
®MOTOROLA

68NW9209H52A

SYSTEM V /88 Release 3.2
STREAMS Primer

The information is this document has been carefully checked and is believed to be
entirely reliable . However, no responsibility is assumed for inaccuracies .
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights or the rights of the
others.

PREFACE

The STREAMS describes STREAMS, a major building block of the
networking support services. The primer provides a high level, technical
overview of STREAMS; it is intended for managers and developers who have
prior knowledge of the SYSTEM V/88 operating system and networking or other
data communication facilities. For a more detailed description of STREAMS, see
the STREAMS

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.
SYSTEM V/88 is a trademark of Motorola, Inc.

UniSoft is a registered trademark of UniSoft Corporation.

UNIX and Teletype are registered trademarks of AT&T.

Portions of this document are reprinted from copyrighted documents �^�À�È
permission of UniSoft Corporation. Copyright 1985, 1986, 1987, 1988, 1989,
UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T and are

SYSTEM V/88 Release 32 is based on the AT&T UNIX System V Release 3.2 .

All rights reserved. No part of this manual may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by prior written permission of Motorola, Inc.

First Edition February 1990

Copyright 1990 by Motorola, Inc.

1

2

3

4

5

Contents

��4�C�<�8�"�D� �C�,�8�4�L

���F�$�<�F�,�$�H�L

An

���D�,�/�"�,�4�)�L���L���C�<�$���2�L

���?�$�<�L���$�F�$�/�L�
�D�4� �A�,�9�4�?�L

An

���%�=�6�%�/�L���%�G�%�/�L�
�E�6�!�A�-�9�6�@�L

Contents �	�
�����
��
��
��
��
��
��
��

6

7

G

���A�*�%�<�L�
��� �-�1�-�A�-�%�?�L

���<�,�F�%�<�L���%�?�-�)�4�L���9�2�;���<�,�?�9�4�?�L

���/�9�?�?���<�K�L

ii �
���	�����
�# �����������#

Figures

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 3-1:

Figure 4-1:

Figure 4-2:

Figure 5-1: A

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 6-1:

Figure 6-2:

Figure 6-3:

Figure 6-4: X.25

Figure 6-5:

1 Introduction

���$�4�$�<���/�L���$�?� �<�,�;�A�,�9�4�L

�������������!���������#

General Description

STREAMS is a general, flexible facility and a set of tools for development of
operating system communication services. With developers can
provide services ranging from complete networking protocol suites to
individual device drivers.

STREAMS defines standard interfaces between the kernel and the rest of the
operating system. The associated mechanism is simple and open-ended. It
consists of a set of system calls, kernel resources, and kernel utility routines .
The standard interface and open-ended mechanism enable modular, portable
development, and easy integration of higher performance network services
and their components. STREAMS does not impose any network
architecture. Instead, it provides a powerful framework with a consistent user
interface that is compatible with the existing character 1/0 interface still
available in SYSTEM

STREAMS modularity and design reflect the '1ayers and options"
characteristics of contemporary networking architectures . The basic
components in a STREAMS implementation are referred to as modules. These
modules, which reside in the kernel, offer a set of processing functions and
associated service interfaces . From user level, modules can be dynamically
selected and interconnected to provide any rational processing sequence.
Kernel programming, assembly, and link editing are not required to create the
interconnection. Modules can also be dynamically "plugged into" existing
connections from user level. STREAMS modularity allows:

• User level programs that are independent of underlying protocols and
physical communication media.

• Network architectures and higher level protocols that are independent of
underlying protocols, drivers, and physical communication media .

• Higher level services that can be created by selecting and connecting lower
level services and protocols .

• Enhanced portability of protocol modules resulting from STREAMS' well
defined structure and interface standards.

1-1

I

I In addition to modularity, STREAMS provides developers with integral
functions, a library of utility routines, and facilities that expedite software
design and implementation. The principal facilities are:

• Buffer management -To maintain STREAMS' own, independent buffer
pool.

• Flow control -To conserve STREAMS' memory and processing resources.

• Scheduling -To incorporate STREAMS' own scheduling mechanism.

• Multiplexing -For processing interleaved data streams, such as those in
SNA, X.25, and windows.

• Asynchronous operation of STREAMS and user processes -Allows
STREAM5-related operations to be performed efficiently from user level.

• Error and trace loggers -For debugging and administrative functions.

How This Document Is Organized

The primer is organized as follows:

• Chapter 2 provides an overview of the applications and benefits of
STREAMS and the STREAMS mechanism.

• Chapter 3 describes how to set up a Stream from user level and how this
initialization affects the kernel. This and following chapters are aimed at
developers.

• Chapter 4 contains a detailed example and discusses it from user level.

• Chapter 5 describes kernel operations associated with the Chapter 4
example, together with a discussion of basic STREAMS kernel facilities.

• Chapter 6 includes kernel and user facilities not otherwise described.

• Chapter 7 compares certain design features of character IO device drivers
with STREAMS modules and drivers.

• The Glossary defines terms that are specific to STREAMS.

1-2 STREAMS

Other Documents

The contains detailed STREAMS information for
programmers: how programmers can develop networking applications with
STREAMS user-level facilities and how system programmers can use
STREAMS kernel-level facilities to build modules and drivers.

Section 2 of the SYSTEM includes
descriptions (manual pages) of STREAMS-related system calls and other
information.

Notation Conventions

of output from the computer and/or
commands entered by you, we follow the standard notation scheme that is
common throughout SYSTEM documentation:

• Commands that you type on your terminal are shown in �<�]�R�@�„type.

• Names of variables to which values must be assigned (e.g.,
appear in

• Text that is printed on your terminal by the computer is shown in
constant width type. Code examples are also shown in constant
width type to allow for more accurate representation of spacing. (Spacing
is often a matter of coding style, but is sometimes critical.)

1-3

I

2 Overview

���L �����>�,� �L ���,�$�H�L�8�&�L���L���A�<�$���2�L

���$�4�$�&�-�A�>�L�8�&�L���������������L
2-3

Protocol Portability
Protocol Substitution
Protocol Migration
Module Reusability

���5�L ���"�F���4� �$�"�L ���,�$�H�L�8�&�L���L���A�<�$���2�L

I
• Network architectures and higher level protocols can be independent of

underlying protocols, drivers and physical communication media.

• Higher level services can be created by selecting and connecting lower
level services and protocols .

The following are examples of the benefits of STREAMS capabilities to
developers for creating service interfaces and manipulating modules.

NOTE

All protocol modules used below were selected
for illustrative purposes. Their use does not
imply offers such modules as products .

�����������������#�������������������!�#

Figure �������„shows how the same �8��� ����„protocol module can be used with
different drivers on different machines by implementing compatible service
interfaces. The �8�������„protocol module interfaces are Connection Oriented
Network Service (CONS) and Link Access Protocol- Balanced (LAPB) driver.

MACHINE A MACHINE B

������������ ������������

X.25
Protocol Layer

Module

������������ ������������

LAPB
Driver

Machine A

CONS
lNTERFACE

SAME
MODULE

LAPB
lNTERFACE

DIFFERENT
DRIVER

������������ ������������

X.25
Protocol Layer

Module

������������ ������������

I
LAPB
Driver

Machine B
\

�'�N�J�y�h�C�„2-2. Protocol Module Portability

�������„ STREAMS Primer

Protocol Substitution

Alternative protocol modules (and device drivers) can be interchanged on the
same machine if they are implemented to an equivalent service interface(s) .

Protocol Migration

Figure 2-3 illustrates how STREAMS can migrate functions between kernel
software and front end firmware. common downstream service interface
allows the transport protocol module to be independent of the number or type
of modules below. The same transport module will connect without
modification to either an X.25 module or X.25 driver that has the same service
interface.

By shifting functions between software and firmware, developers can
produce cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The
same transport protocol module can be used on a lower capacity machine,
where economics may preclude the use of front-end hardware, and also on a
larger scale system where a front-end is economically justified.

2-5

I

I
Oass 1

Transport
Protocol

- - - - - - - -
��

- - - -

X.25
Packet Layer

Protocol

I
LAPB

-1 Driver

\

SAME
MODULES

CONS
- - - - interface - - - -

\ KERNEL t HARDWARE

Oass 1
Transport
Protocol

- - - - - - -
��

- ---

X.25
Packet Layer

Driver } ---
�'�N�J�y�h�C�„2-3. Protocol Migration

������� �����# ����� ���������������!�#

Figure 2-4 shows the same canonical module (e .g . , one that provides delete
and kill processing on character strings) reused in two different Streams . This
module would typically be implemented as a filter, with no downstream
service interface . In both cases, a TIY interface is presented to the Stream's
user process since the module is nearest the Stream head.

2-6 STREAMS Primer

I

Module
B

Module
A

Message
"Ad"

� � � � � -�s�r:_S_p�<:_e
������� ���

Kernel Space

"Bu"

� � � � � � � � � � � � � � � � � � � ���

��L--- �--L-� QUEUE
"Au"

QUEUE
"Ad"

upstream

Message
"Bu"

Module
: Stream

.,_,_,'-'-'-''::-'-:""""""""""'-'-'-'• End

2-8 STREAMS Primer

External
Interface

�'�N�J�y�h�C�„���������È�I�¬�•�i�Y�‡�È�7�Œ�È�=�‘�•�i�È�.�i�¬�Y�x�‚�È

3 Building A Stream

���D�,�/�"�,�4�'�L���L���A�=�$���2�L

���!�����������# ��#�
����������#

I

Stream head implementation accommodates this change in format
automatically and transfers the multiple-character data into user space . The
Stream head also keeps track of messages partially transferred into user space
(e .g . , when the current user �h�C�;�@�„buffer can only hold part of the current
message) . Downstream operation is not affected: the head sends, and the
driver receives, multiple character messages.

Note that the Stream head provides the interface between the Stream and user
process. Modules and drivers do not have to implement user interface
functions other than open and close .

3-4 STREAMS Primer

4 User Level Functions

���������������L ���K�?�A�%�3�L�����/�/�?�L

���4�L ���?�K�6� �*�<�9�4�9�E�?�L ���<�9�A�9� �9�/�L���A�=�%���3�L
���I���3�;�0�%�L

4-3

���B�+�%�<�L���?�%�<�L�	�E�7�!�B�.�:�6�?�L

���������#�������# ���!��� �����#

I

Communications software support for these terminals is provided via a
STREAMS implemented asynchronous protocol. The protocol includes a
variety of options that are set when a terminal operator dials in to log on. The
options are determined by a �H�C�w���x�e�„STREAMS user process, getstrm, which
analyzes data sent to it through a series of dialogs (prompts and responses)
between the process and terminal operator.

The process sets the terminal options for the duration of the connection by
pushing modules onto the Stream or by sending control messages to cause
changes in modules (or in the device driver) already on the Stream. The
options supported are:

• ASCII or EBCDIC character codes

• For ASCII code, the parity (odd, even or none)

• Echo or not echo input characters

• Canonical input and output processing or transparent (raw) character
handling

These options are set with the following modules:

CHARPROC
provides input character processing functions, including dynamically
settable (via control messages passed to the module) character echo and
parity checking. The modules default settings echo characters but do
not check character parity.

CANONPROC
performs canonical processing on ASCII characters upstream and
downstream (note that this performs some processing in a different
manner from the standard operating system character 110 TTY
subsystem) .

ASCEBC
translates EBCDIC code to ASCII upstream and ASCII to �/�)�,�.�9�,�È
downstream.

4-2 STREAMS Primer

I

An incoming call arrives at port one and causes a ring detect signal in the
modem. The driver receives the ring signal, answers the call, and sends
upstream an M_PROTO message that contains information indicating an
incoming call. getstnn is notified of all incoming calls, although it can
choose to refuse the call because of system limits. In this idle state, getstnn
also accepts M_PROTO messages indicating, for example, error conditions
such as detection of line or modem problems on the idle line.

The M_PROTO message containing notification of the incoming call flows
upstream from the driver into CHARPROC. CHARPROC inspects the
message type, determines that message processing is not required, and
passes the unmodified message upstream to the Stream head. The Stream
head copies the message into the �H�C�t�W�o�H�„buffers (one buffer for control
information, the other for data) associated with getstnn and wakes up the
process. getstnn sends its acceptance of the incoming call with a �c�{�s�Z�r�J�„
system call which results in a downstream M_PROTO message to the driver.

Then, getstnn sends a prompt to the operator with a �€�h�N�s�C�„and issues a
�I�C�t�W�o�H�„to receive the response. A �i�C�;�@�„could have been used to receive the
response, but the �H�C�s�W�o�H�„call allows concurrent monitoring for control
(M_PROTO and M_PCPROTO) information. getstnn now sleeps until the
response characters, or information about possible error conditions detected
by modules or driver, are sent upstream.

The first response, sent upstream in a M_DATA block, indicates that the
code set is ASCII and canonical processing is requested. getstnn implements
these options by pushing CANONPROC onto the Stream, above
CHARPROC, to perform canonical processing on the input ASCII characters .

The response to the next prompt requests even parity checking. getstrm
sends an �L�^�>�s�S�„I_STR command to CHARPROC, requesting the module to
perform even parity checking on upstream characters . When the dialog
indicate protocol option setting is complete, getstnn creates an application
process. At the end of the connection, getstnn pops CANONPROC and then
sends a I_STR to CHARPROC requesting the module to restore the no-parity
idle state (CHARPROC remains on the Stream) .

4-6 STREAMS Primer

As a result of the above dialogs, the terminal at port one operates in the
following configuration:

• ASCII, even parity

• Echo

• Canonical processing

In similar fashion, an operator at a different type of terminal on port two
requests a different set of options, that results in the following configuration: I • EBCDIC

• No Echo

• Canonical processing

The resultant Streams for the two ports are shown in Figure 4-2. For port
one, on the left, the modules in the Stream are CANONPROC and
CHARPROC.

For port two, on the right, the resultant modules are CANONPROC,
ASCEBC and CHARPROC. ASCEBC has been pushed on this Stream to
translate between the ASCII interface at the downstream side of
CANONPROC and the EBCDIC interface of the upstream output side of
CHARPROC. In addition, getstnn has sent an I_STR to the CHARPROC
module in this Stream requesting it to disable echo. The resultant
modification to CHARPROC's functions is indicated by the word "modified"
in the right Stream of Figure 4-2.

User Level Functions 4-7

I

User
Process

s�
HEAD

CANONPROC

CHARPROC

PORT
1

RAW TIY
DRIVER

User
Process

s�
HEAD

AScEBC

CHARPROC
(mo�fied)

PORT
2

User Space
- K:e�ef Space -

��

�'�L�J�y�h�C�„4-2. Asynchronous Terminal Streams

4-8 STREAMS Primer

5 Kernel Level Functions

���4�A�<�8�"�D� �A�,�8�4�L

���$�>�>���(�$�>�L

���D�A�L���4�#�L���$�<�F�,� �$�L���<�9� �$�#�D�<�$�>�L

���$�<�4�$�/�L���<�8� �$�>�>�,�4�)�L

Driver Processing
a-IARPROC

CANONPROC

�����������# �������# ���!�����"���#

Message
Block:
(type)

Message
Block:

Message
Block:

I
v

�'�O�J�y�h�C�„5-1. A Message

STREAMS allocates a message as a single block containing a buffer of a certain
size (see the next section) . If the data for a message exceeds the size of the
buffer containing the data, the procedure can allocate a new block containing
a larger buffer, copy the current data to it, insert the new data and deallocate
the old block. Alternately, the procedure can allocate an additional (smaller)
block, place the new data in the new message block and link it after or before
the initial message block. Both alternatives yield one new message .

Messages can exist standalone, as shown in Figure ���������„when the message is
being processed by a procedure. Alternately, a message can await processing
on a linked list of messages, called a message queue, in a �E�R�/�R�/���ÈIn Figure
5-2, Message ���„is linked to Message 2.

5-2 STREAMS Primer

I

CANONPROC
Module

CHARPROC
Module

write read

(p';lt) (service)
: II

\]
(p�t) (service)

� � � � � � � � � � � � � � � ��

(p';lt)

\]
(service)

.---.....__---,
(service)

II

�(�P�I�y�h�C�„5-4. �?�‘�e�³�‚�h�È�C�³�«�È�Y�Œ�e�È�I�h�œ�»�w�a�h�È�C�œ�‘�a�h�e�³�œ�h�¥�È

�W�s�h�Ž�È�«�s�h�È�e�œ�w�·�h�œ�È�a�Y�‚�‚�¥�È�+�6�#�H�C�H�B�+���È�¥�È�œ�h�Y�e�ÈQUEUE �—�³�«�È�—�œ�‘�`�h�e�³�œ�h�
�È�«�s�h�È
�–�œ�’�a�h�e�³�œ�h�È�a�s�h�a�€�¥�È�—�œ�w�·�Y�«�h�È�e�Y�«�Y�È�l�‚�Y�p�¥�È�w�Œ�È�«�s�h�ÈQUEUE. �6�h�œ�h�
�È�«�s�h�È�m�‚�Y�p�¥�È�w�Œ�e�x�`�Y�«�h�È
�«�s�Y�«�È�h�a�s�‘�w�Œ�p�È�w�¥�È�«�‘�È�^�h�È�—�h�œ�l�‘�œ�†�h�e�È���œ�h�`�Y�‚�‚�È�«�s�Y�«�È�h�a�s�‘�w�Œ�p�È�x�¥�È�‘�—�«�x�‘�Œ�Y�‚�È�Y�Œ�e�È�Y�œ�h�È
�½�’�œ�€�w�Œ�p�È�½�|�«�s�È�–�‘�œ�«�È�s�Y�œ�e�½�Y�œ�h�È�«�s�Y�«�È�a�Y�Œ�Œ�‘�«�È�Y�³�«�‘�†�Y�«�w�`�Y�…�…�Á�È�h�`�s�‘�����È�+�6�"�H�C�H�B�+�È
�a�Y�³�¥�h�¥�È�«�s�h�È�h�a�s�‘�È�«�‘�È�^�h�È�«�œ�Y�Œ�¥�†�w�«�¬�h�e�È�^�Y�a�€�È�«�‘�È�«�s�h�È�«�h�œ�†�w�Œ�Y�‚�È�^�Á�È�m�x�œ�¥�«�È�‡�Y�€�x�Œ�p�È�Y�È�a�‘�—�Á�È
�’�l�È�«�s�h�È�†�h�¥�¥�Y�p�h�È�½�x�«�s�È�Y�ÈSTREAMS �³�«�w�‚�w�«�Á���È�M�s�h�Œ�
�È�+�6�#�H�C�H�B�+�È�³�¥�h�¥�È�Y�Œ�‘�«�s�h�œ�È
�³�«�w�‚�w�«�Á�È�«�’�È�‘�^�«�Y�w�Œ�È�«�s�h�È�Y�e�e�œ�h�¥�¥�È�‘�l�È�w�«�¥�È�‘�½�Œ�È�½�œ�w�«�h�ÈQUEUE. �4�w�Œ�Y�‚�‚�Á�
�È�«�s�h�È
�+�6� �H�C�H�B�+�È�œ�h�Y�e�È�–�³�«�È�—�œ�‘�a�h�e�³�œ�h�È�a�Y�‚�…�¥�È�w�«�¥�È�½�œ�w�«�h�È�–�³�«�È�—�œ�‘�a�h�e�³�œ�h�È�Y�Œ�e�È�—�Y�¥�¥�h�¥�È�x�«�È�«�s�h�È
�†�h�¥�¥�Y�p�h�È�a�‘�—�Á���È�L�s�h�È�½�œ�w�«�h�È�—�œ�‘�`�h�e�³�œ�h�È�¥�h�Œ�e�¥�È�«�s�h�È�†�h�¥�¥�Y�p�h�È�«�‘�È�«�s�h�È�e�œ�x�º�h�œ�È�«�‘�È�h�m�m�h�`�«�È
�«�s�h�È�h�a�s�‘�È�Y�Œ�e�È�«�s�h�Œ�È�œ�h�«�³�¢�¥�È�«�‘�È�«�s�h�È�œ�h�Y�e�È�—�œ�‘�`�h�e�³�œ�h���È

�Q�w�¥�È�–�Y�œ�«�È�‘�l�È�œ�h�Y�e�È�¥�x�e�h�È�—�œ�‘�a�h�¥�¥�x�Œ�p�È�w�¥�È�w�†�—�‚�h�†�h�Œ�«�h�e�È�½�x�«�s�È�—�³�«�È�—�œ�‘�`�h�e�³�œ�h�¥�È�¥�‘�È�«�s�Y�«�È
�«�s�h�È�h�Œ�«�w�œ�h�È�–�œ�‘�a�h�¥�¥�w�Œ�p�È�¥�h�š�³�h�Œ�`�h�È�‘�a�a�³�œ�¥�È�Y�¥�È�Y�Œ�È�h�¾�«�h�Œ�¥�w�‘�Œ�È�‘�m�È�«�s�h�È�e�œ�x�º�h�œ�È�w�Œ�—�³�«�È
�a�s�Y�œ�Y�a�«�h�œ�È�w�Œ�«�h�œ�œ�³�—�«���È�M�s�h�È�+�6�#�H�C�H�B�+�È�œ�h�Y�e�È�Y�Œ�e�È�½�œ�x�¬�h�È�—�³�«�È�—�œ�‘�`�h�e�³�œ�h�¥�È�Y�—�—�h�Y�œ�È
�[�¥�È�¥�³�^�œ�‘�³�«�x�Œ�h�¥�È���Œ�h�¥�«�h�e�È�w�Œ�È�«�s�h�È�`�Y�¥�h�È�‘�l�È�«�s�h�È�½�œ�w�«�h�È�—�œ�‘�a�h�e�³�œ�h���È�«�‘�È�«�s�h�È�e�œ�x�º�h�œ���È�M�s�x�¥�È
�Š�Y�Œ�Œ�h�œ�È�‘�l�È�—�œ�‘�a�h�¥�¥�w�Œ�p�È�w�¥�È�w�Œ�«�h�Œ�e�h�e�È�«�‘�È�—�œ�‘�e�³�`�h�È�«�s�h�È�a�s�Y�œ�Y�`�«�h�œ�È�h�`�s�‘�È�w�Œ�È�Y�È�‡�x�Œ�x�‡�Y�‚�È
�«�w�†�h�È�l�œ�Y�ˆ�h���È

5-8 STREAMS Primer

6 Other Facilities

���6�A�<�8�"�D�!�A�-�8�6�L

���%�>�>���'�%�L���D�%�D�%�L���<�-�8�<�-�A�K�L

�	�/�8�H�L���8�6�A�<�8�/�L

���D�/�A�-�;�0�%�J�-�6�)�L

� � �8 �4�-�A�8�<�-�4�)�L

���<�<�8�<�L���6�"�L���<���!�%�L���8�' �' �-�7�'�L

processes all its messages in one pass. STREAMS provides two independent
mechanisms to guard its message buffer pools from being depleted and to
minimize long processing bursts at any one module.

NOTE

Flow control is only applied to normal priority
messages (see previous section) and not to
high priority messages.

The first flow control mechanism is global and automatic and is related to the
message pool priority, discussed in the Message Storage Pool section of Chapter
5. When the Stream head requests a message buffer in response to a putmsg
or �€�h�L�s�C�„system call, it uses the lowest level of priority. Since buffer
availability is based on priority and buffer pool levels, the Stream head is I among the first modules refused a buffer when the pool becomes depleted. In
response, the Stream head blocks user output until the STREAMS buffer pool
recovers . As a result, output has a lower priority than input.

The second flow control mechanism is local to each Stream and advisory
(voluntary), and limits the number of characters that can be queued for
processing at any QUEUE in a Stream. This mechanism limits the buffers and
related processing at any one QUEUE and in any one Stream, but does not
consider buffer pool levels or buffer usage in other Streams .

The advisory mechanism operates between the two nearest QUEUEs in a
Stream containing service procedures (see Figure 6-2) . Messages are usually
held on a message queue only if a service procedure is present in the
associated QUEUE.

Messages accumulate at a QUEUE when its service procedure processing does
not keep pace with the message arrival rate, or when the procedure is blocked
from placing its messages on the following Stream component by the flow
control mechanism. Pushable modules contain independent upstream and
downstream limits, which are set when a developer specifies high-water and
low-water control values for the QUEUE. The Stream head contains a preset
upstream limit (which can be modified by a special message sent from
downstream) and a driver may contain a downstream limit.

Other Facilities 6-3

I

Flow control operates as follows:

1 . Each time a STREAMS message handling routine (e .g. , �a�y�s�f���„adds or
removes a message from a message queue in a QUEUE, the limits are
checked. STREAMS calculates the total size of all message blocks on the
message queue.

2 . The total is compared to the QUEUE high-water and low-water values.
If the total exceeds the high-water value, an internal full indicator is set
for the QUEUE. The operation of the service procedure in this QUEUE
is not affected if the indicator is set, and the service procedure continues
to be scheduled.

3 . The next part of flow control processing occurs in the nearest preceding
QUEUE that contains a service procedure. In Figure 6-2, if D is full and
C has no service procedure, then B is the nearest preceding QUEUE.

QUEUE
B

I

*
Message
Queue

QUEUE
c

QUEUE
D

I

*
Message
Queue

�(�N�J�y�h�D�„6-2. Flow Control

4 . The service procedure in B uses a STREAMS utility routine to see if a
QUEUE ahead is marked full. If messages cannot be sent, the scheduler
blocks the service procedure in B from further execution. B remains
blocked until the low-water mark of the full QUEUE, D, is reached.

5 . While B is blocked, any non-priority messages that arrive at B
accumulate on its message queue (recall that priority messages are not
blocked) . B can reach a full state and the full condition propagates back
to the last module in the Stream.

6. When the service procedure processing on D causes the message block
total to fall below the low water mark, the full indicator is turned off.
STREAMS automatically schedules the nearest preceding blocked
QUEUE (B in this case), getting things moving again. This automatic
scheduling is known as back-enabling a QUEUE.

6-4 STREAMS Primer

Note that to utilize flow control, a developer need only call the utility that
tests if a full condition exists ahead, plus perform some housekeeping if it
does. Everything else is automatically handled by STREAMS. Additional
flow control features are described in the STREAMS Programmer's Guide.

Multiplexing

STREAMS multiplexing supports the development of internetworking
protocols, e .g . , IP and ISO CLNS, and the processing of interleaved data
streams, e .g . , in SNA, X.25, and terminal window facilities.

STREAMS multiplexors (also called pseudo-device drivers) are created in the
kernel by interconnecting multiple Streams. Conceptually, there are two
kinds of multiplexors that developers can build with S'IREAMS: upper and
lower multiplexors. Lower multiplexors have multiple lower Streams between
device drivers and the multiplexor, and upper multiplexors have multiple I upper Streams between user processes the multiplexor.

Figure 6-3 shows an example of a lower multiplexor. This configuration
typically occurs where internetworking functions are included in the system.
This Stream contains three types of drivers: the Ethernet, LAPB, and IEEE
802.2; hardware device drivers that terminate links to other nodes. The
Internet Protocol (IP) is a multiplexor.

The IP multiplexor switches messages among the various nodes (lower
Streams) or sends them upstream to user processes in the system. In this
example, the multiplexor expects to see an 802.2 interface downstream; for
the Ethernet and LAPB drivers, the Net 1 and Net 2 modules provide service
interfaces to the two the non-802.2 drivers and the IP multiplexor.

Figure 6-3 depicts the IP multiplexor as part of a larger Stream. The Stream,
as shown in the dotted rectangle, usually has an upper TCP multiplexor and
additional modules . Multiplexors could also be cascaded below the IP driver
if the device drivers were replaced by multiplexor drivers .

Other Facilities 6-5

I
Net 1

Module

Ethernet

Driver

�T�¦�h�œ�È
�D�œ�•�h�ª�¦�h�ª�È

A f.. A

� � � � � � � � � � � � � � � 'V. 'J. \l. ���
Upper

Multiplexor or
Module

IP
Multiplexor

Driver

Net 2

Module

LAPB
Driver

Figure 6-3. �7�Œ�«�h�¢�h�«�È�=�³�ƒ�«�w�–�ƒ�h�¾�w�Œ�p�È�I�«�•�h�Y�†�È

�5�w�p�³�•�h�È6-4 �¦�s�‘�¼�¦�È�Y�Œ�È�³�–�–�h�œ�È�†�³�ƒ�«�}�–�ƒ�h�¾�‘�œ���È�7�Œ�È�«�s�w�¦�È�`�‘�Œ�m�w�p�³�•�Y�«�w�‘�Œ���È�«�t�h�È�f�•�w�¸�j�•�È
�œ�‘�³�«�h�¦�È�†�h�¦�¦�Y�p�h�¦�È�^�h�«�¼�h�h�Œ�È�«�s�h�È�ƒ�‘�¼�h�œ�È�I�«�•�h�Y�†�È�Y�Œ�e�È�‘�Œ�h�È�‘�m�È�«�s�h�È�³�–�–�j�•�È�J�«�•�h�Z�‡�¦���È
�M�s�w�¦�È�I�«�œ�h�Y�†�È�–�h�•�m�‘�•�†�¦�ÈX.25 �†�³�ƒ�«�w�–�ƒ�h�¾�w�Œ�p�È�«�‘�È�†�³�ƒ�«�w�—�ƒ�h�È �w�Œ�f�h�–�h�Œ�f�h�Œ�¬�È �J�¼�w�¬�b�t�j�f�È
�V�w�•�«�³�Y�ƒ�È�-�w�œ�`�³�w�«�È���I�V�-���È�Y�Œ�e�È�C�h�•�†�Y�Œ�h�Œ�«�È�V�w�•�«�³�Y�ƒ�È�-�w�•�`�³�w�«�È���C�V�-���È�¶�¦�j�•�È�—�•�“�b�j�¦�¦�j�¦���È
�R�–�–�h�•�È�†�³�ƒ�«�w�–�ƒ�h�¾�‘�•�¦�È�Y�•�h�È�Y�È�¦�–�j�`�w�m�w�`�È�Y�–�–�ƒ�w�`�Y�«�w�‘�Œ�È�‘�m�È�¦�«�Y�Œ�f�Y�•�f�È�I�M�G�/�!�>�J�È�m�Z�b�~�‚�~�¬�~�j�¦�È
�«�s�Y�«�È�¦�³�–�–�‘�•�«�È�†�³�ƒ�«�~�–�ƒ�h�È�†�w�Œ�‘�•�È�f�h�¸�w�`�h�¦�È�w�Œ�È�Y�È�e�h�¸�w�`�h�È�e�•�w�¸�h�•���È�M�s�w�¦�È�m�~�q�¶�•�h�È�Z�‚�¦�“�È�¦�t�“�¼�¦�È
�«�s�Y�«�È�†�‘�•�h�È�`�‘�†�–�‚�h�¾�È�`�‘�Œ�m�~�p�³�•�Y�«�w�‘�Œ�¦�È�`�Y�Œ�È�^�h�È�^�³�w�‚�«�È�^�À�È�t�Z�¸�w�Œ�p�È�‘�Œ�h�È�“�•�È�‡�“�•�j�È
�†�³�ƒ�«�w�–�‚�h�¾�h�e�È�<�(�*�È �f�•�w�¸�h�•�¦�È�^�h�ƒ�‘�¼�È�Y�Œ�e�È�†�³�ƒ�«�w�–�ƒ�h�È�†�‘�f�¶�ƒ�h�¦�È�Y�^�‘�¸�j���È

6-6 STREAMS Primer

PVC
Processes

svc

Processes Processes

� �� � � � � � � � � � � �

Modules Modules

X.25

Packet Layer Protocol
Multiplexor Driver

LAPB Driver
or

Lower Multiplexor

. IJ

Modules

· · · · · · :.::t"· · · · · · · ·

�'�L�J�y�j�C�„6-4. X.25 Multiplexing Stream

Developers can choose either upper or lower multiplexing, or both, when
designing their applications . For example, a window multiplexor would have
a similar configuration to the X.25 configuration of Figure 6-4, with a window
driver replacing Packet Layer, a tty driver replacing LAPB, and the child
processes of the terminal process replacing the user processes. Although the
X.25 and window multiplexing Streams have similar configurations, their
multiplexor drivers would differ significantly. The IP multiplexor of Figure
6-2 has a different configuration than the X.25 multiplexor and the driver
would implement its own set of processing and routing requirements .

Other Facilities 6-7

I

�	�
�
�I

Messages

���modwe � � � � � �

Trace
Log File

Trace
Messages

�

Log
Software

Driver

�&�N�I�y�h�C�„6-5. Error and Trace Logging

� � � � � � �

�n�t�h�C�h�h�„is intended to operate as a daemon process initiated at system startup.
A call to �n�t�h�S�^�I�„requesting an error to be logged causes an M_PROTO
message to be sent to �n�t�h�C�h�h�
�„which formats the contents and places them in a
daily file . The utility �n�t�h�>�S�C�;�[���U�,�„is provided to periodically purge aged,
unreferenced daily log files .

A call to �n�t�h�S�^�H�„requesting trace information to be logged causes a similar
M_PROTO message to be sent to �n�t�h�;�>�C���U�,�
�„which places it in a user
designated file . �n�s�h�;�>�C�„is intended to be initiated by a user. The user can
designate the modules/drivers and severity level of the messages to be
accepted for logging by �n�t�h�;�>�C���„

6-10 STREAMS Primer

user process can submit its own M_PROTO messages to the log driver for
inclusion in the logger of its choice through �b�y�t�W�n�I���������„The messages must
be in the same format required by the logging processes and will be switched
to the logger(s) requested in the message.

The output to the log files is formatted, ASCII text. The files can be processed
by standard system commands such as �H�i�C�b�������„or �C�@���������„or by developer
provided routines .

Other Facilities ���� � � � � „

7 Driver Design Comparisons

Introduction
Environment
Drivers
Modules

G Glossary

G lossary

I

QU E U E
The set of structures that forms a module . A module i s composed of two
QUEUEs, a read (upstream) QUEUE and a write (downstream) QUEUE.

�h�C�;�@�„�f�y�C�y�C�„
The message queue in a module or driver containing messages moving
upstream. Associated with input from a driver.

�2�s�h�C�;�W�„
The kernel aggregate created by connecting STREAMS components,
resulting from an application of the STREAMS mechanism. The primary
components are a Stream head, a driver and zero or more pushable
modules between the Stream head and driver. A Stream forms a full
duplex processing and data transfer path in the kernel, between a user
process and a driver. A Stream is analogous to a Shell pipeline except
that data flow and processing are bidirectional.

�3�s�h�C�;�W�„�K�C�;�A�„
The end of the Stream closest to the user process. The Stream head
provides the interface between the Stream and the user process. The
principal functions of the Stream head are processing STREAMS-related
system calls, and bidirectional transfer of data and information between a
user process and messages in STREAMS' kernel space .

�2�7�1�%�"�+�4�„
A kernel mechanism that supports development of network services and
data communication drivers . It defines interface standards for character
input/output within the kernel, and between the kernel and user level.
The STREAMS mechanism comprises integral functions, utility routines,
kernel facilities and a set of structures.

�y�a�o�s�h�C�;�X�„
The direction from driver to Stream head.

�•�h�N�s�C�„�f�y�D�y�C�„
The message queue in a module or driver containing messages moving
downstream. Associated with output from a user process.

G-2 STREAMS Primer

