
®MOTOROLA

68NW9209H42A

SYSTEM V /88 Release 3.2
User's Guide

® MOTOROI,

Motorola welcomes your

Manual Title
Part Number

Your Name
Your Title
Company
Address

General Information: I

Do you read this manu

0 Install the product

0 Reference inforn

In general, how do yo\!

0 Index 0 Table o

Completeness: o Ex1
What topic would you

-
-
--

-
=
--
-

-

:

-f
CD
3

u
CD

)> N
(X)
01
1\)
(X)
1\)
I

c.o
.......
�
_..

®�
0

0
<.
u;·
a·
::J

0
� _..
0>
�

en
-t
)>
(,')
m
�
r=
r
ro
m
"0
)>
i5
�
)>
0
0
::n
m
en
en
m
m

,
55
en
-t
()
r
)>
en
en

m �
)> c:
r= �
"0 z
m m ::n en �
=i en
z ::rJ 0 m
1\) "'0 (11
Ol r-(11 -<
"0 s: :r ;!:: 0
m r-z
x

)>
::n
N
0
z
)>

Presentation: 0 Excellent 0 Very Good 0 Good 0 Fair 0 Poor

What features of the manual are most useful (tables, figures, appendixes, index, etc.)?

Is the information easy to understand? 0 Yes 0 No If you checked no, please explain:

Is the information easy to find? 0 Yes 0 No If you checked no, please explain:

Technical Accuracy: 0 Excellent 0 Very Good 0 Good 0 Fair 0 Poor

If you have found technical or typographical errors, please list them here.

Pa e Number Descri tion of Error

SYSTEM V /88 Release 3.2

User's Gu ide

(68NW9209H42A)

The information is this document has been carefully checked and is believed to be
entirely reliable . However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights or the rights of the
others .

PREFACE

The material in this guide is organized into two major parts: an overview of the
SYSTEM V/88 operating system and a set of tutorials covering the main tools
available on the operating system. A brief description of each part follows. The
last section of this introduction, Notations and Conventions, describes the
typographical notations with which all the chapters of this guide conform. You
may want to refer to that section from time to time as you read the guide.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.
SYSTEM V/88 is a trademark of Motorola, Inc.

UniSoft is a registered trademark of UniSoft Corporation.

UNIX and Teletype are registered trademarks of AT&T.

Portions of this document are reprinted from copyrighted documents by
permission of UniSoft Corporation. Copyright 1985, 1986, 1987, 1988, 1989,
UniSoft Corporation. All rights reserved.

Portions of this document have been previously copyrighted by AT&T and are

reproduced with permission.

SYSTEM V/88 Release 3 .2 is based on the AT&T UNIX System V Release 3 .2 .

All rights reserved. No part of this manual may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by prior written permission of Motorola, Inc .

First Edition February 1990

Copyright 1990 by Motorola, Inc.

1

2

3

4

Contents

What Is the SYSTEM V/88 System?
System Overview
SYSTEM V/88 Tutorials
Features of SYSTEM V/88
Reference Information
Notations and Conventions
SYSTEM V/88 Operating System Structure

Basics for SYSTEM V/88 Users
Getting Started
The Terminal
Login Procedure

Using the Fi le System
Introduction
Your Place in the File System
Organizing a Directory
Accessing and Manipulating Files
Printing Files

Overview of the Tutorials
Introduction
Text Editing
The Shell
Communicating Electronically
Programming in the System

1-1
1-1
1-2
1-3
1-4
1-7

2-1
2-1

2-14

3-1
3-4

3-16
3-30
3-68

4-1
4-1
4-6

4-10
4-11

Contents

Contents

5

6

ii User's Guide

Line Editor Tutorial (ed)
Introducing the Line Editor
Getting Started
General Format of ed Commands
Line Addressing
Symbolic Line Addressing
Displaying Text in a File
Creating Text
Deleting Text
Substituting Text
Special Characters
Moving Text
Additional Commands and Concepts
Answers to Exercises

Screen Editor Tutorial (vi)
Introduction
Getting Started
Creating a File
Editing Text: the Command Mode
Quitting vi
Moving the Cursor Around the Screen
Scrolling the Text
Creating Text
Deleting Text
Modifying Text
Special Commands
Using Line Editing Commands in vi
Commands for Quitting vi
Special Options for vi
Answers to Exercises

5-1
5-2

5-13
5-14
5-15
5-29
5-32
5-41
5-46
5-56
5-69
5-79

5-90

6-1
6-3
6-7
6-9

6-17
6-21
6-37

6-50
6-55
6-63
6-75
6-78
6-84
6-86
6-89

7

8

9

Shel l Tutorial
Introduction
Shell Command Language
Shell Programming
Modifying Your Login Environment
Answers to Exercises

Electronic Mai l Tutoria l
Introduction
Exchanging Messages
The mail Faci1ity
The mailx Facility
Sending and Receiving Files
Networking

ksh Tutoria l
Introduction
Shell Variables
Arithmetic Evaluation
Functions and Command Aliasing
Input and Output
Command Re-entry
In-1ine Editing
Job Control
Security
Miscellaneous
Performance
Example

Contents

7-1
7-2

7-37
7-94

7-102

8-1
8-1
8-2

8-14
8-42
8-63

9-1
9-1
9-3
9-4
9-8
9-9

9-11
9-12
9-13
9-14
9-21
9-23

Contents iii

Contents

A

B

c

D

E

F

G

iv User's Guide

Sum mary of the Fi le System
File System Structure
SYSTEM V /88 Directories

Summary of SYSTEM V/88 Commands
Basic SYSTEM V /88 Commands

Quick Reference to ed Commands
The ed Commands

Quick Reference to vi Commands
vi Quick Reference

Summary of Shel l Command Language
Summary of Shell Command Language

Setting Terminal Type
Setting the TERM Variable
The Terminal Support System

Glossary
Glossary

A-1
A-2

B-1

C-1

D-1

E-1

F-1
F-5

G-1

Figures

Figure 1-1: SYSTEM V/88 Operating System Model 1-7

Figure 1-2: Functional View of the Kernel 1-8

Figure 1-3: The Hierarchical Structure of the File System 1-9

Figure 1-4: Example of a File System 1-11

Figure 1-5: Execution of an Operating System Command 1-17

Figure 2-1: Keyboard Layout of a Typical Terminal 2-3

Figure 2-2: Data Phone Set, Modem, and Acoustic Coupler 2-13

Figure 3-1: Sample File System 3-3

Figure 3-2: Directory of Home Directories 3-5

Figure 3-3: Full Path Name of the /userl/starship Directory 3-10

Figure 3-4: Relative Path Name of the draft Directory 3-12

Figure 3-5: Relative Path Name from starship to outline 3-13

Figure 6-1: Displaying a File with a vi Window 6-2

Figure 7-1: Format of a here Document 7-63

Figure 7-2: Format of the for Loop Construct 7-69

Figure 7-3: Format of the while Loop Construct 7-73

Figure 7-4: Format of the if ... then Conditional Construct 7-76

Figure 7-5: Format of the if ... then ... else Conditional Construct 7-78

Figure 7-6: The case ... esac Conditional Construct 7-85

Contents v

Figures

Figure 8-1: Sample .mailrc File

Figure A-1: Directory Tree from root

vi User's Guide

8-39

A-1

Tables

Table 2-1 : Special Characters and Symbols 2-5

Table 2-2: Troubleshooting Login Problems 2-19

Table 3-1 : Summary of the pwd Command 3-7

Table 3-2: Example Path Names 3-14

Table 3-3: Summary of the mkdir Command 3-17

Table 3-4: Summary of the Is Command 3-25

Table 3-5: Summary of the cd Command 3-28

Table 3-6: Summary of the rmdir Command 3-30

Table 3-7: Basic Commands for Using Files 3-31

Table 3-8: Summary of the cat Command 3-35

Table 3-9: Summary of Commands to Use with pg 3-36

Table 3-10: Summary of the pg Command 3-41

Table 3-11 : Summary of the cp Command 3-45

Table 3-12: Summary of the mv Command 3-48

Table 3-13: Summary of the rm Command 3-50

Table 3-14: Summary of the we Command 3-53

Table 3-15: Summary of the chmod Command 3-60

Table 3-16: Summary of the diff Command 3-63

Table 3-17: Summary of the grep Command 3-65

Contents vii

Tables

Table 3-18: Summary of the sort Command

Table 3-19: Summary of the pr Command

Table 3-20: Print Commands and Their Functions

Table 3-21: Summary of the lp Command

Table 3-22: Summary of the lpstat Command

Table 4-1: Comparison of Line and Screen Editors (ed and vi)

Table 5-1: Summary of ed Editor Commands

Table 5-2: Summary of Line Addressing

Table 5-3: Sample Addresses for Displaying Text

Table 5-4: Summary of Commands for Displaying Text

Table 5-5: Summary of Commands for Creating Text

Table 5-6: Summary of Commands for Deleting Text

Table 5-7: Summary of Special Characters
Table 5-8: Summary of ed Commands for Moving Text

Table 5-9: Summary of Additional Commands and Concepts

Table 6-1: Summary of Commands for the vi Editor

Table 6-2: Summary of vi Motion Commands

Table 6-3: Summary of Commands for Positioning the
on a Line

Table 6-4: Summary of Commands
on a Word

for Positioning the

Cursor

Cursor

Table 6-5: Summary of Commands for Positioning the Cursor on a

3-68

3-72

3-73

3-77

3-79

4-5

5-12

5-27

5-30

5-31

5-39

5-46

5-67

5-78

5-88

6-19

6-33

6-34

6-35

Sentence, a Paragraph, or in a Window 6-36

viii User's Guide

Tables

Table 6-6: Summary of Additional vi Motion Commands 6-48

Table 6-7: Summary of vi Commands for Creating Text 6-54

Table 6-8: Summary of Delete Commands 6-61

Table 6-9: Summary of vi Commands for Changing Text 6-69

Table 6-10: Summary of the Yank Command 6-72

Table 6-11: Summary of vi Commands for Cutting and Pasting
Text 6-74

Table 6-12: Summary of Special Commands 6-78

Table 6-13: Summary of Line Editor Commands 6-83

Table 6-14: Summary of the Quit Commands 6-86

Table 6-15: Summary of Special Options for vi 6-88

Table 7-1: Characters with Special Meanings in the Shell Language 7-3

Table 7-2: Summary of the echo Command 7-5

Table 7-3: Summary of Metacharacters 7-10

Table 7-4: Summary of the banner Command 7-14

Table 7-5: Summary of the spell Command 7-19

Table 7-6: Summary of the cut Command 7-23

Table 7-7: Summary of the date Command 7-25

Table 7-8: Summary of the batch Command 7-28

Table 7-9: Summary of the at Command 7-31

Table 7-10: Summary of the ps Command 7-33

Table 7-11: Summary of the kill Command 7-34

Contents ix

Tables

Table 7-12: Summary of the nohup Command 7-35

Table 7-13: Summary of the dl Shell Program 7-40

Table 7-14: Summary of the bbday Command 7-44

Table 7-15: Summary of the whoson Command 7-46

Table 7-16: Summary of the get.num Shell Program 7-48

Table 7-17: Summary of the show.param Shell Program 7-51

Table 7-18: Summary of the mknum Shell Program 7-57

Table 7-19: Summary of the num.please SheJI Program 7-57

Table 7-20: Summary of the t Shell Program 7-59

Table 7-21: Summary of the log.time Shell Program 7-61

Table 7-22: Summary of the gbday Command 7-64

Table 7-23: Summary of the ch.text Command 7-67

Table 7-24: Summary of mv.file Shell Program 7-72

Table 7-25: Summary of the search Shell Program 7-79

Table 7-26: Summary of the mv.ex Shell Program 7-84

Table 7-27: Summary of the set. term Shell Program 7-88

Table 7-28: Summary of the tail Command 7-97

Table 8-1: Summary of Sending Messages with the mail Command 8-6

Table 8-2: Summary of the uname Command 8-9

Table 8-3: Summary of the uuname Command 8-10

Table 8-4: Summary of Reading Messages with the mail Command 8-13

Table 8-5: Summary of the uucp Command 8-53

x User's Guide

Tables

Table 8-6: Summary of the uuto Command 8-58

Table 8-7: Summary of the uustat Command 8-59

Table 8-8: Summary of the uupick Command 8-62

Table 8-9: Summary of the ct Command 8-66

Table 8-10: Command Strings for Use with cu 8-69

Table 8-11: Summary of the cu Command 8-72

Table 8-12: Summary of the uux Command 8-74

Contents xi

1 What is the SYSTEM V/88 System?

System Overview

SYSTEM V/88 Tutorials

Features of SYSTEM V/88

Reference Information

Notations and Conventions

SYSTEM V/88 Operating
System Structure
The Kernel
The File System

Ordinary Files
Directories
Special Files

The Shell
Commands

What Commands Do
Command Syntax
Command Execution

What is the SYSTEM V/88 System?

1-1

1-1

1-2

1-3

1-4

1-7
1-8
1-9
1-9

1-10
1-10
1-12
1-13
1-13
1-14
1-17

System Overview

The first part of the SYSTEM V/88 User's Guide consists of Chapters 1 through
3, which introduce you to the basic principles of the operating system. Each
chapter builds on information presented in preceding chapters, so it is
important to read them in sequence .

• Chapter 1, What is the SYSTEM V/88 System?, provides an overview of the
operating system.

• Chapter 2 , Basics for SYSTEM V/88 Users, discusses the general rules and
guidelines for using SYSTEM V/88. It covers topics related to using your
terminal, obtaining a system account, and establishing contact with the
operating system.

• Chapter 3, Using the File System, offers a working perspective of the file
system. It introduces commands for building your own directory
structure, accessing and manipulating the subdirectories and files you
organize within it, and examining the contents of other directories in the
system for which you have access permission.

SYSTEM V/88 Tutorials

The second part of this guide consists of tutorials on the following topics : the
ed text editor, the vi text editor, the shell command and programming
language, and electronic mail. For a thorough understanding of the material,
we recommend that you work through the examples and exercises as you read
each tutorial . (The tutorials assume you understand the concepts introduced
in Chapters 1 through 3 .)

• Chapter 4, Overview of the Tutorials, introduces four chapters of tutorials
that cover command execution, text editing, electronic mail, elementary
programming, and aids to software development.

• Chapter 5, Line Editor Tutorial (ed), teaches you to how to use the ed text
editor to create and modify text. on a video display terminal or paper
printing terminal.

• Chapter 6, Screen Editor Tutorial (vi), teaches you how to use the visual text
editor, vi, to create and modify text on a video display terminal .

What is the SYSTEM V/88 System? 1-1

I

I NOTE

vi, the visual editor, is based on software
developed by the Computer Science Division,
Department of Electrical Engineering and
Computer Science, University of California,
Berkeley, California. Such software is owned
and licensed by the Regents of the University
of California.

• Chapter 7, Shell Tutorial, covers using the shell, both as a command
interpreter and as a programming language for shell programs.

• Chapter 8, Electronic Mail Tutorial, teaches you how to send messages and
files to users of both your SYSTEM V/88 and other SYSTEM V/88 systems.

• Chapter 9, ksh Tutorial, describes how to use the shell to write medium
sized programming tasks at the shell level.

Featu res of SYSTEM V/88

The SYSTEM V/88 operating system is a set of programs (or software) that
controls the computer, acts as the link between you and the computer, and
provides tools to help you do your work. It provides an uncomplicated,
efficient, and flexible computing environment. Specifically, the operating
system offers these advantages:

• a general-purpose system for performing a wide variety of jobs or
applications.

• an interactive environment that allows you to communicate directly with
the computer and receive immediate responses to your requests and
messages.

1-2 User's Guide

• a multi-user environment that allows you to share the computer's I
resources with other users without sacrificing productivity. This technique
is called timesharing. The operating system interacts between users on a
rotating basis so quickly that it appears to be interacting with all users
simultaneously.

• a multitasking environment that enables you to execute more than one
program simultaneously.

The organization of the operating system is based on four major components:
the kernel, the file system, the shell, and the commands . The kernel is a
program that constitutes the nucleus of the operating system; it coordinates
the functioning of the computer's internals (e .g . , allocating system resources) .
The kernel works invisibly; you need never be aware of it while doing your
work. The file system provides a method of handling data that makes it easy
to store and access information.

The shell is a program that serves as the command interpreter. It acts as a
liaison between you and the kernel, interpreting and executing your
commands. Because it reads input from you and sends you messages, it is
described as interactive .

Commands are the names of programs that you request the computer to
execute. Packages of programs are called tools. The operating system
provides tools for jobs, e .g . , creating and changing text, writing programs and
developing software tools, exchanging information with others via the
computer.

Reference Info rmation

Several appendices and a glossary of operating system terms are also
provided for reference.

• Appendix A, Summary of the File System, describes the directory structure
and how information is stored in the operating system.

• Appendix B, Summary of SYSTEM V/88 Commands, lists in alphabetical
order each command discussed in the guide .

• Appendix C, Quick Reference to ed Commands, summarizes the ed line editor
commands organized by topic as in Chapter 5, Line Editor Tutorial (ed) .

What is the SYSTEM V/88 System? 1-3

I • Appendix 0, Quick Reference to vi Commands, gives you a summary of vi
commands, organized by topic as in Chapter 6, Screen Editor Tutorial (vi) .

• Appendix E, Summary of Shell Command Language, lists the vocabulary and
programming constructs discussed in Chapter 7, Shell Tutorial .

• Appendix F, Setting Tenninal Type, explains how to configure your terminal
for use with the operating system.

• The Glossary defines those operating system terms that are used in this
book.

Notations and Co n ventions

The following notations and conventions are used throughout this guide.

bold
User input (commands, options and arguments to commands, variables,
and the names of directories and files) appears in bold.

italic
Names of variables to which values must be assigned (e. g. , password)
appear in italic.

constant width
Operating system output, e.g., prompts and responses to commands,
appear in constant width.

<>
Input that does not appear on the screen when typed (passwords, tabs,
and carriage returns) appears between angle brackets.

< CR>
represents the carriage return, i. e. , the key marked RETURN.

<�char>
Control characters are shown between angle brackets because they do not
appear on the screen when typed. The circumflex n represents the
control key (labeled CTRL or control on your keyboard). To type a
control character, hold down the CONTROL key while you type the
character specified by char. For example, the notation <�d> means to
hold down the CONTROL key while pressing the D key; the letter D does
not appear on the screen.

1-4 User's Guide

r] II Command options and arguments that are optional, e.g., [-msCj], are

t

enclosed in square brackets.

The vertical bar separates optional arguments from which you may
choose one. For example, when a command line has the following
format:

command [arg1 I arg2]

You may use either arg1 or arg2 when you issue the command.

Ellipses after an argument mean that more than one argument may be
used on a single command line.

Arrows on the screen (shown in examples in Chapter 6) represent the
cursor.

command(number)

$

A command name followed by a number in parentheses refers to the part
of a SYSTEM V/88 reference manual that documents that command:
User's Reference Manual, Programmer's Reference Manual, or System
Administrator's Reference Manual. For example, the notation cat(1) refers to
the page in section 1 (of User's Reference Manual) that documents the cat
command.

In sample commands, the $ sign is used as the shell command prompt.
This is not true for all systems. Whichever symbol your system uses,
keep in mind that prompts are produced by the system; although a
prompt is sometimes shown at the beginning of a command line as it
would appear on your screen, you are not meant to type it. (The $ sign
is also used to reference the value of positional parameters and named
variables; see Chapter 7 for details.)

What is the SYSTEM V/88 System? 1-5

I In all chapters, full and partial screens are used to display examples of how
your terminal screen will look when you interact with the operating system.
These examples show how to use the operating system editors, write short
programs, and ext\cute commands. The input (characters typed by you) and
output (characters printed by the operating system) are shown in these
screens in accordance with the conventions listed above. All examples apply
regardless of the type of terminal you use.

The commands discussed in each section of a chapter are reviewed at the end
of that section. At the end of some sections, exercises are also provided so
you can experiment with the commands. The answers to the exercises are at
the end of the chapter.

NOTE

The text in this manual was prepared with the
operating system text editors described in the
guide and formatted with troff, tbl, pic, and
mm macros.

1-6 User's Guide

'

SYSTEM V/88 Operat ing System Stru ctu re

Figure 1-1 is a model of the SYSTEM V/88 operating system. Each circle
represents one of the main components of the operating system: the kernel,
the shell, and user programs or commands. The arrows suggest the shell's
role as the medium through which you and the kernel communicate . The
remainder of this chapter describes each of these components, along with
another important feature of the operating system, the file system.

User

Text
Processing

Figure 1 -1 . SYSTEM V/88 Operating System Model

What is the SYSTEM V/88 System? 1-7

I

I
The Kernel

The nucleus of the operating system is called the kernel. The kernel controls
access to the computer, manages the computer's memory, maintains the file
system, and allocates the computer's resources among users. Figure 1-2 is a
functional view of the kernel.

1-8 User's Guide

Manages
Memory

Allocates
system

resources

Controls
access to
computer

Maintains
file system

Figure 1 -2. Functional View of the Kernel

The File System

The file system is the cornerstone of the operating system. It provides a
logical method of organizing, retrieving, and managing information. The
structure of the file system is hierarchical; it looks like an organization chart or
an inverted tree (Figure 1-3) .

Figure 1 -3. The Hierarchical Structure of the File System

The file is the basic unit of the operating system and can be any one of three
types: an ordinary file, a directory, or a special file, see Chapter 3, Using the
File System.

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
operating system. Ordinary files are used to store any information you want
to save. They may contain text for letters or reports, code for programs you
write, or commands to run programs. Once you have created a file, you can
add material to it, delete material from it, or remove it entirely when it is no
longer needed.

Wlult is the SYSTEM V/88 System? 1-9

I

I
Directories

A directory is a super-file that contains a group of related files. For example,
a directory called sales may hold files containing monthly sales figures called
jan, feb, mar. You can create directories, add or remove files from them, or
remove directories at any time .

Generally, all directories you create and own are located in your home
directory. This is a directory assigned to you by the system when you receive
a recognized login. You have control over this directory; no one else can read
or write files in it without your explicit permission, and you determine its
structure .

The operating system also maintains several directories for its own use . The
structure of these directories is similar throughout the operating system.
These directories, which include the operating system (the kernel) and several
important system directories, are located directly under the root directory in
the file hierarchy. The root directory (designated by /) is the source of the
operating system file structure; all directories and files are arranged
hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A special
file represents a physical device such as a terminal, disk drive, magnetic tape
drive, or communication link. The system reads and writes to special files in
the same way it does to ordinary files . However the system's read and write
requests do not activate the normal file access mechanism; instead, they
activate the device handler associated with the file .

Some operating systems require you to define the type of file you have and to
use it in a specified way. In those cases, you must consider how the files are
stored since they might be sequential, random-access, or binary files. To
SYSTEM V/88 however, all files are alike . This makes the operating system
file structure easy to use . For example, you need not specify memory
requirements for your files since the system automatically does this for you.
Or a program you write needs to access a certain device, e .g . , a printer,
specify the device just as you would another one of your files . In the
operating system, there is only one interface for all input from you and output
to you; this simplifies your interaction with the system.

1-10 User's Guide

Figure 1-4 shows an example of a typical file system. Notice that the root I directory contains the kernel (/unix) and several important system directories .

Q • Directories

0 • Ordinary Files

'\1 • Special Files

Figure 1-4. Example of a File System

What is the SYSTEM V/88 System? 1-11

I Directory

/bin

/dev

/etc

/l ib

/tmp

/usr

Contents

contains many executable programs and utilities .

contains special files that represent peripheral devices,
e .g . , the console, line printer, user terminals, and disks .

contains programs and data files for system
administration.

contains libraries for programs and languages .

contains temporary files that can be created by any user.

contains other directories including /mai l, which contains
files for storing electronic mail, and /news, which contains
files for storing newsworthy items.

In summary, the directories and files you create comprise the portion of the
file system that is controlled by you. Other parts of the file system are
provided and maintained by the operating system, such as /bin, /dev, /etc,
/l ib, /tm p, and /usr, and have much the same structure on all operating
systems.

You will learn more about the file system in other chapters . Chapter 3 shows
how to organize a file system directory structure, and access and manipulate
files. Chapter 4 gives an overview of the operating system capabilities . The
effective use of these capabilities depends on your familiarity with the file
system and your ability to access information stored within it. Chapters 5 and
6 are tutorials d�signed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communicate
with the operating system. The shell reads the commands you enter and
interprets them as requests to execute other programs, access files, or provide
output. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of an operating system in Figure 1-1 shows the two-way
flow of communication between you and the computer via the shell.

1-12 User's Guide

Chapter 4 describes the shell's capabilities. Chapter 7 is a tutorial that teaches I you to write simple shell programs called shell scripts and tailor your
environment.

Commands

A program is a set of instructions to the computer. Programs that can be
executed by the computer without need for translation are called executable
programs or commands. As a typical user of the operating system, you have
many standard programs and tools available to you. If you use the operating
system to write programs and develop software, you can also draw on system
calls, subroutines, and other tools. Of course, any programs you write
yourself are also at your disposal.

This book introduces you to many operating system programs and tools that
you will use on a regular basis. If you need additional information on these
or other standard programs, refer to the User's Reference Manual. For
information on tools and routines related to programming and software
development, consult the Programmer's Reference Manual .

The reference manuals may also be available online . (Online documents are
stored in your computer's file system.) You can summon pages from the
online manuals by executing the command man (short for manual page). For
details on using the man command, refer to the man(1) page in the User's
Reference Manual .

What Commands Do

The outer circle of the operating system model in Figure 1-1 organizes the
system programs and tools into functional categories . These functions
include:

text processing
The system provides programs such as line and screen editors to create
and change text, a spell checker for locating spelling errors, and optional
text formatters to produce high-quality paper copies that are suitable for
publication.

" information management
The system provides many programs that allow you to create, organize,
and remove files and directories .

What is the SYSTEM V/88 System? 1-13

I electronic communication
Several programs, e .g. , mai l, enable you to transmit information to other
users and to other operating systems.

software development
Several operating system programs establish a friendly programming
environment by providing operating-system-to-programming language
interfaces and by supplying numerous utility programs .

additional utilities
The system also offers capabilities to generate graphics and perform
calculations.

Command Syntax

To make your requests comprehensible to the operating system, you must
present each command in the correct format, or command line syntax. This
syntax defines the order in which you enter the components of a command
line . Just as you must put the subject of a sentence before the verb in an
English sentence, so must you put the parts of a command line in the order
required by the command line syntax. Otherwise, the operating system shell
will not be able to interpret your request. Here is a typical example of the
syntax of an operating system command line:

command option(s) argument(s)<CR>

On every operating system command line, you must type at least two
components: a command name and the RETURN key. (The notation <CR> is
used as an instruction to press the RETURN key throughout this guide .) A
command line may also contain either options or arguments, or both. What
are commands, options, and arguments?

• A command is the name of the program you want to run.

• An option modifies how the command runs .

• An argument specifies data on which the command is to operate (usually
the name of a directory or file).

1-14 User's Guide

In command lines that include options and arguments, the component words I are separated by at least one blank space; insert a blank by pressing the space
bar. If an argument name contains a blank, enclose that name in quotation
marks . For example, if the argument to your command is sample 1 , you
must type it as "sample 1 ". If you forget the quotation marks, the shell will
interpret sample and 1 as two separate arguments.

Some commands allow you to specify several options and arguments on a
command line. Consider the following command line:

command

arguments

options

t 1
A�
we - I - w filel file2 file3

In this example, we is the name of the command and two options, -1 and
-w, have been specified. (The operating system usually allows you to group
options such as these to read - lw if you prefer.) In addition, three files (jilel,
file2, and file3) are specified as arguments . Although most options can be
grouped together, arguments cannot.

What is the SYSTEM V/88 System? 1-15

I The following examples show the proper sequence and spacing in command
line syntax:

Incorrect

wcfile
wc-lfile
we - 1 w file

we file1file2

Correct

we file
we -1 file
we - lw file

or
we -1 -w file
we file1 file2

Remember, regardless of the number of components, you must end every
command line by pressing the RETURN key.

1-16 User's Guide

Command Execution

Figure 1-5 shows the flow of control when SYSTEM V/88 executes a
command.

YOU II
AEOUEST

PIIOGIIAM
EXECUTION

DIIIECTOIIT
SEAIICH

PIIOGIIAM
AETIIIEVAL

Figure 1 -5. Execution of an Operating System Command

To execute a command, enter a command line when a prompt (e .g . , $ sign)
appears on your screen. The shell considers your command as input, searches
through one or more directories to retrieve the program you specified, and
conveys your request with the program requested to the kernel. The kernel
then follows the instructions in the program and executes the command you
requested. After the program has finished running, the shell signals that it is
ready for your next command by displaying another prompt.

This chapter has described some basic principles of the operating system. The
following chapters will help you apply these principles according to your
computing needs .

What is the SYSTEM V/88 System? 1-17

I

2 Basics for SYSTEM V/88 Users

Getting Started

The Terminal
Required Terminal Settings
Keyboard Characteristics
Typing Conventions

Command Prompt
Correcting Typing Errors
Deleting the Current Line: CKILL Character
Deleting the Last Characters Typed:

CERASE Character
Reassigning the Delete Functions
Using Special Characters as Literal Characters
Typing Speed
Stopping a Command
Using Control Characters

Obtaining a Login Name
Establishing Contact

Log in Procedure
Entering Your Password

Possible Login Problems
Simple Commands
The help Command

Logging Off

2-1

2-1
2-2
2-3
2-4
2-4
2-6
2-6

2-7
2-8
2-9
2-9

2-10
2-10
2-11
2-12

2-14
2-15
2-18
2-19
2-21
2-23

Basics for SYSTEM V/88 Users

Gett ing Started

This chapter acquaints you with the general rules and guidelines for getting
started on SYSTEM V/88. Specifically, it lists terminal settings and explains I how to use the keyboard, obtain a login, log on and off the system, and enter
simple commands.

To establish contact with the operating system, you need:

• a terminal

• a login name (a name by which the operating system identifies you as one
of its authorized users)

• a password that verifies your identity

• instructions for dialing in and accessing the operating system when your
terminal is not directly connected to the computer

This chapter follows the notations and conventions used throughout this
guide . For a description, see What is the SYSTEM V/88 System.

The Termi nal

A terminal is an input/output device: you use it to enter requests to the
operating system; the system uses it to send its responses to you. There are
two basic types of terminals: video display terminals and printing terminals .

The video display terminal shows its input and output on a display screen;
the printing terminal, on continuously fed paper. Instructions throughout this
book that refer to the terminal screen apply also to the terminal screen.

Basics for SYSTEM V/88 Users 2-1

I
Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly to
communicate with the operating system. If you have not set terminal options
before, seek help from someone who has done this function.

How you configure a terminal depends on the type of terminal you are using.
Some terminals are set with switches; others are set directly from the
keyboard by using function keys . To determine how to make the settings on
your terminal, consult the owner's manual provided by the manufacturer.

The following is a list of configuration checks you should do on any terminal
before trying to log in on the operating system:

1 . Tum o n the power.

2. Set the terminal to ONLINE or REMOTE operation. This setting ensures
the terminal is under the direct control of the computer.

3 . Set the terminal to FULL DUPLEX mode. This mode ensures two-way
communication (input/output) between you and the operating system.

4. If your terminal is not directly connected (hard-wired) to the computer,
make sure the acoustic coupler or data-phone set you are using is set to
the FULL DUPLEX mode.

5. Set character generation to LOWERCASE. If your terminal generates
only uppercase letters, the operating system will accommodate it by
printing everything in uppercase letters .

6. Set the terminal to NO PARI1Y.

7. Set the baud rate to 9600 (or whatever speed the System Administrator
assigned to the port) . This is the speed at which the computer
communicates with the terminal, measured in bits-per-second (bps) . For
example, a terminal set at a baud rate of 9600 sends and receives 960
characters per second. Depending on the computer and terminal, baud
rates between 300 and 19200 are available .

2-2 User's Guide

Keyboard Characteristics

There is no standard layout for terminal keyboards . However, all terminal
keyboards share a standard set of 128 characters called the ASCII character I set. (ASCII is an acronym for American Standard Code for Information
Interchange .) While the keys are labeled with characters that are meaningful
to you (e .g . , the letters of the alphabet), each one is also associated with an
ASCII code that is meaningful to the computer. Figure 2-1 shows an example
of a keyboard on an ASCII terminal.

. '

Figure 2-1. Keyboard Layout of a Typical Terminal

Basics for SYSTEM V/88 Users 2-3

I
The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter's, with a few additional keys for functions such as interrupting
tasks:

• the letters of the English alphabet (both uppercase and lowercase)

• the numerals (0 through 9)

• a set of symbols including ! @ # $ % A & () _ - + = - ' { } [] \ : ; " ' <
> , ? I

• specially defined words e .g. , RETURN and BREAK and abbreviations e .g . ,
DEL for delete, CTRL for control, and ESC for escape .

While terminal and typewriter keyboards both have alphanumeric keys,
terminal keyboards also have keys designed for use with a computer. These
keys are labeled with characters or symbols that remind the user of their
functions . However, their placement may vary from terminal to terminal
because there is no standard keyboard layout.

Typing Conventions

To interact effectively with the operating system, you should be familiar with
its typing conventions . The operating system requires that you enter
commands in lowercase letters (unless the command includes an uppercase
letter) . Other conventions enable you to perform tasks, e .g . , erasing letters or
deleting lines, by pressing one key or entering a specific combination of
characters . Characters associated with tasks in this way are known as special
characters.

Table 2-1 lists the conventions based on special characters . They are
explained in detail in the following sections .

Command Prompt

The standard operating system command prompt is the dollar sign($) . When
it appears on your terminal screen, the operating system is waiting for
instructions from you. The appropriate response to the prompt is to issue a
command and press the RETURN key.

2-4 User's Guide

The $ is the default value for the command prompt. Chapter 7 explains how
to change it when you prefer another character or character string as your
command prompt.

Table 2-1 . Special Characters and Symbols

Keys Meaning

$ System's command prompt (your cue to issue a command) .

<CERASE> Erase a character.

<CKILL> Erase or kill an entire line.

< BREAK>

< ESC>

< CR>

Stop execution o f a program o r command. Delete or kill
the current command line.

When used with another character, performs a specific function
(called an escape sequence) . When used in an editing session
with the vi editor, ends the text input mode and returns you to
the command mode.

End a line of typing and put the cursor on a new line. To type
<CR>, press the RETURN key.

Stop input to the system or log off.

Backspace for terminals without a backspace key.

<Ai> Horizontal tab for terminals without a tab key.

<As> Temporarily stops output from printing on the screen .

<Aq> Makes the output resume printing on the screen after i t has
been stopped by the <As> command.

NOTE : Non printing characters are shown in angle brackets (< >) .
Characters preceded by a circumflex C) are called control characters
and are pronounced control-letter. To type a control character, hold
down the CTRL key and press the specified letter.

Basics for SYSTEM V/88 Users 2-5

I

I
Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typing
errors . For the remainder of the guide, they are referred to as CKILL which
kills the current line, and CERASE, which erases the last character typed. By
default, unless otherwise changed directly via stty{l), or indirectly (by System
Administrator) through the use of the Terminal Support programs (see
Appendix F) . The assignments of these keys are:

CERASE = # (pound sign)
CKILL = @ (at)

For information or instructions on reassigning these functions to other keys,
see Appendix F and Reassigning the Delete Functions in this section and
Chapter 7.

If CERASE and/or CKILL have been reassigned, you normally receive a
reminder of the current values when you log in. At any time, you may
execute the stty command (without arguments) that lists the current erase and
kill characters if they are different from the defaults .

NOTE

There are some cases where these keys cannot
be assigned, e .g . , when logging on to the
system.

In addition, a third key is available that can kill the current command line,
i . e . , when interacting directly with the shell or the editor. This is referred to
as CINTR because it also functions as an interrupt key (see Stopping a
Command) later in this section.

Deleting the Current Line: CKILL Character

The CKILL character kills the current line . When you enter it, the cursor
moves to the next line . The line containing the error is not erased from the
screen but is ignored. If CKILL is a printable character, it is added to the end
of the line before the cursor moves down.

2-6 User's Guide

The CKILL character works only on the current line; be sure to enter it before
you press the RETURN key if you want to kill a line. In the following example,
a misspelled command is typed on a command line; the command is cancelled 1 with the @ key (default CKILL):

whooo@
who<CR>

Deleting the Last Characters Typed : CERASE Character

The CERASE character deletes the characters last typed on the current l ine .
When you type CERASE, the cursor backs up over the last character and
erases it, letting you retype it. This is an easy way to correct a typing error.

You can delete as many characters as you like as long as you type a
corresponding number of CERASE characters . For example, in the following
command line, two characters are deleted by typing two # signs (default
CERASE):

dattw##e<CR>

The operating system does not normally print the "#", but instead, visually
erases the previous character.

NOTE

The above system behavior is controlled
somewhat by the stty echoe and stty -echoe
commands. The above descriptions assume
stty echoe is in effect. If not, the cursor does
not move backward unless CERASE
BACKSPACE, in which case a character i s not
visually erased until a new character is typed.

Basics for SYSTEM V/88 Users 2-7

I
Reassigning the Delete Functions

As stated earlier, you can change the keys that kill lines and erase characters .
If you want to change these keys for a single working session, you can issue a
command to the shell to reassign them; the delete functions will revert to the
default keys (# and @) as soon as you log off. If you want to use other keys
regularly, you must specify the reassignment in a file called . profi le .

Instructions for making both temporary and permanent key reassignments,
and a description of the .profi le, are given in Chapter 7.

There are three points to keep in mind when you reassign the delete functions
to non-default keys. First, the operating system allows only one key at a time
to perform a delete function. When you reassign a function to a non-default
key, you also take that function away from the default key. For example, if
you reassign the erase function from the # key to the BACKSPACE key, you
will no longer be able to use the # key to erase characters . Neither will you
have two keys that perform the same function.

Secondly, such reassignments are inherited by any other operating system
program that allows you to perform the function you have reassigned. For
example, the interactive text editor ed (described in Chapter 5) allows you to
delete text with the same key you use to correct errors on a shell command
line (as described in this section) . Therefore, if you reassign the erase
function to the BACKSPACE key, you will have to use the BACKSPACE key to
erase characters while working in the ed editor, as well . The # key will no
longer work.

Finally, keep in mind that any reassignments you have specified in your
. prof i le do not become effective until after you log in. Therefore, if you make
an error while typing your login name or password, you must use the # or @
key to correct it.

Whichever keys you use, remember that they work only on the current line .
Be sure to correct your errors before pressing the RETURN key at the end of a
line.

2-8 User's Guide

Using Special Characters as Literal Characters

What happens if you want to use a special character with literal meaning as a I unit of text? Since the operating system default behavior is to interpret
special characters as commands, you must tell the system to ignore or escape
from a character's special meaning whenever you want to use it as a literal
character. The backslash (\) enables you to do this. Type a \ before any
special character that you want to have treated as it appears . By doing this
you essentially tell the system to ignore this character's special meaning and
treat it as a literal unit of text.

For example, you want to add the following sentence to a file and
CE RASE = #:

Only one # appears on this sheet of music.

To prevent the operating system from interpreting the # key as a request to
delete a character, enter a \ in front of the #. If you do not, the system will
erase the space after the word one and print your sentence as follows:

Only one appears on this sheet of music .

To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as you
want, even when the operating system is executing a command or responding
to one. Since your input and the system's output appear on the screen
simultaneously, the printout on your screen will appear garbled. However,
while this may be inconvenient for you, it does not interfere with the
operating system's work because it has read-ahead capability. This capability
allows the system to handle input and output separately. The system takes
and stores input (your next request) while it sends output (its response to
your last request) to the screen. ·

Basics for SYSTEM V/88 Users 2-9

I
Stopping a Command

If you want to stop the execution of a command, press the BREAK or enter the
CINTR character. The operating system stops the program and prints a
prompt on the screen. This is its signal that it has stopped the last command
from running and is ready for your next command. By default, the following
assignment exists:

CINTR = (Delete Key)

See Appendix F for instruction on how to reassign this character.

NOTE

On some terminals, the DELETE or BREAK keys
may have another name.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled CONTROL

or CTRL and is probably to the left of the A key or below the Z key. The
CTRL key is used in combination with other characters to perform physical
controlling actions on lines of typing. Commands entered in this way are
called control characters . Some control characters perform mundane tasks
such as backspacing and tabbing. Others define commands that are specific
to the operating system. For example, one control character (CTRL-s)

temporarily halts output that is being printed on a terminal screen.

To type a control character, hold down the CTRL key and press the
appropriate alphabetic key. Most control characters do not appear on the
screen when typed and therefore are shown between angle brackets (see
Notations and Conventions in Chapter 1, What is the SYSTEM V/88 System?) . The
CTRL key is represented by a circumflex () before the letter; <As> designates
the CTRL-S character.

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To
prevent information from rolling off the screen on a video display terminal,
type <"s>; the printing stops . When you are ready to read more output, type
<"q> and the printing resumes.

2-10 User's Guide

To log off the operating system, type <Ad> . (See Logging Off later in this
chapter for a detailed description of this procedure.)

In addition, the operating system uses control characters to provide
capabilities that some terminals fail to make available through function
specific keys . If your keyboard does not have a BACKSPACE key, you can use
the <Ah> key instead. You can also set tabs without a tab key by typing
<Ai> if your terminal is set properly. (Refer to the section entitled Possible
Login Problems for information on setting the tab key.)

Now that you have configured the terminal and inspected the keyboard, one
step remains before you can establish communication with the operating
system: you must obtain a login name.

Obtai n i ng a Log i n Name

A login name is the name by which the operating system verifies that you are
an authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression
logging in is derived from the fact that the system maintains a log for each
user, in which it records the type and amount of system resources being
used.)

To obtain a login name, set up an operating system account through your
local System Administrator. There are few rules governing your choice of a
login name. Typically, it is three to eight characters long. It can contain any
combination of lowercase alphanumeric characters, as long as it starts with a
letter. It cannot contain any symbols .

However, your login name is probably determined by local practices. The
users of your system may all use their initials, last names, or nicknames as
their login names. Here are a few examples of legal login names: starship,
mary2, and jmrs.

Basics for SYSTEM V/88 Users 2-11

I

I
Establ ishing Contact

Typically, you will be using either a terminal that is wired directly to a
computer or a terminal that communicates with a computer over a telephone
line .

NOTE

This section describes a typical procedure for
logging in that may not apply to your system.
There are many ways to log in on an operating
system over a telephone line . Security
precautions on your system may require that
you use a special telephone number or other
security code . For instructions on logging in
your operating system from outside your
computer installation site, see your System
Administrator.

Tum on your terminal. If it is directly connected, the login : prompt
immediately appears in the upper left-hand comer of the screen.

If you are going to communicate with the computer over a telephone line, you
must now establish a connection. The following procedure is an example of
one method you might use . (For the procedure used on your system, see
your System Administrator.)

2-12 User's Guide

AT&T Dataphone II
MOdem

AT&T Data Phone
Set 212A

AT&T Acoustic
Coupler

Figure 2-2. Data Phone Set, Modem, and Acoustic Coupler

1 . Dial the telephone number that connects you to the operating system.
You will hear one of the following:

• A high-pitched tone. This means that the system is accessible.

• A busy signal. This means that either the circuits are busy or the line
is in use. Hang up and dial again.

• Continuous ringing and no answer. This usually means that there is
trouble with the telephone line or that the system is inoperable
because of mechanical failure or electronic problems . Hang up and
dial again later.

Basics for SYSTEM V/88 Users 2-13

I

I
2. When you hear the high-pitched tone, place the handset of the phone in

the acoustic coupler or momentarily press the appropriate button on the
data phone set (see the owner's manual for the appropriate equipment) .
Then replace the handset in the cradle (see Figure 2-2) .

3. Mter a few seconds, the login : prompt appears in the upper left-hand
comer of the screen.

4. A series of meaningless characters may appear on your screen . This
means that the telephone number you called serves more than one baud
rate; the operating system is trying to communicate with your terminal,
but is using the wrong speed. Press the BREAK or RETURN key; this
signals the system to try another speed. If the operating system does
not display the login : prompt within a few seconds, press the BREAK
or RETURN key again.

Log i n Proced u re

When the login : prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line
appears as:

login : starship< CR>

NOTE

Remember to type in lowercase letters . If you
use uppercase from the time you log in, the
operating system expects and responds in
uppercase exclusively until the next time you
log in. It accepts and runs many commands
typed in uppercase, but will not allow you to
edit files .

2-14 User's Guide

Entering You r Password

After you have typed your login name correctly, the system prompts you for I your password. Type your password and press the RETURN key. For security
reasons, the operating system does not print (or echo) your password on the
screen.

When both your login name and password are acceptable to the operating
system, it prints the message of the day, current news items, and the default
command prompt ($) . (The message of the day might include a schedule for
system maintenance, and news items might include an announcement of a
new system tool .) When you have logged in, your screen appears similar to
the following:

login : starshlp<CR>

system news

If you make a typing mistake when logging in, the operating system prints
the message login incorrect on your screen. Then it gives you a second
chance to log in by printing another login : prompt:

login : starship<CR>
pas sword :
login incorr e ct
login :

Basics for SYSTEM V/88 Users 2-15

I
The login procedure may also fail if the communication link between your
terminal and the operating system has been dropped. If this happens, you
must reestablish contact with the computer (specifically, with the data switch
that links your tenpinal to the computer) before trying to log in again. Since
procedures for doing this vary from site to site, ask your System
Administrator to give you exact instructions for getting a connection on the
data switch.

If you have never logged in on the operating system, your login procedure
may differ from the one just described. This is because some System
Administrators follow the optional security procedure of assigning temporary
passwords to new users when they set up their accounts . If you have a
temporary password, the system will force you to choose a new password
before it allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system's security. Protection of system resources and your
personal files depends on your keeping your password private .

The actual procedure you follow is determined by the administrative
procedures at your computer installation site . However, it will probably be
similar to the following example of a first-time login procedure:

1 . You establish contact; the operating system displays the login :
prompt. Type your login name and press the RETURN key.

2. The operating system prints the password prompt. Type your
temporary password and press the RETURN key.

3. The system tells you your temporary password has expired and you
must select a new one.

4. The system asks you to type your old password again. Type your
temporary password.

5. The system prompts you to type your new password . Type the
password you have chosen.

Passwords must be constructed to meet the following requirements:

• Each password must have at least six characters . Only the first eight
characters are significant.

• Each password must contain at least two alphabetic characters and at
least one numeric or special character. Alphabetic characters can be
uppercase or lowercase letters .

2-16 User's Guide

• Each password must differ from your login name and any reverse or
circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are
equivalent.

• A new password must differ from the old by at least three characters .
In this comparison, an uppercase letter and its corresponding
lowercase letter are equivalent.

Examples of valid passwords: mar84ch, JonathOn, and BRAV3S .

NOTE

The operating system you are using may have
different requirements to consider when
choosing a password. Ask your System
Administrator for details.

6. For verification, the system asks you to re-enter your new password .
Type your new password again.

7. If you do not re-enter the new password exactly as typed the first time,
the system tells you the passwords do not match and asks you to try the
procedure again. On some systems, however, the communication link
may be dropped if you do not re-enter the password exactly as typed the
first time. If this happens, you must return to step 1 and begin the login
procedure again. When the passwords match, the system displays the
prompt.

Basics for SYSTEM V/88 Users 2-17

I

I
The following screen depicts this procedure (steps 1 through 6) for first-time
operating system users .

login : starship <CR>
pas sword : <CR>
Your pas sword ha.s e xpired .
Choo s e a. new one .
Old pa.s sword : < CR>
New pas sword : <CR>
R e - enter new pas sword : <CR>
$

Possible Login Problems

A terminal usually behaves predictably when you have made the appropriate
terminal settings . Sometimes, however, it may act peculiarly. For example,
the carriage return may not work properly.

Some problems can be corrected by logging off the system and logging in
again. If logging in a second time does not remedy the problem, you should
first check the following and try logging in once again:

keyboard
Keys labeled CAPS, LOCAL, BLOCK, and so on should not be enabled (put
into the locked position) . You can usually disable these keys simply by
pressing them.

data phone set or modem
If your terminal is connected to the computer via telephone lines, check
the baud rate and duplex settings .

switches
Some terminals have several switches that must be set. Check that all are
set properly.

2-18 User's Guide

Numerous problems can occur if your terminal is not set properly. To verify
the terminal settings, check the settings listed under Required Tenninal Settings.
If you need additional information about the keyboard, terminal, data phone, 1 or modem, check the owner's manual for the appropriate equipment.

Table 2-2 presents suggestions for detecting, diagnosing, and correcting some
problems you may experience when logging in. If you need further help,
contact your System Administrator.

Table 2-2. Troubleshooting Login Problems

Problem

Meaningless characters
Input and output appear in
uppercase letters

Input appears in uppercase,
output in lower case

Input is printed twice

Tab key does not work
properly

Communication link cannot
be established although high
pitched tone is heard when
dialing in

Communication link (ter
minal to SYSTEM V/88) is
repeatedly dropped

Possible Cause

SYSTEM V/88 at wrong speed

Terminal has been set to
uppercase setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE

Bad telephone line or bad
communications port

Action/Remedy

Press RETURN or BREAK key
Log off and set character
generation to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX

Type stty -tabs (current
session onlyt).

Set terminal to ONLINE try
logging in again

Call System Administrator

t To ensure a correct tab setting for all sessions, add the line stty -tabs to your .profile file
(see Chapter 7) .

Simple Commands

When the prompt appears on your screen, the operating system has recognized
you as an authorized user and is waiting for you to request a program by
entering a command. For example, try running the date command. After the
prompt, type the command and press the RETURN key.

Basics for SYSTEM V/88 Users 2-19

I
The operating system accesses a program called date, executes it, and prints its
results on the screen:

Oct 16 09 : 49 : 44 EDT 1986

The date command prints the date and time, using the 24-hour clock. Now type
the who command and press the RETURN key. Your screen appears similar to
the following:

$ who<CR>
a tarahip ttyOO Oct 12 8 : 63
mary2 tty02 Oct 12 8 : 66
acct123 tty06 Oct 12 8 : 64
j mra tty06 Oct 12 8 : 66
$

The who command lists the login names of everyone currently working on your
system. The tty designations refer to the special files that correspond to each
user's terminal. The date and time at which each user logged in are also shown.

2-20 User's Guide

The help Command

To help you learn how to use these and other commands, the operating system I provides an online teaching aid: the help command. This program tells you
which command you need to perform a particular task and how to execute
specific commands. For novice users of the operating system, it also provides
definitions of vocabulary and explanations of basic concepts about the system.

NOTE

The help command is not available on all
operating systems; check with your System
Administrator to find out if it is installed on
your system.

When you need assistance, type help and press the RETURN key. The program
gives you a choice of four ways in which it can help you: by providing general
information; locating the appropriate command for a particular task; giving you
instructions on how to use a particular command; and defining terms. The
following example shows how this menu appears on your screen when you
type the command.

Basics for SYSTEM V/88 Users 2-21

I
$ help<CR>
h e lp : UN IX Sys tem On-Line H e lp

cho i c e s
s

l

u

g

r

q

d e s cription
s tarter : g eneral inf ormation

locate : f ind a command with keywords

usag e : inf ormation about commands

g l o s s ary : d e f initions of terms

Redirect to a f i l e or a command
Quit

En t e r cho i c e > _

Each item under description on this menu (starter, locate, usage, and
glossary) is an interactive menu program. Request one of these programs by
typing the option listed beside it under choices (e .g . , u) .

Because starter, locate, usage, and glossary are programs, they can also be
called from the shell. Once you are familiar with them, you can skip the step of
entering the help command first . If you know which program you want to run,
you can call it by typing its name as either a command or an argument to the
help command. For example, to call the usage program, use one of the
following command lines:

help usage<CR>

or

usage<CR>

2-22 User's Guide

The program you choose responds by printing a summary of its function, a
menu of choices, instructions, and examples of how to follow the instructions . 1 In this way, the help program leads you through a series of steps that enable
you to get the information you need.

Logging Off

When you have completed a session with the operating system, type <�d>
after the prompt. (Remember that control characters such as <�d> are typed by
holding down the CTRL key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the operating system displays the login: prompt again:

$ <"d>
login :

This shows that you have logged off successfully and the system is ready for
someone else to log in.

NOTE

Always log off the operating system by typing
<"d> before you turn off the terminal or hang
up the telephone. If you do not, you may not
be actually logged off the system.

The exit command also allows you to log off but is not used by most users . It
may be convenient if you want to include a command to log off within a shell
program. (For details, refer to the Special Commands section of the sh(l) page in
the User's Reference Manual.)

Basics for SYSTEM V/88 Users 2-23

3 Using the File System

Introduction 3-1
File System Structure 3-1

Your Place in the Fi le System 3-4
Your Home Directory 3-4
Your Current Directory 3-6
Path Names 3-8

Full Path Names 3-8
Relative Path Names 3-11
Naming Directories and Files 3-15

Organizing a Directory 3-16
Creating Directories: mkdir Command 3-16
Listing Directory Contents: Is Command 3-18
Frequently Used Is Options 3-20
Listing All Names in a File 3-21
Listing Contents in Short Format 3-21
Listing Contents in Long Format 3-22
Changing Your Current Directory: cd Command 3-26
Removing Directories : rmdir Command 3-28

Accessing and Manipulating Fi les 3-30
Basic Commands 3-31

Displaying a File's Contents: cat, pg, and pr 3-32
Paging Through the Contents of a File:

pg Command 3-35
Making a Copy of a File: cp Command 3-42

Using the File System

Using the File System

ii User's Guide

Moving and Renaming a File: mv Command 3-45
Removing a File: rm Command 3-49
Counting Lines, Words, and Characters in a File:

we Command 3-50
Protecting Your Files: chmod Command 3-54
Determining Existing Permissions 3-55
Changing Existing Permissions 3-57
Permissions on Directories 3-59
Using Octal Numbers 3-59

Advanced Commands 3-61
Comparing Files: diff Command 3-61
Searching a File for a Pattern: grep Command 3-63
Sorting and Merging Files: sort Command 3-65

Pri nti ng Fi les 3-68
Printing a File: pr Command 3-68
The LP Print Service 3-73

Requesting a Paper Copy of a File: lp Command 3-74
Select a Print Destination 3-75
Canceling a Request: cancel Command 3-75
Getting Printer Status: lpstat Command 3-75

Introd u ction

To use the SYSTEM V/88 file system effectively, you must be familiar with its
structure, know something about your relationship to this structure, and
understand how the relationship changes as you move around within it. This I chapter prepares you to use this file system.

The first two sections (File System Structure and Your Place in the File System)
offer a working perspective of the file system. The remaining sections
describe operating system commands that allow you to build your own
directory structure, manipulate the subdirectories and files you organize
within it, and examine the contents of other directories in the system for
which you have access permission .

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can
later review a command's syntax and capabilities quickly. Many of the
commands presented in this section have additional, sophisticated uses .
These, however, are left for more experienced users and are described in
other SYSTEM V/88 documentation. All the commands presented here are
basic to using the file system efficiently and easily. Try using each command
as you read about it.

File System Structure

The file system is made up of a set of ordinary files, special files, and
directories . These components provide a way to organize, retrieve, and
manage information electronically. Chapter 1 introduced the properties of
directories and files; this section reviews them briefly before discussing how
to use them.

• An ordinary file is a collection of characters stored on a disk. It may
contain text for a report or code for a program.

• A special file represents a physical device, e .g . , a terminal or disk.

• A directory is a collection of files and other directories (sometimes called
subdirectories) . Use directories to group files together on the basis of any
criteria you choose . For example, you might create a directory for each
product that your company sells or for each of your student' s records.

Using the File System 3-1

I

The directories and files are organized into a tree-shaped structure. Figure 3-1
shows a sample file structure with a directory called root (/) as its source . By
moving down the branches extending from root, you can reach several other
major system directories . By branching down from these, you can, in turn,
reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory have
what is called a parent/child relationship. This type of relationship is possible
for many layers of files and directories. In fact, there is no limit to the
number of files and directories you may create in any directory that you own.
Neither is there a limit to the number of layers of directories that you may
create. Thus, you have the capability to organize your files in a variety of
ways.

3-2 User's Guide

I

0 - Directories

�
- Ordinary Ales

- Special Files

Figure 3-1 . Sample File System

Using the File System 3-3

I

You r Place i n the Fi le System

Whenever you interact with the operating system, you do so from a location
in its file system structure . The operating system automatically places you at
a specific point in its file system every time you log in. From that point, you
can move through the hierarchy to work in any of your directories and files
and to access those belonging to others that you have permission to use.

The following sections describe your position in the file system structure and
how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the operating system
places you at a specific point in its file system structure called your login or
home directory. The login name assigned to you when your SYSTEM V/88
system account was set up is usually the name of this home directory. Every
user with an authorized login name has a unique home directory in the file
system.

The operating system is able to keep track of all these home directories by
maintaining one or more system directories that organize them. For example,
the home directories of the login names starship, mary2, and jmrs are
contained in a system directory called user1 . Figure 3-2 shows the position of
a system directory such as user1 in relation to the other important operating
system directories discussed in Chapter 1 .

3-4 User's Guide

8
" Dlrectorin

" Ordinary Flln

\1 • Spect.l Files

Figure 3-2. Directory of Home Directories

Using the File System 3-5

I

I

Within your home directory, you can create files and additional directories
(sometimes called subdirectories) in which to group them. You can move and
delete your files and directories, and control access to them. You have full
responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the
files and directories it holds, and the rest of the file system, all the way up to
root.

Your Cu rrent Di rectory

As long as you continue to work in your home directory, it is considered your
current working directory. If you move to another directory, that directory
becomes your new current directory.

The operating system command pwd (short for print working directory) prints
the name of the directory in which you are now working. For example, if
your login name is starship and you execute the pwd command in response
to the first prompt after logging in, the operating system responds as:

$ pwd<CR>P
/user1 /starshlp
$

The system response gives you both the name of the directory in which you
are working (starship) and the location of that directory in the file system.
The path name /user1 /starship tells you that the root directory (shown by the
leading I in the line) contains the directory user1 , which contains the
directory starship.

3-6 User's Guide

'

NOTE

All other slashes in the path name other than
root are used to separate the names of
directories and files, and to show the position
of each directory relative to root.

A directory name that shows the directory's location in this way is called a
full or complete directory name or path name. In the next few pages, this
path name is analyzed and traced so you can start to move around in the file
system.

Remember, you can determine your position in the file system at any time
simply by issuing a pwd command. This is helpful if you want to read or
copy a file and the operating system tells you the file you are trying to access
does not exist. You may be surprised to find you are in a different directory
than you thought.

Table 3-1 provides a summary of the syntax and capabilities of the pwd
command.

Command

pwd

Description :

Table 3-1 . Summary of the pwd Command

COMMAND RECAP

pwd - print full name of working directory

Options Arguments

none none

pwd prints the full path name of the directory in
which you are currently working.

Using the File System 3-7

I

I

Path Names

Every file and directory in the operating system is identified by a unique path
name. The path name shows the location of the file or directory and provides
directions for reaching it. Knowing how to follow a path name is your key to
moving around the file system successfully. The first step in learning about
its directions is to learn about the two types of path names: full and relative.

Ful l Path Names

A full path name (sometimes called an absolute path name) gives directions
that start in the root directory and lead down through a unique sequence of
directories to a particular directory or file . You can use a full path name to
reach any file or directory.

Because a full path name always starts at the root of the file system, its
leading character is always a "/" (slash) . The final name in a full path name
can be either a file name or a directory name. All other names in the path
must be directories .

3-8 User's Guide

To understand how a full path name is constructed and how it directs you,
consider the following example . Suppose you are working in the starship
directory, located in luser1 . You issue the pwd command and the system
responds by printing the full path name of your working directory:
luser11starship. Analyze the elements of this path name using the following
diagram and key.

I (leading)

user1

I (subsequent)

starship

root

system
directory

dol im iti
r-1�
ser1/starship

home
d irectory

the slash that appears as the first character in the path name is
the root of the file system

system directory one level below root in the hierarchy to which
root points or branches

the next slash separates or delimits the directory names user1
and starshlp

current working directory

Now follow the bold lines in Figure 3-3 to trace the full path to
/user1 /starship.

Using the File System 3-9

I

I

Q .. DlrectoriH

0 . Ordinary Flies

"\1 .. Special Flies

Figure 3-3. Full Path Name of the /user1 /starship Directory

3-10 User's Guide

Relative Path Names

A relative path name gives directions that start in your current working
directory, and lead you up or down through a series of directories to a
particular file or directory. By moving down from your current directory, you
can access files and directories you own. By moving up from your current I directory, you pass through layers of parent directories to the grandparent of
all system directories, root. From there you can move anywhere in the file
system.

A relative path name begins with a directory or file name; a "." (pronounced
dot), which is a shorthand notation for your current directory; or a " .. "
(pronounced dot dot), which is a shorthand notation for the directory
immediately above your current directory in the file system hierarchy. The
directory represented by " .. " is called the parent directory of "." (your current
directory) .

For example, assume you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name,
such as draft or mbox. Figure 3-4 traces the relative path from starship to
draft.

Using the File System 3-11

I

Q .. Directories

0 . Ordinary Files

Figure 3-4. Relative Path Name of the draft Directory

The draft directory belonging to starship contains the files outl ine and table.
The relative path name from starship to the file outl ine is draft/outl ine.

Figure 3-5 traces this relative path. Notice that the slash in this path name
separates the directory named draft from the file named outl ine. Here, the
slash is a delimiter showing that outl ine is subordinate to draft; i . e . , outl ine is
a child of its parent, draft.

3-12 User's Guide

Q = Direc:torift

0 .. Ordinary Files

Figure 3-5. Relative Path Name from starship to outl ine

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by
level until you reach your destination. You can also, however, ascend the
levels in the system structure or ascend and subsequently descend into other
files and directories .

To ascend to the parent of your current directory, you can use the " . . "
notation. This means that if you are in the directory named draft in the
sample file system, " .. " is the path name to starship, and " . . / .. " is the path
name to starship's parent directory, user1 .

Using the File System 3-13

I

I

From draft, you can also trace a path to the file sanders by using the path
name • . /letters/sanders. The " • .' ' brings you up to starship. Then the names
letters and sanders take you down through the letters directory to the
sanders file .

Keep in mind that you can always use a full path name in place of a relative
one. Table 3-2 shows some examples of full and relative path names.

Table 3-2. Example Path Names

Path Name Mean ing

I full path name of the root directory.

/bin full path name of the bin directory (contains
most executable programs and utilities) .

/user1 /starshiplbin/tools full path name of the tools directory belonging
to the bin directory that belongs to the
starship directory belonging to user1 that
belongs to root.

bin/tools relative path name to the file or directory tools
in the directory bin.

tools

If the current directory is /, then the operating
system searches for /bin/tools. However, if
the current directory is starship, then
the system searches the full path
/user1 /starship/bin/tools.

relative path name of a file or directory tools
in the current directory.

You may need some practice before you can use path names such as these to
move around the file system with confidence. However, this is to be
expected when learning a new concept.

3-14 User's Guide

Naming Directories and Fi les

You can give your directories and files any names you want, as long as you
observe the following rules:

• The name of a directory (or file) can be from 1 to 14 characters .

• All characters other than "/" are legal.

• Some characters are best avoided, e .g . , space, tab, backspace, and the
following:

If you use a blank or tab in a directory or file name, you must enclose the
name in quotation marks on the command line .

• Avoid using a " + ", "-" or "." as the first character in a file name .

• Uppercase and lowercase characters are distinct to the operating system.
For example, the system considers a directory (or file) named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo
file.d

MEMO
chap3+ 4

section2
item 1 -1 0

ref : l ist
outl ine

The rest of this chapter introduces operating system commands that enable
you to examine the file system.

Using the File System 3-15

I

I

Organ izi ng a Di rectory

This section introduces four operating system commands that enable you to
organize and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir

Is

enables you to make new directories and subdirectories within your
current directory.

lists the names of all the subdirectories and files in a directory.

cd
enables you to change your location in the file system from one directory
to another.

rmdir
enables you to remove an empty directory.

You can use these commands with either full or relative path names. Two of
the commands, Is and cd, can also be used without a path name . Each
command is described more fully in the following sections .

Creat ing Directories : mkd i r Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval
of information from your files . If you put all files about one subject in a
directory, you will know where to find them later.

To create a directory, use the command mkdir (short for make directory) . Enter
the command name, followed by the name you are giving your new directory.
For example, in the sample file system, the owner of the draft subdirectory
created draft by issuing the following command from the home directory
(/user1 /starship) :

$ mkdir draft < CR>
$

The second prompt shows that the command has succeeded; the subdirectory
draft has been created.

3-16 User's Guide

Still in the home directory, this user created other subdirectories, e .g . , letters
and bin, in the same way:

$ mkdir letters<CR>
$ mkdir bin< CR>
$

The user could have created all three subdirectories (draft, letters, and bin) I simultaneously by listing them all on a single command line:

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional
subdirectories within it. When you build directories or create files, you can
name them anything you want as long as you follow the guidelines listed
earlier under Naming Directories and Files.

Table 3-3 summarizes the syntax and capabilities of the mkdir command.

Table 3-3. Summary of the mkdir Command

Command Recap

mkdir - make a new directory

Command Options Arguments

mkdir available* directoryname(s)

Description : mkdir creates a new directory (subdirectory) .

Remarks: The system returns a prompt ($ by default) if the
directory is successfully created.

* See the mkdir page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Using the File System 3-17

I

List ing Directory Contents : Is Command

All directories in the file system have information about the files and
directories they contain, e .g . , name, size, and the date last modified . You can
obtain this information about the contents of your current directory and other
system directories by executing the command Is (short for list) .

The Is command lists the names of all files and subdirectories in a specified
directory. If you do not specify a directory, Is lists the names of files and
directories in your current directory. To understand how the Is command
works, consider the sample file system (Figure 3-2) once again:

You are logged in to the operating system and you run the pwd
command. The system responds with the path name /user1 /starship. To
display the names of files and directories in this current directory, you
then type Is and press the RETURN key. After this sequence, your
terminal will read:

$ pwd < CR>
$/u s e r l / s tarship
$ 1s<CR>
bin
draft
l e tters
l i s t
mbox
$

The system responds by listing, in alphabetical order, the names of files and
directories in the current directory starship. (If the first character of any of
the file or directory names had been a number or an uppercase letter, it would
print first.)

3-18 User's Guide

To print the names of files and subdirectories in a directory other than your
current directory without moving from your current directory, you specify the
name of that directory as:

Is directoryname<CR>

The directory name can be either the full or relative path name of the desired 1 directory. For example, you can list the contents of draft while you are
working in starship by entering Is draft and pressing the RETURN key. Your
screen displays:

$ Is draft<CR>

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent
directory when you are located in a child directory. The " .. " (dot dot)
notation provides an easy way to do this. For example, the following
command line specifies the relative path name from starship to user1 :

$ Is .. <CR>
j mr a
ma.ry2
a ta.rahip
$

You can get the same results by using the full path name from root to user1 .

Using the File System 3-19

I

If you type Is /user1 and press the RETURN key, the system responds by
printing the same list. You can also list the contents of any system directory
that you have permission to access by executing the Is command with a full or
relative path name.

The Is command is useful if you have a long list of files and you are trying to
determine if one of them exists in your current directory. For example, if you
are in the directory draft and you want to determine if the files named outl ine
and notes are there, use the Is command as follows:

S Is outline notes<CR>

not found

The system acknowledges the existence of outl ine by printing its name, and
says that the file notes is not found.

The Is command does not print the contents of a file . If you want to see what
a file contains, use the cat, pg, or pr command; they are described in
Accessing and Manipulating Files, later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file or
subdirectory to be listed. There are more than a dozen available options for
the Is commands. Of these, the -a and -1 will probably be most valuable in
your basic use of the operating system. Refer to the ls(l) page in the User's
Reference Manual for details about other options .

3-20 User's Guide

Listing All Names in a File

Some important file names in your home directory, e .g . , .profi le (pronounced
dot-profile), begin with a period. When a file name begins with a dot, it is not
included in the list of files reported by the Is command. If you want the Is to 1 include these files, use the -a option on the command line . For example, to
list all the files in your current directory (starship), including those that begin
with a "."(dot), type Is -a and press the RETURN key:

$ ls -a<CR>

. prof i l e
bin
draft
l e tters
l i s t
mbox
•

Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory's subdirectories and files in columns, and
identify executable files (with an * (prints * centered on line) and directories
(with a "/") . Thus, you can list all files in your working directory starship by
executing the command line shown here:

Using the File System 3-21

I $ Is -CF<CR> [
bin/ l e tters/
draft/ l i s t•
$ [

mbox

Listing Contents in Long Format

Probably the most informative Is option is -1, which displays the contents of a
directory in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file. For example, run the Is -1
command while in the starship directory.

• Is - I<CR>
t.ot.&l 30
drwxr-xr-x 3
drwzr-zr-z 2
drwxr-xr-x 2
-rwz------ 2
-rw------- 1
•

3-22 User's Guide

et.&rehip proj ect.
et.&rehip proj ect.
et.&rehip proj ect.
et.&rehip proj ect.
et.&rehip proj ect.

9 6 Oct. 27 08 : 1 6 bin
64 Nov 1 1 4 : 1 9 dr&ft.
80 Nov 8 08 : 4 1 l e t t e r •

1 2301 Nov 2 1 0 : 1 6 liet.
4 0 Oct. 2 7 1 0 : 00 mbox

The first line of output (total 30) shows the amount of disk space used,
measured in blocks . Each of the rest of the lines comprises a report on a
directory or file in starship. The first character in each line (d, -, b, or c)
tells you the type of file .

d directory

ordinary disk file

b block special file

c character special file

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two ordinary disk files .

The next several characters, which are either letters or hyphens, identify who
has permission to read and use the file or directory. (Permissions are
discussed in the description of the chmod command under Accessing and
Manipulating Files later in this chapter.)

The following number is the link count. For a file, this equals the number of
other files linked to that file . For a directory, this number shows the number
of directories immediately under it plus two (for the directory itself and its
parent directory) .

Next, the login name of the file's owner appears (here it is starship), followed
by the group name of the file or directory (project) .

The following number shows the length of the file or directory entry
measured in units of information (or memory) called bytes . The month, day,
and time that the file was last modified are given next. Finally, the last
column shows the name of the directory or file.

Using the File System 3-23

I

I

Figure 3-6 identifies each column in the rows of output from the Is -1
command.

number of owner
blocks used name

number
of links

total 30

m
�-�-x

File _ rwxr-xr-x
type xr-xr-x

- - - - --

�

I
permissions

t
3 stars hip
2 starship
2 stars hip
2 stars hip
1 starship

length

group in bytes

name

I
name

t t
project 96 Oct 27 08: 16 bin
project 64 Nov 1 14: 19 draft
project 80 Nov 8 08:41 letters
project 12301 Nov 2 10:15 list
project 40 Oct 27 10:00 mbox

�

i
time/date last

modified

Figure 3-6. Description of Output Produced by the Is - I Command

3-24 User's Guide

Table 3-4 summarizes the syntax and capabilities of the Is command and two
available options .

Table 3-4. Summary of the Is Command

Command Recap

Is - list contents of a directory

Command Options Arguments

Is -a, -1, and others* directoryname(s)
or filename(s)

Description : Is lists the names of the files and subdirectories in
the specified directories . If no directory name is
given as an argument, lists the contents of your
working directory.

Options :
-a Lists all entries, including those beginning

with "." (dot) .

-I Lists contents of a directory in long format,
furnishing mode, permissions, size in bytes,
and time of last modification.

Remarks : If you want to read the contents of a file, use the
cat command.

* See the ls(l) page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Using the File System 3-25

I

I

Changing You r Cu rrent Directory: cd Command

When you first log in on the operating system, you are placed in your home
directory. As long as you do work in it, it is also your current working
directory. However, by using the command cd (short for change directory),
you can also work in other directories. To use this command, enter cd,

followed by a path name to the directory to which you want to move:

cd pathMme_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the cd
command. If you do not specify a path name, the command moves you to
your home directory. Once you have moved to a new directory, it becomes
your current directory.

For example, to move from the starship directory to its child directory draft
(in the sample file system), type cd draft and press the RETURN key. (Here
draft is the relative path name to the desired directory.) When you get a
prompt, verify your new location by typing pwd and pressing the RETURN

key. Your terminal screen appears as:

$ cd draft<CR>
$ pwd<CR>
/us er1/s tarship/draft
$

3-26 User's Guide

Now that you are in the draft directory you can create subdirectories in it by
using the mkdir command, and new files, by using the ed and vi editors .
(Refer to Chapters 5 and 6 for tutorials on the ed and vi commands,
respectively.)

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For I example, to display the sanders file in the letters directory
(/user1/starship/letters) while you are in the draft directory,
/user1 /starship/draft, specify the full path name of sanders on the command
line when you issue cat command (more on the cat command later) :

cat /user1 /starship/letters/sanders< CR>

You may also use full path names with the cd command. For example, to
move to the letters directory from the draft directory, specify
/user1 /starship/letters on the command line:

cd /user1 /starship/letters<CR>

Also, because letters and draft are both children of starship, you can use the
relative path name . . /letters with the cd command. The " .. " notation moves
you to the directory starship, and the rest of the path name moves you to
letters.

Using the File System 3-27

I

Table 3-5 summarizes the syntax and capabilities of the cd command.

Table 3-5. Summary of the cd Command

COMMAND RECAP

cd - change your working directory

Command Options Arguments

cd none directoryname

Description : cd changes your position in the file system from
the current directory to the directory specified. If
no directory name is given as an argument, the cd

command places you in your home directory.

Remarks: When the shell places you in the directory
specified, the prompt ($ by default) is returned to
you. To access a directory that is not in your
working directory, you must use the full or relative
path name in place of a simple directory name.

Removi ng Directories : rmd ir Command

If you no longer need a directory, you can remove it with the command rmdir
(short for remove a directory) . The standard syntax for this command is:

rmdir directoryname(s)<CR>

You can specify more than one directory name on the command line .

The rmdir command will not remove a directory if you are not the owner of it
or if the directory is not empty. If you want to remove a file in another user's
directory, the owner must give you write permission for the parent directory
of the file you want to remove.

3-28 User's Guide

If you try to remove a directory that still contains subdirectories and files (i . e . ,
i t is not empty), the rmdir command prints the message directorynnme not
empty. You must remove all subdirectories and files (including files whose
filename starts with ". "); only then will the command succeed.

For example, you have a directory called memos that contains one
subdirectory, tech, and two files, june.30 and ju ly.31 . (Create this directory
in your home directory now so you can see how the rmdir command works .)
If you try to remove the directory memos (by issuing the rmdir command
from your home directory), the command responds as:

$ rmdir memos < CR >
rmdir : memo s not empty
$

To remove the directory memos, you must first remove its contents: the
subdirectory tech, and the files june.30 and ju ly.31 . You can remove the tech
subdirectory by executing the rmdir command. For instructions on removing
files, see Accessing and Manipulating Files later in this chapter.

Once you have removed the contents of the memos directory, memos can be
removed. First, however, you must move to its parent directory (your home
directory) . The rmdir command will not work if you are still in the directory
you want to remove . From your home directory, type:

rmdir memos< CR>

If memos is empty, the command removes it and returns a prompt.

Using the File System 3-29

I

I

Table 3-6 summarizes the syntax and capabilities of the rmdir command.

Table 3-6. Summary of the rmdir Command

Command Recap

rmdir - remove a directory

Command Options Arguments

rmdir available• directoryno:me(s)

Description : rmdir removes specified directories only when they
do not contain files or subdirectories .

Remarks : If the directory is empty, it is removed and the
system returns a prompt. When the directory
contains files or subdirectories, the command
returns the message, rmdir : directoryno:me not
empty.

* See the rmdir page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Accessing and Man ipu lating Fi les
This section presents several operating system commands that access and
manipulate files in the file system structure . Information in this section is
organized into two parts: basic and advanced. The part devoted to basic
commands is fundamental to using the file system; the advanced commands
offer more sophisticated information processing techniques for working with
files .

3-30 User's Guide

Basic Commands

This section discusses SYSTEM V/88 commands that are necessary for
accessing and using the files in the directory structure . Table 3-7 lists these
commands.

Table 3-7. Basic Commands for Using Files

Command Function

cat displays the contents of a specified file on a
terminal.

pg displays the contents of a specified file on a
terminal in chunks or pages.

pr displays a partially formatted version of a
specified file on the terminal.

lp requests a paper copy of a file from a line
printer.

cp makes a duplicate copy of an existing ordinary
file.

mv moves and renames an ordinary or directory
file.

rm removes an ordinary or special file .

we reports the number of lines, words, and
characters in an ordinary file .

chmod changes permission modes for a file (or a
directory) .

Each command is discussed in detail and summarized for easy reference later.
' These summaries will allow you to review the syntax and capabilities of these

commands at a glance .

Using the File System 3-31

I

•

Displaying a File's Contents : cat, pg, and pr

The operating system has three commands to display and print the contents
of a file or files: cat, pg, and pr. The cat command (short for concatenate)
outputs the contents of the files specified . This output displays on your
screen unless you tell cat to direct it to another file or a new command.

The pg command is useful when you want to read the contents of a long file
because it displays the text of a file in pages a screenful at a time .

The pr command formats specified files and displays them on your screen or,
if you so request, directs the formatted output to a printer (refer to the lp
command in this chapter) .

The following sections describe how to use the cat, pg, and pr commands .

Concatenate and Print Contents of a F i le : the cat Command

The cat command displays the contents of an ordinary file or files. For
example, you are located in the directory letters (in the sample file system)
and you want to display the contents of the file johnson . Type the command
line shown on the screen and you will receive the following output:

3-32 User's Guide

$ cat johnson<CR>
March 6 , 1986

Mr . Ron Johnson
Layton Printing
62 Huds on Str e e t
N e w York , N . Y .

Dear Mr . Johnson :

I enj oyed speaking with you this morning
about your company ' s plana to automate
your bus ine s s .
Enc l o s e d p l e as e f ind
the material you re que sted
about AB�c · s line of computers
and o f f i c e automation s o f tware .

I f I can be of further as s i s tance to you ,
p l e a s e don ' t h e s itate to call .

Yours truly,

John Howe
$

To display the contents of two (or more) files, type the names of the files you
want to see on the command line . For example, to display the contents of the
files johnson and sanders:

$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their contents in
that order on your screen:

Using the File System 3-33

I

I $ cat johnson sanders<CR>
March 6 , 1986

Yr . Ron Johns on
Layton Printing
62 Hudson Stre e t
N e w York , N . Y .

Dear Yr . Johnson :

I enj oyed speaking with you thi s morning

Yours truly ,

John Howe

March 6 , 1986

lira . D . L . Sanders
Sanders R e s e arch , Inc .
43 Nas s au Str e e t
Prin c e ton , N . J .

D e ar lira . Sanders :

Yy colleague s and I have b e e n following , with great intere s t ,

Sincere ly,

John Howe
$

To direct the output of the cat command to another file or to a new command,
refer to the sections in Chapter 7 that discuss input and output redirection.
Table 3-8 summarizes the syntax and capabilities of the cat command.

3-34 User's Guide

Table 3-8. Summary of the cat Command

Command Recap

cat - concatenate and print a file's contents

Command Options Arguments

cat available* filelist

Description : The cat command reads the name of each file
specified on the command line and displays its
contents .

Remarks : If a specified file exists and is readable, its contents
display on the screen; otherwise, the message
cat : cannot open filename appears on the
screen.

To display the contents of a directory, use the Is
command.

* See the cat{l) page in the User's Reference Manual for all
available options and an explanation of their capabilities .

NOTE: To prevent terminal settings from being changed, only ordinary files
that are printable should be used by cat (i . e . , not executable or data
files) .

Paging Through the Contents of a Fi le: pg Command

The command pg (short for page) allows you to examine the contents of files
page by page, on a terminal. The pg command displays the text of a file in
pages (chunks) followed by a colon prompt (:), a signal that the program is
waiting for your instructions . Possible instructions you can then issue include
requests for pg to continue displaying the file's contents a page at a time, and
a request that pg search through the files to locate a specific character pattern.
Table 3-9 summarizes some of the available instructions.

Using the File System 3-35

I

I

Table 3-9. Summary of Commands to Use with pg

pg Command*

h

q or Q

<CR>

I

d or Ad

. or A I

f

n

p

$

/pattern

?pattern

I

Function

displays list of available pgt commands.

quits pg perusal mode.

displays next page of text.

displays next line of text.

displays additional half page of text.

redisplays current page of text .

skips next page of text and displays the following one.

begins displaying next file you specified on command
line .

displays previous file specified on command line .

displays last page of text in file currently
displayed.

searches forward in file for specified character pattern.

searches backward in file for specified character
pattern.

escapes from file to the shell.

* Most commands can be typed with a number preceding them.
For example, + 1 (display next page), - 1 (display previous
page), or 1 (display first page of text) .

t See the User's Reference Manual for an explanation of all
available pg commands.

3-36 User's Guide

The pg command is useful when you want to read a long file or a series of
files because the program pauses after displaying each page, allowing time to
examine it. The size of the page displayed depends on the terminal. For
example, on a terminal capable of displaying 24 lines, one page is defined as
23 lines of text and a line containing a colon. However, if a file is less than
twenty-three lines long, its page size is the number of lines in the file plus 1 one (for the colon) .

To read the contents of a file with pg, use the following command line format:

pg filename(s)<CR>

For example, to display the contents of the file outl ine in the sample file
system, type:

pg outline<CR>

The first page of the file appears on the screen. Because the file has more
lines in it than can display on one page, a colon appears at the bottom of the
screen. This is a reminder to you that there is more of the file to be seen.
When you are ready to read more, press the RETURN key and pg prints the
next page of the file .

The following screen depicts our discussion of the pg command:

Using the File System 3-37

II $ pg outline<CR>
After you ana1yze the subj e ct f or your
report , you mus t cons ider organizing and
arranging the materia1 you want to us e in
writing it .

An out1ine i s an e f f e c tive method of
organizing the materia1 . The out1ine
i s a type of b1ueprint or ske 1 e ton ,
a framework for you the bui1der-writer
of the report ; in a s e n s e it i s a r e c ipe
: <CR>

After you press the RETURN key, pg resumes printing the file's contents on
the screen.

3-38 User's Guide

that contains the name s of the
ingredi ents and the order in which
to u s a them .

Your out1ina n e e d not be a 1 aborata or
ovar1y d a tai 1 a d ; it i s s imp1y a guide you
may consu1t as you write , to be varied ,
if n e e d be , when additiona1 important
ideas are sugg e s ted in the actua1 writing .
(EOF) :

Notice the line at the bottom of the screen that contains the string (EOF) : .

This expression (EOF) means you have reached the end of the file . The
colon prompt is a cue for you to issue another command.

When you have finished examining the file, press the RETURN key; a prompt
appears on your terminal. (Typing q or Q and pressing the RETURN key also
gives you a prompt.) Or you can use one of the other available commands,
depending on your needs . In addition, there are a number of options that can
be specified on the pg command line. Refer to the pg(l) page in the User's
Reference Manual.

Using the File System 3-39

I

I

Proper execution of the pg command depends on specifying the type of
terminal you are using. This is because the pg program was designed to be
flexible enough to run on many different terminals; how it is executed differs
from terminal to terminal. By specifying one type, you are telling this
command:

• how many lines to print

• how many columns to print

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM
variable i n your .profi le file . (For more information about TERM and .profi le,
see Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

3-40 User's Guide

Table 3-10 summarizes the syntax and capabilities of the pg command.

Table 3-1 0. Summary of the pg Command

Command Recap

pg - display a file's contents in chunks or pages

Command Options Arguments

pg available* file list

Description : The pg command displays the contents of the
specified files in pages.

Remarks : After displaying a page of text, the pg command
awaits instructions from you to do one of the
following: continue to display text, search for a
pattern of characters, or exit the pg view mode. In
addition, a number of options are available . For
example, you can display a section of a file
beginning at a specific line or at a line containing a
certain sequence or pattern. You can also opt to go
back and review text that has already displayed.

* See the pg(1) page in the User's Reference Manual for all options
and an explanation of their capabilities .

Using the File System 3-41

I

I

Making a Copy of a Fi le: cp Command

When using the operating system, you may want to make a copy of an
ordinary file . For example, revise a file while leaving the original version
intact. The command cp (short for copy) copies the complete contents of one
file into another. The cp command also allows you to copy one or more files
from one directory into another while leaving the original file or files in place .

To copy the file named outl ine to a file named new.outl ine in the sample
directory, type cp outl ine new.outl ine and press the RETURN key. The
system returns the prompt when the copy is made . To verify the existence of
the new file, you can type Is and press the RETURN key. This command lists
the names of all files and directories in the current directory, in this case
draft. The following screen depicts these commands:

$ cp outline new.outllne<CR>
$ ls<CR>
:a.ew . outli:a.e
outline
table
$

The operating system does not allow you to have two files with the same
name in a directory. In this case, because there was no file called new.outl ine
when the cp command was issued, the system created a new file with that
name. However, if a file called new.outl ine had already existed, it would
have been replaced by a copy of the file outl ine; the previous version of
new.outl ine would have beer. deleted.

If you had tried to copy the file outl ine to another file named outl ine in the
same directory, the system would have told you the file names were identical
and returned the prompt to you.

3-42 User's Guide

If you had then listed the contents of the directory to determine exactly how
many copies of outline existed, you would have received the following on
your screen:

$ cp outline outline<CR>
cp : outline and outline are identical
$ ls<CR>
outline
tab l e
•

The operating system does allow you to have two files with the same name as
long as they are in different directories . For example, the system would let
you copy the file outl ine from the draft directory to another file named
outline in the letters directory.

If you were in the draft directory, you could use any one of four command
lines. In the first two command lines, you specify the name of the new file
you are creating by making a copy:

cp ouUine /user1 /starship/letters/outline< CR> (full path name specified)

cp outline • . !letters/outline< CR> (relative path name specified)

NOTE

If the directory that we assumed didn't really
exist, then the file copy would instead receive
the name of the innermost directory.

Using the File System 3-43

I

I

However, the cp command does not require that you specify the name of the
new file . If you do not include a name for it on the command line, cp gives
your new file the same name as the original one, by default. Therefore you
could also use either of these command lines:

cp outline /user1 /starship/letters< CR> (full path name specified)

cp outline . ./letters< CR> (relative path name specified)

In all four cases, cp makes a copy of the outl ine file in the letters directory
and calls it outl ine, too. If you want to give your new file a different name,
you must specify it. For example, to copy the file outl ine in the draft

directory to a file named outl ine.vers2 in the letters directory, you can use
either of these commands:

cp outline /user1 /starship/letters/outline.vers2< CR> (full path name)

cp outline . ./letters/outline.vers2< CR> (relative path name)

When assigning new names, remember the rules described in Naming
Directories and Files in this chapter.

3-44 User's Guide

Table 3-11 summarizes the syntax and capabilities of the cp command.

Table 3-1 1 . Summary of the cp Command

Command Recap

cp - make a copy of a file

Command Options Arguments

cp none
filel file2
file(s) directory

Description : cp allows you to make a copy of filel and call it
file2 leaving filel intact or to copy one or more files
into a different directory.

Remarks: When you are copying filel to file2 and a file called
file2 already exists, the cp command overwrites the
first version of file2 with a copy of filel and calls it
file2 . The first version of file2 is deleted.

You cannot copy directories or special files with the
cp command.

Moving and Renam ing a Fi le: mv Command

The command mv (short for move) allows you to rename a file in the same
directory or to move a file from one directory to another. If you move a file to
a different directory, the file can be renamed or it can retain its original name.

To rename a file within one directory, follow this format:

mv filel file2< CR>

The mv command changes a file's name from filel to file2 and deletes filel .
Remember that the names filel and file2 can be any valid names, including
path names .

Using the File System 3-45

I

I

For example, if you are in the directory draft in the sample file system and
you would like to rename the file table to new.table, type
mv table new.table and press the RETURN key. If the command executes
successfully, you receive a prompt. To verify that the file new.table exists,
you can list the contents of the directory by typing Is and pressing the
RETURN key. The screen shows your input and the system's output:

$ mv table new.table<CR>
$ 1s<CR>
new . table
outline
$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv file(s) directory<CR>

The file and directory names can be any valid names, including path names.

3-46 User's Guide

For example, you want to move the file table from the current directory
named draft (whose full path name is /user1/starship/draft) to a file with the
same name in the directory letters (whose relative path name from draft is
. . /letters and whose full path name is /user1/starship/letters), you can use
any one of several command lines:

mv table /user1 /starship/letters<CR>

mv table /user1 /starship/letters/table<CR>

mv table . ./letters<CR>

mv table .. /letters/table<CR>

mv /user1 /starship/draMable /user1 /starship/letters/table< CR>

If you want to rename the file table as table2 when moving it to the directory
letters, use any of these command lines:

mv table /user1 /starship/letters/table2<CR>

mv table .. /letters/table2<CR>

mv /user1/starship/draftltable2 /user1 /starship/letters/table2< CR >

You can verify that the command worked by using the Is command to list the
contents of the directory.

Using the File System 3-47

I

I

Table 3-12 summarizes the syntax and capabilities of the mv command.

Table 3-1 2. Summary of the mv Command

Command Recap

mv - move or rename files

Command Options Arguments

filel file2
mv available* file(s) directory

Description : mv allows you to change the name of a file or to
move a file(s) into another directory.

Remarks : When you are moving filel to file2, if a file called
file2 already exists, the mv command overwrites the
first version of file2 with filel and renames it file2 .
The first version of file2 is deleted.

* See mv(l) page in the User's Reference Manual for all available
options and an explanation of their capabilities .

3-48 User's Guide

Removing a Fi le: rm Command

When you no longer need a file, you can remove it from your directory by
executing the command rm (short for remove) . The basic format for this
command is:

rm file(s)<CR>

You can remove more than one file at a time by specifying those files you
want to delete on the command line with a space separating each filename:

rm filel file2 file3<CR>

The system does not save a copy o f a file i t removes; once you have executed
this command, your file is removed permanently.

After you have issued the rm command, you can verify its successful
execution by running the Is command. Because Is lists the files in your
directory, you'll immediately be able to see whether or not rm has executed
successfully.

For example, suppose you have a directory that contains two files, outl ine
and table. You can remove both files by issuing the rm command once . If rm
is executed successfully, your directory is empty. Verify this by running the
Is command.

$ rm outl ine table <CR>
$ I s
$

The prompt shows that outl ine and table were removed.

Using the File System 3-49

I

I

Table 3-13 Summarizes the syntax and capabilities of the rm command.

Table 3-1 3. Summary of the rm Command

Command Recap

rm - remove a file

Command Options Arguments

rm available* filelist

Description : rm allows you to remove one or more files .

Remarks: Files specified as arguments to the rm command
are removed permanently.

* See the rm(l) page in the User's Reference Manual for all options
and an explanation of their capabilities .

Counting Lines, Words, and Characters in a File: we Command

The command we (short for word count) reports the number of lines, words,
and characters there are in the ordinary files named on the command line . If
you name more than one file, the we program counts the number of lines,
words, and characters in each specified file and then totals the counts . In
addition, you can direct the we program to give yo4 only a line, a word, or a
character count by using the - I, -w, or - c options, respectively.

3-50 User's Guide

To determine the number of lines, words, and characters in a file, use the
following format on the command line:

we file1 <CR>

The system responds with a line in the following format:

where:

w c file1

represents the number of lines in file1 .

w represents the number of words in file1 .

c represents the number of characters in file1 .

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, lett�rs), type the following command line:

$ we johnson<CR>
24 66 406 j ohnson
$

The system response means that the file johnson has 24 lines, 66 words, and
406 characters .

To count the lines, words, and characters in more than one file, use this
format:

we file1 file2<CR>

The system responds in the following format:

w
w
w

c
c
c

file1
file2
total

Line, word, and character counts for file1 and file2 display on separate lines
and the combined counts appear on the last line beside the word total .

Using the File System 3-51

I

I

For example, ask the we program to count the lines, words, and characters in
the files johnson and sanders in the current directory:

$ we johnson sanders<CR>
24 66 406 j ohnson
28 92 669 s anders
62 168 966 total

$

The first line reports that the johnson file has 24 lines, 66 words, and 406
characters . The second line reports 28 lin.es, 92 words, and 559 characters in
the sanders file . The last line shows that these two files together have a total
of 52 lines, 158 words, and 965 characters .

To get only a line, a word, or a character count, select the appropriate
command line format from the following lines:

we - 1 filel <CR> (line count)
we - w file1 <CR> (word count)
we - e file1 <CR> (character count)

For example, using the - I option, the system reports only the number of lines
in sanders:

we -I sanders<CR>
28 sanders

3-52 User's Guide

If the -w or -c option had been specified instead, the command would have
reported the number of words or characters, respectively, in the file .

Table 3-14 summarizes the syntax and capabilities of the we command.

Table 3-1 4. Summary of the we Command

Command Recap

we - count lines, words, and characters in a file

Command

we

Description :

Options

Remarks :

Options Arguments

- 1, -w, -c file list

we counts lines, words, and characters in the
specified files, keeping a total count of all tallies
when more than one file is specified .

- I counts the number of lines in the specified
file(s) .

-w counts the number of words in the specified
file(s) .

-c counts the number of characters in the
specified file(s) .

When a file name is specified in the command line,
the counts requested are displayed.

Using the File System 3-53

I

I

Protecting Your Files : chmod Command

The command chmod (short for change mode) allows you to decide who can
use your files and who cannot. Because the operating system is a multi-user
system, you usually do not work alone in the file system. System users can
follow path names to various directories and read and use files belonging to
one another, as long as they have permission to do so.

If you own a file, you can decide who has the right to read it, write in it
(make changes to it), or, if it is a program, execute it. You can also restrict
permissions for directories with the chmod command. When you grant
execute permission for a directory, you allow the specified users to cd to it
and list its contents with the Is command.

To assign or remove these types of permissions, use the following three
symbols:

r allows system users to read a file or to copy its contents .

w allows system users to write changes into a file (or a copy of it) .

x allows system users to run an executable file .

To specify the users to whom you are granting or denying these types of
permission, use these three symbols:

u indicates you, the owner of your files and directories (where u is short
for user) .

g indicates members of the group to which you belong. (The group could
consist of team members working on a project, members of a
department, or a group arbitrarily designated by the person who set up
your operating system account.)

o indicates all other system users .

When you create a file or a directory, the system automatically grants or
denies permission to you, members of your group, and other system users .
You can alter this automatic action by modifying your environment (see
"umask" in Chapter 7 for details) . Moreover, regardless of how the
permissions are granted when a file is created, as the owner of the file or
directory you always have the option of changing them. For example, you
may want to keep certain files private and reserve them for your exclusive
use . You may want to grant permission to read and write changes into a file
to members of your group and all other system users as well. Or you may

3-54 User's Guide

share a program with members of your group by granting them permission to
execute it.

Determ ining Existing Perm issions

You can determine what permissions are currently in effect on a file or a 1 directory by using the command that produces a long listing of a directory's
contents: Is - 1 . For example, typing Is - 1 and pressing the RETURN key
while in the directory named starship/bin in the sample file system produces
the following output:

$ ls - I<CR>
total 36
-rwxr-xr-x 1 s tarship proj e ct 9346 Nov 1 08 : 06 display
-rw-r--r-- 1 s tarship proj e ct 6428 De c 2 1 0 : 24 l i s t
drwx--x--x 2 star ship proj ect 32 Nov 8 16 : 32 tool s

•

Permissions for the display and l ist files and the tools directory are shown on
the left of the screen under the line total 35, and appear in this format:

-rwxr-:xr-x (for the display file)
-rw-r- -r- - (for the l ist file)
drwx--x--- (for the tools directory)

After the initial character, which describes the file type (e .g . , a - (dash) for a
regular file or a d for a directory), there are nine characters that set the
permissions . They are composed of three sets of three characters . The first set
refers to permissions for the owner, the second set to permissions for group
members, and the last set to permissions for all other system users . Within
each set of characters, the r, w, and x show the permissions currently granted
to each category. If a dash appears instead of an r, w, or x, permission to
read, write, or execute is denied.

Using the File System 3-55

I

The following diagram summarizes this breakdown for the file named display.

user group others

\ 1 /
�
rwx r-x r-x

read

� the file denied to
group and other / 1 �

Permission to write to

write
execute

As you can see, the owner has read (r), write (w), and execute (x) permissions .
The group and other system users have read (r) and execute (x) permissions .

There are two exceptions to this notation system. Occasionally, the letter s or
the letter I may appear in the permissions line, instead of an r, w, or x. The
letter s (short for set user 10 or set group 10) represents a special type of
permission to execute a file. It appears where you normally see an x (or -) for
the user or group (the first and second sets of permissions) . From a user's
point of view, it is equivalent to an x in the same position; it implies that
execute permission exists . It is significant only for programmers and system
administrators . (See the System Administrator's Guide for details about setting
the user or group 10.)

The letter I is the symbol for lock enabling. I t does not mean that the file has
been locked. It simply means that the function of locking is enabled, or
possible, for this file. The file may or may not be locked; that cannot be
determined by the presence or absence of the letter I .

The letter t means that the file has the "sticky" attribute assigned.

3-56 User's Guide

Changing Existing Perm issions

After you have determined what permissions are in effect, you can change them
by executing the chmod command in the following format:

chmod who + permission filelist<CR>

or

chmod who-permission filelist<CR>

The following list defines each component of this command line:

CHMOD

who

Name of the program

one of three user groups:

u = user
g = group
o = others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations:

r = read

filelist

w = write
x = execute

file (or directory) name(s) listed; assumed to be branches from
your current directory, unless you use full pathnames.

Using the File System 3-57

I

I

NOTE

The chmod command will not work if you type
any spaces between who, the instruction that
gives (+) or denies (-) permission, and the
permission.

The following examples show a few ways to use the chmod command . As the
owner of display, you can read, write, and run this executable file . You can
protect the file against being accidentally changed by denying yourself write (w)
permission. To do this, type the command line:

chmod u-w display<CR>

After receiving the prompt, type Is -I and press the RETURN key to verify that
this permission has been changed, as shown in the following screen:

$ chmod u - w dlsplay<CR>
$ Is - I<CR>
total 35
-r-xr-xr-x 1 s tarship proj e c t 9346 Nov 1 08 : 06 d i s p l ay
rw-r--r-- 1 s tarship proj e c t 6428 D e c 2 10 : 24 l i s t
drwx--x--x 2 s tarship proj e c t 32 Nov 8 1 5 : 32 t o o l s
$

You no longer have permission to write changes into the file . You will not be
able to change this file until you restore write permission for yourself.

Now consider another example . Notice that permission to write into the file
display has been denied to members of your group and other system users .
However, they do have read permission. This means they can copy the file into
their own directories and then make changes to it. To prevent all system users
from copying this file, you can deny them read permission by typing:

chmod go- r display<CR>

3-58 User's Guide

The g and o stand for group members and all other system users, respectively.
The - r denies them permission to read or copy the file . Check this with the
Is - I command:

$ chmod go- r dlsplay<CR>
$ Is - I < CR>
total 36
-rwx--x--x 1 a tarahip proj e c t 9346 Nov 1 08 : 06 display
rw-r--r-- 1 a tarahip pro j ect 6428 D e c 2 1 0 : 24 l i s t
drwx--x--x 2 a tarship pro j e c t 32 N o v 8 16 : 32 too l s
$

Perm issions on Directories

You can use the chmod command to grant or deny permission for directories as
well as files . Specify a directory name instead of a file name on the command
line .

However, consider the impact on various system users of changing permissions
for directories. For example, you grant read permission for a directory to
yourself (u), members of your group (g), and other system users (o) . Every user
who has access to the system will be able to read the names of the files
contained in that directory by running the Is - I command. Similarly, granting
write permission allows the designated users to create new files in the directory
and remove existing ones. Granting permission to execute the directory allows
designated users to move to that directory (and make it their current directory)
by using the cd command.

Using Octal Numbers

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, w, and x are used to
specify permissions, is called the symbolic method.

Using the File System 3-59

I

I

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from 0 to 7. (The octal number
system is different from the decimal system that we typically use on a day-to
day basis .) To learn how to use the octal method, see the chmod(l) page in the
User's Reference Manual.

Table 3-15 summarizes the syntax and capabilities of the chmod command.

Table 3-1 5. Summary of the chmod Command

COMMAND RECAP

chmod - change permission modes for files (and directories)

Command

chmod

Description :

Remarks :

3-60 User's Guide

Instruction Arguments

who + - perm ission filename(s)
directoryname(s)

chmod gives (+) or removes (-) permission to read,
write, and execute files for three categories of
system users: user (you), group (members of your
group), and other (all other users able to access the
system on which you are working) .

The instruction set can be represented in either octal
or symbolic terms.

Advanced Commands

Use of the commands already introduced will increase your familiarity with the
file system. As this familiarity increases, so might your need for more
sophisticated information processing techniques when working with files . This 1 section introduces three commands that provide these techniques:

diff finds differences between two files

grep searches for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the User's Reference
Manual.

Comparing Fi les: diff Command

The diff command locates and reports all differences between two files and tells
you how to change the first file so that it is a duplicate of the second . The basic
format for the command is:

diff filel file2 < CR>

I f file1 and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it matches
the second by using ed (line editor) commands . (See Chapter 5 for details about
the line editor .) The operating system flags lines in file1 (to be changed) with
the < (less than) symbol, and lines in file2 (the model text) with the > (greater
than) symbol.

For example, you execute the diff command to identify the differences between
the files johnson and mcdonough. The mcdonough file contains the same
letter that is in the johnson file, with appropriate changes for a different
recipient. The diff command identifies those changes as follows:

Using the File System 3-61

3 , 6 c3 , 6
< Kr . Ron Johnson
< Layton Printing
< 62 Hudson Str e e t
< N e w York , N . Y .

> Kr . J . J . McDonough
> Ubu Pre a s
> 3 7 Chico Place
> Spring f i e ld , N . J .
9 c 9
< D e ar Mr . Johnson :

> D e ar Mr . McDonough :

The first line of output from diff is :

3 , 6c3 , 6

This means that if you want johnson to match mcdonough, you must change
(c) lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The d iff
command then displays both sets of lines .

If you make these changes (using a text editor such as ed or vi), the johnson file
will be identical to the sanders file . Remember, the diff command identifies
differences between specified files .

3-62 User's Guide

Table 3-16 summarizes the syntax and capabilities of the diff command.

Table 3-1 6. Summary of the diff Command

Command Recap

diff - finds differences between two files

Command Options Arguments

diff available• filel file2

Description : The diff command reports which lines are different
in two files and what you must do to make the first
file identical to the second.

Remarks: Instructions on how to change a file to bring it into
agreement with another file are line editor (ed)
commands: a (append), c (change), and d (delete).
Numbers given with a, c, or d show the lines to be
modified. Also used are the symbols < (showing a
line from the first file) and > (showing a line from
the second file) .

* See the diff{l) page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Searching a File for a Pattern : grep Command

You can instruct the operating system to search through a file for a specific
word, phrase, or group of characters by executing the command grep (short for
globally search for a regular expression and print) . Put simply, a regular
expression is any pattern of characters (a word, a phrase, or an equation) that
you specify.

Using the File System 3-63

II

The basic format for the command line is:

grep pattern filelist<CR>

For example, to locate any lines that contain the word automation in the file
johnson, type:

grep automation johnson<CR>

The system responds:

and office automation software .

The output consists of all the lines in the file johnson that contain the pattern
for which you were searching (automation) .

If the pattern contains multiple words or any character that conveys special
meaning to the operating system (e .g., $, I , * , ?) the entire pattern must be
enclosed in apostrophes. (For an explanation of the special meaning for these
and other characters see Metacharacters in Chapter 7.) For example, you want to
locate the lines containing the pattern office automation. Your command
line and the system's response will read:

$ grep 'office automation ' johnson<CR>
and office automation software .
$

But what if you cannot recall which letter contained a reference to office
automation; your letter to Mr. Johnson or the one to Mrs . Sanders? Type the
following command line to find out:

$ grep 'office automation ' johnson sanders< CR>
j ohnson : and office automation software .
$

The output tells you that the pattern office automation is found once i n
the johnson file.

In addition to the grep command, the operating system provides variations of it
called egrep and fgrep, along with several options that enhance the searching
powers of the command. See the grep(l), egrep(l), and fgrep(l) pages in the
User's Reference Manual for further information about these commands.

3-64 User's Guide

Table 3-17 summarizes the syntax and capabilities of the grep command.

Table 3-1 7. Summary of the grep Command

Command Recap

grep - searches a file for a pattern

Command Options Arguments

grep available• pattern filelist

Description : The grep command searches through specified files
for lines containing a pattern, then prints the lines
on which it finds the pattern. When you specify
more than one file, the name of the file in which the
pattern is found is also reported.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in
apostrophes on the command line.

* See the grep(l) page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Sorting and Merging Files: sort Command

The operating system provides an efficient tool called sort for sorting and
merging files. The format for the command line is:

sort filelist<CR>

Using the File System 3-65

I

I

The sort command causes lines in the specified files to be sorted and merged in
the following order:

1 . Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters .

2. Lines beginning with uppercase letters are listed before lines beginning
with lowercase letters.

3. Lines beginning with symbols (e .g., * , %, or @) are sorted on the basis of
the symbol's ASCII value.

For example, you have two files, group1 and group2, each containing a list of
names. You want to sort each list alphabetically and then interleave the two
lists into one. First, display the contents of the files by executing the cat
command on each.

$ cat group1 <CR>
Smith , Allyn
Jone s , Barbara
Cook , Karen
Moor e , P e ter
Wolf , Robert
$ cat group2<CR>
Frank , W . Jay
N e lson , Jame s
We s t , Donna
Hill , Char l e s
Morgan , Kristine
$

(Instead of printing these two files individually, you could have requested both
files on the same command line. If you had typed cat group1 group2 and
pressed the RETURN key, the output would have been the same.)

3-66 User's Guide

Now sort and merge the contents of the two files by executing the sort

command. The output of the sort program prints on the screen unless you
specify otherwise:

$ sort group1 group2< CR>
Cook , Ka.ren
Fra.nk , Y. Ja.y
Hill , Char l e s
Jone s , Ba.rba.ra.
Yoore , P e ter
Yorga.n . Kris tine
N e l s on , Jame s
Smith , Al lyn
We s t , Donna.
Wo lf , Robert
$

In addition to combining simple lists as in the example, the sort command can
rearrange lines and parts of lines (called fields) according to a number of other
specifications you designate on the command line . The possible specifications
are complex and beyond the scope of this text. Refer to the User's Reference
Manual for a full description of available options .

Using the File System 3-67

I

I

Table 3-18 summarizes the syntax and capabilities of the sort command.

Table 3-1 8. Summary of the sort Command

Command Recap

sort - sorts and merges files

Command Options Arguments

sort available* filelist

Description : The sort command sorts and merges lines from a file
or files you specify and displays its output on your
screen.

Remarks: I f no options are specified on the command line,
lines are sorted and merged in the order defined by
the ASCII representations of the characters in the
lines.

* See the sort(l) page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Pri nti ng Fi les

This section introduces methods of preparing files to be printed (with the pr
command) and of printing them (with the lp command) .

Pri nting a F i le : pr Command

The pr command is used to prepare files for printing. It supplies titles and
headings, paginates, and prints a file, in any of various page lengths and
widths, on your screen.

3-68 User's Guide

You have the option of requesting that the command print its output on another
device, e .g. , a line printer (read the discussion of the lp command in this
section) . You can also direct the output of pr to a different file (see the section
Input and Output Redirection in Chapter 7) .

If you choose not to specify any of the available options, the pr command
produces output in a single column that contains 66 lines per page and is
preceded by a short heading. The heading consists of five lines: two blank
lines; a line containing the date, time, file name, and page number; and two
more blank lines. The body of the text is followed by five blank lines.

The pr command is often used with the lp command to provide a paper copy of
text as it was entered into a file. (See the section on the lp command for
details .) However, you can also use the pr command to print the contents of a
file on your screen. For example, to review the contents of the file johnson in
the sample file system, type:

$ pr johnson<CR>

The following screen gives a n example o f output from this command:

Using the File System 3-69

I

I

3-70

$ pr johnson<CR>

Mar 6 1 6 : 43 1986 j ohnson Page 1

Karch 6 , 1986

Mr . Ron Johnson
Layton Printing
62 Hudson Str e e t
N e w York , N . Y .

D e ar Mr . Johnson :

I enj oyed speaking with you thi s morning
about your company ' s plans to automate
your bus ine s s .
Enc l o s e d pleas e f ind
the material you reque s ted
about AB&C ' s line of computers
and o f f i c e automation s o f tware .

I f I can be of further as s i s tanc e to you ,
p l e as e don ' t h e s itate to call .

Yours truly ,

John Howe

$

User's Guide

The periods after the last line in the file represent the remaining lines (all blank
in this case) that pr added to the output so that each page would contain a total
of 66 lines. If you are working on a video display terminal, which allows you to
view 24 lines at a time, the entire 66 lines of the displayed file prints rapidly
without pause. This means that the first 42 lines will roll off the top of your
screen, making it impossible for you to read them unless you have the ability to 1 roll back a screen or two. However, if the file you are examining is particularly
long, even this ability may not be sufficient to allow you to read the file .

In such cases, type <"> (CTRL-s) to interrupt the flow of printing on your
screen. When you are ready to continue, type <"q> (cTRL-q) to resume
printing.

Using the File System 3-71

I

Table 3-19 summarizes the syntax and capabilities of the pr command.

Command

pr

Description :

Remarks :

Table 3-1 9. Summary of the pr Command

Command Recap

pr - print contents of a file

Options

available*

Arguments

filelist

The pr command produces a copy of a file(s) on your
screen unless you specify otherwise. It prints the
text of the file(s) on 66 line pages, and places five
blank lines at the bottom of each page and a five-line
heading at the top of each page. The heading
includes: two blank lines; a line containing the date,
time, file name, and page number; and two
additional blank lines.

If a specified file exists, its contents display; if not,
the message pr : can • t open filename prints .

The pr command is often used with the lp command
to produce a paper copy of a file . It can also be used
to review a file on a video display terminal. To stop
and restart the printing of a file on a terminal, type
<As> and <Aq>, respectively.

* See the pr(l) page in the User's Reference Manual for all available
options and an explanation of their capabilities .

3-72 User's Guide

The LP Print Service

You can perform various printing tasks by using a set of the operating system
software tools called the LP print service . You can make requests for print jobs,
change or cancel those requests, enable or disable printers, and obtain 1
information about the printers available to you by using five commands
associated with the LP print service: lp, cancel, lpstat, enable, and disable.
This section explains how to use these commands to accomplish these tasks .

The function of each print service command is shown in Table 3-20.

Table 3-20. Print Commands and Their Functions

Command

lp

cancel

lpstat

enable

disable

Function

requests a paper copy of a printable file from a
printer.

cancels a request for a paper copy of a file .

displays information on the screen about the
current status of the LP print service .

activates the printer(s) specified so jobs that are
requested through the lp command can be
printed.

deactivates the printer(s) specified so jobs that
are requested through the lp command can no
longer be printed.

Using the File System 3-73

I

NOTE

To prevent printer settings from being changed,
only ordinary files that are printable should be
used by lp (i .e . , not executable or data files) .

Requesting a Paper Copy of a File: lp Command

Some terminals have built-in printers that allow you to get paper copies of files .
I f you have such a terminal, you can get a paper copy of your file simply by
turning on the printer and executing the cat or pr command.

If you are using a video display terminal however, you will need a printer to
obtain � paper copy of a file. The lp command (originally named for "line
printer'') allows you to request a print job from a printer. To request a simple
print job, enter the command:

lp fileruzme<CR>

where fileruzme is the name of the file you want to have printed. For example, to
request that the file johnson be printed, type:

lp johnson< CR>

The system responds with the name (or type) of the printer on which the file is
being printed and an identification (ID) number for your request:

$ lp johnson<CR>
request id is laser-6885 (1 file)
$

This system response shows that your job will be printed on a printer named
"laser'' (the default printer for this system), has a request ID number of
laser-6885, and includes of one file .

3-74 User's Guide

The options available with the lp command allow you to specify the following
for your print job: a specific printer or class of printers (referred to here as
"destination"), special print modes (e .g. , landscape or portrait), page size and
pitch settings, a list of pages to be printed and the number of copies to be made,
queue priority, forms (instead of blank paper), character sets and print wheels,
content type, continuous printing of files (without breaks between separate 1 files), banner-page options, and messages from the lp command.

Select a Print Destination

The term "print destination" refers to any device that your system
administrator has defined to be a printer (e .g . , bif2) or class of printers (e .g . ,
bif) . The - d dest (short for destination) option on the command line causes
your file to be printed at the destination specified in the dest argument, as long
as a printer is available and capable of meeting your specifications for the job.
In this example, a request is made to have a file called memo printed on
printer3:

$ lp -d printer3 memo< CR>

Canceling a Request : cancel Command

To cancel a request to a printer, type the command cancel and specify the
request ID number. For example, to cancel the printing of the file letters
(request ID laser-6885), type:

$ cancel laser-6885<CR>

Note that you can cancel only your own requests .

Getting Printer Status: lpstat Command

To check the status of a printer job that is in progress or to get its request ID
number, execute the lpstat command. The -d option lists current output
requests; the -t provides a complete listing. This command also provides a
complete listing of every printer available on your system. Which printers are
available to you depends on your operating system facility. Ask your System
Administrator for the names of available line printers, or type the following
command:

$ lpstat -v<CR>

Using the File System 3-75

I

Enabling and Disabling a Printer: enable and disable

NOTE

Whether or not you, as a computer user, are
able to issue the commands to enable and
disable printers depends on your System
Administrator. Because these functions are
administrative, it is left to the discretion of the
System Administrator to decide whether or not
to make the enable and disable commands
available to users.

Before a printer is able to start printing files requested through the lp command,
it must be activated. You can activate a printer by issuing the enable command
with one argument: one printer or a list of printers:

$ enable printer1 printer2 printer3<CR>

You can verify that you have enabled a printer by requesting a status report for
it.

If you want a printer to stop printing jobs, you must deactivate it by issuing the
disable command:

$ disable printer1 <CR>

Tables 3-21 and 3-22 summarize the syntax and capabilities of the lp and lpstat
commands, respectively.

3-76 User's Guide

Command

lp

Description :

Options:

Table 3-21 . Summary of the lp Command

Command Recap

lp - request paper copy of a file from a printer

Options Arguments

(as listed) file(s)

The lp command requests that specified files be printed by
a printer, thus providing paper copies of the contents .

--d dest Allows you to choose dest as the printer or class
of printers to produce the paper copy. You do
not have to use this option if the administrator
has set a default destination or if you have set
the LPDEST environment variable .

-y mode Requests special printing modes, such as
portrait or landscape. (This option requires a
special filter; check with your system
administrator to find out whether your system
has one .)

--o option Defines page dimensions: length and width,
number of lines per inch, and number of
characters per inch. (--o performs other tasks,
too; see lp(l) in the User's Reference Manual.)

-P pages Specifies subset of pages to be printed. (This
option requires a special filter; check with your
system administrator to find out whether your
system has an appropriate filter.)

-n copies Specifies number of copies to be made.

Using the File System 3-77

I

I Command

lp

Remarks:

Table 3-21 . Summary of the lp Command (cont'd)

Command Recap

lp - request paper copy of a file from a printer

Options

(as listed)

-f fonn

Arguments

file(s)

Specifies pre-printed form on which files are to
be printed.

-S char _set Specifies character set or print wheel to be
used.

-T type

-w

-m

-i req_id

-q level

Specifies content type of print request.

Notifies you by screen message when print job
is complete .

Notifies you by mail when print job is
complete.

Allows you to change a print request already
issued (but not yet printed) .

Allows you to specify a priority level for your
job request.

Check with your System Administrator for information on
additional and/or different commands for printers that may
be available at your location.

3-78 User's Guide

Table 3-22. Summary of the lpstat Command

Command Recap

lpstat - display information about status of LP print service

Command

lp

Description :

Options:

Options Arguments

(as listed) file(s)

The lpstat command reports the status ov print requests,
printers, and the LP request scheduler, and provides other
information related to the status of the print service .

-a [list] Reports whether print requests are
being accepted by specified printers or
classes of printers .

-c [list] Lists the names of printer classes and
members of each.

-d Shows the default destination for your
LP print service.

-f [list] [-1] Verifies that the forms named in form
list are recognized by the LP print
service. The -1 option lists the form
descriptions .

-o [list] [-1] Reports the status of print requests .
List may include names of printers or
printer classes, or request ids .

-p [list] [-D] [-1] Reports the status of printers named in
list. The -D option adds a description
of each printer, and -1 requests a full
description of each printer's
configuration.

Using the File System 3-79

I

I

Table 3-22. Summary of the lpstat Command (cont' d)

Command Recap

lpstat - display information about status of LP print service

Command

lp

Remarks :

3-80 User's Guide

Options Arguments

(as listed) file(s)

-r Reports the status of the LP request
scheduler.

-s Prints a status summary of the whole
LP print service.

-S [list] [-1] Verifies that the character sets or print
wheels specified in list are recognized
by the LP print service . The -1 option
requests a list of printers that can
handle each character set and print
wheel.

-t Prints all status information.

-u [list] Reports status of users' print requests.
List is a list of login names.

-v [list] Lists printers and the pathnames of the
devices associated with them. List is a
list of printer names.

In each case where list is indicated, you can also specify
al l .

4 Overview of the Tutorials

Introduction

Text Editi ng
What Is a Text Editor?
How Does a Text Editor Work?

Text Editing Buffers
Modes of Operation

Line Editor
Screen Editor

The S h e l l
Customizing Your Computing Environment
Programming in the Shell

Com m u nicating Electronical ly

Prog ra m m i ng i n the System

4-1

4-1
4-1
4-2
4-2
4-3
4-3
4-4

4-6
4-6
4-8

4-10

4-11

Overview of the Tutorials

Introduction

This chapter provides an overview of the tutorials in the next four chapters .
Specifically, text editing, working in the shell, and electronic mail . Text
editing is covered in Chapter 5, Line Editor Tutorial (ed), and Chapter 6, Screen
Editor Tutorial (vi) . Working and programming in the shell is taught in
Chapter 7, Shell Tutorial, and mail and mailx are covered in Chapter 8,
Electronic Mail Tutorial.

Text Ed iti ng

Using the file system i s a way of life in a SYSTEM V/88 environment . This
section will teach you how to create and modify files with a software tool
called a text editor. The section begins by explaining what a text editor is and
how it works . Then it introduces two types of text editors supported on the
operating system: the line editor, ed, and the screen editor, vi (short for
visual editor) . A comparison of the two editors is also included. For detailed
information about ed and vi, refer to Chapters 5 and 6.

What Is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or
more of the following tasks: insert new or additional material, delete
unneeded material, transpose material (sometimes called cutting and pasting),
and, finally, prepare a clean, corrected copy. Text editors perform these tasks
at your direction, making writing and revising text much easier and quicker
than if done by hand.

The operating system text editors, like the operating system shell, are
interactive programs; they accept your commands and then perform the
requested functions . From the shell's point of view, the editors are executable
programs .

A major difference between a text editor and the shell, however, is the set of
commands that each recognizes . A text editor has its own distinct set of
commands that allow you to create, move, add, and delete text in files, as
well as acquire text from other files.

Overview of the Tutorials 4-1

I

I

How Does a Text Ed itor Work?

To understand how a text editor works, you need to understand the
environment created when you use an editing program and the modes of
operation understood by a text editor.

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one, you
first ask the shell to put the editor in control of your computing session. As
soon as the editor takes over, it allocates a temporary work space called the
editing buffer; any information you enter while editing a file is stored in this
buffer where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are only stored in temporary memory. The buffer and
its contents will exist only as long as you are editing. If you want to save the
file, you must tell the text editor to write the contents of the buffer into a file .
The file is then stored in the computer's long term disk memory. If you do
not, the buffer's contents will disappear when you leave the editing program.
To prevent this from happening, the text editors send you a reminder to write
your file if you attempt to end an editing session without doing so.

NOTE

If you have made a critical mistake or are
unhappy with the edited version, you can
choose to leave the editor without writing the
file . By doing so, you leave the original file
intact; the edited copy disappears .

Regardless of whether you are creating a new file or updating an existing one,
the text in the buffer is organized into lines. A line of text is simply a series
of characters that appears horizontally across the screen and is ended when
you press the RETURN key. Occasionally, files may contain a line of text that
is too long to fit on the terminal screen. Some terminals automatically display
the continuation of the line on the next row of the screen; others do not.

4-2 User's Guide

Modes of Operation

Most text editors are capable of understanding two modes of operation:
command mode and text input mode. When you begin an editing session,
you will be placed automatically in command mode. In this mode you can
move around in a file, search for patterns in it, or change existing text.
However, you cannot create text while you are in command mode. To do this
you must be in text input mode. While you are in this mode, any characters 1 you type are placed in the buffer as part of your text file . When you have
finished entering text and want to run editing commands again, you must
return to command mode.

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in.
You may try to enter text while in command mode or to enter a command
while in input mode. This is something even experienced users do from time
to time. It will not take long to recognize your mistake and determine the
solution after you complete the tutorials in Chapters 5 and 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile program for
preparing text files . It is called a line editor because it manipulates text on a
line-by-line basis . This means you must specify, by line number, the line
containing the text you want to change. Then ed prints the line on the screen
where you can modify it.

This text editor provides commands with which you can change lines, print
lines, read and write files, and enter text. In addition, you can invoke the line
editor from a shell program; something you cannot do with the screen editor.
(See Chapter 7 for information on basic shell programming techniques .)

The line editor (ed) works well on video display terminals and paper printing
terminals . It will also accommodate a slow-speed telephone line . (The visual
editor, vi, can be used only on video display terminals .) See Chapter 5, Line
Editor Tutorial (ed), for instructions on this editing tool . Also see Appendix C
for a summary of line editor commands.

Overview of the Tutorials 4-3

I

Screen Ed itor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool. It allows you to view, a page at a time, the file you
are editing. This editor works most efficiently when used on a video display
terminal operating at 1200 or higher baud.

You modify a file (by adding, deleting, or changing text) by positioning the
cursor at the point on the screen where the modification is to be made, then
make the change. The screen editor immediately displays the results of your
editing; you can see the change you made in the context of the surrounding
text. Because of this feature, the screen editor is considered more
sophisticated than the line editor.

In addition, the screen editor offers a choice of commands . For example, a
number of screen editor commands allow you to move the cursor around a
file . Other commands scroll the file up or down on the screen. Still other
commands allow you to change existing text or to create new text. In addition
to its own set of commands, the screen editor can access line editor
commands .

The trade-off for the screen editor's speed, visual appeal, efficiency, and
power is the heavy demand it places on the computer's processing time .
Every time you make a change, no matter how simple, vi must update the
screen. See Chapter 6, Screen Editor Tutorial (vi), for instructions on how to
use this editor. Appendix D contains a summary of screen editor commands,
and Table 4-1 compares the features of the line editor (ed) and the screen
editor (vi) .

4-4 User's Guide

Table 4-1 . Comparison of Line and Screen Editors (ed and vi)

Feature

Recommended
terminal type

Speed

Versatility

Sophistication

Power

Advantages

Line Editor (ed)

Video display or paper
printing.

Accommodates high
and low-speed data
transmission lines.

Can be specified to run
from shell scripts as
well as used during
editing sessions.

Changes text quickly.
Uses comparatively
small amounts of pro
cessing time.

Provides a full set
of editing commands.
Standard operating
system text editor.

There are fewer com
mands you must learn
to use ed.

Screen Editor (vi)

Video display.

Works best via high
speed data trans
mission lines (1200+
baud) .

Must be used inter
actively during editing
sessions .

Changes text easily.
However, can make
heavy demands on
computer resources .

Provides its own
editing commands and
recognizes line editor
commands as well .

Allows you to see the
effects of your editing
in the context of a page
of text, immediately.
(When you use the ed
editor, making changes
and viewing the results
are separate steps .)

Overview of the Tutorials 4-5

I

I

The Shel l

Every time you log in to the operating system you start communicating with
the shell, and continue to do so until you log off the system. However, while
you are using a text editor, your interaction with the shell is suspended; it
resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of performing one
job, as cat or Is does, it is central to your interactions with the operating
system. The shell's primary function is to act as a command interpreter
between you and the computer system. As an interpreter, the shell translates
your requests into language the computer understands, calls requested
programs into memory, and executes them.

This section introduces methods of using the shell that enhance your ability to
use system features. In addition to using it to run a single program, you may
also use the shell to:

• interpret the name of a file or a directory you enter in an abbreviated way
using a type of shell shorthand

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to meet your individual needs

In addition to being the command language interpreter, the shell is a
programming language. For detailed information on how to use the shell as a
command interpreter and a programming language, see Chapter 7.

Customizi ng You r Com puting Envi ron ment

This section deals with another control provided by the shell: your
environment. When you log in to the operating system, the shell
automatically sets up a computing environment for you. The environment set
up by the shell includes these variables:

HOME

LOGNAME

PATH

4-6 User's Guide

your login directory

your login name

route the shell takes to search for executable files or
commands (typically PATH = :Ibin :/usr/bin)

The PATH variable tells the shell where to look for the executable program
invoked by a command. Therefore, it is used every time you issue a
command. If you have executable programs in more than one directory, you
will want all of them to be searched by the shell to make sure every command
can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part
of your environment, you can use either of two methods to do so. If you
want to change a part of your environment only for the duration of your I current computing session, specify your changes in a command line (see

'

Chapter 7 for details) . However, if you want to use a different environment
(not the default environment) regularly, you can specify your changes in a file
that will set up the desired environment for you automatically every time you
log in. This file must be called .profile and must be located in your home
directory.

The .profi le typically performs some or all the following tasks: checks for
mail; sets data parameters, terminal settings, and tab stops; assigns a
character or character string as your login prompt; and assigns the erase and
kill functions to keys. You can define as few or as many tasks as you want in
your .profi le. You can also change parts of it at any time.

Now check to see whether or not you have a .profile. If you are not already
in your home directory, cd to it. Then examine your .profi le by issuing this
command:

cat .profile

If you have a .profi le, its contents appears on your screen. If you do not have
a .profi le, you can create one with a text editor. For instructions on creating
and modifying a .profi le, see Modifying Your Login Environment in Chapter 7.

Overview of the Tutorials 4-7

I

Programming i n the Shel l

The shell i s not only the command language interpreter; it i s also a command
level programming language. This means that instead of always using the
shell strictly as a liaison between you and the computer, you can also program
it to repeat sequences of instructions automatically. To do this, you must
create executable files containing lists of commands. These files are called
shell procedures or shell scripts. Once you have a shell script for a particular
task, you can request that the shell read and execute the contents of the script
whenever you want to perform that task.

Like other programming languages, the shell supports such features as
variables, control structures, subroutines, and parameter passing. These
features enable you to create your own tools by linking together system
commands.

For example, you can combine three operating system programs (date, who,
and we commands) into a simple shell script called users that tells you the
current date and time, and how many users are working on your system. If
you use the vi editor (described in Chapter 6) to create your script, you can
follow this procedure. First, create the file users with the editor by typing:

vi users < C R >

The editor will draw a blank page on your screen and wait for you to enter
text.

4-8 User's Guide

cursor

• u s ers • [New f i l e]

Enter the three operating system commands on one line:

date ; who 1 we -1
Then write and quit the file . Make users executable by adding execute
permission with the chmod command:

chmod ug + x users<CR>

Now try running your new command. The following screen shows the kind
of output that displays:

$ users < CR>
Wed War 1 1 6 : 40 : 1 2 EST 1989

4
$

Overview of the Tutorials 4-9

I

I

The output tells you that four users were logged in on the system when you
typed the command at 16:40 on Wednesday, March 1, 1989 .

For step-by-step instructions on writing shell scripts and information about
more sophisticated shell programming techniques, see Chapter 7, Shell
Tutorial.

Com m u n icati ng Electron ical ly

As an operating system user, you can send messages or transmit information
stored in files to other users who work on your system or another operating
system. To do so, you must be logged in on an operating system that is
capable of communicating with the operating system to which you want to
send information. The command you use to send information depends on
what you are sending. This guide introduces you to these communication
programs:

mail
allows you to send messages or files to other operating system users,
using their login names as addresses . It also allows you to receive
messages sent by other users . mail holds messages and lets the recipient
read them at their convenience.

mai lx
is a sophisticated, more powerful version of mai l . It offers a number of
options for managing the electronic mail you send and receive.

uucp
is used to send files from one operating system to another. You can use
uucp to send a file to a directory you specify on a remote computer.
When the file has been transferred, the owner of the directory is notified
of its arrival by mai l .

uuto/uupick
are used to send and retrieve files. You can use the uuto command to
send files to a public directory. Once they are available, the recipient is
notified by mail that the files have arrived. The recipient then can use
the uupick command to copy the files from the public directory to a
directory of choice .

4-10 User's Guide

uux
lets you execute commands on a remote computer. It gathers files from
various computers, executes the specified command on these files, and
sends the standard output to a file on the specified computer.

Chapter 8 offers tutorials on each of these .

Program m i n g i n the System

The operating system provides a powerful and convenient environment for
programming and software development using the C programming language
and other Independent Software Vendor (ISV) software. The operating
system also provides some sophisticated tools designed to make software
development easier and more systematic.

For information on the available operating system programming languages,
see the Programmer's Guide. Besides supplementing texts on programming
languages, the guide provides tutorials on the following four tools :

SCCS Source Code Control System

make

lex

yacc

maintains programs

generates programs for simple lexical tasks

generates parser programs

Overoiew of the Tutorials 4-11

I

5 Line Editor Tutorial (ed)

Introducing the Line Editor

Getting Started
Entering ed
Creating Text
Displaying Text
Deleting a Line of Text
Moving Up or Down in the File
Saving the Buffer Contents in a File
Quitting the Editor
Exercise 1

General Format of ed Commands

Line Addressing
Line Numbers

5-1

5-2

5-2

5-3
5-4
5-6

5-8

5-8

5-10

5-12

5-13

5-14

5-14

Symbolic Line Addressing s-1s

Addressing the Current Line 5-15

Addressing the Last Line 5-1 7

Addressing the Set of All Lines 5-1 7

Addressing the Current Line Through the Last
Li� 5-�

Using Relative Addresses 5-19

Character String Addresses 5-21

Line Editor Tutorial (ed)

Line Editor Tutorial (ed)

ii User's Guide

Specifying a Range of Lines 5-23

Specifying a Global Searach 5-25

Exercise 2 5-28

Displayi ng Text i n a Fi le 5-29

Displaying Text Alone: p Command 5-29

Displaying with Line Numbers: n Command 5-30

Creating Text 5-32

Appending Text: a Command 5-32

Inserting Text: i Command 5-36

Changing Text: c Command 5-37

Exercise 3 5-40

Deleti ng Text 5-41

Deleting Lines: d Command 5-41

Undoing the Previous Command: u Command 5-43

Deleting While in Text Input Mode 5-45

Su bstituting Text 5-46

Substituting on the Current Line 5-47

Substituting on One Line 5-49

Substituting over a Range of Lines 5-50

Global Substitution 5-51

Exercise 4 5-55

Special Characters 5-56

Exercise 5 5-68

Line Editor Tutorial (ed)

Movi ng Text 5-69

Moving Lines of Text 5-70

Copying Lines of Text 5-72

Joining Contiguous Lines 5-74

Writing Lines of Text to a File 5-75

Reading in the Contents of a File 5-77

Exercise 6 5-78

Additional Com mands and Concepts S-79
He1p Commands 5-79

Disp1aying Nonprinting Characters 5-82

Checking the Current File Name 5-83

Executing a She11 Command 5-85

Recovering from System Interrupts 5-86

Condusion 5-87

Exercise 7 5-89

Answers to Exercises
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5
Exercise 6
Exercise 7

5-90

5-90

5-92

5-96

5-100

5-102

5-107

5-109

Line Editor Tutorial (ed) iii

Introd ucing the Line Ed ito r

This chapter is a tutorial on the line editor, ed. ed is versatile and requires
little computer time to perform editing tasks . It can be used on any type of
terminal. The examples of command lines and system responses in this
chapter will apply to your terminal, whether it is a video display terminal or a
paper printing terminal. The ed commands can be typed in at your terminal
or they can be used in a shell program. (See Chapter 7, Shell Tutorial .)

ed is a line editor; during editing sessions it is always pointing at a single line
in the file called the current line . When you access an existing file, ed makes
the last line the current line so you can start appending text easily. Unless I you specify the number of a different line or range of lines, ed does each
command you issue on the current line . In addition to letting you change,
delete, or add text on one or more lines, ed allows you to add text from
another file to the buffer.

During an editing session with ed, you are altering the contents of a file in a
temporary buffer, where you work until you have finished creating or
correcting your text. When you edit an existing file, a copy of that file is
placed in the buffer and your changes are made to this copy. The changes
have no effect on the original file until you instruct ed, by using the write w
subcommand, to move the contents of the buffer into the file .

After you read through this tutorial and tried the examples and exercises, you
will have a good working knowledge of ed. The following topics are covered:

• entering the line editor ed, creating text, writing the text to file, and
quitting ed

• addressing particular lines of the file and displaying lines of text

• deleting text

• substituting new text for old text

• using special characters as shortcuts in search and substitute patterns

• moving text around in the file, as well as other useful commands and
concepts .

Line Editor Tutorial (ed) 5-1

•

The commands are discussed in individual sections and reviewed at the end
of each section. In Appendix C, you will find a summary of all ed commands
introduced here .

At the end of some sections, exercises are given so you can experiment with
the commands. The answers to all exercises are at the end of this chapter.

Gett ing Started

The best way to learn ed is to log in to the operating system and try the
examples as you read this tutorial. Do the exercises; do not be afraid to
experiment. As you experiment and try out ed commands, you will learn a
fast and versatile method of text editing.

In this section you will learn the commands used to:

• enter ed

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quit ed

Entering ed

To enter the line editor, type ed and a file name:

ed fileruzme< CR>

Choose a name that reflects the contents of the file . If you are creating a new
file, the system responds with a question mark and the file name:

$ ed new-fi le<CR>
?new-file

When you edit an existing file, ed responds with the number of characters in
the file:

$ ed old-fi le<CR>
235

5-2 User's Guide

Creating Text

The editor receives two types of input, editing commands and text, from your
terminal. To avoid confusing them, ed recognizes two modes of editing work:
command mode and text input mode. When you work in command mode,
any characters you type are interpreted as commands. In input mode, any
characters you type are interpreted as text to be added to a file .

Whenever you enter ed, you are put into command mode. To create text in
your file, change to input mode by typing a (for append), on a line by itself,
and pressing the RETURN key:

a<CR>
Now you are in input mode; any characters you type from this point are
added to your file as text. Be sure to type a on a line by itself; if you do not,
the editor will not execute your command.

After you have finished entering text, type a "." (period) on a line by itself.
This takes you out of the text input mode and returns you to the command
mode. Now you can enter ed other commands.

The following example shows how to enter ed, create text in a file called
try-me, and quit text input mode with a period.

$ ed try-me<CR>
? try-me
a<CR>
This Is the first l ine of text.<CR>
This Is the second llne,<CR>
and this Is the third llne.<CR>
.<CR>

Line Editor Tutorial (ed) 5-3

•

•

Notice that ed does not give a response to the period; it just waits for a new
command. If ed does not respond to a command, you may have forgotten to
type a period after entering text and may still be in text input mode. Type a
period and press the RETURN key at the beginning of a line to return to
command mode. Now you can execute editing commands. For example, if
you have added some unwanted characters or lines to your text, you can
delete them once you have returned to command mode.

Displaying Text

To display a line of a file, type p (for print) on a line by itself. The p
command prints the current line, i .e . , the last line on which you worked .
Continue with the previous example . You have just typed a period to exit
input mode. Now type the p command to see the current line .

$ ed try-me<CR>
? try-me
a<CR>
This Is the first l ine of text.<CR>
This Is the second llne,<CR>
and this Is the third llne.<CR>
.<CR>
p<CR>
and thi s i s the third line .

You can print any line of text by specifying its line number (also known as the
address of the line); the address of the first line is 1; the second, 2. For
example, to print the second line in the file try-me, type:

2p< CR>
This i s the second line ,

5-4 User's Guide

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated
by a comma. For example, to print the first three lines of a file, type:

1 ,3p<CR>

You can even print the entire file this way. For example, you can display a 20
line file by typing 1 ,20p. If you do not know the address of the last line in
your file, you can substitute a $ sign, ed symbol for the address of the last
line . (These conventions are discussed in the section Line Addressing.)

1 ,$p<CR>
Thi s i s the f irst line of text .
Thi s i s a s e cond line ,
and thi s is the third line .

If you forget to quit text input mode with a period, you will add text that you
do not want. Try to make this mistake. Add another line of text to your
try-me file; enter the p command without quitting text input mode; then quit
text input mode and print the entire file .

Line Editor Tutorial (ed) 5-5

I

•

p<CR>
and thi s is the third line .
a<CR>
This Is the fourth llne.<CR>
p<CR>
.<CR>
1 ,$p<CR>
Thi s i s the f irst line of text .
Thi s i s the s e cond line ,
and thi s i s the third line .
Thi s i s the fourth line .
p

The next section explains how to delete the unwanted line .

Delet ing a Line of Text

To delete text, you must be in the command mode of ed . Typing d deletes
the current line. Try this command on

·
the last example to remove the

unwanted line containing p. Display the current line (p command), delete it
(d command), and display the remaining lines in the file (p command) . Your
screen should look like the one that follows:

5-6 User's Guide

p<CR>
p
d<CR>
1 ,$p<CR>
Thi s is the f irst line of text .
Thi s i s a s e cond line ,
and thi s i s the third line .
Th i s ia the � ourth line .

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing
the contents of your file with the p command. To receive verification of your
deletion, you can put the d and p together on one command line . If you
repeat the previous example with this command, your screen should look like
the following:

p<CR>
p
dp<CR>
Thi s i s the fourth line .

Line Editor Tutorial (ed) 5-7

I

I

Movi ng Up or Down in the Fi le

To display the line below the current line, press the RETURN key while in
command mode. If there is no line below the current line, ed responds with a
? and continues to treat the last line of the file as the current line . To display
the line above the current line, press the minus key (-). The following screen
provides examples of how both of these commands are used:

p<CR>
Thi s is the f ourth line .
- <CR>
and thi s i s the third line .
- < CR>
Thi s i s a s e cond l ine ,
- < CR>
Thi s i s the f irst l ine of text .
<CR>
Thi s is a s e cond line ,
<CR>
and thi s is the t h i r d l i n e .

By typing - <CR> or <CR>, you can display a line of text without typing
the p command. These commands are also line addresses. Whenever you
type a line address and do not follow it with a command, ed assumes that
you want to see the line you have specified. Experiment with these
commands: create some text, delete a line, and display your file.

Saving t!'le Buffer Contents in a Fi le

As discussed earlier, during an editing session, the system holds your text in
a temporary storage area called a buffer. When you have finished editing,
you can save your work by writing it from the temporary buffer to a
permanent file. This stores your file data in the computers long term memory
disk. By writing to a file, you are putting a copy of the contents of the buffer
into the file. The text in the buffer is not disturbed, and you can make further
changes to it.

S-8 User's Guide

NOTE

It is a good idea to write the buffer text into
your file frequently. If an interrupt occurs
(e.g., as an accidental loss of power to your
terminal), you may lose the material in the
buffer, but you will not lose the copy written
to your file .

To write your text to a file, enter the w command. You do not need to specify
a file name; simply type w and press the RETURN key. If you have just • created new text, ed creates a file for it with the name you specified when
you entered the editor. If you edited an existing file, the w command writes
the contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on the
w command line . Be careful not to use the name of a file that already exists
unless you want to replace its contents with the contents of the current buffer.
ed does not warn you about an existing file; it simply overwrites that file with
your buffer contents .

For example, if you decide you would prefer the try-me file to be called stuff,
you can rename it:

$ ed try-me<CR>
? try-me
a<CR>
This Is the first l ine of text.<CR>
This Is the second llne,<CR>
and this Is the third llne.<CR>

w stuff <CR>
86

Line Editor Tutorial (ed) 5-9

•

Notice the last line of the screen. This is the number of characters in your
text. When the editor reports the number of characters in this way, the write
command has succeeded.

Quitt ing the Editor

When you have completed editing your text, write it from the buffer into a file
with the w command. Then leave the editor and return to the shell by typing
q (for quit) :

The system responds with a shell prompt. At this point the editing buffer is
empty. If you did not execute the write command, your text in the buffer has
also vanished. If you did not make any changes to the text during your
editing session, no harm is done. However, if you did make changes, you
could lose your work. Therefore, if you type q after changing the file without
writing it, ed warns you with a ? . You then have a chance to write and quit .

5-10 User's Guide

q<CR>
?
w<CR>
85
q<CR>
$

If, instead of writing, you insist on typing q a second time, ed assumes you
do not want to write the buffer's contents to your file and returns you to the
shell . Your file is left unchanged and the contents of the buffer are erased.

You now know the basic commands for editing and creating a file using ed .
Table 5-l summarizes these commands.

Line Editor Tutorial (ed) 5-1 1

I

I

Table 5-1 . Summary of ed Editor Commands

Command Function

ed file enters ed to edit file.

a appends text after the current line .

. quits text input mode and returns to ed
command mode.

p prints text on your terminal.

d deletes text.

< CR> displays the next line in the buffer
(literally, carriage return) .

+ displays the next line in the buffer.

- displays the previous line in the buffer.

w writes the contents of the buffer to the file .

q quits ed and returns to the shell.

Exercise 1
Answers for all the exercises in this chapter are at the end of the chapter.
However, they are not necessarily the only possible correct answers . Any
method that enables you to perform a task specified in an exercise is correct,
even if it does not match the answer given.

1-1 . Enter ed with a file named junk. Create a line of text containing Hel lo
World, write it to the file and quit ed.

Now use ed to create a file called stuff . Create a line of text
containing two words, Goodbye world, write this text to the file, and
quit ed.

1-2. Enter ed again with the file named junk. What was the editor's
response? Was the character count for it the same as the character
count reported by the w command in Exercise 1-1?

5-12 User's Guide

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why
do you think the editor allowed you to quit without writing to the
buffer?

1-3 . Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think the line
was added to the buffer? Display the contents of the buffer. Try
quitting the buffer without writing to the file . Try writing the buffer
to a different file called stuff. Notice that ed does not warn you that a I file called stuff already exists. You have erased the contents of stuff -

and replaced them with new text.

General Format of ed Com mands

ed commands have a simple and regular format:

[address1 [,address2]]command[argument] < CR>

The brackets around address1 , address2, and argument show that these are
optional. The brackets are not part of the command line .

address1 ,address2
give the position of lines in the buffer. Address1 through address2 gives
you a range of lines that are affected by the command. If address2 is
omitted, the command affects only the line specified by address1 .

command
is usually one character and tells the editor what task to perform.

argument
are those parts of the text that will be modified, or a file name, or another
line address.

This format will become clearer to you when you begin to experiment with
the ed commands.

Line Editor Tutorial (ed) 5-13

Line Add ressing

A line address i s a character or group of characters that identifies a line of
text. Before ed can execute commands that add, delete, move, or change text,
it must know the line address of the affected text. Type the line address
before the command:

[addressl], [address2]command< CR>

Both addressl and address2 are optional. Specify addressl alone to request
action on a single line of text; both addressl and address2 to request a span of
lines. If you do not specify any address, ed assumes that the line address is
the current line .

I The most common ways to specify a line address in ed are:

• entering line numbers (assuming that the lines of the files are
consecutively numbered from 1 to n, beginning with the first line of the
file)

• entering special symbols for the current line, last line, or a span of lines

• adding or subtracting lines from the current line

• searching for a character string or word on the desired line

You can access one line or a span of lines or make a global search for all lines
containing a specified character string. (A character string is a set of
successive characters, e .g . , a word.)

Line Numbers

ed gives a numerical address to each line in the buffer, e .g . , the first line of
the buffer is 1, the second line is 2, for each line in the buffer. Any line can
be accessed by ed with its line address number.

5-14 User's Guide

To see how line numbers address a line, enter ed with the file try-me and
type a number:

$ ed try-me<CR>
1 1 0
1 <CR>
Thi s is the f irst line of text .
3<CR>
and thi s i s the third line .

Remember that p is the default command for a line address specified without
a command. Because you gave a line address, ed assumes you want that line
displayed on your terminal.

Line numbers frequently change in the course of an editing session. Later in
this chapter you will create lines, delete lines, or move a line to a different
position. This changes the line numbers of some lines. The number of a
specific line is always the current position of that line in the editing buffer.
For example, if you add five lines of text between lines 5 and 6, line 6
becomes line 1 1 . If you delete line 5, line 6 becomes line 5.

Symbol ic Line Addressi n g

Addressing the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line
of the buffer. The symbol for the address of the current line is a period.
Therefore, you can display the current line by typing a period and pressing
the RETURN key.

Line Editor Tutorial (ed) 5-15

I

I

Try this command in the file try-me:

$ ed try-me<CR>
1 10
.<CR>

line .

The period is the address . Because a command is not specified after the
period, ed executes the default command p and displays the line found at this
address .

To get the line number of the current line, type the following command:

. = <CR>

ed responds with the line number. For example, in the try-me file, the
current line is 4 .

. <CR>
Thi a ia the f ourth line .

. = < CR>

5-16 User's Guide

'

Addressing the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that the
$ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file,
your current line is always the last line of the file .)

$ e d try-me<CR>
1 1 0
.<CR>
Thi s i s the fourth line .
$<CR>
Thi s is the fourth l ine .

Remember that the $ address within ed is not the same as the $ prompt from
the shell .

Addressing the Set of Al l Li nes

When used as an address, a comma refers to all lines of a file, from the first
through the last line . It is an abbreviated form of the string mentioned earlier
that represents all lines in a file, "1 ,$" . Try this shortcut to print the contents
of try-me.

Line Editor Tutorial (ed) 5-17

I

I

,p<CR>
Thi s is the � irst line o� text .
Thi s i s the s e cond line ,
and thi s i s the third line .
Thi s i s the �ourth line .

Addressing the Cu rrent Line Th roug h the Last Line

The semi-colon represents a set of lines beginning with the current line and
ending with the last line of a file. It is equivalent to the ". ,$" symbolic
address . Try it with the file try-me.

2p<CR>
Thi s is the s e cond line ,
;p<CR>
Thi s is the s e cond line ,
and thi s is the third line .
Thi s i s the � ourth l ine .

5-18 User's Guide

Usi ng Relative Addresses

You may often want to address lines with respect to the current line . You can
do this by adding or subtracting a number of lines from the current line with a
plus (+) or a minus (-) sign. Addresses derived in this way are called
relative addresses .

To experiment with relative line addresses, add several more lines to your file
try-me, as shown in the following screen. Also, write the buffer contents to
the file so your additions are saved.

$ ed try-me<CR>
1 1 0
.<CR>
Thi s is the f ourth line .
a<CR>
five<CR>
six<CR>
seven<CR>
elght<CR>
nine<CR>
ten<CR>
.<CR>
w<CR>
1 40

Now try adding and subtracting line numbers from the current line.

Line Editor Tutorial (ed) 5-19

I

I

4<CR>
Thi• i• the fourth line .
+ 3<CR>
• even
- S<CR>
Thi • i • a • e cond line ,

The following shows what happens if you ask for a line address that is greater
than the last line, or if you try to subtract a number greater than the current
line number:

S<CR>
f ive
-6<CR>
?
.= <CR>
6
+7<CR>
?

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The ? response means there is
an error. Additional Commands and Concepts, at the end of this chapter,
explains how to get a help message that describes the error.

5-20 User's Guide

Character String Add resses

You can search forward or backward in the file for a line containing a
particular character string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed whe�e a
string starts and ends . The most common delimiter is slash, used in the
following format:

/pattern

When you specify a pattern preceded by a slash, ed begins at the current line
and searches forward (down through subsequent lines in the buffer) for the I next line containing the pattern. When the search reaches the last line of the
buffer, ed wraps around to the beginning of the file and continues its search
from line 1 .

The following rectangle represents the editing buffer. The path o f the arrows
shows the search initiated by a slash.

r - - - ,
I

l
first line

I

+ current line

1 last line
I
L _ _ _ .J

Another useful delimiter is ? . If you specify a pattern preceded by a ?, (as in
?pattern), ed begins at the current line and searches backward (up through
previous lines in the buffer) for the next line containing the pattern. If the
search reaches the first line of the file, it wraps around and continues
searching upward from the last line of the file .

Line Editor Tutorial (ed) 5-21

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a ? . "

Experiment with these two methods of requesting address searches on the file
try-me. What happens if ed does not find the specified character string?

$ ed try-me<CR>
140
.<CR>
tan
?first<CR>
Thi s i s the f irst line of text .
lfourth<CR>
Thi s i s the f ourth l ine .
/junk<CR>
?

In this example, ed found the specified strings first and fourth. Then,
because no command was given with the address, it executed the p command
by default, displaying the lines it had found. When ed cannot find a specified
string (e .g . , junk), it responds with a ? .

5-22 User's Guide

You can also use the slash to search for multiple occurrences of a pattern
without typing it more than once. First, specify the pattern by typing /pattern.
After ed has printed the first occurrence, it waits for another command. Type
slash and press the RETURN key; ed continues to search forward through the
file for the last pattern specified.

Try this command by searching for the word l ine in the file try-me:

.<CR>
Thi s i s the f irst line of text .
ll lne<CR>
Thi s i s the s e cond line ,
/<CR>
a.nd thi s i s t h e third line .
/<CR>
Thi s i s the f ourth line .
/<CR>
Thi s i a the f irst l ine of text .

After ed has found all occurrences of the pattern between the line where you
requested a search and the end of the file, it wraps around to the beginning of
the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range of
lines, e .g . , address1 through address2, or you can specify a global search for all
lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the
first and last lines of the range, separated by a comma. Place this address
before the command. For example, if you want to display lines 2 through 7 of
the editing buffer, give address1 as 2 and address2 as 7 in the following format:

2,7p< CR>

Line Editor Tutorial (ed) 5-23

I

I

Try this on the file try-me:

2,7p<CR>
Thi s i s the s e cond line ,
and thi s i s the third line .
Thi s i s the f ourth line .
f ive
s ix
s even

Did you try typing 2,7 without the p? What happened? If you do not add the
p command, ed prints only address2, the last line of the range of addresses .

Relative line addresses can also be used to request a range of lines. Be sure
that address1 precedes address2 in the buffer. Relative addresses are calculated
from the current line, as the following example shows:

4<CR>
Thi s is the f ourth line
-2,+ 3p<CR>
Thi s i s the s e cond line ,
and thi s is the third line .
Thi s i s the f ourth l ine .
f ive
s ix
s even

5-24 User's Guide

Specifyi ng a Global Search

There are two commands that do not follow the general format of ed
commands: g and v. These are global search commands that specify
addresses with a character string (pattern). The g command searches for all
lines containing the string pattern and performs the comnumd on those lines.
The v command searches for all lines that do not contain the pattern and
performs the command on those lines .

The following is the general format for these commands:

g/pattern/command<CR>
vlpatternlcommand<CR>

Try these commands by using them to search for the word l ine in try-me:

g/llne/p<CR>
Thi s is the f irst l ine of text .
Thi s i s the s e cond line ,
and thi s i s the third line .
Thi s i s the fourth line

v/line/p<CR>
f ive
s ix
s even
e ight
nine
ten

Line Editor Tutorial (ed) 5-25

I

I

Notice the function of the v command: it finds all lines that do not contain
the word specified in the command line (l ine) .

Once again, the default command for the lines addressed by g or v is p; you
do not need to include a p as the last delimiter on your command line .

g/llne<CR>
Thi • i• the f ir•t line of text .
Thi • i • the • e cond line ,
and thi • i• the third l ine .
Thi • i • the f ourth line

However, if you are giving line addresses to be used by other ed commands,
you need to include beginning and ending delimiters . You can use any of the
methods discussed in this section to specify line addresses for ed commands.
Table 5-2 summarizes the symbols and commands available for addressing
lines.

5-26 User's Guide

Address

n . . .

. =

$

Table 5-2. Summary of Line Addressing

Description

specifies the number of a line in the buffer.

specifies the current line (the line most recently acted
on by an ed command) .

asks for the line number of the current line .

specifies the last line of the file.

indicates the set of lines from line 1 through the last
line .

; indicates the set of lines from the current line through
the last line .

+ n indicates the line that is located n lines after the
current line.

- n indicates the line that is located n lines before the
current line.

/abc searches forward in the buffer for the first line that
contains the pattern abc.

?abc searches backward in the buffer for the first line that
contains the pattern abc.

g/abc indicates the set of all lines that contain the pattern
abc.

v/abc indicates the set of all lines that do not contain the
pattern abc.

Line Editor Tutorial (ed) 5-27

I

•

Exercise 2

2-1 . Create a file called towns with the following lines:

2-2.

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost $$ in
Las Vegas

Display line 3.

2-3 . If you specify a range of lines with the relative address -2, + 3p, what
lines are displayed ?

2-4. What is the current line number? Display the current line.

2-5 . What does the last line say?

2-6. What line is displayed by the following request for a search?

?town<CR>

After ed responds, type this command alone on a line:

?<CR>

What happened?

2-7. Search for all lines that contain the pattern in . Then search for all
lines that do not contain the pattern in .

5-28 User's Guide

Displayi ng Text i n a Fi le

The ed text editor provides two commands for displaying lines o f text i n the
editing buffer: p and n . One displays text with their line numbers; the other
displays text without them.

Displayi ng Text Alon e : p Command

You have already used the p command in several examples and should be
familiar with its general format:

[address1 [,address2]]p<CR>

p does not take arguments . However, i t can be combined with a substitution
command line . This is discussed later in this chapter.

Using the line addresses shown in Table 5-3, experiment on a file in your
home directory. Try the p command with each address and see if ed
responds as described in the following table .

Line Editor Tutorial (ed) 5-29

•

Table 5-3. Sample Addresses for Displaying Text

Specify this address Check for this response

1 ,$p<CR> ed displays the entire file on your
terminal .

-5p<CR> ed moves backward five lines from the
current line and displays the line
found there .

+ 2p<CR>

1 ,/x/p<CR>

ed moves forward two lines from the
current line and displays the line
found there .

ed displays the set of lines from line
one through the first line after the
current line that contains the character
x. It is important to enclose the letter
x within slashes so that ed can
distinguish between the search pattern
address (x) and the ed command (p) .

Displaying with Line Numbers : n Command

As the n command displays text, it precedes each line with its line number.
This is helpful when you are deleting, creating, or changing lines. The
general command line format for n is the same as that for p:

{address1 ,address2]n<CR>

Like p, n does not take arguments, but it can be combined with the substitute
command.

5-30 User's Guide

Try running n on the try-me file:

$ ed try-me<CR>
140
1 ,$n<CR>
1
2
3
4
6
6
7
8
9
1 0

Thill i ll the
Thill i 11 the
and thi 11 i ll
Thill i ll the
f ive
ll iX
11 even
e ight
nine
ten

f ir11t line of text .
11 e cond line ,
the third line .
fourth l ine .

Table 5-4 summarizes the ed commands for displaying text.

Command

p

n

Table 5-4. Summary of Commands for Displaying Text

Function

displays on your terminal the specified lines of text in
the editing buffer.

displays on your terminal the specified lines of text in
the editing buffer preceded by their line numbers .

Line Editor Tutorial (ed) 5-31

I

I

Creati ng Text

ed has three basic commands for creating new lines of text:

a append text

insert text

c change text

Appending Text : a Command

The append command, a, allows you to add text after the current line or a
specified address in the file . You already used this command in the Getting
Started section of this chapter. The general format for the append command
line is:

[address1]a<CR>

Specifying an address is optional. The default value of address1 is the current
line .

In previous exercises, you used this command with the default address. Now
try using different line numbers for address1 . In the following example, a new
file called new-fi le is created. In the first append command line, the default
address is the current line.. In the second append command line, line 1 is
specified as address1 . The lines are displayed with n so that you can see their
numerical line addresses. Remember, the append mode is ended by typing a
period on a line by itself.

5-32 User's Guide

$ ed new-flle<CR>
?new-f i l e
a<CR>
Create some lines
of text In
this file •

• <CR>
1 ,$n<CR>
1 Cre ate • om• 1in• •
2 of text in
3 thi• f i l e .
1a<CR>
This will be line 2<CR>
This will be line 3<CR>
.<CR>
1 ,$n<CR>
1 Cre ate • ome lin • •
2 Thi • will be line 2
3 Thi• will be line 3
4 of text in
6 thi• f i l e .

After you append the two new lines, the line that was originally line 2 (o:f
text :in) becomes line 4.

Line Editor Tutorial (ed) 5-33

I

•

You can take shortcuts to places in the file where you want to append text by
combining the append command with symbolic addresses . The following
three command lines allow you to move through and add to the text quickly
in this way:

.a< CR>
appends text after the current line.

$a< CR>
appends text after the last line of the file .

Oa< CR>
appends text before the first line of the file (at a symbolic address called
line 0) .

To try using these addresses, create a one-line file called l ines and type the
examples shown in the following screens . (The examples appear in separate
screens for easy reference only; it is not necessary to access the l ines file three
times to try each append symbol. You can access l ines once and try all three
consecutively.)

$ ed llnes<CR>
? line a
a<CR>
This Is the current line.<CR>
.<CR>
p<CR>
Thi s i s the current line .

. a<CR>
This line is after the current line.<CR>
.<CR>
- 1 ,.p<CR>
Thi s i s the current line .
Thi s line i s after the current line .

5-34 User's Guide

$a<CR>
This Is the last line now.<CR>
.<CR>
$<CR>
This i s the last line now .

Oa<CR>
This Is the first line now.<CR>
This Is the second line now.<CR>
The l ine numbers change<CR>
as lines are added.<CR>
.<CR>
1 ,4n<CR>
1 Thi s i s the f irst line now .
2 Thi s i s the s e cond line now .
3 The line numbers change
4 as linea are added .

Because the append command creates text after a specified address, the last
example refers to the line before line 1 as the line after line 0. To avoid such
circuitous references, use another command provided by the editor: the insert
command, i .

Line Editor Tutorial (ed) 5-35

I

I

Inserti ng Text : i Command

The insert command (i) , allows you to add text before a specified line in the
editing buffer. The general command line format for i is the same as a:

[address1] i<CR>

As with the append command, you can insert one or more lines of text. To
quit input mode, you must type a period alone on a line.

Create a file called insert in which you can try the insert command (i) :

$ ed lnsert<CR>
? ins ert
a<CR>
Une 1 <CR>
Une 2<CR>
Une 3<CR>
Une 4<CR>
.<CR>
w<CR>
69

Now insert one line of text above line 2 and another above line 1 . Use the n
command to display all lines in the buffer:

5-36 User's Guide

21<CR>
This Is the new line 2.<CR>
.<CR>
1 ,$n<CR>
1
2
3
4
6
1 1<CR>

Line 1
Thi• i • the new l ine 2 .
Line 2
Line 3
Line 4

This Is the beginnlng.<CR>
.<CR>
1 ,$n<CR>
1 In the beginning
2 Line 1
3 Now thi• i • line 2
4 Line 2
6 Line 3
6 Line 4

Experiment with the insert command by combining it with symbolic line
addresses:

. i<CR>

$i<CR>

Changing Text : c Command

The change text command (c) erases all specified lines and allows you to
' create one or more lines of text in their place. Because c can erase a range of

lines, the general format for the command line includes two addresses:

[address1,address2]c<CR>

Line Editor Tutorial (ed) 5-37

I

I

The change command puts you in text input mode. To leave input mode,
type a period alone on a line.

Address1 is the first and address2 is the last of the range of lines to be replaced
by new text. To erase one line of text, specify only address1 . If no address is
specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command. After
entering the text shown in the screen, change lines one through four by
typing 1 ,4c.

1 ,5n<CR>
1 line 1
2 l ine 2
3 line 3
4 l ine 4
6 l ine 6
1 ,4c<CR>
Change line 1 <CR>
and lines 2 through 4<CR>
.<CR>
1 ,$n<CR>
1 change line 1
2 and l in• • 2 through 4
3 l ine 6

5-38 User's Guide

Now experiment with c and try to change the current line:

.<CR>
line 6
c<CR>
This Is the new line 5 .

. <CR>

.<CR>
Thi • i • the new line 6 .

If you are not sure you have left text input mode, it is a good idea to type
another period. If the current line is displayed, you know you are in the
command mode of ed.

Table 5-5 summarizes the ed commands for creating text.

Command

a

i

c

.

Table 5-5. Summary of Commands for Creating Text

Function

appends text after the specified line in the buffer.

inserts text before the specified line in the buffer.

changes the text on the specified lines to new text.

quits text input mode and return to ed command mode .

Line Editor Tutorial (ed) 5-39

I

I

Exercise 3

3-1 . Create a new file called ex3. Instead of using the append command
to create new text in the empty buffer, try the insert command. What
happens?

3-2. Enter ed with the file towns. What is the current line?

Insert above the third line:

l l l inois<CR>

Insert above the current line:

or<CR>
Napervil le<CR>

Insert before the last line:

hotels in<CR>

Display the text in the buffer preceded by line numbers .

3-3 . In the file towns, display lines 1 through 5 and replace lines 2 through
5 with:

London<CR>

Display lines 1 through 3.

5-40 User's Guide

3-4. After you complete exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

Replace

Toledo

with

Peoria

Display the current line.

3-5. With one command line search for and replace:

New York

with:

I ron City

Deleti ng Text

This section discusses two types of commands for deleting text in ed. One
type is used when you are working in command mode: d deletes a line and u
undoes the last command. The other type of command is used in test input
mode: <CERASE> deletes a character and <CKILL> kills a line . The delete
keys that are used in input mode are the same keys you use to delete text that
you enter after a shell prompt. They are described in detail in Correcting
Typing Errors in Chapter 2.

Deleting Li nes : d Command

You have already deleted lines of text with the delete command (d) in the
Getting Started section of this chapter.

The general format for the d command line is:

[address1 ,address2]d<CR>

You can delete a range of lines (address1 through address2) or you can delete
one line only (address1) . If no address is specified, ed deletes the current line .

Line Editor Tutorial (ed) 5-41

I

I

The next example displays lines one through five and then deletes lines two
through four:

1 ,5n<CR>
1 1 hor••
2 2 chicken•
3 3 ham taco•
4 4 can• of mu• ta.rd
6 6 bail • of hay
2,4d<CR>
1 ,$n<CR>
1 1 hor • •
2 6 bail • of hay

How can you delete only the last line of a file? Using a symbolic line address
makes this easy:

$d< CR>

How can you delete the current line? One of the most common errors in ed is
forgetting to type a period to leave text input mode. When this happens,
unwanted text may be added to the buffer. In the next example, a line
containing a print command (1 ,$p) is accidentally added to the text before the
user leaves input mode. Because this line was the last one added to the text,
it becomes the current line. The symbolic address period is used to delete it.

5-42 User's Guide

a<CR>
Last line of text<CR>
1 ,$p<CR>
.<CR>
p<CR>
1 ,$p
.d<CR>
p<CR>

Las t line of text .

In connection with the delete command, you may also want to learn about the
undo command, u.

Undoing the Previous Command : u Command

The command u (short for undo) nullifies the last command and restores any
text changed or deleted by that command. It takes no addresses or
arguments . The format is:

u<CR>

One purpose for which the u command is useful, is to restore text you have
mistakenly deleted. If you delete all lines in a file, then type p, ed responds
with a ? because there are no more lines in the file . Use the u command to
restore them.

Line Editor Tutorial (ed) 5-43

I

I

1 ,$p<CR>
Thi s is the f irst line .
Thi s i s the middle line .
Thi s i s the last l ine .
1 ,$d<CR>
p<CR>
?
u<CR>
p<CR>
Thi s is the las t line .

Now experiment with u: use it to undo the append command:

.<CR>
Thi s is the only line of text
a<CR>
Add this llne<CR>
.<CR>
1 ,$p<CR>
Thi s is the only line of text
Add thi s line
u<CR>
1 ,$p<CR>
Thi s is the only l ine of text

5-44 User's Guide

NOTE

u cannot be used to undo the write command
(w) or the quit command (q) . However, u can
undo an undo command (u) .

Deleting Whi le i n Text Input Mode

While in text input mode, you can correct the current line of input with the
same keys you use to correct a shell command line . By default, there are two I keys available to correct text. The <CKILL> key kills the current line . The

·

< CERASE> key backs up over one character on the current line so you can
retype it, thus, erasing the original character. (See Correcting Typing Errors in
Chapter 2 for details .)

As mentioned in Chapter 2, you can reassign the line-kill and character-erase
functions to other keys if you prefer. (See Modifying Your Login Environment in
Chapter 7 for instructions.) If you reassigned these functions, you must use
the keys you chose while working in ed; the default keys (<CKILL> and
<CERASE>) will no longer work.

You may want to include <CKILL> or <CERASE> as a character (e .g . , an @
sign or a # sign) of text. To avoid having these characters interpreted as
delete commands, you must precede them with a backslash as shown in the
following example:

a<CR>
leave San Francisco \@ 20 :1 5 on fl ight \#347 <CR>
.<CR>
p<CR>
l e ave San Francisco 0 20 : 16 on f light #347

Line Editor Tutorial (ed) 5-45

I

Table 5-6 summarizes the ed commands and shell commands for deleting text
in ed.

Table 5-6. Summary of Commands for Deleting Text

Command Function

In command mode:

<d> deletes one or more lines of text.

<u> undoes the previous command.

<CKILL> deletes the current command line .

In text input mode:

<CKILL> deletes the current line .

<CERASE> deletes the last character typed in.

Substitut ing Text

You can change your text with a substitute command. This command
replaces the first occurrence of a string of characters with new text. The
general command line format is:

[address1 ,address2]slold_text/new_textl[command]<CR>

The following describes each component of the command line:

address1 ,address2
specifies the range of lines being addressed by s. The address can be one
line, (address1), a range of lines (address1 through address2), or a global
search address. If no address is given, ed makes the substitution on the
current line .

5-46 User's Guide

s
indicates the substitute command.

lold_text
specifies the text to be replaced. It is usually delimited by slashes, but can
be delimited by other characters, e .g . , a ? or a period. The command
replaces the first occurrence of these characters that it finds in the text.

/new_text specifies the text to replace old_text. It is delimited by slashes or
the same delimiters used to specify the old_text. It consists of the words
or characters that are to replace the old_text.

/command

g

n

p

is an option and can be any one of the following four commands:

changes all occurrences of old_text on the specified lines.

displays the last line of substituted text, including nonprinting characters .
(See the last section of this chapter, Additional Commands and Concepts.)

displays the last line of the substituted text preceded by its numerical line
address.

displays the last line of substituted text.

Su bstitut ing on the Cu rrent Line

The simplest example of the substitute command is making a change to the
current line . You do not need to give a line address for the current line .

s/old_textlnew _text/< CR >

The next example contains a typing error. While the line that contains the
error is still the current line, you make a substitution to correct it. The old
text is the ai of airor and the new text is er.

Line Editor Tutorial (ed) 5-47

I

I

a<CR>
In the beginning, I made an airor .

. <CR>

.p<CR>
In the beg inning , I made an airor .
s/al/er< CR>

ed gives no response to the substitute command. To verify that the command
has succeeded, you either have to display the line with p or n, or include p or
n as part of the substitute command line . In the following example, n is used
to verify that the word f i le has been substituted for the word toad:

.p<CR>
Thi s i s a t e s t toad
s/toad/file/n<CR>
1 Thi s i s a t e s t f i l e

However, ed allows you one shortcut: i t prints the results of the command
automatically, if you omit the last delimiter after the new_text argument.

5-48 User's Guide

.p<CR>
Thi s is a t e a t f i l e
s/filelfrog < CR>
Thi s is a t e a t frog

Su bstitut ing on One Line

To substitute text on a line that is not the current line, include an address in
the command line:

[addressl]s/old_textlnew_texti<CR>

For example, in the following screen the command line includes an address
for the line to be changed (line 1) because the current line is line 3:

1 ,3p<CR>
Thi s is a p e a t toad
t e s ting t e s ting
come in toad
.<CR>
come in toad
1 s/pest/test<CR>
Thi s is a t e a t toad

Line Editor Tutorial (ed) 5-49

I

I

ed printed the new line automatically after the change was made because the
last delimiter was omitted.

Su bstituti ng over a Range of Lines

You can make a substitution over a range of lines by specifying the first
address (addressl) through the last address (address2) :

[address1 ,address2]slold_textlnew_texti< CR>

If ed does not find the pattern to be replaced on a line, no changes are made
to that line . An error message (?) is printed if the pattern is not found on any
line in addressl , address2 .

In the following example, all lines in the file are addressed for the substitute
command. However, only the lines that contain the string es (the old_text
argument) are changed.

1 ,$p<CR>
Thi s is a t e a t toad
t e s ting t o a t i n g
come in toad
t e s ting 1 , 2 , 3
1 ,$s/es/ES/n<CR>
4 tESting 1 , 2 , 3

When you specify a range of lines and include p or n at the end of the
substitute line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p command
with the address 1 ,$.

5-50 User's Guide

1 ,$n<CR>
1 Thi s i s a. tESt toad
2 tESting t e s ting
3 come in toad
4 tESting 1 , 2 , 3

Only the first occurrence of es (on line 2) has been changed. To change every
occurrence of a pattern, use the g command, described in the next section.

Global Su bstitution

One of the most versatile tools in ed is global substitution. By placing the g
command after the last delimiter on the substitute command line, you can
change every occurrence of a pattern on the specified lines. Try changing
every occurrence of the string as in the last example. If you are following
along, doing the examples as you read, remember you can use u to undo the
last substitute command.

Line Editor Tutorial (ed) 5-51

I

I

u<CR>
1 ,$p<CR>
Thi s ia a t e a t toad
t e sting , t e s ting
come in toad
t e sting 1 , 2 , 3
1 ,$s/es!ES/g < CR>
1 ,$p<CR>
This ia a tESt toad
tESting tESting
come in toad
tESting 1 , 2, 3

Another method is to use a global search pattern as an address instead of the
range of lines specified by 1 ,$.

1 ,$p<CR>
Thi s ia a t e a t toad
t e s ting t e s ting
come in toad
t e s ting 1 , 2 , 3
g/test/s/es/ES/g<CR>
1 ,$p<CR>
Thi s ia a tESt toad
tESting tESting
come in toad
tESting 1 , 2 , 3

5-52 User's Guide

If the global search pattern is unique and matches the argument old_text (text
to be replaced), you can use an ed shortcut: specify the pattern once as the
global search address and do not repeat it as an old_text argument. ed
remembers the pattern from the search address and use it again as the pattern
to be replaced.

g/old_textlsllnew_textlg< CR>

NOTE

Whenever you use this shortcut, be sure to
include two slashes (//) after the s.

1 ,$p<CR>
Thi s i s a t e s t toad
t e s ting t e s ting
come in toad
t e sting 1 , 2 , 3
gles/s//ES/g <CR>
1 ,$p<CR>
Thi s i s a tESt toad
tESting tESting
come in toad
tESting 1 , 2 , 3

Experiment with other search pattern addresses:

lpattern<CR>
?pattern<CR>
v/pattern< CR>

Line Editor Tutorial (ed) 5-53

I

I

See what they do when combined with the substitute command. In the
following example, the v/pattern search format is used to locate lines that do
not contain the pattern testing . Then the substitute command (s) is used
to replace the existing pattern (in) with a new pattern (out) on those lines.

i s a. test toad
come out toad

The line, This i s a test toad, was also printed even though no
substitution was made on it. When the last delimiter is omitted, all lines
found with the search address are printed, regardless of whether substitutions
have been made on them.

Now search for lines that do contain the pattern testing with the g
command:

gltesting/s//jumping <CR>
j umping t e s ting
j umping 1 . 2 , 3

This command makes substitutions only for the first occurrence of the pattern
{testing) in each line . Once again, the lines display on your terminal
because the last delimiter has been omitted.

5-54 User's Guide

Exercise 4
4-1 . In your file towns change town to city on all lines but the line with

little town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those l ittle town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

4-2. Try using ? as a delimiter. Change the current line:

Las Vegas

to

Toledo

Because you are changing the whole line, you can also do this by
using the change command, c.

4-3 . Try searching backward in the file for the word:

lost

Substitute using the ? as the delimiter:

found

Did it work?

Line Editor Tutorial (ed) 5-55

I

I

4-4. Search forward in the file for

no

and substitute the following for it:

NO

What happens i f you try to use ? as a delimiter?

Experiment with the various command combinations available for addressing
a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to substitute
Big $ for $ on line 9 of your fi le. Type:

9s/$/B ig $<CR>

What happened?

Special Characters

If you try to substitute the $ sign in the following line, you will find that
instead of replacing the $, the new text is placed at the end of the line:

I lost my $ in Las Vegas

The $ is a special character in ed that is symbolic for the end of the line .

ed has several special characters that give you a shorthand for search patterns
and substitution patterns . The characters act as wild cards. If you have tried
to type in any of these characters, the result was probably different than what
you had expected.

5-56 User's Guide

The special characters are:

*

·*

$

\

&

matches any one character.

matches zero or more occurrences of the preceding character.

matches zero or more occurrences of any character following the period.

matches the beginning of the line.

matches the end of the line .

takes away the special meaning of the special character that follows .

repeats the old text to be replaced in the new text of the replacement
pattern.

[. . .)
matches the first occurrence of a character in the brackets.

[A o o o]
matches the first occurrence of a character that is not in the brackets.

Line Editor Tutorial (ed) 5-57

I

I

In the following example, ed searches for any three-character sequence ending
in the pattern at:

1 ,$p<CR>
rat
cat
turtle
cow
goat
gl.at<CR>
rat
cat
goat

The word goat is included because the string oat matches the string .at.

The * (asterisk) represents zero or more occurrences of a specified character in
a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example,
you hold down the r key too long while typing the word broke. You can use
the * to delete every unnecessary r with one substitution command:

5-58 User's Guide

The substitution pattern includes the b before the first r. If the b were not
included in the search pattern, the * would interpret it, during the search, as
a zero occurrence of r, make the substitution on it, and quit. (Remember,
only the first occurrence of a pattern is changed in a substitution, unless you
request a global search with g.) The following screen shows how the
substitution would be made if you did not specify both the b and the r before
the * :

If you combine the period and the *, the combination will match all
characters . With this combination, you can replace all characters in the last
part of a line:

Toads are s l imy , cold creatur e s
s/are.•/are wonderful and warm<CR>
Toads are wonderful and warm

Line Editor Tutorial (ed) 5-59

I

I

The ·* can also replace all characters between two patterns:

Toads are s l imy , cold cre atur e s
s/are.•cre/are wonderful and warm cre<CR>
Toads are wonderful and warm creatur e s

I f you want to insert a word at the beginning of a line, use the " (circumflex)
for the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines . The next example places
the word all at the beginning of each line:

1 ,$p<CR>
cre atur e s great and small
thing s wi s e and wonderful
thing s bright and beautiful
1 ,$8A/all /<CR>
1 ,$p<CR>
all cre atur e s great and small
all things wi s e and wonderful
all thing s bright and beautiful

5-60 User's Guide

The $ sign is useful for adding characters at the end of a line or a range of
lines:

1 ,$p<CR>
I love
I n e e d
I u s e
The I R S wants my
1 ,$s/$/ money.<CR>
1 ,$p<CR>
I love money .
I n e e d money .
I us e money .
The IRS wants my money .

In these examples, you must remember to put a space after the word all or
before the word money because ed adds the specified characters to the very
beginning or the very end of the sentence. If you forget to leave a space
before the word money your file will look like this:

1 ,$s/$/money/<CR>
1 ,$p<CR>
I lovemoney
I n e e dmoney
I us emoney
The IRS wants mymoney

Line Editor Tutorial (ed) 5-61

I

The $ sign also provides a handy way to add punctuation to the end of a line:

1 ,$p<CR>
I love money
I need money
I use money
The IRS wants my money
1 ,$s/$/J<CR>
1 ,$pi<CR>
I love money .
I n e e d money .
I u s e money .
Th e IRS wants my money .

Because period is not matching any character (old text), but replacing a
character (new text), it does not have a special meaning. To change a period
in the middle of a line, you must take away the special meaning of the period
in the old text. To do this, simply precede the period with a backslash (\ .) .
This is how you take away the special meaning of some special characters that
you want to treat as normal text characters in search or substitute arguments .
For example, the following screen shows how to take away the special
meaning of the period:

Wow !

Wow !

5-62 User's Guide

The same method can be used with the backslash character itself. If you want
to treat a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use the
substitute command line shown in the following screen:

1 ,2p<CR>
This chapter explains
how to use the \ .
s/\\/backs lash<CR>
how to use the backslash .

If you want to add text without changing the rest of the line, the
& (ampersand) provides a useful shortcut. The & repeats the old text in the
replacement pattern, so you do not have to type the pattern twice . For
example:

p<CR>
The n e anderthal skeletal remains
s/thaV& man's/<CR>
p<CR>
The n e anderthal man ' s s k e l e tal remains

Line Editor Tutorial (ed) 5-63

I

•

ed automatically remembers the last string of characters in a search pattern or
the old text in a substitution. However, you must prompt ed to repeat the
replacement characters in a substitution with % (percent sign) . % allows you
to make the same substitution on multiple lines without requesting a global
substitution. For example, to change the word money to the word gold,
repeat the last substitution from line 1 on line 3, but not on line 4.

1 ,$n<CR>
1 I love money
2 I n e e d food
3 I u s e money
4 The IRS wants my money
1 s/money/gold<CR>
I love gold

3s//%<CR>
I u s e gold
1 ,$n<CR>
1 I love gold
2 I n e e d food
3 I u s e gold
4 The IRS wants my money

ed automatically remembers the word money (the old text to be replaced), so
that string does not have to be repeated between the first two delimiters . %
tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text. The brackets can
be at any position in the pattern to be replaced.

5-64 User's Guide

In the following example, ed changes the first occurrence of the numbers 6 ,

7 , 8, or g to 4 on each line in which it finds one of those numbers:

1 ,$p<CR>
Monda7 33 , 000
Tue sda7 76 , 000
Wedn e sda7 88 , 000
Thursda7 62 , 000
1 ,$s/(6789]14< CR>
Monda7 33 , 000
Tue sda7 46 , 000

Wedn e sda7 48 , 000
Thursda7 42 , 000

The next example deletes the Mr or Ms from a list of names:

1 ,$p<CR>
Mr Arthur Midd l e ton
Mr Watt Lewi s
Ws Anna K e l l e 7
Us M . L . Hod e l
1 ,$s!M[rs] //<CR>
1 ,$p<CR>
Arthur Midd l e ton
Watt Lewis
Anna K e l l e7
M . L . Hod e l

Line Editor Tutorial (ed) 5-65

I

•

If a circumflex is the first character in brackets, ed interprets it as an
instruction to match characters that are not within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
literally, as a circumflex.

1 ,$p<CR>
grad e A Computer Science
grad e B Robot Des ign
grade A Boo l e an Algebra
grade D Jogg ing
grade C Tennis
1 ,$s/grade rAB]IgradeA<CR>
1 ,$p<CR>
grade A
grade B
grade A
grade A

Computer Science
Robot Des ign
Bool e an Algebra
Jogg ing

grade A Tennis

Whenever you use special characters as wild cards in the text to be changed,
remember to use a unique pattern of characters . In the above example, if you
had used only you would have changed the g in the word grade to A:

1 ,$s/rAB]/A<CR>

Experiment with these special characters . Find out what happens (or does not
happen) if you use them in different combinations.

5-66 User's Guide

Table 5-7 summarizes the special characters for search or substitute patterns.

Command

*

·*

$

\

&

%

[. ..]

r . . . J

Table 5-7. Summary of Special Characters

Function

matches any one character in a search or substitute
pattern.

matches zero or more occurrences of the preceding
character in a search or substitute pattern.

matches zero or more occurrences of any characters
following the period.

matches the beginning of the line in the substitute
pattern to be replaced or in a search pattern.

matches the end of the line in the substitute pattern to
be replaced.

takes away the special meaning of the special character
that follows in the substitute or search pattern.

repeats the old text to be replaced in the new text
replacement pattern.

matches the last replacement pattern.

matches the first occurrence of a character in the
brackets.

matches the first occurrence of a character that is not in
the brackets .

Line Editor Tutorial (ed) 5-67

I

I

Exercise 5

5-1 . Create a file that contains the following lines of text:

5-2.

5-3.

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:

1 ,$s/rAB]/AI<CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by
the " .) Do not be afraid to experiment!

Insert the following line above line 2:

These are not real ly my grades.

Using brackets and the " character, create a search pattern that you
can use to locate the line you inserted. There are several ways to
address a line . When you edit text, use the way that is quickest and
easiest for you.

Add the following lines to your file :

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

5-68 User's Guide

Using two command lines, do the following: change the word on the
first line from money to gold, and change the last two lines from
money to gold without using the words money or gold themselves.

5-4. How can you change the line:

5-5 .

1020231020

to the following without repeating the old digits in the replacement
pattern?

1 0202031 020

Create a line of text containing the following characters:

* . \ & % " *

Substitute a letter for each character. Do you need to use a backslash
for every substitution?

Movi ng Text

You have now learned to address lines, create and delete text, and make
substitutions . ed has one more set of versatile and important commands.
You can move, copy, or join lines of text in the editing buffer. You can also
read in text from a file that is not in the editing buffer, or write lines of the file
in the buffer to another file in the current directory. The commands that
move text are:

m

t

w

r

moves lines of text.

copies lines of text.

joins contiguous lines of text.

writes lines of text to a file .

reads in the contents of a file .

Line Editor Tutorial (ed) 5-69

I

I

Movi ng Lines of Text

The m command allows you to move blocks of text to another place in the file .
The general format is:

[address1 ,address2]m[address3]<CR>

The components of this command line include:

address1 ,address2

m

specifies the range of lines to be moved. If only one line is moved, only
address1 is given. If no address is given, the current line is moved.

indicates the move command.

address3
places the text after this line .

Try the following example to see how the command works . Create a file that
contains these three lines of text:

Type :

I want to move this l ine.
I want the first l ine
below this l ine.

1 m3<CR>

ed will move line 1 below line 3.

� I want to move this line .

I want the first line
below this line .

-;.. I want to move this line .

5-70 User's Guide

The next screen shows how this will appear on your terminal:

1 ,$p<CR>
I want to move thi s line .
I want the f irst l ine
below thi s line .
1 m3<CR>
1 ,$p<CR>
I want the f irst line
below thi s line .
I want to move thi s line .

If you want to move a paragraph of text, have address1 and address2 define the
range of lines of the paragraph.

Line Editor Tutorial (ed) 5-71

I

I

In the following example, a block of text (lines 8 through 12) is moved below
line 65. Notice the n command that prints the line numbers of the file.

8 , 1 2 n < CR >

8 This is line 8 .
9 It is the beginning of a
1 0 very short paragraph .
1 1 This paragraph ends
12 on this line .
64,65n < CR>
64 Wove the block of text
65 be low this line .
8,1 2m65< CR >
59,65n< CR>
59 Wove the block of text
60 be low this line .
6 1 This is line 8 .
62 It is the beginning of a
63 very short paragraph .
64 This paragraph ends
65 on this line .

How can you move lines above the first line of the file? Try the following
command:

3,4m0<CR>

When address3 i s 0 , the lines are placed at the beginning of the fi le .

Copyi ng Li nes of Text

The copy command t (transfer) acts like the m command except that the block
of text is not deleted at the original address of the line . A copy of that block
of text is placed after a specified line of text. The general format of the
command line is also similar.

5-72 User's Guide

The general format of the t command also looks like the m command:

[address1 ,address2]t[address3]<CR>

address1 ,address2

t

specifies the range of lines to be copied. If only one line is copied, only
addressl is given. If no address is given, the current line is copied.

specifies the copy command.

address3
places the copy of the text after this line .

The next example shows how to copy three lines of text below the last line .

Safety procedures :

If there is a fire in the building :
Close the door of the room to seal off the fire

Break glas s of
Pull lever .
Locate and use

.

.

.

A chemical fire

Break glass of
Pull lever
Locate and use

nearest alarm .

fire extinguisher .

in the lab requires that you :

nearest alarm

fire extinguisher

Line Editor Tutorial (ed) 5-73

I

I

The commands and eds responses to them are displayed in the next screen.
Again, the n command displays the line numbers .

5,8n<CR>
6 Clo s e the door of the room, to s e al off the f ire .
6 Bre ak glass of n e ar e s t alarm .
7 Pull lever .
8 Locate and u s e f ire extinguisher .
30n<CR>
30 A chemical f ire in the lab r e quir e s that you :
6,8t30<CR>
30,$n<CR>
30 A chemical f ire in the lab requir e s that you :
3 1 Bre ak glas s o f near e s t alarm
32 Pull l e ver
33 Locate and u s e f ire extinguisher
6,8n<CR>
6 Bre ak g las s of n e ar e s t alarm
7 Pull lever
8 Locate and u s e f ire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines is
placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line. The general
format is:

[address1 ,address1]j<CR>

5-74 User's Guide

The next example shows how to join several lines together. An easy way of
doing this is to display the lines you want to join using p or n .

1 ,2p<CR>
Now is the time to j o in
the t e am .
p<CR>
the t e am .
1 p<CR>
Now is the time to j oin
J<CR>
p<CR>
Now is the time to j oin the t e am .

There i s no space between the last word (j oin) and the first word of the next
line (the), and the last word (play) . You must place a space between them
by using the s command.

Writing Lines of Text to a Fi le

The w command writes text from the buffer into a file. The general format is:

[address1 ,address2]w [filename]< CR >

address1 ,address2

w

specifies the range of lines to be placed in another file. If you do not use
address1 or address2, the entire file is written into a new file .

specifies the write command.

filename
specifies the name of the new file that contains a copy of the block of
text.

Line Editor Tutorial (ed) 5-75

I

•

In the following example the body of a letter is saved in a file called memo, so
that it can be sent to other people:

1 ,$n<CR>
1 March 1 7 , 1986
2 D e ar Ke lly ,
3 Thera will be a me e ting in the
4 green room at 4 : 30 P . U . today .
6 Refreshments will be s erved .
3,6w memo<CR>
87

The w command places a copy of lines three through six into a new file called
memo. ed responds with the number of characters in the new file .

The w command overwrites pre-existing files; it erases the current file and
puts the new block of text in the file without warning you. If, in our example,
a file called memo had existed before we wrote our new file to that name, the
original file would have been erased.

In Additional Commands and Concepts, later in this chapter, you will learn how
to execute shell commands from ed. Then you can list the file names in the
directory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 16, the existing lines (3 through 6)
will be erased and the file will contain only the new lines (13 through 16) .

5-76 User's Guide

Reading i n the Contents of a Fi le

The r command can be used to append text from a file to the buffer. The
general format for the read command is:

[address1] r filename<CR>

address1

r

specifies that the text will be placed after the line addressl . If address1 is
not given, the file is added to the end of the buffer.

specifies the read command.

filename
specifies the name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file
being edited and new text being read into it.

1 ,$n<CR>
1 March 1 7 , 1986
2 D e ar Mi chae l ,
3 Are you fre e later today?
4 Hope to s e a you there .
3r memo<CR>
87
3,$n<CR>
3
4
6
6
7

Are you fre e later today?
Thera is a. me e ting in the
gre e n room a.t 4 : 30 P . M . today .
Refre shments will be s e rved .
Hope to s e e you there .

ed responds to the read command with the number of characters in the file
being added to the buffer (in the example, memo) .

Line Editor Tutorial (ed) 5-77

I

I

It is a good idea to display new or changed lines of text to be sure that they
are correct.

Table 5-8 summarizes the ed commands for moving text.

Table 5·8. Summary of ed Commands for Moving Text

Command Function

m moves lines of text.

t copies lines of text.

j joins contiguous lines.

w writes text into a new file .

r reads in text from another file .

Exercise 6
6-1 . There are two ways to copy lines of text in the buffer: by issuing the

copy command, or by using the write and read commands to first
write text to a file and then read the file into the buffer.

Writing to a file and then reading the file into the buffer is a longer
process. Can you think of an example where this method would be
more practical?

What commands can you use to copy lines 10 through 17 of file exer
into the file exer6 at line 7?

6-2. Lines 33 through 46 give an example that you want placed after line 3,
and not after line 32. What command performs this task?

6-3 . If you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

5-78 User's Guide

Additio nal Com mands and Concepts

There are four other commands and a special file that is useful during editing
sessions .

h,H accesses the help commands, which provide error messages.

displays characters that are not normally displayed.

f displays the current file name.

ed.hup

temporarily escapes ed to execute a shell command.

When a system interrupt occurs, the ed buffer is saved in a
special file named ed.hup. I

Help Commands

You may have noticed when you were editing a file that ed responds to some
of your commands with a ? . The ? is a diagnostic message issued by ed
when it has found an error. The help commands give you a short message to
explain the reason for the most recent diagnostic .

There are two help commands:

h displays a short error message that explains the most recent ? .

H places ed into help mode so that a short error message displays every
time the ? appears . {To cancel this request, type H.)

You know that i f you try to quit ed without writing the changes in the buffer
to a file, you will get a ? . Do this now. When the ? appears, type h:

Line Editor Tutorial (ed) 5-79

I
e xpe cting • w •

The ? also displays when you specify a new file name on the ed command
line . Give ed a new file name. When the ? appears, type h to find out what
the error message means .

ed newfile<CR>
? n a w :f i l. a

cannot o p e n input f i l a

This message means one of two things: either there i s no file called newfi le or
the file exists but ed is not allowed to read it.

As explained earlier, the H command responds to the ? then turns on the
help mode of ed, so that ed gives you a diagnostic explanation every time the
? displays . To tum off help mode, type H again. The next screen shows H
being used to tum on help mode. Sample error messages also display in
response to some common mistakes .

5-80 User's Guide

$ eel newflle<CR>
• newflle<CR>
?newf i l e
H<CR>
cannot open input file
/hello<CR>
?
i 1 1 e g a1 suff ix
1 ,22p<CR>
?
line out of range
a<CR>
I am appending this l ine to the buffer .
. <CR>
s/$ tea party<CR>
?
i l l e gal or mis s ing d e l imiter
,$s/$/ tea party<CR>
?
unknown command
H<CR>
q<CR>
?
h<CR>
warning : expe cting · w ·

The following are some common error messages you may encounter during
editing sessions:

il.l.egal. suffix
ed cannot find an occurrence of the search pattern hel lo because the
buffer is empty.

l.ine out of range
ed cannot print any lines because the buffer is empty or the line specified
is not in the buffer.

Line Editor Tutorial (ed) 5-81

I

I

A line of text is appended to the buffer to show you some error messages
associated with the s command:

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is
missing.

unknown command
address1 was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off and h is used to determine the meaning of the
last ? . While you are learning ed, you may want to leave help mode turned
on. If so, use the H command. However, once you become adept at using
ed, you will only need to see error messages occasionally. Then you can use
the h command.

Displayi ng Non pri nting Characters

If you are typing a tab character, the terminal normally displays up to eight
spaces (covering the space up to the next tab setting) . (Your tab setting may
be more or less than eight spaces; see Chapter 7, Shell Tutorial, on setting
stty.)

If you want to see how many tabs you have inserted into your text, use the I
(list) command. The general format for the I command is the same as for n
and p.

{address1 ,address2] 1<CR>

The components of this command line are:

address1 ,address2
specifies the range of lines to be displayed. If no address is given, the
current line displays . If only address1 is given, only that line displays .

is the command that displays the nonprinting characters with the text.

The I command denotes tabs with a > (greater than) character. To type
control characters, hold down the CTRL key and press the appropriate
alphabetic key. The key that sounds the bell is Ag (CTRL-g) . It displays
as \07, which is the octal representation (the computer's code) for Ag .

5-82 User's Guide

Type in two lines of text that contain a <''g> and a tab. Then use the I
command to display the lines of text on your terminal.

a<CR>
Add a <"g> (CTRL-g) to this line.<CR>
Add a <tab> (tab) to this line.<CR>
.<CR>
1,2l<CR>
Add a \07 (CTRL-g) to this line.<CR>
Add a > (tab) to this line.<CR>

Did the bell sound when you typed <"g>?

Checki ng the Cu rrent Fi le Name

In a long editing session, you may forget the file name. The f command can
tell you which file is currently in the buffer. Or, you may want to preserve
the original file that you entered into the editing buffer and write the contents
of the buffer to a new file. In a long editing session, you may forget and
accidentally overwrite the original file with the customary w and q command
sequence. You can prevent this by telling the editor to associate the contents
of the buffer with a new file name while you are in the middle of the editing
session. This is done with the f command and a new file name.

The format for displaying the current file name is f alone on a line:

f<CR>

Line Editor Tutorial (ed) 5-83

I

I

To see how f works, enter ed with a file . For example, if your file is called
oldfi le, ed will respond as shown in the followirtg screen:

To associate the contents of the editing buffer with a new file name use this
general format:

f newfi le< CR>

If no file name is specified with the write command, ed remembers the file
name given at the beginning of the editing session and writes to that file . If
you do not want to overwrite the original file, you must either use a new file
name with the write command, or change the current file name using the f
command followed by the new file name. Because you can use f at any point
in an editing session, you can change the file name immediately. You can
then continue with the editing session without worrying about overwriting
the original file .

The next screen shows the commands for entering the editor with oldfi le,
then changing its name to newfi le. A line of text is added to the buffer, then
the write and quit commands are issued.

5-84 User's Guide

ed oldfile<CR>
323
f<CR>
oldf i l e
f newfile<CR>
newf i l e
a<CR>
Add a line of text. <CR>
.<CR>
w<CR>
343
q<CR>

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfi le. newfi le should contain a copy of the
contents of oldfile plus the new line of text.

Executing a Shel l Command

How can you make sure you are not overwriting an existing file when you
write the contents of the editor to a new file name? You need to return to the
shell to list your files. The I allows you to temporarily return to the shell,
execute a shell command, and then return to the current line of the editor.

The general format for the escape sequence is:

!shell command line<CR>
shell response to the command line
I

Line Editor Tutorial (ed) 5-85

I

I

When you type the I as the first character on a line, the shell command must
follow on that same line. The programs response to your command appears
as the command is running. When the command has finished executing, the I
appears alone on a line . This means that that you are back in the editor at the
current line .

For example, if you want to return to the shell to find out the correct date,
type I and the shell command date.

p<CR>
Thi s i s the curr ant line
I date<CR>
Tue Apr 1 14 : 24 : 22 EST 1986

p<CR>
Thi s i s the current line .

The screen first displays the current line . Then the command is given to
temporarily leave the editor and display the date . After the date displays, you
are returned to the current line of the editor.

If you want to execute more than one command on the shell command line,
see the discussion on ; in the section called Special Characters in Chapter 7.

Recovering from System Interrupts

What happens if you are creating text in ed and there is an interrupt to the
system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the operating system tries to save the
contents of the editing buffer in a special file named ed.hup. Later, you can
retrieve your text from this file in one of two ways. First, you can use a shell
command to move ed.hup to another file name, e .g . , the name the file had
while you were editing it (before the interrupt) . Second, you can enter ed and
use the f command to rename the contents of the buffer.

5-86 User's Guide

An example of the second method is shown in the following screen:

ed ed.hup<CR>
928
f myfile<CR>
myf i l e

If you use the second method to recover the contents o f the buffer, be sure to
remove the ed.hup file afterward.

Concl usion

You are now familiar with many useful commands in ed. The commands that
were not discussed in this tutorial, such as G, P, Q and the use of () and { },
are discussed on the ed(l) page of the User's Reference Manual. You can
experiment with these commands and try them to see what tasks they
perform.

Line Editor Tutorial (ed) 5-87

I

I

Table 5-9 summarizes the commands covered in this section.

Table 5-9. Summary of Additional Commands and Concepts

Command

h

H

I

f

f newfile

!cmd

ed.hup

5-88 User's Guide

Function

displays a short error message for the preceding
diagnostic ? .

turns on help mode. An error message will be
given with each diagnostic ? . The second H turns
off help mode.

displays nonprinting characters in the text.

displays the current file name .

changes the current file name associated with the
editing buffer to newfile.

temporarily escapes to the shell to execute the
specified shell command cmd.

The editing buffer is saved in ed.hup if the
terminal is hung up before a write command.

Exercise 7

7-1 . Create a new file called newfi le1 . Access ed and change the files
name to current1 . Then create some text and write and quit ed. Run
the Is command to verify that there is not a file called newfi le1 in
your directory. If you do the shell command Is, you will see the
directory does not contain a file called newfi le1 .

7-2. Create a file named fi le1 . Append some lines of text to the file.
Leave append mode but do not write the file. Tum off your terminal .
Th
h

en
h
tum

11
o

1
n yo

h
ur terminal a

f
�
l
d log

11
in

d
aga

d
in
h

. Is
1
su

P
e
l
the ls

d
co

h
mm�nd

d
in I t e s e . s t ere a new 1 e ca e e . up . ace e . up m e .

How can you change the current file name to fi le1 ? Display the
contents of the file. Are the lines the same lines you created before
you turned off your terminal?

7-3. While you are in ed, temporarily escape to the shell and send a mail
message to yourself.

Line Editor Tutorial (ed) 5-89

I

Answers to Exercises

Exercise 1
1-1 .

1-2.

$ ed junk<CR>
? j unk
a<CR>
Hello world.<CR>
.<CR>
w<CR>
1 2
q<CR>
$

$ ed junk<CR>
1 2
1 ,$p<CR>
Hello world.<CR>
q<CR>
$

The system did not respond with the warning question mark because you did
not make any changes to the buffer.

5-90 User's Guide

1-3 .

$ e d junk<CR>
12
a<CR>
Wendy's horse came through the window.<CR>
. < CR>
1 ,$p<CR>
H e l lo world .
Wendy · a hors e came through the window .
q<CR>
?
w stuff<CR>
60
q<CR>
$

Line Editor Tutorial (ed) 5-91

I

I

Exercise 2

2-1 .

2-2.

$ ed towns<CR>
? towns
a<CR>
My kind of town is<CR>
Chicago<CR>
Uke being no where at all in<CR>
Toledo<CR>
I lost those liHie town blues in<CR>
New York<CR>
I lost my heart in<CR>
San Francisco<CR>
I lost $$ in<CR>
Las Vegas<CR>
.<CR>
w<CR>
164

3<CR>
Like be ing no where at all in

5-92 User's Guide

2-3 .

2-4.

-2,+3p<CR>
My kind o! town is
Chi cago
Like be ing no where at all in
Tol edo
I lost tho s e l ittle town blue s in
New York

.= <CR>
6
6<CR>
New York

Line Editor Tutorial (ed) 5-93

I

•

2-5.

2-6.

S < CR>
Las Vegas

?town<CR>
I l o s t tho s e little town blu e s in
? < CR>
My kind of town is

5-94 User's Guide

2-7.

g/ln<CR>
Wy kind of town ia
Like be ing no where
I loat thos e little
I loat my h e art in
I loat $ $ in

v/ln<CR>
Chicago
To1ec1o
New York
San Fran c i s c o
La.a Vega.a

a.t a.ll in
town blu e s in

Line Editor Tutorial (ed) 5-95

I

I

Exercise 3

3-1 .

$ ed ex3<CR>
? ex3
I<CR>
?
q<CR>

The ? after the i means there is an error in the command. There is no current
line before which text can be inserted.

5-96 User's Guide

3-2.

S ed towns<CR>
164
.n<CR>
10 Las Vegas
31<CR>
llllnols<CR>
.<CR>
.I<CR>
or<CR>
Napervllle<CR>
.<CR>
$1<CR>
hotels ln<CR>
1 ,$n<CR>

1 my kind of town is
2 Chicago
3 or
4 Napervi l l e
6 I l l inoi s
6 Like be ing n o where a t a l l i n
7 To ledo
8 I l o s t tho s e l ittle town blu e s in
9 New York

10 I l o s t my h e art in
1 1 San Francisco
1 2 I lost $ $ in
1 3 hot e l s i n
14 Las Vegas

Line Editor Tutorial (ed) 5-97

I

•

3-3 .

3-4.

1 ,5n<CR>
1 My kind of town ia
2 Chi cago
3 or
4 Napervil l e
6 I l l ino i s
2,5c<CR>
London<CR>
.<CR>
1 ,3n<CR>
1 My kind of town ia
2 London
3 Like ba ing no where at all

. <CR>
Like ba ing no where at all
/Toi<CR>
Tol e do
c<CR>
Peorla<CR>
.<CR>
.<CR>
P e oria

5-98 User's Guide

3-5 .

. <CR>
/New Y/c<CR>
Iron Clty<CR>
.<CR>
.<CR>
Iron City

Your search string need not be the entire word or line . It only needs to be
unique.

Line Editor Tutorial (ed) 5-99

I

•

Exercise 4
4-1 .

vniHie town/altown/clty<CR>
Yy kind of city i s
London
Like be ing no where at all in
P e oria
Iron City
I lost my h e art in
San Francisco
I lost $ $ in
hote l s in
Las Vegas

The following line was not printed because it w a t not addressed by the v
command.

4-2 .

I lost those little town blues in

• <CR>
Las Vegas
a?Las Vegas?Toledo<CR>
Tol edo

5-100 User's Guide

4-3.

I f ound $$ in

4-4.

/no?s??NO<CR>

/no/s//NO<CR>
Like be ing NO where at all in

You cannot mix delimiters such as I and ? in a command line .

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

Line Editor Tutorial (ed) 5-101

I

I

Exercise 5

5-1 .

$ ed file1 <CR>
? :f i l e l
a<CR>
A Computer Science<CR>
D Jogging<CR>
C Tennis<CR>
.<CR>
1 ,$s/("AB]/AI<CR>
1 ,$p<CR>
A Computer Science
A Jogg ing
A Tenn i s
u<CR>

1 ,$s(("AB]/A<CR>
1 ,$p<CR>
A Computer Science
A Jogg ing
A Tennis

5-102 User's Guide

5-2.

S-3.

2i<CR>
These are not really my grades.<CR>
1 ,$p<CR>
A Computer Science
The s e are not re ally my grade s .
A Tenn i s
A Jogg ing
r["A]<CR>
Th e s e are not re ally my grad e s
?"[T]<CR>
The s e are not re ally my grad e s

1 ,$p<CR>
I love money
I need money
The IRS wants my money
grllsll.*m /It's my m<CR>
I t ' s my money
I t ' s my money

I

Line Editor Tutorial (ed) 5-103

I 5-4.

/s/money/gold<CR>
I t • • my gold
2,$s/1".4<CR>

my gold

5-104 User's Guide

5-5.

a<CR>
• • \ & % A ·<CR>
.<CR>
af*/a<CR>
a . \ & 1 - •
af*/b<CR>
a . \ .t l - b

Because there were no preceding characters, * substituted for itself.

Line Editor Tutorial (ed) 5-105

I

a/ Vc<CR>
.. c \ a: " - b
a/ \Vd<CR>
.. c d a: " - b
a/&/e<CR>
.. c d • " - b

I 81".4/f<CR>
.. c d • f - b

The & and % are only special characters in the replacement text.

5-106 User's Guide

Exercise 6

6-1 . Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in
the file at those points in the text.

If you want to copy the lines into another file you must write them to
a file, then read that file into the buffer containing the other file.

ed exer<CR>
726
1 0,1 7 w temp<CR>
2 1 0
q<CR>
ed exer6<CR>
306
7r temp<CR>
2 1 0

The file temp can be called any file name.

Line Editor Tutorial (ed) 5-107

I

6-2.

I 6-3 .

33,46m3<CR>

. = <CR>
10
1 3p<CR>
Thi s is l ine 1 3 .
j<CR>
.p<CR>
Thi s i s line 1 3 . and line 14 .

Remember that . = gives you the current line.

5-108 User's Guide

Exercise 7

7-1 .

7-2.

$ ed newfile1 <CR>
? nawf i l a l
f current1 <CR>
currantl
a<CR>
This Is a line of text<CR>
Will It go into newfile1 <CR>
or Into current1 <CR>
.<CR>
w<CR>
66
q<CR>
$ ls<CR>
bin
currant1

ed file1 <CR>
? f i l a l
a<CR>
I am adding text to this file.<CR>
Wil l It show up In ed.hup?<CR>
.<CR>

Line Editor Tutorial (ed) 5-109

I

I

Turn off your terminal.

Log in again.

7-3.

ed ed.hup<CR>
68
f file1 <CR>
f i l e 1
1 ,$p<CR>
I am adding text to thi s f i l e .
Will it show up in ed . hup?

$ ed fi le1 <CR>
68
I mail mylogin<CR>
You will get mail when<CR>
you are done editing i<CR>
.<CR>
I

5-110 User's Guide

6 Screen Editor Tutorial (vi)

Introduction 6-1

Getti ng Started 6-3

Setting the Terminal Configuration 6-4

Changing Your Environment 6-5
Setting the Automatic REfURN 6-6

Creating a Fi le 6-7
Creating Text: Append Mode 6-8
Leaving Append Mode 6-9

Editi ng Text: Com mand Mode 6-9

Moving the Cursor 6-10

Deleting Text 6-14

Adding Text 6-16

Qu itti ng vi 6-17

Exercise 1 6-20

Moving the Cursor Around the Screen 6-21
Positioning the Cursor on a Character 6-21

Moving the Cursor to the Beginning or End of a

Line 6-22

Searching for a Character on a Line 6-23

Screen Editor Tutorial (vi)

Screen Editor Tutorial (vi)

ii User's Guide

Moving the Cursor Up or Down a Line
The Minus Sign Motion Command

The Plus Sign Motion Command
Moving the Cursor to a Word
Moving the Cursor by Sentences
Moving the Cursor by Paragraphs
Moving the Cursor on the Screen

Scro l l i ng the Text
The Control-£ Command
The Control-d Command
The Control-b Command
The Control-u Command
Going to a Specific Line
Obtaining the Current Line Number
Searching for a Pattern
Exercise 2

Creati ng Text
Appending Text
Inserting Text
Opening a Line for Text
Exercise 3

Deleti ng Text
Undoing Entered Text in Text Input Mode
Undoing the Last Command
The Delete Commands

Deleting Characters
Deleting Words
Deleting Paragraphs

6-24

6-25

6-25

6-25

6-29

6-31

6-32

6-37

6-37

6-38

6-39

6-40

6-41

6-41

6-43

6-49

6-50

6-50

6-50

6-52

6-55

6-55

6-56

6-57

6-58

6-58

6-58

6-60

Screen Editor Tutorial (vi)

Deleting Lines 6-60

Deleting Text After the Cursor 6-60

Exercise 4 6-62

Modifying Text 6-63

Replacing Text 6-63

Substituting Text 6-64

a�� � �
Cutting and Pasting Text Electronically 6-70

Moving Text 6-70

Fixing Transposed Letters 6-70

Copying Text 6-71

Copying or Moving Text Using Registers 6-73

Exercise 5 6-75

Special Com mands 6-75

Repeating the Last Command 6-76

Joining Two Lines 6-76

Gearing and Redrawing the Window 6-77

aanging Lowercase to Uppercase and Vice Versa 6-77

Using Line Editing Commands in vi 6-78

Temporarily Returning to the Shell 6-78

Writing Text to a New File : :w Command 6-79

Finding the Line Number 6-80

Deleting the Rest of the Buffer 6-81

Adding a File to the Buffer 6-81

Making Global Changes 6-82

Com mands for Qu itt ing vi 6-84

Screen Editor Tutorial (vi) iii

Screen Editor Tutorial (vi)

iv User's Guide

Special Options for vi
Recovering a File Lost by an Interrupt
Editing Multiple Files
Viewing a File
Exercise 6

Answers to Exercises
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5
Exercise 6

6-86

6-87

6-87

6-88

6-88

6-89

6-89

6-91

6-92

6-94

6-95

6-96

Introd u ction

This chapter i s a tutorial on the screen editor, vi (short for visual editor) . The
vi editor is a powerful and sophisticated tool for creating and editing files . It
is designed for use with a video display terminal which is used as a window
through which you can view the text of a file . A few simple commands allow
you to make changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to move
the cursor to any point on the screen or in the file (by specifying places such
as the beginning or end of a word, line, sentence, paragraph, or file) and
create, change, or delete text from that point. You can also use some line
editor commands, such as the powerful global commands that allow you to
change multiple occurrences of the same character string by issuing one
command. To move through the file, you can scroll the text forward or I backward, revealing the lines below or above the current window, as shown
in Figure 6-1 .

NOTE

Not all terminals have text scrolling capability;
whether or not you can take advantage of vis
scrolling feature depends on the type of
terminal you have.

Screen Editor Tutorial (vi) 6-1

I

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6-1 . Displaying a File with a vi Window

6-2 User's Guide

There are more than 100 commands within vi . This chapter covers the basic
commands that will enable you to use vi simply but effectively. Specifically,
it explains how to do the following tasks:

• Set up your terminal so that vi is accessible.

• Enter vi, create text, delete mistakes, write the text to a file, and quit.

• Move text within a file .

• Electronically cut and paste text.

• Use special commands and shortcuts .

• Temporarily escape to the shell to execute shell commands.

• Use line editing commands available within vi .

• Edit several files in the same session.

• Recover a file lost by an interruption to an editing session.

• Change your shell environment to set your terminal configuration and an
automatic carriage return.

As you read this tutorial, keep in mind the notations and conventions
described in Chapter 1, What is the SYSTEM V/88 System? Note that the
arrows in the screen illustrations are used to show the position of the cursor.

The set of commands discussed in each section are summarized at the end of
the section and are listed by topic in the summary of vi commands in
Appendix D. At the end of some sections, exercises are given so you can
experiment. Their answers are collected at the end of this chapter. The best
way to learn vi is by doing the examples and exercises as you read the
tutorial . Log in on the operating system when you are ready to read this
chapter.

Getti ng Started

The operating system is flexible; it can be accessed from many kinds of
terminals . However, because it is internally structured to be able to operate
in so many ways, it needs to know what kind of hardware is being used.

Screen Editor Tutorial (vi) 6-3

I

I

In addition, the operating system offers various optional features for using
your terminal that you may or may not want to incorporate into your
computing session routine . Your choice of these options, together with your
hardware specifications, comprise your login environment. Once you have
set up your login e'nvironment, the shell implements these specifications and
options automatically every time you log in.

This section describes two parts of the login environment: setting the terminal
configuration, which is essential for using vi properly, and setting the wrap
margin, or automatic (carriage) RETURN.

Setti ng the Termi nal Config u ration

Before you enter vi, you must set your terminal configuration. This simply
means that you tell the operating system what type of terminal you are using.
This is necessary because the software for the vi editor is executed differently
on different terminals .

Each type of terminal has several code names that are recognized by the
operating system. Appendix F, Acceptable Tenninal Names section, tells you
how to find a recognized name for your terminal. Keep in mind that many
computer installations add terminal types to the list of terminals supported by
default in your operating system. It is a good idea to check with your local
System Administrator for the most up-to-date list of available terminal types.

To see what your current terminal configuration is, type

echo TERM

To reset your terminal configuration, type

TER M = tenninal_name< CR>
export TERM<CR>
TermSetup in it< CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all operating system
programs whose execution depends on the type of terminal being used.

The TermSetup command on the third line initializes (sets up) the software in
your terminal so that it functions properly with the operating system. It is
essential to run the TermSetup command when you are setting your terminal
configuration because terminal functions, e .g . , tab settings, will not work
properly unless you do. This command executes the tput(l) commands
necessary for the terminal.

6-4 User's Guide

For example, if your terminal is a vt100, this is how your commands appear
on the screen:

$ TERM =vt1 00<CR>
$ export TERM<CR>
$ TermSetup<CR>

Do not experiment by entering names for terminal types other than your
terminal. This might confuse the operating system, and you may have to log
off, hang up, or get help from your System Administrator to restore your
login environment.

Changing You r Envi ron ment

If you are going to use vi regularly, you should change your login
environment permanently so you do not have to configure your terminal each
time you log in. Your login environment is controlled by a file in your home
directory called .profi le. (This file, pronounced dot profile, is created
automatically by the sysadm adduser command, by copying /etc/stdprofi le.
For details, see Chapter 7 and Appendix F.)

If you specify the setting for your terminal configuration in your .profi le, your
terminal is configured automatically every time you log in. You can do this
by adding the three lines shown in the last screen (the TERM assignment,
export command, and TermSetup command) to your .profi le. (For detailed
instructions, see Chapter 7 and Appendix F .) If your .profi le is modeled after,
or copied from, /etc/stdprofi le, you need only set TERM= terminal name. Even
this is not necessary if the file local/bin/TermAssume is set up correctly.

Screen Editor Tutorial (vi) 6-5

I

I

Sett ing the Automatic RETU RN

NOTE

To set an automatic RETURN, you must know
how to create a file. If you are familiar with
another text editor, such as ed, follow the
instructions in this section. If you do not
know how to use an editor but would like to
have an automatic RETURN setting, skip this
section for now and return to it when you
have learned the basic skills taught in this
chapter.

If you want the RETURN key to be entered automatically, create a file called
.exrc in your home directory. You can use the .exrc file to contain options
that control the vi editing environment.

To create a .exrc file, enter an editor, giving it that file name. Then type in
one line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is:

wm = n<CR>

n represents the number of characters from the righthand side of the screen
where you want an automatic carriage return to occur. For example, you
want a carriage return at 20 characters from the righthand side of the screen:

wm =20< CR>

Finally, write the buffer contents to the file and quit the editor (see Text
Editing Buffers in Chapter 4) . The next time you log in, this file will give you
an automatic RETURN.

To check your settings for the terminal and wrapmargin when you are in vi,
enter the command:

:set<CR>

vi reports the terminal type and the wrapmargin, as well as any other options
you may have specified. You can also use the :set command to create or
change the wrapmargin option. Try experimenting with it.

6-6 User's Guide

Creati ng a Fi le

First, enter the editor: type vi and the name of the file you want to create or
edit:

vi filemime<CR>

For example, you want to create a file called stuff . When you type the vi
command with the file name stuff, vi clears the screen and displays a window
in which you can enter and edit text:

• s tuf f " [New f i l e]

The _ (underscore) on the top line represents the cursor waiting for you to
enter a command there . (On video display terminals, the cursor may be a
blinking underscore or a reverse color block.) The other lines are marked with
a - (tilde), the symbol for a non-existent line.

Screen Editor Tutorial (vi) 6-7

I

I

If, before entering vi, you have forgotten to set your terminal configuration or
have set it to the wrong type of terminal, you will see an error message
instead:

$ vi stuff<CR>
terminal_name: unknown �•rminal �ype

[Us ing open mode]
• a �uff " [New f i l e]

You cannot set the terminal configuration while you are in the editor; you
must be in the shell. Leave the editor by typing:

: q< CR>

Then set the correct terminal configuration.

Creating Text : Append Mode

If you have successfully entered vi, you are in command mode and vi is
waiting for your commands. How do you create text?

1 . Press the <A> key (<a>) to enter the append mode o f v i . (Do not
press the RETURN key.) You can now add text to the file . (An A is not
printed on the screen.)

2 . Type in some text.

As you approach the right margin, a bell sounds to remind you to press
the RETURN key. (Terminals that do not have a bell may warn you in
another way, e .g . , by flashing the screen.)

3 . To begin a new line, press the RETURN key.

6-8 User's Guide

If you have specified the wrapmargin option in your .exrc file, you get a
new line whenever you get an automatic RETURN. (See Setting the
Automatic RETURN.)

Leaving Append Mode

When you finish creating text, press the ESCAPE key to leave append mode
and return to command mode . You can then edit any text you have created
or write the text in the buffer to a file .

<a> Create some text<CR>
in the screen edltor<CR>
and return to<CR>
command mode.< ESC>

If you press the ESCAPE key and a bell sounds, you are already in command
mode . The text in the file is not affected by this, even if you press the
ESCAPE key several times.

Edit i ng Text : Com mand Mode

To edit an existing file you must be able to add, change, and delete text .
However, before you can perform those tasks, you must be able to move to
the part of the file you want to edit. vi offers an array of commands for
moving from page to page, between lines, and between specified points
inside a line . These commands, along with commands for deleting and
adding text, are introduced in this section.

Screen Editor Tutorial (vi) 6-9

I

I

Moving the Cursor

To edit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is done with four keys that are
grouped together on the keyboard:

< h> moves the cursor one character to the left.

<j> moves the cursor down one line .

< k> moves the cursor up one line .

< I> moves the cursor one character to the right.

The <j> and <k> commands maintain the column position of the cursor.
For example, if the cursor is on the seventh character from the left, when you
type <j> or <k>, it goes to the seventh character on the new line . If there is
no seventh character on the new line, the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys with arrows
showing the direction in which each key moves the cursor.

NOTE

Some terminals have special cursor control
keys that are marked with arrows. Use them
in the same way you use the < h>, <j>,
<k>, and <I> commands.

Watch the cursor on the screen while you press the keys <h>, <j>, <k>,
and <1>. Instead of pressing a motion command key a number of times to
move the cursor a corresponding number of spaces or lines, you can precede
the command with the desired number. For example, to move two spaces to
the right, you can press < I> twice or enter <21> . To move up four lines,
press <k> four times or enter <4k> . If you cannot go any farther in the
direction you have requested, vi will sound a bell.

Now experiment with the j and k motion commands. First, move the cursor
up seven lines:

<7k>

6-10 User's Guide

The cursor will move up seven lines above the current line . If there are less
than seven lines above the current line, a bell sounds and the cursor remains
on the current line.

Now move the cursor down 35 lines:

<35j>

vi will clear and redraw the screen. The cursor will be on the 35th line below
the current line, appearing in the middle of the new window. If there are less
than 35 lines below the current line, the bell sounds and the cursor remains
on the current line . Watch what happens when you type the next command:

<35k>

Like most vi commands, the < h> , <j>, <k>, and <I> motion commands
are silent; they do not appear on the screen as you enter them. The only time
you should see characters on the screen is when you are in append mode and I are adding text to your file. If the motion command letters appear on the
screen, you are still in append mode. Press the ESCAPE key to return to
command mode and try the commands again.

In addition to the motion command keys <h> and < I>, the SPACE BAR and
the BACKSPACE key can be used to move the cursor right or left to a character
on the current line:

<SPACE BAR>

<nSPACE BAR>

<BACKSPACE>

<nBACKSPACE>

move the cursor one character to the right

move the cursor n characters to the right

move the cursor one character to the left

move the cursor n characters to the left

Try typing in a number before the command key. Notice that the cursor
moves the specified number of characters to the left or right. In the following
example, the cursor movement is shown by the arrows.

To move the cursor quickly to the right or left, prefix a number to the
command. For example, suppose you want to create four columns in your
screen. After you finish typing the headings for the first three columns, you
notice a typing mistake.

Screen Editor Tutorial (vi) 6-11

•

Column 2 column
t

<ESC>

You want to correct your mistake before continuing. Exit insert mode and
return to command mode by pressing the ESCAPE key; the cursor moves to
the n . Then use the <h> command to move back five spaces.

Column 1 Column 2

Column 1 Column 2

column
t

<Sh>

column
t
<x> <I>C<ESC>

Erase the c by typing <x> . Then change to insert mode (< i>), enter a C,
followed by the ESCAPE key. Use the <I> motion command to return to your
earlier position.

6-12 User's Guide

Column 1 Column 2

Column 1 Column 2

Column
t

<51>

Column
t

By now you may have discovered that you can move the cursor back and forth
on a line by using the space bar and the BACKSPACE key.

<SPACE BAR>

<nSPACE BAR>

<BACKSPACE>

< nBACKSPACE>

move the cursor one character to the right

move the cursor n characters to the right

move the cursor one character to the left

move the cursor n characters to the left

Again, you can specify a multiple space movement by typing a number before
pressing the SPACE BAR or BACKSPACE key. The cursor moves the number of
characters you request to the left or right.

Screen Editor Tutorial (vi) 6-13

I

I

Deleting Text

If you want to delete a character, move the cursor to that character and press
the <x> . Watch the screen as you do so; the character disappears and the
line readjusts to the change. To erase three characters in a row, press <x>
three times. In the following example, the arrows under the letters show the
positions of the cursor:

<x>

<nx>

delete one character

delete n characters, where n is the number of characters you
want to delete

Hello wurld !
t

<x>

Hello wrld !

Now try preceding <x> with the number of characters you want to delete .
For example, delete the second occurrence of the word deep from the text
shown in the following screen. Put the cursor on the first letter of the string
you want to delete, and delete five characters (for the four letters of deep
plus an extra space) .

6-14 User's Guide

Tomorrow �h• Loch N • • • mon•�•r
•hall • li�her f or�h from
�h• d e ep dark d e e p dep�h• of �h• lake .

t
<5x>

Tomorrow �he Loch N • • • mon•�•r
•hall • li�her f or�h from
the de ep dark depth• of �h• lake .

t
<5x>

Notice that vi adjusts the text so that no gap appears in place of the deleted
string. If, as in this case, the string you want to delete happens to be a word,
you can also use the vi command for deleting a word. This command is
described later in the section Word Positioning.

Screen Editor Tutorial (vi) 6-15

I

•

Add ing Text

There are two basic commands for adding text: the insert (< i>) and append
(<a>) commands . To add text with the insert command at a point in your
file that is visible on the screen, move the cursor to that point by using < h>,
<j>, < k>, and < 1 > . Then press <i> and start entering text. As you type,
the new text appears on the screen to the left of the character on which you
put the cursor. That character and all characters to the right of the cursor
move right to make room for your new text. The vi editor continues to accept
the characters you type until you press the ESCAPE key. If necessary, the
original characters wrap around onto the next line .

H e l l o 1frld !
t
< l>o

H e l lo World !
t
< ESC>

You can use the append command in the same way. The only difference is
that the new text appears to the right of the character on which you put the
cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

6-16 User's Guide

Qu itti ng vi

When you have finished your text, you will want to write the buffer contents
to a file and return to the shell. To do this, hold down the SHIFT key and
press <Z> twice (<ZZ>). The editor remembers the file name you specified
with the vi command at the beginning of the editing session, and moves the
buffer text to the file of that name. A notice at the bottom of the screen gives
the file name and the number of lines and characters in the file . Then the
shell gives you a prompt.

<a> This is a test flle.<CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write this file,<CR>
and return to the sheii.< ESC><ZZ>

• stuff • [New f i l e] 7 line a , 1 6 1 characters
$

Screen Editor Tutorial (vi) 6-17

I

•

You can also use the :w and :q commands of the line editor for writing and
quitting a file . (Line editor commands begin with a colon and appear on the
bottom line of the screen.) The :w command writes the buffer to a file . The
:q command leaves the editor and returns you to the shell. You can type
these commands separately or combine them into the single command :wq . It
is easier to combine them.

<a> This Is a test file.<CR>
I am adding text to<CR>
a temporary buffer and<CR>
now It Is perfect.<CR>
I want to write this file,<CR>
and return to the sheii.<ESC>

: wq<CR>

6-18 User's Guide

Table 6-1 summarizes the basic commands you need to enter and use vi .

Table 6-1 . Summary of Commands for the vi Editor

Command

TER M = terminal_name
export TERM

Term Setup

vi filename

<a>

< h>

<j>

< k>

< I>

<x>

<CR>

< ESC>

:w

:q

:wq

<ZZ.>

Function

set the terminal configuration

initialize the terminal as defined by
terminal_name

enter vi editor to edit the file called
filename

add text after the cursor

move one character to the left

move down one line

move up one line

move one character to the right

delete a character

carriage return

leave append mode, and return to vi
command mode

write to a file

quit vi

write to a file and quit vi

write to a file and quit vi

Screen Editor Tutorial (vi) 6-19

•

I

Exercise 1
Answers to the exercises are given at the end of this chapter. However, keep
in mind that there is often more than one way to perform a task in vi . If your
method works, it is correct.

As you give commands in the following exercises, watch the screen to see
how it changes or how the cursor moves.

1-1 . If you have not logged in yet, do so now. Then set your terminal
configuration.

1-2. Enter vi and append the following five lines of text to a new file called
exer1 :

1-3.

1-4.

1-5 .

1-6.

This is an exercise!
Up, down,
left, right,
bui ld your term inal 's
muscles bit by bit

Move the cursor to the first line of the file and the seventh character
from the right. Notice that as you move up the file, the cursor moves
in to the last letter of the file, but it does not move out to the last
letter of the next line.

Delete the seventh and eighth characters from the right.

Move the cursor to the last character on the last line of the text.

Append the following new line of text:

and byte by byte

1-7. Write the buffer to a file and quit vi .

1-8. Re-enter vi and append two more lines of text to the file exer1 .
What does the notice at the bottom of the screen say once you have
reentered vi to edit exer1 ?

6-20 User's Guide

Moving the Cu rso r Aro u n d the Screen

Until now you have been moving the cursor with the <h>, <j>, < k>, < 1>,
BACKSPACE key, and the SPACE BAR. There are several other commands that
can help you move the cursor quickly around the screen. This section
explains how to position the cursor in the following ways:

• by characters on a line

• by lines

• by text objects

- words

- sentences

- paragraphs

• in the window

There are also commands that position the cursor within parts of the vi
editing buffer that are not visible on the screen. These commands will be
discussed in the next section, Scrolling the Text.

To follow this section of the tutorial, you should enter vi with a file that
contains at least 40 lines. If you do not have a file of that length, create one
now. Remember, to execute the commands described here, you must be in
command mode of vi . Press the ESCAPE key to make sure that you are in
command mode instead of append mode.

Position i ng the C ursor on a Character

There are three ways to position the cursor on a character in a line .

• by moving the cursor right or left to a character

• by specifying the character at either end of the line

• by searching for a character on a line

The first method was discussed earlier in this chapter under Moving the Cursor
Right or Left. The following sections describe the other two methods .

Screen Editor Tutorial (vi) 6-21

I

I

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of three
commands that put the cursor on the first or last character of a line .

<$> puts the cursor on the last character of a line

<0> (zero) puts the cursor on the first character of a line

<"> (circumflex) puts the cursor on the first nonblank character of a
line

The following examples show the movement of the cursor produced by each
of these three commands:

Go to the end of the line !
t
<$>

Go to the end of the line !
t

Go to the b e g inning of the line !
t

<0>.
Go to the beginning of the l ine !
t

6-22 User's Guide

Go to the f ir s t character
of the line

that i s not blank !

�">
Go to the f irst character
of the line

that i s not blank !

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific
character on the current line. If the character is not found on the current line,
a bell sounds and the cursor does not move. (There is also a command that
searches a file for patterns. This will be discussed in the next section.) There
are six commands you can use to search within a line: <f>, < F>, <t>,
<T>, < ;>, and <,> . You must specify a character after all of them except
the < ;> and <,> commands.

<fx> Move the cursor to the right to the specified character x.

< Fx> Move the cursor to the left to the specified character x.

Screen Editor Tutorial (vi) 6-23

I

I

<tx> Move the cursor right to the character just before the specified
character x.

<Tx> Move the cursor left to the character just after the specified
character x.

< ;; > Continue the search specified in the last command, in the same
direction. The ; remembers the character and seeks out the next
occurrence of that character on the current line .

<,> Continue the search specified in the last command, in the
opposite direction. The , remembers the character and seeks out
the previous occurrence of that character on the current line .

For example, in the following screen, vi searches to the right for the first
occurrence of the letter A on the current line:

Go forward to the l e tter A on thi s line .
t

<fA>
Go forward to the l e tter A on th i s l i n e .

t

Try the search commands on one of your files .

Moving the Cursor Up or Down a Line

Besides the <j> and <k> commands that you have already used, the < + >,
<->, and <CR> commands can be used to move the cursor to other lines.

6-24 User's Guide

The M inus Sign Motion Command

The <-> command moves the cursor up a line, positioning it at the first
nonblank character on the line. To move more than one line at a time, specify
the number of lines you want to move before the <-> command. For
example, to move the cursor up 13 lines, type:

< 1 3 - >

The cursor moves up 13 lines. If some of those lines are above the current
window, the window scrolls up to reveal them. This is a rapid way to move
quickly up a file .

Now try to move up 100 lines, type:

< 1 00 - >
What happened to the window? If there are less then 100 lines above the • current line a bell sounds, telling you that you have made a mistake; the ..
cursor remains on the current line .

The Plus Sign Motion Command

The plus sign command (< + >) or the <CR> command moves the cursor
down a line . Specify the number of lines you want to move before the < + >
command. For example, to move the cursor down nine lines, type:

<9+ >

The cursor will move down nine lines. If some of those lines are below the
current screen, the window scrolls down to reveal them.

Now try to do the same thing by pressing the RETURN key. Were the results
the same as when you pressed the + key?

Movi ng the Cu rsor to a Word

The vi editor considers a word to be a string of characters that may include
letters, numbers, or underscores. There are six word positioning commands:
<w>, , <e>, <W>, < B> , and < E > . The lowercase commands (<w>,
, and <e>) treat any character other than a letter, digit, or underscore as
a delimiter, signifying the beginning or end of a word. Punctuation before or
after a blank is considered a word. The beginning or end of a line is also a
delimiter.

Screen Editor Tutorial (vi) 6-25

I

The uppercase commands (<W>, < B>, and < E>) treat punctuation as part
of the word; words are delimited by blanks and newlines only.

The following is a summary of the word positioning commands.

<w> Move the cursor forward to the first character in the next word.
You may press <w> as many times as you want to reach the
word you want, or you can prefix the necessary number to the
<w> .

<nw> Move the cursor forward n number of words to the first character
of that word. The end of the line does not stop the movement of
the cursor; instead, the cursor wraps around and continues
counting words from the beginning of the next line.

The <w> command
l e aps word by word through the
f i l e . Uove from THI S word f orward

t
<6w>

s �x words to TH I S word .
t

<W> Ignores all punctuation and move the cursor forward to the word
after the next blank.

<e> Moves the cursor forward in the line to the last character in the
next word.

6-26 User's Guide

Co f orward one word to the end of
the next word in thi s line

t
<e>

Co f orward one word to the end of
the next word in thi s l ine

t

Co to the end of the third word after the current word .
t

<3e>

Co to the end of the third word after the current word .
t

Screen Editor Tutorial (vi) 6-27

I

I

< E> Ignores all punctuation except blanks, delimiting words only by
blanks .

< b> Moves the cursor backward in the line to the first character of the
previous word.

<nb> Moves the cursor backward n number of words to the first
character of the nth word. The < b> command does not stop at
the beginning of a line, but moves to the end of the line above and
continues moving backward.

< B> Can be used just like the < b> command, except that it delimits
the word only by blank spaces and newlines. It treats all other
punctuation as letters of a word.

Leap backward word by word through
the f i l e . Go back four words from here .

t
<4b>

the r i l e . Go back four words from here .
t

6-28 User's Guide

Movi ng the Cursor by Sentences

The vi editor also recognizes sentences. In vi, a sentence ends in
! or . or ? . If these delimiters appear in the middle of a line, they must be
followed by two blanks for vi to recognize them. You should get used to the
vi convention of recognizing two blanks after a period as the end of a
sentence, because it is often useful to be able to operate on a sentence as a
unit.

You can move the cursor from sentence to sentence in the file with the <(>
(open parenthesis) and <)> (close parenthesis) commands.

< (> Moves the cursor to the beginning of the current sentence .

< n(> Moves the cursor to the beginning of the nth sentence above the
current sentence.

<) > Moves the cursor to the beginning of the next sentence.

< n) > Moves the cursor to the beginning of the nth sentence below the
current sentence.

The example in the following screen shows how the open parenthesis moves
the cursor around the screen.

Screen Editor Tutorial (vi) 6-29

I

I

Suddenly we spotted whal e s in the
d i s tanc e . Dan i e l was the f irst to s e e them .

t
<(>

d i s tanc e . Dan i e l was the f ir s t to s e e them .
t

Now repeat the command, preceding it with a number. For example, type:

<3{> (or)
<5)>

Did the cursor move the correct number of sentences?

6-30 User's Guide

Moving the Cursor by Parag raphs

Paragraphs are recognized by vi if they begin after a blank line . If you want
to be able to move the cursor to the beginning of a paragraph (or later in this
tutorial, to delete or change a whole paragraph), then make sure each
paragraph ends in a blank line .

<{> Moves the cursor to the beginning of the current paragraph, which
is delimited by a blank line above it.

< n{> Moves the cursor to the beginning of the nth paragraph above the
current paragraph.

<}> Moves the cursor to the beginning of the next paragraph.

< n}> Moves the cursor to the nth paragraph below the current line .

The following screen show how the cursor can be moved to the beginning of
another paragraph:

Suddenly , we spotted whal e s in the
dis tanc e . Dan i e l was the f irst to s e e them .

t
<}>

" H e y look ! Here come the whal e s ! " he cried excitedly .

Sudd enly , we spotted whal e s in the
dis tanc e . Dan i e l was the f irst to s e e them .

t
" H e y look ! Here come the whale s ! " he cried excitedly .

Screen Editor Tutorial (vi) 6-31

I

I

Moving the Cursor on the Screen

The vi editor also provides three commands that help you position yourself in
the window. Try out each command. Be sure to type them in uppercase.

< H> Moves the cursor to the first line on the screen.

<M> Moves the cursor to the middle line on the screen.

< L> Moves the cursor to the last line on the screen.

This part of the file is
above the display window.

Type <H> (HOME) to move the cursor here.
t

Type < M > (MIDDLE) to move the cursor here.

t
Type < L> (LAST line on screen) to move t the cursor here .

This part of the file is
below the display window.

6-32 User's Guide

Tables 6-2 through 6-5 summarize the vi commands for moving the cursor by
positioning it on a character, line, word, sentence, paragraph, or position on
the screen. (Additional vi commands for moving the cursor are summarized
in Table 6-5, later in the chapter.)

Table 6-2. Summary of vi Motion Commands

Positioning on a Character

<h> Move the cursor one character to the left.

<I> Move the cursor one character to the right.

< BACKSPACE> Move the cursor one character to the left.

<SPACE BAR> Move the cursor one character to the right.

<fx> Move the cursor to the right to the specified I character x.

< Fx>

<tx>

<Tx>

< ;>

<,>

Move the cursor to the left to the specified
character x.

Move the cursor to the right, to the character just
before the specified character x.

Move the cursor to the left, to the character just
after the specified character x.

Continue searching in same direction on the line
for the last character requested with <f>, < F>,
<t>, or <T> . The ; remembers the character
and finds the next occurrence of it on the current
line.

Continue searching in opposite direction on the
line for the last character requested with <f>,
< F>, <t>, or <T> . The , remembers the
character and finds the next occurrence of it on the
current line.

Screen Editor Tutorial (vi) 6-33

I

Table 6-3. Summary of Commands for Positioning the Cursor on a Line

< k>

<j>

<->

< + >

<CR>

6-34 User's Guide

Position ing on a Line

Move the cursor up to the same column in the
previous line (if a character exists in that column) .

Move the cursor down to the same column in the
next line (if a character exists in that column) .

Move the cursor up to the beginning of the
previous line .

Move the cursor down to the beginning of the next
line .

Move the cursor down to the beginning of the next
line.

Table 6-4. Summary of Commands for Positioning the Cursor on a Word

<w>

<W>

< b>

< B>

<e>

Position ing on a Word

Move the cursor forward to the first character in
the next word.

Ignore all punctuation and move the cursor
forward to the next word delimited only by
blanks .

Move the cursor backward one word to the first
character of that word.

Move the cursor to the left one word, which is
delimited only by blanks .

Move the cursor to the end of the current word.

< E> Delimit the words by blanks only. The cursor is
placed on the last character before the next blank
space, or end of the line .

NOTE : If the cursor is in the middle of a word, using these
commands positions the cursor at the beginning or end of
the current word.

Screen Editor Tutorial (vi) 6-35

I

I

Table 6-5. Summary of Commands for Positioning the Cursor on a
Sentence, a Paragraph, or in'a Window

<{>

<)>

<{>

<}>

< H >

< M >

< L>

6-36 User's Guide

\ Position ing on a Sentence

Move the cursor to the beginning of the current
sentence .

Move the cursor to the beginning of the next
sentence .

Positioning on a Paragraph

Move the cursor to the beginning of the current
paragraph.

Move the cursor to the beginning of the next
paragraph.

Position ing in the Window

Move the cursor to the first line on the screen (the
home position) .

Move the cursor to the middle line on the screen.

Move the cursor to the last line on the screen.

Scro l l i n g the Text

How do you move the cursor to text that is not shown in the current editing
window? One option is to use the <20j> or <20k> command. However, if
you are editing a large file, you need to move quickly and accurately to
another place in the file. This section covers the commands that can help you
move around within the file in the following ways:

• by scrolling forward or backward in the file

• by going to a specified line in the file

• by searching for a pattern in the file

Four commands allow you to scroll the text of a file. The <�f> and <�d>
commands scroll the screen forward. The <�b> and <�u> commands scroll I the screen backward.

The Control-f Command

The <�> command scrolls the text forward one full window of text below the
current window. To do this, vi clears the screen and redraws the window.
The three lines that were at the bottom of the current window are placed at
the top of the new window. If there are not enough lines left in the file to fill
the window, the screen displays a - (tilde) to show that there are empty
lines.

Screen Editor Tutorial (vi) 6-37

I

vi clears and redraws the screen as follows:

These last three lines of the current
window become the first two lines of
the new window.

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

The Control-d Command

The <Ad> command scrolls down a half screen to reveal text below the
window. When you type <Ad>, the text appears to be rolled up at the top
and unrolled at the bottom. This allows the lines below the screen to appear
on the screen, while the lines at the top of the screen disappear. If there are
not enough lines in the file, a bell sounds (or the screen flashes) .

6-38 User's Guide

The Control-b Command

The <Ab> command scrolls the screen back a full window to reveal the text
above the current window. To do this, vi clears the screen and redraws the
window with the text that is above the current screen. Unlike the <''f>
command, <Ab> does not leave any reference lines from the previous
window. If there are not enough lines above the current window to fill a full
new window, a bell sounds (or the screen flashes) and the current window
remains on the screen.

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is re
drawn with the text above the window.

Now try scrolling backward, type:

<Ab>

Screen Editor Tutorial (vi) 6-39

I

I

vi clears the screen and draws a new screen.

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

The Control-u Command

The <Au> command scrolls up a half screen of text to reveal the lines just
above the window. The lines at the bottom of the window are erased. Now
scroll down in the text, moving the portion below the screen into the window,
type:

<Au>

When the cursor reaches the top of the file, a bell sounds (or the screen
flashes) to notify you that the file cannot scroll further.

6-40 User's Guide

Going to a Specific Li ne

The <G> command positions the cursor on a specified line in the window. If
that line is not currently on the screen, <G> clears the screen and redraws
the window around it. If you do not specify a line, <G> goes to the last line
of the file .

<G> go to the last line of the file

<nG> go to the nth line of the file

Obtai n ing the Current Line Number

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and I type <Ag> . The <Ag> command gives you a status notice at the bottom of
the screen which tells you:

• the name of the file

• if the file has been modified

• the line number on which the cursor rests

• the total number of lines in the buffer

• the percentage of the total lines in the buffer represented by the current
line

Screen Editor Tutorial (vi) 6-41

I

6-42

Thi a line i s the 36th line of the buf f e r .
The cursor i s on this line .

t
<·g>

There are s everal more line a in the
buf f e r .
The last line of the buf f e r i s line 1 1 6 .

Thi s line is the 36th line of the buf f e r .
The cursor i s on this line .

There are s everal mora line a in the
buf f e r .
The last line of the buf f e r is line 1 1 6 .
• r i l a . nama • [modi f i ed] line 36 of 1 1 6 --34�--

User's Guide

Searching for a Pattern

The fastest way to reach a specific place in your text is by using one of the
search commands: /, ?, <n>, or < N > . These commands allow you to
search forward or backward in the buffer for the next occurrence of a specified
character pattern. The I and ? commands are not silent; they appear as you
type them, along with the search pattern, on the bottom of the screen. The
<n> and < N > commands, which allow you to repeat the requests you made
for a search with a I or ? command, are silent.

The /, followed by a pattern (/pattern), searches forward in the buffer for the
next occurrence of the characters in pattern, and puts the cursor on the first of
those characters . For example, the following command line finds the next
occurrence in the buffer of the words Hello world and puts the cursor under
the H.

/Hel lo world< CR>

The ?, followed by a pattern (?pattern), searches backward in the buffer for the
first occurrence of the characters in pattern, and puts the cursor on the first of
those characters . For example, the following command line finds the last
occurrence in the buffer (before your current position) of the words data set
design and puts the cursor under the d in data .

?data set design<CR>

These search commands do not wrap around the end of a line while searching
for two words. For example, you are searching for the words Hello world,
if Hello is at the end of one line and world is at the beginning of the next,
the search command does not find that occurrence of Hello World.

However, they do wrap around the end or the beginning of the buffer to
continue a search. For example, if you are near the end of the buffer, and the
pattern for which you are searching (with the /pattern command) is at the top
of the buffer, the command finds the pattern.

Screen Editor Tutorial (vi) 6-43

I

I

The <n> and <N> commands allow you to continue searches you have
requested with !pattern or ?pattern without retyping them.

<n> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example, you want to search backward in the file for the three-letter
pattern the, initiate the search with ?the and continue it with <n> .

The following screens offer a step-by-step illustration of how the <n>
searches backward through the file and finds four occurrences of the character
string the:

Suddenly, we spotted whal e s in the
dis tanc e . Dan i e l was the f irst to s e e them .

" H e y look ! Hare come the whal e s ! " he cried excitedly .
t

?the

Suddenly , we spotted whale s in the
dis tanc e . Dan i e l was the f irst to s e e them .

" Hay look ! Hera come the whal e s ! " ha cried excitedly .

6-44 User's Guide

t

(first occurrence)

Suddenly , we spotted whale s i n the
dis tan ce . Dan i e l was the f irst to s e e them .
. P
• H a y look ! Hare coma the whal e s ! • he cried excitedly .

t
<n>

Sudden1y , we apotted wha1 e a i n the
dis tanc e . Dan i e l was the f irat to s e e them .

I t
(second occurrence)

•Hay look ! Hare come the whale s ! • he cried excitedly .

Screen Editor Tutorial (vi) 6-45

Suddenly, we spotted whale s in the
d i s tanc e . Dan i e l was the f irst to s e e them .

t
<n>

" H e y look ! Here come the whale s ! " he cried excitedly .

Suddenly, we spotted whale s in the
d i s tanc e . Dan i e l was the f irst to s e e them .

I t
(third occurrence)

" H e y look ! Here come the whal e s ! " h e cried excitedly .

6-46 User's Guide

Suddenly , we spotted whal e s in the
d i s tan ce . Dan i e l was the f irst to s e a them .

t
<n>

•Hay look ! Hera coma the whale s ! • he cried excitedly .

Suddenly. we spotted whal e s in the
t

(fourth occurrence)
dis tanc e . Dan i e l was the f irst to s e a them .

•Hay look ! Hera coma the whale s ! • he cried excitedly .

The I and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers . You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Table 6-6 summarizes the vi commands for moving the cursor by scrolling the
text, specifying a line number, and searching for a pattern.

Screen Editor Tutorial (vi) 6-47

I

I

Table 6-6. Summary of Additional vi Motion Commands

Scroll ing

<'f> Scroll the screen forward a full window, revealing the
window of text below the current window.

<Ad> Scroll the screen down a half window, revealing lines
below the current window.

<Ab> Scroll the screen back a full window, revealing the
window of text above the current window.

<Au> Scroll the screen up a half window, revealing the lines
of text above the current window.

Position ing on a Numbered Line

< 1 G> Go to the first line of the file .

< G> Go to the last line of the file .

<Ag> Give the line number and file status .

Searching for a Pattern

/pattern Search forward in the buffer for the next occurrence of
the pattern. Position the cursor on the first character of
the pattern.

?pattern Search backward in the buffer for the first occurrence
of the pattern. Position the cursor under the first
character of the pattern.

< n> Repeat the last search command.

< N > Repeat the search command i n the opposite direction.

6-48 User's Guide

Exercise 2

2-1 . Create a file called exer2. Type a number on each line, numbering
the lines from 1 to 50. Your file should look similar to the following:

2-2.

1
2
3

48
49
60

Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

2-3 . Go to the end of the file . Append the following line of text:

2-4.

123456789 123456789

What number does the command <7h> place the cursor on? What
number does the command <31> place the cursor on?

Try the command <$> and the command <0> (number zero) .

Screen Editor Tutorial (vi) 6-49

I

I

2-5 . Go to the first character on the line that is not a blank. Move to the
first character in the next word. Move back to the first character of
the word to the left. Move to the end of the word.

2-6. Go to the first line of the file . Try the commands that place the cursor
in the middle of the window, on the last line of the window, and on
the first line of the window.

2-7. Search for the number 8. Find the next occurrence of the number 8 .
Find 48.

Creati ng Text

There are three basic commands for creating text:

<a> append text

<i> insert text

<o> open a new line on which text can be entered

After you finish creating text with any one of these commands, you can return
to the command mode of vi by pressing the ESCAPE key.

Append ing Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the Creating a File
section. Make a new file named junk2. Append some text using the <a>
command. To return to command mode of vi, press the ESCAPE key, then
compare the <a> command to the <A> command.

Inserting Text

<i> insert text before the cursor

< I> insert text at the beginning of the current line before the first
character that is not a blank

6-50 User's Guide

To return to the command mode of vi, press the ESCAPE key.

In the following examples, you can compare the append and insert
commands. The arrows show the position of the cursor, where new text will

, be added.

Append thr e e spac e s AFTER the H of Hare
t

<a>

Appe nd thr e e spac e s AFTER the H of H ere .
t

< ESC>

Insert thr e e spac e s BEFORE the H of Hera .
t
< I> .

Ins ert thr e e spac e s BEFORE the H of Here .
t

<ESC>

Notice that in both cases the user has left text input mode by pressing the
ESCAPE key.

Screen Editor Tutorial (vi) 6-51

I

I

Opening a Line for Text

<o> Creates text from the beginning of a new line below the current
line. You can issue this command from any point in the current
line .

<0> Creates text from the beginning of a new line above the current
line . This command can also be issued from any position in the
current line .

The open command creates a directly above or below the current line, and
puts you into text input mode. For example, in the following screens the
<0> command opens a line above the current line, and the <o> command
opens a line below the current line . In both cases, the cursor waits for you to
enter text from the beginning of the new line.

Cre ate text ABOVE the current line .

[blank line]

t
<0>

Cr e at e t e x t ABOVE t h e curr e n t � i n e .

6-52 User's Guide

Now cre ate text BELOW the currant line .
t

<o>

Now cre ate text BELOW the currant line .
[blank line]

Table 6-7 summarizes the commands for creating and adding text with the vi
editor.

Screen Editor Tutorial (vi) 6-53

I

Table 6-7. Summary of vi Commands for Creating Text

Command Function

<a> Create text after the cursor.

<A> Create text at the end of the current line .

<i> Create text i n front o f the cursor.

<I> Create text before the first character on
the current line that is not a blank.

<o> Create text at the beginning of a new
line below the current line .

I < 0> Create text at the beginning of a new
line above the current line .

< ESC> Return vi to command mode from any
of the above text input modes.

6-54 User's Guide

Exercise 3

3-1 . Create a text file called exer3.

3-2. Insert the following four lines of text:

Append text
Insert text
a computer's
job is boring.

3-3. Add the following line of text above the last line:

3-4.

3-5.

3-6.

financial statem ent and

Using a text insert command, add the following line of text above the I third line:

Delete text

Add the following line of text below the current line:

byte of the budget

Using an append command, add the following line of text below the
last line:

But, it is an exciting machine.

3-7. Move to the first line and add the word some before the word text.

Now practice using each of the six commands for creating text.

3-8. Leave vi and go on to the next section to find out how to delete any
mistakes you made in creating text.

Delet ing Text

You can delete text with various commands in command mode, and undo the
entry of small amounts of text in text input mode. In addition, you can undo
entirely the effects of your most recent command.

Screen Editor Tutorial (vi) 6-55

I

Undoing Entered Text i n Text Input Mode

To delete a character at a time when you are in text input mode use the
BACKSPACE key.

<BACKSPACE> Deletes the character under the cursor.

The BACKSPACE key backs up the cursor in text input mode and deletes each
character that the cursor backs across . However, the deleted characters are
not erased from the screen until you type over them or press the ESCAPE key
to return to command mode.

In the following example, the arrows represent the cursor:

Mary had a litttl
t

< BACKSPACE> < BACKSPACE>

Mary had a litttl
t

< ESC>

Mary had a litt
t

Notice that characters are not erased from the screen until you press the
ESCAPE key.

There are two other keys that delete text in text input mode. Although you
may not use them often, you should be aware that they are available . To
remove the special meanings of these keys so that they can be typed as text,
see the section on special commands.

<"w> undo the entry of the current word

<CKILL> delete all text entered on current line since text input mode
was entered

6-56 User's Guide

When you type < Aw>, the cursor backs up over the word last typed and
stops on its first character. It does not erase the word until you press the
ESCAPE key or enter new characters over the old ones. The < CKILL>
behaves in a similar way except that it removes al l text you have typed on the
current line since you last entered input mode.

Undoing the Last Command

Before you experiment with the delete commands, you should try the < u >
command. This command undoes the last command you issued:

< u > undoes the last command.

< U > restores the current line to its state before you changed it.

If you delete lines by mistake, type <u>; your lines reappear on the screen.
If you type the wrong command, type < u > and it is nullified. The < U > I command nullifies all changes made to the current line as long as the cursor
has not been moved from it.

If you type <u> twice in a row, the second command undos the first; your
undo is undone! For example, you delete a line by mistake and restore it by
typing < u > . Typing <u> a second time deletes the line again. Knowing
this command can save you a lot of trouble .

Screen Editor Tutorial (vi) 6-57

I

The Delete Commands

You know that you can precede a command by a number. Many of the
commands in vi, such as the delete and change commands, also allow you to
enter a cursor movement command after another command. The cursor
movement command can specify a text object such as a word, line, sentence,
or paragraph. The general format of a vi command is:

[number] [command] text_object

The brackets around components of the command format show that those
components are optional.

All delete commands issued in command mode immediately remove
unwanted text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command:

[number]dtext_object

NOTE

On some terminals the deleted lines are
replaced by @ signs until the screen is
redrawn by scrolling or command . The @ sign
is not part of your file .

Deleting Characters

You can delete a character by moving the cursor to that character and pressing
<x> . The character under the cursor is erased and the line readjusts to the
change. You can delete several characters at once by specifying a number
before the command.

Deleting Words

You can delete a word or part of a word with the <dw> command. Move the
cursor to the first character to be deleted and type <dw> . The character
under the cursor and all subsequent characters in that word are erased.

6-58 User's Guide

the d e e p dark depths o f the lake .
t

<2dw>

the depths of the lake .
t

The <dw> command deletes one word or punctuation mark and the space(s)
that follow it. You can delete several words or marks at once by specifying a
number before the command. For example, to delete three words and two
commas, type <Sdw> :

the d e e p , d e e p , dark depths of the lake
t

<5dw>

the depths of the lake
t

Screen Editor Tutorial (vi) 6-59

I

I

Deleting Paragraphs

To delete paragraphs, use the following commands.

< d{> or <d}>

Observe what happens to your file . Remember, you can restore the deleted
text with < u > .

Deleting Lines

To delete a line, type <dd> . To delete multiple lines, specify a number
before the command. For example, typing the following erases 10 lines:

< 1 0dd>

If you delete more than a few lines, vi displays the following notice on the
bottom of the screen:

10 line s deleted

If there are less than 10 lines below the current line in the file, a bell sounds
(or the screen flashes) and no lines are deleted.

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first character
to be deleted and type:

< D> or <d$> .

Neither of these commands allows you to specify a number of lines; they can
be used only on the current line .

Table 6-8 summarizes the vi commands for deleting text.

6-60 User's Guide

Table 6-8. Summary of Delete Commands

Command

For Insert Mode:

< BACKSPACE>
<Ah>

<AW>

Function

Delete the current character.

Delete the current character.

Delete the current word.

< @> Delete the current line of new text or
delete all new text on the current line .

For Command Mode:

<u>

<U>

<x>

<ndx>

<dw>

<dW>

<dd>

< D>

<d)>

<d}>

Undo the last command.

Restore current line to its previous state .

Delete the current character.

Delete n number of text objects of type x.

Delete the word at the cursor through
the next space or to the next punctuation
mark.

Delete the word and punctuation at the
cursor through the next space.

Delete the current line .

Delete the portion of the line to the right
of the cursor.

Delete the current sentence.

Delete the current paragraph.

Screen Editor Tutorial (vi) 6-61

I

I

Exercise 4
4-1 . Create a file called exer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line two and append to the end of that line:

4-3 .

tedious and unsavory.

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

Insert at the beginning of line four:

congen ial and computerized.

Delete the line .

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your
directory.

6-62 User's Guide

Mod ifyi ng Text

The delete commands and text input commands provide one way for you to
modify text. Another way you can change text is by using a command that
lets you delete and create text simultaneously. There are three basic change
commands: <r>, <s>, and <c> .

Replacing Text

<r> Replaces the current character (the character shown by the
cursor) . This command does not initiate text input mode and so
does not need to be followed by pressing the ESCAPE key .

<nr> Replaces n characters with the same letter. This command I automatically terminates after the nth character is replaced . It
does not need to be followed by pressing the ESCAPE key.

< R > Replaces only those characters typed over until the ESCAPE
command is given. If the end of the line is reached, this
command will append the input as new text.

The < r> command replaces the current character with the next character that
is typed in. For example, suppose you want to change the word acts to ants
in the following sentence:

The circus has many acts .

Place the cursor under the c of acts and type

<r>n

The sentence becomes:

The circus has many ants .

To change many to 7777, place the cursor under the m of many and type:

<4r7>

The <r> command changes the four letters of many to four occurrences of
the number seven:

The circus has 7777 ants .

Screen Editor Tutorial (vi) 6-63

Su bstitut ing Text

The substitute command replaces characters, but then allows you to continue
to insert text from that point until you press the ESCAPE key.

<s> Deletes the character shown by the cursor and append text. End
the text input mode by pressing the ESCAPE key.

<ns> Deletes n characters and append text. End the text input mode by
pressing the ESCAPE key.

< S> Replaces all the characters in the line .

When you enter the <s> command, the last character in the string of
characters to be replaced is overwritten by a $ sign. The characters are not
erased from the screen until you type over them, or leave text input mode by
pressing the ESCAPE key.

Notice that you cannot use an argument with either < r> or <s> . Did you
try?

Suppose you want to substitute the word million for the word hundred in the
sentence My salary is one hundred dollars . Put the cursor under
the h of hundred and type <7s> . Notice where the $ sign appears .

My s a l ary i s o n e hundr e d d o l l ar s .
t

Then type mi l l ion :

6-64 User's Guide

< 7s >

lly salary i s one hundre$ dollars .
t

million

lly salary i s one mill ion dollars .
t

Chang ing Text

The substitute command replaces characters . The change command replaces
text objects, and then continues to append text from that point until you press
the ESCAPE key. To end the change command, press the ESCAPE key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx>

<cw>

Replaces n number of text objects of type x, such as sentences
(shown by <)>) and paragraphs (shown by <}>) .

Replaces a word o r the remaining characters i n a word with
new text. The vi editor prints a $ sign to show the last
character to be changed.

Screen Editor Tutorial (vi) 6-65

I

I

<new>

<ee>

<nee>

<C>

Replaces n words.

Replaces all the characters in the line .

Replaces all characters in the current line and up to n lines of
text.

Replaces the remaining characters in the line, from the cursor
to the end of the line .

<nC> Replaces the remaining characters from the cursor in the
current line and replace all the lines following the current line
up to n lines.

The change commands, <ew> and < C>, use a $ sign to mark the last letter
to be replaced . Notice how this works in the following example:

Th e y ar e now d u e to arr ive on Tu e s d ay .
t
< cw>

Th e y ar e now due to arr ive on Tu e s d a$.
t
Wednesday< ESC>

Th e y ar e now due to arr ive on Wedn e s day .
t

6-66 User's Guide

Notice that the new word (Wedne sday) has more letters than the word it
replaced (Tuesday) . Once you have executed the change command, you are
in text input mode and can enter as much text as you want. The buffer
accepts text until you press the ESCAPE key.

The < C> command, when used to change the remammg text on a line,
works in the same way. When you enter the command, it uses a $ sign to
mark the end of the text that will be deleted, puts you in text input mode, and
waits for you to type new text over the old. The following screens offer an
example of the C command:

Th i s is l i n e 1 .
Oh , I mu s t have the wrong numb e r .
t

<C>
Th i s is line 3 .
Th i s i s l i n e 4 .

Screen Editor Tutorial (vi) 6-67

I

I

Th i s i s l i n e 1 .
Oh , I mu s t have the wrong numb e r$
t

This is l ine 2.< ESC>
Th i s is l i n e 3 .
Th i s i s l i n e 4 .

Th i s i s l in e 1 .
Th i s i s l in e 2 .
Th i s i s l in e 3 .
Th i s i s l in e 4 .

Now try combining arguments . For example, type:

< c{>

Because you know the undo command, do not hesitate to experiment with
different arguments or to precede the command with a number. You must
press the ESCAPE key before using the <u> command, since <c> places you
in text input mode . Compare <S> and <cc> . The two commands should
produce the same results .

6-68 User's Guide

Table 6-9 summarizes the vi commands for changing text.

Table 6-9. Summary of vi Commands for Changing Text

Command

< r>

< R >

<s>

<S>

<cc>

<ncx>

<cw>

< C>

Function

Replace the current character.

Replace only those characters typed over with
new characters until the ESCAPE key is
pressed.

Delete the character the cursor is on and
append text. End the append mode by
pressing the ESCAPE key.

Replace all characters in the line .

Replace all characters in the line .

Replace n number of text objects of type x,
such as sentences (shown by <)>) and
paragraphs (shown by <}>) .

Replace a word or the remaining characters in
a word with new text.

Replace the remaining characters in the line,
from the cursor to the end of the line .

Screen Editor Tutorial (vi) 6-69

I

I

Cutt ing and Past ing Text Electronical ly

vi provides a set of commands that cut and paste text in a file . Another set of
commands copies a portion of text and places it in another section of a file .

Moving Text

You can move text from one place to another in the vi buffer by deleting the
l ines and then placing them at the required point. The last text that was
deleted is stored in a temporary buffer. If you move the cursor to that part of
the file where you want the deleted lines to be placed and press the < p> key,
the deleted lines are added below the current line:

< p> Place the contents of the temporary buffer after the cursor.

A partial sentence that was deleted by the < D> command can be placed in
the middle of another line . Position the cursor in the space between two
words, then press < p> . The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text object
that was just deleted can be placed somewhere else in the text with < p> .

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time . The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command (<y>) is discussed in Copying Text.

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <x> and the < p>
commands as <xp> . <x> deletes the letter. < p> places it after next
character.

Notice the error in the next line:

A line of tetx

6-70 User's Guide

This error can be changed quickly by placing the cursor under the t in tx
and then pressing the <x> and < p> keys, in that order. The result is:

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copying Text

You can yank (copy) one or more lines of text into a temporary buffer, and
then put a copy of that text anywhere in the file . To put the text in a new
position type < p>; the text appears on the next line .

The yank command follows the general format of a vi command:

[number]y[text_object]

Yanking lines of text does not delete them from their original position in the
file . If you want the same text to appear in more than one place, this
provides a convenient way to avoid typing the same text several times .
However, if you do not want the same text in multiple places, be sure to
delete the original text after you have put the text into its new position.

Screen Editor Tutorial (vi) 6-71

I

I

Table 6-10 summarizes the ways you can use the yank command.

Table 6-1 0. Summary of the Yank Command

Command Function

<nyx> Yank n number of text objects of type x, (such
as sentences) and paragraphs }) .

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line .

<nyy> Yank n lines .

<y)> Yank all text up to the end of a sentence .

<y}> Yank all text up to the end of the paragraph.

Notice that this command allows you to specify the number of text objects to
be yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command.) Type:

<5yw>

Move the cursor to another spot, type:

< p>

Now try yanking a paragraph <y}> and placing it after the current paragraph.
Then move to the end of the file < G> and place that same paragraph at the
end of the file .

6-72 User's Guide

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you
can store text until you want to move it. To store text you can either yank or
delete the text you wish to store .

Using registers is useful if a piece of text must appear in many places in the
file . The extracted text stays in the specified register until you either end the
editing session, or yank or delete another section of text to that register.

The general format of the command is:

[number] ["x]command[text_object]

The x is the name of the register and can be any single letter. It must be I preceded by a double quotation mark. For example, place the cursor at the
beginning of a line, type:

<3"ayy>

Type in more text and then go to the end of the file, type:

< "ap>

Did the lines you saved in register a appear at the end of the file?

Screen Editor Tutorial (vi) 6-73

I

Table 6-11 summarizes the cut and paste commands.

Table 6-1 1 . Summary of vi Commands for Cutting and Pasting Text

Command

< p>

<yy>

< nyx>

< "xyn>

< "xp>

6-74 User's Guide

Function

Place the contents of the temporary buffer
containing the text obtained from the most
recent delete or yank command into the text
after the cursor.

Yank a line of text and place it into a
temporary buffer.

Yank a copy of n number of text objects of
type x and place them in a temporary buffer.

Place a copy of a text object of type n in the
register named by the letter x.

Place the contents of the register x after the
cursor.

Exercise 5

5-1 . Enter vi with the file called exer2 that you created in Exercise 2. Go
to line eight and change its contents to:

END OF FILE

5-2. Yank the first eight lines of the file and place them in register z. Put
the contents of register z after the last line of the file.

5-3 . Go to line eight and change its contents to:

5-4.

eight is great

Go to the last line of the file. Substitute EXE RCISE for FILE.
Replace OF with TO.

Special Com mands

Here are some special commands that you will find useful.

<.> repeat the last command

join two lines together

clear the screen and redraw it

< - > change lowercase to uppercase and vice versa

Screen Editor Tutorial (vi) 6-75

I

I

Repeat ing the Last Command

The . period repeats the last command to create, delete, or change text in the
file . It is often used with the search command.

For example, suppose you forget to capitalize the S in United States.
However, you do not want to capitalize the s in chemical states. One way to
correct this problem is by searching for the word states. The first time you
find it in the expression United States, you can change the s to S. Then
continue your search. When you find another occurrence, you can simply
type a period; vi will remember your last command and repeat the
substitution of s for S.

Experiment with this command. For example, if you try to add a period at the
end of a sentence while in command mode, the last text change suddenly
appears on the screen. Watch the screen to see how the text is affected .

Joi n i ng Two Li nes

The <J> command joins lines. To enter this command, place the cursor on
the current line, and press the <SHIFT> and j keys simultaneously. The
current line is j oined with the following line .

For example, suppose you have the following two lines of text:

Dear Mr .
Smith :

6-76 User's Guide

To join these two lines into one, place the cursor under any character in the
first line and type:

<J>

You will immediately see the following on your screen:

Dear Mr . Smith :

Notice that vi automatically places a space between the last word on the first
line and the first word on the second line .

Cleari ng and Redrawing the Window

If another operating system user sends you a message using the write
command while you are editing with vi, the message appears in your current
window, over part of the text you are editing. To restore your text after you I read the message, you must be in command mode . (If you are in text input
mode, press the ESCAPE key to return to command mode .) Then type < AI>
(control-1) . vi will erase the message and redraw the window exactly as it
appeared before the message arrived .

Chan g i n g Lowercase to Uppercase and Vice Versa

A quick way to change any lowercase letter to uppercase, or vice versa, is by
putting the cursor on the letter to be changed and typing a < � > (tilde) . For
example, to change the letter a to A, press � . You can change several letters
by typing � several times, but you cannot precede the command with a
number to change several letters with one command.

Screen Editor Tutorial (vi) 6-77

I

Table 6-12 summarizes the special commands.

Table 6-1 2. Summary of Special Commands

Command Function

<.> Repeat the last command.

<J> Join the line below the current line with the current line .

<AI> Clear and redraw the current window.

< - > Change lower case to upper case, or vice versa.

Using Line Ed iti ng Co m mands in vi

The vi editor has access to many of the commands provided by a line editor
called ex. (For a complete list of ex commands see the ex(l) page in the
User's Reference Manual.) This section discusses some of those most commonly
used.

The ex commands are very similar to the ed commands discussed in
Chapter 5. If you are familiar with ed, you may want to experiment on a test
file to see how many ed commands also work in vi .

Line editor commands begin with a : (colon) . After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon. The
remainder of the command also appears at the bottom of the screen as you
type it.

Temporari ly Retu rn ing to the Shel l

When you enter vi , the contents of the buffer fill your screen, making i t
impossible to issue any shell commands. However, you may want to do so.
For example, you may want to get information from another file to incorporate
into your current text. You could get that information by running one of the
shell commands that display the text of a file on your screen, such as the cat
or pg command. However, quitting and re-entering the editor is time
consuming and tedious . vi offers two methods of escaping the editor

6-78 User's Guide

temporarily so that you can issue shell commands (and even edit other files)
without having to write your buffer and quit: the :! command and the :sh
command.

The : ! command allows you to escape the editor and run a shell command on
a single command line . From the command mode of vi_ type : 1 . These
characters will be printed at the bottom of your screen. Type a shell
command immediately after the ! . The shell will run your command, give you
output, and print the message [Hit return to continue] . When you
press the RETURN key, vi refreshes the screen and the cursor reappears exactly
where you left it.

The ex command :sh allows you to do the same thing, but behaves differently
on the screen. From the command mode of vi type :sh and press the RETURN
key. A shell command prompt appears on the next line . Type your
command(s) after the prompt as you would normally do while working in the I shell . When you are ready to return to vi, type <Ad> or exit; your screen is
refreshed with your buffer contents and the cursor appears where you left it.

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file
when you type exit or <Ad> .

Writi ng Text to a New Fi le : :w Command

The :w (for write) command allows you to create a file by copying lines of text
from the file you are currently editing into a file that you specify. To create
your new file you must specify a line or range of lines (with their line
numbers), along with the name of the new file, on the command line . You
can write as many lines as you like . The general format is:

:line_number[, line_number]w filename

For example, to write the third line of the buffer to a line named three, type:

:3w three<CR>

vi reports the successful creation of your new file with the following
information:

" three " [New file] 1 line , 20 characters

Screen Editor Tutorial (vi) 6-79

I

To write your current line to a file, you can use a . (period) as the line
address:

: .w junk<CR>

A new file called junk is created. It will contain only the current line in the vi
buffer.

You can also write a whole section of the buffer to a new file by specifying a
range of lines. For example, to write lines 23 through 37 to a file, type the
following:

:23,37w newfile<CR>

Finding the Line Number

To determine the number of a line, move the cursor to i t and type : (colon) .
The colon will appear at the bottom of the screen. Type . = after it and press
the RETURN key.

I� 7ou want t o know the numb e r
of thi s line , type : .= <CR>

:. =

As soon as you press the RETURN key, your command line will disappear from
the bottom line and be replaced by the number of your current line in the
buffer.

Also, a < CTRL>-g provides this information.

6-80 User's Guide

I f you want to know the number
of thi s line , type in : .= <CR>

34

You can move the cursor to any line in the buffer by typing : and the line I number. The following command line means to go to the nth line of the
buffer.

:n<CR>

Also, < shi:ft>-g produces the same results .

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line and the
end of the buffer is by using the line editor command d with the special
symbols for the current and last lines.

: . ,$d<CR>

The . represents the current line; the $ sign, the last line.

Adding a Fi le to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r
(read) command. For example, to put the contents of a file called data into
your current file, place the cursor on the line above the place where you want
it to appear. Type:

' :r data<CR>

You may also specify the line number instead of moving the cursor. For
example, to insert the file data below line 56 of the buffer, type:

Screen Editor Tutorial (vi) 6-81

I

Do not be afraid to experiment; you can use the <u> command to undo ex
commands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The
global command is given here to help those users who are familiar with the
line editor. Even if you are not familiar with a line editor, you may want to
try the command on a test file .

For example, say you have several pages of text about the DNA molecule in
which you refer to its structure as a helix. Now you want to change every
occurrence of the word helix to double helix. The ex editor's global command
allows you to do this with one command line . First, you need to understand
a series of commands .

:glpatternlcom11Ulnd< CR>
For each line containing pattern, execute the ex command named
com11Ulnd. For example, type: :g/hel ix<CR> . The line editor will print
all lines that contain the pattern helix.

:slpattern/new _words/< CR >
This is the substitute command. The line editor searches for the first
instance of the characters pattern on the current line and changes them to
new_words.

:slpatternlnew_wordslg<CR>
I f you add the letter g after the last delimiter of this command line, ex
will change every occurrence of pattern on the current line . If you do not,
ex will change only the first occurrence.

:glhelixlslldouble helixlg< CR>
This command line searches for the word helix. Each time helix is found,
the substitute command substitutes two words, double helix, for every
instance of helix on that line. The delimiters after the s do not need to
have helix typed in again. The command remembers the word from the
delimiters after the global command g. This is a powerful command. For
a more detailed explanation of global and substitution commands, see
Chapter 5.

6-82 User's Guide

Table 6-13 summarizes the line editor commands available in vi .

Table 6-1 3. Summary of Line Editor Commands

Command

:sh< CR>

:n<CR>

:x,yw data<CR>

:$<CR>

:.,$d<CR>

Function

Shows that the commands that follow are
line editor commands.

Temporarily returns you to the shell to
perform shell commands.

Escapes the temporary shell and returns
you to the current window of vi to
continue editing.

Goes to the nth line of the buffer.

Writes lines from the number x through
the number y into a new file (data) .

Goes to the last line of the buffer.

Deletes all the lines in the buffer from the
current line to the last line .

:r shell.file< CR> Inserts the contents of shell .file after the
current line of the buffer.

:s/text/new_wordsi<CR> Replaces the first instance of the
characters text on the current line with
new_words.

:s/text/new_wordslg<CR> Replaces every occurrence of text on the
current line with new_words .

:g/textlsl/new_wordslg<CR> Replaces every occurrence of text in the
file with new_words.

Screen Editor Tutorial (vi) 6-83

I

I

Co m mands fo r Qu itt ing vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands .

<ZZ> or :wq<CR>

:w fileruime< CR>
:q< CR>

:wl fileruime<CR>
:q< CR>

:q i<CR>

:q< CR>

Write the contents of the vi buffer to the file
currently being edited and quit vi .

Write the temporary buffer to a new file named
fileruime and quit vi .

Overwrite an existing file called fileruime with the
contents of the buffer and quit vi .

Quit vi without writing the buffer to a file, and
discard all changes made to the buffer.

Quit vi without writing the buffer to a file . This
works only if you have made no changes to the
buffer; otherwise, vi warns you that you must
either save the buffer or use the :q !<CR>
command to terminate .

The <ZZ> command and :wq command sequence both write the contents of
the buffer to a file, quit vi, and return you to the shell . You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of the
file currently being edited, so you do not have to specify it when you want to
write the buffer's contents back into the file . Type:

:wq<CR>

The system responds in the same way it does for the < ZZ> command. It
tells you the name of the file, and reports the number of lines and characters
in the file .

What must you do to give the file a different name? For example, suppose
you want to write to a new file called junk. Type:

:w junk<CR>

6-84 User's Guide

After you write to the new file, leave vi. Type:

:q<CR>

I f you try to write to an existing file, you receive a warning. For example, if
you try to write to a file called johnson, the system responds with:

" j ohnson" File exists - use "w ! j ohnson" to overwrite

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson :

:w! johnson<CR>

Your new file overwrites the existing one.

If you edit a file called memo, make some changes to it, and then decide you
do not want to keep the changes, or if you accidentally press a key that gives I vi a command you cannot undo, leave vi without writing to the file . Type:

:q !< CR>

Screen Editor Tutorial (vi) 6-85

I

Table 6-14 summarizes the quit commands .

Table 6-1 4. Summary of the Quit Commands

Command

<ZZ>

:wq<CR>

:w filenilme<CR>
:q<CR>

:wl filenilme<CR>
:q<CR>

:q i<CR>

:q<CR>

Function

Write the file and quit vi .

Write the file and quit vi.

Write the editing buffer to a new file (file1Ulme)
and quit vi .

Overwrite an existing file (file1Ulme) with the
contents of the editing buffer and quit vi .

Quit vi without writing buffer to a file .

Quit vi without writing the buffer to a file.

Special Options for vi

The vi command has some special options . It allows you to:

• recover a file lost by an interrupt to the operating system

• place several files in the editing buffer and edit each in sequence

• view the file at your own pace by using the vi cursor positioning
commands

6-86 User's Guide

Recoveri ng a Fi le Lost by an Interrupt

If there is an interrupt or disconnect, the system exits the vi command
without writing the text in the buffer back to its file . However, the operating
system stores a copy of the buffer for you. When you log back into the
operating system, you can restore the file with the - r option for the vi
command. Type:

vi - r filename<CR>

The changes you made to filename before the interrupt occurred are now in the
vi buffer. You can continue editing the file, or you can write the file and quit
vi . The vi editor will remember the file name and write to that file .

Editi ng Mult iple Fi les

If you want to edit more than one file in the same editing session, issue the vi
command, specifying each file name. Type:

vi file1file2< CR>

vi responds by telling you how many files you are going to edit. For example :

2 files to edit

After you have edited the first file, write your changes (in the buffer) to the
file (file1) . Type:

:w<CR>

The system response to the :w < CR> command is a message at the bottom of
the screen giving the name of the file, and the number of lines and characters
in that file . Then you can bring the next file into the editing buffer by using
the :n command. Type:

:n< CR>

The system responds by printing a notice at the bottom of the screen, telling
you the name of the next file to be edited and the number of characters and
lines in that file.

Screen Editor Tutorial (vi) 6-87

I

I

Select two of the files in your current directory. Then enter vi and place the
two files in the editing buffer at the same time. Notice the system responses
to your commands at the bottom of the screen.

Viewi ng a Fi le

I t i s often convenient to be able to inspect a file by using v is powerful search
and scroll capabilities. However, you might want to protect yourself against
accidentally changing a file during an editing session. The read-only option
prevents you from writing in a file . To avoid accidental changes, you can set
this option by invoking the editor as view rather than vi .

Table 6-15 summarizes the special options for vi .

Table 6-1 5. Summary of Special Options for vi

Option Function

vi file1file2file3< CR> Enter three files (filel , file2, and file3)
into the vi buffer to be edited.

:w< CR> Write the current file and call the next
:n<CR> file into the buffer.

vi - r filel <CR> Restore the changes made to filel .

VIEWfile<CR> Read file only.

Exercise 6

6-1 . Try to restore a file lost by a n interrupt.

Enter vi, create some text in a file called exer6. Turn off your terminal
without writing to a file or leaving vi . Turn your terminal back on,
and log in again. Then try to get back into vi and edit exer6.

6-88 User's Guide

6-2. Place exer1 and exer2 in the vi buffer to be edited. Write exer1 and
call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi .

6-3. Try out the command:

vi exer*<CR>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

Answers to Exercises

There is often more than one way to perform a task in vi. Any method that
works is correct. The following are suggested ways of doing the exercises:

Exercise 1

1-1 . Ask your System Administrator for your terminals system name.
Type:

TER M = termiMl_Mme< CR >
export TERM
TermSetup (This may be handled by your .profi le .)

Screen Editor Tutorial (vi) 6-89

I

I

1-2. Enter the vi command for a file called exer1 :

vi exer1 < CR>

Then use the append command (<a>) to enter the following text in
your file:

1-3. Use the <k> and <h> commands.

1-4 . Use the <x> command.

1-5 . Use the <j> and <I> commands.

1-6. Enter vi and use the append command (<a>) to enter the following
text:

1-7.

and byte by byte< ESC>

Then use <j> and <I> to move to the last line and character of the
file . Use the <a> command again to add text. You can create a new
line by pressing the RETURN key. To leave text input mode, press the
ESCAPE key.

Type:

<ZZ>

1-8. Type:

vi exer1 <CR>

Notice the system response:

" exerl " 7 lines , 102 characters

6-90 User's Guide

Exercise 2

2-1 . Type:

2-2. Type:

vi exer2<CR>

<a> 1 < CR>
2<CR>
3<CR>

48< CR>
49<CR>
50< ESC>

Notice the line numbers as the screen changes.

2-3 . Type:
<G>
< o>
1 23456789 1 23456789< ESC>
<7h>
< 31>

Typing <7h> puts the cursor
on the 2 in the second set of numbers .
Typing <31> puts the cursor
on the 5 in the
second set of numbers.

2-4. $ = end of line
0 = first character in the line

Screen Editor Tutorial (vi) 6-91

I

2-5 . Type:
<A>
<w>

<e>

2-6. Type:
< 1 G>
< M>
< L>
< H>

2-7. Type:
/8
<n>

I /48

Exercise 3

3-1 . Type:
vi exer3<CR>

3-2. Type:
<a> Append text < CR>
Insert text<CR>

'

a computer's < CR>
job is boring.< ESC>

3-3 . Type:
< 0>
financial statement and< ESC>

6-92 User's Guide

3-4. Type:
<3G>
< i> Delete text<CR>< ESC>

The text in your file now reads:

Append text
Insert text
Delete text
a computer ' s
financial statement and
j ob i s boring .

3-5 . The current line is a computer ' s . To create a line of text below that
line use the <o> command.

3-6. The current line is byte of the budget.

<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line .
<CR> creates the new line .

Add the sentence: But, it is an exciting machine.

< ESC> leaves append mode.

3-7. Type:
< 1 G>
/text
< i>some<space bar> < ESC>

3-8. <ZZ.> will write the buffer to exer3 and return you to the shell.

Screen Editor Tutorial (vi) 6-93

I

I

Exercise 4

4-1 . Type:
vi exer4<CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.< ESC>

4-2. Type:

4-3 .

<2G>
<A> tedious and unsavory<SBACKSPACE> <CR>
< ESC>

Press <h> until you get to the b of boring . Then type:
<dw> . (You can also use <6x> .)

You are at the second line . Type:
<2j>
<I> congen ial and computerized< ESC>
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)
< D>

<H>
<3dd>

4-4. Write and quit vi .

<ZZ>

Remove the file .

rm exer4<CR>

6-94 User's Guide

Exercise 5

5-1 . Type:

5-2. Type:

5-3 . Type:

5-4. Type:

vi exer2<CR>
<SG>
<cc> END OF FILE < ESC>

< 1 G>
<S''zyy>
<G>
< "zp>

<SG>
<cc> 8 is great< ESC>

< G>
<2w>
<cw>
EXERCISE< ESC>
<2b>
<cw>
TO< ESC>

Screen Editor Tutorial (vi) 6-95

I

Exercise 6

6-1 . Type:
vi exer6<CR>
<a> (append several lines of text)
< ESC>

Turn off the terminal.

Turn on the terminal.
Log in on operating system. Type:

vi - r exer6<CR>
:wq<CR>

I 6-2. Type:

6-3 . Type:

6-4. Type:

vi exer1 exer2< CR>
:w< CR>
:n<CR>

:w junk<CR>
<ZZ>

vi exer*<CR>

(Response:)
8 :files to edit (vi calls all files with names that begin with exe1

<ZZ>
<ZZ>

view exer4<CR>

<Af>
<Ad>
<Ab>
<Au>
:q<CR>

6-96 User's Guide

7 Shel l Tutorial

Introduction 7-1

Shel l Com mand Lang uage 7-2
Metacharacters 7-4

Matching All Characters: Asterisk(*) 7-4
Matching One Character: Question Mark (?) 7-7

Using the .. or ? To Correct Typing Errors 7-8

Matching One of a Set: Brackets ([]) 7-9

Special Characters 7-10

Executing in Background: Ampersand (&) 7-10

Executing Commands Sequentially: Semicolon (;) 7-1 1

Turning Off Special Meanings: Backslash 7-12

Turning Off Special Meanings: Quotes 7-12

Using Quotes to Turn Off the Meaning of a Space 7-13

Input and Output Redirection 7-15

Redirecting Input: < Sign 7-15

Redirecting Output to a File: > Sign 7-15

Appending Output to an Existing File:
> > Symbol 7-17

Useful Applications of Output Redirection 7-18

The spell Command 7-18

The sort Command 7-20

Combining Background Mode and Output
Redirection 7-20

Redirecting Output to a Command: Pipe (I) 7-20

A Pipeline Using the cut and date Commands 7-21

Substituting Output for an Argument 7-26

Executing and Terminating Processes 7-26

Executing at a Later Time: batch and at
Commands 7-26

Shell Tutorial

Shell Tutorial

ii User's Guide

Obtaining the Status of Running Processes 7-32

Terminating Active Processes 7-33

Using the nohup Command 7-34

Command Language Exercises 7-36

Shel l Prog ra m m i ng 7-37

Shell Programs 7-38

Creating a Simple Shell Program 7-38

Executing a Shell Program 7-39

Creating a bin Directory for Executable Files 7-40

Warnings About Naming Shell Programs 7-41

Variables 7-42

Positional Parameters 7-42

Special Parameters 7-46

Named Variables 7-51

Assigning a Value to a Variable 7-54

Using the read Command 7-54

Substituting Command Output for the Value of a

Variable 7-58

Assigning Values with Positional Parameters 7-59

Shell Programming Constructs 7-61

Comments 7-62

The here Document 7-63

Using ed in a Shell Program 7-65

Return Codes 7-67

Checking Return Codes 7-67

Using Return Codes with the exit Command 7-68

Looping 7-68

The for Loop 7-69

The while Loop 7-72

The Shell's Garbage Can: /dev/null 7-75

Conditional Constructs 7-76

if. . . then 7-76

if . . . then . . . else 7-78

The test Command for Loops 7-80

case . . . esac 7-84

Shell Tutorial

Unconditional Control Statements: break and
continue Commands 7-88

Debugging Programs 7-90

Modifying Your Login Environment 7-94

Adding Commands to Your .profile 7-95

Reassigning the Delete Functions 7-95

Setting Terminal Options 7-96

Creating a Public Directory 7-98

Using Shell Variables 7-98

Shell Programming Exercises 7-101

Answers to Exercises 7-102

Answers to Command L(!.nguage Exercises 7-102

Answers to She11 Programming Exercises 7-103

Shell Tutorial iii

Introd u ction

This chapter describes how to use the shell to do routine tasks . For example,
it shows you how to use the shell to manage your files, to manipulate file
contents, and to group commands together to make programs the shell can
execute for you.

The chapter has two major sections . The first, Shell Command Language, covers
using the shell as a command interpreter. It tells you how to use shell
commands and characters with special meanings to manage files, redirect
standard input and output, and execute and terminate processes. The second
section, Shell Programming, covers using the shell as a programming language .
It tells you how to create, execute, and debug programs made up of
commands, variables, and programming constructs like loops and case
statements . Finally, it tells you how to modify your login environment.

The chapter offers many examples . You should login to your operating
system and recreate the examples as you read the text. As in the other I examples in this guide, different type (bold, italic, and constant width) is
used to distinguish your input from the operating system output. See
Notations and Conventions in Chapter 1 for details .

In addition to the examples, there are exercises at the end of both sections .
The exercises can help you better understand the topics discussed. The
answers to the exercises are at the end of the chapter.

NOTE

Your operating system may not have all
commands referenced in this chapter. If you
cannot access a command, check with your
System Administrator.

If you want an overview of how the shell functions as both command
interpreter and programming language, see Chapters 1 and 4 before reading
this chapter. Also, refer to Appendix E, Summary of Shell Command Language.

Shell Tutorial 7-1

I

Shel l Com mand Lang u age

This section introduces commands and, more importantly, some characters
with special meanings that let you:

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

• run a group of commands sequentially

• redirect standard input and output from and to files and other commands

• terminate processes

It first covers the characters having special meanings to the shell and then
covers the commands for carrying out the tasks listed above. For your
convenience, Table 7-1 summarizes the characters with special meanings that
are discussed in this chapter.

7-2 User's Guide

Table 7-1 . Characters with Special Meanings in the Shell Language

Character Function

* ? [] metacharacters that provide a shortcut for specifying
file names by pattern matching

& places commands in background mode, leaving your
terminal free for other tasks

; separates multiple commands on one command line

\ turns off the meaning of special characters such as * ,
?, [] , & , ; , > , < , and I .

' '

>

<

> >

$

single quotes tum off the delimiting meaning of a
space and the special meaning of all special characters

double quotes tum off the delimiting meaning of a
space and the special meaning of all special characters
except $ and '

redirects output of a command into a file (replaces
existing contents)

redirects command input so that it comes from a file

redirects output of a command so that it is added to
the end of an existing file

creates a pipe of the output of one command to the
input of another command

grave accents allow the output of a command to be
used directly as arguments on a command line

used with positional parameters and user-defined
variables; also used as the default shell prompt symbol

Shell Tutorial 7-3

I

I

Metacharacters

Metacharacters, a subset of the special characters, represent other characters .
They are sometimes called wild cards, because they are like the joker in card
games that can be used for any card. The metacharacters * (asterisk), ?
(question mark), and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names, thereby
simplifying the task of specifying files or groups of files as command
arguments . (The files whose names match the patterns formed from these
metacharacters must already exist.) This is known as file-name expansion. For
example, you may want to refer to all file names containing the letter "a", all
file names consisting of five letters.

Matching All Characters : Asterisk (*)

The asterisk (*) matches any string of characters including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone
refers to all the file and directory names in the current directory. To see the
effect of the *, try it as an argument to the echo(l) command. Type:

echo *<CR>

The echo command displays its arguments on your screen. Notice that the
system response to echo * is a listing of all file names in your current
directory. However, the file names are displayed horizontally instead of in
vertical columns such as those produced by the Is command.

Table 7-2 summarizes the syntax and capabilities of the echo command.

CAUTION

The * is a powerful character. For example, if
you type rm * you will erase all the files in
your current directory.

7-4 User's Guide

Table 7-2. Summary of the echo Command

Command Recap

echo - write any arguments to the output

Command Options Arguments

echo none any character(s)

Description: echo writes arguments that are separated by blanks
and ended with <CR> to the output.

Remarks: In shell programming, echo is used to issue
instructions, to redirect words or data into a file,
and to pipe data into a command. All these uses
are discussed later in this chapter.

For another example, you have written several reports and named them
report, report1 , report1 a, report1 b.01 , report25, and report31 6. By typing
report1 * you can refer to all files that are part of reportl, collectively. To find
out how many reports you have written, you can use the Is command to list
all files that begin with the string "report," as shown in the following
example .

$ Is report•<CR>
report.
report. !
report. l a
report.lb . O l
report.26
report.3 16
$

Shell Tutorial 7-5

I

I

The * matches any characters after the string "report," including no letters at
all . Notice that * matches the files in numerical and alphabetical order. A
quick and easy way to print the contents of your report files in order on your
screen is by typing the following command:

pr report* <CR>

Now try another exercise . Choose a character that all file names in your
current directory have in common, e.g. , a lowercase "a." Then request a
listing of those files by referring to that character. For example, if you choose
a lowercase "a," type the following command line:

Is *S*< CR>

The system responds by printing the names of all the files in your current
directory that contain a lowercase "a."

The * can represent characters in any part of the file name. For example, if
you know that several files have their first and last letters in common, you
can request a list of them on that basis . For such a request, your command
line might look like this:

Is F* E<CR>

The system response is a list of file names that begin with F, end with E, and
are in the following order:

F1 23E
FATE
FE
Fig3.4E

The order is determined by the ASCII sort sequence: (1) numbers;
(2) uppercase letters; (3) lowercase letters .

7-6 User's Guide

Matching One Character: Question Mark (?)

The question mark (?) matches any single character of a file name. For
example, you have written several chapters in a book that has 12 chapters,
and you want a list of those you have finished through Chapter 9. Use the Is
command with the ? to list all chapters that begin with the string "chapter"
and end with any single character:

$ Is chapter?<CR>
chapter1
chapter2
chapter6
chapter9
$

The system responds by printing a list of all file names that match.

Although ? matches any one character, you can use it more than once in a file
name. To list the rest of the chapters in your book, type:

Is chapter??<CR>

If you want to list all the chapters in the current directory, use the * =

Is chapter*

Shell Tutorial 7-7

I

I

Using the * or ? To Correct Typing Errors

Suppose you use the mv{l) command to move a file, and you make an error
and enter a character in the file name that is not printed on your screen. The
system incorporates this non-printing character into the name of your file and
subsequently requires it as part of the file name. If you do not include this
character when you enter the file name on a command line, you get an error
message. You can use * or ? to match the file name with the non-printing
character and rename it to the correct name.

Try the following example:

1 . Make a very short file called trial .

2. Type: mv trial triai<Ag> 1 < CR>

(Remember, to type <Ag> you must hold down the CONTROL key and
press the <g> key.)

3 . Type: Is tria l 1 < CR>

The system responds with an error message:

$ Is tria l 1 <CR>
tri a1 1 : n o such f i l e o r directory
$

4. Type: Is trial?1 <CR>

The system responds with the file name trial 1 (including the non
printing character), verifying that this file exists . Use the ? again to
correct the file name.

$ mv tria l?1 trial 1 <CR>
$ Is triai 1 < CR>
trial l
$

7-8 User's Guide

Matching One of a Set : Brackets ([])

Use brackets ([]) when you want the shell to match any one of several
possible characters that may appear in one position in the file name. For
example, if you include [crf] as part of a file name pattern, the shell will look
for file names that have the letter "c", the letter "r'', or the letter "f" in the
specified position, as the following example shows:

$ Is [crf]at<CR>
cat
f at
rat
$

This command displays all file names that begin with the letter "c", "r'', or
"f" and end with the letters "at" . Characters that can be grouped within
brackets in this way are collectively called a character class .

Brackets can also be used to specify a range of characters, whether numbers
or letters . For example, the following specifies that the shell matches any files
named chapter1 through chapterS.

chapter[1 -5]

This is an easy way to handle only a few chapters at a time.

Try the pr command with an argument in brackets:

$ pr chapter[2-4]<CR>

This command prints the contents of chapter2, chapter3, and chapter4, in
that order, on your terminal.

Shell Tutorial 7-9

I

I

A character class may also specify a range of letters . If you specify [A-Z], the
shell looks only for uppercase letters; if [a-z], only lowercase letters .

The uses of the metacharacters are summarized in Table 7-3 . Try out the
metacharacters on the files in your current directory.

Table 7-3. Summary of Metacharacters

Notation Function

* matches any string of characters, including an empty
(null) string

? matches any single character

[chars] matches one of the sequence of characters specified
within the brackets

[char -char] matches one of the range of characters specified

Special Characters

The shell language has other special characters that perform a variety of
useful functions . Some of these additional special characters are discussed in
this section; others are described in the next section, Input and Output
Redirection.

Executing in Background: Ampersand (&)

Some shell commands take considerable time to execute . The ampersand (&)
is used to execute commands in background mode, freeing your terminal for
other tasks . The general format for running a command in background mode
is:

command &<CR>

7-10 User's Guide

NOTE

You should not run interactive shell
commands, for example read (see Using the
read Com1111lnd in this chapter), in the
background.

In the example below, the shell is performing a long search in background
mode. Specifically, the grep(l) command is searching for the string
"delinquent" in the file accounts. Notice the & is the last character of the
command line:

$ grep del inquent accounts &<CR>
21940
$

When you run a command in the background, the operating system outputs a
process number; 21 940 is the process number in the example. You can use I this number to stop the execution of a background command. (Stopping the
execution of processes is discussed in the Executing and Terminating Processes
section.) The prompt on the last line means the terminal is free and waiting
for your commands; grep has started running in background.

Running a command in background affects only the availability of your
terminal; it does not affect the output of the command. Whether or not a
command is run in background, it prints its output on your terminal screen,
unless you redirect it to a file . {See Redirecting Output, later in this chapter,
for details .)

If you want a command to continue running in background after you log off,
you can submit it with the nohup(l) command. (This is discussed in Using the
nohup Com1111lnd, later in this chapter.)

Executing Commands Sequential ly: Semicolon (;)

You can type two or more commands on one line as long as each pair is
separated by a semicolon (;) :

com1111lnd1 ; com11'Ulnd2 ; com11'Ulnd3<CR>

The operating system executes the commands in the order that they appear in
the line and prints all output on the screen. This process is called sequential
execution .

Shell Tutorial 7-11

I

Try this exercise to see how the ; works. First, type:

cd ; pwd ; ls<CR>

The shell executes these commands sequentially:

1 . cd changes your location to your login directory

2. pwd prints the full path name of your current directory

3. Is lists the files in your current directory

If you do not want the systems responses to these commands to appear on
your screen, refer to Redirecting Output for instructions.

Turning Off Special Meanings : Backslash

The shell interprets the backslash (\) as an escape character that allows you to
tum off any special meaning of the character immediately after it. To see how
this works, try the following exercise . Create a two-line file called trial that
contains the following text:

The all * game
was held in Summit .

Use the grep command to search for the asterisk in the file, as shown in the
following example:

$ grep '* tria i<CR>
The all * game
$

The grep command finds the * in the text and displays the line in which it
appears. Without the \, the * would be a metacharacter to the shell and
would match all file names in the current directory.

Turning Off Special Mean ings : Quotes

Another way to escape the meaning of a special character is to use quotation
marks. Single quotes (' . . . ') tum off the special meaning of any character.
Double quotes (" . . . ") tum off the special meaning of all characters except $
and ' (grave accent) retain their special meanings within double quotes. An
advantage of using quotes is that numerous special characters can be enclosed
in the quotes; this can be more concise than using the backslash.

7-12 User's Guide

For example, if your file named trial also contained the following line:

He really wondered why? Why?? ?

You could use the grep command to match the line with the three question
marks:

$ grep '??? ' tria i<CR>
He really wondered why? Why?? ?
$

If you had instead entered the command:

grep ??? triai< CR>

The three question marks would have been used as shell metacharacters and
matched all file names of length three .

Using Quotes to Turn Off the Meaning of a Space

A common use of quotes as escape characters is for turning off the special I meaning of the blank space. The shell interprets a space on a command line
as a delimiter between the arguments of a command. Both single and double
quotes allow you to escape that meaning.

For example, to locate two or more words that appear together in text, make
the words a single argument (to the grep command) by enclosing them in
quotes. To find the two words "The all" in your file trial, enter the following
command line:

$ grep lhe a l l ' tria i<CR>
The all * game
$

grep finds the string "The all" and prints the line that contains it. What
would happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is helpful when you are
using the banner(l) command. This command prints a message across a
terminal screen in large, poster size letters .

To execute banner, specify a message consisting of one or more arguments (in
" this case usually words), separated on the command line by spaces. The

banner uses these spaces to delimit the arguments and print each argument
on a separate line .

Shell Tutorial 7-13

I

To print more than one argument on the same line, enclose the words,
together, in double quotes. For example, to send a birthday greeting to
another user, type:

banner happy birthday to you<CR>

The command prints your message as a four-line banner. Now print the same
message as a three-line banner. Type:

banner happy birthday "to you"<CR>

Notice that the words "to" and "you" now appear on the same line . The
space between them has lost its meaning as a delimiter.

Table 7-4 summarizes the syntax and capabilities of the banner command.

Table 7-4. Summary of the banner Command

Command Recap

banner - make posters

Command Options Arguments

banner none characters

Description : banner displays up to ten characters in large letters

Remarks : Later in this chapter you will learn how to redirect
the banner command into a file to be used as a
poster.

7-14 User's Guide

In put and Output Red i rection

In the operating system, some commands expect to receive their input from
the keyboard (standard input) and most commands display their output at the
terminal (standard output) . However, the operating system lets you reassign
the standard input and output to other files and programs. This is known as
redirection. With redirection, you can tell the shell to:

• take its input from a file instead of the keyboard

• send its output to file instead of the terminal

• use a program as the source of data for another program

You use a set of operators, the less than sign (<), the greater than sign (>),
two greater than signs (> >), and the pipe { I) to redirect input and output.

Redirecting Input : < Sign

To redirect input, specify a file name after a less than sign (<) on a command
line:

commilnd < file< CR>

For example, assume that you want use the mail{l) command (described in
Chapter 8) to send a message to another user with the login colleague and
that you already have the message in a file named report. You can avoid
retyping the message by specifying the file name as the source of input:

mail col league < report<CR>

Redirecting Output to a Fi le : > Sign

To redirect output, specify a file name after the greater than sign (>) on a
command line:

commilnd > file<CR>

Shell Tutorial 7-15

I

I

CAUTION

If you redirect output to a file that already
exists, the output of your command will
overwrite the contents of the existing file.

Before redirecting the output of a command to a particular file, make sure that
a file by that name does not already exist, unless you do not mind losing it.
Because the shell does not allow you to have two files of the same name in a
directory, it overwrites the contents of the existing file with the output of your
command if you redirect the output to a file with the existing files name. The
shell does not warn you about overwriting the original file .

To make sure there is no file with the name you plan to use, run the Is
command, specifying your proposed file name as an argument. If a file with
that name exists, Is will list it; if not, you receive a message that the file was
not found in the current directory. For example, checking for the existence of
the files temp and junk would give you the following output:

$ Is temp<CR>
temp
$ Is junk<CR>
j unk : no such f i l e or dir e ctory
$

This means you can name your new output file junk, but you cannot name it
temp unless you no longer want the contents of the existing temp file .

7-16 User's Guide

Appending Output to an Existing File: > > Symbol

To keep from destroying an existing file, you can also use the double
redirection symbol (> >), as follows:

command > > file<CR>

This appends the output of a command to the end of the file file. If file does
not exist, it is created when you use the > > symbol this way.

The following example shows how to append the output of the cat command
to an existing file . First, the cat command is executed on both files without
output redirection to show their respective contents . Then the contents of
trial2 are added after the last line of trial1 by executing the cat command on
trial2 and redirecting the output to trial 1 .

Shell Tutorial 7-17

I

I

$ cat trial1 <CR>
Thi a ia the :t ir a t l ine o:t trial 1 .
Hello .
Thi a i a the laat l ine o:t trial 1 .
$
$ cat triai2<CR>
Thi a ia the b e g inning o:t trial2 .
Hello .
Thi a i a the end o:t trial2 .
$
$ cat trial2 > > triai1 <CR>
$ cat trial1 <CR>
Thi a i a the :t ir a t line o:t trial 1 .
Hello .
Thi a i a the laa t line o:t trial 1 .
Thi a i a the b e g inning o:t trial2 .
Hello .
Thi a i a the e nd o:t trial2 .
$

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on your
screen immediately or when you want to save it. Output redirection is also
especially useful when you run commands that perform clerical chores on text
files. Two such commands are spell and sort.

The spell Command

The spell program compares every word in a file against its internal
vocabulary list and prints a list of all potential misspellings on the screen. If
spell does not have a listing for a word (e .g . , a persons name), it also reports
that as a misspelling.

7-18 User's Guide

Running spel l on a lengthy text file can take a long time and may produce a
list of misspellings that is too long to fit on your screen. spell prints all its
output at once; if it does not fit on the screen, the command scrolls it
continuously off the top until it has all been displayed. A long list of
misspellings rolls off your screen quickly and may be difficult to read.

You can avoid this problem by redirecting the output of spell to a file . In the
following example, spell searches a file named memo and places a list of
misspelled words in a file named m isspell :

$ spel l memo > m isspei i<CR>

Table 7-5 summarizes the syntax and capabilities of the spell command.

Table 7-5. Summary of the spell Command

Command Recap

spell - find spelling errors

Command Options Arguments

spel l available* file

Description : spel l collects words from a specified file or files
and looks them up in a spelling list. Words that
are not on the spelling list are displayed on your
terminal.

Options : spel l has several options, including one for
checking British spellings.

Remarks : The list of misspelled words can be redirected into
a file .

* See the spell(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities .

Shell Tutorial 7-19

I

I

The sort Command

The sort command arranges the lines of a specified file in alphabetical order
(see Chapter 3 for details) . Because users generally want to keep a file that
has been alphabetized, output redirection greatly enhances the value of this
command.

Be careful to choose a new name for the file that will receive the output of the
sort command (the alphabetized list) . When sort is executed, the shell first
empties the file that will accept the redirected output. Then it performs the
sort and places the output in the blank file . If you type the following, the
shell will empty l ist and then sort nothing into l ist.

sort l ist > l ist<CR>

Combining Background Mode and Output Redirection

Running a command in background does not affect the commands output;
unless it is redirected, output is always printed on the terminal screen. If you
are using your terminal to perform other tasks while a command runs in
background, you are interrupted when the command displays its output on
your screen. However, if you redirect that output to a file, you can work
undisturbed.

For example, in the Special Characters section you learned how to execute the
grep command in background with &. Now suppose you want to find
occurrences of the word "test" in a file named schedule. Run the grep
command in background and redirect its output to a file called testfi le:

$ grep test schedule > testfi le &<CR>

You can then use your terminal for other work and examine testfi le when you
have finished it.

Redirecting Output to a Command: P ipe { I)

The I character is called a pipe. Pipes are powerful tools that allow you to take
the output of one command and use it as input for another command without
creating temporary files . A multiple command line created in this way is
called a pipeline.

7-20 User's Guide

The general format for a pipeline is:

commandl I command2 I command3 . . . <CR>

The output of commandl is used as the input of command2 . The output of
command2 is then used as the input for command3 .

To understand the efficiency and power of a pipeline, consider the contrast
between two methods that achieve the same results:

• To use the input/output redirection method, run one command and
redirect its output to a temporary file . Then run a second command that
takes the contents of the temporary file as its input. Finally, remove the
temporary file after the second command has finished running.

• To use the pipeline method, run one command and pipe its output directly
into a second command.

For example, you want to mail a happy birthday message in a banner to the
owner of the login david. Doing this without a pipeline is a three-step
procedure. You must:

1. Enter the banner command and redirect its output to a temporary file:

banner happy birthday > message.tmp

2. Enter the mail command using message.tmp as its input:

mai l david < message.tmp

3. Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday 1 mai l david<CR>

A P ipel ine Using the cut and date Commands

The cut and date commands provide a good example of how pipelines can
increase the versatility of individual commands. The cut command allows
you to extract part of each line in a file . It looks for characters in a specified
part of the line and prints them. To specify a position in a line, use the - c
option and identify the part of the file you want by the numbers of the spaces
it occupies on the line .

Shell Tutorial 7-21

I

I

For example, you want to display only the dates from a file called birthdays.
The file contains the following list:

Anne 12/26
Klaus 7/4
Ma.ry 10/18
Peter 1 1/9
Na.ndy 4/23
Sam 8/12

The birthdays appear between the ninth and thirteenth spaces on each line .
To display them, type:

cut - c9-1 3 birthdays<CR>

The output is shown below:

12/26
7/4
1 0 / 1 8
1 1 /9
4/23
8 / 1 2

7-22 User's Guide

Table 7-6 summarizes the syntax and capabilities of the cut command.

Table 7-6. Summary of the cut Command

Command Recap

cut - cut out selected fields from each line of a file

Command

cut

Description :

Options :

Remarks :

Options Arguments

-clist file
-flist [- d]

cut extracts columns from a table or fields from
each line of a file .

-c lists the number of character positions from the
left. A range of numbers such as characters 1-9
can be specified by -c1-9.

-f lists the field number from the left separated by
a delimiter described by -d.

- d gives the field delimiter for -f . The default i s a
space. If the delimiter is a colon, this would be
specifie� by -d : .

If you find the cut command useful, you may also
want to use the paste and spl it commands.

The cut command is usually executed on a file. However, piping makes it
possible to run this command on the output of other commands, too. This is
useful if you want only part of the information generated by another
command.

Shell Tutorial 7-23

I

I

For example, you may want to have the time printed. The date command
prints the day of the week, date, and time, as follows:

$ date<CR>
Sat Dec 27 13 : 12 : 32 EST 1986

Notice that the time is given between the twelfth and nineteenth spaces of the
line . You can display the time (without the date) by piping the output of date
into cut, specifying spaces 1 2-1 9 with the -c option. Your command line
and its output will look like this:

$ date 1 cut -c12-19<CR>
13 : 14 : 56

7-24 User's Guide

Table 7-7 summarizes the syntax and capabilities of the date command.

Command

date

Description :

Options:

Remarks :

Table 7-7. Summary of the date Command

Command Recap

date - display the date and time

Options

+ %m%d%y*
+ %H%%M%S

Arguments

available*

date displays the current date and time on your
terminal

+ % followed by m (for month), d (for day), y (for
year), H (for hour), M (for month), and S (for
second) will echo these back to your terminal . You
can add explanations, for example:

date '+%H :%M is the time'

If you are working on a small computer system of
which you are both a user and the System
Administrator, you may be allowed to set the date
and time using optional arguments to the date
command. Check your reference manual for
details . When working in a multiuser
environment, the arguments are available only to
the System Administrator.

* See the date(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities .

Shell Tutorial 7-25

I

I

Substituting Output for an Argument

The output of any command may be captured and used as arguments on a
command line . This is done by enclosing the command in grave accents (' . . . ')
and placing it on the command line in the position where the output should
be treated as arguments . This is known as command substitution.

For example, you can substitute the output of the date and cut pipeline
command used previously for the argument in a banner printout by typing
the following command line:

$ banner 'date 1 cut -e1 2-1 9' <CR>

Notice the results: the system prints a banner with the current time.

The Shell Programming section in this chapter shows you how you can also use
the output of a command line as the value of a variable.

Executing and Term i nat ing Processes

This section discusses the following topics:

• how to schedule commands to run at a later time by using the batch or
at command

• how to obtain the status of active processes

• how to terminate active processes

• how to keep background processes running after you have logged off

Executing at a Later Time: batch and at Commands

The batch and at commands allow you to specify a command or sequence of
commands to be run at a later time. With the batch command, the system
determines when the commands run; with the at command, you determine
when the commands run. Both commands expect input from standard input
(the terminal); the list of commands entered as input from the terminal must
be ended by pressing <Ad> (CTRL·d) .

7-26 User's Guide

The batch command is useful if you are running a process or shell program
that uses a large amount of system time. The batch command submits a
batch job (containing the commands to be executed) to the system. The job is
put in a queue, and runs when the system load falls to an acceptable level .
This frees the system to respond rapidly to other input and is a courtesy to
other users .

The general format for batch is:

batch<CR>
first command<CR>

last command<CR>
<Ad>

If there is only one command to be run with batch, you can enter it as
follows:

batch command_line< CR>
<Ad>

The next example uses batch to execute the grep command at a convenient
time . Here grep searches all files in the current directory and redirects the
output to the file dol.fi le.

$ batch grep dollar • > dol·flle<CR>
<"d>
j ob 1 66223 1 4 1 . b at Sun Dec 7 1 1 : 14 : 64 1986
$

After you submit a job with batch, the system responds with a job number,
date, and time. This job number is not the same as the process number that
the system generates when you run a command in the background.

Shell Tutorial 7-27

I

I

Table 7-8 summarizes the syntax and capabilities of the batch Command.

Table 7-8. Summary of the batch Command

Command Recap

batch - execute commands at a later time

Command Options Input

batch none comnumd_lines

Description : batch submits a batch job, which is placed in a
queue and executed when the load on the system
falls to an acceptable level.

Remarks : The list of commands must end with a <Ad>
(CTRL-d) .

The at command allows you to specify an exact time to execute the
commands . The general format for the at command is:

at time<CR>
first command<CR>

last command<CR>
<Ad>

The time argument consists of the time of day and, if the date is not today, the
date .

7-28 User's Guide

The following example shows how to use the at command to mail a happy
birthday banner to login emi ly on her birthday:

$ at 8 :1 5am Feb 27<CR>
banner happy birthday I mall emlly<CR>
<"d>
j ob 463400603 . & at Thura Feb 27 0 8 : 16 : 00 1986
$

Notice that the at command, like batch, responds with the job number, date,
and time.

If you decide you do not want to execute the commands currently waiting in a I batch or at job queue, you can erase those jobs by using the - r option of the
at command with the job number. The general format is:

at -r jobnumber<CR>

Try erasing the previous at job for the happy birthday banner. Type in:

at - r 453400603.a<CR>

Shell Tutorial 7-29

I

If you have forgotten the job number, the at - I command will give you a list
of the current jobs in the batch or at queue, as the following screen shows (if
you are logged in as root, the notation "users = username" also appears) :

$ at - I < CR>

$"

mylogin 168302040 . a at Sat Nov 29 1 3 : 00 : 00 1986
= mylogin 463400603 . a at Fri Feb 27 0 8 : 16 : 00 1987

Notice that the system displays the job number and the time the job will run.

Using the at command, mail yourself the file memo at noon, to tell you it is
lunch time . (You must redirect the file into mail unless you use the here
document, described in the Shell Programming section.) Then try the at
command with the - I option:

$ at 1 2 :00pm<CR>
mail mylogin < memo<CR>
<Ad>
j ob 263 1 3 1 764 . a at Jun 30 1 2 : 00 : 00 1986
$
$ at - I < CR>
u s e r = mylogin 263 1 3 1 764 . a at Jun 30 1 2 : 00 : 00 1986
$

7-30 User's Guide

Table 7-9 summarizes the syntax and capabilities of the at command.

Command

at

Description :

Options :

Remarks :

Table 7-9. Summary of the at Command

Command Recap

at - execute commands at a specified time

Options

-r
-I

Arguments

time (date)
jobnumber

Executes commands at the time specified. You can
use between one and four digits, and am or pm to
show the time. To specify the date, give a month
name followed by the number for the day. You do
not need to enter a date if you want your job to run
the same day. See the at{l) manual page in the
User's Reference Manual for other default times.

The -r option with the job number removes
previously scheduled jobs.

The - 1 option (no arguments) reports the job
number and status of all scheduled at and batch
jobs.

Examples of how to specify times and dates with
the at command:

at 08 :1 5am Feb 27
at 5 : 1 4pm Sept 24

Shell Tutorial 7-31

I

I

Obtaining the Status of Running Processes

The ps command gives you the status of all the processes you are currently
running. For example, you can use the ps command to show the status of all
processes that you run in the background using & (described in the earlier
section Special Characters) .

The next section, Tenninating Active Processes, discusses how you can use the
PID (process identification) number to stop a command from executing. A
PID is a number from 1 to 30,000 that the operating system assigns to each
active process.

In the following example, grep is run in the background, then the ps
command is issued. The system responds with the process identification
(PID) and the terminal identification (TTY) number. It also gives the
cumulative execution time for each process (TIME), and the name of the
command that is being executed {COMMAND) .

$ g rep word " > temp &<CR>

28223
$
$ ps <CR>
P I D

28 12 4
28223
28224
$

TTY TIME COWAND

tty100 : 00 ah
tty100 : 04 grep
tty100 : 04 pa

Notice that the system reports a PID number for the grep command, as well
as for the other processes that are running: the ps command itself, and the sh
(shell) command that runs while you are logged in. The shell program sh
interprets the shell commands and is discussed in Chapters 1 and 4.

7-32 User's Guide

Table 7-10 summarizes the syntax and capabilities of the ps command.

Table 7-1 0. Summary of the ps Command

Command Recap

ps - report process status

Command Options Arguments

ps several* none

Description : ps displays information about active processes .

Options: Several. If none are specified, ps displays the
status of all active processes you are running.

Remarks : Gives you the PID (process ID) . This is needed to
kil l a process (stop the process from executing) .

* See the ps(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Term inating Active Processes

The ki l l command is used to terminate active shell processes. The general
format for the ki l l command is:

kill PID<CR>

You can use the ki l l command to terminate processes that are running in
background . Note that you cannot terminate background processes by
pressing the BREAK or CINTR key.

The following example shows how you can terminate the grep command that
you started executing in background in the previous example:

$ ki l l 28223<CR>
28223 Terminated
$

Shell Tutorial 7-33

I

I

Notice the system responds with a message and a $ prompt, showing that
the process has been killed. If the system cannot find the PID number you
specify, it responds with an error message:

kill : 28223 : No such process

Table 7-11 summarizes the syntax and capabilities of the kil l command.

Table 7-1 1 . Summary of the kil l Command

Command Recap

ki l l - terminate a process

Command Options Arguments

ki l l available* job number or PID

Description : ki l l terminates the process specified by the PID
number.

* See the kil l(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities.

Using the nohup Command

All processes are killed when you log off. If you want a background process
to continue running after you log off, you must use the nohup command to
submit that background command.

To execute the nohup command, follow this format:

nohup command &<CR>

Notice that you place the nohup command before the command you intend to
run as a background process.

7-34 User's Guide

For example, you want the grep command to search all files in the current
directory for the string "word" and redirect the output to a file called
word.l ist, and you wish to log off immediately afterward. Type the command
line as follows:

nohup grep word * > word.l ist & < CR>

You can terminate the nohup command by using the ki l l command.

Table 7-12 summarizes the syntax and capabilities of the nohup command.

Table 7-1 2. Summary of the nohup Command

Command Recap

nohup - prevents interruption of command execution by hang ups

Command Options Arguments

nohup none command line

Description : Executes a command line, even if you hang up or
quit the system.

Now that you have mastered these basic shell commands and notations, use
them in your shell programs. The exercises that follow will help you practice
using shell command language. The answers to the exercises are at the end
of the chapter.

Shell Tutorial 7-35

I

Command Lang uage Exercises

1-1 . What happens if you use an * (asterisk) at the beginning of a file
name? Try to list some of the files in a directory using the * with the
last letter of one of your file names. What happens?

1-2. Try the following two commands; enter them as follows:

1-3 .

1-4.

1 1-5 .

1-6.

cat[G-9]* < CR>
echo * < CR>

I s i t acceptable to use a ? at the beginning or in the middle of a file
name generation? Try it.

Do you have any files that begin with a number? Can you list them
without listing the other files in your directory? Can you list only
those files that begin with a lowercase letter between a and m? (Hint:
use a range of numbers or letters in []) .

Is i t acceptable to place a command in background mode on a line that
is executing several other commands sequentially? Try it. What
happens? (Hint: use ; and &.) Can the command in background
mode be placed in any position on the command line? Try placing it in
various positions. Experiment with each new character that you learn
to see the full power of the character.

Redirect the output of pwd and Is into a file by using the following
command line:

cd; pwd; Is; ed triai< CR>

Remember, if you want to redirect both commands to the same file,
you have to use the > > (append) sign for the second redirection. If
you do not, you will wipe out the information from the pwd
command.

7-36 User's Guide

1-7. Instead of cutting the time out of the date response, try redirecting
only the date, without the time, into banner. What is the only part
you need to change in the time command line?

banner 'date 1 cut -c1 2-1 9'<CR>

Shel l Prog ram m i ng

You can use the shell to create programs and/or new commands. Such
programs are also called shell procedures. This section tells you how to create
and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

The examples of shell programs in this section are shown two ways . First,
the cat command is used in a screen to display the contents of a file
containing a shell program:

$ cat testfile<CR>
first command

last command
$

Second, the results of executing the shell program appear after a command
line:

$ testfile<CR>
program_output
$

You should be familiar with an editor before you try to create shell programs .
See to the tutorials in Chapter 5 (for the ed editor) and Chapter 6 (for the vi
editor) .

Shell Tutorial 7-37

I

I

Shel l Programs

Creating a Simple Shell Program

Create a simple shell program that does the following tasks, in order:

1 . Print the current directory.

2. List the contents of that directory.

3. Display this message on your terminal: "This is the end of the shell
program."

Create a file called dl (short for directory list) using your editor of choice, and
enter the following:

pwd<CR>
ls< CR>
echo This is the end of the shell program.<CR>

Now write and quit the file. You have just created a shell program! You can
cat the file to display its contents, as the following screen shows:

$ cat di<CR>
pwd
ls
e cho Thi s i s the end of the shell program .
$

7-38 User's Guide

Executing a Shell Program

One way to execute a shell program is to use the sh command. Type:

sh di<CR>

The dl command is executed by sh, and the path name of the current
directory is printed first, then the list of files in the current directory, and
finally, the comment This is the end of the shell program. The sh
command provides a good way to test your shell program to make sure it
works .

If dl is a useful command, you can use the chmod command to make it an
executable file; then you can type dl by itself to execute the command it
contains . The following example shows how to use the chmod command to
make a file executable and then run the Is - I command to verify the changes
you have made in the permissions:

$ chmod u+x di<CR>
$ Is - I<CR>
total 2
-rw------- 1 login login 366 1 Nov 2 1 0 : 28 mbox
-rwx------ 1 login login 48 Nov 1 6 1 0 : 60 d l

$

Notice that chmod turns on permission to execute (+ x) for the user (u) . Now
dl is an executable program. Try to execute it. Type:

di<CR>

You get the same results as before, when you entered sh dl to execute i t . For
further details about the chmod command, see Chapter 3 .

Shell Tutorial 7-39

I

I

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
make a bin directory from your login directory and move the shell files to
your bin.

You must also set your shell variable PATH to include your bin directory:

PATH =$PATH :$HOME/bin

See Variables and Using Shell Variables in this chapter for more information
about PATH .

The following example will remind you which commands are necessary. In
this example, dl is in the login directory. Type these command lines:

cd< CR>
mkdir bin<CR>
mv dl bin/d i<CR>

Move to the bin directory and type the Is -1 command. Does dl still have
execute permission?

Now move to a directory other than the login directory, and type the
following command:

d i < C R >

What happened?

Table 7-13 summarizes your new shell program, dl .

Table 7-1 3. Summary of the dl Shell Program

Shel l Program Recap

dl - display the directory path and directory contents (user defined)

Command Arguments

dl none

Description : dl displays the output of the shell command pwd
and Is.

7-40 User's Guide

It is possible to give the bin directory another name; if you do so, you need to
change your shell variable PATH again.

Warn ings About Naming Shel l Programs

You can give your shell program any appropriate file name. However, you
should not give your program the same name as a system command. If you
do, the system executes your command .instead of the system command. For
example, if you had named your dl program mv, each time you tried to move
a file, the system would have executed your directory list program instead of
mv.

Another problem can occur if you name the dl file Is, and then try to execute
the file. You would create an infinite loop, since your program executes the
Is command. After some time, the system would give you the following error
message:

Too many processes , cannot fork

What happened? You typed in your new command, Is. The shell read and
executed the pwd command. Then it read the Is command in your program
and tried to execute your Is command. This formed an infinite loop.

SYSTEM V/88 designers wisely set a limit on how many times an infinite loop
can execute . One way to keep this from happening is to give the path name
for the system's Is command, /bin/Is, when you write your own shell
program.

The following Is shell program would work:

e cho Thi s is the end of the she ll program

Shell Tutorial 7-41

I

I

If you name your command Is, then you can only execute the system Is
command by using its full path name, /bin/Is.

Variables

Variables are the basic data objects shell programs manipulate, other than
files . Here we discuss three types of variables and how you can use them:

• positional parameters

• special parameters

• named variables

Positional Parameters

A positional parameter is a variable within a shell program whose value is set
from an argument specified on the command line invoking the program.
Positional parameters are numbered and are referred to with a preceding
$: e.g. , $1 , $2, $3 .

A shell program may reference up to nine positional parameters . If a shell
program is invoked with the followiwng command line, then positional
parameter $1 within the program is assigned the value pp1 , positional
parameter $2 within the program is assigned the value pp2, and so on, when
the shell program is invoked.

shell .prog pp1 pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<CR>

7-42 User's Guide

Create a file called pp (short for positional parameters) to practice positional
parameter substitution. Then enter the echo commands shown in the
following screen. Enter the command lines so that running the cat command
on your completed file will produce the following output:

$ cat pp<CR>
e cho The f irst pos itional parameter i s : $ 1 <CR>
e cho The s e cond pos itional parameter i s : $2<CR>
e cho The third pos itional parameter i s : $3<CR>
e cho The f ourth pos itional parameter i s : $4<CR>
$

If you execute this shell program with the arguments one, two, three, and
four, you will obtain the following results (first you must make the shell
program pp executable using the chmod command) :

$ chmod u + x pp<CR>
$
$ pp one two three four<CR>
The f irst pos itional parame ter i s : one
The s e cond positional parame ter i s : two
The third pos i tional parame ter is : thre e
The f ourth pos itional parame ter i s : four
$

Shell Tutorial 7-43

I

I

The following screen shows the shell program bbday, which mails a greeting
to the login entered in the command line:

$ cat bbday<CR>
banner happy birthday I mai l $ 1

Try sending yourself a birthday greeting. If your login name i s sue, your
command line will be:

bbday sue<CR>

Table 7-14 summarizes the syntax and capabilities of the bbday shell program.

Table 7-1 4. Summary of the bbday Command

Shel l Program Recap

bbday - mail a banner birthday greeting (user defined)

Command Arguments

bbday login

Description : bbday mails the message happy birthday, in
poster-sized letters, to the specified login.

7-44 User's Guide

The who command lists all users currently logged in on the system. How can
you make a simple shell program called whoson, that will tell you if the
owner of a particular login is currently working on the system?

Type the following command line into a file called whoson:

who 1 grep $1 <CR>

The who command lists all current system users, and grep searches the
output of the who command for a line containing the string contained as a
value in the positional parameter $1 .

Now try using your login as the argument for the new program whoson . For
example, say your login is sue. When you issue the whoson command, the
shell program substitutes sue for the parameter $1 in your program and
executes as if it were:

who 1 grep sue <CR>

The output is shown on the following screen:

$ whoson sue<CR>
tty26 Jan 24 1 3 : 36

If the owner of the specified login is not currently working on the system,
grep fails and the whoson prints no output.

Shell Tutorial 7-45

I

I

Table 7-15 summarizes the syntax and capabilities of the whoson command.

Table 7-1 5. Summary of the whoson Command

Shell Program Recap

whoson - display login information if user is logged in (user defined)

Command Arguments

whoson login

Description : If a user is on the system, whoson displays the
user's login, the TTY number, and the time and
date the user logged in.

The shell allows a command line to contain 128 arguments . However, a shell
program is restricted to referencing nine positional parameters, $1 through $9,
at a given time. (This restriction can be worked around using the shift
command.) The special parameter $*, described in the next section, can also
be used to access the values of all command line arguments .

Special Parameters

The $# is a special parameter. When referenced within a shell program,
contains the number of arguments with which the shell program was invoked.
Its value can be used anywhere within the shell program.

7-46 User's Guide

Enter the command line shown in the following screen in an executable shell
program called get.num . Then run the cat command on the file:

$ cat get.num<CR>
e cho The number of arguments is : $#
$

The program displays the number of arguments with which it is invoked. For
example:

$ get.num test out this program<CR>
The number of arguments i s : 4
$

Shell Tutorial 7-47

I

I

Table 7-16 summarizes the get.num shell program.

Table 7-1 6. Summary of the get.num Shell Program

Shell Program Recap

get.num - count and display the number of arguments (user defined)

Command Arguments

get.num (character _string)

Description : get.num counts the number of arguments given to
the command and then displays the total .

Remarks : This command demonstrates the special parameter
$#.

The $* is a special parameter. When referenced within a shell program,
contains a string with all the arguments with which the shell program was
invoked, starting with the first. You are not restricted to nine parameters as
with the positional parameters $1 through $9.

7-48 User's Guide

You can write a simple shell program to demonstrate $* . Create a shell
program called show.param that will echo all parameters. Use the command
line shown in the following completed file:

$ cat show.param<CR>
The parame ters for thi s command are : $ •

show.param echoes all the arguments you give to the command. Make
show.param executable and try it out, using these parameters:

Hel lo. How are you?

$ show.param Hello. How are you?<CR>
The parameters f or thi� command are : Hello . How are you?
$

Notice that show.param echoes Hello . How a.re you? Now try
show.param using more than nine arguments:

Shell Tutorial 7-49

I

I

$ ahow.param one two 3 4 5 alx 7 8 9 10 1 1 <CR>
for thi e command are : one two 3 4 6 eix 7 8 g 1 0 1 1

Once again, show.param echoes all the arguments you give. The $*
parameter can be useful i f you use file name expansion to specify arguments
to the shell command.

Use the file name expansion feature with your show.param command. For
example, you have several files in your directory named for chapters of a
book: chap1 , chap2, and so on, through chap7. show.param will print a list
of all those files .

$ show.param chap?<CR>
The parame ters for this command are : chap1 chap2 chap3
chap4 chap6 chapS chap7
$

7-50 User's Guide

Table 7-17 summarizes the show.param shell program.

Table 7-1 7. Summary of the show.param Shell Program

Shell Program Recap

show.param - display all positional parameters (user defined)

Command Arguments

show.param (any positional parameters)

Description : show.param displays all the parameters.

Remarks : If the parameters are file name generations, the
command will display each of those file names.

Named Variables

Another form of variable you can use within a shell program is a named
variable. You assign values to named variables yourself. The format for
assigning a value to a named variable is:

named_variable = value< CR>

Notice that there are no spaces on either side of the == sign.

In the following example, var1 is a named variable, and myname is the value
or character string assigned to that variable:

var1 = myname<CR>

A $ is used in front of a variable name in a shell program to reference the
value of that variable . Using the example above, the reference $var1 tells the
shell to substitute the value myname (assigned to var1) for any occurrence of
the character string $var1 .

Shell Tutorial 7-51

I

I

The first character of a variable name must be a letter or an underscore . The
rest of the name can be composed of letters, underscores, and digits . As in
shell program file names, it is not advisable to use a shell command name as
a variable name. Also, the shell has reserved some variable names you
should not use for your variables . A brief explanation of these reserved shell
variable names follows:

CDPATH
defines the search path for the cd command.

CERASE
is your preferred reassignment for the erase character. It is currently
used only by /locallbin/TermFuncs.

CINTR
is your preferred reassignment for the interrupt (terminate) character.

CKILL
is your preferred reassignment for the kill character.

CQU IT
is your preferred reassignment for the quit (abort) character.

HOME
is the default variable for the cd command (home directory) .

I FS
defines the internal field separators (normally the space, tab, and carriage
return) .

LOG NAME
is your login name.

MAIL
names the file that contains your electronic mail .

PATH
determines the search path used by the shell to find commands.

PS1
defines the primary prompt (default is $) .

PS2
defines the secondary prompt (default is >) .

7-52 User's Guide

TERM
identifies your terminal type. I t i s important to set this variable when
you are editing with vi or sledit.

TERM INFO
identifies the directory to be searched for information about your
terminal, for example, its screen size.

TZ
defines the time zone (default is ESTSEDT) .

Many of these variables are explained in Modifying Your Login Environment
later in this chapter. You can also read more about them on the sh(l) manual
page in the User's Reference Mllnual.

You can see the value of these variables in your shell in two ways. First, you
can type:

echo $variable_name

The system outputs the value of variable_name. Second, you can use the I env(l) command to print out the value of all defined variables in the shell . To
do this, type env on a line by itself; the system outputs a list of the variable
names and values. Typing set displays the value whether or not it is
exported .

Shell Tutorial 7-53

Assign ing a Value to a Variable

If you edit with vi, you know you can set the TERM variable by entering the
following command line:

TERM = termi1Ull_1Ulme<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

• Use the read command to assign input to the variabie .

• Redirect the output of a command into a variable by using command
substitution with grave accents (' . . . ') .

• Assign a positional parameter to the variable .

The following sections discuss each of these methods in detail .

I Using the read Command

The read command when used within a shell program, allows you to prompt
the user of the program for the values of variables. The general format for the
read command is:

read variable<CR>

The values assigned by read to variable are substituted for $variable wherever
it is used in the program. If a program executes the echo command just
before the read command, the program can display directions, e .g . , such as
Type in The read command waits until you type a character string,
followed by a RETURN key, then makes that string the value of the variable .

The following example shows how to write a simple shell program called
num.please to keep track of your telephone numbers . This program uses the
following commands for the purposes specified:

echo to prompt you for a persons last name

read to assign the input value to the variable name

grep to search the file l ist for this variable

7-54 User's Guide

Your finished program should look like the following:

$ cat num.please<CR>
e cho Type in the last name :
r e ad name
grep $name l i s t
$

Create a file called l ist that contains several last names and phone numbers .
Then try running num.please.

·

The next example is a program called mknum, which creates a list. mknum
includes the following commands for the purposes shown:

• echo prompts for a persons name.

• read assigns the persons name to the variable name.

• echo asks for the persons number.

• read assigns the telephone number to the variable num.

• echo adds the values of the variables name and num to the file l ist.

If you want the output of the echo command to be added to the end of l ist,
you must use > > to redirect it. If you use >, l ist will contain only the last
phone number you added.

Shell Tutorial 7-55

I

I

Running the cat command on mknum displays the program's contents .
When your program looks like this, you are ready to make it executable (with
the chmod command) :

$ cat mknum<CR>
e cho Type in name
rea.d name
e cho Type in number
rea.d num
e cho $name $num >> l i s t
$ chmod u + x mknum<CR>
$

Try out the new programs for your phone list. In the next example, mknum
creates a new listing for Mr. Niceguy. Then num.please gives you Mr.
Nice guy's phone number:

$ mknum<CR>
Type in the name
Mr. Niceguy<CR>
Type in the number
668·0007<CR>
$ num.please<CR>
Type in la.at name
Niceguy<CR>
Yr . N i c e guy 6 6 8 - 0 0 0 7
$

Notice that the variable name accepts both Mr. and Niceguy as the value .

7-56 User's Guide

Tables 7-18 and 7-19 summarize the mknum and num.please shell programs,
respectively.

Table 7-1 8. Summary of the mknum Shell Program

Shell Program Recap

mknum - place name and number on a phone list

Command Arguments

mknum (interactive)

Description : Asks you for the name and number of a person and
adds that name and number to your phone list.

Remarks : This is an interactive command.

Table 7-1 9. Summary of the num.please Shell Program

Shel l Program Recap

num.please - display a person's name and number

Command Arguments

num.please (interactive)

Description : Asks you for a persons last name, and then
displays the persons full name and telephone
number.

Remarks : This is an interactive command.

Shell Tutorial 7-57

I

I

Substituting Command Output for the Value of a Variable

You can substitute a commands output for the value of a variable by using
command substitution. Use the following format:

variable = ' command'< CR>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command was piped into
the cut command to get the correct time . That command line was:

date 1 cut - c1 2-1 9<CR>

You can put this in a simple shell program called t that will give you the time.

$ cat t<CR>
time=' date I cut -c 12- 1 9 '
e cho The time i s : $time
$

7-58 User's Guide

Remember there are no spaces on either side of the equal sign. Make the file
executable, and you will have a program that gives you the time:

time is : 10 : 36

Table 7-20 summarizes your t program.

Table 7-20. Summary of the t Shell Program

Shell Program Recap

t - display the correct time

Command Arguments

t none

Description : t gives you the correct time in hours and minutes.

Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by using the
format:

varl = $1 <CR>

Shell Tutorial 7-59

I

I

The next example is a simple program called simp.p that assigns a positional
parameter to a variable:

$ cat simp.p<CR>
var1=$ 1

$var 1

You can also assign the output of a command that uses positional parameters
to a variable:

person = 'who 1 grep $1 '<CR>

In the next example, the program log.time keeps track of your whoson
program results . The output of whoson is assigned to the variable person,
and added to the file login.fi le with the echo command. The last echo
displays the value of $person, which is the same as the output from the
whoson command:

$ cat log.time<CR>
pars on= ' who I grap $ 1 '
e cho $parson >> login . f i l a
e cho $parson
$

7-60 User's Guide

The system response to log.time is shown in the following screen:

$ log.time maryann<CR>
tty6 1 Apr 1 1 1 0 : 26

Table 7-21 summarizes the log.time shell program.

Table 7-21 . Summary of the log.time Shell Program

Shel l Program Recap

log.time - log and display a specified login (user defined)

Command Arguments

log. t ime login

Description : If the specified login is currently on the system,
log.time places the line of information from the
who command into the file login.fi le and then
displays that line of information on your terminal.

Shel l Prog ramming Constru cts

The shell programming language has several constructs that give added
flexibility to your programs:

• Comments let you document a programs function.

• The here document allows you to include within the shell program itself
lines to be redirected to be the input to some command in the shell
program.

Shell Tutorial 7-61

I

I

• The exit command lets you terminate a program at a point other than the
end of the program and use return codes.

• The looping constructs, for and whi le, allow a program to iterate through
groups of commands in a loop.

• The conditional control commands, if and case, execute a group of
commands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a loop.

Comments

You can place comments in a shell program in two ways. All text on a line
following a # (pound) sign is ignored by the shell . The # sign can be at the
beginning of a line, in which case the comment uses the entire line, or it can
occur after a command, in which case the command is executed but the
remainder of the line is ignored. The end of a line always ends a comment.
The general format for a comment line is:

#comment<CR>

For example, a program that contains the following lines ignores them when i t
i s executed:

#This program sends a generic birthday greeting . <CR>
#This program needs a login as<CR>
#the positional parameter . <CR>

Comments are useful for documenting a programs function and should be
included in any program you write .

NOTE

If the # sign is your erase character
{CERASE), you must precede it with a \ when
creating program comments .

7-62 User's Guide

The here Document

A here document allows you to place into a shell program lines that are
redirected to be the input of a command in that program. It is a way to
provide input to a command in a shell program without needing to use a
separate file . The notation consists of the redirection symbol < < and a
delimiter that specifies the beginning and end of the lines of input. The
delimiter can be one character or a string of characters; the I is often used.

Figure 7-1 shows the general format for a here document.

command <<delimiter<CR>
. . . input lines . • • <CR>
delimiter<CR>

Figure 7-1 . Format of a here Document

In the next example, the program gbday uses a here document to send a
generic birthday greeting by redirecting lines of input into the mail command:

$ cat gbday<CR>
mail. $1 < < !
B e a t wishes to you on your birthday .

$

When you use this command, you must specify the recipients login as the
argument to the command. The input included with the use of the here
document is:

Best wishes to you on your birthday

Shell Tutorial 7-63

I

I

For example, to send this greeting to the owner of login mary, type:
'

$ gbday mary< CR>

Login mary will �eceive your greeting the next time she reads her mail
messages:

From mylo g in Wed May 14 14 : 3 1 COT 1986
to you on your birthday

Table 7-22 summarizes the format and capabilities of the gbday command.

Table 7-22. Summary of the gbday Command

She l l Program Recap

gbday - send a generic birthday greeting (user defined)

Command

gbday

Description :

7-64 User's Guide

Arguments

login

gbday sends a generic birthday greeting to
owner of the login specified in the argument.

the

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed in a shell
script. For example, suppose you want to make a shell program that will
enter the ed editor, make a global substitution to a file, write the file, and
then quit ed. The following screen shows the contents of a program called
ch.text that does these tasks:

$ cat ch.text<CR>
e cho Type in the f i l e name .
r e ad ! i l e 1
e cho Type in the exact text to be changed .
r e ad old_text
e cho Type in the exact new text to replace the above .
r e ad new_text
e d - $! i l e 1 < < !
g/$old_text/a//$new_te xt/g
..,
q

$

Notice the - (minus) option to the ed command. This option prevents the
character count from being displayed on the screen. Notice, also, the format
of the ed command for global substitution:

g/old_textls//new_textlg< CR>

Shell Tutorial 7-65

I

I

The program uses three variables: file1 , old_text, and new_text. When the
program is run, it uses the read command to obtain the values of these
variables. The variables provide the following information:

file

old_text

new_text

the name of the file to be edited

the exact text to be changed

the new text

Once the variables are entered in the program, the here document redirects
the global substitution, the write command, and the quit command into the
ed command. Try the new ch.text command. The following screen shows
sample responses to the program prompts:

$ ch.text<CR>
Type in the f i lename .
memo<CR>
Type in the exact text to be chang ed .
Dear John :<CR>
Type in the exact new text to replace the above .
To whom it may concern :<CR>
$ cat memo<CR>
To whom it may concern :
$

Notice that by running the cat command on the changed file, you could
examine the results of the global substitution.

7-66 User's Guide

Table 7-23 summarizes the format and capabilities of the ch.text command.

Table 7·23. Summary of the ch.text Command

Shel l Program Recap

ch.text - change text in a file

Command Arguments

ch.text (interactive)

Description : Replaces text in a file with new text.

Remarks : This shell program is interactive . It prompts you to
type in the arguments .

If you want to become more familiar with ed, see Chapter 5, Line Editor
Tutorial (ed). The stream editor sed can also be used in shell programming.

Return Codes

Most shell commands issue return codes that indicate whether the command
executed properly. By convention, if the value returned is 0 (zero), the
command executed properly; any other value indicates that it did not. The
return code is not printed automatically, but is available as the value of the
shell special parameter $?.

Checking Return Codes

After executing a command interactively, you can see its return code by
typing

echo $?

Shell Tutorial 7-67

I

I

Consider the following example:

$ cat hi
Thi a i a f i l e hi .
$ echo $?
0
$ cat hello
ca� : canno� open hello
$ echo $?
2
$

In the first case, the file hi exists in your directory and has read permission for
you. The cat command behaves as expected and outputs the contents of the
file. It exits with a return code of 0, which you can see using the parameter
$?. In the second case, the file either does not exist or does not have read
permission for you. The cat command prints a diagnostic message and exits
with a retum code of 2.

Using Return Codes with the exit Command

A shell program normally terminates when the last command in the file is
executed. However, you can use the exit command to terminate a program at
some other point. Perhaps more importantly, you can also use the exit
command to issue return codes for a shell program. (See the exit(2) manual
page in the Programmer's Reference Manual .)

Looping

In the previous examples in this chapter, the commands in shell programs
have been executed in sequence. The for and whi le looping constructs allow
a program to execute a command or sequence of commands several times .

7-68 User's Guide

The for Loop

The for loop executes a sequence of commands once for each member of a
list. It has the following format:

for variable<CR>
in a_list_of_values<CR>

do<CR>
command 1 <CR>
command 2<CR>

last command<CR>
done< CR>

Figure 7-2. Format of the for Loop Construct

For each iteration of the loop, the next member of the list is assigned to the
variable given in the for clause. References to that variable may be made
anywhere in the commands within the do clause.

It is easier to read a shell program if the looping constructs are visually clear.
Since the shell ignores spaces at the beginning of lines, each section of
commands can be indented as it was in the above format. Also, if you indent
each command section, you can easily check to make sure each do has a
corresponding done at the end of the loop.

The variable can be any name you choose. For example, if you call it var,
then the values given in the list after the keyword in will be assigned in tum
to var; references within the command list to $var will make the value
available . If the in clause is omitted, the values for var will be the complete
set of arguments given to the command and available in the special parameter
$* . The command list between the keywords do and done will be executed
once for each value.

Shell Tutorial 7-69

I

I

When the commands have been executed for the last value in the list, the
program executes the next line below done. If there is no line, the program
ends.

The easiest way to understand a shell programming construct is to try an
example . Create a program that moves files to another directory. To do this,
include the following commands.

echo
to prompt the user for a path name to the new directory.

read
to assign the path name to the variable path.

for variable
to call the variable file; it can be referenced as $file in the command
sequence .

in list_of_values
to supply a list of values. lf the in clause is omitted, the list of values is
assumed to be $* {all arguments entered on the command line) .

do command_sequence
to provide a command sequence. The construct for this program is:

do
mv $file $path/$file< CR>

done

7-70 User's Guide

The following screen shows the text for the shell program mv.file:

S cat mv.file<CR>
e cho P l e as e type in the dire ctory path
read path
f or f i l e

i n memo 1 memo2 memo3
do

mv $ f i l e $path/$f i l e
done
$

In this program the values for the variable fi le are already in the program. To
change the files each time the program is invoked, assign the values using
positional parameters or the read command. When positional parameters are
used, the in keyword is not needed, as the next screen shows:

$ cat mv.file<CR>
e cho type in the directory path
read path
for f i l e
do

mv $ f i l e $path/$file
done
$

Shell Tutorial 7-71

I

•

You can move several files at once with this command by specifying a list of
file names as arguments to the command. (This can be done most easily
using the file name expansion mechanism described earlier) .

Table 7-24 summarizes the mv.fi le shell program.

Table 7-24. Summary of mv.fi le Shell Program

Shel l Program Recap

mv.fi le - move files to another directory (user defined)

Command Arguments

mv.fi le filenames
(interactive)

Description : Moves files to a new directory.

Remarks : This program requires file names to be given as
arguments . The program prompts for the path to
the new directory.

The whi le Loop

Another loop construct, the whi le loop, uses two groups of commands. It will
continue executing the sequence of commands in the second group, the
do ... done list, as long as the final command in the first group, the whi le list,
returns a status of true (meaning the command can be executed) .

7-72 User's Guide

The general format of the while loop is shown in Figure 7-3 .

whi le<CR>
command l < CR>

last command<CR>
do<CR>

command l < CR>

last command<CR>
done<CR>

Figure 7-3. Format of the whi le Loop Construct

NOTE

The < CR> following while is optional. White
space will do, but multiple commands must be
separated by ; or <CR> .

Shell Tutorial 7-73

I

I

For example, a program called enter.name uses a while loop to enter a list of
names into a file . The program consists of the following command lines:

$ cat enter.name<CR>
whi l e

r e ad x
do

e cho $x> >xf i l e
done
$

With some added refinements, the program becomes:

$ cat enter.name<CR>
e cho P l e a s e type in e ach person ' s name and then a <CR>
e cho P l e a s e end the l i s t of name s with a < �d>
whi l e r e ad x
do

e cho $x> >xf i l e
done
e cho xf ile contains the following name s :
cat xf i l e
$

Notice that after the loop is completed, the program executes the commands
below the done.

7-74 User's Guide

You used special characters in the first two echo command lines, so you must
use quotes to tum off the special meaning. The next screen shows the results
of enter.name:

$ enter.name< CR>
P l e a s e type in e ach person · s name and then a <CR>
P l e a s e end the l i s t of name s with a < -d>
Mary Lou<CR>
Janice<CR>
<"d>
xf i l e contains the following name s :
Jiary Lou
Jan i c e
$

Notice that after the loop completes, the program prints all the names
contained in xfi le.

The Shel l 's Garbage Can : /dev/nu l l

The file system has a file called /dev/nu l l where you can have the shell
deposit any unwanted output. Try out /dev/nu l l by destroying the results of
the who command. First, type in the who command. The response tells you
who is on the system. Now, try the who command, but redirect the output
into /dev/nu l l :

who > /dev/nu i i<CR>

Notice that the system responded with a prompt. The output from the who
command was placed in /dev/nu l l and was effectively discarded.

Shell Tutorial 7-75

I

I

Conditional Constructs

if . . . then

The if command tells the shell program to execute the then sequence of
commands only if the final command in the if command list is successful .
The if construct ends with the keyword f i .

The general format for the if construct is shown in Figure 7-4.

if<CR>
command1 <CR>

last command<CR>
then<CR>

command1 <CR>

last command<CR>
fi < C R >

Figure 7-4. Format of the i f . . . then Conditional Construct

NOTE

The <CR> following if is optional . Any white
space will do, but multiple commands must be
separated by ; or <CR> .

7-76 User's Guide

For example, a shell program called search demonstrates the use of the
if. .. then construct. search uses the grep command to search for a word in a
file . If grep is successful, the program will echo that the word is found in the
file . Copy the search program (shown on the following screen) and try it
yourself:

$ cat search<CR>
e cho Type in the word and the f i 1 e name .
read word f i l e
if g r e p $word $ f i l e

f i
$

then e cho $word i• in $ � i 1 e

Notice that the read command assigns values to two variables. The first
characters you type, up until a space, are assigned to word. The rest of the
characters, including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the grep
command. If you want to dispose of the system response to the grep
command in your program, use the file /dev/nul l, changing the if command
line to the following:

if grep $word $file > /dev/nui i<CR>

Now execute your search program. It should respond only with the message
specified after the echo command.

Shell Tutorial 7-77

I

I

if .. . then ... else

The if .. . then construction can also issue an alternate set of commands with
else, when the if command sequence is false . It has the following general
format:

if<CR>
comnumd1 <CR>

last comnumd<CR>
then<CR>

command1 < CR>

last command< CR>
else< CR>

command1 <CR>

last command<CR>
fi<CR>

Figure 7-5. Format of the i f . . . then . . . else Conditional Construct

7-78 User's Guide

You can now improve your search command so it will tell you when it cannot
find a word, as well as when it can. The following screen shows how your
improved program will look:

$ cat search<CR>
e cho Type in the word and the f i l e name .
r e ad word f i l e
i f

grep $word $ f i l e >/dev/null
then

e cho $word i a in $ f i l e
e l s e

f i
$

e cho $word i a NOT in $ f i l e

Table 7-25 summarizes your enhanced search program.

Table 7-25. Summary of the search Shell Program

Shell Program Recap

search - tells you if a word is in a file (user defined)

Command Arguments

search interactive

Description : Reports whether a word is in a file .

Remarks: The command prompts you for the arguments (the
word and the file) .

Shell Tutorial 7-79

I

I

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a
useful command for conditional constructs . If the condition is true, the loop
continues . If the condition is false, the loop ends and the next command is
executed. Some of the useful options for the test command are:

test - r file<CR>
true if the file exists and is readable

test -w file<CR>
true i f the file exists and has write permission

test - x file<CR>
true if the file exists and is executable

test - s file< CR>
true if the file exists and has at least one character

test varl - eq var2< CR>
true if varl equals var2

test varl - ne var2<CR>
true i f var1 does not equal var2

7-80 User's Guide

You may want to create a shell program to move all the executable files in the
current directory to your bin directory. You can use the test - x command to
select the executable files. Review the example of the for construct that
occurs in the mv.fi le program, shown in the following screen:

$ cat mv.file<CR>
e cho type in the dire ctory path
r e ad path
for f i l e
d o

mv $ � i l e $path/$ � i l e
done
•

Shell Tutorial 7-81

I

I

Create a program called mv.ex that includes an if test -x statement in the
do ... done loop to move executable files only:

$ cat mv.ex<CR>
e cho type in the dire ctory path
r e ad path
for f i l e

$

do
if t e a t -x $ f i l e

then
mv $ f i l e $path/$f i l e

f i
done

The directory path will be the path from the current directory to the bin
directory. However, if you use the value for the shell variable HOME, you do
not need to type in the path each time. $HOME gives the path to the login
directory. $HOME/bin gives the path to your bin .

7-82 User's Guide

In the following example, mv.ex does not prompt you to type in the directory
name, and therefore, does not read the path variable:

$ cat mv.ex<CR>
for f i l e

d o
if t e s t -x $ f i l e

then
mv $file $HOME/bin/$fil•

fi
done

Test the command, using all files in the current directory, specified with the
* metacharacter as the command argument. The command lines shown in

the following example execute the command from the current directory, then
changes to bin and lists the files in that directory. All executable files should
be there.

$ mv.ex •<CR>
$ cd ; cd bin ; ls<CR>
list_of_executable_Jiles
$

Shell Tutorial 7-83

I

I

Table 7-26 summarizes the format and capabilities of the mv.ex shell program.

Table 7-26. Summary of the mv.ex Shell Program

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

Command Arguments

mv.ex * (all file names)

Description : Moves all files in the current directory with execute
permission to the bin directory.

Remarks : All executable files in the bin directory (or any
directory shown by the PATH variable) can be
executed from any directory.

case .. esac

The case ... esac construction has a multiple-choice format that allows you to
choose one of several patterns, then execute a list of commands for that
pattern. The pattern statements must begin with the keyword in, and a right
parenthesis,), must be placed after the last character of each pattern. The
command sequence for each pattern is ended with two semicolons, ; ; . The
case construction must be ended with esac (the letters of the word case
reversed) .

7-84 User's Guide

The general format for the case construction is shown in Figure 7-6.

case word<CR>
in<CR>

patternl)<CR>
command line 1 < CR>

last command line<CR>
; ;<CR>
pattern2)< CR >

command line 1 < CR>

last command line<CR>
; ;<CR>
pattern3)<CR>

command line 1 < CR>

last command line<CR>
; ;<CR>
*)<CR>

command 1 < CR>

last command<CR>
; ;<CR>

esac<CR>

Figure 7-6. The case ... esac Conditional Construct

Shell Tutorial 7-85

I

I

The case construction tries to match the word following the word case with
the pattern in the first pattern section. If there is a match, the program
executes the command lines after the first pattern and up to the corresponding
, .

If the first pattern is not matched, the program proceeds to the second
pattern. Once a pattern is matched, the program does not try to match any
more of the patterns, but goes to the command following esac.

The * used as a pattern matches any word, and allows you to give a set of
commands to be executed if no other pattern matches. To do this, it must be
placed as the last possible pattern in the case construct, so that the other
patterns are checked first. This provides a useful way to detect erroneous or
unexpected input.

The patterns that can be specified in the pattern part of each section may use
the metacharacters *, ?, and [] as described earlier in this chapter for the
shells file name expansion capability. This provides useful flexibility.

The set.term program contains a good example of the case .. . esac
construction. This program sets the shell variable TERM according to the type
of terminal you are using. It uses the following command line:

TER M =terminal_name<CR>

(For an explanation of the commands used, see the vi tutorial in Chapter 6.)
In the following example, the terminal is a Teletype 4420, Teletype 5410, or
Teletype 5420.

·

set.term first checks to see whether the value of term is 4420. If it is, the
program makes T4 the value of TERM and terminates. If it the value of term
is not 4420, the program checks for other values: 5410 and 5420. It executes
the commands under the first pattern that it finds, and then goes to the first
command after the esac command.

The pattern * , meaning everything else, is included at the end of the
terminal patterns. It warns that you do not have a pattern for the terminal
specified and allows you to exit the case construct.

7-86 User's Guide

$ cat set.term<CR>
e cho If 7ou have a TTY 4420 tTP• in 4420
e cho I f TOU have a TTY 6410 type in 6410
e cho I f you have a TTY 6420 t7pa in 6420
read term
cas e $term

in

a s ac

4420)
TERM=T4

6410)
TERM=T6

6420)
TERM=T7

• >
e cho not a correct terminal t7pa

export TERM
e cho and of program
•

Notice the use of the export command. You use export to make a variable
available within your environment and to other shell procedures. What
would happen if you placed the * pattern first? The set.term program would
never assign a value to TERM, since it would always match the first pattern *,
which means everything.

Shell Tutorial 7-87

I

I

Table 7-27 summarizes the format and capabilities of the set.term shell
program.

Table 7-27. Summary of the set.term Shell Program

Shel l Program Recap

set.term - assign a value to TERM (user defined)

Command Arguments

set. term interactive

Description : Assigns a value to the shell variable TERM, then
exports that value to other shell procedures.

Remarks : This command asks for a specific terminal code to
be used as a pattern for the case construction.

NOTE

A program to set and export a variable is
useful only within programs that call other
shell programs (or binaries) that use it. After
completion, the value of TERM is lost unless it
is executed as follows:

$.set.term <CR>

Unconditional Control Statements : break and continue Commands

The break command unconditionally stops the execution of any loop in which
it is encountered and goes to the next command after the done, fi, or esac
statement. If there are no commands after that statement, the program ends.

7-88 User's Guide

In the example for set.term, you could have used the break command instead
of echo to leave the program, as shown in the next example.

$ cat set.term<CR>
e cho I f you have a TTY 4420 type in 4420
e cho I f you have a TTY 64 1 0 type in 641 0
e cho I f you have a TTY 6420 type i n 6420
r e ad term
cas e $term

e a a.c

:in
4420)
TERK=T4

6410)
TERK=T6

6420)
TERK=T7

bre ak

e xport TERM
e cho end of program
$

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in the
loop.

Shell Tutorial 7-89

I

I

Debugg ing Prog rams

At times you may need to debug a program to find and correct errors . There
are two options to the sh command (listed below) that can help you debug a
program:

sh -v shellprogramname
prints the shell input lines as they are read by the system.

sh - x shellprogramname
prints commands and their arguments as they are executed.

To try out these two options, create a shell program that has an error in it.
For example, create a file called bug that contains the following list of
commands:

$ cat bug<CR>
today=' date •
e cho enter person
read parson
mai l $ 1
$person
When you log o f f come into my o f f i c e p l e as e .
$today .
YLH
$

Notice that today equals the output of the date command, which must be
enclosed in grave accents for command substitution to occur.

7-90 User's Guide

The mail message sent to Tom ($1) at login tommy ($2) should read as the
following screen shows:

$ maii<CR>
From mlh Thu Apr 1 0 1 1 : 36 CST 1 984
Tom
When you log off come into my o f f i c e pleas e .
Thu Apr 1 0 1 1 : 36 : 32 CST 1986
YLH
?

If you try to execute bug, you will have to press the BREAK or CINTR key to
end the program. I
To debug this program, try executing bug using sh -v. This prints the lines
of the file as they are read by the system:

$ sh -v bug tom<CR>
today=' date •
e cho enter person
enter person
r e ad person
tommy
mail $ 1

Notice that the output stops on the mail command, since there i s a problem
with mai l . You must use the here document to redirect input into mai l .

Shell Tutorial 7-91

Before you fix the bug program, try executing it with sh -x, which prints the
commands and their arguments as they are read by the system:

$ sh - x bug tom tommy<CR>
+date
today=Thu Apr 10 1 1 :07:23 CST 1986
+ echo enter person
enter person
+ read person
tommy
+ mail tom

$

I Once again, the program stops at the mail command. Notice that the
substitutions for the variables have been made and are displayed.

The corrected bug program is:

$ cat bug<CR>
today= ' date •
e cho enter person
r e ad person
mai 1 $ 1 < < !
$person
When you 1og o f f come into my o f f i c e p 1 e as e .
$today
MLH

$

7-92 User's Guide

The tee command is a helpful command for debugging pipelines. While
simply passing its standard input to its standard output, it also saves a copy
of its input into the file whose name is given as an argument.

The general format of the tee command is:

commnndl I tee saverfile I commnnd2<CR

The output of commnnd is saved in the file saverfile.

For example, you want to check on the output of the grep command in the
following command line:

who 1 grep $1 1 cut -c1 -9<CR>

You can use tee to copy the output of grep into a file called check, without
disturbing the rest of the pipeline .

who 1 grep $1 1 tee check 1 cut - c1 -9<CR>

The file check contains a copy of the grep output:

S who I grep mlhmo I tee check I cut -c1-9<CR>
mlhmo
S cat check<CR>
mlhmo tty6 1 Apr 1 0 1 1 : 30

s

Shell Tutorial 7-93

I

I

Mod ifyi ng You r Log i n Envi ron ment

The SYSTEM V/88 operating system lets you modify your login environment
in several ways. One modification that users commonly want is to change the
default values of the erase (#) and line kill (@) characters .

Normal or gtty (by-products of TermFuncs) may also be invoked at any later
time to reset or view these values .

When you log in, the shell first examines a file in your login directory named
.profi le. This file contains commands that control your shell environment.

Because the .profile is a file, it can be edited and changed to suit your needs .
On some systems you can edit this file yourself, while on others, the System
Administrator does this for you. To see whether you have a .profile in your
home directory, type:

ls -al $HOME

If you can edit the file yourself, you may want to be cautious the first few
times. Before making any changes to your .profile, make a copy of it in
another file called safe.profile. Type:

cp .profile safe.profile< CR>

You can add commands to your .profile just as you add commands to any
other shell program. You can also set some terminal options with the stty
command, and set some shell variables.

7-94 User's Guide

Adding Commands to You r .profi le

Practice adding commands to your .profile. Edit the file and add the
following echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate them in
the current work session, you may cause the commands in .profile to be
executed directly using the . (dot) shell command. The shell reinitializes your
environment by reading executing the commands in your .profile. Try this
now, type:

. . profi le<CR>

The system should respond with the following:

Good Morning ! I am ready to work for you .
$

Reassigning the Delete Functions

You can reassign the erase and kill characters in two ways: directly using
stty(1), or through the Terminal Support System. Using the Terminal Support
System is preferred because it generates a shell function to make it easier to
reset the environment to your desired state. The Terminal Support System is
described in Appendix F.

Your .profi le must be modeled after, or be copied from, /etc/stdprofile (the
normal case) for this method to work. Specifically, you must set the values of
four shell variables to the desired line-editing characters and invoke the
Term Funcs command and the normal function. For example:

Shell Tutorial 7-95

I

I

export CERASE CKILL CINTR CQUIT

CERASE= " "H"
CKILL= ""U"
CINTR=
CQUIT=
. TermFuncs
normal

• • •

#Retains the default
#Retains the default
#Define function 'normal'
#Invoke it

eras e = Ah kill = Au intr = A ? quit = A I
• • •

Normal or gtty (by-products of TermFuncs) may also be invoked at any later
time to reset or view these values .

The erase, kill, intr, and quit characters may be modified with stty(l) (this is
only an example):

stty erase .. . H ..
stty ki l l " ·u "
stty intr " ·x"

stty quit n •cn

These may be combined in one stty using the following:

stty erase . . . H" ki l l .. . U" intr .. . X" quit . . . C ..

These statements may be included in your .profi le.

Setting Terminal Options

The stty command can make your shell environment more convenient. By
using the stty -tabs option, you can preserve tabs when printing. This
option expands the tab setting to eight spaces, which is the default. The
number of spaces for each tab can be changed. (See stty(l) in the User's
Reference Manual for details .)

7-96 User's Guide

If you want to use this option for the stty command, you can create the
command lines in your .profi le just as you would create them in a shell
program. If you use the tai l command, which displays the last few lines of a
file, you can see the results of adding this command line to your .profi le:

$ tall - 4 .profile<CR>
e cho Good Morning ! I am ready to work f or you
a tty -tabs
$

Table 7-28 summarizes the format and capabilities of the tai l command.

Command

tai l

Description :

Options:

Table 7-28. Summary of the tai l Command I
Command Recap

tai l - display the last portion of a file

Options Arguments

-n fileno.me

Displays the last lines of a file.

Use -n to specify the number of lines n (default is
10 lines) . You can specify a number of blocks (-nb)
or characters (-nc) instead of lines .

Shell Tutorial 7-97

I

Creating a Pu bl ic Directory

We have often talked about sharing useful programs with other users in this
chapter. Similarly, these users may have programs or other files that they
want to share with you. So that these users can send you the files easily, you
should create a public directory:

mkdir public
chmod go+ w public

Notice that you have to change the permissions of the directory using chmod.
When you have a public directory with the correct permissions, other users
can send you files using the uucp command. See the uucp(l) manual page in
the User's Reference Manual for details.

Using Shel l Variables

Several of the variables reserved by the shell are used in your .profi le. You
can display the current value for any shell variable by entering the following
command:

echo $variable_name

Four of the most basic of these variables are discussed next.

HOME
This variable gives the path name of your login directory. Use the cd
command to go to your login directory and type:

pwd< CR>

What was the system response? Now type:

echo $HOME<CR>

Was the system response the same as the response to pwd?

$HOME is the default argument for the cd command. If you do not
specify a directory, cd will move you to $HOME.

7-98 User's Guide

PATH
This variable gives the search path for finding and executing commands.
To see the current values for your PATH variable, type:

echo $PATH<CR>

The system responds with your current PATH value.

$ echo $PATH<CR>
: /mylogin/bin : /bin : /usr/bin : /usr/lib
$

The colon (:) is a delimiter between path names in the string assigned to I the $PATH variable . When nothing is specified before a : , the current
directory is understood. Notice how, in the last example, the system
looks for commands in the current directory first, then in /mylogin/bin/,
then in /bin, then in /usr/bin, and finally in /usr/l ib.

If you are working on a project with several other people, you may want
to set up a group bin, a directory of special shell programs used only by
your project members . The path might be named /project1/bin . Edit
your .profi le, and add :/project1/bin to the end of your PATH, as in the
next example.

PATH = ":/myloginlbin :/bin :/usr/l ib :/project1 /bin"< CR>

The default PATH as set by login(l) is :

:/bin :/usrlbin # for normal users
:lbin :/usrlbin :/etc # for root

When invoked, .profile and /etc/stdprofi le add :/locallbin :/usr/local/bin
to this list.

Shell Tutorial 7-99

I

TER M
This variable tells the shell what kind of terminal you are using. To
assign a value to it, you must execute the following three commands in
this order:

TER M = terminal_name<CR>
export TERM<CR>
Term Setup

The first two lines are necessary to tell the computer what type of
terminal you are using. The last line, containing the TermSetup
command, tells the terminal that the computer is expecting to
communicate with the type of terminal specified in the TER M variable .
Therefore, this command must always be entered after the variable has
been exported.

If you do not want to specify the TERM variable each time you log in,
add these three command lines to your .profile; they are executed
automatically whenever you log in. To determine what terminal name to
assign to the TERM variable, see the instructions in Appendix F, Setting
Up the Terminal. This appendix also contains details about the TermSetup
command and the Terminal Support programs.

If you log in on more than one type of terminal, it would also be useful to
have your set.term command in your .profile.

PS1
This variable sets the primary shell prompt string (the default is the $
sign) . You can change your prompt by changing the PS1 variable in your
.profile.

Try the following example. Note that to use a multi-word prompt, you
must enclose the phrase in quotes. Type the following variable
assignment in your .profile.

PS1 = ''Your command is my wish<CR> "

Now execute your .profile (with the . command) and watch for your new
prompt sign.

$ • . profi le<CR>
Your command is my wish

7-100 User's Guide

This is the prompt for your login shell until you delete the PS1 variable
from your .profile.

Shell Programming Exercises

2-1 . Create a shell program called btime from the following command line:

banner 'date 1 cut -c1 2-1 9'<CR>

2-2. Write a shell program that will give only the date in a banner display.
Be careful not to give your program the same name as a SYSTEM V/88
system command.

2-3 . Write a shell program that will send a note to several people on your
system.

2-4. Redirect the date command without the time into a file .

2-5 .

2-6.

Echo the phrase "Dear colleague" in the same file that contains the
date command, without erasing the date.

Using the above exercises, write a shell program that will send a
memo to the same people on your system mentioned in Exercise 2-3 .
Include in your memo:

The current date and the words "Dear colleague" at the top
of the memo

The body of the memo (stored in an existing file)

The closing statement

2-7. How can you read variables into the mv.file program?

2-8. Use a for loop to move a list of files in the current directory to another
directory. How can you move all your files to another directory?

2-9 . How can you change the program search, so that it searches through
several files?

Hint:

for file in $*

2-10. Change your prompt to the word Hello.

2-11 . Check the settings of the variables $HOME, $TERM, and $PATH in
your environment.

Shell Tutorial 7-101

I

I

Answers to Exercises

Answers to Command Lang uage Exercises

1-1 . The * at the beginning of a file name refers to all files that end in that
file name, including that file name.

1-2 .

$ Is •t<CR>
cat.
123t.
new . t.
t.

•

The command cat [o-9]* produces the following output:

lmemo
100data
9
05name

The command echo * produces a list of all files in the current
directory.

1-3 . You can place ? in any position in a file name.

1-4. The command Is [o-9]* lists only those files that start with a number.

The command Is [a-m]* lists only those files that start with the letters
"a" through "m" .

7-102 User's Guide

1-5. If you placed the sequential command line in the background mode,
the immediate system response was the PID number for the job.

No, the & (ampersand) must be placed at the end of the command
line.

1-6. The command line would be:

cd ; pwd > junk; Is > > junk; ed triai<CR>

1-7. Change the -c option of the command line to read:

banner 'date 1 cut -c1 -1 0' < CR>

Answers to Shel l Prog ramming Exercises
2-1 .

$ cat btime<CR>
banner " date I cut -c12- 1 9 "
•
$ chmod u + x btlme<CR>
$ btlme<CR>
(banner display of the time 1 0 : 26)
•

Shell Tutorial 7-103

I

2-2.

2-3.

•

7-104

$ cat mydate<CR>
' date I cut -c 1 - 1 0 '

$ cat tofrlends<CR>
e cho Type in the name of the file containing the note .
read note
mail j anice marylou bryan < $note
$

User's Guide

If you used parameters for the logins, instead of the logins
themselves, your program may have looked like this:

$ cat tofrlends<CR>
e cho Type in the name of the f i l e containing the note .
r e ad note
mai l $• < Snote
$

2-4. date 1 cut -c1-1 0 > file1 <CR>

2-5 . echo Dear colleague > > file1 <CR>

2-6. Ill

S cat send.memo<CR>
date I cut -c 1- 1 0 > memo 1
e cho D e ar colleague >> memo 1
cat memo > > memo 1
e cho A memo from K . L . K e l ly > > memo 1
mail j an i c e marylou bryan < memo 1
•

Shell Tutorial 7-105

•

2-7.

2-8.

$ cat mv.flle<CR>
e cho type in the dire ctory path
r e ad path
e cho type in f i l e name • , end with < �d>

whi l e
r e ad f i l e

d o
mv $ f i l e $path/$f i l e

done
e cho all done

•

$ cat mv.file<CR>
e cho P l e a • • type in directory path
r e ad path
f or f i l e in $ •

do

•

mv $ file $path/$f i l e
done

The command line for moving all files in the current directory is:

$ mv.file *<CR>

7-106 User's Guide

2-9 . See hint given with exercise 2-9.

$ cat search<CR>
for f i l e

•

in $ •
d o

if grep $word $file >/deT/null
then e cho $word i• in $ f i l e
• 1 • • e cho $word i• NOT in $file
fi

done

2-10. Add the following command lines to your .profile

PS1 = Hel lo<CR>
export PS1

2-11 . To check the values of these variables in your home environment:

$ echo $HOME<CR>
$ echo $TERM<CR>
$ echo $PATH<CR>

Shell Tutorial 7-107

•

8 Electronic Mail Tutorial

Introduction s-1

Exchang ing Messages s-1

The mai l Faci l ity s-2

Sending Messages 8-2

Undeliverable Mail 8-3

Sending Mail to One Person 8-4

Sending Mail to Several People Simultaneously 8-6

Identifying Remote Systems : uname and uuname 8-7

Managing Incoming Messages 8-10

The mai lx Faci l ity s-14

Command Line Options 8-15

Sending Messages: Tilde Escapes 8-16

Editing the Message 8-19

Incorporating Existing Text into Your Message 8-21

Reading a File into a Message 8-22

Incorporating a Message from Your Mailbox into
a Reply 8-23

Changing Parts of the Message Header 8-24

Adding Your Signature 8-25

Keeping a Record of Messages You Send 8-25

Exiting from mailx 8-28

Managing Incoming Messages 8-28

msglist Argument 8-29

Reading and Deleting Mail 8-30

Electronic Mail Tutorial

Electronic Mail Tutorial

ii User's Guide

Reading Mail 8-31

Scanning Your Mailbox 8-32

Switching to Other Mail Files 8-33

Deleting Mail 8-34

Saving Mail 8-35

Replying to Mail 8-36

�� m� �
mailx Online Help 8-38

The .mailrc File 8-38

Send i ng and Receivi ng Fi les s-42

Sending Small Files: mail Command 8-42

Sending Large Files 8-44

Checking Permissions 8-44

uucp Command 8-46

Command Line Syntax 8-47

Examples of the uucp Command 8-49

Operation of the uucp Command 8-51

uuto Command 8-54

Sending a File: -m Option and uustat Command 8-54

Receiving Files Sent with uuto: uupick Command 8-60

Networking s-63

Connecting a Remote Terminal : ct Command 8-63

Command Line Format 8-64

Sample Command Usage 8-64

Cal1ing Another Operating System: cu Command 8-67

Command Line Format 8-68

Sample Command Usage 8-71

Executing on a Remote System: uux Command 8-72

Command Line Format 8-73

Sample Command Usage 8-73

Introduction

The operating system offers a choice of commands that enable you to
communicate with other operating system users. Specifically, they allow you
to send and receive messages from other users (on either your system or
another operating system, exchange files, and form networks with other
operating systems. Through networking, a user on one system can exchange
messages and files between computers, and execute commands on remote
computers .

To help you take advantage of these capabilities, this chapter will teach you
how to use the following commands.

For exchanging messages: mail, mai lx, uname, and uuname

For exchanging files:

For networking:

Exchang i ng Messages

uucp, uuto, uupick, and uustat

ct, cu, and uux

To send messages, you can use either the mail or mailx command. These
commands deliver your message to a file belonging to the recipient. When
the recipient logs in (or while already logged in), he or she receives a message
that says you have mail. The recipient can use either the mail or mai lx
command to read your message and reply at their leisure.

The main difference between mail and mailx is that only mai lx offers the
following features:

• a choice of text editors (ed or vi) for handling incoming and outgoing
messages

• a list of waiting messages that allows the user to decide which messages to
handle and in what order

• several options for saving files

• commands for replying to messages and sending copies (of both incoming
and outgoing messages) to other users

You can also use mail or mailx to send short files containing memos, reports.
However, if you want to send someone a file that is over a page long, use
one of the commands designed for transferring files: uuto or uucp. (See
Sending Large Files later in this chapter for descriptions of these commands.)

Electronic Mail Tutorial 8-1

I

I

The mai l Faci l ity

This section presents the mail command. It discusses the basics of sending
mail to one or more people simultaneously, whether they are working on the
local system (the same system as you) or on a remote system. It also covers
receiving and handling incoming mail.

Sending Messages

The basic command line format for sending mail is:

mail login<CR>

where login is the recipient's login name. This login name can be either of the
following:

• a login name if the recipient is on your system (e .g. , bob)

• a system name, an exclamation point (!), and login name if the recipient is
on another system that can communicate with yours (e .g. , sys2!bob)

For the moment, assume that the recipient is on the local system. Type the
mail command at the system prompt, press the RETURN key, and start typing
the text of your message on the next line . There is no limit to the length of
your message. When you have finished typing it, send the message by typing
a period (.) or a <�d> (control-d) at the beginning of a new line.

The following example shows how this procedure appears on your screen:

$ mall phyllls<CR>
My meeting with Smith's<CR>
group tomorrow has been moved<CR>
up to 3 :00 so I won't be able to<CR>
see you then. Could we meet<CR>
In the morning lnstead?<CR>
.<CR>
$

8-2 User's Guide

The prompt on the last line means that your message has been queued
(placed in a waiting line of messages) and will be sent.

Undel iverable Mail

If you make an error when typing the recipients login, the mail command will
not be able to deliver your mail. Instead, it prints two messages telling you
that it has failed and that it is returning your mail . Then it returns your mail
in a message that includes the system name and login name of both the
sender and intended recipient, and an error message stating the reason for the
failure.

For example, you (owner of the login kol) want to send a message to a user
with the login chris on a system called marmaduk. Your message says The
meeting has been changed to 2 : 00. Failing to notice that you have
incorrectly typed the login as cris, you try to send your message:

$ mall cris<CR>
The meeting has been changed to 2 :00 .
• <CR>
mai l : can • t s end to cria
mai l : Return to kol
you have mai l in /uar/mail/kol

•

Electronic Mail Tutorial 8-3

I

The mail that is waiting for you in /usr/mail will be useful if you do not know
why the mail command has failed, or if you want to retrieve your mail so that
you can resend it without typing it in again. It contains the followin�:

t meii<CR>
Proa kol a.� �.a 18 17 : aa BBT 18a8
>Proa kol a.� �.a 18 17 : aa BBT 1888 forw.r4e4 �7 kol

• • • • • VNDBLIY&a£BLB M�IL • •a� to cri • . being returDe4 b7 aaraa4uk l kol • • • • •

aai l : BRROB e 8 • IDT&l i 4 rec i p i ent • encountered o a •7•t•• aaraaduk

The •••ting ha• been ch�ged � 2 : 00 .
'

To learn how to display and handle this message, see Maruzging Incoming
Messages later in this chapter.

Sending Mai l to One Person

I The following screen shows a typical message:

$ mall tommy<CR>
Tom,<CR>
There's a meeting of the review committee<CR>
at 3 :00 this afternoon. D.F. wants your<CR>
comments and an idea of how long you think<CR>
the project will take to complete.<CR>
B.K.<CR>
.<CR>
$

8-4 User's Guide

When Tom logs in at his terminal (or while he is already logged in), he
receives a message that tells him he has mail waiting:

$ you have mail

To find out how he can read his mail, see the section Managing Incoming
Messages in this chapter.

You can practice using the mail command by sending mail to yourself. Type
in the mail command and your login 10, then write a short message to
yourself. When you type the final period or <Ad>, the mail is sent to a file
named after your login 10 in the /usr/mail directory, and you will receive a
notice that you have mail.

Sending mail to yourself can also serve as a handy reminder system. For
example, suppose you (login 10 bob) want to call someone the next morning.
Send yourself a reminder in a mail message:

$ mail bob<CR>
Call Accounting and find out<CR>
why they haven't returned my 1 988 figures i<CR>
.<CR>
$

When you log in the next day, a notice appears on your screen informing you
that you have mail waiting to be read.

Electronic Mail Tutorial 8-5

I

I

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their login names
on the mail command line. For example:

$ mall tommy jane wombat dave<CR>
Diamond cutters,<CR>
The game Is on for tonight at diamond three.<CR>
Don't forget your gloves i<CR>
Your Manager<CR>
.<CR>
$

Table 8-1 summarizes the syntax and capabilities of the mail command.

Table 8-1 . Summary of Sending Messages with the mail Command

Command Recap

mai l - sends a message to another user's login

Command

mail

Description :

Remarks :

8-6 User's Guide

Options Arguments

none [system_name!llo gin

Typing mail followed by one or more login names,
sends the message typed on the lines following the
command line to the specified login(s) .

Typing a period or a <"d> (followed by the
RETURN key) at the beginning of a new line sends
the message.

Identifying Remote Systems: uname and uu name

Until now we have assumed that you are sending messages to users on the
local operating system. However, your company may have three separate
computer systems, each in a different part of a building, or you may have
offices in several locations, each with its own system.

You can send mail to users on other systems by adding the name of the
recipients system before the login ID on the command line:

mail sys21bob<CR>

Notice that the system name and the recipient's login ID are separated by an
exclamation point.

Before you can run this command, however, you need three pieces of
information:

1 . the name of the remote system

2. whether or not your system and the remote system communicate

3 . the recipients login name

The uname and uuname commands allow you to find this information.

If you can, get the name of the remote system and the recipients login name
from the recipient. If the recipient does not know the system name, have him
or her issue the following command on the remote system:

uname -n<CR>

The command responds with the name of the system. For example:

$ uname -n<CR>
writer
$

Once you know the remote system name, the uuname command can help you
verify that your system can communicate with the remote system. At the
prompt, type:

uuname<CR>

This generates a list of remote systems with which your system can
communicate . If the recipients system is on that list, you can send messages
to it by mai l .

Electronic Mail Tutorial 8-7

I

I

You can simplify this step by using the grep command to search through the
uuname output. At the prompt, type:

uuname 1 grep system<CR>

(Here system is the recipients system name.) If grep finds the specified
system name, it prints it on the screen. For example:

$ uuname I grep writer<CR>
writer
$

This means that writer can communicate with your system. If writer does not
communicate with your system, uuname returns a prompt.

$ uuname 1 grep writer<CR>
$

To summarize our discussion of uname and uuname, consider an example .
Suppose you want to send a message to login sarah on the remote system
writer. Verify that writer can communicate with your system and send your
message. The following screen shows both steps:

$ uuname I grep wrlter<CR>
writer
$ mall writerlsarah<CR>
Sarah,<CR>
The final counts for the writing semlnar<CR>
are as follows :<CR>
<CR>
Our department - 1 8<CR>
Your department - 20<CR>
<CR>
Tom<CR>
.<CR>
$

8-8 User's Guide

Tables 8-2 and 8-3 summarize the syntax and capabilities of the uname and
uuname commands, respectively.

Table 8-2. Summary of the uname Command

Command Recap

uname - displays the system name

Command Options Arguments

uname -n and others• none

Description : uname -n displays the name of the system
which your login resides.

* See the uname(l) manual page in the User's Reference Manual
for all available options and an explanation of their
capabilities .

on

Electronic Mail Tutorial 8-9

I

I

Table 8-3. Summary of the uuname Command

Command Recap

uuname - displays a list of networked systems

Command Options Arguments

uuname available none

Description : uuname displays a list of remote systems that can
communicate with your system.

* See the uuname(l) manual page in the User's Reference Manual
for all available options and an explanation of their
capabiblities .

Manag ing Incoming Messages

As stated earlier, the mail command also allows you to display messages sent
to you by other users on your screen so you can read them. If you are logged
in when someone sends you mail, the following message is printed on your
screen:

you have mail

NOTE

This notification is controlled by the MAIL,
MAILPATH, and MAILCHECK shell variables
described in sh(l) of the User's Reference
Manual.

This means that one or more messages are being held for you in a file called
/usr/mai l/your _login, usually referred to as your mailbox. To display these
messages on your screen, type the mai l command without any arguments:

mai i < CR>

8-10 User's Guide

The messages display one at a time, beginning with the one most recently
received. A typical mail message display looks like this:

$ mail
From tommy Wed Yay 21 1 5 : 33 CST 1986
Bob ,
Looks like the me e ting has be en canc e lled .
Do you still want the material for the te chnical review?
Tom

?

The first line, called the header, provides information about the message: the
login name of the sender and the date and time the message was sent. The
lines after the header (up to the line containing the ?) comprise the text of the
message.

If a long message is being displayed on your terminal screen, you may not be I
able to read it all at once. You can interrupt the printing by typing <"s> .
This will freeze the screen, giving you a chance to read. When you are ready
to continue, type <"q> and the printing will resume.

After displaying each message, the mai l command prints a ? prompt and
waits for a response. You have many options; for example, you can leave the
current message in your mailbox while you read the next message; you can
delete the current message; or you can save the current message for future
reference. For a list of mai ls available options, type a ? in response to mai ls
? prompt.

To display the next message without deleting the current message, press the
RETURN key after the question mark.

? < CR>

""' The current message remains in your mailbox and the next message displays .
If you have read all the messages in your mailbox, a prompt appears .

Electronic Mail Tutorial 8-11

I

To delete a message, type a d after the question mark:

? d<CR>

The message is deleted from your mailbox. If there is another message
waiting, it then displays . If not, a prompt appears as a signal that you have
finished reading your messages.

To save a message for later reference, type an s after the question mark:

? s<CR>

This saves the message, by default, in a file called mbox in your home
directory. To save the message in another file, type the name of that file after
the s command.

For example, to save a message in a file called mai lsave (in your current
directory), enter the response shown after the question mark:

? s mai lsave<CR>

If mailsave is an existing file, the mai l command appends the message to it.
If there is no file by that name, the mai l command creates one and stores your
message in it. You can later verify the existence of the new file by using the
Is command. (Is lists the contents of your current directory.)

You can also save the message in a file in a different directory by specifying a
path name. For example:

? s project1 /memo<CR>

This is a relative path name that identifies a file called memo (where your
message will be saved) in a subdirectory (project1) of your current directory.
You can use either relative or full path names when saving mail messages.
(For instructions on using path names, see Chapter 3.)

To quit reading messages, enter the response shown after the question mark:

? q<CR>

Any messages that you have not read are kept in your mailbox until the next
time you use the mail command.

To stop the printing of a message entirely, press the BREAK key. The mai l
command stops the display, print a ? prompt, and waits for a response from
you.

8-12 User's Guide

Table 8-4 summarizes the syntax and capabilities of the mai l command for
reading messages.

Table 8-4. Summary of Reading Messages with the mail Command

Command Recap

mai l - reads messages sent to your login

Command Options Arguments

m a i l available* none

Description : When issued without options, the mail command
displays any messages waiting in your mailbox
(system file /usr/mai l/your _login) .

Remarks: A question mark (?) at the end of a message means
that a response is expected. A full list of possible
responses is given in the User's Reference Manual.

* See the mai l(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities.

Electronic Mail Tutorial 8-13

I

I

The mai lx Faci l ity

This section introduces the mailx facility. It explains how to set up your
mailx environment, send messages with the mailx command, and handle
messages that have been sent to you. The material is presented in four parts:

• This overview

• Sending Messages

• Managing Incoming Messages

• The .mai lrc File

The mailx command is an enhanced version of the mai l command. There are
many options to mailx that are not available in mail for sending and reading
mail . For example, you can define an alias for a single login or for a group.
This allows you to send mail to an individual using a name or word other
than their login ID, and to send mai l to a whole group of people using a
single name or word. When you use mailx to read incoming mail, you can
save it in various files, edit it, forward it to someone else, respond to the
person who originated the message . By using mailx environment variables,
you can develop an environment to suit your individual tastes.

If you type the mailx command with one or more logins as arguments, mai lx
decides you are sending mail to the named users, prompts you for a summary
of the subject, and then waits for you to type in your message or issue a
command. The section Sending Messages describes features that are available
to you for editing, incorporating other files, adding names to copy lists, and
more.

If you enter the mailx command with no arguments, mailx checks incoming
mail for you in a file named /usr/mai l/your _login. If there is mail for you in
that file, you are shown a list of the items and given the opportunity to read,
store, remove or transfer each one to another file . The section entitled
Managing Incoming Messages provides some examples and describes the
options available .

If you choose to customize mai lx, you should create a start-up file in your
home directory called .mai lrc. The section on The . rnailc File describes
variables you can include in your start-up file .

8-14 User's Guide

mailx has two modes of functioning: input mode and command mode. You
must be in input mode to create and send messages. Command mode is used
to read incoming mail . You can use any of the following methods to control
the way mailx works for you:

• by entering options on the command line. (See the mailx(l) manual page
in the User's Reference Manual.)

• by issuing commands when you are in input mode, for example, creating a
message to send. These commands are always preceded by a - (tilde) and
are referred to as tilde escapes. (See the mailx(l) manual page in the
User's Reference Manual.)

• by issuing commands when you are in command mode, for example,
reading incoming mail .

• by storing commands and environment variables in a start-up file in your
home directory called $HOME/.mai lrc.

Tilde escapes are discussed in Sending Messages: Tilde Escapes, command mode
commands in Managing Incoming Messages; and the .mai lrc file in The .mailrc
File.

Command Line Options

This section discusses command line options. The syntax for the mailx
command is:

mailx [options] [name . . .]

The options are flags that control the action of the command, and name . . .

represents the intended recipients.

Anything on the command line other than an option preceded by a hyphen is
read by mailx as a name; i .e . , the login or alias of a person to whom you are
sending a message.

Electronic Mail Tutorial 8-15

I

I

Two of the command line options deserve special mention:

-f
'

Allows you to read messages from filerwme instead of your mailbox.

Because mailx
�
lets you store messages in any file you name, you need the

-f option to review these stored options. The default storage file is
$HOME/mbox, so use the following command to review messages:

mailx -f

-n:
Do not initialize from the system default mai lx.rc file .

If you have your own .mai lrc file (see The .11Ulilrc File), mailx does not
look through the system default file for specifications when you use the
-n option, but goes directly to your .mai lrc file. This results in faster
initialization; substantially faster when the system is busy.

Send ing Messages : Ti lde Escapes

To send a message to another operating system user, enter the following
command:

$ mai lx daves<CR>

The login name specified belongs to the person who is to receive the message .
The system puts you into input mode and prompts you for the subject of the
message . (You may have to wait a few seconds for the Subj ect : prompt if
the system is very busy.) This is the simplest way to run the mailx command;
it differs very little from the way you run the mai l command.

The following examples show how you can edit messages you are sending,
incorporate existing text into your messages, change the header information,
and perform other tasks that take advantage of the mailx commands
capabilities . Each example is followed by an explanation of the key points
illustrated in the example .

8-16 User's Guide

$ mailx daves<CR>
Subj e c t :

Whether to include a subject or not is optional. If you elect not to, press the
RETURN key. The cursor moves to the next line and the program waits for you
to enter the text of the message .

$ manx daves<CR>
Subj a c t : meetlng<CR>
We're having a meeting for novice mailx users in<CR>
the auditorium at 9 :00 tomorrow.<CR>
Would you be will ing to give a demonstration?<CR>
Bob<CR>
- . <CR>
EDT

$

There are two important things to notice about the above example:

• You break up the lines of your message by pressing the RETURN key at the
end of each line . This makes it easier for the recipient to read the
message, and prevents you from overflowing the line buffer.

• You end the text and send the message by entering a tilde and a period
together (- .) at the beginning of a line . The system responds with an
end-of-text (EOT) notice and a prompt.

Electronic Mail Tutorial 8-17

I

I

There are several commands available to you when you are in input mode
(you were in input mode in the example) . Each of them consists of a
tilde (-), followed by an alphabetic character, entered at the beginning of a
line . Together they are known as tilde escapes. (See the mai lx(l) manual
page in the User's Reference Manual.) Most of them are used in the examples in
this section.

You can include the subject of your message on the command line by using
the -s option. For example, the command line:

$ mailx -s "meeting" daves<CR>

is equivalent to:

$ mailx daves<CR>
Subj ect : meeting<CR>

The subject line looks the same to the recipient of the message. Notice that
when putting the subject on the command line, you must enclose a subject
that has more than one word in quotation marks.

8-18 User's Guide

Ed iting the Message

When you are in the input mode of mai lx, you can invoke an editor by
entering the - e (tilde e) escape at the beginning of a line . The following
example shows how to use tilde:

$ mailx daves<CR>
Subj e c t : Testing my tilde<CR>
When entering the text of a message<CR>
that has somehow gotten garbled<CR>
you may Invoke your favorite editor<CR>
by means of a - e (tilde e).

Electronic Mail Tutorial 8-19

I

I

Notice that you have misspelled a word in your message. To correct the
error, use - e to invoke the editor, in this case the default editor, ed.

-e<CR>
1 2
/grabled/p
that has s omehow gotten grabled
s/gralgar/p
that has s omehow gotten garbled
w
132
q
(continue)
What more can I tell you?

In this example the ed editor was used. Your .profile or a .mai lrc file controls
which editor is invoked when you issue a -e escape command. The
-v (tilde v) escape invokes an alternate editor (most commonly, vi) .

8-20 User's Guide

When you exited from ed (by typing q), the mai lx command returned you to
input mode and prompted you to continue your message. At this point you
may want to preview your corrected message by entering a - p (tilde p)
escape. The -p escape prints out the entire message up to the point where
the - p was entered. Thus, at any time during text entry, you can review the
current contents of your message.

- p
Ue a a ag e containa :
To : dav e a
Subj e ct : Tes ting my tilde

When entering the text of a me a aag e
that haa a omehow gotten g arbled
you may invoke your favorite editor
by mean a of a tilde e (-e) .

What more can I t e l l you?
(continu e)

EOT
•

Incorporat ing Exist ing Text i nto You r Message

mai lx provides four ways to incorporate material from another source into the
message you are creating:

• read a file into your message

• read a message you have received into a reply

• incorporate the value of a named environment variable into a message

• execute a shell command and incorporate the output of the command into
a message

Electronic Mail Tutorial 8-21

I

I

The following examples show the first two of these functions. These are the
most commonly used of these four functions. For information about the other
two, see the mai lx(l) manual page of the User's Reference Manual.

Reading a File into a Message

$ manx daves<CR>
Subj e c t : Work Schedule<CR>
As you can see from the followlng<CR>
- r letters/file1
" le tters/f i l e l " 10/726
we have our work cut out for us.
Please give me your thoughts on this.
- Bob

EOT
$

As the example shows, the -r (tilde r) escape is followed by the name of the
file you want to include. The system displays the file name and the number
of lines and characters it contains . You are still in input mode and can
continue with the rest of the message. When the recipient gets the message,
the text of letters/file1 is included. (You can, of course, use the - p (tilde p)
escape to preview the contents before sending your message.)

8-22 User's Guide

Incorporating a Message from Your Mai lbox into a Reply

$ mailx<CR>
mailx vers ion 2 . 14 2/9/86 Type ? f or h e lp .
•usr/mai l/roberts • : 2 me s s ag e s 1 new
>N 1 abc Tue Uay 1 08 : 09 8/166 Ke a ting Not i c e

2 hqtrs Won Apr 30 1 6 : 67 4/ 127 Schedule
? m jones<CR>
Subj a ct : Hq Schedule<CR>
Here is a copy of the schedule from headquarters • • • <CR>
-f 2<CR>
Interpolating : 2
(continu e)

A s you can see, the boss will b e visiting o u r district on<CR>
the 1 4th and 1 5th.<CR>
- Robert

EOT
?

There are several important points illustrated in this example:

• The sequence begins in command mode, where you read and respond to
your incoming mail. Then you switch into input mode by issuing the
command m jones (meaning send a message to jones) .

• The � f escape is used in input mode to call in one of the messages in your
mailbox and make it part of the outgoing message. The number 2 after the
� f means message 2 is to be interpolated (read in) .

• mailx tells you that message 2 is being interpolated and then tells you to
continue .

• When you finish creating and sending the message, you are back in
command mode, as shown by the ? prompt. You may now do something
else in command mode, or exit mai lx by typing q.

Electronic Mail Tutorial 8-23

I

I

An alternate command, the - m (tilde m) escape, works the way that - f does
except the read-in message is indented one tab stop. Both the - m and - f
commands work only if you start out in command mode and then enter a
command that puts you into input mode. Other commands that work this
way are covered in the section Managing Incoming Messages.

Changing Parts of the Message Header

The header of a mailx message has four components:

• subject

• recipient(s)

• copy-to list

• blind-copy list (a list of intended recipients that is not shown on the copies
sent to other recipients)

When you enter the mailx command followed by a login or an alias, you are
put into input mode and prompted for the subject of your message. Once you
end the subject line by pressing the RETURN key, mailx expects you to type
the text of the message. If, at any point in input mode, you want to change
or supplement some of the header information, there are four tilde escapes
that you c a n use: - h, - t, - c, and - b.

- h displays all header fields: subject, recipient, copy-to list, and
blind copy list, with their current values. You can change a
current value, add to it, or, by pressing the RETURN key, accept it.

- t lets you add names to the list of recipients . Names can be either
login names or aliases .

- c lets you create or add to a copy-to list for the message . Enter
either login names or aliases of those to whom a copy of the
message should be sent.

- b lets you create or add to a blind-copy list for the message.

All tilde escapes must be in the first position on a line . For the - t, - c or
- b, any additional material on the line is taken to be input for the list in
question. Any additional material on a line that begins with a - h is ignored.

8-24 User's Guide

Add ing You r Sig nature

If you want, you can establish two different signatures with the sign and Sign
environment variables. These can be invoked with the - a (tilde a) or - A
(tilde A) escape, respectively. In the following example, you have set the
value Supreme Commander to be called by the - A escape:

S manx -s orders aii<CR>
Be ready to move out at 0400 hours.<CR>
- A<CR>
Suprema Commander
- .<CR>
EOT
•

Having both escapes (- a and - A) allows you to set up two forms for your
signature . However, because the senders login automatically appears in the
message header when the message is read, no signature is required to identify
you.

Keeping a Record of Messages You Send

The mailx command offers several ways to keep copies of outgoing messages.
Two that you can use without setting any special environment variables are
the - w (tilde w) escape and the -F option on the command line .

Electronic Mail Tutorial 8-25

I

I

The - w followed by a file name causes the message to be written to the
named file . For example:

$ manx bdr<CR>
Subj a c t : Saving Copies<CR>
When you want to save a copy of<CR>
the text of a message, use the tilde w.<CR>
- w savemail
• s avamail • 2/7 1

EOT
$

If you now display the contents of savemai l, you see:

$ cat savemaii<CR>
When you want to s ave a copy of
the text of a ma a a ag a , uaa the tilde w .
$

The drawback to this method, as you can see, is that none of the header
information is saved.

8-26 User's Guide

Using the -F option on the command line preserves the header information:

$ manx -F -a Savings bdr<CR>
This method appends this message to a
file In my current directory named bdr.

EOT

•

Check the results by looking at the file bdr:

$ cat bdr<CR>
From : kol Fri Yay 2 1 1 : 14 : 46 1986
To : bdr
Subj e c t : Savings

Thi s me thod appends thi s me s sage to a
� i l e in my current dir e c tory named bdr .
$

The -F option appends the text of the message to a file named after the first
recipient. If you have used an alias for the recipient(s), the alias is first
converted into the appropriate login(s) and the first login is used as the file
name. As noted above, if you have a file by that name in your current
directory, the text of the message is appended to it.

Electronic Mail Tutorial 8-27

I

I

Exit ing from mailx

When you have finished composing your message, you can leave mai lx by
typing any of the following three commands:

tilde period (- .) is the standard way of leaving input mode. It
also sends the message. If you entered input mode from the
command mode of mai lx, you now return to the command mode
(as shown by the ? prompt you receive after typing this
command) . If you started out in input mode, you now return to
the shell (as shown by the shell prompt) .

- q tilde q (- q) simulates an interrupt. It lets you exit the input
mode of mai lx. If you have entered text for a message, it is saved
in a file called dead.letter in your home directory.

- x tilde x (- x) simulates an interrupt. It lets you exit the input
mode of mai lx without saving anything.

Manag ing Incoming Messages

mai lx has over fifty commands to help you manage your incoming mail . See
the mai lx(l) manual page in the User's Reference Manual for a list of all of them
(and their synonyms) in alphabetic order. The most commonly used
commands (and arguments) are described in the following subsections:

• the msglist argument

• commands for reading and deleting mail

• commands for saving mail

• commands for replying to mail

• commands for getting out of mai lx

8-28 User's Guide

msg l ist Arg u ment

Many commands in mailx take a form of the msglist argument. This argument
provides the command with a list of messages on which to operate . If a
command expects a msglist argument and you do not provide one, the
command is performed on the current message. Any of the following formats
can be used for a msglist:

n
message number n, the current message

the first undeleted message

$
the last message

*

all messages

n-m
an inclusive range of message numbers

user
all messages from user

/string
All messages with string in the subject line (case is ignored)

:c
all messages of type c where c is:

d - deleted messages
n - new messages
o - old messages
r - read messages
u - unread messages

The context of the command determines whether this type of specification
makes sense .

Electronic Mail Tutorial 8-29

I

•

Here are two examples (the ? is the command mode prompt) :

? d 1 ·3 [Delete messages 1, 2 and 3]
? s bdr bdr [Save aU messages from user bdr in a

file named bdr.]

?

Additional examples may be found throughout the next three subsections .

Read ing and Delet ing Mai l

When a message arrives in your mailbox the following notice appears on your
screen:

you have mail

The notice appears when you log in or when you retum to the shell from
another procedure. (This notice is controlled by the MAILCHECK shell
variable . See sh(l) in the User's Reference Manual.)

8-30 User's Guide

Reading Mail

To read your mail, enter the mailx command with or without arguments .
Execution of the command places you in the command mode of mai lx. The
next thing that appears on your screen is a display that looks something like
this:

mai lx vers ion 2 . 14 1 0 / 1 9/86 Type ? :f or h e lp
• juar/mai1/bdr • :

> N 1 rbt.

?

N 2 admin
N 3 davea

3 me s sag e s 3 new
Thur Apr 30 14 : 20 8 / 1 9 0 Review S e a a i o n
Thur Apr 30 16 : 66 6/84 New printer
Fri May 1 08 : 39 64/ 1674 R eorganization

The first line identifies the version of mailx used on your system, displays the I date, and reminds you that help is available by typing a question mark (?) .
The second line shows the path name of the file used as input to the display
(the file name is normally the same as your login name) together with a count
of the total number of messages and their status. The rest of the display is
header information from the incoming messages.

The messages are numbered in sequence with the last one received at the
bottom of the list. To the left of the numbers there may be a status indicator;
N for new, U for unread. A greater than sign {>) points to the current
message. Other fields in the header line show the login of the originator of
the message, the day, date and time it was delivered, the number of lines and
characters in the message, and the message subject. The last field may be
blank.

Electronic Mail Tutorial 8-31

When the header information displays on your screen, you can print
messages either by pressing the RETURN key or entering a command followed
by a msglist argument. If you enter a command with no msglist argument, the
command acts on the message pointed at by the > sign. Pressing the RETURN
key is the equivalent of a typing the p (for print) command without a msglist
argument; the message displayed is the one pointed at by the > sign. To read
some other message (or several others in succession), enter a p (for print) or t
(for type) followed by the message number(s) .

Here are some examples:

<CR> [Print the current message.]
p 2<CR> [Print message number 2 .]
p daves<CR> [Print all messages from user daves.]

I The command t (for type) is a synonym of p (for print) .

Scanning Your Mai lbox

The mai lx command lets you look through the messages in your mailbox
while you decide which ones need your immediate attention.

When you first enter the mailx command mode, the banner tells you how
many messages you have and displays the header line for 20 messages. (If
you are dialed into the computer system, only the header lines for 10
messages display.) If the total number of messages exceeds one screenful,
you can display the next screen by entering the z command. Typing z
causes a previous screen (if there is one) to display. If you want to see the
header information for a specific group of messages, enter the f (for from)
command followed by the msglist argument.

8-32 User's Guide

Here are examples of those commands:

? z
? z-

Scroll forward one screenful of header lines.]
Scroll backward one screenful.]

? f daves Displlly headers of all messages from user daves.]

Switching to Other Mai l Fi les

When you enter mai lx by issuing the following command, you are looking at
the file /usr/mai l/your _login:

$ mai lx<CR>

mai lx lets you switch to other mail files and use any of the mailx commands
on their contents . (You can even switch to a non-mail file, but if you try to
use mailx commands, you are told No applicable messages .) The switch
to another file is done with the fi or fold command (they are synonyms)
followed by the filename. The following special characters work in place of the
filename argument:

% the current mailbox

%login the mailbox of the owner of login (if you have the required
permissions)

the previous file

& the current mbox

Electronic Mail Tutorial 8-33

I

I

Here is an example of how this might look on your screen:

$ mailx<CR>

mailx vers ion 2 . 14 1 0 / 1 9/86 Type ?
• u sr/mail/dave s • : 3 me s s ag e s 2 new

U 1 j af Sa� May 9 07 : 66
> N 2 �odd Sa� May 9 08 : 69

N 3 has Sa� May 9 1 1 : 08

for h e lp .
3 unre ad
7/137 � e a �26
9/377 UN ITS r e quiremen�s

29/ 1214 acc e s s �o bailey

? f l & [Enter this command to transfer to your mbox.

H e ld 3 me s sage s in /usr/mail/dave s
• / f s 1 /dave s /mbox• : 74 me s s ag e s 1 0 unre ad

? q<CR>
$

Deleting Mai l

To delete a message, enter a d followed by a msglist argument. If the msglist
argument is omitted, the current message is deleted. The messages are not
deleted until you leave the mailbox file you are processing. Prior to that, the
u (for undelete) gives you the opportunity to change your mind. Once you
have issued the quit command (q) or switched to another file, however, the
deleted messages are gone.

mai lx permits you to combine the delete and print command and enter a dp.
This is like saying, "Delete the message I just read and show me the next
one."

8-34 User's Guide

Here are some examples of the delete command:

[Delete aU my messages.]
[Delete aU messages that have been rwl.]

? d .
? d r
? dp
? d 2·5

[Delete the current message and print the next one.
[Delete messages 2 through 5.]

Saving Mail

All messages not specifically deleted are saved when you quit mai lx.
Messages that have been read are saved in a file in your home directory called
mbox. Messages that have not been read are held in your mailbox
(/usr/mai l/your _login) .

The command to save messages comes in two forms: with an uppercase or a
lowercase s. The syntax for the uppercase version is:

S [msglist]

Messages specified by the msglist argument are saved in a file in the current
directory named for the author of the first message in the list.

The syntax for the lowercase version is:

s [msglist] [filename]

Messages specified by the msglist argument are saved in the file named in the
filename argument. If you omit the msglist argument, the current message is
saved. If you are using logins for file names, this can lead to some ambiguity.
If mai lx is puzzled, you get an error message.

Electronic Mail Tutorial 8-35

I

I

Replying to Mail

The command for replying to mail comes in two forms: an uppercase or a
lowercase r. The principal difference between the two forms is that the
uppercase form (R) causes your response to be sent only to the originator of
the message, while the lowercase form (r) causes your response to be sent not
only to the originator but also to all other recipients. (There are other
differences between these two forms. For details, see the mai lx{l) manual
page in the User's Reference Manual.)

When you reply to a message, the original subject line is picked up and used
as the subject of your reply. Here's an example of the way it looks:

$ mallx<CR>

mailx vers ion 2 . 14 10/1 9/83 Type ? for h e lp .
• u sr/mail/dave s • :

u 1 j af
> N 2 todd

N 3 has

? R 2
To : todd

3 me s s ag e s 2 new
Wed May 9 07 : 66
Wed May 9 08 : 69
Wed May 9 1 1 : 08

Subj e c t : Re : UN ITS requirements

8-36 User's Guide

3 unread
7/137 t e a t26
9/377 UNITS requirements

29/1214 acc e s s to bai l e y

Assuming the message about UNITS requirements was sent to other users,
and the lowercase r had been used, the header might have appeared like this:

To : todd eg haa j cb bdr
Subj e ct : Re : UNITS r e quirement•

Leavi ng mai lx

There are two standard ways of leaving mai lx: with a q or an x. If you leave
mailx with a q, you see messages that summarize what you did with your
mail . They look like this:

? q<CR>
Saved 1 me a aage in /fa 1/bdr/mbox
H e ld 1 me a a ag e in /uar/mail/bdr
•

From the example, you can surmise that user bdr had at least two messages,
read one and either left the other unread or issued a command asking to hold
it in /usr/mai llbdr. If there were more than two messages, the others were
deleted or saved in other files . mailx does not issue a message about those
messages.

Electronic Mail Tutorial 8-37

I

I

If you leave mai lx with an x, it is almost as if you had never entered. Mail
read and messages deleted are retained in your mailbox. However, if you
have saved messages in other files, that action has already taken place and is
not undone by the x.

mai lx Onl ine Help

The preceding subsections described some of the most frequently used mai lx
commands. (See the mai lx(l) manual page in the User's Reference Manual for a
complete list .) If you need help while you are in the command mode of
mai lx, type either a ? or help after the ? prompt. A list of mai lx commands
and what they do displays on your terminal screen.

The .mai l rc Fi le

The .mai lrc file contains commands to be executed when you invoke mailx.

There may be a system-wide start-up file (/usr/l ib/mai lx/mai lx.rc) on your
system. If it exists, it is used by the System Administrator to set common
variables. Variables set in your .mai lrc file take precedence over those in
mailx.rc.

Most mai lx commands are legal in the . m a i lrc file . However, the following
commands are not legal entries:

I (or) shel l
escape to the shell

Copy
save messages in msglist in a file whose name is derived from the author

edit
invoke the editor

visual
invoke vi

fol lowup
respond to a message

Fol lowup
respond to a message, sending a copy to msglist

mail
switch into input mode

8-38 User's Guide

reply
respond to a message

Reply
respond to the author of each message in msglist

You can create your own .mai tre with any editor, or copy another users .
Figure 8-1 shows a sample .mai tre file .

;l.:f r
cd $HOME/ma.il

end if
s e � allne� append asksub askcc au�oprin� do�
s e � me�oo qui e � s ave show�o h e ader hold k e e p k e e p a ave
s e � ou�folder
se� folder= ·mai l •
s e � re cord= · ou�box •
s e � cr�=24
s e � ED ITOR= · /bin/ e d •
s e � s ign= ·Rober�s ·
s e � Sign= · Jackson Rober�s . Supervisor ·
s e � �oplin e s = 1 0
alias fred f j s
alias bob rem
alias ali c e
alias mark
alias donna
alias pa�

ap
me�
dr
pa�

group rober�s grp
group accoun�s

fred bob ali c e pa� mark
rober�s grp donna

Figure 8-1 . Sample .mai tre File

-----. The example in Figure 8-1 includes the commands you are most likely to find
useful: the set command and the alias or group commands.

Electronic Mail Tutorial 8-39

I

I

The set command is used to establish values for environment variables . The
command syntax is:

set
set name
set name = string
set name = number

When you issue the set command without any arguments, set produces a list
of all defined variables and their values. The argument name refers to an
environmental variable. More than one name can be entered after the set
command. Some variables take a string or numeric value; string values are
enclosed in single quotes.

When you put a value in an environment variable operating systemn
assignment such as HOM E =my_login, you are telling the shell how to
interpret that variable . However, this type of assignment in the shell does not
make the value of the variable accessible to other operating system programs
that need to reference environment variables. To make it accessible, you must
export the variable . If you set the TERM variable in your environment in
Chapter 6 or Chapter 7, you will remember using the export command as
shown in the following example:

$ TE R M =vt1 00
$ export TERM

When you export variables from the shell in this way, programs that reference
environment variables are said to import them. Some of these variables (e .g . ,
EDITOR and VISUAL) are not peculiar to mai lx, but may be specified as
general environment variables and imported from your execution
environment. If a value is set in .mai lrc for an imported variable, it overrides
the imported value. There is an unset command, but it works only against
variables set in .mai lrc; it has no effect on imported variables .

There are 41 environment variables that can be defined in your .mai lrc; too
many to be fully described in this document. For complete information, see
the mailx(1) manual page in the User's Reference Manual.

Three variables used in the example in Figure 8-1 deserve special attention
because they demonstrate how to organize the filing of messages. These
variables are: folder, record, and outfolder. All three are interrelated and
control the directories and files in which copies of messages are kept.

8-40 User's Guide

To put a value into the folder variable, use the following format:

set folder=directory

This specifies the directory in which you want to save standard mail files. If
the directory name specified does not begin with a I (slash), it is presumed to
be relative to $HOME . If folder is an exported shell variable, you can specify
file names (in commands that call for a filename argument) with a I before the
name; the name is expanded so that the file is put into the folder directory.

To put a value in the record variable, use the following format:

set record= filename

This directs mai lx to save a copy of all outgoing messages in the specified file .
The header information is saved with the text of the message . By default, this
variable is disabled.

The outfolder variable causes the file in which you store copies of outgoing
messages (enabled by the variable record=) to be located in the folder
directory. It is established by being named in a set command. The default is
nooutfolder.

The al ias and group commands are synonyms. In Figure 8-1, the al ias
command is used to associate a name with a single login; the group command I is used to specify multiple names that can be called in with one pseudonym.
This is a nice way to distinguish between single and group aliases, but if you
want, you can treat the commands as exact equivalents . Notice, too, that
aliases can be nested.

In the .mai lrc file shown in Figure 8-1, the alias robertsgroup represents five
users; three of them are specified by previously defined aliases and one is
specified by a login. The fifth user, pat, is specified by both a login and an
alias. The next group command in the example, accounts, uses the alias
robertsgroup plus the alias donna. It expands to 12 logins.

The .mai lrc file in Figure 8-1 includes an if-endif command. The full syntax of
that command is:

if s I r mail_commands

else mail_commands

end if

Electronic Mail Tutorial 8-41

The s and r stand for send and receive, so you can cause some initializing
commands to be executed according to whether mailx is entered in input
mode (send) or command mode (receive) . In the preceding example, the
command is issued to change directory to $HOME/mai l if reading mail . The
user in this case had elected to set up a subdirectory for handling incoming
mail .

The environment variables shown in this section are those most commonly
included in the .mai lrc file . You can, however, specify any of them for one
session only whenever you are in command mode. For a complete list of the
environment variables you can set in mai lx, see the mai lx(l) manual page in
the User's Reference Manual.

Sending and Receivi ng Fi les

This section describes the commands available for transferring files: the mai l
command for small files (a page or less), and the uucp and uuto commands
for long files. The mai l command can be used to transfer file either within a
local system or to a remote system. The uucp and uuto commands transfer
files from one system to another.

I Sending Smal l Fi les : mail Command
To send a file in a mai l message, you must redirect the input to that file on
the command line . Use the < (less than) redirection symbol as follows:

mai l login < filename<CR>

(For further information on input redirection, see Chapter 7.) Here login is the
recipients login ID and filename is the name of the file you want to send. For
example, to send a copy of a file called agenda to the owner of login sarah
(on your system), type the following command line:

$ mai l sarah < agenda<CR>
$

The prompt that appears on the second line means the contents of agenda
have been sent. When sarah issues the mai l command to read her messages,
she will receive agenda .

8-42 User's Guide

To send the same file to more than one user on your system, use the same
command line format with one difference; in place of one login ID, type
several, separated by spaces. For example:

$ mai l sarah tommy dingo wombat < agenda<CR>
$

Again, the prompt returned by the system in response to your command is a
signal that your message has been sent.

The same command line format, with one addition, can also be used to send a
file to a user on a remote system that can communicate with yours . In this
case, you must specify the name of the remote system before the users login
name. Separate the system name and the login name with an I (exclamation
point) :

mai l system!login < filename<CR>

For example:

$ mai l writer!wombat < agenda<CR>
$

The system prompt on the second line means that your message (containing 1 the file) has been queued for sending.

If you are using mai lx, you cannot use the mail command line syntax to send
a file . Instead, you use the - r option as follows:

mallx phyllis
Subj e c t : Memo

Electronic Milil Tutorial 8-43

I

Sending Large Fi les

The uucp and uuto commands allow you to transfer files to a remote
computer. uucp allows you to send files to the directory of your choice on
the destination system. If you are transferring a file to a directory that you
own, you have permission to put the file in that directory. (See Chapter 3 for
information on directory and file permissions.) However, if you are
transferring the file to another users directory, you must be sure, in advance,
that the user has given you permission to write a file to his or her directory.
In addition, because you must specify path names that are often long and
accuracy is required, uucp command lines may be cumbersome and lead to
error.

The uuto command is an enhanced version of uucp. It automatically sends
files to a public directory on the recipients system called
/usr/spool/uucppubl ic. This means you cannot choose a destination file.
However, it also means that you can transfer a file at any time without having
to request write permission from the owner of the destination directory.
Finally, the uuto command line is shorter and less complicated than the uucp
command line . When you type a uuto command line, the likelihood of
making an error is greatly reduced.

Checki ng Permissions

Before you actually send a file with the uucp or uuto command, you need to
find out whether or not the file is transferable . To do that, you must check
the files permissions . If they are not correct, you must use the chmod
command to change them, if you own the files. (Permissions and the chmod
command are covered in Chapter 3.)

There are two permission criteria that must be met before a file can be
transferred using uucp or uuto.

• The file to be transferred must have read permission (r) for others .

• The directory that contains the file must have read (r) and execute (x)
permission for others.

8-44 User's Guide

For example, assume that you have a file named chicken, under a directory
named soup (in your home directory) . You want to send a copy of the
chicken file to another user with the uuto command. First, check the
permissions on soup:

2 r e ader group 1 45 Feb 9 1 0 : 43 • oup

The response of the Is command shows that soup has read (r) and execute (x)
permissions for all three groups; no changes have to be made. Now use the
cd command to move from your home directory to soup, and check the
permissions on the file chicken.

$ Is -1 chicken<CR>

-rw------- 1 reader group1 3 1 0 1 liar 1 1 8 : 22

The command's output means that you (the user) have permission to read the
file chicken, but no one else does. To add read permissions for your group
(g) and others (o), use the chmod command:

$ chmod go+ r chicken<CR>

Electronic Mail Tutorial 8-45

I

I

Now check the permissions again with the Is -1 command:

$ Is � chicken<CR>
total 4
-rw-r--r-- 1 reader group 1 3 1 0 1 Yar01 1 8 : 22
$

This confirms that the file is now transferable; you can send it with the uucp
or uuto command. Mter you send copies of the file, you can reverse the
procedure and replace the previous permissions .

u u cp Command

The command uucp allows you to copy a file directly to the home directory of
a user on another computer, or to any other directory you specify and for
which you have write permission.

uucp is not an interactive command. It performs its work silently, invisible to
the user. Once you issue this command you may run other processes.

Transferring a file between computers is a multiple-step procedure. First, a
work file, containing instructions for the file transfer, must be created. When
requested, a data file (a copy of the file being sent) is also made. Then the file
is ready to be sent. When you issue the uucp command, it performs the
preliminary steps described above (creating the necessary files in a dedicated
directory called a spool directory), then calls the uucico daemon that actually
transfers the file. (Daemons are system processes that run in background.)
The file is placed in a queue and uucico sends i t at the first available time.

Thus, the uucp command allows you to transfer files to a remote computer
without knowing anything except the name of the remote computer and,
possibly, the login ID of the remote user(s) to whom the file is being sent.

8-46 User's Guide

Command Line Syntax

uucp allows you to send:

• one file to a file or a directory

• multiple files to a directory

To deliver your file(s), uucp must know the full path name of both the source
file and the destination-file. However, this does not mean you must type out
the full path name of both files every time you use the uucp command. There
are several abbreviations you can use once you become familiar with their
formats; uucp expands them to full path names.

To choose the appropriate designations for your source-file and destination-file,
begin by identifying the source-files location relative to your own current
location in the file system. (Assume, for the moment, that the source-file is in
your local system.) If the source-file is in your current directory, you can
specify it by its name alone (without a path) . If the source-file is not in your
current directory, you must specify its full path name.

How do you specify the destination-file? Because it is on a remote system, the
destination-file must always be specified with a path name that begins with the I name of the remote system. After that, however, uucp gives you a choice:
you can specify the full path or use either of two forms of abbreviation. Your
destination-file should have one of the following three formats:

• system_name!full_path

• system_name!-login_name [ldirectory_namelfilename]

• systemname!-llo gin_name [I directory _name/filename]

The login name, in this case, belongs to the recipient of the file .

Until now we have described what to do when you want to send a file from
your local system to a remote system. However, it is also possible to use
uucp to send a file from a remote system to your local system. In either case,
you can use the formats described above to specify either source-files or
destination-files . The important distinction in choosing one of these formats is
not whether a file is a source-file or a destination-file, but where you are
currently located in the file system relative to the files you are specifying.
Therefore, in the formats shown above, the login_name could refer to the login
of the owner or the recipient of either a source-file or a destination-file.

Electronic Mail Tutorial 8-47

I

For example, you are login kol on a system called m ickey. Your home
directory is /usr/kol and you want to send a file called chap1 (in a directory
called text in your home directory) to login wsm on a system called minnie .
You are currently working in /usr/kol/text, so you can specify the source-file
with its relative path name, chap1 . Specify the destination-file in any of the
ways shown in the following command lines:

• Specify the destination-file with its full path name:

uucp chap1 m inn ie !/usr/wsm/receive/chap1

• Specify the destination-file with - login_name (which expands to the name of
the recipient's home directory) and a name for the new file .

uucp chap1 m innie!- wsm/receive/chap1

(The file will go to m innie !/usr/wsm/receive/chap1 .)

• Specify the destination-file with - login_name (which expands to the
recipients home directory) but without a name for the new file; uucp gives
the new file the same name as the source-file.

uucp chap1 m innie!- wsm/receive

(The file will go to m innie l/usr/wsm/receive/chap1 .)

• Specify the destination-file with - llogin_name. This expands to the
recipients subdirectory in the public directory on the remote system.

uucp chap1 minnie l- /wsm

(The file will go to m innie!/usr/usr/spool/uucppubl ic/wsm .)

8-48 User's Guide

Examples of the uucp Command

Suppose you want to send a file called minutes to a remote computer named
eagle. Enter the command line shown in the following screen:

$ uucp -m -s status -1 minutes eagleVusr/gws/mlnutes<CR>
eagleN3f46
•

This sends the file m inutes (located in your current directory on your local
computer) to the remote computer eagle and places it under the path name
/usr/gws in a file named minutes. When the transfer is complete, the user
gws on the remote computer is notified by mail.

The -m option ensures that you (the sender) are also notified by mail as to I whether or not the transfer has succeeded. The -s option, followed by the
name of the file (status), asks the program to put a status report of the file
transfer in the specified file (status) .

NOTE

Be sure to include a file name after the -s
option. If you do not, you get the message:
uucp failed completely.

Electronic Mail Tutorial 8-49

I

The job ID (eagleN3.f45) displays in response to the -j option.
'

Even if uucp does not notify you of a successful transfer soon after you send a
file, do not assume that the transfer has failed. Not all systems equipped
with networking software have the hardware needed to call other systems .
Files being transferred from these so called passive systems must be collected
periodically by active systems equipped with the required hardware (see
Operation of the uucp Command for details) . Therefore, if you are transferring
files from a passive system, you may experience some delay. Check with
your System Administrator to find out whether your system is active or
passive .

The previous example uses a full path name to specify the destination-file.
There are two other ways the destination-file can be specified:

• The login directory of gws can be specified through use of the - (tilde), as
shown below:

eaglel-gws/m inutes

is interpreted as:

eagle !lusr/gws/m inutes

• The uucppublic area is referenced by a similar use of the tilde prefix to the
path name. For example:

eagle!-/gws/m inutes

is interpreted as:

/usr/spool/uucppublic/gws/m inutes

8-50 User's Guide

Operation of the u u cp Command

This section is an overview of what happens when you issue the uucp
command. An understanding of the processes involved may help you to be
aware of its limitations and requirements: why it can perform some tasks and
not others, why it performs tasks when it does, and why you may or may not
be able to use it for tasks that uucp performs. For further details, see the
System Administrator's Guide and the System Administrator's Reference Manual .

When you enter a uucp command, the uucp program creates a work file and
usually a data file for the requested transfer. (uucp does not create a data file
when you use the -c option.) The work file contains information required to
transfer the file(s) . The data file is a copy of the specified source file . After
these files are created in the spool directory, the uucico daemon is started.

The uucico daemon attempts to establish a connection to the remote
computer that is to receive the file(s) . It first gathers the information required
for establishing a link to the remote computer from the Systems file . This is
how uucico knows what type of device to use in establishing the link. Then
uucico searches the Devices file looking for the devices that match the
requirements listed in the Systems file . After uucico finds an available
device, it attempts to establish the link and log in on the remote computer.

When uucico logs in on the remote computer, it starts the uucico daemon on
the remote computer. The two uucico daemons then negotiate the line
protocol to be used in the file transfer(s) . The local uucico daemon transfers
the file(s) that you are sending to the remote computer; the remote uucico
places the file in the specified path name(s) on the remote computer. After
your local computer completes the transfer(s), the remote computer may send
files that are queued for your local computer. The remote computer can be
denied permission to transfer these files with an entry in the Permissions
file. If this is done, the remote computer must establish a link to your local
computer to perform the transfers .

Electronic Mail Tutorial 8-51

I

I

If the remote computer or the device selected to make the connection to the
remote computer is unavailable, the request remains queued in the spool
directory. Each hour (default), uudemon.hour is started by cron which in
tum starts the uusched daemon. When the uusched daemon starts, it
searches the spool directory for the remaining work files, generates the
random order in which these requests are to be processed, and then starts the
transfer process (uucico) described in the previous paragraphs.

The transfer process described generally applies to an active computer. An
active computer (one with calling hardware and networking software) can be
set up to poll a passive computer. Because it has networking software, a
passive computer can queue file transfers . However, it cannot call the remote
computer because it does not have the required hardware. The Poll file
(/usr/l ib/uucp/Poll) contains a list of computers that are to be polled in this
manner.

8-52 User's Guide

Table 8-5 summarizes the syntax and capabilities of the uucp command.

Table 8-5. Summary of the uucp Command

Command Recap

uucp - copies a file from one computer to another

Command Options Arguments

uucp -j 1 , -m, -s and others* source-file

Description : uucp performs preliminary tasks required to copy a
file from one computer to another, and calls
uucico, the daemon (background process) that
transfers the file . The user need only issue the
uucp command for a file to be copied.

Remarks : By default, the only directory to which you can
write files is /usr/spool/uucppublic. To write to
directories belonging to another user, you must
receive write permission from that user. Although
there are several ways to represent path names as
arguments, it is recommended that you type full
path names to avoid confusion.

* See the uucp(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities.

Electronic Mail Tutorial 8-53

I

I

u uto Command

The uuto command allows you to transfer files to the public directory of
another system. The basic format for the uuto command is:

uuto filename system!login<CR>

where filename is the name of the file to be sent, system is the recipients
system, and login is the recipients login name.

If you send a file to someone on your local system, you may omit the system
name and use the following format:

uuto filename login<CR>

Sending a Fi le: -m Option and uustat Command

Now that you know how to determine if a file is transferable, this section
describes how it works.

The process of sending a file by uuto is referred to as a job. When you issue
a uuto command, your job is not sent immediately. First, the file is stored in
a queue (a waiting line of jobs) and assigned a job number. When the jobs
number comes up, the file is transmitted to the remote system and placed in a
public directory there. The recipient is notified by a mai l message and must
use the uupick command (discussed later in the chapter) to retrieve the file .

For the following discussions, assume this information:

wombat your login name

sys1 your system name

marie recipients login name

sys2 recipients system name

money file to be sent

8-54 User's Guide

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys2, enter the following:

$ uuto money sys21marie<CR>
$

The prompt on the second line is a signal that the file has been sent to a job
queue. The job is now out of your hands; all you can do is wait for
confirmation that the job reached its destination.

How do you know when the job has been sent? The easiest method is to alter
the uuto command line by adding a -m option, as follows:

$ uuto -m money sys21marie< CR>
$

This option sends a mai l message back to you when the job has reached the
recipients system. The message may look something like this:

$ maii<CR>
From uucp Thur Apr3 09 : 46 EST 1986
fila /sys 1/wombat/mona y , system sys 1
copy succe eded
?

Electronic Mail Tutorial 8-55

I

If you would like to check if the job has left your system, you can use the
uustat command. This command keeps track of all the uucp and uuto jobs
you submit and reports the status of each on demand. For example:

$ uustat<CR>
aya2 10/06-09 : 3 1 10/06-09 : 33 JOB IS QUEUED

The elements of this sample status message are as follows:

• 1 145 is the job number assigned to the job of sending the file money to
marie on sys2.

• wombat is the login name of the person requesting the job.

• sys2 is the recipients system.

I • 10/05-09 : 31 is the date and time the job was queued.

• 10/05-09 : 33 is the date and time this uustat message was sent.

• The final part is a status report on the job. Here, the report shows that the
job has been queued, but has not yet been sent.

To receive a status report on only one uuto job, use the -j option and specify
the job number on the command line:

uustat -jjobnumber<CR>

8-56 User's Guide

For example, to get a report on the job described in the previous example,
specify 1145 (the job number) after the -j option:

$ uustat -j1 1 45<CR>
1 146 wombat aya2 1 0/06-09 : 3 1 1 0/06-09 : 37
COPY FINISHED , JOB DELETED
$

This status report shows that the job was sent and deleted from the job
queue; it is now in the public directory of the recipients system. Other status
messages and options for the uustat command are described in the User's
Reference Manual.

That is all there is to sending files. To practice, try sending a file to yourself.

Electronic Mail Tutorial 8-57

I

I

Tables 8-6 and 8-7 summarize the syntax and capabilities of the uuto and
uustat commands, respectively.

Table 8-6. Summary of the uuto Command

Command Recap

uuto - sends files to another login

Command Options Arguments

uuto - m and others* file system! log in

Description : uuto sends a specified file to the public directory of
a specified system, and notifies the intended
recipient (by mail addressed to his or her login)
that the file has arrived there .

Remarks: Files to be sent must have read permission for
others; the files parent directory must have read
and execute permissions for others .

The -m option notifies the sender by mail when
the file has arrived at its destination.

* See the uuto(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities.

8-58 User's Guide

Table 8-7. Summary of the uustat Command

Command Recap

uustat - checks job status of a uucp or uuto job

Command Options Arguments

uustat -j and others* none

Description : uustat reports the status of all uucp and uuto jobs
you have requested.

Remarks : The -j option, followed by a job number, allows
you to request a status report on only the specified
job.

* See the uustat(l) manual page in the User's Reference Manual I
for all available options and an explanation of their
capabilities .

Electronic Mail Tutorial 8-59

I

Receiving Fi les Sent with uuto : uupick Command

When a file sent by uuto reaches the public directory on your operating
system, you receive a mail message. To continue the previous example, the
owner of login marie receives the following mail message when the file
money has arrived in her systems public directory:

$ mail
From uucp Wed Yay 14 09 : 22 EST 1986
/uar/apool/uucppublic/re c e ive/marie/aya 1//money
from aya 1 ! wombat arrived
•

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The second line, up to the two slashes {//), gives the path name to the part
of the public directory where the file has been stored.

• The rest of the line (after the two slashes) gives the name of the file and
the sender.

Once you have disposed of the mail message, you can use the uupick
command to store the file where you want it. Type the following command
after the system prompt:

uupick<CR>

The command searches the public directory for any files sent to you. If it
finds any, it reports the filename(s) . It then prints a ? prompt as a request
for further instructions from you.

8-60 User's Guide

For example, the owner of login marie issues the uupick command to retrieve
the money file . The command responds:

$ uupick<CR>
£rom system sys 1 : £ile money
?

There are several available responses; we will look at the most common
responses and what they do.

The first thing you should do is move the file from the public directory and
place it in your login directory. To do so, type an m after the question mark:

?
m < CR>
$

This response moves the file into your current directory. If you want to put it
in some other directory instead, follow the m response with the directory
name:

?
m other_directory<CR>

If there are other files waiting to be moved, the next one displays, followed by I the question mark. If not, uucpick returns a prompt.

If you do not want to do anything to that file now, press the RETURN key after
the question mark:

?
<CR>

The current file remains in the public directory until the next time you use the
uupick command. If there are no more messages, the system returns a
prompt.

If you already know that you do not want to save the file, you can delete it by
typing d after the question mark:

?
d<CR>

This response deletes the current file from the public directory and displays
the next message (if there is one) . If there are no additional messages about
waiting files, the system returns a prompt.

Electronic Mtlil Tutorial 8-61

I

Finally, to stop the uupick command, type a q after the question mark:

?
q<CR>

Any unmoved or undeleted files will wait in the public directory until the next
time you use the uupick command.

Other available responses are listed in the User's Reference Manual.

Table 8-8 summarizes the syntax and capabilities of the uupick command.

Table 8-8. Summary of the uupick Command

Command Recap

uupick - searches for files sent by uuto or uucp

Command Options Arguments

uupick available* system name

Description : uupick searches the public directory of your system
for files sent by uuto or uucp. If any are found,
the command displays information about the file
and prompts you for a response.

Remarks: The question mark (?) at the end of the message
shows that a response is expected. A complete list
of responses is given in the User's Reference Manual.

* See the uupick(l) manaul page in the User's Reference Manual
for all available options and an explanation of their
capabilities .

8-62 User's Guide

Networki ng

Networking i s the process o f linking computers and terminals s o that users
may be able to:

• log in on a remote computer as well as a local one

• log in and work on two computers in one work session (without
alternately logging off one and logging in on the other)

• exchange data between computers

The commands presented in this section make it possible for you to perform
these tasks. The ct command allows you to connect your computer to a
remote terminal that is equipped with a modem. The cu command enables
you to connect your computer to a remote computer, and the uux command
lets you run commands on a remote system, without being logged in on it.

NOTE

On some small computers, the presence of
these commands may depend on whether or
not networking software is installed. If it is
not installed on your system, you will receive
a message like the following when you type a
networking command:

cu : not found

Check with your System Administrator to
verify the availability of networking commands
on your operating system.

Con necting a Remote Terminal : ct Command

The ct command connects your computer to a remote terminal equipped with
a modem, and allows a user on that terminal to log in. To do this, the
command dials the phone number of the modem. The modem must be able
to answer the call automatically. When ct detects that the call has been
answered, it issues a getty (login) process for the remote terminal and allows
a user on it to log in on the computer.

Electronic Mail Tutorial 8-63

I

I

This command can be useful when issued from the opposite end, i .e . , from
the remote terminal itself. If you are using a remote terminal that is far from
your computer and want to avoid long distance charges, you can use ct to
have the computer place a call to your terminal. Simply call the computer, log
in, and issue the ct command. The computer hangs up the current line and
call your (remote) terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy and
asks if it should wait until one becomes available . If you answer yes, it asks
how long (in minutes) it should wait for one.

Command Line Format

To execute the ct command, use the followiwng format:

ct [options] telno< CR>

The argument telno i s the telephone number of the remote terminal .

Sample Command Usage

You are logged in on a computer through a local terminal and you want to
connect a remote terminal to your computer. The phone number of the
modem on the remote terminal is 932-3497. Enter this command line:

ct -h -w5 -s1 200 9= 9323497<CR>

NOTE

The equal sign (=) represents a secondary dial
tone, and dashes (-) following the phone
number represent delays (the dashes are
useful following a long distance number) .

ct calls the modem, using a dialer operating at a speed of 1200 baud. If a
dialer is not available, the -w5 option causes ct to wait for a dialer for five
minutes before quitting. The -h option tells ct not to disconnect the local
terminal (the terminal on which the command was issued) from the computer.

8-64 User's Guide

Now you want to log in on the computer from home. To avoid long distance
charges, use ct to have the computer call your terminal:

ct -s1 200 9=9323497<CR>

Because you did not specify the -w option, if no device is available, ct sends
you the following message:

1 busy dialer at 1200 baud Wait for dialer?

If you type n (no), the ct command exits. If you type y (yes), ct prompts you
to specify how long ct should wait:

Time , in minutes ?

If a dialer i s available, ct responds with:

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case, ct asks if you want the
line connecting your remote terminal to the computer to be dropped:

Confirm hangup?

If you type y (yes), you are logged off and ct calls your remote terminal back
when a dialer is available . If you type n (no), the ct command exits, leaving
you logged in on the computer.

Electronic Mail Tutorial 8-65

I

I

Table 8-9 summarizes the syntax and capabilities of the ct command.

8-66

Table 8-9. Summary of the ct Command

Command Recap

ct - connect computer to remote terminal

Command Options Arguments

ct -h, -w, -s and others* tel no

Description : ct connects the computer to a remote terminal and
allows a user to log in from that terminal.

Remarks : The remote terminal must have a modem capable
of answering phone calls automatically.

* See the ct(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

User's Guide

Cal l ing Another Operating System : cu Command

The cu command connects a remote computer to your computer and allows
you to be logged in on both computers simultaneously. This means that you
can move back and forth between the two computers, transferring files and
executing commands on both, without dropping the connection.

The method used by the cu command depends on the information you
specify. You must specify the telephone number or system name of the
remote computer. If you specify a phone number, it is passed on to the
automatic dial modem. If you specify a system name, cu obtains the phone
number from the Systems file . If an automatic dial modem is not used to
establish the connection, the line (port) associated with the direct link to the
remote computer can be specified on the command line .

Once the connection is made, the remote computer prompts you to log in on
it. When you have finished working on the remote terminal, log off it and
terminate the connection by typing < - . > . You are still logged in on the local
computer.

NOTE

The cu command is not capable of detecting or
correcting errors; data may be lost or corrupted
during file transfers . After a transfer, you can
check for loss of data by running the sum
command or the Is -1 command on the file
that was sent and the file that was received.
Both of these commands report the total
number of bytes in each file; if the totals
match, your transfer was successful . The sum
command checks more quickly and gives
output that is easier to interpret. (See the
sum(l) and the ls(l) manual pages in the
User's Reference Manual for details .)

Electronic Mail Tutorial 8-67

I

I

Command Line Format

To execute the cu command, use the following format:

cu [options] telno I systemname<CR>

where:

tel no
is the telephone number of a remote computer.

Equal signs (=) represent secondary dial tones; dashes (-) represent four
second delays .

systemname
is a system name that is listed in the Systems file .

The cu command obtains the telephone number and baud rate from the
Systems file and searches for a dialer. The -s, -n, and -1 options should
not be used with systemname. (To see the list of computers in the
Systems file, run the uuname command.)

Once your terminal is connected and you are logged in on the remote
computer, all standard input (input from the keyboard) is sent to the remote
computer. Table 8-10 shows the commands you can execute while connected
to a remote computer through cu .

8-68 User's Guide

Table 8-1 0. Command Strings for Use with cu

String Interpretation

-. Terminate the link.

_ , Escape to the local computer without dropping
the link. To return to the remote computer,
type <"'d> (CTRL-d) .

- !command Execute command on the local computer.

-$command Run command locally and send its output to the
remote system.

-%cd path Change the directory on the local computer
where path is the path name or directory
name.

-%take from [to] Copy a file named from (on the remote
computer) to a file named to (on the local

I
computer) . If to is omitted, the from argument
is used in both places.

-%put from [to] Copy a file named from (on the local computer)
to a file named to (on the remote computer) . If
to is omitted, the from argument is used in
both places.

- - . . . Send a line beginning with - (- -.. .) to the
remote computer.

-%break Transmit a BREAK to the remote computer (can
also be specified as -%b) .

Electronic Mail Tutorial 8-69

I

Table 8-1 0. Command Strings for Use with cu (cont'd)

String Interpretation

-%nostop Tum off the handshaking protocol for the
remainder of the session. This is useful when
the remote computer does not respond
properly to the protocol characters .

-%debug Tum the -cl debugging option on or off (can

-t

- I

also be specified as -%d).

Display the values of the terminal 110
(input/output) structure variables for your
terminal (useful for debugging) .

Display the values of the termio structure
variables for the remote communication line
(useful for debugging) .

NOTE

The use of -%put requires stty and cat on the
remote computer. It also requires that the
current erase and kill characters on the remote
computer are identical to the current ones on
the local computer.

The use of -%take requires the existence of
the echo and cat commands on the remote
computer. Also, stty tabs mode should be set
on the remote computer if tabs are to be
copied without expansion.

8-70 User's Guide

Sample Command Usage

You want to connect your computer to a remote computer called eagle. The
phone number for eagle is 55>.7867. Enter the following command line:

cu -s1 200 9=5557867<CR>

The -s1 200 option causes cu to use a 1200 baud dialer to call eagle. If the -s
option is not specified, cu uses a dialer at the default speed, 300 baud.

When eagle answers the call, cu notifies you that the connection has been
made, and prompts you for a login ID:

connected
login :

Enter your login ID and password.

The take command allows you to copy files from the remote computer to the
local computer. For example, you want to make a copy of a file named
proposal for your local computer. The following command copies proposal
from your current directory on the remote computer and places it in your
current directory on the local computer. If you do not specify a file name for
the new file, it is also called proposal .

�%take proposai<CR>

The put command allows you to do the opposite: copy files from the local
computer to the remote computer. For example, you want to copy a file
named minutes from your current directory on the local computer to the
remote computer, type:

�%put minutes m inutes.9-1 8<CR>

Here, you specified a different name for the new file (m inutes.9-1 8) .
Therefore, the copy of the m inutes file that is made on the remote computer
is called m inutes.9-1 8 .

Electronic Mail Tutorial 8-71

I

I

Table 8-11 summarizes the syntax and capabilities of the cu command.

Table 8-1 1 . Summary of the cu Command

Command Recap

cu - connects computer to remote computer

Command Options Arguments

cu -s and others* tel no (or) systemname

Description : cu connects your local computer to a remote
computer and allows you to be logged in on both
simultaneously. Once you are logged in, you can
move between computers to execute commands
and transfer files on each without dropping the
link.

* See the cu(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities .

Executi ng on a Remote System : uux Command

The command uux allows you to execute operating system commands on
remote computers. It can gather files from various computers, execute a
command on a specified computer, and send the standard output to a file on a
specified computer. The execution of certain commands may be restricted on
the remote machine. The command notifies you by mail if the command you
have requested is not allowed to execute .

8-72 User's Guide

Command Line Format

To execute the uux command, use the following format:

uux [options] command-string<CR>

The command-string is made up of one or more arguments. All special shell
characters (e.g. , "< > lA") must be quoted, either by quoting the entire
command-string or quoting the character as a separate argument. Within the
command-string, the command and file names may contain a system ruzme!
prefix.

All arguments that do not contain a systemruzme are interpreted as command
arguments. A file name may be either a full path name or the name of a file
under the current directory (on the local computer) .

Sample Command Usage

If your computer is hard-wired to a larger host computer, you can use uux to
get printouts of files that reside on your computers by entering:

pr minutes 1 uux -p hostl lp<CR>

This command line queues the file m inutes to be printed on the area printer
of the computer host.

Electronic Mail Tutorial 8-73

I

I

Table 8-12 summarizes the syntax and capabilities of the uux command.

Table 8-1 2. Summary of the uux Command

Command Recap

uux - executes commands on a remote computer

Command Options Arguments

uux -1 , -p, and others* command-string

Description : uux allows you to run operating system commands
on remote computers. It can gather files from
various computers, run a command on a specified
computer, and send the standard output to a file on
a specified computer.

Remarks : By default, users of the uux command have
permission to run only the mai l and mai lx
commands. Check with your System
Administrator to find out if users on your system
have been granted permission to run other
commands.

* See the uux(l) manual page in the User's Reference Manual for
all available options and an explanation of their capabilities .

8-74 User's Guide

g ksh Tutorial

Introduction 9-1

Shell Variables 9-1

Arithmetic Evaluation 9-3

Functions and Command Alias ing 9-4

Input and Output 9-s

Command Re-entry 9-9

In-l ine Editing 9-n

Job Control 9-12

Security 9-13

ksh Tutorial

ksh Tutorial

ii User's Guide

Miscel laneous
Tilde Substitution
Built-in UO Redirection
Options
Built-in pwd
Built-in fexpr
Built-in getopts
Logical Naming
Previous Directory
Additional Variables and Parameters
Modified Variables
Timing Commands
Co-process
Process Substitution
Command Substitution
Whence
Additional Test Operators
Added Trap
Shell Accounting
Coded in Standard C
Internalization
No special meaning for

A

Added Conveniences

Performance

Example

9-14

9-15

9-15

9-15

9-16

9-16

9-16

9-16

9-16

9-17

9-18

9-18

9-18

9-19

9-19

9-20

9-20
9-20
9-20

9-20

9-21

9-21

9-21

9-21

9-23

Introd uction

ksh i s a direct descendant of the Form shell with most o f the form entry/edit
features removed and with many features added. The primary focus is to
provide an enhanced programming environment in addition to the major
command entry features of Csh. Many of the additions are provided so that
medium sized programming tasks can be written at the shell level without a
serious performance penalty. A concerted effort has been made to achieve
SYSTEM V/88 shell compatibility so that scripts written for the SYSTEM V/88
shell can run without modification with ksh.

Shel l Variables

The ability to define and use variables to store and retrieve values is an
important feature in most programming languages. ksh has variables with
identifier names that follow the same rules as the SYSTEM V/88 shell . Since all
variables have string representations, there is no need to specify the type of
each variable in the shell . In ksh, each variable can have one or more
attributes that control the internal representation of the variable, the way the
variable is printed, and its access or scope. Two of the attributes, readonly and
export, are available in the SYSTEM V/88 shell. The typeset built-in command
of ksh assigns attributes to variables . The complete list of attributes, some of
which are discussed here, appears in the manual page . The unset built-in of
the ksh removes values and attributes of parameters .

Whenever a value is assigned to a variable, the value is transformed according
to the attributes of the variable . Changing the attribute of a variable can
change its value . There are three attributes for field justification, as might be
needed for formatting a report. For each of these attributes, a width can be
defined explicitly or it is defined the first time an assignment is made to the
variable . Each assignment causes justification of the field, truncating if
necessary. Assignment to fixed sized variables provides a simple way to
generate a substring consisting of a fixed number of characters from the
beginning or end of a string .

ksh Tutorial 9-1

I

I

The attributes -u and -1, are used for uppercase and lowercase formatting,
respectively. Since it makes no sense to have both attributes on
simultaneously, turning on either of these attributes turns the other off. The
following script provides an example of the use of shell variables with
attributes . This script reads a file of lines each consisting of five fields
separated by : and prints fields 4 and 2 in uppercase in columns 1-15, left
justified, and columns 20-25 right-justified respectively.

type s e t -L16u f4
type s e t -R6u f2
IFS= :

• 16 character left j ustified
• 6 character right j ustified

set -f • skip file name g eneration
while read -r f1 f2 f3 f4 f6 • read line , split into f i e lds
do print -r " $f4 $f2 " • print fields 4 and 2
done

The integer attribute, -i, causes the variable to be internally represented as an
integer. The i can be followed by a number representing the numeric base for
printing, otherwise, the first assignment to an integer variable defines the
output base (see below) . This base is used whenever the variable is printed.
Assignment to integer typed variables result in arithmetic evaluation, as
described below, of the right hand side.

ksh allows one-dimensional arrays in addition to simple variables. Any
variable can become an array by referring to it with a subscript. All elements
of an array need not exist. Subscripts for arrays must evaluate to an integer
between 0 and 511, otherwise, an error results . Evaluation of subscripts is
described in the next section. Attributes apply to the whole array.

Assignments to array variables can be made with parameter assignment
statements or with the typeset built-in. Referencing of subscripted variables
requires the character $, but also requires braces around the array element
name . The braces are needed to avoid conflicts with the file name generation
mechanism. The form of any array element reference is:

${name [subscript)}

A subscript value of * or @ can be used to generate all elements of an array,
as they are used for expansion of positional parameters .

A few additional operations are available on shell variables. ${#name} will be
the length in bytes of $name. For an array variable ${#name[*)} gives the
number of elements in the array.

9-2 User's Guide

There are four parameter substitution modifiers that have been added to strip
off leading and trailing substrings during parameter substitution. The
modifier #{##) strips off the smallest (largest) matching pattern from the left
and the modifier %{%%) strips off the smallest (largest) matching pattern from
the right. For example, if the shell variable i has value fi le.c, the expression
${i%.c}.o has value fi le.o.

Arith metic Eval uation

The built-in command, let, provides the ability to do integer arithmetic. All
arithmetic evaluations are performed using long arithmetic. Arithmetic
constants are written as

base#number

where base is a decimal integer between 2 and 36 and number is any non
negative number. Anything after a decimal point is truncated. Base 10 is
used if no base is specified.

Arithmetic expressions are made from constants, variables, and one or more
of the 14 operators listed in the manual page. Operators are evaluated in
order of precedence. Parentheses may be used for grouping. A variable does
not have to have an integer attribute to be used within an arithmetic
expression. The name of the variable is replaced by its value within an
arithmetic expression. The following statement can be used to increment a 1 variable x:

let x = x + 1

Note that there is no space before or after the operators + and = . This is
because each argument to let is an expression to evaluate . The last expression
determines the value returned by let. Let returns true if the last expression
evaluates to a non-zero value. Otherwise, let returns false .

ksh Tutorial 9-3

I

Many of the arithmetic operators have special meaning to the shell and must
be quoted. Since this can be burdensome, an' alternate form of arithmetic
evaluation syntax has been provided. For any command that begins with ({ ,
all characters unt�l the matching)) are treated as a quoted arithmetic
expression. The double parentheses usually avoids incompatibility with the
SYSTEM V/88 shells use of parentheses for grouping a set of commands to be
run in a sub-shell.

Expressions inside double parentheses can contain blanks and special
characters without quoting:

{{ . . .))

is equivalent to:

let " ... "

The following script prints the first n lines of its standard input onto its
standard output, where n can be supplied as an optional argument whose
default value is 20:

typeset -i n=${1-20} # set n
while read -r line a& (((n=n-1) >=0)) # at most n lines
do print -r - " $line •
done

Functions and Com mand Aliasing

Two mechanisms are provided for creating pseudo-commands, i . e . , things
that look like commands, but do not always create a process. The first
technique is called command name aliasing.

As a command is being read, the command name is checked against a list of
alias names. If it is found, the name is replaced by the text associated with
the alias and then rescanned. The text of an alias is not checked for aliases so
recursive definitions are not allowed. However, if the value of an alias ends
in a space, the word following the alias is also checked for alias substitution.

9-4 User's Guide

Aliases are defined with the al ias built-in. The form of an al ias command
definition is:

al ias nnme = value

The first character of an alias name can be any non-special printable character,
while all remaining characters must be alpha-numeric. The replacement text,
value, can contain any valid shell script, including meta-characters such as
pipe symbols and i/o-redirection. Unlike csh, aliases in ksh cannot take
arguments . Aliases can be used to redefine built-in commands so that the
alias can be used to look for test in your current working directory instead of
using the built-in test command.

a l ias test= ./test

Keywords such as for and whi le cannot be changed by aliasing. The
command al ias, without arguments, generates a list of aliases and
corresponding texts . The unal ias command removes the name and text of an
alias .

Aliases are used to save typing and to improve readability of scripts . For
example, the alias al ias integer= 'typeset -i ' allows integer the variables i
and j to be declared and initialized with the command integer i = O j = 1 .

Aliases can be used to bind program names to the full path name of the
program. This eliminates the path search but requires knowledge of where
that program will be stored. Tracked aliases make this use for aliasing
automatic. A tracked alias is not given a value. Its value is defined at the
first reference by a path-search as the full path name equivalent of the name,
and remains defined until the PATH variable is changed. Programs found in
directories that do not begin with I that occur earlier in the path-search than
the value of the tracked alias, take precedence over tracked aliases .

Tracked aliases provide an alternative to the Csh command hashing facility.
Tracked aliases do not require time for initialization and allow for new
commands to be introduced without the need for rehashing. The -h option to
the shell allows all command names that are valid alias names to become
tracked aliases. This option is automatically turned on for non-interactive
shells.

ksh Tutorial 9-5

I

I

Functions are more general than aliases but also more costly. Functions
definitions are of the form:

function name
{
any shell script
}

The function is invoked by writing name and optionally following it with
arguments . Positional parameters are saved before each function call and
restored when completed. Functions are executed in the current shell
environment and can share named variables with the calling program.
Options, other than execution trace -x, set by the calling program are passed
down to a function. The option flags are not shared with the function so that
any options set within a function are restored when the function exits . All
traps other than EXIT and ERR (described later) are also inherited . A trap on
EXIT within a function executes after the function completes, but before the
caller resumes. Therefore, any variable assignments and any options set as
part of a trap action are effective after the caller resumes. The return built-in
can be used to cause the function to return to the statement following the
point of invocation.

By default, variables are inherited by the function and shared by the calling
program. However, environment substitutions preceding the function call
apply only to the scope of the function call. Also, variables defined with the
typeset, built-in command are local to the function that they are declared in.
The following function defined is invoked as y= 1 3 name, x and y are local
variables with respect to the function name, and z is global :

function name

{

}

typeset -i :x=10
let z=:x:+y
print $z

Alias and function names are never directly carried across separate
invocations of ksh, but can be passed down to sub-shells. Ordinarily, shell
scripts invoked by name are executed in a sub-shell, while scripts invoked as
ksh script and shell escapes from other programs are carried out by a separate
shell invocation. The -x flag is used with al ias to carry aliases to sub-shells,
while the -fx flags of typeset are used to do the same for functions .

9-6 User's Guide

Each user can create a startup file for aliases and functions or any other
commands. Aliases and functions that are to be available for all shell
invocations should be put into this file . Aliases and functions that should
apply to scripts as well as interactive use, should be set with the -x flag.
Setting this flag to redefine the semantics of a command can have undesired
side effects . For example, al ias -x Is= ' Is -1' will cause shell procedures that
use the Is command within a pipeline to break. By setting and exporting the
environment variable, ENV, to the name of this file, the aliases and functions
are defined each time ksh is invoked. The value of the ENV variable
undergoes parameter substitution before to its use .

Several of the operating system commands can be aliased to ksh built-ins .
Some of these are automatically set each time the shell is invoked . In
addition, about 20 frequently used operating system commands are set as
tracked aliases .

The location of an alias command can be important since aliases are only
processed when a command is read. A procedure is read all at once (unlike
profiles that are read a command at a time) so that any aliases defined there do
not effect any commands within this script.

A name is checked to see if it is a built-in command before checking to see if
it is a function. To write a function to replace a built-in command you must
define a function with a different name and alias the built-in name to this
function. For example, to write a cd function that changes the directory and 1 prints out the directory name, you can write:

alias cd=_cd
function _cd
{

}

if
then
fi

' cd ' " $0 "
echo $PWD

The single quotes around cd within the function prevents alias substitution.
The PWD variable is described below.

ksh Tutorial 9-7

I

The combination of aliases and functions can be used to do things that cannot
be done with either of these separately. For example, the following defined
function and aliases allow you to write loops:

function __from # i=start to finish [by incr]

{

}

typeset var=${1��=•}
integer incr=${5-1} $1
while (($var <= $3))
do _;r-epeat

let $var=$var+incr
done

alias repeat= • function _;r-epeat { · from= · } ; __from ·

The following example shows the expected behavior:

repeat
any script command

from i=1 to 13 by 3

Input and Output
An extended I/ 0 capability enhances the use o f the shell a s a programming
language. The operating system shell has a built-in read for reading lines
from file descriptor 0, but does not have any internal output mechanism. As
a result, the echo(l) command is used to produce output for a shell
procedure; this is inefficient and also restrictive . For example, there is no way
to read in a line from a terminal and echo the line exactly as is. In the
operating system shell, the read built-in cannot be used to read lines that end
in \ ; the echo command treats certain sequences as control sequences. In
addition, there is no way to have more than one file open at any time for
reading.

ksh has options on the read command to specify the file descriptor for the
input. The exec built-in can be used to open, close, and duplicate file
streams . The -r option allows a \ at the end of an input line to be treated as a
regular character instead of the line continuation character. The first
argument of the read command can be followed by a ? and a prompt to
produce a prompt at the terminal before the read . If the input is not from a
terminal device, the prompt is not issued.

9-8 User's Guide

The ksh built-in, print, is used to output characters to the terminal or to a file .
Again, it is possible to specify the file descriptor number as an option to the
command. Usually, the arguments to this command are processed the same
as for echo(l) . However, the -r flag can be used to output the arguments
without any special meaning. The -n flag can be used here to suppress the
trailing new-line that is usually appended.

To improve performance of existing shell programs, the echo command is
built into ksh. For the SYSTEM V/88 version of ksh, the built-in echo is
equivalent to:

print -

where the - signifies that there are no more options permitted . On the
Berkeley UNIX version, the value of the PATH variable determines the
behavior of the built-in echo command. If echo would resolve to /bin/echo
with a path search, then echo is equivalent to:

print -R .

The -R option allows only the -n flag to be recognized as the next argument.
Otherwise, echo behaves like the SYSTEM V/88 echo command.

The shell is frequently used as a programming language for interactive
dialogues . The select statement makes it easier to present menu selection
alternatives to the user and evaluate the reply. The list of alternatives is
numbered and put in columns. A user settable prompt, PS3, is issued and if I the answer is a number corresponding to one of the alternatives, the select
loop variable is set to this value. In any case, the REPLY variable is used to
store the user entered reply. The shell variables LINES and COLUMNS are
used to control the layout of select lists .

Co m mand Re-entry

An interactive shell saves the commands you type at a terminal in a file . If
the variable HISTFILE is set to the name of a file to which the user has write
access, the commands are stored in this history file . Otherwise, the file
$HOME/.sh_history is checked for write access; if this fails, an unnamed file
is used to hold the history lines. This file may be truncated if this is a top
level shell .

ksh Tutorial 9-9

I

The number of commands accessible to the user, is determined by the value
of the HISTSIZE variable at the time the shell is invoked. The default value is
128. A command may consist of one or more lines since a compound
command is considered one command. If the character ! is placed within the
primary prompt string, PS1 , it is replaced by the command number each time
the prompt is given. Whenever the history file is named, all shells which use
this file share access to the same history.

A built-in command fc (fix command) is used to list and/or edit any of these
saved commands. The command can always be specified with a range of one
or more commands. The range can be specified by giving the command
number, relative or absolute, or by giving the first character or characters of
the command. The option -1 is used to specify listing of previous commands.
When given without specifying the range, the last 16 commands are listed,
each preceded by the command number.

If the listing option is not selected, the range of commands specified, or the
last command if no range is given, is passed to an editor program before
being re-executed by ksh. The editor to be used may be specified with the
option /-e, following it with the editor name. If this option is not specified,
the value of the shell variable FCEDIT is used as the name of the editor,
providing this variable has non-null value. If this variable is not set or is null
and the -e option has not been selected, then lbin/ed is used. When editing
has been complete, the edited text automatically becomes the input for ksh.
As this text is read by ksh, it is echoed onto the terminal .

An editor name of - is used to bypass the editing and re-execute the
command. Here, only a single command can be specified as the range and an
optional argument of the form old= new may be added that requests a simple
string substitution prior to evaluation. The following alias that has been pre
defined so that the single key-stroke r can be used to re-execute the previous
command.

al ias r= 'fc -e -'

The key-stroke sequence, r abc= def c, can be used to re-execute the last
command that starts with the letter c with the first occurrence of the string
abc replaced with the string def. Typing r c > fi le re-executes the most
recent command starting with the letter c, with standard output redirected to
file.

9-10 User's Guide

In-l ine Editing

Lines typed from a terminal frequently need changes made before entering
them. With the SYSTEM V/88 shell, the only method to fix up commands is
by backspacing or killing the whole line. ksh offers options that allow the
user to edit parts of the current command line before submitting the
command. The in-line edit options make the command line into a single line
screen edit window. When the command is longer than the width of the
terminal, only a portion of the command is visible . Moving within the line
automatically makes that portion visible . Editing can be performed on this
window until the RETURN key is pressed. The editing modes have commands
that access the history file in which previous commands are saved. A user
can copy any of the most recent HISTSIZE commands from this file into the
input edit window. You can locate commands by searching or by position.

The in-line editing options do not use the termcap database . They work on
most standard terminals. They only require that the BACKSPACE character
moves the cursor left and the SPACE character overwrites the current
character on the screen and moves the cursor to the right.

There is a choice of editor options . The emacs, gmacs, or vi option is selected
by turning on the corresponding option of the set command. If the value of
the EDITOR or VISUAL ends any of these suffixes, the corresponding options
is turned on. A large subset of each of each of these editors features are
available within the shell. Additional functions, e .g . , file name completion,
are also available.

In the emacs or gmacs mode, the user positions the cursor to the point needing
correction and inserts, deletes, or replaces characters as needed. The only
difference between these two modes is the meaning of the command AT.
CONTROL keys and escape sequences are used for cursor positioning and
control functions . The available editing functions are listed in the manual
page.

The vi editing mode starts in insert mode and enters control mode when the
user types ESC (033). The RETURN key, which submits the current
command for processing, can be entered from either mode. The cursor can be
anywhere on the line. A subset of commonly used vi commands are
available . The k and j command that normally move up and down by one
line, move up and down one com11Ulnd in the history file, copying the
command into the input edit window. For reasons of efficiency, the terminal
is kept in canonical mode until an ESC is typed. On some terminals, and on

ksh Tutorial 9-1 1

I

I

earlier versions of the SYSTEM V/88 operating system, this does not work
correctly. The viraw option of the set command, which always uses raw or
cbreak mode, must be used in this case .

Most of the code for the editing options does not rely on the ksh code and can
be used in a stand-alone mode with most any command to add in-line edit
capability. However, all versions of the in-line editors have some features
that use some shell specific code. For example, ESC-= in all edit modes
prints the names of files that match the current word; ESC-* adds the
expanded list of matching files to the command line . A trailing * is added to
the word if it does not contain any file pattern matching characters before the
expansion.

Job Co ntrol

The job control feature allows the user to stop and restart programs, and to
move programs to and from the foreground and the background. It only
works on systems that provide support for these features. However, even
systems without job control have a monitor option which, when enabled,
reports the progress of background jobs and enables the user to ki l l jobs by
job number or job name.

An interactive shell associates a job with each pipeline typed in from the
terminal and assigns them a small integer number called the job number. If
the job is run asynchronously, the job number is printed at the terminal. At
any given time, only one job owns the terminal, i .e . , keyboard signals are
only sent to the processes in one job. When ksh creates a foreground job, it
gives it ownership of the terminal. If you are running a job and want to stop
it, press the key AZ (CTRL-Z) which sends a STOP signal to all processes in the
current job. The shell receives notification that the processes have stopped
and takes back control of the terminal.

There are commands to continue programs in the foreground and background
and several ways to refer to jobs . The character % introduces a job name.
You can refer to jobs by name or number as described in the manual page .
The built-in command bg allows you to continue a job in the background,
while the built-in command fg allows you to continue a job in the foreground
even though you may have started it in the background.

9-12 User's Guide

A job being run in the background stops if it tries to read from the terminal .
It is also possible to stop background jobs that try to write on the terminal by
setting the terminal options appropriately.

There is a built-in command jobs that lists the status of all running and
stopped jobs . In addition, you are notified of the change of state of any
background jobs just before each prompt. When you try to leave the shell
while jobs are stopped or running, you receive a message from ksh. If you
ignore this message and try to leave again, all stopped processes are
terminated.

A built-in version of kil l makes it possible to use job numbers as targets for
signals . Signals can be selected by number or name. The name of the signal
is the name found in the include file /usr/include/signal.h with the prefix SIG
removed. The -1 flag of ki l l generates a list of valid signal numbers and
names.

Secu rity

There are several documented problems associated with the security of shell
procedures. These security holes occur primarily because a user can
manipulate the environment to subvert the intent of a setuid shell procedure .
Frequently, shell procedures are initiated from binary programs, without the
author's awareness, by library routines that invoke shells to carry out their
tasks . When the binary program is run setuid, the shell procedure runs with
the permissions afforded to the owner of the binary file.

In the SYSTEM V/88 shell, the IFS parameter is used to split each word into
separate command arguments . If a user knows that some setuid program will
run sh -c /bin/pwd (or any other command in /bin), then the user sets and
exports I FS = /. Instead of running /bin/pwd, the shell runs bin with pwd as
an argument. The user puts their own bin program into the current directory.
This program can create a copy of the shell, make this shell setuid, then run
the /bin/pwd program so that the original program continues to run
successfully. This kind of penetration is not possible with ksh-i since the I FS
parameter only splits arguments that result from command or parameter
substitution.

Some setuid programs run programs using system() without giving the full
path name. If the user sets the PATH variable so that the desired command is
found in their local bin, the same technique described above can be employed
to compromise the security of the system. To close up this and other security
holes, ksh goes into a protected mode whenever the real and effective user or

ksh Tutorial 9-13

I

I

group id are not the same. In this mode, the PATH variable is reset to a
default value and the .profi le and ENV files are not processed. Instead, the
file /etc/suid_profile is read and executed. This gives an administrator control
over the environment to set the PATH variable or to log setuid shell
invocations . Clearly, security of the system is compromised if /etc or this file
is publicly writable .

In BSD UNIX, the operating system looks for the characters #I as the first two
characters of an executable file . If these characters are found, the next word
on this line is taken as the interpreter to exec for this command and the
interpreter is execed with the name of the script as argument zero and
argument one. If the setuid or setgid bits are on for this file, then the
interpreter is run with the effective uid and/or gid set accordingly. This
scheme has two major drawbacks . First, using the #I notation forces an exec
of the interpreter even when the call is invoked from the interpreter which it
must execute . This is inefficient because the interpreter can handle a failed
exec much faster than starting up again. More importantly, setuid and setgid
procedures provide an easy target for intrusion. By linking a setuid or setgid
procedure to a name beginning with a -, the interpreter is fooled into thinking
that is being invoked with a command line option instead of the name of a
file . When the interpreter is the shell, the user gets a privileged interactive
shell . There is code in ksh to guard against this simple form of intrusion.

A more reliable way to handle setuid and setgid procedures is provided with
ksh. The technique does not require any changes to the operating system and
provides better security. Another advantage to this method is that it also
allows scripts that have execute permission but no read permission to run.
Taking away read permission makes scripts more secure .

The method relies on a setuid root program to authenticate the request and
execute the shell with the correct mode bits to carry out the task. This shell is
invoked with the requested file already open for reading. A script that cannot
be opened for reading or has its suid and/or setgid bits turned on, causes this
setu id root program to get executed. For security reasons, this program is
given the full pathname /etc/suid_exec.

Miscel laneous

ksh has several additional features to enhance functionality and performance .
This section lists most of these features.

9-14 User's Guide

Tilde Su bstitution

The character - at the beginning of a word has special meaning to ksh. If the
characters after the - up to a I match a user login name in the /etc/passwd
file, the - and the name are replaced by that users login directory. If no
match is found, the original word is unchanged. A - by itself, or in front of a
I, is replaced by the value of the HOME parameter. A - followed by a + or
is replaced by the value of the parameter PWD and OLDPWD, respectively.
Tilde substitution takes place when the script is read, not while it is executed.

Bui lt- in 1/0 Red i rection

All built-in commands can be redirected. Compound commands that are
redirected are not carried out in a separate process.

Options

All options have names that can be used in place of flags for setting and
resetting options. The command set -o lists the current option settings .

The option, -f or noglob, is used to disable file name generation.

The option ignoreeof can be used to prevent "0 from exiting the shell and
possibly logging you out. You must type exit to log out.

The -h or trackal l option causes all commands whose name is a valid alias
name to become a tracked alias . This option is automatically turned on for
non-interactive shells .

The job monitor option causes a report to be printed before issuing the next
prompt when each background job completes . It is automatically enabled for
systems that have job control.

If the bgnice option is set, background jobs are run at a lower priority.

The option markdirs causes a trailing I to be appended on every directory
name resulting from a pattern match.

ksh Tutorial 9-15

I

I

The protected or -p options provides additional security by disabling the ENV
from being executed and by resetting the PATH variable to the default value .
Whenever a shell is run with the effective uid (gid) not equal to the real uid
(gid), this option is implicitly enabled. Instead of the ENV file, the file
/etc/suid_profile is read so that administrators can have control over setuid
scripts .

Bui lt- in pwd

The pwd command is built-into ksh and therefore, much faster.

Bui lt-in fexpr

The fexpr command is a built-in version of lbin/expr, and therefore, much
faster.

Bui lt-in getopts

The getopts is a built-in version of /usrlbin/getopt. For details of the
differences between the two commands, see getopts(l) .

Log ical Naming
The cd command takes you where you expect to go even if you cross
symbolic links . Thus, cd . . moves you up one level closer to the root even if
your current directory is a symbolic link.

Previous Directory

ksh remembers your last directory in the variable OLDPWD. The cd built-in
can be given with argument - to return to the previous directory and prints
the name of the directory. Note that cd - done twice, returns you to the
starting directory, not the second previous directory. A directory stack
manager written as shell functions, push and pop directories from the stack.

9-16 User's Guide

Additional Variables and Parameters

Several new parameters have special meaning to ksh. The variable PWD is
used to hold the current working directory of the shell . The variable
OLDPWD is used to hold the previous working directory of the shell.

The variable FCEDIT is used by the fc built-in described above. The variables
VISUAL and EDITOR are used to determine the edit modes described above.

The variable ENV is used to define the startup file for non-login ksh
invocations .

The variables HISTSIZE and HISTFILE control the size and location of the file
containing commands entered at a terminal.

The parameter MAILPATH is a colon (:) separated list of file names to be
checked for changes periodically. The user is notified before the next prompt.
Each of the names in this list can be followed by a ? and a prompt to be
given when a change has been detected in the file . The prompt is evaluated
for parameter substitution. The parameter $_ within a mail message evaluates
to the name of the file that has changed. The parameter MAILCHECK is used
to specify the minimal interval in seconds before checking for new mail .

The variable RANDOM produces a random number each time it is referenced.
Assignment to this variable sets the seed for the random number generator.

The variable SECONDS is incremented every second. In a roundabout way,
this variable can be used to generate a time stamp into the PS1 prompt. The
following code explains how you can do this on SYSTEM V/88.

#If you . this s cript then you can use $TIME as part of your PS 1 string
#to get the time of day in your prompt
typeset -RZ2 �1 � �3
let SECONDS=$ (date · +3600•IH+60•IY+IS •)
_-= - �1= (SECONDS/3600) I24) == �= (SECONDS/60) I60) == �3=SECONDSI60) •
TIME= . • $ {_d Lal }$�1 : $� : $�3 • •
PS 1=$ {TIME}whatever

The parameter PPID is used to generate the process id of the process that
invoked this shell.

ksh Tutorial 9-17

I

The value of the parameter _ is the last argument of the previous foreground
command. Before executing each command, this parameter is set to the file
name of the command and placed in the environment.

The parameter 1MOUT can be set to be the number of seconds that the shell
waits for input before terminating. A 60 second warning message is printed
before terminating.

The COLUMNS variable can be used to adjust the width of the edit window
for the in-line edit modes. It is also used by the select command to present
menu choices .

The LINES variable controls how many rows a select list takes up on the
screen. Select lists try to occupy no more then two-thirds of LINES lines on
the screen.

Mod ified Variables

The input field separator parameter, IFS, is only used to split words that have
undergone parameter or command substitution. In addition, adjacent non
blank delimiters separate null fields in ksh.

The PSl parameter is evaluated for parameter substitution and a I is replaced
by the current command number.

I Ti ming Commands

A keyword t ime replaces the time command. Any function, command, or
pipeline can be preceded by this keyword to obtain information about the
elapsed, user and system times . Since 1/0 redirection bind to the command,
not to t ime, parenthesis should be used to redirect the timing information that
is normally printed on file descriptor 2.

Co-process

ksh can spawn a co-process by adding a I & after a command. This process is
run with its standard input and standard output connected to the shell . The
built-in command print with the -p option writes into the standard input of
this process and the built-in command read with the -p option reads from the
output of this process . Only one such process can exist at any time.

9-18 User's Guide

Process Su bstitution

This feature is only available on versions of the UNIX operating system that
support the /devlfd directory for naming open files. (This feature is not
available on SYSTEM V/88.) Each command argument of the form (list),
<{list}, or >(list) runs process list asynchronously connected to some file in
the /dev/fd directory. The name of this file becomes the argument to the
command. If the form with > is selected, writing on this file provides input
for list. If < is used or omitted, the file passed as an argument contains the
output of the list process . For example, the following cuts fields 1 and 3 from
the files file1 and file2 respectively, pastes the results together, and sends it to
the processes process1 and process2, as well as putting it onto the standard
output.

paste (cut -f1 file1) (cut -f3 file2) I tee >{process1) >{process2)

Note that the file that is passed as an argument to the command is a pipe(2)
so that the programs that expect to lseek(2) on the file will not work.

Command Su bstitution

Command substitution (' ') in the SYSTEM V/88 shell has some complicated
quoting rules . It is hard to write a sed pattern that contains back slashes
within command substitution. Putting the pattern is single quotes does not
help; ksh leaves the SYSTEM V/88 shell command substitution alone and adds
a newer and easier to use command substitution syntax. All characters
between a $(and a matching) are evaluated as a command the output is
substituted just as with ' ' . The ($ means value of and the () denotes a
command. The command itself can contain quoted strings even if the
substitution occurs within double quotes; nesting is legal . You can use
unbalanced parenthesis within the command providing they are quoted.

The special command substitution of the form $(cat file) can be replaced by
$(< f i le), which is faster because no separate process is created .

ksh Tutorial 9-19

I

I

Whence

The aliases, functions, and built-ins makes it substantially more difficult to
know what a given command word really means. A built-in command,
whence, when used with the -v option answers this question. A line is
printed for each argument to whence telling what would happen if this
argument were used as a command name. It reports on keywords, aliases,
built-ins, and functions. If the command is none of the these, it follows the
path search rules and prints the full path-name, if any; otherwise, it prints an
error message.

Additional Test Operators

The binary operators -ot and -nt can be used to compare the modification
times of two files to see which file is older than or newer than the other. The
binary operator -ef is used to see if two files have the same device and i-node
number, i .e . , a link to the same file .

The unary operator -L returns true for a symbolic link.

Added Trap

All traps can be given by name in ksh. The names of traps corresponding to
signals are the same as the signal name with the SIG prefix removed. The
trap 0 is named EXIT and there is also a trap named ERR. This trap is
invoked whenever the shell would exit if the -e flag were set. This trap is
used by Fourth Generation Make that runs ksh as a co-process.

·

Shel l Accounting

There is a compile time option to the shell to generate an accounting message
for each shell script.

Coded in Standard C

ksh is coded in standard C. It tries to adapt itself to the environment when it
is compiled taking advantages of the features of the host environment when
possible. There are far fewer lint messages from ksh then for the SYSTEM
V/88 shell. ksh does not catch the segmentation violation signal, SIGSEGV,
so that it can run on machines that cannot recover from these traps .

9-20 User's Guide

Internal ization

ksh treats eight bit characters transparently without stripping the leading bit.
There is also a compile time switch to enable handling multi-byte and multi
width characters sets .

No special meaning for ..

The SYSTEM V/88 shell uses " as an archaic synonym for I . The .. is not a
special character to ksh.

Added Conveniences

You can refer to multi-digit positional parameters in ksh by putting the
number in braces. Thus, ${1 2} is legal in ksh but illegal in the SYSTEM V/88
shell .

ksh performs file name expansion of file name arguments if the expansion is
unique. Thus, cat < file* expands the file name if the expansion is unique .

If you invoke the shell as ksh script then ksh does a path search on script.

Unbalanced quotes causes the shell to print an error message giving the type
of quote and the line number on which the opening quote occurs .

Run time error messages detected by the shell prints the line number within a
function or script where the error was detected.

Performance

ksh executes many scripts faster than the SYSTEM V/88 shell . One major
reason is that many of the functions provided by echo(l) and expr(l) are
built-in. The time to execute a built-in function is one or two orders of
magnitude faster than performing a fork and execute of the shell. Command
substitution of built-ins is performed without creating another process, and
often without even creating a temporary file .

ksh Tutorial 9-21

I

I

Another reason for improved performance is that all 1/0 is buffered. Output
buffers are flushed only when required. Several of the internal algorithms are
changed so that the number of subroutine calls is substantially reduced. ksh
uses hash tables for variables. Scripts that rely on referencing variables
execute faster. More processing is performed while reading the script so that
execution time is saved while running loops.

Scripts that do little internal processing and create many processes may run a
little slower on SYSTEM V/88 because the time to fork ksh is slightly slower
than for the SYSTEM V/88 shell. On BSD UNIX, ksh can be compiled with a
VFORK option that uses vfork whenever possible. Here, binary programs
startup somewhat faster but shell script files start a little slower because a
separate invocation of the ksh is required.

The ENV file can have an undesirable effect on performance. Even if this file
is small, the shell must perform an open of this file . If large functions are
placed in the ENV file, they must be read in and compiled even if they are
never referenced. If you only need the startup file for interactive shells set
your ENV variable to a value that evaluates to a file name for interactive
shells, otherwise, to the null string. If you export the startup file name in the
variable START, the following setting only invokes the startup file for
interactive shells because the subscript evaluates to 0 only if the shell is
interactive.

ENV= '${START[(_$-= 1) + (_ = OH_$-1 = _${-%%*i*})]}'

If you need a startup ENV file for all shells, use a case statement on the $
parameter to distinguish which actions only apply to interactive shells. The
ENV file should look like the following:

• option• alia••• and function• for all •hell invocation•
ca• • $ - in
• i*)

• option• alia• •• and function• for interactive only

9-22 User's Guide

If there are functions that are only occasionally referenced, put them into a
separate file $HOME/functions or any name you prefer and put aliases in the
ENV file for each function name of the form.

al ias function_1Ulme= '. $HOME/functions ;function_1Ulme'

In the beginning of the $HOME/functions file, you must unalias each function
name defined in the file . The first reference to any function_1Ulme in the
function file causes the function file to get read in and the functions compiled.

Exam p le

The following is an example of a ksh script. This program is a variant of the
SYSTEM V/88 grep(l) program. Pattern matching for this version of grep
means shell patterns consisting of ? , * , and [] .

The first half examines option flags . Note that all options except -b have
been implemented. The second half goes through each line of each file to
look for a pattern match.

This program is not intended to serve as a replacement for grep; just as an
illustration of the programming power of ksh. Note that no auxiliary
processes are spawned by this script. It was written and debugged in under
two hours . While performance is acceptable for small programs, this program
runs at only one tenth the speed of grep for large files .

SHELL VERSION OF GREP

v! lag= x! lag= c! lag= l! lag= n! lag=
set -!
while
do

((1))
case
-v*)
-x•)
-c•)
-1•)
-n•)
-b •)
- e •)
-! •)
- •)
*)

look ! or grep options
" $ 1 " in
v! lag= 1 ; ;
x! lag=1 ; ;
c! lag=1 ; ;
l! lag=1 ; ;
n! lag=1 ; ;
pr int ' b option not supported ' ; ;
shi!t ; expr= " $ 1 " ; ;
shi!t ; expr=$ (< $ 1) ; ;
print $0 : ' unknown ! lag ' ; exit 2 ; ;
i! test " $expr " = ' '

then expr= " $ 1 " ; shi!t

ksh Tutorial 9-23

I

I

f i
test " $xf lag " I I e:z:pr= " • $ {e:z:pr} • "
bre ak ; ;

e s ac
shift

done
nopr int=$vf lag$cf lag$lf lag
integer n=O c=O tc=O nargs=$#
f or i in " $ 0 "
do if ((nar g s <=1))

then
e l s e
f i

fname= ' '
fname= " $ i " :

next argument

don ' t print if the s e f lags s e t
initial i z e c ounters
go through the f il e s

t e s t " $ i " � exe c 0< $ i
while read -r line

open f ile if ne c e s s ary
read in a line

do let n=n+ 1
c as e
$e:z:pr)

" $l ine " in

1f
then
f i
let

•)
i.:f
then
f i ; ;

e sac
done

line matche s pattern
test " $noprint " = " "
print -r " $fname ${nf lag : +$n : }$line "

c=c + 1 ; ;
not a match

t e s t " $v:f lag "
print -r " $fname ${nf lag : +$n : }$line "

1f
then
f 1

test " $lf lag " � ((c))
print - $i

let tc=tc+c n=O c=O
done
test " $ cf lag " � print $tc
let tc

9-24 User's Guide

print c ount if c f lag is s e t
s e t the exit value

A Summary of the File System

File System Structure

SYSTEM V/88 Directories

Summary of the File System

A-1

A-2

This appendix summarizes the description of the file system given in
Chapter 1 and reviews the major system directories in the root directory.

Fi le System Structu re

The SYSTEM V/88 file system is organized in a hierarchy; its structure is often
described as an inverted tree. At the top of this tree is the root directory, the
source of the entire file system. It is designated by a I (slash) . All other
directories and files descend and branch out from root, as shown in
Figure A-1 .

Q - Directories

D - Ordinary Ales

\1 . Special Flies

Figure A-1 . Directory Tree from root

One path from root leads to your home directory. You can organize and store
information in your own hierarchy of directories and files under your home

\ directory.

Summary of the File System A-1

•

• Other paths lead from root to system directories that are available to all users .
The system directories described in this book are common to all SYSTEM V/88
installations and are provided and maintained by the operating system.

In addition to this standard set of directories, your system may have other
system directories . To obtain a listing of the directories and files in the root
directory on your system, type the following command line:

Is -1 /<CR>

To move around in the file structure, you can use path names . For example,
you can move to the directory /bin (which contains system executable files) by
typing the following command line:

cd /bin<CR>

To list the contents of a directory, issue one of the following command lines:

ls< CR> for a list of file and directory names
Is -I<CR> for a detailed list of file and

directory names

To list the contents of a directory in which you are not located, issue the Is
command as shown in the following examples:

Is lbin<CR> for a short listing
Is -1 /bi n < C R > for a detailed listing

The following section provides brief descriptions of the root directory and the
system directories under it, as shown in Figure A-1 .

SYSTEM V /88 Di rectories

I
The source of the file system (called root directory) .

/bin
Contains many executable programs and utilities :

cat
date
login
grep
mkdir
who

A-2 User's Guide

/l ib
Contains available program libraries and language libraries:

/dev

l ibc.a system calls, standard I/0
l ibm.a math routines and support for languages, e .g . ,

C and FORTRAN.

Contains special files that represent peripheral devices:

/etc

console console
lp line printer
ttyn user terminal(s)
dskl* disks

Contains programs and data files for system administration.

/stand
Contains standalone programs, including the copy of the kernel (sysv68)
loaded by the disk-based boot loader.

/tmp
Contains temporary files, e .g . , the buffers created for editing a file.

/usr
Contains the following subdirectories which, in turn, contain the data
listed:

news
mai l
spool

important news items
electronic mail
files waiting to be printed on the line
printer

Summary of the File System A-3

•

B Summary of SYSTEM V/88
Commands

Basic SYSTEM V/88 Com m ands,

Summary of SYSTEM V/88 Commands

B-1

Basic SYSTEM V/88 Com mands

at
Request to run a command in background mode at a time you specify on
the command line . If you do not specify a time, at(l) displays the job
numbers of all jobs you have running in at(l), batch(l), or background
mode. For example:

at 8:45am Jun 09<CR>
com1711lnd1 <CR>
com1111lnd2<CR>
<Ad>

If you use the at command without the date, the command executes
within 24 hours at the time specified.

banner
Display a message (in words up to 10 characters long) in large letters on
the standard output.

batch
Submit command(s) to be processed when the system load is at an
acceptable level. For example:

batch<CR>
com1711lnd1 <CR>
com1711lnd2<CR>
<Ad>

You can use a shell script for a command in batch(l) . This may be useful
and timesaving if you have a set of commands you frequently submit
using this command.

cat
Display the contents of a specified file at your terminal . To halt the
output on an ASCII terminal temporarily, use <As> . Type <Aq> to
restart the output. To interrupt the output and return to the shell on an
ASCII terminal, press the BREAK or DELETE key.

Sum1111lry of SYSTEM V/88 Com1111lnds B-1

I
cd

Change directory from the current one to your home directory. If you
include a directory name, changes from the current directory to the
directory specified. By using a path name in place of the directory name,
you can jump several levels with one command.

cp
Copy a specified file into a new file, leaving the original file intact.

cut
Cut out specified fields from each line of a file. This command can be
used to cut columns from a table, for example.

date
Display the current date and time.

diff
Compare two files. The diff{l) command reports which lines are different
and what changes should be made to the second file to make it the same
as the first file.

echo
Display input on the standard output (the terminal), including the
carriage return, and returns a prompt.

ed
Edit a specified file using the line editor. If there is no file by the name
specified, the ed(l) command creates one. See Chapter 5 for detailed
instructions on using the ed(l) editor.

grep
Search a specified file(s) for a specified pattern and prints those lines that
contain the pattern. If you name more than one file, grep(l) prints the
file that contains the pattern.

ki l l
Terminate a background process specified by its process identification
number (PID) . You can obtain a PID by running the ps(l) command.

lex
Generate programs to be used in simple lexical analysis of text, perhaps
as a first step in creating a compiler. See the User's Reference Manual for
details.

B-2 User's Guide

lp
Print the contents of a specified file on a line printer, giving you a paper
copy of the file.

lpstat

Is

Display the status of any requests made to the line printer. Options are
available for requesting more detailed information.

List the names of all files and directories except those whose names begin
with a dot (.) . Options are available for listing more detailed information
about the files in the directory. See the ls(l) entry in the User's Reference
Manual for details.

mail
Display any electronic mail you may have received at your terminal, one
message at a time. Each message ends with ? prompt; mail{l) waits for
you to request an option, e.g., saving, forwarding, or deleting a message.
To obtain a list of the available options, type ?.

When followed by a login name, mai l(l) sends a message to the owner of
that name. You can type as many lines of text as you want. Then type
<Ad> to end the message and send it to the recipient. Press the BREAK
key to interrupt the mail session.

mailx
mailx{l) is a more sophisticated, expanded version of electronic mail.

make
Maintain and support large programs or documents on the basis of
smaller ones. See the make{l) page in the User's Reference Manual for
details.

mkdir
Make a new directory. The new directory becomes a subdirectory of the
directory in which you issue the mkdir command. To create
subdirectories or files in the new directory, you must first move into the
new directory with the cd command.

mv
Move a file to a new location in the file system. You can move a file to a
new file name in the same directory or to a different directory. If you
move a file to a different directory, you can use the same file name or
choose a new one.

Summary of SYSTEM V/88 Commands B-3

nohup
Place execution of a command in the background, so it continues
executing after you log off of the system. Error messages are placed in a
file called nohup.out.

pg
Display the contents of a specified file on your terminal one page at a
time. After each page, the system pauses and waits for your instructions
before proceeding.

pr
Display a partially formatted version of a specified file at your terminal.
The pr(l) command shows page breaks, but does not implement any
macros supplied for text formatter packages.

ps
Display the status and number of every process currently running. The
ps(l) command does not show the status of jobs in the at(l) or batch(l)
queues, but it includes these jobs when they are executing.

pwd
Display the full path name of the current working directory.

rm
Remove a file from the file system. You can use metacharacters with the
rm(l) command but should use them with caution; a removed file cannot
be recovered easily.

rmdir
Remove a directory. You cannot be in the directory you want to delete .
Also, the command does not delete a directory unless it is empty.
Therefore, you must remove any subdirectories and files that remain in a
directory before running this command on it. See rm -r in the User's
Reference Manual for the ability to remove directories that are not empty.

sort
Sort a file in ASCII order and displays the results on your terminal.
ASCII order is:

1. numbers before letters
2. uppercase before lowercase
3. alphabetical order

There are other options for sorting a file . For a complete list of sort(l)
options, see the sort(l) page in the User's Reference Manual.

B-4 User's Guide

spell
Collect words from a specified file and check them against a spelling list.
Words not on the list or not related to words on the list (e .g. , with �
suffixes, prefixes) display. ..

stty
Report the settings of certain input/output options for your terminal.
When issued with the appropriate options and arguments, stty{l) also
sets these input/output option. See the stty{l) entry in the User's Reference
Manual.

uname
Display the name of the operating system on which you are currently
working.

uucp
Send a specified file to another system. See the uucp(l) page in the
User's Reference Manual for details.

uuname
List the names of remote operating system that can communicate with
your system.

uupick
Search the public directory for files sent to you by the uuto{l) command.
If a file is found, uupick(l) displays its name and the system it came
from, and prompts you (with a ?) to take action.

uustat
Report the status of the uuto(l) command you issued to send files to
another user.

uuto

vi

Send a specified file to another user. Specify the destination in the
format system l login . The system must be on the list of systems generated
by the uuname(l) command.

Edit a specified file using the vi(l) screen editor. If there is no file by the
name you specify, vi(l) creates one. See Chapter 6 for detailed
information on using the vi(l) editor.

we
Count the number of lines, words, and characters in a specified file and
display the results on your terminal.

Summary of SYSTEM V/88 Commands B-5

II
who

Display the login names of the users currently logged in on your system.
List the terminal address for each login and the time each user logged in.

yacc
Impose a structure on the input of a program. See the User's Reference
Manual for details.

B-6 User's Guide

C Quick Reference to ed Commands

T h e e d Com mands
Commands for Getting Started
Line Addressing Commands

Display Commands
Text Input
Deleting Text
Substituting Text
Special Characters
Text Movement Commands

Other Useful Commands and Information

Quick Reference to ed Commands

C-1

C-1

C-2

C-3

C-3

C-3

C-4

C-4

C-5

C-5

The ed Commands

The general format for ed commands is:

[address1 ,address2]com1111lnd[parameter] . . . <CR>

where address1 and address2 denote line addresses; the parameters show the I data on which the command operates. The commands appear on your
terminal as you type them. You can find complete information on using ed
commands in Chapter 5, Line Editor Tutorial.

The following is a summary of ed commands. They are grouped according to
function.

Commands for Getting Started

ed filename
Accesses the ed line editor to edit a specified file .

a
Appends text after the current line .

Ends the text input mode and returns to the command mode.

p
Displays the current line .

d
Deletes the current line .

<CR>

w

q

Moves down one line in the buffer.

Moves up one line in the buffer.

Writes the buffer contents to the file currently associated with the buffer.

Ends an editing session. If changes to the buffer were not written to a
file, a warning (?) is issued. Typing q a second time ends the session
without writing to a file.

Quick Reference to ed Com11Ulnds C-1

II

Line Add ressing Commands

1, 2, 3 .. .
Denotes line addresses in the buffer.

Address of the current line in the buffer.

Displays the current line address.

$
Denotes the last line in the buffer.

Addresses the first through the last line .

Addresses the current line through the last line.

+ x
Relative address, determined by adding x to the current line number.

-x
Relative address, determined by subtracting x from the current line
number.

/abc
Searches forward in the buffer and addresses the first line after the
current line that contains the pattern abc.

?abc
Searches backward in the buffer and addresses the first line before the
current line that contains the pattern abc.

g/abc
Addresses all lines in the buffer that contain the pattern abc.

v/abc
Addresses all lines in the buffer that do not contain the pattern abc.

C-2 User's Guide

Display Commands

p

n

Displays the specified lines in the buffer.

Displays the specified lines preceded by their line addresses and a tab I space.

Text Input

a

c

Enters text after the specified line in the buffer.

Enters text before the specified line in the buffer.

Replaces text in the specified lines with new text.

When typed on a line by itself, ends the text input mode and returns to
the command mode.

Deleting Text

d
Deletes one or more lines of text (command mode) .

u
Undoes the last command given (command mode) .

CKILL
Deletes the current line (in text input mode) or a command line (in
command mode) .

CERASE
Deletes the last character entered as text (in input mode) .

Quick Reference to ed Commands C-3

Substituting Text

address1 ,address2s/old_textlnew _text/command
Substitutes new_text for old_text within the range of lines denoted by
address1 ,address2 (which may be numbers, symbols, or text) . The command
may be g, I, n, p, or gp.

Special Characters

*

Matches any single character in search or substitution patterns.

Matches zero or more occurrences of the preceding character in search or
substitution patterns.

[. . .]
Matches the first occurrence of a pattern in the brackets .

r . . . J

·*

$

\

&

o/o

Matches the first occurrence of a character that is not in the brackets .

Matches zero or more occurrences of any characters following the period
in search or substitution patterns.

The circumflex n matches the beginning of the line in search or
substitution patterns.

Matches the end of the line in search or substitution patterns.

Takes away the special meaning of the special character that follows in
search and substitution patterns.

Repeats the last pattern to be substituted.

Repeats the last replacement pattern.

C-4 User's Guide

Text Movement Commands

m

t

w

r

Moves the specified lines of text after a destination line; deletes the lines
at the old location.

Copies the specified lines of text and places the copied lines after a
destination line.

Joins the current line with the next contiguous line.

Copies (writes) the buffer contents into a file .

Reads in text from another file and appends it to the buffer.

Other Useful Commands and Information

h

H

f

Displays a short explanation for the preceding diagnostic response (?) .

Turns on the help mode, which automatically displays an explanation for
each diagnostic response (?) during the editing session.

Displays nonprinting characters in the text.

Displays the current file name.

f newfile
Changes the current file name associated with the buffer to newfile.

!command
Allows you to escape, temporarily, to the shell to execute a shell
command.

ed.hup
If the terminal is hung up before a write command, the editing buffer is
saved in the file ed.hup.

Quick Reference to ed Commands C-5

D Quick Reference to vi Commands

v i Quick Reference
Commands for Getting Started

Shell Commands
Basic vi Commands

Commands for Positioning in the Window
Positioning by Character
Positioning by Line
Positioning by Word
Positioning by Sentence
Positioning by Paragraph
Positioning in the Window

Commands for Positioning in the File
Scrolling
Positioning on a Numbered Line
Searching for a Pattern

Commands for Inserting Text
Commands for Deleting Text

In Text Input Mode
In Command Mode

Commands for Modifying Text
Characters, Words, Text Objects
Cutting and Pasting Text

Other Commands
Special Commands
Line Editor Commands
Commands for Quitting vi

Special Options for vi

D-1

D-1

D-1

D-2

D-2

D-2

D-3

D-4

D-4

D-4

D-4

D-5

D-5

D-5

D-5

D-6

D-6

D-6

D-7

D-7

D-7

D-8

D-8

D-8

D-9

D-10

D-10

Quick Reference to vi Commands

vi Qu ick Reference

This appendix is a glossary of commands for the screen editor vi. The
commands are grouped according to function.

The general format of a vi command is:

[x] [command] text-object

where x denotes a number and text-object shows the portion of text on which I the command operates. The commands appear on your screen as you type
them. For an introduction to the use of vi commands, see Chapter 6, Screen
Editor Tutorial.

Commands for Getting Started

Shell Commands

TERM =code
Puts a code name for your terminal into the variable TERM.

export TERM
Conveys the value of TERM (the terminal code) to any SYSTEM V/88

system program that is terminal dependent.

tput init
Initializes the terminal so that it will function properly with various
SYSTEM V/88 system programs.

vi filename

NOTE

Before you can use vi, you must complete the
first three steps represented by the above three
lines: setting the TERM variable, exporting
the value of TERM, and running the
TermSetup command. These steps are now
normally done for you by the default .profi le
provided by your administrator.

Accesses the vi screen editor so that you can edit a specified file.

Quick Reference to vi Commands D-1

I

Basic vi Commands

<a>
Enters text input mode and appends text after the cursor.

< ESC>
Escape; leaves text input mode and returns to command mode .

<h>
Moves the cursor to the left one character.

<j>
Moves the cursor down one line in the same column.

< k>
Moves the cursor up one line in the same column.

< I>
Moves the cursor to the right one character.

<x>
Deletes the current character.

< CR>
Carriage return; moves· the cursor down to the beginning of the next line .

< ZZ>
Writes changes made to the buffer to the file and quits vi .

: w
Writes changes made to the buffer to the file.

:q
Quits vi if changes made to the buffer have been written to a file .

Commands for Position ing i n the Wi ndow

Position ing by Character

< h>
Moves the cursor one character to the left.

< BACKSPACE>
Backspace; moves the cursor one character to the left.

D-2 User's Guide

< I>
Moves the cursor one character to the right.

<space bar>
Moves the cursor one character to the right.

<fx>
Moves the cursor right to the specified character x.

< Fx>
Moves the cursor left to the specified character x.

<tx>
Moves the cursor right to the character just before the specified character
x.

<Tx>
Moves the cursor left to the character just after the specified character x.

< ;>
Continues the search for the character specified by the <f>, < F>, <t>,
or <T> commands. The ; remembers the character specified and
searches for the next occurrence of it on the current line.

<,>
Continues the search for the character specified by the <f>, < F>, <t>,
or <T> commands. The , remembers the character specified and
searches for the previous occurrence of it on the current line.

Positioning by Line

<j>
Moves the cursor down one line from its present position, in the same
column.

< k>
Moves the cursor up one line from its present position, in the same
column.

< + >
Moves the cursor down to the beginning of the next line.

<CR>
Carriage return; moves the cursor down to the beginning of the next line.

Quick Reference to vi Commands D-3

I

< - >
Moves the cursor up to the beginning of the next line.

Positioning by Word

<w>
Moves the cursor to the right, to the first character in the next word.

I < b>
Moves the cursor back to the first character of the previous word.

<e>
Moves the cursor to the end of the current word.

Positioning by Sentence

<(>
Moves the cursor to the beginning of the sentence.

<)>
Moves the cursor to the beginning of the next sentence.

Positioning by Paragraph

<{>
Moves the cursor to the beginning of the paragraph.

<}>
Moves the cursor to the beginning of the next paragraph.

Positioning in the Window

< H>
Moves the cursor to the first line on the screen, or "home."

< M>
Moves the cursor to the middle line on the screen.

< L>
Moves the cursor to the last line on the screen.

D-4 User's Guide

Commands for Positioning in the File

Scrol l ing

<"f>
Scrolls the screen forward a full window, revealing the window of text
below the current window.

<Ad>
Scrolls the screen down a half window, revealing lines of text below the
current window .

<Ab>
Scrolls the screen back a full window, revealing the window of text above
the current window.

<Au>
Scrolls the screen up a half window, revealing the lines of text above the
current window.

Positioning on a Numbered Line

<G>
Moves the cursor to the beginning of the last line in the buffer.

<nG>
Moves the cursor to the beginning of the nth line of the file (n line
number) .

Searching for a Pattern

/pattern
Searches forward in the buffer for the next occurrence of the pattern of
text. Positions the cursor under the first character of the pattern.

?pattern
Searches backward in the buffer for the first occurrence of pattern of text.
Positions the cursor under the first character of the pattern.

Quick Reference to vi Comm11nds D-5

I

I

<n>
Repeats the last search command.

<N>
Repeats the search command in the opposite direction.

Commands for Inserting Text

<a>
Enters text input mode and appends text after the cursor.

<i>
Enters text input mode and inserts text before the cursor.

<o>
Enters text input mode by opening a new line immediately below the
current line .

< 0>
Enters text input mode by opening a new line immediately above the
current line.

< ESC>
Escape; returns to command mode from text input mode (entered with
any of the above commands) .

Commands for Deleting Text

In Text Input Mode

< BACKSPACE>
Backspace; deletes the current character.

<'w>
Deletes the current word delimited by blanks.

CKILL
Erases the current line of text.

D-6 User's Guide

In Command Mode

<x>
Deletes the current character.

<dw>
Deletes a word (or part of a word) from the cursor through the next space
or to the next punctuation.

<dd>
Deletes the current line.

< ndx>
Deletes n number of text objects of type x, where x may be as a word,
line, sentence, or paragraph.

< D>
Deletes the current line from the cursor to the end of the line .

Commands for Mod ifying Text

Characters, Words, Text Objects

<r>
Replaces the current character.

<s>
Deletes the current character and appends text until the < ESC>
command is typed.

<S>
Replaces all the characters in the current line.

< - >
Changes uppercase to lowercase or lowercase to uppercase.

<cw>
Replaces the current word or the remaining characters in the current
word with new text, from the cursor to the next space or punctuation.

<cc>
Replaces all the characters in the current line.

Quick Reference to vi Commnnds D-7

I

<ncx>
Replaces n number of text objects of type x, where x may be a word, line,
sentence, or paragraph.

< C>
Replaces the remaining characters in the current line, from the cursor to
the end of the line.

Cutting and Pasting Text

<p>
Places the contents of the temporary buffer (containing the output of the
last delete or yank command) into the text after the cursor or below the
current line.

<yy>
ks (extracts) a specified line of text and puts it into a temporary buffer.

<nyx>
Extracts a copy of n number of text objects of type x and puts it into a
temporary buffer.

< "lyx>
Places a copy of text object x into a register named by a letter l. x may be
a word, line, sentence, or paragraph.

< "xp>
Places the contents of register x after the cursor or below the current line.

Other Commands

Special Commands

<Ag>
Gives the line number of current cursor position in the buffer and
modification status of the file.

< .>
eats the action performed by the last command.

<u>
Undoes the effects of the last command.

D-8 User's Guide

< U >
Restores the current line to its state prior to present changes.

<J>
Joins the line immediately below the current line with the current line .

<AI>
Clears and redraws the current window.

Line Editor Commands

Tells vi that the next commands you issue will be line editor commands .

:sh
Temporarily returns to the shell to perform some shell commands without
leaving vi .

<Ad>

:n

Escapes the temporary return to the shell and returns to vi so you can
edit the current window.

Goes to the nth line of the buffer.

:x,zw filename

:$

Writes lines from the number x through the number z into a new file
called filename.

Moves the cursor to the beginning of the last line in the buffer.

: . ,$d
Deletes all lines from the current line to the last line.

:r filename
Inserts the contents of the file filename under the current line of the
buffer.

:s/textlnew_textl
Replaces the first instance of text on the current line with new_text.

:s/textlnew_textlg
Replace every occurrence of text on the current line with new_text.

Quick Reference to vi Commands D-9

:gltextlsl/new _text/g
Changes every occurrence of text in the buffer to new_text.

Commands for Quitting vi

<ZZ>
Writes the buffer to the file and quits vi .

:wq
Writes the buffer to the file and quits vi .

:w filename
:q

Writes the buffer to the new file filename and quits vi.

:wl filename
:q

Overwrites the existing file filename with the contents of the buffer and
quits vi .

:q l

:q

Quits vi whether or not changes made to the buffer were written to a file .
Does not incorporate changes made to the buffer since the last write (:w)
command.

Quits vi if changes made to the buffer were written to a file .

Special Options for vi

vi file1 file2 file3
Enters three files into the vi buffer to be edited. Those files are file1 , file2,
and file3.

:w
:n

When more than one file has been called on a single vi command line,
writes the buffer to the file you are editing and then calls the next file in
the buffer (use :n only after :w) .

vi - r file1
Restores the changes made to file1 that were lost because of an interrupt
in the system.

D-10 User's Guide

view filel
Displays filel in the read-only mode of vi . Any changes made to the
buffer cannot be written to the file.

Quick Reference to vi Commands D-11

E Summary of Shel l Command
Language

Summary of Shel l Com mand Language E-1

The Vocabulary of She11 Command Language E-1

Special Characters in the Shell E-1
Redirecting Input and Output E-2
Executing and Terminating Processes E-2
Making a File Accessible to the Shell E-3

Variables E-3

Variables Used in the System E-4

She11 Programming Constructs E-5

here Document E-5

for loop E-5

while loop E-6
if. . . then E-6

if . . . then . . . else E-7

case Construction E-8
break and continue Statements E-8

Summary of Shell Command Language

Summary of Shel l Com mand Language

This appendix is a summary of the shell command language and
programming constructs discussed in Chapter 7, Shell Tutorial. The first
section reviews metacharacters, special characters, input and output
redirection, variables and processes . These are arranged by topic in the order
that they were discussed in the chapter. The second section contains models
of the shell programming constructs.

The Vocabulary of Shel l Command Language

Special Characters in the Shel l

* ? [] .

&

'

Metacharacters; used to provide a shortcut to referencing file names,
through pattern matching.

Executes commands in the background mode.

Sequentially executes several commands typed on one line, each pair
separated by ; .

Turns off the meaning of the immediately following special character.

Enclosing single quotes tum off the special meaning of all characters.

Enclosing double quotes turn off the special meaning of all characters
except $ and '

Summary of Shell Command Language E-1

I

I

Redirecting Input and Output

<

>

Redirects the contents of a file into a command.

Redirects the output of a command into a new file, or replaces the
contents of an existing file with the output.

> >
Redirects the output of a command so that it i s appended to the end o f a
file .

Directs the output of one command so that it becomes the input of the
next command.

'command'
Substitutes the output of the enclosed command in place of 'command' .

Executing and Term inating Processes

batch

at

Submits the following commands to be processed at a time when the
system load is at an acceptable level. <Ad> ends the batch command.

Submits the following commands to be executed at a specified time.
<Ad> ends the at command.

at -1
Reports which jobs are currently in the at or batch queue.

at -r
Removes the at or batch job from the queue.

ps
Reports the status of the shell processes .

ki l l PID
Terminates the shell process with the specified process ID (PID) .

nohup command list &
Continues background processes after logging off.

E-2 User's Guide

CINTR
This key (default DELETE) terminates most interactive commands.

Making a Fi le Accessible to the Shel l

chmod u + x filename
Gives the user permission to execute the file (useful for shell program
files) .

mv filename $HOME/bin/filename
Moves your file to the bin directory in your home directory. This bin
holds executable she

b
ll
l

programs that yo
f
u
l

want
f
to be

hi
acc

b
�ssib

1
l
f
e · . Ma

d
ke • sure the PATH varia e in your .profi le i e sped ies t 's ln . 1t oes, •

the shell searches in $HOME/bin for your file when you try to execute it.
If your PATH variable does not include your bin, the shell does not know
where to find your file and your attempt to execute it fails.

f i lename
The name of a file that contains a shell program becomes the command
that you type to run that shell program.

Variables

positional parameter
A numbered variable used within a shell program to reference values
automatically assigned by the shell from the arguments of the command
line invoking the shell pro

echo
A command used to print the value of a variable on your terminal.

$#

$*

A special parameter that contains the number of arguments with which
the shell program has been executed.

A special parameter that contains the values of all arguments with which
the shell program has been executed.

named variable
A variable to which the user can give a name and assign values.

Summary of Shell Command Language E-3

•

Variables Used in the System

HOME
Denotes your home directory; the default variable for the cd command.

PATH
Defines the path your login shell follows to find commands.

CDPATH
Defines the search path for the cd command.

MAIL
Gives the name of the file containing your electronic mail .

PS1 PS�
Define the primary and secondary prompt strings .

TERM
Defines the type of terminal.

LOG NAME
Login name of the user.

IFS
Defines the internal field separators (normally the space, the tab, and the
carriage return) .

TERMJNFO
Allows you to request that the curses and term info subroutines search a
specified directory tree before searching the default directory for your
terminal type.

TZ
Sets and maintains the local time zone.

E-4 User's Guide

Shel l Programming Constructs

here Document

command < < !
input lines
I

for loop

for variable<CR>
in this list of values<CR>

do the following commands<CR>
command 1 < CR>
command 2<CR>
last command<CR>

done<CR>

Summary of Shell Command Language E-5

I

II

whi le loop

while command list<CR>
do<CR>

command1 < CR>
command2< CR>
last command<CR>

done<CR>

if . . . then

if this command is successful<CR>
then command1 < CR>

command2<CR>
last command<CR>

fi<CR>

E-6 User's Guide

if . . . then ... else

if command list<CR>
then command list<CR>
else command list<CR>

f i<CR>

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a
useful command for conditional constructs . If the condition is true, the loop
continues . If the condition is false, the loop ends and the next command is
executed. Some of the useful options for the test command are:

test -r file<CR>
true if the file exists and is readable

test - w file<CR>
true if the file exists and has write permission

test - x file<CR>
true if the file exists and is executable

test - s file<CR>
true if the file exists and has at least one character

test var1 - eq var2< CR>
true if var1 equals var2

test var1 - ne var2< CR>
true if var1 does not equal var2

Summary of Shell Command Language E-7

•

case Construction

case word< CR>
in<CR>

pattern1)<CR>
command line 1 < CR>
last command line<CR>

; ;<CR>
pattern2)< CR>

command line 1 <CR>
last command line<CR>

; ;<CR>
pattern3)< CR >

command line 1 <CR>
last command line<CR>

; ;<CR>
esac<CR>

break and continue Statements

A break or continue statement forces the program to leave any loop and
execute the command following the end of the loop.

E-8 User's Guide

F Setting Terminal Type

Setting the TERM Variable
Acceptable Terminal Names
Example
The Terminal Support System

Setting TermiMl Type

F-1
F-2
F-3
F-5

Setting the TERM Variable

Several types of terminals are supported by SYSTEM V/88 systems. Because
some commands are terminal dependent, the system must know what type of
terminal you are using whenever you log in. The system determines the
characteristics of your terminal by checking the value of a variable called
TERM which holds the name of a terminal. If you placed the name of your
terminal into this variable, the system can execute all programs in a way that
is suitable for your terminal.

This method of telling the system what type of terminal you are using is
called setting the terminal configuration. To set your terminal configuration,
type the command lines shown on the following screen, substituting the name
of your terminal for terminlll_nllme:

$ TERM= terminal_name<CR>
$ export TERM<CR>
$ tput lnit<CR>

These lines must be executed in the order shown; otherwise, they will not
work. Also, this procedure must be repeated every time you log in.
Therefore, most users put these lines into the .profi le file that is automatically
executed every time they log in. For details about the .profi le file, see
Chapter 7.

The first two lines in the screen tell the system shell what type of terminal
you are using. The tput init command line instructs your terminal to behave
in ways that the system expects a terminal of that type to behave. For
example, it sets the terminals left margin and tabs, if those capabilities exist
for the terminal.

Setting Terminlll Type F-1

I

•

The tput command uses the entry in this database for your terminal to make
terminal dependent capabilities and information available to the shell .
Because the values of these capabilities differ for each type of terminal, you
must execute the tput init command line every time you change the TERM
variable.

For each terminal type, a set of capabilities is defined in a database. This
database is usually found in either the /usr/l ib/term info or /usr/l ib/.COREterm
directory, depending on the system.

NOTE

Every system has at least one of these
directories; some may have both. Your System
Administrator can tell you whether your
system has the term info and/or the
.COREterm directory.

The following sections describe how you can determine what tenniMl_Mmes
are acceptable. Further information about the capabilities in the term info
database can be found on the term info{4) manual page in the Programmer's
Reference Manual.

Acceptable Termi nal Names

The operating system recognizes a wide range of terminal types. Before you
put a terminal name into the TERM variable, you must make sure that your
terminal is one of them.

You must also verify that the name you put into the TERM variable is a
recognized terminal name. There are usually at least two recognized names:
name of the manufacturer and the model number. However, there are several
ways to represent these names; e.g. , by varying the use of uppercase and
lowercase, using abbreviations. Do not put a terminal name in the TERM
variable until you have verified that the system recognizes it.

The tput command provides a quick way to make sure your terminal is
supported by your system, type:

tput -TtenniMl_Mme longname<CR>

If your system supports your terminal, it responds with the complete name of
your terminal . Otherwise, you get an error message.

F-2 User's Guide

\

To find an acceptable name that you can put in the TER M variable, find a
listing for your terminal in the directory /usr/l ib/term info or
/usr/l ib/.COREterm . Each of these directories is a collection of directories
with single-character names. Each directory holds a list of terminal names
that all begin with the name of the directory. This name can be either a letter,
e .g . , the initial U in UniSoft, or a number, e .g . , the initial 5 in 5425 . Find the
directory whose name matches the first character of your terminal's name .
Then list the directories contents and look for your terminal, e .g . ,
/usr/1 ib/term info/v/vt1 00.

You can also check with your System Administrator for a list of terminals
supported by your system and the acceptable names you can put in the TER M
variable .

Example

The terminal you want to set up is an AT&T Teletype Model 5425. Your login
is j im and you are currently in your home directory. First, you verify that
your system supports your terminal by running the tput command. Next, you
find an acceptable name for it in the /usr/l ib/terminfo/A directory. The
following screen shows which commands you need to do this:

Setting Terminal Type F-3

I

$ tput -T5425 longname<CR>
AT/fl 4426/6426
$ cd /usr/llb/.COREterm/A<CR>
$ Is
ATT4410
ATT4416
ATT4418
ATT4424
ATT4424-2
ATT4426
ATT4426
ATT613
ATT6410
ATT6418
ATT6420
ATT6420-2
ATT6426
ATT6620
ATT61 0BCT
ATTPT606
•

Now you are ready to put the name you found, ATI5425, in the TER M
variable. Whenever you do this, you must also export TER M and execute tput
in it.

F-4 User's Guide

$ TERM = ATT5425<CR>
$ export TERM<CR>
$ tput lnlt<CR>
$

The system now knows what type of terminal you are using and executes 1 commands appropriately.

The Terminal Support System
The Terminal Support System is a collection of shell files. These shell files
include files meant to be executed at login time; files that set the TERM
variable; files that initialize the terminal; and files that reassign the default
erase, kill interrupt, and abort characters . The Terminal Support System may
be configured to local preferences and is flexible enough to support most any
terminal that can be attached to the system.

This systems consists of the following shell files that are found in /local/bin.

Term Is
Term Setup
TermAssume
Term Funes

The proper use of these files is found in the default profile /etc/stdprofile.
The terminal setup consists of several lines near the start of this file. This
prototype profile is installed automatically as .profile when a user login is
created via sysadm adduser. Existing users should examine /etc/stdprofile
and extract the terminal setup section into their own .profile. This sequence
and invocation will remain the same in future releases, so you will only have
to do this once.

Setting Tenninal Type F-5

I

After the modification of the necessary .profile files, the terminal support
system can be used. The features include:

• default terminal identification through TermAssume

• correct initialization of any described terminal

• login-time specification of a terminal name

• the functions normal to set/get line-editing values

You invoke Termls to select the TERM name for the session. This may use an
assumed terminal name, which may depend on your login name and tty port
(see the discussion of TermAssume below). If invoked with the ask option,
Termls will prompt you to select a terminal name. The actual menu of
selected terminals may be different in later releases, and may be tailored to
your individual site (by editing Termls) . In response to the prompt, you can
always enter a name exactly as you want it to be assigned to the TER M
variable.

Term ls verifies that a valid term info entry exists for any chosen or assumed
terminal type, unless the system is in Single-User mode (otherwise, /usr must
be mounted) . If no entry exists, it prompts for another name. Term ls returns
the terminal name for assignment to TER M . Even if you preassign the value
of TER M in the .profile, Term ls will verify that it is a valid terminal (and
prompt if not or if given the ask argument) .

Once a valid terminal name is selected, you should always invoke TermSetup
to be sure the terminal is properly initialized. The correct invocation is shown
in stdprofile. Upon return, the proper initialization strings will have been
sent, any download programs run, etc. , as specified in the terminal's
description. This procedure requires an accurate terminfo description,
therefore, the usr filesystem must be mounted.

The actions of TermSetup are almost identical to those of tput in it except that
TermSetup does an intermediate check of the return value from the terminal
initialization program (specified by the iprog value from term info), before
sending the is1 string.

TermAssume is used (by Termls) to set an assumed (default) terminal name.
If no other terminal name is specified, the assumed value will be used (i .e . ,
the value of the ASSUME shell variable) . Assumptions can be made for a
specific port or range of ports (direct-connect terminals), a given user on a
port (dial-in or switched ports), or any other situation that may occur.
TermAssume is edited to describe your system. It contains internal

F-6 User's Guide

comments that describe how to do this . The supplied description is only an
example, and should be edited to suit. If you have no assumed terminals,
ASSUME will be set, by default, to vt1 00.

When any user logs in, a terminal name can be given at that time that will
then be the TERM value for the session, overriding any assumed value . To
use this feature, enter the terminal name at the login : prompt:

login : wombat term_name
Password :

term_name will be verified, then the terminal will be properly initialized
during the login process, but only if the terminal support system has been
properly invoked as shown in /local/stdprofile.

The shell-functions normal and gtty are defined in the terminal setup process
by Term Funcs. Shell-functions behave just like ordinary commands, except I they are executed in the current shell .

Invoking normal sets the erase, kill, intr, and quit keys to appropriate values
for the terminal (or the defaults) and perform any other operations necessary
to set "normal" modes for the terminal/user. The values of the following shell
variables override the corresponding default settings of normal, thus
preserving consistent line editing characters regardless of terminal type:

CERASE
CKILL
CINTR
CQUIT

For example, CERASE = "AH" would set <Ah> to be the erase character
whenever normal was invoked (such as within .profi le) .

Invoking gtty reports the current values of erase, ill, intr, and quit. I t is
invoked by normal, to appraise you of the current environment.

These shell functions only exist in your current (login) shell. They may be
generated in sub-shells (CERASE-CQUIT must be exported) by the following:

. Term Funcs

/local/bin/Term Funcs should be modified for local preferences and terminal
types.

Setting Terminal Type F-7

•

NOTE

The default .profi le for the root login will not
invoke TermSetup if the system is not in
Multi-User mode. Likewise, this .profi le, by
default, set the values of CERASE, CKILL,
and CINTR to the defaults before invoking
normal, so root always uses # as the erase
character, @ as the kill character and DEL key
as the intr key. This is done to maintain
consistency with the erase/kilVintr parameters
in effect during system bring-up and
shutdown (the local administrator may, of
course, override this) . If the individual rc files
are modified correctly, the erase and kill
characters in effect for bring-up and shutdown
can be set to local preferences . There is no
automatic method, at present, to effect these
changes.

In future releases, Term ls may support an "auto-identify" feature whereby
terminals identify themselves. This would use the ·answerback message
feature available in many terminals, so you could not use this feature for
anything else.

F-8 User's Guide

G Glossary

Glossary G-1

Glossary

acoustic coupler
A device that permits transmission of data over an ordinary telephone
line . When you place a telephone handset in the coupler, you link a
computer at one end of the phone line to a peripheral device, such as a
user terminal, at the other.

address
Generally, a number that indicates the location of information in the
computer's memory. In the SYSTEM V/88 operating system, the address
is part of an editor command that specifies a line number or range.

append mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. In this mode you enter (append) text after
the current position in the buffer. See text input mode; compare with
command mode and insert mode .

argument
The element of a command line that specifies data on which a command
is to operate . Arguments follow the command name and can include
numbers, letters, or text strings . For instance, in the command
lp - m myfile, lp is the command and myfile is the argument. See
option.

ASCII
(pronounced as'-kee) American Standard Code for Information
Interchange, a standard for data transmission that is used in the UNIX
system. ASCII assigns sets of Os and 1s to represent 128 characters,
including alphabetical characters, numerals, and standard special
characters, such as #, $, %, and &.

background
A type of program execution where you request the shell to run a
command away from the interaction between you and the computer ("in
the background") . While this command runs, the shell prompts you to
enter other commands through the terminal.

Glossary G-1

I

I

baud rate
A measure of the speed of data transfer from a computer to a peripheral
device (e .g. , as a terminal) or from one device to another. Common baud
rates are 300, 1200, 4800, and 9600. As a general guide, divide a baud
rate by 10 to get the approximate number of English characters
transmitted each second.

buffer
A temporary storage area of the computer used by text editors to make
changes to a copy of an existing file. When you edit a file, its contents
are read into a buffer, where you make changes to the text. For the
changes to become a part of the permanent file, you must write the buffer
contents back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be executed by the
computer on request. Compiled programs and shell programs are forms
of commands.

command file
See executable file .

command language interpreter
A program that acts as a direct interface between you and the computer.
In the SYSTEM V/88 operating system, a program called the shell takes
commands and translates them into a language understood by the
computer.

command line
A line containing one or more commands, ended by typing a carriage
return (<CR>) . The line may also contain options and arguments for the
commands. You type a command line to the shell to instruct the
computer to perform one or more tasks .

command mode
A text editing mode in which the characters you type are interpreted as
editing commands . This mode permits actions such as moving around in
the buffer, deleting text, or moving lines of text. See text input mode;
compare with append mode and insert mode.

G-2 User's Guide

context search
A technique for locating a specified pattern of characters (called a string)
when in a text editor. Editing commands that cause a context search scan
the buffer, looking for a match with the string specified in the command.
See string.

control character
A nonprinting character that is entered by holding down the CTRL key
and typing a character. Control characters are often used for special
purposes, e .g . , when viewing a long file on your screen with the cat
command, typing CTRL-s (s) stops the display so you can read it; typing
CTRL-q C q) continues the display.

current directory
The directory in which you are presently working. You have direct access
to all files and subdirectories contained in your current directory. The
shorthand notation for the current directory is a dot (.) .

cursor
A cue printed on the terminal screen that indicates the position at which
you enter or delete a character. It is usually a rectangle or a blinking
underscore character.

default
An automatically assigned value or condition that exists unless you
explicitly change it. For example, the shell prompt string has a default
value of $ unless you change it.

delimiter
A character that logically separates words or arguments on a command
line . Two frequently used delimiters in the SYSTEM V/88 operating
system are the space and the tab.

diagnostic
A message printed at your terminal to indicate an error encountered
while trying to execute some command or program. Generally, you need
not respond directly to a diagnostic message.

directory
A type of file used to group and organize other files or directories. You
cannot directly enter text or other data into a directory. (For more detail,
see Appendix A, Summary of the File System.)

Glossary G-3

I

I

disk
A magnetic data storage device consisting of several round plates similar
to phonograph records. Disks store large amounts of data and allow
quick access to any piece of data.

electronic mail
The feature of an operating system that allows computer users to
exchange written messages via the computer. The mail command
provides electronic mail in which the addresses are the login names of
users.

environment
The conditions under which you work while using the SYSTEM V/88
operating system. Your environment includes those things that
personalize your login and allow you to interact in specific ways with the
operating system and the computer. For example, your shell
environment includes such things as your shell prompt string, specifics
for backspace and erase characters, and commands for sending output
from your terminal to the computer.

erase character
The character you type to delete the previous character you typed . The
default erase character is #; some users set the erase character to the
BACKSPACE key.

escape
A means of getting into the shell from within a text editor or other
program.

execute
The computer's action of running a program or command and performing
the indicated operations .

executable file
A file that can be processed or executed by the computer without any
further translation. When you type in the file name, the commands in
the file are executed. See shell procedure .

file
A collection of information in the form of a stream of characters . Files
may contain data, programs, or other text. You access operating system
files by name. See ordinary file, permanent file, and executable file.

G-4 User's Guide

file name
A sequence of characters that denotes a file . (In the SYSTEM V/88
operating system, a slash character (/) cannot be used as part of a file
name.)

file system
A collection of files and the structure that links them together. The
SYSTEM V/88 file system is a hierarchical structure . (For more detail, see
Appendix A, Summary of the File System.)

filter
A command that reads the standard input, acts on it in some way, and
then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of command execution. When executing a command in
foreground, the shell waits for one command to end before prompting I you for another command. In other words, you enter something into the c

computer and the computer replies before you enter something else .

full-duplex
A type of data communication in which a computer system can transmit
and receive data simultaneously. Terminals and modems usually have
settings for half-duplex (one-way) and full-duplex communication; the
SYSTEM V/88 operating system uses the full-duplex setting.

full path name
A path name that originates at the root directory of the SYSTEM V/88
operating system and leads to a specific file or directory. Each file and
directory in the operating system has a unique full path name, sometimes
called an absolute path name. See path name.

global
A term that indicates the complete or entire file . While normal editor
commands commonly act on only the first instance of a pattern in the file,
global commands can perform the action on all instances in the file .

hardware
The physical machinery of a computer and any associated devices .

Glossary G-5

I

hidden character ,
One of a group of characters within the standard ASCII character set that
are not printable . Characters such as BACKSPACE, ESCAPE, and < Ad> are
examples .

home directory
The directory in which you are located when you log in to the
SYSTEM V/88 operating system; also known as your login directory.

input/output
The path by which information enters a computer system (input) and
leaves the system (output) . An input device that you use is the terminal
keyboard and an output device is the terminal display.

insert mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. In this mode, you enter (insert) text before
the current position in the buffer. See text input mode; compare with
append mode and command mode .

interactive
Describes an operating system (such as the SYSTEM V/88 operating
system) that can handle immediate-response communication between you
and the computer. In other words, you interact with the computer from
moment to moment.

kill character
The character you type to delete the current (as yet unentered) input line .
The default kill character is @. Many users set it to < Au> .

line editor
An editing program in which text is operated upon on a line-by-line basis
within a file . Commands for creating, changing, and removing text use
line addresses to determine where in the file the changes are made .
Changes can be viewed after they are made by displaying the lines
changed . See text editor; compare with screen editor.

login
The procedure used to gain access to the SYSTEM V/88 operating system.

login directory
See home directory.

G-6 User's Guide

login name
A string of characters used to identify a user. Your login name is
different from other login names.

log off
The procedure used to exit from the operating system.

metacharacter
A subset of the set of special characters that have special meaning to the
shell. The metacharacters are *, ?, and the pair [] . Metacharacters are
used in patterns to match file names.

mode
In general, a particular type of operation (e .g., an editor's append mode) .
In relation to the file system, a mode is an octal number used to
determine who can have access to your files and what kind of access they
can have. See permissions .

modem
A device that connects a terminal and a computer by way of a telephone I line . A modem converts digital signals to tones and converts tones back
to digital signals, allowing a terminal and a computer to exchange data
over standard telephone lines.

multitasking
The ability of an operating system to execute more than one program at a
time .

multi-user
The ability of an operating system to support several users on the system
at the same time.

nroff
A text formatter. You can use the nroff program to produce a formatted
online copy or a printed copy of a file . See text formatter. (This feature
is not available with the current release .)

operating system
The software system on a computer under which all other software runs .
The SYSTEM V/88 system is an operating system.

Glossary G-7

I

option
Special instructions that modify how a command runs . Options are a
type of argument that follow a command and usually precede other
arguments on the command line . By convention, an option is preceded
by a minus sign (-); this distinguishes it from other arguments . You can
specify more than one option for some commands given in the
SYSTEM V/88 operating system. For example, in the command
Is -1 - a directory, -1 and -a are options that modify the Is command.
See argument.

ordinary file
A file, containing text or data, that is not executable. See executable file.

output
Information processed in some fashion by a computer and delivered to
you by way of a printer, a terminal, or a similar device .

parameter
A special type of variable used within shell programs to access values
related to the arguments on the command line or the environment in
which the program is execut See positional parameter.

parent directory
The directory immediately above a subdirectory or file in the file system
organization. · The shorthand notation for the parent directory is two dots
(. .) .

parity
A method used by a computer for checking that the data received
matches the data sent.

password
A code word known only to you that is called for in the login process.
The computer uses the password to verify that you may indeed use the
system.

path name
A sequence of directory names separated by the slash character (/) and
ending with the name of a file or directory. The path name defines the
connection path between some directory and the named file .

G-8 User's Guide

peripheral device
Auxiliary devices under the control of the main computer, used mostly
for input, output, and storage functions . Some examples include
terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure . To change a
permanent file, you can use a text editor, which maintains a temporary
work space, or buffer, apart from the permanent files . Once changes
have been made to the buffer, they must be written to the permanent file
to make the changes permanent. See buffer.

permissions
Access modes, associated with directories and files, that permit or deny
system users the ability to read, write, and/or execute the directories and
files . You determine the permissions for your directories and files by
changing the mode for each one with the chmod command.

pipe
A method of redirecting the output of one command to be the input of
another command. For example, the shell command who I we -1 pipes
output from the who command to the we command, telling you the total
number of people logged into your operating system.

pipeline
A series of filters separated by I (the pipe character) . The output of each
filter becomes the input of the next filter in the line . The last filter in the
pipeline writes to its standard output, or may be redirected to a file. See
filter.

positional parameters
Numbered variables used within a shell procedure to access the strings
specified as arguments on the command line invoking the shell
procedure . The name of the shell procedure is positional parameter $0 .
See variable and shell procedure .

prompt
A cue displayed at your terminal by the shell, telling you that the shell is
ready to accept your next request. The prompt can be a character or a
series of characters . The SYSTEM V/88 operating system default prompt
is the dollar sign character ($) .

Glossary G-9

I

I

printer
An output device that prints the data it receives from the computer on
paper.

process
Generally a program that is at some stage of execution. In the
SYSTEM V/88 operating system, it also refers to the execution of a
computer environment, including contents of memory, register values,
name of the current directory, status of files, information recorded at
login time, and various other items.

program
The instructions given to a computer on how to do a specific task.
Programs are user-executable software .

read-ahead capability
The ability of the SYSTEM V/88 operating system to read and interpret
your input while sending output information to your terminal in response
to previous input. The operating system separates input from output and
processes each correctly.

relative path name
The path name to a file or directory which varies in relation to the
directory in which you are currently working.

remote system
A system other than the one on which you are working.

root
The source directory of all files and directories in the file system;
designated by the slash character (/) .

screen editor
An editing program in which text is operated on relative to the position of
the cursor on a visual display. Commands for entering, changing, and
removing text involve moving the cursor to the area to be altered and
performing the necessary operation. Changes are viewed on the terminal
display as they are made. See text editor; compare with line editor.

search pattern
See string.

search string
See string.

G-10 User's Guide

\

secondary prompt
A cue displayed at your terminal by the shell to tell you that the
command typed in response to the primary prompt is incomplete . The
SYSTEM V/88 operating system default secondary prompt is the greater
than character (>) .

shell
An operating system program that handles the communication between
you and the computer. The shell is also known as a command language
interpreter because it translates your commands into a language
understandable by the computer. The shell accepts commands and
causes the appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure calls
the shell to read and execute commands contained in a file. This lets you
store a sequence of commands in a file for repeated use . It is also called
a shell program or command file . See executable file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Contrast
with hardware .

source code
The uncompiled version of a program written in a language such as C or
Pascal . The source code must be translated to machine language by a
program known as a compiler before the computer can execute the
program.

special character
A character having special meaning to the shell program and used for
common shell functions, e .g . , file redirection, piping, background
execution, and file name expansion. The special characters include <, >,
I , ;, &, *, ?, [, and] .

special file
A file (called a device driver) used as an interface to an input/output
device, such as a user terminal, a disk drive, or a line printer.

Glossary G-11

I

I

standard input
An open file that is normally connected directly to the keyboard.
Standard input to a command normally goes from the keyboard to this
file and then into the shell . You can redirect the standard input to come
from another file instead of from the keyboard; use an argument in the
form < file. Input to the command then comes from the specified file.

standard output
An open file that is normally connected directly to a primary output
device, e .g., a terminal printer or screen. Standard output from the
computer normally goes to this file and then to the output device . You
can redirect the standard output into another file instead of to the printer
or screen; use an argument in the form > file. Output then goes to the
specified file .

string
Designation for a particular group or pattern of characters, e .g . , a word or
phrase, that may contain special characters . In a text editor, a context
search interprets the special characters and attempts to match the
specified pattern with a string in the editor buffer.

string variable
A sequence of characters that can be the value of a shell variable. See
variable .

subdirectory
A directory pointed to by a directory one level above it in the file system
organization; also called a child directory.

System Administrator
The person who monitors and controls the computer on which your
operating system runs; sometimes referred to as a super-user.

SYSTEM V/88 operating system
A general-purpose, multi-user, interactive time-sharing operating system
developed by Motorola, Inc. under a license from AT&T Bell Laboratories .
The SYSTEM V/88 operating system allows limited computer resources to
be shared by several users and efficiently organizes the user's interface to
a computer system.

G-12 User's Guide

terminal
An input/output device connected to a computer system, usually
consisting of a keyboard with a video display or a printer. A terminal
allows you to give the computer instructions and to receive information in
response.

text editor
Software for creating, changing, or removing text with the aid of a
computer. Most text editors have two modes -an input mode for typing
in text and a command mode for moving or modifying text. Two
examples are the SYSTEM V/88 operating system editors ed and vi. See
line editor and screen editor.

text formatter
A program that prepares a file of text for printed output. To make use of
a text formatter, your file must also contain some special commands for
structuring the final copy. For example, these special commands tell the
formatter to justify margins, start new paragraphs, set up lists and tables, 1 place figures. Two text formatters are nroff and troff (not available with •
this release) .

text input mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. To execute a command, you must leave text
input mode. See command mode; compare with append mode and insert
mode.

timesharing
A method of operation in which several users share a common computer
system seemingly simultaneously. The computer interacts with each user
in sequence, but the high-speed operation makes it seem that the
computer is giving each user its complete attention.

tool
A package of software programs.

troff
A text formatter. The troff program drives a phototypesetter to produce
high-quality printed text from a file (not available with this release) . See

\ text formatter.

ITY
Historically, the abbreviation for a teletype terminal. Today, it is
generally used to denote a user terminal.

Glossary G-13

I

user
Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable .

utility
Software used to carry out routine functions or to assist a programmer or
system user in establishing routine tasks .

variable
A symbol whose value may change. In the shell, a variable is a symbol
representing some string of characters (a string value) . Variables may be
used in an interactive shell as well as within a shell procedure . Within a
shell procedure, positional parameters and keyword parameters are two
forms of variables.

video display terminal
A terminal that uses a television-like screen (a monitor) to display
information. A video display terminal can display information much
faster than printing terminals .

visual editor
See screen editor.

working directory
See current directory.

G-14 User's Guide

® MOTOROLA INC.

M noco,n puter ')1vi:;1r r
2900 Sot ·� D 1 a 1lo Way

rerr pc, A•1z0 1a 85?b,'
F- 0 Box 290-l
Phr 811 1 X , A<IZ na 85(6;>

Motorola s <'n Equal Em ploy'T'E nt

Opportl. l i tv'Affi rrr , live Act or �=''ll p loyN

Motorola and 1M1 c-·e •eq istP.rHl

len -� 1 M o I I • Inc

1 1 040 PRINTED IN USA (3/90) WPC 2,500

