see terminfo (4)) . (Programs desiring shell
escapes should call reset_shell_mode() and output exit_ca_mode before
the shell is called and should output enter_ca_mode and call
reset_prog_mode() after returning from the shell. Note that this is dif­
ferent from the curses routines (see endwin()) .

setupterm(term, fildes, errret)
Reads in the terminfo (4) database, initializing the terminfo (4)
structures, but does not set up the output virtualization struc­
tures used by curses . The terminal type is in the character
string term: if term is NULL, the environment variable TERM

- 34 -

\

CURSES (3X) (Terminal Information UtUitieSI

will be used. All output is to the file descriptor fildes . If errret
is not NULL, then setupterm() will return OK or ERR and store
a status value in the integer pointed to by errret . A status of 1
in errret is normal, 0 means that the terminal could not be
found, and -1 means that the terminfo (4) database could not be
found. If errret is NULL, setupterm() will print an error mes­
sage upon finding an error and exit. Thus, the simplest call is
setupterm ((char •)0, 1, (int •)O), which uses all the defaults.

The terminfo (4) boolean, numeric and string variables are stored
in a structure of type TERMINAL. After setupterm() returns
successfully, the variable cur_term (of type TERMINAL *) is
initialized with all of the information that the terminfo(4)
boolean, numeric and string variables refer to. The pointer
may be saved before calling setupterm() again. Further calls to
setupterm() will allocate new space rather than reuse the space
pointed to by cur_term.

set_curterm(nterm)
nterm is of type TERMINAL * . set_curterm() sets the variable
cur_term to nterm, and makes all of the terminfo (4) boolean,
numeric and string variables use the values from nterm .

del_curterm(oterm)
oterm is of type TERMINAL * . del_curterm() frees the space
pointed to by oterm and makes it available for further use. If
oterm is the same as cur_term, then references to any of the ter­
minfo(4) boolean, numeric and string variables thereafter may
refer to invalid memory locations until another setupterm() has
been called.

restartterm(term, fildes, errret)
Similar to setupterm(), except that it is called after restoring
memory to a previous state; for example, after a call to
scr_restore() . It assumes that the windows and the input and
output options are the same as when memory was saved, but
the terminal type and baud rate may be different.

char •tparm(str, p1, p2, . • . , p�
Instantiate the string str with parms p.. A pointer is returned
to the result of str with the parameters kpplied.

tputs(str, count, putc)
Apply padding to the string str and output it. str must be a

- 35 -

CURSES (3X) (Terminal Information Utilities) CURSES (3X)

I
terminfo (4) string variable or the return value from tparm(),
tgetstr{), tigetstr() or tgoto() . count is the number of lines
affected, or 1 if not applicable. putc is a putchar(3S)-like routine
to which the characters are passed, one at a time.

putp(str) A routine that calls tputs (str, 1, putchar) .

vidputs(attrs, putc)
Output a string that puts the terminal in the video attribute
mode attrs , which is any combination of the attributes listed
below. The characters are passed to the putchar(3S)-like rou­
tine putc() .

vidattr(attrs)
Similar to vidputs(), except that it outputs through putchar(3S) .

The following routines return the value of the capability corresponding to
the character string containing the terminfo (4) capname passed to them.
For example, rc = tigetstr("acsci causes the value of acsc to be returned
in rc.

tigetflag(capname)
The value -1 is returned if capname is not a boolean capability.
The value 0 is returned if capname is not defined for this termi­
nal.

tigetnum(capname)
The value -2 is returned if capname is not a numeric capability.
The value -1 is returned if capname is not defined for this termi­
nal .

tigetstr(capname)
The value (char *) -1 is returned if capname is not a string capa­
bility. A null value is returned if capname is not defined for this
terminal.

char *boolnames[] , *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *stmames[], *Slrcodes[], *Slrfnames[]

These null-terminated arrays contain the capnames, the termcap
codes, and the full C names, for each of the terminfo (4) vari­
ables.

Section 12: Termcap Emulation
These routines are included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are

- 36 -

CURSES (3X) (Ternunai Inronnauuu ..., ,

emulated using the tenninfo (4) database.

tgetent(bp, name)
Look up tenncap entry for name. The emulation ignores the
buffer pointer bp .

tgetflag(codename)
Get the boolean entry for codename.

tgetnum(codename)
Get numeric entry for codename.

char *lgetstr(codename, area)
Return the string entry for codename . If area is not NULL, then
also store it in the buffer pointed to by area and advance area .
tputs() should be used to output the returned string.

char *lgoto(cap, col, row)
Instantiate the parameters into the given capability. The out­
put from this routine is to be passed to tputs() .

tputs(str, affcnt, putc)
See tputs() above, under ''TERMINFO-LEVEL MANIPULA­
TIONS".

Section 13: Miscellaneous
traceoff()
traceon() Tum off and on debugging trace output when using the debug

version of the curses library, lusrllibllibdcurses . a . This facility is
available only to customers with a source license.

unctrl(c) This macro expands to a character string which is a printable
representation of the character c . Control characters are
displayed in the AX notation. Printing characters are displayed
as is.

unctrl() is a macro, defined in <unctrl.h>, which is automati­
cally included by <curses.h> .

char *keyname(c)

filter()

A character string corresponding to the key c is returned.

This routine is one of the few that is to be called before
initscr() or newterm() is called. It arranges things so that
curses thinks that there is a 1-line screen. curses will not use
any terminal capabilities that assume that they know what line

- 37 -

LUK�E� (3X) (Terminal Information Utilities) CURSES (3X)

on the screen the cursor is on.

Section 14: Use of curser
The special window curser can be used in only a few routines . If the win­
dow argument to dearok() is curser, the next call to wrefresh() with any
window will cause the screen to be cleared and repainted from scratch. If
the window argument to wrefresh() is curser, the screen is immediately
cleared and repainted from scratch. (This is how most programs would
implement a "repaint-screen" routine.) The source window argument to
overlay(), overwrite(), and copywin() may be curser, in which case the
current contents of the virtual terminal screen will be accessed.

Section 15: Obsolete Calls
Various routines are provided to maintain compatibility in programs writ­
ten for older versions of the curses library. These routines are all emu­
lated as indicated below.

crmode()

fixterm()

gettmode()

nocrmode()

resetterm()

saveterm()

setterm()

ATTRIBUTES

Replaced by cbreak() .

Replaced by reset_prog_mode() .

A no-op.

Replaced by nocbreak() .

Replaced by reset_shell_mode() .

Replaced by def_prog_mode() .

Replaced by setupterm() .

The following video attributes, defined in <curses.h>, can be passed to
the routines wattron(), wattroff(), and wattrset(), or OR' ed with the char­
acters passed to waddch() .

A_STANDOUT Terminal's best highlighting mode
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set
A_NORMAL Tum all attributes off, for example:

wattrset (win, A_NORMAL)
COLOR_pAIR(n) Color-pair defined in n (note that this is a macro)

- 38 -

CURSES (3X) (Terminal Intormauon u nntu::z,; , '"' '"' .a'..., _ _ , , .. ,

The following bit-masks may be AND' ed with characters returned by
winch() .

A_CHARTEXT Extract character
A_ATTRIBUTES Extract attributes
A_COLOR Extract color-pair field information

The following macro is the reverse of COLOR]AIR(n) .

PAIR_NUMBER(attrs) Returns the pair number associated with the
COLOR]AIR(n) attribute (note that this is a macro)

COLORS
In < curses.h> the following macros are defined to have the numeric
value shown. These are the default colors . curses also assumes that color
0 (zero) is the default background color for all terminals .

COLOR_BLACK 0
COLOR_BLUE 1
COLOR_GREEN 2
COLOR_CY AN 3
COLOR_RED 4
COLOR_MAGENT A 5
COLOR_ YELLOW 6
COLOR_WHITE 7

FUNCTION KEYS
The following function keys, defined in <curses.h>, might be returned
by wgetch() if keypad() has been enabled. Note that not all of these may
be supported on a particular terminal if the terminal does not transmit a
unique code when the key is pressed or the definition for the key is not
present in the terminfo (4) database .

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSP ACE
KEY_FO
KEY_F(n)

Value

0401
0402
0403
0404
0405
0406
0407
0410
(KEY_FO+ (n))

Key name

break key (unreliable)
The four arrow keys . . .

Home key (upward+ left arrow)
backspace (unreliable)
Function keys . Space for 64 keys is reser
Formula for fn.

- 39 -

CURSES(3X)

I
KEY_DL

KEY_IL

KEY_DC

KEY_IC

KEY_EIC

KEY_CLEAR

KEY_EOS

KEY_EOL

KEY_SF

KEY_SR

KEY_NPAGE

KEY_PPAGE

KEY_STAB

KEY_CfAB

KEY_CATAB

KEY_ENTER

KEY_SRESET

KEY_RESET

KEY_FRINT

KEY_LL

KEY_Al

KEY_A3

KEY_B2

KEY_Cl

KEY_C3

KEY_BTAB

KEY_BEG

KEY_CANCEL

KEY_CLOSE

KEY_COMMAND

KEY_COPY

KEY_CREATE

KEY_END

KEY_EXIT

KEY_FIND

KEY_HELP

(Terminal Information Utilities) CURSES (3X)

0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

0534
0535
0536
0537
0540
0541
0542
0543
0544
0545
0546
0547
0550
0551
0552
0553

Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
soft (partial) reset
reset or hard reset
print or copy
home down or bottom (lower left)
keypad is arranged like this:

Al up A3
left B2 right
C1 down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
beg(inning) key
cancel key
close key
cmd (command) key
copy key
create key
end key
exit key
find key
help key

- 40 -

CURSES(3X)

KEY_MARK

KEY_MESSAGE

KEY_MOVE

KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY _pREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL

KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP

KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT

KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT

KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME

(Terminal Information Utilities)

0554
0555
0556
0557
0560
0561
0562
0563
0564
0565
0566
0567
0570
0571
0572
0573
0574
0575
0576
0577
0600
0601
0602
0603
0604
0605
0606
0607
0610
0611
0612
0613
0614
0615
0616
0617
0620
0621
0622
0623

mark key
message key
move key
next object key
open key
options key
previous object key
redo key
ref(erence) key
refresh key
replace key
restart key
resume key
save key
shifted beginning key
shifted cancel key
shifted command key
shifted copy key
shifted create key
shifted delete char key
shifted delete line key
select key
shifted end key
shifted clear line key
shifted exit key
shifted find key
shifted help key
shifted home key
shifted input key
shifted left arrow key
shifted message key
shifted move key
shifted next key
shifted options key
shifted prev key
shifted print key
shifted redo key
shifted replace key
shifted right arrow
shifted resume key

- 41 -

LURSES (3X)

KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO

LINE GRAPIDCS

(Terminal Information Utilities)

0624
0625
0626
0627
0630

shifted save key
shifted suspend key
shifted undo key
suspend key
undo key

CURSES (3X)

The following variables may be used to add line-drawing characters to the
screen with waddch() . When defined for the terminal, the variable will
have the A_ALTCHARSET bit turned on. Otherwise, the default character
listed below will be stored in the variable . The names were chosen to be
consistent with the DEC VT100 nomenclature .

Name Default Glyph Description

ACS_ULCORNER + upper left comer
ACS_LLCORNER + lower left comer
ACS_URCORNER + upper right comer
ACS_LRCORNER + lower right comer
ACS_RTEE + right tee (�)
ACS_LTEE + left tee (�)
ACS_BTEE + bottom tee (l)
ACS_TTEE + top tee (T)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_pLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_pLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

- 42 -

CURSES (3X) (Terminal Information Utilities)

DIAGNOSTICS

BUGS

All routines return the integer OK upon successful completion and the
integer ERR upon failure, unless otherwise noted in the preceding routine
descriptions.

All macros return the value of their w version, except getsyx(), getyx{),
getbegyx(), getmaxyx() . For these macros, no useful value is returned.

Routines that return pointers always return (type •) NULL on error.

Currently typeahead checking is done using a nodelay read followed by
an ungetch() of any character that may have been read. Typeahead
checking is done only if wgetch() has been called at least once. This may
change when proper kernel support is available . Programs which use a
mixture of their own input routines with curses input routines may wish to
call typeahead(-1) to tum off typeahead checking.

The argument to napms() is currently rounded up to the nearest second.

draino (ms) only works for ms equal to 0.

WARNINGS
To use the new curses features, use the version of curses on SYSTEM V/88.
All programs that ran with prior releases of curses will also run on SYS­
TEM V/88. You can link applications with object files based on prior
releases of curses/terminfo with SYSTEM V/88 libcurses.a library; however,
the opposite is not true.

Between the time a call to initscr() and endwin() has been issued, use
only the routines in the curses library to generate output. Using system
calls or the "standard VO package" (see stdio (3S)) for output during that
time can cause unpredictable results .

If a pointer passed to a routine as a window argument is null or out of
range, the results are undefined (core may be dumped) .

SEE ALSO
cc(l), ld(l), tput(l) in the User's Reference Manual.
ioctl(2), plot(3X), putc(3S), scanf(3S), stdio(3S), system(3S), vprintf(3S) in
the Programmer's Reference Manual.

----.._ profile(4), term(4), terminfo(4), varargs(5), termio(7), tty(7) in the System
Administrator's Reference Manual.
curses/terminfo Chapter 10 of the Programmer's Guide .

- 43 -

DIRECfORY(3X) DIRECfORY(3X)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory
operations

SYNOPSIS
#include < sys/types.h>
#include < dirent.h>

DIR •opendir (filename)
char *filename;

struct dirent •readdir (dirp)
DIR •dirp;

long telldir (dirp)
DIR •dirp;

void seekdir (dirp, lac)
DIR •dirp;
long lac;

void rewinddir (dirp)
DIR "'dirp;

void closedir (dirp)
DIR "'dirp;

DESCRIPTION
opendir opens the directory named by filename and associates a directory
stream with it. opendir returns a pointer to be used to identify the directory
stream in subsequent operations. The pointer NULL is returned if filename
cannot be accessed or is not a directory, or if it cannot malloc(3X) enough
memory to hold a DIR structure or a buffer for the directory entries .

readdir returns a pointer to the next active directory entry. No inactive
entries are returned. It returns NULL upon reaching the end of the direc­
tory or upon detecting an invalid location in the directory.

telldir returns the current location associated with the named directory
stream.

seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the directory
stream when the telldir operation from which lac was obtained was per­
formed. Values returned by telldir are good only if the directory has not
changed due to compaction or expansion. This is not a problem with Sys­
tem V/88, but it may be with some file system types .

- 1 -

DIRECfORY(3X) DIRECTORY (3X)

rewinddir resets the position of the named directory stream to the beginning
of the directory.

closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations:

opendir:

[ENOTDIR]

[EACCES]

[EMFILE]

[EFAULT]

readdir:

[ENOENT]

[EBADF]

A component of filename is not a directory.

A component of filename denies search permission .

The maximum number of file descriptors are currently
open.

filename points outside the allocated address space .

The current file pointer for the directory is not located at
a valid entry.

The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

telldir, seekdir, and closedir:
[EBADF]

EXAMPLE

The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

Sample code that searches a directory for entry ruzme:

SEE ALSO

dirp = op endir (• . •) ;
while ((dp = r e addir (dirp)) ! = NULL)

if (strcmp (dp-> �ame , name) == 0)
{
clos edir (dirp) ;
return FOUND ;
}

c l o s e dir (dirp) ;
return NOT_FOUND ;

getdents(2), dirent(4)

- 2 -

DIRECfORY(3X) DIRECfORY(3X)

I
WARNINGS

rewinddir is implemented as a macro, so its function address cannot be
taken.

- 3 -

GETNUM(3X) G ETN U M \ �A I

NAME
getnum - calculate an integer value from a string of characters .

SYNOPSIS
int getnum (string)
char •string;

DESCRIPTION
getnum returns the integer value of a character string. getnum uses the fol­
lowing rules when calculating a number from a character string:

• Skip over any white space.

• Change a series of the numerical characters (0 - 9) into a numbe r
assuming base 10 representation.

• A series of numerical characters may end with k, b, or w to speci fy
multiplication by 1024, 512, or 2 respectively;

• A pair of numbers may be separated by x or * to indicate a product of
those two numbers .

• Use the null and colon as the termination characters .

• If an illegal character is encountered before a termination cha racte r, a n
error conditions exists and -1 is returned.

The program must be loaded with the disk access library libmnt. a

SEE ALSO
scanf(3S)

- 1 -

GETPERMS (3X) GETPERMS (3X)

NAME
getperms - read the permissions file

SYNOPSIS
int getperms (disk)
struct usrdev *disk;

DESCRIPTION

FILES

When getpenns is invoked, the member alias is used to find a match in the
permissions file . When a match of either the slice entry or the alias entry
is found, getpenns returns the structure filled with the contents of the
matching line .

The program must be loaded with the disk access library libmnt.a.

-s tru c t u s rd e v

{
c h ar s l i c e [] ; I • r e a l d e vi c e to a c c e s s • I

c h ar a l i a s [] ; I • an a l t e rnative n ame ! or the d e v i c e • I
c h ar ! s i z e [] ; I • maximum f i l e s y s t e m s i z e o n t h e d e v i c e • I
c h ar mod e s [] ; I • a c c e s s p e rmi s s i o n s • I

c h ar mnt_pt [] ; I • the d e f au l t mount d i r e c tory • I

c h ar pgm [] ; I • f o rmat u t i t i l y to envoke • I

} ;

/usr/include/mnt.h

SEE ALSO
filesys(4)

- 1 -

GETSPENT(3X) GETSPENT(JXJ

NAME
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf -
get shadow password file entry

SYNOPSIS
#include <shadow.h>

struct spwd *getspent ()

struct spwd *getspnam (name)
char *name;

int lckpwdf ()
int ulckpwdf ()
void setspent ()
void endspent ()
struct spwd *fgetspent (fp)
FILE *fp;

DESCRIPTION
The getspent and getsp1Ulm routines each return a pointer to an object with
the following structure containing the broken-out fields of a line in the
/etc/shadow file . Each line in the file contains a "shadow password" struc­
ture, declared in the < shadow.h> header file:

struct spwd{
char

};

char
long
long
long

*Sp_namp;
*Sp_pwdp;
sp_lstchg;
sp_min;
sp_max;

The getspent routine when first called returns a pointer to the first spwd
structure in the file; thereafter, it returns a pointer to the next spwd struc­
ture in the file so successive calls can be used to search the entire file .
The getsp1Ulm routine searches from the beginning of the file until a login
name matching 1Ulme is found, and returns a pointer to the particular
structure in which it was found. The getspent and getsp1Ulm routines popu­
late the sp_min, sp_max, or sp_lstchg field with -1 if the corresponding
field in /etc/shadow is empty. If an end-of-file or an error is encountered
on reading, or there is a format error in the file, these functions return a
NULL pointer.

- 1 -

GETSPENT(3X) GETSPENT(3X)

FILES

/etc/.pwd.lock is the lock file . It is used to coordinate modification access
to the password files /etc/passwd and /etc/shadow. lckpwdf() and
ulckpwdf() are routines that are used to gain modification access to the
password files, through the lock file . A process first uses lckpwdf() to lock
the lock file thereby gaining exclusive rights to modify the /etc/passwd or
/etc/shadow password file . Upon completing modifications, a process
should release the lock on the lock file via ulckpwdf() . This mechanism
prevents simultaneous modification of the password files.

The lckpwdf() routine attempts to lock the file /etc/.pwd.lock. If file
/etc/.pwd.lock is already locked, lckpwdf() tries for 15 seconds to lock the
file . If lckpwdf() is unsuccessful, then lckpwdf() returns a -1 . If lckpwdf()
succeeds to lock the file /etc/.pwd.lock within 15 seconds, then a return
code other than -1 is returned.

The ulckpwdf() routine attempts to unlock the file /etc/.pwd.lock. If suc­
cessful, ulckpwdf() returns a 0. If the unlocking failed, as in the case that
file /etc/.pwd.lock was not locked initially, then ulckpwdf() returns a -1 .

A call to the setspent routine has the effect of rewinding the shadow pass­
word file to allow repeated searches. The endspent routine may be called
to close the shadow password file when processing is complete .

The fgetspent routine returns a pointer to the next spwd structure in the
stream fp, which matches the format of /etc/shadow.

/etdshadow, /etdpasswd, /etd.pwd. lock

SEE ALSO
putspent(3X)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
If a program not otherwise using standard I/0 uses this routine, the size
of the program will increase more than might be expected .

This routine i s for internal use only, compatibility is not guaranteed.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

- 2 -

LDAHREAD (3X) (Specialized Libraries) LDAHREAD (3X)

I
NAME

ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, ldahread reads the archive
header of the common object file currently associated with ldptr into the
area of memory beginning at arhead .

ldahread returns SUCCESS or FAILURE. ldahread will fail if TYPE(ldptr) does
not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library
libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4), ar(4)

- 1 -

LDCLOSE (3X) (Specialized Libraries) LDCLOSE (3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldclose (ldptr)
LDFILE •ldptr;

int ldaclose (ldptr)
LDFILE •ldptr;

DESCRIPTION
ldopen(3X) and ldclose are designed to provide uniform access to both s im­
ple object files and object files that are members of archive files . Thus, a n
archive of common object files can be processed as if i t were a series of
simple common object files .

I f TYPE(ldptr) does not represent an archive file, ldclose will close the f i le
and free the memory allocated to the LDFILE structure associated wi th
ldptr . If TYPE(ldptr) is the magic number of an archive file, and if there
are any more files in the archive, ldclose will reinitialize OFFSET(ldptr) to
the file address of the next archive member and return FAILURE . The
LDFILE structure is prepared for a subsequent ldopen(3X) . In al l othe r
cases, ldclose returns SUCCESS.

ldaclose closes the file and frees the memory allocated to the LDFILE s t ruc­
ture associated with ldptr regardless of the value of TYPE(ldptr) . ldaclose
always returns SUCCESS. The function is often used in conjunction w i th
ldaopen .

The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(4)

- 1 -

LDFHREAD(3X) (Specialized Libraries) LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE •Idptr;
FILHDR •filehead;

DESCRIPTION
ldfhread reads the file header of the common object file currently associ­
ated with ldptr into the area of memory beginning at filehead .

ldfhread returns SUCCESS or FAILURE. ldfhread will fail if it cannot read
the file header.

In most cases the use of ldfhread can be avoided by using the macro
HEADER(ldptr) defined in ldfcn.h [see ldfcn (4)] . The information in any
field, field1Ulme, of the file header may be accessed using
HEADER(ldptr) . fieldname.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4) .

- 1 -

LDGETNAME(3X) (Specialized Libraries) LDGETNAME (3X)

I
NAME

ldgetname - retrieve symbol name for common object file symbol table
entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

char •ldgetname (ldptr, symbol)
LDFILE •ldptr;
SYMENT •symbol;

DESCRIPTION
ldgetname returns a pointer to the name associated with symbol as a
string. The string is contained in a static buffer local to ldgetname that i s
overwritten by each call to ldgetname, and therefore must be copied by the
caller if the name is to be saved.

ldgetname can be used to retrieve names from object files without any
backward compatibility problems. ldgetname will return NULL (defined i n
stdio.h) for an object file if the name cannot be retrieved. This situation
can occur: if the "string table" cannot be found, if not enough memory
can be allocated for the string table, if the string table appears not to be a
string table (for example, if an auxiliary entry is handed to ldgetname tha t
looks like a reference to a name in a nonexistent string table), or if the
name's offset into the string table is past the end of the string table .

Typically, ldgetname will be called immediately after a successful call to
ldtbread to retrieve the name associated with the symbol table entry filled
by ldtbread .

The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4)

- 1 -

LDLREAD (3X) (Specialized Libraries) LDLREAD (3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common
object file function

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int ldlread (ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO *linent;

int ldlinit (ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitem (ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO *Zinent;

DESCRIPTION
ldlread searches the line number entries of the common object f i le
currently associated with ldptr . ldlread begins its search with the l i ne
number entry for the beginning of a function and confines its sea rch to the
line numbers associated with a single function. The function is iden t i fied
by fcnindx, the index of its entry in the object file symbol table . lrf/rcnrf
reads the entry with the smallest line number equal to or greater tha n ! inc­
num into the memory beginning at linent .

ldlinit and ldlitem together perform exactly the same function as ldlrend .
After an initial call to ldlread or ldlinit, ldlitem may be used to retrieve a
series of line number entries associated with a single function . ld/init s im­
ply locates the line number entries for the function identified by fcn indx .
ldlitem finds and reads the entry with the smallest line number equa l to or
greater than linenum into the memory beginning at linent .

- 1 - .

LDLREAD (3X) (Specialized Libraries) LDLREAD (3X)

ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE . ldlread
will fail if there are no line number entries in the object file, if fcnindx does
not index a function entry in the symbol table, or if it finds no l ine
number equal to or greater than linenum . ldlinit will fail if there a re no
line number entries in the object file or i f fcnindx does not index a function
entry in the symbol table . ldlitem will fail if it finds no line number equal
to or greater than linenum .

The programs must be loaded with the object file access routine l ibra ry
libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4)

- ? -

LDLSEEK(3X) (Specialized Libraries) LDLSEEK(3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldlseek (ldptr, sectindx)
LDFILE •ldptr;
unsigned short sectindx;
int ldnlseek (Idptr, sectname)
LDFILE •ldptr;
char •sectname;

DESCRIPTION
ldlseek seeks to the line number entries of the section specified by sectindx
of the common object file currently associated with ldptr .

ldnlseek seeks to the line number entries of the section spec i fied by
sectname .

ldlseek and ldnlseek return SUCCESS or FAILURE. ldlseek will fail if sectindx
is greater than the number of sections in the object file; ldnlseek wi l l fa i l i f
there i s no section name corresponding with *Sectname . Either funct ion
will fail if the specified section has no line number entries or i f i t ca n not
seek to the specified line number entries.

Note that the first section has an index of one .

The program must be loaded with the object file access routine l ibra ry
libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4)

- 1 -

LDOHSEEK(3X) (Specialized Libraries) LDOHSEEK(3X)

I
NAME

ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldohseek (ldptr)
LDFILE •ldptr;

DESCRIPTION
ldohseek seeks to the optional file header of the common object f i le
currently associated with ldptr .

ldohseek returns SUCCESS or FAILURE. ldohseek will fail if the object f i le
has no optional header or if it cannot seek to the optional header .

The program must be loaded with the object file access rout ine l ibra ry
libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(4)

- 1 -

LDOPEN (3X) (Specialized Libraries) LDOPEN (3X)

I
NAME

ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *Oldptr;

DESCRIPTION
ldopen and ldclose(3X) are designed to provide uniform access to both s im­
ple object files and object files that are members of archive files . Thus, a n
archive of common object files can be processed as if it were a series of
simple common object files .

If ldptr has the value NULL, ldopen will open filename and allocate and ini­
tialize the LDFILE structure, and return a pointer to the structure to the
calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldopen wil l
reinitialize the LDFILE structure for the next archive member of filename .

ldopen and ldclose(3X) are designed to work in concert. ldclose wil l return
FAILURE only when TYPE(ldptr) is the archive magic number and there is
another file in the archive to be processed. Only then should ldopen be
called with the current value of ldptr . In all other cases, in particula r
whenever a new filename i s opened, ldopen should be called with a NULL
ldptr argument.

The following is a prototype for the use of ldopen and ldclose(3X) :

- 1 -

LDOPEN(3X) (Specialized Libraries) LDOPEN(3X)

I
I• f or e ach f i l ename to b e proc e s s e d •I
ldptr = HULL ;
do
{

if ((ldptr = ldop en (f i l ename , ldptr)) ! = NULL)
{

}

I• che ck magi c numb er •I
I• pro c e s s the f ile •I

} whi l e (ldc los e (ldptr) == FAILURE) ;

If the value of oldptr is not NULL, ldaopen will open filename anew and
allocate and initialize a new LDFILE structure, copying the TYPE, OFFSET,
and HEADER fields from oldptr . Ldaopen returns a pointer to the new
LDFILE structure. This new pointer is independent of the old pointer,
oldptr . The two pointers may be used concurrently to read separate parts
of the object file . For example, one pointer may be used to step sequen­
tially through the relocation information, while the other is used to read
indexed symbol table entries .

Both ldopen and ldaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given fi le
is a common object file or an archived object file .

The program must be loaded with the object file access routine libra ry
libld.a .

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(4)

- 2 -

LDRSEEK(3X) (Specialized Libraries }

NAME

I
ldrseek, ldnrseek - seek to relocation entries of a section of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldrseek (ldptr, sectindx)
LDFILE •ldptr;
unsigned short sectindx;

int ldnrseek (ldptr, sectname)
LDFILE •ldptr;
char •sectname;

DESCRIPTION
ldrseek seeks to the relocation entries of the section specified by sectindx of
the common object file currently associated with ldptr .

ldnrseek seeks to the relocation entries of the section specified by sectnnme .

\ ldrseek and ldnrseek return SUCCESS or FAILURE. ldrseek will fa i l i f sect indx
is greater than the number of sections in the object file; ldnrseek w i l l fa i l i f
there is no section name corresponding with sectname . Either funct ion w i l l
fail i f the specified section has no relocation entries or i f it cannot s e e k t o
the specified relocation entries .

Note that the first section has an index of one .

The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4)

- 1 -

LDSHREAD (3X) (Specialized Libraries) LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int ldshread (ldptr, sectindx, secthead)
LDFILE •ldptr;
unsigned short sectindx;
SCNHDR •secthead;

int ldnshread (ldptr, sectruzme, secthead)
LDFILE •ldptr;
char •sectruzme;
SCNHDR •secthead;

DESCRIPTION
ldshread reads the section header specified by sectindx of the common
object file currently associated with ldptr into the area of memory begi n­
ning at secthead .

ldnshread reads the section header specified by sectruzme into the area of
memory beginning at secthead .

ldshread and ldnshread return SUCCESS or FAILURE. ldshread wil l fa i l i f sec­
tindx is greater than the number of sections in the object file; ldnshread wil l
fail if there is no section name corresponding with sectruzme . Either func­
tion will fail if it cannot read the specified section header.

Note that the first section header has an index of one .

The program must be loaded with the object file access routine l ibrary
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4)

- 1 -

LDSSEEK(3X) (Specialized Libraries) LU�� h h K \ JA J

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldsseek (ldptr, sectindx)
LDFILE •ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE •ldptr;
char •sectname;

DESCRIPTION
ldsseek seeks to the section specified by sectindx of the common object file
currently associated with ldptr .

ldnsseek seeks to the section specified by sectname .

\ ldsseek and ldnsseek return SUCCESS or FAILURE . ldsseek will fa il i f scct indx
is greater than the number of sections in the object file; ldnsseek wi l l fa i l if
there is no section name corresponding with sectname . Either function wil l
fail if there is no section data for the specified section or if it cannot seek
to the specified section.

Note that the first section has an index of one .

The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4)

- 1 -

LDTBINDEX(3X) (Specialized Libraries) LDTBINDEX (3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common obj ect
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry at the curren t
position of the common object file associated with ldptr .

The index returned by ldtbindex may be used in subsequent ca l l s to
ldtbread(3X) . However, since ldtbindex returns the index of the symbol
table entry that begins at the current position of the object file, if ldtbindex
is called immediately after a particular symbol table entry has been rea d ,
i t will return the index of the next entry.

ldtbindex will fail if there are no symbols in the object file, or if the obj ect
file is not positioned at the beginning of a symbol table entry .

Note that the first symbol in the symbol table has an index of zero .
The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4)

- 1 -

LDTBREAD (3X) (Specialized Libraries) LDTBREAD (3X J

NAME
ldtbread - read an indexed symbol table entry of a common object f i le

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

int ldtbread (ldptr, symindex, symbol)
LDFILE •ldptr;
long symindex;
SYMENT •symbol;

DESCRIPTION
ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with ldptr into the area of memory begin­
ning at symbol.

ldtbread returns SUCCESS or FAILURE. ldtbread will fail if symindex i s
greater than or equal to the number of symbols in the object f i le, or if i t
cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero .

The program must be loaded with the object file access routine l ibra ry
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4)

- 1 -

I

LDTBSEEK(3X) (Specialized Libraries) LDTBSEEK (3X)

I
NAME

ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldtbseek (ldptr)
LDFILE • ldptr;

DESCRIPTION
ldtbseek seeks to the symbol table of the common object file currently asso­
ciated with ldptr .

ldtbseek returns SUCCESS or FAILURE . ldtbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol
table .

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4)

- 1 -

LOGNAME(3X) (Specialized Libraries)

NAME
logname - return login name of user

SYNOPSIS
char *logname ()

DESCRIPTION

FILES

logname returns a pointer to the null-terminated login name; it extracts the
LOGNAME environment variable from the user's environment .

This routine is kept in /libllibPW.a.

/etc/profile

SEE ALSO
getenv(3C), profile(4), environ(S)
env(l), login(l) in the User's Reference Manual.

CAVEATS
The return values point to static data whose content is overwri t ten by
each call.

This method of determining a login name is subject to forgery .

- 1 -

MALLOC(3X) (�pectauzea Lloraru::; ,

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory alloca­
tor

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo()

DESCRIPTION
11Ullloc and free provide a simple general-purpose memory allocation pack­
age, which runs considerably faster than the 11Ullloc(3C) package. It is
found in the library "malloc", and is loaded if the option "-lmalloc" is
used with cc(l) or ld(l) .

11Ullloc returns a pointer to a block of at least size bytes suitably aligned for
any use .

The argument to free is a pointer to a block previously allocated by 11Ullloc;
after free is performed this space is made available for further allocation,
and its contents have been destroyed (but see 11Ulllopt below for a way to
change this behavior) .

Undefined results will occur if the space assigned by 11Ullloc is overrun or
if some random number is handed to free .

realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

calloc allocates space for an array of nelem elements of size elsize . The
space is initialized to zeros .

- 1 -

MALLOC(3X) (Specialized Libraries) MALLOC(3X)

I
mallopt provides for control over the allocation algorithm. The available
values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is 24.

M_NLBLKS Set numlblks to value . The above mentioned "large groups"
each contain numlblks blocks. numlblks must be greater than
0. The default value for numlblks is 100.

M_GRAIN Set grain to value . The sizes of all blocks smaller than max­
fast are considered to be rounded up to the nearest multiple
of grain . grain must be greater than 0. The default value of
grain is the smallest number of bytes which will allow align­
ment of any data type. Value will be rounded up to a mul­
tiple of the default when grain is set.

M_KEEP Preserve data in a freed block until the next malloc, realloc,
or calloc . This option is provided only for compatibility with
the old version of malloc and is not recommended.

These values are defined in the < malloc.h> header file .

mallopt may be called repeatedly, but may not be called after the first
small block is allocated.

mallinfo provides instrumentation describing space usage. It returns the
structure:

struct mal linf o {
int ar ena ; I• total spac e in ar ena •I
int ordblks ; I• numb er of ordinary blocks •I
int smblks ; I• numb er of small blocks •I
int hb llchd ; I• spac e in ho lding block headers •I
int hb lks ; I• numb er of ho lding blocks •I
int usmblks ; I• spac e in small b locks in us e •I
int f smb lks ; I• spac e in f r e e small blocks •I
int uordblks ; I• spac e in ordinary blocks in us e •I
int f ordblks ; I• spac e in f r e e ordinary blocks •I
int ke ep c o s t ; I• spac e p enalty if keep option •I

I• i s us ed •I
}

This structure is defined in the <malloc.h> header file .

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

- 2 -

MALLOC(3X) (Specialized Libraries) MALLUC l 3XJ

SEE ALSO
brk(2), malloc(3C)

DIAGNOSTICS
malloc, realloc and calloc return a NULL pointer if there is not enough
available memory. When realloc returns NULL, the block pointed to by
ptr is left intact. If mallopt is called after any allocation or if cmd or value
are invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc(3C) .

The code size is also bigger than malloc(3C) .
Note that unlike malloc(3C), this package does not preserve the contents
of a block when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been duplicated.

- 3 -

PUTSPENT(3X) PUTSPENT(3X)

NAME
putspent - write shadow password file entry

SYNOPSIS
#include < shadow.h>

int putspent (p, fp)
struct spwd •p;
FILE •fp;

DESCRIPTION
The putspent routine is the inverse of getspent (3X) . Given a pointer to a
spwd structure created by the getspent routine (or the getspnam routine),
the putspent routine writes a line on the stream fp, which matches the for­
mat of /etc/shadow.

If the sp_min, sp_max, or sp_lstchg field of the spwd structure is -1, the
corresponding /etdshadow field is cleared.

This program must be loaded with the library libsec.a.

SEE ALSO
getspent(3X)

DIAGNOSTICS
The putspent routine returns non-zero if an error was detected during its
operation, otherwise, zero.

WARNING
If a program not otherwise using standard 110 uses this routine, the s ize
of the program will increase more than might be expected.

This routine is for internal use only, compatibility is not guaranteed.

- 1 -

REGCMP (3X) (Specialized Libraries) REG CMP (3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (string1 [, string2, . . .], (char *)0)
char *String1 , *String2, . . . ;

char *regex (re, subject[, retO, . . .])
char *re, *subject, *retO, . . . ,

extern char * __ loc1 ;

DESCRIPTION
regcmp compiles a regular expression (consisting of the concatena ted a rgu­
ments) and returns a pointer to the compiled form. malloc(3C) is u s e d to
create space for the compiled form. It is the user's responsibility to free
unneeded space so allocated. A NULL return from regcmp indicates an
incorrect argument. regcmp(l) has been written to generally preclude the
need for this routine at execution time.

regex executes a compiled pattern against the subject string. Add i tiona l
arguments are passed to receive values back. regex returns NULL on
failure or a pointer to the next unmatched character on success . A globa l
character pointer _loc1 points to where the match began . regcmp a n d
regex were mostly borrowed from the editor, ed(l); however, the syntax
and semantics have been changed slightly. The following a re the va l i d
symbols and their associated meanings .

[] ,.
.
A These symbols retain their meaning in ed(l) .

$ Matches the end of the string; \n matches a new-line .

Within brackets the minus means through . For example, [a-z] i s
equivalent to [abed . . . xyz] . The - can appear as itself only i f
used as the first or last character. For example, the cha racter
class expression n-] matches the characters] and -.

+ A regular expression followed by + means one or more t imes . For
example, [�9] + is equivalent to [�9] [�9]* .

- 1 -

REGCMP(3X) (Specialized Libraries) REGCMP (3X)

{m} {m,} {m,u}
Integer values enclosed in { } indicate the number of t imes the
preceding regular expression is to be applied. The value m i s the
minimum number and u is a number, less than 256, which is the
maximum. If only m is present (e.g. , {m}), it indicates the exact
number of times the regular expression is to be appl ied . The
value {m,} is analogous to {m,infinity}. The plus (+) and s ta r (*)
operations are equivalent to {1,} and {0,} respectively.

(. . .)$n The value of the enclosed regular expression is to be re tu rned .
The value will be stored in the (n+ 1) th argument follow i ng the
subject argument. At most ten enclosed regular express ions a re
allowed. Regex makes its assignments unconditionally .

(. . .) Parentheses are used for grouping. An operator, e .g . , * , + , { } ,
can work on a single character or a regular express ion enclosed
in parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special . They must, there­
fore, be escaped with a \ (backslash) to be used as themselves.

EXAMPLES
Example 1 :

char *cursor, •newcursor, *ptr;

newcursor = regex((ptr = regcmp("\n", (char *)0)), cursor);
free(ptr);

This example will match a leading new-line in the subject s tri ng poi n ted
at by cursor.

Example 2:
char ret0f9];
char *newcursor, *name;

name = regcmp("(fA-Za-z] fA-za-z0-9]{0,7})$0", (char *)0) ;
newcursor = regex(name, "012Testing345", retO);

This example will match through the string "Testing3" and will re turn the
address of the character after the last matched character (the "4") . The
string "Testing3" will be copied to the character array retO .

- 2 -

REGCMP(3X) (Specialized Libraries) REGCMP(3X)

Example 3:
#include "file . i"
char •string, •newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in file . i [see
regcmp(l)] against string .

These routines are kept in /lib/libPW .a .

SEE ALSO

BUGS

regcmp(l), malloc(3C)
ed(l) in the User's Reference Manual.

The user program may run out of memory if regcmp is called i te ra t ively
without freeing the vectors no longer required.

- 3 -

SPUTL (3X) (Specialized Libraries) SPUTL (3 X)

NAME
sputl, sgetl - access long integer data in a machine-independent fash ion

SYNOPSIS
void sputl (value, buffer)
long value;
char •buffer;

long sgetl (buffer)
char •buffer;

DESCRIPTION
sputl takes the four bytes of the long integer value and places them i n
memory starting at the address pointed to by buffer. The ordering o f the
bytes is the same across all machines.

sgetl retrieves the four bytes in memory starting at the address poi nted to
by buffer and returns the long integer value in the byte ordering of the
host machine.

The combination of sputl and sgetl provides a machine-independent way
of storing long numeric data in a file in binary form without convers ion to
characters.

A program that uses these functions must be loaded with the obj ect- f i l e
access routine library libld.a.

- 1 -

INTR0 (4) 1NTKU l 4 J

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files . The C structure declara­
tions for the file formats are given where applicable . Usually, the header
files containing these structure declarations can be found in the directories
/usr/include or /usr/include/sys . For inclusion in C language programs,
however, the syntax #include <filename.h> or #include
<sys/filename.h> should be used.

- 1 -

I

A . OUT (4) A.OUT(4)

NAME
a. out - common assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
The file name a.out is the default output file name from the link editor
ld (1) . The link editor will make a.out executable if there were no errors in
linking. The output file of the assembler as (1), also follows the common
object file format of the a.out file although the default file name is dif­
ferent.

A common object file consists of a file header, a SYSTEM V/88 system I
header (if the file is link editor output), a table of section headers, reloca­
tion information, (optional) line numbers, a symbol table, and a string
table. The following is the order:

File header.
SYSTEM V/88 system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data .
Section 1 relocation.

Section n relocation.
Section 1 line numbers .

Section n line numbers .
Symbol table .
String table.

The last three parts of an object file (line numbers, symbol table, and
string table) may be missing if the program was linked with the -s option
of ld (1) or if they were removed by strip (1) . Also note that the relocation
information will be absent after linking unless the -r option of ld (1) was
used. The string table exists only if the symbol table contains symbols
with names longer than eight characters .

- 1 -

I

A.OUT(4) A.OUT(4)

The sizes of each section (contained in the header, discussed below) are in
bytes.

When an a.out file is loaded into memory for execution, three logical seg­
ments are set up: the text segment, the data segment (initialized data fol­
lowed by uninitialized, the latter actually being initialized to all O's), and a
stack. On the M88000 Family processors, the text segment starts at location
Ox20000.

The a.out file produced by ld(l) has the magic number 0555 in the first
field of the SYSTEM V/88 system header. The headers (file header, SYSTEM
V/88 system header, and section headers) are loaded at the beginning of
the text segment and the text immediately follows the headers in the user
address space. The first text address will equal Ox20000 plus the size of
the headers, and varies depending upon the number of section headers in
the a.out file . (The first 128k of user address space is unused; see ld(1) .)
In an a.out file with three sections (. text, .data, and .bss), the first text
address is at Ox200B8 on the M88000 Family processors . The text segment
is not writable by the program; if other processes are executing the same
a.out file, the processes will share a single text segment.

The data segment starts at the next 4Mb boundary past the last text
address. The first data address is determined by the following: If an
a.out file were split into 64K chunks, one of the chunks would contain
both the end of text and the beginning of data. When the core image is
created, that chunk will appear twice; once at the end of text and once at
the beginning of data (with some unused space in between) . The dupli­
cated chunk of text that appears at the beginning of data is never exe­
cuted; it is duplicated so that the operating system may bring in pieces of
the file in multiples of the page size without having to realign the begin­
ning of the data section to a page boundary. Therefore, the first data
address is the sum of the next segment boundary past the end of text plus
the remainder of the last text address divided by 64K. If the last text
address is a multiple of 64K no duplication is necessary.

On M88000 Family processors, the stack begins at location OxFOOOOOOO and
grows toward lower addresses . The stack is automatically extended as
required. The data segment is extended only as requested by the brk(2)
system call.

- 2 -

A.OUT(4) A.OUT(4)

For relocatable files, the value of a word in the text or data portions that is
not a reference to an undefined external symbol is exactly the value that
will appear in memory when the file is executed. If a word in the text
involves a reference to an undefined external symbol, there will be a relo­
cation entry for the word, the storage class of the symbol-table entry for
the symbol will be marked as an "external symbol", and the value and
section number of the symbol-table entry will be undefined . When the
file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

File Header
The format of the filehdr header is:
s tru c t f i l ehdr
{

f_JDag i c ;
f_n a c n a ;

I • mag i c
I • numb e r

numb e r •I
o f s e c t i o n s •I

un s i g n e d s h o r t
un s i g n e d s h o r t
l o n g f_timd at ; I • time and date s t amp •I

} ;

l o n g
l o n g
un s i g n e d s h o r t
un s i g n e d s h o r t

f_aymptr ;
f_n a yma ;
f_o p thdr ;
f_f l a g a ;

SYSTEM V/88 System Header

I •
I •
I •
I •

f i l e ptr to aymtab
a ymtab entri e s •I
a i z e o f (opt hdr) •I
f l a g s •I

The format of the SYSTEM V/88 system header is:

typ e d e f s tru c t aouthdr
{

s h o r t mag i c ; I • mag i c numb e r •I
un s i g n e d i n t t a i z e ; I • t e xt s i z e in byte s ,

•I

padd e d •I
un s i g n e d i n t d a i z e ; I • i n i t i a l i z e d data (. data) •I
un s i g n e d int b a i z e ; I • u n i n i t i a l i z e d data. (. b a a)
un s i g n e d i n t n a yma ; I • s i z e o f s ymb o l t ab l e •I
un s i g n e d i n t e n try ; I • e ntry p o int •I

} AOUTHDR ;

Section Header
The format of the section header is:

s tr u c t s cnhdr
{

c h ar
l o n g
l o n g
l o n g
l o n g
l o n g

s_n a.me [e] ;
s_p a.ddr ;
s_va.ddr ;
a_a i z e ;
a_a cnptr ;
s_r e lptr ;

- 3 -

I • s e c t i o n n ame •I
I • phy s i c a l addr e s s •I
I • virtual addr e s s •I
I • s e c t i o n s i z e •I
I • f i l e ptr t o raw data. •I
I • f i l e ptr to r e l o c a t i o n •I

•I

I

A.OUT(4) A.OUT(4)

l o n g s_lnnoptr ; I • f i l e ptr t o l in • numb e r s •I
l o n g s_nr e l o c ; I • # r e l o c e n tr i e s •I
l o n g s_n l nn o ; I • # l in e numb e r e n tr i e s •I
l o n g s_f l a g s ; I • f l a g s •I

} ;

Relocation
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow­
ing format:

s tr u c t r e l o c
{

l o n g r_vaddr ; I• (virtual) addr e s s o f r e f e r e n c e •I
l o n g r_s ymndx ; I• ind e x into s ymb o l tab l e •I
u s hort r_typ e ; I• r e l o c a t i o n typ e •I
c h ar r_pad l ; I • P ad to 4 byte mu l t i p l e •I
c h ar r_pad2 ; I• P ad to 4 byt e mu l t i p l e •I

} ;

The start of the relocation information is s_relptr from the section header.
If there is no relocation information, s_relptr is 0.

- 4 -

A.OUT(4) .c-.. . '"' _ ... , -.. ,

Symbol Table
The format of each symbol in the symbol table is:

•d e f in e
•d e f in e
•de f in e

struct ayment
{

BYKIO(LEH 8
FILIO(LEH 1 4
DIKlfUK 4

union I• all ways to get a symbol name •I

} ;

{
char
struct

��ame [SYUNKLEN] ; I• name of symbol •I

{
l.ong
long

} �� ·
char

} � ·

.....n_:z eroe s ;
�-of f s et ;

I•
I•

== OL if in string
location in string

I• allows overlaying

uns igned long n_value ; I• value of symbol •I
short n� cnum ; I• s e ction numb er •I

table
tab l e

• I

uns igne d short n_typ e ; I• typ e an d derived type *I
char n� clas s ; I• storag e c lass •I
char n�umaux ; I• number of aux entr i e s •I
char n_padl ; I• Pad to 4 byte multip l e •I
char n_pad2 ; I• Pad to 4 byte multip l e •I

•de f ine n�ame
•def ine n_z ero e s � . �� . �_z eroes
•def ine n_of f s et � . �� . �-of f s et
•def ine n�ptr � . ��ptr [1]

•I
•I

Some symbols require more information than a single entry; they are fol­
lowed by auxiliary entries that are the same size as a symbol entry. The
format follows.

- 5 -

I

I

A.OUT(4)

un i o n auxe n t {
s tr u c t {

} ;

s tru c t {

} x_f i l a ;
a tr u c t {

} x_s cn ;
s tr u c t {

} x_tv ;

l o n g x_tagndx ;
u n i o n {

s tr u c t {
uns i g n e d s h o r t x_lnno ;
uns i gn e d s h o r t x_s i z a ;

} x_ln s z ;
l o n g x_f s i z a ;

} x.....mi a c ;
u n i o n {

s tr u c t {
l o n g x_lnnoptr ;
l o n g

} x_f c n ;
s tr u c t {

x_a ndndx ;

A.OUT(4)

un s i gn e d s h o r t x_d ima n [DIKNUK] ;
} x_ary ;

} x_f cnary ;
una i g n a d s h o r t x_tvndx ;
char x_p ad 1 ; I • P ad to 4 byt e mu l t ip l a •I
char x_p ad 2 ; I • P ad to 4 byt e mu l t i p l a •I
} x_a ym ;

char x_f n ame [P"ILNKLEH] ;

l o n g x_a cn l e n ;
una i g n e d s h o r t x_:nr a l o c ;
una i g n e d s h o r t x_:n l i nno ;

l o n g x_tvf i l l ;
un s i g n e d s h o r t x_tv l e n ;
u n s i g n e d s h o r t x_tvran [2] ;

Indexes of symbol table entries begin at zero . The start of the symbol table
is f_symptr (from the file header) bytes from the beginning of the file . If the
symbol table is stripped, f_symptr is 0. The string table (if one exists) begins
at f_symptr + (j_nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(l), cc(l), ld(l), brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4),
scnhdr(4), syms(4) .

- 6 -

ACCf(4) ALL .l \""J

NAME
acct - per-process accounting file format

SYNOPSIS
#include < sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form
defined by < sys/acct.h>, whose contents are:

typedef ushort comp_t; I• "floating point" •I

• t.ru c t
{

} ;

e x t e rn
e x t e r n

#d e f in e
#d e f in e
#d e f in e

I• 13-bit fraction, 3-bit exponent •I

a c c t

char
char
u s hort
u s hort
d e v_t
time_t
c o mp_t
comp_t
comp_t
c omp_t
c o mp_t
c o mp_t
char

s tr u c t
s tr u c t

AFORK 0 1
ABU 0 2

ACCTF

ac_f l ag ; I • A c c ounting f l ag •/
ac_s tat ; / • Exit s tatus •/
ac_u i d ; / • A c c ounting u s e r ID •I
ac_g id ; I • A c c ount i n g group I D •I
ac_tty ; / • c o n t r o l typ ewr i t e r •/
ac_bt ime ; I • B e g inning t ime •/
a c_ut ime ; I• ac ctng u s e r t ime in c l o ck t i c k s •/
a c_s time ; I • a c c tn g s y s t e m t ime in c l o ck t i c k s •/
a c_e t ime ; I • ac ctng e l ap s e d time in c l o ck t i c k s •
ac_mem ; / • memory u s a g e i n c l i ck s •/
a c_i o ; I • chars trn s f rd by r e ad/wr i t e •/
ac_rw ; / • numb e r o f b l o ck r e ad s /wr i t e s •/

ac_comm [8] ; I• c ommand n ame •/

a c c t
in o d e

a c c tbuf ;
•ac c tp ; I • i n o d e o f a c c ounting f i l e •,

I • has e x e c u t e d f o rk , but n o e x e c •/
I • u s e d s u p e r -u s e r privi l e g e s •/

I • r e cord typ e : 00 = a c c t •/

- 1 -

I

ACCT(4) ACCf(4)

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an
exec(2) . The ac_comm field is inherited from the parent process and is reset
by any exec . Each time the system charges the process with a clock tick, it
also adds to ac_mem the current process size, computed as follows:

(data size) + (text size) I (number of in-core processes using text)

The value of ac_mem I (ac_stime + ac_utime) can be viewed as an approxima­
tion to the mean process size, as modified by text sharing.

The structure acct, which resides with the source files of the accounting
commands, represents the total accounting format used by the various
accounting commands:

I•
• total account ing (for acct. period.) , al•o for d.ay

•I

•t.ruct. t.acct. {
uicL.t.

char

f loat.

f loat.

f loat.

f loat.

long

t.a_u i d. ; I• u•erid. •I
t.a_Jlame [8] ; I• log in name •I
t.a_cpu [2] ; I• CWil . cpu t ime , plnp (min•) •I
t.a....)ccore [2] ; I• CWil kcore-minut.•• , plnp •I
t.a_con [2] ;

t.a_d.u ;

t.a_pc ;

I• CWil . connect. time , plnp , min• •I
I• CWil . d.i•k u•ag e •I
I• cou.nt o� proc • • • • • •/

un• igned. •hort. t.a_• c ;

un • i gned. •hort. t.a_d.c ;

un • i gned. •hort. t.a_f • • ;

I• count. of login • • • • ion• •I
I• count. of d.i•k • amp l e • •I
I• fee for •pe c i a l • • rv i c • • •I

} ;

SEE ALSO

BUGS

acct(2), exec(2), fork(2) in the Programmer's Reference Manual.
acct(lM) in the System Administrator's Reference Manual.
acctcom(l) in the User's Reference Manual.

The ac_mem value for a short-lived command gives little information about
the actual size of the command because ac_mem may be incremented
while a different command (e .g. , the shell) is being executed by the pro­
cess .

- 2 -

ALIAS (4) (Framed Access Command Environment Utilities) ALIAS (4)

NAME
pathalias - alias file for FACE

DESCRIPTION

NOTES

FILES

The pathalias files contain lines of the form "alias = path" where "path" can
be one or more colon (:) separated directories . Whenever a FACE user
references a path not beginning with a "/", this file is checked. If the first
component of the pathname matches the left-hand side of the equals sign,
the right-hand side is searched much like $PATH variable in the UNIX
System. This allows users to reference the folder ''$HOMEJFILECABINET"
by typing "filecabinet".

There is a system-wide pathalias file called $VMSYS/pathalias, and each I
user can also have local alias file called $HOMFJpref/pathalias . Settings in
the user alias file override settings in the system-wide file . The system­
wide file is shipped with several standard FACE aliases, such as fileca­
binet, wastebasket, preferences, other_users, etc.

Unlike command keywords, partial matching of a path alias is not permit­
ted, however, path aliases are case insensitive . The name of an alias
should be alphabetic, and in no case can it contain special characters like
"/", " or "= ". There is no particular limit on the number of aliases allowed .
Alias files are read once, a t login, and are held in core until logout. Thus,
if an alias file is modified during a session, the change will not take effect
until the next session.

$HOMFJpref/pathalias
$VMSYS/pathalias

- 1 -

AR(4) AK(4J

NAME
ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar(l) is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor
ld(l) .

Each archive begins with the archive magic string:

#de f �ne ARYAG " ! < �r ch>\n " I* m�g� c str�ng •I
#def �ne SARYAG B I• l ength of m�g � c string •I

Each archive which contains common object files (see a.out(4)) includes an
archive symbol table . This symbol table is used by the link editor ld(l) to
determine which archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always the first file in
the archive (but is never listed) and is automatically created and/or
updated by ar.

Following the archive magic string are the archive file members . Each file
member is preceded by a file member header which is of the following
format:

#def �ne ARFYAG " . \n " I* he�der tr��1er str�ng •I

struct �r__ll.dr I• f � 1 e member he�der •I
{

ch�r �r.Jl�e [16] ; I* • I . term�n�ted f �1 e memb e r n�e *I
ch�r �r_d�te [12] ; I* f �1 e member d�te *I
ch�r �r_u�d [6] ; I* f 1 1 e member user �dent�f �c�t�on *I
ch�r �r_g�d [6] ; I• f �1 e member group �dent�f � c �t�on *I
ch�r �r..JDode [8] ; I• f �1 e member mode (o ct�1) *I
ch�r �r _s � z e [10] ; I* f �1 e member s � z e *I
ch�r �rJm�g [2] ; I• he�der tr��1er str�ng *I

} ;

- 1 -

I

I

AR(4) AR(4)

All information in the file member headers is in printable ASCII. The
numeric information contained in the headers is stored as decimal
numbers (except for ar_mode which is in octal) . Thus, if the archive con­
tains printable files, the archive itself is printable.

The ar _name field is blank-padded and slash (/) terminated . The ar _date
field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system
as long as the portable archive command ar(l) is used. Conversion tools
such as convert(l) exist to aid in the transportation of non-common format
archives to this format.

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless the size given reflects
the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file .

If the archive symbol table exists, the first file in the archive has a zero
length name (i .e . , ar_nameiO] = = '/') . The contents of this file are:

• The number of symbols . Length: 4 bytes.

• The array of offsets into the archive file . Length: 4 bytes * "the
number of symbols" .

• The name string table . Length: ar_size - (4 bytes * ("the number of
symbols" + 1)) .

The number of symbols and the array of offsets are managed with sgetl
and sputl . The string table contains exactly as many null terminated
strings as there are elements in the offsets array. Each offset from the
array is associated with the corresponding name from the string table (in
order) . The names in the string table are all the defined global symbols
found in the common object files in the archive . Each offset is the loca­
tion of the archive header for the associated symbol.

SEE ALSO
ar(l), ld(l), strip(l), sputl(3X), a.out(4)

WARNINGS
strip(l) will remove all archive symbol entries from the header. The
archive symbol entries must be restored via the ts option of the ar(l) com­
mand before the archive can be used with the link editor Id(l) .

- 2 -

CFTIME(4) CFTIME(4)

NAME
cftime - language specific strings for converting times and dates to ASCII

DESCRIPTION
The programmer can create one printable file per language. These files
must be kept in a special directory /lib/cftime. If this directory does not
exist, the programmer should create it. The contents of these files are:

• abbreviated month names (in order)

• month names (in order)

• abbreviated weekday names (in order)
• weekday names (in order)

• default strings that specify formats for local time (%x) and
local date (%X) .

• default format for cftime, if the argument for cftime is zero or null.

• AM (ante meridiem) string

• PM (post meridiem) string

\ Each string is on a line by itself. All white space is significant. The order
of the strings in the above list is the same order in which the strings
appear in the file shown below.

- 1 -

I

CFTIME (4)

EXAMPLE

FILES

/lib/ cftime/usa_english

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:%M: % S
%m!% dl%y
%a %b % d %T %Z %Y
AM
PM

CFTIME(4)

/lib/dtime - directory that contains the language specific printable files
(create it if it does not exist)

SEE ALSO
ctime(3C) in the Programmer's Reference Manual.

- 2 -

CHECKLIST(4) LHhLl\.Ll:::t l l'*l

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION

FILES

checklist resides in directory /etc and contains a list of specialfile names .
Each specialfile name is contained on a separate line and corresponds to a
file system. Each file system will then be automatically processed by the
fsck(lM) command.

/etc/checklist

SEE ALSO I fsck(lM), ncheck(lM) in the System Administrator's Reference Manual.

- 1 -

I

CORE (4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
The system writes out a core image of a terminated process when any of
various errors occur. signal(2) describes reasons for errors . The most
common errors are memory violations, illegal instructions, bus errors, and
user-generated quit signals . The core image is called core and is written
in the working directory of the process (provided it can be; normal access
controls apply) . A process with an effective user ID different from the
real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data
for the process, including the registers as they were at the time of the
fault. The size of this section depends on the parameter usize, which is
defined in /usr/include/sys/param.h. The remainder represents the actual
contents of the user's core area when the core image was written. If the
text segment is read-only and shared, or separated from data space, it is
not dumped.

The format of the information in the first section is described by the user
structure of the system, defined in /usr/include/sys/user.h . The locations
of the registers are outlined in /usr/include/sys/reg.h.

SEE ALSO
crash(1M),sdb(l), setuid(2),signal(2)

- 1 -

CPI0(4) ,.... . . _ , ... ,

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio (l) is not used, is:

struct {

} Hdr ;

short hJDagic .
h_dev ;

ushort h_;1.no .
hJDode ,
h_uid ,
h_g id ;

short h�l ink ,
h_;rdev ,
hJDt1me [2] .
h�ame s i z e .
h_;t 1 l e s 1 z e [2] ;

char h�ame [h�ame s i z e rounde d to word] ;

When the -c option is used, the header information is described by:

s s c anf (Chdr , " �6o�6o�6o�6o�6o�6o�6o�6o�1 1 lo�6o� 1 1 1 o�s " .
&Hdr . h�agic , &Hdr . h_dev , &Hdr . h�no , &Hdr . h�ode ,
&Hdr . h_uid , &Hdr . h_gid , &Hdr . h�l ink , &Hdr . h�dev ,
&Longtime , &Hdr . h�ame s i z e , &Longf ile , Hdr . h�ame) ;

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h...filesize,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file . Every instance of h_magic contains the constant 070707
(octal) . The items h_dev through h_mtime have meanings explained in
stat (2) . The length of the null-terminated path name h_name, including
the null byte, is given by h_namesize .

The last record of the archive always contains the name TRAILER!! ! . Special
files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
stat(2)
cpio(l), find(l) in the User's Reference Manual.

- 1 -

DFILE (4)

NAME
dfile - device information file

DESCRIPTION
The description file, dfile, contains device information for the user's sys­
tem. The file is divided into three parts . The first part contains physical
device specifications . The second part contains system-dependent infor­
mation. The third part contains microprocessor-specific information. The
first two parts are required; the third part is optional . A line with an
asterisk (*) in column 1 is a comment. Any kernel can be used to gen­
erate the dfile used to configure that kernel. Refer to the utility
sysdef(1M) .

FIRST PART OF dfile
Each line contains four or five fields, delimited by blanks and/or tabs in
the following format:

devname vector address bus number

The first field, devname , is the name of the device as it appears in the
/etc/master device table . The device name is Field 1 of Part 1 and has a
maximum of eight characters (refer to master(4) . The second field, vector ,
is the interrupt vector location (hexadecimal), which can be calculated as
the vector number times 4; this value is also used in the interrupt vector
array created by setting the 004000 bit of Field 4 in the master(4) file. The
third field, address , is the device address (hexadecimal); the array for dev­
ice addresses is automatically created (e .g . , vm323_addr[]) . The fourth
field, bus , is the bus request level, or interrupt level (1 through 7), and is
used in the interrupt level array (e .g . , vm323_ilev[]) that is created by the
001000 bit in Field 4 of master. The fifth field, number, is the number
(decimal) of devices associated with the corresponding controller; number
is optional, and if omitted, a default value which is the maximum value
for that controller is used. This field is the same as Field 9 in Part 1 of the
master(4) file and overrides the master field if specified in dfile .

There are certain drivers which may be provided with the system that are
actually pseudo-device drivers; that is, there is no real hardware associ­
ated with the driver. Drivers of this type are identified on their respective
manual entries. When these devices are specified in the description file,
the interrupt vector, device address , and bus request level must all be zero.

SECOND PART OF dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbitrary.

- 1 -

DFILE (4) DFILE(4)

1 . Root/pipe/dump device specification

Three lines of three fields each:

root devnameminor [,minor] . . .
pipe devnameminor [,minor] . . .
dump devnameminor [,minor] . . .

where minor is the minor device number (in octal) . For certain
Motorola Inc. disk controllers, it is possible to have a single
operating system capable of executing on any device on the con­
troller. For such devices, minor can be repeated (separated by
commas) . The first reference to minor specifies the root (pipe,
dump) to be used for disk 0, the second minor for disk 1, etc.
The same number of minor references must be present for root,
pipe, dump, and swap. Currently, eight minor numbers may be
specified, with the restriction that they must fit on the 100-
character line given for each of root, pipe, dump, and swap.

2. Swap device specification

One line that contains five fields as follows:

swap devnameminor swplo nswap [,minor swplo nswap] . . .

where swplo is the lowest disk block (decimal) in the swap area
and nswap is the number of disk blocks (decimal) in the swap
area. Multiple minor, swplo, and nswap specifications can be
given; refer to the restrictions described above for multiple minor
specifications.

3. Parameter specification

Several lines of two fields each as follows (number is decimal) :

buffers number
inodes number
files number
mounts number
coremap number
swapmap number
calls number
procs number
maxproc
texts

number
number

- 2 -

DFILE (4)

clists
hashbuf
physbuf
power
mesg
sema
shmem

number
number
number
0 or 1
0 or 1
0 or 1
0 or 1

DFILE (4)

THIRD PART OF dfile
The third part contains lines identified by a keyword. The format of each
line differs for each keyword. The ordering of the third part is significant.

1 . Non-unique driver specifications I
Several lines of two fields:

force identifier

where identifier is the name of a unique identifier defined within
a driver, located in the kernel 110 library file . This forces the
correct linking of non-table driven drivers, such as those for the
clock, console, and MMU.

2. Memory probe specifications

Several lines of three fields:

probe address value

where address is the hexadecimal number specifying a memory­
mapped 110 location that must be reset for the operating system
to execute properly. The intent is to provide a means by which
non-standard (or unsupported) devices can be set to a harmless
state. Value is a hexadecimal number (OxOO-Oxff) to be written in
address, or -1, indicating that the address is to be "read only" .

- 3 -

DFILE (4) DFILE (4)

3. Alien lulndler entry specifications

Several lines of three fields:

alien vector _address alien_address

where vector _address is the hexadecimal address of the normal
exception vector for the alien entry point, and alien_address is the
hexadecimal entry point for the handler. If no handler is associ­
ated with the vector _address, then alien_address is entered into the
vector. Otherwise, code is produced in low.s (for the 68K) or in
conf.c (for the 88K) so that the alien handler is entered only
when the exception occurs in the processor's supervisor state
(refer to config(lM)) .

4. Multiple lulndler specifications

Several lines of four or five fields:

dup flag vector _address lulndler [argument]

where flag is a bit mask. The bits are interpreted as:

1 - if lulndler returns 0, go to the normal interrupt
return point ("intret'') .

2 - if luzndler returns 0, go to the normal trap
return point ("alltraps") .

4 - if lulndler returns 0, go to the branch equal return point
("beq return").

10 - argument is to be passed to lulndler.

Vector _address is the hexadecimal address of the exception vector.
Handler is the name of an exception handling routine, with the
optional argument passed to it. The intent is to provide a means
of specifying multiple handlers for a single exception. These
handlers are called in the order given in dfile(4); then the normal
handler is called. If bits 1, 2 or 4 of flag are set and the handler
returns zero, then the remainder of the handlers are not called.

- 4 -

DFILE (4)

5. Memory configuration specifications

Several lines of four or five fields:

ram flag low high [size]

where flag is an octal bit mask, which is interpreted as follows:

1 - memory has no parity check and, therefore,
need not be initialized after power up.

2 - a single memory block may exist, ranging from
low through high-1 .

4 - multiple memory blocks may be located in the
range and are of size bytes.

10 - private memory will not be used for general
purpose ram.

20 - cache inhibited memory will not be cached like
general purpose ram.

Low and high are hexadecimal memory addresses, and size is a
hexadecimal number. The intent is to provide information to
the operating system about noncontiguous memory. Low
specifies the low memory address where memory may be
located, and which may extend through high-1 . If the range
consists of multiple boards, which may or may not be present,
they are of size bytes.

For flag 2 ranges, the operating system writes sequential
memory locations, starting at low, until a memory fault occurs.
For flag 4 ranges, the operating system performs a test for each
size-sized subrange. If memory need not be initialized, only
the first byte of the range (flag 2) or subrange (flag 4) is tested
to determine the presence of the memory.

It is essential that ram lines be ordered in ascending low
addresses.

If no ram specifier is present, the default is:

ram 2 0 FOOOOO

- 5 -

I

I

DFILE (4) DFILE (4)

6. Header file specifications

SEE ALSO

Several lines of two fields:
include include_jile

where include-file is the name of a file to be inserted into the C
program, conf.c, at the time it is generated by config
(config.68(1M)) . It is inserted after all pre-generated #include
text, creating a line of the form:

#include include_file

Because the line is inserted exactly as typed, bracketing charac­
ters (such as " " and < >) must be a part of the string.

For example:
include < sys/space/newdevspace.h >

master(4), config{lM), sysgen(lM) .

- 6 -

DIR(4) .._, , -... ,

NAME
dir - format of directories

SYNOPSIS
#include < sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may
write into a directory. The fact that a file is a directory is indica ted by a
bit in the flag word of its i-node entry [see fs(4)] . The structure of a direc­
tory entry as given in the include file is:

#ifndef
d e f i n e
#endif
s truct direct

D IRS IZ
D IRS I Z 1 4

{

} ;

ushort d_ino ;
char d.Jlame [D IRS IZ] ;

By convention, the first two entries in each directory are for " . " and " . . ".
The first is an entry for the directory itself. The second is for the parent
directory. The meaning of " . . " is modified for the root directory of the
master file system; there is no parent, so " . . " has the same meaning as

SEE ALSO
fs(4) .

- 1 -

I

I

DIRENT(4) DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <sys/dirent.h>
#include < sys/types.h>

DESCRIPTION

FILES

Different file system types may have different directory entries . The
dirent structure defines a file system independent directory entry, which
contains information common to directory entries in different file system
types. A set of these structures is returned by the getdents (2) system call.

The dirent structure is defined below.
struct di.r ent {

} ;

1.no_t
off_t
uns i.gne d short
char

d_:i.no ;
d_o f f ;

d_;re c l en ;
d_.uame [1] ;

The d_ino is a number which is unique for each file in the file system.
The field d_off is the offset of that directory entry in the actual file system
directory. The field d_1Ulme is the beginning of the character array giving
the name of the directory entry. This name is NULL terminated and may
have at most MAXNAMLEN characters . This results in file system
independent directory entries being variable length entities . The value of
d_reclen is the record length of this entry. This length is defined to be the
number of bytes between the current entry and the next one, so that it
will always result in the next entry being on a long boundary.

/usr/include/sys/dirent.h

SEE ALSO
getdents(2)

- 1 -

ENV(4)

NAME

(Framed Access Command Environment Utilities)

. environ - system-wide FACE environment variables

. pre£ - default preferences for WASTEBASKET and FILECABINET

.variables

DESCRIPTION
The . environ, .pre£, and .variables files contain variables that indicate user
preferences for a variety of operations . The . environ and .variables files
are located under the user's $HOMFJpref directory. The .pre£ files are
found under $HOMFJFILECABINET, $HOMFJW ASTEBASKET, and any
directory were preferences were set via the organize command. Names
and descriptions for each variable are presented below. Variables are
listed one per line and are of the form "variable = value".

Variables found in .environ include:

LOGINWIN1 - Windows that are opened when FACE is initialized

LOGINWIN4

SORTMODE - Sort mode for file folder listings .
Values include the following hexadecimal digits:
1 sorted alphabetically by name
2 files most recently modified first
800 sorted alphabetically by object type

The values above may be listed in reverse order by
"ORing" the following value:
1000 list objects in reverse order

For example, a value of 1002 will produce a folder
listing with files LEAST recently modified displayed
first. A value of 1001 would produce a "reverse"
alphabetical by name listing of the folder

DISPLAYMODE - Display mode for file folders
Values include the following hexadecimal digits :
0 file names only
4 file names and brief description
8 file names, description, plus additional information

- 1 -

I
FILES

(Framed Access Command Environment Utilities) ENV(4)

WASTEPROMPT - Prompt before emptying wastebasket (yes/no)?
W ASTEDAYS - # days before emptying wastebasket
PRINCMDl - print command defined to print files .

PRINCMD3
UMASK - holds default permissions that files will be created with.

Variables found in .pre£ are SOR1MODE and DISPMODE, which have the
same values as the SOR1MODE and DISPLAYMODE variables described
in .environ above.

Variables found in . variables include:

EDITOR ­
PSl -

Default editor
UNIX shell prompt

$HOME/pre£/. environ
$HOME/pre£/. variables
$HOMEIFILECABINET/. pre£
$HOME!WASTEBASKET/.pref

- 2 -

\

ERRFILE (4)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen­
erated and passed to the error-logging daemon for recording in the error
log for later analysis . The default error log is /usr/adm/errfile .

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for­
mat:

struct errhdr {
short

short
time_t

} ;

e_typ e ;
e_l en ;

e_time ;

I• r e c ord typ e •I
I• byt e s in r e c ord (�nc hdr) •I
I• time of day •I

The permissible record types are as follows:

#def ine E_GOTS 010 I• start •I
#def ine E_G O RT 0 1 1 I• start f or RT •I
#def ine E_STOP 0 1 2 I• stop •I
#def ine E_TCHG 0 1 3 I• time chang e •I
#def ine E_CCHG 0 1 4 I• c onf iguration chang e
#de f ine E_BLK 020 I• block devic e error •I
#de f ine E_S TRAY 030 I• stray interrupt •I
#de f ine EJ' RTY 03 1 I• memory par ity •I

•I

Some records in the error file are of an administrative nature . These
include the startup record that is entered into the file when logging is
activated, the stop record that is written if the daemon is terminated
"gracefully'' , and the time-change record that is used to account for
changes in the system's time-of-day. These records have the following
formats:

struct e start
short

struct utsname
e_cpu ; I• CPU typ e •I
e�ame ; I• system name s * I

} ;
#def ine e end errhdr
struct etimchg {

time_t
} ;

I• r e c ord header •I

e�time ; I• new time •I

- 1 -

I

I

ERRFILE (4) ERRFILE (4)

Stray interrupts cause a record with the following format to be logged:

s truct e stray {

} ;
uint e_. addr ; I* stray l o c or devi c e addr */

Generation of memory subsystem errors is not supported in this release .

Error records for block devices have the following format:

s tr u c t e b l o c k {
d e v_t e _d e v ; I * • tr u e • maj o r + minor d e v n o *I
phys adr e _r e g l o c ; I * contro l l e r addr e s s *I
s h o r t e _bacty ; I • o th e r b l o c k I/O a c t iv i ty •I
s tru c t i o s t at {

l o n g i o_op s ; I * numb e r r e ad/wr i t e s *I
l o n g i o_mi s c ; I * numb e r • o th e r • o p e r at i o n s •I
u s h o r t i o_un l o g ; I * numb e r un l o g g e d e r r o r s •I

} e_s tats ;
s h o r t e_bf l ag s ; I • r e ad/wr i t e , e rr o r . e t c •I
s h o r t e_cyl o f f ; I * l o g i c a l d e v s tart cyl •I
dadd r_t e_bnum ; I * l o g i c a l b l o c k numb e r • I
u s h o r t e_byt e s ; I • numb e r byt e s to tran s f e r •I
padd r_t e _memadd ; I • bu f f e r memory addr e s s •I
u s h o r t e_r try ; I • numb e r r e tr i e s *I
s h o r t e _nr e g ; I • numb e r d e vi c e r e g i s t e r s •I
} ;

The following values are used in the e_bflags word:

#def ine E_WR I TE 0 I* write op eration *I
#def ine E_READ 1 I* r e ad op eration *I
#de f ine E_NO I O 02 I• no I / O p ending *I
#def ine E_?HYS 04 I* phy s i c al I / O *I
#def ine E_FO RllAT 0 1 0 I* Formatting D i sk*/
#def ine E_ERR O R 0 2 0 I* I / O f ai l e d •/

SEE ALSO
errdemon(lM)

- 2 -

\

FILEHDR(4) NLhHUK\':iJ

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struct f i l ehdr
{

uns igne d short f_mag i c ; I* mag i c numb er *I
uns igne d short f_ns cns ; I* numb er of s e ctions *I
long :r_t::lmdat ; I* ti.me .It da.te stamp *I
l ong f_symptr ; I* f ::ll e ptr to s ymtab *I
long f_nsyms ; I* # s ymtab entr i e s *I
uns igne d short f_opthdr ; I* s i z e of (opt hdr) *I
unsigned short f_.f lag s ; I* f lag s *I

} ;

f_symptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek(3S) to position an 1/0
stream to the symbol table . The system optional header is 28-bytes . The
valid magic numbers are:

#def ine FBOMAG I C 0560 I* 3B2 and 3B5 compute r s *I
#de:r ine N 3 BMAG I C 0550 I* 3B20 c omputer *I
#def ine NTVMAG I C 055 1 I* 3B20 c omputer *I

#de:r ::lne VAXWRMAG I C 0570 I* VAX wr::ltab l e text s e gments *I
#de:r ine VAXR OMAG I C 0 5 7 5 I* VAX r e ad only sharab l e

t ext s e gment s *I

The value in f_timdat is obtained from the time(2) system call . Flag bits
currently defined are:

#def ine F_RELFLG
#def ine F_EXEC

#def ine F .J,.NNO

#def ine F.J,.SYMS
#def ine F_N I NMAL
#def ine F_UPDATE
#def ine F_SWABD
#def ine F_AR 1 6 WR

#de:r ine F_AR 3 2WR

#def ine F_AR 3 2 W

000000 1 I* r e lo c ation entr i e s stripp e d *I
0000002 I* f i l e i s exe cutab l e *I
0000004 I* l ine numb e r s str ipp e d *I
00000 10 I* l o c al symb o l s stripp e d *I
0000020 I* minimal ob j e ct f i l e *I
0000040 I* update f i l e , ogen produc e d *I
0000 100 I* f il e i s " p r e - swabb e d " *I
0000200 I* 1 6 -b it DEC ho st *I
0000400 I* 32-b it DEC ho st *I
000 1000 I* non-DEC ho s t *I

- 1 -

I

FILEHDR(4) FILEHDR(4)

#def 1ne FJ'ATCH 0002000 I• "patch" 1 1 st 1n opt hdr •I
#def 1ne F_BW 3 2 I D 01 60000 I• WE32000 f amily ID f ie ld •I
#def 1ne F_BW3 2B 0020000 I• f 11 e c onta1ns WE 32 100 code •I
#def ine F_BW3 2 WAU 0040000 I• f i l e r e qs MAU to exe cute •I
#def 1ne F_BW 3 2 R S T 00 10000 I• th1s ob j e ct f 1 1 e c onta1ns r e stor E

work around [3B6I3B2 only) •I

SEE ALSO
time(2), fseek(3S), a.out(4)

I

- 2 -

FILESYS (4)

NAME
filesys - permissions file used by the value-added disk access utilities

DESCRIPTION
The file /etc/filesys contains information used by the value-added disk
access utilities to determine if a user has access permission to certain
disks .

Each entry has the following format:

slice alias fsize perms mnt_pt 'fonnat_pgm'

The fields are:

slice
This is the block device to be accessed by value-added disk access
utilities . Some of these utilities, such as dcpy(1M) may actually use
the raw device . The utility fmt(1) uses the raw device slice 7.

alias
This is a nickname for the entry. When a user asks to access a
specific device, the slice or the alias may be requested. Note that if a
user does not specify a device, the first line with the alias of floppy
will be used.

fsize
The maximum and/or default size of a file system on this device as
created by fs(1) . This field may contain a ' : ' separated subfield which
is the number of inodes to allocate (see mkfs(1M)) .

perms
The permissions field actually contains two subfields . The first sub­
field is optional and is used only for the tt(1) command. This field is
the largest amount of data that may be transferred to or from the
disk. Note that this number may actually be larger than the disk
capacity, to allow a larger and therefore faster block size to be used in
the transfer. The size is specified as a number of bytes. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2,
respectively; a pair of numbers may be separated by x to indicate a
product. If the first subfield is present, the semicolon character is
used to delimit the first and second subfields .

- 1 -

I

I

rtLt;:, l ;:, l 4 J FILESYS (4)

The second subfield specifies which actions are allowed, for each specific
disk. Note that if a flag is uppercase as shown in the following table),
any user has permission; if a flag is lowercase, only the superuser may
execute .

Flag Permissible Action

M Make a file system.
R The disk may be mounted read only, or read from.
w The disk may be mounted read/write, or written to .
F The disk may be formatted.
c Check a file system.

slices may be grouped for mounting and unmounting (using mnt{l) and
umnt(l)) by specifying a set identifier in the permissions field for the
desired entries. Valid set names are: a, A, b, B, 1, 2, and 3. Note that
sets A, B, 1, 2, and 3 may be accessed by any user and that sets a and b
are accessible only to the superuser. In adddition, sets a and b are
defined to include sets A and B, respectively. Care should be taken not to
specify a numeric set identifier immediately following the format (F) penns
flag.

mnt_pt
The mount directory used when no directory is specified on the com­
mand line .

fo771Ult_pgm

EXAMPLE

This field, containing a utility name and options, is combined with
the options given to fmt(l) and passed on to the shell to be executed.
fmt(l) uses the raw device slice 7 unless the format slice is specified.
An entry of NONE will prohibit formatting.

a l i c e a l i aa f • i•• pe rma 11mt_pt " format_pgm ·

Flopp7 driYe • : 6 . 26 in on the IIVKE327

m327 _d70a0 f lopp7 1 264 RWKF /11mt • /etc/dinit -b /•tand/m68k/boot•/vmaboot - f m327d•dd6 •

m327_s70s0 pc f l 2370 RWKF /11mt • /etc/dinit -b /•tand/m68k/boot•/vmeboot -f m327pc at "

- 2 -

FILESYS (4)

FILES
/etc/filesys permissions file

SEE ALSO
dcpy(lM), fmt(l), fs(l), mnt{l), getnum(3X), getperms(3X), real(l), tt(l)

- 3 -

I

FS (4) .& ..., \ ,

NAME
fs: file system - format of system volume

SYNOPSIS
#include < sys/fs/s5filsys.h>
#include < sys/types.h>
#include < sys/s5param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-
byte long sectors . Sector 0 is unused and is available to contain a 1
bootstrap program or other information.

Sector 1 is the super-block . The format of a super-block is:

struct filsys

ushort s_isize; I• size in blocks of i-list •I

daddr_t s_fsize; I• size in blocks of entire volume •I

short s_nfree; I• number of addresses in s_free •I
daddr_t s_free[NICFREE); I• free block list •/
short s_ninode; I• number of i-nodes in s_inode •I
ushort s_inode(NICINOD); I• free i-node list •I
char s_flock; I• lock during free list manipulation
char s_ilock; I• lock during i-list manipulation •I
char s_fmod; I• super block modified flag •I

char s_ronly; I• mounted read-only flag •I

time_t s_time; I• last super block update •I
short s_dinfo[4]; I• device information •I

daddr_t s_tfree; I• total free blocks•/
ushort s_tinode; I• total free i-nodes •I

char s_fname[6]; I• file system name •I
char s_fpack[6]; I• file system pack name •I

long s_fill[14]; I• ADJUST to make sizeof filsys
be 512 •I

long s_state; I• file system state •I
long s_magic; I• magic number to denote new

file system •I
long s_type; I• type of new file system •I

};

- 1 -

FS (4)

I

FS (4)

#define FsMAGIC Oxfd187e20 I• s_magic number •I

#define Fs1b 1 I• 512-byte block (no longer support

#define Fs2b 2 I• 1024-byte block (option) •I

#define Fs4b 3 I• 2048-byte block (option) •I

#define Fs8b 4 I• 4096-byte block (default) •/

#define Fs16b 5 I• 8192-byte block (option)•/

#define FsOKAY Ox7c269d38 I• s_state: dean •I
#define FsACTIVE Ox5e72d81a I• s_state: active •I
#define FsBAD Oxcb096f43 I• s_state: bad root •I
#define FsBADBLK Oxbadbc14b I• s_state: bad block corrupted it •I

S_type indicates the file system type . Currently, four types of file systems
are supported: 1024-byte, 2048-byte, 4096-byte, and 8192-byte logical
blocks . S_magic distinguishes the original 512-byte oriented file systems,
which are no longer supported, from the newer file systems . If this field
is not equal to the magic number, fsMAGIC, the type is assumed to be
fs1b; otherwise the s_type field is used. A logical block is therefore deter­
mined by the type. The 1024-byte, 2048-byte, 4096-byte, and 8192-byte
logical block file system will use two, four, eight, or sixteen physical
blocks, respectively. The operating system takes care of all conversions
from logical block numbers to physical block numbers .

S_state indicates the state of the file system. A cleanly unmounted, not
damaged file system is indicated by the FsOKAY state. After a file system
has been mounted for update, the state changes to FsACTIVE. A special
case is used for the root file system. If the root file system appears dam­
aged at boot time, it is mounted but marked FsBAD. Lastly, after a file
system has been unmounted, the state reverts to FsOKAY.

S_isize is the address of the first data block after the i-list; the i-list starts
just after the super-block, namely in block 2; thus the i-list is s_isize-2
blocks long. S_fsize is the first block not potentially available for alloca­
tion to a file . These numbers are used by the system to check for bad
block numbers; if an "impossible" block number is allocated from the free
list or is freed, a diagnostic is written on the on-line console . Moreover,
the free array is cleared, so as to prevent further allocation from a presum­
ably corrupted free list.

The free list for each volume is maintained as follows. The s_frce array
contains, in s_free[1], . . . , s_free[s_nfree-1], up to 49 numbers of free
blocks . S_free[O] is the block number of the head of a chain of blocks con­
stituting the free list. The first long in each free-chain block is the number

- 2 -

FS (4)

(up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the
chain. To allocate a block: decrement s_nfree, and the new block is
s_jree[s_nfree] . If the new block number is 0, there are no blocks left, so
give an error. If s_nfree became 0, read in the block named by the new
block number, replace s_nfree by its first word, and copy the block
numbers in the next 50 longs into the s_jree array. To free a block, check
if s_nfree is 50; if so, copy s_nfree and the s_jree array into it, write it out,
and set s_nfree to 0. In any event set s_jree[s_nfree] to the freed block's
number and increment s_nfree .

S_tfree is the total free blocks available in the file system. ' I S_ninode is the number of free i-numbers in the s_inode array. To allocate
an i-node: if s_ninode is greater than 0, decrement it and return
s_inode[s_ninode] . If it was 0, read the i-list and place the numbers of all
free i-nodes (up to 100) into the s_inode array, then try again. To free an
i-node, provided s_ninode is less than 100, place its number into
s_inode[s_ninode] and increment s_ninode . If s_ninode is already 100, do not
bother to enter the freed i-node into any table . This list of i-nodes is only
to speed up the allocation process; the information as to whether the i­
node is really free or not is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_jlock and s_ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial . The value of
s.Jmod on disk is likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and
is the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT) .
During a reboot, the s_time of the super-block for the root file system is
used to set the system's idea of the time.

S_jname is the name of the file system and s_fpack is the name of the pack.

!-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long. 1-node 1 is reserved for future use . 1-node 2 is
reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file . For the format of
an i-node and its flags, see inode(4) .

- 3 -

I

FS (4) FS (4)

SEE ALSO
mount(2), inode(4) .
fsck(lM), fsdb(lM), mkfs(lM) in the System Administrator's Reference
Manual.

- 4 -

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files non-standard tabs, (i .e . ,
tabs which are not set at every eighth column) . Such files must generally
be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by system
commands. A format specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder of the file .

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :> . Each parameter con- I sists of a keyletter, possibly followed immediately by a value. The follow­
ing parameters are recognized:

ttabs
The t parameter specifies the tab settings for the file . The value of
tabs must be one of the following:

1 . a list of column numbers separated by commas, indicat­
ing tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs
at intervals of n columns;

3. a - followed by the name of a "canned" tab specifica-
tion.

Standard tabs are specified by t-8, or equivalently, t1,9,17,25,etc. The
canned tabs which are recognized are defined by the tabs (!) command.

ssize
The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin
The m parameter specifies a number of spaces to be prepended to
each line . The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the converted
file .

- 1 -

I

FSPEC (4) FSPEC(4)

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification is
encountered in the file .

Default values, which are assumed for parameters not supplied, are t--8
and mO. If the s parameter is not specified, no size checking is per­
formed. If the first line of a file does nof contain a format specification,
the above defaults are assumed for the entire file . The following is an
example of a line containing a format specification:

* < :t5, 10, 15 s72:> *

If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

SEE ALSO
ed(l), newform{l), tabs{l) in the User's Reference Manual.

- 2 -

FSTAB (4)

NAME
fstab - file-system-table

DESCRIPTION

FILES

The /etc/fstab file contains information about file systems for use by
mount(lM) and mountall(lM). Each entry in /etc/fstab has the following
format:

column 1

column 2

column 3

column 4

column 5 +

block special file name of file system or advertised
remote resource

mount-point directory

··-r·· if to be mounted read-only; "-d[r]" if remote

(optional) file system type string

ignored

White-space separates columns. Lines beginning with "# " are comments .
Empty lines are ignored.

A file-system-table might read:

/dev/dsklm323_0s2 /usr S51K
/dev/dsklm323_ls2 /usr/src -r
adv _resource /mnt -d

/etc/fstab

SEE ALSO
mount(lM), mountall(lM), rmountall(lM) in the System Administrator's
Reference Manual.

- 1 -

I

GETTYDEFS (4) GETIYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(lM) to set up the
speed and terminal settings for a line. It supplies information on what
the login(l) prompt should look like . It also supplies the speed to try next
if the user indicates the current speed is not correct by typing a <break>
character.

NOTE: Customers who need to support terminals that pass 8 bits to the
system (as is typical outside the U.S.A.) must modify the entries in 1
/etc/gettydefs as described in the WARNINGS section.

Each entry in /etdgettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain
quoted characters of the form \b, \n, \c, etc . , as well as \nnn, where nnn is
the octal value of the desired character. The various fields are:

label

initial-flags

final-flags

This is the string against which getty(lM) tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not be
(see below) .

These flags are the initial ioctl (2) settings to which the ter­
minal is to be set if a terminal type is not specified to
getty(lM) . The flags that getty(lM) understands are the
same as the ones listed in /usr/include/sys/termio.h [see
termio(7)] . Normally only the speed flag is required in the
initial-flags . getty(lM) automatically sets the terminal to
raw input mode and takes care of most of the other flags.
The initial-flag settings remain in effect until getty(lM) exe­
cutes login(l) .

These flags take the same values as the initial-flags and are
set just before getty(lM) executes login(l) . The speed flag
is again required. The composite flag SANE takes care of
most of the other flags that need to be set so that the pro­
cessor and terminal are communicating in a rational
fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final close.

- 1 -

I

GETTYDEFS (4) GETTYDEFS (4)

FILES

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the login-prompt field .

next-label If this entry does not specify the desired speed, indicated
by the user typing a <break> character, then getty(lM) will
search for the entry with next-label as its label field and set
up the terminal for those settings. Usually, a series of
speeds are linked together in this fashion, into a closed set;
for instance, 2400 linked to 1200, which in tum is linked to
300, which finally is linked to 2400.

If getty(lM) is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. It is also used if getty(lM) can not find the specified label .
If /etc/gettydefs itself is missing, there is one entry built into getty(lM)
which will bring up a terminal at 300 baud.

Mter making or modifying /etc/gettydefs, it is strongly recommended
that the file be run through getty(lM) with the check option to be sure
there are no errors.

I etc/ gettydefs

SEE ALSO
getty(lM), termio(7) in the System Administrator's Reference Manual.
ioctl(2) in the Programmer's Reference Manual.
login(!), stty(l) in the User's Reference Manual.

WARNINGS
To support terminals that pass 8 bits to the system (also, see the BUGS
section), modify the entries in the /etc/gettydefs file for those terminals as
follows: add CSS to initial-flags and replace all occurrences of SANE with
the values: BRKINT IGNPAR ICRNL IXON OPOST ONLCR CSS ISIG
ICANON ECHO ECHOK

An example of changing an entry in /etc/gettydefs is illustrated below. All
the information for an entry must be on one line in the file.

Original entry:
CONSOLE # 89600 HUPCL OPOST ONLCR # 89600 SANE
IXANY TAB3 HUPCL # Console Login: # console

- 2 -

GETTYDEFS (4) GEITYDEFS (4)

BUGS

Modified entry:
CONSOLE # B9600 CS8 HUPCL OPOST ONLCR # B9600
BRKINT IGNPAR ICNRL IXON OPOST ONLCR CS8 ISIG
!CANON ECHO ECHOK IXANY TAB3 HUPCL # Console Login:
console

This change will permit terminals to pass 8 bits to the system so long as
the system is in MULTI-USER state. When the system changes to SINGLE­
USER state, the getty(lM) is killed and the terminal attributes are lost. So
to permit a terminal to pass 8 bits to the system in SINGLE-USER state,
after you are in SINGLE-USER state, type (see stty (l)) :

s tty - i s tr i p c s 8

8-bit with parity mode is not supported.

- 3 -

GROUP(4) GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a newline. If the password field is NULL, no
password is demanded.

This file resides in directory /etc . Because of the encrypted passwords, i t
can and does have general read permission and can be used, for example,
to map numerical group IDs to names.

/etc/group

SEE ALSO
passwd(4)
passwd(l) in the User's Reference Manual.
newgrp(lM) in the System Administrator's Reference Manual .

- 1 -

HOST(4) nv� ..a. , .,. ,

NAME
host - system host name.

DESCRIPTION
The file /etc/host contains the system host name as an ASCII string. It is
read by gethostname(3N) to determine the system host name when
uname(3N) fails .

FILES
/etc/host

SEE ALSO
gethostname(3N)

- 1 -

INITTAB (4) INITTAB (4)

NAME

inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init' s role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process /etc/getty that initiates individual
terminal lines. Other processes typically dispatched by init are daemons
and the shell .

The inittab file is composed of entries that are position dependent and
have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the process field using
the sh(1) convention for comments. Comments for lines that spawn gettys
are displayed by the who (1) command. It is expected that they will con­
tain some information about the line such as the location. There are no
limits (other than maximum entry size) imposed on the number of entries
within the inittab file . The entry fields are:

id
This is one or two characters used to uniquely identify an entry.

rstate
This defines the run-level in which this entry is to be processed. run­
levels effectively correspond to a configuration of processes in the sys­
tem, i .e . , each process spawned by init is assigned a run-level or run­
levels in which it is allowed to exist. The run-levels are represented by
a number ranging from 0 through 6. For example, if the system is in
run-level 1, only those entries having a 1 in the rstate field will be pro­
cessed. When init is requested to change run-levels, all processes that
do not have an entry in the rstate field for the target run-level will be
sent the warning signal (SIGTERM) and allowed a 20-second grace
period before being forcibly terminated by a kill signal (SIGKILL) .

- 1 -

I

INITTAB (4) INITTAB (4)

The rstate field can define multiple run-levels for a process by selecting
more than one run-level in any combination from 0-6 . If no run-level is
specified, then the process is assumed to be valid at all run-levels 0-6 .

There are three other values, a, b and c, which can appear in the rstate
field, even though they are not true run-levels . Entries which have these
characters in the rstate field are processed only when the telinit (see
init (lM)) process requests them to be run (regardless of the current
run-level of the system) . They differ from run-levels because init can
never enter run-level a, b or c. Also, a request for the execution of any
of these processes does not change the current run-level . Furthermore,
a process started by an a, b or c command is not killed when init
changes levels . They are only killed if their line in /etc/inittab is
marked off in the action field, their line is deleted entirely from
/etc/inittab, or init goes into the single-user state .

action
Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

res pawn
If the process does not exist then start the process, do not wait for
its termination (continue scanning the inittab file), and when it dies
restart the process. If the process currently exists then do nothing
and continue scanning the inittab file .

wait
Upon init 's entering the run-level that matches the entry's rstate,
start the process and wait for its termination. All subsequent reads
of the inittab file while init is in the same run-level will cause init to
ignore this entry.

once
Upon init 's entering a run-level that matches the entry's rstate, start
the process, do not wait for its termination. When it dies, do not
restart the process. If upon entering a new run-level, where the
process is still running from a previous run-level change, the pro­
gram will not be restarted.

- 2 -

INITTAB (4) INITTAB (4)

boot
The entry is to be processed only at init 's boot-time read of the init­
tab file . init is to start the process, not wait for its termination; and
when it dies, not restart the process. In order for this instruction to
be meaningful, the rstate should be the default or it must match
init's run-level at boot time. This action is useful for an initialization
function following a hardware reboot of the system.

bootwait
The entry is to be processed the first time init goes from single-user
to multi-user state after the system is booted. (If initdefault is set
to 2, the process will run right after the boot.) init starts the pro- I cess, waits for its termination and, when it dies, does not restart
the process.

powerfail
Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR see signal (2)) .

powerwait
Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR) and wait until it terminates
before continuing any processing of inittab .

off
If the process associated with this entry is currently running, send
the warning signal (SIGTERM) and wait 20 seconds before forcibly
terminating the process via the kill signal (SIGKILL) . If the process
is nonexistent, ignore the entry.

ondemand
This instruction is really a synonym for the respawn action. It is
functionally identical to respawn but is given a different keyword in
order to divorce its association with run-levels. This is used only
with the a, b or c values described in the rstate field.

- 3 -

I

INITTAB (4) INITTAB (4)

FILES

initdefault
An entry with this action is only scanned when init initially
invoked. Init uses this entry, if it exists, to determine which run­
level to enter initially. It does this by taking the highest run-level
specified in the rstate field and using that as its initial state . If the
rstate field is empty, this is interpreted as 0123456 and so init will
enter run-level 6. Additionally, if init does not find an initdefault
entry in /etc/inittab, then it will request an initial run-level from the
user at reboot time.

sysinit
Entries of this type are executed before init tries to access the con­
sole (i .e . , before the Con s o l e Lo g i n : prompt) . It is expected
that this entry will be only used to initialize devices on which init
might try to ask the run-level question. These entries are executed
and waited for before continuing.

process
This is a sh command to be executed. The entire process field is pre­
fixed with exec and passed to a forked sh as sh -c ' exec com11Ulnd ' .
For this reason, any legal sh syntax can appear in the process field.
Comments can be inserted with the ; #comment syntax.

/etc/inittab

SEE ALSO
exec(2), open(2), signal(2)
getty(lM), init(lM) in the System Administrator's Reference Manual .
sh{l) , who(l) in the User's Reference Manual.

- 4 -

INODE (4)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following
structure defined by <sys/ino.h> .

I• !node structur e as it appe ar s on a disk block . •I
struct dinode
{

d1..JDOde ; I• mode a.nd typ e ot t i l e • I
di_;nlink ; I• numb er o! l inks to t i l e •I
di_uid ; I• owner ' s user id •I
di__g i d ; I • owner ' s group id •I
di__s i z e ; I• numb er o! byt e s i n t i l e • I
di_addr [3Q] ; I• di sk block addr e s s e s •I

ushort
short
ushort
ushort
o : U_t
char
char
time_t
time_t
time_t

di__g en ; I• ! i l e generation numb er •I

} ;
I•

di_atime ;
di.JDtime ;
di_ctime ;

• the addr e s s byte s :

I• time
I• time
I• time

* 3Q us ed ; i 3 addr e s s e s
* o! 3 byt e s e ach .
•I

last ac c e s s e d •I
last modi f i e d •I
o! last t il e status chang e

For the meaning of the defined types off_t and time_t see types (5) .

SEE ALSO
stat(2), fs(4), types(S)

- 1 -

•I

I

I

ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION

FILES

The file /etc/issue contains the issue or project identification to be printed
as a login prompt. This is an ASCII file that is read by program getty and
then written to any terminal spawned or respawned from the lines file .

/etc/issue

SEE ALSO
login(l) in the User's Reference Manual.

- 1 -

LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

DESCRIPTION
The common object file access routines are a collection of functions for
reading common object files and archives containing common object files .
Although the calling program must know the detailed structure of the
parts of the object file that it processes, the routines effectively insulate
the calling program from knowledge of the overall structure of the object
file .

The interface between the calling program and the object file access rou­
tines is based on the defined type LDFILE, defined as struct ldfile,
declared in the header file ldfcn.h. The primary purpose of this structure
is to provide uniform access to both simple object files and to object files
that are members of an archive file .

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfcn.h and contain the following information:

LDFILE
*ldptr;

TYPE{ldptr)
The file magic number used to distinguish between archive members
and simple object files .

IOPTR{ldptr)
The file pointer returned by fopen and used by the standard
input/output functions .

OFFSET{ldptr)
The file address of the beginning of the object file; the offset is non­
zero if the object file is a member of an archive file.

HEADER{ldptr)
The file header structure of the object file .

- 1 -

I

LDFCN(4)

The object file access functions themselves may be divided into four
categories:

(1) functions that open or close an object file

ldopen (3X) and ldaopen[see ldopen(3X)]
open a common object file

ldclose(3X) and ldaclose[see ldclose(3X)]
close a common object file

(2) functions that read header or symbol table information

ldahread (3X)
read the archive header of a member of an archive file

ldfhread (3X)
read the file header of a common object file

ldshread(3X) and ldnshread[see ldshread(3X)]
read a section header of a common object file

ldtbread (3X)
read a symbol table entry of a common object file

ldgetname(3X)
retrieve a symbol name from a symbol table entry or
from the string table

(3) functions that position an object file at (seek to) the start of the sec­
tion, relocation, or line number information for a particular section.

ldohseek(3X)
seek to the optional file header of a common object file

ldsseek(3X) and ldnsseek[see ldsseek(3X)]
seek to a section of a common object file

ldrseek(3X) and ldnrseek[see ldrseek(3X)]
seek to the relocation information for a section of a com­
mon object file

ldlseek(3X) and ldnlseek[see ldlseek(3X)]
seek to the line number information for a section of a
common object file

ldtbseek(3X)
seek to the symbol table of a common object file

(4) the function ldtbindex(3X) which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

- 2 -

LDFCN(4)

All the functions except ldopen(3X), ldgetname(3X), ldtbindex(3X) return
either SUCCESS or FAILURE, both constants defined in ldfcn.h.
Ldopen(3X) and ldaopen [(see ldopen(3X)] both return pointers to an LDFILE
structure.

Additional access to an object file is provided through a set of macros
defined in ldfcn.h. These macros parallel the standard input/output file
reading and manipulating functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.

The following macros are provided:

GETC{ldptr)
FGETC{ldptr)
GETW(ldptr)
UNGETC{c, ldptr)
FGETS{s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table . See the
manual entries for the corresponding standard input/output library func­
tions for details on the use of the rest of the macros .

The program must be loaded with the object file access routine library
libld.a .

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X), Idfhread(3X),
ldlread(3X), ldlseek(3X), ldohseek(3X), Idopen(3X), Idrseek(3X),
ldlseek(3X), ldshread(3X), ldtbindex(3X), Idtbread(3X), ldtbseek(3X),
stdio(3S), intro(S)

- 3 -

I

LDFCN(4) LDFCN(4)

WARNING
The macro FSEEK defined in the header file ldfcn.h translates into a call to
the standard input/output function fseek(3S) . FSEEK should not be used to
seek from the end of an archive file since the end of an archive file may
not be the same as the end of one of its object file members!

- 4 -

LIMIT � \ 4 J

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified
in decimal.

#define CHAR_ BIT 8
#define CHAR_MAX 255
#define CHAR_MIN 0
#define INT_MAX 2147483647
#define INT_MIN -2147483648
#define LONG_MAX 2147483647
#define LONG_MIN -2147483648
#define MB_LEN_MAX 1

#define SCHAR_MAX 127
#define SCHAR_MIN -127
#define SHRT_MAX 32767
#define SHRT_MIN -32768
#define UCHAR_MAX 255
#define UINT_MAX 4294967295
#define ULONG_MAX 4294967295
#define USHRT_MAX 65535

I•
• POSIX Minimum Values (set by POSIX)
•I

#define _POSIX_ARG_MAX 4096

#define _POSIX_CHILD_MAX

#define _POSIX_LINK_MAX
#define _POSIX_MAX_CANON

#define _POSIX_MAX_INPUT

#define _POSIX_NAME_MAX
#define _POSIX_NGROUPS_MAX

#define _POSIX_OPEN_MAX

#define _POSIX_PA TH_MAX

6

8
255

255

14
0

16

255

- 1 -

I• # of bits in a "char'' •I
I• max value of a "char" •I
I• min value of a "char" •I
I• max value of an "int" •I
I• min value of an "int" •I
I• max value of a "long" •I
I• min value of a ''long" •I
I• max number of bytes in a multibyte

I• character •I
I• max value for signed char •I
I• min value for signed char •I
I• max value of a "short" •I
I• min value of a "short" •I
I• max value of an "unsigned char" •I
I• max value of an "unsigned int" •I
I• max value of an "unsigned long" •I
I• max value of an "unsigned short" •I

I• length of the arguments for exec •I
I• in bytes including environment •I
I• data •I
I• The number of simultaneous procs •I
I• per user ID •I
I• The value of a file's link count •I
I• The number of bytes in a terminal •I
I• canonical input queue •I
I• The number of bytes for which •I
I• space is guaranteed to be •I
I• available for terminal input queue •I
I• Number of bytes in a filename •I
I• Number of simultaneous supp. •I
I• group ID's per process •I
I• The number of files that one proc •I
I• can have open at a time •I
I• Max number of bytes in a pathname •I

I

I

LIMITS (4)

#define _POSIX_PIPE_BUF 512 I• Number of bytes guaranteed to be •I
I• written atomically to a pipe •I

I•
• POSIX Run-Time Increasable Values (set by BCS)
•I

#define NGROUPS_MAX

I•

0 I• Minimum maximum number of •I
I• simultanueous supplementary •I
I• group IDs per process •I

• POSIX Run-Time Invariant Values (unset by BCS)
•I

#undef ARG_MAX
#undef CHILD_MAX
#undef OPEN_MAX

I•

I• traditional max for exec args •I
I• max # of processes per user id •I
I• max # of open files per process •I

• POSIX Pathname Variable Values (unset by BCS)
•I

#undef LINK_MAX
#undef MAX_ CANON

#undef MAX_INPUT

#undef NAME_MAX
#undef PA TH_MAX
#undef PIPE_BUF

#ifndef _POSIX_SOURCE
I•

I• max # of links to a single file •I
I• Maximum number of bytes in a •I
I• terminal canonical input line •I
I• Minimum number of bytes for which •I
I• for which space is guaranteed in •I
I• a terminal input queue. •I
I• max II of characters in a file name •I
I• max # of characters in a path name •I
I• max # bytes atomic in write to a
I• pipe •I

• Non-POSIX symbols must be hidden by _posiX_SOURCE
•I

#define DBL_DIG 16 I• digits of precision of a "double" •I
#define DBL_MAX 1 .79769313486231470e + 308 I• max decimal value of a "double" •I
#define DBL_MIN ((double)4.4501477170144023e-308) /•min decimal value of a "double"•/
#define FCHR_MAX 1048576 I• max size of a file in bytes •I
#define FLT_DIG 7 I• digits of precision of a "float" •I
#define FLT_MAX 3.40282346638528860e + 38 /•max decimal value of a "float" •I
#define FLT_MIN 1 . 40129846432481707e-45 /•min decimal value of a "float" •I
#define HUGE_ VAL FLT_MAX I• error value returned by math lib •I
#define PASS_MAX 8 I• max # of characters in a password •I
#define PID_MAX 30000 I• max value for a process ID •I
#define PIPE_MAX 8192 I• max # bytes written to a pipe in a write •I
#define STD_BLK 1024 I• # bytes in a physical I/0 block •I
#define SYS_NMLN 9 I• # of chars in uname-retumed strings •I

- 2 -

LIMITS (4)

#define UID_MAX 60000
#define USI_MAX UINT_MAX
#define WORD_BIT 32

#endif I• _POSIX_SOURCE •I

I• max value for a user or group ID •I
I• max decimal value of an "unsigned" •I
I• # of bits in a "word" or "int" •I

- 3 -

L.UV.l.l J. � \ • 1

I

LINENUM (4) LlN �N U !V.l \"" 1

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
The cc command generates an entry in the object file for each C source
line on which a breakpoint is possible (when invoked with the -g option;
see cc(l)) . Users can then reference line numbers when using the
appropriate software test system (see sdb(l)) . The structure of these line
number entries is:

struct l ine no
{

union
{

long l_symndx ;
long l_paddr ;

} l_addr ;
uns igned shortl_lnno

#if def ine d (m88k)
char
char

#endif
} ;

l_padl ;
l_pad2 ;

Numbering starts with one for each function. The initial line number
entry for a function has l_lnno equal to zero, and the symbol table index of
the function's entry is in l_symndx . Otherwise, l_lnno is non-zero, and
l_paddr is the physical address of the code for the referenced line . Thus,
the overall structure is:

l_addr l_lnno

function symtab indexO
phy s i c al addr e s s line
phy s i c al addr e s s l ine

function symtab indexO
phy s i c al addr e s s l ine
phy s i cal addr e s s line

- 1 -

I

LINENUM(4) LINENUM(4)

SEE ALSO
cc(l), sdb(l), a .out(4)

I

- 2 -

LOGINLOG(4) LUulN LUu \ '! }

NAME
loginlog - log of failed login attempts

DESCRIPTION

FILES

After five unsuccessful login attempts, all the attempts are logged in the
loginlog file . This file contains one record for each failed attempt. Each
record contains the following information:

login name
tty specification
time

This is an ASCII file . Each field within each entry is separated from the I next by a colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable log­
ging, the log file must be created with read and write permission for
owner only. Owner must be root and group must be sys .

/usr/adm/loginlog

SEE ALSO
login(l), passwd(l) in the User's Reference Manual.
passwd(lM) in the System Administrator's Reference Manual .

- 1 - ,

MASTER(4)

NAME
master - master device information table

DESCRIPTION
The master file is used by the config(1M) program to obtain device informa­
tion that enables it to generate the configuration file conf.c . config reads
dfile and places information from each Part 1 entry into the arrays pro­
vided by master. Refer to config(1M) for information about the file pro­
duced and to dfile(4) for information about the fields in the first part of the
user-supplied dfile.

master has 5 parts, each separated by a line with a dollar sign ($) in
column 1 . Any line with an asterisk (*) in column 1 is treated as a com­
ment. Part 1 contains device information; part 2 contains names of dev­
ices that have aliases; part 3 contains tunable parameter information.
Parts 4 and 5 contain information related to configuring the M88000 family
systems. Part 4, the microprocessor specification, must appear in master
and cannot be in the user-specified dfile. Part 5 contains lines exactly like
those for the M88000-specific portion of dfile. See dfile(4) for a description
of these lines.

The following paragraphs describe the 5 parts of the master file . In this
description, the VME323 disk controller is used as an example.

PART 1

Part 1 contains lines consisting of at least 10 fields and at most 13 fields;
the fields are delimited by tabs and/or blanks:

Field 1 : device name (8 characters maximum) .

Field 2: interrupt vectors size (decimal); the size is the number
of vectors multiplied by four. Refer to Table 6-2 in the
M88100 32-Bit Microprocessor User's Manual
(M88100UM/ AD) for information on the memory map
for exception vectors.

Field 3: device mask (octal); each 110n11 bit indicates that the
handler exists .

002000 device has a select handler
001000 device has a stream handler

- 1 - '

I

MASTER(4)

000400

000200
000100
000040
000020
000010
000004
000002
000001

separate open and close for block and
character devices; setting the 000400
bit and the 000020 bit results, for
example, in m323bopen for opening
the block device and m323copen for
opening the character device .
device has a tty structure
initialization handler
power-failure handler
open handler
close handler
read handler
write handler
ioctl handler

Field 4: device type indicator (octal) :
004000 create interrupt vector array; e .g . ,

m323_ivec[] ; each vector (hexade­
cimal) specified in dfile (vector number

002000

001000

000200
000100
000040
000020
000010
000004
000002

000001

Field 5:

multiplied by 4) is placed in this array.
create character major number or block
major number for the device (e .g . ,
m323_cmaj or m323_bmaj) .
create interrupt level array; e .g . ,
m323_ilev[] ; interrupt levels are speci-
fied in the fourth field ("bus") of each
line in the first part of the dfile.
allow only one of these devices
suppress count field in the conf.c file
suppress interrupt vector
required device
block device
character device
interrupt driven device other than
block or char. device
allow for a single vector definition
with multiple addresses

handler prefix (4 chars . maximum); e .g . , m323 .

- 2 -

MASTER(4)

MASTER(4)

Field 6:

Field 7:

Field 8:

Field 9:

Field 10:

Fields 11-13:

page registers size (decimal); the span of memory for
all the device registers on the device page, starting at
the dfile address.

major device number for block-type device .

major device number for character-type device .

maximum number of devices per controller (decimal);
e .g . , m323_cnt; cnt is the optional fifth field on each
line in the first part of dfile. If more than one con­
troller is listed in dfile, however, then example will be
the sum of the devices for all the controllers (e .g . , A
number specified in dfile overrides this field in master.

maximum bus request level (1 through 7).

optional configuration table structure declarations (8
chars . maximum)

Devices that are not interrupt-driven have an interrupt vector size of zero.
The 040 bit in Field 4 causes config(lM) to record the interrupt vectors
although the m88kvec.s file will show no interrupt vector assignment at
those locations (interrupts here will be treated as strays) .

PART 2

Part 2 contains lines with 2 fields each:

Field 1 : alias name of device (8 chars . maximum) .

Field 2: reference name of device (8 chars . maximum; specified in part 1)

PART 3

Part 3 contains lines with 2 or 3 fields each:

Field 1 :

Field 2 :

Field 3 :

parameter name (as i t appears in dfile; 30 chars . maximum)

parameter name (as it appears in the conf.c file; 30 chars .
maximum)

default parameter value (30 chars . maximum; parameter
specification is required if this field is omitted)

PART 4

Part 4 contains one line with two fields for the microprocessor specifica­
tion.

- 3 -

I

MASTER(4)

Field 1

Field 2

mpu

number where number is
88100, or 88110.
The default is 88100.

PART S

MASTER(4)

Part 5 contains M88000-specific lines exactly like those for the M88000-
specific portion of the dfile. See the dfile(4) for a description of these lines.

FILES
/etdmaster

SEE ALSO
config(1M), sysdef(1M), dfile(4)

- 4 -

MNTTAB (4) MNTTAB (4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESCRIPTION

FILES

mnttab resides in directory /etc and contains a table of devices, mounted
by the mount(1M) command, in the following structure as defined by
<mnttab.h> :

struct mnttab {
char mt_dav [32] ;
char mtJ :1.lsys [32] ;
short mt.J"oJ lg ;
t1.ma_t mt_t1.ma ;
char mtJ styp [16] ;
char mt_JIID.topts [64] ;

} ;
Each entry is 150 bytes; the first 32 bytes are the null-padded name of the
place where the special file is mounted; the next 32 bytes represent the
null-padded root name of the mounted special file; the next 6 bytes con­
tain the mounted special files read/write permissions and the date on which
it was mounted; the following 16 bytes are the null-padded name of file
system type; and the remaining 64 bytes are the null-ppadded string of
mount options . The mount options are only used for an NFS file system.

The maximum number of entries in mnttab is based on the system param­
eter NMOUNT located in /usr/src/uts/motlsysgen/descriptions/kemel,
which defines the number of allowable mounted special files .

/etc/mnttab

SEE ALSO
mount(1M), setmnt(1M) in the System Administrator's Reference Manual.

- 1 -

I

OTT(4) (Framed Access Command Environment Utilities) OTT(4)

NAME

.ott - files that hold object architecture information

DESCRIPTION

FILES

The FACE object architecture stores information about object-types in an
ASCII file named .ott (object type table) that is contained in each direc­
tory. This file describes all of the objects in that directory. Each line of
the .ott file contains information about one object in pipe separated fields .
The fields are (in order) :

name
the name of the actual System file.

dname I
the name that should be displayed to the user, or a dot if it is the
same as the name of the file.

description
the description of the object, or a dot if the description is the default
(the same as object-type) .

object-type
the FACE internal object type name.

flags
object specific flags.

mod time
the time that FACE last modified the object. The time is given as
number of seconds since 1/1/1970, and is in hexadecimal notation.

object information
an optional field, contains a set of semi-colon separated
"name=value" fields that can be used by FACE to store any other
information necessary to describe this object.

.ott is created in any directory opened by FACE.

- 1 -

PASSWD (4) PASSWD (4)

NAME
passwd - password file

DESCRIPTION
/etc/passwd contains for each user the following information:

login name
password and (optional) aging
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory 1 program to use as shell

This is an ASCII file . Each field within each user's entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired infor­
mation. Each user is separated from the next by a new-line . If the shell
field is NULL, /bin/sh is used.

This file has user login information, and has general read permission. It
can therefore be used, for example, to map numerical user IDs to names.

The password field contains of the character x if there is a /etc/shadow
file . If /etc/shadow does not exist and the login does have a password,
this field will contain an encrypted copy of the password. This field
remains only for compatibility reasons when /etc/shadow exists .

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., /, 0-9, A-Z, a-z), except when the password is null,
in which case the encrypted password is also NULL. Password aging is
effected for a particular user if his encrypted password in the password
file is followed by a comma and a non-null string of characters from the
above alphabet. (Such a string must be introduced in the first instance by
the superuser.)

- 1 -

I

PASSWD (4) PASSWD (4)

The first character of the age, e .g . , M, denotes the maximum number of
weeks for which a password is valid. A user who attempts to login after
the password has expired will be forced to supply a new one . The next
character, e .g . , M, denotes the minimum period in weeks that must expire
before the password may be changed. The remaining one or two charac­
ters define the week (counted from the beginning of 1970) when the pass­
word was last changed. (A null string is equivalent to zero.) M and m
have numerical values in the range 0-63 that correspond to the 64-
character alphabet shown above (i.e . , I = 1 week; z = 63 weeks) . If m =

M = 0 (derived from the string . or . .) the user will be forced to change
his password the next time he logs in (and the "age" will disappear from
his entry in the password file) . If m > M (signified, e .g. , by the string ./)
only the superuser will be able to change the password.

The passwd file can also have line beginning with a plus (+), which
means to incorporate entries from the yellow pages. There are three
styles of + entries: all by itself, + means to insert the entire contents of
the yellow pages password file at that point; + name means to insert the
entry (if any) for name from the yellow pages at that point; + @name
means to insert the entries for all members of the network group name at
that point. If a + entry has a nonnull password, directory, GCOS, or
shell field, they will override what is contained in the yellow pages. The
numeric user ID and group ID fields cannot be overridden.

EXAMPLE

FILES

The following is a sample /etdpasswd file:
root : q . mJzTnu8 1cF . : 0 : 10 : God : / : /b 1n/ sh

j a : 6k/7KCFRPNVXg : 508 : 10 : Jerry Asher : /usr2/ j a : /b1n/ sh

+me l i s s a :
+Odocumentat1on : no-log1n :
+ : : : Guest

In this example there are specific entries for users root and ja, in case the
Yellow Pages (YP) are out of order. The user melissa has her password
entry in the YP incorporated without change; anyone in the netgroup
documentation has their password field disabled, and anyone else will be
able to log in with their usual password, shell, and home directory, but
with a GCOS field of Guest.

/etc/passwd
/etc/shadow

- 2 -

PASSWD (4)

SEE ALSO
group(4)
getpwent(3C) in the Programmer's Reference Manual.
login(l), passwd(l) in the User's Reference Manual.
passwd(lM) in the System Administrator's Reference Manual.

- 3 -

PA:S::i W U l4J

I

PROFILE (4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/. profile

DESCRIPTION
All users who have the shell, sh(l), as their login command have the com­
mands in these files executed as part of their login sequence.

/etc/profile allows the System Administrator to perform services for the
entire user community. Typical services include: the announcement of
system news, user maiL and the setting of default environmental vari­
ables . It is not unusual for /etdprofile to execute special actions for the
root login or the su(l) command. Computers running outside the Eastern
time zone should have the line

. /etcffiMEZONE

included early in /etc/profile (see timezone(4)) .

The file $HOME!.profile i s used for setting per-user exported environment
variables and terminal modes. The following example is typical (except
for the comments):

Make s ome environment variab l e s global
export MAIL PATH TERM
Set f i l e creation mask
um.ask 027
Tell me when new mail c ome s in
MA IL=/usr/mail/$LOGNAME
Add my /bin dir e c tory to the she l l s e arch s e quenc e
PATH=$PATH : $HOME/b in
Set terminal typ e
whi l e :
do e cho " terminal : \ c "

r e ad TERM

done

if [-f $ {TERMINFO : -/usr/lib/terminf o}/ ? /$TERM]
then br e ak
e lif [-f /usr/lib/terminf o/?/$TERM]
then br e ak
e l s e e cho " invalid term $TERM " 1>�2
f i

Initial i z e the terminal and s e t tabs
The environmental variab l e TERM must have b e en exported

- 1 -

PROFILE (4) PROFILE(4)

FILES

b e f ore the " tput 1n1t " command is exe cute d .
tput 1n1t
Set the eras e character to backspac e
stty eras e · -H · e choe

/etc/TIMEZONE
$HOME!. profile
/etc/profile

timezone environment
user-specific environment
system-wide environment

SEE ALSO

NOTES

terminfo(4), timezone(4), environ(5), term(5)
env(l), login(l), mail(l), sh(l), stty(l), su(l), tput(l) in the User's Reference
Manual .
su{lM) in the System Administrator's Reference Manual.
User's Guide.
Chapter 10 in the Programmer's Guide.

Care must be taken in providing system-wide services in /etc/profile . Per­
sonal .profile files are better for serving all but the most global needs.

- 2 -

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow­
ing format:

struct r e l o c
{

}

1ong r _vaddr ;
long r _aymndx ;
uns igned short
cha.r r _pa.d1 ;
cha.r r _pa.d2 ;

I• (virtual) addr e s s of r e f erenc e •I
I• index into symbol tab l e •I
r_typ e ; I• r e lo c ation typ e •I
I• pa.d to 4 byte multip l e •I
I• pa.d to 4 byte multip l e •I

#de f ine R_ABS 0
#de f ine RJ'CR 1 6L 128
#de f ine RJ'CR26L 129
#def ine R_VRT1 6 130
#def ine R_HVRT1 6 1 3 1
#de f ine R_LVRT1 6 132
#def ine R_VRT3 2 133

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

R_ABS
The reference is absolute and no relocation is necessary. The entry
will be ignored.

R]CR16L
A "PC-Relative" 16-bit reference to a symbol's virtual address. The
actual address is calculated by adding a constant to the PC value.

R]CR26L
A "PC-Relative" 26-bit reference to a symbol's virtual address. The
actual address is calculated by adding a constant to the PC value.

R_VRT16
Direct 16-bit reference to the symbol's virtual address.

- 1 -

I

I

RELOC(4) RELOC(4)

R_HVRT16
Same as R_ VRT16/ except/ only the high 16-bits are used in the relo­
cation.

R_LVRT16
Same as R_ VRT16/ except/ only the low 16-bits are used in the reloca­
tion.

R_VRT32
Direct 32-bit reference to the symbol/s virtual address.

More relocation types exist for other processors . Equivalent relocation
types on different processors have equal values and meanings . New relo­
cation types will be defined (with new values) as they are needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for both
preserving and removing the relocation entries from object files .

SEE ALSO
as(1)1 ld(1)1 a.out(4)1 syms(4)

- 2 -

RFMASTER(4) RFMASTER(4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION
The rfmaster file is an ASCII file that identifies the hosts that are responsi­
ble for providing primary and secondary domain name service for Remote
File Sharing domains. This file contains a series of records, each ter­
minated by a newline; a record may be extended over more than one line
by escaping the newline character with a backslash ('\'') . The fields in
each record are separated by one or more tabs or spaces. Each record has
three fields:

name type data I
The type field, which defines the meaning of the name and data fields, has
three possible values:

p The p type defines the primary domain name server. For this type,
name is the domain name and data is the full host name of the
machine that is the primary name server. The full host name is
specified as domain.nodename. There can be only one primary name
server per domain.

s The s type defines a secondary name server for a domain. Name
and data are the same as for the p type. The order of the s entries
in the rfmaster file determines the order in which secondary name
servers take over when the current domain name server fails .

a The a type defines a network address for a machine. Name is the
full domain name for the machine and data is the network address
of the machine. The network address can be in plain ASCII text or
it can be preceded by a \x to be interpreted as hexadecimal nota­
tion. (See the documentation for the particular network you are
using to determine the network addresses you need.)

There are a t least tw o lines in the rfmaster file per domain name server:
one p and one a line, to define the primary and its network address.
There should also be at least one secondary name server in each domain.

This file is created and maintained on the primary domain name server.
When a machine other than the primary tries to start Remote File Sharing,
this file is read to determine the address of the primary. If rfmaster is
missing, the -p option of rfstart must be used to identify the primary.
After that, a copy of the primary's rfmaster file is automatically placed on
the machine.

- 1 -

I

RFMASTER(4) RFMASTER(4)

Domains not served by the primary can also be listed in the rfmaster file .
By adding primary, secondary, and address information for other domains
on a network, machines served by the primary will be able to share
resources with machines in other domains .

A primary name server may be a primary for more than one domain.
However, the secondaries must then also be the same for each domain
served by the primary.

EXAMPLE

FILES

An example of an rfmaster file is shown below. (The network address
examples, compl . serve and comp2 .serve, are STARLAN network addresses.)

ccs p ccs .compl
ccs s ccs .comp2
ccs .comp2 a comp2. serve
ccs .compl a compl. serve

NOTE: If a line in the rfmaster file begins with a # character, the entire
line will be treated as a comment.

/usr/nserve/rfmaster

SEE ALSO
rfstart(lM) in the System Administrator's Reference Manual.

- 2 -

RHOSTS (4) RHOSTS (4)

NAME
. rhosts - user-specified file of equivalent hosts and users.

DESCRIPTION
The . rhosts file resides in a user's login directory. It contains entries, one
per line, which are of the form:

hostname

or

hostname usemame

It allows a user to specify a set of users of other systems who are allowed I equivalent capabilities to himself on this system.

In an environment where a single organization might have many systems
used by a common set of users, it is often the case that a single user will
have a login account on many different systems. In the common case
where the login names are the same for each user on all systems, then
user authentication is provided by the list of host names in
/etc/hosts.equiv. In the case where a host is not in /etc/hosts.equiv, or
the user has a different name on another system, the user can provide
individual authentication by adding entries in his personal .rhosts file .
Users who connect to the system, via rep, remsh, or rlogin and are author­
ized via user granting authorization.

remshd, used to support remsh and rep requests, uses .rhosts in the follow­
ing way. When the connection is made, remshd gets the name of the user
on the remote (calling) system. It then looks up the remote user in the
local /etc/passwd file . If the remote user is not the superuser, then
/etc/hosts.equiv is checked for the name of the remote host. If it is found,
the user is considered to be equivalent to the user of the same local name,
and the command proceeds. If the host name is not found, or if the
remote user is the superuser, then remshd checks the file . rhosts in the
login directory found in /etc/passwd. If an entry is found for the remote
host, or this local user name and remote host combination, then the user
is considered equivalent and the command proceeds . If this test fails, the
command is terminated. rlogin uses these files in an analogous fashion.

The host name here must match the first name listed for a host in
/etc/hosts, not one of its aliases. As a convenience, the RFS setup menu,
transpmgmt tcpip, adds and deletes entries in /etc/rhosts. RFS com­
mands, however, do not make use of the entries in this file .

- 1 -

I

RHOSTS (4) RHOSTS(4)

FILES
$HOME/.rhosts

SEE ALSO

NOTES

rcp(l), rlogin(l), remsh(l), rlogind(lM), remshd(lM), hosts .equiv(4)

On most systems, users are required to enter their password (if they have
one) on the remote system. This is due to the operation of login on these
systems.

- 2 -

SCCSFILE (4)

NAME
sccsfile - format of sees file

DESCRIPTION
An sees (Source Code Control System) file is an ASCII file. It consists of
six logical parts: the checksum, the delta table (contains information about
each delta), user names (contains login names and/or numerical group IDs
of users who may add deltas), flags (contains definitions of internal key­
words), comments (contains arbitrary descriptive information about the
file), and the body (contains the actual text lines intermixed with control
lines) .

Throughout an sees file there are lines which begin with the ASCII SOH I (start of heading) character (octal 001) . This character is hereafter referred
to as the control character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number
between 00000 and 99999) .

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an sees file . The form of the line
is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line . The @h provides a magic number of (octal)
064001.

- 1 -

I

�CCSFILE (4) SCCSFILE (4)

Delta table
The delta table consists of a variable number of entries of the
form:
@s DDDDD/DDDDD/DDDDD
@d <type> < SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD • • •

@x DDDDD • • •

@g DDDDD • • •

@m <MR number>

@c <comments> . . .

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d) contains
the type of the delta (currently, normal: D, and removed: R), the sees ID of
the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the
delta; the @c lines contain comments associated with the delta .

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con­
taining these login names and/or numerical group IDs are sur­
rounded by the bracketing lines @u and @U. An empty list
allows anyone to make a delta . Any line starting with a ! prohi­
bits the succeeding group or user from making deltas.

- 2 -

SCCSFILE (4)

Flags
Keywords used internally. [See admin (l) for more information on
their use .] Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m
@f f
@f c
@f d
@f n
@f j
@f l

<module name>
<floor>
<ceiling>
< default-sid>

<lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification key­
word. The v flag controls prompting for MR numbers in addition
to comments; if the optional text is present it defines an MR
number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When
the i flag is not present, this message is only a warning; when the
i flag is present, this message will cause a "fatal" error (the file
will not be gotten, or the delta will not be made) . When the b
flag is present the -b keyletter may be used on the get command
to cause a branch in the delta tree. The m flag defines the first
choice for the replacement text of the %M% identification key­
word. The f flag defines the "floor'' release; the release below
which no deltas may be added. The c flag defines the "ceiling"
release; the release above which no deltas may be added . The d
flag defines the default SID to be used when none is specified on a
get command. The n flag causes delta to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped
when a delta is made in a new release (e .g. , when delta 5 . 1 is
made after delta 2 .7, releases 3 and 4 are skipped) . The absence

- 3 -

I

I

SCCSFILE (4) SCCSFILE (4)

of the n flag causes skipped releases to be completely empty. The
j flag causes get to allow concurrent edits of the same base SID.
The 1 flag defines a list of releases that are locked against editing
[get(l) with the -e keyletter] . The q flag defines the replacement
for the %Q% identification keyword. The z flag is used in certain
specialized interface programs.

Comments

Body

SEE ALSO

Arbitrary text is surrounded by the bracketing lines @t and @f.
The comments section typically will contain a description of the
file's purpose .

The body consists of text lines and control lines . Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@I DDDDD
@D DDDDD
@E DDDDD

respectivt:ly. The digit string is the serial number corresponding
to the delta for the control line.

admin(l), delta(l), get(l), prs(l) .

- 4 -

SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include < scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the lay­
out of the data within the file . Each section within an object file has its
own header. The C structure appears below.

struct s cnhdr
{

} ;

char
long
long
long
long
long
long
unsigned
unsigned
long

s�ame [SYMNMLEN] ; /• s e ction name •/ I a_paddr ; /• phy a i c a1 addr e a a •/
s_vaddr ; I• virtual addr e s s •/
s-- iz e ; /• s e ction s i z e •/
•-- cnptr ; /• � il e ptr to raw data •/
s�e lptr ; /• � i l e ptr to r e l o c ation •/
s_lnnoptr ; /• � il e ptr to line numb e r s •/

s�e lo c ; /• # r e l o c entr i e s •/
s�lnno ; /• # l ine numb er entr i e s •/

s_t lag s ; I• � lags •I

File pointers are byte offsets into the file; they can be used as the offset in
a call to FSEEK [see ldfcn(4)] . If a section is initialized, the file contains
the actual bytes. An uninitialized section is somewhat different. It has a
size, symbols defined in it, and symbols that refer to it. But it can have
no relocation entries, line numbers, or data. Consequently, an uninitial­
ized section has no raw data in the object file, and the values for s_scnptr,
s_relptr, s_lnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a .out(4) .

- 1 -

I

SCR_DUMP (4) (Terminal Information Utilities) SCR_DUMP(4)

NAME
scr_dump - format of curses screen image file

SYNOPSIS
scr_dump(file)

DESCRIPTION
The curses(3X) function scr _dump() will copy the contents of the screen into
a file . The format of the screen image is as described below.

The name of the tty is 20 characters long and the modification time (the
mtime of the tty that this is an image of) is of the type time_t . All other
numbers and characters are stored as chtype (see <curses.h>) . No new­
lines are stored between fields .

<magic number: octal 0433>
< name of tty>
<mod time of tty>
<columns> <lines>
< line length> <chars in line>
< line length> <chars in line>

< labels?>
<cursor row> <cursor column>

for each line on the screen

1, if soft screen labels are present

Only as many characters as are in a line will be listed. For example, if the
<line length> is 0, there will be no characters following <line length> . If
<labels?> is TRUE, following it will be:

<number of labels>
<label width>
<chars in label 1 >
<chars in label 2>

SEE ALSO
curses(3X) .

- 1 -

SYMS (4) SYMS (4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include < syms.h>

DESCRIPTION
Common object files contain information to support symbolic software
testing (see sdb(l)) . Line number entries, linenum(4), and extensive sym­
bolic information permit testing at the C source level. Every object file's
symbol table is organized as:

File name 1 .
Function 1 .

Local symbols for function 1 .
Function 2 .

Local symbols for function 2 .

Static extems for file 1 .

File name 2 .
Function 1 .

Local symbols for function 1 .
Function 2.

Local symbols for function 2.

Static extems for file 2.

Defined global symbols .
Undefined global symbols .

The entry for a symbol is a fixed-length structure . The members of the
structure hold the name (null padded), its value, and other information.
The following is the C structure:

#det i.ne SYYNYLEN 8
#de t i.ne F ILNYLEN 14
#det i.ne D I YNUY 4

s truct syment
{

uni.on I* all ways to get symbol name *I
{

- 1 -

I

I

SYMS (4)

char
struct
{

SYMS(4)

��ame [SYYNYLEN] ; I• symbol name •I

long
long

�� ero e s ; I• == OL when �n str�ng tab l e •I
�-off s et ; I• locat�on of name �n tab l e •I

} �� ·
char ·��ptr [2] ; 1• allows overlay�ng •I

} � ·
long n_value I• value of symbol •I
short � cnum ; I• s e ct�on number •I
uns�gned short n_typ e ; l• typ e and der�ved typ e •I
char � c las s ; I• storage c las s •I
char �umaux ; I• number of aux entr � e s •I

-�f d e f �ned (m88k)
char
char

•end�f
} ;

•def ine
•def ine
#def ine
#def �ne

n_pad1 ;
n....pad2 ;

n�ame
n� ero e s
n_of f s et
n�ptr

I• pad to 4 byte mult�pl e •I
I• pad to 4 byte mult�pl e •I

� . ��ame
� . �� . �� e r o e s
� . �� . ��of f s et
� . ��ptr [1]

Meaningful values and explanations for them are given in both syms.h
and COFF. Anyone who needs to interpret the entries should seek more
information in these sources . Some symbols require more information
than a single entry; they are followed by auxiliary entries that are the same
size as a symbol entry. The format follows.

union auxent
{

struct
{

long
un�on
{

x_tagndx ;

struct
{

uns�gned shortx_lnno ;
unsigne d shortx_- i z e ;

} x_lns z ;
long xJ s i z e ;

} X...JDi s c ;
union

- 2 -

SYMS (4)

{
struct
{

long x_l.nnoptr ;
long x_endndx ;

} xJ cn ;
struct
{

SYMS (4)

uns igned shortx_dimen [D IWNUW] ;
} x...,J�.ry ;

} x_t cnary ;
uns igned short x_tvndx ;

#if def ined (m88k)
char r_padl
char r_pad2

I• pad to 4 byte multip l e •I
I• pad to 4 byte multip l e •/

endif

} ;

} x_sym ;
struct
{

char x_tname [F ILNWLEN] ;
} xJ i l e ;

struct
{

long x_s cnlen ;
uns igne d short x�r e l o c ;
uns igne d short x�linno ;

} x_s cn ;

struct
{

long x_tvf ill ;
uns igne d short x_tvl en ;
uns igne d short x_tvran [2] ;

} x_tv ;

Indexes of symbol table entries begin at zero .

SEE ALSO
sdb(l), a .out(4), linenum(4)
Common Object File Fonnat in the Programming Guide.

- 3 -

I

I

SYMS (4) SYMS (4)

WARNINGS

On machines on which ints are equivalent to longs, all longs have their
type changed to int. Thus, the information about which symbols are
declared as longs and which, as ints, does not show up in the symbol
table .

- 4 -

SYSTEM (4) �Y�Tt.M \4}

NAME
system - system configuration information table

DESCRIPTION
This file is used by the boot program to obtain configuration information
that cannot be obtained from the equipped device table (ED1) at system
boot time. This file generally contains a list of software drivers to include
in the load, the assignment of system devices such as pipedev and swapdev,
as well as instructions for manually overriding the drivers selected by the
self-configuring boot process .

The syntax of the system file is given below. The parser for the
/etc/system file is case sensitive. All uppercase strings in the syntax I
below should be uppercase in the /etc/system file as well . Nonterminal
symbols are enclosed in angle brackets "< > " while optional arguments
are enclosed in square brackets "[]" . Ellipses " . . . " indicate optional repeti­
tion of the argument for that line.

< fname> : : = pathname

< string> : : = driver file name from /boot or EDT entry name

< device> . . special device name I DEV(< major>, <minor>)

< major> : : = < number>

< minor> : : = < number>

< number> : : = decimal, octal or hex literal

The lines listed below may appear in any order. Blank lines may be
inserted at any point. Comment lines must begin with an asterisk.
Entries for EXCLUDE and INCLUDE are cumulative . For all other entries,
the last line to appear in the file is used; any earlier entries are ignored.

BOOT: < fname>
specifies the kernel a .out file to be booted; if the file is fully resolved
[such as that produced by the mkunix(lM) program] then all other
lines in the system file have no effect.

EXCLUDE: [< string>] . . .
specifies drivers to exclude from the load even if the device is found
in the EDT.

- 1 -

I

SYSTEM (4) SYSTEM (4)

FILES

INCLUDE: [< string> [(<number>)]] . . .
specifies software drivers or loadable modules to be included in the
load. This is necessary to include the drivers for software "devices".
The optional < number> (parenthesis required) specifies the number
of "devices" to be controlled by the driver (defaults to 1) . This
number corresponds to the builtin variable #c which may be referred
to by expressions in part one of the /etc/master file .

ROOTDEV: < device>
identifies the device containing the root file system.

SWAPDEV: < device> <number> <number>
identifies the device to be used as swap space, the block number the
swap space starts at, and the number of swap blocks available.

PIPEDEV: < device>
identifies the device to be used for pipe space .

/etc/system
SEE ALSO

master(4)
crash(lM), mkunix(lM), mkboot(lM) in the System Administrator's Reference
Manual.

- 2 -

TERM (4) TERM (4)

NAME
term - format of compiled term file .

SYNOPSIS
/usr/lib/terminfo/?1•

DESCRIPTION
Compiled terminfo(4) descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge directory, a
two-level scheme is used: /usr/lib/terminfo/c/name where 1Ulme is the
name of the terminal, and c is the first character of 1Ulme. Thus, att4425
can be found in the file /usrllib/terminfo/a/att4425. Synonyms for the
same terminal are implemented by multiple links to the same compiled I
file .

The format has been chosen so that it will be the same on all hardware .
An 8-bit byte is assumed, but no assumptions about byte ordering or sign
extension are made. Thus, these binary terminfo(4) files can be tran­
sported to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the most
significant 8 bits . (Thus, the value represented is 256*second+ first.) The
value -1 is represented by 0377,0377, and the value -2 is represented by
0376,0377; other negative values are illegal. Computers where this does
not correspond to the hardware read the integers as two bytes and com­
pute the result, making the compiled entries portable between machine
types . The -1 generally means that a capability is missing from this termi­
nal . The -2 means that the capability has been cancelled in the terminfo (4)
source and also is to be considered missing.

The compiled file is created from the source file descriptions of the termi­
nals (see the -1 option of infocmp(1M)) by using the terminfo (4) compiler,
tic(1M), and read by the routine setupterm() . (See curses(3X) .) The file is
divided into 6 parts: the header, terminal names, boolean flags, numbers,
strings, and string table .

The header section begins the file . This section contains six short integers
in the format described below. These integers are (1) the magic number
(octal 0432); (2) the size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings
section; (6) the size, in bytes, of the string table .

- 1 -

I

TERM (4) TERM (4)

The terminal names section comes next. It contains the first line of the
terminfo (4) description, listing the various names for the terminal,
separated by the bar (I) character (see term(S)) . The section is terminated
with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been
cancelled. The capabilities are in the same order as the file <term.h> .

Between the boolean section and the number section, a NULL byte will be
inserted, if necessary, to ensure that the number section begins on an
even byte . All short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capabil­
ity takes up two bytes, and is stored as a short integer. If the value
represented is -1 or -2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 or -2 means the capability is
missing. Otherwise, the value is taken as an offset from the beginning of
the string table . Special characters in AX or \c notation are stored in their
interpreted form, not the printing representation. Padding information
($<nn>) and parameter information (%x) are stored intact in uninter­
preted form.

The final section is the string table . It contains all the values of string
capabilities referenced in the string section. Each string is NULL ter­
minated.

Note that it is possible for setupterm () to expect a different set of capabili­
ties than are actually present in the file . Either the database may have
been updated since setupterm () has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recom­
piled more recently than the database was updated (resulting in missing
entries) . The routine setupterm () must be prepared for both possibilities ­
this is why the numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean, number, and
string capabilities .

- 2 -

TERM (4) Tt.KM \ 'i l

FILES

As an example, an octal dump of the description for the AT&T Model 37
KSR is included:

371 tty371AT&T model 37 teletype,
he, os, xon,
bel= AG, cr=\r, cubl =\b, cudl =\n, cuu1 =\E7, hd=\E9,
hu=\E8, ind=\n,

0000000 032 001 \0 032 \0 013 \0 021 001 3 \0 3 7 I t
0000020 t y 3 7 1 A T & T m o d e l
0000040 3 7 t e I e t y p e \0 \0 \0 \0 \0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0
oooo� � m m m m m m m m m m m m m m
0000160 377 377 I I \0 377 377 377 377 (\0 377 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
...

oooo� m m m m m m m m m m m m m m $ �
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 ... \0
oooo� m m m m m m m m m m m m m m m m
...
�� m m m m m m m m m m m m m m 3 7
0001200 I t t y 3 7 I A T & T m o d e
0001220 I 3 7 t e I e t y p e \0 \r \0
0001240 \n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033 7
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all
entries in the name field cannot exceed 128 bytes .

/usr/lib/terminfo/?1• compiled terminal description database
/usr/include/term.h terminfo(4) header file

SEE ALSO
curses(3X), terminfo(4), term(S) .
infocmp(1M) in the System Administrator's Reference Manwzl .
Chapter 10 of the Programmer's Guide.

- 3 -

I

TERMINF0 (4) (Terminal Information Utilities) TERMINFU (4J

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/?1•

DESCRIPTION
terminfo is a database, produced by tic(1M), that describes the capabilities
of devices, e .g . , terminals and printers . Devices are described in terminfo
source files by specifying a set of capabilities, quantifying certain aspects
of the device, and specifying character sequences that effect particular
results . This database is often used by screen oriented applications, e .g . , 1
vi(1) and curses(3X), as well as by some operating system commands, e .g . ,
ls(1) and pg(1) . This usage allows them to work with a variety of devices
without changes to the programs. To obtain the source description for a
device, use the infocmp(1M) command.

terminfo source files consist of one or more device descriptions . Each
description consists of a header (beginning in column 1) and one or more
lines that list the features for that particular device . Every line in a ter­
minfo source file must end in a comma (,) . Every line in a terminfo source
file except the header must be indented with one or more white spaces
(either spaces or tabs) .

Entries in terminfo source files consist of a number of comma-separated
fields. White space after each comma is ignored. Embedded commas
must be escaped by using a backslash. The following example shows the
format of a terminfo source file:

Column 1

alias 1 I alias2 I . . . I aliasn I longname,
<white space> am, lines #24,
<white space> home = Eeh,

The first line, commonly referred to as the header line, must begin in
column one and it must contain at least two aliases, separated by vertical
bars . The last field in the header line must be the long name of the device
and it may contain any string. Alias names must be unique in the terminfo
database and they must conform to the operating system file naming con­
ventions (see tic(lM)); they cannot, for example, contain white space or
slashes.

- 1 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Every device must be assigned a name, e.g. , "att5425" (for the AT&T
model 5425 device) . Choose device names (except the long name) that do
not contain hyphens; hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user
preferences. To assign a special mode to a particular device, append a
suffix, consisting of a hyphen and an indicator of the mode, to the device
name. For example, the -w suffix means "wide mode"; when specified, it
allows for a width of 132 columns instead of the standard 80 columns.
Therefore, if you want to use an AT&T 5425 device set to wide mode,
name the device "att5425-w. " Use the following suffixes where possible:

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vtlOO-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) clOO-na
np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections: DEVICE
CAPABILITIES and PRINTER CAPABILITIES.

PART 1 : DEVICE CAPABILITIES
Capabilities in terminfo are of three types: Boolean capabilities (show that
a device has or does not have a particular feature), numeric capabilities
(quantify particular features of a device), and string capabilities (provide
sequences that can be used to perform particular operations on devices) .

In the following tables, a Variable is the name by which a C programmer
accesses a capability (at the terminfo level) . A Capname is the short name
for a capability specified in the terminfo source file . It is used by a person
updating the source file and by the tput(1) command. A Termcap Code is
a two-letter sequence that corresponds to the termcap capability name.
(Note that termcap is no longer supported.)

Capability names have no hard length limit, but an informal limit of five
characters has been adopted to keep them short. Whenever possible,
capability names are chosen to be the same as or similar to those specified
by the ANSI X3.64-1979 standard. Semantics are also intended to match
those of the ANSI standard.

- 2 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

All the following string capabilities may have padding specified, with the
exception of those used for input. Input capabilities, listed under the
Strings section in the following tables, have names beginning with key_.
The #i symbol in the description field of the following tables refers to the
;th parameter.

Booleans:
Cap- T e rmc ap

Var i ab l e n ame C o d e D e s cription

autoJeft_margin bw bw c:ubl wraps from column 0 to last column

auto_right_margin am am Terminal has automatic margins

baclc.._color_erase bee be Screen erased with baclcground color

can_change CCC cc Terminal can re-define existing color

ceoLstandout_glitch xhp XS Standout not erased by overwriting (hp)

coLaddr_glitch xhpa YA Only positive motion for hpa/mhpa caps

cpLchangesJes cpix YF Changing character pitch changes resolution

cr_cancels_micro_mode crxm YB Using cr turns off micro mode

eat_newline_glitch xenl xn Newline ignored after 80 columns (Concept)

erase_ overstrike eo eo Can erase overstrikes with a blanlc

generic_ type gn gn Generic line type (e.g., dialup, switch)

hard_ copy he he Hardcopy terminal

hard_ cursor chts HC Cursor is hard to see

has_meta_key km km Has a meta key (shift, sets parity bit)

has_print_wheel daisy YC Printer needs operator to change character set

has_sta tusJine hs hs Has extra "status line"

hueJightness_saturation his hi Terminal uses only HLS color notation (Tektronix)

insert_null_giitch in in Insert mode distinguishes nulls

lpLchangesJes !pix YG Changing line pitch changes resolution

memory_above da da Display may be retained above the screen

memory_below db db Display may be retained below the screen

movejnsert_mode mir mi Safe to move while in insert mode

move_standout_mode msgr ms Safe to move in standout modes

needs__xon__xoff nxon nx Padding won't work, xon/xoff required

no_esc_ctlc xsb xb Beehive (fl = escape, f2= ctrl C

non..)'ev .JMCUP nrrmc NR smcup does not reverse rmcup

no_pad_char npc NP Pad character doesn't exist

over_strike OS OS Terminal overstrikes on hard-copy terminal

prtr_silent mc5i Si Printer won't echo on screen

row _addr_glitch xvpa YD Only positive motion for vpa/mvpa caps

semLauto_right_margin sam YE Printing in last column causes cr

- 3 -

I

TERMINF0 (4) (Terminal Information Utilities) TERMINF0(4)

statusJine_esc_ok eslok es Escape can be used on the status line

dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)

tilde_glitch hz hz Hazeltine; can't print tilde n
transparent_underline ul ul Underline character overstrilces

xon_xoff xon xo Terminal uses xonlxoff handshaking

Numb e r s :
Cap- T a rmcap

Var i ab l e n ama C o d a D e s c r i p t i o n

buffer_capacity bufsz Ya Number of bytes buffered before printing

I columns cols co Number of columns in a line

dot_ vert_spacing spinv Yb Spacing of pins vertically in pins per inch

dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch

init_tabs it it Tabs initially every II spaces

labeLheight lh lh Number of rows in each label

labeL width lw lw Number of columns in each label

lines lines li Number of lines on a screen or a page

lines_of_memory lm lm Unes of memory if > Jines; 0 means varies

magic_cookie_glitch xmc sg Number of blank characters left by smso or rmso

max_ colors colors Co Maximum number of colors on the screen

max_micro_address maddr Yd Maximum value in micro_ . . . _address

max_micro_jum p mjump Ye Maximum value in parm_ ... _micro

max_ pairs pairs pa Maximum number of color-pairs on the screen

micro_coLsize mcs Yf Character step size when in micro mode

microJine_size mls Yg Une step size when in micro mode

no_color_video ncv NC Video attributes that can't be used with colors

number_of_pins npins Yh Number of pins in print-head

num_labels nlab Nl Number of labels on screen (start at 1)

output_res_char ore Yi Horizontal resolution in units per character

output_resJine orl Yj Vertical resolution in units per line

output_res_ltOrz_inch or hi Yk Horizontal resolution in units per inch

ou tpu t_res_ vert_inch orvi Y1 Vertical resolution in units per inch

padding_baud_rate pb pb Lowest baud rate where padding needed

virtuaL terminal vt vt Virtual terminal number (SYSTEM V/88)

wide_char_size widcs Yn Character step size when in double wide mode

width_statusJine wsl WS Number of columns in status line

- 4 -

TERMINF0(4) (Terminal Information Utilities) Tt:KMINI'U\41

String s :
Cap- T a rmcap

Var i ab l e nama C o d a D a a c r iEtion

acs_chars a esc ac Graphic charset pans aAbBcC - def=vt100

baclctab cbt bt Baclc tab

bell bel bl Audible signal (bell)

carriage_return cr cr Carriage return

change_char_pitch cpi ZA Change number of characters per inch

changeJine_pitch !pi ZB Change number of lines per inch

change_res_horz chr zc Change horizontal resolution I change_res_ vert cvr ZD Change vertical resolution

change_scroll_region csr cs Change to lines #1 through #2 (vt100)

char_padding rmp rP Like ip but when in replace mode

char_set_names csnm Zy List of character set names

clear_a!Ltabs tbc ct Oear all tab stops

clear_margins mgc MC Oear all margins (top, bottom, and sides)

clear_screen clear cl Oear screen and home cursor

clr_bol ell cb Oear to beginning of line, inclusive

clr_eol el ce Oear to end of line

clr_eos ed cd Oear to end of display

column_address hpa ch Horizontal position absolute

com mand_character cmdch cc Terminal settable cmd character in prototype

cursor_address cup em Move to row #1 col #2

cursor_ down cud1 do Down one line

cursor_home home ho Home cursor (if no cup)

cursorjnvisible dvis vi Make cursor invisible

cursorJeft cub1 le Move left one space.

cursor_mem_address mrcup CM Memory relative cursor addressing

cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)

cursor_;ight cu£1 nd Non-destructive space (cursor or carriage right)

cursor_toJI II II Last line, first column (if no cup)

cursor_ up cuu1 up Upline (cursor up)

cursor_ visible cvvis VS Make cursor very visible

define_ char defc ZE Define a character in a character set t

delete_character dch1 de Delete character

deleteJine dll dl Delete line

dis_statusJine dsl ds Disable status line

down_halfJine hd hd Half-line down (forward 112 linefeed)

ena_acs enacs eA Enable alternate character set

enter_alt_charset_mode smacs as Start alternate character set

- 5 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

enter_am_mode smam SA Turn on automatic margins

enter_bli�mode blink mb Turn on blinking

enter_bold_mode bold md Turn on bold (extra bright) mode

enter_ca_mode smcup ti String to begin programs that use cup

enter_delete_mode smdc dm Delete mode (enter)

enter_dim_mode dim mh Turn on half-bright mode

enter_doublewide_mode swidm ZF Enable double wide printing

enter_draft_quality sdrfq ZG Set draft quality print

enterjnsert_mode smir im Insert mode (enter)

enterjtalics_mode sitm ZH Enable italics

I enterJeftward_mode slm Z1 Enable leftward carriage motion

enter_micro_mode smicm ZJ Enable micro motion capabilities

enter_nearJetter_quality snlq ZK Set near-letter quality print

enter_normaLquality snrmq ZL Set normal quality print

enter_protected_mode prot mp Tum on protected mode

enter_reverse_mode rev mr Turn on reverse video mode

enter_secure_mode in vis mk Turn on blank mode (characters invisible)

enter_shadow _mode sshm ZM Enable shadow printing

enter_standout_mode smso so Begin standout mode

enter_subscript_mode ssubm ZN Enable subscript printing

enter_superscript_mode ssupm zo Enable superscript printing

enter_underline_mode smul us Start underscore mode

enter_upward_mode sum ZP Enable upward carriage motion

enter_xon_mode smxon SX Tum on xon/xoff handshaking

erase_chars ech ec Erase # 1 characters

exit_alt_charset_mode rmacs ae End alternate character set

exit_am_mode rmam RA Turn off automatic margins

exit_attribute_mode sgrll me Turn off all attributes

exit_ca_mode rmcup te String to end programs that use cup

exit_delete_mode rmdc ed End delete mode

exit_doublewide_mode rwidm ZQ Disable double wide printing

exitjnsert_mode rmir ei End insert mode

exiUtalics_mode ritm ZR Disable italics

exiUeftward_mode rim zs Enable rightward (normal) carriage motion

exit_micro_mode rmicm ZT Disable micro motion capabilities

exit_shadow _mode rshm zu Disable shadow printing

exit_standout_mode rmso se End standout mode

exit_subscript_mode rsubm zv Disable subscript printing

exit_superscript_mode rsupm zw Disable superscript printing

exit_underline_mode rmul ue End underscore mode

- 6 -

TERMINF0 (4) (Terminal Information UtumesJ .&. a.. - - - , _ ,

exit_upward_mode rum zx Enable downward (normal) carriage motion

exit_xon_mode rmxon RX Tum off xon/xoff handsha1dng

flash_ screen flash vb Visible bell (may not move cursor)

form_feed ff ff Hardcopy terminal page eject

from_sta tusJine fsl fs Return from status line

init_tstring ist it Terminal or printer initialization string

init_ .. 2string is2 is Terminal or printer initialization string

init_3slring is3 i3 Terminal or printer initialization string

init_file if if Name of initialization file

init_prog iprog iP Path name of program for initialization

initialize_color initc Ic Initialize the definition of color I initialize_pair initp Ip Initialize color-pair

insert_character icht ic Insert character

insertJine ill al Add new blank line

insert_padding ip ip Insert pad after character inserted

key_at kat Kt KEYAt , 0534, upper left of keypad

key_a3 ka3 K3 KEY......A3, 0535, upper right of keypad

key_b2 kb2 K2 KEY_B2, 0536, center of keypad

key_backspace kbs kb KEY_BACKSPACE, 0407, sent by backspace key

key_beg kbeg @t KEY_BEG, 0542, sent by beg(inning) key

key_btab kcbt kB KEY_BTAB, 054t, sent by back-tab key

key_ct kct K4 KEY_Ct, 0537, lower left of keypad

key_c3 kc3 K5 KEY_C3, 0540, lower right of keypad

key_cancel kcan @2 KEY_CANCEL, 0543, sent by cancel key

key_catab ktbc ka KEY_CATAB, 0526, sent by clear-all-tabs key

key_clear kclr kC KEY_CLEAR, 05t5, sent by dear-screen or erase key

key_close kclo @3 KEY_CLOSE, 0544, sent by close key

key_command kcmd @4 KEY_COMMAND, 0545, sent by cmd (command) key

key_copy kcpy @5 KEY_COPY, 0546, sent by copy key

key_create kcrt @6 KEY_CREATE, 0547, sent by create key

key_ctab kctab kt KEY_CTAB, 0525, sent by clear-tab key

key_dc kdcht kD KEYDC, 05t2, sent by delete-character key

key_dl kdlt kL KEY_DL, 0510, sent by delete-line key

key_down kcudt kd KEY_DOWN, 0402, sent by terminal down-arrow key

key_eic krmir kM KEY_EIC, 05t4, sent by rmir or smir in insert mode

key_end kend @7 KEY_END, 0550, sent by end key

key_enter kent @8 KEY_ENTER, 0527, sent by enter/send key

key_eol kel kE KEY_EOL, 05t7, sent by clear-to-end-of-line key

key_eos ked lcS KEY_EOS, 05t6, sent by dear-to-end-of-screen key

key_exit kext @J KEY_EXIT, 055t, sent by exit key

- 7 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

key_fO k£0 kO KEY_F(O), 0410, sent by function key fO

key_fl k£1 k1 KEY_F(1), 0411, sent by function key f1

key_£2 kf2 k2 KEY_F(2), 0412, sent by function key f2

key_f3 k£3 k3 KEY_F(3), 0413, sent by function key f3

key_f4 k£4 k4 KEY_F(4), 0414, sent by function key f4

key_f5 k£5 k5 KEY_F(5), 0415, sent by function key f5

key_f6 k£6 k6 KEY_F(6), 0416, sent by function key f6

key_f7 kf7 k7 KEY_F(7), 0417, sent by function key f7

key_f8 kf8 k8 KEY_F(8), 0420, sent by function key f8

key_f9 k£9 k9 KEY_F(9), 0421 , sent by function key f9

I key_£10 k£10 k; KEY_F(10), 0422, sent by function key flO

key_£1 1 k£1 1 F1 KEY_F(1 1), 0423, sent by function key £1 1

key_£12 k£12 F2 KEY_F(12), 0424, sent by function key £12

key_£13 k£13 F3 KEY_F(13), 0425, sent by function key £13

key_£14 k£14 F4 KEY_F(14), 0426, sent by function key £14

key_£15 k£15 F5 KEY _F(15), 0427, sent by function key £15

key_£16 k£16 F6 KEY_F(16), 0430, sent by function key £16

key_£17 k£17 F7 KEY_F(17), 0431, sent by function key £17

key_£18 k£18 F8 KEY_F(18), 0432, sent by function key £18

key_£19 k£19 F9 KEY_F(19), 0433, sent by function key £19

key_£20 k£20 FA KEY_F(20), 0434, sent by function key £20

key_£21 kf21 FB KEY_F(21), 0435, sent by function key £21

key_£22 k£22 FC KEY_F(22), 0436, sent by function key f22
key_£23 k£23 FD KEY_F(23), 0437, sent by function key f23
key_£24 k£24 FE KEY_F(24), 0440, sent by function key £24

key_£25 kf25 FF KEY_F(25), 0441 , sent by function key f25
key_£26 k£26 FG KEY_F(26), 0442, sent by function key £26

key_£27 k£27 FH KEY_F(27), 0443, sent by function key £27

key_£28 k£28 FI KEY _F(28), 0444, sent by function key £28

key_£29 k£29 FJ KEY_F(29), 0445, sent by function key £29

key_f30 kf30 FK KEY_F(30), 0446, sent by function key f30

key_f31 kf31 FL KEY_F(31), 0447, sent by function key f31

key_f32 kf32 FM KEY_F(32), 0450, sent by function key f32

key_f33 k£33 FN KEY_F(13), 0451, sent by function key £13

key_f34 kf34 FO KEY_F(34), 0452, sent by function key f34

key_f35 kf35 FP KEY_F(35), 0453, sent by function key f35

key_f36 kf36 FQ KEY_F(36), 0454, sent by function key f36

key_f37 k£37 FR KEY_F(37), 0455, sent by function key f37

key_f38 k£38 FS KEY_F(38), 0456, sent by function key f38

key_f39 k£39 Ff KEY_F(39), 0457, sent by function key f39

- 8 -

TERMINF0(4) (Terminal Information UtilitleS J .1. &:..&'-J.T .& & .I. -. ... - ' .- ,

key_£40 k£40 FU KEY_F(40), 0460, sent by function key £40

key_£41 k£41 FV KEY_F(41), 0461 , sent by function key £41

key_£42 k£42 FW KEY_F(42), 0462, sent by function key £42

key_£43 k£43 FX KEY_F(43), 0463, sent by function key £43

key_£44 k£44 FY KEY_F(44), 0464, sent by function key £44

key_£45 k£45 FZ KEY_F(45), 0465, sent by function key £45

key_£46 k£46 Fa KEY_F(46), 0466, sent by function key £46

key_£47 k£47 Fb KEY_F(47), 0467, sent by function key £47

key_£48 k£48 Fe KEY_F(48), 0470, sent by function key £48

key_£49 k£49 Fd KEY_F(49), 0471, sent by function key £49

key_£50 k£50 Fe KEY_F(SO), 0472, sent by function key £50

key_£51 k£51 Ff KEY_F(51), 0473, sent by function key £51

key_£52 k£52 Fg KEY....F(52), 0474, sent by function key £52

key_£53 k£53 Fh KEY_F(53), 0475, sent by function key £53

key_£54 k£54 Fi KEY....F(54), 0476, sent by function key £54

key_£55 k£55 Fj KEY_F(55), 0477, sent by function key £55

key_£56 k£56 Fk KEY....F(56), 0500, sent by function key f56

key_£57 k£57 F1 KEY_F(57), 0501, sent by function key f57

key_f58 k£58 Fm KEY_F(58), 0502, sent by function key £58

key_f59 k£59 Fn KEY....F(59), 0503, sent by function key f59

key_£60 k£60 Fo KEY_F(60), 0504, sent by function key £60

key_£61 k£61 Fp KEY_F(61), 0505, sent by function key £61

key_f62 k£62 Fq KEY_F(62), 0506, sent by function key £62

key_f63 kf63 Fr KEY_F(63), 0507, sent by function key £63

key_find kfnd @0 KEY _FIND, 0552, sent by find key

key _help khlp % 1 KEY_HELP, 0553, sent by help key

key _home khome kh KEY_HOME, 0406, sent by home key

key_ic kichl k1 KEY_IC, 0513, sent by ins-char/enter ins-mode key

key_il kill kA KEY_IL, 051 1 , sent by insert-line key

key_left kcubl k1 KEY_LEFf, 0404, sent by terminal left-arrow key

keyJI ldl kH KEY_LL, 0533, sent by home-down key

key_mark kmrk %2 KEY _MARK, 0554, sent by mark key

key_message kmsg %3 KEY _MESSAGE, 0555, sent by message key

key_move kmov %4 KEY _MOVE, 0556, sent by move key

key_next knxt %5 KEY __NEXT, 0557, sent by next-object key

key_npage knp kN KEY_NPAGE, 0522, sent by next-page key

key_open kopn %6 KEY_OPEN, 0560, sent by open key

key_options kopt %7 KEY_OPTIONS, 0561, sent by options key

key_ppage kpp kP KEY_pPAGE, 0523, sent by previous-page key

key _previous kprv %8 KEY _pREVIOUS, 0562, sent by previous-object key

- 9 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

lcey_print lcprt %9 KEYYRINf, 0532, sent by print or copy lcey

lceyJe<io Jcrdo %0 KEY_REDO, 0563, sent by redo lcey

lcey _reference lcref &:1 KEY_REFERENCE, 0564, sent by ref(erence) lcey

lcey _refresh lcrfr &:2 KEY_REFRESH, 0565, sent by refresh lcey

lcey _replace lcrpl &:3 KEY __REPLACE, 0566, sent by replace lcey

lcey _restart lcrst &:4 KEY_RESTART, 0567, sent by restart lcey

lcey_resume lcres &:5 KEY _RESUME, 0570, sent by resume lcey

lcey_right lccufl lcr KEY_RIGHf, 0405, sent by terminal right-arrow lcey

lcey_save lcsav &:6 KEY__5A VE, 0571, sent by save lcey

lcey_sbeg lcBEG &:9 KEY__5BEG, 0572, sent by shifted beginning lcey

lcey _seance) lcCAN &:0 KEY_5CANCEL, 0573, sent by shifted cancel lcey

lcey _scommand lcCMD •1 KEY__5COMMAND, 0574, sent by shifted command lcey

lcey_scopy lcCPY •2 KEY__5COPY, 0575, sent by shifted copy lcey

lcey _screate lcCRT •3 KEY__5CREATE, 0576, sent by shifted create lcey

lcey_sdc lcDC •4 KEY_SDC, 0577, sent by shifted delete-char lcey

lcey_sdl lcDL •5 KEY__5DL, 0600, sent by shifted delete-line lcey

lcey _select lcslt •6 KEY_SELECT, 0601, sent by select lcey

lcey_send lcEND •7 KEY_SEND, 0602, sent by shifted end lcey

lcey_seol lcEOL •8 KEY __5EOL, 0603, sent by shifted clear-line lcey

lcey_sexit lcEXT •9 KEY_SEXIT, 0604, sent by shifted exit lcey

lcey_sf Ic:ind lcF KEY__5F, 0520, sent by scroll-forward/down lcey
key_sfind lcFND •O KEY_SFIND, 0605, sent by shifted find lcey

lcey_shelp lcHLP #1 KEY_SHELP, 0606, sent by shifted help lcey

lcey_shome lcHOM #2 KEY__5HOME, 0607, sent by shifted home lcey

lcey_sic k.IC #3 KEY__5IC, 0610, sent by shifted input lcey

lcey_sleft lcLFT #4 KEY_SLEFT, 0611, sent by shifted left-arrow lcey

lcey_smessage lcMSG %a KEY__5MESSAGE, 0612, sent by shifted message lcey

lcey_smove lcMOV %b KEY_SMOVE, 0613, sent by shifted move lcey

lcey_snext lcNXT %c KEY__5NEXT, 0614, sent by shifted next lcey

lcey _soptions lcOPT %d KEY__50PTIONS, 0615, sent by shifted options lcey

lcey _sprevious lcPRV % e KEY_SPREVIOUS, 0616, sent by shifted prev lcey

lcey_sprint lcPRT % f KEY_SPRINf, 0617, sent b y shifted print lcey

lcey_sr lcri lcR KEY_SR, 0521, sent by scroll-baclcward/up lcey

lcey_sredo lcRDO %g KEY_SREDO, 0620, sent by shifted redo lcey

lcey _sreplace lcRPL %h KEY_SREPLACE, 0621, sent by shifted replace lcey

lcey _srigh t lcRIT %i KEY__5RIGHf, 0622, sent by shifted right-arrow lcey

lcey _srsume lcRES %j KEY__5RSUME, 0623, sent by shifted resume lcey

lcey_ssave lcSAV !1 KEY_SSA VE, 0624, sent by shifted save lcey

lcey _ssuspend lcSPD !2 KEY__5SUSPEND, 0625, sent by shifted suspend lcey

lcey_stab lchts leT KEY__5TAB, 0524, sent by set-tab lcey

- 10 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

lcey_sundo lcUND !3 KEY_SUNDO, 0626, sent by shifted undo lcey

lcey _suspend lcspd &7 KEY_SUSPEND, 0627, sent by suspend lcey

lcey_undo lcund &:8 KEY_UNDO, 0630, sent by undo lcey

lcey_up lccuu1 leu KEY_UP, 0403, sent by terminal up-arrow lcey

lceypadJocal rmloc Ice Out of "keypad-transmit" mode

lceypad_.xmit smloc lcs Put terminal in "keypad-transmit" mode

lab_fO 1£0 10 Labels on function lcey fO if not fO

lab_fl 1£1 11 Labels on function lcey fl if not fl

lab_£2 1£2 12 Labels on function lcey £2 if not £2

lab_f3 1£3 13 Labels on function lcey f3 if not f3

lab_f4 1£4 14 Labels on function lcey f4 if not f4 I lab_fS 1£5 15 Labels on function lcey f5 if not fS

lab_f6 1£6 16 Labels on function lcey f6 if not f6

lab_f7 1£7 17 Labels on function lcey f7 if not f7
lab_f8 1£8 18 Labels on function lcey f8 if not f8

lab_f9 1£9 19 Labels on function lcey f9 if not f9

IabJ10 lflO Ia Labels on function lcey flO if not flO

labeL off rmln LF Turn off soft labels
labeL on smln LO Turn on soft labels
meta_ off rmm mo Tum off "meta mode"

meta_on smm mm Turn on "meta mode" (8th bit)

micro_column_address mhpa zy Lilce column_addrese for micro adjustment

micro_down mcud1 zz Lilce cu1110r_down for micro adjustment

microJeft mcub1 Za Like cu1110r_Jeft for micro adjustment

micro _right mcufl Zb Like cu1110r_right for micro adjustment

micro_row_address mvpa Zc Like row_addrese for micro adjustment

micro_ up mcuu1 Zd Lilce cu1110r_up for micro adjustment

newline nel nw Newline (behaves lilce cr followed by If)

order_of_pins porder Ze Matches software bits to print-head pins

orig_colors oc oc Set all color(-pair)s to the original ones

orig_pair op op Set default color-pair to the original one

pad_ char pad pc Pad character (instead of null)

parm_dch dch DC Delete #1 chars

parm_deleteJine dl DL Delete #1 lines

parm_down_cursor cud DO Move down #1 lines

parm_down_micro mcud Zf Lilce parm_down_cu1110r for micro adjust

parmjch ich IC Insert # 1 blank chars

parmjndex indn SF Scroll forward #1 lines

parmjnsertJine il AL Add #1 new blank lines

parmJeft_cursor cub LE Move cursor left #1 spaces

- 11 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

parm_left_micro mcub Zg Like parm_left_cursor for micro adjust

parm_right_cursor cuf RI Move right #1 spaces

parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust

parm_rindex rin SR Scroll backward #1 lines

parm_up_cursor cuu UP Move cursor up #1 lines

parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust

pkey_lcey pfkey pk Prog funct key #1 to type string #2

pkey_local pfloc pi Prog funct key #1 to execute string #2

pkey_xmit pfx px Prog funct key #1 to xmit string #2

plab_norm pin pn Prog label #1 to show string #2

I print_screen mcO ps Print contents of the screen

prtr_non mc5p pO Turn on the printer for #1 bytes

prtr_off mc4 pf Tum off the printer

prtr_on mc5 po Turn on the printer

repeat_ char rep rp Repeat char #1 #2 times

req_for_input rfi RF Send next input char (for ptys)

reset_1string rs1 r1 Reset terminal completely to sane modes

reset_2string rs2 r2 Reset terminal completely to sane modes

reset_3string rs3 r3 Reset terminal completely to sane modes

reset_file rf rf Name of file containing reset string

restore_cursor rc rc Restore cursor to position of last sc

row_address vpa cv Vertical position absolute

save_ cursor sc sc Save cursor position

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

select_char_set scs Zj Select character set

set_a ttribu tes sgr sa Define the video attributes #1-#9

set_background seth Sb Set current background color

set_bottom_margin smgb Zk Set bottom margin at current line

set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2 lines from bottom

set_color_pair scp sp Set current color-pair

set_foreground setf Sf Set current foreground colorl

seUeft_margin smgl ML Set left margin at current line

set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)

set_right_margin smgr MR Set right margin at current column

set_right_margin_parm smgrp Zn Set right margin at column #1

set_ tab hts st Set a tab in all rows, current column

set_top_margin smgt Zo Set top margin at current line

set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)

set_ window wind wi Current window is lines #1-#2 cols #3-#4

- 12 -

TERMINF0(4) (Terminal Information Utilities) TERMINI'Ul4J

start_bitjmage sbim

start_char_set_def scsd
stop_bitjmage rbim
stop_char_set_def rcsd
subsaipt_characters subcs

superscript_characters supcs

tab ht

these_cause_cr doer

to_statusJine tsl

underline_char uc

up_halfJine hu

xofLcharacter xoffc

xon_character xonc

zero_motion zerom

Bool e an s :
Cap-

N ame Var i ab l e

am auto...Jight_margin

bw autoJeft_margin

CCC can_change

chts hard_cursor

cpix cpi_changes...)'es

crxm cr_cancels_micro_modem

da memory_above

daisy has_print_wheel

db memory_below

eo erase_ overstrike

eslok statusJine_esc_ok

gn generic_ type

he hard_ copy

his hueJightness_saturation
hs has_statusJine

hz tilde _glitch

in insert_null_glitch

km has_meta....key

!pix lpi_changesJes

mcSi prtr_silent

mir movejnsert_mode

msgr move_standout_mode

Zq Start printing bit image graphics

Zr Start definition of a character set

Zs End printing bit image graphics

Zt End definition of a character set

Zu List of "subsaipt-able" characters

Zv List of "superscript-able" characters

ta Tab to next 8-space hardware tab stop

Zw Printing any of these chars causes cr
ts Go to status line, col #1
uc Underscore one char and move past it

hu HaH-Iine up (reverse 112 Iinefeed)

XF X-off character

XN X-on character

Zx No motion for the subsequent characte

Termcap

Code D e • cription

am Terminal has automatic margins

bw cub1 wraps from column 0 to last column

cc Terminal can re-define existing color

HC Cursor is hard to see

YF Changing character pitch changes resolution

YB Using cr turns off micro mode

da Display may be retained above the screen

YC Printer needs operator to change character set

db Display may be retained below the screen

eo Can erase overstrikes with a blank

es Escape can be used on the status line

gn Generic line type (e.g., dialup, switch)

he Hardcopy terminal

hi Terminal uses only HLS color notation (Tektronix)

hs Has extra "status line"

hz Hazeltine; can't print tilde n

in Insert mode distinguishes nulls

km Has a meta key (shift, sets parity bit)

YG Changing line pitch changes resolution

Si Printer won't echo on screen

mi Safe to move while in insert mode

ms Safe to move in standout modes

- 13 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

npc no_pad_char NP Pad character doesn't exist

nrrrnc non_rev _rmcu p NR smcup does not reverse rmcup

nxon needs_xon_xoff nx Padding won't work, xon/xoff required

OS over_strilce OS Terminal overstrilces on hard-copy terminal

sam semi_auto_righl_margin YE Printing in last column causes cr

uJ transparent_underline ul Underline character overstrilces

xenl eat_newline__glitch xn Newline ignored after 80 columns (Concept)

xhp ceoLstandout__glitch XS Standout not erased by overwriting (hp)

xhpa coLaddr__glitch YA Only positive motion for hpillmhpa caps

xon xon_xoff xo Terminal uses xon/xoff handshaking

I xsb no_esc_ctlc xb Beehive (fl =escape, f2=ctrl q

xt dest_tabs_magic_smso xt Destructive tabs, magic smso char (tl061)

xvpa row _addr__glitch YD Only positive motion for vpillmvpa caps

Numb e r s :
Cap- T e rmcap

name Var i ab l e C o d e D e s c r i p t i o n

bufsz buffer_capacity Ya Number of bytes buffered before printing

colors max_ colors Co Maximum number of colors on the screen

cols columns co Number of columns in a line

cps print_rate Ym Average print rate in characters per second

it init_tabs it Tabs initially every # spaces

lh labeLheight lh Number of rows in each label

lines lines li Number of lines on a screen or a page

1m lines_of_memory lm Unes of memory if > lines; 0 means varies

lw labeL width lw Number of columns in each label

maddr max_micro_address Yd Maximum value in micro_ . . • _address

mcs micro_col_size Yf Character step size when in micro mode

mjump max_micro_jump Ye Maximum value in parm_ . . . _micro

mls micro.Jjne_size Yg Une step size when in micro mode

ncv no_color_ video NC Video attributes that can't be used with colors

nlab num_labels N1 Number of labels on screen (start at 1)

npins number_of_pins Yh Number of pins in print-head

ore output_res_char Yi Horizontal resolution in units per character

or hi oulput_res_horzjnch Y1c Horizontal resolution in units per inch

or! output_res_line Yj Vertical resolution in units per line

orvi outpu !_res_ vertjnch Y1 Vertical resolution in units per inch

pairs max_pairs pa Maximum number of color-pairs on the screen

pb padding_baud_rate pb Lowest baud rate where padding needed

spinh dot_horz_spacing Yc Spacing of dots horizontally in dots per inch

- 14 -

TERMINF0(4) (Terminal Information Utilities) TERMIN.l'U\4}

spinv dot_ vert_spacing Yb Spacing of pins vertically in pins per inch

vt virtuaUerminal vt Virtual terminal number (SYSTEM V/88)

widcs wide_char_size Yn Character step size when in double wide mode

wsl width_status_line WS Number of columns in status line

xmc magic_cookie_glitch sg Number of blank characters left by smso or rmso

String s :
Cap- T e rmcap

n ame Var i ab l e C o d e D e s cription

a esc acs_chars ac Graphic charset pairs aAbBcC - def=vtlOO

bel bell bl Audible signal (bell) I blink enter_blink..._mode mb Turn on blinldng

bold enter_bold_mode md Turn on bold (extra bright) mode

cbt baclc....tab bt Back tab

chr change_res_horz zc Change horizontal resolution

civis cursorjnvisible vi Make cursor invisible

clear clear_screen cl Oear screen and home cursor

cmdch command_character cc Terminal settable cmd character in prototype

cnorm cursor_normal ve Make cursor appear normal (undo vs/vi)

cpi change_char_pitch ZA Change number of characters per inch

cr carriage _return cr Carriage return

csnm char_set_names Zy Ust of character set names

csr change_scroll_region cs Change to lines #1 through #2 (vt100)

cub parmJeft_cursor LE Move cursor left #1 spaces

cubl cursor_left le Move left one space.

cud parm_down_cursor DO Move down #1 lines.

cuf parm.Jight_cursor RI Move right #1 spaces.

cu£1 cursor.Jight nd Non-destructive space (cursor or carriage right)

cup cursor_address em Move to row #1 col #2

cuu parm_up_cursor UP Move cursor up #1 lines.

cvr change_res_ vert ZD Change vertical resolution

cvvis cursor_ visible vs Make cursor very visible

dch parm_dch DC Delete #1 chars

dchl delete_character de Delete character

defc define_char ZE Define a character in a character set

dim enter_dim_mode mh Turn on half-bright mode

dl delete_line dll Delete line

dl parm_delete_line DL Delete #1 lines

do cursor_down do Down one line

doer these_cause_cr Zw Printing any of these chars causes cr

- 15 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

dsl dis_statusJine ds Disable status line

ech erase_chars ec Erase # 1 characters

ed clr_eos cd Dear to end of display

el clr_eol ce Dear to end of line

ell clr_bol cb Dear to beginning of line, inclusive

enacs ena_acs eA Enable alternate character set

ff form_feed ff Hardcopy terminal page eject

flash flash_screen vb Visible bell (may not move cursor)

fsl from_statusJine fs Return from status line

hd down_halfJine hd Half-line down (forward 1/2 linefeed)

I home cursor_home ho Home cursor (if no cup)
hpa column_address ch Horizontal position absolute

ht tab ta Tab to next 8-space hardware tab stop

hts set_ tab st Set a tab in all rows, current column

hu up_half_line hu Half-line up (reverse 112 linefeed)

ich parmjch IC Insert #1 blank chars

ich1 insert_ character ic Insert character

if init_file if Name of initialization file

il parmjnsert_line AL Add #1 new blank lines

ill insert_line al Add new blank line

ind scroll_forward sf Scroll text up

indn parm_jndex SF Scroll forward #1 lines

initc initialize_ color Ic Initialize the definition of color

initp initialize_pair Ip Initialize color-pair

in vis enter_secure_mode mk Tum on blank mode (characters invisible)

ip insert_padding ip Insert pad after character inserted

iprog init_prog iP Path name of program for initialization

is1 init_1string i1 Terminal or printer initialization string

is2 init_,2string is Terminal or printer initialization string

is3 init_3string i3 Terminal or printer initialization string

kBEG key_sbeg &9 KEY_5BEG, 0572, sent by shifted beginning key

kCAN key_scancel &0 KEY_5CANCEL, 0573, sent by shifted cancel key

kCMD key_scommand •1 KEY_SCOMMAND, 0574, sent by shifted command key

kCPY key_scopy •2 KEY_SCOPY, 0575, sent by shifted copy key

kCRT key_screate •3 KEY_5CREA TE, 0576, sent by shifted create key

kDC key_sdc •4 KEY_5DC, 0577, sent by shifted delete-char key

kDL key_sdl •5 KEY_5DL, 0600, sent by shifted delete-line key

kENO key_send •7 KEY_5END, 0602, sent by shifted end key

kEOL key_seol •8 KEY_5EOL, 0603, sent by shifted dear-line key

kEXT key_sexit •9 KEY_5EXIT, 0604, sent by shifted exit key

- 16 -

TERMINF0(4) (Terminal Information Utilities) 1 �KN111'U'V \ 'Oo /

kFND key_sfind •O KEY_SFIND, 0605, sent by shifted find key

kHLP key_shelp #1 KEY_SHELP, 0606, sent by shifted help key

kHOM key_shome #2 KEY_5HOME, 0607, sent by shifted home key

ldC key_sic #3 KEY_5IC, 0610, sent by shifted input key

kLFT key_sleft #4 KEY_SLEFT, 0611, sent by shifted left-arrow key

kMOV key_smove %b KEY_SMOVE, 0613, sent by shifted move key

kMSG key_smessage %a KEY_SMESSAGE, 0612, sent by shifted message key

kNXT key_snext %c KEY_SNEXT, 0614, sent by shifted next key

kOPT key _soptions %d KEY_SOPTIONS, 0615, sent by shifted options key

kPRT key_sprint %f KEY_SPRINT, 0617, sent by shifted print key

kPRV key _sprevious %e KEY_5PREVIOUS, 0616, sent by shifted prev key I kRDO key_sredo %g KEY_SREDO, 0620, sent by shifted redo key

kRES key_srsume %j KEY_SRSUME, 0623, sent by shifted resume key

kRIT key_sright %i KEY_SRIGHT, 0622, sent by shifted right-arrow key

kRPL key _sreplace %h KEY_SREPLACE, 0621, sent by shifted replace key

kSAV key_ssave !1 KEY_SSAVE, 0624, sent by shifted save key

kSPD key_ssuspend !2 KEY_SSUSPEND, 0625, sent by shifted suspend key

kUND key_sundo !3 KEY_SUNDO, 0626, sent by shifted undo key

leal key_al Kl KEY _Al, 0534, upper left of keypad

ka3 key_a3 K3 KEY_A3, 0535, upper right of keypad

kb2 key_b2 K2 KEY_B2, 0536, center of keypad

kbeg key_beg @1 KEY_BEG, 0542, sent by beg(inning) key

kbs key_backspace kb KEY_BACKSPACE, 0407, sent by backspace key

kcl key_cl K4 KEY_Cl, 0537, lower left of keypad

kc3 key_c3 K5 KEY_C3, 0540, lower right of keypad

kcan key_cancel @2 KEY_CANCEL, 0543, sent by cancel key

kcbt key_btab kB KEY_BTAB, 0541, sent by back-tab key

kclo key_close @3 KEY_CLOSE, 0544, sent by close key

kclr key_clear IcC KEY_CLEAR, 0515, sent by dear-screen or erase key

kcmd key_command @4 KEY_COMMAND, 0545, sent by cmd (command) key

kcpy key_copy @5 KEY_COPY, 0546, sent by copy key

kcrt key_create @6 KEY_CREATE, 0547, sent by create key

kctab key_ctab let KEY_CTAB, 0525, sent by clear-tab key

kcubl keyJeft ld KEY_LEFT, 0404, sent by terminal left-arrow key

kcudl key_down led KEY_DOWN, 0402, sent by terminal down-arrow key

kcu£1 key_right kr KEY_RIGHT, 0405, sent by terminal right-arrow key

kcuul key_up leu KEY_UP, 0403, sent by terminal up-arrow key

kdchl key_dc leD KEY_DC, 0512, sent by delete-character key

kdll key_dl kL KEY_DL, 0510, sent by delete-line key

ked key_eos ked KEY_EOS, 0516, sent by dear-to-end-of-screen key

- 17 -

Tt:RMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Ice! key_eol IcE I<EY_EOL, 05t7, sent by clear-to-end-of-line key

lcend lcey_end @7 KEY _END, 0550, sent by end Ieee

kent lcey_enter @6 KEY_ENfER, 0527, sent by enter/send key

lcext lcey_exit @ KEY_EXIT, 055t, sent by exit key

lcfO lcey_fO leO KEY_F(O), 04t0, sent by function key £0

left key_fl let I<EY_F(t), 0411, sent by function key f1

leftO key_£10 lc; KEY_F(tO), 0422, sent by function key flO

lefl l key_flt Ft I<EY_F(l l), 0423, sent by function key f1 1

left2 key_£12 F2 KEY_F(t2), 0424, sent by function key £12

left3 key_£13 F3 KEY_F(t3), 0425, sent by function key £13

I left4 key_£14 F4 KEY_F(t4), 0426, sent by function key £14

leftS key_£15 FS KEY_F(t5), 0427, sent by function key £15

left6 keyJ16 F6 KEY_F(t6), 0430, sent by function key £16

left7 key_£17 F7 KEY_F(t7), 043t, sent by function key £17

leftS lcey_£18 F8 KEY_F(t8), 0432, sent by function key £18

left9 lcey_£19 F9 KEY _F(t9), 0433, sent by function key £19

lc£2 lcey_f2 lc2 I<EY_F(2), 04t2, sent by function key f2

lc£20 key_£20 FA KEY_F(20), 0434, sent by function key £20

lcf2t lcey_f2t FB KEY_F(2t), 0435, sent by function key f2t

lcf22 lcey_£22 FC I<EY_F(22), 0436, sent by function key f22
lcf23 lcey_£23 FD KEY_F(23), 0437, sent by function key f23
lc£24 lcey_£24 FE KEY....F(24), 0440, sent by function key £24

lcf25 lcey_£25 FF KEY_F(25), 044t, sent by function key f25
lc£26 key_£26 FG KEY_F(26), 0442, sent by function key £26

lc£27 lcey_£27 FH KEY_F(27), 0443, sent by function key £27

lc£28 lcey_£28 Fl I<EY_F(28), 0444, sent by function key f28
lc£29 key_£29 FJ KEY_F(29), 0445, sent by function key £29

lc£3 key_£3 lc3 I<EY_F(3), 04t3, sent by function key £3

lc£30 key_£30 FK I<EY_F(30), 0446, sent by function key f30
lef3t key_f3t FL I<EY_F(3t), 0447, sent by function key £31

lc£32 key_f32 FM KEY _F(32), 0450, sent by function key £32

lcf33 key_£33 FN KEY_F(t3), 045t, sent by function key £13

lef34 lcey_£34 FO KEY_F(34), 0452, sent by function key £34

lef35 key_f35 FP KEY_F(35), 0453, sent by function key £35

lcf36 key_f36 FQ KEY_F(36), 0454, sent by function key £36

lc£37 lcey_f37 FR KEY _F(37), 0455, sent by function key £37

lcf38 key_£38 FS KEY_F(38), 0456, sent by function key £38
lc£39 key_f39 Fr KEY_F(39), 0457, sent by function key £39

lef4 lcey_f4 lc4 KEY_F(4), 04t4, sent by function key f4

lef40 key_f40 FU KEY_F(40), 0460, sent by function key £40

- 18 -

TERMINF0(4) (Terminal Information UtiJiUes J

lc£41 key_f41 FV KEY_F(41), 0461, sent by function key £41

lc£42 key_f42 FW KEY_F(42), 0462, sent by function key £42

lc£43 key_f43 FX KEY_F(43), 0463, sent by function key f43

lc£44 key_£44 FY KEY_F(44), 0464, sent by function key £44

lc£45 keyJ45 FZ KEY_F(45), 0465, sent by function key £45

lc£46 key_f46 Fa KEY_F(46), 0466, sent by function key f46

lc£47 key_f47 Fb KEY_F(47), 0467, sent by function key £47

lc£48 key_f48 Fe KEY_F(48), 0470, sent by function key f48

lc£49 keyJ49 Fd KEY_F(49), 0471, sent by function key £49

lc£5 key_f5 k5 KEY_F(5), 0415, sent by function key f5

kf50 key_f50 Fe KEY_F(50), 0472, sent by function key f50 I lc£51 key_f51 Ff KEY_F(51), 0473, sent by function key £51

lc£52 key_f52 Fg KEY_F(52), 0474, sent by function key f52

lc£53 key_f53 Fh KEY_F(53), 0475, sent by function key f53

lc£54 Jcey_f54 Fi KEY_F(54), 0476, sent by function key £54

lc£55 Jcey_f55 Fj KEY_F(55), 0477, sent by function key £55

lc£56 key_f56 Fk KEY_F(56), 0500, sent by function key f56
lc£57 key_f57 Fl KEY_F(57), 0501, sent by function key £57

lc£58 key_f58 Fm KEY_F(58), 0502, sent by function key f58
lc£59 key_f59 Fn KEY_F(59), 0503, sent by function key £59

lc£6 Jcey_f6 k6 KEY_F(6), 0416, sent by function key f6

lc£60 key_f60 Fo KEY_F(60), 0504, sent by function key £60

lc£61 Jcey_f61 Fp KEY_F(61), 0505, sent by function key f61

lc£62 key_f62 Fq KEY_F(62), 0506, sent by function key f62

lc£63 key_f63 Fr KEY_F(63), 0507, sent by function key f63

lc£7 key_£7 k7 KEY_F(7), 0417, sent by function key f7
lc£8 key_f8 k8 KEY_F(8), 0420, sent by function key f8

lc£9 key_f9 k9 KEY_F(9), 0421, sent by function key f9

lcfnd Jcey_find @'() KEY _FIND, 0552, sent by find key

khlp key _help % 1 KEY_HELP, 0553, sent by help key

khome key _home kh KEY_HOME, 0406, sent by home key

khts key_stab leT KEY_5TAB, 0524, sent by set-tab key

Ieicht Jcey_ic ld KEY_IC, 0513, sent by ins-char/enter ins-mode key
ldll key_j) kA KEY_IL, 051 1, sent by insert-line key

kind key_sf kF KEY_SF, 0520, sent by scroll-forward/down key

ldl keyJI kH KEY_LL, 0533, sent by home-down key

kmov key_move %4 KEY _MOVE, 0556, sent by move key

kmrlc key_marlc %2 KEY _MARK, 0554, sent by mark key

kmsg key_message %3 KEY _MESSAGE, 0555, sent by message key

knp key_npage leN KEY_NPAGE, 0522, sent by next-page key

- 19 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

knxt key_next % 5 KEY _NEXT, 0557, se n t b y next-object key

kopn key_open %6 KEY_OPEN, 0560, sent by open key

kopt key_options %7 KEY_OPTIONS, 0561 , sent by options key

kpp key_ppage kP KEY_pPAGE, 0523, sent by previous-page key

kprt key_print % 9 KEY_PRINT, 0532, sent by print or copy key

kprv key_previous % 8 KEY_PREVIOUS, 0562, se n t b y previous-object key

krdo key _redo %0 KEY_REDO, 0563, sent by redo key

kref key _reference &1 KEY_REFERENCE, 0564, sent by ref(erence) key

kres key _resume &5 KEY_RESUME, 0570, sent by resume key

krfr key _refresh &2 KEY_REFRESH, 0565, sent by refresh key

I kri key_sr kR KEY_SR, 0521, sent by scroll-backward/up key

krmir key_eic kM KEY_EIC, 0514, sent by rmir or smir in insert mode

krpl key _replace &3 KEY_REPLACE, 0566, sent by replace key

krst key _restart &4 KEY_RESTART, 0567, sent by restart key

ksav key_save &6 KEY_SAVE, 0571, sent by save key

kslt key_select •6 KEY_SELECT, 0601, sent by select key

kspd key_suspend &7 KEY_SUSPEND, 0627, sent by suspend key

ktbc key_catab ka KEY_CATAB, 0526, sent by clear-all-tabs key

kund key_undo &8 KEY_UNDO, 0630, sent by undo key

lfO lab_fO 10 Labels on function key fO if not fO

lfl lab_fl 11 Labels on function key f1 if not f1

I flO lab_flO Ia Labels on function key fl O if not fl O

1£2 lab_£2 12 Labels on function key f2 if not f2

I£3 lab_f3 13 Labels on function key f3 if not f3

I£4 lab_f4 14 Labels on function key f4 if not f4

I£5 lab_f5 15 Labels on function key f5 if not f5

I£6 lab_f6 16 Labels on function key f6 if not f6

1£7 lab_£7 17 Labels on function key f7 if not f7

I£8 lab_f8 18 Labels on function key f8 if not f8

I£9 lab_f9 19 Labels on function key f9 if not f9

II cursor_to_ll II Last line, first column (if no cup)

I pi change_line_pitch ZB Change number of lines per inch

mcO print_screen ps Print contents of the screen

mc4 prtr_off pf Tum off the printer

mc5 prtr_on po Tum on the printer

mc5p prtr_non pO Tum on the printer for #1 bytes

mcub parm_left_micro Zg Like parm_left_cursor for micro adjust

mcubl micro_left Za Like cursor_left for micro adjustment

mcud parm_down_micro Zf Like parm_down_cursor for micro adjust

mcud1 micro_down zz Like cursor_down for micro adjustment

- 20 -

TERMINF0(4) (Terminal Information Utilities) Tt:KMIN.l'U \4}

mcuf parm_right_micro Zh Like parm_right_cursor for micro adjust

mcufl micro _right Zh Like cursor_right for micro adjustment

mcuu parm_up_micro Zi Like parm_up_cursor for micro adjust

mcuut micro_ up Zd Like cursor_up for micro adjustment)

mgc clear_margins MC Oear all margins (top, bottom, and sides)

mhpa micro_column_addresSl:Y Like column_address for micro adjustment

mrcup cursor_mem_address CM Memory relative cursor addressing

mvpa micro _row _address Zc Like row_address for micro adjustment

nel newline nw Newline (behaves like cr followed by If)

oc orig_colors oc Set all color(-pair)s to the original ones

op orig_pair op Set default color-pair to the original one I pad pad_char pc Pad character (instead of null)

pfkey pkey_key pk Prog funct key lift to type string lif2

pfloc pkey_local pi Prog funct key lift to execute string lif2

pfx pkey_xmit px Prog funct key lift to xmit string lif2

pin plab_norm pn Prog label lift to show string lif2

porder order_ of_ pins Ze Matches software bits to print-head pins

prot enter_protected_modem p Turn on protected mode

rbim stop_bit_image Zs End printing bit image graphics

rc restore_cursor rc Restore cursor to position of last sc

rcsd stop_char_set_def Zt End definition of a character set

rep repea t_char rp Repeat char lift lif2 times

rev enter_reverse_mode mr Turn on reverse video mode

rf reset_file rf Name of file containing reset string

rfi req_for_input RF Send next input char (for ptys)

ri scroll_reverse sr Scroll text down

rin parm_rindex SR Scroll backward #t lines

ritm exit_italics_mode ZR Disable italics

rim exit_leftward_mode zs Enable rightward (normal) carriage motion

rmacs exit_alt_charset_mode ae End alternate character set

rmam exit_am_mode RA Turn off automatic margins

rmcup exit_ca_mode te String to end programs that use cup

rmdc exit_delete_mode ed End delete mode

rmicm exit_micro_mode zr Disable micro motion capabilities

rmir exit_insert_mode ei End insert mode

rmkx keypadJocal ke Out of "keypad-transmit" modey

rmln label_ off LF Turn off soft labels

rmm meta_ off mo Turn off "meta mode"

rmp char_padding rP Like ip but when in replace mode

rmso exit_standout_mode se End standout mode

- 21 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

rmul exit_underline_mode ue End underscore mode

rmxon exit__xon_mode RX Turn off xon/xoff handshaking

rs1 reset_1string r1 Reset terminal completely to sane modes

rs2 reset_2string r2 Reset terminal completely to sane modes

rs3 reset_3string r3 Reset terminal completely to sane modes

rshm exit_shadow_mode zu Disable shadow printing

rsubm exit_subscript_mode zv Disable subscript printing

rsupm exit_superscript_modeZW Disable superscript printing

rum exit_upward_mode zx Enable downward (normal) carriage motion

rwidm exit_doublewide_mod£Q Disable double wide printing

I sbim start_bitjmage Zq Start printing bit image graphics

se save_cursor se Save cursor position

sep set_color_pair sp Set current color-pair

scs select_char_set Zj Select character set

sese start_char_set_def Zr Start definition of a character set

sdrfq enter_draft_quality ZG Set draft quality print

setb set_background Sb Set current background color

set£ set_foreground Sf Set current foreground color

sgr set_attributes sa Define the video attributes # 1-#9

sgrO exit_attribute_mode me Turn off all attributes

sitm enterjtalics_mode ZH Enable italics

slm enterJeftward_mode ZI Enable leftward carriage motion

smacs enter_alt_charset_mod.s Start alternate character set

smam enter_am_mode SA Tum on automatic margins

smcup enter_ca_mode ti String to begin programs that use cup
smdc enter_delete_mode dm Delete mode (enter)

smgb set_bottom_margin Zk Set bottom margin at current line

smgbp set_bottom_margin_paZit Set bottom margin at line #1 or #2 lines from bottom

smgl seUeft_margin ML Set left margin at current line

smglp seUeft_margin_parm Zm Set left (right) margin at column #1 (#2)

smgr set_right_margin MR Set right margin at current column

smgrp set_right_margin_par� Set right margin at column #1

smgt set_top_margin Zo Set top margin at current line

smgtp set_top_margin_parm Zp Set top (bottom) margin at line #1 (#2)

smicm enter_micro_mode ZJ Enable micro motion capabilities

smir enter_insert_mode im Insert mode (enter)

smkx keypad__xmit ks Put terminal in "keypad-transmit" mode

smln labeL on LO Turn on soft labels

smm meta_ on mm Tum on "meta mode" (8th bit)

smso enter_standout_mode so Begin standout mode

- 22 -

.l tKN.l.lfiU'V \ 'l } \ .1 eruunaJ .1nrormanon u nnnes J

smul enter_underline_modrus Start underscore mode

smxon enter_xon_mode SX Turn on xon/xoff handshaking

Set near-letter quality print

Set normal quality print

Enable shadow printing

Enable subscript printing

Enable superscript printing

snlq enter_nearJetter_qual&j(

snrmq enter_normaLquality ZL

sshm enter_shadow_mode ZM
ssubm enter_subscript_mode ZN
ssupm enter_superscript_modlO

subcs subscript_characters Zu List of "subscript-able" characters

Enable upward carriage motion sum enter_upward_mode ZP
supcs superscript_charactersZv List of "superscript-able" characters

Enable double wide printing swidm enter_doublewide_moa:E

tbc clear_a!Ltabs

tsl to_statusJine
uc underline_ char

up cursor_ up

vpa row_address

ct

ts
uc

cuul

cv

Oear all tab stops

Go to status line, col #1
Underscore one char and move past it

Upline (cursor up)

Vertical position absolute

wind set_ window wi Current window is lines #l-#2 cols #3-#4

X-off character xoffc xoff_character XF
xonc xon_character XN X-on character

zerom zero_motion Zx No motion for the subsequent character

SAMPLE ENTRY
The following entry, which describes the AT&T 610 terminal, is among
the more complex entries in the terminfo file as of this writing:

6 1 0 I 6 1 0b c t I ATT6 1 0 I att6 1 0 I ATi:T 6 1 0 ; 80 c o l umn ; 9 8 k a y k e yb o ard
am , e s l ok , h a , mir , m s g r , x e n l , xon ,

c o l s #S O , i t#S , lh#2 , l i n a s # 2 4 , lw# S , n l ab#S , ws l # S O ,

ac s c= · · aaf f g g j j kk l lmmnno oppqqrr s s ttuuvvwwxxyyz z { { I I } } - - ,
b a l = - c , b l ink=\E [6 m , bo ld=\E [1 m , cbt=\E [Z ,
c ivi s=\E [? 2 6 l , c l a ar=\E [H\E [J , cnorm=\E [? 2 6h\E [? 1 2 1 ,
cr=\r , c s r=\E [�i�p 1 �d ; �p2�dr , cub=\E [�p 1 �dD , cub 1 = \ b ,

cud=\E [�p 1 �dB , c u d 1 =\E [B , cuf=\E [�p 1 �dC , c u f 1=\E [C ,

cup=\E [�i�p 1 �d ; �p2�dH , cuu=\E [�p 1 �dA , cuu 1=\E [A ,
c vv i s = \ E [? 1 2 ; 2 6 h , d ch=\E [�p l �dP , d c h l =\ E [P , d im=\ E [2m ,
dl=\E [�p 1 �dW , d l 1=\E [W , a d=\E [J , a l=\E [K , a l 1=\E [1 K ,
f l as h=\E [? 6h $ < 2 0 0 > \ E [? 6 1 , f s l=\ES , homa =\E [H , ht=\ t ,

i ch=\E [�p 1 �d0 , i l=\E [�p 1 �dL , i l 1=\E [L , ind=\ED ,

inv i s =\ E [Sm ,
i s 1=\E [8 ; 0 I \E [? 3 ; 4 ; 6 ; 1 3 ; 1 6 1 \ E [1 3 ; 2 0 1 \ E [? 7h\E [1 2h\E (B\E) O ,

i s 2=\E [Om- o , i s 3=\E (B\E) O , kLFT=\E [\ s O , k R I T=\E [\ s A ,
k b s =\b , k cbt=\E [Z , k c lr=\E [2 J , kcub1=\E [D , kcud 1 = \ E [B ,

k c u f 1=\E [C , kcuu 1 =\E [A , kf 1=\E0 c , kf 1 0=\ENp ,

- 23 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

kf 1 1 = \EN q , kf 1 2=\ENr , kf 1 3=\EN a , k f 1 4=\EN t , kf 2=\EOd ,
kf 3=\E0 e , k f 4=\EO f , kf 6=\EO g , k f 6=\EOh , k f 7=\EO i ,

kf B=\EO j i k f 9=\EN o , khome=\E [H , k ind=\E [S , kri=\E [T ,
l l=\E [24H , mc4=\E [? 4 i , mc6=\E [? 6 i , n e l=\EE ,

p f x=\E [Ip 1 ld ; lp 2 l ll0 2 d q\ a \ a \ a Fip 1 l 1 d\ a \ a \ a \ a \ a

\ a \ a \ a \ a \ a \ a lp2l a ,
pln=\E [Ip 1 ld ; O ; O ; Oqlp2l : - 1 6 . 1 6 a , r c=\ES , r e v=\E [7m ,
r i = \ EW , rmac a = A O , rmir=\E [4 1 , rmln=\E [2p , rma o=\E [m ,
rmu l = \ E [m , r a 2=\Ec\E [? 3 1 , a c=\E7 ,

a gr=\E [O I ? Ip6l t ; 1 l ; l ? lp6lt ; 2 l ; l ? lp2lt ; 4l ; l ? lp4l t ; 6 l ;
l ? lp 3lp 1 l I lt ; 7 l ; l ? lp7lt ; BI ; ml ? lp9lt A Nie A OI ; ,

a grO=\E [mA O , amac a = A N , amir=\E [4h , amln=\E [p ,

a m a o = \ E [7m , amu l =\E [4m , t a l=\E7\E [2 6 ; I ilp 1 ldx ,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of tenninfo capa­
bilities listed: Boolean, numeric, and string. All capabilities specified in
the tenninfo source file must be followed by commas, including the last
capability in the source file . In tenninfo source files, capabilities are refer­
enced by their capability names (as shown in the previous tables) .

Boolean capabilities are specified by their comma separated cap names.

Numeric capabilities are followed by the character '#', then a positive
integer value . Thus, in the sample, cols (which shows the number of
columns available on a device) is assigned the value 80 for the AT&T 610.
(Values for numeric capabilities may be specified in decimal, octal or hex­
adecimal, using normal C conventions .)

Finally, string-valued capabilities, e .g . , el (clear to end of line sequence)
are listed by a two- to five-character capname, an ' = ', and a string ended
by the next occurrence of a comma. A delay in milliseconds may appear
anywhere in such a capability, enclosed in $< .. > brackets, as in
el=\EK$<3> . Padding characters are supplied by tputs() .

- 24 -

TERMINF0(4) \ l ernunet' ... , , ... v &.a _ - ·- - - -- - - .

The delay can be any of the following: a number (5), a number followed
by an '*' (5•), a number followed by a '/' (5/), or a number followed by
both (5•/) . An '* ' shows that the padding required is proportional to the
number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert characters, the
factor is still the number of lines affected. This is always 1 unless the
device has in and the software uses it.) When an '*' is specified, it is
sometimes useful to give a delay of the form 3.5 to specify a delay per
unit to tenths of milliseconds. (Only one decimal place is allowed.)

A '/' indicates that the padding is mandatory. If a device has xon defined,
the padding information is advisory and will only be used for cost esti- I mates or when the device is in raw mode. Mandatory padding will be
transmitted regardless of the setting of xon. If padding (whether advisory
or mandatory) is specified for bel or flash, however, it will always be
used, regardless of whether xon is specified.

terminfo offers notation for encoding special characters . Both \E and \e
map to an ESCAPE character, Ax maps to a control-x for any appropriate x,
and the sequences \n, \1, \r, \t, \b, \f, and \s give a newline, linefeed,
return, tab, backspace, formfeed, and space, respectively. Other escapes
include: \A for caret C); \\ for backslash (\); \, for comma (,); \: for colon (:);
and \0 for null. (\0 will actually produce \200, which does not terminate a
string but behaves as a null character on most devices, providing CS7 is
specified. (See stty(1) .) Finally, characters may be given as three octal
digits after a backslash (e .g. , \123) .

Sometimes individual capabilities must be commented out. To do this,
put a period before the capability name. For example, see the second ind
in the example above. Note that capabilities are defined in a left-to-right
order and, therefore, a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a device description is by imitating the
description of a similar device in terminfo and building up a description
gradually, using partial descriptions with vi(1) to check that they are
correct. Be aware that an unusual device may expose deficiencies in the
ability of the terminfo file to describe it or the inability of vi(1) to work with
that device .

- 25 -

I

- _ -... � .& , , .. , (Terminal Information Utilities) TERMINF0(4)

To test a new device description, set the environment variable TERMINFO
to the pathname of a directory containing the compiled description you
are working on and programs will look there insted of in
/usr/lib/terminfo. To get the padding for insert-line correct (if the device
manufacturer did not document it), a severe test is to comment out xon,
edit a large file at 9600 baud with vi(l), delete 16 or so lines from the mid­
dle of the screen, then hit the u key several times quickly. If the display
is corrupted, more padding is usually needed. A similar test can be used
for insert-character.

Section 1-1: Basic Capabilities
The number of columns on each line for the device is given by the cols
numeric capability. If the device has a screen, the number of lines on the
screen is given by the lines capability. If the device wraps around to the
beginning of the next line when it reaches the right margin, it should have
the am capability. If the terminal can clear its screen leaving the cursor in
the home position, then this is given by the clear string capability. If the
terminal overstrikes (instead of clearing a position when a character is
struck over), it should have the os capability.

If the device is a printing terminal, with no soft copy unit, specify both he
and os. If there is a way to move the cursor to the left edge of the current
row, specify this as cr. (Normally, this is carriage return, control m.) If
there is a way to produce an audible signal (e.g. , a bell or a beep), specify
it as bel. If, like most devices, the device uses the xon-xoff flow-control
protocol, specify xon.

If there is a way to move the cursor one position to the left (e .g., back­
space), that capability should be given as cubl. Similarly, sequences to
move to the right, up, and down should be given as cu£1, cuul, and cudl,
respectively. These local cursor motions must not alter the text they pass
over; for example, you would not normally use "cufl =\s" because the
space would erase the character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a screen terminal. Pro­
grams should never attempt to backspace around the left edge, unless bw
is specified, and should never attempt to go up locally off the top. To
scroll text up, a program goes to the bottom left comer of the screen and
sends the ind (index) string.

- 26 -

TERMINF0(4) \ .1 erDUllCil .I.I.I.LUI.UILA'-&vaa - ___ ,

To scroll text down, a program goes to the top left comer of the screen
and sends the ri (reverse index) string. The strings ind and ri are unde­
fined when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These
versions have the same semantics as ind and ri, except that they take one
parameter and scroll the number of lines specified by that parameter.
They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cu£1
from the last column. Backward motion from the left edge of the screen is 1 possible only when bw is specified. Here, cubl will move to the right
edge of the previous row. If bw is not given, the effect is undefined.
This is useful for drawing a box around the edge of the screen, for exam­
ple.

If the device has switch selectable automatic margins, am should be speci­
fied in the terminfo source file. Here, initialization strings should tum on
this option, if possible . If the device has a command that moves to the
first column of the next line, that command can be given as nel (newline) .
It does not matter if the command clears the remainder of the current line,
so if the device has no cr and If, it may still be possible to craft a working
nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals .
Thus, the AT&T 5320 hardcopy terminal is described as:

6320 i att6320 I AT&T 6320 hardc opy term1na1 ,
am , he , o s ,
co1s#132 ,
b e 1= · G , cr=\r , cub l=\b , cndl=\n ,
dchl=\E [P , d1 1=\E [M ,
1nd=\n ,

The Lear Siegler ADM-3 is described as:

adm3 I 1 s 1 adm3 .
am , b e 1=· G . c 1 e ar= · z . c o 1s#BO , cr=·w . cubl=·H .
cudl= · J , 1nd=· J , 11ne s#24 ,

- 27 -

I

J. I:.IUVHN.I'U\4} (Terminal Information Utilities) TERMINF0(4)

Section 1-2: Parameterized Strings
Cursor addressing and other strings requiring parameters are described by
a parameterized string capability, with print£(35)-like escapes (%x) in it.
For example, to address the cursor, the cup, the row, and column to
address to. (Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen memory.) If the ter­
minal has memory relative cursor addressing, indicate that by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate
the stack in the manner of Reverse Polish Notation (postfix) . Typically, a
sequence will push one of the parameters onto the stack, then print it in
some format. Often, more complex operations are necessary. Operations
are in postfix form with the operands in the usual order. For example, to
subtract 5 from the first parameter, use %pl %{5}%-.

The % encodings have the following meanings:

% % outputs '%'
% [[:]flags] [width[. precision]] [doxXs]

as in printf, flags are [-+ #] and space
%c print pop() gives %c

%p[l-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%1

%+ %- %• %/ %m

h .th pus 1 parm
set variable [a-z] to pop()
get variable [a-z] and push it
push char constant c
push decimal constant nn
push strlen(pop())

arithmetic (%m is mod): push(pop integer2() op pop integer 1 () :
%& %1 %. bit operations: push(pop integer2() op pop integersub l())
%= %> %< logical operations: push(pop() op pop())
%A %0 logical operations: and, or
% ! %- unary operations: push(op pop())
%i (for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else-if's are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e

ci are conditions, bi are bodies.

- 28 -

TERMINF0(4) \ .1. t:I"llUI.ICI• .&A.&.a.va. a... .._ _ ... _ - --- - - - _ _ •

If the "-" flag is used with "% [doxXs]", a colon (:) must be placed
between the "%" and the "-" to differentiate the flag from the binary
"%-" operator, .e .g. , "% :-16. 16s" .

Consider the Hewlett-Packard 2645, which, to get to row 3 and column
12, needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are zero-padded as two digits . Thus, its cup capability is
"cup=\E&a%p2%2.2dc%pl %2.2dY$<6>" .

The Micro-Term ACT-IV needs the current row and column sent preceded
by a AT, with the row and column encoded in binary,
"cup=AT%pl%c%p2%c" . Devices that use "%c" must be able to back- I
space the cursor (cubl), and move the cursor up one line on the screen
(cuul) . This is necessary because it is not always safe to transmit \n, AD,
and \r, because the system may change or discard them. (The library rou­
tines dealing with tenninfo set tty modes so that tabs are never expanded,
so \t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus, "cup=\E= %pl%'\s'% + %c%p2%'\s'% + %c" . After
sending "\E=", this pushes the first parameter, pushes the ASCII value
for a space (32), adds them (pushing the sum on the stack in place of the
two previous values), and outputs that value as a character. Then the
same is done for the second parameter. More complex arithmetic is possi­
ble using the stack.

Section 1-3: Cursor Motions
If the terminal has a fast way to home the cursor (to upper left comer of
screen), this can be given as home; similarly, a fast way of getting to the
lower left-hand comer can be given as 11. This may involve going up with
cuul from the home position, but a program should never do this itself
(unless 11 does) because it can make no assumption about the effect of
moving up from the home position. Note that the home position is the
same as addressing to (0,0) : to the top left comer of the screen, not of
memory. (Thus, the \EH sequence on Hewlett-Packard terminals cannot
be used for home without losing some of the other terminal features .)

- 29 -

I

(Terminal Information Utilities) TERMINF0(4)

If the device has row or column absolute-cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute)
and vpa (vertical position absolute) . Sometimes, these are shorter than
the more general two-parameter sequence (as with the Hewlett-Packard
2645) and can be used in preference to cup. If there are parameterized
local motions (e .g. , move n spaces to the right) these can be given as cud,
cub, cuf, and cuu with a single parameter indicating how many spaces to
move. These are primarily useful if the device does not have cup, e.g. ,
the Tektronix 4025.

If the device needs to be in a special mode when running a program that
uses these capabilities, the codes to enter and exit this mode can be given
as smcup and rmcup. This arises, for example, from terminals, e .g. , the
Concept, with more than one page of memory. If the device has only
memory relative cursor addressing and not screen relative cursor address­
ing, a one screen-sized window must be fixed into the device for cursor
addressing to work properly. This is also used for the Tektronix 4025
where smcup sets the command character to be the one used by terminfo.
If the smcup sequence will not restore the screen after an rmcup sequence
is output (to the state prior to outputting rmcup), specify nrrmc.

Section 1-4: Area Clears
If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as el. If the terminal
can clear from the beginning of the line to the current position inclusive
leaving the cursor where it is, this should be given as ell . If the terminal
can clear from the current position to the end of the display, this should
be given as ed. ed is only defined from the first column of a line . (Thus,
it can be simulated by a request to delete a large number of lines, if a true
ed is not available .)

Section 1-5: Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor
is, this should be given as ill; this is done only from the first position of a
line . The cursor must then appear on the newly blank line. If the termi­
nal can delete the line that the cursor is on, this should be given as dll;
this is done only from the first position on the line to be deleted. Ver­
sions of ill and dll that take a single parameter and insert or delete that
many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100),
the command to set this can be described with the csr capability, which
takes two parameters: the top and bottom lines of the scrolling region.

- 30 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0 (4)

The cursor position is undefined after using this command. It is possible
to get the effect of insert or delete line using this command -the sc and
rc (save and restore cursor) commands are also useful . Inserting lines at
the top or bottom of the screen can also be done using ri or ind on many
terminals without a true insert/delete line, and is often faster even on ter­
minals with those features.

To determine if a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the
cursor to the top line of the scrolling region, and do a reverse index (ri)
followed by a delete line {dll) or index (ind) . If the data that was origi- I nally on the bottom line of the scrolling region was restored into the scrol­
ling region by the dll or ind, the terminal has non-destructive scrolling
regions. Otherwise, it has destructive scrolling regions. Do not specify
csr if the terminal has non-destructive scrolling regions, unless ind, ri,
indn, rin, dl, and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory,
which all commands affect, it should be given as the parameterized string
wind. The four parameters are the starting and ending lines in memory
and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, the da capability should
be given; if display memory can be retained below, db should be given.
These indicate that deleting a line or scrolling a full screen may bring
non-blank lines up from below or that scrolling b�ck with ri may bring
down non-blank lines.

Section 1-6: Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character operations thata can be described using terminfo.
The most common insert/delete character operations affect only the char­
acters on the current line and shift characters off the end of the line
rigidly. Other terminals, e.g., the Concept 100 and the Perkin Elmer Owl,
make a distinction between typed and untyped blanks on the screen,
shifting upon an insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped blanks.

- 31 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

You can determine the kind of terminal you have by dearing the screen
and typing text separated by cursor motions . Type "abc de£" using
local cursor motions (not spaces) between the abc and the de£. Then posi­
tion the cursor before the abc and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to
fall off the end, your terminal does not distinguish between blanks and
untyped positions . If the abc shifts over to the de£ which then move
together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capabil­
ity in, which stands for "insert null." While these are two logically
separate attributes (one line versus multiline insert mode, and special
treatment of untyped spaces) we have seen no terminals whose insert
mode cannot be described with the single attribute.

terminfo can describe both terminals that have an insert mode and termi­
nals that send a simple sequence to open a blank position on the current
line . Give as smir the sequence to get into insert mode. Give as rmir the
sequence to leave insert mode. Now give as ichl any sequence needed to
be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give ichl; terminals that send a sequence
to open a screen position should give it here . (If your terminal has both,
insert mode is usually preferable to ichl. Do not give both unless the ter­
minal requires both to be used in combination.)

If post-insert padding is needed, give this as a number of milliseconds
padding in ip (a string option) . Any other sequence that may need to be
sent after an insert of a single character may also be given in ip. If your
terminal needs both to be placed into an 'insert mode' and a special code
to precede each inserted character, both smir/rmir and ichl can be given,
and both will be used. The ich capability, with one parameter, n, will
insert n blanks .

If padding is necessary between characters typed while not in insert
mode, give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e .g. , if there is a tab after the insertion posi­
tion) . If your terminal allows motion while in insert mode, you can give
the capability mir to speed up inserting in this case . Omitting mir will
affect only speed. Some terminals (notably Datamedia's) must not have
mir because of the way their insert mode works .

- '2 "1

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Finally, you can specify dchl to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and
rmdc to enter and exit delete mode (any mode the terminal needs to be
placed in for dchl to work) .

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow
you to highlight selected characters when they appear on the screen. The
following display modes (shown with the names by which they are set)
may be available: a blinking screen (blink), bold or extra-bright characters I (bold), dim or half-bright characters (dim), blanking or invisible text
(invis), protected text (prot), a reverse-video screen (rev), and an alternate
character set (smacs to enter this mode and rmacs to exit it) . (If a com­
mand is necessary before you can enter alternate character set mode, give
the sequence in enacs or "enable alternate-character-set" mode.) Turning
on any of these modes singly may or may not tum off other modes.

sgrll should be used to tum off all video enhancement capabilities . It
should always be specified because it represents the only way to tum off
some capabilities, e .g. , dim or blink.

You should choose one display method as standout mode (see curses(3X))
and use it to highlight error messages and other kinds of text to which
you want to draw attention. Choose a form of display that provides
strong contrast but that is easy on the eyes. (We recommend reverse­
video plus half-bright or reverse-video alone.) The sequences to enter and
exit standout mode are given as smso and rmso, respectively. If the code
to change into or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do, give xmc to tell
how many spaces are left.

Sequences to begin underlining and end underlining can be specified as
smul and rmul, respectively. If the device has a sequence to underline
the current character and to move the cursor one space to the right (e .g. ,
the Micro-Term MIME), this sequence can be specified as uc.

- 33 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algo­
rithm instead of having extra bits for each character. Some terminals,
e.g., the Hewlett-Packard 2621, automatically leave standout mode when
they move to a new line or the cursor is addressed. Programs using stan­
dout mode should exit standout mode before moving the cursor or send­
ing a newline, unless the msgr capability, asserting that it is safe to move
in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement), this can be given as flash; it must not move the cur­
sor. A good flash can be done by changing the screen into reverse video,
pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on
the bottom line (to make, for example, a non-blinking underline into an
easier to find block or blinking underline), give this sequence as cvvis.
The boolean chts should also be given. If there is a way to make the cur­
sor completely invisible, give that as civis. The capability cnorm should
be given which undoes the effects of either of these modes.

If your terminal generates underlined characters by using the underline
character (with no special sequences needed) even though it does not oth­
erwise overstrike characters, you should specify the capability ul. For
devices on which a character overstriking another leaves both characters
on the screen, specify the capability os. If overstrikes are erasable with a
blank, indicate this by specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should
be given as sgr (set attributes), taking nine parameters . Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need to be sup­
ported by sgr; only those for which corresponding separate attribute com­
mands exist should be supported. For example, let's assume that the ter­
minal in question needs the following escape sequences to tum on various
modes.

- 'lA

TERMINF0 (4) (Terminal Information Utilities) TERMINF0(4)

tparm Escape
Parameter Attribute Sequence

none \E[Om
pl standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 in vis \E[O;Sm
p8 protect not available
p9 altcharset AO {off) AN(on)

Note that each escape sequence requires a 0 to tum off other modes
before turning on its own mode. Also note that, as suggested above, stan­
dout is set up to be the combination of reverse and dim . Also, because this
terminal has no bold mode, bold is set up as the combination of reverse and
underline . In addition, to allow combinations, e.g., underline+ blink, the
sequence to use would be \E[0;3;5m. The terminal doesn't have protect
mode, either, but that cannot be simulated in any way, so p8 is ignored.
The altcharset mode is different in that it is either ·o or ·N, depending on
whether it is off or on. If all modes were to be turned on, the sequence
would be \E[0;3;4;5;7;sm·N.
Now look at when different sequences are output. For example, ;3 is out­
put when either p2 or p6 is true, i .e . , if either underline or bold modes are
turned on. Writing out the above sequences with their dependencies,
gives the following:

Sequence

\E[O
;3
;4
;5
;7
;8
m
AN or AO

When to Output

always
if p2 or p6
if pl or p3 or p6
if p4
if pl or p5
if p7
always
if p9 AN, else AO

- 35 -

Terminfo Translation

\E[O
%?%p2%p6% 1%t;3%;
%?%pl%p3% 1 %p6% 1%t;4%;
%?%p4%t;5%;
%?%pl%p5% 1%t;7%;
% ?%p7%t;8%;
m
%?%p9%tAN%eAQ%;

I

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Putting this all together into the sgr sequence gives:

sgr=\E[O%?%p2%p6% 1 % t;3%;%?%pl % p3% 1 %p6% 1 % t;4%;%?%p5%t;S%;%?%pl %p5%

l % t;7%;%?%p7%t;8%;m%?%p9%t.N%e·o%;,

NOTE: sgr and sgrO must always be specified.

Section 1-8: Keypad
If the device has a keypad that transmits sequences when the keys are
pressed, this information can also be specified. Note that it is not possi­
ble to handle devices where the keypad only works in local (this applies,
for example, to the unshifted Hewlett-Packard 2621 keys) . If the keypad
can be set to transmit or not transmit, specify these sequences as smkx
and rmkx. Otherwise, the keypad is assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow,
and home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome,
respectively. If there are function keys, e .g . , fO, £1, . . . , f63, specify the
sequences they send as k£0, kf1, . . . , k£63 .

If the first 11 keys have labels other than the default fO through flO, the
labels can be given as l£0, l£1, . . . , l£10. The codes transmitted by certain
other special keys can be given: kll (home down), kbs (backspace), ktbc
(clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen
or erase key), kdchl (delete character), kdll (delete line), krmir (exit
insert mode), kel (clear to end of line), ked (clear to end of screen), kichl
(insert character or enter insert mode), kill (insert line), knp (next page),
kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column) . In addition, if the keypad has a 3 by
3 array of keys including the four arrow keys, the other five keys can be
given as kat, ka3, kb2, kcl, and kc3 . These keys are useful when the
effects of a 3 by 3 directional pad are needed. Further keys are defined
above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and
pfx. A string to program screen labels should be specified as pin. Each
of these strings takes two parameters: a function key identifier and a
string with which to program it. pfkey causes pressing the given key to
be the same as the user typing the given string; pfloc causes the string to
be executed by the terminal in local mode; pfx causes the string to be
transmitted to the computer.

- 36 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

The capabilities nlab, lw and lh define the number of programmable
screen labels and their width and height. If there are commands to turn
the labels on and off, give them in smln and rmln. smln is normally out­
put after one or more pin sequences to make sure that the change
becomes visible .

Section 1-9: Tabs and Initialization
If the device has hardware tabs, the command to advance to the next tab
stop can be given as ht (usually control I) . A "backtab" command that
moves leftward to the next tab stop can be given as cbt. By convention, if
tty modes show that tabs are being expanded by the computer instead of
being sent to the device, programs should not use ht or cbt (even if they I are present) because the user may not have the tab stops properly set.

If the device has hardware tabs that are initially set every n spaces when
the device is powered up, the numeric parameter it is given, showing the
number of spaces the tabs are set to. This is normally used by tput init
(see tput(l)) to determine whether to set the mode for hardware tab
expansion and whether to set the tab stops . If the device has tab stops
that can be saved in nonvolatile memory, the terminfo description can
assume that they are properly set. If there are commands to set and clear
tab stops, they can be given as tbc (clear all tab stops) and hts (set a tab
stop in the current column of every row) .

Other capabilities include: isl, is2, and is3, initialization strings for the
device; iprog, the path name of a program to be run to initialize the dev­
ice; and if, the name of a file containing long initialization strings. These
strings are expected to set the device into modes consistent with the rest
of the terminfo description. They must be sent to the device each time the
user logs in and be output in the following order: run the program iprog;
output isl; output is2; set the margins using mgc, smgl and smgr; set the
tabs using tbc and hts; print the file if; and finally output is3 . This is usu­
ally done using the init option of tput(l); see profile(4) .

Most initialization is done with is2. Special device modes can be set up
without dupl�cating strings by putting the common sequences in is2 and
special cases in isl and is3 . Sequences that do a harder reset from a
totally unknown state can be given as rsl, rs2, rf, and rs3, analogous to
isl, is2, is3, and if. (The method using files, if and rf, is used for a few
terminals, from !usr/libltabsetl• ; however, the recommended method is to
use the initialization and reset strings.) These strings are output by tput
reset, which is used when the terminal gets into a wedged state.

- 37 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Commands are normally placed in rsl, rs2, rs3, and rf only if they pro­
duce annoying effects on the screen and are not necessary when logging
in. For example, the command to set a terminal into 80-column mode
would normally be part of is2, but on some terminals it causes an annoy­
ing glitch on the screen and is not normally needed because the terminal
is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be
described by using tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify
commands to set and clear margins, see Margins under Printer Capabilities .)

Section 1-10: Delays
Certain capabilities control padding in the tty(7) driver. These are pri­
marily needed by hard-copy terminals, and are used by tput init to set tty
modes appropriately. Delays embedded in the capabilities cr, ind, cubl,
ff, and tab can be used to set the appropriate delay bits to be set in the tty
driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Section 1-11 : Status Lines
If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line into which one can cursor address normally
(e .g. , the Heathkit h19's 25th line, or the 24th line of a VT100 that is set to
a 23-line scrolling region), the capability hs should be given. Special
strings that go to a given column of the status line and return from the
status line can be given as tsl and fsl . (fsl must leave the cursor position
in the same place it was before tsl . If necessary, the sc and rc strings can
be included in tsl and fsl to get this effect.) The capability tsl takes one
parameter, which is the column number of the status line to which the
cursor is to be moved.

If escape sequences and other special commands, e .g . , tab, work while in
the status line, the flag eslok can be given. A string that turns off the
status line (or otherwise erases its contents) should be given as dsl. If the
terminal has commands to save and restore the position of the cursor,
give them as sc and rc . The status line is normally assumed to be the
same width as the rest of the screen, e .g. , cols . If the status line is a dif­
ferent width (possibly because the terminal does not allow an entire line
to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

':)0

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Section 1-12: Line Graphics
If the device has a line drawing alternate character set, the mapping of
glyph to character would be given in acsc. The definition of this string is
based on the alternate character set used in the DEC VT100 terminal,
extended slightly with some characters from the AT&T 4410vl terminal.

glyph Name

arrow pointing right
arrow pointing left
arrow pointing down
solid square block
lantern symbol
arrow pointing up
diamond
checker board (stipple)
degree symbol
plus/minus
board of squares
lower right comer
upper right comer
upper left comer
lower left comer
plus
scan line 1
horizontal line
scan line 9
left tee (�)
right tee (--l}
bottom tee (1)
top tee { T)
vertical line
bullet

- 39 -

vt100 +
Character

+

0
I

a
f
g
h

j
k
I

m
n
0
q
s
t
u
v
w
X

I

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

The best way to describe a new device's line graphics set is to add a third
column to the above table with the characters for the new device that pro­
duce the appropriate glyph when the device is in the alternate character
set mode. For example:

vt100+ New tty
glyph Name Character Character

upper left comer R
lower left comer m F
upper right comer k T
lower right comer j G
horizontal line q
vertical line X

Now write down the characters left to right, as in "acsc= lRmFkTjGq\,x." .

In addition, terminfo allows you to define multiple character sets (see Sec­
tion 2-5 for details) .

Section 1-13: Color Manipulation
Let us define two methods of color manipulation: the Tektronix method
and the HP method. The Tektronix method uses a set of N predefined
colors (usually 8) from which a user can select ··current" foreground and
background colors . Thus, a terminal can support up to N colors mixed
into N*N color-pairs to display on the screen at the same time. When
using an HP method, the user cannot define the foreground indepen­
dently of the background or vice-versa. Instead, the user must define an
entire color-pair at once. Up to M color-pairs, made from 2*M different
colors, can be defined this way. Most existing color terminals belong to
one of these two classes of terminals.

The numeric variables colors and pairs define the number of colors and
color-pairs that can display on the screen at the same time. If a terminal
can change the definition of a color (e .g. , the Tektronix 4100 and 4200
series terminals), this should be specified with ccc (can change color) . To
change the definition of a color (Tektronix method), use initc (initialize
color) . It requires four arguments: color number (ranging from 0 to
colors-!) and three RGB (red, green, and blue) values (ranging from 0 to
1000) .

- .<10 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Tektronix 4100 series terminals use a type of color notation called HLS
(Hue Lightness Saturation) instead of RGB color notation. For such termi­
nals you must define a boolean variable his . The last three arguments to
the initc string would be HLS values: H, ranging from 0 to 360; and L
and S, ranging from 0 to 100.

If a terminal can change the definitions of colors, but uses a color notation
different from RGB and HLS, a mapping to either RGB or HLS must be
developed.

To set current foreground or background to a given color, use setf (set
foreground) and setb (set background) . They require one parameter: the
number of the color. To initialize a color-pair (HP method), use initp (ini­
tialize pair) . It requires seven parameters: the number of a color-pair
(range= O to pairs-1), and six RGB values: three for the foreground fol­
lowed by three for the background. (Each of these groups of three should
be in the order RGB.) When initc or initp are used, RGB or HLS argu­
ments should be in the order "red, green, blue" or "hue, lightness, satura­
tion"), respectively. To make a color-pair current, use scp (set color-pair) .
It takes one parameter, the number of a color-pair.

Some terminals (e .g . , most color terminal emulators for PCs) erase areas
of the screen with current background color. In such cases, bee (back­
ground color erase) should be defined. The variable op (original pair) con­
tains a sequence for setting the foreground and the background colors to
what they were at the terminal start-up time. Similarly, oc (original
colors) contains a control sequence for setting all colors (for the Tektronix
method) or color-pairs (for the HP method) to the values they had at the
terminal start-up time.

Some color terminals substitute color for video attributes. Such video
attributes should not be combined with colors . Information about these
video attributes should be packed into the ncv (no color video) variable.
There is a one-to-one correspondence between the nine least significant
bits of that variable and the video attributes. The following table depicts
this correspondence:

- 41 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0 (4)

Bit Decimal
Attribute Position Value

A_STANDOUT 0 1
A_UNDERUNE 1 2
A_REVERSE 2 4
A_ BUNK 3 8
A_DIM 4 16
A_BOLD 5 32
A_INVIS 6 64
A_PROTECT 7 128
A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the
corresponding ncv bit should be set to 1; otherwise, it should be set to
zero. To determine the information to pack into the ncv variable, you
must add together the decimal values corresponding to those attributes
that cannot coexist with colors . For example, if the terminal uses colors to
simulate reverse video (bit number 2 and decimal value 4) and bold (bit
number 5 and decimal value 32), the resulting value for ncv is 36 (4 + 32) .

Section 1-14: Miscellaneous
If the terminal requires other than a null (zero) character as a pad, this can
be given as pad. Only the first character of the pad string is used . If the
terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with
hu (half-line up) and hd (half-line down) . This is primarily useful for
superscripts and subscripts on hardcopy terminals . If a hardcopy terminal
can eject to the next page (form feed), give this as ff (usually control L) .

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters), this can
be indicated with the parameterized string rep. The first parameter is the
character to be repeated and the second is the number of times to repeat
it. Thus, tparm(repeat_char, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, e .g . , Tektronix 4025,
this can be indicated with cmdch. A prototype command character is
chosen that is used in all capabilities . This character is given in the
cmdch capability to identify it. The following convention is supported on
some operating systems: if the environment variable CC exists, all
occurrences of the prototype character are replaced with the character in
cc.

- 4? -

TERMINF0 (4) (Terminal Information Utilities) TERMINF0 (4)

Terminal descriptions that do not represent a specific kind of known ter­
minal, e.g., switch, dialup, patch, and network, should include the gn
(generic) capability so that programs can complain that they do not know
how to talk to the terminal. (This capability does not apply to virtual ter­
minal descriptions for which the escape sequences are known.) If the ter­
minal is one of those supported by the SYSTEM V/88 virtual terminal proto­
col, the terminal number can be given as vt. A line-tum-around sequence
to be transmitted before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Pad­
ding information should still be included so that routines can make better
decisions about costs, but actual pad characters will not be transmitted. I Sequences to tum on and off xon/xoff handshaking may be given in
smxon and rmxon. If the characters used for handshaking are not As and
AQ, they may be specified with xonc and xoffc.

If the terminal has a "meta key" that acts as a shift key setting the 8th bit
of any character transmitted, indicate with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings
exist to tum this "meta mode" on and off, they can be given as smm and
rmm.

If the terminal has more lines of memory than will fit on the screen at
once, the number of lines of memory can be indicated with lm. A value
of lm#O indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

Media copy strings that control an auxiliary printer connected to the ter­
minal can be given as mcO: print the contents of the screen, mc4: tum off
the printer, and mcS: tum on the printer. When the printer is on, all text
sent to the terminal will be sent to the printer. A variation, mcSp, takes
one parameter, and leaves the printer on for as many characters as the
value of the parameter, then turns the printer off. The parameter should
not exceed 255 . If the text is not displayed on the terminal screen when
the printer is on, specify mcSi (silent printer) . All text, including mc4, is
transparently passed to the printer while an mcSp is in effect.

- 43 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Section 1-15: Special Cases
The working model used by terminfo fits most terminals reasonably well .
However, some terminals do not completely match that model, requiring
special support by terminfo . These are not meant to be construed as defi­
ciencies in the terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices or, for
some reason, do not have all the features of the terminfo model imple­
mented.

Terminals that cannot display tilde (-) characters, e.g., certain Hazeltine
terminals, should indicate hz.
Terminals that ignore a linefeed immediately after an am wrap, e .g. , Con­
cept 100, should indicate xenl. Those terminals whose cursor remains on
the right-most column until another character has been received, instead
of wrapping immediately upon receiving the right-most character, e .g . ,
VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on
top of it), xhp should be given.

The Teleray terminals whose tabs tum all characters moved over to
blanks, should indicate xt (destructive tabs) . This capability is also taken
to mean that it is not possible to position the cursor on top of a "magic
cookie ." Therefore, to erase standout mode, it is necessary, instead, to
use delete and insert line .

The Beehive Superbee terminals that do not transmit the escape or
control-C characters, should specify xsb, indicating that the f1 key is to be
used for escape and the f2 key for control-C.

Section 1-16: Similar Terminals
If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions . The string capability use can be
given with the name of the similar terminal. The capabilities given before
use override those in the terminal type invoked by use . A capability can
be canceled by placing xx@ to the left of the capability definition, where
xx is the capability. For example, the following entry defines an
AT&T 4424 terminal that does not have the rev, sgr, and smul capabili­
ties, therefore, cannot do highlighting:

att4424-2 1Teletype 4424 in display function group ii, rev@, sgr@,
smul@, use = att4424,

- 44 -

TERMINF0 (4) (Terminal Information Utilities) TERMINF0 (4)

This is useful for different modes for a terminal, or for different user
preferences. More than one use capability may be given.

PART 2: PRINTER CAP ABIUTIES
The tenninfo database allows you to define capabilities of printers and ter­
minals. To find out what capabilities are available for printers and termi­
nals, see the two lists under Device Capabilities that list capabilities by vari­
able and by capability name.

Section 2-1 : Rounding Values
Because parameterized string capabilities work only with integer values,
we recommend that tenninfo designers create strings that expect numeric
values that have been rounded. Application designers should note this I
and should always round values to the nearest integer before using them
with a parameterized string capability.

Section 2-2: Printer Resolution
A printer's resolution is defined to be the smallest spacing of characters it
can achieve. In general, printers have independent resolution horizontally
and vertically. Thus, the vertical resolution of a printer can be determined
by measuring the smallest achievable distance between consecutive print­
ing baselines, while �he horizontal resolution can be determined by
measuring the smallest achievable distance between the left-most edges of
consecutive printed, identical, characters .

All printers are assumed to be capable of printing with a uniform horizon­
tal and vertical r�solution. The view of printing that tenninfo currently
presents is one of pri11ting inside a uniform matrix: All characters are
printed at fixed positions relative to each 11Cell11 in the matrix; further­
more, each cell has the same size given by the smallest horizontal and
vertical step sizes dictated by the resolution. (The cell size can be
changed as will be seen later.)

Many printers are capable of ��proportional printing," where the horizon­
tal spacing depends on the size of the character last printed. tenninfo does
not make use of this capability, although it does provide enough capabil­
ity definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the
horizontal and vertical resolutions suggest, but also of ��moving" to a
position an integral multiple of the smallest distance away from a previ­
ous position. Thus, printed characters can be spaced apart a distance that
is an integral multiple of the smallest distance, up to the length or width
of a single page.

- 45 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Some printers can have different resolutions depending on different
"modes." In "normal mode," the existing terminfo capabilities are
assumed to work on columns and lines, just like a video terminal. Thus,
the old lines capability would give the length of a page in lines, and the
cols capability would give the width of a page in columns. In "micro
mode," many terminfo capabilities work on increments of lines and
columns. With some printers the micro mode may be concomitant with
normal mode, so that all the capabilities work at the same time.

Section 2-3: Specifying Printer Resolution'
The printing resolution of a printer is given in several ways. Each speci­
fies the resolution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
ore Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement
to the next column, except in special cases described later; the distance
moved is the same as the per-column resolution. Some printers cause an
automatic movement to the next line when a character is printed in the
rightmost position; the distance moved vertically is the same as the per­
line resolution. When printing in micro mode, these distances can be dif­
ferent, and may be zero for some printers.

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:
ore Steps moved horizontally
orl Steps moved vertically

Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

- A t:

TERMINF0(4) \ .1 ernultCIJ .&J.u.va..u. - --- - - - _ _ .

Some printers are capable of printing wide characters . The distance
moved when a wide character is printed in normal mode may be different
from when a regular width character is printed. The distance moved
when a wide character is printed in micro mode may also be different
from when a regular character is printed in micro mode, but the differ­
ences are assumed to be related: if the distance moved for a regular char­
acter is the same whether in normal mode or micro mode, (mcs = orc), the
distance moved for a wide character is also the same whether in normal
mode or micro mode. This doesn't mean the normal character distance is
the same as the wide character distance, just that the distances don't
change with a change in normal to micro mode. However, if the distance I moved for a regular character is different in micro mode from the distance
moved in normal mode (mcs<orc), the micro mode distance is assumed to
be the same for a wide character printed in micro mode, as the following
table shows:

Specification of Printer Resolution
Automatic Motion after Printing Wide Character

Nonnal Mode or Micro Mode (mcs = ore):
widcs Steps moved horizontally

Micro Mode (mcs < ore):
mcs Steps moved horizontally

There may be control sequences to change the number of columns per
inch (the character pitch) and to change the number of lines per inch (the
line pitch) . If these are used, the resolution of the printer changes, but
the type of change depends on the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes ore

lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes orl

chr Change steps per column
cvr Change steps per line

- 47 -

I

, J. .:rnunai intormation Utilities) TERMINF0(4)

The cpi and lpi string capabilities are each used with a single argument,
the pitch in columns (or characters) and lines per inch, respectively. The
ehr and cvr string capabilities are each used with a single argument, the
number of steps per column and line, respectively.

Using any of the control sequences in these strings implies a change in
some of the values of ore, orhi, orl, and orvi. Also, the distance moved
when a wide character is printed, wides, changes in relation to ore. The
distance moved when a character is printed in micro mode, mes, changes
similarly, with one exception: if the distance is 0 or 1, no change is
assumed (see items marked with t in the following table) .

Programs that use cpi, lpi, chr, or evr should recalculate the printer reso­
lution (and should recalculate other values -see Effect of Changing Printing
Resolution under Dot-Mapped Graphics) .

Specification of Printer Resolution
Effects of Changing the Character/Line Pitches

Before
Using cpi with cpix clear:
orhi '

ore '

Using cpi with cpix set:
orhi '
ore '

Using lpi with lpix clear:
orvi '

orl '

Using lpi with lpix set:
orvi '
orl '

Using chr:
orhi '
ore '
Using cvr:
orvi '
orl '

- 48 -

After

or hi
or hi

orc= --
V cpi

or hi= ore· V cpi
ore

orvi
orvi

orl = --

V Ipi

orvi=orl · vlpi
orl

or hi
vchr

orvi
vcvr

TERMINF0(4) (Terminai lnronnauun "' uuu�" '

Using epi or ehr:

widcs '

mes ' t

wides=wides '
ore
ore'

mes= mes'
ore
ore '

v cpi f vlpi f v chr 1 and v CVT are the arguments used with cpi, I pi, chr, and
cvr, respectively. The t mark indicates the old value.

Section 2-4: Capabilities that Cause Movement
In the following descriptions, "movement" refers to the motion of the
"current position." With video terminals this would be the cursor; with
some printers this is the carriage position. Other printers have different I equivalents. In general, the current position is where a character would
be displayed if printed.

terminfo has string capabilities for control sequences that cause movement
a number of full columns or lines. It also has equivalent string capabilities
for control sequences that cause movement a number of smallest steps .

String Capabilities for Motion

meubl
mcufl
meuul
mcudl

mcub
mcuf
mcuu
mcud

Move 1 step left
Move 1 step right
Move 1 step up
Move 1 step down

Move N steps left
Move N steps right
Move N steps up
Move N steps down

mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a
page. Also, some printers don't accept absolute motion to the left of the
current position. terminfo has capabilities for specifying these limits .

mjump
maddr

xhpa
xvpa

Limits to Motion

Limit on use of mcubl, mcufl, mcuul, meudl
Limit on use of mhpa, mvpa

If set, hpa and mhpa can't move left
If set, vpa and mvpa can't move up

- 49 -

I

, .. ccuunai inrormation Utilities) TERMINF0(4)

If a printer needs to be in a "micro mode" for the motion capabilities
described above to work, there are string capabilities defined to contain
the control sequence to enter and exit this mode. A boolean is available
for those printers where using a carriage return causes an automatic
return to normal mode.

Entering/Exiting Micro Mode

smicm Enter micro mode
rmicm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position
varies among printers . Some make no movement, some move to the
beginning of the next line, others move to the beginning of the same line.
terminfo has boolean capabilities for describing all three cases.

What Happens Mter Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion
is reversed. This mode can be useful when there are no capabilities for
leftward or upward motion, because those capabilities can be built from
the motion reversal capability and the rightward or downward motion
capabilities . It is best to leave it up to an application to build the leftward
or upward capabilities and not enter them in the terminfo database . This
allows several reverse motions to be strung together without intervening
wasted steps that leave and re-enter reverse mode.

- 50 -

TERMINF0(4J \ J. t::LI.lUJ.IA.I .&&a.a.va.&&.._ _... - ,.. _____ _ _ ..

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions
rim Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcubl Move 1 step right
mcufl Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuul Move 1 step down
mcudl Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuul Move 1 line down
cudl Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute
motion capabilities . The reverse vertical motion mode should, however,
also reverse the action of the line "wrapping'' that occurs when a charac­
ter is printed in the right-most position. Thus printers that have the stan­
dard terminfo capability am defined should experience motion to the begin­
ning of the previous line when a character is printed in the right-most
position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion
modes is not defined; thus, programs must exit reverse motion modes
before using other motion capabilities .

Two miscellaneous capabilities complete the list of new motion capabili­
ties. One of these is needed for printers that move the current position to
the beginning of a line when certain control characters, e .g . , "line-feed"
or "form-feed," are used. The other is used for the capability of suspend­
ing the motion that normally occurs after printing a character.

- 51 -

I

- & """ ' � ' l l erminal Information Utilities) TERMINF0(4)

Margins

Miscellaneous Motion Strings

doer List of control characters causing cr
zerom Prevent auto motion after printing next single character

tenninfo provides two strings for setting margins on terminals: one for the
left and one for the right margin. Printers, however, have two additional
margins, for the top and bottom margins of each page. Furthermore,
some printers require not using motion strings to move the current posi­
tion to a margin and fixing the margin there, but require the specification
of where a margin should be regardless of the current position. There­
fore, tenninfo offers six additional strings for defining margins with
printers .

smgl
smgr

smgb
smgt

smgbp

smglp
smgrp

smgtp

Setting Margins

Set left margin at current column
Set right margin at current column

Set bottom margin at current line
Set top margin at current line

Set bottom margin at line N

Set left margin at column N
Set right margin at column N

Set top margin at line N

The last four strings are used with one or more arguments that give the
position of the margin or margins to set. If both of smglp and smgrp are
set, each is used with a single argument, N , that gives the column
number of the left and right margin, respectively. If both smgtp and
smgbp are set, each is used to set the top and bottom margin, respec­
tively: smgtp is used with a single argument, N , the line number of the
top margin; however, smgbp is used with two arguments, N and M , that
give the line number of the bottom margin, the first counting from the top
of the page and the second counting from the bottom. This accommo­
dates the two styles of specifying the bottom margin in different manufac­
turers' printers .

When coding a tenninfo entry for a printer that has a settable bottom mar­
gin, only the first or second parameter should be used, depending on the
printer. When writing an application that uses smgbp to set the bottom
margin, both arguments must be given.

- 52 -

Tt.KMJN l' U \ rt, J \ .&. � A. A.I.L&&a .. .a _ _ _ _ _ _ _ _ _ - .

If only one of smglp and smgrp is set, it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if
only one of smgtp and smgbp is set, it is used with two arguments that
give the top and bottom margins, in that order, counting from the top of
the page. Thus when coding a terminfo entry for a printer that requires
setting both left and right or top and bottom margins simultaneously, only
one of smglp and smgrp or smgtp and smgbp should be defined; the
other should be left blank. When writing an application that uses these
string capabilities, the pairs should be first checked to see if each in the
pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is I the left-most column. A zero value for the second argument with smgbp
means the bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts
Five new sets of strings are used to describe the capabilities printers have
of enhancing printed text.

sshm
rshm

sitm
ritm

swidm
rwidm

ssupm
rsupm

supcs

ssubm
rsubm

subcs

Enhanced Printing

Enter shadow-printing mode
Exit shadow-printing mode

Enter italicizing mode
Exit italicizing mode

Enter wide character mode
Exit wide character mode

Enter superscript mode
Exit superscript mode

List of characters available as superscripts

Enter subscript mode
Exit subscript mode

List of characters available as subscripts

- 53 -

I

\ � ... UUUICU UUUCII1all0Il UtllltleS J TERMINF0(4)

If a printer requires the sshm control sequence before every character to
be shadow-printed, the rshm string is left blank. Thus, programs that
find a control sequence in sshm but none in rshm should use the sshm
control sequence before every character to be shadow-printed. Otherwise,
the sshm control sequence should be used once before the set of charac­
ters to be shadow-printed, followed by rshm. The same is also true of
each sitm/ritm, swidm!rwidm, ssupm/rsupm, and ssubm/rsubm pairs.

Note that terminfo also has a capability for printing emboldened text
(bold) . While shadow printing and emboldened printing are similar in
that they "darken" the text, many printers produce these two types of
print in slightly different ways. Generally, emboldened printing is done
by overstriking the same character one or more times. Shadow printing
likewise usually involves overstriking, but with a slight movement up
and/or to the side so that the character is "fatter."

It is assumed that enhanced printing modes are independent modes, so
that it would be possible, for instance, to shadow print italicized sub­
scripts .

As mentioned earlier, the amount of motion automatically made after
printing a wide character should be given in widcs.

If only a subset of the printable ASCII characters can be printed as super­
scripts or subscripts, they should be listed in supcs or subcs strings,
respectively. If the ssupm or ssubm strings contain control sequences,
but the corresponding supcs or subcs strings are empty, it is assumed that
all printable ASCII characters are available as superscripts or subscripts .

Automatic motion made after printing a superscript or subscript is
assumed to be the same as for regular characters . Thus, for example,
printing any <?f the following three examples will result in equivalent
motion: Bi B. 81

1

Note that the existing msgr boolean capability describes whether motion
control sequences can be used while in "tandout mode . " This capability is
extended to cover the enhanced printing modes added here . msgr should
be set for those printers that accept any motion control sequences without
affecting shadow, italicized, widened, superscript, or subscript printing.
Conversely, if msgr is not set, a program should end these modes before
attempting any motion.

- 54 -

TERMINF0(4) (Terminal Information uuuuesJ

Section 2-5: Alternate Character Sets
In addition to allowing you to define line graphics (described in Section
1-12), terminfo lets you define alternate character sets . The following capa­
bilities cover printers and terminals with multiple selectable or definable
character sets .

Alternate Character Sets

scs Select character set N

scsd Start definition of character set N, M characters

defc Define character A, B dots wide, descender D

rcsd End definition of character set N

csnm List of character set names

daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a
number from 0 to 63 that identifies the character set. The scsd string is
also used with the argument N and another, M, that gives the number of
characters in the set. The defc string is used with three arguments: A
gives the ASCII code representation for the character, B gives the width of
the character in dots, and D is zero or one depending on whether the
character is a "descender'' or not. The defc string is also followed by a
string of "image-data" bytes that describe how the character looks
(described later) .

Character set 0 is the default character set present after the printer has
been initialized. Not every printer has 64 character sets, of course; using
scs with an argument that doesn't select an available character set should
cause a null result from tpann() .

If a character set has to be defined before it can be used, the scsd control
sequence is to be used before defining the character set, and the rcsd is to
be used after. They should also cause a null result from tpann () when
used with an argument N that doesn't apply. If a character set still has to
be selected after being defined, the scs control sequence should follow the
rcsd control sequence. By examining the results of using each of the scs,
scsd, and rcsd strings with a character set number in a call to tpann(), a
program can determine which of the three are needed .

- 55 -

I

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

Between use of the scsd and rcsd strings, the defc string should be used
to define each character. To print any character on printers covered by
terminfo, the ASCII code is sent to the printer. This is true for characters
in an alternate set as well as "normal" characters . Thus, the definition of
a character includes the ASCII code that represents it. In addition, the
width of the character in dots is given, with an indication of whether the
character should descend below the print line (e.g. , the lowercase letter
"g" in most character sets) . The width of the character in dots also indi­
cates the number of image-data bytes that will follow the defc string.
These image-data bytes indicate where in a dot-matrix pattern ink should
be applied to "draw" the character; the number of these bytes and their
form are defined below under Dot-Mapped Graphics.

It's easiest for the creator of terminfo entries to refer to each character set
by number; however, these numbers will be meaningless to the applica­
tion developer. The csnm string alleviates this problem by providing
names for each number.

When used with a character set number in a call to tpann(), the csnm
string produces the equivalent name. These names should be used as a
reference only. No naming convention is implied, although anyone who
creates a terminfo entry for a printer should use names consistent with the
names found in user documents for the printer. Application developers
should allow a user to specify a character set by number (leaving it up to
the user to examine the csnm string to determine the correct number), or
by name, where the application examines the csnm string to determine
the corresponding character set number.

These capabilities are usually used only with dot-matrix printers . If they
are not available, the strings should not be defined. For printers that have
manually changed print-wheels or font cartridges, the boolean daisy is
set.

Section 2-6: Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing "raster­
graphics" images. Three new numeric capabilities and three new string
capabilities can help a program draw raster-graphics images independent
of the type of dot-matrix printer or the number of pins or dots the printer
can handle at one time.

- 56 -

TERMINF0(4)

npins

spinv

spinh

porder

shim

rhim

(Terminal Information Utilities) Tt.KMlNI'V\ttJ

Dot-Matrix Graphics

Number of pins, N, in print-head

Spacing of pins vertically in pins per inch

Spacing of dots horizontally in dots per inch

Matches software bits to print-head pins

Start printing bit image graphics, B bits wide

End printing bit image graphics

The shim sring is used with a single argument, B, the width of the image
� �- I The model of dot-matrix or raster-graphics that terminfo presents is similar
to the technique used for most dot-matrix printers: each pass of the
printer's print-head is assumed to produce a dot-matrix that is N dots high
and B dots wide. This is typically a wide, squat, rectangle of dots . The
height of this rectangle in dots varies from one printer to the next; this is
given in the npins numeric capability. The size of the rectangle in frac­
tions of an inch also varies; it can be deduced from the spinv and spinh
numeric capabilities . With these three values, an application can divide a
complete raster-graphics image into several horizontal strips, perhaps
interpolating to account for different dot spacing vertically and horizon­
tally.

The shim and rhim strings are used to start and end a dot-matrix image,
respectively. The shim string is used with a single argument that gives
the width of the dot-matrix in dots . A sequence of "image-data bytes" are
sent to the printer after the shim string and before the rbim string. The
number of bytes is a integral multiple of the width of the dot-matrix; the
multiple and the form of each byte is determined by the porder string.

The porder string is a comma separated list of pin numbers optionally fol­
lowed by an numerical offset. The offset, if given, is separated from the
list with a semicolon. The position of each pin number in the list
corresponds to a bit in an 8-bit data byte . The pins are numbered con­
secutively from 1 to npins, with 1 being the top pin. Note that the term
"pin" is used loosely here; "ink-jet" dot-matrix printers don't have pins,
but can be considered to have an equivalent method of applying a single
dot of ink to paper. The bit positions in porder are in groups of 8, with
the first position in each group the most significant bit and the last posi­
tion the least significant bit. An application produces 8-bit bytes in the
order of the groups in porder .

- 57 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

An application computes the "image-data bytes" from the internal image,
mapping vertical dot positions in each print-head pass into 8-bit bytes,
using a 1 bit where ink should be applied and 0 where no ink should be
applied. This can be reversed (0 bit for ink, 1 bit for no ink) by giving a
negative pin number. If a position is skipped in porder, a 0 bit is used. If
a position has a lowercase '>t instead of a pin number, a 1 bit is used in
the skipped position. For consistency, a lowercase 'o' can be used to
represent a 0 filled, skipped bit. There must be a multiple of 8 bit posi­
tions used or skipped in porder ; if not, 0 bits are used to fill the last byte
in the least significant bits . The offset, if given, is added to each data
byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T
470, AT&T 475 and C. Itoh 8510 printers provide 8 pins for graphics . The
pins are identified top to bottom by the 8 bits in a byte, from least signifi­
cant to most. The porder strings for these printers would be
8,7,6,5,4,3,2, 1 . The AT&T 478 and AT&T 479 printers also provide 8 pins
for graphics . However, the pins are identified in the reverse order. The
porder strings for these printers would be 1,2,3,4,5,6,7,8.

The AT&T 5310, AT&T 5320, DEC LA100, and DEC LN03 printers provide
6 pins for graphics . The pins are identified top to bottom by the decimal
values 1,2,4,8, 16,32. These correspond to the low 6 bits in an 8-bit byte,
although the decimal values are further offset by the value 63 . The porder
string for these printers would be 6,5,4,3,2, 1;63, or alternately
o,o,6,5,4,3,2, 1;63 .

Section 2-7: Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are
used, the pin or dot spacing may change:

Dot-Matrix Graphics
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes spinh

lpi Change line pitch
lpix If set, lpi changes spinv

- 58 -

TERMINF0(4) (Terminai inrormanon u uuut:::J /

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After
Using cpi with cpix clear:
spinh '

Using cpi with cpix set:
spinh '

Using lpi with lpix clear:
spinv '
Using lpi with lpix set:
spinv '

Using chr:
spinh '

Using cvr:
spinv '

spinh

.
h

.
h ' orhi

spm =spm · --

orhi'

spinv

. . , orhi
spmv= spmv · -­

orhi'

spinh

spinv

orhi' and orhi are the values of the horizontal resolution in steps per inch,
before using cpi and after using cpi, respectively. Likewise, orvi' and
orvi are the values of the vertical resolution in steps per inch, before using
lpi and after using lpi, respectively. Thus, the changes in the dots per
inch for dot-matrix graphics follow the changes in steps per inch for
printer resolution.

Section 2-8: Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to pro­
duce near "letter quality" printing or "draft quality" printing. Usually, it
is important to be able to choose one or the other because the rate of
printing generally falls off as the quality improves . There are three new
strings used to describe these capabilities:

snlq

snrmq

sdrfq

Print Quality

Set near-letter quality print

Set normal quality print

Set draft quality print

- 59 -

I

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

The capabilities are listed in decreasing levels of quality. If a printer
doesn't have all three levels, one or two of the strings should be left blank
as appropriate.

Section 2-9: Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modem printers can buffer data
before printing it, a program generally cannot determine at any time what
has been printed. Two new .numeric capabilities can help a program esti­
mate what has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if
this value is not given, the rate should be estimated at one-tenth the pre­
vailing baud rate . bufsz is the maximum number of subsequent charac­
ters buffered before the guaranteed printing of an earlier character, assum­
ing proper flow control has been used. If this value is not given it is
assumed that the printer does not buffer characters, but prints them as
they are received.

As an example, if a printer has a 1000-character buffer, sending the letter
"a" followed by 1000 additional characters is guaranteed to cause the
letter "a" to print. If the same printer prints at the rate of 100 characters
per second, it should take 10 seconds to print all the characters in the
buffer, less if the buffer is not full. By keeping track of the characters sent
to a printer, and knowing the print rate and buffer size, a program can
synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate,
not the nominal print rate. A good way to get a value to put in for cps is
to generate a few pages of text, count the number of printable characters,
then see how long it takes to print the text.

Applications that use these values should recognize the variability in the
print rate . Straight text, in short lines, with no embedded control
sequences may print at close to the advertised print rate and usually faster
than the rate in cps .

- 60 -

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

FILES

Graphics data with many control sequences, or very long lines of text,
print at well below the advertised rate and below the rate in cps . If the
application is using cps to decide how long it should take a printer to
print a block of text, the application should pad the estimate . If the appli­
cation is using cps to decide how much text has already been printed, it
should shrink the estimate. The application will err in favor of the user,
who wants, above all, to see all the output in its correct place.

/usr/lib/terminfo/71*

/usr/lib/. COREterm/?/*

/usr/lib/tabsetl*

compiled terminal description database

subset of compiled terminal description data- 1
base

tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO
curses(3X), printf(3S) in the Programmer's Reference Manual.
captoinfo(1M), infocmp(1M), tic(1M), term(S), tty(7) in the System
Administrator's Reference Manual .
tput(1) in the User's Reference Manual.
Chapter 10 of the Programmer's Guide.

WARNING
As described in the Tabs and Initialization section, a terminal's initialization
strings, isl, is2, and is3, if defined, must be output before a curses (3X)
program is run. An available mechanism for outputting such strings is
tput init (see tput(1) and profile(4)) .

I f a null character (\0) i s encountered in a string, the null and all charac­
ters after it are lost. Therefore, it is not possible to code a null character
(\0) and send it to a device (either terminal or printer) . The suggestion of
sending a \0200, where a \0 (null) is needed can succeed only if the device
(terminal or printer) ignores the eighth bit. For example, because all eight
bits are used in the standard international ASCII character set, devices
that adhere to this standard will treat \0200 differently from \0.

Tampering with entries in lusrllibi.COREterm/?1* or /usr/lib/terminfo/?1*
(e .g. , changing or removing an entry) can affect programs like vi(1) that
expect the entry to be present and correct. In particular, removing the
description for the "dumb" terminal will cause unexpected problems.

- 61 -

I

TERMINF0(4) (Terminal Information Utilities) TERMINF0(4)

NOTE
The termcap database (from earlier releases of SYSTEM V/88 Release 3 .2)
may not be supplied in future releases.

- 62 -

TIMEZONE (4) TIMEZONE(4)

NAME
timezone - set default system time zone

SYNOPSIS
/etc/TIMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone .

The syntax of TZ can be described as follows:

TZ zone

zone
signed_time

time

dst

dst_date

letter
hour
minute
second
julian
sign

EXAMPLES

I zone signed_time
I zone signed_time zone
I zone signed_time zone dst

letter letter letter
sign time

I time
hour

I hour : minute
I hour : minute : second

signed_time
I signed_time ; dst_date I dst_date
I ; dst_date I dst_date

' julian
I julian I time

a i A i b i B I . . . I z i Z
00 I 01 I . . . I 23
00 I 01 I . . . I 59
00 I 01 I . . . I 59
001 I 002 I . . . 1 366
- I +

The contents of /etc/TIMEZONE corresponding to the simple example
below could be:

Time Zone
TZ=ESTSEDT
export TZ

- 1 -

I

I

TIMEZONE (4) TIMEZONE (4)

NOTES

A simple setting for New Jersey could be:

TZ= ESTSEDT

where EST is the abbreviation for the main time zone, 5 is the difference,
in hours, between GMT (Greenwich Mean Time) and the main time zone,
and EDT is the abbreviation for the alternate time zone.

The most complex representation of the same setting, for the year 1986, is

TZ = ''EST5:00:00EDT4:00:00;117/2:00:00,299/2:00:00"

where EST is the abbreviation for the main time zone, 5:00:00 is the differ­
ence, in hours, minutes, and seconds between GMT and the main time
zone, EDT is the abbreviation for the alternate time zone, 4:00:00 is the
difference, in hours, minutes, and seconds between GMT and the alternate
time zone, 117 is the number of the day of the year Gulian day) when the
alternate time zone will take effect, 2:00:00 is the number of hours,
minutes, and seconds past midnight when the alternate time zone will
take effect, 299 is the number of the day of the year when the alternate
time zone will end, and 2:00:00 is the number of hours, minutes, and
seconds past midnight when the alternate time zone will end .

A southern hemisphere setting such as the Cook Islands could be

TZ = ''KDT9;30KST10:00;64/5:00,303/20:00"
This setting means that KDT is the abbreviation for the main time zone,
KST is the abbreviation for the alternate time zone, KST is 9 hours and 30
minutes later than GMT, KDT is 10 hours later than GMT, the starting date
of KDT is the 64th day at 5 AM, and the ending date of KDT is the 303rd
day at 8 PM.

Starting and ending times are relative to the alternate time zone . If the
alternate time zone start and end dates and the time are not provided, the
days for the United States that year will be used and the time will be
2 AM. If the start and end dates are provided but the time is not pro­
vided, the time will be midnight.

Note that in most installations, TZ is set to the correct value by default
when the user logs on, via the local /etc/profile file (see profile(4)) .

When the longer format is used, the TZ variable must be surrounded by
double quotes as shown.

The system administrator must change the Julian start and end days annu­
ally if the longer form of the TZ variable is used.

- 2 -

TIMEZONE (4) TIMEZONE (4)

Setting the time during the interval of change from the main time zone to
the alternate time zone or vice versa can produce unpredictable results .

FILES
/etc/timezone

SEE ALSO
rc2(1M), profile(4), environ(S) .
ctime(3C) in the Programmer's Reference Manual.

- 3 -

I

UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION

UNISTD(4)

The header file <unistd .h> lists the symbolic constants and structures not
already defined or declared in some other header file .

I •
• P O S IX d e f in e d s ymb o l s
• I

I • ANS I s ymb o l m e n t i o n e d in P O S IX • I
#d e f in e NULL 0

I • Symb o l i c c o n s tants
#d e f in e R_OK 4

f o r the • ac c e a a • f u n c t i o n • I
I • Te a t f o r R e ad p e rmi s s ion • I

#d e f in e W_OK 2 I • Te a t f o r Wr i t e p e rmi s s i o n • I
d e f i n e X _ O K 1 I • Te a t f or e x e cute p e rmi s s i o n
#d e f in e F_OK 0 I • Te a t f o r e x i s t e n c e

I • Symbo l i c c o n s tants f o r t h e " f i l n o • f u n c t i o n • I
#d e f in e STD I N_F ILENO 0
d e f i n e STDOUT_F ILENO 1
d e f i n e STDERR_F ILENO 2

o f F i l e

I • Symb o l i c c o n s tants f o r t h e " l a e e k " f u n c t i o n • I
d e f i n e SEEK_SET 0 I • S e t f i l e p o i n t e r t o " o f f s e t • • I

• I
• I

d e f i n e SEEK_CUR 1 I • S e t f i l e p o i n t e r to curr e n t p l u s " o f f s e t • • I
d e f i n e SEEK_END 2 I • S e t f i l e p o i n t e r to EOF p l u s " o f f s e t • • I

I •
* P O S IX Comp i l e -Time Symbo l i c Cons t an t a
• I

d e f i n e
d e f i n e

I •

.J> O S IX_SAVED_I D S
.J> O S I X_VERS I ON

1
1 9 8 808L

* POSIX Exe cu t i on-Time Symbo l i c Cons tan t a
• I

#und e f .J> O S IX_CHOWN_RESTR I CTED
#und e f .J> O S IX_NO_TRUNC
#und e f .J> O S IX_VD I SABLE

- 1 -

UNISTD (4) UNISTD(4)

I •
Conf i gurab l a Sys t e m Var i ab l e s • P O S I X

• I
#d e f in e
#d e f in e
d e f in e
#d e f in e
#d e f i n e
#d e f in e
#d e f in e
#d e f in e

_SCJRG.....UAX 1 I • Byt e s a l l o w e d f o r e x e c arg um e n t s
_SC_C H I LD.....UAX 2 I • Wax c h i l d pro c e s s e s • I
_SC_CLK_TCK 3 I • C l o ck t i c k rate (HZ) • I
_SC__NGROUP S.....UAX 4 I • Wax mu l t i p l e groups • I
_SC_OPEN.....UAX 6 I • Wax o p e n f i l e s • I
_SC_JOB_CONTROL 6 I • Job contr o l s upport • I
_SC_SAVED_IDS 7 I • s aved- s e t-uid/ g i d s upport
_SC_VERS I ON 8 I • P o s ix v e r s i o n

I •
• P O S I X Conf i gurab l a P athnama Var i ab l e s
• I

J>CJ,.. I N K.....UAX
J>C__)IAX_CANON
_PC.....UAX_I NPUT
_J> C__NAWE.....UAX
J>CJ>ATH.....UAX
_PCJ> I P E_BUF

#d e f in e
#d e f in e
#d e f in e
#d e f in e
#d e f in e
#d e f in e
#d e f i n e
#d e f i n e
d e f i n e

_J>C_CHOWN_RESTR I CTED

#d e f in e
#d e f in e
#d e f in e

_J>C__NO_TRUNC
J>C_VD I SABLE

STD I N__F ILENO
STDOUT__F ILENO
STDERR__F ILENO

i f nd e f J> O S IX_S OURCE
I •

1
2

0

1
2
3

4
6
6
7
8
9

s tamp • I

* Non-P O S IX s ymbo l s mu s t be h i dd e n by J> O S IX_S OURCE
• I

#d e f in e F_ULOCK 0 I • Un l o c k a pr e v i ou s ly l o c k e d r e g i on
d e f i n e FJ,..OCK 1 I • L o c k a r e g i o n f o r e x c l u s ive u s a • I

• I

• I

d e f in e F_TLOCK 2 I • Te s t and l o c k a r e g i o n f or e x c l u s ive u s a
#d e f in e F_TEST 3 I • Te s t a r e g i o n f o r o th e r pro c e s s e s l o c k s

I • P ath n am e s • /

• I

• I
• I

#d e f in e GF_J>ATH " / e t c / group • I • P ath n ama o f th e • group • f i l a • I
#d e f i n e PFJ>ATH " l a tclpas s wd " I • P ath n ama o f the • pas swd " f i l a • /

- 2 -

UNISTD(4) UNISTD (4)

I • Th e f o l l owing d e f i n e s are s p e c i f i e d in P O S I X draf t 1 2 . 0 and
ar e th e r e f o r e • n e c e s s ary to comp i l e the e ar l y NBS-PCTS
• I
d e f in e _p o s i X_GROUP_pARENT 0
#d e f in e _p o S IX_CHOWN_SUP_GRP 0
#d e f i n e _p o s iX_D I R_DOTS 0
#d e f i n e _p o S IX_UT IME_OWNER 0

I •
• BCS Conf i gurab l e S y s t e m Var i ab l e s
• I

#d e f in e _SC_BCS_VERS I ON 9 I •
I •

1 1 / •
1 2 / •

#d e f in e _SC_BCS_VENDOR_STAMP 1 0
#d e f i n e _SC_BCS_SYS_I O
#d e f in e _SC_MAXUMEYV

#de f in e _SC_MAXUPROC
#d e f in e _SC_MAXYSGSZ
#de f in e _SC_NMSGHORS

#d e f i n e _SC_SHMMAXSZ
#d e f i n e _SC_SHMM I N S Z
#d e f i n e _SC_SHMSEGS
d e f i n e _SC_NMSYSSEY
#d e f in e _SC_MAXSEMVL
#d e f in e _SC_NSEMMAP
#d e f in e _SC_NSEYMSL
#d e f in e _SC_NSHMMN I
d e f in e _SC_I TIMER_V I RT
#d e f in e _SC_I TIMER_pROF
#d e f i n e _SC_T IMER_GRAN
#d e f in e _sc_pHYSMEY
#d e f in e _SC_AVA ILMEM
#d e f in e _SC_N ICE
#d e f in e _SC_MEYCTL_UN I T

#d e f in e _SC_SHYLBA

#d e f in e _SC_SVSTREAMS
#d e f in e _SC_CPU I D

I •

I •
1 3 I •
1 4 / •
1 6 / •

I •
1 6 I •
1 7 I •
1 8 / •
1 9 / •
2 0 I •
2 1 I •
2 2 I •
2 3 I •
24 I •
2 6 I •
2 6 I •
2 7 I •
2 8 I •
29 I •
3 0 I •

I •
3 1 I •

I •
3 2 I •
3 3 I •

I •

BCS v e r s i on s tamp • I
Vendor s tamp o f s y s t e m • /
uniqu e machine i d • /
Max u s e r pro c e s s • I
a i z e 1 - KB p ag e a • I
Max numb e r of pro c e a a e a / u a e r • I
Max s i z e o f a me s s ag e • /
Total numb e r o f ma g / •
h e ad e r s / s y s t e m • /
Maximum s i z e o f s h ar e d s e gment •

Minimum s i z e o f s h ar e d s e gm e n t •

Max attach e d a e g a /pro c e a a • I
Total numb e r s emaphor e s / s y s t e m •

Max a emapho r e val u e • I
Numb e r o f s emapho r e s e t s • /
Numb e r o f s emaphor e s / s e t • I
Numb e r o f a h ar e d a e gment a / a y a t e:
Sys t e m s upports virtual t i m e r •
Sys t e m s upports pro f i l ing t i m e r
Granu l ar i ty o f time r s in u s e e •
Total phys i c al memory/ s y s t e m (k
Total physmem avai l to u s e r (kb
n i c e p r i o r i t i z a t i o n is aupporte
byt e s in a memory u n i t • /
in memc t l a y s t e m c a l l • /
Memory addr e s s rounding u s e d by
s hma ya in byt e s • /
Sys t e m V s tr e ams ar e supported
r e turn Pro c e s s o r I d e n t i f i c at i o �
R e g i s t e r • /

• BCS Conf i gurab l e P athname Var i ab l e s
• I

#d e f in e -PC_BLK S I ZE 1 0

I • Symbo l i c support f or BCS r e qu i r e m e n t s • /

#d e f in e _BCS_VER S I O N 1 9 8 9 0 2L I • _SC_BCS_VERS I ON numb e r • /

- 3 -

I

UNISTD(4)

#d e f in e _BCS_ITIUER_V I RT 1
#d e f in e _BCS_ITIUER_pROF 1
#d e f in e _BCS_N ICE 1
d e f i n e _BC S_SVSTREAUS 1
d e f in e _BCS_pTRACE_MAG IC O x 0 0 0 8 8 0 0 0
#d e f in e _BCS_pTRACEJlEV Ox000 0 0 0 0 1

I • u l imi t • ymbo l i c c o n • tan t • (BCS) • I

#d e f in e GET_UL I U I T 1
#d e f in e SET_UL I U I T 2
#d e f in e GET_BREAK 3
#d e f in e GET_NAX_OPEN 4

I • P O S I X 1 2 . 0 • ymb o l • • I
#d e f in e _pc_CHOWN_SUP_GRP
d e f i n e _pc_D IR_DOTS
#d e f i n e _pc_GROUP_pARENT
#d e f in e _pc_UT IUE_OWNER

e ndif I• _p o s rx_souacE • I

1 1
1 2
1 3
1 4

- 4 -

UNISTD (4)

I• Virtual timer • upport •I
I• Prof i l in g timer • upport •I
I• Nice pr i o r i z at i o n •upport •I
I• S y • t e m V • tr e am• • upport • I
I • Ptrace_u g e r mag i c numb e r • I
I • Ptrace_u • e r v e r • i o n numb e r • I

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include < sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such com­
mands as who(l), write(!), and login(!), have the following structure as
defined by <utmp.h> :

#def ine
#def ine
#def ine

UTKP_F ILE
WTKP_F ILE
ut_Jl.ame

struct utmp {
char ut_user [8] ;
char ut_;1d [4] ;
char ut_line [12] ;
short ut_p i d ;
short ut_type ;
struct exit_-tatus {

" letclutmp "
" letclwtmp "
ut_user

I* User login name •I
I* letclinittab id (usually line#) *I
I* devic e name (consol e , lnxx) *I
I* pro c e s s id *I
I* typ e of entry •I

short e_termination ; I* Pro c e s s termination status •I
Pro c e s s exit status *I short e_exit ;

} ut_exit ;

time_t ut_time ;
char ut_bost [24] ;

} ;

I*
I*
I*
I*
I*

The exit status of a pro c e s s
marked a s DEAO_pROCES S . *I
time entry was made *I
ho st name , if r emote •I

- 1 -

I

UTMP (4)
UTMP (4)

FILES

I• D e f initions f or ut_typ e •I
#d e f in e EMPTY 0

#d e f in e RUN_LVL 1

#d e f in e BOOT_T IKE 2

#d e f in e OLD_TIKE 3
#d e f in e NEW_T I KE 4

#d e f in e I N ! T_pROCESS 6 I • Pro c e s s s p awn e d by " in i t " •I
#d e f in e LOG ! N_pROCESS 6 I • A • g e tty • proc e s s waiting f or l o g in •I
#d e f in e USER_pROCESS
#d e f in e DEAD_pROCES S
#de f in e ACCOUNT ING
#de f in e FTP

7 I• A u s e r pro c e s s •I
8

9
1 2 8

#d e f i n e REKOTE_LOG I N 1 2 9

#d e f in e REKOTE_pROCES S 1 3 0

#d e f in e UTKAXTYPE REKDT�RDCESS I * Larg e s t l e g al value of *I

I• ut_typ e •I

I• Sp e c ial str ing s or f ormats us e d in the "ut_l ine " •I
I• f ie ld when •I
I• acc ounting f or something other than a pro c e s s •I
I• No string f or the ut_line f i eld can be mor e than 1 1 •I
I• char s + •I
I• a NULL in length •I
#def �ne RUHLVL�SG " run-level �c "
#def ine BOOT�SG " system boot "
#def ine OTIKE�SG " old time "
#de f ine NTIYE�SG

/etc/utmp
/etc/wtmp

" new time "

SEE ALSO
getut(3C)
login(!), who{l), write(!) in the User's Reference Manual.

- 2 -

INTRO(S)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

- 1 -

ASCII (S)

NAME
ascii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

I (XX) rul 1001 sdl 1 002 stx I UB etx 1 001: rot , oo; EnJ. I (D) ack 1 001 ocl
1 010 bs 1 011 ht 1 012 nl 1 013 vt 1 014 rp 1 015 cr 1 016 so 1 017 s i
I U20 dle 1 02.1 d::l 1 022 <X2 1 023 OC3 1 02.4 d::4 1 025 mk 1 02.6 syn 1 027 etb
l ffiO can I Q31 an I <B2 stb l ffi3 esc I Q34 fs l ffi5 � I U36 rs I Q37 us
I 010 sp 1 041 ! 1 042 " 1 00 # 1 044 $ 1 045 % 1 0<16 & 1 00

,

i <ro (l ffil) IU52 ,. l ffi3 + 1 054
1 l ffi5 - 1 056 . I Q57 I

1 0:0 0 I 051 1 1 052 2 1 053 3 1 054 4 1 0l5 5 l OCi> 6 1 ())7 7
1 070 8 1 071 9 1 072 : I U73 ; 1 074 < 1 075 = 1 076 > 1 077 ?
1 100 @ ! lOl A 1 102. B 1 1Q3 C 1 104 0 I liD E l lOJ F 1 107 G
1 110 H 1 111 I 1 112 J 1 113 K 1 114 L ! 115 M 1 116 N 1 117 0
1 120 p 1 121 Q 1 122 R 1 123 s 1 124 T 1 125 U 1 126 v 1 127W
1 130 X 1 131 Y 1 132 Z 1 133 [1 134 \ 1 135] 1 136 . 1 137

'

1 140 1 141 a 1 142 b 1 143 c 1 144 d 1 145 e 1 146 f 1 147 g
1 150 h 1 151 i 1 152 j 1 153 k 1 154 l I 155 m 1 156 n 1 157 0
1 160 p 1 161 q 1 162 r 1 163 s 1 164 t 1 165 u 1 166 v 1 167 w
1 170 X 1 171 y 1 172 z 1 173 { 1 174 I 1 175 } 1 176 - 1 177 d::l

00 rul Ol sdl 02. stx Q3 etx I 04 wt ID EnJ. I ()) ack ' 07 ocl
OO bs 00 ht (b nl (b vt I (k rp ill er I <k so I Of s i
10 dle 11 del 12 <X2 13 0C3 I 14 d::4 15 mk I 16 syn I 17 etb
18 can 19 an la stb lb esc I 1c fs ld gs I le rs I 1f us

20 sp 21 ! 22 " 23 # I 24 $ 25 % 1 '2i) & 1 27
,

28 (29) 2a " 2b + I 2c I 2d - I 2.e • I 2f I
30 0 31 1 32 2 33 3 1 34 4 35 5 1 36 6 I 37 7
38 8 :JJ 9 3a : 3b ; 1 3c < 3d = 1 3e > I 3f ?
40 @ 41 A 42 8 43 C 1 44 0 45 E 1 46 F 1 47 G
48 H 49 I 4a J 4b K 1 4c L 4dM 1 4e N I 4f 0
SO P Sl Q 52 R 53 S 1 54 T 55 U 1 56 V 1 57W
58 X ffJ Y Sa Z � [I 5c \ :d.] I 5e • I Sf _
60

'

61 a 62 b 63 c 1 64 d 65 e I 66 f I 67 g
68 h fB i 6a j li> k I 6c I 6i m 1 6e n I 6f o
70 p 71 q 72 r 73 s I 74 t 75 u I 76 v 1 77 w
78 x 79 y 7a z 7b { I 7c I 7d } I 7e - I 7f d::

- 1 -

ENVIRON(S)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins . By convention, these strings have the form
"name=value" . The following names are used by various commands:

CFrlME
The default format string to be used by the date(l) command and the
ascftime() and cftime() routines (see ctime(3C)) . If CFTIME is not set
or is null, the default format string specified in the
llib/cftime/LANGUAGE file (if it exists) is used in its place (see
cftime(4)) .

CHRCLASS I A value that corresponds to a file in /lib/chrclass containing character
classification and conversion information. This information is used
by commands (such as cat(l), ed(l), sort (l), etc .) to classify characters
as alphabetic, printable, uppercase, and to convert characters to
upper- or lowercase .

When a program or command begins execution, the tables containing
this information are initialized based on the value of CHRCLASS. If
CHRCLASS is non-existent, null, set to a value for which no file exists
in /lib/chrclass, or errors occur while reading the file, the ASCII char­
acter set is used. During execution, a program or command can
change the values in these tables by calling the setchrclass() routine .
For more detail, see ctype(3C) .

These tables are created using the chrtbl (lM) command.

HOME
The name of the user's login directory, set by login (!) from the pass­
word file (see passwd(4)) .

LANGUAGE
A language for which a printable file by that name exists in
llib/cftime. This information is used by commands (such as date (l),
Is (l), sort (l), etc .) to print date and time information in the language
specified.

- 1 -

I

ENVIRON(S) ENVIRON (S)

I f LANGUAGE i s non-existent, null, set to a value for which no file
exists in /lib/cftime, or errors occur while reading the file, the last
language requested will be used. (If no language has been requested,
the language usa_english is assumed.) For a description of the con­
tent of files in /lib/cftime, see cftime(4) .

PATH
The sequence of directory prefixes that sh (l), time(l), nice(l), nohup (l),
etc . , apply in searching for a file known by an incomplete path name.
The prefixes are separated by colons (:) . login (l) sets
PATH= :/bin:/usr/bin. (For more detail, see the "Execution" section of
the sh(l) manual page.)

TERM
The kind of terminal for which output is to be prepared . This infor­
mation is used by commands, such as mm(l) or vi(l), which may
exploit special capabilities of that terminal .

TZ
Time zone information. The simplest format is xxxnzzz where xxx is
the standard local time zone abbreviation, n is the difference in hours
from GMT (Greenwich Mean Time), and zzz is the abbreviation for an
alternate time zone (usually the daylight-saving local time zone), if
any; for example,

TZ= "ESTSEDT"

The most complex format allows you to specify the difference in
hours of the alternate time zone from GMT and the starting day and
time and ending day and time for using this alternate time zone. For
example, in 1985 the complex format corresponding to the above sim­
ple example is:

TZ= "ESTS:OO:OOEDT4:00:00;118/2:00:00,300/2:00:00"

When the above complex format is used, it must be surrounded by
double quotes. For more details, see ctime(3C) and timezone(4) .

Further names may be placed in the environment by the export command
and "name =value" arguments in sh (l), or by exec(2) . It is unwise to con­
flict with certain shell variables that are frequently exported by . profile
files: MAIL, PSl, PS2, IFS (see profile(4)) .

- 2 -

ENVIRON(S) ENVIRON (5}

NOTES
References to the cftime(4), ctime(3C), and ctype(3C) manual pages refer to
programming capabilities available beginning with Issue 4 . 1 of the C Pro­
gramming Language Utilities .

Administrators should note the following: if you attempt to set the
current date to one of the dates that the standard and alternate time zones
change (for example, the date that daylight time is starting or ending),
and you attempt to set the time to a time in the interval between the end
of standard time and the beginning of the alternate time (or the end of the
alternate time and the beginning of standard time), the results are
unpredictable.

SEE ALSO
chrtbl(lM), cftime(4), passwd(4), profile(4), timezone(4), in the System 1
Administrator's Reference Manual .
exec(2), ctime(3C), ctype(3C) in the Programmer's Reference Manual .
cat(l), date(l), ed(l), env(l), ls(l), login(l), nice(l), nohup(l), sh(l)
sort(l), time(l), vi(l) in the User's Reference Manual .

- 3 -

FCNTL(S) I' L N 1 L \ :> J

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The fcntl (2) function provides for control over open files . This include file
describes requests and arguments to fcntl and open(2) .
I• Flag value s ac c e s s ib l e t o op en {2) an d f cnt1 {2) •I
I• {The f irst thr e e c an only b e s et by op en) •I
#def ine O�DONLY 0
#def ina O_WRONL Y 1
#de� �ne O�DWR 2
#def ine O_ACCKODE 3 I• Get f il e stat f lags

{POS IX 12 . 2 6 . 6 . 1 . 2 . 7) •I
#def ine O_APPEND 010 I• app end {wr it e s guarant e e d

at the end) •I
#def ine O_NONBLOCK 0100 I• Non-blocking IIO

{POSIX 12 . 2 6 . 3 . 1 . 2) •I

I• Flag value s ac c e s s ib l e only to open {2) •I
#de f ine o_CREAT 00400 I• open with f i l e create

#de f ine O_TRUNC
#de f ine o_;gxcL
#de f ine O_NOCTTY

I• f cnt1 {2) r e quests
#def ine F_j)UPFD
#def ine F_GETFD
#def ine F...$ETFD
#def ine F_GETFL
#def ine F...$ETFL
#def ine F_GETLK
#def ine F_$ETLK
#def ine F...$ETLKW

•I

01000 I•
02000 I•
04ooo I•

{us e s third op en ar g) •l
open with truncation •I
exclus ive op en •I
Not a control tty
{POSIX 1 2 . 2 6 . 3 . 1 . 2) •I

0 I• Duplicate t i lde s •I
1 I• Get t i lde s f lags •I
2 I• Set t ildes f lags •I
3 I• Get f i le f lag s •I
4 I• Set f il e f lag s •I
6 I• Get f ile lock •I
6 I• Set f il e l o c k •I
7 I• Set f il e l o c k and wait • I

I• f il e s e gment lo cking control structur e •I
struct f lo ck {

short l_type ;
short l_whenc e ;
off_t lJtart ;
off_t l_len ; I• if 0 then until EOF •I

- 1 -

I

I

FCNTL(S)

short l_sys 1.d ; I• returne d w1.th F_GETLK•/
}

I• f 1.l e s egment lo ck1.ng typ e s *I
#def 1.ne FJDLCK 01 /• Read lock •/
#def 1.ne F_WRLCK 02 I• Wr1.te lock •/
#def 1.ne F_UNLCK 03 I• Remove lo cks •I

FCNTL (S)

I• F1.le de scr1.ptor f lags (POS IX 1 2 . 2 6 . 5 . 1 . 2 . 2) • I
#def 1.ne FD_CLOEXEC 1 /• C l o s e the f 1.l e de s cr 1.ptor upon

exe c call •/

#1.fndef _ros rx_soURCE
I•

* Non-POS IX symbols must be h1.dden by _r o s rx_s oURCE
•I

I• open (2) and f cntl (2) f lags •/
#def 1.ne O�ELAY 04 I• Non-block1.ng I/O •I
#def 1.ne O_$YNC 020 I• synchronous wr1.te opt1.on •/
#1.fnde f FASYNC
#de f 1.ne FASYNC 040
#end1.f

I• s 1.gnal pgroup when r e ady to read •/

I• f cntl (2) r e que sts •/
#def 1.ne F_CHKFL 8 I• Che ck l e gal1.ty of f 1. le f lag

chang e s •/
#def 1.ne F_ALLOCSP 10 I• r e s erved •/
#def 1.ne F_FREESP 11 /• r e s erved •/

#end1.f /• _ros rx_soURCE •I
SEE ALSO

fcntl(2), open(2) in the Programmer's Reference Manual.

- 2 -

MATH(S) NlA .l ll \ ::1 1

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error­
handling mechanisms, including the following constant used as an error­
return value:

HUGE The maximum value of a single-precision floating-point
number. I The following mathematical constants are defined for user convenience :

M_E The base of natural logarithms (e) .

M_LOG2E The base-2 logarithm of e .

M_LOGIOE

M_LN2

M_LNlO

M_PI

M_pl_2

M_pl_4

M_l_PI

M_2_pr

M_2_SQRTPI

M_SQRT2

M_SQRT1_2

The base-10 logarithm of e .

The natural logarithm of 2.

The natural logarithm of 10.

1r, the ratio of the circumference of a circle to its diame­
ter.

1r/2.

1TI4.

1/1T .

211T .

21v1r.

The positive square root of 2.

The positive square root of 112.

""\ For the definitions of various machine-dependent "constants," see the
description of the <values.h> header file .

SEE ALSO
intro(3), matherr(3M), values(S)

- 1 -

PROF(S) PROF(S)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (111lme)

DESCRIPTION
MARK will introduce a mark called ntlme that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that
mark, and program-counter time spent will be accounted to the immedi­
ately preceding mark or to the function if there are no preceding marks
within the active function.

ntlme may be any combination of numbers or underscores. Each ntlme in a I single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file <prof.h> is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, for example:

cc -p -DMARK foo.c

I f MARK i s not defined, the MARK(name) statements may be left in the
source files containing them and will 'be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent
in each loop. Unless this example is compiled with MARK defined on the
command line, the marks are ignored.

#1nc l.ude <prof . h>
f o o ()
{

1nt 1 , j ;

MARK (l.oop 1) ;
f or (1 = 0 ; 1 < 2000 ; 1++) {

}

- 1 -

I

PROF(S)

}

SEE ALSO

MARK (loop2) ;
f or (J = 0 ; J < 2000 ; J ++) {

}

prof(l), profil(2), monitor(3C)

- 2 -

PROF(S)

REGEXP (5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eo[)
char *instring, •expbuf, •endbuf;
int eof;

int step (string, expbuf)
char *String, •expbuf;

extern char •Iocl, •loc2, •Iocs;

extern int eire£, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines
in the form of ed(l), defined in <regexp.h> . Programs such as ed(l),
sed(l), grep(l), bs (l), expr(l), etc. , which perform regular expression
matching use this source file . In this way, only this file need be changed
to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
"# include <reg exp . h>" statement. These macros are used by the
compile routine.

GETC()

Return the value of the next character in the regular expression pat­
tern. Successive calls to GETC() should return successive characters
of the regular expression.

PEEKC()

Return the next character in the regular expression. Successive calls
to PEEKC() should return the same character (which should also be
the next character returned by GETC()) .

- 1 -

l{hGEXP (S) REGEXP (S)

UNGETC(c)
Cause the argument c to be returned by the next call to GETC{) (and
PEEKC()) . No more that one character of pushback is ever needed
and this character is guaranteed to be the last character read by
GETC() . The value of the macro UNGETC(c) is always ignored.

RETURN {pointer)
This macro is used on normal exit of the compile routine. The value of
the argument pointer is a pointer to the character after the last charac­
ter of the compiled regular expression. This is useful to programs
which have memory allocation to manage.

ERROR(val)
This is the abnormal return from the compile routine. The argument
val is an error number (see table below for meanings) . This call
should never return.

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eo£)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input char­
acters. It is sometimes used in the INIT declaration (see below) . Pro­
grams which call functions to input characters or have characters in an
external array can pass down a value of ((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

- 2 -

REGEXP(S) REGEXP(S)

The parameter endbuf is one more than the highest address where the
compiled regular expression may be placed. If the compiled expression
cannot fit in (endbuf-expbufl bytes, a call to ERROR(SO) is made.

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(l), this character is usually a /.

Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the func­
tion compile and the opening curly brace ({) . It is used for dependent
declarations and initializations. Most often it is used to set a register vari­
able to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC(), PEEKC() and
UNGETC() . Otherwise it can be used to declare extemal variables that
might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(l).

There are other functions in this file which perform actual regular expres­
sion matching, one of which is the function step . The call to step is as fol­
lows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which
was obtained by a call of the function compile .

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match,
two external character pointers are set as a side effect to the call to step .
The variable set in step is loc1 . This is a pointer to the first character that
matched the regular expression. The variable loc2 , which is set by the
function advance, points to the character after the last character that
matches the regular expression. Thus, if the regular expression matches
the entire line, loc1 will point to the first character of string and loc2 will
point to the null at the end of string .

step uses the external variable circf which is set by compile if the regular
expression begins with A. If this is set then step will try to match the regu­
lar expression to the beginning of the string only. If more than one regu­
lar expression is to be compiled before the first is executed the value of
circf should be saved for each compiled expression and circf should be set
to that saved value before each call to step.

- 3 -

REGEXP (5) REGEXP (5)

The function advance i s called from step with the same arguments as step .
The purpose of step is to step through the string argument and call advance
until advance returns non-zero indicating a match or until the end of string
is reached. If one wants to constrain string to the beginning of the line in
all cases, step need not be called; simply call advance .

When advance encounters a * or \{ \} sequence in the regular expression,
it will advance its pointer to the string to be matched as far as possible
and will recursively call itself trying to match the rest of the string to the
rest of the regular expression. As long as there is no match, advance will
back up along the string until it finds a match or reaches the point in the
string that initially matched the * or \{ \}. It is sometimes desirable to
stop this backing up before the initial point in the string is reached. If the
external character pointer locs is equal to the point in the string at some­
time during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed(l) and sed(l) for substi­
tutions done globally (not just the first occurrence, but the whole line) so,
for example, expressions like s/y•//g do not loop forever.

The additional external variables sed and nbra are used for special pur­
poses .

EXAMPLES
The following is an example of how the regular expression macros and
calls look from grep(l):

#de f in e

#de f in e
#de f in e

#de f in e

#d e f in e

#d e f in e

i n c lude

SEE ALSO

Ill IT r e g i • te r char • • p = i n • tr i n g ;
GI!!TC () (••p+ +)
PI!!I!!KC () (••p)
UlfGI!!TC (c) (

- - • p)
B.I!!TURif (c) r e turn ;
I!!B.B.OB. (c) r e g err ()

< r e g e xp . h >

(void) c omp i l e (•argv , e xpbuf , l: e xpbuf [I!!B IZE] , ' \ 0 ') ;

i f (• t e p (l i n e buf , e xpbuf))
• uc c e e d () ;

ed(l), expr(l), grep(l), sed(l) in the User's Reference Manual.

- 4 -

STAT(S) �TA!" l 5 J

NAME
stat - data returned by stat system call

SYNOPSIS
#include < sys/types.h>
#include <sys/stat.h>

DESCRIPTION
The system calls stat and fstat return data whose structure is defined by
this include file . The encoding of the field st_mode is defined in this file
also.

Structure of the result of stat:

struct stat
{
dev_t st_dev ;
ino_t st_:1.no ;
mode_t St.JDOde ;
nlink_t st....;nlink ;
uid_t st_uid ;
g id_t st_gid ;
dev_t st....rdev ;
off_t st_s i z e ;
time_t st__atime ;
time_t st__aus e c ;
time_t st.JDtime ;
time_t st.JDus e c ;
time_t st_ctime ;
time_t st_cus e c ;
charst_pad [466] ;
} ;

I•

I• New type (PO S IX 1 2 . 2 6 . 6 . 1 . 2) • I
I• New type (PO S IX 1 2 . 2 6 . 6 . 1 . 2) • I
I• New type (PO S IX 12 . 2 6 . 6 . 1 . 2) • I
I• New type (PO S IX 12 . 2 6 . 6 . 1 . 2) • I
I• New type (PO S IX 1 2 . 2 6 . 6 . 1 . 2) • I

I• atime extra us e c s (BCS g . 13 . 3) • I

I• mtime extra us e c s (BCS g . 13 . 3) • I

I• ctime extra us e c s (BCS g . 1 3 . 3) • I
I• BCS g . 13 . 3 •I

• permi s s ion b its from st.JDode
•I

#def ine S_IRWXU 00700 I• r e ad . write . exe cute : owner •I
#def ine S_IRUSR 00400 I• r e ad permi s s ion : owner •I
#def ine S_IWUSR 00200 I• wr ite p ermi s s ion : owner •I
#def ine S_IXUSR 00100 I• exe cute permi s s ion : owner •I
#def ine S_IRWXG 00070 I• r e ad , write . execute : group •I
#def ine S_IRGRP 00040 I• read permi s s ion : group •I
#def ine S_IWGRP 00020 I• write p ermi s s ion : group •I
#def ine S_IXGRP 00010 I• exe cute p ermi s s ion : group •I
#def ine S_IRWXO 00007 I• r e ad , write . exe cute : other •I
#def ine S_IROTH 00004 I• r e ad permi s s ion : other •I
#def ine S_IWOTH 00002 I• write permi s s ion : other •I

- 1 -

STAT(5) STAT (5)

#def :1.ne S_IXOTH 00001 I• exe cute perm1 • • 1on : other •I
#def 1ne S_ISUID 04000 I• •et u•er 1d on exe cut1on •I
#de f 1ne S_ISGID 02000 I• •et group 1d on exe cut1on •I
#def 1ne S_ISD IR (m) (m � S_IFD IR) I• True 1f d1re c tory •I
#def 1ne S_ISCHR (m) (m � S_IFCHR) I• True 1f character •p e c ial

f 1l e •I
#def 1ne S_ISBLK (m) (m � S_IFBLK) I• True 1f block •p e c 1al

f 1l e •I
#def 1ne S_ISREG (m) (m � S_IFREG) I• True 1f regular f 1 le •I
#def 1ne S_ISFIFO (m) (m � S_IF IFO) I• True 1f p1pe or F IFO

•pe c 1al f 1l e •I
#ifndef _ros i�OURCE
I•

• Non-POSIX •ymbol• mu•t be h1dden by _ros i�OURCE
•I

#de f 1ne S_IFUT 0170000 I• type of f 1l e •I
#def 1ne S_IFDIR 0040000 I• d1r e ctory •I
#def 1ne S_IFCHR 0020000 I• character •p e c 1al •I
#def 1ne S_IFBLK 0060000 I• block •pe c ial •I
#de f ine B_IFREG 0100000 I• regular •I
#de f ine S_IFLNK 0120000 I• •ymbolic l ink •I

I• 0120000 = OxAOOO in inode . h •I
#de f 1ne S_IF IFO 0010000 I• f if o •I
#de f ine B_IBVTX 01000 I• •ave •wapp e d text even a� t e r

U8 e •I
#de f ine B_IREAD 00400 I• read permi • • ion . owner •I
#def ine B_IWRITE 00200 I• write permi • • ion . owner •I
#def ine B_IEXEC 00100 I• exe cutel • e arch permi • • ion ,

owner •I
#def ine S�NFUT B_IBGID I• r e c ord locking enf orc ement

f lag •I
#endif I• _rosi�OURCE •I

SEE ALSO
stat(2), types(S)

- 2 -

TERM (S) TERM (S)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e .g . , man (1), tabs (1), tput (1),
vi (1) and curses (3X)) and are maintained as part of the shell environment
in the environment variable TERM (see sh (l), profile(4), and environ (5)) .

Entries in terminfo (4) source files consist of a number of comma-separated
fields . (To obtain the source description for a terminal, use the -I option
of infocmp (1M) .) White space after each comma is ignored. The first line
of each terminal description in the terminfo (4) database gives the names by
which terminfo (4) knows the terminal, separated by bar (I) characters .
The first name given is the most common abbreviation for the terminal
(this is the one to use to set the environment variable TERMINFO in
$HOME!. profile; see profile(4)), the last name given should be a long name I fully identifying the terminal, and all others are understood as synonyms
for the terminal name. All names but the last should contain no blanks
and must be unique in the first 14 characters; the last name may contain
blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen
using the following conventions . The particular piece of hardware making
up the terminal should have a root name chosen, for example, for the
AT&T 4425 terminal, att4425. This name should not contain hyphens,
except that synonyms may be chosen that do not conflict with other
names. Up to 8 characters, chosen from [a-z0-9), make up a basic termi­
nal name. Names should generally be based on original vendors, rather
than local distributors . A terminal acquired from one vendor should not
have more than one distinct basic name. Terminal sub-models, opera­
tional modes that the hardware can be in, or user preferences, should be
indicated by appending a hyphen and an indicator of the mode . Thus, an
AT&T 4425 terminal in 132 column mode would be att4425-w . The fol­
lowing suffixes should be used where possible:

Suffix Meaning

-w Wide mode (more than 80 columns)
-am With auto. margins (usually default)
-nam Without automatic margins
-n Number of lines on the screen
-na No arrow keys (leave them in local)
-np Number of pages of memory
-rv Reverse video

- 1 -

Example

att4425-w
vt100-am
vtlOO-nam
aaa-60
clOO-na
c100-4p
att4415-rv

I

TERM (S) TERM (S)

To avoid conflicts with the naming conventions used in describing the dif­
ferent modes of a terminal (e .g. , -w), it is recommended that a terminal's
root name not contain hyphens. Further, it is good practice to make all
terminal names used in the tenninfo(4) database unique. Terminal entries
that are present only for inclusion in other entries via the use = facilities
should have a ' + ' in their name, as in 4415+ nl.

Some of the known terminal names may include the following (for a com­
plete list, type: Is -C /usr/lib/terminfo/?) :

155
2621,hp2621
2631
2631-c
2631-e
2640,hp2640
2645,hp2645
3270
33, tty33
35, tty35
37, tty37
4000a
4014, tek4014
40,tty40
43, tty43
4410,5410

4410-nfk,5410-nfk
441 O-nsl,541 0-nsl
4410-w,5410-w
4410v1,5410v1

4410v1-w,5410v1-w

4415,5420
4415-nl,5420-nl
4415-rv,5420-rv
4415-rv-nl,5420-rv-nl
4415-w,5420-w
4415-w-nl,5420-w-nl

4415-w-rv,5420-w-rv
4415-w-rv-nl,5420-w-rv-nl

4418,5418

Motorola EXORterm 155
Hewlett-Packard 2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard 2645 series
IBM Model 3270
AT&T Teletype Model 33 KSR
AT&T Teletype Model 35 KSR

AT&T Teletype Model 37 KSR

Trendata 4000a
TEKTRONIX 4014
AT&T Teletype Dataspeed 40/2
AT&T Teletype Model 43 KSR
AT&T 4410/5410 terminal in 80-column mode ­
version 2
AT&T 4410/5410 without function keys - version 1
AT&T 4410/5410 without pin defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 terminal in 80-column mode ­
version 1
AT&T 4410/5410 terminal in 132-column mode ­
version 1
AT&T 4415/5420 in 80-column mode
AT&T 4415/5420 without changing labels
AT&T 4415/5420 80 columns in reverse video
AT&T 4415/5420 reverse video without changing labels
AT&T 4415/5420 in 132-column mode
AT&T 4415/5420 in 132-column mode without changing

labels
AT&T 4415/5420 132 columns in reverse video
AT&T 4415/5420 132 columns reverse video

without changing labels
AT&T 5418 in 80-column mode

- 2 -

TERM (S) TERM l 5 J

4418-w15418-w AT&T 5418 in 132-column mode
4420 AT&T Teletype Model 4420
4424 AT&T Teletype Model 4424
4424-2 AT&T Teletype Model 4424 in display function group ii
442515425 AT & T 4425/5425
4425-fkl5425-fk AT&T 4425/5425 without function keys
4425-nl15425-nl AT&T 4425/5425 without changing labels in 80-column

mode
4425-w15425-w AT&T 4425/5425 in 132-column mode
4425-w-fk15425-w-fk AT&T 4425/5425 without function keys in 132-column

mode
4425-nl-w15425-nl-w AT&T 4425/5425 without changing labels in 132-column

mode
4426 AT&T Teletype Model 4426S
450 DASI 450 (same as Diablo 1620)
450-12 DASI 450 in 12-pitch mode I 5001att500 AT&T-IS 500 terminal
5101510a AT&T 510/510a in 80-column mode
513bct1att513 AT&T 513 bet terminal
5320 AT & T 5320 hardcopy terminal
5420_2 AT&T 5420 model 2 in 80-column mode
5420_2-w AT&T 5420 model 2 in 132-column mode
56201dmd AT&T 5620 terminal 88 columns
5620-241dmd-24 AT&T Teletype Model DMD 5620 in a 24x80 layer
5620-341dmd-34 AT&T Teletype Model DMD 5620 in a 34x80 layer
6101610bct AT&T 610 bet terminal in SO-column mode
610-w1610bct-w AT&T 610 bet terminal in 132-column mode
73001 pc7300 1 unix_pc AT&T UNIX PC Model 7300
7351ti Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences
hp Hewlett-Packard (same as 2645)
lp generic name for a line printer
pt505 AT&T Personal Terminal 505 (22 lines)
pt505-24 AT&T Personal Terminal 505 (24-line mode)
sync generic name for synchronous Teletype Model

4540-compatible terminals
vt100 DEC VT100

"

- 3 -

TERM (S) TERM (S)

FILES

Commands whose behavior depends on the type of terminal should
accept arguments of the form -Ttenn where tenn is one of the names
given above; if no such argument is present, such commands should
obtain the terminal type from the environment variable TERM, which, in
tum, should contain tenn .

/usr/lib/terminfo/?1* compiled terminal description database

SEE ALSO
curses(3X), profile(4), terminfo(4), environ(S)
man(l), sh(l), stty(l), tabs(l), tput(l), tplot(lG), vi(l) in the User's Refer­
ence Manual.
infocmp(lM) in the System Administrator's Reference Manual .

I Chapter 10 of the Programmer's Guide.

NOTES
Not all programs follow the above naming conventions .

- 4 -

TYPES (S) TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h>

DESCRIPTION
The data types defined in the include file are used in the system code;
some data of these types are accessible to user code:

I •
* P O S IX d e f in e d s ymb o l s

• I
typ a d e f un s i g n e d l o n g
t;yp a <i a :t un s i g n e d 1 o n g
typ e d e f un s i g n e d l o n g
typ a d a f un s i g n e d l o n g

typ a d a f un s i g n e d long
typ e d e f l o n g
typ a d e f l o n g

typ a d a f un s i g n e d l o n g

typ a d a f un s i g n e d long
typ a d a f l o n g

i f n d e f _p o s rx_souRCE
I •

d e v_t ; I •
g i<i_t ; I •
ino_t ; I •
mode_t ; I •
n l ink_t ; I •
o f f_t ; I•
pid_t ; I •

u id_t ; I •
c l o ck_t ; I •
t ime_t ; I •

d e v i c e numb e r •I
group I D ' s •I
f i l a a e r i a l numb e r •I
f i l e attribu t e s •I
l i nk c o u n t s • I
f i l a s i z e s •I
pr o c e s s I D a and pr o c e s s

group I D s

u s e r I D s • I
i n t erval s p e r s e c o nd •I
time •I

* Non-P O S IX s ymb o l s mu s t b e h i d d e n i f _p o s rx_S OURCE i s d e f in e d

• I
typ a d a f s tru c t { int r [1] ; } *phya adr ;

typ a d e f l o n g d addr_t ; I • < d i s k addr e s s > type *I
typ e d e f char •c addr_t ; I • ? < c o r e addr e s s > typ e •I
typ e d e f un s i g n e d char unchar ;
typ a d e f un s i g n e d s h o r t u s hort ;

typ a d e f un s i g n e d i n t uint ;

typ a d e f un s i g n e d l o n g u l ong ;
typ e d e f s h o r t cnt_t ; I • ? < c o u n t > typ e •I
#d e f in e LABELS I ZE 2 4
typ a d e f i n t l ab e l_t [LABELS I ZE] ;
typ e d e f l o n g p addr_t ; I • < phys i c al add r e s s > typ e
typ e d a f l o n g k e y_t ; I • I P C k e y typ e •I
typ a d e f un s i g n e d s h o r t u a e_t ; I • u s e c ount f o r s wap . •I

typ e d e f s h o r t a y a id_t ;

typ a d e f s h o r t index_t ;

typ e d a f s h o r t l o ck_t ; I • l o ck work f o r b u s y w a i t

- 1 -

•I

•I

•I

I

I

TYPES (S)

typ e d e f un s i g n e d int

I •
• D i s tr ibut e d UN IX h o o k

•I

typ e d e f struct c o o k i e {
l o n g

l o n g

} •c o o k i e_t ;

I •

s i z e_t ;

c_sys id ;

c_rcvd ;

TYPES (5)

I • l e n param f o r

s tr i n g f u n c s •I

• S e l e c t d e f in e s p e r B a rk 4 . 3 WAN

•I

#de f in e NBBY

I •

8 I • numb e r o f b i t s in a byte •I

• S e l e c t u s e s b i t mas k s o f f i l e d e s criptors in l o ng s .

• Th e s e mac r o s man i pu l a t e s u c h b i t f i e ld s (t h e f i l e s y s t e m macr o s

u s e char s) .

• FD_SETS I Z E may be d e f in e d by the u s e r , but t h e d e f au l t h e r e

• s h o u l d b e > = NOF ILE (param . h) .

•I

i f nd e f FD_SETS I Z E
#d e f in e FD_S ETS I Z E 2 6 6
e nd i f

typ e d e f l o n g f d_JIIa a k ;

#d e f in e NFDB ITS (a i z e o f (f d_JIIa s k) •NBBY) I • bits p e r mas k •I
i f n d e f howmany

#d e f in e howmany (x , y) (((x) + ((y) - 1)) I (y))

e n d i f

typ e d e f a tr u c t f d_a e t {
f d_JIIa a k f d a_b i t a [howmany (FD_SETS I Z E , NFDB I T S)] ;

} f d_s e t ;

#d e f in e FD_SET (n , p)

#d e f in e FD_CLR (n , p)

#d e f in e FD_I SSET (n , p)

i f d e f I N KERNEL
#d e f in e FD_ZERO (p)

a l a e

((p) - > f d a _b i t a [(n) INFDB ITS]

I = (1 << ((n) I NFDB I TS)))
((p) - > f d a_b i t a [(n) INFDB ITS]

&= - (1 << ((n) � NFDB I T S)))

((p) - > fd a _b i t a [(n) INFDB I T S]

& (1 < < ((n) I NFDB ITS)))

b z e r o ((c addr_t) p , a i z e o f (• (p)))

- 2 -

TYPES (S) TYPES (S)

#d e f in e FD_ZERO (p)

e n d i f

mems e t ((c addr_t) p , 0 , s i z e o f (• (p)))

e n d i f I• _posix_souacE •I
i f nd e f __ ULNG __

e n d i f
I • the s e macro s are u s e d f o r d e vi c e driv e r s t o k e e p a l i g n e d •I

typ e d e f s tru c t ulng

{

} ULNG ;

un s i g n e d s h o r t h i ;

un s ig n e d s h o r t l o ;

I •

I• H i g h word •I
I • Low word •I

•• The s e macro d e f i n e s wi l l s e t and g e t l o n g value s .

•I

#d e f i n e SETULNG (p , v) { \
p . h i ((un s i g n e d l o n g) v > > 1 6) ; \
p . l o = (un s i g n e d short) v ; \

}
#d e f in e GETULNG (p) ((p . h i < < 1 6) I p . lo)

e nd i f

#de f in e __ ULNG __

e nd i f

The form daddr _t i s used for disk addresses except in an i-node on disk,
see fs (4) . Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are measured
in bytes from the beginning of a file . The label_t variables are used to
save the processor state while another process is running.

SEE ALSO
fs(4)

- 3 -

I

VALUES(5) VALUE� \ 5 J

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for
particular processor architectures.

The model assumed for integers is binary representation (one's or two's
complement), where the sign is represented by the value of the high-order
bit.

BITS(type)
The number of bits in a specified type (e .g. , int) .

HIBITS I The value of a short integer with only the high-order bit set (in most
implementations, Ox8000) .

HIBITL
The value of a long integer with only the high-order bit set (in most
implementations, Ox80000000) .

HIBITI
The value of a regular integer with only the high-order bit set (usually
the same as HIBITS or HIBITL) .

MAXSHORT
The maximum value of a signed short integer (in most implementa­
tions, Ox7FFF == 32767) .

MAXLONG
The maximum value of a signed long integer (in most implementa­
tions, Ox7FFFFFFF == 2147483647) .

MAXI NT
The maximum value of a signed regular integer (usually the same as
MAXSHORT or MAXLONG) .

MAXFLOAT, LN_MAXFLOAT
The maximum value of a single-precision floating-point number, and
its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE
The maximum value of a double-precision floating-point number, and
its natural logarithm.

- 1 -

VALUES (S) VALUES (S)

NnNFLOAT, LN_NnNFLOAT
The minimum positive value of a single-precision floating-point
number, and its natural logarithm.

NnNDOUBLE, LN_NnNDOUBLE
The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

FSIGNIF

The number of significant bits in the mantissa of a single-precision
floating-point number.

DSIGNIF

The number of significant bits in the mantissa of a double-precision
floating-point number.

I SEE ALSO
intro(3), math(S)

- 2 -

VARARGS(5) VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

void va_start (pvar)
va_list pvar;

type va_arg (pvar, type)
va_list pvar;
void va_end (pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argu­
ment lists to be written. Routines that have variable argument lists (such
as printf(3S)) but do not use varargs are inherently nonportable, as dif­
ferent machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist; no semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type
is the type the argument is expected to be. Different types can be mixed,
but it is up to the routine to know what type of argument is expected, as
it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start . . . va_end, are possible.

EXAMPLE
This example is a possible implementation of execl(2) .

#�nc lude <vararga . h>
#def �ne WAXARGS 100

I• exe c l �· called by
exe c l (f�le . arg l . arg2 • . . . • (char •) O) ;

- 1 -

I

VARARGS (S) VARARGS (S)

exe c l (va_alist)
va_dc l
{

}

va_l.ist ap ;
char •:r i l e ;
char •args [MAXARGS] ;
int argno = 0 ;

va_start (ap) ;
f il e = va_arg (ap , char •) ;
whi l e ((args [argno++] = va_arg (ap , char •)) ! = (char •) O)

va_end (ap) ;
return execv (! i l e , args) ;

I SEE ALSO
exec(2), print£(35), vprintf(3S)

NOTES
It is up to the calling routine to specify how many arguments there are,
since it is not always possible to determine this from the stack frame. For
example, execl is passed a zero pointer to signal the end of the list. print[
can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float . C converts char and short arguments to int and converts float argu­
ments to double before passing them to a function.

- 2 -

PERMUTED INDEX

13tol, ltol3: convert between 3-byte integers and long integers 13tol(3C)
abs: return integer absolute value abs(3C)

fabs: floor, ceiling, remainder, absolute value functions /fmod, tloor(3M)
advertise a directory for remote access advfs: advfs(2)

utime: set file access and modification times utime(2)
getgroups: get group access list . getgroups(3P)

initgroups: initialize group access list ... initgroups(3C)
setgroups: set group access list . setgroups(2)

sputl, sgetl: access long integer data in a/ . sputl(3X)
ldfcn: common object file access routines .. ldfcn(4)

file used by the value-added disk access utilities /permissions .. filesys(4)
getutline, pututline, etc. : access utmp file entry /getutid, . getut(3C)

access: determine accessibility of a file access(2)
acct: enable or disable process accounting .. acct(2)

acct: per-process accounting file format .. acct(4)
examine or change signal action sigaction: sigaction(2)
examine or change signal action sigaction: . sigaction(2P)

I
putenv: change or add value to environment .. putenv(3C)

uadmin: administrative control . uadmin(2)
access advfs: advertise a directory for remote .. advfs(2)

alarm: set a process alarm clock .. alarm(2)
pathalias: alias file for FACE .. alias(4)

sbrk: change data segment space allocation brk, . brk(2)
realloc, calloc: main memory allocator malloc, free, malloc(3C)

mallinfo: fast main memory allocator /calloc, mallopt, . malloc(3X)
.ott: files that hold object architecture information ... ott(4)
for portable archives ar: archive and library maintainer .. ar(l)

cpio: format of cpio archive . cpio(4)
ar: common archive file format .. ar(4)

archive header of a member of an archive file ldahread: read the .. ldahread(3X)
archive file ldahread: read the archive header of a member of an ldahread(3X)
library maintainer for portable archives ar: archive and ... ar(l)

varargs: handle variable argument list . varargs(S)
formatted output of a varargs argument list /vsprintf: print .. vprintf(3S)
getopt: get option letter from argument vector .. getopt(3C)

for converting times and dates to ASCII /language specific strings .. cftime(4)
ascii: map of ASCII character set .. ascii(S)

between long integer and base-64 ASCII string a641, 164a: convert . a641(3C)
a.out: common assembler and link editor output . a .out(4)

assert: verify program assertion .. assert(3X)
setbuf, setvbuf: assign buffering to a stream .. setbuf(3S)

loginlog: log of failed login attempts ... loginlog(4)
memctl: control write/execute attributes of memory ... memctl(2)

terminal capability data base terminfo: . terminfo(4)
convert between long integer and base-64 ASCII string a641, 164a: . a641(3C)
the value of the output and input baud rate /get or set . cfgetospeed(3P)

jO, jl, jn, yO, yl, yn: Bessel functions .. bessel(3M)

PI-1

PERMUTED INDEX

fread, fwrite: binary input/output .. fread(3S)
bsearch: binary search a sorted table bsearch(3Q

tfind, tdelete, twalk: manage binary search trees tsearch, tsearch(3Q
sync: update super block ... sync(2)

sigprocmask: examine and change blocked signals ... sigprocmask(2)
sigprocmask: examine and change blocked signals ... sigprocmask(2P)

stdio: standard buffered input/output package stdio(3S)
setbuf, setvbuf: assign buffering to a stream .. setbuf(3S)

swab: swap bytes ... swab(3Q
string of characters getnum: calculate an integer value from a getnum(3X)
data returned by stat system call stat: .. stat(S)

implementation-defined system call sys_local: ... sys_local(2)
intro: introduction to system calls and error numbers intro(2)

terminfo: terminal capability data base .. terminfo(4)
sigprocmask: examine and change blocked signals sigprocmask(2)
sigprocmask: examine and change blocked signals sigprocmask(2P)

allocation brk, sbrk: change data segment space brk(2)
chmod: change mode of file .. chmod(2)

environment putenv: change or add value to putenv(3Q
chown: change owner and group of a file chown(2)

nice: change priority of a process . • nice(2)
chroot: change root directory chroot(2)

sigaction: examine or change signal action ... sigaction(2)
sigaction: examine or change signal action sigaction(2P)

rename: change the name of a file rename(2)
chdir: change working directory chdir(2)

pipe: create an interprocess channel . pipe(2)
ungetc: push character back into input stream ungetc(3S)

islower, isupper, isalpha, etc. : character handling /isxdigit, ... ctype(3Q
cuserid: get character login name of the user cuserid(3S)

getc, getchar, fgetc, getw: get character or word from a stream getc(3S)
putc, putchar, fputc, putw: put character or word on a stream putc(3S)

ascii: map of ASCII character set ... ascii(S)
_tolower, toascii: translate characters /tolower, _toupper, conv(3Q

an integer value from a string of characters getnum: calculate getnum(3X)
times: get process and child process times ... times(2)

terminate wait: wait for child process to stop or wait(2)
terminate waitpid: wait for child process to stop or waitpid(2)
terminate waitpid: wait for child process to stop or waitpid(2P)

listener nlsgetcall: get client's data passed via the nlsgetcall(3N)
alarm: set a process alarm clock alarm(2)

ldclose, ldaclose: close a common object file . • ldclose(3X)
close: close a file descriptor .. close(2)

£close, fflush: close or flush a stream fclose(3S)
create a front-end to the cc command gencc: .. gencc(l)

menus from labels stored in command shell scripts /extracts mkmenus(l)
system: issue a shell command .. system(3S)

install: install commands .. install(lM)
ar: common archive file format ar(4)

output a. out: common assembler and link editor a .out(4)
routines ldfcn: common object file access ldfcn(4)

PI-2

ldopen, ldaopen: open a
/line number entries of a
ldclose, ldaclose: close a
read the file header of a

number entries of a section of a
to the optional file header of a

entries of a section of a
/section header of a

to an indexed/named section of a
of a symbol table entry of a

indexed symbol table entry of a
seek to the symbol table of a

linenum: line number entries in a
relocation information for a
scnhdr: section header for a

entry /retrieve symbol name for
format syms:

filehdr: file header for
coffcmp: compare

coffdump: dump
ftok: standard interprocess

modules coffcmp:
descriptions infocmp:

expression regcmp, regex:
regexp: regular expression

term: format of
erf, erfc: error function and
table entry of a/ ldtbindex:

pathconf, fpathconf: get
pathconf, fpathconf: get

sysconf: get
sysconf: get

system: system
getpeername: gets name of

an outgoing terminal line
for implementation-specific

math: math functions and
unistd: file header for symbolic

ioctl:
fcntl: file

tcflush, tcsendbreak: line
set process group 10 for job

msgctl: message
semctl: semaphore

shmctl: shared memory
fcntl: file

uadmin: administrative
of memory memctl:

term:
and long integers 13tol, ltol3:

base-64 ASCII string a64l, 164a:

PERMUTED INDEX

common object file for reading ldopen(3X)
common object file function ldlread(3X)
common object file ... ldclose(3X)
common object file ldfhread: ldfhread(3X)
common object file /seek to line ldlseek(3X)
common object file /seek ldohseek(3X)
common object file /to relocation • ldrseek(3X)
common object file ... ldshread(3X)
common object file /seek ldsseek(3X)
common object file /the index ldtbindex(3X)
common object file /read an ldtbread(3X)
common object file ldtbseek: ldtbseek(3X)
common object file ... linenum(4)
common object file reloc: reloc(4)
common object file ... scnhdr(4)
common object file symbol table ldgetname(3X)
common object file symbol table • . • • • . . • • syms(4)
common object files ... filehdr(4)

I
common object format modules • . . coffcmp(l)
common object format modules coffdump(l)
communication package stdipc(3q
compare common object format coffcmp(l)
compare or print out terminfo infocmp(lM)
compile and execute regular regcmp(3X)
compile and match routines • regexp(S)
compiled term file • • • . term(4)
complementary error function • . • erf(3M)
compute the index of a symbol ldtbindex(3X)
configurable pathname variables • pathconf(2)
configurable pathname variables pathconf(2P)
configurable system variables sysconf(2)
configurable system variables sysconf(2P)
configuration information table system(4)
connected peer • • • . . • . getpeername(3N
connection diai: establish dial(Jq
constants limits: file header . • . • limits(4)
constants ... math(S)
constants ... unistd(4)
control device ... ioctl(2)
control ... fcntl(2)
control functions /tcflow, tcdrain(3P)
control jcsetpgrp: ... jcsetpgrp(2)
control operations .. msgctl(2)
control operations .. semctl(2)
control operations .. shmctl(2)
control options ... fcntl(S)
control ... uadmin(2)
control write/execute attributes memctl(2)
conventional names for terminals term(S)
convert between 3-byte integers 13tol(3q
convert between long integer and a641(3q

PI-3

PERMUTED INDEX

ctime, local time, gmtime, etc. : convert date and time to string ctime(3C)
string ecvt, fcvt, gcvt: convert floating-point number to ecvt(3C)

scanf, fscanf, sscanf: convert formatted input scanf(3S)
double-precision! strtod, atof: convert string to ... strtod(3C)

strtol, atol, atoi: convert string to integer strtol(3C)
/language specific strings for converting times and dates to/ cftime(4)

core: format of core image file .. core(4)
cpio: format of cpio archive .. cpio(4)

clock: report CPU time used ... clock(3C)
command gencc: create a front-end to the cc gencc(l)

file trnpnam, tempnam: create a name for a temporary trnpnam(3S)
existing one creat: create a new file or rewrite an creat(2)

fork: create a new process .. fork(2)
setsid: create a new session .. setsid(2)

trnpfile: create a temporary file trnpfile(3S)
pipe: create an interprocess channel pipe(2)

umask: set and get file creation mask ... umask(2)

I
setlocale: set or query current locale .. setlocale(3C)

uname: get name of current system .. uname(2)
the slot in the utrnp file of the current user ttyslot: find ttyslot(3C)

getcwd: get pathname of current working directory getcwd(3C)
scr_dump: format of curses screen image file scr_dump(4)

terminfo: terminal capability data base ... terminfo(4)
sputl, sgetl: access long integer data in a machine-independent/ sputl(3X)

plock: lock process, text, or data in memory .. plock(2)
nlsgetcall: get client's data passed via the listener nlsgetcall(3N)

stat: data returned by stat system call stat(S)
brk, sbrk: change data segment space allocation brk(2)

types: primitive system data types ... types(S)
localtime, gmtime, etc. : convert date and time to string ctime, ctime(3C)
strings for converting times and dates to ASCll /language specific cftime(4)

and UNIX sheW . variables: default preferences for editor env(4)
WASTEBASKEf and/ . pre£: default preferences for env(4)

timezone: set default system time zone timezone(4)
compare or print out terminfo descriptions infocmp: infocmp(lM)

close: close a file descriptor .. close(2)
dup: duplicate an open file descriptor .. dup(2)

dup2: duplicate an open file descriptor .. dup2(3C)
access: determine accessibility of a file access(2)

dfile: device information file dfile(4)
master: master device information table master(4)

ioctl: control device . ioctl(2)
dir: format of directories ... dir(4)

chdir: change working directory ... chdir(2)
chroot: change root directory ... chroot(2)

file getdents: read directory entries and put in a getdents(2)
dirent: file system independent directory entry .. dirent(4)

unlink: remove directory entry .. unlink(2)
advfs: advertise a directory for remote access advfs(2)

get pathname of current working directory getcwd: ... getcwd(3C)
rnkdir: make a directory ... rnkdir(2)

PI-4

readdir, telldir, seekdir, etc. :
ordinary file mknod: make a

rmdir: remove a
rmount: mount a remote

rumount: unmount a remote
unadv: unadvertise a

unadvfs: unadvertise a
acct: enable or

/file used by the value-added
hypot: Euclidean

tcgetpgrp: get
tcsetpgrp: set

drand48, etc. : generate uniformly
strtod, atof: convert string to

coffdump:
dup:

dup2:
/default preferences for

a. out: common assembler and link
effective user, real group, and

getuid, etc. : get real user,
accounting acct:

setkey, encrypt: generate hashing
crypt: password and file
getdents: read directory

nlist: get
linenum: line number

/etc. : manipulate line number
objecU /etc. : seek to line number

ldrseek, etc. : seek to relocation
file system independent directory

utmp, wtmp: utmp and wtmp
setgrent, etc. : get group file

getpwnam, etc. : get password file
etc. : get shadow password file

pututline, etc . : access utmp file
common object file symbol table

/the index of a symbol table
/read an indexed symbol table
putpwent: write password file

write shadow password file
unlink: remove �ectory

profile: setting up an
environ: user

getenv: return value for
putenv: change or add value to

start the Remote File Sharing
stop the Remote File Sharing
. environ: system-wide FACE
. rhosts: user-specified file of

error function erf, erfc:

PERMUTED INDEX

directory operations opendir, directory(3X)
directory, or a special or mknod(2)
directory ... rmdir(2)
directory ... rmount(2)
directory ... rumount(2)
directory ... unadv(2)
directory ... unadvfs(2)
disable process accounting acct(2)
disk access utilities ... filesys(4)
distance function .. hypot(3M)
distinguished process group ID tcgetpgrp(3P)
distinguished process group ID tcsetpgrp(3P)
distributed pseudo-random numbers drand48(3C)
double-precision number strtod(3C)
dump common object format modules coffdump(l)
duplicate an open file descriptor dup(2)
duplicate an open file descriptor dup2(3q
editor and UNIX shell prompt env(4)

I
editor output .. a .out(4)
effective group IDs /real user, getuid(2)
effective user, real group, and/ getuid(2)
enable or disable process acct(2)
encryption crypt, ... crypt(3C)
encryption functions .. crypt(3X)
entries and put in a file getdents(2)
entries from name list nlist(3C)
entries in a common object file linenum(4)
entries of a common object file/ ldlread(3X)
entries of a section of a common ldlseek(3X)
entries of a section of a common/ ldrseek(3X)
entry dirent: ... dirent(4)
entry formats .. utmp(4)
entry /getgrgid, getgmam, getgrent(3q
entry getpwent, getpwuid, getpwent(3Q
entry /getspnam, setspent, getspent(3X)
entry /getutid, getutline, getut(3Q
entry /retrieve symbol name for ldgetname(3X)
entry of a common object file ldtbindex(3X)
entry of a common object file ldtbread(3X)
entry .. putpwent(3C)
entry putspent: .. putspent(3X)
entry .. unlink(2)
environment at login time profile(4)
environment ... environ(S)
environment name ... getenv(3Q
environment ... putenv(3Q
environment rfstart: .. rfstart(2)
environment rfstop: .. rfstop(2)
environment variables env(4)
equivalent hosts and users rhosts(4)
error function and complementary erf(3M)

PI-S

PERMUTED INDEX

error function and complementary error function erf, erfc: erf(3M)
sys_errlist, sys_nerr: system error messages perror, errno, perror(3C)

introduction to system calls and error numbers intro: .. intro(2)
matherr: error-handling function matherr(3M)

errfile: error-log file format .. errfile(4)
line connection dial: establish an outgoing terminal dial(3C)

hypot: Euclidean distance function hypot(3M)
signals sigprocmask: examine and change blocked sigprocmask(2)
signals sigprocmask: examine and change blocked sigprocmask(21')

sigaction: examine or change signal action sigaction(2)
sigaction: examine or change signal action sigaction(2P)

sigpending: examine pending signals sigpending(2)
sigpending: examine pending signals sigpending(2P)

execle, execve, execlp, execvp: execute a file execl, execv, exec(2)
regcmp, regex: compile and execute regular expression regcmp(3X)

sleep: suspend execution for interval sleep(3C)
monitor: prepare execution profile ... monitor(3C)

'
profil: execution time profile profil(2)

create a new file or rewrite an existing one creat: .. creat(2)
exp, log, loglO, pow, sqrt: exponential, logarithm, power,/ exp(3M)

routines regexp: regular expression compile and match regexp(S)
compile and execute regular expression regcmp, regex: regcmp(3X)

in command shell! mkmenus: extracts menus from labels stored mkmenus(l)
pathalias: alias file for FACE ... alias(4)

.environ: system-wide FACE environment variables env(4)
loginlog: log of failed login attempts .. loginlog(4)

data in a machine-independent fashion /access long integer sputl(3X)
/calloc, mallopt, mallinfo: fast main memory allocator malloc(3X)

abort: generate an lOT fault abort(3C)
times utime: set file access and modification utime(2)

ldfcn: common object file access routines ... ldfcn(4)
determine accessibility of a file access: .. access(2)

chmod: change mode of file . chmod(2)
change owner and group of a file chown: .. , chown(2)

fcntl: file control fcntl(2)
fcntl: file control options fcntl(S)

core: format of core image file ... core(4)
umask: set and get file creation mask ... umask(2)

close: close a file descriptor .. close(2)
dup: duplicate an open file descriptor .. dup(2)

dup2: duplicate an open file descriptor dup2(3C)
dfile: device information file dfile(4)

crypt: password and file encryption functions crypt(3X)
setgrent, etc. : get group file entry /getgrgid, getgmam, getgrent(3C)

getpwnam, etc. : get password file entry getpwent, getpwuid, getpwent(3C)
etc . : get shadow password file entry /getspnam, setspent, getspent(3X)

pututline, etc . : access utrnp file entry /getutid, getutline, getut(3C)
putpwent: write password file entry .. putpwent(3C)

putspent: write shadow password file entry .. putspent(3X)
execve, execlp, execvp: execute a file execl, execv, execle, exec(2)

pathalias: alias file for FACE ... alias(4)

PI-6

ldaopen: open a common object file for reading ldopen, ldopen(3X)
acct: per-process accounting file format ... acct(4)

ar: common archive file format ... ar(4)
errfile: error-log file format ... errfile(4)

intra: introduction to file formats .. intro(4)
number entries of a common object file function /manipulate line ldlread(3X)

directory entries and put in a file getdents: read .. getdents(2)
getperms: read the permissions file . getperms(3X)

group: group file . • . group(4)
files filehdr: file header for common object filehdr(4)

implementation-specifid limits: file header for ... limits(4)
constants unistd: file header for symbolic unistd(4)

file ldfhread: read the file header of a common object ldfhread(3X)
ldohseek: seek to the optional file header of a common object/ ldohseek(3X)

issue: issue identification file ... issue(4)
header of a member of an archive file ldahread: read the archive ldahread(3X)

ldaclose: close a common object file lddose, ldclose(3X)
file header of a common object file ldfhread: read the ldfhread(3X)

of a section of a common object file /seek to line number entries ldlseek(3X)
file header of a common object file /seek to the optional ldohseek(3X)

of a section of a common object file /seek to relocation entries ldrseek(3X)
section header of a common object file /read an indexed/named ldshread(3X)

section of a common object file /seek to an indexed/named ldsseek(3X)
table entry of a common object file /the index of a symbol ldtbindex(3X)
table entry of a common object file /read an indexed symbol ldtbread(3X)

symbol table of a common object file ldtbseek: seek to the ldtbseek(3X)
number entries in a common object file linenum: line .. linenum(4)

link: link to a file ... link(2)
or a special or ordinary file mknod: make a directory, mknod(2)

ctermid: generate file name for terminal ctermid(3S)
mktemp: make a unique file name ... mktemp(3e)

users .rhosts: user-specified file of equivalent hosts and rhosts(4)
/find the slot in the utmp file of the current user ttyslot(3C)

creat: create a new file or rewrite an existing one creat(2)
passwd: password file ... passwd(4)

rewind, ftell: reposition a file pointer in a stream fseek, fseek(3S)
lseek: move read/write file pointer .. lseek(2)
read, readv: read from file ... read(2)

information for a common object file reloc: relocation reloc(4)
rename: change the name of a file ... rename(2)

File Sharing name server master file rfmaster: Remote rfmaster(4)
sccsfile: format of sees file ... sccsfile(4)

header for a common object file scnhdr: section ... scnhdr(4)
format of curses screen image file scr_dump: .. scr_dump(4)

rfstart: start the Remote File Sharing environment rfstart(2)
rfstop: stop the Remote File Sharing environment rfstop(2)

file rfmaster: Remote File Sharing name server master rfmaster(4)
stat, fstat, lstat: get file status ... stat(2)

symbol name for common object file symbol table entry /retrieve ldgetname(3)
syms: common object file symbol table format syms(4)

symlink: make symbolic link to a file ... symlink(2)

PI-7

PERMUTED INDEX

PI-8

entry dirent: file system independent directory dirent(4)
statfs, fstatfs: get file system information statfs(2)

mount: mount a file system ... mount(2)
ustat: get file system statistics ... ustat(2)

fstab: file system table .. fstab(4)
mnttab: mounted file system table .. mnttab(4)

sysfs: get file system type information sysfs(2)
umount: unmount a file system ... umount(2)

fs: format of file system volume ... fs(4)
and ncheck checklist: list of file systems processed by fsck checklist(4)

term: format of compiled term file • • • • • • • • • . • • •. term(4)
trnpfile: create a temporary file • . trnpfile(35)

create a name for a temporary file trnpnam, tempnam: trnpnam(35)
ftw: walk a file tree .. ftw(3C)

access/ filesys: permissions file used by the value-added disk filesys(4)
write, writev: write on a file • . write(2)

preferences for WASTEBASKEf and FILECABINEf .pref: default env(4)
file header for common object files filehdr: .. filehdr(4)

format specification in text files fspec: ... fspec(4)
lockf: record locking on files . • . lockf(3C)

architecture information .ott: files that hold object ... ott(4)
ttyname, isatty: find name of a terminal ttyname(3C)

the current user ttyslot: find the slot in the utrnp file of ttyslot(3C)
ecvt, fcvt, gcvt: convert floating-point number to string ecvt(3C)

ldexp, modf: manipulate parts of floating-point numbers frexp, frexp(3C)
floor, ceil, frnod, fabs: floor, ceiling, remainder,/ floor(3M)
fclose, fflush: close or flush a stream fclose(3S)

acct: per-process accounting file format ... acct(4)
request message nlsrequest: format and send listener service nlsrequest(3N)

ar: common archive file format ... ar(4)
errfile: error-log file format ... errfile(4)

coffcmp: compare common object format modules .. coffcmp(l)
coffdump: dump common object format modules .. coffdump(l)

inode: format of an i-node .. inode(4)
term: format of compiled term file term(4)
core: format of core image file core(4)
cpio: format of cpio archive cpio(4)

file scr_dump: format of curses screen image scr_dump(4)
dir: format of directories ... dir(4)

fs: format of file system volume fs(4)
sccsfile: format of sees file ... sccsfile(4)

files fspec: format specification in text fspec(4)
common object file symbol table format syms: .. syms(4)

intro: introduction to file formats .. intro(4)
utrnp, wtrnp: utrnp and wtrnp entry formats .. utrnp(4)

scanf, fscanf, sscanf: convert formatted input .. scanf(3S)
lvfprintf, vsprintf: print formatted output of a varargs/ vprintf(35)

printf, fprintf, sprintf: print formatted output .. printf(3S)
gencc: create a front-end to the cc command gencc(l)

list of file systems processed by fsck and ncheck checklist: checklist(4)
function erf, erfc: error function and complementary error • . erf(3M)

l't:l{MU l bU H'\1 LJ.C.A

function and complementary error function erf, erfc: error .. erf(3M)
gamma: log gamma function gamma(3M)

hypot: Euclidean distance function .. hypot(3M)
entries of a common object file function /manipulate line number ldlread(3X)

matherr: error-handling function . . • • . matherr(3M)
prof: profile within a function prof(S)

math: math functions and constants .. math(S)
intro: introduction to functions and libraries .. intro(3)

jO, jl, jn, yO, yl, yn: Bessel functions bessel(3M)
password and file encryption functions crypt: . crypt(3X)

logarithm, power, square root functions /sqrt: exponential, . exp(3M)
remainder, absolute value functions /fabs: floor, ceiling, . floor(3M)

sinh, cosh, tanh: hyperbolic functions .. sinh(3M)
sysmot: machine-specific functions .. sysmot(2)
tcsendbreak: line control functions /tcflow, tcflush, . tcdrain(3P)

acos, a tan, atan2: trigonometric functions sin, cos, tan, asin, . trig(3M)
gamma: log gamma function gamma(3M)

abort: generate an lOT fault . abort(3C)
ctermid: generate file name for terminal . ctermid(3S)

crypt, setkey, encrypt: generate hashing encryption .. crypt(3C)
pseudo-random/ drand48, etc. : generate uniformly distributed .. drand48(3C)

rand, srand: simple random-number generator .. rand(3C)
getpeername: gets name of connected peer .. getpeername(3N)

getitimer, setitimer: get/set value of interval timer .. getitimer(2)
and terminal settings used by getty gettydefs: speed .. gettydefs(4)

setjmp, longjmp: non-local goto . setjmp(3C)
getgroups: get group access list . getgroups(3P)

initgroups: initialize group access list . initgroups(3C)
setgroups: set group access list . setgroups(2)

/real user, effective user, real group, and effective group IDs .. getuid(2)
/getppid: get process, process group, and parent process IDs .. getpid(2)

getgrnam, setgrent, etc . : get group file entry /getgrgid, . getgrent(3C)
group: group file .. group(4)

jcsetpgrp: set process group ID for job control .. jcsetpgrp(2)
setpgrp: set process group ID ... setpgrp(2)

get distinguished process group ID tcgetpgrp: tcgetpgrp(3P)
set distinguished process group ID tcsetpgrp: . tcsetpgrp(3P)

user, real group, and effective group IDs /real user, effective .. getuid(2)
setuid, setgid: set user and group IDs .. setuid(2)
chown: change owner and group of a file .. chown(2)

send a signal to a process or a group of processes kill: . kill(2)
setpgid: set process group setpgid(2)
setpgid: set process group .. setpgid(2P)

varargs: handle variable argument list . varargs(S)
curses: terminal screen handling and optimization package curses(3X)

isupper, isalpha, etc. : character handling /isxdigit, islower, . ctype(3C)
hcreate, hdestroy: manage hash search tables hsearch, . hsearch(3C)

crypt, setkey, encrypt: generate hashing encryption .. crypt(3C)
scnhdr: section header for a common object file .. scnhdr(4)

filehdr: file header for common object files .. filehdr(4)
limits: file header for/ limits(4)

PI-9

PERMUTED INDEX

unistd: file header for symbolic constants unistd(4)
ldfhread: read the file header of a common object file ldfhread(3X)

/seek to the optional file header of a common object file • • ldohseek(3X)
/read an indexed/named section header of a common object file ldshread(3X)

file ldahread: read the archive header of a member of an archive ldahread(3X)
information .ott: files that hold object architecture ott(4)

host: system host name ... host(4)
user-specified file of equivalent hosts and users .rhosts: rhosts(4)

sinh, cosh, tanh: hyperbolic functions .. sinh(3M)
jcsetpgrp: set process group ID for job control .. jcsetpgrp(2)

setpgrp: set process group ID . setpgrp(2)
get distinguished process group ID tcgetpgrp: .. tcgetpgrp(3P)
set distinguished process group ID tcsetpgrp: .. tcsetpgrp(3P)

issue: issue identification file ... issue(4)
shmget: get shared memory segment identifier ... shmget(2)

process group, and parent process IDs /getppid: get process, getpid(2)
real group, and effective group IDs /real user, effective user, getuid(2)

setgid: set user and group IDs setuid, .. setuid(2)
core: format of core image file .. core(4)

scr_dump: format of curses screen image file .. scr_dump(4)
call sys_local: implementation-defined system sys_local(2)

limits: file header for implementation-specific constants limits(4)
dirent: file system independent directory entry dirent(4)

a common/ ldtbindex: compute the index of a symbol table entry of ldtbindex(3X)
common object/ ldtbread: read an indexed symbol table entry of a • ldtbread(3X)
a common/ ldshread, etc. : read an indexed/named section header of ldshread(3X)
common/ ldsseek, etc. : seek to an indexed/named section of a . ldsseek(3X)

dfile: device information file ... dfile(4)
file reloc: relocation information for a common object reloc(4)

statfs, fstatfs: get file system information ... statfs(2)
sysfs: get file system type information ... sysfs(2)

that hold object architecture information . ott: files ott(4)
master: master device information table .. master(4)

system: system configuration information table .. system(4)
inittab: script for the init process ... inittab(4)

initgroups: initialize group access list initgroups(3C)
popen, pclose: initiate pipe to/from a process popen(3S)

inode: format of an i-node .. inode(4)
set the value of the output and input baud rate /get or cfgetospeed(3P)

fscanf, sscanf: convert formatted input scan£, .. scanf(3S)
ungetc: push character back into input stream ... ungetc(3S)

fread, fwrite: binary input/output ... fread(3S)
poll: STREAMS input/output multiplexing poll(2)

stdio: standard buffered input/output package stdio(3S)
clearerr, fileno: stream status inquiries £error, feof, ferror(3S)

install: install commands ... install(lM)
abs: return integer absolute value abs(3C)

a641, 164a: convert between long integer and base-64 ASCII string a641(3C)
sputl, sgetl: access long integer data in a/ sputl(3X)

atol, atoi: convert string to integer strtol, ... strtol(3C)
characters getnum: calculate an integer value from a string of • . getnum(3X)

/lto13: convert between 3-byte
between 3-byte integers and long

pipe: create an
package ftok: standard

sleep: suspend execution for
setitimer: get/set value of

intro:
libraries intro:

intro:
error numbers intro:

select: synchronous
abort: generate an

system:
issue:

set process group ID for
sigsetjmp, siglongjmp: non-local
mkmenus: extracts menus from

converting times and/ cftime:
getopt: get option

introduction to functions and
archives ar: archive and

ulimit: get and set user
establish an outgoing terminal

tcflow, tcflush, tcsendbreak:
object file linenum:

object! ldlread, etc. : manipulate
of aJ ldlseek, etc. : seek to

lsearch, lfind:
a. out: common assembler and

read value of a symbolic
link:

symlink: make symbolic
getgroups: get group access

initialize group access
nlist: get entries from name

fsck and ncheck checklist:
setgroups: set group access

varargs: handle variable argument
output of a varargs argument

get client's data passed via the
nlsrequest: format and send

setlocale: set or query current
end, etext, edata: last

memory plock:
lockf: record

gamma:
loginlog:

lloglO, pow, sqrt: exponential,
loginlog: log of failed

getlogin: get
cuserid: get character

PERMUTED INDEX

integers and long integers 13tol(3q
integers 13tol, lto13: convert 13tol(3q
interprocess channel .. pipe(2)
interprocess communication stdipc(3q
interval .. sleep(3q
interval timer getitimer, getitimer(2)
introduction to file formats intro(4)
introduction to functions and intro(3)
introduction to miscellany intro(5)
introduction to system calls and intro(2)
1/0 multiplexing ... select(2)
lOT fault ... abort(3q
issue a shell command system(3S)
issue identification file issue(4)
job control jcsetpgrp: jcsetpgrp(2)
jumps .. sigseljmp(3P)
labels stored in command shell/ mkmenus(l)
language specific strings for cftime(4)

I
letter from argument vector getopt(3q
libraries intro: intro(3)
library maintainer for portable ar(l)
limits ... ulimit(2)
line connection dial: ... dial(3C)
line control functions tcdrain, tcdrain(3P)
line number entries in a common linenum(4)
line number entries of a common ldlread(3X)
line number entries of a section ldlseek(3X)
linear search and update lsearch(3q
link editor output � a.out(4)
link readlink: .. readlink(2)
link to a file ... link(2)
link to a file ... symlink(2)
list .. getgroups(3P)
list initgroups: initgroups(3C)
list .. nlist(3q
list of file systems processed by checklist(4)
list setgroups(2)
list .. varargs(S)
list /vsprintf: print formatted vprintf(3S)
listener nlsgetcall: .. nlsgetcall(3N)
listener service request message nlsrequest(3N)
locale setlocale(3q
locations in program .. end(3q
lock process, text, or data in plock(2)
locking on files lockf(3q
log gamma function ... gamma(3M)
log of failed login attempts loginlog(4)
logarithm, power, square root! exp(3M)
login attempts .. loginlog(4)
login name .. getlogin(3q
login name of the user cuserid(3S)

PI-ll

PERMUTED INDEX

logname: return login name of user .. logname(3X)
setting up an environment at login time profile: profile(4)

values: machine-dependent values ... values(S)
/access long integer data in a machine-independent fashion sputl(3X)

sysmot: machine-specific functions sysmot(2)
malloc, free, realloc, calloc: main memory allocator malloc(3C)

calloc, mallopt, mallinfo: fast main memory allocator /realloc, . malloc(3X)
ar: archive and library maintainer for portable archives ar(l)

tsearch, tfind, tdelete, twalk: manage binary search trees tsearch(3C)
hsearch, hcreate, hdestroy: manage hash search tables hsearch(3C)
sigignore, sigpause: signal management /sighold, sigrelse, .. sigset(2)

a common object/ ldlread, etc. : manipulate line number entries of ldlread(3X)
frexp, ldexp, modf: manipulate parts off .. frexp(3C)

sigaddset, etc. : manipulate signal sets sigsetops(2)
/sigismember, sigfillset: manipulate signal sets ... sigsetops(2P)

ascii: map of ASCII character set ascii(S)
umask: set and get file creation mask . umask(2)

l
master: master device information table ... master(4)

Remote File Sharing name server master file rfrnaster: ... rfrnaster(4)
regular expression compile and match routines regexp: regexp(S)

math: math functions and constants math(S)
/read the archive header of a member of an archive file ldahread(3X)

free, realloc, calloc: main memory allocator malloc, ... malloc(3C)
mallopt, mallinfo: fast main memory allocator /calloc, malloc(3X)

shmctl: shared memory control operations .. shmctl(2)
write/execute attributes of memory memctl: control memctl(2)

memchr, memcmp, memcpy, memset: memory operations memccpy, . memory(3C)
shmop: shared memory operations shmop(2)

lock process, text, or data in memory plock: ... plock(2)
shmget: get shared memory segment identifier ... shmget(2)

command shell/ mkmenus: extracts menus from labels stored in .. mkmenus(l)
msgctl: message control operations msgctl(2)

and send listener service request message nlsrequest: format nlsrequest(3N)
getrnsg: get next message off a stream getrnsg(2)

putrnsg: send a message on a stream putrnsg(2)
msgop: message operations msgop(2)

msgget: get message queue msgget(2)
sys_nerr: system error messages /errno, sys_errlist, . perror(3C)

intro: introduction to miscellany intro(S)
chmod: change mode of file chmod(2)

utime: set file access and modification times utime(2)
compare common object format modules coffcmp: coffcmp(l)

dump common object format modules coffdump: coffdump(l)
mount: mount a file system ... mount(2)

rmount: mount a remote directory rmount(2)
mnttab: mounted file system table mnttab(4)

!seek: move read/write file pointer .. lseek(2)
poll: STREAMS input/output multiplexing poll(2)

select: synchronous VO multiplexing select(2)
trnpnam, tempnam: create a name for a temporary file .. trnpnam(3S)
ldgetname: retrieve symbol name for common object file/ ldgetname(3X)

PI-12

PERMUTED INDEX

ctermid: generate file name for terminal ... ctermid(3S)
getpw: get name from UID . getpw(3C)

return value for environment name getenv: • • • . getenv(3C)
getlogin: get login name . getlogin(3C)
host: system host name ... host(4)

nlist: get entries from name list ... nlist(3Q
mktemp: make a unique file name ... mktemp(3C)

rename: change the name of a file .. rename(2)
ttyname, isatty: find name of a terminal ... ttyname(3Q

getpeemame: gets name of connected peer getpeemame(3N)
uname: get name of current system uname(2)

cuserid: get character login name of the user ... cuserid(3S)
nlsprovider: get name of transport provider nlsprovider(3N)

logname: return login name of user ... logname(3X)
rfmaster: Remote File Sharing name server master file rfmaster(4)

term: conventional names for terminals ... term(S)
systems processed by fsck and ncheck checklist: list of file . checklist(4)

getmsg: get next message off a stream getmsg(2)

I
setjmp, longjmp: non-local goto ... setjmp(3Q

sigsetjmp, siglongjmp: non-local jumps .. sigsetjmp(3P)
file linenum: line number entries in a common object linenum(4)

ldlread, etc . : manipulate line number entries of a common object/ ldlread(3X)
ldlseek, etc . : seek to line number entries of a section of a/ . ldlseek(3X)

string to double-precision number strtod, atof: convert strtod(3Q
gcvt: convert floating-point number to string ecvt, fcvt, ecvt(3Q

distributed pseudo-random numbers /generate uniformly drand48(3Q
parts of floating-point numbers /ldexp, modf: manipulate frexp(3C)

to system calls and error numbers intro: introduction intro(2)
.ott: files that hold object architecture information ott(4)

ldfcn: common object file access routines ldfcn(4)
ldopen, ldaopen: open a common object file for reading ldopen(3X)
line number entries of a common object file function /manipulate ldlread(3X)
ldclose, ldaclose: close a common object file .. ldclose(3X)
read the file header of a common object file ldfhread: .. ldfhread(3X)
entries of a section of a common object file /seek to line number ldlseek(3X)

optional file header of a common object file /seek to the ldohseek(3X)
entries of a section of a common object file /seek to relocation ldrseek(3X)

section header of a common object file /an indexed/named :················· ldshread(3X)
section of a common object file /to an indexed/named ldsseek(3X)

a symbol table entry of a common object file /compute the index of ldtbindex(3X)
symbol table entry of a common object file /read an indexed ldtbread(3X)
to the symbol table of a common object file ldtbseek: seek ldtbseek(3X)
line number entries in a common object file linenum: .. linenum(4)

information for a common object file reloc: relocation reloc(4)
section header for a common object file scnhdr: ... scnhdr(4)

/retrieve symbol name for common object file symbol table entry ldgetname(3X)
syms: common object file symbol table format syms(4)

filehdr: file header for common object files ... filehdr(4)
coffcmp: compare common object format modules coffcmp(l)

coffdump: dump common object format modules coffdump(l)
reading ldopen, ldaopen: open a common object file for ldopen(3X)

PI-13

PERMUTED INDEX

fopen, freopen, fdopen: open a stream ... fopen(3S)
dup: duplicate an open file descriptor .. dup(2)

dup2: duplicate an open file descriptor .. dup2(3C)
open: open for reading or writing .. open(2)

telldir, seekdir, etc . : directory operations opendir, readdir, . • directory(3X)
memcmp, memcpy, memset: memory operations memccpy, memchr, . memory(3C)

msgctl: message control operations .. msgctl(2)
msgop: message operations .. msgop(2)

semctl: semaphore control operations ... semctl(2)
semop: semaphore operations .. semop(2)

shmctl: shared memory control operations .. shmctl(2)
shmop: shared memory operations .. shmop(2)

strncat, strcmp, etc. : string operations /strcat, strdup, . string(3C)
terminal screen handling and optimization package curses: . curses(3X)

vector getopt: get option letter from argument .. getopt(3C)
object/ ldohseek: seek to the optional file header of a common ldohseek(3X)

fcntl: file control options fcntl(S)

I
make a directory, or a special or ordinary file mknod: . mknod(2)

dial: establish an outgoing terminal line connection dial(3C)
/etc. : get or set the value of the output and input baud rate . cfgetospeed(3P)

common assembler and link editor output a.out: . a .out(4)
lvsprintf: print formatted output of a varargs argument list . vprintf(3S)

fprintf, sprint£: print formatted output printf, . printf(3S)
chown: change owner and group of a file . chown(2)

screen handling and optimization package curses: terminal . curses(3X)
interprocess communication package ftok: standard .. stdipc(3C)

standard buffered input/output package stdio: stdio(3S)
get process, process group, and parent process IDs /getppid: . getpid(2)
frexp, ldexp, modf: manipulate parts of floating-point numbers .. frexp(3C)

nlsgetcall: get client's data passed via the listener .. nlsgetcall(3N)
functions crypt: password and file encryption .. crypt(3X)

getpwuid, getpwnam, etc. : get password file entry getpwent, . getpwent(3C)
setspent, etc. : get shadow password file entry /getspnam, .. getspent(3X)

putpwent: write password file entry .. putpwent(3C)
putspent: write shadow password file entry .. putspent(3X)

passwd: password file .. passwd(4)
getpass: read a password .. getpass(3C)

directory getcwd: get pathname of current working .. getcwd(3C)
fpathconf: get configurable pathname variables pathconf, . pathconf(2)
fpathconf: get configurable pathname variables pathconf, . pathconf(2P)

gets name of connected peer getpeemame: . getpeemame(3N)
sigpending: examine pending signals .. sigpending(2)
sigpending: examine pending signals . sigpending(2P)

getperms: read the permissions file .. getperms(3X)
value-added disk access/ filesys: permissions file used by the .. filesys(4)

format acct: per-process accounting file .. acct(4)
popen, pclose: initiate pipe to/from a process .. popen(3S)

rewind, ftell: reposition a file pointer in a stream fseek, . fseek(3S)
lseek: move read/write file pointer .. lseek(2)
and library maintainer for portable archives ar: archive .. ar(l)

/sqrt: exponential, logarithm, power, square root functions .. exp(3M)

PI-14

shell/ .variables: default preferences for editor and UNIX env(4)
FILECABINET .pref: default preferences for WASTEBASKET and env(4)

monitor: prepare execution profile monitor(3C)
types: primitive system data types ... types(S)

vprintf, vfprintf, vsprintf: print formatted output of a/ . vprintf(3S)
printf, fprintf, sprintf: print formatted output printf(3S)
infocmp: compare or print out terrninfo descriptions infocmp(IM)

nice: change priority of a process nice(2)
acct: enable or disable process accounting acct(2)

alarm: set a process alarm clock alarm(2)
times: get process and child process times .. times(2)

exit, _exit: terminate process exit(2)
fork: create a new process .. fork(2)

/getpgrp, getppid: get process, process group, and parent process/ getpid(2)
jcsetpgrp: set · process group ID for job control .. jcsetpgrp(2)

setpgrp: set process group ID setpgrp(2)
tcgetpgrp: get distinguished process group ID tcgetpgrp(3P)
tcsetpgrp: set distinguished process group ID tcsetpgrp(3P)

setpgid: set process group ... setpgid(2)

I
setpgid: set process group setpgid(2P)

process group, and parent process IDs /get process, getpid(2)
inittab: script for the init process inittab(4)

nice: change priority of a process nice(2)
kill: send a signal to a process or a group of processes ... kill(2)

pclose: initiate pipe to/from a process popen, .. popen(3S)
getpid, getpgrp, getppid: get process, process group, and/ getpid(2)

plock: lock process, text, or data in memory plock(2)
times: get process and child process times ... times(2)

wait: wait for child process to stop or terminate ... wait(2)
waitpid: wait for child process to stop or terminate .. waitpid(2)
waitpid: wait for child process to stop or terminate waitpid(2P)

ptrace: process trace ptrace(2)
pause: suspend process until signal .. pause(2)

checklist: list of file systems processed by fsck and ncheck checklist(4)
signal to a process or a group of processes kill: send a kill(2)

setpsr, getpsr: set/get Processor Status Register ... setpsr(2)
monitor: prepare execution profile . monitor(3C)

profil: execution time profile .. profil(2)
prof: profile within a function .. prof(S)

assert: verify program assertion .. assert(3X)
etext, edata: last locations in program end, end(3C)

for editor and UNIX shell prompt /default preferences ... env(4)
get name of transport provider nlsprovider: . nlsprovider(3N)

generate uniformly distributed pseudo-random numbers drand48(3C)
stream ungetc: push character back into input ... ungetc(3S)

puts, fputs: put a string on a stream puts(3S)
putc, putchar, fputc, putw: put character or word on a stream putc(3S)

read directory entries and put in a file getdents: getdents(2)
setlocale: set or query current locale ... setlocale(3C)

msgget: get message queue msgget(2)
qsort: quicker sort . qsort(3C)

Pl-15

PERMUTED INDEX

rand, srand: simple random-number generator rand(3Q
of the output and input baud rate /get or set the value cfgetospeed(3l

getpass: read a password ... getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table ldtbread(3X)

header of a/ ldshread, etc. : read an indexed/named section ldshread(3X)
a file getdents: read directory entries and put in getdents(2)

read, readv: read from file .. read(2)
member of an archive/ ldahread: read the archive header of a ldahread(3X)

object file ldfhread: read the file header of a common ldfhread(3X)
getperms: read the permissions file getperms(3X)

readlink: read value of a symbolic link • . . • . • • readlink(2)
open a common object file for reading ldopen, ldaopen: ldopen(3X)

open: open for reading or writing .. open(2)
lseek: move read/write file pointer lseek(2)

/get real user, effective user, real group, and effective group/ getuid(2)
group, and/ getuid, etc. : get real user, effective user, real getuid(2)

signal: specify what to do upon receipt of a signal ... signal(2)

I
lockf: record locking on files lockf(3q

getpsr: set/get Processor Status Register setpsr, .. setpsr(2)
match routines regexp: regular expression compile and regexp(S)

regex: compile and execute regular expression regcmp, regcmp(3X)
of a/ ldrseek, etc. : seek to relocation entries of a section • ldrseek(3X)
common object file reloc: relocation information for a reloc(4)

ceil, fmod, fabs: floor, ceiling, remainder, absolute value/ floor, floor(3M)
advfs: advertise a directory for remote access ... advfs(2)

rmount: mount a remote directory ... rmount(2)
rumount: unrnount a remote directory ... rumount(2)

rfstart: start the Remote File Sharing environment rfstart(2)
rfstop: stop the Remote File Sharing environment rfstop(2)

master file rfmaster: Remote File Sharing name server rfmaster(4)
rmdir: remove a directory ... rmdir(2)

unlink: remove directory entry unlink(2)
clock: report CPU time used clock(3Q

stream fseek, rewind, ftell: reposition a file pointer in a fseek(3S)
format and send listener service request message nlsrequest: nlsrequest(3N)

object file symbol/ ldgetname: retrieve symbol name for common • ldgetname(3X)
sigret: return from a signal ... sigret(2)

abs: return integer absolute value abs(3q
logname: return login name of user logname(3X)

getenv: return value for environment name getenv(3Q
stat: data returned by stat system call stat(S)

creat: create a new file or rewrite an existing one creat(2)
chroot: change root directory .. chroot(2)

logarithm, power, square root, functions /exponential, exp(3M)
ldfcn: common object file access routines ldfcn(4)

expression compile and match routines regexp: regular regexp(S)
sccsfile: format of sees file ... sccsfile(4)

package curses: terminal screen handling and optimization • . . . • • • curses(3X)
scr_dump: format of curses screen image file ... scr_dump(4)

inittab: script for the init process inittab(4)
labels stored in command shell scripts /extracts menus from mkmenus(l)

Pl-16

bsearch: binary search a sorted table .. bsearch(3C)
lsearch, lfind: linear search and update .. lsearch(3C)

hcreate, hdestroy: manage hash search tables hsearch, hsearch(3C)
tdelete, twall<: manage binary search trees tsearch, tfind, tsearch(3C)

object file scnhdr: section header for a common scnhdr(4)
/read an indexed/named section header of a common object/ ldshread(3X)

/seek to line number entries of a section of a common object file • . . . ldlseek(3X)
/seek to relocation entries of a section of a common object file ldrseek(3X)

/seek to an indexed/named section of a common object file ldsseek(3X)
of a common/ ldsseek, etc. : seek to an indexed/named section . . • • • . . . • • ldsseek(3X)

section of a/ ldlseek, etc. : seek to line number entries of a ldlseek(3X)
section of a/ ldrseek, etc. : seek to relocation entries of a • • • • • • . . • • ldrseek(3X)

of a common object/ ldohseek: seek to the optional file header • • • • . . . • . • • ldohseek(3X)
common object file ldtbseek: seek to the symbol table of a ldtbseek(3X)
shmget: get shared memory segment identifier .. shmget(2)

brk, sbrk: change data segment space allocation brk(2)
semctl: semaphore control operations . semctl(2)
semop: semaphore operations semop(2)

I
semget: get set of semaphores .. semget(2)

putmsg: send a message on a stream putmsg(2)
group of processes kill: send a signal to a process or a kill(2)

message nlsrequest: format and send listener service request nlsrequest(3N)
Remote File Sharing name server master file rfmaster: rfmaster(4)

/format and send listener service request message nlsrequest(3N) ·
setsid: create a new session .. setsid(2)

alarm: set a process alarm clock alarm(2)
umask: set and get file creation mask . • umask(2)

ascii: map of ASCII character set . ascii(S)
timezone: set default system time zone . . . • • • • • . . . • timezone(4)

ID tcsetpgrp: set distinguished process group • . • tcsetpgrp(3P)
times utime: set file access and modification • . • • . • • • utime(2)

setgroups: set group access list .. setgroups(2)
semget: get set of semaphores .. semget(2)

setlocale: set or query current locale setlocale(3C)
control jcsetpgrp: set process group ID for job jcsetpgrp(2)

setpgrp: set process group ID .. setpgrp(2)
setpgid: set process group ... setpgid(2)
setpgid: set process group ... setpgid(2P)

tcgetattr, tcsetattr: get and set terminal state • • • • • • • • • tcgetattr(3P)
input/ cfgetospeed, etc. : get or set the value of the output and cfgetospeed(3P)

stime: set time .. stime(2)
setuid, setgid: set user and group IDs setuid(2)
ulimit: get and set user limits ... ulimit(2)
setpsr, getpsr: set/get Processor Status Register setpsr(2)

etc . : manipulate signal sets sigaddset, ... sigsetops(2)
sigfillset: manipulate signal sets /sigdelset, sigismember, sigsetops(2P)

login time profile: setting up an environment at profile(4)
gettydefs: speed and terminal settings used by getty gettydefs(4)
/getspnam, setspent, etc. : get shadow password file entry getspent(3X)

putspent: write shadow password file entry • • putspent(3X)
shmctl: shared memory control operations • • shmctl(2)

PI-17

PERMUTED INDEX

shmop: shared memory operations shmop(2)
shmget: get shared memory segment identifier . . . • • shmget(2)

rfstart: start the Remote File Sharing environment rfstart(2)
rfstop: stop the Remote File Sharing environment rfstop(2)

rfmaster: Remote File Sharing name server master file rfmaster(4)
system: issue a shell command ... system(3S)

preferences for editor and UNIX shell prompt /default • . • • • • . env(4)
from labels stored in command shell scripts /extracts menus mkmenus(l)

sigaction: examine o r change signal action .. sigaction(2)
sigaction: examine or change signal action .. sigaction(2P)
sigrelse, sigignore, sigpause: signal management /sighold, sigset(2)
pause: suspend process until signal ... pause(2)

sigaddset, etc. : manipulate signal sets ... sigsetops(2)
sigfillset: manipulate signal sets /sigismember, sigsetops(2P)

what to do upon receipt of a signal signal: specify .. signal(2)
sigret: return from a signal sigret(2)

sigsuspend: wait for a signal sigsuspend(2)

I
sigsuspend: wait for a signal ... sigsuspend(21')
processes kill: send a signal to a process or a group of kill(2)

sigpending: examine pending signals ... sigpending(2)
sigpending: examine pending signals ... sigpending(2P)
examine and change blocked signals sigprocmask: sigprocmask(2)
examine and change blocked signals sigprocmask: sigprocmask(2P)

ssignal, gsignal: software signals ssignal(3Q
rand, srand: simple random-number generator rand(3Q

current user ttyslot: find the slot in the utmp file of the ttyslot(3Q
ssignal, gsignal: software signals ... ssignal(3Q

qsort: quicker sort . qsort(3C)
tsort: topological sort • • . • . tsort(l)

bsearch: binary search a sorted table ... bsearch(3Q
brk, sbrk: change data segment space allocation brk(2)

mknod: make a directory, or a special or ordinary file mknod(2)
times and dates/ cftime: language specific strings for converting cftime(4)

fspec: format specification in text files fspec(4)
of a signal signal: specify what to do upon receipt signal(2)

by getty gettydefs: speed and terminal settings used gettydefs(4)
exponential, logarithm, power, square root functions /pow, sqrt: exp(3M)

package stdio: standard buffered input/output stdio(3S)
communication package ftok: standard interprocess stdipc(3Q

environment rfstart: start the Remote File Sharing rfstart(2)
stat: data returned by stat system call ... stat(S)
us tat: get file system statistics .. ustat(2)

feof, clearerr, fileno: stream status inquiries ferror, ferror(3S)
setpsr, getpsr: set/get Processor Status Register .. setpsr(2)

stat, fstat, lstat: get file status ... stat(2)
wait: wait for child process to stop or terminate .. wait(2)

wait for child process to stop or terminate waitpid: waitpid(2)
wait for child process to stop or terminate waitpid: waitpid(2P)

environment rfstop: stop the Remote File Sharing rfstop(2)
/extracts menus from labels stored in command shell scripts mkmenus(l)

fclose, fflush: close or flush a stream fclose(3S)

PI-18

PERMUTED INDEX

fopen, freopen, fdopen: open a stream . fopen(3S)
reposition a file pointer in a stream fseek, rewind, ftell: fseek(3S)

get character or word from a stream /getchar, fgetc, getw: getc(3S)
getmsg: get next message off a stream ... getmsg(2)

gets, fgets: get a string from a stream ... gets(3S)
putw: put character or word on a stream putc, putchar, fputc, putc(3S)

putmsg: send a message on a stream ... putmsg(2)
puts, fputs: put a string on a stream ... puts(3S)

setvbuf: assign buffering to a stream setbuf, .. setbuf(3S)
ferror, feof, clearerr, fileno: stream status inquiries ferror(3S)

push character back into input stream ungetc: ... ungetc(3S)
poll: STREAMS input/output multiplexing poll(2)

long integer and base-64 ASCII string /164a: convert between a641(3C)
etc. : convert date and time to string clime, local time, gmtime, ctime(3C)

convert floating-point number to string ecvt, fcvt, gcvt: ecvt(3C)
gets, fgets: get a string from a stream ... gets(3S)

calculate an integer value from a string of characters getnum: getnum(3X)
puts, fputs: put a string on a stream .. puts(3S)

strdup, strncat, strcmp, etc. : string operations /strcat, string(3C)
strtod, atof: convert string to double-precision number strtod(3C)

strtol, atol, atoi: convert string to integer .. strtol(3C)
dates/ cftime: language specific strings for converting times and cftime(4)

sync: update super block ... sync(2)
sleep: suspend execution for interval sleep(3C)

pause: suspend process until signal pause(2)
swab: swap bytes .. swab(3C)

file symboll ldgetname: retrieve symbol name for common object ldgetname(3X)
name for common object file symbol table entry /symbol ldgetname(3X)

ldtbindex: compute the index of a symbol table entry of a common/ ldtbindex(3X)
object/ ldtbread: read an indexed symbol table entry of a common ldtbread(3X)

syms: common object file symbol table format ... syms(4)
file ldtbseek: seek to the symbol table of a common object ldtbseek(3X)

unistd: file header for symbolic constants ... unistd(4)
readlink: read value of a symbolic link .. readlink(2)

symlink: make symbolic link to a file symlink(2)
select: synchronous 110 multiplexing sclect(2)

stat: data returned by stat system call .. stat(S)
sys_local: implementation-defined system call .. sys_local(2)

intro: introduction to system calls and error numbers intro(2)
table system: system configuration information system(4)

types: primitive system data types .. types(S)
errno, sys_errlist, sys_nerr: system error messages perror, perror(3C)

host: system host name host(4)
entry dirent: file system independent directory dirent(4)

statfs, fstatfs: get file system information .. statfs(2)
mount: mount a file system ... mount(2)

ustat: get file system statistics ... ustat(2)
fstab: file system table .. fstab(4)

mnttab: mounted file system table .. mnttab(4)
timewne: set default system time wne ... timewne(4)

sysfs: get file system type information sysfs(2)

PI-19

PERMUTED INDEX

umount: unmount a file system ... umount(2)
uname: get name of current system uname(2)

sysconf: get configurable system variables .. sysconf(2)
sysconf: get configurable system variables . • . sysconf(2P)

fs: format of file system volume fs(4)
ncheck checklist: list of file systems processed by fsck and .. checklist(4)

variables .environ: system-wide FACE environment env(4)
bsearch: binary search a sorted table .. bsearch(3C)
for common object file symbol table entry /retrieve symbol name ldgetname(3X)

/compute the index of a symbol table entry of a common object/ . ldtbindex(3X)
ldtbread: read an indexed symbol table entry of a common object/ . ldtbread(3X)
syms: common object file symbol table format .. syms(4)

fstab: file system table .. fstab(4)
master: master device information table .. master(4)

mnttab: mounted file system table .. mnttab(4)
ldtbseek: seek to the symbol table of a common object file .. ldtbseek(3X)

system configuration information table system: . system(4)

I
hdestroy: manage hash search tables hsearch, hcreate, . hsearch(3C)

tmpfile: create a temporary file .. tmpfile(35)
tempnam: create a name for a temporary file tmpnam, .. tmpnam(35)

term: format of compiled term file term(4)
terminfo: terminal capability data base .. terminfo(4)

ctermid: generate file name for terminal . ctermid(35)
dial: establish an outgoing terminal line connection .. dial(3C)

optimization package curses: terminal screen handling and .. curses(3X)
gettydefs: speed and terminal settings used by getty .. gettydefs(4)

tcgetattr, tcsetattr: get and set terminal state . tcgetattr(3P)
ttyname, isatty: find name of a terminal ttyname(3C)

term: conventional names for terminals .. term(S)
exit, _exit: terminate process .. exit(2)

wait for child process to stop or terminate wait: . wait(2)
wait for child process to stop or terminate waitpid: . waitpid(2)
wait for child process to stop or terminate waitpid: . waitpid(2P)

infocmp: compare or print out terminfo descriptions .. infocmp(lM)
data base terminfo: terminal capability .. terminfo(4)

fspec: format specification in text files fspec(4)
plock: lock process, text, or data in memory plock(2)

get/set value of interval timer getitimer, setitimer: . getitimer(2)
/specific strings for converting times and dates to ASCII . cftime(4)

get process and child process times times: . times(2)
set file access and modification times utime: . utime(2)

popen, pclose: initiate pipe to/from a process .. popen(35)
tsort: topological sort . tsort(l)

ptrace: process trace .. ptrace(2)
_toupper, _tolower, toascii: translate characters /tolower, . conv(3C)

nlsprovider: get name of transport provider .. nlsprovider(3N)
ftw: walk a file tree . ftw(3C)

twalk: manage binary search trees tsearch, tfind, tdelete, . tsearch(3C)
tan, asin, acos, a tan, atan2: trigonometric functions /cos, . trig(3M)

sysfs: get file system type information .. sysfs(2)
types: primitive system data types .. types(S)

PI-20

l'tl<MUTtU lN UhA

getpw: get name from UID . getpw(3C)
unadv: unadvertise a directory .. unadv(2)

unadvfs: unadvertise a directory .. unadvfs(2)
drand48, etc. : generate uniformly distributed/ ... drand48(3C)

mktemp: make a unique file name .. mktemp(3C)
preferences for editor and UNIX shell prompt /default .. env(4)

umount: unmount a file system .. umount(2)
rumount: unmount a remote directory .. rumount(2)

pause: suspend process until signal . pause(2)
!search, lfind: linear search and update .. lsearch(3C)

sync: update super block .. sync(2)
signal: specify what to do upon receipt of a signal . signal(2)

setuid, setgid: set user and group IDs .. setuid(2)
get character login name of the user cuserid: . cuserid(3S)

and/ getuid, etc. : get real user, effective user, real group, . getuid(2)
environ: user environment .. environ(S)

ulimit: get and set user limits ulimit(2)
logname: return login name of user .. logname(3X)

I
/etc. : get real user, effective user, real group, and effective/ . getuid(2)

in the utmp file of the current user ttyslot: find the slot . ttyslot(3C)
file of equivalent hosts and users .rhosts: user-specified .. rhosts(4)

hosts and users .rhosts: user-specified file of equivalent .. rhosts(4)
by the value-added disk access utilities /permissions file used .. filesys(4)

utmp, wtmp: utmp and wtmp entry formats . utmp(4)
pututline, etc. : access utmp file entry /getutline, . getut(3C)

ttyslot: find the slot in the utmp file of the current user . ttyslot(3C)
abs: return integer absolute value .. abs(3C)

getenv: return value for environment name .. getenv(3C)
getnum: calculate an integer value from a string of characters .. getnum(3X)
ceiling, remainder, absolute value functions /fabs: floor, . floor(3M)

readlink: read value of a symbolic link .. readlink(2)
getitimer, setitimer: get/set value of interval timer .. getitimer(2)

cfgetospeed, etc. : get or set the value of the output and input! . cfgetospeed(3P)
putenv: change or add value to environment .. putenv(3C)

/permissions file used by the value-added disk access utilities .. filesys(4)
values: machine-dependent values .. values(S)

print formatted output of a varargs argument list /vsprintf: . vprintf(3S)
varargs: handle variable argument list . varargs(S)

get configurable pathname variables pathconf, fpathconf: . pathconf(2)
get configurable pathname variables pathconf, fpathconf: . pathconf(2P)

sysconf: get configurable system variables .. sysconf(2)
sysconf: get configurable system variables .. sysconf(2P)
system-wide FACE environment variables .environ: . env(4)

get option Jetter from argument vector getopt: . gctopt(3C)
assert: verify program assertion .. assert(3X)

get client's data passed via the listener nlsgetcall: . nlsgetcall(3N)
fs: format of file system volume .. fs(4)

sigsuspend: wait for a signal . sigsuspcnd(2)
sigsuspend: wait for a signal . sigsuspcnd(21')

terminate wait: wait for child process to stop or . wait(2)
terminate waitpid: wait for child process to stop or .. waitpid(2)

PI-21

PERMUTED INDEX

terminate waitpid: wait for child process to stop or . waitpid(2P)
ftw: walk a file tree .. ftw(3q

. pref: default preferences for WASTEBASKET and FILECABINET env(4)
prof: profile within a function .. prof(S)

fgetc, getw: get character or word from a stream /getchar, . gctc(3S)
fputc, putw: put character or word on a stream putc, putchar, . putc(3S)

chdir: change working directory .. chdir(2)
getcwd: get pathname of current working directory .. getcwd(3q

write, writev: write on a file .. write(2)
putpwent: write password file entry .. putpwent(3Q
putspent: write shadow password file entry putspent(3X)

memory memctl: control write/execute attributes of . memctl(2)
open: open for reading or writing .. open(2)

utmp, wtmp: utmp and wtmp entry formats .. utmp(4)
timezone: set default system time zone . timezone(4)

I

PI-22

([!) MOTOROLA INC.

M i crocom pu•er D1visi0n

2900 Soutr D a bin Way

f 'IT' PE', A r zonil 8!:> '82
� 0 Box 295.<
Phr E''1iX , A IZ, na £1506,)

Motorola is an Equal Em ployment

Opportun ity/Affi rmative Act ion Employer

Motorola and (j.A are reg istered

·ademark: ,f Motorola . I n

1 1 046 PRINTED IN USA (3190) WPC 2,500

