
1A.1 MOTOROLA
_..

68NW9209H41A

SYSTEM V /88 Release 3.2
User's Reference Manual

\

SYSTEM V /88 Release 3.2

User's

Reference Manual

(68NW9209H41 A)

The information in this document has been carefully checked and is believed to be
entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights or the rights of the
others .

PREFACE

The 3User's Reference Manual describes the commands that constitute the basic
software for the SYSTEM V/88 Release 3.2 software.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc .
SYSTEM V/88 and SYSTEM V/68 are trademarks of Motorola, Inc.

UNIX and Dataphone are registered trademarks of AT&T.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
UniSoft is a registered trademark of UniSoft Corporation.
Tektronix is a registered trademark of Tektronix, Inc.
TELETYPE is a trademark of Teletype Corporation.
Xerox and Diablo are trademarks of Xerox Corporation.
HP is a trademark of Hewlett-Packard.
PDP, VAX, and DEC are trademarks of Digital Equipment Corporation.

Portions of this document have been previously copyrighted by UniSoft
Corporation, AT&T, and The Regents of the University of California, and are
reproduced with permission.

All rights reserved. No part of this manual may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form without the prior written permission of Motorola,
Inc.

First Edition February 1990

Copyright 1990, Motorola, Inc.

CONTENTS

1. Commands
intro(1) introduction to commands and application programs
300(1) handle special functions of DASI 300 and 300s terminals
4014(1) . paginator for the Tektronix 4014 terminal
450(1) handle special functions of the DASI 450 terminal
acctcom(1) . search and print process accounting file(s)

admin(1) create and administer sees files

ar(1) . archive and library maintainer for portable archives
as(1) .. assembler driver script
as2(1) assembler
asa(1) .. interpret ASA carriage control characters
assist(1) ... assistance using SYSTEM V/88 commands
astgen(1) program for generating/modifying ASSIST menus or command forms
at(1) ... execute commands at a later time
awk(l) .. pattern scanning and processing language

banner(l) .. make posters

' basename(1) ... deliver portions of path names
bc(l) .. arbitrary-precision arithmetic language
bdiff(l) . big diff
bfs(l) .. big file scanner
bpatch(l) .. displays or alters byte content of files
bru(l) ... backup and restore utility
cal(l) .. print calendar
calendar(1) .. reminder service
cat(l) ... concatenate and print files

cb(l) . e program beautifier
cc(l) . e compiler

cd(1) .. change working directory
cdc(l) .. change the delta commentary of an sees delta
cflow(l) ... generate e flowgraph
chk(l) .. file system check and interactive repair
chmod(l) .. change mode
chown(l) .. change owner or group ""\
cmp(l) .. compare two files
col(l) ... filter reverse line-feeds
comb (I) combine sees deltas
comm(l) ... select or reject lines common to two sorted files
conv(l) ... common object file converter

- v -

convert(!) .. convert archive files to common formats

cp(l) ... copy, link or move files

cpio(l) ... copy file archives in and out

cpp(l) ... thee language preprocessor
cprs(l) .. compress a common object file
crc(l) .. generate cyclic redundancy checksums (ere) of files
crontab(l) .. user crontab file
crypt(l) .. encode/decode
csplit(l) ... context split

ctags(l) .. maintain a tags file for a e program
ctrace(l) .. e program debugger

cut(l) ... cut out selected fields of each line of a file

cxref(l) ... generate e program cross-reference
date(l) ... print and set the date
dc(l) .. desk calculator
dcpy(l) ... copy removable media
delta(l) .. make a delta (change) to an sees file
deroff(l) ... remove nroff/troff, tbl, and eqn constructs
diff(l) .. differential file comparator
diff3(1) .. 3-way differential file comparison

diffmk(l) ... mark differences between files
dircmp(l) , .. directory comparison
dis(l) ... object code disassembler
dnp(l) ... patch program with null pointer dereference bug
dump(l) ... dump selected parts of an object file
echo(l) ... echo arguments
ed(l) .. .•. text editor
edit(l) ... text editor (variant of ex for casual users)
egrep(l) search a file for a pattern using full regular expressions

enable{l) ... enable/disable LP printers
env(l) .. set environment for command execution
ex(l) ... text editor
expr(l) .. evaluate arguments as an expression
factor(l) .. obtain the prime factors of a number
fgrep(l) ... search a file for a character string
file(l) .. determine file type
find{l) ... find files
fmt(l) ... disk initializer

fs(l) ... construct a file system

get(l) .. get a version of an sees file
getopt(l) ... parse command options
getopts(l) .. parse command options

- vi -

"\

glossary(!) o o o o o o o o o o o o o o o o o o 0 definitions of terms and symbols
greek(!) o o o o o o o o o o o o 0 0 0 0 o 0 0 0 0 0 0 o o 0 0 0 0 0 0 o o o o 0 0 o o o o o select terminal filter
grep(l) o search a file for a pattern

help(l) o o o 0 0 o o o o o o 0 0 0 0 o o 0 0 o o o o o o 0 0 0 0 0 o o o o 0 0 0 0 0 o o o o o 0 0 0 0 o o o o o o o o 0 0 0 0 0 o 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 o o o o o o o o Help Facility
hp(l) o handle special functions of Hewlett-Packard terminals

hpio(l) 0 Hewlett-Packard 2645A terminal tape file archiver

hyphen(!) 0 find hyphenated words
ipcrm(l) o remove a message queue, semaphore set or shared memory ID

ipcs(l) 0 report inter-process communication facilities status
join(l) o relational database operator
kill(l) o o o o o o o o o 0 0 o o o o 0 0 o o o o o o o 0 0 0 o o o o o 0 0 0 o o o o o o o o o o o o o o o o o o 0 0 0 o o o o o o o o o o o o o o o o o o o o o o o terminate a process
ksh(l) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 shell, the standard/restricted command programming language

ld(l) 0 0 0 0 0 link editor for common object files
lex(l) 0 0 0 0 o 0 0 0 0 0 0 0 o 0 generate programs for simple lexical tasks
line(l) o o o o o o o o o o 0 0 o o 0 0 0 o o o o o o o 0 0 0 0 o 0 0 o o o 0 0 0 0 0 o o o o o o o 0 0 o o o o 0 0 o o o o o o o o 0 0 0 0 o o o o 0 0 o o o o o o o o o 0 0 o o o read one line
lint(l) o o o o o o o o o o o o o o o 0 0 0 o o o o o o o o o 0 0 o 0 0 o 0 0 0 0 0 o o o o o o o o o 0 0 o o o o o 0 0 o 0 0 o o 0 0 0 0 0 0 o o 0 o 0 0 o o o o a C program checker
list(l) 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 from a common object file produce a C source listing with line numbers

locate(l) 0 0 0 0 0 identify a command using keywords
login(l) 0 0 0 0 0 o sign on

logname(l) o get login name
" lorder(l) o o o 0 0 o 0 0 0 o 0 0 0 o o o find ordering relation for an object library

lp(l) o 0 0 o 0 0 0 0 lp, send/cancel requests to an LP print service
lpstat(l) 0 0 0 0 0 0 0 o print information about the status of the LP print service

ls(l) o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o 0 list contents of directory
m4(1) 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 macro processor
machid(l) o 0 get processor type truth value
mail(l) 0 send mail to users or read mail
mailx(l) 0 0 0 0 o interactive message processing system
make(l) 0 maintain, update, and regenerate groups of programs
makekey(l) 0 0 o generate encryption key
man(l) o display entries from this manual

mcs(l) o manipulate the object file comment section

mesg(l) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 permit or deny messages
mkdir(l) o make directories
mnt(l) o 0 o mount and dismount file system
mt(l) o 0 0 0 o 0 0 0 0 o o 0 o 0 0 magnetic tape control
newform(l) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 change the format of a text file

" news(l) 0 print news items
nice(l) 0 0 o run a command at low priority
nl(l) o 0 o 0 0 0 0 o 0 o o o o 0 0 o 0 0 o o o o 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line numbering filter

nm(l) o 0 0 0 0 0 0 0 0 0 print name list of common object file
nohup(l) 0 run a command immune to hangups and quits

- vii -

oawk(l) .. pattern scanning and processing language
od(l) .. octal dump
pack(l) .. compress and expand files
passwd(l) change login password and password attributes
paste(l) merge same lines of several files or subsequent lines of one file
pg(l) .. file perusal filter for eRTs

pr (1) . print files

prof(l) .. display profile data
prs(l) ... print an sees file
ps(l) .. report process status
pwd(l) .. working directory name
real(l) echo the real device in the permissions file for a given alias

regcmp(l) ... regular expression compile
rlogin(l) .. remote login

rm(l) ... remove files or directories

rmdel(l) ... remove a delta from an sees file
sact(l) ... print current sees file editing activity
sar(l) .. system activity reporter
sccsdiff(l) ... compare two versions of an sees file
sdb(l) ... symbolic debugger
sdiff(l) .. side-by-side difference program
sed(l) .. stream editor
setpgrp(l) . set process group ID and execute command
setup(l) .. initialize system for first user
sh(l) shell, the standard/restricted command programming language

shl(l) ... shell layer manager
sifilter(l) .. preprocess Me88100 assembly language
sink(l) ... canonical "server" process for testing network
size(l) ... print section sizes in bytes of common object files
sleep(l) ... suspend execution for an interval
sort(l) .. sort and/or merge files
spell(l) .. find spelling errors
split(l) .. split a file into pieces
starter(l) information about the system for beginning users

strip(l) strip symbol and line number information from a common object file
stty(l) .. set the options for a terminal
sum(l) .. print checksum and block count of a file
tabs(l) ... set tabs on a terminal
tail(l) ... deliver the last part of a file

tar(l) ... tape file archiver
tee(l) .. pipe fitting

test(l) .. condition evaluation command

- viii -

time (1) . time a command
timex(1) . time a command; report process data and system activity
touch(1) . update access and modification times of a file
tput (1) . initialize a terminal or query terminfo database

" tr (1) . translate characters
true (1) . provide truth values
tsort (1) . topological sort
tt (1) . convert and copy a file
tty (1) . get the name of the terminal
umask(1) . set file creation mode mask
uname (1) . print name of current system
unget (1) . undo a previous get of an sees file
uniq(1) . report repeated lines in a file
units(l) conversion program
usage (1) . retrieve a command description and usage examples
val(1) . validate sees file
vc (1) . version control
vi (1) . screen-oriented (visual) display editor based on ex
wait(1) . await completion of process
wall(l) . write to all users

, wc(1) . word count

what(1) . identify sees files
who(l) . who is on the system
write (1) . write to another user
xargs (l) . construct argument list(s) and execute command
yacc(1) . yet another compiler-compiler
ct (1C) . spawn getty to a remote terminal
cu (1 C) . call another UNIX system
uucp (1C) . UNIX-to-UNIX system copy
uustat (1C) . uucp status inquiry and job control
uuto (lC) . public UNIX-to-UNIX system file copy
uux(1C) . UNIX-to-UNIX system command execution

PERMUTED INDEX . Pl-1

- ix -

INTRO(l) INTRO(l)

NAME
intra - introduction to commands and application programs

' DESCRIPTION
This section describes, in alphabetical order, commands available with the
SYSTEM V/88 operating system. Certain distinctions of purpose are made
in the headings .

The following Utility packages are part of the system:

Basic Networking Utilities (BNU)
Directory and File Management Utilities
Editing Utilities
Essential Utilities
Help Utilities
Inter-process Communications (IPC)
Line Printer Spooling Utilities
Performance Measurement Utilities
Security Administration Utilities
Spell Utilities
User Environment Utilities
Networking Support Utilities
Remote File Sharing Utilities (RFS)

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of
a manual page accept options and other arguments according to the fol
lowing syntax and should be interpreted as explained below.

mlme [-option . . .] [cmdarg . . .]

where:

[]

nil me

option

noargletter

Surround an option or cmdarg that is not required .

Indicates multiple occurrences of the option or cmdarg .

The name of an executable file .

(Always preceded by a "-" .)
noargletter . . . or,
argletter optarg [, . . .]

A single letter representing an option without an option
argument. Note that more than one noargletter option can
be grouped after one "-" (see Rule 5) .

- 1 -

I

I

INTRO(l)

argletter

optarg

cmdarg

INTRO(l)

A single letter representing an option requiring a n option
argument.

An option-argument (character string) satisfying a preced
ing argletter . Note that groups of optargs following an
argletter must be separated by commas, or separated by
white space and quoted (see Rule 8).

Pathname (or other command argument) not beginning with
"-", or "-" by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands,
but all new commands will obey them. getopts (1) should be used by all
shell procedures to parse positional parameters and to check for legal
options; it supports Rules 3-10 below. The enforcement of the other rules
must be done by the command itself.

1 . Command names (name above) must be between two and nine
characters long.

2. Command names must include only lowercase letters and digits .

3. Option names (option above) must be one character long.

4. All options must be preceded by "-".

5 . Options with no arguments may be grouped after a single "-" .

6 . The first option-argument (optarg above) following an option must
be preceded by white space.

7. Option-arguments cannot be optional .

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted
(e .g . , -o xxx,z,yy or-o "xxx z yy") .

9. All options must precede operands (cmdarg above) on the com-
mand line .

10. "-" may be used to indicate the end of the options.

1 1 . The order o f the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

- 2 -

INTRO(l) INTRO(l)

13. "-" preceded and followed by white space should only be used to I
mean standard input.

' SEE ALSO
getopts(l) .
exit(2), wait(2), getopt(3C) in the Programmer's Reference Manual.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one sup
plied by the system and giving the cause for termination, and (in the case
of "normal" termination) one supplied by the program (see wait (2) and
exit (2)) . The former byte is 0 for normal termination; the latter is cus
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, or bad or inaccessible data . It is called variously
"exit code", "exit status", or "return code", and is described only where
special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files con
taining NULL characters . These commands often treat text input lines as
strings and therefore become confused upon encountering a NULL
character (the string terminator) within a line .

- 3 -

300 (1) (Terminal Filters Utilities) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

" SYNOPSIS
300 [+ 12] [-n] [-dt, l, c]

300s [+ 12] [-n] [-dt, l,c]

DESCRIPTION
The 300 command supports special functions and optimizes the use of the
DASI 300 (GSI 300 or DTC 300) terminal; 300s performs the same functions
for the DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line for
ward, half-line reverse, and full-line reverse motions to the correct vertical
motions . In the following discussion of the 300 command, it should be
noted that unless your system contains the DOCUMENTER'S WORKBENCH

Software, references to certain commands (e .g . , nroff, neqn, eqn) will not
work. It also attempts to draw Greek letters and other special symbols . It
permits convenient use of 12 pitch text and reduces printing time 5 to
70% . The 300 command can be used to print equations neatly, in the
sequence:

neqn file . . . I nroff I 300

CAUTION. Make sure the PLOT switch on your terminal is ON before 300
is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12 pitch text, fractional line spacings, messages, and delays:

+ 12
permits use of 12 pitch, 6 Lines Per Inch (LPI) text. DASI 300 termi
nals normally allow only two combinations: 10 pitch, 6 LPI, or 12
pitch, 8 LPI. To obtain the 12 pitch, 6 LPI combination, you should
turn the PITCH switch to 12, and use the + 12 option.

-n
controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments . Because each increment equals 1/48 of
an inch, a 10 pitch linefeed requires 8 increments, while a 12 pitch
linefeed needs only 6. The first digit of n overrides the default value,
which allows for individual taste in the appearance of subscripts and
superscripts . For example, nroff half-lines could be made to act as
quarter-lines by using -2. You can also obtain appropriate half-lines
for 12 pitch, 8 LPI mode by using the option -3 alone by setting the
PITCH switch to 12 pitch.

- 1 -

300 (1) (Terminal Filters Utilities) 300 (1)

-dt , l ,c
controls delay factors . The default setting is -d3,90,30 . DASI 300 ter
minals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non
identical characters . One NULL (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of c non-blank,
non-tab characters . If a line is longer than l bytes, 1 + (total length)/20
NULLs are inserted at the end of that line . Items can be omitted from
the end of the list, implying use of the default values . Also, a value
of zero for t (c) results in two NULL bytes per tab (character) . The
former may be needed for C programs, the latter for files like
/etc/passwd. Because terminal behavior varies according to the
specific characters printed and the load on a system, the user may
have to experiment with these values to get correct output. The -d
option exists only as a last resort for those few cases that do not oth
erwise print properly. For example, the file /etc/passwd may be
printed using -d3,30,5 . The value -dO,l is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car
riage return and linefeed delays . The stty(1) modes nlO cr2 or nlO cr3
are recommended for most uses .

The 300 command can be used with the nroff -s flag or .rd requests, when
it is necessary to insert paper manually or change fonts in the middle of a
document. Instead of hitting the RETURN key in these cases, you must
use the LINEFEED key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files . . . and nroff files . . . I 300
nroff -T300-12 files . . . and nroff files . . . I 300 + 12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza
tion of 300 may produce better-aligned output.

SEE ALSO

BUGS

450(1), mesg(1), stty(1), tabs(1) .

Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there .

- 2 -

300 (1)

'

(Terminal Filters Utilities) 300 (1)

I f your output contains Greek and/or reverse linefeeds, use a friction-feed I
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line feeds .

- 3 -

4014 (1) (Terminal Filters Utilities) 4014(1)

NAME
4014 - paginator for the Tektronix 4014 terminal

'- SYNOPSIS
4014 [-t] [-n] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default) single
column case . Tabs, spaces, and backspaces are collected and plotted
when necessary. Teletype Model 37 half- and reverse-line sequences are
interpreted and plotted. At the end of each page, 4014 waits for a new
line (empty line) from the keyboard before continuing on to the next page .
In this wait state, the command !cmd will send the cmd to the shell.

The command line options are:

-t
Do not wait between pages (useful for directing output into a file) .

-n
Start printing at the current cursor position and never erase the
screen.

-eN
Divide the screen into N columns and wait after the last column.

-pL [i or l]
Set page length to L. L accepts the scale factors i (inches) and l
(lines) . Default is lines.

It should be noted that unless your system contains the DOCUMENTER'S
WORKBENCH Software, references to certain commands (e .g . , troff, neqn,
eqn) do not pertain.

SEE ALSO
pr(l).

- 1 -

450(1) (Terminal Filters Utilities) 450 (1)

NAME
450 - handle special functions of the DASI 450 terminal

' SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of,
the DASI 450 terminal, or any terminal that is functionally identical, such
as the Diablo 1620 or Xerox 1700. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions . It
also attempts to draw Greek letters and other special symbols in the same
manner as 300(1) . It should be noted that, unless your system contains
DOCUMENTER'S WORKBENCH Software, certain commands (e.g., eqn,
nroff, tbl) will not work. Use 450 to print equations neatly, in the
sequence:

neqn file . . . I nroff I 450

CAUTION. Make sure the PLOT switch on your terminal is ON before 450
is used. The SPACING switch should be put in the desired position (either
10 or 12 pitch) . In either case, vertical spacing is 6 LPI, unless dynami
cally changed to 8 LPI by an appropriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert
paper manually or change fonts in the middle of a document. Instead of
hitting the RETURN key in these cases, you must use the LINEFEED key to
get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following:

nroff -T450 files . . .
or

nroff -T450-12 files . . .

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza
tion of 450 may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special
characters supported by 450 are shown in greek(5) .

SEE ALSO
300(1), mesg(1), stty(1), tabs(1) .

- 1 -

450 (1)

I BUGS

(Terminal Filters Utilities) 450(1)

Some special characters cannot be correctly printed in column 1 because
the print head cannot be moved to the left from there.

If your output contains Greek and/or reverse LINEFEEDS, use a friction
feed platen instead of a forms tractor; although good enough for drafts,
the latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
LINEFEEDS.

- 2 -

ACCTCOM (l) ACCTCOM (l)

NAME
acctcom - search and print process accounting file(s)

" SYNOPSIS
acctcom [[options] [file]] . . .

DESCRIPTION
acc tc om reads file, the standard input, or l usr/adml pac ct, in the form
described by acct (4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows
the COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (j ork/ exec flag: 1 for
fork without exec), STAT (system exit status), HOG FACTOR, KCORE MIN,
CPU FACTOR, CHARS "fRNSFD, and BLOCKS READ (total blocks read and
written) .

A # is prepended to the command name if the command was executed
with superuser privileges . If a process is not associated with a known ter
minal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a ter
minal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i .e . , in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several such files of which all but the
current file are found in /usr/adm/pacct. The options are:

-a
Show some average statistics about the processes selected. The
statistics will be printed after the output records.

-b

-f

Read backwards, showing latest commands first. This option has no
effect when the standard input is read.

Print the fork/exec flag and system exit status columns in the output.
The numeric output for this option will be in octal.

- 1 -

ACCTCOM (l) ACCTCOM (l)

-h

-i

Instead of mean memory size, show the fraction of total available CPU
time consumed by the process during its execution. This "hog factor"
is computed as:

(total CPU time)/(elapsed time) .

Print columns containing the I/0 counts in the output.

-k
Instead of memory size, show total kcore-minutes.

-m
Show mean core size (the default) .

-r

Show CPU factor (user time/(system-time + user-time) .

-t
Show separate system and user CPU times.

-v
Exclude column headings from the output.

-I line
Show only processes belonging to terminal /dev/line .

-u user
Show only processes belonging to user that may be specified by: a
user ID, a login name that is then converted to a user ID, a # (which
designates only those processes executed with superuser privileges),
or a ? (which designates only those processes associated with unk
nown user IDs) . Remember that the # or the ? character is enclosed
within apostrophes or quotation marks or preceded by a backslash.

-g group
Show only processes belonging to group . The group may be desig
nated by either the group ID or group name.

-s time
Select processes ending at or after time , given in the format
hr [: min [: sec]] .

-e time
Select processes starting at or before time .

- 2 -

ACCTCOM (l) ACCTCOM (l)

FILES

-S time
Select processes starting at or after time.

-E time
Select processes ending at or before time. Using the same time for
both -S and -E shows the processes that existed at time.

-n pattern
Show only commands matching pattern that may be a regular expres
sion as in ed (l) except that + means one or more occurrences .

-q
Do not print any output records, just print the average statistics as
with the -a option.

-o ofile
Copy selected process records in the input data format to ofile;
suppress standard output printing.

-Hfactor
Show only processes that exceed factor, where factor is the ''hog fac
tor" as explained in option -h above.

-0 sec
Show only processes with CPU system time exceeding sec seconds .

-C sec
Show only processes with total CPU time, system plus user, exceed
ing sec seconds.

- 1 chars
Show only processes transferring more characters than the cutoff
number given by chars.

/etc/passwd
/usr/ adm/pacct
/etc/group

SEE ALSO
ps(l), su(l)
acct(2), acct(4), utmp(4) in the Programmer' s Reference Manual.
acct(lM), acctcms(lM), acctcon(lM), acctmerg{lM), acctprc(lM),
acctsh(lM), fwtmp{lM), runacct{lM) in the System Administrator' s Reference
Manual.

- 3 -

ACCTCOM(l) ACCTCOM(l)

I BUGS
acc tc om reports only on processes that have terminated; use ps(l) for active
processes. If time exceeds the present time, time is interpreted as occur
ring on the previous day.

- A -

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

NAME
admin - create and administer sees files

' SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-ffiag[fiag-val]]
[-dfiag[fiag-val]] [-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z]

files

DESCRIPTION
admin is used to create new sees files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that sees
file names must begin with the characters s.) . If a named file does not
exist, it is created, and its parameters are initialized according to the
specified keyletter arguments . Parameters not initialized by a keyletter
argument are assigned a default value . If a named file does exist, parame
ters corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The following describes the keyletter arguments . Each is explained as
though only one named file is to be processed since the effects of the
arguments apply independently to each named file .

-n
This keyletter indicates to create a new sees file .

-i[name]
The name of a file from which the text for a new sees file is to be
taken. The text constitutes the first delta of the file (see -r keyletter
for delta numbering scheme) . If the i keyletter is used but the file
name is omitted, the text is obtained by reading the standard input
until an EOF is encountered. If this keyletter is, omitted, then the
sees file is created empty. Only one sees file may be created by an
admin command on which the i keyletter is supplied . Using a single
admin to create two or more sees files requires that they be created
empty (no -i keyletter) . Note that the -i keyletter implies the -n
key letter.

- 1 -

I

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

-rrel
The release into which the initial delta is inserted. This keyletter may
be used only if the -i keyletter is also used. If the -r keyletter is not
used, the initial delta is inserted into release 1 . The level of the initial
delta is always 1 (by default initial deltas are named 1 . 1) .

-t[Mme]
The 1Ulme of a file from which descriptive text for the sees file is to be
taken. If the -t keyletter is used and admin is creating a new sees
file (the -n and/or -i keyletters also used), the descriptive text file
name must also be supplied. In the case of existing sees files: (1) a
-t keyletter without a file name causes removal of descriptive text (if
any) currently in the sees file, and (2) a -t keyletter with a file name
causes text (if any) in the named file to replace the descriptive text (if
any) currently in the sees file .

-£flag
This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the sees file . Several f keyletters may be supplied on a sin
gle admin command line . The allowable flags and their values are:

b
Allows use of the -b keyletter on a get(1) command to create
branch deltas.

cceil
The highest release (i .e . , "ceiling"), a number greater than 0 but
less than or equal to 9999, which may be retrieved by a get(1) com
mand for editing. The default value for an unspecified c flag is
9999.

£floor
The lowest release (i .e . , "floor"), a number greater than 0 but less
than 9999, which may be retrieved by a get(1) command for editing.
The default value for an unspecified f flag is 1 .

dSID
The default delta number (SIDs+ 1) to be used by a get(l) command.

- 2 -

ADMIN (l) (Source Code Control System Utilities) ADMIN(l)

i[str]
Causes the No id keywords (g e S) message issued by get (l)
or delta (l) to be treated as a fatal error. In the absence of this flag,
the message is only a warning. The message is issued if no sees
identification keywords (see get(l)) are found in the text retrieved
or stored in the sees file . If a value is supplied, the keywords
must exactly match the given string, however the string must con
tain a keyword, and no embedded newlines.

Allows concurrent get (l) commands for editing on the same SIDs+ 1
of an sees file. This allows multiple concurrent updates to the same ver
sion of the sees file.

Ilist

n

A list of releases to which deltas can no longer be made (get -e
against one of these "locked" releases fails) . The list has the fol
lowing syntax:

<list> : : = < range> I <list> , < range>
< range>-: : = I a

The character a in the list is equivalent to specifying all releases
for the named sees file .

Causes delta (l) to create a NULL delta in each of those releases (if
any) being skipped when a delta is made in a new release (e .g . , in
making delta 5 . 1 after delta 2.7, releases 3 and 4 are skipped) .
These NULL deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this flag causes
skipped releases to be non-existent in the sees file, preventing
branch deltas from being created from them in the future .

qtext
User definable text substituted for all occurrences of the %Q% key
word in sees file text retrieved by get (l) .

mmod
module name of the sees file substituted for all occurrences of the
%M% keyword in sees file text retrieved by get(l) . If the m flag is
not specified, the value assigned is the name of the sees file with
the leading s. removed.

- 3 -

I

ADMIN (l) (Source Code Control System Utilities) ADMIN(l)

ttype
type of module in the sees file substituted for all occurrences of
% Y% keyword in sees file text retrieved by get (l) .

vpgm
Causes delta (l) to prompt for Modification Request (MR) numbers
as the reason for creating a delta . The optional value specifies the
name of an MR number validity checking program (see delta (l)) . (If
this flag is set when creating an sees file, the m keyletter must also
be used even if its value is NULL) .

-dflag
Causes removal (deletion) of the specified flag from an sees file . The
-d keyletter may be specified only when processing existing sees
files. Several -d keyletters may be supplied on a single admin com
mand. See the -f keyletter for allowable flag names .

llist
A list of releases to be "unlocked". See the -f key letter for a
description of the I flag and the syntax of a list.

-alogin
A login name, or numerical group ID, to be added to the list of users
which may make deltas (changes) to the sees file . A group 10 is
equivalent to specifying all login names common to that group ID.
Several a keyletters may be used on a single admin command line . As
many logins, or numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then anyone may add
deltas . If login or group ID is preceded by a !, they are to be denied
permission to make deltas.

-elogin
A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the sees file . Specifying a
group ID is equivalent to specifying all login names common to that
group ID. Several e keyletters may be used on a single admin com
mand line .

-m[mrlist]
The list of (MR) numbers is inserted into the SCCS file as the reason
for creating the initial delta in a manner identical to delta (l) . The v
flag must be set and the MR numbers are validated if the v flag has a
value (the name of an MR number validation program) . Diagnostics
will occur if the v flag is not set or MR validation fails .

- 4 -

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

-y[comment]
The comment text is inserted into the sees file as a comment for the
initial delta in a manner identical to that of delta (l) . Omission of the
-y keyletter results in a default comment line being inserted in the
form:

date and time created YYIMM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n keyletters are speci
fied (i .e . , a new sees file is being created) .

-h

-z

Causes admin to check the structure of the sees file (see sccsfile(5)),
and to compare a newly computed checksum (the sum of all the char
acters in the sees file except those in the first line) with the check
sum that is stored in the first line of the sees file . Appropriate error
diagnostics are produced. keyletter inhibits writing on the file, so
that it nullifies the effect of any other keyletters supplied, and is,
therefore, only meaningful when processing existing files .

The sees file checksum is recomputed and stored in the first line of
the sees file (see -h, above) .

Note that use of this keyletter on a truly corrupted file may prevent
future detection of the corruption.

The last component of all sees file names must be of the form
s.file-name. New sees files are given mode 444 (see chmod(l)) . Write
permission in the pertinent directory is, of course, required to create a
file . All writing done by admin is to a temporary x-file, called
x.file-name, (see get {l)), created with mode 444 if the admin command is
creating a new sees file, or with the same mode as the sees file if it
exists . After successful execution of admin, the sees file is removed (if
it exists), and the x-file is renamed with the name of the sees file . This
ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode 755
and that sees files themselves be mode 444 . The mode of the direc
tories allows only the owner to modify sees files contained in the direc
tories . The mode of the sees files prevents any modification at all
except by sees commands.

- 5 -

I

I

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

FILES

If it should be necessary to patch an sees file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(l) . Care must be
taken! The edited file should always be processed by an admin -h to
check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the sees file
is valid.

admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the sees file by different
users . See get (l) for further information.

g-file

p-file

q-file

x-file

z-file

d-file

/usr/binlbdi££

Existed before the execution of delta ; removed after
completion of delta .
Existed before the execution of delta ; may exist after
completion of delta .
Created during the execution of delta ; removed after
completion of delta .
Created during the execution of delta ; renamed to
sees file after completion of delta .
Created during the execution of delta ; removed dur
ing the execution of delta .
Created during the execution of delta ; removed after
completion of delta .
Program to compute differences between the "got
ten" file and the g-file .

SEE ALSO
delta(l), get(l), prs(l), what(l), sccsfile(4) .
ed(l), help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations .

- 6 -

AR(l) (Directory and File Management Utilities) AR(l)

NAME
ar - archive and library maintainer for portable archives

""' SYNOPSIS
ar key [posname] afile [name] . . .

DESCRIPTION
The ar command maintains groups of files combined into a single archive
file . Its main use is to create and update library files as used by the link
editor. It can be used, though, for any similar purpose . The magic string
and the file headers used by ar consist of printable ASCII characters . If an
archive is composed of printable files, the entire archive is printable .

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is
described in detail in ar(4) . The archive symbol table (see ar(4)) is used by
the link editor (ld{l)) to effect multiple passes over libraries of object files
in an efficient manner. An archive symbol table is only created and main
tained by ar when there is at least one object file in the archive . The
archive symbol table is in a specially named file which is always the first
file in the archive . This file is never mentioned or accessible to the user.
Whenever the ar(l) command is used to create or update the contents of
such an archive, the symbol table is rebuilt. The s option described below
will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar's com
mand line . The key (which may begin with a -) is formed with one of the
following letters: drqtpmx. Arguments to the key, alternatively, are made
with one of more of the following set: vuaibcls . posname is an archive
member name used as a reference point in positioning other files in the
archive . afile is the archive file . The names are constituent files in the
archive file . The meanings of the key characters are:

d

r

Delete the named files from the archive file .

Replace the named files in the archive file . If the optional character u
is used with r, then only those files with dates of modification later
than the archive files are replaced . If an optional positioning charac
ter from the set abi is used, the posname argument must be present
and specifies that new files are to be placed after (a) or before (b or i)
posname . Otherwise, new files are placed at the end.

- 1 -

AR(l)

q

t

p

m

X

(Directory and File Management Utilities) AR(l)

Quickly append the named files to the end of the archive file .
Optional positioning characters are invalid . The command does not
check if the added members are already in the archive. This option is
useful to avoid quadratic behavior when creating a large archive
piece-by-piece . Unchecked, the file may grow exponentially up to the
second degree .

Print a table of contents of the archive file . If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char
acter is present, the posname argument must be present and, as in r,
specifies where the files are to be moved.

Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file .

The meanings of the key arguments are:

v

c

1

s

Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files . When used with t,
give a long listing of all information about the files. When used with
x, precede each file with a name.

Suppress the message that is produced by default when afile is
created.

Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

Force the regeneration of the archive symbol table even if ar(l) is not
invoked with a command which will modify the archive contents .
This command is useful to restore the archive symbol table after the
strip(l) command has been used on the archive.

- 2 -

AR(l) (Directory and File Management Utilities) AR(l)

FILES
$TMPDIRI* temporary files

" $TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR (see tempnam() in tmpnam(3S)) .

SEE ALSO

NOTES

ld(l), lorder{l), strip(!), tmpnam(3S), a .out(4), ar(4) in the Programmer's
Reference Manual.

If the same file is mentioned twice in an argument list, it may be put in
the archive twice.

- 3 -

AS (l) (Software Generation System Utilities) AS (l)

NAME
/bin/as - assembler driver script

-... SYNOPSIS
/bin/as [options] filename

DESCRIPTION

FILES

The /bin/as command both silicon filters and assembles the named file .
This driver script allows the silicon filtering to be performed in a tran
sparent fashion which avoids having to make special changes to makefiles
or scripts to accommodate the silicon filter pass. The following flags may
be specified in any order:

-o objfile
Put the output of the assembly in objfile. By default, the output file
name is formed by removing the . s suffix, if there is one, from the
input file name and appending a .o suffix.

-Foptions
Pass these options on to the silicon-filter. This option is used to
specify the sifilter command options that will be used by the silicon
filter when it is automatically run by /bin/as. See sifilter(l) for a com
plete list of filter options.

/bin/as is implemented as a script that calls both the silicon filter and the
assembler in two passes.

/usr/tmp/as[A-Z]XXXXX
/lib/as
/bin/sifilter

temporary files
assembler
silicon filter

SEE ALSO
sifilter(l) .

- 1 -

AS (l) (Software Generation System Utilities) AS (l)

I NAME
/lib/as - assembler

SYNOPSIS
!lib/as [options] filetuime

DESCRIPTION

FILES

The !lib/as command assembles the named file . The following flags may
be specified in any order:

-o objfile
Put the output of the assembly in objfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from the
input file name and appending a .o suffix.

-m
Run the m4 macro processor on the input to the assembler.

-R
Remove (unlink) the input file after assembly is completed.

-V
Write the version number of the assembler being run on the standard
error output.

-Y [md],dir
Find the m4 preprocessor (m) and/or the file of predefined macros (d)
in directory dir instead of in the customary place .

/usr/tmp/as[A-Z]XXXXX temporary files

- 1 -

ASA (l) ASA(l)

NAME
asa - interpret ASA carriage control characters

'- SYNOPSIS
asa [file . . .]

DESCRIPTION
asa interprets the output of FORTRAN programs that use ASA carriage
control characters. It processes either the files whose names are given as
arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character; their meanings
are:

(blank)

0

1

single newline before printing

double newline before printing

new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with a space. The first character of a line is not printed. If any
such lines appear, an appropriate diagnostic appears on standard error.
This program forces the first line of each input file to start on a new page.

EXAMPLE

FILES

To correctly view the output of FORTRAN programs that use ASA car
riage control characters, asa could be used as a filter:

a.out I asa I lp

The output, properly formatted and paginated, would be directed to the
line printer. FORTRAN output sent to a file could be viewed by:

asa file

/binlasa

- 1 -

ASSIST (l) (ASSIST Utilities) ASSIST(l)

NAME
assist - assistance using SYSTEM V/88 commands

""" SYNOPSIS

\

assist {name]
assist I-s]
assist I-c name]

DESCRIPTION
The assist command invokes the ASSIST menu interface software . The
ASSIST menus categorize user commands according to function in a hierar
chy. The menus lead to full-screen forms (called command forms) that aid
in the execution of a syntactically correct command line . The menus also
lead to interactive simulations of commands or concepts (called
walkthrus) .

If you type assist without options, you enter at the top of the menu inter
face hierarchy. New users may wish to use the -s option to select an
introductory tutorial explaining how to use the ASSIST software . Options
are:

name
invoke an ASSIST-supported command form or walkthru for name

-c name

-s

invoke the version of name that is in your current directory

reinvoke the ASSIST setup module and check or modify your terminal
variable; or access the introductory information about ASSIST

When you invoke assist, you perform operations within the program by
using assist commands . To see a list of the assist commands, type A A
(CTRL-a) or £8 {:runction-key 8) when you are in assist. When you do
this, a list of the commands is printed on the terminal screen. The entire
set of commands is described in the Glossary of ASSIST Commands in the
ASSIST Software User's Guide.

EXAMPLE
This example illustrates how to invoke a particular command form

'\ directly. In this case, mkdir is the desired command form.

assist mkdir

- 1 -

ASSIST(l) (ASSIST Utilities) ASSIST (l)

I FILES

NOTES

$HOMEI.assistrc

/usr/lib/assist

information needed by assist (e .g. , about the ter
minal you are using)
default directory containing assist command
forms, walkthrus, and executable programs assist
and astgen

The first time you invoke assist it ignores any options you give and asks
for information about the terminal you are using. Once it has saved this
information in a file named . assistrc in assist, it shows you a list of basic
assist commands and offers you an introduction to ASSIST.

SEE ALSO
astgen(l) .
ASSIST Software User's Guide.

- 2 -

ASTGEN(l) (ASSIST Utilities) ASTGEN(l)

NAME
astgen - program for generating/modifying ASSIST menus or command
forms

SYNOPSIS
astgen Mme[.fs]

DESCRIPTION
astgen is an interactive program to generate information files (ASCII text
data files) that define a menu or command form used by the assist(!) pro
gram.

Both the astgen and assist(!) programs recognize and process information
files whose names are suffixed with three characters: .fs . If no .fs file
exists for the specified name, astgen assumes that a new menu or com
mand form is to be created. If nilme is given without .fs , astgen automati
cally will create the file: tulme .fs.

Details of how to use astgen are given in the ASSIST Software Development
Tools Guide .

SEE ALSO
assist(!) .
ASSIST Software Development Tools Guide.
ASSIST Software User's Guide.

- 1 -

I

AT(l) (User Environment Utilities) AT(l)

NAME
at, batch - execute commands at a later time

"' SYNOPSIS
at time [date ·] [+ increment]
at -r job
at -I [job]

batch

DESCRIPTION
at and batch read commands from standard input to be executed at a later
time. at allows you to specify when the commands should be executed,
while jobs queued with batch will execute when system load level permits .
at may be used with the following options:

-r
Removes jobs previously scheduled with at.

-1
Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables, current
directory, umask, and ulimit are retained when the commands are exe
cuted. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If the file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If
at.deny is empty, global usage is permitted. The allow/deny files consist
of one user name per line; these files can only be modified by the
superuser.

The time may be specified as 1, 2, or 4 digits . One and two digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour:minute . A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

- 1 -

AT(l) (User Environment Utilities) AT(l)

An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by an optional comma)
or a day of the week (fully spelled or abbreviated to three characters) .
Two special "days", today and tomorrow are recognized. If no date is
given, today is assumed if the given hour is greater than the current hour,
and tomorrow is assumed if it is less. If the given month is less than the
current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the follow
ing: minutes, hours, days, weeks, months, or years . (The singular form
is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8: 15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

batch submits a batch job. It is almost equivalent to "at now", but not
quite . For one, it goes into a different queue. For another, "at now" will
respond with the error message too late .

at -r removes jobs previously scheduled by at or batch . The job number is
the number given to you previously by the at or batch command. You can
also get job numbers by typing at -1 . You can only remove your own jobs
unless you are the superuser.

EXAMPLES
The at and batch commands read from standard input the commands to be
executed at a later time. sh (l) provides different ways of specifying stan
dard input. Within your commands, it may be useful to redirect standard
output.

This sequence can be used at a terminal:

batch
sort filename >outfile
<CTRL-D> (hold down 'control' and depress 'D')

- ? -

AT(l)

FILES

(User Environment Utilities) AT(l)

This sequence, which demonstrates redirecting standard error to a pipe, is
useful in a shell prQCedure (the sequence of output redirection specifica
tions is significant):

batch < < !
sort filename 2>&1 >outfile I mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure,
by includi11g code similar to the following within the shell file :

/usr/lib/cron
/usr/J,ib/cronlat.allow
/usr/lib/ cron/ at. deny
/usr/lib/cron/queue
/usr/spool/cron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
kill(l), mail(l), nice(l), ps(l), sh(l), sort(l) .
cron(lM) in the System Administrator's Reference Manual.

DIAGNOSTICS
Complains abou! various syntax errors and times out of range.

- 3 -

AWK(l) (Directory and File Management Utilities) AWK (l)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-F re] [parameter . . .] ['prog'] [-f progfile] [file . . .]

DESCRIPTION
This is a new version of awk that provides capabilities unavailable in pre
vious versions . This version will become the default version of awk in the
next major UNIX system release.

The -F re option defines the input field separator to be the regular
expression re.

parameters, in the form x = . . . y= . . . may be passed to awk, where x and y
are awk built-in variables (see list below) .

awk scans each input file for lines that match any of a set of patterns speci
fied in prog . The prog string must be enclosed in single quotes (') to pro
tect it from the shell. For each pattern in prog there may be an associated
action performed when a line of a file matches the pattern. The set of
pattern-action statements may appear literally as prog or in a file specified
with the -f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name - means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement; the
associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space .
(This default can be changed by using the FS built-in variable or the -F re
option.) The fields are denoted $1, $2, . . . ; $0 refers to the entire line .

A pattern-action statement has the form:

pattern { action }

Either pattern or action may be omitted. If there is no action with a pat
tern, the matching line is printed. If there is no pattern with an action,
the action is performed on every input line .

Patterns are arbitrary Boolean combinations (!, I I , &&, and parentheses)
of relational expressions and regular expressions . A relational expression
is one of the following:

expression relop expression
expression matchop regular expression

- 1 -

AWK(l) (Directory and File Management Utilities) AWK(l)

where a relop i s any of the six relational operators in C, and a matchop is
either - (contains) or !- (does not contain) . A conditional is an arith
metic expression, a relational expression, the special expression

var in array,

or a Boolean combination of these .

The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(l)). In patterns, they must be
surrounded by slashes. Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expres
sions . A pattern may consist of two patterns separated by a comma; in
this case, the action is performed for all lines between an occurrence of
the first pattern and the next occurrence of the second pattern.

A regular expression may be used to separate fields by using the -F re
option or by assigning the expression to the built-in variable FS. The
default is to ignore leading blanks and to separate fields by blanks and/or
tab characters . However, if FS is assigned a value, leading blanks are no
longer ignored.

Other built-in variables include:

ARGC

ARGV

FILENAME

FNR

FS

NF

NR

OFMT

OFS

ORS

RS

command line argument count

command line argument array

name of the current input file

ordinal number of the current record in the current file

input field separator regular expression (default blank)

number of fields in the current record

ordinal number of the current record

output format for numbers (default % .6g)

output field separator (default blank)

output record separator (default newline)

input record separator (default newline)

- 2 -

AWK(l) (Directory and File Management Utilities) AWK(l)

An action is a sequence of statements . A statement may be one of the I
following:

if (conditional) statement [else statement]
while (conditional) statement
do statement while (conditional)
for (expression ; conditional ; expression) statement
for (var in array) statement
delete array[subscript]
break
continue
{ [statement] . . . }
expression # commonly variable expression
print [expression-list] [>expression]
print£ format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, newlines, or right braces . An
empty expression-list stands for the whole input line . Expressions take
on string or numeric values as appropriate, and are built using the opera
tors + , -, *, /, %, and concatenation (indicated by a blank) . The C opera
tors + + , -, + = , - = , * = , I= , and % = are also available in expressions .
Variables may be scalars, array elements (denoted x[i]), or fields. Vari
ables are initialized to the NULL string or zero. Array subscripts may be
any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (") .

The print statement prints its arguments on the standard output, or on a
file if >expression is present, or on a pipe if I cmd is present. The argu
ments are separated by the current output field separator and terminated
by the output record separator. The print£ statement formats its expres
sion list according to the format (see printf(3S) in the Programmer's
Reference Manual) .

awk has a variety of built-in functions: arithmetic, string, input/output,
and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt, and
srand. int truncates its argument to an integer. rand returns a random
number between 0 and 1. srand (expr) sets the seed value for rand to expr
or uses the time of day if expr is omitted.

- 3 -

AWK(l) (Directory and File Management Utilities) AWK(l)

The string functions are:

gsub(for, repl, in)
behaves like sub (see below), except that it replaces successive
occurrences of the regular expression (like the ed global substitute
command) .

index(s , t)
returns the position in string s where string t first occurs, or 0 if i t
does not occur at all.

length (s)
returns the length of its argument taken as a string, or of the whole
line if there is no argument.

match (s , re)
returns the position in string s where the regular expression re occurs,
or 0 if it does not occur at all. RSTART is set to the starting position
(which is the same as the returned value), and RLENGTH is set to the
length of the matched string.

split {s,a,s)
splits the string s into array elements a [1], a [2], a [n], and
returns n . The separation is done with the regular expression fs or
with the field separator FS if fs is not given.

sprintf(fmt,expr,expr, . . .)
formats the expressions according to the printf(3S) format given by
fmt and returns the resulting string.

sub(for,repl, in)
substitutes the string repl in place of the first instance of the regular
expression for in string in and returns the number of substitutions . If
in is omitted, awk substitutes in the current record ($0) .

substr(s , m, n)
returns the n -character substring of s that begins at position m .

The input/output and general functions are:

close (filename)
closes the file or pipe named filename .

cmd lgetline
pipes the output of cmd into getline; each successive call to getline
returns the next line of output from cmd .

AWK(l) (Directory and File Management Utilities) AWK(l)

get line
sets $0 to the next input record from the current input file .

getline <file
sets $0 to the next record from file .

getline var
sets variable var instead.

getline var <file
sets var from the next record of file .

system(cmd)
executes cmd and returns its exit status .

All forms of getline return 1 for successful input, 0 for end of file, and -1
for an error.

awk also provides user-defined functions . Such functions may be defined
(in the pattern position of a pattern-action statement) as:

function name(args, . . .) { stmts }
func name(args, . . .) { stmts }

Function arguments are passed by value if scalar and by reference if array
name. Argument names are local to the function; all other variable names
are global. Function calls may be nested and functions may be recursive.
The return statement may be used to return a value.

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2 , $ 1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEG I N { FS = " , [\t] • J [\t] + " }

{ print $2 . $ 1 }

Add up first column, print sum and average:

{ S += $ 1 }

END { print • sum i s " • s . " averag e i s " . s/NR }

- 5 -

AWK(l) (Directory and File Management Utilities)

Print fields in reverse order:

{ f or (1. = NF ; 1. > 0 ; --1.) pr1.nt $1. }

Print all lines between start/stop pairs:

/ start/ . /stop/

Print all lines whose first field is different from previous one:

$ 1 ! = prev { pr 1.nt ; prev = $ 1 }

Simulate echo (l) :

BEGIN {

f or (1. = 1 ; 1. < ARGC ; 1.++)

pr1.ntf " "s " • ARGV [1.)

pr 1.ntf " \n"

ex1.t

}

Print file, filling in page numbers starting at 5:

/Pag e / { $2 = n++ ; }

{ pr1.nt }

command line: awk -£ program n=S input

AWK(l)

SEE ALSO

BUGS

grep{l), sed(l).
lex(l), print£(35) in the Programmer's Reference Manual.
Programmer's Guide.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings . To force
an expression to be treated as a number add 0 to it; to force it to be
treated as a string concatenate the NULL string ("j to it.

BANNER(l) (User Environment Utilities)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

BANNER(l)

banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.

SEE ALSO
echo(l) .

- 1 -

I

BASENAME (l) (User Environment Utilities) BASENAME (l)

I NAME
basename, dimame - deliver portions of pathnames

SYNOPSIS
basename string [suffix]
dimame string

DESCRIPTION
basename deletes any prefix ending in I and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally
used inside substitution marks (' ') within shell procedures.

dirname delivers all but the last level of the pathname in string .

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c,
compiles the named file and moves the output to a file named cat in the
current directory:

c c $ 1

mv a.out bas ename $ 1 \ . c

The following example will set the shell variable NAME to /usr/src/cmd:

SEE ALSO
sh(l) .

NAME= dirname /usr/src/cmd/c at. c

- 1 -

BC(l) (User Environment Utilities) BC(l)

NAME
be - arbitrary-precision arithmetic language

'- SYNOPSIS
be [-c] [-1] [file . . .]

DESCRIPTION
be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The be{l) utility is actually a preprocessor for
de(l), which it invokes automatically unless the -c option is present. In
this case, the de input is sent to the standard output instead. The options
are:

-c
Compile only. The output is sent to the standard output.

-1
Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in I• and •1.

Names
simple variables: L
array elements: L [E]
The words 11ibase", II obase", and II scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L { E , . . . , E)

Operators

number of significant decimal digits
number of digits right of decimal point

+ - * I % A (% is remainder; A is power) ,
+ + - (prefix and postfix; apply to names)
= = < = > = ! = < >
= = + =- = * =I = % = A

- 1 -

I

BC(l)

I Statements
E
{ 5 ; . . . ; 5 }
if (E) S
while (E) S

(User Environment Utilities)

for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , . . . , L) {

auto L, . . . , L
S; . . . S
return (E)

}
Functions in -1 math library

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j (n,x) Bessel function

All function arguments are passed by value.

BC(l)

The value of a statement that i s an expression i s printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements . Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(l) . Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables, empty square brackets
must follow the array name.

- 2 -

BC(l) (User Environment Utilities) BC(l)

EXAMPLE

FILES

s cale = 20
def ine e (:z:) {

}

auto a , b , c , 1 , s
a = 1
b = 1
s = 1
f or (1=1 ; 1==1 ; 1++) {

a = a*:z:

}

b = b•i
c = a/b
if (c == 0) return (s)
s = s+c

defines a function to compute an approximate value of the exponential
function and

for (1=1 ; 1<=10 ; 1++) e (i)

prints approximate values of the exponential function of the first ten
integers .

/usr/libllib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO

BUGS

dc{l) .

The be command does not yet recognize the logical operators, && and I 1 .
for statement must have all three expressions (E's) .
quit i s interpreted when read, not when executed.

- 3 -

BDIFF (l) (Directory and File Management Utilities) BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff file1 file2 [n] [-s]

DESCRIPTION

FILES

bdiff is used in a manner analogous to diff(l) to find which lines in two
files must be changed to bring the files into agreement. Its purpose is to
allow processing of files which are too large for diff.

The parameters to bdiff are:

file1 (file2)

n

-s

The name of a file to be used. If file1 (file2) is -, the standard input is
read.

The number of line segments. The value of n is 3500 by default. If
the optional third argument is given and it is numeric, it is used as
the value for n . This is useful in those cases in which 3500-line seg
ments are too large for diff, causing it to fail .

Specifies that no diagnostics are to be printed by bdiff (silent option) .
Note, however, that this does not suppress possible diagnostic mes
sages from diff(l), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes diff upon
corresponding segments. If both optional arguments are specified, they
must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (i .e . , to make it look as if the files
had been processed whole) . Note that because of the segmenting of the
files, bdiff does not necessarily find a smallest sufficient set of file differ
ences.

/tmp/bd?????

SEE ALSO
diff(l), help(l) .

DIAGNOSTICS
Use help(l) for explanations .

- 1 -

BFS (l) (Directory and File Management Utilities) BFS (l)

NAME
bfs - big file scanner

"" SYNOPSIS
bfs [-] name

DESCRIPTION
The bfs command is (almost) like ed(1) except that it is read-only and
processes much larger files. Files can be up to 1024Kb and 32K lines, with
up to 4096 characters, including newline, per line (255 for 16-bi t
machines) . bfs is usually more efficient than ed(1) for scanning a file,
since the file is not copied to a buffer. It is most useful for identifying
sections of a large file where csplit (1) can be used to divide it into more
manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional - suppresses printing
of sizes. Input is prompted with * if P and a carriage return are typed, as
in ed(1) . Prompting can be turned off again by inputting another P and
carriage return. Note that messages are given in response to errors if
prompting is turned on.

All address expressions described under ed(1) are supported. In addi tion,
regular expressions may be surrounded with two symbols besides I and ?:
> indicates downward search without wrap-around, and < indicates
upward search without wrap-around. There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

The e, g, v, k, p, q, w, =, ! and NULL commands operate as described
under ed(1) . Commands such as -, + + +-, + + + = , -12, and + 4p are
accepted. Note that 1,10p and 1,10 will both print the first ten lines . The
f command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diver
sion, truncation, or crunching (see the xo, xt and xc commands, below) .
The following additional commands are available:

xf file
Further commands are taken from the named file . When an EOF is
reached, an interrupt signal is received or an error occurs, reading
resumes with the file containing the xf. The xf commands may be
nested to a depth of 10.

xn
List the marks currently in use (marks are set by the k command) .

- 1 -

BFS (l)

I

(Directory and File Management Utilities) BFS (l)

XO [file)
Further output from the p and NULL commands is diverted to the
named file, which, if necessary, is created mode 666 (readable and
writable by everyone), unless your um11sk setting (see um11sk(l)) dic
tates otherwise. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation of the
file .

: label
This positions a label in a command file . The label is terminated by
newline, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

(. , •)xblregular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1 . Either address is not between 1 and $.
2. The second address is less than the first.
3 . The regular expression does not match at least one line

in the specified range, including the first and last lines .

On success, • is set to the line matched and a jump is made to label .
This command is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are
bad before other commands are executed. The following command is
an unconditional jump:

xbrl label

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe, only a downward jump is
possible .

xt number
Output from the p and NULL commands is truncated to at most
number characters . The initial number is 255.

- 2 -

BFS (l) (Directory and File Management Utilities) BFS (l)

xv [digit] [spaces] [value]
The variable name is the specified digit following the xv. The com
mands xv5100 or xv5 100 both assign the value 100 to the variable 5 .
The command xv61,100p assigns the value 1,100p to the variable 6.
To reference a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

gl%5/p

would globally search for the characters 100 and print each line con
taining a match. To escape the special meaning of %, a \ must pre
cede it.

gl"."\% [cds]/p

could be used to match and list lines containing printf of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a command can be stored into a variable . The only requirement
is that the first character of value be an !. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and increment the
variable 6 by one. To escape the special meaning of ! as the first char�
acter of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

- 3 -

I

I

BFS (l) (Directory and File Management Utilities) BFS (l)

xbn label
These two commands will test the last saved return code from the exe
cution of a command (!commllnd) or nonzero value, respectively, to
the specified label. The following two examples search for the next
five lines containing the string size:

xc [switch]

xv55
: 1
/size/
xv5!expr %5 - 1
!if 0%5 ! = 0 exit 2
xbn 1
xv45
: 1
/size/
xv4!expr %4 - 1
! if 0%4 = 0 exit 2
xbz 1

If switch is 1, output from the p and NULL commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch . Ini
tially, switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(1), ed(1), umask(1) .

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

- 4 -

BPATCH(l) (Essential Utilities) BPATCH(l)

NAME
bpatch - displays or alters byte content of files

""" SYNOPSIS
bpatch [<fileruime>]

DESCRIPTION
bpatch allows a user to look at specific areas of a file and to change
selected bytes. bpatch takes no information from the command line except
for the optional name of a file to open initially. bpatch displays a prompt
(>) and waits for user input. The following commands are recognized:

o fileruime
Open the specified file . If another file is already open, close it.

s xxxx yyyy
Display the contents of the file from xxxx to yyyy, where xxxx and
yyyy are hex values . The starting address is rounded down modulo
hex 10, and the ending address is rounded up modulo hex 10. The
contents are shown both as hex and printed ASCII. Nonprinting
characters are shown as periods in the ASCII display.

c xxxx zz . . .

d

q

Change contents of location xxxx to zz, where xxxx and zz are hex
numbers . Several values can be changed by entering additional
values. Each additional value changes the next sequential byte .

Print information about the file, e .g . , its type, permissions, size .

Exit.

The hex numbers xxxx and yyyy can represent a full 32-bit address (i .e . ,
eight hex characters) . The hex number zz represents a byte and should be
only two hex characters .

bpatch is insensitive to case of alphabetic characters. The above com
mands, as well as the characters A-F within hex numbers, may be upper
case or lowercase.

NOTE

The prompt has a trailing NULL character (> NUL)
not visible on a normal terminal.

- 1 -

BPATCH(l)

EXAMPLE
s 0 ff

S 10000 100FF

c 400 7F 31 21

o newfile

d

q

DIAGNOSTICS

(Essential Utilities)

display bytes 0 thru ff

display bytes 10000 thru 100ff

change contents of locations
400-402 to 7F 31 21

close the present file and open "newfile"

display file information

exit the bpatch program

BPATCH(l)

bpatch gives error messages i f i t i s unable to open a file, or i f any com
mands are entered that would read or write when no file is open.

If an illegal command or no input is entered, bpatch displays a brief help
message.

If the user has read permission but not write permission on a file, bpatch
will display a message to this effect at open time. The user will be unable
to use the c command.

- ? -

BRU (l) (Essential Utilities) BRU (l)

NAME
bru - backup and restore utility

' SYNOPSIS
bru modes [control options] [selection options] files

DESCRIPTION
bru is a SYSTEM V/88 file system backup utility with significant enhance
ments over other more common utilities, e .g . , tar, cpio , volcopy, and dd .
Some of bru s capabilities include:

• Full or incremental backup with quick and easy restoration of files .

• Multiple physical volumes per archive .

• Data integrity assurance via checksum computation on every archive
block.

• Ability to properly save and restore directories, symbolic links, block
special files, and character special files.

• Comparison of archives with current directory hierarchy.

• Ability to recover files from corrupted archives or damaged media
with minimal data loss.

• No inherent maximum archive buffer size .

• Improved performance through random access archive 110 when
available .

• Automatic byte or half word swapping as necessary when reading
archives produced on other machines.

• Recognition of file name generation patterns in the same form as the
shell for files read from an archive.

When files are specified on the command line, the actions to be performed
are limited to those files . If a named file is a directory, it and all its des
cendents are used. If no files are specified, the default for writ ing
archives is all files in and below the current directory. The default for
reading archives is selection of all files in the archive .

- 1 -

I

BRU(l) (Essential Utilities) BRU(l)

If - i s given instead of files , then the standard input i s read to obtain the
file list. This is useful with the find command to provide finer control
over files selected for backup. Obviously, this mode is only valid when
bru is not also reading its archive from the standard input.

DEFAULTS

MODES

Various default parameters, e .g . , archive device name and size, archive
buffer size, controlling terminal name, etc. are system dependent. These
defaults, along with version, variant, and other miscellaneous internal
information may be discovered via the -h mode.

One or more of the following modes must be specified. The order of exe
cution, from highest priority to lowest, is ecitxdgh.

-c
Create a new archive. Forces a new archive to be created regardless
of whether one currently exists . Writing starts at the first block.

-d
Differences between archived files and current files are detected and
reported. May be specified more than once, as -dd -ddd or -dddd to
control level of difference checking.

When specified as -d, bru reports when it discovers that a regular
file's size (st_size) or contents (when compared as byte streams) has
changed since the archive was made.

When specified as -dd, bru reports additional differences in modifica
tion date (st_mtime), access mode (st_mode), number of l inks
(st_nlink) for non-directory files, differences in the contents of sym
bolic links, owner id (st_uid), and group id (st_gid) .

When specified as -ddd, bru reports additional differences in host
device (st_dev), major/minor device (st_rdev) for special files, and
time of last access (st_atime) for regular files .

- 2 -

BRU(l) (Essential Utilities) BRU(l)

When specified as -dddd, bru reports all differences except time of
last status change (st_ctime is not resettable), major/minor device
numbers for non-special files (meaningless), and size differences for
directory files (may have empty entries) . The -dddd mode is gen
erally only meaningful during a verification pass with full backups of
quiescent file systems.

-e
Estimate media requirements for archive creation with same argu
ments. Prints estimated number of volumes, number of files to be
archived, total number of archive blocks, and total size of archive in
kilobytes. If the media size is unknown or unspecified, it is assumed
to be infinite.

-g
Dump archive info block in a form more easily parsed by programs
implementing a complete file system management package. Performs
no other archive actions.

-h

-i

-t

Print help summary of options. Also prints some internal informa
tion, such as, version number and default values for archive path
name, media size, archive buffer size.

Inspect archive for internal consistency and data integrity. When -vv

option is also given, prints information from archive header block.

List table of contents of archive. When used with the -v option,
gives a verbose table of contents in the same format as the Is -1 com
mand. When used with the -vv option, also indicates what files are
linked to other files and where symbolic links point to.

- 3 -

I

BRU(l) (Essential Utilities) BRU(l)

-X
Extract named files from archive. If an archived file is extracted (see
-u option), then the access mode, device id (special files only), owner
uid, group uid, access time, and modification time are also restored.
If the -C flag is given (see below), the owner uid and group uid will
be changed to that of the current user.

Nonexistent directories are recreated from archiveci. directories if pos
sible, otherwise, they are created with appropriate defaults for the
current user. Extracted or created directories are initially empty.

CONTROL OPTIONS
Many of the control options are similar in function to their tar or cpio
equivalents .

Sizes are specified in bytes. The scale factors M, k, or b can be used to
indicate multiplication by 2**20, 1024, or 512 respectively. Thus "lOk" ,
"20b", and "10240" all specify the same number of bytes.

-II str
Use string str as a control string for the built-in debugging system .
This option provides information about the internal workings o f bru
for the software maintainer or the merely curious. Some examples
are given later.

-a
Do not reset the access times of disk files that have been read while
performing other actions . Normally, bru restores the access and
modification times of disk files after they have been read. Resetting
the times prevents defeat of the mechanism used to track down and
remove "dead" files that have not been accessed in any meaningful
way recently.

- 4 -

BRU(l) (Essential Utilities) BRU(l)

-b bsize
Use bsize as the archive input/output buffer size. The minimum is
the size of an archive block (2k or 2048 bytes) and the maximum is
determined by available memory and 1/0 device limitations. If bsize
is not an even multiple of 2048 bytes, it will be rounded up. Nor
mally this option is only required with the -c mode since bru writes
this information in the archive header block. If specified, bsize over
rides any existing default value (generally 20k), whether built in or
read from the archive header.

-B
Useful in shell scripts where bru is run in the background with no
operator present. Under these conditions, bru simply terminates with
appropriate error messages and status, rather than attempting interac
tion with the terminal.

-C
Change the owner (chown) and group of each extracted file to the
owner uid and group gid of the current user. Normally, bru restores
the owner and group to those recorded in the archive. This flag
causes bru to follow the system default, with extracted files having
the same owner and group as the user running bru , including root .

The
-C option is useful with archives imported from other systems. In
general, it should not be used by the operator or System Administra
tor when restoring saved files . Use the -tv option to see the owner
and group of files stored in the archive.

-f path
Use path as the archive file instead of the default. If the path is "-"
then bru uses the standard input for archive reading or standard out
put for archive writing, as appropriate.

-F
Fast mode. In fast mode, checksum computations and comparisons
are disabled. This mode is useful when the output of one bru is
piped to the input of another bru , or when the data integrity of the
archive transmission medium is essentially perfect. Archives
recorded with fast mode enabled must also be read with fast mode.

- 5 -

BRU(l) (Essential Utilities) BRU (l)

Also, be aware that some of the automatic features o f bru , e . g. ,
automatic byte swapping, are not functional in fast mode.

-L str

-1

Label the archive with the specified string str . str is limited to 63
characters and is usually some meaningful reminder pertaining to the
archive contents .

Ignore unresolved links . Normally, bru reports problems with
unresolved links (both regular and symbolic links) . This option
suppresses all such complaints .

-m
Do not cross mounted file system boundaries during expansion of
explicitly named directories . This option applies only to directories
named in files . It limits selection of directory descendents to those
located on the same file system as the explicitly named directory .
This option currently applies only to the -c and -e modes.

-p
Pass over files in archive by reading rather than seeking. Normally
bru uses random access capabilities if available . This option forces
reading instead of seeks .

-R
Remote files are to be excluded from the archive. If the system does
not support remote file systems, this option is ignored.

-s msize
Use msize as the media size. The effective media size will be com
puted from msize since it must be an integral multiple of the
input/output buffer size (see the -b option) . Normally, this option is
only required with the -c mode since bru writes this information in
the archive header block. I f specified, msize overrides any ex ist ing
default value, whether built in or read from the archive header.

-v
Enable verbose mode. May be specified more than once, as -vv ,
-vvv , or -vvvv , to get even more verbosity.

- 6 -

BRU (l) (Essential Utilities) BRU (l)

-w
Wait for confirmation. bru will print the file name, the action to be
taken, and wait for confirmation. Any response beginning with ' y'
will cause the action to complete . Any other response will abort the
action.

FILE SELECTION OPTIONS
The file selection options control which files are selected for processing.
Note that some options are only valid with specific modes.

-n date
Select only files newer than date. The date is given in one of the
forms:

DD-MMM-YY[,HH:MM:SS]
MM/DD/YY [,HH:MM:SS]
MMDDHHMM[YY]
pathname

EX: 12-Mar-84, 12:45 :00
EX: 3/12/84
EX: 0312124584
EX: /etdlastfullbackup

The time of day is optional in the first two forms. If present, it is
separated from the date with a comma.

If date is really the pathname of a file, then the modification date of
that file will be used instead . This is useful in automated backups
when a dummy file is "touched" to save the date of last backup.

-o user
Select only files owned by user. user may be specified in one of three
ways:

• As an ASCII string corresponding to a user name in the pass
word file .

• As the pathname of a file in which case the owner of tha t file is
used.

• As a numeric value (decimal) .

- 7 -

BRU(t) (Essential Utilities) BRU (l)

-u flags
When used with -x mode, causes files of type specified by flags to be
unconditionally selected regardless of modification times. Normally,
bru will not overwrite (supersede) an existing file with an older
archive file of the same name. Files that are not superseded will give
warnings if verbose mode level 2 (-vv) or higher is enabled. Possible
characters for flags are:

b select block special files
c select character special files
d select directories
1 select symbolic links
p select fifos (named pipes)
r select regular files

Selection of directories only implies that their attributes may be modi
fied. Existing directories are never overwritten, this option merely
allows their attributes to be set back to some previously existing state .

EXAMPLES
Create (-c) a new archive of all files under /usr/src, writing archive to file
(-f) /dev/rstO using multiple tapes with a maximum size (-s) of 30Mb per
tape:

bru -c -f /devlrstO -s 30M lusrlsrc

Create (-c) a new archive on the default device in the first pass, archiving
all files in and below the current directory that have been created or modi
fied (-n) since 3 P.M. on 14-Jan-84. Then, do a second pass to verify that
there are no differences (-d) between the archive and current files . Each
file is listed (-v) as it is processed:

bru -cvd -n 14-Jan-84,15:00:00

Archive all files owned (-o) by user "userl" using the default archive
device:

find I -user user1 -print I bru -c -
bru -c -o user1 I

Copy a directory hierarchy from lusrlu1 to lusr/u2:

(cd lusrlu1; bru -cf -) I (cd lusrlu2; bru -xf -)

- 8 -

BRU(l) (Essential Utilities) BRU(l)

Extract (-x) the regular file /usr/guest/myfile unconditionally (-ur) from an
archive on file (-f) /dev/r£0. Since the device size was recorded in the
header block, it need not be specified. Note that option arguments do not
need to be separated from their corresponding option flag by white space:

bru -x -ur -f/dev/r£0 ./usr/guest/myfile

Extract (-x) all C source files in /usr/src/cmd that have names beginning
with characters 'a' through 'm' . Wait (-w) for confirmation before extract
ing each file:

bru -xw '/usr/src/cmd/[a-m]• .c '

Inspect (-i) a previously created archive on the default device, dumping
the contents of the header block for inspection (-vvv) and verifying inter
nal consistency and data integrity of the archive:

bru -ivvv

Perform the same function as the last example except enable various
features of the built-in debugger (when linked in) . The debug control
string is a string of the form -#<optl>:<opt2>: . . . , where each option is
either a single flag character or a flag character followed by a comma
separated list. Available flag characters are: d enable debugging for list of
keywords, f limit debugging to list of function names, F print source file
name, L print source file line numbers, n print nesting depth, o redirect
output to listed file, p print process name, t enable tracing.

bru -ivvv -#t
bru -ivvv -#d:t
bru -ivvv -#d,ar_io,verify:F:L
bru -ivvv -#d:f,ar_seek
bru -ivvv -#d:o,trace.out:t:p

Back up the entire root file system without crossing mounted (-m) file
system boundaries. The archive will be written to file (-f) /dev/rsto using
an I/0 buffer size (-b) of lOKb. A record of all files processed will be
written to file brulogfile for future reference.

cd I
bru -cvm -f /dev/rstO -b lOk > brulogfile

- 9 -

BRU (l) (Essential Utilities) BRU (l)

DIAGNOSTICS
Most diagnostics are reasonably informative . The most common have to
do with meaningless combinations of options, incompatible options, hit- �

ting memory or device limits, unresolved file links, trying to archive or
restore something to which access is normally denied, or problems with
media errors and/or archive corruption.

DEVICE TABLE
bru contains an internal table of known devices and their characteristics .
This table is dynamically loaded from a data file specified by the environ
ment variable BRUTAB, or from /etc/brutab, or from an internal default
description if neither of the preceding is found.

SIGNAL HANDLING
bru normally catches both interrupt (SIGIN1) and quit (SIGQUIT) . When
interrupt is caught during archive creation or extraction, bru completes its
work on the current file before cleaning up and exiting. This is the nor
mal way of aborting bru . When a quit signal is caught, an immediate exit
is taken.

Note that during file extraction, a quit signal may leave the last file only
partially extracted. Similarly, a quit signal during archive writing may
leave the archive truncated. When either interrupt or quit is caught at any
other time, an immediate exit is taken.

ERROR RECOVERY
When properly configured for a given software/hardware environment,
bru can recover from most common errors. For example, attempts to use
unformatted media are detected, allowing substitution of formatted
media. Random blocks in an archive can be deliberately overwritten (cor
rupted) without affecting bru's ability to recover data from the rest of the
archive. When 1/0 errors are detected, retries are performed automati
cally. Out of order sequencing on multi-volume archive reads is detected,
allowing replacement with the correct volume.

DIRECTORIES
When creating non-incremental archives, bru automatically archives all
directories necessary to fully restore any file from the archive. During
extraction, any required directories that do not already exist are restored
from the archive if possible, otherwise, they are created with appropriate
defaults for the current user.

- 10 -

BRU (l) (Essential Utilities) BRU (l)

The net result is that restoration from incremental archives (which may
not contain all necessary directories), or incremental restoration from full
archives (which may skip directories needed later), may result in creation
of directories with the default attributes.

WILDCARDS
When reading archives, bru recognizes file name generation patterns in
the same format as the shell . This allows greater flexibility in specifying
files to be extracted, compared, or listed. As a special extension to shell
type expansion, the sense of the match is reversed for patterns that begin
with ' ! ' .

Note that the patterns may have to be quoted to prevent expansion by the
shell. Also note that patterns are processed independently, without
regard for any other patterns that may or may not be present. In particu
lar, /bin/a• /binfb• is equivalent to /bin/(ab]•, but /bin/!a• /bin/!b• is
equivalent to /bin!•, not /bin/!(ab]• .

BYTE/WORD SWAPPING
While reading archives produced on other machines, bru automatically
attempts to perform byte and/or word swapping as necessary.

EXIT CODES
bru always returns meaningful status as follows:

SEE ALSO

0 Normal exit, no errors or warnings.
1 Warnings (or interrupted) .
2 Errors (or quit signal) .

tar(1), cpio(1) .
volcopy(1M), finc(1M), frec(1M), ff(1M) in the System Administrator's
Reference Manual.

WARNINGS
Pathnames are limited to 127 characters in length.

Implementation differences complicate the algorithms for automatic
detection of end of file on devices . The algorithms can be fooled, hence,
the -s option.

Special files moved to a machine other than their original host will
generally be useless and possibly even dangerous.

- 11 -

BRU (l) (Essential Utilities) BRU (l)

When extracting files from archives, patterns used to match directories
may result in some unnecessary directories being extracted. For example,
if the pattern is "a/*/c", and the directory "alb" is encountered in the -
archive, the directory file "alb" will be extracted since it will be needed
when (and if) the file "albic" is encountered. When in doubt, use the -w
option.

In order to be able to efficiently archive needed directories, bru builds an
image of the directory tree for files using dynamically allocated memory.
Since there may be at most 5120 characters passed on the command line,
it is very unlikely that bru will run out of memory while building the tree
from command line arguments. This is not true of file lists read from the
standard input, particularly on machines with limited address space .

Information about file linkages is also kept in memory. Some linkages
may be lost if memory is exhausted.

Since bru is owned by root and runs with "set user id" to allow it to
create directories and special files, it makes every attempt to prevent
normal users from archiving or extracting files they would normally not
have access to. There may be loopholes. Also note that anyone with
physical or electronic access to an archive, and knowledge of the archive
structure, can recover any of its contents by writing their own file
extraction program.

Directories that have file systems mounted on them will not be properly
archived until the file system is unmounted. This is not generally a
problem.

Explicitly naming both a directory and one of its descendents will cause
the descendent to be archived twice, unless they are on separate file
systems and the -m flag is used.

Explicitly naming a file more than once is ineffective .

When reading from the raw magnetic tape file (rmtxxx), bru automatically
attempts to adjust the 110 buffer size to match that used to record the
archive. Under certain circumstances, it may fail and require help via the
-b option.

- 12 -

CAL(l) (User Environment Utilities) CAL(l)

NAME
cal - print calendar

� SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar
for the present month is printed. year can be between 1 and 9999. The
month is a number between 1 and 12. The calendar produced is that for
England and the United States.

EXAMPLES

BUGS

An unusual calendar is printed for September 1752. That is the month 11
days were skipped to make up for lack of leap year adjustments . To see
this calendar, type: cal 9 1752

The year is always considered to start in January even though this is
historically naive.

Beware that "cal 83" refers to the early Christian era, not the 20th
century.

- 1 -

CALENDAR(!) (User Environment Utilities) CALENDAR(!)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

FILES

calendar consults the file calendar in the current directory and prints out
lines that contain todays or tomorrow's date anywhere in the line . Most
reasonable month-day dates, e .g . , "Aug. 24," "august 24," "8/24,", are
recognized, but not "24 August" or "24/8" . On weekends, "tomorrow"
extends through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in his or her login directory and sends them any positive
results by mail (l) . Normally, this is done daily by operating system
facilities .

/usr/lib/calprog
/etc/passwd
/usr/lib/caldir/*

to figure out todays and tomorrow's dates

SEE ALSO
mail(l) .

BUGS
Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays .

- 1 -

CAT(l) (Essential Utilities) CAT (l)

NAME
cat - concatenate and print files

-..__ SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file . . .

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints file on your terminal, and:

cat filet file2 >file3

concatenates filet and file2, and writes the results in file3 .

If no input file is given or if the argument - is encountered, cat reads from
the standard input file .

The following options apply to cat:

-u
The output is not buffered. The default is buffered output.

-s
cat is silent about non-existent files.

-v
Causes non-printing characters (with the exception of tabs, newlines
and form-feeds) to be printed visibly. ASCII control characters (octal
000 - 037) are printed as �n, where n is the corresponding ASCII char
acter in the range octal 100 - 137 {@, A, B, C, . . . , X, Y, Z, [, \,] , A'
and _); the DEL character (octal 0177) is printed �?. Other non
printable characters are printed as M-x, where x is the ASCII character
specified by the low-order seven bits .

When used with the -v option, the following options may be used:

-t

-e

Causes tabs to be printed as �Is and formfeeds to be printed as �Ls .

Causes a $ character to be printed at the end of each line (before the
newline).

The -t and -e options are ignored if the -v option is not specified.

- 1 -

CAT(l) (Essential Utilities) CAT(l)

WARNING
Redirecting the output of cat onto one of the files being read will cause
the loss of the data originally in the file being read. For example, typing:

cat filet file2 >filet

will cause the original data in filet to be lost.

SEE ALSO
cp(l), pg(l), pr(l) .

- 2 -

CB (l) (Advanced C Utilities) CB (l)

NAME
cb - C program beautifier

� SYNOPSIS
cb [-s] [-j] [-I leng] [file . . .]

DESCRIPTION
The cb command reads C programs either from its arguments or from the
standard input, and writes them on the standard output with spacing and
indentation that display the structure of the code. Under default options,
cb preserves all user newlines .

cb accepts the following options .

-s

-j

Canonicalizes the code to the style of Kernighan and Ritchie in The C
Programming Language .

Causes split lines to be put back together.

-l leng
Causes cb to split lines that are longer than leng .

SEE ALSO
cc(1) .

BUGS

The C Programming Language. Prentice-Hall, 1978.

Punctuation that is hidden in preprocessor statements causes indentation
errors .

- 1 -

CC(l) (Software Generation System Utilities) CC(l)

NAME
cc - C compiler

-----.., SYNOPSIS
cc [options] . . . files

DESCRIPTION
The cc command is the C compiler. It generates assembly instructions .
The following types of arguments are accepted by cc:

Arguments whose names end with .c are taken to be C source pro
grams; they are compiled and each object program is left on the fi le
whose name is that of the source with .o substituted for .c. The .o file is
normally deleted if a single C program is compiled and loaded all at one
time. In the same way, arguments whose names end with .s are taken
to be assembly source programs and are assembled to produce a .o fi le .

The cc command presently uses the Green Hills 1 .8.4 C compiler. Some of
the compiler options described below are specific to that compiler and
may not be useable with other C compilers.

The following flags are interpreted by cc. See ld(l) for link editor options
and as (l) for assembler options.

-B string

-c

Construct pathnames for substitute preprocessor, compiler, assem
bler, and link editor passes by concatenating string with the suffixes
cpp, comp, reorder, as, and ld. If string is empty, it is taken to be /lib
for all programs except as and ld, for which it is /bin.

Suppress the link-editing phase of the compilation, and force an
object file to be produced.

-D symbol
Define symbol to the preprocessor. This mechanism is useful with the
conditional statements in the preprocessor by allowing symbols to be
defined external to the source file .

-E
Run only cpp(l) on the named C programs, and send the result to the
standard output.

- 1 -

CC(l) (Software Generation System Utilities) CC(l)

-1 dir
Change the algorithm for searching for #include files whose names
do not begin with I to look in dir before looking in the directories on
the standard list. Thus, #include files whose names are enclosed in
double quotes are searched for first in the directory of the file argu
ment, then in directories named in -1 options, and last in directories
on a standard list. For #include files whose names are enclosed in
< >, the directory of the file argument i s not searched.

-0
Invoke the object code optimizer. The Green Hills C compiler allows
two further levels of optimization control through the OPTIM
environment variable. (See below) .

-P
Run only cpp(l) on the named C programs; leave the result in
corresponding files suffixed . i.

-S
Compile the named C programs and leave the assembler-language
output in corresponding files suffixed .s.

-U symbol
Undefine symbol to the preprocessor.

-Wc,arg1[,arg2 . . .]
Hand off the argument(s) argi to pass c, where c is one of [p02al] indi
cating preprocessor, compiler, reorder, assembler, or link edi tor,
respectively. For example: -Wa, -m invokes the m4(1) macro prepro
cessor on the input to the assembler. This must be done for a source
file that contains assembler escapes.

-Xnnn
Tum ON the Green Hills option number nnn in the compiler pass.
The set of Green Hills options that may be used are documented in
the Software Generation System Guide section in the Programmer's Guide.

- 2 -

CC (l) (Software Generation System Utilities) CC(l)

-Y[p02alSILU],dirname
Specify a new pathname, dirname, for the locations of the tools and
directories designated by the first argument. [p02alSILU] represents:

p preprocessor (cpp)
0 compiler (comp)
2 optimizer (reorder)
a assembler (as)
1 linker (ld)
S directory that contains the startup routines
I default directory search by cpp(l)
L first default library searched by Id(l)
U second default library searched by ld(l)

-Znnn
Tum OFF the Green Hills option number nnn in the compiler pass .
This has the opposite effect to the -X option.

OPTIMIZATION OPTIONS

FILES

The cc command will enable different levels of optimization depending on
the contents of the OPTIM environment variable. The Green Hills docu
mented options -OL and -OLM will not work as described. The L and M
options need to be placed in the OPTIM environment variable in order to
work correctly. For example, to compile a program with the Green Hills
options -OLM the following command sequence should be used:

$ OPTIM= LM;export OPTIM
$ cc -0 example.c

Consult the Green Hills documentation for details on the effect of us ing
the L and M options.

file.c
file.o
file.s
a.out
/usr/tmp/m88?
LIBDIR/cpp
LIBDIR/comp
LIBDIR/reorder
BINDIR/cc

input file
object file
assembly language file
link-edited file
temporary
preprocessor
compiler pass 1
object code reorder
compiler driver

- 3 -

CC(l)

BINDIR/as
BINDIR/ld

SEE ALSO
as(l) .
ld(l) .

(Software Generation System Utilities) CC(l)

assembler
link editor LIBDIR/libc.a runtime library

The C Programming Language by B.W. Kernighan and D. M. Ritchie,
Prentice-Hall, 1978.
Programming in C - A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.
The C Programming Language in the Software Generation System Guide.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic. Occa
sional messages may be produced by the assembler or link editor.

CD (l) (Essential Utilities) CD (l)

NAME
cd - change working directory

------- SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as
the new working directory. If directory specifies a complete path starting
with /, . , . . , directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the
paths specified by the $CDPATH shell variable . $CDPATH has the same
syntax as, and similar semantics to, the $PATH shell variable . cd must
have execute (search) permission in directory .

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog
nized and is internal to the shell .

SEE ALSO
pwd(l), sh(l) .

---..,., chdir(2) in the Programmer's Reference Manual.

- 1 -

CDC(l) (Source Code Control System Utilities) CDC (l)

NAME
cdc - change the delta commentary of an sees delta

� SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
cdc changes the delta commentary, for the SID (SCCS IDentification string)
specified by the -r keyletter, of each named sees file .

delta commentary is defined to be the Modification Request {MR) and com
ment information normally specified via the delta (!) command (-m and -y
keyletters) .

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see WAim
INGS) and each line of the standard input is taken to be the name of a n
sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter
arguments and file names.

All the described keyletter arguments apply independently to each named
file:

-rSID
Used to specify the SCCS IDentification (SID) string of a del ta for
which the delta commentary is to be changed.

-mmrlist
If the SCCS file has the v flag set (see admin(l)) then a l ist of MR
numbers to be added and/or deleted in the delta commentary of the
SID specified by the -r keyletter may be supplied. A NULL MR list has
no effect.

MR entries are added to the list of MRs in the same manner as tha t of
delta (!) . To delete an MR, precede the MR number with the character
! (see EXAMPLES) . If the MR to be deleted is currently in the l ist of
MRs, it is removed and changed into a "comment'' line . A list of all
deleted MRs is placed in the comment section of the delta commen
tary and preceded by a comment line stating that they were deleted .

- 1 -

CDC (l) (Source Code Control System Utilities) CDC (l)

I f -m i s not used and the standard input i s a terminal, the prompt
WRs ? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued.
The WRs ? prompt always precedes the comments? prompt (see -y
key letter) .

MRs in a list are separated by blanks and/or tab characters . An unes
caped newline character terminates the MR list.

Note that if the v flag has a value (see admin(l)), it is taken to be the
name of a program (or shell procedure) which validates the correct
ness of the MR numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates and the delta com
mentary remains unchanged.

-y[comment]
Arbitrary text used to replace the comment(s) already existing for the
delta specified by the -r keyletter. The previous comments are kept
and preceded by a comment line stating that they were changed . A
NULL comment has no effect.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard
input is read; if the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates the comment text.

Simply stated, the keyletter arguments are either (1) if you made the
delta, you can change its delta commentary; or (2) if you own the file and
directory you can modify the delta commentary.

EXAMPLES
cdc -r1.6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file

Adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1 .6 of s.file.

cdc -r1.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input
(- on the command line), then the -m and -y keyletters must also be
used.

- ., -

CDC(l)

FILES
x-file
z-file

(Source Code Control System Utilities)

(see delta (l))
(see delta (l))

SEE ALSO
admin{l), delta{l), get{l), prs(l), sccsfile(4) .
help{l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 3 -

CDC(l)

CFLOW(l) (Advanced C Utilities) CFLOW(l)

NAME
cflow - generate C flowgraph

-""" SYNOPSIS
cflow [-r] [-ix] [-i_] [-d num] files

DESCRIPTION
The cflow command analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external references .
Files suffixed with .y, .1, and .c are yacced, lexed, and C-preprocessed as
appropriate. The results of the preprocessed files, and files suffixed with
.i, are then run through the first pass of lint {l) . Files suffixed with .s are
assembled. Assembled files, and files suffixed with .o, have information
extracted from their symbol tables . The results are collected and turned
into a graph of external references which is displayed upon the standard
output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol
followed by a colon and its definition. Normally only function names that
do not begin with an underscore are listed (see the -i options below) . For
information extracted from C source, the definition consists of an abstract
type declaration (e .g., char *), and, delimited by angle brackets, the name
of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the file name and location
counter under which the symbol appeared (e .g. , text) . Leading under
scores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to
that name contain only the reference number of the line where the defini
tion may be found. For undefined references, only < > is printed.

As an example, given the following in file. c :

int 1 ;

main ()
{

}
f ()
{
}

f () ;
g () ;
f () ;

1 = h () ;

- 1 -

I

I

CFLOW(t)

The command:

cflow -ix file.c

Produces the output:

(Advanced C Utilities)

1 main: int(), <file .c 4>
2 f: int(), <file.c 11>
3 h: < >
4 i: int, <file .c 1>
5 g: < >

CFLOW(l)

When the nesting level becomes too deep, the output of cflow can be
piped to pr(l), using the -e option, to compress the tab expansion to
something less than every eight spaces .

In addition to the -D, -1, and -U options (which are interpreted just as
they are by cc(l) and cpp(l)), the following options are interpreted by
cflow:

-r
Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in lexi
cographical order by callee .

-ix
Include external and static data symbols . The default is to include
only functions in the flowgraph.

-i_
Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used) .

-dnum
The num decimal integer indicates the depth at which the flowgraph
is cut off. By default, this is a very large number. Attempts to set
the cutoff depth to a nonpositive integer will be ignored.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro
grams used (e .g. , the C-preprocessor) .

SEE ALSO
as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), yacc(l) .
pr(l) in the User's Reference Manual.

- 2 -

CFLOW(l) (Advanced C Utilities) CFLOW(l)

BUGS
Files produced by lex(l) and yacc(l) cause the reordering of line number

� declarations which can confuse cflow . To get proper results, feed cflow the
yacc or lex input.

- 3 -

CHK (l) (Essential Utilities) CHK(l)

NAME
chk - file system check and interactive repair

SYNOPSIS
chk [options] [alias]

DESCRIPTION

FILES

chk checks to see that alias is in the permissions file and that file system
check permission is given. Read-only check permission is indicated by a n
R only in the "perms" field of the permissions file; read/write permission is
indicated by a W. chk takes the same options as fsck(lM).

If neither options nor alias is given, chk assumes the default alias, floppy.

/etc/fsck
/etc/filesys permissions file

SEE ALSO
fsck(lM) in the System Administrator's Reference Manual.
filesys(4) in the Programmer's Reference Manual.

- 1 -

CHMOD (l) (Essential Utilities) CHMOD (l)

NAME
chmod - change mode

----, SYNOPSIS
chmod mode file . . .

chmod mode directory

DESCRIPTION
The permissions of the named files or directories are changed according to
mode, which may be symbolic or absolute . Absolute changes to permis
sions are stated using octal numbers:

chmod nnn file(s)

where n is a number from 0 to 7. Symbolic changes are stated using
mnemonic characters:

chmod a operator b file(s)

where a is one or more characters corresponding to user, group, or other;
where operator is + , - , and = , signifying assignment of permissions; and
where b is one or more characters corresponding to type of permission.

An absolute mode is given as an octal number constructed from the OR of
the following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7, 5, 3, or 1

1000
0400
0200
0100
0070
0007

enable mandatory locking if # is 6, 4, 2, or 0
sticky bit is turned on (see chmod(2))
read by owner
write by owner
execute (search in directory) by owner
read, write, execute (search) by group
read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access
classes and to the individual permissions themselves. Permissions to a
file may vary depending on your UID or GID. Permissions are described
in three sequences each having three characters:

� User Group Other

rwx rwx rwx

- 1 -

CHMOD (l) (Essential Utilities) CHMOD (l)

This example (meaning that user, group, and others all have reading,
writing, and execution permission to a given file) demonstrates two
categories for granting permissions: the access class and the permissions -
themselves .

Thus, to change the mode of a file's (or directory's) permissions using
chmod' s symbolic method, use the following syntax for mode:

[who] operator [permission(s)] , . . .

A command line using the symbolic method would appear as:

chmod g+ rw file

This command would make file readable and writable by the group.

The who part can be stated as one or more of the following letters:
u user's permissions
g group's permissions
o others permissions

The letter a (all) is equivalent to ugo and is the default if who is omitted.

operator can be + to add permission to the file's mode, - to take away per
mission, or = to assign permission absolutely. (Unlike other symbolic
operations, = has an absolute effect in that it resets all other bits .) Omit
ting permission is only useful with = to take away all permissions .

permission is any compatible combination of the following letters:
r reading permission
w writing permission
x execution permission
s user or group set-ID is turned on
t sticky bit is turned on
1 mandatory locking will occur during access

Multiple symbolic modes separated by commas may be given, though no
spaces may intervene between these modes. Operations are performed in
the order given. Multiple symbolic letters following a single operator
cause the corresponding operations to be performed simultaneously. The
letter s is only meaningful with u or g, and t only works with u.

- 2 -

CHMOD (l) (Essential Utilities) CHMOD (l)

Mandatory file and record locking (I) refers to a file's ability to have its
reading or writing permissions locked while a program is accessing that
file . It is not possible to permit group execution and enable a file to be
locked on execution at the same time. In addition, it is not possible to
tum on the set-group-ID and enable a file to be locked on execution at the
same time. The following examples, are illegal usages and will elicit error
messages:

chmod g+ x, +I file

chmod g+ s, + I file

As long as the user has the appropriate privilege, if the file is a symbolic
link, the file pointed to by the symbolic link (not the symbolic-link file
itself) is affected.

Only the owner of a file or directory (or the superuser) may change a file's
mode. Only the superuser may set the sticky bit on a non-directory file .
If you are not superuser, chmod will mask the sticky-bit but will not
return an error. In order to tum on a file's set-group-ID, your own group
ID must correspond to the file's and group execution must be set.

' EXAMPLES
chmod a-x file

chmod 444 file

The first examples deny execution permission to all . The absolute (octal)
example permits only reading permissions.

chmod go + rw file

chmod 066 file

These examples make a file readable and writable by the group and
others .

chmod + I file

This causes a file to be locked during access.

chmod = rwx,g+ s file

chmod 2777 file

These last two examples enable all to read, write, and execute the file; and
they tum on the set group-10.

- 3 -

CHMOD (l) (Essential Utilities) CHMOD (l)

NOTES
In a RFS environment, you may not have the permissions that the output
of the Is -1 command leads you to believe. For more information, see the
Mapping Remote Users section of Chapter 10 of the System Administrator's
Guide.

SEE ALSO
ls(l).
chmod(2) in the Programmer's Reference Manual.

- 4 -

CHOWN(l) (Essential Utilities) CHOWN(l)

NAME
chown, chgrp - change owner or group

-----.... SYNOPSIS
chown owner file . . .

chown owner directory . . .

chgrp group file . . .

chgrp group directory . . .

DESCRIPTION

FILES

NOTES

The chown command changes the owner of the files or directories to owner .
The owner may be either a decimal user ID or a login name found in the
password file .

The chgrp command changes the group ID of the files or directories to
group . The group may be either a decimal group ID or a group name
found in the group file .

If either command is invoked by other than the superuser, the set-user-ID
and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

Only the owner of a file (or the superuser) may change the owner or
group of that file . If _POSIX_CHOWN_RESTRICTED is in effect (system
configuration option, off by default), only the superuser may change the
owner of a file . A user invoking chgrp must belong to the specified group
and be the owner of the file or be the superuser.

If file is a symbolic link, the link itself is changed, not the file to which it
points .

/etc/passwd
/etc/group

In a RFS environment, you may not have the permissions that the output
of the Is -1 command leads you to believe. For more information, see the
Mapping Remote Users section of Chapter 10 of the System Administrator's

------. Guide.

SEE ALSO
chmod(1) .
chown(2), group(4), passwd(4) in the Programmer's Reference Manual.

- 1 -

CMP(l) (Essential Utilities) CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [-s] file1 file2

DESCRIPTION
The two files are compared. (If file1 is -, the standard input is used.)
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is
noted.

Options:

-I

-s

SEE ALSO

Print the byte number (decimal) and the differing bytes (octal) for
each difference .

Print nothing for differing files; return codes only.

comm(1), dif£(1) .

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

- 1 -

COL(l) (Directory and File Management Utilities) COL(l)

NAME
col - filter reverse linefeeds

-"""" SYNOPSIS
col [-b) [-f) [-x] [-p]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCII code
ESC-7), and by forward and reverse half-linefeeds (ESC-9 and ESC-8) . col
is particularly useful for filtering multicolumn output made with the .rt
command of nroff and output resulting from use of the tbl (1) preprocessor.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the -f (fine) option; in this case, the output from col may
contain forward half-linefeeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on out
put wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO
characters are generated as appropriate to ensure that each character is
printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, newline, SI, SO, VT (\013), and ESC followed by 7, 8, or 9 . The VT
character is an alternate form of full reverse linefeed, included for compa
tibility with some earlier programs of this type. All other non-printing
characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are
found in its input; the -p option may be used to cause col to output these
sequences as regular characters, subject to overprinting from reverse line
motions. The use of this option is highly discouraged unless the user is
fully aware of the textual position of the escape sequences .

- 1 -

COL(l)

NOTES

BUGS

(Directory and File Management Utilities) COL(l)

The input format accepted by col matches the output produced by nroff
with either the -T37 or -Tip options. Use -T37 (and the -f option of col)
if the ultimate disposition of the output of col will be a device that can
interpret half-line motions, otherwise -Tip.

Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line .

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts .

- 2 -

COMB (l) (Source Code Control System Utilities) COMB (l)

NAME
comb - combine sees deltas

------.. SYNOPSIS
comb files

DESCRIPTION
comb generates a shell procedure (see sh(l)) which, when run, will recon
struct the given sees files. The reconstructed files will, hopefully, be
smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named sees files . If a
directory is named, comb behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of
the pathname does not begin with s.) and unreadable files are silently
ignored.

If a name of - is given, the standard input is read; each line of the input is
taken to be the name of an sees file to be processed. Non-sees files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The following describes keyletter arguments; each is explained as though
only one named file is to be processed, but the effects of any keyletter
argument apply independently to each named file:

-p SID
The SID of the oldest delta to be preserved. All older deltas are dis
carded in the reconstructed file .

-c list

-o

A list of deltas to be preserved. (See get (l) for the syntax of a list .)
All other deltas are discarded.

For each get -e generated, this argument causes the reconstructed file
to be accessed at the release of the delta to be created, otherwise the
reconstructed file would be accessed at the most recent ancestor. Use
of the -o keyletter may decrease the size of the reconstructed sees
file . It may also alter the shape of the delta tree of the original file .

- 1 -

COMB (l) (Source Code Control System Utilities) COMB (l)

-s
This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and per
centage change computed by:

100 * (original - combined) I original

It is recommended that before any sees files are actually combined,
determine exactly how much space is saved by the combining pro
cess.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

EXAMPLE

FILES

comb s . filel > tmpl

produces a shell script saved in tmpl that will remove from the sees
format file s.filel all deltas previous to the last set of changes, i .e . ,
removes the capability of returning to earlier versions.

COMB
comb?????

The name of the reconstructed sees file .
Temporary.

SEE ALSO
admin{l), delta{l), get{l), prs{l), sccsfile(4) .
help{l), sh(l) in the User's Reference Manual.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

- 2 -

COMM (l) (Directory and File Management Utilities) COMM (l)

NAME
comm - select or reject lines common to two sorted files

------... SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION
comm reads filel and file2 , which should be ordered in ASCII collating
sequence (see sort(!)), and produces a three-column output: lines only in
filel ; lines only in file2 ; and lines in both files. The file name - means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus,
comm -12 prints only the lines common to the two files; comm -23 prints
only lines in the first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(l), diff(l), sort(l), uniq(l) .

- 1 -

CONV(l) (Software Generation System Utilities) CONV(l)

NAME
conv - common object file converter

-----.., SYNOPSIS
conv [-a] [-o] [-p] -t target [- I files]

DESCRIPTION
The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file.v. The conv command can be used on
either the source (sending) or target (receiving) machine .

Command line options are:

indicates that the names of files should be read from the standard
input.

-a
If the input file is an archive, produce the output file in the UNIX
System V Release 2.0 portable archive format.

-o
If the input file is an archive, produce the output file in the old (pre
UNIX System V) archive format.

-p
If the input file is an archive, produce the output file in the UNIX
System V Release 1 .0 random access archive format.

-t target
Convert the object file to the byte ordering of the machine (target) to
which the object file is being shipped. This may be another host or a
target machine. Legal values for target are: pdp, vax, ibm, x86, bl6,
n3b, mc68 and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for
mats: the pre-UNIX System V format, the UNIX System V Release 1 .0
random access format, and the UNIX System V Release 2 .0 portable ASCII
format. By default, conv will create the output archive file in the same for
mat as the input file. To produce an output file in a different format than

- 1 -

CONV(l) (Software Generation System Utilities) CONV(l)

the input file, use the -a, -o , or -p option. If the output archive format is
the same as the input format, the archive symbol table will be converted,
otherwise the symbol table will be stripped from the archive . The ar(l)
command with its -t and -s options must be used on the target machine
to recreate the archive symbol table.

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command
lines cause termination. Fatal diagnostics on an input file cause the pro
gram to continue to the next input file .

CAVEATS
The conv command will not convert archives from one format to another if
both the source and target machines have the same byte ordering. You
should use convert(!) for this purpose.

SEE ALSO
ar{l), convert(l), ar(4), a .out(4) .

- 2 -

CONVERT(l) (Software Generation System Utilities) CONVERT(l)

NAME
convert - convert archive files to common formats

----._ SYNOPSIS
convert infile outfile

DESCRIPTION

FILES

The convert command transforms input infile to output outfile . infile must
be a UNIX System V Release 1 .0 archive file and outfile will be the
equivalent UNIX System V Release 2.0 archive file . All other types of
input to the convert command will be passed unmodified from the input
file to the output file (along with appropriate warning messages) .

infile must be different from outfile .

TMPDIR/conv• temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable 1MPDIR (see tempru:Lm() in tmpru:Lm(3S)) .

SEE ALSO
ar(l), tmpnam(3S), a.out(4), ar(4)

- 1 -

CP (l) (Essential Utilities) CP (l)

NAME
cp, In, mv - copy, link or move files

� SYNOPSIS
cp file1 [file2 . . .] target
In [-f] [-s] file1 [file2 . . .] target
mv [-f] file1 [file2 . . .] target

DESCRIPTION
filel is copied (linked, moved) to target . Under no circumstance can filel
and target be the same (take care when using sh (l) metacharacters) . If tar
get is a directory, then one or more files are copied (linked, moved) to that
directory. If target is a file, its contents are destroyed.

If mv or ln determines that the mode of target forbids writing, it will print
the mode (see chmod(2)), ask for a response, and read the standard input
for one line; if the line begins with y, the mv or ln occurs, if permissible; if
not, the command exits . For mv, when the parent directory of filel is
writable and has the sticky bit set, one or more of the following conditions
must be true:

The user must own the file
The user must own the directory
The file must be writable by the user
The user must be the superuser

When the -f option is used or if the standard input is not a terminal, no
questions are asked and the mv or ln is done.

Only mv will allow filel to be a directory, in which case, the directory
rename will occur only if the two directories have the same parent; filel is
renamed target . If filel is a file and target is a link to another file with
links, the other links remain and target becomes a new file .

When using cp, if target is not a file, a new file is created that has the
same mode as filel except that the sticky bit is not set unless you are
superuser; the owner and group of target are those of the user. If target is
a file, copying a file into target does not change its mode, owner, nor
group. The last modification time of target (and last access time, if target
did not exist) and the last access time of file1 are set to the time the copy
was made. If target is a link to a file, all links remain and the file is
changed.

- 1 -

CP(l) (Essential Utilities) CP(l)

There are two kinds of links: hard links and symbolic links. By default, In
makes hard links . A hard link to a file is indistinguishable from the origi
nal directory entry; any changes to a file are effective independent of the
name used to reference the file . Hard links may not span file systems and
may not refer to directories .

The -s option causes ln to create symbolic links. A symbolic link contains
the name of the file to which it is linked. The referenced file is used when
an open(2) is performed on the link. A stat(2) on a symbolic link will
return the linked-to file . An lstat(2) must be done to obtain information
about the link. The readlink(2) call may be used to read the contents of a
symbolic link. Symbolic links may span file systems and may refer to
directories.

SEE ALSO
chmod(l), cpio(l), lstat(2), readlink(2), rm(l), symlink(2) .

WARNINGS

BUGS

ln will not link across file systems. This restriction is necessary because
file systems can be added and removed.

If filel and target lie on different file systems, mv must copy the file and
delete the original. In this case, any linking relationship with other files is
lost.

- 2 -

CPIO(l) (Essential Utilities) CPIO (l)

NAME
cpio - copy file archives in and out

� SYNOPSIS
cpio -o [acBvV] [-C bufsize] [[-0 file] [-M message]]

cpio -i [BcdmrtuvV£sSb6k] [-C bufsize] [[-1 file] [-M message]]
[patterns . . .]

cpio -p [adlLLmuvV] directory

DESCRIPTION

NOTE:

cpio -o (copy out) reads the standard input to obtain a list of pathnames
and copies those files onto the standard output together with pathname
and status information. Output is padded to a 512-byte boundary by
default.

cpio -i (copy in) extracts files from the standard input, which is assumed
to be the product of a previous cpio -o. Only files with names that match
patterns are selected. patterns are regular expressions given in the
filename-generating notation of sh(l) . In patterns, metacharacters ?, * ,

and I . . .] match the slash (/) character, and backslash (\) is an escape
character. A ! metacharacter means not. (For example, the !abc,. pattern
would exclude all files that begin with abc.) Multiple patterns may be
specified and if no patterns are specified, the default for patterns is * (i .e . ,
select all files) . Each pattern must be enclosed in double quotes, other
wise, the name of a file in the current directory is used.

Extracted files are conditionally created and copied into the current direc
tory tree based upon the options described below. The permissions of the
files will be those of the previous cpio -o. The owner and group of the
files will be that of the current user unless the user is superuser, which
causes cpio to retain the owner and group of the files of the previous cpio
-o.

If cpio -i tries to create a file that already exists and the existing file is the
same age or newer, cpio will output a warning message and not replace
the file . (The -u option can be used to unconditionally overwrite the
existing file .)

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination directory
tree based upon the options described below.

- 1 -

CPIO(l) (Essential Utilities) CPIO (l)

The meanings of the available options are

-a
Reset access times of input files after they have been copied. Access
times are not reset for linked files when cpio -pia is specified .

-b
Reverse the order of the bytes within each word. Use only wi th the
-i option.

-B

-c

Input/output is to be blocked 5, 120 bytes to the record. The default
buffer size is 512 bytes when this and the C options are not used . (-B
does not apply to the pass option; -B is meaningful only with data
directed to or from a character special device, e .g . , /dev/rmt/ctape .)

Write header information i n ASCII character form for portabi l i ty .
Always use this option when origin and destination machines are dif
ferent types .

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where bufsize
is replaced by a positive integer. The default buffer size is 512 bytes
when this and B options are not used. (-C does not apply to the pass
option; -C is meaningful only with data directed to or from a charac
ter special device, e .g . , /dev/rmtlctape.)

-d

-f

directories are to be created as needed.

Copy in all files except those in patterns. (See the paragraph on cpio -i
for a description of patterns.)

-1 file
Read the contents of file as input. If file is a character special device,
when the first medium is full, replace the medium and type a carriage
return to continue to the next medium. Use only with the -i option .

- 2 -

CPIO (l) (Essential Utilities) CPIO(l)

-k

-1

Attempt to skip corrupted file headers and 110 errors that may be
encountered. If you want to copy files from a medium that is cor
rupted or out of sequence, this option lets you read only those files
with good headers . (For cpio archives that contain other cpio archives,
if an error is encountered cpio may terminate prematurely. cpio will
find the next good header, which may be one for a smaller archive,
and terminate when the smaller archive's trailer is encountered.)
Used only with the -i option.

Whenever possible, link files rather than copying them. Usable only
with the -p option.

-L
Follow symbolic links; the default is not to follow links . If an archive
is made from a tree containing symbolic links, it will record the pa th
associated with each link. When it is restored, the symbolic links will
be re-made. If -L is specified, the actual file pointed to by the link is
archived instead of the symbolic link contents.

-m
Retain previous file modification time. This option is ineffective on
directories that are being copied.

-M message
Define a message to use when switching media . When you use the
-0 or -1 options and specify a character special device, you can use
this option to define the message that is printed when you reach the
end of the medium. One %d can be placed in the message to print
the sequence number of the next medium needed to continue.

-0 file

-r

Direct the output of cpio to file. If file is a character special device,
when the first medium is fulL replace the medium and type a carriage
return to continue to the next medium. Use only with the -o option .

Interactively rename files . If the user types a NULL line, the file i s
skipped. I f the user types a " . ", the original pathname is copied .
(Not available with cpio -p .)

- 3 -

I

CPIO(l) (Essential Utilities) CPIO (l)

-s
Swap bytes within each half word. Use only with the -i option.

-S
Swap halfwords within each word. Use only with the -i option.

-t
Print a table of contents of the input. No files are created.

-u
Copy unconditionally. (Normally, an older file will not replace a
newer file with the same name.)

-v
(Verbose) causes a list of file names to be printed. When used with
the -t option, the table of contents looks like the output of an Is -I
command (see ls(l)) .

-V
(Special verbose) prints a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

-6
Process an old (i .e . , UNIX System Sixth Edition format) file . Use only
with the -i option.

NOTE: cpio assumes four-byte words.

If cpio reaches the end of the medium (the end of a cartridge tape for
example) when writing to (-o) or reading from (-i) a character special dev
ice and -0 and -1 aren't used, cpio will print the message:

If you want to go on . type devic e/file name when re ady .

To continue, you must replace the medium and type the character specia l
device name e .g . , (/dev/rmt/ctape) and carriage return. You may wa nt to
continue by directing cpio to use a different device . For example, i f you
have two tape drives you may want to switch between them so cpio can
proceed while you are changing the tape. A carriage return alone causes
the cpio process to prompt the user if he/she really wants to exit. If the
user answers yes, then cpio will exit, otherwise the message:

If you want to go on . type device/file name when re ady .

displays again. The reason for this is to prevent users from accidently
exiting cpio should the terminal they are using have a screen saver feature,
and they press RETURN to tum the screen on again.

- 4 -

CPP(l) (C Programming Language Utilities) CPP (l)

NAME
cpp - the C language preprocessor

� SYNOPSIS
LIBDIR/cpp [option . . .] [ifile [ofile]]

DESCRIPTION
The C language preprocessor, cpp , is invoked as the first pass of any C
compilation by the cc(l) command. Thus, cpps output is designed to be i n
a form acceptable as input to the next pass o f the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other tha n
through the cc(l) command is not suggested, since the functionality of cpp
may someday be moved elsewhere . See m4 (1) for a general macro
processor.

cpp optionally accepts two file names as arguments . ifile and ofile a re
respectively the input and output for the preprocessor. They default to
standard input and standard output if not supplied.

The following options to cpp are recognized:

-P
Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C
By default, cpp strips C-style comments . If the -C option is speci fied,
al l comments (except those found on cpp directive lines) are passed
along.

-Una me
Remove any initial definition of name, where name is a reserved sym
bol that is predefined by the particular preprocessor. Following is the
current list of these possibly reserved symbols. In SYSTEM V/88,
sysV88, unix and m88k are defined.

Operating system: unix, sysV88, dmert, gcos, ibm, os,
tss

Hardware:

System variant:

lint(l) :

- 1 -

interdata, pdpll, , u370, u3b, u3b5,
u3b2, u3b20d, vax, m88k

RES, RT

lint

CPP(l) (C Programming Language Utilities) CPP(l)

-Dname

-Dname=def
Define name with value def as if by a #define. If no =def is given,
name is defined with value 1 . The -D option has lower precedence
than the -U option, i .e . , if the same name is used in both a -U option
and a -D option, the name will be undefined regardless of the order
of the options .

-T
The -T option forces cpp to use only the first eight characters to dis
tinguish preprocessor symbols and is included for backward compati
bility.

-Idir
Change the algorithm for searching for #include files whose names
do not begin with I to look in dir before looking in the directories on
the standard list. Thus, #include files whose names are enclosed in
"" will be searched for first in the directory of the file with the
#include line, then in directories named in -1 options, and last in
directories on a standard list. For #include files whose names are
enclosed in < > , the directory of the file with the #include line is not
searched.

-Ydir
Use directory dir in place of the standard list of directories when
searching for #include files.

-H
Print, one per line on standard error, the pathnames of included files .

Two special names are understood by cpp . The name _ _ LINE _ _ is
defined as the current line number (as a decimal integer) as known by
cpp, and _ _ FILE __ is defined as the current file name (as a C string) as
known by cpp. They can be used anywhere (including in macros) just as
any other defined name.

All cpp directive lines start with # in column 1 . Any number of blanks
and tabs is allowed between the # and the directive . The directives are:

#define name token-string
Replace subsequent instances of name with token-string .

- 2 -

CPP(l) (C Programming Language Utilities) CPP(l)

#define name(arg, . . • , arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma
separated sets of tokens, and a) followed by token-string, where each
occurrence of an arg in the token-string is replaced by the correspond
ing set of tokens in the comma-separated list. When a macro with
arguments is expanded, the arguments are placed into the expanded
token-string unchanged. After the entire token-string has been
expanded, cpp re-starts its scan for names to expand at the beginning
of the newly created token-string .

#undef name
Cause the definition of name (if any) to be forgotten from now on. No
additional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file .

#include ''filename"

#include <filename>
Include at this point the contents of filename (which will then be run
through cpp) . When the <filename> notation is used, filename is only
searched for in the standard places. See the -1 and -Y options above
for more detail . No additional tokens are permitted on the directive
line after the final " or > .

#line integer-constant ''filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file from which it comes. If ''filename" is not given,
the current file name is unchanged. No additional tokens are permit
ted on the directive line after the optional filename.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef) . Each test directive must have a matching #endif. No addi
tional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
directive line after name .

- 3 -

CPP(l) (C Programming Language Utilities) CPP(t)

#ifndef name
The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens are
permitted on the directive line after name .

#if constant-expression
Lines following will appear in the output if and only if the constant
expression evaluates to non-zero. All binary non-assignment C opera
tors, the ?: operator, the unary - , !, and - operators are all legal in
constant-expression . The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms: defined (
name) or defined name . This allows the utility of #ifdef and #ifndef
in a #if directive. Only these operators, integer constants, and
names which are known by cpp should be used in constant-expression .
In particular, the sizeof operator is not available .

To test whether either of two symbols, foo and fum , are defined, use

#if def ined (foo) I def ined (fum)

#eli£ constant-expression
An arbitrary number of #eli£ directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive . The
lines following the #eli£ directive will appear in the output if and
only if the preceding test directive evaluates to zero, all intervening
#eli£ directives evaluate to zero, and the constant-expression evaluates
to non-zero. If constant-expression evaluates to non-zero, all succeed
ing #eli£ and #else directives will be ignored. Any constant-expression
allowed in a #if directive is allowed in a #eli£ directive .

#else
The lines following will appear in the output if and only if the preced
ing test directive evaluates to zero, and all intervening #eli£ direc
tives evaluate to zero. No additional tokens are permitted on the
directive line.

The test directives and the possible #else directives can be nested.

- 4 -

CPP(l)

FILES
INCDIR

(C Programming Language Utilities) CPP(l)

standard directory list for #include files, usually
/usr/include

LIBDIR

SEE ALSO

usually /lib

cc(l), lint(l), m4(1) .

DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

The unsupported -W option enables the #class directive. If it encounters
a #class directive, cpp will exit with code 27 after finishing all other pro
cessing. This option provides support for "C with classes" .

Because the standard directory for included files may be different in dif
ferent environments, this form of #include directive:

#include < f i l e . h>

should be used, rather than one with an absolute path, like:

#include " /usr/include/f i l e . h "

cpp warns about the use of the absolute pathname.

- 5 -

CPRS(l) (Software Generation System Utilities)

NAME
cprs - compress a common object file

SYNOPSIS
cprs [-p] file1 file2

DESCRIPTION

CPRS(l)

The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors . The reduced file,
file2, is produced as output.

The sole option to cprs is:

-p
Print statistical messages including: total number of tags, total dupli
cate tags, and total reduction of filel .

SEE ALSO
strip(l), a .out(4), syms(4) .

- 1 -

CRC(l) (Directory and File Management Utilities) CRC(l)

NAME
ere - generate cyclic redundancy checksums (ere) of files

SYNOPSIS
ere [-frcld] - I file_list

DESCRIPTION
The ere shell command utility is a versatile tool for use in generating 16-bit
ere values of an input stream. The input stream can consist either of data
or of names of files to be checked. There are four different display
options available .

If the file to be checked is an object file, ere will ignore the compiler
generated time stamps embedded in the file .

The various options are defined as:

-f

-r

-e

-d

-1

Selects file mode operation. The input stream is interpreted as a list of
the names of the files to be processed instead of the data itself.

Selects a raw mode of operation. This option is used mainly to deter
mine if two versions of an executable file are exactly the same. This
switch causes ere to include the compiler-generated time stamps in
the coif file image when computing the ere.

Changes the output to include the byte count of each file processed.

Adds the time of the file's modification to the output.

Computes the ere in decimal for each line of the input file instead of the
whole file itself. Use of this option overrides all others.

Note that the first four options can be used in any combination. There are
three general forms of output. The first form is produced without the -e
option:

$nnnn for filename (time stamp)

where $nnnn is the 16-bit checksum in hexadecimal representation; and
time stamp is the time of the file's modification (displayed if the -d option
is selected) . The fields are separated by space (20h) characters .

- 1 -

CRC(l) (Directory and File Management Utilities) CRC(l)

The second output form is generated when the - c option is selected:

$nnnn length time stamp filename

where length is the true size of the file, regardless of whether raw mode (-r)
is selected; and time stamp is the time of the file's modification (displayed
if the -d option is selected) . All fields of this second form are delimited by
tab (\t) characters.

The third form of output is produced by the line mode option (-1) . It
replaces each line of input with its corresponding ere in the form nnnn.

DIAGNOSTICS
ere: bad option letter. an invalid option letter was specified.

ere: argument count. at least one file name (or '-') must be provided.

ere: can't open file for reading. file cannot be opened for some reason.

ere: can't read file. input file cannot be read for some reason.

EXAMPLES
Suppose a touch •; Is -log command produces the following directory list
ing:

-rwxrwxrwx 1 23 Apr 8 12 : 39 apple
-rwxrwxrwx 1 8307 Apr 8 12 : 39 p e ache s
-rwxrwxrwx 1 1280 Apr 8 12 : 39 p e ars
-rwxrwxrwx 1 771 Apr 8 12 : 39 plums

Note that Is I ere -fdc - is equivalent to ere -de ,. , and both would produce
output similar to:

$8AC3 23 Apr 8 12 : 39 : 6 1 1986 appl e
$FD06 8307 Apr 8 12 : 39 : 6 1 1986 peache s
$C3BO 1280 Apr 8 12 : 39 : 6 1 1986 p e ars
$02D2 771 Apr 8 12 : 39 : 6 1 1986 plums

A means of generating checksums for an entire directory hierarchy is:

find root_path -type f -print I ere -fed -

Use of the '-type £' option on find is recommended because ere will gen
erate the ere for the directory files themselves if presented with their
names.

- 2 -

CRC(l)

FILES

(Directory and File Management Utilities) CRC(l)

You can extract just the ere and length from a stream of ere's by using the
cut command. When appended to the above command,

find args -type f -print I ere -fed - I cut -£1,2

produces an output of two columns: the ere and the file's length.

/usr/bin/crc

- 3 -

CRONTAB (l) (User Environment Utilities) CRONTAB (l)

NAME
crontab - user crontab file

� SYNOPSIS
crontab [file]
crontab -r
crontab -1

DESCRIPTION
crontab copies the specified file, or standard input if no file is specified,
into a directory that holds all users' crontabs . The -r option removes a
user's crontab from the crontab directory. crontab -1 will list the crontab
file for the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should be
denied access to crontab. If neither file exists, only root is allowed to sub
mit a job. If cron.allow does not exist and cron.deny exists but is empty,
global usage is permitted. The allow/deny files consist of one user name
per line .

A crontab file consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns that specify the
following:

minute (0--59),
hour (0--23),
day of the month (1-31),
month of the year (1-12),
day of the week (0--6 with O= Sunday) .

Each of these patterns may be either an asterisk (meaning all legal values)
or a list of elements separated by commas. An element is either a number
or two numbers separated by a minus sign (meaning an inclusive range) .
Note that the specification of days may be made by two fields (day of the
month and day of the week) . If both are specified as a list of elements,
both are adhered to. For example, 0 0 1, 15 * 1 would run a command on
the first and fifteenth of each month, as well as on every Monday. To
specify days by only one field, the other field should be set to * (for exam
ple, 0 0 * * 1 runs a command only on Mondays) .

- 1 -

CRONTAB (l) (User Environment Utilities) CRONTAB (l)

FILES

The sixth field of a line in a crontab file is a string that is executed by the
shell at the specified times. A percent character in this field (unless
escaped by \) is translated to a newline character. Only the first line (up -
to a % or end of line) of the command field is executed by the shell . The
other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh . Users
who desire to have their .profile executed must explicitly do so in the
crontab file . cron supplies a default environment for every shell, defining:
HOME, LOGNAME, SHELL(=/bin/sh), and
PATH(= :/bin:/usr/bin:/usr/lbin) .

If you do not redirect the standard output and standard error of your com
mands, any generated output or errors will be mailed to you.

/usrllib/cron
/usr/ spool/ cron/ crontabs
/usr/lib/cron/log
/usr/lib/ cron/ cron. allow
/usr/lib/ cron/ cron. deny

main cron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO
sh(l) .
cron(lM) in the System Administrator's Reference Manual.

WARNINGS
If you inadvertently enter the crontab command with no argument(s), do
not attempt to get out with a ctrl-d. This will cause all entries in your
crontab file to be removed. Instead, exit with a DEL .

- 2 -

CRYPT(l) (Security Administration Utilities) CRYPT(l)

NAME
crypt - encode/decode

� SYNOPSIS
crypt [password]
crypt [-k]

DESCRIPTION

----.,_ FILES

crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no argu
ment is given, crypt demands a key from the terminal and turns off print
ing while the key is being typed in. If the -k option is used, crypt will
use the key assigned to the environment variable CRYPTKEY. crypt
encrypts and decrypts with the same key:

crypt key <clear > cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the editors
ed(l), edit (l), ex(l), and vi(l) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; "sneak paths" by which keys or clear text can become visible
must be minimized.

crypt implements a one-rotor machine designed along the lines of the Ger
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large .

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i .e . , to take a substantial fraction of
a second to compute. However, if keys are restricted to (say) three
lowercase letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to
users executing ps (l) or a derivative . The choice of keys and key security
are the most vulnerable aspect of crypt .

/dev/tty for typed key

SEE ALSO
ed(l), edit(l), ex(l), makekey(l), ps(l), stty(l), vi(l) .

- 1 -

CRYPT(l) (Security Administration Utilities) CRYPT(l)

WARNING

BUGS

This command is provided with the Security Administration Utilities,
which is only available in the United States. If two or more files
encrypted with the same key are concatenated and an attempt is made to
decrypt the result, only the contents of the first of the original files will be
decrypted correctly.

If output is piped to nroff and the encryption key is not given on the com
mand line, crypt can leave terminal modes in a strange state (see stty(l)) .

- 2 -

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

NAME
csplit - context split

� SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [. . . argn]

DESCRIPTION
csplit reads file and separates it into n+ 1 sections, defined by the argu
ments argl . . . argn . By default, the sections are placed in xxOO • • • xxn
(n may not be greater than 99) . These sections get the following pieces of
file :

00:
From the start of file up to (but not including) the line referenced by
argl .

01:
From the line referenced by argl up to the line referenced by arg2 .

n+ 1:
From the line referenced by argn to the end of file .

If the file argument is a -, standard input is used.

The options to csplit are:

-s
csplit normally prints the character counts for each file created. If
the -s option is present, csplit suppresses the printing of all charac
ter counts .

-k
csplit normally removes created files if an error occurs . If the -k
option is present, csplit leaves previously created files intact.

-f prefix
If the -f option is used, the created files are named prefixOO . • . pre
fixn . The default is xxOO . . . xxn.

The arguments (argl . . . argn) to csplit can be a combination of the
following:

/rexpl
A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression rexp .

- 1 -

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

The current line becomes the line containing rexp . This argument
may be followed by an optional + or - some number of lines (e .g . ,
/Page/-5) .

%rexp%
This argument is the same as /rexpl, except that no file is created
for the section.

lnno
A file is to be created from the current line up to (but not including)
lnno . The current line becomes lnno .

{num}
Repeat argument. This argument may follow any of the above
arguments . If it follows a rexp type argument, that argument is
applied num more times. If it follows lnno , the file will be split
every lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions
may not contain embedded new-lines. csplit does not affect the original
file; it is the users responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /parS./ /par16./

This example creates four files, cobolOO . . . cobol03. After editing the
"split" files, they can be recombined as follows:

cat cobolOI0-3] > file

Note that this example overwrites the original file .

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The -k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c ' % main(% ' 'r}/+1 ' {20}

Assuming that prog.c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a
file containing each separate C routine (up to 21) in prog. c .

SEE ALSO
ed(1), sh(1), split(1) .
regexp(5) in the Programmer's Reference Manual.

- 2 -

CSPLIT(l) (Directory and File Management Utilities)

DIAGNOSTICS
Self-explanatory except for:

� arg - out of range

CSPLIT(l)

which means that the given argument did not reference a line between the
current position and the end of the file .

- 3 -

CTAGS (l) CTAGS (l)

NAME
ctags - maintain a tags file for a C program

� SYNOPSIS

�

ctags [-a] [-u] [-w] [-x] ruzme . . .

DESCRIPTION
ctags makes a tags file for ex (1) and vi (1) from the specified sources.

A tags file gives the locations of specified objects (in this case functions)
in a group of files. Each line of the tags file contains the function name,
the file in which it is defined, and a scanning pattern used to find the
function definition. These are given in separate fields on the line,
separated by blanks or tabs . Using the tags file, ex can quickly find these
function definitions .

Options
-a

appends the output to the tags file instead of rewriting it.

-u
causes the specified files to be updated in tags, that is, all references to
them are replaced by new values. (Beware: this option is implemented
in a way which is rather slow; it is usually faster to simply rebuild the
tags file .)

-w

-x

suppresses warning diagnostics .

produces a list of function names, the line number and file name on
which each is defined, as well as the text of that line and prints this
on the standard output.

Files whose name ends in .c or .h are assumed to be C source files and
are searched for C routine and macro definitions .

The tag main is treated specially in C programs. The tag formed is created
by prefixing M to the name of the file, with a trailing .c removed, if any,
and leading pathname components also removed. This makes use of ctags
practical in directories with more than one program.

EXAMPLE
ctags • . c • .h

puts the tags from all the . c and .h files into the tags file tags .

- 1 -

CTAGS (l) CTAGS(l)

FILES
/usrlbin/ctags
tags output tags file

SEE ALSO

BUGS

ex(l), vi(l) .

Not all warning diagnostics are suppressed by -w .

If ctags is interrupted while executing under the -u option, a temporary
file named OTAGS is left in the current directory.

- 2 -

CTRACE (l) (Advanced C Utilities) CTRACE(l)

NAME
ctrace - C program debugger

----., SYNOPSIS
ctrace [options] [file]

DESCRIPTION
The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell pro
cedure with the -x option. ctrace reads the C program in file (or from
standard input if you do not specify file), inserts statements to print the
text of each executable statement and the values of all variables referenced
or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(l)
command does not allow the use of a pipe. You then compile and exe
cute this file .

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or
a different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can
put it into a file for examination with an editor or the bfs(l) or tail(1)
commands.

The options commonly used are:

-f functions
Trace only these functions.

-v functions
Trace all but these functions.

You may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers . Pointers to
character arrays are also printed as strings if appropriate . Char, short,
and int variables are also printed as signed integers and, if appropriate, as
characters. Double variables are printed as floating point numbers in
scientific notation. You can request that variables be printed in additional
formats, if appropriate, with the following options:

- 1 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

-o
Octal

-X
Hexadecimal

-u
Unsigned

-e
Floating point

The following options are used only in special circumstances:

-1 n

-s

Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

Suppress redundant trace output from simple assignment statements
and string copy function calls . This option can hide a bug caused by
use of the = operator in place of the = = operator.

-t n
Trace n variables per statement instead of the default of 10 (the max
imum number is 20) . The DIAGNOSTICS section explains when to
use this option.

-P
Run the C preprocessor on the input before tracing it. You can also
use the -D, -1, and -U cpp(l) options.

These options are used to tailor the run-time trace package when the
traced program will run in a non-UNIX System environment:

-b
Use only basic functions in the trace code, i .e . , those in ctype(3C),
printf(3S), and string(3C) . These are usually available even in cross
compilers for microprocessors . In particular, this option is needed
when the traced program runs under an operating system that does
not have signal (2), fflush(3S), longjmp(3C), or setjmp(3C) .

- 2 -

CTRACE(l) (Advanced C Utilities) CTRACE (l)

-p string
Change the trace print function from the default of 'print£(' . For
example, 'fprintf(stderr,' would send the trace to the standard error
output.

-r f

EXAMPLE

Use file f in place of the runtime. c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option) .

If the file lc. c contains this C program:

1 #�nc 1ude < atd�o . h>
2 main () I• count line s in input •I
3 {
4 int c . nl ;
5
6 nl = 0 ;
7 while ((c = getchar ()) ! = EOF)
8 if (c = ' \n •)
g ++nl ;

10 printf (" �d\n" . n1) ;
1 1 }

and you enter these commands and test data:

cc lc.c
a . out
1
(CTRL-d)

the program will be compiled and executed. The output of the program
will be the number 2, which is not correct because there is only one line
in the test data . The error in this program is common, but subtle. If you
invoke ctrace with these commands:

ctrace lc. c >temp.c
cc temp.c
a.out

the output will be:

2 main ()
6 nl = 0 ;

I • nl -- o •I
7 while ((c = getchar ()) ! = EOF)

- 3 -

CTRACE (l) (Advanced C Utilities) CTRACE(l)

The program is now waiting for input. I f you enter the same test data as
before, the output will be:

I• c == 49 or ' 1 ' •I
8 if (c = ' \n ')

I • c == 1 0 o r ' \n ' •I
9 ++nl ;

I• nl == 1 •I
7 while ((c = getchar ()) ! = EOF)

I• c == 10 or ' \n ' •I
8 if (c = ' \n ')

I • c == 1 0 o r ' \n ' •I
9 ++nl ;

I• nl == 2 •I
7 while ((c = getchar ()) ! = EOF)

If you now enter an end of file character (CTRL-d), the final output will
be:

I• c == -1 •I
10 printf (" �d\n" . nl) ;

I• nl == 2 •12
return

Note that the program output printed at the end of the trace line for the nl
variable . Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in
the function.

The trace output shows that variable c is assigned the value ' 1' in line 7,
but in line 8 it has the value '\n' . Once your attention is drawn to this if
statement, you will probably realize that you used the assignment opera
tor (=) in place of the equality operator (= =) . You can easily miss this
error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless
you use the -£ or -v options to trace specific functions . This does not give
you statement-by-statement control of the tracing, nor does it let you tum
the tracing off and on when executing the traced program.

You can do both of these by adding ctroff() and ctron () function calls to
your program to tum the tracing off and on, respectively, at execution
time. Thus, you can code arbitrarily complex criteria for trace control with
if statements, and you can even conditionally include this code because
ctrace defines the CTRACE preprocessor variable . For example:

- 4 -

CTRACE (l) (Advanced C Utilities)

#ifdef CTRACE

#endif

if (c -- · ! · a& 1 > 1000)
ctron () ;

CTRACE(l)

You can also call these functions from sdb(1) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a . out
ma1n : 7b ctrof f ()
ma1n : 1 1b ctron ()
r

You can also tum the trace off and on by setting static variable tr_ct_ to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(l), since
the traced code often gets some cc warning messages. You can get cc
error messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler
"out of tree space; simplify expression" error. Use the -t option to
increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces .

cannot handle preprocessor code, use -P option
This is usually caused by #i.fde.f /#endi.f preprocessor statements
in the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

'if . . . else if sequence too long
Split the sequence by removing an else from the middle .

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -1, and -U preprocessor options . If you still get the
error message, check the WARNINGS section.

- 5 -

CTRACE (l) (Advanced C Utilities) CTRACE (l)

Cc Diagnostics
warning: illegal combination of pointer and integer

warning: statement not reached

warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above .

yacc stack overflow
See the ctrace "'if . . . else if' sequence too long" message above.

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state
ment from the default of 10. Ignore the ctrac e : too many
v ar i ab l e s to trace warnings you will now get.

redeclaration of signal

SEE ALSO

Either correct this declaration of signal (2), or remove it and
include < s i gnal . h> .

signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C) .
bfs(l), tail(l) in the User's Reference Manual .

WARNINGS
You will get a ctrace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers .

Defining a function with the same name as a system function may cause a
syntax error if the number of arguments is changed. Just use a different
name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and
NULL are #defined constants . Declaring any of these to be variables, e .g . ,
int EOF;, will cause a syntax error.

- 6 -

CTRACE (l) (Advanced C Utilities) CTRACE (l)

BUGS
ctrace does not know about the components of aggregates like structures,

� unions, and arrays . It cannot choose a format to print all the components
of an aggregate when an assignment is made to the entire aggregate .
ctrace may choose to print the address of an aggregate or use the wrong
format (e .g. , 3 . 149050e-311 for a structure with two integer members)
when printing the value of an aggregate .

FILES

Pointer values are always treated as pointers to character strings .

The loop trace output elimination is done separately for each file of a
multi-file program. This can result in functions called from a loop still
being traced, or the elimination of trace output from one function in a file
until another in the same file is called.

/usr/lib/ctrace/runtime.c run-time trace package

- 7 -

CUT(l) (Directory and File Management Utilities) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -c list [file . . .]
cut -£list [-d char] [-s] [file . . .]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields
as specified by list can be fixed length, i .e . , character positions as on a
punched card (-c option) or the length can vary from line to line and be
marked with a field delimiter character like tab (-£ option) . cut can be
used as a filter; if no files are given, the standard input is used. In addi
tion, a file name of "-" explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges (e .g., 1,4,7; 1-3,8; -5,10
(short for 1-5,10); or 3- (short for third through last field)) .

-clist The list following -c (no space) specifies character positions (e.g . ,
-c1-72 would pass the first 72 characters of each line) .

-flist The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); e .g . , -£1,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless -s is
specified.

-dchar The character following -d is the field delimiter (-£ option only) .
Default is tab . Space or other characters with special meaning to
the shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -£ option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -£ option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or
paste(l) to put files together column-wise (i .e . , horizontally) . To reorder
columns in a table, use cut and paste .

- 1 -

CUT(l) (Directory and File Management Utilities) CUT(l)

EXAMPLES
cut -d: -£1,5 /etc/passwd mapping of user IDs to names

name ='who am i I cut -£1 -d" "' to set name to current login name.

DIAGNOSTICS
ERROR: line too long

A line can have no more than 1023 characters or fields, or there is no
newline character.

ERROR: bad list for c If option
Missing -c or -f option or incorrectly specified list . No error occurs if a
line has fewer fields than the list calls for.

ERROR: no fields
The list is empty.

ERROR: no delimeter
Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>
Either filename cannot be read or does not exist. If multiple file names
are present, processing continues .

SEE ALSO
grep(l), paste(l) .

- 2 -

CXREF(l) (Advanced C Utilities) CXREF(l)

NAME
cxref - generate C program cross-reference

---....,_ SYNOPSIS
cxref [options 1 files

DESCRIPTION

FILES

The cxref command analyzes a collection of C files and attempts to build a
cross-reference table . cxref uses a special version of cpp to include
#defined information in its symbol table . It produces a listing on stan
dard output of all symbols (auto, static, and global) in each file separately,
or, with the -c option, in combination. Each symbol contains an asterisk
(*) before the declaring reference .

In addition to the -D, -1 and -U options (which are interpreted just as
they are by cc(l) and cpp(l)), the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files .

-w<num>
Width option which formats output no wider than < num>
(decimal) columns. This option will default to 80 if <num> is
not specified or is less than 51 .

-o file Direct output to file.

-s Operate silently; do not print input file names.

-t Format listing for 80-column width.

LLIBDIR
LLIBDIR/xcpp

usually /usr/lib
special version of the C preprocessor.

SEE ALSO
cc(l), cpp(l) .

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot
compile these files .

cxref considers a formal argument in a #def ine macro definition to be a
declaration of that symbol. For example, a program that # inc lude s
ctype.h, will contain many declarations of the variable c .

- 1 -

DATE(l) (Essential Utilities) DATE(l)

NAME
date - print and set the date

------.,. SYNOPSIS
date [+ fonnat]
date [mmddhhmm[[yy] I [ccyy]]]

DESCRIPTION
If no argument is given, or if the argument begins with + , the current
date and time are printed. Otherwise, the current date is set (only by
superuser) . The first mm is the month number; dd is the day number in
the month; hh is the hour number (24-hour system); the second mm is the
minute number; cc is the century minus one and is optional; yy is the last
2 digits of the year number and is optional. The following example sets
the date to Oct 8, 12:45 AM:

date 10080045

The current year is the default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local stan
dard and daylight time. Only the superuser may change the date .

If the argument begins with + , the output of date is under the control of
the user. All output fields are of fixed size (zero padded if necessary) .
Each Field Descriptor is preceded by % and will be replaced in the output
by its corresponding value. A single % is encoded by % % . All other
characters are copied to the output without change. The string is always
terminated with a newline character. If the argument contains embedded
blanks it must be quoted (see the EXAMPLE section) .

Specifications of native language translations of month and weekday
names are supported. The language used depends on the value of the
environment variable LANGUAGE (see environ(5)) . The month and week
day names used for a language are taken from strings in the file for that
language in the /lib/cftime directory (see cftime(4)) .

After successfully setting the date and time, date will display the new date
according to the format defined in the environment variable CFTIME (see
environ (5)) .

- 1 -

DATE (l) (Essential Utilities) DATE(l)

Field Descriptors (must be preceded by a %) :
a abbreviated weekday name
A full weekday name
b abbreviated month name
B full month name
d day of month; 01 to 31
D date as mm/dd/yy
e day of month; 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for %b)
H hour; 00 to 23
I hour; 01 to 12
j day of year; 001 to 366
m month of year; 01 to 12
M minute; 00 to 59
n insert a newline character
p string containing ante-meridiem or post-meridiem indicator (by

default, AM or PM)
r time as hh :mm :ss pp where pp is the ante-meridiem or post-

meridiem indicator (by default, AM or PM)
R time as hh:mm
S second; 00 to 59
t insert a tab character
T time as hh:mm:ss
U week number of year (Sunday as the first day of the week); 01 to

52
w day of week; Sunday = 0
W week number of year (Monday as the first day of the week); 01 to

52
x Country-specific date format
X Country-specific time format
y year within century; 00 to 99
Y year as ccyy (4 digits)
Z timezone name

EXAMPLE
date ' + DATE: %m/% d/%y%nTIME: %H:%M:%S'

Generates as output:

DATE: 08/01/76
TIME: 14:45:05

- 2 -

DATE(l) (Essential Utilities) DATE(l)

DIAGNOSTICS
No permission

bad conversion

FILES

if you are not the superuser and you try to change
the date
if the date set is syntactically incorrect

/dev/kmem

WARNING

NOTE

Should you need to change the date while the system is running multi
user, use sysadm(l) datetime .

Administrators should note the following: if you attempt to set the
current date to one of the dates that the standard and alternate time zones
change (e .g . , the date that daylight time is starting or ending), and you
attempt to set the time to a time in the interval between the end of stan
dard time and the beginning of the alternate time (or the end of the alter
nate time and the beginning of standard time), the results are unpredict
able .

"""'
SEE ALSO

sysadm(l)
cftime(4), environ(S) in the System Administrator's Reference Manual.

- 3 -

DC(l) (User Environment Utilities) DC(l)

NAME
de - desk calculator

� SYNOPSIS
de [file]

DESCRIPTION
de is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. (See be(l), a preprocessor for
de that provides infix notation and a C-like syntax that implements func
tions; be also provides reasonable control structures for programs .) The
overall structure of de is a stacking (reverse Polish) calculator. If an argu
ment is given, input is taken from that file until its end, then from the
standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an under
score (_) to input a negative number. Numbers may contain decimal
points .

+ - / • % A

sx

lx

d

p

The top two values on the stack are added (+), subtracted (-), multi
plied (*), divided (/), remaindered (%), or exponentiated n. The two
entries are popped off the stack; the result is pushed on the stack in
their place . Any fractional part of an exponent is ignored.

The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as a
stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged.

- 1 -

DC(l)

p

f

q

Q

X

X

(User Environment Utilities) DC(l)

Interprets the top of the stack as an ASCII string, removes it, and
prints it.

All values on the stack are printed.

Exits the program. If executing a string, the recursion level is popped
by two.

Exits the program. The top value on the stack is popped and the
string execution level is popped by that value .

Treats the top element of the stack as a character string and executes
it as a string of de commands .

Replaces the number on the top of the stack with its scale factor.

[. . .]
Puts the bracketed ASCII string onto the top of the stack.

<x >x =x

v

c

i

0

The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any exist
ing fractional part of the argument is taken into account, otherwise,
the scale factor is ignored.

Interprets the rest of the line as a command to the shell .

All values on the stack are popped.

The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix
for further output.

- 2 -

DC(l) (User Environment Utilities) DC(l)

0
Pushes the output base on the top of the stack.

k

z

The top of the stack is popped, and that value is used as a non
negative scale factor: the appropriate number of places are printed on
output, and maintained during multiplication, division, and exponen
tiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

The stack level is pushed onto the stack.

z

?

I •

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal)
and executed.

Used by bc(l) for array operations .

EXAMPLE
This example prints the first ten values of n!:

SEE ALSO
bc{l) .

[lal + dsa*plalO>y]sy
Osal
lyx

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits) .

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

- 3 -

DC(l) (User Environment Utilities) DC(l)

Nesting Depth
for too many levels of nested execution.

- 4 -

DCPY(l) (Essential Utilities) DCPY(l)

NAME
dcpy - copy removeable media

� SYNOPSIS
dcpy from to

DESCRIPTION

FILES

dcpy provides a method for non-root users to make copies of removeable
media file systems. To actually copy the file systems, it calls the dcopy
utility.

There are no options for dcpy. from and to are the names of removable
media filesystems, and must be specified .

Th e from filesystem must b e present and readable .

The to filesystem must be present and writeable .

The blocksize of the to filesystem will be made the same as the blocksize
of the from filesystem. dcpy itself uses lKb blocks .

/etc/filesys
" /etc/dcopy

permissions file
system utility program

SEE ALSO
dcopy(lM) in the System Administrators Reference Manual.

DIAGNOSTICS
dcpy will complain, No r e ad permi s s ion on input f i l e . if the
input file (the from file) does not exist or is not readable .

dcpy will complain, No write permi s s ion on output f i l e . if
the output device (the to file) does not exist or is not readable .

dcpy will print Fai l e d to exe c dcopy" if, for some reason, it was
unable to execute /etc/dcopy.

Additional error messages may be printed by the dcopy program itself.

- 1 -

DELTA(l) (Source Code Control System Utilities) DELTA(l)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSJD] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

DESCRIPTION
delta is used to permanently introduce into the named sees file changes
that were made to the file retrieved by get(l) (called the g-file, or gen
erated file) .

delta makes a delta to each named sees file . If a directory is named, delta
behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the pathname does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read (see WARNINGS); each line of the stan
dard input is taken to be the name of an sees file to be processed .

delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin (l)) that may be present in the
sees file (see -m and -y keyletters below) .

Keyletter arguments apply independently to each named file .

-rSID

-s

Uniquely identifies which delta is to be made to the sees file. The
use of this keyletter is necessary only if two or more outstanding gets
for editing (get -e) on the same sees file were done by the same per
son (login name) . The SID value specified with the -r keyletter can be
either the SID specified on the get command line or the SID to be
made as reported by the get command (see get(l)) . A diagnostic
results if the specified SID is ambiguous, or, if necessary and omitted
on the command line .

Suppresses the issue, on the standard output, of the created delta's
SID, as well as the number of lines inserted, deleted and unchanged
in the sees file .

-n
Specifies retention of the edited g-file (normally removed at comple
tion of delta processing) .

- 1 -

DELTA(l) (Source Code Control System Utilities) DELTA(l)

-glist
a list (see get(l) for the definition of list) of deltas which are to be
ignored when the file is accessed at the change level (SID) created by -

this delta.

-m[mrlist]
If the sees file has the v flag set (see admin (l)) then a MR number
must be supplied as the reason for creating the new delta .

If -m is not used and the standard input is a terminal, the prompt
MRs ? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued.
The MRs ? prompt always precedes the comments ? prompt (see
-y keyletter) .

MRs in a list are separated by blanks and/or tab characters . An unes
caped newline character terminates the MR list.

Note that if the v flag has a value (see admin (l)), it is taken to be the
name of a program (or shell procedure) that will validate the correct
ness of the MR numbers . If a non-zero exit status is returned from
the MR number validation program, delta terminates. (It is assumed
that the MR numbers were not all valid .)

-y[comment]
Arbitrary text used to describe the reason for making the delta . A
NULL string is considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard
input is read; if the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates the comment
text.

-p
Causes delta to print (on the standard output) the sees file differ
ences before and after the delta is applied in a diff(l) format.

- 2 -

DELTA(l) (Source Code Control System Utilities) DELTA(l)

FILES
g-file

p-file

q-file

x-file

z-file

d-file

/usrlbin!bdi££

Existed before the execution of delta; removed after
completion of delta .

Existed before the execution of delta ; may exist after
completion of delta .

Created during the execution of delta ; removed after
completion of delta .

Created during the execution of delta ; renamed to
sees file after completion of delta .

Created during the execution of delta ; removed dur
ing the execution of delta .
Created during the execution of delta; removed after
completion of delta .

Program to compute differences between the "got
ten" file and the g-file .

WARNINGS
""" Lines beginning with an SOH ASCII character (binary 001) cannot be

placed in the sees file unless the SOH is escaped. This character has spe
cial meaning to sees (see sccsfile(4) (5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), cdc(1), get(1), prs(1), rmdel(1), sccsfile(4) .
bdiff(1), help(1) in the User's Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

- 3 -

DEROFF (l) (Spell Utilities) DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [-w] [files]

DESCRIPTION
deroff reads each of the files in sequence and removes all troff(l) requests,
macro calls, backslash constructs, eqn (l) constructs (between .EQ and .EN
lines, and between delimiters), and tbl (l) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder
of the file on the standard output. deroff follows chains of included files
(.so and . nx troff commands); if a file has already been included, a .so
naming that file is ignored and a . nx naming that file terminates execu
tion. If no input file is given, deroff reads the standard input.

The -m option may be followed by an m, s, or 1 . The -mm option causes
the macros to be interpreted so that only running text is output (i .e . , no
text from macro lines) . The -ml option forces the -mm option and also
causes deletion of lists associated with the mm macros .

If the -w option is given, the output is a word list, one "word" per line,
with all other characters deleted. Otherwise, the output follows the origi
nal, with the deletions mentioned above . In text, a "word" is any string
that contains at least two letters and is composed of letters, digits, amper
sands (&), and apostrophes ('); in a macro call, however, a "word" is a
string that begins with at least two letters and contains a total of at least
three letters . Delimiters are any characters other than letters, digits, apos
trophes, and ampersands . Trailing apostrophes and ampersands are
removed from "words ."

SEE ALSO

BUGS

eqn(l), nroff(l), tbl(l), troff(l) in the DOCUMENTER'S WORKBENCH Software
Release 2 .0 Technical Discussion and Reference Manual.

deroff is not a complete troff interpreter, so it can be confused by subtle
constructs . Most such errors result in too much rather than too little out
put.

The -ml option does not handle nested lists correctly.

- 1 -

DIFF(l) (Essential Utilities) DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION
diff tells what lines must be changed in two files to bring them into agree
ment. If file1 (file2) is -, the standard input is used. If file1 (file2) is a
directory, then a file in that directory with the name file2 (file1) is used.
The normal output contains lines of these forms:

n1 a n3 , n4
n1 , n2 d n3
n1 , n2 c n3 , n4

These lines resemble ed commands to convert file1 into file2 . The
numbers after the letters pertain to file2 . In fact, by exchanging a for d
and reading backward one may ascertain equally how to convert file2 into
file1 . As in ed, identical pairs, where n1 = n2 or n3 = n4, are abbreviated
as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second file
flagged by > .

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate file2 from file1 . The -£ option produces a similar
script, not useful with ed, in the opposite order. In connection with -e,
the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3, . . .) made by diff need be on hand. A "latest version" appears on
the standard output.

(shift; cat $*; echo ' 1,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option -h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options -e and -£ are unavailable with -h.

- 1 -

DIFF(l)

FILES
/tmp/d?????
/usr/lib/diffh for -h

(Essential Utilities) DIFF(l)

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l) .

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble .

Editing scripts produced under the -e or -£ option are naive about creating
lines consisting of a single period (.) .

WARNINGS
Missing newline at end of file X

indicates that the last line of file X did not have a newline . If the lines
are different, they will be flagged and output; although the output will
seem to indicate they are the same.

- 2 -

·�

DIFF3 (1) (Directory and File Management Utilities) DIFF3 (1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
dif£3 [-ex3] file1 file2 file3

DESCRIPTION

FILES

diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

= = = = 1

= = = = 2

= = = =3

all three files differ

file1 is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

f : n1 a
Text is to be appended after line number n1 in file f, where f = 1, 2,
or 3 .

f : n1 , n2 c
Text is to be changed in the range line n1 to line n2 . If n1 = n2, the
range may be abbreviated to n1 .

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into file1 all changes between file2 and file3 , i . e . , the changes
that normally would be flagged = = = = and = = = =3 . Option -x (-3) pro
duces a script to incorporate only changes flagged = = = = (= = = = 3) .
The following command will apply the resulting script to file1 :

(cat script; echo '1,$p') I ed - filel

/tmp/d3*
/usr/lib/ diff3prog

SEE ALSO
diff(1) .

- 1 -

DIFF3 (1) (Directory and File Management Utilities)

BUGS
Text lines that consist of a single . will defeat -e.
Files longer than 64Kb will not work.

- ? -

DIFF3 (1)

DIFFMK(l) (Directory and File Management Utilities) DIFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk name1 name2 name3

DESCRIPTION
diffmk is a shell procedure that compares two versions of a file and creates
a third file that includes "change mark" commands for nroff or troff(1) .
Name1 and name2 are the old and new versions of the file . diffmk gen
erates name3, which contains the lines of name2 plus inserted formatter
"change mark" (.me) requests . When name3 is formatted, changed or
inserted text is shown by I at the right margin of each line. The position
of deleted text is shown by a single * .

diffmk can be used to produce listings of C (or other) programs with
changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file macs contains:

.pi 1

. ll 77

. nf

. eo

.nc

The .11 request can be used to specify a different line length, depending
on the nature of the program being printed. The .eo and .nc requests are
probably needed only for C programs.

If the characters I and * are inappropriate, a copy of diffmk can be edited
to change them.

SEE ALSO

BUGS

diff(1), nrof£(1), troff(l) .

Aesthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce undesir
able output, i . e . , replacing . sp by . sp 2 produces a "change mark" on the
preceding or following line of output.

- 1 -

DIRCMP(l) (Directory and File Management Utilities) DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-s] [-wn] dir1 dir2

DESCRIPTION
dircmp examines dir1 and dir2 and generates various tabulated information
about the contents of the directories . Listings of files that are unique to
each directory are generated for all the options . If no option is entered, a
list is output indicating whether the file names common to both direc
tories have the same contents .

-d

-s

Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to
bring them into agreement. The list format is described in diff(l) .

Suppress messages about identical files.

-wn

SEE ALSO

Change the width of the output line to n characters . The default
width is 72.

cmp(l), diff(l) .

DIS (l) (Software Generation System Utilities) DIS (l)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-s] [-d sec] [-da sec] [-F function] [-t sec]
[-1 string] file . . .

DESCRIPTION
The dis command produces an assembly language listing of file, which
may be an object file or an archive of object files . The listing includes
assembly statements and an octal or hexadecimal representation of the
binary that produced those statements .

The following options are interpreted by the disassembler and may be
specified in any order.

-o
Print numbers in octal. The default is hexadecimal .

-V
Print, on standard error, the version number of the disassembler
being executed .

-L

-s

Lookup source labels in the symbol table for subsequent printing.
This option works only if the file was compiled with additional
debugging information (e .g. , the -g option of cc{l)) .

Perform symbolic disassembly- i .e . , specify source symbol names for
operands where possible . Symbolic disassembly output will appear
on the line following the instruction. For maximal symbolic disassem
bly to be performed, the file must be compiled with additional debug
ging information (e .g . , the -g option of cc{l)) . Symbol names will be
printed using C syntax.

-d sec
Disassemble the named section as data, printing the offset of the data
from the beginning of the section.

-da sec
Disassemble the named section as data, printing the actual address of
the data .

- 1 -

DIS (l)

FILES

(Software Generation System Utilities) DIS (l)

-F function
Disassemble only the named function in each object file specified on
the command line . The -F option may be specified multiple times on -

the command line.

-t sec
Disassemble the named section as text.

· -1 string
Disassemble the library file specified by string . For example, one
would issue the command dis -1 x -1 z to disassemble libx.a and
libz.a . All libraries are assumed to be in LIBDIR.

If the -d, -da or -t options are specified, only those named sections from
each user-supplied file name will be disassembled. Otherwise, all sec
tions containing text will be disassembled .

On output, a number enclosed in brackets at the beginning of a line, such
as [5], represents that the break-pointable line number starts with the fol
lowing instruction. These line numbers will be printed only if the file was
compiled with additional debugging information (e .g . , the -g option of
cc(l)) . An expression such as <40> in the operand field or in the sym
bolic disassembly, following a relative displacement for control transfer
instructions, is the computed address within the section to which control
will be transferred. A function name will appear in the first column, fol
lowed by () .

LIBDIR usually /lib.

SEE ALSO
as(l), cc(l), ld(l), a .out(4) .

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

- .., -

------c

DNP(l) (Essential Utilities) DNP(l)

NAME
dnp - patch program with NULL pointer dereference bug

SYNOPSIS
dnp filename

DESCRIPTION
On the SYSTEM V/88 BOS, the kernel is set up so that any program that
attempts to dereference a pointer at a NULL (or very low) address will
dump core. This is because the SYSTEM V/88 BOS system does not
guarantee there will be zeroes at address 0. However, a workaround has
been provided in the kernel. If the timdat field in the file header (filehdr)
structure has a value of 1, the kernel will provide a block of zeroes at
address 0 to allow the program to run until the source code can be fixed .

The dnp program changes the value of the timdat field in an executable file
to 1, so that the utility may be run.

When the dnp utility is run, several diagnostic messages are printed: the
pathname of the file, the magic number of the file to be patched (only files
with magic number 0555 can be patched), and the old and new values of

--..., the timdat field.

The file command recognizes a file that has been patched in this way,
indicating that it is dnp kludged.

EXAMPLES
dnp foo

FILES
/usr/lbinldnp

DIAGNOSTICS
can't change non-0555 files!

When the file you are attempting to patch is not a current SYSTEM
V/88 executable file with a magic number of 0555.

Error: fopen on filename failed
If the file you are attempting to patch, does not exist or cannot be
read or written.

- 1 -

DNP(l)

NOTES

(Essential Utilities) DNP(l)

The dnp utility should only be used to patch programs until the source
code can be fixed .

Utilities may dump core for reasons other than NULL pointer problems; if
the utility continues to dump core after being dnp patched, there is some
other problem.

Please be sure to report to your representative any utilities in which you
discover NULL pointer dereference problems, so that they may be fixed in
code.

Library routines (in libc.a and other libraries) may dump core with a NULL
pointer if they are passed NULL pointers; for example, a strcmp() where
one of the arguments is a NULL pointer. This should be fixed in the code
that calls strcmp() .

- ? -

DUMP(l) (Software Generation System Utilities) DUMP(l)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [options] files

DESCRIPTION
The dump command dumps selected parts of each of its object file
arguments .

This command will accept both object files and archives of object files . It
processes each file argument according to one or more of the following
options:

-a

Dump the archive header of each member of each archive file
argument.

-g
Dump the global symbols in the symbol table of an archive .

-£
Dump each file header.

-o
Dump each optional header.

-h
Dump section headers .

-s
Dump section contents .

-r
Dump relocation information.

-1
Dump line number information.

-t
Dump symbol table entries.

-z name
Dump line number entries for the named function.

-c
Dump the string table .

- 1 -

DUMP (l) (Software Generation System Utilities) DUMP(l)

-L
Interpret and print the contents of the . lib sections .

The following modifiers are used in conjunction with the options listed
above to modify their capabilities .

-d number
Dump the section number, number, or the range of sections starting at
number and ending at the number specified by + d.

+ d number
Dump sections in the range either beginning with first section or
beginning with section specified by -d.

-n nnme
Dump information pertaining only to the named entity. This modifier
applies to -h, -s, -r, -1, and -t.

-p
Suppress printing of the headers .

-t index
Dump only the indexed symbol table entry. The -t used in conjunc
tion with + t, specifies a range of symbol table entries.

+t index
Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

-u

Underline the name of the file for emphasis .

-v
Dump information in symbolic representation rather than numeric
(e .g . , C_STATIC instead of OX02) . This modifier can be used with all
the above options except -s and -o options of dump.

-z nnme,number
Dump line number entry or range of line numbers starting at number
for the named function.

+ z number
Dump line numbers starting at either function nnme or number speci
fied by -z, up to number specified by + z .

- ? -

DUMP(l) (Software Generation System Utilities) DUMP(l)

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be
replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4) .

- 3 -

ECHO(l) (Essential Utilities) ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg 1 . . .

DESCRIPTION
echo writes its arguments separated by blanks and terminated by ·" new
line on the standard output. It also understands C-like escape conven
tions; beware of conflicts with the shell's use of \:

\b
backspace

\c
print line without newline

\£
form-feed

\n
newline

\r
carriage return

\t tab
\v

vertical tab
\\

backslash
\On

where n is the 8-bit character whose ASCII code is the 1-, 2-, or 3-digit
octal number representing that character.

echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(1) .

CAVEATS
When representing an 8-bit character by using the escape convention \On ,
the n must always be preceded by the digit zero (0) .

- 1 -

ECHO(l) (Essential Utilities) ECHO(l)

For example, typing: echo 'WARNING:\07' will print the phrase
"WARNING:" and sound the "bell" on your terminal. The use of single
(or double) quotes (or two backslashes) is required to protect the "\" that
precedes the "07" .

For the octal equivalents of each character, see ascii (S), in the Programmer's
Reference Manual.

- 2 -

ED (l) (Essential Utilities) ED (l)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [-C] lfild

red [-s] [-p string] [-x] [-C] [file]

DESCRIPTION
ed is the standard text editor. If the file argument is given, ed simulates
an e command (see below) on the named file; that is to say, the file is read
into ed's buffer so that it can be edited.

-s
Suppresses the printing of character counts by e, r, and w commands,
of diagnostics from e and q commands, and of the ! prompt after a
!shell command .

-p
Allows the user to specify a prompt string.

-x
Encryption option; when used, ed simulates an X command and
prompts the user for a key. This key is used to encrypt ana decrypt
text using the algorithm of crypt(l) . The X command makes an edu
cated guess to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a transformed ver
sion of the key typed in for the -x option. See crypt(l) . Also, see the
WARNINGS section.

-C
Encryption option; the same as the -x option, except that ed simulates
a C command. The C command is like the X command, except that
all text read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy
have no effect on the file until a w (write) command is given. The copy of
the text being edited resides in a temporary file called the buffer . There is
only one buffer.

red is a restricted version of ed . It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell com
mand . Attempts to bypass these restrictions result in an error message
(restricted shell) .

- 1 -

ED (l) (Essential Utilities) ED (l)

Both ed and red support the fspec(4) formatting capability. After including
a format specification as the first line of file and invoking ed with your ter
minal in stty -tabs or stty tab3 mode (see stty(1)), the specified tab stops
will automatically be used when scanning file . For example, if the first
line of a file contained:

< : t5 , 1 0 , 1 5 s72 : >
tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed.

NOTE: When you are entering text into the file, this format is not in
effect; instead, because of being in stty -tabs or stty tab3 mode,
tabs are expanded to every eighth column.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines
in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line . Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode . In this
mode, no commands are recognized; all input is merely collected . Leave
input mode by typing a period (.) at the beginning of a line, followed
immediately by a carriage return.

ed supports a limited form of regular expression notation; regular expres
sions are used in addresses to specify lines and in some commands (e .g . ,
s) to specify portions of a line that are to be substituted. A regular expres
sion (RE) specifies a set of character strings . A member of this set of
strings is said to be matched by the RE. The REs allowed by ed are con
structed as follows:

The following one-character RE s match a single character:

1 . 1 An ordinary character (not one of those discussed i n 1 . 2) i s a one
character RE that matches itself.

1 . 2 A backslash (\) followed by any special character i s a one-character
RE that matches the special character itself. The special characters
are:

a . . , * , [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([] ; see 1 .4) .

- ") -

ED (l) (Essential Utilities) ED (l)

b . A (caret or circumflex), which i s special a t the beginning of an entire
RE (see 3 . 1 and 3 .2 below), or when it immediately follows the left
of a pair of square brackets ([]) (see 1 .4 below) .

c . $ (dollar sign), which is special at the end of an entire RE (see 3 .2) .

d . The character used to bound (i .e . , delimit) a n entire RE, which is
special for that RE (for example, see how slash (/) is used in the g
command, below.)

1 .3 A period (.) is a one-character RE that matches any character except
newline.

1 .4 A non-empty string of characters enclosed in square brackets (I 1) is
a one-character RE that matches any one character in that string. If,
however, the first character of the string is a circumflex (A), the
one-character RE matches any character except newline and the
remaining characters in the string. The A has this special meaning
only if it occurs first in the string.

The minus (-) may be used to indicate a range of consecutive ASCII char
acters; for example, [0-9] is equivalent to £0123456789] . The - loses this
special meaning if it occurs first (after an initial A , if any) or last in the
string. The right square bracket (]) does not terminate such a string when
it is the first character within it (after an initial A, if any); e .g . , []a-£]
matches either a right square bracket (]) or one of the letters a through f
inclusive . The four characters listed in 1 .2 .a stand for themselves within
such a string of characters .

The following rules may be used to construct REs from one-character REs :

2 . 1 A one-character RE is a RE that matches whatever the one-character
RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m, \}, or \{m,n\} is a RE that
matches a range of occurrences of the one-character RE. The values
of m and n must be non-negative integers less than 256; \{m \}
matches exactly m occurrences; \{m, \} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m
and n inclusive . Whenever a choice exists, the RE matches as many
occurrences as possible .

- 3 -

ED (l) (Essential Utilities) ED (l)

2.4 The concatenation of REs is a RE that matches the concatenation of
the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same RE. Here n is a digit; the sub-expression specified is that
beginning with the n-th occurrence of \(counting from the left. For
example, the expression "\(.*\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment
or final segment of a line (or both) :

3 . 1 A circumflex (") at the beginning of an entire RE constrains that RE
to match an initial segment of a line .

3 .2 A dollar sign {$) at the end of an entire RE constrains that RE to
match a final segment of a line .

The construction "entire RE $ constrains the entire RE to match the entire
line .

The NULL RE (e .g . , //) is equivalent to the last RE encountered. See also
the last paragraph before the FILES section.

To understand addressing in ed it is necessary to know that at any time
there is a current line . Generally, the current line is the last line affected
by a command; the exact effect on the current line is discussed under the
description of each command. Addresses are constructed as follows:

1 . The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ' x addresses the line marked with the mark name character x, which
must be an ASCII lowercase letter (a-z) . Lines are marked with the k
command described below.

_ .,1 _

ED (l) (Essential Utilities) ED (l)

5 . A RE enclosed by slashes { /) addresses the first line found by search
ing forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the beginning of
the buffer and continues up to and including the current line, so that
the entire buffer is searched. See also the last paragraph before the
FILES section.

6. A RE enclosed in question marks (?) addresses the first line found
by searching backward from the line preceding the current line toward
the beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to
the end of the buffer and continues up to and including the current
line . See also the last paragraph before the FILES.

7. An address followed by a plus sign (+) or a minus sign (-) followed
by a decimal number specifies that address plus (respectively minus)
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e .g . , -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and of
Rule 8, immediately above, the address - refers to the line preceding
the current line . (To maintain compatibility with earlier versions of
the editor, the character " in addresses is entirely equivalent to -.)
Moreover, trailing + and - characters have a cumulative effect, so -
refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while
a semicolon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error. Com
mands that accept one or two addresses assume default addresses when
an insufficient number of addresses is given; if more addresses are given
than such a command requires, the last one(s) are used.

- 5 -

ED (l) (Essential Utilities) ED(l)

Typically, addresses are separated from each other by a comma (,) . They
may also be separated by a semicolon (;) . In the latter case, the current
line (.) is set to the first address, and only then is the second address cal
culated. This feature can be used to determine the starting line for for
ward and backward searches (see Rules 5 and 6) . The second address of
any two-address sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that
the given addresses are the default.

It is generally illegal for more than one command to appear on a line .
However, any command (except e, f, r, or w) may be suffixed by l, n, or p
in which case the current line is either listed, numbered or printed,
respectively, as discussed below under the l , n, and p commands.

(.)a
<text>

(.)c
<text>

c

(• 1 •)d

The append command reads the given text and appends it after
the addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. Address 0 is legal for this com
mand: it causes the "appended" text to be placed at the beginning
of the buffer. The maximum number of characters that may be
entered from a terminal is 256 per line (including the newline
character) .

The change command deletes the addressed lines, then accepts
input text that replaces these lines; . is left at the last line input,
or, if there were none, at the first line that was not deleted.

Same as the X command, except that ed assumes all text read in
for the e and r commands is encrypted unless a NULL key is
entered.

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

- 6 -

ED (l)

e file

E file

f file

(Essential Utilities) ED (l)

The edit command causes the entire contents of the buffer to be
deleted, then the named file to be read in; . is set to the last line
of the buffer. If no file name is given, the currently remembered
file name, if any, is used (see the f command) . The number of
characters read is typed; file is remembered for possible use as a
default file name in subsequent e, r, and w commands. If file is
replaced by !, the rest of the line is taken to be a shell (sh (l)) com
mand whose output is to be read. Such a shell command is not
remembered as the current file name. See the DIAGNOSTICS sec
tion.

The Edit command is like e, except that the editor does not check
to see if any changes have been made to the buffer since the last
w command.

If file is given, the f ile-name command changes the currently
remembered file name to file; otherwise, it prints the currently
remembered file name.

(1 , $)g/RE/command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given com
mand list is executed with . initially set to that line . A single com
mand or the first of a list of commands appears on the same line
as the global command. All lines of a multi-line list except the
last line must be ended with a \; a , i, and c commands and associ
ated input are permitted. The . terminating input mode may be
omitted if it would be the last line of the command list . An empty
command list is equivalent to the p command. The g, G, v, and V
commands are not permitted in the command list . See also BUGS
and the last paragraph before FILES.

- 7 -

ED (l) (Essential Utilities) ED(l)

(1 , $)G/RE/

h

H

(.)i
<text>

In the interactive Global command, the first step is to mark every
line that matches the given RE. Then, for every such line, that
line is printed, . is changed to that line, and any one command
(other than one of the a, c, i, g, G, v, and V commands) may be
input and is executed. After the execution of that command, the
next marked line is printed, and so on; a newline acts as a NULL
command; an & causes the re-execution of the most recent com
mand executed within the current invocation of G . Note that the
commands input as part of the execution of the G command may
address and affect any lines in the buffer. The G command can be
terminated by an interrupt signal {ASCII DEL or BREAK) .

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes
sages are printed for all subsequent ? diagnostics . It will also
explain the previous ? if there was one. The H command alter
nately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed
line; . is left at the last inserted line, or, if there were none, at the
addressed line . This command differs from the a command only
in the placement of the input text. Address 0 is not legal for this
command. The maximum number of characters that may be
entered from a terminal is 256 per line (including the newline
character) .

(. 1 . + 1)j

(.)kx

The join command JOins contiguous lines by removing the
appropriate newline characters . If exactly one address is given,
this command does nothing.

The mark command marks the addressed line with name x, which
must be an ASCII lowercase letter (a-z) . The address 'x then
addresses this line; . is unchanged.

- R -

ED (l)

(. 1 .)1

(Essential Utilities) ED (l)

The l ist command prints the addressed lines in an unambiguous
way: a few non-printing characters (e .g . , tab, backspace) are
represented by visually mnemonic overstrikes . All other non
printing characters are printed in octal, and long lines are folded.
An 1 command may be appended to any other command other
than e, f, r, or w .

(. 1 .)rna

(. 1 .)n

(• I •)p

p

q

Q

The move command repositions the addressed line(s) after the line
addressed by a . Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file . It is an error if
address a falls within the range of moved lines; . is left at the last
line moved.

The number command prints the addressed lines, preceding each
line by its line number and a tab character; . is left at the last line
printed. The n command may be appended to any other com
mand other than e, f, r, or w .

The print command prints the addressed lines; . i s left a t the last
line printed. The p command may be appended to any other com
mand other than e, f, r, or w . For example, dp deletes the current
line and prints the new current line .

The editor will prompt with a * for all subsequent commands .
The P command alternately turns this mode on and off; it is
initially off.

The quit command causes ed to exit. No automatic write of a file
is done; however, see DIAGNOSTICS .

The editor exits without checking if changes have been made in
the buffer since the last w command.

- 9 -

ED (l)

($)r file

(Essential Utilities) ED (l)

The read command reads in the given file after the addressed line .
If no file name is given, the currently remembered file name, if
any, is used (see e and f commands) . The currently remembered
file name is not changed unless file is the very first file name men
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer.

If the read is successful, the number of characters read is typed; .
is set to the last line read in. If file is replaced by !, the rest of the
line is taken to be a shell (sh (1)) command whose output is to be
read. For example, "$r !Is" appends current directory to the end of
the file being edited. Such a shell command is not remembered as
the current file name.

(. , •)siRE/replacement/
(. I •)s!RE!replacementlg
(. I .)siRE/replacement In

or
or
n = 1-512

The substitute command searches each addressed line for an occurrence of
the specified RE. In each line in which a match is found, all (non- _

overlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indica
tor does not appear, only the first occurrence of the matched string is
replaced.

If a number n appears after the command, only the n th occurrence of the
matched string on each addressed line is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than space
or newline may be used instead of I to delimit the RE and the replacement; •
is left at the last line on which a substitution occurred. See also the last
paragraph before FILES.

- 10 -

ED (l)

(. 1 •) ta

u

(Essential Utilities) ED (l)

An ampersand (&) appearing i n the replacement is replaced b y the
string matching the RE on the current line . The special meaning
of & in this context may be suppressed by preceding it by \. As a
more general feature, the characters \n , where n is a digit, are
replaced by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \) . When nested
parenthesized subexpressions are present, n is determined by
counting occurrences of \(starting from the left . When the char
acter % is the only character in the replacement , the replacement
used in the most recent substitute command is used as the replace
ment in the current substitute command . The % loses its special
meaning when it is in a replacement string of more than one char
acter or is preceded by a \.

A line may be split by substituting a newline character into i t .
The newline in the replacement must be escaped by preceding it by
\. Such substitution cannot be done as part of a g or v command
list.

This command acts just l ike the m command, except that a copy of
the addressed lines is placed after address a (which may be 0); . is
left a t the last line of the copy.

The u ndo command nullifies the effect of the most recent com
mand that modified anything in the buffer, namely the most
recent a, c, d, g, i , j , m, r, s, t , v, G, or V command.

(1 1 $)v/RE!command list
This command is the same as the global command g except that
the command list is executed with . init ially set to every l ine that
does not match the RE.

(1 I $)VIREI
This command is the same as the interactive global command G
except that the l ines that are marked during the first step are
those that do not match the RE.

- 1 1 -

ED (I) (Essential Utilities) ED (I)

(1 , $)w file
The write command writes the addressed lines into the named
file . If the file does not exist, it is created with mode 666 (read
able and writable by everyone), unless your umask setting (see
umask(l)) dictates otherwise . The currently remembered file name
is not changed unless file is the very first file name mentioned
since ed was invoked.

If no file name is given, the currently remembered file name, if any, is
used (see e and f commands); . is unchanged. If the command is success
ful, the number of characters written is typed . If file is replaced by !, the
rest of the line is taken to be a shell (sh (l)) command whose standard
input is the addressed lines . Such a shell command is not remembered as
the current file name .

X

($) =

A key is prompted for, and it is used in subsequent e, r, and w
commands to decrypt and encrypt text using the crypt(!) algo
rithm. An educated guess is made to determine whether text read
in for the e and r commands is encrypted. A NULL key turns off
encryption. Subsequent e, r, and w commands will use this key
to encrypt or decrypt the text (see crypt (!)) . An explicitly empty
key turns off encryption. Also, see the -x option of ed .

The line number of the addressed line is typed; . is unchanged by
this command.

!shell command
The remainder of the line after the ! is sent to the shell (sh (l)) to
be interpreted as a command. Within the text of that command,
the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it
is replaced with the text of the previous shell command. Thus, !!
will repeat the last shell command. If any expansion is per
formed, the expanded line is echoed; . is unchanged.

(. + l)< newline>
An address alone on a line causes the addressed line to be
printed. A newline alone is equivalent to . + lp; it is useful for
stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and
returns to its command level .

- 1 2 -

ED (l) (Essential Utilities) ED (l)

Some size limitations: 5 12 characters in a line, 256 characters in a global
command list, and 64 characters in the pathname of a file (counting

-.._ slashes) . The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

FILES

NOTES

When reading a file, ed discards ASCII NUL characters .

If a file is not terminated by a newline character, ed adds one and puts out
a message explaining what it did .

If the closing delimiter of a RE or of a replacement string (e .g . , /) would be
the last character before a newline, that delimiter may be omitted, in
which case the addressed line is printed. The following pairs of com
mands are equivalent:

s/s1/s2 s/slls2/p
g/s1 glsllp
?s1 ?s1?

$ TMPDIR i f this environmental variable is not NULL, its value
is used in place of

/usr/tmp
/usr/tmp

/tmp

ed . hup

as the directory name for the temporary work file .
if /usr/tmp exists, it is used as the directory name
for the temporary work file .
if the environmental variable TMPDIR does not exist
or is nul l , and if /usr/tmp does not exist, then /tmp
is used as the directory name for the temporary
work file .
work is saved here if the terminal is hung up.

The - option, although it continues to be supported, has been replaced in
the documentation by the -s option that follows the Command Syntax
Standard (see intro (1)) .

SEE ALSO
edit(1), ex(1), grep(1), sed(1), sh(1), stty(1), umask(1), vi(1) .
fspec(4), regexp(5) in the System Administrator's Reference Manual .

- 13 -

ED (l) (Essential Utilities) ED (l)

DIAGNOSTICS
? for command errors .

?file for an inaccessible fi le .
(use the help and Help commands for detailed explanations) .

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed' s buffer via the e or q commands. It prints ? and allows one to con
tinue editing. A second e or q command at this point will take effect. The
-s command-line option inhibits this feature .

WARNINGS

BUGS

The encryption options and commands are provided with the Security
Administration Utilities package, which is available only in the United
States .

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot
be used if the editor is invoked from a restricted shell (see sh (l)) .

The sequence \n in a RE does not match a newline cha racter.

If the editor input is coming from a command fi le (e .g . , ed file < ed
cmd-file), the editor will exit at the first failure .

- 1 4 -

EDIT(l) (Editing Utilities) EDIT (l)

NAME
edit - text editor (variant of ex for casual users)

� SYNOPSIS
edit [-r] [-x] [-C] name . . .

DESCRIPTION
edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor. It operates precisely as ex
(1) with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the set command in ex (1) .

-r

-X
Recover file after an editor or system crash.

Encryption option; when used the file will be encrypted as it is being
written and will require an encryption key to be read . edit makes an
educated guess to determine if a file is encrypted or not. See crypt
(1) . Also, see the WARNING section at the end of this manual page .

-C
Encryption option; the same as -x except that edit assumes files are
encrypted.

The following brief introduction should help you get started with edit . I f
you are using a CRT terminal, you may want to learn about the display
editor vi.

To edit the contents of an existing file, you begin with the command edit
name to the shell . edit makes a copy of the file that you can then edit, and
tells you how many lines and characters are in the fi le . To create a new
file, you also begin with the command edit with a file name: edit name; the
editor will tell you it is a [New File] .

- 1 -

EDIT(l) (Editing Utilities) EDIT (l)

The edit command prompt i s the colon (:), which you should see after
starting the editor. If you are editing an existing file, then you will have
some lines in edit 's buffer (its name for the copy of the file you are edit
ing) . When you start editing, edit makes the last line of the file the
current line . Most commands to edit use the current line if you do not tell
them which line to use . Thus if you say print (which can be abbreviated
p) and type carriage return (as you should after all edit commands), the
current line will be printed. If you delete (d) the current line, edit will print
the new current line, which is usually the next line in the file . I f you
delete the last line, then the new last line becomes the current one .

If you start with an empty file or wish to add some new lines, then the
append (a) command can be used. After you execute this command (typ
ing a carriage return after the word append), edit wil l read l ines from your
terminal until you type a line consisting of just a dot (.); i t places these
lines after the current line . The last line you type then becomes the
current line. The command insert (i) is like append, but places the l ines
you type before, rather than after, the current line .

edit numbers the lines in the buffer, with the first l ine having number 1 .
If you execute the command 1, then edit will type the fi rst l ine o f the -
buffer. If you then execute the command d, edit wi l l delete the first l ine,
line 2 will become line 1, and edit will print the current l ine (the new l ine
1) so you can see where you are . In general, the current l ine wil l always
be the last line affected by a command.

You can make a change to some text within the current l ine by using the
substitute (s) command: s/old /new/ where old is the string of characters you
want to replace and new is the string of characters you want to replace old
with.

The command file (f) will tell you how many lines there are in the buffer
you are editing and will say [Modified] if you have changed the buffer.
After modifying a file, you can save the contents of the fi le by executing a
write (w) command. You can leave the editor by issuing a quit (q) com
mand. If you run edit on a file, but do not change i t, i t i s not necessary
(but does no harm) to write the file back. If you try to quit from edit after
modifying the buffer without writing it out, you will receive the message
No write since last change (:quit! overrides), and edit will wait for another
command. If you do not want to write the buffer out, issue the quit com
mand followed by an exclamation point (q!) . The buffer is then irretriev
ably discarded and you return to the shell .

- 2 -

EDIT(l) (Editing Utilities) EDIT (l)

By using the d and a commands and giving line numbers to see lines in
the file, you can make any changes you want. You should learn a t least a
few more things, however, if you will use edit more than a few times .

The change (c) command changes the current line to a sequence of lines
you supply (as in append, you type lines up to a line consisting of only a
dot (.) . You can tell change to change more than one line by giving the
line numbers of the lines you want to change, i . e . , 3,5c . You can print
lines this way too: 1,23p prints the first 23 lines of the file .

The undo (u) command reverses the effect of the last command you exe
cuted that changed the buffer. Thus if you execute a substitute command
that does not do what you want, type u and the old contents of the line
will be restored. You can also undo an undo command. edit will give you
a warning message when a command affects more than one line of the
buffer. Note that commands such as write and quit cannot be undone .

To look at the next line in the buffer, type carriage return. To look at a
number of lines, type CTRL - d (while holding down the control key,
press d) rather than carriage return. This will show you a half-screen of
lines on a CRT or 12 lines on a hardcopy terminal . You can look at nearby
text by executing the z command. The current line will appear in the mid
dle of the text displayed, and the last line displayed will become the
current line; you can get back to the line where you were before you exe
cuted the z command by typing ". The z command has other options: z
prints a screen of text (or 24 lines) ending where you are; z + prints the
next screenful. If you want less than a screenful of lines, type z.ll to
display five lines before and five lines after the current line . (Typing z .n,
when n is an odd number, displays a total of n lines, centered about the
current line; when n is an even number, it displays n-1 lines, so that the
lines displayed are centered around the current line .) You can give counts
after other commands; for example, you can delete 5 lines starting with
the current line with the command d5 .

- 3 -

EDIT(l) (Editing Utilities) EDIT (l)

To find things i n the file, you can use line numbers i f you happen to
know them; since the line numbers change when you insert and delete
lines this is somewhat unreliable . You can search backwards and for
wards in the file for strings by giving commands of the form !text/ to
search forward for text or ?text? to search backward for text . If a search
reaches the end of the file without finding text, it wraps around and con
tinues to search back to the line where you are. A useful feature here is a
search of the form rtextl which searches for text at the beginning of a line .
Similarly !text$/ searches for text at the end of a line . You can leave off the
trailing I or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a
range of lines as in . ,$p which prints the current line plus the rest of the
lines in the file . To move to the last line in the file, you can refer to it by
its symbolic name $. Thus, the command $d deletes the last l ine in the
file, no matter what the current line is . Arithmetic with line references is
also possible. Thus the l ine $-5 is the fifth before the last and . + 20 is 20
lines after the current l ine .

You can find out the current line by typing . = . This is useful if you want
to move or copy a section of text within a fi le or between files. Find the �
first and last line numbers you wish to copy or move . To move lines 10
through 20, type 10,20d a to delete these lines from the fi le and place
them in a buffer named a. edit has 26 such buffers named a through z .
To put the contents o f buffer a after the current line, type put a . I f you
want to move or copy these lines to another file, execute an edit (e) com
mand after copying the lines; following the e command with the name of
the other file you wish to edit, i . e . , edit chapter2 . To copy l ines without
deleting them, use yank (y) in place of d. If the text you wish to move or
copy is all within one file, it is not necessary to use named buffers . For
example, to move lines 10 through 20 to the end of the file, type 10,20m $.

SEE ALSO
ed(1), ex(1), vi(1)

WARNING
The encryption options are provided as a separate package only to source
product customers in the United States.

- 4 -

EGREP(l) (Directory and File Management Utilities) EGREP (l)

NAME
egrep - search a file for a pattern using full regular expressions

� SYNOPSIS
egrep [options] full regular expression [file . . .]

DESCRIPTION
egrep (expression grep) searches files for a pattern of characters and prints
all lines that contain that pattern. egrep uses full regular expressions
(expressions that have string values that use the full set of alphanumeric
and special characters) to match the patterns. It uses a fast deterministic
algorithm that sometimes needs exponential space .

egrep accepts full regular expressions as in ed (1), except for \(and \) , with
the addition of:

1 .

2.

3 .

4 .

A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

A full regular expression followed by ? that matches 0 or 1
occurrences of the full regular expression.

Full regular expressions separated by I or by a newline that match
strings that are matched by any of the expressions .

A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, •, [, �, I , (,), and \ in full regular expres
sion, because they are also meaningful to the shell . It is safest to enclose
the entire full regular expression in single quotes 1 • • • 1 •

The order of precedence of operators is [] , then * ? + , then concatenation,
then I and newline .

If no fi les are specified, egrep assumes standard input. Normally, each
line found is copied to the standard output. The file name is printed
before each line found if there is more than one input file .

Command line options are :

-b
Precede each line by the block number on which it was found . This
can be useful in locating block numbers by context (first block is 0) .

- 1 -

EGREP(l) (Directory and File Management Utilities) EGREP (l)

-c
Print only a count of the lines that contain the pattern.

-i

-1
Ignore upper-lowercase distinction during comparisons .

Print the names of files with matching lines once, separated by new
lines. It does not repeat the names of files when the pattern is found
more than once.

-n
Precede each line by its line number in the file (first line is 1) .

-v
Print all lines except those that contain the pattern.

-e special_expression
Search for a special expression (full regular expression that begins with a
-) .

-£ file
Take the list of full regular expressions from file .

SEE ALSO
ed(l), fgrep(l), grep(l), sed{l), sh{l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found) .

Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs . Lines
are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.

- 2 -

ENABLE (l) (Line Printer Spooling Utilities) ENABLE (l)

NAME
enable, disable - enable/disable LP printers

------- sYNOPSIS
enable printers
disable [options] printers

DESCRIPTION

FILES

The enable command activates the named printers , enabling them to print
requests taken by lp (l) . Use lpstat(l) to find the status of printers .

The disable command deactivates the named printers , disabling them from
printing requests taken by lp (l) . By default, any requests that are
currently printing on the designated printers will be reprinted in their
entirety either on the same printer or on another member of the same
class. Use lpstat(l) to find the status of printers . Options for use with dis
able are:

-c
Cancel any requests that are currently printing on any of the desig
nated printers . This option cannot be used with the -W option.

-r reason
Assign a reason for the disabling of the printers . This reason applies to
all printers mentioned up to the next -r option. This reason is
reported by lpstat (l) . If the -r option is not present, then a default
reason will be used.

-W
Disable the specified printers when the print requests currently print
ing have finished. This option cannot be used with the -c option.

/usr/spool/lp/•

SEE ALSO
lp(l), lpstat(l) .

- 1 -

ENV(l) (User Environment Utilities) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value 1 . . . [command args 1

DESCRIPTION
env obtains the current environment, modifies it according to its argu
ments, then executes the command with the modified environment.
Arguments of the form name =value are merged into the inherited environ
ment before the command is executed. The - flag causes the inherited
environment to be ignored completely, so that the command is executed
with exactly the environment specified by the arguments .

If no command is specified, the resulting environment is printed, one
name-value pair per line .

SEE ALSO
sh(l)
exec(2), profile(4), environ(S) in the Programmer's Reference Manual.

- 1 -

EX (l) (Editing Utilities) EX (l)

NAME
ex - text editor

!' SYNOPSIS
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-x] [-C] [-c command] file

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a superset of ed with
the most notable extension being a display editing facility. Display based
editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in
this case see vi(1) , which is a command which focuses on the display
editing portion of ex.

For e d Users
If you have used ed (1) you will find that, in addition to having all of the
ed (1) commands available, ex has a number of additional features useful
on CRT terminals . Intelligent terminals and high speed terminals are very
pleasant to use with vi. Generally, the ex editor uses far more of the
capabilities of terminals than ed (1) does, and uses the terminal capabil ity
data base (see terminfo (4)) and the type of the terminal you are using from
the environmental variable TERM to determine how to drive your terminal
efficiently. The editor makes use of features such as insert and delete
character and line in its visual command (which can be abbreviated vi)
and which is the central mode of editing when using vi (1) .

ex contains a number of features for easily viewing the text of the file .
The z command gives easy access to windows of text. Typing CTRL - d
causes the editor to scroll down a half-window o f text and i s more useful
for quickly stepping through a file than just typing return. Of course, the
screen-oriented visual mode gives constant access to editing context .

ex gives you help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a
lot of feedback, normally printing changed lines, and indicates when more
than a few lines are affected by a command so that it is easy to detect
when a command has affected more lines than it should have .

The editor also normally prevents overwriting existing files, unless you
edited them, so that you do not accidentally overwrite a file other than the
one you are editing. If the system (or editor) crashes, or you accidentally
hang up the telephone, you can use the editor recover command (or -r file
option) to retrieve your work. This will get you back to within a few lines
of where you left off.

- 1 -

EX (l) (Editing Utilities) EX (l)

ex has several features for dealing with more than one file a t a time . You
can give it a list of files on the command line and use the next (n) com
mand to deal with each in tum. The next command can also be given a
list of file names, or a pattern as used by the shell to specify a new set of
files to be dealt with. In general, file names in the editor may be formed
with full shell metasyntax. The metacharacter '%' is also available in
forming file names and is replaced by the name of the current file.

The editor has a group of buffers whose names are the ASCII lowercase
letters (a-z) . You can place text in these named buffers where it is avail
able to be inserted elsewhere in the file . The contents of these buffers
remain available when you begin editing a new file using the edit (e) com
mand.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether each
substitution is desired.

It is possible to ignore the case of letters in searches and substitutions . ex
also allows regular expressions which match words to be constructed .
This is convenient, for example, in searching for the word "edit" if your
document also contains the word "editor ."

ex has a set of options which you can set to tailor it to your liking. One
option which is very useful is the autoindent option that allows the editor
to supply leading white space to align text automatically. You can then
use CTRL-d as a backtab and space or tab to move forward to align new
code easily.

Miscellaneous useful features include an intelligent join (j) command that
supplies white space between joined lines automatically, commands "< "
and "> " which shift groups of lines, and the ability to filter portions of the
buffer through commands such as sort (1) .

Invocation Options
The following invocation options are interpreted by ex (previously docu
mented options are discussed in the NOTES section at the end of this
manual page):

-s
Suppress all interactive-user feedback. This is useful in processing
editor scripts.

- 2 -

EX (l) (Editing Utilities) EX(l)

-v
Invoke vi.

-t tag
Edit the file containing the tag and position the editor at its definition.

-r file
Edit file after an editor or system crash. (Recovers the version of file
that was in the buffer when the crash occurred.)

-L
List the names of all files saved as the result of an editor or system
crash.

-R
Readonly mode; the readonly flag is set, preventing accidental
overwriting of the file .

-x
Encryption option; when used, ex simulates an X command and
prompts the user for a key. This key is used to encrypt and decrypt
text using the algorithm of crypt (1) . The X command makes an edu
cated guess to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a transformed ver
sion of the key typed in for the -x option. See crypt (1) . Also, see the
WARNINGS section.

-C
Encryption option; the same as the -x option, except that ex simulates
a C command. The C command is like the X command, except that
all text read in is assumed to have been encrypted.

-c command
Begin editing by executing the specified editor command (usually a
search or positioning command) .

The file argument indicates one or more files to be edited.

ex States
Command

Normal and initial state . Input prompted for by : . Your line kill char
acter cancels a partial command.

- 3 -

EX(l) (Editing Utilities) EX(l)

Insert
Entered by a, i, or c. Arbitrary text may be entered. Insert state nor
mally is terminated by a line having only ". " on it, or, abnormally,
with an interrupt.

Visual
Entered by typing vi; terminated by typing Q or A\ {CTRL- \) .

e x Command Names and Abbreviations
abbrev ab map set se
append a mark rna shell sh
args ar move m source so
change c next n substitute s
copy co number nu unabbrev unab
delete d preserve pre undo u
edit e print p unmap unm
file f put pu version ve
global g quit q visual vi
insert i read r write w

join j recover rec xit X

list 1 rewind rew yank ya

ex Commands
forced encryption c heuristic encryption X
resubst & print next CR
rshift > I shift <
scroll CTRL-d window z
shell escape

ex Command Addresses
n line n /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y

previous 'x marked with x
+ n n forward previous context
% 1,$

- 4 -

EX (l)

Initializing options
EXINIT
$HOME!.exrc
./. exrc
set x
set nox
set x=val
set
set all
set x?

(Editing Utilities)

place set's here in environment variable
editor initialization file
editor initialization file
enable option x
disable option x
give value val to option x
show changed options
show all options
show value of option x

EX (l)

Mos t useful options and their abbreviations
autoindent
auto write
directory
exrc

ignorecase
list
magic
mode lines

number
paragraphs
redraw
report

scroll
sections
shiftwidth
showmatch
showmode
slowopen
term

ai supply indent
aw write before changing files

pathname of directory for temporary work files
ex allow vi/ex to read the . exrc in the current

directory. This option is set in the EXINIT
shell variable or in the . exrc file in the $HOME
directory.

ic ignore case of letters in scanning
print �I for tab, $ at end
treat . [• special in patterns
first five lines and last five lines executed as
vi/ex commands if they are of the form:
ex:command: or vi:command:

nu number lines ,
para macro names that start paragraphs

simulate smart terminal
informs you if the number of lines modified by
the last command is greater than the value of
the report variable
command mode lines

sect macro names that start sections
sw for < >, and input �o
sm to) and } as typed
smd show insert mode in vi
slow stop updates during insert

specifies to vi the type of terminal being used
(the default is the value of the environmental
variable TERM)

- 5 -

EX (l)

window
wrapmargin wm
wrapscan ws

(Editing Utilities)

visual mode lines
automatic line splitting
search around end (or beginning) of buffer

EX (l)

Scanning pattern formation
A beginning of line
$ end of line

\<
\>
[str]
rstr]
[x-y]
•

any character
beginning of word
end of word
any character in str
any character not in str
any character between x and y
any number of preceding characters

AUTHOR

FILES

NOTES

vi and ex are based on software developed by the University of California,
Berkeley, California, Computer Science Division, Department of Electrical
Engineering and Computer Science .

/usr/lib/ exstrings
/usrllib/exrecover
/usrllib/expreserve
/usr/lib/terminfo/*
$HOME/.exrc
./. exrc
ltmp!Exnnnnn
ltmp/Rxnnnnn
/usr/preserve/login

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where login is the user's login)

Several options, although they continue to be supported, have been
replaced in the documentation by options that follow the Command Syn
tax Standard (see intro(l)) . The - option has been replaced by -s, a -r
option that is not followed with an option-argument has been replaced by
-L, and + command has been replaced by -c command .

- 6 -

EX (l) (Editing Utilities) EX (l)

SEE ALSO
crypt(l), ed(l), edit(l), grep(l), sed(l), sort(l), vi(l)
curses(3X), in the Programmer's Reference Manual.
term(4), terminfo(4) in the System Administrator's Reference Manual .
User's Guide.
"curses/terminfo" chapter of the Programmer's Guide .

WARNINGS

BUGS

The encryption options and commands are provided as a separate package
only to source product customers in the United States.

The z command prints the number of logical rather than physical lines.
More than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line -s option
is used.

There is no easy way to do a single scan ignoring case .

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

NULL characters are discarded in input files and cannot appear in resultant
files .

- 7 -

EXPR(l) (Essential Utilities) EXPR(l)

NAME
expr - evaluate arguments as an expression

-------. SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that 0 is returned to indicate a zero value, rather than the NULL
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 32-bit, 2s complement numbers .

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within { } symbols .

expr \ I expr
returns the first expr if it is neither NULL nor 0, otherwise, returns the
second expr .

expr \& expr
returns the first expr if neither expr is NULL or 0, otherwise, returns 0 .

expr { = , \>, \> =, \<, \< = , ! = } expr
returns the result of an integer comparison if both arguments are
integers, otherwise, returns the result of a lexical comparison.

expr { + , - } expr
addition or subtraction of integer-valued arguments .

expr { *, I, % } expr
multiplication, division, or remainder of the integer-valued argu
ments.

expr : expr
The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed{l), except that all patterns are
"anchored" (i .e . , begin with A) and, therefore, A is not a special char
acter, in that context. Normally, the matching operator returns the
number of characters matched {0 on failure) . Alternatively, the
\(. . . \) pattern symbols can be used to return a portion of the first
argument.

- 1 -

EXPR(l) (Essential Utilities) EXPR(l)

EXAMPLES
1 . a= 'expr $a + 1'

adds 1 to the shell variable a.

2. # 'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : ' .•/\(.*\) ' \ I $a

returns the last segment of a pathname (i .e . , file) . Watch out for I alone
as an argument: expr will take it as the division operator (see BUGS
below) .

3. # A better representation of example 2.
expr //$a : ' .•/\(.*\) '

The addition of the II characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

4. expr $VAR : ' ·* '

returns the number of characters in $V AR.

SEE ALSO
ed(1), sh(1) .

DIAGNOSTICS

BUGS

As a side effect of expression evaluation, expr returns the following exit
values:

0
1
2

syntax error
non-numeric argument

if the expression is neither NULL nor 0
if the expression is NULL or 0
for invalid expressions.

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an = ,
the command:

expr $a = ' = '

looks like:

expr

- 2 -

EXPR(l) (Essential Utilities) EXPR(

as the arguments are passed to expr (and they will all be taken as the •
operator) . The following works:

expr X$a = X=

- 3 -

FACTOR(I) (User Environment Utilities) FACTOR(l)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to give it an
integer. After you give it a positive integer less than or equal to 1014, i t
factors the integer, prints its prime factors the proper number of times,
and then waits for another integer. factor exits if it encounters a zero or
any non-numeric character.

If you invoke factor with an argument, it factors the integer as described
above, and then it exits .

The maximum time to factor an integer is proportional to Vn. factor will
take this time when n is prime or the square of a prime.

DIAGNOSTICS
factor prints the error message, Ouch, for input out of range or for garbage
input.

- 1 -

FGREP(l) (Directory and File Management Utilities) FGREP(t ;

NAME
fgrep - search a file for a character string

_........., SYNOPSIS
fgrep [options] string ffile . . .]

DESCRIPTION
fgrep (fast grep) searches files for a character string and prints all lines that
contain that string. fgrep is different from grep(l) and egrep(1) because it
searches for a string, instead of searching for a pattern that matches an
expression. It uses a fast and compact algorithm.

The characters $, •, [, A, I , (,), and \ are interpreted literally by fgrep, that
is, fgrep does not recognize full regular expressions as does egrep . Since
these characters have special meaning to the shell, it is safest to enclose
the entire string in single quotes ' . . . ' .

If no files are specified, fgrep assumes standard input. Normally, each
line found is copied to the standard output. The file name is printed
before each line found if there is more than one input file.

Command line options are:

-b

-c

Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0) .

Print only a count of the lines that contain the pattern.
-i

-1
Ignore upper/lowercase distinction during comparisons.

Print the names of files with matching lines once, separated by
newlines. It does not repeat the names of files when the pattern is
found more than once.

-n
Precede each line by its line number in the file (first line is 1) .

-v
Print all lines except those that contain the pattern.

-X
Print only lines matched entirely.

-e special_string
Search for a special string (string begins with a -) .

-f file
Take the list of strings from file .

- 1 -

FGREP(l) (Directory and File Management Utilities) FGREP(l)

SEE ALSO
ed(l), egrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found) .

Ideally there should be only one grep command, but there i s not a single
algorithm that spans a wide enough range of space-time tradeoffs . Lines
are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.

- 2 -

FILE (l) (Essential Utilities) FILE (l)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f !file] [-m mfile] arg . . .

DESCRIPTION

FILES

file performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0.

-c

-f

The -c option causes file to check the magic file for format errors .
This validation is not normally carried out for reasons of efficiency.
No file typing is done under -c .

I f the -f option is given, the next argument is taken to be a file con
taining the names of the files to be examined.

-m
The -m option instructs file to use an alternate magic file.

file uses the file /etc/magic to identify files that have some sort of magic
number, i .e . , any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of /etc/magic explains its format.

/etc/magic

SEE ALSO
filehdr(4) in the Programmer's Reference Manual.

- 1 -

FIND (l) (Directory and File Management Utilities) FIND (l)

NAME
find - find files

------.._ SYNOPSIS
find path-name-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each pathname in the
path-name-list (that is, one or more pathnames), seeking files that match a
boolean expression written in the primaries given below. find does not
follow symbolic links to the resulting file or directory. Instead, it applies
the selection criteria to the symbolic link itself. In the descriptions, the
argument n is used as a decimal integer where + n means more than n ,
-n means less than n and n means exactly n . Valid expressions are:

-name file
True if file matches the current file name. Normal shell argument
syntax may be used if escaped (watch out for [, ? and *) .

[-perm] -<mum
True if file-permission flags exactly match the octal number onum (see
chmod(1)) . If onum is prefixed by a minus sign, only the bits that are
set in onum are compared with the file permission flags, and the
expression evaluates true if they match.

-type c
True if the type of the file is c, where c is 1, b, c, d, p, or f for
symbolic-link, block special-file, character special-file, directory, fifo
(a .k.a . named pipe), or plain file respectively.

-links n
True if the file has n links .

-user uname
True if the file belongs to the user uname . If una me is numeric and
does not appear as a login name in the /etc/passwd file, it is taken as
a user ID.

-group gname
True if the file belongs to the group gname. If gname is numeric and
does not appear in the /etdgroup file, it is taken as a group ID.

-size n[c]
True if the file is n blocks long (512 bytes per block) . If n is followed
by a c, the size is in characters .

- 1 -

FIND (l) (Directory and File Management Utilities) FIND (l)

-atime n
True if the file has been accessed in n days. The access time of
directories in path-name-list is changed by find itself.

-mtime n
True if the file has been modified in n days.

-clime n
True if the file has been changed in n days .

-exec cmd
True if the executed cmd returns a zero value as exit status. The end
of cmd must be punctuated by an escaped semicolon. A command
argument { } is replaced by the current pathname.

-ok cmd
Like -exec except that the generated command line is printed with a
question mark first, and is executed only if the user responds by
typing y.

-print
Always true; causes the current pathname to be printed .

-cpio device
Always true; write the current file on device in cpio (1) format
(5120-byte records) .

-newer file
True if the current file has been modified more recently than the
argument file .

-depth
Always true; causes descent of the directory hierarchy to be done so
that all entries in a directory are acted on before the directory itself.
This can be useful when find is used with cpio(1) to transfer files that
are contained in directories without write permission.

-mount
Always true; restricts the search to the file system containing the
directory specified, or if no directory was specified, the current
directory.

- 2 -

FIND (l) (Directory and File Management Utilities) FIND (l)

-local
True if the file physically resides on the local system.

(expression)
True if the parenthesized expression is true. (Parentheses are special
to the shell and must be escaped.)

The primaries may be combined using the following operators, in order of
decreasing precedence:

1) The negation of a primary (! is the unary not operator) .

2) Concatenation of primaries (the and operation is implied by the jux
taposition of two primaries) .

3) Alternation of primaries (-o is the or operator) .

EXAMPLE

FILES

To remove all files named a.out or • .o that have not been accessed for a
week:

find I \(-name a.out -o -name ' • .o' \) -atime + 7 -exec rm {} \;

/etc/passwd, /etc/group

SEE ALSO

BUGS

chmod(l), cpio(l), sh(l), test(l)
stat(2), umask(2), fs(4) in the Programmer's Reference Manual .

find I -depth always fails with the message:

find: stat failed: : No such file or directory

- 3 -

FMT(l) (Essential Utilities) FMT(l)

NAME
fmt - disk initializer

� SYNOPSIS
fmt [options] alias

DESCRIPTION

FILES

fmt(l) checks to see that alias is in the permissions file and that format
permission is given. fmt takes the same options as dinit(lM) . Options are
added to those found in the fortnllt_pgm field of the appropriate
permissions file entry. The fortnllt_pgm is then executed with these
options on slice 7 of the raw device corresponding to the slice entry in the
permissions file.

If no alias is specified, the floppy alias is assumed.

/etc/ddefs
I etc/ dskdef:;/•
/etc/dinit
/etc/filesys

disk definition files

permissions file

� SEE ALSO
dinit(lM) in the System Administrator's Reference Manual.
filesys(4) in the Programmer's Reference Manual.

- 1 -

FS (l) (Essential Utilities) FS (l)

NAME
fs - construct a file system

SYNOPSIS
fs [disk [blocks [: inodes]]]

DESCRIPTION

FILES

fs (l) builds a file system with a single empty directory on it. The argu
ment disk and the permissions file are used to determine the device to
build a file system on. This device will be the first match of disk and the
slice or alias entries in the permissions file . If the disk argument is not
given, then the first alias of floppy in the permissions file will be used. fs
actually uses the raw version of the listed slice (by prepending an r to the
name) .

The size of the file system is the value of blocks interpreted as a decimal
number. This is the number of physical disk blocks the file system occu
pies. This value may not be larger than the default value specified in the
permissions file . If the number of blocks is not specified, the default
value in the permissions file is used. The boot program is left uninitial
ized. If the optional number of inodes is not given, the default is the
number of logical blocks divided by four.

/etc/mkfs
/etc/filesys permissions file

SEE ALSO
mkfs{lM) in the System Administrator's Reference Manual.
dir(4), fs(4), filesys(4) in the Programmer's Reference Manual.
System Administrator's Guide .

- 1 -

GET(l) (Source Code Control System Utilities) GET(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no .] [-k] [-e] [-l[p]]
[-p] [-m] [-n] [-s] [-b] [-g] [-t] file . . .

DESCRIPTION
get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The
arguments may be specified in any order, but all keyletter arguments
apply to all named sees files . If a directory is named, get behaves as
though each file in the directory were specified as a named file, except
that non-sees files (last component of the path name does not begin with
s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the
name of an sees file to be processed. Again, non-sees files and unread
able files are silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the sees file name by simply removing the leading
s. ; (see FILES, below) .

Each of the keyletter arguments is explained below as though only one
sees file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID
The SCCS IDentification string (SID) of the version (delta) of an sees

file to be retrieved. Table 1 shows, for the most useful cases, what
version of an sees file is retrieved (as well as the SID of the version to
be eventually created by delta (l) if the -e keyletter is also used), as a
function of the SID specified.

-ccutoff
Cutoff date-time, in the form:

YYIMM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file that were created after the speci
fied cutoff date-time are included in the generated ASCII text file.
Units omitted from the date-time default to their maximum possible
values, i .e . , -c7502 is equivalent to -c750228235959 . Any number of
non-numeric characters may separate the various 2-digit pieces of the
cutoff date-time. This feature allows you to specify a cutoff date in the

- 1 -

GET(l) (Source Code Control System Utilities) GET(l)

form: "-c77/2J2 9:22:25". Note that this implies that one may use the
%E% and % U% identification keywords (see below) for nested gets
within, say the input to a send(lC) command:

-!get "-c%E% %U%" s.file

-ilist
A list of deltas to be included (forced to be applied) in the creation of
the generated file . The list has the following syntax:

<list> :: = <range> I <list> , <range>
<range> :: = SID I SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in
the "SID Specified" column of Table 1 .

-xlist

-e

A list of deltas to be excluded in the creation of the generated file .
See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a change
(delta) to the sees file via a subsequent use of delta (l) . The -e _
keyletter used in a get for a particular version (SID) of the sees file
prevents further gets for editing on the same SID until delta is exe
cuted or the j (joint edit) flag is set in the sees file (see admin (l)) .
Concurrent use of get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the
get command with the -k keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and authorized
user list stored in the sees file (see admin(l)) are enforced when the
-e keyletter is used.

-b
Used with the -e keyletter to indicate that the new delta should have
an SID in a new branch as shown in Table 1 . This keyletter is ignored
if the b flag is not present in the file (see admin (l)) or if the retrieved
delta is not a leaf delta . (A leaf delta is one that has no successors on
the sees file tree .)

NOTE: A branch delta may always be created from a non-leaf delta .
Partial SIDs are interpreted as shown in the "SID Retrieved"
column of Table 1 .

- 2 -

GET(l) (Source Code Control System Utilities) GET(l)

-k
Suppresses replacement of identification keywords (see -s) in the
retrieved text by their value. The -k keyletter is implied by the -e
keyletter.

-1[p]
Causes a delta summary to be written into an 1-file. If -1p is used
then an 1-file is not created; the delta summary is written on the stan
dard output instead. See FILES for the format of the 1-file .

-p
Causes the text retrieved from the sees file to be written on the stan
dard output. No g-fi1e is created. All output that normally goes to
the standard output goes to file descriptor 2 instead, unless the -s
keyletter is used, in which case it disappears.

-s
Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor 2)
remain unaffected.

-m
Causes each text line retrieved from the sees file to be preceded by
the SID of the delta that inserted the text line in the SCCS file. The
format is: SID, followed by a horizontal tab, followed by the text line.

-n
Causes each generated text line to be preceded with the %M% iden
tification keyword value (see below) . The format is: %M% value, fol
lowed by a horizontal tab, followed by the text line . When both the
-m and -n keyletters are used, the format is: %M% value, followed
by a horizontal tab, followed by the -m keyletter generated format.

-g

-t

Suppresses the actual retrieval of text from the sees file. It is pri
marily used to generate an 1-file, or to verify the existence of a partic
ular SID.

Used to access the most recently created delta in a given release (e.g. ,
-rl), or release and level (e .g. , -r1 .2) .

-w string
Substitute string for all occurrences of % W% when getting the file .

- 3 -

GET(l) (Source Code Control System Utilities) GET(l)

-aseq-no .
The delta sequence number of the sees file delta (version) to be
retrieved (see sccsfile(S)) . This keyletter is used by the comb(l) com
mand; it is not a generally useful keyletter. If both the -r and -a
keyletters are specified, only the -a keyletter is used. Care should be
taken when using the -a keyletter with the -e keyletter, because the
SID of the delta to be created may not be what you expects . The -r
keyletter can be used with the -a and -e keyletters to control the
naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the
SID being accessed and with the number of lines retrieved from the sees
file .

If the -e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named,
each file name is printed (preceded by a newline) before it is processed . If
the -i keyletter is used included deltas are listed following the notation
"Included"; if the -x keyletter is used, excluded deltas are listed following
the notation "Excluded" .

- 4 -

GET(l) (Source Code Control System Utilities) GET(l)

T bl 1 D f a e eterrmnation 0 sees Id 'f enb tcabon s . tnng
SID,. -b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created

none:!: no R defaults to mR mR.mL mR.(mL + l)
none:j: yes R defaults to mR mR.mL mR.mL.(mB + l). l
R no R > mR mR.mL R.l"""
R no R = mR mR.mL mR.(mL + l)
R yes R > mR mR.mL mR.mL.(mB + l). l
R yes R = mR mR.mL mR.mL.(mB + l). l

R R < mR and hR.mL"" hR.mL. (mB + l) . l -
R does not exist
Trunk succ. #

R - in release > R R. mL R. mL. (mB + l) . l
and R exists

R.L no No trunk succ. R.L R.(L + l)
R.L yes No trunk succ. R.L R.L.(mB + l). l

R.L Trunk succ. R.L R.L. (mB + l) . l -
in release :2: R

R.L.B no No branch succ. R.L .B .mS R.L.B. (mS + l)
R.L.B yes No branch succ. R.L .B .mS R.L.(mB + l) . l
R.L.B .S no No branch succ. R.L.B.S R.L.B. (S + l)
R.L.B .S yes No branch succ. R.L.B.S R.L.(mB + l). l
R.L.B .S - Branch succ. R.L.B .S R.L. (mB + l) . l

....

t

:j:

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means "max
imum" . Thus, for example, "R.mL" means "the maximum level
number within release R"; "R.L.(mB+ 1) . 1" means "the first
sequence number on the new branch (i .e . , maximum branch number
plus one) of level L within release R" . Note that if the SID specified
is of the form "R.L", "R.L.B", or "R.L.B .S", each of the specified
components must exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R.
This is used to force creation of the first delta in a new release.
Successor.
The -b keyletter is effective only if the b flag (see admin (1)) is
present in the file . An entry of - means "irrelevant" .
This case applies if the d (default SID) flag is not present in the file.
If the d flag is present in the file, then the SID obtained from the d
flag is interpreted as if it had been specified on the command line .
Thus, one of the other cases in this table applies .

- 5 -

GET(l) (Source Code Control System Utilities) GET(l)

DENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS
file by replacing identification keywords with their value wherever they
occur. The following keywords may be used in the text stored in an sees
file:

Keyword Value

%M% Module name: either the value of the m flag in the file
(see admin(1)), or if absent, the name of the sees
file with the leading s. removed.

%1% sees identification (SID) (%R% . %L%. %8% . %S%)
of the retrieved text.

%R% Release.
%L% Level.
%B% Branch.
%S% Sequence.
%D% Current date (YYIMMIDD) .
%H% Current date_{MMIDD/YY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (YYIMM/DD).
% G % Date newest applied delta was created (MMIDDIYY) .
%U% Time newest applied delta was created (HH:MM:SS) .
%Y% Module type: value of the t flag in the sees file
%F% sees file name.
%P% Fully qualified sees file name.
%Q% The value of the q flag in the file (see admin(1)) .
%C% Current line number. This keyword is intended for identifying

messages output by the program such as "this should not have
happened" type errors. It is not intended to be used on
every line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what(l) .
%W% A shorthand notation for constructing what(l) strings

for UNIX program files.
% W%#= #%Z%%M% <horizontal-tab> %1%

%A% Another shorthand notation for constructing what(l)
strings for non-UNIX program files.
%A% = %Z%%Y% %M% %1%%Z%

GET(l) (Source Code Control System Utilities) GET(l)

Several auxiliary files may be created by get . These files are known gener
ically as the g-fi1e, 1-file, p-file, and z-fi1e . The letter before the hyphen
is called the tag. An auxiliary file name is formed from the sees file
name: the last component of all sees file names must be of the form
s.module-name, the auxiliary files are named by replacing the leading s
with the tag. The g-file is an exception to this scheme: the g-file is
named by removing the s. prefix. For example, s.xyz.c, the auxiliary file
names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the -p keyletter is used) . A g-fi1e is created in all cases,
whether any lines of text were generated by the get . It is owned by the
real user. If the -k keyletter is used or implied its mode is 644; otherwise
its mode is 444 . Only the real user need have write permission in the
current directory.

The 1-file contains a table showing which deltas were applied in generat
ing the retrieved text. The 1-file is created in the current directory if the
-1 keyletter is used; its mode is 444 and it is owned by the real user. Only
the real user need have write permission in the current directory.

Lines in the 1-file have the following format:

a . A blank character if the delta was applied; other * ·

b. A blank character if the delta was applied or was not applied and
ignored; * if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

d. Blank.

"I" : Included.
"X": Excluded.
"C" : Cut off (by a -c keyletter) .

e . sees identification (SID) .

f. Tab character.

g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.

h. Blank.

i . Login name of person who created delta .

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

- 7 -

GET(l)

FILES

(Source Code Control System Utilities) GET(l)

The p-file i s used to pass information resulting from a get with an -e
key letter along to delta . Its contents are also used to prevent a subsequent
execution of get with an -e keyletter for the same SID until delta is exe
cuted or the joint edit flag, j, (see admin(l)) is set in the sees file . The
p-file is created in the directory containing the sees file and the effective
user must have write permission in that directory. Its mode is 644 and it
is owned by the effective user. The format of the p-file is: the gotten
SID, followed by a blank, followed by the SID that the new delta will have
when it is made, followed by a blank, followed by the login name of the
real user, followed by a blank, followed by the date-time the get was exe
cuted, followed by a blank and the -i keyletter argument if it was present,
followed by a blank and the -x keyletter argument if it was present, fol
lowed by a newline . There can be an arbitrary number of lines in the p
file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates.
Its contents are the binary (2 bytes) process ID of the command (i .e . , get)
that created it. The z-file is created in the directory containing the sees

file for the duration of get . The same protection restrictions as those for
the p-file apply for the z-file . The z-file is created mode 444 .

g-file Existed before the execution of delta; removed after comple
tion of delta .

p-file Existed before the execution of delta ; may exist after com
pletion of delta .

q-file Created during the execution of delta ; removed after com
pletion of delta .

x-file Created during the execution of delta; renamed to sees file
after completion of delta .

z-file Created during the execution of delta ; removed during the
execution of delta .

d-file Created during the execution of delta ; removed after com
pletion of delta .

/usr/bin/bdiff Program to compute differences between the "gotten" file
and the g-file .

SEE ALSO
admin{l), delta{l), prs(l), what{l) .
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations .

GET(l) (Source Code Control System Utilities) GET(l)

BUGS
If the effective user has write permission (either explicitly or implicitly) in

-------. the directory containing the sees files, but the real user does not, then
only one file may be named when the -e keyletter is used.

- 9 -

GETOPT(l) (Essential Utilities) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set - ' getopt optstring $• '

DESCRIPTION
WARNING: Start using the new command getopts (1) in place of getopt (1) .
getopt (1) will not be supported in the next major release . For more infor
mation, see the WARNINGS section.

getopt is used to break up options in command lines for easy parsing by
shell procedures and to check for legal options . optstring is a string of
recognized option letters (see getopt(3C)); if a letter is followed by a colon,
the option is expected to have an argument which may or may not be
separated from it by white space. The special option - is used to delimit
the end of the options . If it is used explicitly, getopt will recognize it; oth
erwise, getopt will generate it; in either case, getopt will place it at the end
of the options . The positional parameters ($1 $2 . . .) of the shell are reset
so that each option is preceded by a - and is in its own positional parame
ter; each option argument is also parsed into its own positional parameter.

EXAMPLE
The following code fragment shows how you can process the arguments
for a command that can take the options a or b, as well as the option o,
which requires an argument:

set -- g etopt &bo : $•
if [$? ! = 0]
then

f i

e cho $USAGE
exit 2

for i in $•
do

done

C&Se
-&
-o)
--)
e s&c

$i in
-b) FLAG=$i ; shift ; ;

OARG=$2 ; shift 2 ; ;
shift ; bre &k ; ;

- 1 -

GETOPT(l) (Essential Utilities)

This code will accept any of the following as equivalent:

cmd - aoarg f ile f ile
cmd - a -o arg f ile f ile
cmd -oarg - a f ile f ile
cmd - a -oarg -- f ile f ile

SEE ALSO
getopts(l), sh(l)
getopt(3C) in the Programmer's Reference Manual.

DIAGNOSTICS

GETOPT(l)

getopt prints an error message on the standard error when i t encounters
an option letter not included in optstring .

WARNINGS
getopt (1) does not support the part of Rule 8 of the command syntax stan
dard (see intro (l)) that permits groups of option-arguments following an
option to be separated by white space and quoted. For example,

cmd -a -b -o • xxx z yy • f ile

is not handled correctly) . To correct this deficiency, use the new com
mand getopts (l) in place of getopt (l) .

getopt (1) will not be supported in the next major release. For this release
a conversion tool has been provided, getoptcvt . For more information
about getopts and getoptcvt , see the getopts (1) manual page .

If an option that takes an option-argument is followed by a value that is
the same as one of the options listed in optstring (referring to the earlier
EXAMPLE section, but using the following command line:

cmd -o -a file

getopt will always treat -a as an option-argument to --o; it will never recog
nize -a as an option. For this case, the for loop in the example will shift
past the file argument.

GETOPTS (l) (Essential Utilities) GETOPTS (l)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg . . .]

/usr/lib/getoptcvt [-b] file

DESCRIPTION
getopts is used by shell procedures to parse positional parameters and to
check for legal options . It supports all applicable rules of the command
syntax standard (see Rules 3-10, intra (1)) . It should be used in place of
the getopt (1) command (see WARNING) .

optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have
an argument, or group of arguments, which must be separated from it by
white space .

Each time it is invoked, getopts will place the next option in the shell vari
able name and the index of the next argument to be processed in the shell
variable OPTIND . Whenever the shell or a shell procedure is invoked,
OPTIND is initialized to 1 .

When an option requires an option-argument, getopts places it in the shell
variable OPT ARG .

If an illegal option is encountered, ? will be placed in name .

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option "-" may be used to delimit the end of the
options .

By default, getopts parses the positional parameters . If extra arguments
(arg . . .) are given on the getopts command line, getopts will parse them
instead.

/usr/lib/getoptcvt reads the shell script in file , converts it to use getopts (1)
instead of getopt (1), and writes the results on the standard output.

-b
the results of running /usr/lib/getoptcvt will be portable to earlier
releases of the UNIX system. /usr/lib/getoptcvt modifies the shell
script in file so that when the resulting shell script is executed, it
determines at run time whether to invoke getopts (1) or getopt (l) .

- 1 -

GETOPTS (l) (Essential Utilities) GETOPTS (l)

So all new commands will adhere to the command syntax standard
described in intra (1), they should use getopts (1) or getopt (3C) to parse
positional parameters and check for options that are legal for that com
mand (see WARNINGS) .

EXAMPLE
The following fragment of a shell program shows how you can process
the arguments for a command that can take the options a or b, as well as
the option o, which requires an option-argument:

while getopts abo : c
do

cas e $c in
a I b) FLAG=$c ; ;
o) OARG=$0PTARG ; ;
\?) e cho $USAGE

exit 2 • • . .
esac

done
shift e:z:pr $0PTIND - 1

This code will accept any of the following as equivalent:

cmd -a -b -o " :z::z::z: z yy " f ile
c:md - a. - b - o " xxx z TT " - - :f :1. l. e
cmd -ab -o :z::z::z: , z , yy f ile
cmd -ab -o " :z::z::z: z yy " f ile
cmd -o :z::z::z: , z , yy -b -a f ile

SEE ALSO
intro(1), sh(1)
getopts(3C) in the Programmer's Reference Manual .

- ., -

GETOPTS (l) (Essential Utilities) GETOPTS (l)

WARNING
Although the following command syntax rule (see intro (l)) relaxations are
permitted under the current implementation, they should not be used
because they may not be supported in future releases of the system. As
in the EXAMPLE section, a and b are options, and the option o requires an
option-argument:

cmd -aboxxx file (Rule 5 violation: options with
option-arguments must not be grouped with other options)

cmd -ab --oxxx file (Rule 6 violation: there must be
white space after an option that takes an option-argument)

Changing the value of the shell variable OPTIND or parsing different sets
of arguments may lead to unexpected results .

DIAGNOSTICS
getopts prints an error message on the standard error when it encounters
an option letter not included in optstring .

- 3 -

GLOSSARY(l) (Help Utilities) GLOSSARY(l)

NAME
glossary - definitions of terms and symbols

SYNOPSIS
[help] glossary [term]

DESCRIPTION
The Help Facility command glossary provides definitions of common
technical terms and symbols .

Without an argument, glossary displays a menu screen listing the terms
and symbols that are currently included in glossary. A user may choose
one of the terms or may exit to the shell by typing q (for "quit'') . When a
term is selected, its definition is retrieved and displayed. By selecting the
appropriate menu choice, the list of terms and symbols can be
redisplayed.

A term's definition may also be requested directly from shell level (as
shown above), causing a definition to be retrieved and the list of terms
and symbols not to be displayed. Some of the symbols must be escaped if
requested at shell level in order for the facility to understand the symbol.
The following is a table that lists the symbols and their escape sequence.

Symbol Escape Sequence
\'\"

, \'\'
[] \\[\\]
" \'\'
\#
& \&
.. , ..
\ \\\\

\I

From any screen in the Help Facility, a user may execute a command via
the shell (sh(l)) by typing a ! and the command to be executed . The
screen will be redrawn if the command that was executed was entered at
a first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non
scrolling), the shell variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by adding the

- 1 -

GLOSSARY(l) (Help Utilities) GLOSSARY(l)

following line to your .profile file (see profile (4)) : "export SCROLL ;
SCROLL= no" . If you later decide that scrolling is desired, SCROLL must
be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
help(l), helpadm(lM), locate(l), sh(l), starter(l), usage(l)
term(S) in the Programmer's Reference Manual.

WARNINGS
If the shell variable TERM (see sh (l)) is not set in the user's .profile file,
then TERM will default to the terminal value type 450 (a hard-copy termi
nal) . For a list of valid terminal types, refer to term(S) .

--...

GREEK(l) (Terminal Filters Utilities) GREEK(l)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION

FILES

greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character Teletype Model 37 termi
nal for certain other terminals. Special characters are simulated by over
striking, if necessary and possible. If the argument is omitted, greek
attempts to use the environment variable $TERM (see environ (5)) .
Currently, the following terminals are recognized:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s .
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450) .
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645 .
tek Tektronix 4014.

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), hp(1), tplot(1G) .

� eqn(1), mm(1), nroff(1) in the DOCUMENTER'S WORKBENCH Software
Release 2 .0 Technical Discussion and Reference Manual.
environ(5), greek(5), term(5) in the Programmer's Reference Manual.

- 1 -

GREP (l) (Essential Utilities) GREP(l)

NAME
grep - search a file for a pattern

-----.,_ SYNOPSIS
grep [options] limited regular expression [file . . .]

DESCRIPTION
grep searches files for a pattern and prints all lines that contain that pat
tern. grep uses limited regular expressions (expressions that have string
values that use a subset of the possible alphanumeric and special charac
ters) like those used with ed(1) to match the patterns. It uses a compact
non-deterministic algorithm.

Be careful using the characters $, •, [, A, L (,), and \ in the limited regular
expression because they are also meaningful to the shell . It is safest to
enclose the entire limited regular expression in single quotes ' . . . ' .

If no files are specified, grep assumes standard input. Normally, each line
found is copied to standard output. The file name is printed before each
line found if there is more than one input file .

Command line options are:

-b

-c

Precede each line by the block number on which it was found. This
can be useful in locating block numbers by context (first block is 0) .

Print only a count of the lines that contain the pattern.
-i

-I
Ignore upper/lowercase distinction during comparisons .

Print the names of files with matching lines once, separated by new
lines. Does not repeat the names of files when the pattern is found
more than once.

-n
Precede each line by its line number in the file (first line is 1) .

-s
Suppress error messages about nonexistent or unreadable files

-v I
Print all lines except those that contain the pattern.

SEE ALSO
ed(1), egrep(1), fgrep(1), sed(1), sh(1) .

- 1 -

GREP (l) (Essential Utilities) GREP(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found) .

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ
is defined in /usr/include/stdio.h.

If there is a line with embedded HULLs, grep will only match up to the
first HULL; if it matches, it will print the entire line .

- 2 -

HELP(l) (Help/sees Utilities) HELP(l)

NAME
help - Help Facility

SYNOPSIS
help

[help] starter
[help] usage [-d] [-e] [-o] [command_Mme]
[help] locate [keyword1 [keyword2] . . .]
[help] glossary [term]

help arg . . .

DESCRIPTION
The Help Facility provides on-line assistance for users who desire general
information or specific assistance with the sees commands .

Without arguments, help prints a menu of available on-line assistance
commands with a short description of their functions . The commands
and their descriptions are:

Command Description

starter

locate

usage

glossary

information about the system for the begimring user

locate commands using function-related keywords

command usage information

definitions of technical terms

The user may choose one of the above commands by entering its
corresponding letter (given in the menu), or exit to the shell by typing q
(for "quit') .

With arguments, help directly invokes the named online assistance com
mand, bypassing the initial help menu. The commands starter, locate,
usage, and glossary, optionally preceded by the word help, may also be
specified at shell level. When executing glossary from shell level some of
the symbols listed in the glossary must be escaped (preceded by one or
more backslashes, "\ to be understood by the Help Facility. For a list of
symbols and how many backslashes to use for each, refer to the glos
sary(l) manual page.

I
From any screen in the Help Facility, a user may execute a command via
the shell (sh (l)) by typing a ! and the command to be executed . The
screen will be redrawn if the command that was executed was entered at
a first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

- 1 -

HELP(l) (Help/sees Utilities) HELP(l)

By default, the Help Facility scrolls the data that i s presented to the user.
If you prefer to have the screen clear before printing the data (non
scrolling), the shell variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by adding the follow
ing line to your .profile file (see profile (4)) : "export SCROLL ;
SCROLL= no". If you later decide that scrolling is desired, SCROLL must
be set to yes .

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

The Help Facility can be tailored to a customer's needs by use of the
helpadm(lM) command.

If the first argument to help is different from starter, usage, locate, or glos
sary, help assumes information is being requested about the sees Facility.
The arguments may be either message numbers (which normally appear
in parentheses following messages) or command names, of one of the
following types:

typel
Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines which
produced the message (e .g. , ge3 for message 3 from the get
command) .

type2
Does not contain numerics (as a command, e .g. , get) .

type3
Is all numeric (e .g . , 212) .

SEE ALSO
glossary(l), helpadm(lM), locate(l), sh(l), starter(l), usage(l)
admin(l), cdc(l), comb(l), delta(l), get(l), prs(l), rmdel(l), sact(l),
sccsdiff{l), unget(l), val(l), vc(l), what(l), profile(4), sccsfile(4), term(5) in
the Programmer's Reference Manual.

WARNINGS
If the shell variable TERM (see sh (l)) is not set in the user's environment
(see environment (5)) file, TERM defaults to the terminal value type 450 (a
hard-copy terminal) . For a list of valid terminal types, refer to term (5) .

- 2 -

HP(l) (Terminal Filters Utilities) HP (l)

NAME
hp - handle special functions of Hewlett-Packard terminals

� SYNOPSIS
hp [-e] [-m]

DESCRIPTION
hp supports special functions of the Hewlett-Packard 2640 series of termi
nals, with the primary purpose of producing accurate representations of
most nroff output. In the following discussion it should be noted that,
unless your system contains the DOCUMENTER'S WORKBENCH Software,
references to certain commands (e .g . , nroff, neqn, equ, etc .) will not work.
A typical usage is in conjunction with DOCUMENTER'S WORKBENCH
Software:

nroff -h files . . . I hp

Regardless of the hardware options on your terminal, hp tries to do sensi
ble things with underlining and reverse linefeeds. If the terminal has the
"display enhancements" feature, subscripts and superscripts can be indi
cated in distinct ways. If it has the "mathematical-symbol" feature, Greek
and other special characters can be displayed.

The flags are:

-e
It is assumed that your terminal has the "display enhancements"
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super
scripts are shown in Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hp assumes that your termi
nal lacks the "display enhancements" feature . In this case, all over
struck characters, subscripts, and superscripts are displayed in
Inverse Video mode, i . e . , dark-on-light, rather than the usual light
on-dark.

-m
Requests minimization of output by removal of newlines. Any con
tiguous sequence of 3 or more newlines is converted into a sequence
of only 2 newlines; i . e . , any number of successive blank lines pro
duces only a single blank output line . This allows you to retain more
actual text on the screen.

- 1 -

HP(l) (Terminal Filters Utilities) HP (l)

With regard to Greek and other special characters, hp provides the same
set as does 300(1), except that "not" is approximated by a right arrow, and
only the top half of the integral sign is shown.

DIAGNOSTICS
'1ine too long" if the representation of a line exceeds 1,024 characters .
The exit codes are 0 for normal termination, 2 for all errors .

SEE ALSO

BUGS

300(1), greek(1) .

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
either printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video) . Nothing spe
cial is done if a BACKSPACE is adjacent to an ASCII control character.
Sequences of control characters (e .g . , reverse linefeeds, BACKSPACES) can
make text "disappear"; in particular, tables generated by tbl (1) that contain
vertical lines will often be missing the lines of text that contain the "foot"
of a vertical line, unless the input to hp is piped through col (l) .

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

- 2 -

HPIO(l) (Terminal Filters Utilities) HPIO(l)

NAME
hpio - Hewlett-Packard 2645A terminal tape file archiver

-� SYNOPSIS
hpio -o[rc] file . . .

hpio -i[rta] [-n count]

DESCRIPTION
hpio is designed to take advantage of the tape drives on Hewlett-Packard
2645A terminals . Up to 255 SYSTEM V/88 files can be archived onto a
tape cartridge for offline storage or for transfer to another SYSTEM V/88
system. The actual number of files depends on the sizes of the files . One
file of about 115,000 bytes will almost fill a tape cartridge . Almost 300 1-
byte files will fit on a tape, but the terminal will not be able to retrieve
files after the first 255 . This manual page is not intended to be a guide for
using tapes on Hewlett-Packard 2645A terminals, but tries to give enough
information to be able to create and read tape archives and to position a
tape for access to a desired file in an archive .

hpio -o (copy out) copies the specified file(s), together with pathname and
status information to a tape drive on your terminal (which is assumed to
be positioned at the beginning of a tape or immediately after a tape mark) .
The left tape drive is used by default. Each file is written to a separate
tape file and terminated with a tape mark. When hpio finishes, the tape is
positioned following the last tape mark written.

hpio -i (copy in) extracts a file(s) from a tape drive (which is assumed to
be positioned at the beginning of a file that was previously written by a
hpio -o). The default action extracts the next file from the left tape drive .

hpio always leaves the tape positioned after the last file read from or writ
ten to the tape. Tapes should always be rewound before the terminal is
turned off. To rewind a tape depress the green function button, then
function key 5, and then select the appropriate tape drive by depressing
either function key 5 for the left tape drive or function key 6 for the right.
If several files have been archived onto a tape, the tape may be positioned
at the beginning of a specific file by depressing the green function button,
then function key 8, followed by typing the desired file number (1-255)
with no RETURN, and finally function key 5 for the left tape or function
key 6 for the right. The desired file number may also be specified by a
signed number relative to the current file number.

- 1 -

HPIO(l) (Terminal Filters Utilities) HPIO(l)

FILES

The meanings of the available options are:

r

c

Use the right tape drive .

Include a checksum at the end of each file . The checksum is always
checked by hpio -i for each file written with this option by hpio -o.

n count

t

a

The number of input files to be extracted is set to count . If this option
is not given, count defaults to 1 . An arbitrarily large count may be
specified to extract all files from the tape . hpio will stop at the end of
data mark on the tape.

Print a table of contents only. No files are created. Printed informa
tion gives the file size in bytes, the file name, the file access modes,
and whether or not a checksum is included for the file .

Ask before creating a file . hpio-i normally prints the file size and
name, creates and reads in the file, and prints a status message when -

the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value . With
this option, the file size and name are printed followed by a ? . Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

/dev/tty?? to block messages while accessing a tape

SEE ALSO
cu(lC) .

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.
Can't create 'file' .

File system access permissions did not allow file to be created .
Can't get tty options on stdout.

hpio was unable to get the input-output control settings associated with
the terminal.

Can't open 'file' .
file could not be accessed to copy it to tape.

- 2 -

--..._,

HPIO(l) (Terminal Filters Utilities) HPIO(l)

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur if
the wrong tape drive is being accessed and no tape is present.

'file' not a regular file .
file is a directory or other special file . Only regular files will be copied
to tape.

Readcnt = rc, termcnt = tc.
hpio expected to read rc bytes from the next block on the tape, but the
block contained tc bytes. This is caused by having the tape improperly
positioned or by a tape block being mangled by interference from other
terminal 1/0.

Skip to next file failed.
An attempt to skip over a tape mark failed .

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed .
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

WARNINGS

BUGS

Tape 1/0 operations may copy bad data if any other 110 involving the ter
minal occurs . Do not attempt any type ahead while hpio is running. hpio
turns off write permissions for other users while it is running, but
processes started asynchronously from your terminal can still interfere .
The most common indication of this problem, while a tape is being writ
ten, is the appearance of characters on the display screen that should have
been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape
write operations; the BREAK key is only functional between writes.

hpio must have complete control of the attributes of the terminal to com
municate with the tape drives . Interaction with commands such as cu (lC)
may interfere and prevent successful operation.

""""""' Some binary files contain sequences that will confuse the terminal.

An hpio -i that encounters the end of data mark on the tape (e .g . , scan
ning the entire tape with hpio -itn 300), leaves the tape positioned after the
end of data mark. If a subsequent hpio -o is done at this point, the data

- 3 -

HPIO(l) (Terminal Filters Utilities) HPIO(l)

will not be retrievable. The tape must be repositioned manually using the
terminal FIND FILE -1 operation (depress the green function button, func
tion key 8, and then function key 5 for the left tape or function key 6 for
the right tape) before the hpio -o is started.

If an interrupt is received by hpio while a tape is being written, the termi
nal may be left with the keyboard locked. If this happens, the terminal's
RESET TERMINAL key will unlock the keyboard.

A

HYPHEN(l) (Spell Utilities) HYPHEN(l)

NAME
hyphen - find hyphenated words

------... SYNOPSIS
hyphen [files]

DESCRIPTION
hyphen finds all the hyphenated words ending lines in files and prints
them on the standard output. If no arguments are given, the standard
input is used; thus, hyphen may be used as a filter.

EXAMPLES

BUGS

The following allows the proofreading of nroffs hyphenation in textfile:

nroff -mm textfile I hyphen

(Note that nroff is not a supported product on SYSTEM V/88, and is used
here only for an example.)

hyphen cannot cope with hyphenated italic (i .e . , underlined) words; i t will
often miss them completely, or mangle them.

hyphen occasionally gets confused, but with no ill effects other than spuri
ous extra output.

- 1 -

IPCRM(l) (Interprocess Communication Utilities) IPCRM (l)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

----..__
SYNOPSIS

ipcrm [options]

DESCRIPTION
ipcnn will remove one or more specified messages, semaphore or shared
memory identifiers . The identifiers are specified by the following options:

-q msqid
removes the message queue identifier msqid from the system and des
troys the message queue and data structure associated with it.

-m shmid
removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des
troyed after the last detach.

-s semid
removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

-Q msgkey
removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure associ
ated with it.

-M shmkey
removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associ
ated with it are destroyed after the last detach.

-S semkey
removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure associ
ated with it.

The details of the removes are described in msgctl(2), shmctl(2), and
semctl(2) . The identifiers and keys may be found by using ipcs(l) .

SEE ALSO
ipcs(l) .
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2),
shmget(2), shmop(2) in the Programmer's Reference Manual.

- 1 -

IPCS (l) (lnterprocess Communication Utilities) IPCS (l)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
ipcs prints certain information about active inter-process communication
facilities. Without options, information is printed in short format for mes
sage queues, shared memory, and semaphores that are currently active in
the system. Otherwise, the information that is displayed is controlled by
the following options :

-q
Print information about active message queues.

-m
Print information about active shared memory segments .

-s
Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only
those indicated will be printed. If none of these three are specified, infor
mation about all three will be printed subject to these options:

-b

-c

Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for sema
phores .) See below for meaning of columns in a listing.

Print creator's login name and group name. See below.

-o
Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg
ments .)

- 1 -

IPCS (l) (lnterprocess Communication Utilities) IPCS (l)

-p

-t

Print process number information. (Process ID of last process to send
a message and process ID of last process to receive a message on
message queues and process ID of creating process and process ID of
last process to attach or detach on shared memory segments .) See
below.

Print time information. (Time of the last control operation that
changed the access permissions for all facilities . Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphores .) See below.

-a
Use all print options . (This is a shorthand notation for -b, -c, -o, -p,
and -t.)

-C corefile
Use the file corefile in place of /dev/kmem.

-N mimelist
Use the file mimelist in place of /unix.

The column headings and the meaning of the columns in an ipcs listing
are given below; the letters in parentheses indicate the options that cause
the corresponding heading to appear; all means that the heading always
appears . Note that these options only determine what information is pro
vided for each facility; they do not determine which facilities will be
listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

ID (all) The identifier for the facility entry.
KEY (all) The key used as an argument to msgget , semget , or

shmget to create the facility entry. (NOTE: The key of a
shared memory segment is changed to IPC_PRIV ATE
when the segment has been removed until all processes
attached to the segment detach i t .)

- 2 -

IPCS (l) (lnterprocess Communication Utilities) IPCS (l)

MODE (all) The facility access modes and flags: The mode consists
of 11 characters that are interpreted as:

OWNER (all)
GROUP (all)

CREATOR (a,c)
CGROUP (a,c)

CBYTES (a,o)

QNUM (a,o)

QBYTES (a,b)

LSPID (a,p)

The first two characters are:
R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has

been removed. It will disappear when the last
process attached to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of
three bits each. The first set refers to the owner's per
missions; the next to permissions of others in the user
group of the facility entry; and the last to all others .
Within each set, the first character indicates permission
to read, the second character indicates permission to
write or alter the facility entry, and the last character is
currently unused.

The permissions are indicated as:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.
The login name of the owner of the facility entry.
The group name of the group of the owner of the facility
entry.
The login name of the creator of the facility entry.
The group name of the group of the creator of the
facility entry.
The number of bytes in messages currently outstanding
on the associated message queue.
The number of messages currently outstanding on the
associated message queue.
The maximum number of bytes allowed in messages
outstanding on the associated message queue.
The process ID of the last process to send a message to
the associated queue.

- 3 -

IPCS (l)

FILES

(lnterprocess Communication Utilities) IPCS (l)

LRPID (a,p) The process ID of the last process to receive a message
from the associated queue.

STIME (a, t) The time the last message was sent to the associated
queue .

RTIME (a, t) The time the last message was received from the associ-
ated queue.

CTIME (a, t) The time when the associated entry was created or
changed.

NATTCH (a,o) The number of processes attached to the associated
shared memory segment.

SEGSZ (a,b) The size of the associated shared memory segment.
CPID (a,p) The process ID of the creator of the shared memory

entry.
LPID (a,p) The process ID of the last process to attach or detach the

shared memory segment.
ATIME (a, t) The time the last attach was completed to the associated

shared memory segment.
DTIME (a, t) The time the last detach was completed on the

associated shared memory segment.
NSEMS (a,b) The number of semaphores in the set associated with

the semaphore entry.
OTIME (a, t) The time the last semaphore operation was completed

/unix
/dev/kmem
/etc/passwd
/etc/group

on the set associated with the semaphore entry.

system namelist
memory
user names
group names

WARNING
If the user specifies either the -C or -N flag, the real and effective
UID/GID will be set to the real UID/GID of the user invoking ipcs.

SEE ALSO

BUGS

msgop(2), semop(2), shmop(2) in the Programmer's Reference Manual.

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

- 4 -

SH(l) (Essential Utilities) SH(l)

A restricted shell can be invoked in one of the following ways: (1) rsh is
the file name part of the last entry in the /etc/passwd file (see passwd(4));
(2) the environment variable SHELL exists and rsh is the file name part of
its value; (3) the shell is invoked and rsh is the file name part of argument
0; (4) the shell is invoke with the -r option.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that
the end-user does not have write and execute permissions in the same
directory.

The net effect of these rules is that the writer of the .profile (see profile(4))
has complete control over user actions by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not the
login directory) .

The system administrator often sets up a directory of commands (i .e . ,
/usr/rbin) that can be safely invoked by a restricted shell . Some systems
also provide a restricted editor, red .

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status . If the shell is being used non-interactively
execution of the shell file is abandoned. Otherwise, the shell returns the
exit status of the last command executed (see also the exit command
above) .

/etc/profile
$HOME/.profile
/tmp/sh•
/dev/null

SEE ALSO
cd(1), echo(1), env(1), getopts(1), intro(1), login(1), newgrp(1), pwd(1),
test(1), umask(1), wait(1)
dup(2), exec(2), fork(2), pipe(2), profile(4), signal(2), ulimit(2) in the
Programmer's Reference Manual.

CAVEATS
Words used for file names in input/output redirection are not interpreted
for file name generation (see File Name Generation) . For example, cat
filet >a• will create a file named a• .

- 17 -

SH(l)

BUGS

(Essential Utilities) SH(l)

Because commands in pipelines are run as separate processes, variables
set in a pipeline have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the
wait (1) command to clean up your background processes. If this does not
help, the system process table is probably full or you have too many
active foreground processes. (There is a limit to the number of process
ids associated with your login, and to the number the system can keep
track of.)

If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory where the
original command was found, the shell will continue to exec the original
command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give the
correct response. Use the cd command with a full pathname to correct
this situation.

Not all the processes of a 3- or more-stage pipeline are children of the
shell, and thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently active
background processes are waited for and the return code will be zero.

- 18 -

SHL(l) (User Environment Utilities) SHL(l)

NAME
shl - shell layer manager

.---._ SYNOPSIS
shl

DESCRIPTION
shl allows a user to interact with more than one shell from a s ingle termi
nal. The user controls these shells, known as layers , using the commands
described below.

The current layer is the layer which can receive input from the keyboard .
Other layers attempting to read from the keyboard are blocked. Output
from multiple layers is multiplexed onto the terminal . To have the output
of a layer blocked when it is not current, the stty option loblk may be set
within the layer.

The stty character swtch (set to AZ if NUL) is used to switch control to shl
from a layer. shl has its own prompt, > > >, to help distingu ish it from a
layer.

A layer is a shell which has been bound to a virtua l tty device
(/dev/sxt???) . The virtual device can be manipulated like a rea l tty device
using stty (1) and ioctl (2) . Each layer has its own process group id .

Definitions
A no.me is a sequence of characters delimited by a blank, tab or newline.
Only the first eight characters are significant. The no.mes (1) through (7)
cannot be used when creating a layer. They are used by shl when no
name is supplied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt leve l . Any
unique prefix is accepted.

create I no.me]
Create a layer called no.me and make it the current layer . If no argu
ment is given, a layer will be created with a name of the form (#)
where # is the last digit of the virtual device bound to the layer. The
shell prompt variable PSl is set to the name of the layer fol lowed by a
space. A maximum of seven layers can be created.

block no.me I no.me . . .]
For each no.me, block the output of the corresponding layer when it is
not the current layer. This is equivalent to setting the stty option
-loblk within the layer.

- 1 -

SHL(l)

FILES

(User Environment Utilities) SHL (l)

delete name [name . . .]
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP signal (see signal (2)) .

help (or ?)
Print the syntax of the shl commands .

layers [-1] [name . . .]
For each name, list the layer name and its process group. The -1
option produces a ps (l)-like listing. If no arguments are given, infor
mation is presented for all existing layers .

resume [name]
Make the layer referenced by name the current layer. If no argument
is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer .

unblock name [name . . .]
For each name, do not block the output of the correspondi ng layer
when it is not the current layer. This is equivalent to sett ing the stty
option - loblk within the layer.

quit
Exit shl . All layers are sent the SIGHUP signal .

name

Make the layer referenced by name the current layer.

/dev/sxt???
$SHELL

Virtual tty devices
Variable containing pathname of the shell to use
(default is /bin/sh) .

SEE ALSO
sh(l), stty(l)
ioctl(2), signal(2) in the Programmer's Reference Manual.
sxt(7) in the System Administrator's Reference Manual.

- ') -

SIFILTER(l) SIFILTER(l)

NAME
sifilter - preprocess MC88100 assembly language

� SYNOPSIS
sifilter [-switches] [input] [output]

DESCRIPTION
sifilter manipulates MC88100 assembly language source code from input to
work around known problems in early silicon. sifilter is normally invoked
transparently by the shell script /bin/as, but can be used interactively for
testing purposes. The program will no longer be needed when the final
revision of the silicon is available.

input and output are normally omitted, defaulting to standard input and
output paths. File names may be specified for either path, and a dash (-) ,
denoting standard input, may be used as a place holder for input .

The translations performed by sifilter are controlled by the switches listed
below. The shell script /bin/cc sets the "standard" option switches. In the
released software all silicon filter options are disabled. If the user is gen
erating object for old silicon, then sifilter switches can be enabled either
on the command line, by using the -F option to the assembler, or by edit
ing /bin/cc.

Switches
a

b

c

d

e

Insert a trap-not-taken (tbl O,rO,Sll) after each ld or ld.d.

Split each st.d into an equivalent sequence of two st instructions.

Do not pass comment lines through to the output.

Issue each st or st.d twice .

Enable literal synthesis . See Uteral Synthesis. (NOTE: This option is
not compatible with some of the other options available, its use is no
longer supported.)

f Signals that input comes from the Absoft FORTRAN compiler.

g
Signals that input comes from the Greenhills C compiler.

- 1 -

SIFILTER(l) SIFILTER(l)

See the Scratch Registers section for an explanation of the need for the f
and g switches.

j Fix a problem with certain instances of the immediate forms of div and
divu .

k
Insert a no-op (or rO,rO,rO) after each trap-not-taken inserted by the a
option. If the a option has not been specified, this option has no
effect.

1 Split each ld.d into an equivalent sequence of two ld instructions .

n

p

q

Insert a no-op after each trap-not-taken inserted by the p option, but
only if the store instruction involved uses scaling. Specifying the n
option automatically forces the p option.

Insert a trap-not-taken before each st or st.d.

Insert a dummy ld before each ld. A dummy load is a load in which
the destination register is rO. The source operands in a dummy load
are the same as those in the actual load which follows.

r Fix various problems with the def and sdef directives produced by the
Greenhills C compiler. This option has no effect with the Motorola C
or Absoft FORTRAN compilers.

s
Produce a statistics dump on the standard error path on termination.

t Compensate for bugs in floating-point operations which have a
double-precision destination. See WARNINGS.

u
Adds a no-op after an lda.d if it is immediately followed by a ld.bu.

v

v
Displays a version identification message and exits immediately.

A single v enables "verbose" mode, in which various messages detail
ing actions taken by sifilter are output as comment lines. Two or more
instances of v in the option string generates a comment line contain
ing the current location counter value before each source line .

- 2 -

�lHLTER(l) SIFILTER(l)

w

X

y

z

E

Compensate for a bug in the fmul instruction in rev 0.5 MC88100
chips.

Compensate for a bug in the fmul instruction by breaking certain
immediate integer divides and multiplies into register-to-register
forms. (This fix only works in conjunction with a kernel exception
code fix .)

Insert a no-op after each trap-not-taken generated by the z option. If z
has not been specified, this option has no effect.

Insert a trap-not-taken after each st or st.d.

Insert a tend eqO before all divides. This compensates for a bug in all
mask revisions up to and including E.2, where divide by zero does not
always trigger a trap.

Defaults
All switches default to "off". If neither of the g or f switches are specified,
the input is assumed to have been generated by the Motorola C compiler.

sifilter performs the following transformations regardless of the option
switches specified.

addu and subu instructions with operands r3l,r3l, lit32 where '1it32" is a
constant whose value is greater than 64K are replaced with an equivalent
sequence.

Floating point instructions involving double operands may be moved if
they would otherwise fall at the end of a cache line.

Literal Synthesis
Since sifilter must maintain an accurate location counter, it must perform
the same fixups for '1it16" operands that would normally be done by ld.

Instructions with lit16 operands whose value cannot be determined by
sifilter (for example, a label), or whose value would require more than 16
bits, are replaced with an equivalent sequence. This is called '1iteral syn
thesis", since a 32-bit value is "synthesized" in a register from the literal .

- 3 -

SIFILTER(l) SIFILTER(l)

There are two forms o f literal synthesis . The short form:

or.u r29,rO,hi16(lit16)
op rd,r29,lo16(lit16)

is used for the add, addu, ld, Ida, or, st, xmem, and xor instructions (in
all their variations) when the source register is rO. When the source regis
ter is other than rO, these instructions are expanded into the long form:

or.u r29,rO,hi16(lit16)
or r29,r29,lo16(lit16)
op rd,rs,r29

Instructions which always are expanded with the long form are all the
variations on and, cmp, div, divu, mask, mul, sub, subu, and tbnd.

No literal synthesis is done unless the e option has been specified.

Scratch Registers
Some of the fixups performed by sifilter require one or two scratch regis
ters (split ld.d or st.d, addu, subu, and floats) .

Fixups which require only one scratch register will always succeed, since
all of the supported compilers have at least one available. Fixups requiring _
two scratch registers will succeed with the Motorola or Greenhills C com
pilers, but will fail with the Absoft FORTRAN compiler, which has only
one available register.

SEE ALSO
/bin/as, /bin/cc

WARNINGS
Code generated when the -t switch is in effect requires special kernel sup
port. DO NOT USE the -t option unless your operating system kernel is
dated 880815 or later. (To examine the kernel date, enter the command
uname -a. The date will be the fourth field in the output.)

The sifilter cannot deal with labels in branch delay slots i f the branch
delay slot instruction requires fixup. In these cases the message:

FATAL : delay branch instruction has l ab e l

i s written to stderr and sifilter will exit. This i s usually only a problem
with hand-optimized assembly source files, which should not require
filtering in any case.

- 4 -

SIFILTER(l) SIFILTER(l)

BUGS
Given the large number of option switches, and the almost infinite
number of instruction combinations, bugs would not be surprising.

- 5 -

SINK(l) (Internet Utilities) SINK(l)

l NAME
sink - canonical "server" process for testing network.

SYNOPSIS
sink

DESCRIPTION

FILES

sink spawns a daemon which listens on the port used by the TCP sink ser
vice (see services(4)} . As connections are made to that port, sink reads and
discards any incoming data for the duration of the connection . Multiple
and simultaneous connections are supported.

I etc/ services determines port number

- 1 -

SIZE (l) (Software Generation System Utilities) SIZE (l)

NAME
size - print section sizes in bytes of common object files

� SYNOPSIS
size [-n] [-£] [-o] [-x] [-V] files

DESCRIPTION
The size command produces section size information in bytes for each
loaded section in the common object files. The size of the text, data , and
bss (uninitialized data) sections is printed, as well as the sum of the sizes
of these sections. If an archive file is input to the size comm a nd the infor
mation for all archive members is displayed.

The -n option includes NOLOAD sections in the size .

The -£ option produces full output, that is, it prints the s ize of every
loaded section, followed by the section name in parentheses .

Numbers will be printed in decimal unless either the -o or the -x option is
used, in which case they will be printed in octal or in hexadecimal,
respectively.

The -V flag will supply the version information on the size comma nd .
SEE ALSO

as(l), cc(l), ld(l), a .out(4), ar(4)

CAVEAT
Since the size of bss sections is not known until link-edit t ime, the size
command will not give the true total size of pre-linked objects .

DIAGNOSTICS
size: name: cannot open

if 1Ulme cannot be read.

size: name: bad magic
if Mme is not an appropriate common object file .

- 1 -

SLEEP(l) (Essential Utilities)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP (l)

sleep suspends execution for time seconds . I t i s used to execute a com
mand after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

whi l e true
do

done

SEE ALSO

command
s l e ep 37

alarm(2), sleep(3C) in the Programmer's Reference Manual.

SORT(l) (Essential Utilities) SORT (l)

NAME
sort - sort and/or merge files

-----.__ SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx]
[+pos1 [-pos2]] ffiles]

DESCRIPTION
sort sorts lines of all the named files together and writes the result on the
standard output. The standard input is read if - is used as a file name or
no input files are named.

Comparisons are based on one or more sort keys extracted from each line
of input. By default, there is one sort key, the entire input line, and ord
ering is lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

-c
Check that the input file is sorted according to the ordering rules;
give no output unless the file is out of sort.

-m
Merge only, the input files are already sorted.

-u
Unique: suppress all but one in each set of lines having equal keys .

-ooutput
The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs .
There may be optional blanks between -o and output.

-ykmem
The amount of main memory used by the sort has a large impact on
its performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to use more space as needed. If this
option is presented with a value, kmem, sort will start using that
number of kilobytes of memory, unless the administrative minimum
or maximum is violated, in which case the corresponding extremum
will be used. Thus, -yO is guaranteed to start with minimum
memory. By convention, -y (with no argument) starts with maximum
memory.

- 1 -

SORT(l) (Essential Utilities) SORT (l)

-zrecsz
The size of the longest line read is recorded in the sort phase so
buffers can be allocated during the merge phase. If the sort phase is
omitted via the -c or -m options, a popular system default size will
be used. Lines longer than the buffer size will cause sort to terminate
abnormally. Supplying the actual number of bytes in the longest line
to be merged (or some larger value) will prevent abnormal termina
tion.

The following options override the default ordering rules .

-d

-f

-i

"Dictionary'' order: only letters, digits, and blanks (spaces and tabs)
are significant in comparisons .

Fold lowercase letters into uppercase.

Ignore non-printable characters .

-M
Compare as months . The first three non-blank characters of the field
are folded to uppercase and compared. For example, in English the
sorting order is 'JAN" < ''FEB" < . . . < ''DEC". Invalid fields compare
low to 'JAN". The -M option implies the -b option (see below) .

-n

-r

An initial numeric string, consisting of optional blanks, optional
minus sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value. The -n option implies the -b option (see
below) . Note that the -b option is only effective when restricted sort
key specifications are in effect.

Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys . When
attached to a specific sort key (described below), the specified ordering
options override all global ordering options for that key.

- 2 -

SORT(l) (Essential Utilities) SORT(l)

The notation +posi -pos2 restricts a sort key to one beginning a t posl and
ending just before pos2 . The characters at position posl and just before
pos2 are included in the sort key (provided that pos2 does not precede
posl). A missing -pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal
sequence of characters followed by a field separator or a newline . By
default, the first blank (space or tab) of a sequence of blanks acts as the
field separator. All blanks in a sequence of blanks are considered to be
part of the next field; for example, all blanks at the beginning of a line are
considered to be part of the first field. The treatment of field separators
can be altered using the options:

-b
Ignore leading blanks when determining the starting and ending posi
tions of a restricted sort key. If the -b option is specified before the
first +posl argument, it will be applied to all +posl arguments . Oth
erwise, the b flag may be attached independently to each + posl or
-pos2 argument (see below) .

-tx
Use x as the field separator character; x is not considered to be part of
a field (although it may be included in a sort key) . Each occurrence of
x is significant (for example, xx delimits an empty field) .

posl and pos2 each have the form m.n optionally followed by one or more
of the flags bdfinr. A starting position specified by + m .n is interpreted to
mean the n + 1st character in the m + 1st field. A missing .n means . 0,
indicating the first character of the m + 1st field. If the b flag is in effect n
is counted from the first non-blank in the m + 1st field; + m .Ob refers to
the first non-blank character in the m + 1st field.

A last position specified by -m .n is interpreted to mean the n th character
(including separators) after the last character of the m th field. A missing
.n means .0, indicating the last character of the mth field . If the b flag is
in effect n is counted from the last leading blank in the m + 1st field; -m . 1 b
refers to the first non-blank in the m + 1st field.

When there are multiple sort keys, later keys are compared only after all
earlier keys compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

- 3 -

SORT(l) (Essential Utilities) SORT(l)

EXAMPLES

FILES

Sort the contents of infile with the second field as the sort key:

sort + 1 -2 infile

Sort, in reverse order, the contents of infile1 and infile2 , placing the output
in outfile and using the first character of the second field as the sort key:

sort -r -o outfile + 1.0 -1.2 infile1 infile2

Sort, in reverse order, the contents of infile1 and infile2 using the first
non-blank character of the second field as the sort key:

sort -r + 1.0b -1.1b infile1 infile2

Print the password file (passwd(4)) sorted by the numeric user ID (the third
colon-separated field) :

sort -t: + 2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -urn with just
one input file make the choice of a unique representative from a set of
equal lines predictable) :

sort -urn + 2 -3 infile

/usr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(l)

WARNINGS
Comments and exits with non-zero status for various trouble conditions
(for example, when input lines are too long), and for disorder discovered
under the -c option. When the last line of an input file is missing a new
line character, sort appends one, prints a warning message, and contin
ues.

sort does not guarantee preservation of relative line ordering on equal
keys.

SPELL(l) (Spell Utilities) SPELL (l)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

-----., SYNOPSIS
spell [-v] [-b] [-x] [-1] [+ local _file] [files]

/usr/lib/spell/hashmake

/usr/lib/spelllspellin n

/usr/lib/spe1l/hashcheck spelling_list

DESCRIPTION
spell collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying cer
tain inflections, prefixes, and/or suffixes) from words in the spelling list
are printed on the standard output. If no files are named, words are col
lected from the standard input.

spell ignores most troff(l), tbl (l), and eqn (l) constructions.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked . Besides preferring centre,
colour, programme, speciality, travelled, this option insists upon -ise in words
like standardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each
word.

By default, spell (like deroff(l)) follows chains of included files (.so and . nx

troff(l) requests), unless the names of such included files begin with
/usr/lib . Under the -1 option, spell will follow the chains of all included
files.

Under the + local-file option, words found in local-file are removed from
spell's output. local-file is the name of a user-provided file that contains a
sorted list of words, one per line . With this option, the user can specify a
set of words that are correct spellings (in addition to spell's own spelling
list) for each job.

The spelling list is based on many sources, and while more haphazard
than an ordinary dictionary, is also more effective with respect to proper
names and popular technical words . Coverage of the specialized vocabu
laries of biology, medicine, and chemistry is light.

- 1 -

SPELL (l) (Spell Utilities) SPELL(l)

FILES

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings (see FILES) . Copies of all output are
accumulated in the history file. The stop list filters out misspellings (e .g . ,
thier= thy-y+ ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell :

hashmake
Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin
Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output.

hashcheck
Reads a compressed spelling_list and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard out
put.

D _SPELL= /usr/lib/spell/hlist[ab]

S_SPELL=/usr/lib/spell/hstop
H_SPELL = /usr/lib/spelllspellhist
/usr/lib/spelllspellprog

hashed spelling lists, American &
British
hashed stop list
history file
program

SEE ALSO

BUGS

deroff(l), sed(l), sort(l), tee(l)

The spelling list's coverage is uneven; new installations will probably
wish to monitor the output for several months to gather local additions;
typically, these are kept in a separate local file that is added to the hashed
spelling_list via spell in .

With continued use, the history file will grow unchecked.

- 2 -

SPLIT (I) (Directory and File Management Utilities) SPLIT (l)

NAME
split - split a file into pieces

---._ SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000 lines) onto a set
of output files . The name of the first output file is name with aa
appended, and so on lexicographically, up to zz (a maximum of 676 files) .
Name cannot be longer than 12 characters . If no output name is given, x is
default.

If no input file is given, or if - is given in its stead, then the standard
input file is used.

SEE ALSO
bfs(1), csplit(1)

- 1 -

STARTER(!) (Help Utilities) STARTER(!)

NAME
starter - information about the system for beginning users

SYNOPSIS
[help] starter

DESCRIPTION
The Help Facility command starter provides five categories of information
about the system to assist new users .

The five categories are:

• commands a new user should learn first

• documents important for beginners

• education centers offering courses

• local environment information

• online teaching aids

The user may choose one of the above categories by entering its
corresponding letter (given in the menu), or may exit to the shell by typ
ing q (for "quit") . When a category is chosen, the user will receive one or
more pages of information pertaining to it.

From any screen in the Help Facility, a user may execute a command via
the shell (sh (l)) by typing a ! and the command to be executed. The
screen will be redrawn if the command that was executed was entered at
a first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non
scrolling), the shell variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by adding the follow
ing line to your .profile file (see profile (4)) : "export SCROLL;
SCROLL= no" . If you later decide that scrolling is desired, SCROLL must
be set to yes .

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
glossary{l), help(l), locate{l), sh{l), usage(l) .
term(S) in the Programmer's Reference Manual.

- 1 -

STARTER(l) (Help Utilities) STARTER(l)

WARNINGS
If the shell variable TERM (see sh (l)) is not set in the user's .profile file,
then TERM will default to the terminal value type 450 (a hard-copy termi
nal) . For a list of valid terminal types, refer to term(S) .

STRIP(l) (Software Generation System Utilities) STRIP(l)

NAME
strip - strip symbol and line number information from a common object
file

SYNOPSIS
strip [-1] [-x] [-b] [-r] [-V] filename . . .

DESCRIPTION
The strip command strips the symbol table and line number information
from common object files, including archives . Once this has been done,
no symbolic debugging access will be available for that file; therefore, this
command is normally run only on production modules that have been
debugged and tested.

The amount of information stripped from the symbol table can be con
trolled by using any of the following options:

-1

-x

Strip line number information only; do not strip any symbol table
information.

Do not strip static or external symbol information.

-b

-r

Same as the -x option, but also do not strip scoping information (e .g . ,
beginning and end of block delimiters) .

Do not strip static or external symbol information, or relocation infor
mation.

-V
Print the version of the strip command executing on the standard
error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping filename unless the -r option is used.

If the strip command is executed on a common archive file (see ar(4)) the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(l) command with the s option before the
archive can be link-edited by the ld (l) command. strip will produce
appropriate warning messages when this situation arises .

- 1 -

STRIP(l) (Software Generation System Utilities) STRIP(l)

FILES

strip is used to reduce the file storage overhead taken by the object file .

TMPDIR/strp* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR (see tempnam() in tmpnam(3S)) .

SEE ALSO
ar(l), as(l), cc(l), ld(l), tmpnam(3S), a .out(4), ar(4) .

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is not used, the sym
bol table information cannot be stripped.

STTY(l) (Essential Utilities) STTY(l)

NAME
stty - set the options for a terminal

� SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
stty sets certain terminal UO options for the device that is the current stan
dard input; without arguments, it reports the settings of certain options .

In this report, if a character is preceded by a caret C), then the value of
that option is the corresponding CTRL character (e .g . , "Ah" is CTRL-h;
in this case, recall that CTRL-h is normally the same as the BACKSPACE
key.) The sequence "A'" means that an option has a NULL value. For
example, normally stty -a will report that the value of swtch is "A'"; how
ever, if shl (1) has been invoked, swtch will have the value "Az" .

-a
reports all the option settings .

-g
reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented using options in the previous
groups. Note that many combinations of options make no sense, but no
sanity checking is performed. The options are selected from the follow
ing:

Control Modes
parenb (-parenb)

parodd (-parodd)

cs5 cs6 cs7 cs8

enable (disable) parity generation and detection.

select odd (even) parity.

select character size (see termio(7)) .

0 hang up phone line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400

hupcl (-hupcl)

hup (-hup)

Set terminal baud rate to the number given, if possi
ble . (Not all speeds are supported by all hardware
interfaces .)

hang up (do not hang up) Dataphone connection on
last close.

same as hupcl (-hupcl) .

- 1 -

STTY(l)

cstopb (-cstopb)

cread (-cread)

clocal (-clocal)

loblk (-loblk)

Input Modes
ignbrk (-ignbrk)

brkint (-brkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpck (-inpck)

istrip (-istrip)

inlcr (-inlcr)

igncr (-igncr)

icrnl (-icrnl)

iuclc (-iuclc)

ixon (-ixon)

ixany (-ixany)

ixo££ (-ixo££)

Output Modes
opost (-opost)

olcuc (-olcuc)

onlcr (-onlcr)

(Essential Utilities)

use two (one) stop bits per character.

enable (disable) the receiver.

STTY(l)

assume a line without (with) modem control.

block (do not block) output from a non-current
layer.

ignore (do not ignore) break on input.

signal (do not signal) INTR on break.

ignore (do not ignore) parity errors .

mark (do not mark) parity errors (see termio(7)) .

enable (disable) input parity checking.

strip (do not strip) input characters to seven bits .

map (do not map) NL to CR on input.

ignore (do not ignore) CR on input.

map (do not map) CR to NL on input.

map (do not map) upper-case alphabetics to lower
case on input.

enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DCl .

allow any character (only DCl) to restart output.

request that the system send (not send) START/STOP
characters when the input queue is nearly
empty/full .

post-process output (do not post-process output;
ignore all other output modes) .

map (do not map) lowercase alphabetics to upper
case on output.

map (do not map) NL to CR-NL on output.

- 2 -

STfY(l)

ocml (-ocml)

onocr (-onocr)

onlret (-onlret)

ofill (-ofill)

ofdel (-ofdel)

crO crl cr2 cr3

nlO nll

tabO tab1 tab2 tab3

bsO bsl

ffO ffl

vtO vtl

Local Modes
isig (-isig)

icanon (-icanon)

xcase (-xcase)

echo (-echo)

echoe (-echoe)

echok (-echok)

lfkc (-lfkc)

(Essential Utilities)

map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

STTY(l)

on the terminal NL performs (does not perform) the
CR function.

use fill characters (use timing) for delays .

fill characters are DELs {NULs) .

select style of delay for carriage returns (see ter
mio (7)) .

select style of delay for line-feeds (see termio (7)) .

select style of delay for horizontal tabs (see ter
mio(7)) .

select style of delay for backspaces (see termio (7)) .

select style of delay for form-feeds (see termio (7)) .

select style of delay for vertical tabs (see termio (7)) .

enable (disable) the checking of characters against
the special control characters INTR, QUIT, and
SWTCH.

enable (disable) canonical input (ERASE and KILL
processing) .

canonical (unprocessed) upper/lowercase presenta
tion.

echo back (do not echo back) every character typed.

echo (do not echo) ERASE character as a backspace
space-backspace string. Note that this mode will
erase the ERASEed character on many CRT terminals;
however, it does not keep track of column position
and, as a result, may be confusing on escaped char
acters, tabs, and backspaces .

echo (do not echo) NL after KILL character.

the same as echok (-echok); obsolete .

- 3 -

STTY(l)

echonl (-echonl)

noflsh (-noflsh)

stwrap (-stwrap)

stflush (-stflush)

stappl (-stappl)

Control Assignments
control-character c

line i

Combination Modes
evenp or parity

oddp

(Essential Utilities) STTY(l)

echo (do not echo) NL .
disable (enable) flush after INTR, QUIT, or SWTCH.

disable (enable) truncation of lines longer than 79
characters on a synchronous line .

enable (disable) flush on a synchronous line after
every write(2) .

use application mode (use line mode) on a synchro
nous line .

set control-character to c, where control-character is
erase, kill, intr, quit, swtch, eof, ctab, min, or time
(ctab is used with -stappl; min and time are used
with -icanon; see termio(7)) . If c is preceded by a
caret n (escaped from the shell), then the value
used is the corresponding CTRL character (e .g . ,
"Ad" is a CTRL-d); "7' is interpreted as DEL and
"A-" is interpreted as undefined .

set line discipline to i (0 < i < 127) .

enable parenb and cs7.

enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp
disable parenb, and set cs8 .

raw (-raw or cooked) enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, SWTCH, EOT, or output post pro
cessing) .

nl (-nl)

lease (-lease)

LCASE (-LCASE)

tabs (-tabs or tab3)

unset (set) icrnl, onlcr. In addition -nl unsets inlcr,
igncr, ocrnl, and onlret.

set (unset) xcase, iuclc, and olcuc .

same as lease (-lease) .

preserve (expand to spaces) tabs when printing.

- 4 -

STTY(l)

ek

sane

term

SEE ALSO
tabs{l) .

(Essential Utilities) STTY(l)

reset ERASE and KILL characters back to normal # I
and @.

resets all modes to some reasonable values.

set all modes suitable for the terminal type tenn,
where tenn is one of tty33, tty37, vt05, tn300, ti700,
or tek.

ioctl(2) in the Programmer's Reference Manual.
termio(7) in the System Administrator's Reference Manual.

- 5 -

SUM (l) (Directory and File Management Utilities) SUM (l)

I NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
sum calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file . It is typically used to look for bad
spots, or to validate a file communicated over some transmission line .
The option -r causes an alternate algorithm to be used in computing the
checksum.

SEE ALSO
wc(l) .

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check
the block count.

- 1 -

TABS (l) (User Environment Utuuu:!iJ

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [-Ttype] [+ mn]

DESCRIPTION
tabs sets the tab stops on the user's terminal according to the tab specifica
tion tabspec, after clearing any previous settings . The user' s terminal must
have remotely-settable hardware tabs .

tabspec
Four types of tab specification are accepted for tabspec . They are
described below: canned (-code), repetitive (-n), arbi trary (n1 ,n2, . . .),
and file (-file) . If no tabspec is given, the default value is -8, i .e . ,
"standard" tabs. The lowest column number is 1 . Note that for tabs,
column 1 always refers to the leftmost column on a terminal, even
one whose column markers begin at 0, e .g . , the DASI 300, DASI 300s,
and DASI 450.

-code
Use one of the codes listed below to select a canned set of tabs . The
legal codes and their meanings are:

-a
1, 10, 16,36,72
Assembler, IBM S/370, first format

-a2

-c

1, 10, 16,40,72
Assembler, IBM S/370, second format

1,8,12, 16,20,55
COBOL, normal format

-c2
1,6, 10, 14,49
COBOL compact format (columns 1-6 omitted) . Using this code, th€
first typed character corresponds to card column 7, one space geh
you to column 8, and a tab reaches column 12. Files using this tal
setup should include a format specification as follows (see fspec(4)) :

< :t-c2 m 6 s66 d:>

- 1 -

I

a

(User Environment Utilities) TABS (l)

-c3 1,6, 10 , 14, 18,22,26,30,34,38,42,46,50 ,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The
appropriate format specification is (see fspec(4)) :

<:t-c3 m6 s66 d:>

-f 1,7, 11 ,15, 19,23
FORTRAN

-p 1,5,9, 13, 17,21,25,29,33,37,41,45,49,53,57,61
PUI

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

-n
A repetitive specification requests tabs at columns 1 + n , 1 + 2*n , etc.
Of particular importance is the value 8: this represents the "stan
dard" tab setting, and is the most likely tab setting to be found at a
terminal . Another special case is the value 0, implying no tabs at all.

n1 ,n2 , . . .
The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the firs t one) is pre
ceded by a plus sign, it is taken as an increment to be added to the
previous value . Thus, the formats 1,10,20,30, and 1,10, + 10, + 10 are
considered identical .

-file
If the name of a file is given, tabs reads the first line of the file,
searching for a format specification (see fspec(4)) . If it fi nds one there,
it sets the tab stops according to it, otherwise it sets them as -8 . This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings, and would be used wi th the pr(1)
command:

tabs - file; pr file

- 2 -

TABS (l) (User Environment Utilities)

Any of the following also may be used; if a given flag occurs more than I
once, the last value given takes effect:

-Ttype
tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins . type is a name
listed in term(S) . If no -T flag is supplied, tabs uses the value of the
environment variable TERM . If TERM is not defined in the environ
ment (see environ(S)), tabs tries a sequence that will work for many
terminals.

+ mn
The margin argument may be used for some terminals . It causes all
tabs to be moved over n columns by making column n + 1 the left
margin. If + m is given without a value of n, the value assumed is
10. For a TermiNet, the first value in the tab list should be 1, or the
margin will move even further to the right. The normal (leftmost)
margin on most terminals is obtained by + mO. The margin for most
terminals is reset only when the +m flag is given explici tly.

Tab and margin setting is performed via the standard output .

EXAMPLES
tabs -a

example using -code (canned specification) to set tabs to the settings
required by the IBM assembler: columns 1, 10, 16, 36, 72.

tabs -8
example of using -n (repetitive specification), where n is 8, causes tabs to
be set every eighth position:
1 + (1*8), 1 + (2*8), . . . which evaluate to columns 9, 17, . . .

tabs 1,8,36
example of using n1 ,n2 , . . . (arbitrary specification) to set tabs at
columns 1, 8, and 36.

tabs -$HOME/fspec.listlatt4425
example of using -file (file specification) to indicate that tabs should be
set according to the first line of $HOME/fspec.listlatt4425 (see fspec(4)) .

' DIAGNOSTICS
illegal tabs

when arbitrary tabs are ordered incorrectly

illegal increment
when a zero or missing increment is found in an arbitrary speci fication

- 3 -

I

TABS(l) (User Environment Utilities) TABS (l)

unknown tab code
when a canned code cannot be found

can't open
if -file option used, and file can't be opened

file indirection
if -file option used and the specification in that file points to yet
another file . Indirection of this form is not permitted

SEE ALSO

NOTE

newform(l), pr(l), tput(l)
fspec(4), terminfo(4), environ(S), term(S) in the Programmer's Reference
Manual.

There is no consistency among different terminals regarding ways of clear
ing tabs and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence) , but is
willing to set 64.

WARNING
The tabspec used with the tabs command is different from the one used
with the newform(l) command. For example, tabs -8 sets every eighth
position; whereas newform -i-8 indicates that tabs are se t every eighth
position.

- 4 -

TAIL(l) (Directory and File Management Utilities) TAIL(l)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number][lbc [f]]] [file]

DESCRIPTION
tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance + number from the beginning, or -number from
the end of the input (if number is null, the value 10 is assumed) . Number
is counted in units of lines, blocks, or characters, according to the
appended option 1, b, or c. When no units are specified, counting is by
lines.

With the -f ("follow") option, if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied, but will
enter an endless loop, wherein it sleeps for a second and then attempts to
read and copy further records from the input file . Thus it may be used to
monitor the growth of a file that is being written by some other process.
For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that
are appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(1M) .

BUGS
Tails relative to the end of the file are stored in a buffer, thus, are limited
in length. Various kinds of anomalous behavior may happen with charac
ter special files.

� WARNING
The tail command will only tail the last 4096 bytes of a file regardless of
its line count.

- 1 -

I

TAR(l) (Cartridge Tape Utilities) 1 }\.1\. \.1- 1

NAME
tar - tape file archiver

SYNOPSIS
/etc/tar -c[iLvwfb[#s]] device block files
/etc/tar -r[iLvwb[#s]] device block [files . . .]
/etc/tar -t[iLvf[#s] device
/etc/tar -u[iLvwb[#s]] device block [files . . .]
/etc/tar -x[iLlmovwf[#s]] device [files . . .]

DESCRIPTION
tar saves and restores files on magnetic tape. Its actions are controlled by
the key argument. The key is a string of characters containing one func
tion letter (c, r, t, u, or x) and possibly followed by one or more function
modifiers {b, £, i, L, v, w, and #) . Other arguments to the command are
files (or directory names) specifying which files are to be dumped or
restored. In all cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r

X

t

u

Replace. The named files are written on the end of the tape. The c
function implies this function.

Extract. The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the tape,
this directory is (recursively) extracted. Use the file or directory's
relative path when appropriate, or tar will not find a match. The
owner, modification time, and mode are restored (if possible) . If no
files argument is given, the entire content of the tape is extracted.
Note that if several files with the same name are on the tape, the last
one overwrites all earlier ones.

Table . The names and other information for the specified files are
listed each time that they occur on the tape. The listing is similar to
the format produced by the ls -1 command. If no files argument is
given, all names on the tape are listed.

Update. The named files are added to the tape if they are not already
there, or have been modified since last written on that tape. This key
implies the r key.

- 1 -

I

TAR(l)

c

(Cartridge Tape Utilities) TAR(l]

Create a new tape; writing begins a t the beginning of the tape,
instead of after the last file . This key implies the r key.

The following characters may be used in addition to the letter that selects
the desired function. Use them in the order shown in the synopsis:

i

L

This modifier causes tar to ignore symbolic links .

This modifier causes tar to follow symbolic links . The default is not
to follow links . If an archive is made from a tree containing symbolic
links, it will record the path associated with each link. When it is
restored, the symbolic links will be re-made . If -L is specified, the
actual file pointed to by the link is archived instead of the symbolic
link contents .

#s

v

w

f

This modifier determines the drive on which the tape is mounted
(replace # with the drive number) and the speed of the drive (replace
s with 1, m, or h for low, medium or high) . The modifier tells tar to
use a drive other than the default drive, or the drive specified with
the -f option. For example, with the 5h modifier, tar would use

/dev/mt/Sh or /dev/mtO instead of the default drives /dev/mt/Om or
/dev/mtO, respectively. However, if for example, "-f /devlrmtO Sh"
appeared on the command line, tar would use /dev/rmt5h or /devmtO .
The default entry is Om.

Verbose . Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the func
tion letter. With the t function, v gives more information about the
tape entries than just the name .

What. This causes tar to print the action to be taken, followed by the
name of the file, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other input
means "no" . This is not valid with the t key.

File . This causes tar to use the device argument as the name of the
archive instead of /dev/rmtlctape . (Note that the cartridge tape in
SYSTEM V/88 is referenced as /dev/rmtlctape .) If the name of the file

- 2 -

TAR(l)

FILES

b

I

m

0

(Cartridge Tape Utilities) TAR (l)

i s -, tar writes to the standard output or reads from the standard I
input, whichever is appropriate. Thus, tar can be used as the head or
tail of a pipeline . tar can also be used to move hierarchies with the
command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

Blocking Factor. This causes tar to use the block argument as the block
ing factor for tape records . The default is 1, the maximum is 20. This
function should not be supplied when operating on regular archives or
block special devices. It is mandatory however, when reading archives
on raw magnetic tape archives (see f above) . The block size is deter
mined automatically when reading tapes created on block special dev
ices (key letters x and t) .

Link. This tells tar to complain if it cannot resolve all of the links to the
files being dumped. If I is not specified, no error messages are printed.

Modify. This tells tar to not restore the modification times. The modifi
cation time of the file will be the time of extraction.

Ownership. This causes extracted files to take on the user and group
identifier of the user running the program, instead of those on tape.
This is only valid with the x key.

/dev/mtJ•
/tmp/tar*
/dev/rmtl*

SEE ALSO
ar(l), cpio(l), ls(l) .

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors .
Complaints if enough memory is not available to hold the link tables.

- 3 -

TAR(l)

I BUGS

(Cartridge Tape Utilities)

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.

TAR(l)

The u option can be slow. The u option will not work on 88K cartridge
tape devices.
The b option should not be used with archives that are going to be
updated. The current magnetic tape driver cannot backspace raw mag
netic tape. If the archive is on a disk file, the b option should not be used
at all, because updating an archive stored on disk can destroy it.
The current limit on file name length is 100 characters.
tar does not copy empty directories or special files .

- 4 -

TEE (l) (Essential Utilities) TEE (I J

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file]

DESCRIPTION
tee transcribes the standard input to the standard output and makes copies
in the files . The

-i ignore interrupts;

-a causes the output to be appended to the files rather than overwrit-
ing them.

- 1 -

I

TEST(l) (Essential Utilities) TEST (l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
I expr]

DESCRIPTION
test evaluates the expression expr and, if its value is true, sets a zero (true)
exit status; otherwise, sets a non-zero (false) exit status. test also sets a
non-zero exit status if there are no arguments. When permissions are
tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second
SYNOPSIS line) must be separate arguments to the test command; nor
mally these items are separated by spaces.

The following primitives are used to construct expr :

-r file
true if file exists and is readable.

-w file
true if file exists and is writable .

-x file
true if file exists and is executable.

-f file
true if file exists and is a regular file.

-d file
true if file exists and is a directory.

-c file
true if file exists and is a character special file .

-b file
true if file exists and is a block special file.

-1 file
true if file exists and is a symbolic link.

-� -p file
true if file exists and is a named pipe (fifo) .

-u file
true if file exists and its set-user-ID bit is set.

- 1 -

I

II

TEST(l) (Essential Utilities) TEST (I)

-g file
true if file exists and its set-group-ID bit is set.

-k file
true if file exists and its sticky bit is set.

-s file
true if file exists and has a size greater than zero.

-t [fildes]
true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device .

-z sl
true if the length of string sl is zero.

-n sl
true if the length of the string sl is non-zero.

sl = s2
true if strings sl and s2 are identical.

sl != s2
true if strings sl and s2 are not identical .

s1
true if s1 is not the null string.

n1 -eq n2
true if the integers nl and n2 are algebraically equal . Any of the com
parisons -ne, -gt, -ge, -It, and -le may be used in place of -eq.

These primaries may be combined with the following operators :

unary negation operator

-a
binary and operator

-o
binary or operator (-a has higher precedence than -o)

(expr)
parentheses for grouping. Notice also that parentheses are meaning
ful to the shell, therefore, must be quoted.

SEE ALSO
find(l), sh(l) .

- 2 -

TEST(l) (Essential Utilities) TEST(l)

WARNING
If you test a file you own (the -r, -w, or -x tests), but the permission
tested does not have the owner bit set, a non-zero (false) exit status will be
returned even though the file may have the group or other bit set for that
permission. The correct exit status will be set if you are superuser.

The = and != operators have a higher precedence than the -r through -n
operators, and = and ! = always expect arguments; therefore, they cannot
be used with the -r through -n operators .

If more than one argument follows the -r through -n operators, only the
first argument is examined; the others are ignored, unless an -a or an -o
is the second argument.

- 3 -

I

TIME (l) (User Environment Utilities) TIME (I)

I NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2) in the Programmer's Reference Manual.

- 1 -

TIMEX(l) (System Performance Analysis Utilities) TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system
time spent in execution are reported in seconds . Optionally, process
accounting data for the command and all its children can be listed or sum
marized, and total system activity during the execution interval can be
reported.

The output of timex is written on standard error.

The options are:

-p
List process accounting records for command and all its children. This
option works only if the process accounting software is installed.
Suboptions f , h , k , m , r , and t modify the data items reported.
The options are:

-f Print the fork/exec flag and system exit status columns in the out
put.

-h Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This
"hog factor" is computed as:

(total CPU time)/(elapsed time) .

-k Instead of memory size, show total kcore-minutes .

-m Show mean core size (the default) .

-r Show CPU factor (user time/(system-time + user-time) .

-t Show separate system and user CPU times. The number of

-o

blocks read or written and the number of characters transferred
are always reported.

Report the total number of blocks read or written and total characters
transferred by command and all its children. This option works only if
the process accounting software is installed.

- 1 -

I

I

TIMEX(l)

-s

SEE ALSO

(System Performance Analysis Utilities)

Report total system activity (not just that due
occurred during the execution interval of command .
listed in sar(l) are reported.

, sar(l)

WARNING

TIMEX(l)

to command) that
All the data items

Process records associated with command are selected from the accounting
file /usr/adm/pacct by inference, since process genealogy is not available .
Background processes having the same user-id, terminal-id, and execution
time window will be spuriously included.

EXAMPLES
A simple example:

timex -Qps sleep 60

A terminal session of arbitrary complexity can be measured by timing a
sub-shell:

timex -Qpskmt sh

session commands
EOT

- 2 -

TOUCH(l) (Directory and File Management Utilities) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-arne] [mmddhhmm [yy]] files

DESCRIPTION
touch causes the access and modification times of each argument to be
updated. The file name is created if it does not exist. If no time is speci
fied (see date(l)) the current time is used. The -a and -m options cause
touch to update only the access or modification times respectively (default
is -am) . The -c option silently prevents touch from creating the file if it
did not previously exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist and
were not created) .

SEE ALSO
date(l) .
utime(2) in the Programmer's Reference Manual.

- 1 -

I

TPUT (l) (Terminal Information Utilities) TPUT (l)

NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-T type] capname [parms . . .]

tput [-T type] init

tput [-T type] reset

tput [-T type] longname

tput -S < < file

DESCRIPTION
tput uses the terminfo(4) database to make the values of terminal
dependent capabilities and information available to the shell (see sh(l)), to
initialize or reset the terminal, or return the long name of the requested
terminal type.

tput outputs a string if the attribute (capability name) is of type string, or
an integer if the attribute is of type integer. If the attribute is of type
boolean, tput simply sets the exit code (0 for TRUE if the terminal has the
capability, 1 for FALSE if it does not), and produces no output. Before
using a value returned on standard output, the user should test the exit
code ($?, see sh(l)) to be sure it is 0. (See EXIT CODES and DIAGNOS
TICS .) For a complete list of capabilities and the capname associated with
each, see terminfo(4) .

-Ttype
indicates the type of terminal. Normally, this option is unnecessary
because the default is taken from the environment variable TERM. If
-T is specified, the shell variables LINES and COLUMNS and the layer
size (see layers(!)) will not be referenced.

capname
indicates the attribute from the terminfo (4) database .

parms
If the attribute is a string that takes parameters, the arguments parms
will be instantiated into the string. An all numeric argument will be
passed to the attribute as a number.

- 1 -

I

I

TPUT(l) (Terminal Information Utilities) TPUT(l)

-S
allows more than one capability per invocation of tput . The capabili
ties must be passed to tput from the standard input instead of from
the command line (see example) . Only one cap1Ulme is allowed per
line . The -S option changes the meaning of the 0 and 1 boolean and
string exit codes (see EXIT CODES).

init
If the tenninfo(4) database is present and an entry for the user' s termi
nal exists (see -Ttype, above), the following will occur: (1) if present,
the terminal's initialization strings will be output (isl, is2, is3, if,
iprog), (2) any delays (e .g . , newline) specified in the entry will be set
in the TIY driver, (3) tabs expansion will be turned on or off accord
ing to the specification in the entry, and (4) if tabs are not expanded,
standard tabs will be set (every 8 spaces) . If an entry does not con
tain the information needed for any of the four above activities, that
activity will silently be skipped.

reset
Instead of putting out initialization strings, the terminal's reset strings
will be output if present (rsl, rs2, rs3, rf). If the reset strings are not
present, but initialization strings are, the initialization strings will be
output. Otherwise, reset acts identically to init.

longname
If the tenninfo (4) database is present and an entry for the user's termi
nal exists (see -Ttype above), then the long name of the terminal will
be put out. The long name is the last name in the first line of the
terminal's description in the tenninfo (4) database (see tenn(5)) .

EXAMPLES
tput init

Initialize the terminal according to the type of terminal in the environ
mental variable TERM. This command should be included in
everyone's . profile after the environmental variable TERM has been
exported, as illustrated on the profile(4) manual page .

tput -T5620 reset
Reset an AT&T 5620 terminal, overriding the type of terminal in the
environmental variable TERM.

tput cup 0 0
Send the sequence to move the cursor to row 0, column 0 (upper left
corner of the screen, usually known as "home" cursor position) .

- 2 -

TPUT(l) (Terminal Information Utilities) TPUT(l)

FILES

tput clear
Echo the clear-screen sequence for the current terminal.

tput cols
Print the number of columns for the current terminal .

tput -T450 cols
Print the number of columns for the 450 terminal.

bold= 'tput smso'
offbold= 'tput rmso'

Set the shell variables bold, to begin stand-out mode sequence, and
offbold, to end standout mode sequence, for the current terminal .
This might be followed by a prompt:

echo "${bold} Please type in your name: ${offbold}\c"

tput he
Set exit code to indicate if the current terminal is a hardcopy terminal.

tput cup 23 4
Send the sequence to move the cursor to row 23, column 4.

tput longname
Print the long name from the terminfo (4) database for the type of ter
minal specified in the environmental variable TERM.

tput -S < < !
> clear
> cup 10 10
> bold
> !

This example shows tput processing several capabilities in one invoca
tion. This example clears the screen, moves the cursor to pos ition 10,
10 and turns on bold (extra bright) mode. The list is terminated by an
exclamation mark (!) on a line by itself.

/usr/lib/terminfo/?1* compiled terminal description database

/usr/include/curses.h curses(3X) header file

/usr/include/term.h terminfo(4) header file

/usr/lib/tabset/* tab settings for some terminals in a format appropri
ate to be output to the terminal (escape sequences
that set margins and tabs); for more information,
see the Tabs and Initialization section of terminfo(4) .

- 3 -

I

TPUT(l) (Terminal Information Utilities) TPUT(l)

I SEE ALSO
stty (1), tabs (1)
profile(4), terminfo(4) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

EXIT CODES
If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE
unless the -S option is used.

If capname is of type string, a value of 0 is set if the capname is defined for
this terminal type (the value of capname is returned on standard output); a
value of 1 is set if capname is not defined for this terminal type (a NULL
value is returned on standard output) .

If capname is of type boolean or string and the -S option is used, a value of
0 is returned to indicate that all lines were successful. No indication of
which line failed can be given so exit code 1 will never appear. Exit codes
2, 3, and 4 retain their usual interpretation.

If capname is of type integer, a value of 0 is always set, whether or not cap
name is defined for this terminal type . To determine if capname is defined
for this terminal type, the user must test the value of standard output. A
value of -1 means that capname is not defined for this terminal type .

Any other exit code indicates an error; see DIAGNOSTICS.

DIAGNOSTICS
tput prints the following error messages and sets the corresponding exit
codes.

Exit
Code Error Message

0 -1 (capname is a numeric variable that is not specified in the

terminfo(4) database for this terminal type, for example:

tput -T450 lines and tput -T2621 xmc)
1 no error message is printed, see EXIT CODES, above.
2 usage error

3 unknown terminal type or no terminfo(4) database
4 unknown terminfo(4) capability capname

- 4 -

TR(l) (Directory and File Management Utilities) J. .1'" \ � ,

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string1 are
mapped into the corresponding characters of string2 . Any combination of
the options -cds may be used:

-c
Complements the set of characters in string1 with respect to the
universe of characters whose ASCII codes are 001 through 377 octal.

-d

-s

Deletes all input characters in string1 .

Squeezes all strings of repeated output characters that are in string2 to
single characters .

The following abbreviation conventions may be used to introduce ranges
of characters or repeated characters into the strings:

[a-z]
Stands for the string of characters whose ASCII codes run from char
acter a to character z, inclusive.

[a*n]
Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal . A zero or missing n is
taken to be huge; this facility is useful for padding string2 .

The escape character \ may be used as in the shell to remove special
meaning from any character in a string. In addition, \ followed by 1, 2, or
3 octal digits stands for the character whose ASCII code is given by those
digits .

- 1 -

I

TR(l) (Directory and File Management Utilities) TR(l)

I EXAMPLE
The following example creates a list of all the words in filel one per line in
file2, where a word is taken to be a maximal string of alphabetics. The
strings are quoted to protect the special characters from interpretation by
the shell; 012 is the ASCII code for newline .

tr -cs "[A-Z][a-z]" "[\012*]" <filel >file2

SEE ALSO

BUGS

ed(l), sh(l) .
ascii(5) in the Programmer's Reference Manual.

Will not handle ASCII NUL in stringl or string2 ; always deletes NUL from
input.

- 2 -

TRUE (l) (Essential Utilities)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE (l)

true does nothing, successfully. False does nothing, unsuccessfully. They
are typically used in input to sh {l), for example:

while true

do
co= and

done

SEE ALSO
sh{l) .

DIAGNOSTICS
true has exit status zero, false nonzero.

- 1 -

I

TSORT(l) (Software Generation System Utilities)

I NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

TSORT(l)

The tsort command produces on the standard output a totally ordered list
of items consistent with a partial ordering of items mentioned in the input
file : If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical items
indicate presence, but not ordering.

SEE ALSO
lorder(l) .

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file .

- 1 -

TT(l) (Essential Utilities) TT(l)

NAME
tt - convert and copy a file

SYNOPSIS
tt if=file of=file bs =n count=n

DESCRIPTION

FILES

tt copies the specified input file to the specified output; the raw devices
will be used by default:

if=file input disk alias searched for in the permissions file .

of=file output disk alias searched for in the permissions file .

bs = n set both input and output block size .

count=n copy only n input records.

Where n is specified, a number of bytes are expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a
pair of numbers may be separated by x to indicate a product.

/bin/dd
/etc/filesys permissions file

SEE ALSO
cp(1), dd(1) in the User's Reference Manual.
filesys(4) in the Programmer's Reference Manual.

DIAGNOSTICS

BUGS

After completion, tt reports the number of whole and partial input and
output blocks:

full+ partial records in
full+ partial records out

Only files listed in the permissions file may be accessed.

- 1 -

I

TTY(l) (User Environment Utilities) TTY(l)

I NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1] [-s]

DESCRIPTION
tty prints the pathname of the user's terminal:

-1

-s

prints the synchronous line number to which the user's terminal is
connected if it is on an active synchronous line .

inhibits printing of the terminal pathname, allowing you to test just
the exit code.

Exit
Codes Description

2 if invalid options were specified
0 if standard input is a terminal
1 otherwise

DIAGNOSTICS
"not on an active synchronous line" if the standard input is not a syn
chronous terminal and -1 is specified.

"not a tty'' if the standard input is not a terminal and -s is not specified .

- 1 -

'

UMASK(l) (Essential Utilities) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [ooo]

DESCRIPTION
The user file-creation mode mask is set to ooo . The three octal digits refer
to read/write/execute permissions for owner, group, and others , respectively
(see chmod(2) and unuzsk(2)) . The value of each specified digit is sub
tracted from the corresponding "digit'' specified by the system for the
creation of a file (see creat(2)) . For example, umask 022 removes group
and others write permission (files normally created with mode 777 become
mode 755; files created with mode 666 become mode 644) .
If ooo is omitted, the current value of the mask is printed.

unuzsk is recognized and executed by the shell .

unuzsk can be included in the user's .profile (see profile(4)) and invoked at
login to automatically set the user's permissions on files or directories
created .

SEE ALSO
chmod(l), sh(l) .
chmod(2), creat(2), umask(2), profile(4) in the Programmer's Reference
Manual.

- 1 -

I

UNAME (l) (Essential Utilities) UNAME (l)

I NAME
uname - print name of current system

SYNOPSIS
uname [-snrvma]
uname [-S system rwme]

DESCRIPTION
urwme prints the name of the current system on standard output. It is
mainly useful to determine which system one is using. The options cause
selected information returned by urwme(2) to be printed:

-s prints the system name (default) .

-n prints the node name . (The node name is the name by which
the system is known to a communications network.)

-r prints the operating system release .

-v prints the operating system version.

-m prints the machine hardware name .

-a prints all the above information.

The system name and the node name may be changed by specifying a
system-name argument to the -S option. The system-name argument is
restricted to 8 characters . Only the superuser is allowed this capability.

SEE ALSO
uname(2) in the Programmer's Reference Manual.

- 1 -

UNGET(l) (Source Code Control System Utilities) UNGET (l)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-r SID] [-s] [-n] files

DESCRIPTION
unget undoes the effect of a get -e done before creating the intended new
delta . If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an sees file to be
processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

Uniquely identifies which delta is no longer intended. (This would
have been specified by get as the "new delta") . The use of this
keyletter is necessary only if two or more outstanding get s for editing
on the same sees file were done by the same person (login name) . A
diagnostic results if the specified SID is ambiguous, or if it is neces
sary and omitted on the command line .

Suppresses the printout, on the standard output, of the intended
delta's SID .

-n
Causes the retention of the gotten file which would normally be
removed from the current directory.

SEE ALSO
delta(!), get(l), sact(l)
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help (!) for explanations .

- 1 -

I

I

UNIQ(l) (Directory and File Management Utilities) UNIQ (l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+ n] [-n]] [input [output]]

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the
remainder is written on the output file. Input and output should always
be different. Note that repeated lines must be adjacent in order to be
found; see sort (!) . If the -u flag is used, just the lines that are not
repeated in the original file are output. The -d option specifies that one
copy of just the repeated lines is to be written. The normal mode output
is the union of the -u and -d mode outputs .

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of
times it occurred.

The n arguments specify skipping an initial portion of each line in the
comparison:

-n

SEE ALSO

The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors .

+ n
The first n characters are ignored. Fields are skipped before charac
ters .

comm(l), sort(l) .

UNITS (l) (User Environment Utilities) UNITS (l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e + OO
/ 3 .937008e-Ol

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed posi
tive integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1 . 020689e + 00
I 9. 797299e-01

units only does multiplicative scale changes; thus, it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbrevia
tions, and metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature including:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter,
speed of light,
charge on an electron,
acceleration of gravity,
same as g,
Avogadro's number,
pressure head per unit height of water,
astronomical unit.

pound is not recognized as a unit of mass; lb is. Compound names are
run together, (e .g . , lightyear) . British units that differ from their U.S.
counterparts are prefixed: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

/usr/lib/unittab

- 1 -

I

USAGE (l) (Help Utilities) USAGE (l)

NAME
usage - retrieve a command description and usage examples

SYNOPSIS
[help] usage [-d] [-e] [-o] [command_name]

DESCRIPTION
The Help Facility command usage retrieves information about commands.
With no argument, usage displays a menu screen prompting the user for
the name of a command, or allows the user to retrieve a list of commands
supported by usage . The user may also exit to the shell by typing q (for
"quit) .

After a command is selected, the user is asked to choose among a descrip
tion of the command, examples of typical usage of the command, or
descriptions of the command's options . Then, based on the user's
request, the appropriate information will be printed.

A command name may also be entered at shell level as an argument to
usage . To receive information on the command's description, examples,
or options, the user may use the -d, -e, or -o options respectively. (The
default option is -d.)

From any screen in the Help Facility, a user may execute a command via
the shell (sh (l)) by typing a ! and the command to be executed. The
screen will be redrawn if the command that was executed was entered at
a first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non
scrolling), the shell variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by adding the follow
ing line to your .profile file (see profile (4)) : "export SCROLL ;
SCROLL= no" . If you later decide that scrolling is desired, SCROLL must
be set to yes .

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

� SEE ALSO
glossary{l), help(l), locate(!), sh(l), starter(l) .
term(S) in the Programmer's Reference Manual.

- 1 -

I

USAGE (l) (Help Utilities) USAGE (l)

II WARNINGS
If the shell variable TERM (see sh (l)) is not set in the user' s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy termi
nal) . For a list of valid terminal types, refer to term(5) .

- 2 -

VAL(l) (Source Code Control System Utilities) VAL(l)

NAME
val - validate sees file

SYNOPSIS
val -
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION
val determines if the specified file is an sees file meeting the characteris
tics specified by the optional argument list. Arguments to val may appear
in any order. The arguments consist of keyletter arguments, which begin
with a -, and named files.

val has a special argument, -, which causes reading of the standard input
until an EOF condition is detected. Each line read is independently pro
cessed as if it were a command line argument list.

val generates diagnostic messages on the standard output for each com
mand line and file processed, and also returns a single 8-bit code upon
exit as described below.

The following defines keyletter arguments; the effects of any keyletter
argument apply independently to each named file on the command line:

-s
The presence of this argument silences the diagnostic message nor
mally generated on the standard output for any error that is detected
while processing each named file on a given command line .

-rSID
The argument value SID is an SCCS delta number. A check is made
to determine if the SID is ambiguous (e . g., r1 is ambiguous because
it physically does not exist but implies 1 . 1, 1 . 2, which may exist) or
invalid (e . g., rl .O or rl . l . O are invalid because neither case can exist
as a valid delta number) . If the SID is valid and not ambiguous, a
check is made to determine if it actually exists .

-mname
The argument value name is compared with the s-1SCCS %M% key
word in file .

-ytype
The argument value type is compared with the sees % Y% keyword in
file .

- 1 -

I

II

VAL(l) (Source Code Control System Utilities) VAL (l)

The 8-bit code returned by val i s a disjunction of the possible errors, i . e . ,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 = cannot open file or file not sees;

bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and
in tum can process multiple command lines (when reading the standard
input) . In these cases an aggregate code is returned -a logical OR of the
codes generated for each command line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs{l) .
help{l) in the User's Reference Manual.

DIAGNOSTICS

BUGS

Use help(l) for explanations .

val can process up to 50 files on a single command line . Any number
above 50 will produce a core dump .

....

VC(l) (Source Code Control System Utilities) VC (l)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword=value . . . keyword= value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear
in plain text and/or control statements .

The copying of lines from the standard input to the standard output is
conditional, based on tests (in control statements) of keyword values
specified in control statements or as vc command arguments .

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below) . The default control
character is colon (:) , except as modified by the -c keyletter (see below) .
Input lines beginning with a backslash (\) followed by a control character
are not control lines and are copied to the standard output with the
backslash removed. Lines beginning with a backslash followed by a non
control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be
alphabetic. A value is any ASCII string that can be created with ed (l) ; a
numeric value is an unsigned string of digits. Keyword values may not
contain blanks or tabs .

Replacement of keywords by values is done whenever a keyword sur
rounded by control characters is encountered on a version control state
ment. The -a keyletter (see below) forces replacement of keywords in all
lines of text. An uninterpreted control character may be included in a
value by preceding it with \. If a literal \ is desired, then it too must be
preceded by \.

Keyletter Arguments

-a
Forces replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in vc state
ments .

- 1 -

I

VC(l)

-t

(Source Code Control System Utilities) VC(l)

All characters from the beginning of a line up to and including the
first tab character are ignored for the purpose of detecting a control
statement. If one is found, all characters up to and including the tab
are discarded .

-cchar

-s

Specifies a control character to be used in place of : .

Silences warning messages (not error) that are normally printed on
the diagnostic output.

Version Control Statements

:del keyword[, • . . , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword= value
Used to assign values to keywords . An asg statement overrides the
assignment for the corresponding keyword on the vc command line and
all previous asg' s for that keyword. Keywords declared, but not
assigned values have NULL values .

: i f condition

:end
Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to
the standard output. If the condition is false, all intervening lines are
discarded, including control statements . Note that intervening if state
ments and matching end statements are recognized solely for the pur
pose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> : := ["not"] <or>
<or> : := <and> I <and> "I " < or>
<and> : := <exp> I <exp> "&" <and>
<exp> : := "(" <or> ' ') " I <value> <op> <value>
< op> : := "= " I "! = " I "< " I "> "
<value> : := <arbitrary ASCII string> I <numeric string>

- 2 -

VC (l)

\

(Source Code Control System Utilities)

The available operators and their meanings are:

equal
! = not equal
& and

>
<

()
not

or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

VC(l)

The > and < operate only o n unsigned integer values (e .g . , : 012 > 1 2
i s false) . All other operators take strings a s arguments (e . g. , : 012 ! = 1 2
i s true) . The precedence o f the operators (from highest to lowest) is :

= ! = > < all of equal precedence
&

Parentheses may be used to alter the order of precedence .
Values must be separated from operators or parentheses by at least one
blank or tab.

: : text
Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed; keywords sur
rounded by control characters in text are replaced by their vu lue before
the line is copied to the output file . This action is independent of the -a
key letter.

:on

:off
Turn on or off keyword replacement on all lines .

:ct l char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

- 3 -

I

I

VC(l) (Source Code Control System Utilities) VC(l)

:err message
Prints the given message followed by:

ERROR: err statement on line . . . (915)

on the diagnostic output. vc halts execution, and returns an exit code
of 1 .

SEE ALSO
ed(1), help(1) in the User's Reference Manual.

DIAGNOSTICS
Use help(1) for explanations .

EXIT CODES
0 normal
1 any error

- 4 -

VI (l) (Editing Utilities) VI (l)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r file] [-L] [-wn] [-R] [-x] [-C]
[-c command] file . . .
view [-t tag] [-r file] [-L] [-w n] [-R] [-x] [-C]
[-c command] file . . .
vedit [-t tag] [-r file] [-L] [-w in] [-R] [-x] [-C]
[-c command] file . . .

DESCRIPTION
The vi (visual) program is a display-oriented text editor based on an
underlying line editor ex(l) . It is possible to use the command mode of ex

from within vi and vice-versa. The visual commands are described on
this manual page; how to set options (like automatically numbering lines
and automatically starting a new output line when you type carriage
return) and all ex(l) line editor commands are described on the ex(l)
manual page.

When using vi, changes you make to the file are reflected in what you see
on your terminal screen. The position of the cursor on the screen indi
cates the position within the file.

Invocation Options
The following invocation options are interpreted by vi (previously docu
mented options are discussed in the NOTES section) :

-t tag
Edit the file containing the tag and position the editor at its definition .

-r file
Edit file after an editor or system crash. (Recovers the version of file
that was in the buffer when the crash occurred.)

-L
List the name of all files saved as the result of an editor or system
crash.

-wn
Set the default window size to n . This is useful when using the editor
over a slow speed line .

-R
Readonly mode; the readonly flag is set, preventing accidental
overwriting of the file .

- 1 -

IJ

Vl (l) (Editing Utilities) Vl (l)

-X
Encryption option; when used, vi simulates the X command of ex(l)
and prompts the user for a key. This key is used to encrypt and
decrypt text using the algorithm of crypt(!) . The X command makes
an educated guess to determine whether text read in is encrypted or
not. The temporary buffer file is encrypted also, using a transformed
version of the key typed in for the -x option. See crypt(!); also, see
the WARNING section.

-C
Encryption option; same as the -x option, except that vi simulates the
C command of _ex(l) . The C command is like the X command of ex(l),
except that all text read in is assumed to have been encrypted.

-c command
Begin editing by executing the specified editor command (usually a
search or positioning command) .

The file argument indicates one or more files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners . It is the same as vi except
that the report flag is set to 1, the showmode and novice flags are set, and
magic is turned off. These defaults make it easier to learn how to use vi.

vi Modes
Command

Normal and initial mode . Other modes return to command mode upon
completion. ESC (escape) is used to cancel a partial command.

Input
Entered by setting any of the following options: a A i I o 0 c C s S R .
Arbitrary text may then be entered. Input mode is normally terminated
with ESC character, or, abnormally, with an interrupt.

Last line
Reading input for : I ? or !; terminate by typing a carriage return; an
interrupt cancels termination.

- 2 -

VI (I) (Editing Utilities) VI (l)

COMMAND SUMMARY
In the descriptions, CR stands for carriage return and ESC stands for the
escape key.

Sample commands

h j k l
itextESC
cwnewESC
easESC

X
dw
dd
3dd
u
zz
:q!CR
ltextCR
Au Ao
:cmdCR

arrow keys move the cursor
same as arrow keys
insert text
change word to new
pluralize word (end of word; append s;

escape from input state)
delete a character
delete a word
delete a line
delete 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are inter
preted in one of three ways:

line/column number z G I
scroll amount AD AU
repeat effect most of the rest

Interrupting, canceling
ESC end insert or incomplete command
DEL (delete or rubout) interrupts

File manipulation
zz
:wCR
:w ! CR
:qCR
:q ! CR
:e nameCR
:e ! CR
:e + nameCR

if file modified, write and exit; otherwise, exit
write back changes
forced write, if permission originally not valid
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end

- 3 -

I

I

VI (l)

:e + nCR
:e #CR
:e ! #CR
:w nameCR
:w ! nameCR
:shCR
: ! cmdCR
:nCR
:n argsCR
AG

(Editing Utilities)

edit starting at line n
edit alternate file
edit alternate file, discard changes
write file name
overwrite file name
run shell, then return
run cmd, then return
edit next file in arglist
specify new arglist
show current file and line

:ta tagCR position cursor to tag

Vl (l)

In general, any ex or ed command (such a s substitute or global) may be
typed, preceded by a colon and followed by a carriage return.

Positioning within file
AF forward screen
AB backward screen
AD scroll down half screen
AU scroll up half screen
nG go to the beginning of the specified line

!pat
?pat
n
N
lpatl+ n
?pat?-n
]]
[[
(
)
{
}
%

(end default), where n is a line number
next line matching pat
previous line matching pat
repeat last I or ? command
reverse last I or ? command
nth line after pat
nth line before pat
next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () { or }

Adj usting the screen
AL clear and redraw window
AR clear and redraw window if AL is key
zCR redraw screen with current line at top of window
z-CR redraw screen with current line at bottom of window
z .CR redraw screen with current line at center of window

A

VI (l) (Editing Utilities)

lpatlz-CR move pat line to bottom of window
zn . CR use n-line window
AE scroll window down 1 line
Ay scroll window up 1 line

Marking and returning
move cursor to previous context
move cursor to first non-white space in line

mx mark current position with the ASCII lowercase letter x
'x move cursor to mark x
'x move cursor to first non-white space in line marked by x

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white

previous line, at first non-white
CR return, same as +
' or j next line, same column
t or k previous line, same column

Character positioning
A first non white-space character
0 beginning of line
$ end of line
h or - forward

backward 1 or
AH
space
fx

same as - (backspace)
same as - (space bar)
find next x

Fx find previous x
tx move to character prior to next x
Tx
;

move to character following previous x
repeat last f F t or T

nl
%

repeat inverse of last f F t or T
move to column n
find matching ({) or }

Words, sentences, paragraphs
w forward a word
b back a word
e end of word

- 5 -

y J. \ .1. I

I

I

VI(l)

)
}
(
{
w
B
E

(Editing Utilities)

to next sentence
to next paragraph
back a sentence
back a paragraph
forward a blank-delimited word
back a blank-delimited word
end of a blank-delimited word

Vl (l)

Corrections during insert
AH erase last character (backspace)
AW erase last word
erase
kill
\
ESC
DEL
AD

your erase character, same as AH (backspace)
your kill character, erase this line of input
quotes your erase and kill characters
ends insertion, back to command mode
interrupt, terminates insert mode
backtab one character; reset left margin

of autoindent
caret n followed by control-d CD);

backtab to beginning of line;
do not reset left margin of autoindent

backtab to beginning of line;
reset left margin of autoindent

quote non-printable character

Insert and replace
a append after cursor
A append at end of line
i insert before cursor
I insert before first non-blank
0
0

open line below
open above

rx
RtextESC

replace single char with x
replace characters

Operators
Operators are followed by a cursor motion, and affect all text that would
have been moved over. For example, since w moves over a word, dw
deletes the word that would be moved over. Double the operator, e .g . ,
dd to affect whole lines.

d delete
c change

- 6 -

Vl (l)

y
<
>

(Editing Utilities)

yank lines to buffer
left shift
right shift
filter through command

Vl l l)

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X delete characters before cursor (dh)
Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked; however, if a buffer
is named (using the ASCII lower-case letters a - z), the text in that buffer i s
put instead:

3yy yank 3 lines
3yl yank 3 characters
p put back text after cursor
P put back text before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"d p retrieve d' th last delete

AUTHOR

FILES

vi and ex were developed by the University of California, Berkeley, Cali
fornia, Computer Science Division, Department of Electrical Engineering
and Computer Science .

/tmp default directory where temporary work files are
placed; it can be changed using the directory
option (see the ex(l) set command)

- 7 -

I

II

Vl(l)

NOTES

(Editing Utilities) Vl (l)

/usr/lib/terminfo/7/• compiled terminal description database

/usr/lib/.COREterm/?1• subset of compiled terminal description database

Two options, although they continue to be supported, have been replaced
_ in the documentation by options that follow the Command Syntax Stan
dard (see intro (l)) . A -r option that is not followed with an option
argument has been replaced by -L and + command has been replaced by -c
command .

SEE ALSO
ed{l), edit{l), ex(l).
User's Guide .
Editing Guide .
Curses/Terminfo chapter of the Programmer's Guide .

WARNINGS

BUGS

The encryption options are provided as a separate package only to source
customers in the United States.

Tampering with entries in /usr/lib/.COREterm/?1• or /usr/lib/terminfo/?1*
(e.g., changing or removing an entry) can affect programs such as vi(l)
that expect the entry to be present and correct. In particular, removing
the "dumb .. terminal may cause unexpected problems.

Software tabs using "T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

- 8 -

WAIT(l) (Essential Utilities) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait [n]

DESCRIPTION
Wait for your background process whose process id is n and report its ter
mination status. If n is omitted, all your shell's currently active back
ground processes are waited for and the return code will be zero.

The shell itself executes wait, without creating a new process.

SEE ALSO
sh(l).

CAVEAT

BUGS

If you get the error message cannot f ork , too many proc e s s e s ,
try using the wait (l) command to clean up your background processes. If
this does not help, the system process table is probably full or you have
too many active foreground processes . (There is a limit to the number of
process ids associated with your login, and to the number the system can
keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the
shell, thus cannot be waited for.

If n is not an active process id, all your shell's currently active background
processes are waited for and the return code will be zero.

- 1 -

I

WALL (l)

I NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

(Essential Utilities) WALL (l)

wall reads its standard input until an EOF. I t then sends this message to
all currently logged-in users preceded by:

FILES

Broadcast Me s s ag e from . . .

It is used to warn all users, typically before shutting down the system.

The sender must be superuser to override any protections the users may
have invoked (see mesg(l)) .

/dev/tty•

SEE ALSO
mesg(l) , write(l) .

DIAGNOSTICS
"Cannot send to . . . " when the open on a user's TIY file fails.

- 1 -

WC(l) (Essential Utilities) ' ' "- \ ... ,

NAME
we - word count

SYNOPSIS
we [-lwc] [111lmes]

DESCRIPTION
we counts lines, words, and characters in the named files, or in the stan
dard input if no 1Ulmes appear. It also keeps a total count for all named
files . A word is a maximal string of characters delimited by spaces, tabs,
or newlines.

The options 1, w, and c may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-I we.

When 111lmes are specified on the command line, they will be printed along
with the counts .

- 1 -

I

WHAT(l) (Source Code Control System Utilities) WHAT (l)

I NAME
what - identify sees files

SYNOPSIS
what [-s] files

DESCRIPTION
what searches the given files for all occurrences of the pattern that get (l)
substitutes for %Z% (this is @(#) at this printing) and prints out what fol
lows until the first -, >, newline, \, or NULL character. For example, if
the C program in file f.c contains

char ident [] = " @ (#) identi f i c ation inf ormation " ;

and f. c is compiled to yield f.o and a.out, then the command:

what f.c f.o a.out

will print:

f. c:
identification information

f.o:
identification information

a. out:
identification information

what is intended to be used with the command get (l), which automati
cally inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each file .

SEE ALSO
get(l) .
help(l) i n the User's Reference Manual.

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, otherwise 1. Use help(l) for
explanations .

It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

- 1 -

WHO(l) (Essential Utilities } '-' \ .&. /

NAME
who - who is on the system

SYNOPSIS
who [-uTIHqpdbrtas] [-n x] [file]

who am i

who am I

DESCRIPTION
who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command inter
preter (shell) for each current system user. It examines the /etc/utmp file
at login time to obtain its information. If file is given, that file (which
must be in utmp(4) format) is examined. Usually, file will be /etc/wtmp,
which contains a history of all the logins since the file was last created.

who with the am i or am I option identifies the invoking user.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit)

The name, line, and time information is produced by all options except -q;
the state information is produced only by -T; the idle and pid information
is produced only by -u and -1; and the comment and exit information is
produced only by -a. The information produced for -p, -d, and -r is
explained during the discussion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the sys
tem clock, as well as other processes spawned by the init process . These
options are:

-u
lists only those users who are currently logged in. The name is the
user's login name. The line is the name of the line as found in the
directory /dev. The time is the time that the user logged in. The idle
column contains the number of hours and minutes since activity last
occurred on that particular line . A dot (.) indicates that the terminal
has seen activity in the last minute and is therefore "current" . If
more than 24 hours have elapsed or the line has not been used since
boot time, the entry is marked old. This field is useful when trying to
determine if a person is working at the terminal . The pid is the
process-ID of the user's shell. The comment is the comment field asso
ciated with this line as found in /etc/inittab (see inittab (4)) . This can

- 1 -

I

WHO(l)

I

(Essential Utilities) WHO(l)

contain information about where the terminal i s located, the tele
phone number of the dataset, type of terminal if hard-wired.

-T

-1

is the same as the -s option, except that the state of the terminal line
is printed. The state describes whether someone else can write to that
terminal. A + appears if the terminal is writable by anyone; a -
appears if it is not. root can write to all lines having a + or a - in the
state field. If a bad line is encountered, a 7 is printed.

lists only those lines on which the system is waiting for someone to
login. The name field is LOGIN in such cases . Other fields are the
same as for user entries except that the state field does not exist.

-H
prints column headings above the regular output.

-q
This is a quick who, displaying only the names and the number of
users currently logged on. When this option is used, all other
options are ignored.

-p
lists any other process which is currently active and has been previ
ously spawned by init . The name field is the name of the program
executed by init as found in /etc/inittab. The state, line, and idle fields
have no meaning. The comment field shows the id field of the line
from /etc/inittab that spawned this process. See inittab (4) .

-d
displays all processes that have expired and not been respawned by
init . The exit field appears for dead processes and contains the termi
nation and exit values (as returned by wait (2)), of the dead process .
This can be useful in determining why a process terminated.

-b

-r

indicates the time and date of the last reboot.

indicates the current run-level of the init process. In addition, it pro
duces the process termination status, process id, and process exit
status (see utmp(4)) under the idle, pid, and comment headings, respec
tively.

- 2 -

WHO(l) (Essential Utilities) W HU l l /

FILES

-t
indicates the last change to the system clock (via the date(l) com
mand) by root. See su (l) .

-a
processes /etc/utmp or the named file with all options turned on.

-s
is the default and lists only the name, line, and time fields .

-n x
takes a numeric argument, x, which specifies the number of users to
display per line . x must be at least 1. The -n option must be used
with -q.

Note to the superuser: after a shutdown to the single-user state, who
returns a prompt. The reason the prompt displays is because /etc/utmp is
updated at login time and there is no login in single-user state, therefore,
who cannot report accurately on this state. who am i, however, returns the
correct information.

� /etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
date(l), login(l), mesg(l), su(lM) .
init(lM), inittab(4), utmp(4) i n the System Administrator's Reference Manual.
wait(2) in the Programmer's Reference Manual.

- 3 -

I

WRITE (l) (Essential Utilities) WRITE (l)

NAME
write - write to another user

SYNOPSIS
write user I line]

DESCRIPTION
write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname (tty??) I date] • • •

to the person you want to talk to. When it has successfully completed the
connection, it also sends two bells to your own terminal to indicate that
what you are typing is being sent.

The recipient of the message should write back at this point. Communica
tion continues until an end of file is read from the terminal, an interrupt is
sent, or the recipient has executed "mesg n". At that point write writes
EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (e .g. ,
ttyOO); otherwise, the first writable instance of the user found in /etc/utmp
is assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal ".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(l) com
mand. Writing to others is normally allowed by default. Certain com
mands, e.g., pr(l), disallow messages to prevent interference with their
output. However, if the user has superuser permissions, messages can be
forced onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write
to another user, wait for them to write back before starting to send. Each
person should end a message with a distinctive signal (i .e . , (o) for "over")
so that the other person knows when to reply. The signal (oo) (for "over
and out") is suggested when conversation is to be terminated.

- 1 -

I

WRITE (l) (Essential Utilities) WRITE (l)

I FILES
/etc/utmp

/bin/sh

to find user

to execute !

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(l)

DIAGNOSTICS
"user is rwt logged on"

if the person you are trying to write to is not logged on.

"Permission denied"
if the person you are trying to write to denies that permission (with
mesg) .

"Warning: canrwt respond, set mesg -y "
if your terminal is set to mesg n and the recipient cannot respond to you .

"Can no longer write to user"
if the recipient has denied permission (mesg n) after you had started
writing.

- 2 -

XARGS (l) (User Environment Utilities) XARGS (l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
xargs combines the fixed initial-arguments with arguments read from stan
dard input to execute the specified command one or more times. The
number of arguments read for each command invocation and the manner
in which they are combined are determined by the flags specified.

command, which may be a shell file, is searched for, using your $PATH. If
command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or newlines;
empty lines are always discarded. Blanks and tabs may be embedded as
part of an argument if escaped or quoted. Characters enclosed in quotes
(single or double) are taken literally, and the delimiting quotes are
removed. Outside of quoted strings, a backslash (\) will escape the next
character.

Each argument list is constructed starting with the initial-arguments, fol
lowed by some number of arguments read from standard input (Excep
tion: see -i flag) . Flags -i, -1, and -n determine how arguments are
selected for each command invocation. When none of these flags are
coded, the initial-arguments are followed by arguments read continuously
from standard input until an internal buffer is full, then command is exe
cuted with the accumulated args . This process is repeated until there are
no more args . When there are flag conflicts (e .g . , -1 vs . -n), the last flag
has precedence. flag values are:

-1number
command is executed for each non-empty number lines of arguments
from standard input. The last invocation of command will be with
fewer lines of arguments if fewer than number remain. A line is con
sidered to end with the first newline unless the last character of the
line is a blank or a tab; a trailing blank/tab signals continuation
through the next non-empty line . If number is omitted, 1 is assumed.
Option -x is forced.

-ireplstr
Insert mode: command is executed for each line from standard input,
taking the entire line as a single arg, inserting it in initial-arguments

- 1 -

I

XARGS (l)

I

(User Environment Utilities) XARGS (l)

for each occurrence of replstr . A maximum of 5 arguments in initial
arguments may each contain one or more instances of replstr . Blanks
and tabs at the beginning of each line are thrown away. Constructed
arguments may not grow larger than 255 characters, and option -x is
also forced. {} is assumed for replstr if not specified.

-nnumber

-t

Execute command using as many standard input arguments as possi
ble, up to number arguments maximum. Fewer arguments will be
used if their total size is greater than size characters, and for the last
invocation if there are fewer than number arguments remaining. If
option -x is also coded, each number arguments must fit in the size
limitation, else xargs terminates execution.

Trace mode: The command and each constructed argument list are
echoed to file descriptor 2 just prior to their execution.

-p
Prompt mode: The user is asked whether to execute command each
invocation. Trace mode (-t) is turned on to print the command
instance to be executed, followed by a ? . . . prompt. A reply of y
(optionally followed by anything) will execute the command; any
thing else, including just a carriage return, skips that particular invo
cation of command .

-x
Causes xargs to terminate if any argument list would be greater than
size characters; -x is forced by the options -i and -1 . When neither of
the options -i, -1, or -n are coded, the total length of all arguments
must be within the size limit.

-ssize
The maximum total size of each argument list is set to size characters;
size must be a positive integer less than or equal to 470. If -s is not
coded, 470 is taken as the default. Note that the character count for
size includes one extra character for each argument and the count of
characters in the command name.

- 2 -

XARGS (l) (User Environment Utilities) XARG S (l)

-eeofstr
eofstr is taken as the logical EOF string. Underbar (_) is assumed for
the logical EOF string if -e is not coded. The value -e with no eofstr
coded turns off the logical EOF string capability (underbar is taken
literally) . xargs reads standard input until either EOF or the logical
EOF string is encountered.

xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, command . When command is a shell program, it should
explicitly exit (see sh (l)) with an appropriate value to avoid accidentally
returning with -1.

EXAMPLES
The following will move all files from directory $1 to directory $2, and
echo each move command just before doing it:

Is $1 I xargs -i -t mv $1/{ } $21{ }

The following will combine the output of the parenthesized commands
onto one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs > > log

The user is asked which files in the current directory are to be archived
and archives them into arch (1 .) one at a time, or (2.) many at a time .

1 . I s I xargs -p -1 ar r arch
2. Is I xargs -p -1 I xargs ar r arch

The following will execute diff(l) with successive pairs of arguments origi
nally typed as shell arguments:

SEE ALSO
sh(l) .

echo $* I xargs -n2 diff

- 3 -

I

YACC(l) (Extended Software Generation System Utilities) YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION
The yacc command converts a context-free grammar into a set of tables for
a simple automaton which executes an LR(l) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to break
ambiguities .

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse . This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error handling routine .
These routines must be supplied by the user; lex(l) is useful for creating
lexical analyzers usable by yacc .

If the -v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define state
ments that associate the yacc-assigned "token codes" with the user
declared "token names" . This allows source files other than y.tab.c to
access the token codes.

If the -1 flag is given, the code produced in y.tab.c will not contain any
#line constructs . This should only be used after the grammar and the
associated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yacc's -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was
used, the runtime debugging code is under the control of YYDEBUG, a
preprocessor symbol. If YYDEBUG has a non-zero value, then the debug
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

- 1 -

I

YACC(l) (Extended Software Generation System Utilities) YACC(l)

I FILES
y.output
y.tab.c
y.tab.h
yacc.tmp,
yacc.debug, yacc.acts
/usr/lib/yaccpar

defines for token names

temporary files
parser prototype for C programs

SEE ALSO
lex(l) .
Programmer's Guide.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file .
Similarly, if some rules are not reachable from the start symbol, this is
also reported.

CAVEAT
Because file names are fixed, at most one yacc process can be active in a
given directory at a given time.

- 2 -

CT (lC) (Basic Networking Utilities) CT(lC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct I -wn] I -xn] I -h] I -v] I -sspeed] telrw

DESCRIPTION
ct dials the telephone number of a modem that is attached to a terminal,
and spawns a getty process to that terminal. The telno argument is a tele
phone number, with equal signs for secondary dial tones and minus signs
for delays at appropriate places. (The set of legal characters for telno is 0
thru 9, -, = , .. , and #. The maximum length telrw is 31 characters) . If
more than one telephone number is specified, ct will try each in succes
sion until one answers; this is useful for specifying alternate dialing paths .

ct will try each line listed in the file /usr/lib/uucp/Devices until it finds an
available line with appropriate attributes or runs out of entries. If there
are no free lines, ct will ask if it should wait for one, and if so, for how
many minutes it should wait before it gives up. ct will continue to try to
open the dialers at one-minute intervals until the specified limit is
exceeded. The dialogue may be overridden by specifying the -wn option,
where n is the maximum number of minutes that ct is to wait for a line .

The -xn option is used for debugging; it produces a detailed output of the
program execution on stderr. The debugging level, n, is a single digi t;
-x9 is the most useful value.

·

Normally, ct will hang up the current line so the line can answer the
incoming call. The -h option prevents this action. The -h option also
waits for the termination of the specified ct process before returning con
trol to the user's terminal . If the -v option is used, ct sends a running
narrative to the standard error output stream.

The data rate may be set with the -s option, where speed is expressed in
baud. The default rate is 1200.

After the user on the destination terminal logs out, there are two things
that could occur depending on what type of getty is on the line (getty or
uugetty) . For the first case, ct prompts, Reconnect? If the response begins
with the letter n, the line will be dropped; otherwise, getty will be started
again and the login : prompt will be printed. In the second case, there
is already a getty (uugetty) on the line, so the login : message will
appear.

- 1 -

CT(lC)

FILES

(Basic Networking Utilities) CT(lC)

To log out properly, the user must type CTRL-d.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

/usrllib/uucp/Devices
/usr/adm/ctlog
/usr/spoolllocks!LCK•

SEE ALSO

BUGS

cu(lC), login(l), uucp(lC) .
getty(lM), uugetty(lM) i n the System Administrator's Reference Manual.

For a shared port, one used for both dial-in and dial-out, the uugetty pro
gram running on the line must have the -r option specified (see
uugetty(lM)).

- '] -

CU (lC) (Basic Networking Utilities) CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-lline] [-h] [-t] [-d] [-o I -e] [-n] tel no
cu [-s speed] [-h] [-d] [-o I -e] -1 line
cu [-h] [-d] [-o I -e] systemname

DESCRIPTION
cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys
tem. It manages an interactive conversation with possible transfers of
ASCII files .

c u accepts the following options and arguments:

-sspeed
specifies the transmission speed (300, 1200, 2400, 4800, 9600) . The
default value is "Any" speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file .

-lline
specifies a device name to use as the communication line . This can be
used to override the search that would otherwise take place for the
first available line having the right speed.

When the -1 option is used without the -s option, the speed of a line
is taken from the Devices file . When the -1 and -s options are both
used together, cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the connection is made
at the requested speed; otherwise, an error message is printed and
the call will not be made. The specified device is generally a directly
connected asynchronous line (e .g . , /dev/ttyab) in which case a tele
phone number (telno) is not required. The specified device need not
be in the /dev directory. If the specified device is associated with an
auto dialer, a telephone number must be provided. Use of this option
with systemname rather than telno will not give the desired result (see
systemname below) .

-h
emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

- 1 -

CU (lC)

•
-t

(Basic Networking Utilities) CU (lC)

Used to dial an ASCII terminal which has been �et to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed
pairs is set.

-d
Causes diagnostic traces to be printed.

-o
Designates that odd parity is generated for data sent to the remote
system.

-n

-e

For added security, will prompt the user to provide the telephone
number to be dialed rather than taking it from the command line .

Designates that even parity is generated for data sent to the remote
system.

tel no
When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs
placed appropriately for delays of 4 seconds.

systemname
A uucp system name may be used rather than a telephone number; in
this case, cu will obtain an appropriate direct line or telephone
number from /usr/lib/uucp/Systems. Note that the systemname option
should not be used with the -1 and -s options because cu will connect
to the first available line for the system name specified, ignoring the
requested line and speed.

After making the connection, cu runs as two processes: the transmit pro
cess reads data from the standard input and, except for lines beginning
with -, passes it to the remote system; the receive process accepts data
from the remote system and, except for lines beginning with -, passes it
to the standard output. Normally, an automatic DC3/DC1 protocol is used
to control input from the remote so the buffer is not overrun. Lines
beginning with - have special meanings.

The transmit process interprets the following user initiated commands:

terminate the conversation .

....

CU(lC) (Basic Networking Utilities) CU (lC)

-!
escape to an interactive shell on the local system.

- lcmd . . .
run cmd on the local system (via sh -c).

-$cmd . . .
run cmd locally and send its output to the remote system.

- % cd
change the directory on the local system. Note that - led will cause
the command to be run by a sub-shelt probably not what was
intended.

- % take src I dest]
copy file src (on the remote system) to file dest on the local system . If
dest is omitted, the src argument is used in both places.

- %put src [dest]
copy file src (on local system) to file dest on remote system. If dest i s
omitted, the src argument is used in both places.

For both - %take and put commands, as each block of the file is
transferred, consecutive single digits are printed to the terminal.

-- line
send the line - line to the remote system.

- %break
transmit a BREAK to the remote system (which can also be specified
as - %b).

- %debug
toggles the -d debugging option on or off (which can also be specified
as - % d) .

-t
prints the values o f the termio structure variables for the user's termi
nal (useful for debugging) .

-1
prints the values of the termio structure variables for the remote com
munication line (useful for debugging) .

- 3 -

CU(lC) (Basic Networking Utilities) CU (lC)

- %nostop
toggles between DC3/DC1 input control protocol and no input control .
This is useful in case the remote system is one that does not respond
properly to the DC3 and DC1 characters.

The receive process normally copies data from the remote system to its
standard output. Internally the program accomplishes this by initiating an
output diversion to a file when a line from the remote begins with - .

Data from the remote is diverted (or appended, if > > is used) to file on
the local system. The trailing - > marks the end of the diversion.

The use of - % put requires stty(1) and cat(1) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current control characters on the local system .
Backslashes are inserted at appropriate places.

The use of - % take requires the existence of echo (1) and cat(1) on the
remote system. Also, tabs mode (see stty(1)) should be set on the remote
system if tabs are to be copied without being expanded to spaces.

When cu is used on system X to connect to system Y and subsequently
used on sys.tem Y to connect to system Z, commands on system Y can be
executed by using - - . Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on Z, X,
and Y as follows:

una me
z
- [X] !uname
X
- - [Y] !uname
y

In general, - causes the command to be executed on the original
machine, - - causes the command to be executed on the next machine in
the chain.

EXAMPLES
To dial a system whose telephone number is 9 201 555 1212 using 1200
baud (where dialtone is expected after the 9) :

cu -s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

- .d. -

CU(lC)

FILES

(Basic Networking Utilities)

To login to a system connected by a direct line:
cu -1 /dev/ttyXX

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200 -1 ttyXX

CU (lC)

To dial a system using a specific line associated with an auto dialer:
cu -1 culXX 9 = 12015551212

To use a system name:
cu systemname

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK .. (tty-device)

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uucp(lC), uname(l) .

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS

BUGS

The cu command does not do any integrity checking on data it transfers .
Data fields with special cu characters may not be transmitted properly.
Depending on the interconnection hardware, it may be necessary to use a
- . to terminate the conversion even if stty 0 has been used. Non-printing
characters are not dependably transmitted using either the - % put or
- %take commands. cu between an IMBRl and a penril modem will not
return a login prompt immediately upon connection. A carriage return
will return the prompt.

There is an artificial slowing of transmission by cu during the - % put
operation so that loss of data is unlikely.

- 5 -

UUCP(lC) (Basic Networking Utilities) UUCP (lC)

II
NAME

uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destiruition-file
uulog [options] -ssystem
uulog [options] system
uulog [options] -£system
uuname [-1] [-c]

DESCRIPTION
uucp

uucp copies files named by the source-file arguments to the destiruition-file
argument. A file name may be a pathname on your machine, or may
have the form:

system-name! path-name

where system-ru1me is taken from a list of system names that uucp knows
about. The system-ru1me may also be a list of names:

system-name!system-name! . . . !system-name!path-name

in which case an attempt is made to send the file via the specified route,
to the destination. See WARNINGS and BUGS for restrictions . Care
should be taken to ensure that intermediate nodes in the route are willing
to forward information (see WARNINGS for restrictions) .

The following shell metacharacters are disallowed in system-ru1me:

I ; & I A < > () < CR> <TAB> <SPACE>

Pathnames may be one of the following:

(1) a full pathname.

(2) a pathname preceded by -user where user is a login name on
the specified system and is replaced by that user's login direc
tory.

(3) a pathname preceded by -ldestiruition where destiru1tion is
appended to /usr/spool/uucppublic . Note that this destination
will be treated as a file name unless more than one file is being
transferred by this request or the destination is already a direc
tory. To ensure that it is a directory, follow the destination
with a '/' . For example, -/dan! as the destination will make the
directory /usr/spool/uucppublic/dan if it does not exist and put
the requested file(s) in that directory.

- 1 -

UUCP (lC) (Basic Networking Utilities) UUCP(lC)

(4) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy will
fail. If the desti1Ultion-file is a directory, the last part of the source-file name
is used.

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(2)) .

The following options are interpreted by uucp:

-c
Do not copy local file to the spool directory for transfer to the remote
machine (default) .

-C
Force the copy of local files to the spool directory for transfer.

-d
Make all necessary directories for the file copy (default) .

-f
Do not make intermediate directories for the file copy.

-ggrade

-j

grade is a single letter/number; lower ASCII sequence characters will
cause the job to be transmitted earlier during a particular conversa
tion.

Output the job identification ASCII string on the standard output.
This job identification can be used by uustat to obtain the status or
terminate a job.

-m
Send mail to the requester when the copy is completed.

-nuser
Notify user on the remote system that a file was sent.

-r
Do not start the file transfer, just queue the job.

-sfile
Report status of the transfer to file. Note that the file must be a full
pathname.

- 2 -

UUCP (lC) (Basic Networking Utilities) UUCP (lC)

-xdebug_level
Produce debugging output on standard output. The debug_level is a
number between 0 and 9; higher numbers give more detailed informa
tion. (Debugging will not be available if uucp was compiled with
-DSMALL.)

uulog
uulog queries a log file of uucp or uuxqt transactions in a file
/usr/spool/uucp/. Log/uucico/system or /usr/spoolluucp/. Log/uuxqt!system.

The options cause uulog to print logging information:

-ssys
Print information about file transfer work involving system sys.

-£system
Does a "tail -f" of the file transfer log for system. (You must press
BREAK to exit this function.) The following are other options used
with the above:

-X
Look in the uuxqt log file for the given system.

-number
Indicates that a "tail" command of number lines should be executed.

uuname

FILES

uuname lists the names of systems known to uucp. The -c option returns
the names of systems known to cu. (The two lists are the same, unless
your machine is using different Systems files for cu and uucp. See the
Sysfiles file .) The -1 option returns the local system name.

/usr/spool/uucp
/usr/spool/uucppublic/•

/usrllib/uucp/•

spool directories
public directory for receiving and
sending (/usr/spool/uucppublic)
other data and program files

SEE ALSO
mail(l), uustat(lC), uux(lC) .
uuxqt(lM) in the System Administrator's Reference Manual.
chmod(2) in the Programmer's Reference Manual.

- 3 -

UUCP(lC) (Basic Networking Utilities) UUCP (lC)

WARNINGS

BUGS

The domain of remotely accessible files can (and for obvious security rea
sons, usually should) be severely restricted. You will probably not be able
to fetch files by pathname; ask a responsible person on the remote system
to send them to you. For the same reasons you will probably not be able
to send files to arbitrary pathnames. As distributed, the remotely accessi
ble files are those whose names begin /usr/spoolluucppublic (equivalent
to -/) .

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a single file .
Receiving multiple files specified by special shell characters ? * [. . .] will
not activate the -m option.

The forwarding of files through other systems may not be compatible with
the previous version of uucp. If forwarding is used, all systems in the
route must have the same version of uucp.

Protected files and files that are in protected directories that are owned by
the requester can be sent by uucp using the -C option. However, if the
requestor is root, and the directory is not searchable by "other" or the file
is not readable by "other", the request will fail.

- A -

UUSTAT(lC) (Basic Networking Utilities) UUSTAT (lC)

II
NAME

uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q]
uustat [-kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser]

DESCRIPTION
uustat will display the status of, or cancel, previously specified uucp com
mands, or provide general status on uucp connections to other systems.
Only one of the following options can be specified with uustat per com
mand execution:

-a
Output all jobs in queue.

-m
Report the status of accessibility of all machines.

-p
Execute a "ps -flp" for all the process-ids that are in the lock files .

-q
List the jobs queued for each machine. If a status file exists for the
machine, its date, time and status information are reported. In addi
tion, if a number appears in (} next to the number of C or X files, it is
the age in days of the oldest C./X. file for that system. The Retry
field represents the number of hours until the next possible call . The
Count is the number of failure attempts . Note that for systems with a
moderate number of outstanding jobs, this could take 30 seconds or
more of real-time to execute . As an example of the output produced
by the -q option:

ea.gle
mh3bs3

3C 04/07-1 1 : 07NO DEVICES AVAILABLE
2C 07/07-10 : 42SUCCESSFUL

- 1 -

UUSTAT(lC) (Basic Networking Utilities) UUSTAT (lC)

•
This output tells how many command files are waiting for each sys
tem. Each command file may have zero or more files to be sent (zero
means to call the system and see if work is to be done) . The date and
time refer to the previous interaction with the system followed by the
status of the interaction.

-kjobid
Kill the uucp request whose job identification is jobid . The killed
uucp request must belong to the person issuing the uustat command
unless one is the super-user.

-rjobid
Rejuvenate jobid . The files associated with jobid are touched so that
their modification time is set to the current time. This prevents the
cleanup daemon from deleting the job until the jobs modification
time reaches the limit imposed by the deamon.

Either or both of the following options can be specified with uustat :

-ssys
Report the status of all uucp requests for remote system sys.

-uuser
Report the status of all uucp requests issued by user .

Output for both the -s and -u options has the following format:

eaglenOOOO 4/07-11:01:03 (POLL)
eagleNlbd7 4/07-11:07 Seagledan522 /usr/dan/A
eagleClbdS 4/07-11:07 Seagledan59 D.3b2al2ce4924

4/07-11:07 Seagledanrmail mike

With the above two options, the first field is the jobid of the job. This is
followed by the date/time. The next field is either an 'S' or 'R' depend
ing on whether the job is to send or request a file . This is followed by
the user-id of the user who queued the job. The next field contains the
size of the file, or in the case of a remote execution (rmail - the com
mand used for remote mail), the name of the command. When the size
appears in this field, the file name is also given. This can either be the
name given by the user or an internal name (e .g . , D.3b2alce4924) that is
created for data files associated with remote executions (rmail in this
example) .

When no options are given, uustat outputs the status of all uucp
requests issued by the current user.

- ., -

UUSTAT(lC)

FILES
/usr/spoot/uucp/•

SEE ALSO
uucp(lC) .

(Basic Networking Utilities) UUSTAT (lC)

spool directories

- 3 -

UUTO(lC) (Basic Networking Utilities) UUTO (lC)

I
NAME

uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [options] source-files destinlltion
uupick [-s system]

DESCRIPTION
uuto sends source-files to destinlltion . uuto uses the uucp(lC) facility to
send files, while it allows the local system to control the file access . A
source-file name is a pathname on your machine. Destination has the
form:

system! user

where system is taken from a list of system names that uucp knows about
(see uunilme) . user is the login name of someone on the specified system.

Two options are available:

-p
Copy the source file into the spool directory before transmission.

-m
Send mail to the sender when the copy is complete.

The files (or sulrtrees if directories are specified) are sent to PUBDIR on
system, where PUBDIR is a public directory defined in the uucp source . By
default, this directory is /usr/spoolluucppublic. Specifically, the files are
sent to:

PUBDIR!receive/user/mysystem/files.

The destined recipient is notified by mail(!) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifically,
uupick searches PUBDIR for files destined for the user. For each entry (file
or directory) found, the following message is printed on the standard out
put:

from system: [file file-name] [dir diTnllme] ?

uupick then reads a line from the standard input to determine the disposi
tion of the file:

< newline>
Go on to next entry.

d
Delete the entry.

- 1 -

UUTO(lC) (Basic Networking Utilities) UUTO (lC)

FILES

m [dir]
Move the entry to named directory dir. If dir is not specified as a
complete pathname (in which $HOME is legitimate), a destination
relative to the current directory is assumed'. If no destination is
given, the default is the current directory.

a [dir]
Same as m except moving all the files sent from system .

p
Print the content of the file .

q
Stop.

EOT (CTRL)
Same as q.

!command
Escape to the shell to do command .

..

Print a command summary.

uupick invoked with the -ssystem option will only search the PUBDIR for
files sent from system .

PUBDIR/usr/spool/uucppublic public directory

SEE ALSO
mail(l), uucp(lC), uustat(lC), uux(lC) .
uucleanup(U.1) in the System Administrator's Reference Manual.

WARNINGS
To send files that begin with a dot (e.g. , .profile), the files must by quali
fied with a dot. For example: .profile, .prof•, .profil? are correct;
whereas •prof•, ?profile are incorrect.

- ., -

UUX(lC) (Basic Networking Utilities) UUX(lC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
uux will gather zero or more files from various systems, execute a com
mand on a specified system and then send standard output to a file on a
specified system.

NOTE: For security reasons, most installations limit the list of com
mands executable on behalf of an incoming request from uux ,
permitting only the receipt of mail (see mail (1)) . (Remote execu
tion permissions are defined in /usrilib/uucp/Permissions .)

The command-string i s made up of one or more arguments that look like a
shell command line, except that the command and file names may be pre
fixed by system-name! . A NULL system-name is interpreted as the local sys
tem.

File names may be one of:

(1) a full pathname;

(2) a pathname preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command:

uux "!diff usg!lusr/dan/filel pwba!la4/danlfile2 !-/danlfile .diff "

will get the file1 and file2 files from the "usg'' and "pwba" machines,
execute a diff(1) command and put the results in file.diff in the local
PUBDIR/danldirectory.

Any special shell characters such as <>; I should be quoted either by
quoting the entire command-string, or quoting the special characters as
individual arguments .

uux will attempt to get all files to the execution system. For files that
are output files, the file name must be escaped using parentheses. For
example, the command:

uux a!cut -£1 b!lusr/file \(c!/usr/file\)

- 1 -

UUX(lC) (Basic Networking Utilities) UUX (lC)

gets /usr/file from system "b" and sends it to system "a", performs a cut
command on that file and sends the result of the cut command to sys
tem "c".

uux will notify you if the requested command on the remote system
was disallowed. This notification can be turned off by the -n option.
The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
comtnllnd-string .

-a name
Use name as the user identification replacing the initiator user-id .
(Notification will be returned to the user.)

-b
Return whatever standard input was provided to the uux command
if the exit status is non-zero.

-c
Do not copy local file to the spool directory for transfer to the
remote machine (default) .

-C
Force the copy of local files to the spool directory for transfer.

-ggrade

-j

grade is a single letter/number; lower ASCII sequence characters
will cause the job to be transmitted earlier during a particular
conversation.

Output the jobid ASCII string on the standard output which is the
job identification. This job identification can be used by uustat to
obtain the status or terminate a job.

-n
Do not notify the user if the command fails.

-p

-r

Same as -: The standard input to uux is made the standard input to
the comtnllnd-string .

Do not start the file transfer, just queue the job .

....

UUX(lC) (Basic Networking Utilities) UUX(lC)

FILES

-sfile
Report status of the transfer in file.

-xdebug_level
Produce debugging output on the standard output. The debug_level
is a number between 0 and 9; higher numbers give more detailed
information.

-z
Send success notification to the user.

/usrllib/uucp/spool
/usr/lib/uucp/Permissions
/usr/lib/uucp/•

spool directories
remote execution permissions
other data and programs

SEE ALSO
cut(l)J mail(l), uucp(lC), uustat(lC) .

WARNINGS

BUGS

Only the first command of a shell pipeline may have a system-name! . All
other commands are executed on the system of the first command.

The use of the shell metacharacter * will probably not do what you want
it to do. The shell tokens < < and > > are not implemented.

The execution of commands on remote systems takes place in an execu
tion directory known to the uucp system. All files required for the execu
tion will be put into this directory unless they already reside on that
machine. Therefore, the simple file name (without path or machine refer
ence) must be unique within the uux request. The following command
will not work:

uux "a!diff b!/usr/dan/xyz c!/usr/danlxyz > !xyz.diff"

but the command:

uux "a!diff a!/usr/danlxyz c!/usr/danlxyz > !xyz.diff"

will work (if diff is a permitted command) .

Protected files and files that are in protected directories that are owned by
the requestor can be sent in commands using uux . However, if the
requestor is root, and the directory is not searchable by "other", the
request will fail.

- 3 -

PERMUTED INDEX

hpio: Hewlett-Packard 2645A terminal tape file archiver • hpio(l)
handle special functions of DASI 300 and 300s terminals 1300s: 300(1)

special functions of DASI 300 and 300s terminals 300, 300s: handle 300(1)
comparison dift3: 3-way differential file dift3(1)

4014: paginator for the Tektronix 4014 terminal .. 4014(1)
special functions of the DASI 450 terminal 450: handle 450(1)

a file touch: update access and modification times of touch(1)
acctcom: search and print process accounting file(s) .. acctcom(l)

sar: system activity reporter .. sar(1)
print current sees file editing activity sact: ... sact(1)

report process data and system activity timex: time a command; .. timex(1)
admin: create and administer sees files admin(1)

the permissions file for a given alias /echo the real device in . real(1)
bpatch: displays or alters byte content of files bpatch(l)

sort: sort and/or merge files .. sort(1)
introduction to commands and application programs intro: intro(l)

language be: arbitrary-precision arithmetic bc(l)

I
for portable archives ar: archive and library maintainer ar(1)

convert: convert archive files to common formats convert(!)
2645A terminal tape file archiver hpio: Hewlett-Packard hpio(l)

tar: tape file archiver ... tar(1)
library maintainer for portable archives ar: archive and ar(l)

cpio: copy file archives in and out ... cpio(l)
command xargs: construct argument list(s) and execute xargs(l)

expr: evaluate arguments as an expression expr(l)
echo: echo arguments .. echo(l)

be: arbitrary-precision arithmetic language bc(l)
asa: interpret ASA carriage control characters asa(l)

/lib/as: assembler .. as2(1)
/bin/as: assembler driver script ... as(1)

sifilter: preprocess Me88100 assembly language ... sifilter(l)
/program for generating/modifying ASSIST menus or command forms astgen(l)

commands assist: assistance using SYSTEM V/88 • . • assist(!)
login password and password attributes passwd: change passwd(l)

wait: await completion of process wait(I)
bru: backup and restore utility bru(l)

(visual) display editor based on ex vi: screen-oriented vi(l)
cb: e program beautifier ... cb(l)

information about the system for beginning users starter: starter(!)
bdiff: big diff . bdiff(l)

bfs: big file scanner ... bfs(l)
sum: print checksum and block count of a file .. sum(l)

with null pointer dereference bug dnp: patch program dnp(l)
bpatch: displays or alters byte content of files .. bpatch(l)
size: print section sizes in bytes of common object files size(l)

cc: e compiler .. cc(l)
cflow: generate e flowgraph .. cflow(l)

PI-1

PERMUTED INDEX

cpp: the e language preprocessor cpp(l)
cb: e program beautifier .. cb(l)

lint: a e program checker ... lint(l)
cxref: generate e program cross-reference • • • • • cxref(l)

ctags: maintain a tags file for a e program .. ctags{l)
ctrace: e program debugger ctrace{l)

a common object file produce a e source listing with line/ /from list(l)
de: desk calculator .. dc{l)

cal: print calendar .. cal(l)
cu: call another UNIX system � cu{l C)

testing network sink: canonical "server" process for sink(l)
asa: interpret ASA carriage control characters asa{l)

text editor (variant of ex for casual users) edit: .. edit(l)
password attributes passwd: change login password and passwd{l)

chmod: change mode .. chmod(l)
chown, chgrp: change owner or group chown(l)

sees delta cdc: change the delta commentary of an cdc(l)

I
newform: change the format of a text file • newform(l)

delta: make a delta (change) to an sees file delta(l)
cd: change working directory cd(l)

fgrep: search a file for a character string ... fgrep(l)
interpret ASA carriage control characters asa: .. asa(l)

tr: translate characters ... tr(l)
chk: file system check and interactive repair chk{l)

lint: a e program checker . lint(l)
file sum: print checksum and block count of a .. sum(l)

ere: generate cyclic redundancy checksums (ere) of files crc{l)
dis: object code disassembler .. dis{l)

comb: combine sees deltas comb(l)
nice: run a command at low priority nice(l)

examples usage: retrieve a command description and usage usage(l)
env: set environment for command execution ... env(l)

uux: UNIX-to-UNIX system command execution ... uux(lC)
/ASSIST menus or command forms ... astgen(l)

quits nohup: run a command immune to hangups and nohup(l)
getopt: parse command options .. getopt(l)

getopts, getoptcvt: parse command options .. getopts(l)
/shell, the standard/restricted command programming language ksh(l)
/shell, the standard/restricted command programming language sh(l)
system activity timex: time a command; report process data and timex(I)

set process group ID and execute command setpgrp: .. setpgrp(l)
test: condition evaluation command .. test(l)

time: time a command .. time(l)
locate: identify a command using keywords locate(l)

argument list(s) and execute command xargs: construct xargs{l)
intro: introduction to commands and application programs intro(l)

assistance using SYSTEM V/88 commands assist: .. assist(l)
at, batch: execute commands at a later time at(l)

mcs: manipulate the object file comment section .. mcs(l)
cdc: change the delta commentary of an sees delta cdc(l)

convert: convert archive files to common formats .. convert(l)

PI-2

PERMUTED INDEX

conv: common object file converter conv(l)
cprs: compress a common object file ... cprs(l)

nm: print name list of common object file ... nm(l)
source listing with/ list: from a common object file produce a e list(l)

line number information from a common object file /symbol and . • • • • • • • • • . . . • • strip(l)
ld: link editor for common object files ... ld(l)

print section sizes in bytes of common object files size: size(l)
comm: select or reject lines common to two sorted files comm(l)

ipcs: report inter-process communication facilities status ipcs(l)
diff: differential file comparator ... diff(l)

cmp: compare two files ... cmp(l)
file sccsdiff: compare two versions of an sees • . . • • . • . • • sccsdiff(l)

diff3: 3-way differential file comparison ... diff3(1)
dircmp: directory comparison ... dircmp(l)

regcmp: regular expression compile ... regcmp(l)
cc: C compiler .. cc(l)

yacc: yet another compiler-compiler .. yacc(l)
wait: await completion of process wait(l)

I
cprs: compress a common object file cprs(l)

pack, peat, unpack: compress and expand files pack(l)
cat: concatenate and print files cat(l)

test: condition evaluation command test(l)
fs: construct a file system fs(l)

execute command xargs: construct argument list(s) and xargs(l)
remove nroff/troff, tbl, and eqn constructs deroff: ... deroff(l)

bpatch: displays or alters byte content of files . • . • . bpatch(l)
ls: list contents of directory .. ls(l)
csplit: context split .. csplit(l)

a sa: interpret ASA carriage control characters ... asa(l)
mt: magnetic tape control ... mt(l)

uucp status inquiry and job control uustat: .. uustat(l C)
vc: version control ... vc(l)

units: conversion program ... units(l)
tt: convert and copy a file tt(l)

formats convert: convert archive files to common convert{l)
conv: common object file converter .. conv(l)

tt: convert and copy a file .. tt(l)
cpio: copy file archives in and out cpio(l)

cp, ln, mv: copy, link or move files cp{l)
dcpy: copy removable media • • . dcpy(l)

uuname: UNIX-to-UNIX system copy uucp, uulog, .. uucp{lQ
public UNIX-to-UNIX system file copy uuto, uupick: ... uuto(lQ

sum: print checksum and block count of a file .. sum(l)
we: word count . wc{l)

cyclic redundancy checksums (ere) of files ere: generate • . crc(l)
admin: create and administer sees files admin(l)

umask: set file creation mode mask ... umask(l)
crontab: user crontab file .. crontab(l)

cxref: generate e program cross-reference ... cxref(l)
pg: file perusal filter for eRTs ... pg(l)

activity sact: print current sees file editing sact(l)

PI-3

PERMUTED INDEX

uname: print name of current system .. uname(1)
line of a file cut: cut out selected fields of each cut(1)

of files ere: generate cyclic redundancy checksums (ere) crc(1)
300s: handle special functions of DASI 300 and 300s terminals 300, • • • . 300(1)

handle special functions of the DASI 450 terminal 450: 450(1)
time a command; report process data and system activity timex: timex(1)

prof: display profile data ... prof(1)
join: relational database operator .. join(1)

a terminal or query terminfo database tput: initialize tput(1)
date: print and set the date . . • . • • • • • • ••. . . . • . date(1)

ctrace: e program debugger .. ctrace(1)
sdb: symbolic debugger .. sdb(1)

glossary: definitions of terms and symbols glossary(1)
basename, dirname: deliver portions of path names • • • • basename(1)

tail: deliver the last part of a file tai1(1)
the delta commentary of an sees delta cdc: change ... cdc(1)

delta: make a delta (change) to an sees file delta(1)

I
cdc: change the delta commentary of an sees delta cdc(1)

rmdel: remove a delta from an sees file rmdel(1)
comb: combine sees deltas ... comb(1)

mesg: permit or deny messages ... mesg(1)
patch program with null pointer dereference bug dnp: dnp(1)

usage: retrieve a command description and usage examples usage(1)
de: desk calculator .. dc(1)

file: determine file type ... file(1)
for a given! real: echo the real device in the permissions file real(1)

bdiff: big diff • bdiff(l)
sdiff: side-by-side difference program .. sdiff(1)

diffmk: mark differences between files diffmk(1)
diff: differential file comparator . . • . • diff(1)

diff3: 3-way differential file comparison diff3(1)
rnkdir: make directories ... mkdir(1)

rm, rmdir: remove files or directories ... rm(1)
cd: change working directory ... cd(1)

dircmp: directory comparison dircmp(1)
Is: list contents of directory ... ls(1)

pwd: working directory name ... pwd(l)
dis: object code disassembler • . dis(1)

fmt: disk initializer ... fmt(1)
mnt, umnt: mount and dismount file system .. mnt(1)

vi: screen-oriented (visual) display editor based on ex vi(1)
man: display entries from this manual man(1)
prof: display profile data .. prof(1)

of files bpatch: displays or alters byte content bpatch(1)
/bin/as: assembler driver script . • . as(1)

od: octal dump od(1)
file dump: dump selected parts of an object • . dump(1)

echo: echo arguments .. echo(l)
permissions file for a/ real: echo the real device in the real(1)

sact: print current sees file editing activity · sact(1)
screen-oriented (visual) display editor based on ex vi: vi(1)

PI-4

PERMUTED INDEX

ed, red: text editor ... ed(l)
ex: text editor ... ex(l)
ld: link editor for common object files ld(l)

sed: stream editor ... sed(l)
users) edit: text editor (variant of ex for casual edit(l)
enable, disable: enable/disable LP printers enable(l)

crypt: encode/decode ... crypt(l)
makekey: generate encryption key ... makekey(l)

man: display entries from this manual man(l)
env: set environment for command execution env(l)

remove nroff/troff, tbl, and eqn constructs deroff: deroff(l)
spellin, hashcheck: find spelling errors spell, hashmake, spell(l)

expression expr: evaluate arguments as an expr(l)
test: condition evaluation command test(l)

edit: text editor (variant of ex for casual users) edit(l)
(visual) display editor based on ex vi: screen-oriented vi(l)

a command description and usage examples usage: retrieve usage(l)
setpgrp: set process group ID and execute command .. setpgrp(l)

construct argument list(s) and execute command xargs: xargs(l)

I
at, batch: execute commands at a later time at(l)

env: set environment for command execution .. env(l)
sleep: suspend execution for an interval sleep(l)

uux: UNIX-to-UNIX system command execution .. uux(Ie)
pack, peat, unpack: compress and expand files .. pack(l)

regcmp: regular expression compile .. regcmp(l)
expr: evaluate arguments as an expression .. expr(l)

for a pattern using full regular expressions egrep: search a file egrep(l)
inter-process communication facilities status ipcs: report ipcs(l)

help: Help Facility .. help(l)
factor: obtain the prime factors of a number .. factor(l)

cut: cut out selected fields of each line of a file cut(l)
2645A terminal tape file archiver /Hewlett-Packard hpio(l)

tar: tape file archiver ... tar(l)
cpio: copy file archives in and out cpio(l)

mcs: manipulate the object file comment section .. mcs(l)
cliff: differential file comparator ... diff(l)

diff3: 3-way differential file comparison ... diff3(1)
conv: common object file converter .. conv(l)

public UNIX-to-UNIX system file copy uuto, uupick: uuto(lC)
cprs: compress a common object file . cprs(l)

umask: set file creation mode mask umask(l)
crontab: user crontab file ... crontab(l)

selected fields of each line of a file cut: cut out ... cut(l)
make a delta (change) to an sees file delta: ... delta(l)

dump selected parts of an object file dump: ... dump(l)
sact: print current sees file editing activity .. sact(l)

ctags: maintain a tags fil� for a e program .. ctags(l)
fgrep: search a file for a character string fgrep(l)

real device in the permissions file for a given alias /echo the real(l)
grep: search a file for a pattern .. grep(l)

regular/ egrep: search a file for a pattern using full egrep(l)

PI-S

PERMUTED INDEX

get: get a version of an sees file · • · get(l)
split: split a file into pieces ... split(l)

change the format of a text file newform: .. newform(l)
print name list of common object file nm: ... nm(l)

files or subsequent lines of one file /merge same lines of several paste(l)
pg: file perusal filter for eRTs pg(l)

with/ list: from a common object file produce a e source listing list(l)
prs: print an sees file · · · · · · · · · • · • • • • • · · · · · · · · · · · • • · ·· • • · · · · • · · · · · · · · · · · prs(l)

remove a delta from an sees file rmdel: • • • • . rmdel(l)
bfs: big file scanner bfs(l)

compare two versions of an sees file sccsdiff: sccsdiff(l)
information from a common object file /symbol and line number strip(l)

checksum and block count of a file sum: print ... sum(l)
repair chk: file system check and interactive chk(l)

fs: construct a file system ... fs(l)
mnt, umnt: mount and dismount file system ... mnt(l)

tail: deliver the last part of a file • • • . • . . . • • • • • • • • • • . • • . • tail(I)

I
and modification times of a file touch: update access touch(l)

tt: convert and copy a file • • . tt(l)
file: determine file type file(l)

undo a previous get of an sees file unget: unget(l)
uniq: report repeated lines in a file uniq(l)

val: validate sees file val(l)
and print process accounting file(s) acctcom: search acctcom(l)

admin: create and administer sees files • . admin(l)
or alters byte content of files bpatch: displays bpatch(l)

cat: concatenate and print files cat(l)
cmp: compare two files cmp(l)

reject lines common to two sorted files comm: select or .. comm(l)
cp, ln, mv: copy, link or move files . • . cp(l)

redundancy checksums (ere) of files ere: generate cyclic crc(l)
diffmk: mark differences between files .. diffrnk(l)

find: find files find(l)
ld: link editor for common object files .. ld(l)

rm, rmdir: remove files or directories ... rm(l)
file /merge same lines of several files or subsequent lines of one paste(l)

peat, unpack: compress and expand files pack, pack(l)
pr: print files pr(l)

sizes in bytes of common object files size: print section size(l)
sort: sort and/or merge files sort(l)

convert: convert archive files to common formats convert(I)
what: identify sees files what(l)

pg: file perusal filter for eRTs pg(l)
greek: select terminal filter ... greek(l)

nl: line numbering filter ... nl(l)
col: filter reverse line-feeds col(l)

find: find files .. find(l)
hyphen: find hyphenated words hyphen(l)

object library lorder: find ordering relation for an lorder(l)
hashmake, spellin, hashcheck: find spelling errors spell, spell(l)

tee: pipe fitting tee(l)

PI-6

PERMUTED INDEX

cflow: generate e flowgraph ... cflow(1)
new form: change the format of a text file ... newform(l)

convert archive files to common formats convert: .. convert(l)
ASSIST menus or command forms /for generating/modifying • . • astgen(1)

search a file for a pattern using full regular expressions egrep: . • • • • • . . . egrep(1)
300, 300s: handle special functions of DASI 300 and 300s/ • . 300(1)

terminals hp: handle special functions of Hewlett-Packard hp(l)
terminal 450: handle special functions of the DASI 450 450(1)

cflow: generate e flowgraph cflow(1)
cross-reference cxref: generate e program ... cxref(l)

checksums (ere) of files ere: generate cyclic redundancy crc(l)
makekey: generate encryption key ; makekey(1)

lexical tasks lex: generate programs for simple lex(l)
or command/ astgen: program for generating/modifying ASSIST menus astgen(1)

ct: spawn getty to a remote terminal ct(1Q
in the permissions file for a given alias /echo the real device real(l)

chown, chgrp: change owner or group .. chown(l)
setpgrp: set process group ID and execute command . • setpgrp(l)

I
maintain, update, and regenerate groups of programs make: . . . • • make(l)

300 and 300s/ 300, 300s: handle special functions of DASI 300(1)
Hewlett-Packard terminals hp: handle special functions of hp(l)

DASI 450 terminal 450: handle special functions of the 450(1)
nohup: run a command immune to hangups and quits .. nohup(1)

help: Help Facility • • . help(l)
tape file archiver hpio: Hewlett-Packard 2645A terminal hpio(l)

hp: handle special functions of Hewlett-Packard terminals hp(l)
hyphen: find hyphenated words ... hyphen(1)

setpgrp: set process group 10 and execute command setpgrp(l)
semaphore set or shared memory ID /remove a message queue, ipcrm(l)

locate: identify a command using keywords locate(l)
what: identify sees files ... what(l)

nohup: run a command immune to hangups and quits nohup(l)
the LP print/ lpstat: print information about the status of • lpstat(l)
beginning users starter: information about the system for starter(I)

/strip symbol and line number information from a common object/ • • strip(l)
terminfo database tput: initialize a terminal or query tput(l)

setup: initialize system for first user setup(l)
fmt: disk initializer ... fmt(l)

uustat: uucp status inquiry and job control uustat(l q
system mailx: interactive message processing mailx(l)

chk: fil e system check and interactive repair .. chk(l)
characters asa: interpret ASA carriage control asa(l)

facilities status ipcs: report inter-process communication ipcs(l)
sleep: suspend execution for an interval .. sleep(l)

application programs intro: introduction to commands and intro(l)
news: print news items • • • • • • . . • • • • news(l)

uustat: uucp status inquiry and job control ... uustat(1Q
makekey: generate encryption key • • • . • • • • . makekey(l)

locate: identify a command using keywords .. locate(l)
pattern scanning and processing language awk: .. awk(l)

arbitrary-precision arithmetic language be: • • . • • . bc(l)

PI-7

PERMUTED INDEX

command programming language /the standard/restricted ksh(l)
pattern scanning and processing language oawk: ... oawk(l)

cpp: the C language preprocessor cpp(l)
command programming language /the standard/restricted sh(l)

preprocess MCSSlOO assembly language sifilter: • • • • sifilter(l)
at, batch: execute commands at a later time . •. at(l)

shl: shell layer manager .. shl(l)
lex: generate programs for simple lexical tasks ... lex(l)

ordering relation for an object library !order: find ... lorder(l)
archives ar: archive and library maintainer for portable ar(l)

line: read one line . line(l)
common/ strip: strip symbol and line number information from a strip(l)

nl: line numbering filter .. nl(l)
produce a C source listing with line numbers /common object file . . . • • • list(l)

cut out selected fields of each line of a file cut: .. cut(l)
col: filter reverse line-feeds .. col(l)

comm: select or reject lines common to two sorted files comm(l)

I
uniq: report repeated lines in a file .. uniq(l)

of several files or subsequent lines of one file /same lines paste(l)
subsequent/ paste: merge same lines of several files or paste(l)

files ld: link editor for common object ld(l)
cp, In, mv: copy, link or move files .. cp(l)

Is: list contents of directory Is(I)
nm: print name list of common object file nm(l)

object file produce a C source listing with line numbers /common list(l)
xargs: construct argument list(s) and execute command ; xargs(l)

logname: get login name .. logname(1)
attributes passwd: change login password and password passwd(l)

rlogin: remote login .. rlogin(l)
nice: run a command at low priority ... nice(l)

send/cancel requests to an LP print service lp, cancel: .. lp(l)
about the status of the LP print service /information lpstat(l)

enable, disable: enable/disable L P printers .. enable(l)
m4: macro processor • • • . m4(1)
mt: magnetic tape control mt(l)

mail, rmail: send mail to users or read mail mail(l)
program ctags: maintain a tags file for a C ctags(l)

groups of programs make: maintain, update, and regenerate make(l)
ar: archive and library maintainer for portable archives ar(l)

shl: shell layer manager .. shl(l)
comment section mcs: manipulate the object file mcs(l)

man: display entries from this manual man(l)
diffmk: mark differences between files diffmk(l)

umask: set file creation mode mask umask(l)
sifilter: preprocess MC88100 assembly language sifilter(l)

dcpy: copy removable media dcpy(l)
queue, semaphore set or shared memory ID /remove a message ipcrm(l)

for generating/modifying ASSIST menus or command forms /program astgen(l)
sort: sort and/or merge files .. sort(l)

or subsequent lines of/ paste: merge same lines of several files paste(l)
mailx: interactive message processing system mailx(l)

PI-8

PERMUTED INDEX

shared memory ID ipcrm: remove a message queue, semaphore set or ipcrm(l)
mesg: permit or deny messages .. mesg(l)

chmod: change mode . . • • . . • • • • • • . • • • • •• • • • • • chmod(l)
umask: set file creation mode mask ... umask(l)

touch: update access and modification times of a file touch(!)
mnt, umnt: mount and dismount file system mnt(l)

cp, In, mv: copy, link or move files ... cp(l)
nm: print name list of common object file nm(l)

logname: get login name ... logname(l)
una me: print name of current system uname(l)

tty: get the name of the terminal .. tty(l)
pwd: working directory name ... pwd(l)

dirname: deliver portions of path names basename, .. basename(l)
"server" process for testing network sink: canonical sink(l)

news: print news items • • • • • • • . • • • news(l)
constructs deroff: remove nroffltroff, tbl, and eqn deroff(l)
dnp: patch program with null pointer dereference bug dnp(l)

obtain the prime factors of a number factor: ... factor(!)

I
strip: strip symbol and line number information from a common/ strip(!)

nl: line numbering filter ... nl(l)
a C source listing with line numbers /object file produce list(!)

dis: object code disassembler dis(l)
mcs: manipulate the object file comment section mcs(l)

conv: common object file converter .. conv(l)
cprs: compress a common object file • . cprs(l)

dump: dump selected parts of an object file .. dump(l)
nm: print name list of common object file nm(l)

listing with/ list: from a common object file produce a C source list(!)
number information from a common object file /symbol and line strip(!)

ld: link editor for common object files ... ld(l)
section sizes in bytes of common object files size: print size(l)

find ordering relation for an object library !order: .. lorder(l)
number factor: obtain the prime factors of a factor(!)

od: octal dump .. od(l)
join: relational database operator .. join(l)

stty: set the options for a terminal stty(l)
getopt: parse command options .. getopt(l)

getopts, getoptcvt: parse command options .. getopts(l)
library !order: find ordering relation for an object lorder(l)

chown, chgrp: change owner or group .. chown(l)
terminal 4014: paginator for the Tektronix 4014 4014(1)

getopt: parse command options getopt(l)
getopts, getoptcvt: parse command options getopts(l)
tail: deliver the last part of a file ... tail(l)

dump: dump selected parts of an object file .. dump(l)
passwd: change login password and password attributes passwd(l)

passwd: change login password and password attributes ... passwd(I)
dereference bug dnp: patch program with null pointer dnp(l)

dimame: deliver portions of path names basename, basename(l}
grep: search a file for a pattern .. grep(l)

language awk: pattern scanning and processing awk(l)

PI-9

PERMUTED INDEX

language oawk: pattern scanning and processing oawk(l)
egrep: search a file for a pattern using full regular/ . . . • • . • • . egrep(l)

real: echo the real device in the permissions file for a given/ real(l)
mesg: permit or deny messages mesg(l)

pg: file perusal filter for eRTs pg(l)
split: split a file into pieces • • • • • • • • • • • • . • • •• • • • • • • • • • • • • • • split(!)

tee: pipe fitting .. tee(l)
dnp: patch program with null pointer dereference bug dnp(l)

and library maintainer for portable archives ar: archive ar(l)
basename, dirname: deliver portions of path names basename(l)

banner: make posters .. banner(!)
language sifilter: preprocess MC88100 assembly • • . • • • • sifilter(l)

cpp: the e language preprocessor ... cpp(l)
unget: undo a previous get of an sees file unget(l)

factor: obtain the prime factors of a number • . . . • • . factor(l)
prs: print an sees file • · · · • • • • • · · · · · · · · • • • • · prs(l)

date: print and set the date date(l)

I
cal: print calendar • . • • • • • • . • • • • • • •• • . . . • . cal(I)

a file sum: print checksum and block count of • • . . . sum(l)
activity sact: print current sees file editing sact(l)

cat: concatenate and print files ... cat(l)
pr: print files ... pr(l)

status of the LP print/ lpstat: print information about the lpstat(l)
file nm: print name list of common object • • • nm(l)
uname: print name of current system uname(l)

news: print news items ... news(!)
acctcom: search and print process accounting file(s) acctcom(l}

common object files size: print section sizes in bytes of size(!)
send/cancel requests to an LP print service lp, cancel: lp(l)

about the status of the LP print service /print information • lpstat(l)
disable: enable/disable LP printers enable, .. enable(!)

nice: run a command at low priority .. nice(!)
acctcom: search and print process accounting file(s) acctcom(l)

timex: time a command; report process data and system activity timex(!)
sink: canonical "server" process for testing network sink(!)
command setpgrp: set process group 10 and execute setpgrp(l)

kill: terminate a process .. kill(!)
ps: report process status ... ps(l)

wait: await completion of process .. wait(!)
awk: pattern scanning and processing language .. awk(I)

oawk: pattern scanning and processing language .. oawk(l)
mailx: interactive message processing system .. mailx(l)

m4: macro processor .. m4(1)
pdpl l, u3b, u3b2, u3b5, vax: get processor type truth value /m88k, machid(l)

list: from a common object file produce a e source listing with/ list(!)
prof: display profile data ... prof(l)

cb: e program beautifier ... cb(I)
lint: a e program checker .. lint(!)

cxref: generate e program cross-reference cxref(l)
maintain a tags file for a e program ctags: ... ctags(l)

ctrace: e program debugger • . ctrace(l)

Pl-10

PERMUTED INDEX

ASSIST menus or command/ astgen: program for generating/modifying astgen(l)
sdiff: side-by-side difference program .. sdiff(l)

units: conversion program .. units(l)
dereference bug dnp: patch program with null pointer dnp(l)

the standard/restricted command programming language /shell, ksh(l)
the standard/restricted command programming language /rsh: shell, sh(l)

lex: generate programs for simple lexical tasks lex(l)
to commands and application programs intro: introduction intro(l)

update, and regenerate groups of programs make: maintain, make(l)
true, false: provide truth values ... true(l)

copy uuto, uupick: public UNIX-to-UNIX system file uuto(lC)
tput: initialize a terminal or query terminfo database tput(l)

memory/ ipcrm: remove a message queue, semaphore set or shared • ipcnn(l)
a command immune to hangups and quits nohup: run .. nohup(l)

nnail: send mail to users or read mail mail, ... mail(l)
line: read one line ... line(l)

file for a given/ real: echo the real device in the permissions . real(l)
files ere: generate cyclic redundancy checksums (ere) of crc(l)

I
make: maintain, update, and regenerate groups of programs • make(l)

regcmp: regular expression compile regcmp(l)
a file for a pattern using full regular expressions /search egrep(l)

files comm: select or reject lines common to two sorted comm(l)
!order: find ordering relation for an object library lorder(l)

join: relational database operator join(l)
calendar: reminder service .. calendar(I)

rlogin: remote login ... rlogin(l)
ct : spawn getty to a remote terminal .. ct(lC)

dcpy: copy removable media ... dcpy(l)
nndel: remove a delta from an sees file nndel(l)

set or shared memory ID ipcnn: remove a message queue, semaphore ipcnn(l)
nn, nndir: remove files or directories nn(l)

constructs deroff: remove nroffltroff, tbl, and eqn deroff(l)
file system check and interactive repair chk: chk(l)

uniq: report repeated lines in a file uniq(l)
communication facilities/ ipcs: report inter-process ipcs(l)

activity timex: time a command; report process data and system timex(l)
ps: report process status .. ps(l)

uniq: report repeated lines in a file uniq(l)
sar: system activity reporter . sar(l)

lp, cancel: send/cancel requests to an LP print service lp(l)
bru: backup and restore utility bru(l)

and usage examples usage: retrieve a command description usage(l)
col: filter reverse line-feeds ... col(l)

nice: run a command at low priority nice(l)
and quits nohup: run a command immune to hangups nohup(l)

bfs: big file scanner ... bfs(l)
awk: pattern scanning and processing language awk(l)

oawk: pattern scanning and processing language oawk(l)
change the delta commentary of an sees delta cdc: .. cdc(l)

comb: combine sees deltas .. comb(l)
make a delta (change) to an sees file delta: .. delta(l)

PI-ll

PERMUTED INDEX

sact: print current sees file editing activity sact(l)
get: get a version of an sees file • • . • . get(l)

prs: print an sees file ... prs(l)
rmdel: remove a delta from an sees file ... rmdel(l)

compare two versions of an sees file sccsdiff: .. sccsdiff(l)
unget: undo a previous get of an sees file ... unget(l)

val: validate sees file ... val(l)
admin: create and administer sees files . . • . admin(l)

what: identify sees files ... what(l)
editor based on ex vi: screen-oriented (visual) display vi(l)

/bin/as: assembler driver script ... as(l)
string fgrep: 5earch a file for a character fgrep(l)

grep: search a file for a pattern grep(l)
full regular expressions egrep: search a file for a pattern using egrep(l)

accounting file(s) acctcom: search and print process acctcom(l)
the object file comment section mcs: manipulate mcs(l)

object files size: print section sizes in bytes of common size(l)

I
two sorted files comm: select or reject lines common to • • comm(l)

greek: select terminal filter .. greek(l)
file cut: cut out selected fields of each line of a . . . • . cut(I)

dump: dump selected parts of an object file dump(l)
ipcrm: remove a message queue, semaphore set or shared memory ID ipcrm(l)

mail, rmail: send mail to users or read mail mail(l)
print service lp, cancel: send/cancel requests to an LP lp(l)

network sink: canonical "server" process for testing sink(l)
calendar: reminder service ... calendar(l)

requests to an LP print service lp, cancel: send/cancel lp(l)
about the status of the LP print service /print information lpstat(l)

execution env: set environment for command env(l)
umask: set file creation mode mask umask(l)

remove a message queue, semaphore set or shared memory ID ipcrm: ipcrm(l)
command setpgrp: set process group ID and execute setpgrp(l)

tabs: set tabs on a terminal tabs(l)
date: print and set the date ... date(l)

stty: set the options for a terminal stty(l)
off paste: merge same lines of several files or subsequent lines paste(l)

a message queue, semaphore set or shared memory ID ipcrm: remove ipcrm(l)
shl: shell layer manager .. shl(l)

command programming! ksh, rksh: shell, the standard/restricted ksh(l)
command programming! sh, rsh: shell, the standard/restricted sh(l)

sdiff: side-by-side difference program sdiff(l)
login: sign on .. login(l)

lex: generate programs for simple lexical tasks ... lex(l)
files size: print section sizes in bytes of common object size(l)

sort: sort and/or merge files sort(I)
tsort: topological sort • • • • • . • . • • • • • . tsort(l)

or reject lines common to two sorted files comm: select comm(l)
/a common object file produce a e source listing with line numbers list(l)

ct: spawn getty to a remote terminal • • . . . • • ct(l C)
300s terminals 300, 300s: handle special functions of DASI 300 and 300(1)

Hewlett-Packard/ hp: handle special functions of .. hp(l)

PI-12

PERMUTED INDEX

terminal 450: handle special functions of the DASI 450 • 450(1)
spellin, hashcheck: find spelling errors spell, hashmake, spell(1)

split: split a file into pieces .. split(1)
csplit: context split .•..•...•..• • csplit(1)

ksh, rksh: shell, the standard/restricted command/•..... ksh(1)
programming! sh, rsh: shell, the standard/restricted command sh(1)

uustat: uucp status inquiry and job control uustat(1 C)
communication facilities status /report inter-process ipcs(1)

/print information about the status of the LP print service lpstat(1)
ps: report process status ... ps(1)

sed: stream editor .. sed(1)
search a file for a character string fgrep: ... fgrep(1)

information from a common/ strip: strip symbol and line number ..••••.• . . • • • • strip(1)
/same lines of several files or subsequent lines of one file paste(1)

sleep: suspend execution for an interval sleep(1)
information from a/ strip: strip symbol and line number strip(1)

sdb: symbolic debugger ... sdb(1)
definitions of terms and symbols glossary: .. glossary(1)

I
sar: system activity reporter sar(1)

command; report process data and system activity timex: time a timex(1)
repair chk: file system check and interactive ...••••••.• • . • • • . . chk(1)

uux: UNIX-to-UNIX system command execution uux(1C)
uucp, uulog, uuname: UNIX-to-UNIX system copy .. uucp(1C)

cu: call another UNIX system ... cu(1C)
uuto, uupick: public UNIX-to-UNIX system file copy .. uuto(1C)

starter: information about the system for beginning users starter(1)
setup: initialize system for first user ... setup(l)

fs: construct a file system ... fs(l)
interactive message processing system mailx: ... mailx(l)
umnt: mount and dismount file system mnt, ... mnt(l)

una me: print name of current system ... uname(l)
assist: assistance using SYSTEM V/88 commands assist(l)

who: who is on the system ... who(l)
tabs: set tabs on a terminal ... tabs(l)

ctags: maintain a tags file for a C program ctags(1)
mt: magnetic tape control ... mt(l)

Hewlett-Packard 2645A terminal tape file archiver hpio: hpio(1)
tar: tape file archiver ... tar(1)

programs for simple lexical tasks lex: generate ... lex(l)
deroff: remove nroff/troff, tbl, and eqn constructs deroff(l)

4014: paginator for the Tektronix 4014 terminal 4014(1)
paginator for the Tektronix 4014 terminal 4014: .. 4014(1)

special functions of the DASI 450 terminal 450: handle .. 450(1)
ct: spawn getty to a remote terminal .. ct(l C)

greek: select terminal filter .. greek(1)
database tput: initialize a terminal or query terminfo tput(l)
stty: set the options for a terminal .. stty(l)

tabs: set tabs on a terminal .. tabs(l)
hpio: Hewlett-Packard 2645A terminal tape file archiver hpio(l)

tty: get the name of the terminal .. tty(l)
functions of DASI 300 and 300s terminals 1300s: handle special 300(1)

Pl-13

PERMUTED INDEX

functions of Hewlett-Packard terminals hp: handle special hp(l)
kill: terminate a process • • . • • . . . • . kill(l)

initialize a terminal or query terminfo database tput: tput(l)
glossary: definitions of terms and symbols ... glossary(l)

canonical "server" process for testing network sink: sink(l)
ed, red: text editor ... ed(l)

ex: text editor ... ex(l)
casual users) edit: text editor (variant of ex for edit(l)

new form: change the format of a text file .. newform(l)
update access and modification times of a file touch: .. touch(I)

tsort: topological sort ... tsort(l)
tr: translate characters .. tr(l)

u3b5, vax: get processor type truth value /pdpll, u3b, u3b2, machid(l)
true, false : provide truth values .. true(l)
file: determine file type file(l)

u3b2, u3b5, vax: get processor type truth value /pdpll, u3b, machid(l)
file unget: undo a previous get of an sees . unget(l)

I
cu: call another UNIX system .. cu(lq
execution uux: UNIX-to-UNIX system command uux(lq

uucp, uulog, uuname: UNIX-to-UNIX system copy uucp(lC)
uuto, uupick: public UNIX-to-UNIX system file copy uuto(lq
times of a file touch: update access and modification touch(l)

programs make: maintain, update, and regenerate groups of make(l)
a command description and usage examples usage: retrieve usage(l)

crontab: user crontab file .. crontab(l)
initialize system for first user setup: .. setup(l)

write: write to another user write(l)
editor (variant of ex for casual users) edit: text .. edit(I)

mail, rmail: send mail to users or read mail ... mail(l)
about the system for beginning users starter: information starter(l)

wall: write to all users • . . . • . wall(l)
/search a file for a pattern using full regular expressions egrep(l)

locate: identify a command using keywords .. locate(l)
assist: assistance using SYSTEM V /88 commands assist(I)

bru: backup and restore utility ... bru(l)
control uustat: uucp status inquiry and job uustat(l C)

assist: assistance using SYSTEM V/88 commands .. assist(l)
val: validate sees file ... val(l)

vax: get processor type truth value /pdpll, u3b, u3b2, u3b5, machid(l)
true, false: provide truth values .. true(l)

edit: text editor (variant of ex for casual users) edit(l)
vc: version control ... vc(l)

get: get a version of an sees file get(l)
sccsdiff: compare two versions of an sees file sccsdiff(l)
ex vi: screen-oriented (visual) display editor based on vi(l)

we: word count wc(l)
hyphen: find hyphenated words .. hyphen(l)

cd: change working directory .. cd(l)
pwd: working directory name pwd(l)
wall: write to all users ... wall(l)

write: write to another user .. write(l)

PI-14

JOIN(l) (Directory and File Management UtiJltles } J V.&.&. .. \ .& f

NAME
join - relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by
the lines of file1 and file2 . If file1 is -, the standard input is used.

file1 and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line (see
sort(!)) .

There is one line in the output for each pair of lines in file1 and file2 that
have identical join fields . The output line normally consists of the com

mon field, then the rest of the line from file1 , then the rest of the line
from file2 .

The default input field separators are blank, tab, or newline. In this case,
multiple separators count as one field separator, and leading separators
are ignored. The default output field separator is a blank.

Some of the options below use the argument n . This argument should be
a 1 or a 2 referring to either file1 or file2 , respectively. The following
options are recognized:

-an
In addition to the normal output, produce a line for each unpairable
line in file n, where n is 1 or 2.

-e s
Replace empty output fields by string s .

-jn m
Join on the mth field of file n . If n is missing, use the mth field in
each file . Fields are numbered starting with 1 .

-o list
Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field
number. The common field is not printed unless specifically
requested.

- 1 -

I

JOIN(l) (Directory and File Management Utilities) JOIN(l)

-tc
Use character c as a separator (tab character) . Every appearance of c
in a line is significant. The character c is used as the field separator
for both input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the
group name and the login directory. It is assumed that the files have
been sorted in ASCII collating sequence on the group ID fields:

join -j1 4 -j2 3 -o 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

awk(l), comm(l), sort(l), uniq(l)

With default field separation, the collating sequence is that of sort -b;
with -t, the sequence is that of a plain sort.

The conventions of join, sort , comm, uniq and awk(l) are wildly incongru
ous.

File names that are numeric may cause conflict when the -o option is used
right before listing file names.

- 2 -

KILL(l) (Essential Utilities)

NAME
kill - terminate a process

SYNOPSIS
kill [- signo] PID . . .

DESCRIPTION
kill sends signal 15 (terminate) to the specified processes . This will nor
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported) . Process
numbers can also be found by using ps (l) .

The details of the kill are described in kill (2) . For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super
user.

If a signal number preceded by - is given as first argument, that signal is
sent instead of terminate (see sigtu�l (2)) . In particular "kill -9 . . . " is a
sure kill.

SEE ALSO
ps(l), sh(l)
kill(2), signal(2) in the Programmer's Reference Manual.

- 1 -

I

KSH(l) (Essential Utilities)

NAME
ksh, rksh - shell, the standard/restricted command programming language

SYNOPSIS
ksh [-aefhikmnoprstuvx] [-o option] . . . [-c string] [arg . . .]
rksh [-aefhikmnoprstuvx] [-o option] . . . [-c string] [arg . . .]

DESCRIPTION
ksh is a command programming language that executes commands read
from a terminal or a file . See Invocation for the meaning of arguments to
the shell . ksh may also take the place of the regular shell, sh and the res
tricted shell, rsh.

Definitions
A metacharacter is one of the following characters:

; & () < > newline space tab

A blank is a tab or a space . An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore . Identifiers are used as
names for aliases, functions, and named parameters . A word is a
sequence of characters separated by one or more non-quoted metacharac
ters .

Commands
A simple-command is a sequence of blank separated words which may be
preceded by a parameter assignment list (see Environment) . The first
word specifies the name of the command to be executed. Except as speci
fied below, the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 (see exec(2)) .
The value o f a simple-command i s its exit status i f i t terminates normally,
or (octal) 200+ status if it terminates abnormally (see signal(2) for a list of
status values) .

A pipeline is a sequence of one or more commands separated by I . The
standard output of each command but the last is connected by a pipe(2) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate . The
exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or
I I , and optionally terminated by ;, &, or I & . Of these five symbols, ;, &,
and I & have equal precedence, which is lower than that of && and I I .
The symbols && and I I also have equal precedence . A semicolon (;)
causes sequential execution of the preceding pipeline; an ampersand (&)

- 1 -

I

KSH(l)

I

(Essential Utilities) KSH (l)

causes asynchronous execution of the preceding pipeline (i . e . , the shell
does not wait for that pipeline to finish) . The symbol I & causes asynchro
nous execution of the preceding command or pipeline with a two-way
pipe established to the parent shell .

The standard input and output of the spawned command can be written
to and read from by the parent Shell using the -p option of the special
commands read and print described later. Only one such command can
be active at any given time. The symbol && (I I) causes the list follow
ing it to be executed only if the preceding pipeline returns a zero (non
zero) value . An arbitrary number of newlines may appear in a list,
instead of semicolons, to delimit commands .

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for identifier [in word . . .] do list done
Each time a for command is executed, identifier is set to the next word
taken from the in word list. If in word . . . is omitted, then the for com
mand executes the do list once for each positional parameter that is
set (see Parameter Substitution) . Execution ends when there are no
more words in the list.

select identifier [in word . . .] do list done
A select command prints on standard error (file descriptor 2), the set
of words, each preceded by a number. If in word . . . is omitted, then
the positional parameters are used instead (see Parameter Substitu
tion) . The PS3 prompt is printed and a line is read from the standard
input. If this line consists of the number of one of the listed words,
then the value of the parameter identifier is set to the word correspond
ing to this number. If this line is empty the selection list is printed
again. Otherwise, the value of the parameter identifier is set to NULL.
The contents of the line read from standard input is saved in the
parameter REPLY. The list is executed for each selection until a
BREAK or EOF is encountered.

case word in [pattern [I pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation) .

- 2 -

---.....

KSH (l) (Essential Utilities) �� .l .l. \ .1.. /

if list then list [eli£ list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list follow
ing eli£ is executed and, if its value is zero, the list following the next
then is executed. Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero exit status.

while list do list done
until list do list done

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth
erwise, the loop terminates . If no commands in the do list are exe
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

(list)
Execute list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted to
avoid arithmetic evaluation as described below. A parenthesized list
used as a command argument denotes process substitution as described
below.

{ list;}
list is simply executed. Note that { is a keyword and requires a blank in
order to be recognized.

function identifier { list ;}
identifier () { list ;}

Define a function that is referenced by identifier. The body of the
function is the list of commands between { and }. (See Functions .)

time pipeline
The pipeline is executed and the elapsed time as well as the user and
system time are printed on standard error.

The following keywords are only recognized as the first word of a com
mand and when not quoted:

if then else eli£ fi case esac for while until do done
{ } function lect time

Comments
A word beginning with # causes that word and all the following charac
ters up to a newline to be ignored.

- 3 -

I

I

KSH (l) (Essential Utilities) KSH(l)

Aliasing
The first word of each command is replaced by the text of an alias if an
alias for this word has been defined. The first character of an alias name
can be any non-special printable character, but the rest of the characters
must be the same as for a valid identifier. The replacement string can con
tain any valid Shell script including the metacharacters listed above. The
first word of each command of the replaced text will not be tested for
additional aliases .

If the last character o f the alias value i s a blank, the word following the
alias will also be checked for alias substitution. Aliases can be used to
redefine special built-in commands but cannot be used to redefine the
keywords listed above . Aliases can be created, listed, and exported with
the alias command and can be removed with the unalias command.
Exported aliases remain in effect for sub-shells but must be reinitialized
for separate invocations of the Shell (see Invocation) .

aliasing is performed when scripts are read, not while they are executed.
Therefore, for an alias to take effect, the alias command has to be executed
before the command that references the alias is read.

Aliases are frequently used as a short hand for full path names. An option
to the aliasing facility allows the value of the alias to be automatically set
to the full pathname of the corresponding command. These aliases are
called tracked aliases . The value of a tracked alias is defined the first time
the corresponding command is looked up and becomes undefined each
time the PATH variable i

'
s reset. These aliases remain tracked so that the

next subsequent reference will redefine the value . Several tracked aliases
are compiled into the shell . The -h option of the set command makes each
command name which is a valid alias name into a tracked alias .

- 4 -

KSH(l) (Essential Utilities) 1\..o::ICl \ J. J

The following exported aliases are compiled into the shell but can be unset I
or redefined:

false = 'let 0'
functions = ' typeset -f'
history= 'fc -1 '

integer= ' typeset -i '
nohup= 'nohup '
r= 'fc -e -'
true = ' : '
type = 'whence -v'
hash= ' alias -t'

Tilde Substitution
After alias substitution is performed, each word is checked to see if it
begins with an unquoted - . If it does, then the word up to a I is checked
to see if it matches a user name in the /etc/passwd file . If a match is
found, the - and the matched login name is replaced by the login direc
tory of the matched user. This is called a tilde substitution. If no match is
found, the original text is left unchanged. A - by itself, or in front of a /,
is replaced by the value of the HOME parameter. A - followed by a + or
- is replaced by the value of the parameter PWD and OLDPWD
respectively.

In addition, the value of each keyword parameter is checked to see if it
begins with a - or if a - appears after a :. In either of these cases, a tilde
substitution is attempted.

Command Substitution
The standard output from a command enclosed in parenthesis preceded
by a dollar sign ($()) or a pair of grave accents (' ') may be used as part
or all of a word; trailing newlines are removed. In the second (archaic)
form, the string between the quotes is processed for special quoting char
acters before the command is executed. (See Quoting.) The command sub
stitution $(cat file) can be replaced by the equivalent but faster $(<file) .
Command substitution of most special commands that do not perform
input/output redirection are carried out without creating a separate
process.

Process Substitution
This feature is only available on operating systems that support the
/dev/fd directory for naming open files (not available on SYSTEM V/88) .
Each command argument of the form (list) , < (list), or > (list) will run

- 5 -

I

KSH (l) (Essential Utilities) KSH(l)

process list asynchronously connected to some file in /dev/fd. The name of
this file will become the argument to the command. If the form with > is
selected then writing on this file will provide input for list. If < is used or
omitted, then the file passed as an argument will contain the output of the
list process. For example,

paste (cut -fl filel) (cut -£3 file2) I tee > (process]) > (process2)

cuts fields 1 and 3 from the files file1 and file2 respectively, pastes the
results together, and sends it to the processes process1 and process2, as
well as putting it onto the standard output. Note that the file, which is
passed as an argument to the command, is a pipe(2) so programs that
expect to lseek(2) on the file will not work.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters * ,

@, II, ?, -, $, and ! . A named parameter (a parameter denoted by an iden
tifier) has a value and zero or more attributes . named parameters can be
assigned values and attributes by using the typeset special command. The
attributes supported by the Shell are described later with the typeset spe
cial command. Exported parameters pass values and attributes to sub
shells but only values to the environment.

The shell supports a limited one-dimensional array facility. An element of
an array parameter is referenced by a subscript. A subscript is denoted by a
[, followed by an arithmetic expression (see Arithmetic Evaluation) followed
by a] . The value of all subscripts must be in the range of 0 through 511 .
Arrays need not be declared. Any reference to a named parameter with a
valid subscript is legal and an array will be created if necessary. Referenc
ing an array without a subscript is equivalent to referencing the first
element.

The value of a named parameter may also be assigned by writing:

name= value [name= value] . . .

If the integer attribute, -i, is set for name the value is subject to arithmetic
evaluation as described below. Positional parameters, parameters
denoted by a number, may be assigned values with the set special com
mand. Parameter $0 is set from argument zero when the shell is invoked.
The character $ is used to introduce substitutable parameters:

- 6 -

KSH(l) (Essential Utilities) KSH(l)

${parameter}
The value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name or when a named
parameter is subscripted. If parameter is one or more digits then it is a
positional parameter. A positional parameter of more than one digit
must be enclosed in braces . If parameter is * or @, then all the posi
tional parameters, starting with $1, are substituted (separately a field
separator character) . If an array identifier with subscript * or @ is
used, then the value for each of the elements is substituted (separated
by a field separator character) .

${#parameter}
If parameter is * or @, the number of positional parameters is substi
tuted. Otherwise, the length of the value of the parameter is
substituted.

${#identifier[""]}
The number of elements in the array parameter is substituted.

${parameter:-word}
If parameter is set and is non-NULL, substitute its value; otherwise,
substitute word.

${parameter: = word}
If parameter is not set or is NULL, set it to word; the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

${parameter:?word}
If parameter is set and is non-NULL, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, a standard mes
sage is printed.

${parameter: + word}
If parameter is set and is non-NULL, substitute word; otherwise, substi
tute nothing.

${parameter#pattern}
${parameter# #pattern}

If the Shell pattern matches the beginning of the value of parameter,
the value of this substitution is the value of the parameter with the
matched portion deleted; otherwise, the value of this parameter is sub
stituted. In the first form, the smallest matching pattern is deleted; in
the latter form, the largest matching pattern is deleted.

- 7 -

I

KSH(l)

I

(Essential Utilities) KSH(l)

${parameter% pattern}
${parameter% %pattern}

If the Shell pattern matches the end of the value of parameter, the
value of parameter with the matched part deleted; otherwise, substi
tute the value of parameter. In the first form, the smallest matching
pattern is deleted; in the latter form, the largest matching pattern is
deleted.

In the above syntax, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is executed only
if d is not set or is NULL:

echo ${d:-$(pwd)}

I f the colon (:) i s omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:

?

$

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.

The decimal value retumed by the last executed command.

The process number of this shell .

The last argument of the previous command. This parameter is not
set for commands which are asynchronous. This parameter is also
used to hold the name of the matching MAIL file when checking for
mail . Finally, the value of this parameter is set to the full pathname
of each program the shell invokes and is passed in the environment.

The process number of the last background command invoked.
PPID

The process number of the parent of the shell .
PWD

The present working directory set by the cd command.
OLDPWD

The previous working directory set by the cd command.

- 8 -

KSH (l) (Essential Utilities) KSH(l)

RANDOM
Each time this parameter is referenced, a random integer is gen
erated. The sequence of random numbers can be initialized by
assigning a numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read special
command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since
shell invocation is returned. If this parameter is assigned a value, the
value returned upon reference will be the value that was assigned
plus the number of seconds since the assignment.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the edit
window for the shell edit modes and for printing select lists .

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the VISUAL
variable is not set, then the corresponding option (see Special Com
mand set) will be turned on.

ENV
If this parameter is set, then parameter substitution is performed on
the value to generate the pathname of the script that will be executed
when the shell is invoked. (See Invocation.) This file is typically used
for alias and function definitions.

FCEDIT
The default editor name for the fc command.

IFS
Internal field separators, normally space, tab, and newline that
is used to separate command words which result from command or
parameter substitution and for separating words with the special
command read. The first character of the IFS parameter is used to
separate arguments for the "$*" substitution (see Quoting) .

HISTFILE
If this parameter is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command his
tory. (See Command Re-entry.)

- 9 -

I

KSH (l)

I

(Essential Utilities) KSH (l)

HISTSIZE
If this parameter is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will b�
greater than or equal to this number. The default is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to determine the column
length for printing select lists . Select lists will print vertically until
about two-thirds of LINES lines are filled .

MAIL
If this parameter is set to the name of a mail file and the MAILP ATH
parameter is not set, the shell informs the user of arrival of mail in
the specified file .

MAILCHECK
This variable specifies how often (in seconds) the shell will check for
changes in the modification time of any of the files specified by the
MAILPATH or MAIL parameters . The default value is 600 seconds .
When the time has elapsed, the shell will check before issuing the
next prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of any modifications to the specified files that
have occurred within the last MAILCHECK seconds . Each file name
can be followed by a ? and a message that will be printed. The mes
sage will undergo parameter and command substitution with the
parameter, $_ defined as the name of the file that has changed . The
default message is :

you have mai l in $_
PATH

The search path for commands (see Execution) . The user may not
change PATH if executing under rksh (except in .profile) .

PSI
The value of this parameter is expanded for parameter substitution to
define the primary prompt string which by default is "$ ". The char
acter ! in the primary prompt string is replaced by the command
number (see Command Re-entry) .

PS2
Secondary prompt string, by default "> "

- 10 -

KSH (l) (Essential Utilities) KSH (l)

PS3
Selection prompt string used within a select loop, by default "#? " .

SHELL
The pathname of the shell is kept in the environment. At invocation,
if the value of this variable contains an r in the basename, then the
shell becomes restricted .

TMOUT
If set to a value greater than zero, the shell will terminate if a com
mand is not entered within the prescribed number of seconds after
issuing the PSl prompt. (Note that the shell can be compiled with a
maximum bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set) will be turned on.

The shell gives default values to PATH, PSl, PS2, MAILCHECK, TMOUT
and IFS, while HOME, SHELL ENV and MAIL are not set at all by the shell
(although HOME is set by login(!)) . On some systems, MAIL and SHELL
are also set by login(l)) .

'\ Blank Interpretation
After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit
NULL arguments (" " or ") are retained. Implicit NULL arguments (those
resulting from parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters
*, ? , and [unless the -£ option has been set. If one of these characters
appears then the word is regarded as a pattern. The word is replaced with
alphabetically sorted file names that match the pattern. If no file name is
found that matches the pattern, then the word is left unchanged. When a
pattern is used for file name generation, the character . at the start of a file
name or immediately following a I, as well as the character I itself, must
be matched explicitly. In other instances of pattern matching, the I and .
are not treated specially.

*

Matches any string, including the NULL string.
?

Matches any single character.

- 1 1 -

I

I

KSH(l) (Essential Utilities) KSH(l)

[. . .]
Matches any one of the enclosed characters . A pair of characters
separated by - matches any character lexically between the pair,
inclusive . If the first character following the opening "[" is a "! " then
any character not enclosed is matched. A - can be included in the
character set by putting it as the first or last character.

Quoting
Each of the metacharacters listed above (see Definitions) has a special
meaning to the shell and causes termination of a word unless quoted. A
character may be quoted (i . e . , made to stand for itself) by preceding it with
a \. The pair \new-line is ignored. All characters enclosed between a pair
of single quote marks ("), are quoted.

A single quote cannot appear within single quotes . Inside double quote
marks (" j, parameter and command substitution occurs and \ quotes the
characters \ , ' , ", and $. The meaning of $* and $@ is identical when
not quoted or when used as a parameter assignment value or as a fi le
name. However, when used as a command argument, "$* " is equivalent
to "$ld $2d . . . ", where d is the first character of the IFS parameter,
whereas "$@" is equivalent to "$1" "$2" If the grave quotes, occur
within double quotes then \ also quotes the character.

The special meaning of keywords or aliases can be removed by quoting
any character of the keyword. The recognition of function names or spe
cial command names listed below cannot be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the special com
mand let. Evaluations are performed using long arithmetic. Constants are
of the form [base#] n where base is a decimal number between two and
thirty-six representing the arithmetic base and n is a number in that base.
If base is omitted, then base 10 is used.

An internal integer representation of a named parameter can be specified
with the -i option of the typeset special command. When this attribute is
selected, the first assignment to the parameter determines the arithmetic
base to be used when parameter substitution occurs .

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command that begins with a
((, all the characters until a matching)) are treated as a quoted expression.
More precisely, ((. . .)) is equivalent to let " . . . ".

- 12 -

KSH (l) (Essential Utilities) KSH (l)

Prompting
When used interactively, the shell prompts with the value of PSI before
reading a command. If at any time a newline is typed and further input is
needed to complete a command, the secondary prompt (i .e . , the value of
PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell . The following may
appear anywhere in a simple-command or may precede or follow a com
mand and are not passed on to the invoked command. Command and
parameter substitution occurs before word or digit is used except as noted
below. File name generation occurs only if the pattem matches a single
file and blank interpretation is not performed.

<word
Use file word as standard input (file descriptor 0) .

>word
Use file word as standard output (file descriptor 1) . If the file does not
exist, it is created; otherwise, it is truncated to zero length.

>>word
Use file word as standard output. If the file exists, output is appended
to it (by first seeking to the EOF); otherwise, the file is created.

<< [-]word
The shell input is read up to a line that is the same as word, or to an
EOF. No parameter substitution, command substitution or file name
generation is performed on word. The resulting document, called a
here-document, becomes the standard input.

If any character of word is quoted, no interpretation is placed upon
the characters of the document; otherwise, parameter and command
substitution occurs, \new-line is ignored, and \ must be used to quote
the characters \, $, ' , and the first character of word. If - is appended
to <<, all leading tabs are stripped from word and from the docu
ment.

< &digit
The standard input is duplicated from file descriptor digit (see dup(2)) .
Similarly for the standard output using > & digit .

< &-
The standard input is closed. Similarly for the standard output using

- 13 -

I

KSH(l) (Essential Utilities) KSH(l)

> &-.
If one of the above is preceded by a digit, the file descriptor number
referred to is that specified by the digit (instead of the default 0 or 1) . For
example:

. . . 2> &1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1 .

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor, file) association at
the time of evaluation. For example:

. . . l>fname 2> &1

first associates file descriptor 1 with file fname. It then associates file
descriptor 2 with the file associated with file descriptor 1 (i .e . , fname) . If
the order of redirections were reversed, file descriptor 2 would be associ
ated with the terminal (assuming file descriptor 1 had been), then file
descriptor 1 would be associated with file fname.

If a command is followed by & and job control is not active, then the
default standard input for the command is the empty file /dev/null. Oth
erwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output
specifications.

Environment
The environment (see environ(?)) is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
names must be identifiers and the values are character strings . The shell
interacts with the environment in several ways. On invocation, the shell
scans the environment and creates a parameter for each name found, giv
ing it the corresponding value and marking it export . Executed commands
inherit the environment. If the user modifies the values of these parame
ters or creates new ones using the export or typeset -x commands, they
become part of the environment. The environment seen by any executed
command is thus composed of any name-value pairs originally inherited
by the shell, whose values may be modified by the current shell, plus any
additions which must be noted in export or typeset -x commands.

- 14 -

KSH(l) (Essential Utilities) KSH (l)

The environment for any simple-command or function may b e augmented I
by prefixing it with one or more parameter assignments . A parameter
assignment argument is a word of the form identifier= value. Thus:

TERM= 450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned) .

If the -k flag is set, all parameter assignment arguments are placed in the
environment, even if they occur after the command name. The following
first prints a = b c and then c:

echo a = b c
set -k
echo a = b c

Functions
The function keyword, described in the Commands section, is . used to

\ define shell functions . Shell functions are read in and stored internally.
Alias names are resolved when the function is read. Functions are exe
cuted like commands with the arguments passed as positional parameters .
(See Execution.)

Functions execute in the same process as the caller and share al l files,
traps (other than EXIT and ERR) and present working directory with the
caller. A trap set on EXIT inside a function is executed after the function
completes. Ordinarily, variables are shared between the calling program
and the function. However, the typeset special command used within a
function defines local variables whose scope includes the current function
and all functions it calls .

The special command return is used to return from function calls . Errors
within functions return control to the caller.

Function identifiers can be listed with the -f option of the typeset special
command. The text of functions will also be listed. Function can be
undefined with the -£ option of the unset special command.

- 15 -

KSH (l)

I

Jobs

(Essential Utilities) KSH (l)

Ordinarily, functions are unset when the shell executes a shell script. The
-xf option of the typeset command allows a function to be exported to
scripts that are executed without a separate invocation of the shell. Func
tions that need to be defined across separate invocations of the shell
should be placed in the ENV file .

If the monitor option of the set command is turned on, an interactive shell
associates a job with each pipeline . It keeps a table of current jobs, printed
by the jobs command, and assigns them small integer numbers . When a
job is started asynchronously with &, the shell prints a line which looks
like:

[1] 1234

indicating that the job that was started asynchronously was job number 1
and had one (top-level) process, whose process id was 1234 .

This paragraph and the next require features that are not in all versions of
UNIX and may not apply (does not apply to SYSTEM V/88) . If you are
running a job and wish to do something else you may hit the key AZ
(CTRL-Z), which sends a STOP signal to the current job. The shell will
then normally indicate that the job has been 'Stopped,' and print another
prompt . You can then manipulate the state of this j ob, putting it in the
background with the bg command, or run some other commands and
then eventually bring the job back into the foreground with the fore
ground command fg. A AZ takes effect immediately and is like an inter
rupt in that pending output and unread input are discarded when it is
typed.

A job being run in the background will stop if it tries to read from the ter
minal . Background jobs are normally allowed to produce output, but this
can be disabled by giving the command "stty tostop" . If you set this tty
option, then background jobs will stop when they try to produce output
like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character % intro
duces a job name. If you wish to refer to job number 1, you can name it
as %1. jobs can also be named by prefixes of the string typed in to kill or
restart them. Thus, on systems that support job control, 'fg % ed' would -

normally restart a suspended ed(1) job, if there were a suspended job
whose name began with the string 'ed' .

- 16 -

KSH (l) (Essential Utilities) KSH(l)

The shell maintains a notion o f the current and previous jobs. I n output I
pertaining to jobs, the current job is marked with a + and the previous
job with a -. The abbreviation % + refers to the current job and %- refers
to the previous job. % % is also a synonym for the current job.

This shell learns immediately whenever a process changes state . It nor
mally informs you whenever a job becomes blocked so that no further
progress is possible, but only just before it prints a prompt. This is done
so that it does not otherwise disturb your work.

When you try to leave the shell while jobs are running or stopped, you
will be warned that You have s toppe d (running) j ob s . You may
use the jobs command to see what they are . If you do this or immediately
try to exit again, the shell will not warn you a second time, and the
stopped jobs will be terminated.

Signals
The INT and QUIT signals for an invoked command are ignored if the com
mand is followed by & and job monitor option is not active . Otherwise,
signals have the values inherited by the shell from its parent (but see also
the trap command) .

Execution
Each time a command is executed, the above substitutions are carried out.
If the command name matches one of the Special Commands listed
below, it is executed within the current shell process . Next, the command
name is checked to see if it matches one of the user defined functions . If
it does, the positional parameters are saved and then reset to the argu
ments of the function call. When the function completes or issues a return,
the positional parameter list is restored and any trap set on EXIT within
the function is executed . The value of a function is the value of the last
command executed. A function is also executed in the current shell pro
cess . If a command name is not a special command or a user defined func
tion, a process is created and an attempt is made to execute the command
via exec(2) .

- 17 -

I

KSH(l) (Essential Utilities) KSH(l)

The shell parameter PATH defines the search path for the directory con
taining the command. Alternative directory names are separated by a
colon (:) . The default path is /bin:/usr/bin: (specifying /bin, /usr/bin, and
the current directory in that order) . The current directory can be specified
by two or more adjacent colons, or by a colon at the beginning or end of
the path list. If the command name contains a /, the search path is not
used . Otherwise, each directory in the path is searched for an executable
file .

If the file has execute permission but is not a directory or an a.out file, it
is assumed to be a file containing shell commands. A sub-shell is
spawned to read it. All non-exported aliases, functions, and named
parameters are removed in this case . If the shell command file doesn' t
have read permission, or if the setuid and/or setgid bits are set on the file,
then the shell executes an agent whose job it is to set up the permissions
and execute the shell with the shell command file passed down as an
open file . A parenthesized command is also executed in a sub-shell
without removing non-exported quantities.

Command Re-entry
The text of the last HISTSIZE (default 128) commands entered from a ter
minal device is saved in a history file . The file $HOME/.ksh_history is used
if the HISTFILE variable is not set or is not writable . A shell can access the
commands of all interactive shells that use the same named HISTFILE. The
special command fc is used to list or edit a portion of this file . The por
tion of the file to be edited or listed can be selected by number or by giv
ing the first character or characters of the command. A single command
or range of commands can be specified . If you do not specify an editor
program as an argument to fc, the value of the parameter FCEDIT is used.
If FCEDIT is not defined, then /bin/ed is used. The edited command(s) is
printed and re-executed upon leaving the editor. The editor name - is
used to skip the editing phase and to re-execute the command. In this
case, a substitution parameter of the form old= new can be used to modify
the command before execution. For example, if r is aliased to ' fc -e -'
then typing 'r bad= good c' will re-execute the most recent command
which starts with the letter c, replacing the first occurrence of the string
bad with the string good.

- 18 -

KSH (l) (Essential Utilities) KSH (l)

In-line Editing Options
Normally, each command line entered from a terminal device is simply
typed followed by a newline {'RETURN' or 'UNE FEED') . If either the
emacs, gmacs, or vi option is active, the user can edit the command line .
To be in either of these edit modes set the corresponding option. An edit
ing option is automatically selected each time the VISUAL or EDITOR vari
able is assigned a value ending in either of these option names.

The editing features require that the user's terminal accept 'RETURN' as
carriage return without line feed and that a space (' ') must overwrite the
current character on the screen.

The editing modes implement a concept where the user is looking through
a window at the current line . The window width is the value of
COLUMNS if it is defined, otherwise 80. If the line is longer than the win
dow width minus two, a mark is displayed at the end of the window to
notify the user. As the cursor moves and reaches the window boundaries
the window will be centered about the cursor. The mark is a > (<, ..) if
the line extends on the right (left, both) side(s) of the window.

Emacs Editing Mode
This mode is entered by enabling either the emacs or gmacs option. The
only difference between these two modes is the way they handle AT. To
edit, the user moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. All the editing com
mands are control characters or escape sequences. The notation for control
characters is caret (A) followed by the character. For example, AF is the
notation for CTRL-F. This is entered by depressing '£' while holding
down the CTRL key. The SHIFT key is not depressed . (The notation A?
indicates the DEL key.)

The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced Meta f) is entered by depressing ESC (ASCII
033) followed by 'f' . (M-F would be the notation for ESC followed by
SHIFT (capital) F .)

- 19 -

I

KSH (l)

I

(Essential Utilities) KSH (l)

All edit commands operate from any place o n the line (not just a t the
beginning) . Neither the RETURN nor the LINEFEED key is entered after
edit commands except when noted:

AF
Move cursor forward (right) one character.

M-f
Move cursor forward one word. (The editor's idea of a word is a
string of characters consisting of only letters, digits and underscores .)

AB
Move cursor backward (left) one character.

M-b
Move cursor backward one word.

AA
Move cursor to start of line .

AE
Move cursor to end of line .

A]char
Move cursor to character char on current line .

AXAX
Interchange the cursor and mark.

erase

(User defined erase character as defined by the stty command, usually
AH or #.) Delete previous character.

AD
Delete current character.

M-d
Delete current word.

M-AH
(Meta-backspace) Delete previous word.

M-h
Delete previous word.

M-A?
(Meta-DEL) Delete previous word (if your interrupt character is A?
(DEL, the default), this command will not work) .

AT
Transpose current character with next character in emacs mode. Tran
spose two previous characters in gmacs mode.

Ac
Capitalize current character.

- 20 -

KSH(l) (Essential Utilities)

M-e
Capitalize current word.

M-1
Change the current word to lowercase.

�K

KSH(l)

Kill from the cursor to the end of the line. I f given a parameter of
zero then kill from the start of line to the cursor.

�w
Kill from the cursor to the mark.

M-p
Push the region from the cursor to the mark on the stack.

kill
(User defined kill character as defined by the stty command, usually
�G or @.) Kill the entire current line . If two kill characters are
entered in succession, all kill characters from then on cause a linefeed
(useful when using paper terminals) .

�y
Restore last item removed from line . (Yank item back to the line .)

�L
Linefeed and print current line .

�@
(NULL character) Set mark.

M-
(Meta space) Set mark.

�J
(NEWLINE) Execute the current line.

�M
(RETURN) Execute the current line .

eof

�p

EOF character, normally �o, will terminate the shell if the current line
is NULL.

Fetch previous command. Each time �p is entered the previous com
mand back in time is accessed.

M-<
Fetch the least recent (oldest) history line .

M->
Fetch the most recent (youngest) history line .

- 21 -

I

KSH (l)

I

(Essential Utilities) KSH (l)

AN
Fetch next command. Each time AN is entered the next command for
ward in time is accessed.

ARstring
Reverse search history for a previous command line containing string.
If a parameter of zero is given, the search is forward. string is ter
minated by a RETURN or NEWLINE. If string is omitted, the next com
mand line containing the most recent string is accessed. In this case a
parameter of zero reverses the direction of the search.

Ao
(Operate) Execute the current line and fetch the next line relative to
current line from the history file .

M-digits
(Escape) Define numeric parameter, the digits are taken as a parame
ter to the next command. The commands that accept a parameter are:
. , AF, AB, erase, AD, AK, AR, AP, AN, M-., M-_, M-b, M-e, M-d, M-f,
M-h, and M-AH.

M-letter
(Soft-key) Your alias list is searched for an alias by the name _letter
and if an alias of this name is defined, its value will be inserted on
the input queue. The letter must not be one of the above meta
functions .

M-.
The last word of the previous command is inserted on the line . If pre
ceded by a numeric parameter, the value of this parameter deter
mines which word to insert rather than the last word.

M-_
Same as M-. .

M-•
Attempt file name generation on the current word. An asterisk is
appended if the word does not contain any special pattern characters .

M-ESC
Same as M-• .

M-=
List files matching current word pattern if an asterisk were appended.

- 22 -

KSH (l) (Essential Utilities) KSH (l)

Au

\
Multiply parameter of next command by 4.

Escape next character. Editing characters, the user's erase, kill and
interrupt (normally A?) characters may be entered in a command line
or in a search string if preceded by a \. The \ removes the next
character's editing features (if any) .

Av
Display version of the shell.

Vi Editing Mode
There are two typing modes. Initially, when you enter a command you
are in the input mode. To edit, the user enters control mode by typing ESC
(033) and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control commands
accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200 baud
or greater and it contains any control characters or less than one second
has elapsed since the prompt was printed. The ESC character terminates
canonical processing for the remainder of the command and the user can
then modify the command line. This scheme has the advantages of
canonical processing with the type-ahead echoing of raw mode.

If the option viraw is also set, the terminal will always have canonical
processing disabled. This mode is implicit for systems that do not support
two alternate end of line delimiters, and may be helpful for certain
terminals .

Input Edit Commands
By default the editor is in input mode:

erase
(User defined erase character as defined by the stty command, usually
AH or #.) Delete previous character.

Aw
Delete the previous blank separated word.

AD
Terminate the shell .

- 23 -

I

I

KSH(l) (Essential Utilities) KSH (l)

-v

\

Escape next character. Editing characters, the user's erase or kill
characters may be entered in a command line or in a search string if
preceded by a ·v. The ·v removes the next character's editing
features (if any) .

Escape the next erase or kill character.
Motion Edit Commands

These commands will move the cursor.
{count]l

Cursor forward (right) one character.
{count]w

Cursor forward one alpha-numeric word.
{count]W

Cursor to the beginning of the next word that follows a blank.
{count]e

Cursor to end of word.
{count]E

Cursor to end of the current blank delimited word.
{count]h

Cursor backward (left) one character.
[count]b

Cursor backward one word.
{count]B

Cursor to preceding blank separated word.
{count]fc

Find the next character c in the current line.
{count]Fc

Find the previous character c in the current line .
{count]tc

Equivalent to f followed by h.
{count]Tc

Equivalent to F followed by 1.

Repeats the last single character find command, f, F, t, or T.

Reverses the last single character find command.
0

Cursor to start of line.

- 24 -

KSH (l) (Essential Utilities) KSH(l)

Cursor to first non-blank character in line.
$

Cursor to EOL.
Search Edit Commands

These commands access your command history:
[count]k

Fetch previous command. Each time k is entered the previous com
mand back in time is accessed.

[count]-
Equivalent to k.

[count]j
Fetch next command. Each time j is entered the next command for
ward in time is accessed.

[count] +
Equivalent to j .

[count]G
The command number count is fetched. The default is the least recent
history command.

/string
Search backward through history for a previous command containing
string. string is terminated by a RETURN or NEWLINE . If string is
NULL the previous string will be used.

?string
Same as I except that search will be in the forward direction.

n

N
Search for next match of the last pattern to I or ? commands .

Search for next match of the last pattern to I or ?, but in reverse direc
tion. Search history for the string entered by the previous I com
mand.

Text Modification Edit Commands
These commands will modify the line .

a
Enter input mode and enter text after the current character.

A
Append text to the end of the line . Equivalent to $a.

- 25 -

I

KSH(l)

I [count]cmotion
c[count]motion

(Essential Utilities) KSH(l)

Delete current character through the character that motion would
move the cursor to and enter input mode. If motion is c, the entire
line will be deleted and input mode entered.

c

s

D

Delete the current character through the end of line and enter input
mode. Equivalent to c$.

Equivalent to cc.

Delete the current character through the EOL. Equivalent to d$.
[count]dmotion
d[count]motion

i

I

Delete current character through the character that motion would
move to. If motion is d, the entire line will be deleted.

Enter input mode and insert text before the current character.

Insert text before the beginning of the line. Equivalent to the two
character sequence Ai .

[count]P
Place the previous text modification before the cursor.

[count]p

R

rc

Place the previous text modification after the cursor.

Enter input mode and replace characters on the screen with charac
ters you type in an overlay fashion.

Replace the current character with c.
[count]x

Delete current character.
[count]X

Delete preceding character.
[count] .

Repeat the previous text modification command.

Invert the case of the current character and advance the cursor.

- 26 -

KSH(l) (Essential Utilities) KSH(l)

[count]_

•

Causes the count word of the previous command to be appended and
input mode entered. The last word is used if count is omitted .

Causes an • to be appended to the current word and file name gen
eration attempted. If no match is found, it rings the bell . Otherwise,
the word is replaced by the matching pattern and input mode is
entered.

Other Edit Commands
Miscellaneous commands:

[count]ymotion
y[count]motion

y

u

Yank current character through character that motion would move the
cursor to and puts them into the delete buffer. The text and cursor are
unchanged.

Yanks from current position to end of line. Equivalent to y$.

Undo the last text modifying command.
u

Undo all the text modifying commands performed on the line .
[count]v

Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} count in the
input buffer. If count is omitted, then the current line is used.

AL
Linefeed and print current line. Has effect only in control mode .

AJ
(New line) Execute the current line, regardless of mode.

AM
(Return) Execute the current line, regardless of mode.

Sends the line after inserting a # in front of the line and after each
newline. Useful for causing the current line to be inserted in the his
tory without being executed.

List the file names that match the current word if an asterisk were
appended it.

- 27 -

I

I

KSH(l) (Essential Utilities) KSH(l)

@letter
Your alias list is searched for an alias by the name _letter and if an
alias of this name is defined, its value will be inserted on the input
queue for processing.

Special Commands
The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. Unless otherwise indicated, the
output is written on file descriptor 1 . Commands that are preceded by
one or two t are treated specially in the following ways:

1 . Parameter assignment lists preceding the command remain in effect
when the command completes.

2. They are executed in a separate process when used within com
mand substitution.

3 . Errors in commands preceded by tt cause the script that contains
them to abort.

t : [arg . . .]
The command only expands parameters . A zero exit code is
returned.

tt . file [arg . . .]
Read and execute commands from file and return. The commands are
executed in the current Shell environment. The search path specified
by PATH is used to find the directory containing file. If any arguments
arg are given, they become the positional parameters. Otherwise the
positional parameters are unchanged.

alias [-tx] [name [=value] . . .]
Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next word to
be checked for alias substitution. The -t flag is used to set and list
tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined
when the value of PATH is reset but the aliases remained tracked.
Without the -t flag, for each name in the argument list for which no
value is given, the name and value of the alias is printed. The -x flag
is used to set or print exported aliases. An exported alias is defined
across sub-shell environments . Alias returns true unless a name is
given for which no alias has been defined.

- 28 -

KSH(l) (Essential Utilities) KSH (l)

bg [%job]
This command is only built-in on systems that support job control .
Puts the specified job into the background. The current job is put in
the background if job is not specified.

break r n]
Exit from the enclosing for, while, until, or select loop, if any. If n i s
specified then break n levels .

continue r n]
Resume the next iteration of the enclosing for, while, until, or select
loop. If n is specified then resume at the n-th enclosing loop.

t cd I arg]
t cd old new

This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is - the directory i s
changed to the previous directory. The shell parameter HOME is the
default arg. The parameter PWD is set to the current directory. The
shell parameter CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a colon
(:) . The default path is <null> (specifying the current directory) .
Note that the current directory is specified by a NULL pathname,
which can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins with a I
then the search path is not used. Otherwise, each directory in the
path is searched for arg.

The second form of cd substitutes the string new for the string old in
the current directory name, PWD and tries to change to this new
directory. The cd command may not be executed by rksh .

echo [arg . . .]
See echo(l) for usage and description.

tt eval [arg . . .]
The arguments are read as input to the shell and the resulting
command(s) executed.

- 29 -

I

KSH(l)

I

(Essential Utilities) KSH(l)

tt exec [arg . . .]
If arg is given, the command specified by the arguments is executed
in place of this shell without creating a new process . Input/output
arguments may appear and affect the current process. If no argu
ments are given, the effect of this command is to modify file descrip
tors as prescribed by the input/output redirection list. In this case,
any file descriptor numbers greater than 2 that are opened with this
mechanism are closed when invoking another program.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed. An
end-of-file will also cause the shell to exit except for a shell which has
the ignoreeof option (see set) turned on.

tt export [name . . .]
The given names are marked for automatic export to the environment of
subsequently-executed commands.

tt fc [-e ename] [-nlr] [first] [last]
tt fc -e - [old= new] [command]

In the first form, a range of commands from first to last is selected
from the last msTSIZE commands that were typed at the terminal .
The arguments first and last may be specified as a number or as a
string. A string is used to locate the most recent command starting
with the given string. A negative number is used as an offset to the
current command number.

If the flag -1 is selected, the commands are listed on standard output.
Otherwise, the editor program ename is invoked on a file containing
these keyboard commands. If ename is not supplied, the value of the
parameter FCEDIT (default /bin/ed) is used as the editor. When edit
ing is complete, the edited command(s) is executed. If last is not
specified, it will be set to first. If first is not specified the default is the
previous command for editing and -16 for listing. The flag -r rev
erses the order of the commands and the flag -n suppresses com
mand numbers when listing. In the second form, the command is re
executed after the substitution old = new is performed.

KSH(l) (Essential Utilities) KSH(l)

fexpr
Built-in (i . e . , faster) version of expr(l) . The same syntax applies . If the
System V Interface Definition is ever extended to allow expr itself to
be a special (built-in) command, fexpr may go away. To ensure
upward compatibility, shells should be checked for the existence of
fexpr before using it.

fg [%job]
This command is only built-in on systems that support job control . If
job is specified it brings it to the foreground. Otherwise, the current
job is brought into the foreground.

getops
Used in shell scripts to support command syntax standards (see
intro(l)); it parses positional parameters and checks for legal options .
See getops(l) for usage and description.

jobs [-1]
Lists the active jobs; given the -1 options lists process id's in addition
to the normal information.

kill [-sig] process . . .
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes . Signals are either given by number or by
names (as given in /usr/include/signal.h, stripped of the prefix
"SIG"). The signal numbers and names are listed by 'kill -1' . If the
signal being sent is TERM (terminate) or HUP (hangup), then the job
or process will be sent a CONT (continue) signal if it is stopped. The
argument process can be either a process id or a job.

let arg . . .
Each arg is an arithmetic expression to be evaluated. All calculations
are done as long integers and no check for overflow is performed.
Expressions consist of constants, named parameters, and operators .
The following set of operators, listed in order of decreasing pre
cedence, have been implemented:

- 31 -

I

KSH(l)

I
• I %
+ -
< = > = < >

! =

(Essential Utilities)

unary minus
logical negation
multiplication, division, remainder
addition, subtraction
comparison
equality inequality
arithmetic replacement

KSH(l)

Sub-expressions in parentheses () are evaluated first and can be used
to override the above precedence rules . The evaluation within a pre
cedence group is from right to left for the = operator and from left to
right for the others .

A parameter name must be a valid identifier. When a parameter is
encountered, the value associated with the parameter name is substi
tuted and expression evaluation resumes. Up to nine levels of recur
sion are permitted.

The return code is 0 if the value of the last expression is non-zero,
and 1 otherwise.

tt newgrp [arg . . .]
Equivalent to exec newgrp arg

print [-Rnprsu[n]] [arg . . .]
The shell output mechanism. With no flags or with flag -, the argu
ments are printed on standard output as described by echo(!) . In raw
mode, -R or -r, the escape conventions of echo are ignored. The -R
option will print all subsequent arguments and options other than -n .
The -p option causes the arguments to be written onto the pipe of the
process spawned with I & instead of standard output. The -s option
causes the arguments to be written onto the history file instead of
standard output. The -u flag can be used to specify a one digit file
descriptor unit number n on which the output will be placed . The
default is 1 . If the flag -n is used, no new-line is added to the output.

pwd
Equivalent to print -r - $PWD

- 32 -

KSH(l) (Essential Utilities) KSH(l)

read [-prsu [n]] [name?prompt] [name . . .]
The shell input mechanism. One line is read and is broken up into
words using the characters in IFS as separators . In raw mode, -r, a \
at the end of a line does not signify line continuation. The first word
is assigned to the first name, the second word to the second name,
etc. , with leftover words assigned to the last name.

The -p option causes the input line to be taken from the input pipe of
a process spawned by the shell using I &. If the -s flag is present,
the input will be saved as a command in the history file. The flag -u
can be used to specify a one digit file descriptor unit to read from.
The file descriptor can be opened with the exec special command .
The default value of n is 0.

If name is omitted, REPLY is used as the default name. The return
code is 0 unless an EOF is encountered. An EOF with the -p option
causes cleanup for this process so that another can be spawned. If
the first argument contains a 7, the remainder of this word is used as
a prompt when the shell is interactive. If the given file descriptor is
open for writing and is a terminal device, the prompt is placed on
this unit. Otherwise, the prompt is issued on file descriptor 2. The
return code is 0 unless an EOF is encountered.

tt read only I name . . .]
The given names are marked readonly and these names cannot be
changed by subsequent assignment.

tt return In]
Causes a shell function to return to the invoking script with the return
status specified by n. If n is omitted then the return status is that of
the last command executed. If return is invoked while not in a func
tion or a . script, then �t is the same as an exit.

set [-aefhkmnostuvx] [-o option . . .] [arg . . .]
The flags for this command have meaning as follows:
-a

All subsequent parameters that are defined are automatically
exported.

-e
If the shell is non-interactive and if a command fails, execute the
ERR trap, if set, and exit immediately. This mode is disabled while
reading profiles.

- 33 -

I

KSH (l)

I

(Essential Utilities)

-f
Disables file name generation.

-h

KSH (l)

Each command whose name i s a n identifier becomes a tracked alias
when first encountered.

-k
All parameter assignment arguments are placed in the environment
for a command, not just those that precede the command name .

-m
Background jobs will run in a separate process group and a line will
print upon completion. The exit status of background jobs is
reported in a completion message. On systems with job control,
this flag is turned on automatically for interactive shells .

-n
Read commands but do not execute them. Ignored for interactive
shells.

-o
The following argument can be one of the following option names :
allexport Same as -a.
errexit Same as -e .
bgnice All background jobs are run at a lower priority.
emacs Puts you in an emllCS style in-line editor for command

entry.
gmacs Puts you in a gmacs style in-line editor for command

entry.
ignoreeof The shell will not exit on end-of-file . The command

exit must be used.
keyword
markdirs

monitor
noexec
no glob
nounset
protected
verbose
trackall
vi

Same as -k.
All directory names resulting from file name genera
tion have a trailing I appended.
Same as -m.
Same as -n.
Same as -f.
Same as -u.
Same as -p.
Same as -v.
Same as -h.
Puts you in insert mode of a vi style in-line editor
until you hit escape character 033. This puts you in
move mode. A return sends the line .

- 34 -

KSH(l)

viraw
xtrace

(Essential Utilities) KSH(l)

Each character i s processed as i t i s typed in vi mode.
Same as -x .
If no option name is supplied then the current option
settings are printed.

-p

-s

Resets the PATH variable to the default value, disables processing
of the $HOMEI.profile file and uses the file /etc/suid_profile instead
of the ENV file . This mode is automatically enabled whenever the
effective uid (gid) is not equal to the real uid (gid) .

Sort the positional parameters.
-t

Exit after reading and executing one command.
-u

Treat unset parameters as an error when substituting.
-v

-X
Print shell input lines as they are read.

Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags .

Do not change any of the flags; useful in setting $1 to a value
beginning with -. If no arguments follow this flag then the posi
tional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell . The current set of flags
may be found in $-. The remaining arguments are positional parame
ters and are assigned, in order, to $1 $2 If no arguments are
given then the values of all names are printed on the standard out
put.

t shift fn]
The positional parameters from $n+1 . . . are renamed $1 . . . ,
default n is 1 . The parameter n can be any arithmetic expression that
evaluates to a non-negative number less than or equal to $#.

- 35 -

I

KSH(l)

I

(Essential Utilities) KSH(l)

test [expr]
Evaluate conditional expression expr. See test(l) for usage and descrip
tion. The arithmetic comparison operators are not restricted to
integers. They allow any arithmetic expression. Four additional
primitive expressions are allowed:
-L file True if file is a symbolic link.
file1 -nt file2 True if file1 is newer than file2 .
file1 -ot file2 True if file1 is older than file2 .
file1 -ef file2 True if file1 has the same device and i-node number

as file2 .

times
Print the accumulated user and system times for the shell and for
processes run from the shell.

trap [arg] [sig] . . .
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Each sig can be given as a number or as
the name of the signal.

Trap commands are executed in order of signal number. Any attempt
to set a trap on a signal that was ignored on entry to the current shell
is ineffective. If arg is omitted or is -, then all trap(s) sig are reset to
their original values. If arg is the NULL string then this signal is
ignored by the shell and by the commands it invokes. If sig is ERR
then arg will be executed whenever a command has a non-zero exit
code. This trap is not inherited by functions. If sig is 0 or EXIT the
trap statement is executed inside the body of a function, then the
command arg is executed after the function completes. If sig is 0 or
EXIT for a trap set outside any function then the command arg is exe
cuted on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

tt typeset [-HLRZfilprtux[n] [name [=value]] . . .]
When invoked inside a function, a new instance of the parameter
name is created. The parameter value and type are restored when the
function completes. The following list of attributes may be specified:

-H
This flag provides SYSTEM V/88 to host-name file mapping on non
SYSTEM V/88 machines.

- 36 -

KSH(l) (Essential Utilities) KSH(l)

-L
Left justify and remove leading blanks from value. If n is non-zero, i t
defines the width of the field; otherwise, it is determined by the
width of the value of first assignment. When the parameter is
assigned, it is filled on the right with blanks or truncated, if neces
sary, to fit into the field. Leading zeros are removed if the -Z flag is
also set. The -R flag is turned off.

-R
Right justify and fill with leading blanks. If n is non-zero, it defines
the width of the field; otherwise, it is determined by the width of the
value of first assignment. The field is left filled with blanks or trun
cated from the end if the parameter is reassigned. The L flag is
turned off.

-Z

-£

-i

-1

Right justify and fill with leading zeros if the first non-blank character
is a digit and the -L flag has not been set. If n is non-zero, it defines
the width of the field; otherwise, it is determined by the width of the
value of first assignment.

The names refer to function names rather than parameter names . No
assignments can be made and the only other valid flags are -t, which
turns on execution tracing for this function and -x, to allow the func
tion to remain in effect across shell procedures executed in the same
process environment.

·

Parameter is an integer. This makes arithmetic faster. If n is non
zero, it defines the output arithmt!tic base; otherwise, the first assign
ment determines the output base.

All uppercase characters converted to lowercase . The uppercase flag,
-u is turned off.

-p

-r

The output of this command, if any, is written onto the two-way
pipe.

The given names are marked readonly and these names cannot be
changed by subsequent assignment.

- 37 -

KSH(l)

-t

(Essential Utilities) KSH(l)

Tags the named parameters. Tags are user definable and have no
special meaning to the shell.

-u
All lowercase characters are converted to uppercase characters . The
lowercase flag, -1 is turned off.

-X
The given names are marked for automatic export to the environment of
subsequently-executed commands.

Using + instead of - causes these flags to be turned off. If no name argu
ments are given but flags are specified, a list of names (and optionally the
values of the parameters which have these flags set is printed. (Using +
rather than - keeps the values to be printed.) If no names and flags are
given, the names and attributes of all parameters are printed .

ulimit [-acdfmpst] [n]
-a

-c

lists all of the current resource limits {BSD (Berkeley System
Development) only) .

imposes a size limit of n 512 byte blocks on the size of core dumps
{BSD only) .

-d

-f

imposes a size limit of n kbytes on the size of the data area {BSD
only) .

imposes a size limit of n 512 byte blocks on files written by child
processes (files of any size may be read) .

-m
imposes a soft limit of n kbytes on the size of physical memory
{BSD only) .

-p

-s

-t

changes the pipe size to n {UNIX/RT only).

imposes a size limit of n kbytes on the size of the stack area {BSD
only) .

imposes a time limit of n seconds to be used by each process {BSD
only) .

- 38 -

KSH(l) (Essential Utilities) KSH(l)

I f no option i s given, -f i s assumed. If n i s not given the current I
limit is printed.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)) . If nnn is omit
ted, the current value of the mask is printed.

unalias name . . .
The parameters given by the list of names are removed from the alias
list.

unset [-f] name . . .
The parameters given by the list of names are unassigned, i .e . , their
values and attributes are erased. Readonly variables cannot be unset.
If the flag, -f, is set, then the names refer to function names.

wait [n]
Wait for the specified child process and report its termination status.
If n is not given, then all currently active child processes are waited
for. The return code from this command is that of the process waited
for.

whence [-v] name . . .
For each name, indicate how it would be interpreted if used as a com
mand name. The flag, -v, produces a more verbose report.

Invocation
If the shell is invoked by exec(2), and the first character of argument zero
($0) is -, the shell is assumed to be a login shell and commands are read
from /etc/profile, then from either .profile in the current directory or
$HOME!.profile, if either file exists. Next, commands are read from the
file named by performing parameter substitution on the value of the
environment parameter ENV if the file exists. If the -s flag is not present
and arg is, then a path search is performed on the first arg to determine
the name of the script to execute. The script arg must have read permis
sion and any setuid and getgid settings will be ignored. Commands are
then read as described below; the following flags are interpreted by the
shell when it is invoked:

-c string

-s
If the -c flag is present then commands are read from string.

If the -s flag is present or if no arguments remain then commands are
read from the standard input. Shell output, except for the output of
the Special Commands listed above, is written to file descriptor 2.

- 39 -

I

KSH(l)

-i

-r

(Essential Utilities) KSH(l)

I f the -i flag i s present or i f the shell input and output are attached to
a terminal (as told by ioctl(2)) then this shell is interactive. In this case
TERM is ignored (so that kill 0 does not kill an interactive shell) and
INTR is caught and ignored (so that wait is interruptible) . In all
cases, QUIT is ignored by the shell.

If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

rksh Only
If you wish to use ksh as the shell, sh, and as the restricted shell, rsh, copy
ksh into sh and link rsh to sh. Otherwise, you may call ksh as it is and l ink
rksh to ksh.

rksh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell . The
actions of rksh are identical to those of ksh, except that the following are
disallowed:

changing directory (see cd(l)),
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing /,
redirecting output (> and > >) .

The restrictions above are enforced after .profile and the ENV files are
interpreted.

When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that
the end-user does not have write and execute permissions in the same
directory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions, by performing guaranteed setup actions and
leaving the user in an appropriate directory (probably not the login direc
tory) .

The system administrator often sets up a directory of commands (i . e . ,
/usr/rbin) that can be safely invoked by rksh. Some systems also provide a
restricted editor red.

- A t\ �

KSH (l) (Essential Utilities) KSH (l)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status . Otherwise, the shell returns the exit status
of the last command executed (see also the exit command above) . If the
shell is being used non-interactively then execution of the shell file is
abandoned. Runtime errors detected by the shell are reported by printing
the command or function name and the error condition. If the line
number that the error occurred on is greater than one, then the line
number is also printed in square brackets ([]) after the command or func
tion name.

/etc/passwd
/etc/profile
I etc/ suid_profile
$HOME!. profile
/tmp/ksh*
/dev/null

SEE ALSO
cat(l), cd(l), echo(l), emacs(l), env(l), gmacs(l), newgrp(l), test(l),
umask(l), vi(l), dup(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2),
signal(2), umask(2), ulimit(2), wait(2), rand(3), a.out(S), profile(S),
environ(7) .

CAVEATS
If a command that is a tracked alias is executed, then a command with the
same name is installed in a directory in the search path before the direc
tory where the original command was found, the shell will continue to
exec the original command. Use the -t option of the alias command to
correct this situation.

Some very old shell scripts contain a A as a synonym for the pipe charac
ter, 1 .
If a command is piped into a shell command, all variables set in the shell
command are lost when the command completes.

Using the fc built-in command within a compound command will cause
the whole command to disappear from the history file .

The built-in command . file reads the whole file before any commands are
executed. Therefore, alias and unalias commands in the file will not apply
to any functions defined in the file .

- 41 -

I

LD (l) (Software Generation System Utilities) LD (l)

NAME
ld - link editor for common object files

SYNOPSIS
ld [options] filename

DESCRIPTION
The ld command combines several object files into one, performs reloca
tion, resolves external symbols, and supports symbol table information for
symbolic debugging. In the simplest case, the names of several object
programs are given, and ld combines the objects, producing an object
module that can either be executed or, if the -r option is specified, used
as input for a subsequent ld run. The output of ld is left in a.out. By
default this file is executable if no errors occurred during the load. If any
input file, filename, is not an object file, ld assumes it is either an archive
library or a text file containing link editor directives. (See Link Editor
Directives in the Programmer's Guide for a discussion of input directives .)

If any argument i s a library, it i s searched exactly once a t the point it is
encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. The library (archive) symbol
table (see ar(4)) is searched sequentially with as many passes as are neces
sary to resolve external references which can be satisfied by library
members. Thus, the ordering of library members is functionally unimpor
tant, unless there exist multiple library members defining the same exter
nal symbol.

The following options are recognized by ld:

-e epsym
Set the default entry point address for the output file to be that of the
symbol epsym.

-£ fill
Set the default fill pattern for "holes" within an output section as well
as initialized bss sections . The argument fill is a 2-byte constant.

-lx
Search a library libx .a, where x is up to nine characters . A library is
searched when its name is encountered, so the placement of a -1 is
significant. By default, libraries are located in LIBDIR or LLIBDIR.

-m
Produce a map or listing of the input/output sections on the standard
output.

- 1 -

I

LD (l)

I

(Software Generation System Utilities) LD (l)

-o outfile

-r

-a

-s

-t

Produce an output object file by the name outfile. The name of the
default object file is a.out.

Retain relocation entries in the output object file . Relocation entries
must be saved if the output file is to become an input file in a subse
quent ld run. The link editor will not complain about unresolved refer
ences, and the output file will not be executable .

Create a n absolute file. This i s the default i f the option i s not used.
Used with the -r option, -a allocates memory for common symbols.

Strip line number entries and symbol table information from the output
object file.

Tum off the warning about multiply-defined symbols that are not the
same size.

-u symname

-x

-z

Enter symname as an undefined symbol in the symbol table . This is use
ful for loading entirely from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the loading of the
first routine. The placement of this option on the ld line is significant; it
must be placed before the library which will define the symbol .

Do not preserve local symbols in the output symbol table; enter external
and static symbols only. This option saves some space in the output
file .

D o not bind anything to address zero. This option will allow runtime
detection of NULL pointers.

-L dir
Change the algorithm of searching for libx.a to look in dir before look
ing in LmDIR and LLmDIR. This option is effective only if it precedes
the -1 option on the command line.

-M
Output a message for each multiply-defined external definition.

- 2 -

LD (l)

, FILES

(Software Generation System Utilities) LD (l)

-N
Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately fol
lowing text in the core image.

-V
Output a message giving information about the version of ld being
used.

-VS num
Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

-Y[LUJ,dir
Change the default directory used for finding libraries . If L is specified,
the first default directory that ld searches, UBDm, is replaced by dir. If
U is specified and ld has been built with a second default directory,
LUBDIR, then that directory is replaced by dir. If ld was built with
only one default directory and U is specified, a warning is printed and
the option is ignored.

UBDIR/libx.a
LUBDIR/libx.a
a.out
UBDm
LUBDIR

libraries
libraries
output file
usually nib
usually /usr/lib

SEE ALSO
as(l), cc(l), exit(2), end(3q, a .out(4), ar(4), and Link Editor Directives in
the Programmer's Guide.

- 3 -

I

LD (l) (Software Generation System Utilities) LD (l)

I CAVEATS
Through its options and input directives, the common link editor gives
users great flexibility; however, those who use the input directives must
assume some added responsibilities. Input directives and options should
ensure the following properties for programs: C defines a zero pointer as
NULL. A pointer to which zero has been assigned must not point to any
object. To satisfy this, users must not place any object at virtual address
zero in the program's address space. When the link editor is called
through cc(l), a startup routine is linked with the user's program. This
routine calls exit(-) (see exit (2)) after execution of the main program. If
the user calls the link editor directly, then the user must ensure that the
program always calls exit(-) instead of falling through the end of the
entry routine.

The symbols etext, edata, and end (see end(3q) are reserved and are
defined by the link editor. It is incorrect for a user program to redefine
them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message com
plaining about "syntax errors".

Arithmetic expressions may only have one forward referenced symbol per
expression.

Shared libraries are not supported.

- 4 -

LEX (l) (Extended Software Generation System Utilities) LEX (l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] . . .

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and expressions to
be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies
the input to the output except when a string specified in the file is found;
then the corresponding program text is executed. The actual string
matched is left in yytext, an external character array. Matching is done in
order of the strings in the file .

The strings may contain square brackets to indicate character classes, as in
Iabx-z] to indicate a, b, x, y, and z; and the operators *, +, and ? mean
respectively any non-negative number of, any positive number of, and
either zero or one occurrence of, the previous character or character class .
The character . i s the class of all ASCII characters except newline.
Parentheses for grouping and vertical bar for alternation are also sup
ported.

The notation r{d,e} in a rule indicates between d and e instances of regu
lar expression r. It has higher precedence than I , but lower than * , ? , + ,
and concatenation. Thus, Ia-zA-Z] + matches a string of letters. The
character A at the beginning of an expression permits a successful match
only immediately after a newline, and the character $ at the end of a n
expression requires a trailing newline. The character I i n a n expression
indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary symbol
if it is within " symbols or preceded by \.

- 1 -

I

I

LEX (l) (Extended Software Generation System Utilities) LEX (l)

Three subroutines defined a s macros are expected: input() to read a char
acter; unput(c) to replace a character read; and output(c) to place an out
put character. They are defined in terms of the standard streams, but you
can override them. The program generated is named yylex() , and the
library contains a 111ilin() which calls it. The action REJECT on the right
side of the rule causes this match to be rejected and the next suitable
match executed; the function yymore() accumulates additional characters
into the same yytext; and the function yyless(p) pushes back the portion
of the string matched beginning at p, which should be between yytext and
yytext + yyleng . The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the external definition area of
the lex.yy.c file . All rules should follow a % %, as in YACC. Lines preced
ing % % which begin with a non-blank character define the string on the
left to be the remainder of the line; it can be called out later by surround
ing it with { } . Note that curly brackets do not imply parentheses; only
string substitution is done.

EXAMPLE
D
% %
if
[a-z] +
O{D}+
{D}+
"+ + "
"+ "

[0-9)

printf('1F statement\n');
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n');
printf(''binary op\n');

skipcommnts();
% %
skipcommnts()
{

}

for (;;)
{

}

while (input() != '• ')
I

if (input() != ' / ')
unput(yytext[yyleng-1]);

else
return;

- 2 -

LEX (l) (Extended Software Generation System Utilities) LEX (l)

The external names generated by lex all begin with the prefix yy or YY .
The flags must appear before any files. The flag -r indicates RATFOR
actions, -c indicates C actions and is the default, -t causes the lex.yy. c
program to be written instead to standard output, -v provides a one-line
summary of statistics, -n will not print out the -v summary. Multiple
files are treated as a single file. If no files are specified, standard input is
used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)

%o n size of output array is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

SEE ALSO

BUGS

yacc(l)
Programmer's Guide.

The -r option is not yet fully operational.

- 3 -

I

LINE (l)

line - read one line

SYNOPSIS
line

DESCRIPTION

(User Environment Utilities) LINE (l)

line copies one line (up to a newline) from the standard input and writes i t
o n the standard output. I t returns a n exit code of 1 on EOF and always
prints at least a newline. It is often used within shell files to read from
the user's terminal .

SEE ALSO
sh(1) .
read(2) in the Programmer's Reference Manual.

- 1 -

LINT(l) (Advanced C Utilities) LINT(l)

NAME
lint - a C program checker

" SYNOPSIS
lint [option] . . . file . . .

DESCRIPTION
The lint command attempts to detect features of the C program files that
are likely to be bugs, non-portable, or wasteful. It also checks type usage
more strictly than the compilers. Among the things that are currently
detected are unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the usage of functions is checked to find
functions that return values in some places and not in others, functions
called with varying numbers or types of arguments, and functions whose
values are not used or whose values are used but none returned.

Arguments whose names end with . c are taken to be C source files .
Arguments whose names end with . ln are taken to be the result of a n ear
lier invocation of lint with either the -c or the -o option used. The . In
files are analogous to .o (object) files that are produced by the cc(l) com
mand when given a .c file as input. Files with other suffixes are warned
about and ignored.

lint will take all the .c, .ln, and llib-lx.ln (specified by -lx) files and pro
cess them in their command line order. By default, lint appends the stan
dard C lint library (llib-lc.ln) to the end of the list of files . However, if
the -p option is used, the portable C lint library (llib-port.ln) is appended
instead. When the -c option is not used, the second pass of lint checks
this list of files for mutual compatibility. When the -c option is used, the
.In and the llib-lx .ln files are ignored.

Any number of lint options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain
kinds of complaints:

-a
Suppress complaints about assignments of long values to variables
that are not long.

-b
Suppress complaints about bre ak statements that cannot be
reached. (Programs produced by lex or yacc will often result in many
such complaints) .

- 1 -

I

LINT(l)

I

(Advanced C Utilities) LINT(l)

-h
Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

-u
Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run
ning lint on a subset of files of a larger program) .

-v
Suppress complaints about unused arguments in functions.

-x
Do not report variables referred to by external declarations but never
used.

The following arguments alter lint's behavior:

-lx
Include additional lint library llib-lx.ln. For example, you can
include a lint version of the math library llib-lm.ln by inserting -lm
on the command line. This argument does not suppress the default
use of llib-lc.ln. These lint libraries must be in the assumed direc
tory. This option can be used to reference local lint libraries and is
useful in the development of multi-file projects.

-n
Do not check compatibility against either the standard or the portable
lint library.

-p

-c

Attempt to check portability to other dialects {IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external
names to be truncated to eight characters and all external names to be
truncated to six characters and one case.

Cause lint to produce a . In file for every .c file on the command line .
These . In files are the product of lints first pass only and are not
checked for inter-function compatibility.

-o lib
Cause lint to create a lint library with the name llib-llib .ln. The -c
option nullifies any use of the -o option. The lint library produced is
the input that is given to lints second pass. The -o option simply
causes this file to be saved in the named lint library.

- 2 -

LINT(l) (Advanced C Utilities) LINT(l)

To produce a llib-llib .ln without extraneous messages, use of the -x I
option is suggested. The -v option is useful if the source file(s) for the
lint library are just external interfaces (for example, the way the file
llib-lc is written) . These option settings are also available through the
use of "lint comments" (see below) .

The -D, -U, and -1 options of cpp(l) and the -g and -0 options of cc(l)
are also recognized as separate arguments. The -g and -0 options are
ignored, but, by recognizing these options, lints behavior is closer to that
of the cc(l) command. Other options are warned about and ignored. The
pre-processor symbol "lint" is defined to allow certain questionable code
to be altered or removed for lint . Therefore, the symbol "lint' ' should be
thought of as a reserved word for all code that is planned to be checked
by lint .

Certain conventional comments in the C source will change the behavior
of lint :

/•NOTREACHED•/
at appropriate points stops comments about unreachable code. (This
comment is typically placed just after calls to functions like exit (2)) .

/•VARARGS n •/
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n argu
ments are checked; a missing n is taken to be 0.

/•ARGSUSED•/
turns on the -v option for the next function.

/•LINTLIBRARY•/
at the beginning of a file shuts off complaints about unused functions
and function arguments in this file. This is equivalent to using the -v

and -x options .

lint produces its first output on a per-source-file basis . Complaints about
included files are collected and printed after all source files have been pro
cessed. Finally, if the -c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one
of its included files, the source file name will be printed followed by a
question mark.

- 3 -

I

LINT (l)

FILES

(Advanced C Utilities) LINT (l)

The behavior of the -c and the -o options allows for incremental use of
lint on a set of C source files . Generally, you invoke lint once for each
source file with the -c option. Each of these invocations produces a . In
file which corresponds to the .c file, and prints all messages that are about
just that source file. After all the source files have been separately run
through lint, it is invoked once more (without the -c option), listing all
the .In files with the needed -lx options. This will print all the inter-file
inconsistencies. This scheme works well with make(l); it allows make to
be used to lint only the source files that have been modified since the last
time the set of source files were linted.

LUBDIR

LUBDIR/lint[12]
LUBDIR/llilrlc. ln

LUBDIR/llilrport. ln

LUBDIR/llilrlm. ln

TMPDIR/•lint•
TMPDIR

the directory where the lint libraries specified by the
-lx option must exist, usually /usr/lib
first and second passes
declarations for C Library functions (binary format;
source is in LUBDIR/llilrlc)
declarations for portable functions (binary format;
source is in LUBDIR/llilrport)
declarations for Math Library functions (binary for
mat; source is in LUBDIR/llilrlm)
temporaries
usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR (see tempnam() in
tmpnam(3S)) .

SEE ALSO

BUGS
cc(l), cpp(l), make(l) .

exit (2), setjmp(3C), and other functions that do not return are not under
stood; this causes various lies.

A

LIST (l)

NAME

(C Programming Language Utilities) LIST (l)

list - from a common object file produce a C source listing with line
numbers

SYNOPSIS
list [-V] [-h] [-F function] source file [source file • . .]
[object-file]

DESCRIPTION
The list command produces a C source listing with line number informa
tion attached. If multiple C source files were used to create the object file,
list will accept multiple file names. The object file is taken to be the last
non-C source file argument. If no object file is specified, the default
object file, a.out, will be used.

Line numbers will be printed for each line marked as breakpoint inserted
by the compiler (generally, each executable C statement that begins a new
line of source) . Line numbering begins anew for each function. Line
number 1 is always the line containing the left curly brace ({) that begins
the function body. Line numbers will also be supplied for inner block
redeclarations of local variables so that they can be distinguished by the
symbolic debugger.

The following options are interpreted by list and may be given in any
order:

-V
Print, on standard error, the version number of the list command exe
cuting.

-h
Suppress heading output.

-Ffunction

SEE ALSO

List only the named function. The -F option may be specified multi
ple times on the command line.

as(l), cc(l), ld(l) .

- 1 -

I

LIST (l) (C Programming Language Utilities) LIST (l)

I CAVEATS
Object files given to list must have been compiled with the -g option of
cc{l) .

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

DIAGNOSTICS
If name cannot be read, list will produce the error message:

list : name : c annot op en

If the source file names do not end in .c , the message is:
list : name : invalid C s our c e name .

An invalid object file name will cause the message:
list : name : bad magi c

If any of the symbolic debugging information is missing, one of the fol
lowing messages will be printed:

list : name : symbols have b e en stripp e d , c annot
pro c e e d,

list : name : c annot r e ad line numbers
list : name : not in symbol tab l e .

The following messages are produced when list becomes confused by
#ifdefs in the source file:

list : name : c annot f ind function in symb o l tab l e
list : name : out o f sync : too many }
list : name : unexp e cted end-o f - f i l e .

When either symbol debugging information is missing, or list has
been confused by C preprocessor statements. it displays the error
message:

list : name : mis s ing or inappropriate l in e
numbers

- .., -

"

LOCATE (l) (Help Utilities) LOCATE (l)

NAME
locate - identify a command using keywords

SYNOPSIS
[help] locate
[help] locate [keyword1 [keyword2] . . .]

DESCRIPTION
The locate command is part of the Help Facility, and provides online assis
tance with identifying commands.

Without arguments, the initial locate screen is displayed from which the
user may enter keywords functionally related to the action of the com
mands they wish to have identified. A user may enter keywords and
receive a list of commands whose functional attributes match those in the
keyword list, or may exit to the shell by typing q (for "quit') . For exam
ple, if you wish to print the contents of a file, enter the keywords "print"
and "file". The locate command would then print the names of all com
mands related to these keywords.

Keywords may also be entered directly from the shell, as shown above.
In this case, the initial screen is not displayed, and the resulting command
list is printed.

More detailed information on a command in the list produced by locate can
be obtained by accessing the usage module of the Help Facility. Access is
made by entering the appropriate menu choice after the command list is
displayed.

From any screen in the Help Facility, a user may execute a command via
the shell (sh (l)) by typing a ! and the command to be executed. The
screen will be redrawn if the command that was executed was entered at
a first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non
scrolling), the shell variable SCROLL must be set to no and exported so it
will become part of your environment. This is done by adding the follow
ing line to your .profile file (see profile (4)) : "export SCROLL ;
SCROLL= no" . If you later decide that scrolling is desired, SCROLL must
be set to yes .

Information o n each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

- 1 -

LOCATE (l) (Help Utilities)

I SEE ALSO
glossary(l), help(l), sh(l), starter(l), usage(l)
term(S) in the Programmer's Reference Manual.

WARNINGS

LOCATE (l)

If the shell variable TERM (see sh (l)) i s not set in the user's .profile file,
then TERM will default to the terminal value type 450 (a hard-copy terrni
nal) . For a list of valid terminal types, refer to term(S) .

- 2 -

LOGIN(l) (Essential Utilities) LOGIN(l)

NAME
login - sign on

'\ SYNOPSIS
login [nllme [env-var . . .]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a
command or by the system when a connection is first established. Also,
it is invoked by the system when a previous user has terminated the ini
tial shell by typing a CTRL-D to indicate an EOF.

If login is invoked as a command, it must replace the initial command
interpreter. This is accomplished by typing the following from the initial
shell:

exec login

login asks for your user name (if not supplied as an argument) and, if
appropriate, your password. Echoing is turned off (where possible) dur
ing the typing of your password, so it will not appear on the written
record of the session.

If you make any mistake in the login procedure, you will receive the mes
sage:

Log in incorre ct

A new login prompt will appear. If you make five incorrect login
attempts, all five may be logged in /usr/adm/loginlog (if it exists) and the
line will be dropped.

If you do not complete the login successfully within a certain period of
time (e .g., one minute), you are likely to be silently disconnected.

- 1 -

I

I

LOGIN(l) (Essential Utilities) LOGIN(l)

After a successful login, accounting files are updated, the procedure
/etdprofile is performed, the message-of-the-day, if any, is printed, the
user-ID, the group-ID, the working directory, and the command inter
preter (usually sh(l)) is initialized, and the file .profile in the working
directory is executed, if it exists. These specifications are found in the

, /etdpasswd file entry for the user. The name of the command interpreter
is - followed by the last component of the interpreter's pathname (i. e . ,
-sh) . I f this field in the password file i s empty, then the default com
mand interpreter, /binlsh is used. If this field is •, then the named direc
tory becomes the root directory, the starting point for path searches for
pathnames beginning with a /. At that point, login is re-executed at the
new level which must have its own root structure, including /etc/login
and /etc/passwd.

The basic environment is initialized to:

HOME= your-login-directory
PATH= :/bin:/usr/bin
SHELL= last-field-of-passwd -entry
MAIL= /usr/maillyour-login-name
TZ= timezone-specification

The environment may be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests your
login name. The arguments may take either the form xxx or xxx=yyy.
Arguments without an equal sign are placed in the environment as:

Ln= xxx
where n is a number starting at 0 and is incremented each time a new
variable name is required. Variables containing an = are placed into the
environment without modification. If they already appear in the environ
ment, they replace the older value. There are two exceptions . The vari
ables PATH and SHELL cannot be changed. This prevents people, logging
into restricted shell environments, from spawning secondary shells that
are not restricted. Both login and getty understand simple single-character
quoting conventions. Typing a backslash in front of a character quotes it
and allows the inclusion of such things as spaces and tabs .

- 2 -

LOGIN(l) (Essential Utilities) LOGIN (I)

FILES
/etdutmp
/etdwtmp
/usr/mai1Jyour-1111me
/usr/admlloginlog
/etdmotd
/etdpasswd
/etdshadow
/etc/profile
.profile

accounting
accounting
mailbox for user your-1111me
record of failed login attempts
message-of-the-day
password file
shadow password file
system profile
user's login profile

SEE ALSO
mail(l), newgrp(l), sh(l), su(lM)
loginlog(4), passwd(4), profile(4), environ(S) in the System Administrator's
Reference Manual.

DIAGNOSTICS
login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX sys
tem programming counselor.

No utmp entry. You must exec login from the lowest level sh if you
attempted to execute login as a command without using the shell's exec
internal command or from other than the initial shell .

- 3 -

I

LOGNAME(l) (User Environment UtllitlesJ

NAME
logname - get login name

-.... SYNOPSIS
logname

DESCRIPTION
logname returns the contents of the environment variable $LOGNAME
which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(l), login(l)
logname(3X), environ(S) in the Programmer's Reference Manual.

- 1 -

I

LORDER(l) (Software Generation System Utilities) LORDER(l)

I NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file . . .

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar(l)) . The
standard output is a list of pairs of object file or archive member names,
meaning that the first file of the pair refers to external identifiers defined
in the second. The output may be processed by tsort (l) to find an order
ing of a library suitable for one-pass access by ld(l) . Note that the link
editor ld(l) is capable of multiple passes over an archive in the portable
archive format (see ar(4)) and does not require that lorder(l) be used when
building an archive. The usage of the lorder(l) command may, however,
allow for a slightly more efficient access of the archive during the link edit
process.

The following example builds a new library from existing .o files:

ar -cr library ' lorder • . o I tsort'

TMPDIRJ•symref temporary files

TMPDIRJ•symdef temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR (see tempnam() in tmpnam(3S)) .

SEE ALSO
ar(l), ld(l), tsort(l), ar(4)

CAVEAT
larder will accept as input any object or archive file, regardless of its suffix,
provided there is more than one input file . If there is but a single input
file, its suffix must be .o.

- 1 -

LP (l) (Line Printer Spooling Utilities) LP (l)

NAME
lp, cancel - send/cancel requests to an LP print service

' SYNOPSIS
lp [printing-options] files

lp -i request-ids printing-options

cancel [request-ids] [printers]

DESCRIPTION
The first form of the lp shell command arranges for the named files and
associated information (collectively called a request) to be printed. If no
file names are specified on the shell command line, the standard input is
assumed. The standard input may be specified along with named files on
the shell command line by using the file name(s) and - for the standard
input. The files will be printed in the order they appear on the shell com
mand line .

The second form of lp is used to change the options for a request. The
print request identified by the request-id is changed according to the print
ing options specified with this shell command. The printing options
available are the same as those with the first form of the lp shell com
mand. If the request has finished printing, the change is rejected. If the
request is already printing, it will be stopped and restarted from the
beginning (unless the -P option has been given) .

lp associates a unique request-id with each request and prints it on the
standard output. This request-id can be used later to cancel, change, or
find the status of the request. (See the section on cancel for details about
canceling a request, the previous paragraph for an explanation of how to
change a request, and lpstat(l) for information about checking the status of
a print request.)

Sending a Print Request
The first form of the lp command is used to send a print request to a par
ticular printer or group of printers .

Options to lp must always precede file names, but may be listed in any
order. The following options are available for lp:

-c
Make copies of the files to be printed immediately when lp is invoked .
Normally, files will not be copied. I f the -c option is not given, then
the user should be careful not to remove any of the files before the
request has been printed in its entirety. It should also be noted that

- 1 -

I

LP (l)

I

(Line Printer Spooling Utilities) LP (l)

i n the absence of the -c option, any changes made to the named files
after the request is made but before it is printed will be reflected in
the printed output.

-d dest
Print this request using dest as the printer or class of printers. Under
certain conditions (lack of printer availability, capabilities of printers,
and so on), requests for specific destinations may not be accepted
(see accept(lM) and lpstat(l)) . By default, dest is taken from the
environment variable LPDEST (if it is set) . Otherwise, a default desti
nation (if one exists) for the computer system is used. Destination
names vary from system to system (see lpstat(l)) .

-f form-name [-d any]
Print the request on the form form-name. The LP Print Service ensures
that the form is mounted on the printer. If form-name is requested
with a printer destination that cannot support the form, the request is
rejected. If form-name has not been defined for the system, or if the
user is not allowed to use the form, the request is rejected (see
lpforms(lM)) . When the -d any option is given, the request is printed
on any printer that has the requested form mounted and can handle
any other needs of the print request.

-H special-handling
Print the request according to the value of special-handling. Acceptable
values for special-handling are hold, resume, and immediate, as
defined below:

hold
Do not print the request until notified. If printing has already
begun, stop it. Other print requests will go ahead of a held request
until it is resumed.

resume
Resume a held request. If it had been printing when held, it will
be the next request printed, unless subsequently bumped by an
immediate request.

immediate
(Available only to LP Administrators)
Print the request next. If more than one request is assigned
immediate, the requests are printed in the reverse order queued . If
a request is currently printing on the desired printer, you have to
put it on hold to allow the immediate request to print.

- 2 -

LP (l) (Line Printer Spooling Utilities) LP (l)

-m
Send mail (see mail(l)) after the files have been printed. By default,
no mail is sent upon normal completion of the print request.

-n number
Print number copies of the output. (Default is 1 .)

-o option
Specify printer-dependent or class-dependent options . Several such
options may be specified on a single command line either by using
the -o keyletter more than once (i .e . , -o option 1 -o option2 . . . -o
option"), or by specifying a list of options with one -o keyletter (i .e . ,
-o option 1, option2, . . . option") . The standard interface recognizes the
following options:

no banner
Do not print a banner page with this request. (The administrator
can disallow this option at any time.)

nofilebreak
Do not insert a form feed between the files given, if submitting a
job to print more than one file .

length= scaled-decimal-number
Print this request with pages scaled-decimal-number lines long. A
scaled-decimal-number is an optionally scaled decimal number that
gives a size in lines, columns, inches, or centimeters, as appropri
ate. The scale is indicated by appending the letter "i" for inches, or
the letter "c" for centimeters. For length or width settings, an uns
ealed number indicates lines or columns; for line pitch or character
pitch settings, an unsealed number indicates lines per inch or char
acters per inch (the same as a number scaled with "i') . For exam
ple, length=66 indicates a page length of 66 lines, length=lli indi
cates a page length of 11 inches, and length= 27.94c indicates a
page length of 27.94 centimeters .

This option cannot be used with the -f option.

width= scaled-decimal-number
Print this request with page-width set to scaled-decimal-number
columns wide. (See the explanation of scaled-decimal-numbers in the
discussion of length, above.) This option cannot be used with the
-f option.

- 3 -

LP (l) (Line Printer Spooling Utilities) LP (l)

I pi = scaled-decimal-number
Print this request with the line pitch set to scaled-decimal-number
lines per inch. This option cannot be used with the -f option.

cpi =scaled-decimal-number
Print this request with the character pitch set to scaled-decimal
number characters per inch. Character pitch can also be set to pica
(representing 10 columns per inch) or elite (representing 12
columns per inch), or it can be compressed (representing as many
columns as a printer can handle) . There is no standard number of
columns per inch for all printers; see the Terminfo database (ter
minfo(4)) for the default character pitch for your printer.

This option cannot be used with the -f option.

stty= stty-option-list
A list of options valid for the stty command; enclose the list with
quotes if it contains blanks.

-P page-list
Print the pages specified in page-list. This option can be used only if
there is a filter available to handle it; otherwise, the print request will
be rejected.

The page-list may consist of range(s) of numbers, single page numbers,
or a combination of both. The pages will be printed in ascending order.

-q priority-level

-s

Assign this request priority-level in the printing queue. The values of
priority-level range from 0, the highest priority, to 39, the lowest prior
ity. If a priority is not specified, the default for the print service is
used, as assigned by the system administrator.

Suppress messages from the print service such as request id is
request-id.

-S character-set [-d any]

-S print-wheel [-d any]
Print this request using the specified character-set or print-wheel .
If a form was requested and it requires a character set or print
wheel other than the one specified with the -S option, the
request is rejected.

- 4 -

LP (l) (Line Printer Spooling Utilities) LY \ 1 1

For printers that take print wheels: i f the print wheel specified i s not I
one listed by the administrator as acceptable for the printer specified in
this request, the request is rejected unless the print wheel is already
mounted on the printer.

For printers that use selectable or programmable character sets: if the
character-set specified is not one defined in the Terminfo database for the
printer (see terminfo(4)), or is not an alias defined by the administrator,
the request is rejected.

When the -d any option is used, the request is printed on any printer
that has the print wheel mounted or any printer that can select the char
acter set, and that can handle any other needs of the request.

-t title Print title on the banner page of the output. The default is no
title .

-T content-type [-r]
Print the request on a printer that can support the specified
content-type. If no printer accepts this type directly, a filter will
be used to convert the content into an acceptable type. If the -r
option is specified, a filter will not be used. If -r is specified,
but no printer accepts the content-type directly, the request is
rejected. If the content-type is not acceptable to any printer,
either directly or with a filter, the request is rejected.

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent
instead.

-y mode-list
Print this request according to the printing modes listed in
mode-list. The allowed values for mode-list are locally defined.
This option can be used only if there is a filter available to han
dle it; otherwise, the print request will be rejected.

Canceling a Print Request
The cancel command cancels printer requests that were made by the lp(l)
shell command. The shell command line arguments may be either
request-ids (as returned by lp(l)) or printer names (for a complete list, use
lpstat(l)) . Specifying a request-id cancels the associated request even if it is
currently printing. Specifying a printer cancels the request that is
currently printing on that printer. In either case, the cancellation of a
request that is currently printing frees the printer to print its next available
request.

- 5 -

LP (l)

NOTES

(Line Printer Spooling Utilities) LP (l)

Printers for which requests are not being accepted will not be considered
when the destination is any. (Use the 1pstat -a command to see which
printers are accepting requests .) On the other hand, if a request is des
tined for a class of printers and the class itself is accepting requests, all
printers in the class will be considered, regardless of their acceptance
status, as long as the printer class is accepting requests.

WARNING

FILES

For printers that take mountable print wheels or font cartridges, if you do
not specify a particular print wheel or font with the -S option, whichever
one happens to be mounted at the time your request is printed will be
used. Use the 1pstat -p printer -1 command to see which print wheels are
available on a particular printer, or the 1pstat -S -1 command to find out
what print wheels are available and on which printers . For printers that
have selectable character sets, you will get the standard character set if
you do not use the -S option.

/usr/spoolllp/•

SEE ALSO
enable(!), lpstat(l), mail(l) .
accept(lM), lpadmin(lM), lpfilter(lM), lpforms{lM), lpsched(lM),
lpusers(lM) in the System Administrator's Reference Manual.
terminfo(4) in the Programmer's Reference Manual.

- 6 -

LPSTAT (l) (Line Printer Spooling Utilities) LPSTAT (l)

NAME
lpstat - print information about the status of the LP Print Service

SYNOPSIS
lpstat [options]

DESCRIPTION
lpstat prints information about the current status of the LP Print Service .

If no options are given, then lpstat prints the status of all requests made to
lp(l) by users. Any arguments that are not options are assumed to be
request-ids (as returned by lp), printers, or printer classes. lpstat prints the
status of such requests, printers, or printer classes. Options may appear
in any order and may be repeated and intermixed with other arguments .
Some of the keyletters below may be followed by an optional list that can
be in one of two forms: a list of items separated from one another by a
comma, or a list of items enclosed in double quotes and separated from
one another by a comma and/or one or more spaces. For example:

-u "userl, user2, user3"

Specifying "all" after any keyletters that take '1ist" as an argument causes
'- all information relevant to the keyletter to be printed. For example, the

following command prints the status of all output requests .

lpstat -o all

The options are:

-a [list]
Display acceptance status (with respect to lp) of destinations for
requests (see accept(lM)). list is a list of intermixed printer names and
class names; the default is all.

-c [list]
Display class names and their members. list is a list of class names;
the default is all.

-d
Display the system default destination for lp .

-f [list] [-1]
Display a verification that the forms in list are recognized by the LP
Print Service. list is a list of forms; the default is all . The -1 option
will list the form descriptions.

- 1 -

LPSTAT (l) (Line Printer Spooling Utilities) LPSTAT (l)

FILES

-o [list] [-1]
Display the status of output requests. list is a list of intermixed
printer names, class names, and request-ids; the default is all. The -1
option gives a more detailed status of the request.

-p [list] [-D] [-1]

-r

Display the status of printers named in list. list is a list of printers;
the default is all. If the -D option is given, a brief description is
printed for each printer in list. If the -1 option is given, a full descrip
tion of each printer's configuration is given, including the form
mounted, the acceptable content and printer types, a printer descrip
tion, the interface used.

Display the status of the LP request scheduler.

-s
Display a status summary, including the system default destination, a
list of class names and their members, a list of printers and their
associated devices, a list of all forms currently mounted, and a list of
all recognized character sets and print wheels .

-S [list] [-1]

-t

Display a verification that the character sets or the print wheels speci
fied in list are recognized by the LP Print Service. Items in list can be
character sets or print wheels; the default for the list is all. If the -1
option is given, each line is appended by a list of printers that can
handle the print wheel or character set. The list also shows whether
the print wheel or character set is mounted or specifies the built-in
character set into which it maps.

Display all status information.

-u [list]
Display the status of output requests for users . list is a list of login
names; the default is all .

-v [list]
Display the names of printers and the path names of the devices asso
ciated with them. list is a list of printer names; the default is all .

/usr/spool/lp/•

- 2 -

LPSTAT (l) (Line Printer Spooling Utilities) LPSTAT (l)

SEE ALSO I
enable(l), lp(l).

- 3 -

LS (l) (Essential Utilities) LS (l)

NAME
Is - list contents of directory

' SYNOPSIS
Is [-RadLCxmlnogrtucpFbqisf] [names]

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each
file argument, ls repeats its name and any other information requested.
The output is sorted alphabetically by default. When no argument is
given, the current directory is listed. When several arguments are given,
the arguments are first sorted appropriately, but file arguments appear
before directories and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multi-column formats, and
the -m option enables stream output format. In order to determine out
put formats for the -C, -x, and -m options, ls uses an environment vari
able, COLUMNS, to determine the number of character positions available
on one output line . If this variable is not set, the terminfo (4) database is
used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns are
assumed.

The ls command has the following options:

-R
Recursively list subdirectories encountered.

-a
List all entries, including those that begin with a dot (.), which are
normally not listed.

-d
If an argument is a directory, list only its name (not its contents);
often used with -1 to get the status of a directory.

-L
If an argument is a symbolic link, list the file or directory the link
references instead of the link itself.

-C
Multi-column output with entries sorted down the columns.

- 1 -

I

LS (l)

I

(Essential Utilities) LS (l)

-x
Multi-column output with entries sorted across instead of down the
page.

-m

-1

Stream output format; files are listed across the page, separated by
commas.

List in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below) . If the
file is a special file, the size field will instead contain the major and
minor device numbers instead of a size.

-n
The same as -1, except that the owner's UID and group's GID
numbers are printed, instead of the associated character strings .

-o
The same as -1, except that the group is not printed.

-g

-r

-t

The same as -1, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

Sort by time stamp (latest first) instead of by name. The default is the
last modification time. (See -n and -c.)

-u

-c

Use time of last access instead of last modification for sorting (with
the -t option) or printing (with the -1 option) .

Use time of last modification of the i-node (file created, mode
changed, etc.) for sorting (-t) or printing (-1) .

-p
Put a slash (/) after each filename if that file is a directory.

-F
Put a slash (/) after each filename if that file is a directory, an asterisk
("') after each filename if that file is executable, and an at-sign (@)
after each filename if that file is a symbolic link.

- ? -

LS (l) (Essential Utilities) LS (l)

-b
Force printing of non-printable characters to be in the octal \ddd nota
tion.

-q

-i

-s

-f

Force printing of non-printable characters in file names as the charac
ter question mark (?) .

For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry.

Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and turns
on -a; the order is the order in which entries appear in the directory.

The mode printed under the -1 option consists of ten characters . The
first character may be one of the following:

d the entry is a directory
b the entry is a block special file
c the entry is a character special file
1 the entry is a symbolic link
p the entry is a fifo (a.k.a . "named pipe') special file

the entry is an ordinary file

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions
of others in the user-group of the file; and the last to all others . Within
each set, the three characters indicate permission to read, to write, and
to execute the file as a program, respectively. For a directory, "execute"
permission is interpreted to mean permission to search the directory for
a specified file .

ls -1 (the long list) prints output as:

-rwxrwxrwx 1 am�th dev 10876 May 1 6 9 : 42 part2

This horizontal configuration provides a good deal of information.
Reading from right to left, you see that the current directory holds one
file, named "part2. " Next, the last time that file's contents were modi
fied was 9:42 A.M. on May 16. The file is moderately sized, containing
10,876 characters, or bytes. The owner of the file, or the user, belongs

- 3 -

LS (l)

I

(Essential Utilities) LS (l)

to the group "dev" (perhaps indicating "development'�, and his or her
login name is "smith. " The number, in this case "1, " indicates the
number of links to file "part2. " Finally, the row of dash and letters tell
you that user, group, and others have permissions to read, write, exe
cute "part2. "

The execute (x) symbol here occupies the third position of the three
character sequence. A - in the third position would have indicated a
denial of execution permissions.

The permissions are indicated as:

r the file is readable
w the file is writable
x the file is executable

the indicated permission is not granted
1 mandatory locking will occur during access (the set-group-ID bit

is on and the group execution bit is off)
s the set-user-ID or set-group-ID bit is on, and the corresponding

user or group execution bit is also on
S undefined bit-state (the set-user-ID bit is on and the user execu

tion bit is off)
t the 1000 (octal) bit, or sticky bit, is on (see chmod(l)), and execu

tion is on
T the 1000 bit is turned on, and execution is off (undefined bit-

state)

For user and group permissions, the third position is sometimes occu
pied by a character other than x or - . s also may occupy this position,
referring to the state of the set-ID bit, whether it be the user's or the
group's. The ability to assume the same ID as the user during execution
is, for example, used during login when you begin as root but need to
assume the identity of the user stated at '1ogin. "

In the case of the sequence of group permissions, 1 may occupy the
third position. 1 refers to mandatory file and record locking. This per
mission describes a file's ability to allow other files to lock its reading or
writing permissions during access.

For others permissions, the third position may be occupied by t or T.
These refer to the state of the sticky bit and execution permissions.

- 4 -

LS (l) (Essential Utilities) LS (l)

EXAMPLES

FILES

An example of a file's permissions is:

- rwxr - - r - -

This describes a file that is readable, writable, and executable by the user
and readable by the group and others.

Another example of a file's permissions is:

- rwsr -xr-x

This describes a file that i s readable, writable, and executable by the user,
readable and executable by the group and others, and allows its user-ID to
be assumed, during execution, by the user presently executing it.

Another example of a file's permissions is:

- rw-rwl - - -

This describes a file that is readable and writable only by the user and the
group and can be locked during access.

An example of a command line:

Is -a

This command will print the names of all files in the current directory,
including those that begin with a dot (.), which normally do not print.

Another example of a command line:

Is -aisn

This command will provide you with quite a bit of information including
all files, including non-printing ones (a), the i-number-the memory
address of the i-node associated with the file--printed in the left-hand
column (i); the size (in blocks) of the files, printed in the column to the
right of the i-numbers (s); finally, the report is displayed in the numeric
version of the long list, printing the UID (instead of user name) and GID
(instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

/etc/passwd
/etc/group
/usr/lib/terminfo/?1•

user IDs for Is -I and Is -o
group IDs for Is -I and Is -g
terminal information database

- 5 -

I

LS (l) (Essential Utilities) LS (l)

I SEE ALSO

NOTES

BUGS

chmod(l), find(l) .

In an RFS environment, you may not have the permissions that the output
of the ls -1 command leads you to believe. For more information, see the
Mapping Remote Users section of Chapter 10 of the System Administrator's
Guide .

Unprintable characters in file names may confuse the columnar output
options .

- &:. -

M4 (1) (Software Generation System Utilities) M4 (1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
The m4 command is a macro processor intended as a front end for Ratfor,
C, and other languages. Each of the argument files is processed in order;
if there are no files, or if a file name is -, the standard input is read. The
processed text is written on the standard output.

The options and their effects are as follows:

-e

-s

Operate interactively. Interrupts are ignored and the output is unbuf
fered.

Enable line sync output for the C preprocessor (#line . . .)

-Bint
Change the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint
Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint
Change the size of the call stack from the default of 100 slots . Macros
take three slots, and non-macro arguments take one .

-Tint
Change the size of the token buffer frorn the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any -D or -U flags:

-Druzme[=val]
Defines ruzme to val or to NULL in val's absence .

-Uruzme
undefines ruzme .

- 1 -

I

M4 (1)

I

(Software Generation System Utilities) M4 (1)

Macro calls have the form:

name(argl,arg2, . . . , argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a C it is deemed to be a call of that
macro with no arguments . Potential macro names consist of alphabetic
letters, digits, and underscore -' where the first character is not a digit.

Leading unquoted blanks, tabs, and newlines are ignored while collecting
arguments . Left and right single quotes are used to quote strings . The
value of a quoted string is the string stripped of the quotes .

When a macro name is recognized, i ts arguments are collected by search
ing for a matching right parenthesis. If fewer arguments are supplied
than are in the macro definition, the trailing arguments are taken to be
NULL. Macro evaluation proceeds normally during the collection of the
arguments, and any commas or right parentheses which happen to turn
up within the value of a nested call are as effective as those in the original
input text. After argument collection, the value of the macro is pushed
back onto the input stream and rescanned .

m4 makes available the following built-in macros . They may be redefined,
but once this is done the original meaning is lost. Their values are NULL
unless otherwise stated.

define
the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the replacement
text, where n is a digit, is replaced by the n-th argument. Argument
0 is the name of the macro; missing arguments are replaced by the
NULL string; $# is replaced by the number of arguments; $* is
replaced by a list of all the arguments separated by commas; $@ is
like $*, but each argument is quoted (with the current quotes) .

undefine
removes the definition of the macro named in its argument.

defn
returns the quoted definition of its argument(s) . It is useful for
renaming macros, especially built-ins .

pushdef
like define, but saves any previous definition.

- 2 -

M4 (1) (Software Generation �ystem U tllltles } 1Yl4f::: \ .1. }

popdef
removes current definition of its argument(s), exposing the previous
one, if any.

ifdef
if the first argument is defined, the value is the second argument,
otherwise the third . If there is no third argument, the value is NULL.
The word unix is predefined on UNIX system versions of m4 .

shift
returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies the
effect of the extra scan that will subsequently be performed .

changequote
change quote symbols to the first and second arguments . The sym
bols may be up to five characters long. Changequote without argu
ments restores the original values (i .e . , ' ") .

changecom
change left and right comment markers from the default # and new
line . With no arguments, the comment mechanism is effectively dis
abled. With one argument, the left marker becomes the argument
and the right marker becomes newline . With two arguments, both
markers are affected. Comment markers may be up to five characters
long.

divert
m4 maintains 10 output streams, numbered 0-9 . The final output is
the concatenation of the streams in numerical order; initially stream 0
is the current stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted to a stream
other than 0 through 9 is discarded.

undivert
causes immediate output of text from diversions named as argu
ments, or all diversions if no argument. Text may be undiverted into
another diversion. Undiverting discards the diverted text.

divnum
returns the value of the current output stream.

dnl
reads and discards characters up to and including the next newline .

- 3 -

I

M4 (1)

I

(Software Generation System Utilities) M4 (1)

i f else
has three or more arguments . If the first argument is the same string
as the second, the value is the third argument. If not, and if there are
more than four arguments, the process is repeated with arguments 4,
5, 6 and 7. Otherwise, the value is either the fourth string, or, if it is
not present, NULL.

incr
returns the value of its argument incremented by 1 . The value of the
argument is calculated by interpreting an initial digit-string as a
decimal number.

deer
returns the value of its argument decremented by 1 .

eval
evaluates its argument as an arithmetic expression, using 32-bit arith
metic. Operators include + , -, *, /, %, A (exponentiation), bitwise &,
I , A' and -; relationals; parentheses . Octal and hex numbers may be
specified as in C. The second argument specifies the radix for the
result; the default is 10. The third argument may be used to specify
the minimum number of digits in the result.

len
returns the number of characters in its argument.

index
returns the position in its first argument where the second argument
begins (zero origin), or -1 if the second argument does not occur.

substr
returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

translit
transliterates the characters in its first argument from the set given by
the second argument to the set given by the third . No abbreviations
are permitted.

include
returns the contents of the file named in the argument.

- 4 -

M4 (1) (Software Generation System Utilities) M4 (1)

sinclude
is identical to include, except that it says nothing if the file is inacces
sible .

syscmd
executes the command given in the first argument. No value is
returned.

sysval
is the return code from the last call to syscmd .

maketemp
fills in a string of XXXXX in its argument with the current process 10.

m4exit
causes immediate exit from m4 . Argument 1, if given, is the exit
code; the default is 0.

m4wrap
argument 1 will be pushed back at final EOF; example:
m4wrap(' cleanup() ')

errprint
prints its argument on the diagnostic output file.

dumpdef
prints current names and definitions, for the named items, or for all if
no arguments are given.

traceon
with no arguments, turns on tracing for all macros (including built
ins) . Otherwise, turns on tracing for named macros .

traceoff
turns off trace globally and for any macros specified. Macros specifi
cally traced by traceon can be untraced only by specific calls to traceoff.

SEE ALSO
cc(1), cpp(1) .

- 5 -

I

MACHID (l) (Essential/User Environment Utilities) MACHID (l)

I NAME
machid: m68k, m88k, pdp11, u3b, u3b2, u3b5, vax - get processor type
truth value

SYNOPSIS
m68k

m88k

pdpll

u3b

u3b2

u3b5

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are
on a processor that the command name indicates.

m68k
True if you are on a Motorola M68()()(}..Family-based microcomputer.

m88k
True if you are on a Motorola M88000-Family-based microcomputer.

pdpll
True if you are on a PDP-11/45 or PDP-11/70.

u3b
True if you are on a 3B20 computer.

u3b2
True if you are on a 3B2 computer.

u3b5
True if you are on a 3B5 computer.

vax
True if you are on a VAX-11/750 or VAX-11/780.

The commands that do not apply will return a false (non-zero) value .
These commands are often used within makefiles (see make(l)) and shell -

procedures (see sh(l)) to increase portability.

SEE ALSO
sh(l), test(l), true(l) .
make(l) in the Programmer's Reference Manual .

- 1 -

MAIL(l) (Essential Utilities) MAIL (l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
Sending mail:

mail [-oswt] persons

rmail [-oswt] persons

Reading mail:

mail [-ehpqr] [-f file] [-F persons]

DESCRIPTION
Sending mail:

The command-line arguments that follow affect SENDING mail:

-o

-s

suppresses the address optimization facility.

suppresses the addition of a NEWLINE at the top of the letter being
sent. See WARNINGS below.

-w

-t

causes a letter to be sent to a remote user without waiting for the
completion of the remote transfer program.

causes a To: line to be added to the letter, showing the intended reci
pients .

A person is usually a user name recognized by login(l) . When persons are
named, mail assumes a message is being sent (except in the case of the -F
option) . It reads from the standard input up to an end-of-file (control-d),
or until it reads a line consisting of just a period. When either of those
signals is received, mail adds the letter to the mailfile for each person . A
letter is a message preceded by a postmark . The message is preceded by the
sender's name and a postmark . A postmark consists of one or more 'From'
lines followed by a blank line (unless the -s argument was used) .

If a letter is found to be undeliverable, it is returned to the sender with
diagnostics that indicate the location and nature of the failure . If mail is
interrupted during input, the file dead.letter is saved to allow editing and
resending. dead.letter is recreated every time it is needed, erasing any
previous contents.

- 1 -

I

I

MAIL (l) (Essential Utilities) MAIL (l)

rmail only permits the sending of mail; uucp(lC) uses rmail as a securi ty
precaution.

If the local system has the BNU installed, mail may be sent to a recipient
on a remote system. Prefix person by the system name and exclamation
point. A series of system names separated by exclamation points can be
used to direct a letter through an extended network.

Reading Mail:

The command-line arguments that follow affect READING mail:

-e
causes mail not to be printed. An exit value of 0 is returned if the
user has mail; otherwise, an exit value of 1 is returned.

-h
causes a window of headers to be displayed rather than the latest
message. The display is followed by the '?' prompt.

-p
causes all messages to be printed without prompting for disposition.

-q

-r

causes mail to terminate after interrupts . Normally an interrupt
causes only the termination of the message being printed.

causes messages to be printed in first-in, first-out order.
-£file

causes mail to use file (e .g . , mbox) instead of the default mailfile .
-Fpersons

entered into an empty mailbox, causes all incoming mail to be for
warded to persons .

mail , unless otherwise influenced by command-line arguments, prints a
user's mail messages in last-in, first-out order. For each message, the
user is prompted with a ?, and a line is read from the standard input. The
following commands are available to determine the disposition of the
message:

new1 1ne, + , or n
Go on to next message.

d, or dp
Delete message and go on to next message.

d #
Delete message number #. Do not go on to next message .

- 2 -

MAIL (l) (Essential Utilities)

dq
Delete message and quit mail.

h
Display a window of headers around current message.

h #
Display header of message number #.

h a
Display headers of ALL messages in the user's mailfile.

h d
Display headers of messages scheduled for deletion.

p
Print current message again.

Print previous message.

a
Print message that arrived during the mail session.

Print message number #.

r [users]

MAl L l l J

Reply to the sender, and other user(s), then delete the message.

s [files]
Save message in the named files (mbox is default) .

y
Same as save .

u [#]
Undelete message number # (default is last read) .

w [files]
Save message, without its top-most header, in the named files (mbox
is default) .

m [persons]
Mail the message to the named persons .

q, or ctl-d
Put undeleted mail back in the mailfile and quit mail.

- 3 -

I

I

MAIL (I) (Essential Utilities)

X
Put all mail back in the mailfile unchanged and exit mail .

!command
Escape to the shell to do command .

?
Print a command summary.

MAIL (I)

When a user logs in, the presence o f mail, i f any, i s indicated. Also, notif
ication is made if new mail arrives while using mail .

The mailfile may be manipulated in two ways to alter the function of mail .
The other permissions of the file may be read-write, read-only, or neither
read nor write to allow different levels of privacy. If changed to other
than the default, the file will be preserved even when empty to perpetuate
the desired permissions . The file may also contain the first line :

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded
to person . A "Forwarded by . . . " message is added to the header. This is
especially useful in a multi-machine environment to forward all of a
person's mail to a single machine, and to keep the recipient informed if
the mail has been forwarded. Installation and removal of forwarding is
done with the -F option.

To forward all of your mail to systema!user, type:

mail -Fsystema!user

To forward to more than one user, type:

mail -F"userl,systema!user2,systema!systemb!user3"

Note that when more than one user is specified, the whole l is t should be
enclosed in double quotes so that it may all be interpreted as the operand
of the -F option. The list can be up to 1024 bytes; either commas or white
space can be used to separate users.

To remove forwarding, type:

mail -F ""

The pair of double quotes is mandatory to set a NULL argument for the -F
option.

In order for forwarding to work properly the mailfile should have "mail" as
group ID, and the group permission should be read-write .

- 4 -

MAIL (l) (Essential Utilities) MAIL (l)

FILES
/etc/passwd
/usr/mailluser
$HOMEimbox
$MAIL
/tmp/ma•
/usr/maill• . lock
dead. letter

to identify sender and locate persons
incoming mail for user; i . e . , the mailfile
saved mail
variable containing pathname of mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
login{l), mailx{l), write{l) .
User's Guide .
System Administrator's Guide .

WARNING

BUGS

The "Forward to person" feature may result in a loop, if sys1 !userb for
wards to sys2!userb and sys2!userb forwards to sys1 !userb. The symptom is
a message saying "unbounded . . . saved mail in dead. letter. "

The -s option should be used with caution. It allows the text of a mes
sage to be interpreted as part of the postmark of the letter, possibly caus
ing confusion to other mail programs. To allow compatibility with
mailx(l), if the first line of the message is "Subject: . . . ", the addition of a
< newline> is suppressed whether or not the -s option is used.

Conditions sometimes result in a failure to remove a lock file .

After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 5 -

I

MAILX(l) (Essential Utilities) MAILX (l)

NAME
mailx - interactive message processing system

' SYNOPSIS
mailx [options] [name . . .]

DESCRIPTION
The command mailx provides a comfortable, flexible environment for
sending and receiving messages electronically. When reading mail, mailx
provides commands to facilitate saving, deleting, and responding to mes
sages. When sending mail, mailx allows editing, reviewing and other
modification of the message as it is entered.

Many of the remote features of mailx will only work if BNU are installed
on your system.

Incoming mail is stored in a standard file for each user, called the mailbox
for that user. When mailx is called to read messages, the mailbox is the
default place to find them. As messages are read, they are marked to be
moved to a secondary file for storage, unless specific action is taken, so
that the messages need not be seen again. This secondary file is called
the mbox and is normally located in the user's HOME directory (see MBOX
ENVIRONMENT VARIABLES for a description of this file) . Messages can
be saved in other secondary files named by the user. Messages remain in
a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx
command. Messages in the secondary file can then be read or otherwise
processed using the same COMMANDS as in the primary mailbox. This
gives rise within these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other argu
ments are taken to be destinations (recipients) . If no recipients are speci
fied, mailx will attempt to read messages from the mailbox. Command line
options are:

-e
Test for presence of mail. mailx prints nothing and exits with a suc
cessful return code if there is mail to read.

-f [filename]
Read messages from filename instead of mailbox. If no filename is
specified, the mbox is used.

-F
Record the message in a file named after the first recipient. Over
rides the record variable, if set (see ENVIRONMENT VARIABLES) .

- 1 -

I

I

MAILX(l) (Essential Utilities) MAILX (l)

-h number
The number of network "hops" made so far. This is provided for net
work software to avoid infinite delivery loops. (See addsopt under
ENVIRONMENT VARIABLES.)

-H
Print header summary only.

-i
Ignore interrupts. (See ignore under ENVIRONMENT VARIABLES .)

-n
Do not initialize from the system default mailx.rc file .

-N
Do not print initial header summary.

-r address
Pass address to network delivery software. All tilde commands are
disabled. (See addsopt under ENVIRONMENT VARIABLES .)

-s subject
Set the Subject header field to subject .

-u user
Read user's mailbox. This is only effective if user's mailbox is not read
protected.

-U
Convert uucp style addresses to internet standards. Overrides the
"conv" environment variable. (See addsopt under ENVIRONMENT
VARIABLES.)

When reading mail, mailx is in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating mailx
can accept regular commands (see COMMANDS) . When sending mail,
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. (A "subject" longer than 1024 characters
will cause mailx to dump core) As the message is typed, mailx will read
the message and store it in a temporary file. Commands may be entered
by beginning a line with the tilde (-) escape character followed by a sin
gle command letter and optional arguments. See TILDE ESCAPES for a
summary of these commands.

At any time, the behavior of mailx is governed by a set of environment vari
ables . These are flags and valued parameters which are set and cleared via
the set and unset commands. See ENVIRONMENT VARIABLES below for a
summary of these parameters .

- 2 -

MAILX(l) (Essential Utilities) MAILX (l)

Recipients listed o n the command line may be of three types: login I
names, shell commands, or alias groups. Login names may be any net
work address, including mixed network addressing. If mail is found to to
undeliverable, an attempt is made to return it to the sender's mailbox. If
the recipient name begins with a pipe symbol (I), the rest of the name is
taken to be a shell command to pipe the message through. This provides
an automatic interface with any program that reads the standard input,
such as Ip(l) for recording outgoing mail on paper. Alias groups are set
by the alias command (see COMMANDS} and are lists of recipients of any
type.

Regular commands are of the form

[command] [msglist] [arguments]
If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not
treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time
the notion of a current message, marked by a right angle bracket (>) in
the header summary. Many commands take an optional list of messages
(msglist) to operate on. The default for msglist is the current message . A
msglist is a list of message identifiers separated by spaces, which may
include:

n

$
•

n-m
user

Message number n.
The current message.
The first undeleted message.
The last message.
All messages .
An inclusive range of message numbers .
All messages from user.

- 3 -

I

MAILX(l) (Essential Utilities) MAILX(l)

/string All messages with string in the subject line (case ignored) .
:c All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether
this type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on
the command involved. File names, where expected, are expanded via
the normal shell conventions (see sh(l)) . Special characters are recognized
by certain commands and are documented with the commands below.

At start-up time, mailx tries to execute commands from the optional
system-wide file (/usrllib/mailx/mailx.rc) to initialize certain parameters,
then from a private start-up file ($HOME!.mailrc) for personalized vari
ables . With the exceptions noted below, regular commands are legal
inside start-up files. The most common use of a start-up file is to set up
initial display options and alias lists . The following commands are not
legal in the start-up file: !, Copy, edit, followup, Followup, hold, mail,
preserve, reply, Reply, shell, and visual. An error in the start-up file
causes the remaining lines in the file to be ignored. The .mailrc file is
optional, and must be constructed locally.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See SHELL {ENVIRONMENT VARIABLES) .

II comment
NULL command (comment) . This may be useful in .mailrc files .

Print the current message number.

?
Prints a summary of commands.

alias alias 1Ulme . . .
group alias 111lme . . .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file .

- 4 -

MAILX(l) (Essential Utilities) MAILX(l)

alternates Mme . . .
Declares a list of alternate names for your login. When responding to
a message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of
alternate names. See also allnet (ENVIRONMENT VARIABLES) .

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [fileMme]
copy [msglist] fileMme

Copy messages to the file without marking the messages as saved.
Otherwise, equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise, equivalent to the Save command.

delete [msglist]
Delete messages from the tnililbox. If autoprint is set, the next mes
sage after the last one deleted is printed (see ENVIRONMENT V ARI
ABLES) .

discard [header-field . . .]
ignore [header-field . . .]

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc. " The fields are included when the message is saved.
The Print and Type commands override this command.

dp [msglist]
dt [msglist]

Delete the specified messages from the tnililbox and print the next
message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string . . .
Echo the given strings (like echo(l)) .

edit [msglist]
Edit the given messages. The messages are placed in a temporary file
aryd the EDITOR variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES) . Default editor is ed(l) .

- 5 -

I

MAILX(l)

I exit
xit

(Essential Utilities) MAILX(l)

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit) .

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file .
Several special characters are recognized when used as file names,
with the following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file .
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the folder variable
(see ENVIRONMENT VARIABLES) .

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the record vari
able, if set. See also the Followup, Save, and Copy commands and
outfolder (ENVIRONMENT VARIABLES) .

Followup [msglist]
Respond to the first message in the msglist, sending the message to
the author of each message in the msglist. The subject line is taken
from the first message and the response is recorded in a file whose
name is derived from the author of the first message. See also the
followup, Save, and Copy commands and outfolder (ENVIRONMENT
VARIABLES) .

from [msglist]
Prints the header summary for the specified messages.

group alias name .. .
alias alias name . . .

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

MAILX(l) (Essential Utilities) MAILX (l)

headers (message]
Prints the page of headers which includes the message specified . The
screen variable sets the number of headers per page (see ENVIRON
MENT VARIABLES) . See also the z command.

help
Prints a summary of commands.

hold (msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if s I r
mail-commands
else
mail-commands
endif

Conditional execution, where s will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r causes
the mail-commands to be executed only in receive mode. Useful in the
.mailrc file .

ignore header-field . . .
discard header-field . . .

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc ." All fields are included when the message is saved.
The Print and Type commands override this command.

list
Prints all commands available. No explanation is given.

mail name . . .
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save
file when mailx terminates normally. See MBOX {ENVIRONMENT
VARIALBLES) for a description of this file. See also the exit and quit
commands.

- 7 -

I

MAILX(l)

I

(Essential Utilities) MAILX (l)

next [message]
Go to next message matching message. A msglist may be specified, but
in this case the first valid message in the list is the only one used .
This is useful for jumping to the next message from a specific user,
since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of
possible message specifications.

pipe [msglist] [shell-command]
I [msglist] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current mes
sage is piped through the command specified by the value of the cmd
variable. If the page variable is set, a form feed character is inserted
after each message (see ENVIRONMENT VARIALBLES) .

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header
fields . Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If crt is set, the messages longer than
the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com
mand is pg(l) (see ENVIRONMENT VARIABLES) .

quit
Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in
a file are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist . The
subject line is taken from the first message. If record is set to a file
name, the response is saved at the end of that file (see ENVIRON
MENT VARIABLES) .

- g -

MAILX (l)

reply [message]
respond [message]

(Essential Utilities) NlJU LA \ � J

Reply to the specified message, including all other recipients of the
message. If record is set to a file name, the response is saved at the
end of that file (see ENVIRONMENT VARIABLES) .

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and outfolder {ENVIRON
MENT VARIABLES) .

save [filename]
save [msglist] filename

Save the specified messages in the given file . The file is created if i t
does not exist. The message is deleted from the mailbox when mailx
terminates unless keepsave is set (see also ENVIRONMENT VARIABLES
and the exit and quit commands) .

set
set name
set name=string
set name=number

Define a variable called name. The variable may be given a NULL,
string, or numeric value. Set by itself prints all defined variables and
their values. See ENVIRONMENT VARIABLES for detailed descrip
tions of the mailx variables .

shell
Invoke an interactive shell (see also SHELL (ENVIRONMENT v ARI
ABLES)) .

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode .

top [msglist]
Print the top few lines of the specified messages. If the toplines vari
able is set, it is taken as the number of lines to print (see ENVIRON
MENT VARIABLES) . The default is 5 .

- 9 -

I

MAILX(l) (Essential Utilities) MAILX(l)

touch [msglist]
Touch the specified messages. If any message in msglist is not specif
ically saved in a file, it will be placed in the mbox, or the file specified
in the MBOX environment variable, upon normal termination. See
exit and quit.

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header
fields . Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist]

Print the specified messages. If crt is set, the messages longer than
the number of lines specified by the crt variable are paged through
the command specified by the PAGER variable. The default com
mand is pg(l) (see ENVIRONMENT VARIABLES) .

undelete [msglist]
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If autoprint is set, the last mes
sage of those restored is printed (see ENVIRONMENT VARIABLES) .

unset name . . .

Causes the specified variables to be erased. If the variable was
imported from the execution environment (i .e . , a shell variable) then
it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are
placed in a temporary file and the VISUAL variable is used to get the
name of the editor (see ENVIRONMENT VARIABLES) .

write [msglist] filename
Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise, equivalent to the save command.

xit
exit

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit) .

- 10 -

MAILX(l) (Essential Utilities) MAILX(t)

z[+ I -]
Scroll the header display forward or backward one screen-full . The
number of headers displayed is set by the screen variable (see
ENVIRONMENT VARIABLES) .

TILDE ESCAPES
The following commands may be entered only from input mode, by begin
ning a line with the tilde escape character (-) . See escape (ENVIRON
MENT VARIABLES) for changing this special character.

- ! shell-command
Escape to the shell.

Simulate end of file (terminate message input) .

- : mail-command
- _ mail-command

Perform the command-level request. Valid only when sending a mes
sage while reading mail .

- ?
Print a summary of tilde escapes.

- A
Insert the autograph string ''Sign" into the message (see ENVIRON
MENT VARIABLES) .

- a
Insert the autograph string "sign" into the message (see ENVIRON
MENT VARIABLES) .

- b 1Ulme • • •
Add the 11ilmes to the blind carbon copy (Bee) list.

- c 1Ulme • • •
Add the 1Ulmes to the carbon copy (Cc) list.

- d
Read in the dead. letter file . See DEAD (ENVIRONMENT VARIABLES)
for a description of this file.

- e
Invoke the editor on the partial message. See also EDITOR
(ENVIRONMENT VARIABLES) .

- 11 -

I

MAILX(l)

I

(Essential Utilities) MAILX(l)

- f [msglist]
Forward the specified messages. The messages are inserted into the
message without alteration.

- h
Prompt for Subject line and To, Cc, and Bee lists . If the field is
displayed with an initial value, it may be edited as if you had just
typed it.

- i string
Insert the value of the named variable into the text of the message .
For example, -A is equivalent to ' - i Sign.' Environment variables
set and exported in the shell are also accessible by -i .

- m [msglist]
Insert the specified messages into the letter, shifting the new text to
the right one tab stop. Valid only when sending a message while
reading mail .

- p
Print the message being entered.

- q
Quit from input mode by simulating an interrupt. If the body of the
message is not NULL, the partial message is saved in dead. letter. See
DEAD {ENVIRONMENT VARIABLES) for a description of this file .

- r filename
- -< filename
- - < !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

- s string . . .
Set the subject line to string.

- t name . . .
Add the given names to the To list.

- v
Invoke a preferred screen editor on the partial message. See also
VISUAL {ENVIRONMENT VARIABLES) .

- w filename
Write the partial message onto the given file, without the header.

- 12 -

MAILX(l) (Essential Utilities) MAILX(l)

� x
Exit as with -q except the message is not saved in dead. letter.

� I shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com
mand replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution
environment and are not alterable within mailx:

HOME=directory
The user's base of operations.

MAILRC= filenllme
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be
imported from the execution environment or set via the set command at
any time. The unset command may be used to erase variables.

addsopt
Enabled by default. If /bin/mail is not being used as the deliverer,
noaddsopt should be specified. (See WARNING.)

aHnet
All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications to
behave similarly. Default is noallnet. See also the alternates com
mand and the metoo variable.

append
Upon termination, append messages to the end of the mbox file
instead of prepending them. Default is noappend.

askcc
Prompt for the Cc list after message is entered. Default is noaskcc .

asksub
Prompt for subject if it is not specified on the command line with the
-s option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete com
mands. Default is noautoprint.

- 13 -

I

MAILX(l)

I bang

(Essential Utilities) MAILX (l)

Enable the special-casing o f exclamation points (!) i n shell escape
command lines as in vi{l). Default is nobang.

cmd =shell-command
Set the default command for the pipe command. No default value.

conv= conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program
conforming to the RFC822 standard for electronic mail addressing.
Conversion is disabled by default. See also sendmail and the -U com
mand line option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the PAGER variable {pg(l) by default) . Dis
abled by default.

DEAD = fileruzme
The name of the file in which to save partial letters in case of
untimely interrupt. Default is $HOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug.

dot
Take a period on a line by itself during input from a terminal as end
of-file. Default is nodot.

EDITOR= shell-command
The command to run when the edit or -e command is used. Default
is ed(l) .

escape =c
Substitute c for the - escape character. Takes effect with next mes
sage sent.

MAILX(l) (Essential Utilities} lY.IfiJ. LA \ .1. /

folder= directory
The directory for saving standard mail files . User-specified file names
beginning with a plus (+) are expanded by preceding the file name
with this directory name to obtain the real file name. If directory does
not start with a slash (/), $HOME is prepended to it. In order to use
the plus (+) construct on a mailx command line, folder must be an
exported sh environment variable. There is no default for the folder
variable. See also outfolder below.

header
Enable printing of the header summary when entering mailx. Enabled
by default.

hold
Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file . Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignore eo£
Ignore end-of-file during message input. Input must be terminated
by a period (.) on a line by itself or by the - . command. Default is
noignoreeof. See also dot above.

keep
When the mailbox is empty, truncate it to zero length instead of
removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX = filerulme
The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message expli
citly in another file . Default is $HOME/mbox.

me too
If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

- 15 -

I

MAILX(l)

I

(Essential Utilities) MAILX(l)

LISTER =shell-command
The command (and options) to use when listing the contents of the
folder directory. The default is ls (l) .

onehop
When responding to a message that was originally sent to several
recipients, the other recipient addresses are normally forced to be
relative to the originating author's machine for the response. This
flag disables alteration of the recipients' addresses, improving effi
ciency in a network where all machines can send directly to all other
machines (i .e . , one hop away) .

outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the folder variable unless the pathname is abso
lute . Default is nooutfolder. See folder above and the Save, Copy,
followup, and Followup commands.

page
Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PAGER= shell-command
The command to use as a filter for paginating output. This can also
be used to specify the options to be used. Default is pg(l).

prompt=string
Set the command mode prompt to string. Default is '7 ".

quiet
Refrain from printing the opening message and version when enter
ing mailx. Default is noquiet.

record= filename
Record all outgoing mail in filename. Disabled by default. See also
outfolder above.

save
Enable saving of messages in dead. letter on interrupt or delivery error.
See DEAD for a description of this file. Enabled by default.

screen= number
Sets the number of lines in a screen-full of headers for the headers
command.

- 16 -

MAILX(l) (Essential Utilities) MAILX (l)

FILES

sendmail =shell-command
Alternate command for delivering messages. Default is lbinlrmail (l) .

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL= shell-command
The name of a preferred command interpreter. Default is sh(l) .

showto
When displaying the header summary and the message is from you,
print the recipient's name instead of the author's name.

sign= string
The variable inserted into the text of a message when the -a (auto
graph) command is given. No default (see also -i {TILDE ESCAPES)) .

Sign=string
The variable inserted into the text of a message when the -A com
mand is given. No default (see also -i {TILDE ESCAPES)) .

toplines= number
The number of lines of header to print with the top command.
Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi (l) .

$HOME/ .mailrc
$HOME/mbox
/usr/mail/"'
/usr/lib/mailx/mailx.help"'
/usr/lib/mailx/mailx.rc
/tmp/R[emqsx]"'

personal start-up file
secondary storage file
post office directory
help message files
optional global start-up file
temporary files

SEE ALSO
ls{l), mail(l), pg{l) .

WARNINGS

" The -h, -r and -U options can be used only if mailx is built with a delivery
program other than /bin/mail.

- 17 -

I

MAILX(l) (Essential Utilities) MAILX (l)

I BUGS
Where shell-command is shown as valid, arguments are not always
allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be
unset.

The full internet addressing is not fully supported by mailx. The new
standards need some time to settle down.

Attempts to send a message having a line consisting only of a " . " are
treated as the end of the message by mail(l) (the standard mail delivery
program).

- 18 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-b] [-e] [-u] [-t] [-q]

[names]

DESCRIPTION
The milke command allows the programmer to maintain, update, and
regenerate groups of computer programs. The following is a brief descrip
tion of all options and some special names:

-f milkefile
Description filename. millcefile is assumed to be the name of a
description file.

-p

-i

Print out the complete set of macro definitions and target descrip
tions.

Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

-k

-s

-r

Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in the
description file .

Do not use the built-in rules.

-n
No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ are printed.

-b
Compatibility mode for old makefiles.

-e
Environment variables override assignments within makefiles .

- 1 -

I

I

MAKE (l)

-t

(Extended Software Generation System Utilities) MAKE(l)

Touch the target files (causing them to be up-to-date) rather than
issue the usual commands .

-q
Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date .

• DEFAULT
If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name .DEFAULT are
used if it exists .

• PRECIOUS
Dependents of this target will not be removed when quit or interrupt
are hit .

• SILENT
Same effect as the -s option .

• IGNORE
Same effect as the -i option.

make executes commands in makefile to update one or more target nnmes .
Name is typically a program. If no -£ option is present, makefile,
Makefile, and the sees files s.makefile, and s.Makefile are tried in
order. If makefile is -, the standard input is taken. More than one -f
makefile argument pair may appear.

make updates a target only if its dependents are newer than the target.
All prerequisite files of a target are added recursively to the list of targets .
Missing files are deemed to be out-of-date.

makefile contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated, non-NULL list of targets, then a
:, then a (possibly NULL) list of prerequisite files or dependencies. Text
following a ; and all following lines that begin with a tab are shell com
mands to be executed to update the target. The first non-empty line that
does not begin with a tab or # begins a new dependency or macro defini
tion. Shell commands may be continued across lines with the
<backslash> <newline> sequence . Everything printed by make (except
the initial tab) is passed directly to the shell as is.

- 2 -

MAKE(l)

Thus,

(Extended Software Generation �ystem uuuues J

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

1Vli\.!'..r. \ .l I

The following makefile says that pgm depends on two files a.o and b.o,
and that they in tum depend on their corresponding source files (a.c and
b.c) and a common file incl.h:

pgm: a.o b.o
cc a .o b.o -o pgm

a.o: incl .h a .c
cc -c a.c

b.o: incl .h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell . The
SHELL environment variable can be used to specify which shell make
should use to execute commands. The default is lbin/sh. The first one or
two characters in a command can be the following: -, @, -@, or @-. If
@ is present, printing of the command is suppressed. If - is present,
make ignores an error. A line is printed when it is executed unless the -s
option is present, or the entry .SILENT: is in makefile, or unless the initial
character sequence contains a @. The -n option specifies printing without
execution; however, if the command line has the string $(MAKE) in it, the
line is always executed (see discussion of the MAKEFLAGS macro under
Environment) . The -t (touch) option updates the modified date of a file
without executing any commands.

Commands returning non-zero status normally terminate make . If the -i
option is present, or the entry .IGNORE: appears in makefile, or the initial
character sequence of the command contains -, the error is ignored. If the
-k option is present, work is abandoned on the current entry, but contin
ues on other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of
make) to run without errors .

- 3 -

I

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

Interrupt and quit cause the target to be deleted unless the target i s a
dependent of the special name .PREOOUS.

Environment
The environment is read by mJlke. All variables are assumed to be macro
definitions and processed as such. The environment variables are pro
cessed before any makefile and after the internal rules; thus, macro
assignments in a makefile override environment variables. The -e option
causes the environment to override the macro assignments in a makefile .
Suffixes and their associated rules in the makefile will override any identi
cal suffixes in the built-in rules .

The MAKEFLAGS environment variable is processed by mJlke as containing
any legal input option (except -£ and -p) defined for the command line .
Further, upon invocation, mJlke "invents" the variable if it is not in the
environment, puts the current options into it, and passes it on to invoca
tions of commands. Thus, MAKEFLAGS always contains the current input
options . This proves very useful for "super-makes" . In fact, as noted
above, when the -n option is used, the command $(MAKE) is executed
anyway; hence, one can perform a make -n recursively on a whole
software system to see what would have been executed. This is because
the -n is put in MAKEFLAGS and passed to further invocations of
$(MAKE) . This is one way of debugging all of the makefiles for a software
project without actually doing anything.

Include Files
If the string include appears as the first seven letters of a line in a mJlkefile,
and is followed by a blank or a tab, the rest of the line is assumed to be a
filename and will be read by the current invocation, after substituting for
any macros.

Macros
Entries of the form stringl = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped
new-line. Subsequent appearances of $(string1 {:substl = {subst2]]) are
replaced by string2 . The parentheses are optional if a single character
macro name is used and there is no substitute sequence. The optional
:substl =subst2 is a substitute sequence. If it is specified, all non
overlapping occurrences of subst1 in the named macro are replaced by -
subst2 . Strings (for the purposes of this type of substitution) are delimited
by blanks, tabs, new-line characters, and beginnings of lines . An example
of the use of the substitute sequence is shown under Libraries .

- 4 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

Internal Macros
There are five internally maintained macros that are useful for writing
rules for building targets.

$•
The macro $• stands for the filename part of the current dependent
with the suffix deleted. It is evaluated only for inference rules .

$@
The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$<

$?

The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module that is out-of-date with respect to the target
(i .e . , the "manufactured" dependent file name) . Thus, in the .c .o
rule, the $< macro would evaluate to the . c file . An example for
making optimized .o files from . c files is:

.c .o:
CC -< -0 $* .C

or:

.c .o:
cc -< -0 $<

The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with
respect to the target; essentially, those modules which must be
rebuilt.

$%
The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o) . In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case
D or F is appended to any of the four macros, the meaning is changed to
"directory part'' for D and "file part'' for F. Thus, $(@0) refers to the
directory part of the string $@. If there is no directory part, ./ is gen
erated. The only macro excluded from this alternative form is $?.

- 5 -

I

I

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

Suffixes
Certain names (for instance, those ending with .o) have inferable prere
quisites such as . c, .s, etc. If no update commands for such a file appear
in makefile, and if an inferable prerequisite exists, that prerequisite is com
piled to make the target. In this case, make has inference rules which
allow building files from other files by examining the suffixes and deter
mining an appropriate inference rule to use . The current default inference
rules are:

.c .c· . f . f- . sh . sh·

.c .o .c .a .c- .o .c- .c .c- .a

. f.o .f .a .r.o .r.f .r.a

.h-.h .s .o . s- .o . s- .s . s- .a . sh-. sh

. l .o . I .e .r .o .r.I . t·.c

.y.o .y.c .y- .o .y-.y .y- .c

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila
tion, the following command is used:

make -fp - 2>/dev/null </dev/null

A tilde in the above rules refers to an sees file (see sccsfile(4)) . Thus, the
rule .c-.o would transform an sees C source file into an object file (.o) .
Because the s . of the sees files is a prefix, i t i s incompatible with make's
suffix point of view. Hence, the tilde is a way of changing any file refer
ence into an sees file reference.

A rule with only one suffix (i .e . , .c:) is the definition of how to build x
from x .c . In effect, the other suffix is HULL. This is useful for building
targets from only one source file (e.g., shell procedures, simple C pro
grams) .

Additional suffixes are given as the dependency list for .SUFFIXES. Order
is significant; the first possible name for which both a file and a rule exist
is inferred as a prerequisite. The default list is:

.SUFFIXES: .o .c £ .y .y· .1 X .s . s· . sh . sh· .h .h- .f .r

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix
lists accumulate; .SUFFIXES: with no dependencies clears the list of suf
fixes.

- 6 -

\

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

Inference Rules
The first example can be done more briefly:

pgm: a .o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files . The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclu
sion of optional matter in any resulting commands. For example,
CFLAGS, LFLAGS, and YFLAGS are used for compiler options to cc(l),
Iex(l), and yacc(l), respectively. Again, the previous method for examin
ing the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .o from a file with suffix .c is specified as an entry with . c.o: as
the target and no dependents . Shell commands associated with the target
define the rule for making a .o file from a .c file . Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true tar
get.

Libraries
If a target or dependency name contains parentheses, it is assumed to be
an archive library, the string within parentheses referring to a member
within the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an
archive library that contains file.o. (This assumes the LIB macro has been
previously defined.)The expression $(LIB)(filel.o file2.o) is not legal.
Rules pertaining to archive libraries have the form .XX.a where the XX is
the suffix from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive inter
face follows. Here, we assume the source files are all C type source:

- 7 -

I

I

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

FILES

lib:

.c .a:

lib(filel . o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

$(CC) -<: ${CFLAGS) $<
$(AR) $(ARFLAGS) $@ $•.o
nn -f $•.o

In fact, the .c .a rule listed above is built into make and is unnecessary in
this example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: lib(filel . o) lib(file2.o) lib(file3.o)
$(CC) -<: $(CFLAGS) $(?: . o = .c)
$(AR) $(ARFLAGS) lib $?
nn $? @echo lib is now up-to-date

.c . a:;

Here, the substitution mode of the macro expansions is used. The $? list
is defined to be the set of object filenames (inside lib) whose C source
files are out-of-date. The substitution mode translates the .o to . c .
(Unfortunately, you cannot as yet transform to .c-; however, this may
become possible in the future.)Note also, the disabling of the .c .a: rule,
which would have created each object file, one by one. This particular
construct speeds up archive library maintenance considerably. This type
of construct becomes very cumbersome if the archive library contains a
mix of assembly programs and C programs.

[Mm]akefile and s. [Mm]akefile
/bin/sh

SEE ALSO

NOTES

cc(l), lex{l), yacc{l), printf(3S), sccsfile(4) .
cd(l), sh(l) in the User's Reference Manual.

Some commands return non-zero status inappropriately; use -i to over
come the difficulty.

- 8 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

BUGS
Filenames with the characters = : @ will not work. Commands that are
directly executed by the shell, notably cd(l), are ineffectual across new
lines in make. The syntax (lib(filel.o file2.o file3.o) is illegal. You cannot
build lib(file.o) from file.o. The macro $(a:.o= .c-) does not work.
Named pipes are not handled well.

- 9 -

I

MAKEKEY(l) (Security Administration Utilities) MAKEKEY (l)

I NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space . It
attempts to read 8 bytes for its key (the first eight input bytes), then it
attempts to read 2 bytes for its salt (the last two input bytes) . The output
depends on the input in a way intended to be difficult to compute (i . e . , to
require a substantial fraction of a second) .

The first eight input bytes (the input key) can be arbitrary ASCII characters .
The last two (the salt) are best chosen from the set of digits, . , /, and
upper- and lower-case letters . The salt characters are repeated as the first
two characters of the output. The remaining 11 output characters are
chosen from the same set as the salt and constitute the output key .

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways .
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

makekey is intended for programs that perform encryption. Usually, its
input and output will be pipes.

SEE ALSO
ed(l), crypt(!), vi(l) .
passwd(4) in the System Administrator's Reference Manual.

CAVEATS
makekey can produce different results depending upon whether the input
is typed at the terminal or redirected from a file.

WARNING
This command is provided with the Security Administration Utilities,
which is only available in the United States.

- 1 -

MAN(l) MAN (l)

NAME
man - display entries from this manual

SYNOPSIS
man [options] [section] title . . .

DESCRIPTION

FILES

The man program locates and prints each entry of this manual named title
in the specified section . (For historical reasons, the word "page" is often
used as a synonym for "entry'' in this context.) The title is entered in
lowercase characters. The section number may have a letter suffix. When
section is omitted, searches the whole manual for title and prints all
occurrences of it. The options and their meanings are:

-Tterm
Print the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term2. The default value of term
is 450.

-w
Print on the standard output only the pathnames of the entries, rela
tive to /usr/catman, or to the current directory for -d option.

-d

-c

Search the current directory rather than /usr/catman; requires the full
file name (e .g., cu.1c, rather than just cu) .

Invoke col(l); note that col(l) is invoked automatically by man unless
term is one of 300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and X.

The man program examines the environment variable $TERM (see
environ(5)) and attempts to select options that adapt the output to the ter
minal being used. The -Tterm option overrides the value of $TERM; this
may be used when sending the output of man to a line printer.

Section may be changed before each title .

As an example: man man

would reproduce on the terminal this entry, as well as any other entries
named man that may exist in other sections of the manual, e .g . , man(5) .

/usr/catman/7 _man/man[l-S][a-z]?/• Preformatted manual entries

- 1 -

I

MAN(l) MAN (l)

I SEE ALSO
environ(5), term(5) .

CAUTION
The mtm command prints manual entries that were formatted by nroff
when your operating system was installed. Entries are originally format
ted with terminal type 37 and are printed using the correct terminal filters
as derived from the -Tterm and $TERM settings.

- ? -

MCS (l) (Software Generation System Utilities) MCS (l)

NAME
mcs - manipulate the object file comment section

SYNOPSIS
mcs [options] object-files

DESCRIPTION
The mcs command manipulates the comment section in an object file . It is
used to add to, delete, print, and compress the contents of the . comment
· section in a UNIX object file . If the object file is an archive, the file is
treated as a set of individual object files . As a result, if the - a option is
specified, the string is appended to the comment section of each archive
element.

The following options are available.

-a string
Appends string to the comment section of the object files.

-c
Compresses the contents of the comment section. All duplicate
entries are removed. The order of the remaining entries is not dis
turbed.

-d
Deletes the contents of the comment section from the object file .
Also removes the object-file comment-section header.

-n name
Specifies the name of the section to access. By default, mcs deals with
the one named .comment. This option can be used to specify another
section.

-p
Prints the contents of the comment section on the standard output.
When more than one name is specified, tags each printed entry with
the name of the file from which it was extracted.

-P
Prints the contents of the comment section, tagging each line with the
name of the file from which it was extracted. The format used is
"filename: string."

- 1 -

I

MCS (l) (Software Generation System Utilities)

I EXAMPLES
mcs -p file

mcs -a string file

SEE ALSO

, cpp(l), a.out(4) .

Print file's comment section.

Append string to file's comment section

- 2 -

MCS (l)

MESG(l) (Essential Utilities)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [-n] [-y]

DESCRIPTION

ME�G (l)

mesg with argument n forbids messages via write(1) by revoking non-user
write permission on the user's terminal. mesg with argument y reinstates
permission. All by itself, mesg reports the current state without changing
it.

FILES
/dev/tty*

SEE ALSO
write(1) .

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

I

MKDIR(l) (Essential Utilities) MKDIR(l)

I NAME
mkdir - make directories

SYNOPSIS
mkdir [-m mode] [-p] dirname . . .

DESCRIPTION
mkdir creates the named directories in mode 777 (possibly altered by
umask (l)) .

Standard entries in a directory (e.g., the files . , for the directory itself, and
.. , for its parent) are made automatically. mkdir cannot create these
entries by name. Creation of a directory requires write permission in the
parent directory.

The owner ID and group ID of the new directories are set to the process's
effective user ID and group ID, respectively.

Two options apply to mkdir :

-m
This option allows users to specify the mode to be used for new
directories. Choices for modes can be found in chmod(l) .

-p
With this option, mkdir creates dirname by creating all the non-exis ti ng
parent directories first.

EXAMPLE
To create the subdirectory structure ltr/jdljan, type :

mkdir -p ltr/jdljan

SEE ALSO
sh(l), rm(l), umask(l) .
intro(2), mkdir(2) in the Programmer's Reference Manual .

DIAGNOSTICS
mkdir returns exit code 0 if all directories given in the command line were
made successfully. Otherwise, it prints a diagnostic and returns non
zero. An error code is stored in errno .

- 1 -

MNT(l) (Essential Utilities) MNT(l)

NAME
mnt, umnt - mount and dismount file system

SYNOPSIS
mnt [options] [name [directory]]

umnt [options] [name]

DESCRIPTION
mnt announces to the system that a removable file system is present on
the special device. The directory must exist already; it becomes the name
of the root of the newly mounted file system.

umnt announces to the system that the removable file system previously
mounted on a special device is to be removed.

mnt (umnt) has an optional argument, name. This argument is used to
search the permissions file to determine the real device to mount
(unmount) . The file is searched and when name matches either the slice or
the alias entry on a line, the slice entry is then used as the special device to
be mounted (unmounted) .

If no name is specified by the options or by the name argument, then the
alias floppy is used.

By convention mount(1M) and umount(1M) require root permission to exe
cute . Normal users must use mnt/umnt when dealing with mountable
media .

The options available are:

-c
Mount (unmount) all file systems in the set c. Acceptable values for c
are A, a, B, b, 1, 2, or 3 . Set membership is specified in the "perms"
field of permissions file entries.

-d dev [dir]
Mount (unmount) dev as dir if given, otherwise as mnt_pt given in
permissions file .

-f [dir]
Mount (unmount) the device floppy as dir if given, otherwise as
mnt_pt given in permissions file.

- 1 -

I

I

MNT(l)

FILES

(Essential Utilities) MNT(l)

-llist_of _devs
Mount (unmount) all names listed as the corresponding mnt_pts given
in permissions file .

-r
Mount the device read-only.

/etc/mnttab mount table
/etdmount
/etdumount
/etc/filesys permissions file

SEE ALSO
mount{lM) in the System Administrator's Reference Manual.
mnttab(4), filesys(4) in the Programmer's Reference Manual.

DIAGNOSTICS

BUGS

mnt issues a warning if the file system to be mounted is currently
mounted under another name.

umnt complains if the special file is not mounted or if it is busy. The file
system is busy if it contains an open file or a user's working directory.

Some degree of validation is done on the file system; however, i t is
generally unwise to mount garbage file systems.

- 2 -

MT(l) (Essential Utilities) M lU J

NAME
mt - magnetic tape control

SYNOPSIS
mt [-f tapename 1 command [count 1

DESCRIPTION
The mt program sends commands to a magnetic tape drive. If tapename is
not specified, the environment variable TAPE is used; if TAPE does not
exist, mt uses the device /dev/rmt/ctapen.

NOTE: tapename must refer to a raw (not block) tape device .

By default mt performs the requested operation once. Operations may be
performed repeatedly by specifying a count argument. Some of the opera
tions may not be supported on cartridge media.

The available commands are listed below. Only as many characters as are
required to uniquely identify a command need be specified.

mt returns a 0 exit status when the operation(s) were successful, 1 if the
command was unrecognized, and 2 if an operation failed.

OPTIONS
eof, weof

Write count EOF marks at the current position on the tape.

fsf
Forward space count files.

bsf
Backwards space count files.

fsr
Forward space count records.

bsr
Backwards space count records.

For the following commands, count is ignored:

rewind
Rewind the tape.

retension
Wind the tape to the end of the reel and then rewind it, smoothing
out the tape tension. (count is ignored.)

- 1 -

I

I

MT(l) (Essential Utilities)

erase
Erase the entire tape.

FILES
/dev/rmt/•

SEE ALSO
environ(SV).

raw magnetic tape interface

- 2 -

MT(l)

NEWFORM(l) (Directory and File Management Utilities) NEWFORM (l)

NAME
newform - change the format of a text file

' SYNOPSIS
newform I-s] I-itabspec] I-otabspec] I-bn] I-en] I-pn] I-an] I-f] I-c char]
I-1n] I files]

DESCRIPTION
newform reads lines from the named files, or the standard input if no input
file is named, and reproduces the lines on the standard output. Lines are
reformatted in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files . Command line
options are processed in the order specified. This means that option
sequences like "-e15 -160" will yield results different from "-160 -el5" .
Options are applied to all files on the command line .

-s
Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line . If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a * and any characters to the right of it
are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used on
a file without a tab on each line . The characters sheared off are saved
internally until all other options specified are applied to that line .
The characters are then added at the end of the processed line .

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72 (or
truncated to column 72), and the leading digits placed starting at
column 73, the command would be:

newform -s -i -1 -a -e file-name

- 1 -

I

I

NEWFORM (l) (Directory and File Management Utilities) NEWFORM (l)

-itabspec
Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs (l). In addition, tabspec may be -, in which newform
assumes that the tab specification is to be found in the first line read
from the standard input (see fspec(4)) . If no tabspec is given, tabspec
defaults to -8. A tabspec of -0 expects no tabs; if any are found, they
are treated as -1 .

-otabspec
Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A tabspec of -0
means that no spaces will be converted to tabs on output.

-bn
Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In) . Default is to
truncate the number of characters necessary to obtain the effective
line length. The default value is used when -b with no n is used .
This option can be used to delete the sequence numbers from a
COBOL program as follows:

newform -11 -b7 file-name

-en
Same as -bn except that characters are truncated from the end of the
line.

-pn
Prefix n characters (see -<:k) to the beginning of a line when the line
length is less than the effective line length. Default is to prefix the
number of characters necessary to obtain the effective line length.

-an

-f

Same as -pn except characters are appended to the end of a line .

Write the tab specification format line on the standard output before
any other lines are output. The tab specification format line which is
printed will correspond to the format specified in the last -o option.
If no -o option is specified, the line which is printed will contain the
default specification of -8.

- 2 -

NEWFORM (l) (Directory and File Management Utilities) N t. VV.l'UlU¥1 \ .l l

-ck
Change the prefix/append character to k . Default character for k is a
space.

-In
Set the effective line length to n characters . If n is not entered, -1
defaults to 72. The default line length without the -1 option is 80
characters. Note that tabs and backspaces are considered to be one
character (use -i to expand tabs to spaces) .

The -11 must be used to set the effective line length shorter than any
existing line in the file so that the -b option is activated.

DIAGNOSTICS
All diagnostics are fatal .

usage: . . .
newform was called with a bad option.

not -s format
There was no tab on one line .

can't open file
Self-explanatory.

internal line too long
A line exceeds 512 characters after being expanded in the internal
work buffer.

tabspec in error
A tab specification is incorrectly formatted, or specified tab stops are
not ascending.

tabspec indirection illegal

0

A tabspec read from a file (or standard input) may not contain a tabspec
referencing another file (or standard input) .

normal execution
1
for any error

SEE ALSO

-� BUGS

csplit(1), tabs(1)
fspec(4) in the Programmer's Reference Manual.

newform normally only keeps track of physical characters; however, for the
-i and -o options, newform will keep track of backspaces in order to line
up tabs in the appropriate logical columns.

- 3 -

I

I

NEWFORM (l) (Directory and File Management Utilities) NEWFORM (l)

newform will not prompt the user i f a tabspec i s to be read from the stan
dard input (by use of -i- or �) .
I f the -f option i s used, and the last -o option specified was �, and
was preceded by either a � or a -i-, the tab specification format line
will be incorrect.

- 4 -

NEWS (l) (Essential Utilities) NEWS (l)

NAME
news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION

FILES

news is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current
files in /usr/news, most recent first, with each preceded by an appropriate
header. news stores the "currency'' time as the modification date of a file
named .news_time in the user's home directory (the identity of this direc
tory is determined by the environment variable $HOME}; only files more
recent than this currency time are considered "current."

-a
option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

-n

-s

option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored
time. It is useful to include such an invocation of news in your . pro
file file, or in the system's /etc/profile .

All other arguments are assumed to be specific news items that are to
be printed.

If a delete is typed during the printing of a news item, printing stops
and the next item is started. Another delete within one second of the
first causes the program to terminate.

/etc/profile
/usr/news/•
SHOME/.news_time

SEE ALSO
profile(4}, environ(S) in the Programmer's Reference Manual.

- 1 -

I

NICE(l) (User Environment Utilities)

I NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

DESCRIPTION

NICE (I)

nice executes command with a lower CPU scheduling priority. If the incre
ment argument (in the range 1-19) is given, it is used; if not, an increment
of 10 is assumed.

The superuser may run commands with priority higher than normal by
using a negative increment, e.g., -10.

SEE ALSO
nohup(1)
nice(2) in the Programmer's Reference Manual.

DIAGNOSTICS
nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- 1 -

NL(l) (Directory and File Management Utilities) NL (l)

NAME
nl - line numbering filter

SYNOPSIS
nl [-btype] [-htype] [-ftype] [-vstart#]
[-wwidth] [-nformat] [-ddelim] file

DESCRIPTION

[-iincr] [-p] [-Inurn] [-ssep]

nl reads lines from the named file or the standard input if no file is named
and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages . Line numbering is
reset at the start of each logical page. A logical page consists of a header,
a body, and a footer section. Empty sections are valid. Different line
numbering options are independently available for header, body, and
footer (e .g., no numbering of header and footer lines while numbering
blank lines only in the body) .

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

\:\:\:

\:\:

\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single
logical page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

-btype
Specifies which logical page body lines are to be numbered. Recog
nized types and their meaning are:

a number all lines
t number lines with printable text only
n no line numbering
pstring number only lines that contain the regular expression

specified in string.

Default type for logical page body is t (text lines numbered) .

- 1 -

I

NL(l)

I

(Directory and File Management Utilities) NL (l)

-htype
Same as -btype except for header. Default type for logical page
header is n (no lines numbered) .

-ftype
Same as -btype except for footer. Default for logical page footer i s n

(no lines numbered) .

-vstart#
start# is the initial value used to number logical page lines. Default
is 1 .

-iincr
incr is the increment value used to number logical page lines. Default
is 1 .

-p
Do not restart numbering at logical page delimiters .

-Inurn
num is the number of blank lines to be considered as one. For exam
ple, -12 results in only the second adjacent blank being numbered (if
the appropriate -ha, -ba, and/or -fa option is set) . Default is 1 .

-ssep
sep is the character(s) used in separating the line number and the
corresponding text line . Default sep is a tab.

-wwidth
width is the number of characters to be used for the line number.
Default width is 6.

-nformat
format is the line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept. Default format is rn

(right justified) .

-dxx
The delimiter characters specifying the start of a logical page section
may be changed from the default characters (\:) to two user-specified
characters. If only one character is entered, the second character
remains the default character (:) . No space should appear between
the -d and the delimiter characters . To enter a backslash, use two
backslashes.

- 2 -

NL(l) (Directory and File Management Utilities) NL(l)

EXAMPLE
The command:

nl -vlO -itO -d! + filet

will number file1 starting at line number 10 with an increment of 10. The
logical page delimiters are ! + .

SEE ALSO
pr(l)

- 3 -

I

NM (l) (Software Generation System Utilities) NM U J

NAME
run - print name list of common object file

SYNOPSIS
nm [-oxhvnefurpVT] filename . . .

DESCRIPTION
The nm command displays the symbol table of each common object file,
filename. file name may be a relocatable or absolute common object file; or
it may be an archive of relocatable or absolute common object files . For
each symbol, the following information will be printed:

Name
name of the symbol.

Value
value expressed as an offset or an address depending on its storage
class.

Class
storage class .

Type
type and derived type. If the symbol is an instance of a structure or
of a union then the structure or union tag will be given following the
type (e.g. , struct-tag) . If the symbol is an array, then the array
dimensions will be given following the type (e .g., char[n] [m]) .
Note that the object file must have been compiled with the -g option
of the cc(l) command for this information to appear.

Size
size in bytes, if available. Note that the object file must have been
compiled with the -g option of the cc(l) command for this informa
tion to appear.

Line
source line number at which it is defined, if available. Note that the
object file must have been compiled with the -g option of the cc(l)
command for this information to appear.

Section
For storage classes static and external, the object file section contain
ing the symbol (e.g., text, data or bss) .

- 1 -

I

NM(l)

I

(Software Generation System Utilities) NM (l)

The output of n m may be controlled using the following options:

-o
Print the value and size of a symbol in octal instead of decimal.

-x
Print the value and size of a symbol in hexadecimal instead of
decimal.

-h
Do not display the output header data.

-v
Sort external symbols by value before they are printed.

-n
Sort external symbols by name before they are printed.

-e

-f

Print only external and static symbols.

Produce full output. Print redundant symbols (. text, . data, . lib, and
.bss), normally suppressed.

-u
Print undefined symbols only.

-r
Prepend the name of the object file or archive to each output line .

-p
Produce easily parsable, terse output. Each symbol name is preceded
by its value (blanks if undefined) and one of the letters U (undefined),
A (absolute), T (text segment symbol), D (data segment symbol), S
(user defined segment symbol), R (register symbol), F (file symbol),
or C (common symbol) . If the symbol is local (non-external), the type
letter is in lowercase.

-V
Print the version of the nm command executing on the standard error
output.

- 2 -

NM (l)

FILES

BUGS

(Software Generation System Utilities) NM (l)

-T
By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of char
acters, a name that is longer than the width of the column set aside
for names will overflow its column, forcing every column after the
name to be misaligned. The -T option causes nm to truncate every
name which would otherwise overflow its column and place an aster
isk as the last character in the displayed name to mark it as truncated .

Options may be used in any order, either singly or in combination, and
may appear anywhere in the command line. Therefore, both nm name -e
-v and nm -ve name print the static and external symbols in name, with
extemal symbols sorted by value.

TMPDIRI* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR (see tempnam() in tmpnam(3S)) .

When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information.
Therefore, the -v and -n options should be used only in conjunction with
the -e option.

SEE ALSO
as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4)

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if name is not a common object file .

"nm: name: no symbols"
if the symbols have been stripped from name.

- 3 -

I

NOHUP (l) (User Environment Utilities) NOHUP (l)

I NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
nohup executes command with hangups and quits ignored. If output is not
re-directed by the user, both standard output and standard error are sent
to nohup.out. If nohup.out is not writable in the current directory, output
is redirected to $HOME!nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands.
This can be done only by placing pipelines and command lists in a single
file, called a shell procedure. You can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to
be executed often, then the need to type sh can be eliminated by giving file
execute permission. Add an ampersand and the contents of file are run in
the background with interrupts also ignored (see sh (l)) :

nohup file &
An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
chrnod(l), nice{l), sh{l),
signal(2) in the Programmer's Reference Manual.

WARNINGS
In the case of the following command

nohup commandl; command2

nohup applies only to commandl . The command

nohup (commandl; command2)

is syntactically incorrect.

- 1 -

OAWK (l) (Directory and File Management Utilities) OAWK (l)

NAME
oawk - pattern scanning and processing language

' SYNOPSIS
oawk [-Fe] [prog] [parameters] [files]

DESCRIPTION
oawk scans each input file for lines that match any of a set of patterns
specified in prog . With each pattern in prog, there can be an associated
action that will be performed when a line of a file matches the pattern.
The set of patterns may appear literally as prog, or in a file specified as -£
file . The prog string should be enclosed in single quotes (') to protect it
from the shell.

parameters, in the form x= . . . y= . . . etc . , may be passed to oawk.

files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space . (This default
can be changed by using FS; see below) . The fields are denoted $1, $2,
. . . , and $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches .
An action is a sequence of statements . A statement can be one of the fol
lowing:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] . . . }
variable = expression
print [expression-list] [> expression]
print£ format [, expression-list] [> expression]
next II skip remaining patterns on this input line
exit II skip the rest of the input

- 1 -

I

II

OAWK(l) (Directory and File Management Utilities) OAWK(l)

Statements are terminated by semicolons, newlines, or right braces . An
empty expression-list stands for the whole line . expressions take on string or
numeric values as appropriate and are built using the operators + , -, *, /,
%, and concatenation (indicated by a blank) . The C operators + + , -,
+ = , -=, * = , I=, and % = are also available in expressions . Variables
may be scalars, array elements (denoted x[i]) or fields . Variables are ini
tialized to the NULL string. Array subscripts may be any string, not
necessarily numeric; this allows for a form of associative memory. String
constants are quoted (") .

The print statement prints its arguments o n the standard output (or o n a
file if >filename is present), separated by the current output field separa
tor, and terminated by the output record separator. The printf statement
formats its expression-list as described in printf(3S) in the Programmer's
Reference Manual.

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func
tions exp, log, sqrt , and int . The last truncates its argument to an integer;
substr(s , m, n) returns the n-character substring of s that begins at position
m . The function sprintf(jmt, expr, expr, . . .) formats the expressions
according to the printf(3S) format given by fmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, I I , &&, and parentheses)
of regular expressions and relational expressions . Regular expressions
must be surrounded by slashes, as in egrep (see grep(l)) . Isolated regular
expressions in a pattern apply to the entire line . Regular expressions may
also occur in relational expressions . A pattern may consist of two pat
terns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of
the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or !- (for does not contain) . A conditional is an arith
metic expression, a relational expression, or a Boolean combination of
these .

- 2 -

OAWK(l) (Directory and File Management Utilities) OAWK(l)

The special patterns BEGIN and END may be used to capture control I
before the first input line is read and after the last. BEGIN must be the
first pattern, END the last.

A single character c may be used to separate the fields by starting the pro
gram with:

BEGIN { FS = c }
or by using the -Fe option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field
separator (default blank); ORS, the output record separator (default new
line); and OFMT, the output format for numbers (default % .6g) .

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }
Add up first column, print sum and average:

{ s + = $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; -i) print $i }
Print all lines between start/stop pairs :

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 ! = prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:

/Page/ { $2 = n + +; }
{ print }

command line: oawk -f program n=S input

- 3 -

OAWK(l) (Directory and File Management Utilities) OAWK(l)

I SEE ALSO

BUGS

awk(l), grep(l), sed(l)
lex(l), printf(3S) in the Programmer's Reference Manual.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings . To force
an expression to be treated as a number add 0 to it; to force it to be
treated as a string concatenate the nu1l string (" j to it.

- 4 -

OD (l) (Directory and File Management Utilities) OD(l)

NAME
od - octal dump

" SYNOPSIS
od [-bcdosx] [file] [[+]offset[•][b]]

DESCRIPTION
od dumps file in one or more formats as selected by the first argument. If
the first argument is missing, -o is default. The meanings of the format
options are:

-b

-c

Interpret bytes in octal.

Interpret bytes in ASCII . Certain non-graphic characters appear as C
escapes: null=\0, backspace=\b, form-feed=\£, newline=\n,
retum=\r, tab=\t; others appear as 3-digit octal numbers .

-d
Interpret words in unsigned decimal.

-o
Interpret words in octal.

-s
Interpret 16-bit words in signed decimal.

-x
Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argu
ment is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes . If . is
appended, the offset is interpreted in decimal. If b is appended, the
offset is interpreted in blocks of 512 bytes. If the file argument is omitted,
the offset argument must be preceded by + .

Dumping continues until end-of-file .

- 1 -

I

PACK(l) (Directory and File Management Utilities) PACK(l)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name . . .

peat name . . .

unpack name . . .

DESCRIPTION
pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and
owner as those of name . The -f option will force packing of name . This is
useful for causing an entire directory to be packed even if some of the
files will not benefit. If pack is successful, name will be removed. Packed
files can be restored to their original form using unpack or peat .

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis .
If the - argument is used, an internal flag is set that causes the number of
times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of - in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each .z file, it is usually not worthwhile to pack files
smaller than three blocks, unless the character frequency distribution is
very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size . Load
modules, which use a larger character set and have a more uniform distri
bution of characters, show little compression, the packed versions being
about 90% of the original size .

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;

- 1 -

I

I

PACK (l) (Directory and File Management Utilities)

a file called name .z already exists;
the .z file cannot be created;
an 1/0 error occurred during processing.

PACK (l)

The last segment o f the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be
compressed.

peat does for packed files what cat (l) does for ordinary files, except that
peat cannot be used as a filter. The specified files are unpacked and writ
ten to the standard output. Thus, to view a packed file named name .z
use:

peat name.z
or just:

peat name

To make an unpacked copy, say nnn, of a packed file named name .z
(without destroying name .z) use the command:

peat name >nnn

peat returns the number of files it was unable to unpack. Failure may
occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack .

unpack expands files created by pack . For each file name specified in the
command, a search is made for a file called name .z (or just name, if name
ends in .z) . If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name,
and has the same access modes, access and modification dates, and
owner as those of the packed file .

unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for
the following:

SEE ALSO
cat(l)

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSWD (l) (Essential Utilities) PASSWD (l)

NAME
passwd - change login password and password attributes

SYNOPSIS
passwd [name]

passwd [-1 I -d] [-n min] [-f] [-x max] name

passwd -s [-a]

passwd -s [name]

DESCRIPTION
The passwd command changes the password or lists password attributes
associated with the user's login name. Additionally, superusers may use
passwd to install or change passwords and attributes associated with any
login name.

When used to change a password, passwd prompts ordinary users for their
old password, if any. It then prompts for the new password twice .
When the old password is entered, passwd checks to see if it has "aged"
sufficiently. If "aging" is insufficient, passwd terminates; see passwd(4) .

Assuming aging is sufficient, a check is made to ensure that the new
password meets construction requirements . When the new password is
entered a second time, the two copies of the new password are compared.
If the two copies are not identical the cycle of prompting for the new
password is repeated for at most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters . Only the first eight
characters are significant.

Each password must contain at least two alphabetic characters and at
least one numeric or special character. In this case, "alphabetic" refers
to all upper- or lowercase letters .

Each password must differ from the user's login name and any reverse
or circular shift of that login name . For comparison purposes, an upper
case letter and its corresponding lowercase letter are equivalent.

New passwords must differ from the old by at least three characters .
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

- 1 -

I

PASSWD (l) (Essential Utilities) PASSWD (l)

Superusers (e .g . , real and effective uid equal to zero, see id (lM) and
su (lM)) may change any password; hence, passwd does not prompt
superusers for the old password. Superusers ax:e not forced to comply
with password aging and password construction requirements . A
superuser can create a NULL password by entering a carriage return in
response to the prompt for a new password. (This differs from passwd -d
because the "password" prompt will still be displayed.)

Any user may use the - s option to show password attributes for his or her
own login name.

The format of the display will be:

name status mm!dd!yy min max

or, if password aging information is not present,

name status

where

name
The login 10 of the user.

status
The password status of name: "PS" stands for passworded or locked,
"LK" stands for locked, and "NP" stands for no password.

mmldd!yy
The date password was last changed for name. (Note that all pass
word aging dates are determined using Greenwich Mean Time and,
therefore, may differ by as much as a day in other time zones .)

min
The minimum number of days required between password changes
for name.

max
The maximum number of days the password is valid for name.

Only a superuser can use the following options:

-1
Locks password entry for name.

-d
Deletes password for name. The login name will not be prompted for
password .

- 2 -

PASSWD (l) (Essential Utilities) PASSWD (l)

FILES

-n

-x

-a

-f

Set minimum field for name. The min field contains the mm1mum
number of days between password changes for name. If min is greater
than max, the user may not change the password. Always use this
option with the -x option, unless max is set to -1 (aging turned off) .
In that case, min need not be set.

Set maximum field for name. The max field contains the number of
days that the password is valid for name. The aging for name will be
turned off immediately if max is set to -1 . If it is set to 0, then the
user is forced to change the password at the next login session and
aging is turned off.

Show password attributes for all entries . Use only with -s option;
name must not be provided.

Force the user to change password at the next login by expiring the
password for name.

/etc/passwd, /etc/shadow, /etc/opasswd, /etc/oshadow

SEE At:SO
login(l)
crypt(3C), passwd(4) in the Programmer's Reference Manual.
id(lM), passmgmt(lM), pwconv(lM), su(lM), in the System Administrator's
Reference Manual.

WARNING
If the optional /etc/shadow file feature is used, the passwd(l) command
will use that, instead of the /etc/passwd file, to obtain password informa
tion. Since the way password aging information is stored in the two files
is slightly different, the output from passwd options that use this informa
tion may also be different.

- 3 -

I

PASSWD (l) (Essential Utilities)

I DIAGNOSTICS
The passwd command exits with one of the following values:

0 SUCCESS.

1 Permission denied.

2 Invalid combination of options.

3 Unexpected failure. Password file unchanged.

4 Unexpected failure . Password file(s) missing.

5 Password file(s) busy. Try again later.

6 Invalid argument to option.

- 4 -

PASSWD (l)

PASTE (l) (Directory and File Management Utilities) PASTE (l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file1 file2 . . .
paste -d list file1 file2
paste -s [-d list] file1 file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given
input files file1 , file2 . It treats each file as a column or columns of a table
and pastes them together horizontally (parallel merging) . It is the coun
terpart of cat (l) which concatenates vertically, i . e . , one file after the other.
In the last form, paste replaces the function of an older command with the
same name by combining subsequent lines of the input file (serial merg
ing) . In all cases, lines are glued together with the tab character, or with
characters from an optionally specified list . Output is to the standard out
put, so it can be used as the start of a pipe, or as a filter, if - is used in
place of a file name.

The meanings of the options are:

-d
Without this option, the newline characters of each but the last file
(or last line in the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate
characters (see below) .

list

-s

One or more characters immediately following -d replace the default
tab as the line concatenation character. The list is used circularly,
i . e . , when exhausted, it is reused. In parallel merging (i . e . , no -s
option), the lines from the last file are always terminated with a new
line character, not from the list . The list may contain the special
escape sequences: \n (newline), \t (tab), \\ (backslash), and \0 (empty
string, not a NULL character) . Quoting may be necessary, if charac
ters have special meaning to the shell (e .g . , to get one backslash, use
-d '\\\\") .

Merge subsequent lines instead o f one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regard
less of the list, the very last character of the file is forced to be a new-
line .

.

- 1 -

I

I

PASTE (l) (Directory and File Management Utilities) PASTE (l)

May be used in place of any file name, to read a line from the stan
dard input. (There is no prompting) .

EXAMPLES
Is I paste -d" " - list directory in one column

Is I paste - - - -

paste -s -d'\ t\ n" file

SEE ALSO
cut(l), grep(l), pr(l)

DIAGNOSTICS
line too long

too many files

list directory in four columns

combine pairs of lines into lines

Output lines are restricted to 511 characters .

Except for -s option, no more than 12 input
files may be specified.

- 2 -

"

PG(l) (Directory and File Management Utilities) PG (l)

NAME
pg - file perusal filter for CRTs

SYNOPSIS
pg [-number 1 [-p string 1 [-cefns1 [+ linen umber 1 [+!pattern/] [files . . .]

DESCRIPTION
The pg command is a filter that allows the examination of files one screen
ful at a time on a CRT. (The file name and/or NULL arguments indicate
that pg should read from the standard input.) Each screenful is followed
by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are described later.

This command is different from previous paginators because it allows you
to back up and review something that has already passed. The method
for doing this is explained below.

To determine terminal attributes, pg scans the terminfo (4) data base for the
terminal type specified by the environment variable TERM . If TERM is not
defined, the terminal type dumb is assumed.

The command line options are :

-number
An integer specifying the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24 lines, the
default window size is 23) .

-p string

-c

-e

Causes pg to use string as the prompt. If the prompt string contains a
"%d", the first occurrence of "%d" in the prompt will be replaced by
the current page number when the prompt is issued. The default
prompt string is ":" .

Homes the cursor and clears the screen before displaying each page .
This option is ignored if clear_screen is not defined for this terminal
type in the terminfo (4) data base.

Causes pg not to pause at the end of each file.

- 1 -

I

PG (l)

I -f

(Directory and File Management Utilities) PG (l)

Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being · displayed (e .g . , escape
sequences for underlining) generate undesirable results . The -£
option inhibits pg from splitting lines.

-n
Causes an automatic end of command as soon as a command letter is
entered. (Normally, commands must be terminated by a newline
character.)

-s
Causes pg to print all messages and prompts in standout mode (usu
ally inverse video) .

+ linenumber
Start up at linen umber .

+ /pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into
three categories: those causing further perusal, those that search, and
those that modify the perusal environment.

Commands that cause further perusal normally take a preceding address ,
an optionally signed number indicating the point from which further text
should be displayed. This address is interpreted in either pages or lines
depending on the command. A signed address specifies a point relative to
the current page or line, and an unsigned address specifies an address rela
tive to the beginning of the file . Each command has a default address that
is used if none is provided.

The perusal commands and their defaults are:

(+ 1) newline or blank
This causes one page to be displayed . The address is specified in
pages.

(+ 1) 1
With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an abso
lute address this command prints a screenful beginning at the speci
fied line .

- 2 -

PG (l) (Directory and File Management Utilities) PG (l)

(+ 1) d or AD
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

. or AL
Typing a single period causes the current page of text to be
redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available to search for text patterns in the
text. The regular expressions described in ed(1) are available. They must
always be terminated by a n ewl ine, even if the -n option is specified.

if pattern/
Search forward for the i th (default i = 1) occurrence of pattern . Search
ing begins immediately after the current page and continues to the
end of the current file, without wrap-around.

iApatternA
i?pattern?

Search backwards for the ith (default i = 1) occurrence of pattern .
Searching begins immediately before the current page and continues
to the beginning of the current file, without wrap-around. The A nota
tion is useful for Adds 100 terminals that will not properly handle the
? .

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search com
mand to leave the line found in the middle or at the bottom of the win
dow from now on. The suffix t can be used to restore the original situa
tion.

The user of pg can modify the environment of perusal with the following
commands:

in

ip

Begin perusing the ith next file in the command line . The i is an
unsigned number, default value is 1 .

Begin perusing the ith previous file in the command line. i is an
unsigned number, default is 1 .

- 3 -

I

I

PG (l) (Directory and File Management Utilities) PG (l)

l W
Display another window o f text. If i i s present, set the window size
to i .

s filename
Save the input in the named file. Only the current file being perused
is saved. The white space between the s and filename is optional.
This command must always be terminated by a newline even if the
-n option is specified.

h
Help by displaying an abbreviated summary of available commands .

q or Q
Quit pg .

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable . If this is not available, the default shell is
used. This command must always be terminated by a newl ine
even if the -n option is specified.

At any time when output is being sent to the terminal, the user can press
the quit key (normally CTRL) or the interrupt (BREAK) key. This causes pg
to stop sending output, and display the prompt. The user may then enter
one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any characters wait
ing in the terminal's output queue are flushed when the quit signal
occurs .

If the standard output is not a terminal, then pg acts just like cat (l), except
that a header is printed before each file (if there is more than one) .

EXAMPLE

NOTES

A sample usage of pg in reading system news would be

news I pg -p (Page % d):

While waiting for terminal input, pg responds to BREAK DEL, and A by
terminating execution. Between prompts, however, these signals inter
rupt pgs current task and place the user in prompt mode . These should be
used with caution when input is being read from a pipe, since an inter
rupt is likely to terminate the other commands in the pipeline .

- 4 -

PG (l)

FILES

(Directory and File Management Utilities) PG (l)

The pg command responds to Az (CTRL-z) by suspending a job on those I
systems that provide job control. Upon awakening, the screen is
refreshed.

Users of Berkeley's more will find that the z and f commands are available,
and that the terminal /, A, or ? may be omitted from the searching com
mands.

/usr/lib/terminfo/? I•
/tmp/pg•

terminal information database
temporary file when input is from a pipe

SEE ALSO

BUGS

ed(l), grep(l)
terminfo(4) in the Programmer's Reference Manual .

If terminal tabs are not set every eight positions, undesirable results may
occur.

When using pg as a filter with another command that changes the termi
nal I/0 options terminal settings may not be restored correctly.

- 5 -

'

PR(l) (Essential Utilities) PR(l)

NAME
pr - print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp] [+page] [-nck]
[-ooffset] [-!length] [-sseparator] [-hheader] ffile . . .]

pr [[-m] [-wwidth]] [-eck] [-ick] [-drtfp] [+page] [-nck] [-ooffset]
[-!length] [-sseparator] [-hheader] file1 file2 . . .

DESCRIPTION
pr is used to format and print the contents of a file. If file is -, or if no
files are specified, pr assumes standard input. pr prints the named files
on standard output.

By default, the listing is separated into pages, each headed by the page
number, the date and time that the file was last modified, and the name
of the file . Page length is 66 lines which includes 10 lines of header and
trailer output. The header is composed of 2 blank lines, 1 line of text (can
be altered with -h), and 2 blank lines; the trailer is 5 blank lines .

For single column output, line width may not be set and is unlimited . For
multicolumn output, line width may be set and the default is 72 columns .
Diagnostic reports (failed options) are reported at the end of standard out
put associated with a terminal, rather than interspersed in the output.
Pages are separated by series of line feeds rather than form feed charac
ters .

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated . If the -s option is used, lines are not
truncated and columns are separated by the separator character.

Either -<:olumn or -m should be used to produce multi-column output. -a
should only be used with -<:olumn and not -m.

Command line options are

+page
Begin printing with page numbered page (default is 1) .

-<:olumn
Print column columns of output (default is 1) . Output appears as if -e
and -i are turned on for multi-column output. May not use with -m.

- 1 -

I

PR(l)

-a

(Essential Utilities) PR(l)

Print multi-column output across the page one line per column.
columns must be greater than one. If a line is too long to fit in a
column, it is truncated .

-m
Merge and print all files simultaneously, one per column. The max
imum number of files that may be specified is eight. If a line is too
long to fit in a column, it is truncated . May not use with -column.

-d
Doublespace the output. Blank lines that result from doublespacing
are dropped when they occur at the top of a page.

-eck
Expand input tabs to character positions k + 1, 2*k + 1, 3*k + 1, etc. If k
is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character) .

-ick
In output, replace white space wherever possible by inserting tabs to
character positions k + 1, 2*k + 1, 3*k + 1, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any
non-digit character) is given, it is treated as the output tab character
(default for c is the tab character) .

-nck
Provide k-digit line numbering (default for k is 5) . The number occu
pies the first k + 1 character positions of each column of single column
output or each line of -m output. If c (any non-digit character) is
given, it is appended to the line number to separate it from whatever
follows (default for c is a tab) .

-wwidth
Set the width of a line to width character positions (default is 72) .
This is effective only for multi-column output (-column and -m) .
There is no line limit for single column output.

�offset
Offset each line by offset character positions (default is 0) . The
number of character positions per line is the sum of the width and
offset.

- ? -

PR(l) (Essential Utilities) PR(l)

-llength
Set the length of a page to length lines (default is 66) . -10 is reset to
-166. When the value of length is 10 or less, -t appears to be in effect
since headers and trailers are suppressed. By default, output con
tains 5 lines of header and 5 lines of trailer leaving 56 lines for user
supplied text. When -llength is used and length exceeds 10, then
length-10 lines are left per page for user supplied text. When length is
10 or less, header and trailer output is omitted to make room for user
supplied text.

-h header
Use header as the text line of the header to be printed instead of the
file name. -h is ignored when -t is specified or -llength is specified
and the value of length is 10 or less . (-h is the only pr option requir
ing space between the option and argument.)

-p

-f

-r

-t

Pause before beginning each page if the output is directed to a termi
nal (pr will ring the bell at the terminal and wait for a carriage
return) .

Use single form-feed character for new pages (default is to use a
sequence of linefeeds) . Pause before beginning the first page if the
standard output is associated with a terminal.

Print no diagnostic reports on files that will not open.

Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page. Use of -t overrides
the -h option.

-sseparator
Separate columns by the single character separator instead of by the
appropriate number of spaces (default for separator is a tab) . Prevents
truncation of lines on multicolumn output unless -w is specified.

- 3 -

I

PR(l) (Essential Utilities) PR(l)

EXAMPLES

FILES

Print filel and file2 as a doublespaced, threecolumn listing headed by "file
list" :

pr -3dh "file list" filet file2

Copy filel to file2, expanding tabs to columns 10, 19, 28, 37, . . . :

pr -e9 -t <filet > file2

Print filel and file2 simultaneously in a twocolumn listing with no header
or trailer where both columns have line numbers:

pr -t -n filet I pr -t -m -n file2 -

/dev/tty• If standard output is directed to one of the special files
/dev/tty•, then other output directed to this terminal is
delayed until standard output is completed. This prevents
error messages from being interspersed throughout the
output.

SEE ALSO
cat(1), pg(1)

- Ll. -

'

PROF(l) (Extended Software Generation Utilities) PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g) [-z] [-h) [-s] [-mmdata] [prog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor(3C)
function. The symbol table in the object file prog (a.out by default) is read
and correlated with a profile file (mon.out by default) . For each external
text symbol the percentage of time spent executing between the address
of that symbol and the address of the next is printed, together with the
number of times that function was called and the average number of mil
liseconds per call .

The mutually exclusive options t, c, a, and n determine the type of sort
ing of the output lines:

-t
Sort by decreasing percentage of total time (default) .

-c
Sort by decreasing number of calls .

-a
Sort by increasing symbol address.

-n
Sort lexically by symbol name.

The mutually exclusive options o and x specify the printing of the address
of each symbol monitored:

-o

-x

Print each symbol address (in octal) along with the symbol name.

Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g

-z

Include non-global symbols (static functions) .

Include all symbols in the profile range (see monitor(3C)), even if
associated with zero number of calls and zero time.

- 1 -

I

I

PROF(l) (Extended Software Generation Utilities) PROF (l)

FILES

-h

-s

Suppress the heading normally printed on the report. (This is useful
if the report is to be processed further.)

Print a summary of several of the monitoring parameters and statis
tics on the standard error output.

-m mdata
Use file mdata instead of mon.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc(l) . This option to the cc command arranges for calls to monitor(3C) at
the beginning and end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR does not exist, "mon.out" is
produced in the directory that is current when the program terminates . If
PROFDIR = string, "stringlpid.progname" is produced, where progname
consists of argv[O] with any path prefix removed, and pid is the program's
process id. If PROFDIR is the NULL string, no profiling output is pro
duced.

A single function may be split into subfunctions for profiling by means of
the MARK macro (see prof(S)) .

mon.out
a.out

for profile
for namelist

SEE ALSO
cc(l), exit(2), profil(2), monitor(3C), prof(S)

WARNING
The times reported in successive identical runs may show variances of
20% or more, because of varying cache-hit ratios due to sharing of the
cache with other processes. Even if a program seems to be the only one
using the machine, hidden background or asynchronous processes may
blur the data. In rare cases, the clock ticks initiating recording of the pro
gram counter may "beat" with loops in a program, grossly distorting
measurements .

- ? -

PROF(l) (Extended Software Generation Utilities) PROF (l)

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text
symbol if the -g option is not used. However, the call counts for the
preceding function are still correct, i .e . , the static function call counts are
not added in with the call counts of the external function.

CAVEATS
Only programs that call exit (2) or return from main will cause a profile file
to be produced, unless a final call to monitor is explicitly coded.

The use of the -p option to cc(l) to invoke profiling imposes a limit of 600
functions that may have call counters established during program execu
tion. For more counters you must call monitor(3C) directly. If this limit is
exceeded, other data will be overwritten and the mon.out file will be cor
rupted. The number of call counters used will be reported automatically
by the prof command whenever the number exceeds 5/6 of the maximum.

- 3 -

I

PRS (l) (Source Code Control System Utilities) PRS (l)

NAME
prs - print an sees file

' SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time]] [-a] files

DESCRIPTION
prs prints, on the standard output, parts or all of an sees file (see
sccsfile(4)) in a user-supplied format. If a directory is named, prs behaves
as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the pathname does not begin with
s.), and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the
name of an sees file or directory to be processed; non-Sees files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter
arguments, and file names.

All the described keyletter arguments apply independently to each named
file :

-d[dataspec]
Used to specify the output data specification. The dataspec is a string
consisting of SCCS file data keywords (see DATA KEYWORDS) inter
spersed with optional user supplied text.

-r[SID]

-e

-1

Used to specify the sees IDentification {SID) string of a delta for which
information is desired. If no SID is specified, the SID of the most
recently created delta is assumed.

Requests information for all deltas created earlier than and including
the delta designated via the -r keyletter or the date given by the -c
option.

Requests information for all deltas created later than and including
the delta designated via the -r keyletter or the date given by the -c
option.

c date-time The cutoff date-time -c[cutoff] is in the form:

YY[MM[DD[HH[MM[SS]]]]]

- 1 -

I

I

PRS (l) (Source Code Control System Utilities) PRS (l)

-c[date-time]
Units omitted from the date-time default to their maximum possible
values; that is, -c7502 is equivalent to -c750228235959. Any number
of non-numeric characters may separate the various 2-digit pieces of
the cutoff date in the form: "-c"/212 9:22:25".

-a
Requests printing of information for both removed, i .e . , delta type =
R, (see nndel (l)) and existing, i .e . , delta type = D, deltas. If the -a
keyletter is not specified, information for existing deltas only is pro
vided.

DATA KEYWORDS
Data keywords specify which parts of an sees file are to be retrieved and
output. All parts of an sees file (see sccsfile(4)) have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec .

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracted from the sees file) substituted for the
recognized data keywords in the order of appearance in the dataspec . The
format of a data keyword value is either Simple (S), in which keyword
substitution is direct, or Multi-line (M), in which keyword substitution is
followed by a carriage return.

User-supplied text is any text other than recognized data keywords.

A tab is specified by \t and carriage return/newline is specified by \n. The
default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

- 2 -

PRS (l) (Source Code Control System Utilities) PRS (l)

T bi 1 sees Fil o t K d a e . es a a eywor s I
Keyword Data Item File Section Value ForD" at

:Dt: Delta information Delta Table See below• s
:DL: Delta line statistics .. :Li:/:Ld:/:Lu: s
:Li: Lines inserted by Delta .. nnnnn s
:Ld: Lines deleted by Delta .. nnnnn s
:Lu: Lines unchanged by Delta .. nnnnn s
:DT: Delta type .. o·or·R s

:1: sees ID string (SID) .. :R: . :L: . :B:. :S: s
:R: Release number .. nnnn s
:L: Level number .. nnnn s
:B: Branch number .. nnnn s
:S: Sequence number .. nnnn s
:D: Date Delta created .. :Dy:/:Dm:/:Dd: s

:Dy: Year Delta created .. nn s
:Dm: Month Delta created .. nn s
:Dd: Day Delta created .. nn s
:T: Time Delta created .. :Th:::Tm:::Ts: s

:Th: Hour Delta created .. nn s
:Tm: Minutes Delta created .. nn s
:Ts: Seconds Delta created nn s
:P: Programmer who created Delta .. logname s

:DS: Delta sequence number .. nnnn s
:DP: Predecessor Delta seq-no. .. nnnn s
:DI: Seq-no. of deltas incl . , excl. , ignored .. :Dn:/:Dx:/:Dg: s
:Dn: Deltas included (seq #) .. :DS:-:DS: . . . s
:Dx: Deltas excluded (seq #) .. :DS:-:DS: . . . s
:Dg: Deltas ignored (seq #) .. :DS:-:DS: . . . s
:MR: MR numbers for delta .. text M

:C: Comments for delta .. text M

:UN: User names User Names text M

:FL: Flag list Flags text M
-" :Y: Module type flag .. text s

:MF: MR validation flag .. yes·or·no s

- 3 -

I

PRS (l) (Source Code Control System Utilities) PRS (l)

a e . 1 es a a T bi 1 sees F"I o t K eywor s con d (t'd)

Keyword Data Item File Section Value Format

:MP: MR validation pgm name . text s

:KF: Keyword error/warning flag . yes-or-no s

:KV: Keyword validation string . text s

:BF: Branch flag . yes-or-no s

:J: Joint edit flag . yes-or-no s

:LK: Locked releases . :R: . . . s

:Q: User-defined keyword . text s

:M: Module name . text s

:FB: Floor boundary . :R: s

:CB: Ceiling boundary . :R: s

:Ds: Default SID . :1: s

:NO: Null delta flag . yes-or-no s

:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body . text M
:W: A form of what(l) string N/A :Z::M:\t:I: s
:A: A form of what (l) string N/A :Z::Y:-:M:-:I::Z: s
:Z: what(l) string delimiter N/A @(#) s
:F: sees file name N/A text s

:PN: sees file pathname N/A text s

,. :Dt:-= -:DT:-:1:-:D:-:T:-:P:-:DS:-:DP:

EXAMPLES
prs -d"Users and/or user IDs for :F: are:\n:UN:· s .file

may produce on the standard output:

Us ers and/or u s er IDs for s . f i l e are:
xyz
1 3 1
ab c

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P: " -r s .file

may produce on the standard output:

Newe s t delta f or pgm main.c: 3.7 Cre ated 77/ 1 2 / 1
By cas

- 4 -

PRS (l) (Source Code Control System Utilities)

As a special case:

prs s.file

may produce on the standard output:

PRS (l)

D 1 . 1 77/ 1 2 / 1 00:00:00 c a s 1 000000/00000/00000
WR s :

b l 78 - 1 2345

b l 7 9 - 54321

COMMENTS :

I

�hi s i s �he c ommen� l ine f or s . f i l e ini�ial d e l � a

FILES

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), sccsfile(4)
help(l) in the User's Reference Manual.

' DIAGNOSTICS
Use help(l) for explanations.

- 5 -

PS (l) (Essential Utilities) PS (l)

NAME
ps - report process status

" SYNOPSIS
ps [options]

DESCRIPTION
The ps command prints certain information about active processes.
Without options, information is printed about processes associated with
the controlling terminal. The output consists of a short listing containing
only the process ID, terminal identifier, cumulative execution time, and
the command name. Otherwise, the information that is displayed is con
trolled by the selection of options.

The options accept names or lists as arguments . Arguments can be either
separated from one another by commas or enclosed in double quotes and
separated from one another by commas or spaces. Values for proclist and
grplist must be numeric.

The options are given in descending order according to volume and range
of information provided:

-e
Report on every process now running.

-d
Report on all processes except process group leaders .

-a
Report on all processes most frequently requested: all those except
process group leaders and processes not associated with a terminal.

-f

-1

Generate a full listing. (See below for significance of columns in a
full listing.)

Generate a long listing. (See below.)
-n nnme

Valid only for users with a real user id of root or a real group id of sys .
Takes argument signifying an alternate system nnme in place of /unix.

-t termlist
List only process data associated with the terminal given in termlist .
Terminal identifiers may be specified in one of two forms: the
device's file name (e .g . , tty04) or, if the device's file name starts with
tty, just the digit identifier (e .g . , 04) .

- 1 -

I

PS (l)

I

(Essential Utilities) PS (l)

-p proclist
List only process data whose process ID numbers are given in proclist .

-u uidlist
List only process data whose user ID number or login name is given
in uidlist . In the listing, the numerical user ID will be printed unless
you give the -£ option, which prints the login name.

-g grplist
List only process data whose process group leader' s ID numbers
appear in grplist. (A group leader is a process whose process ID
number is identical to its process group ID number. A login shell is a
common example of a process group leader.)

Under the -£ option, ps tries to determine the command name and argu
ments given when the process was created by examining the user block.
Failing this, the command name is printed, as it would have appeared
without the -£ option, in square brackets .

The column headings and the meaning of the columns in a ps listing are
given below; the letters £ and 1 indicate the option (full or long, respec
tively) that causes the corresponding heading to appear; all means that
the heading always appears . Note that these two options determine only
what information is provided for a process; they do not determine which
processes will be listed.

F (I) Flags (hexadecimal and additive) associated with the
process:

Motorola 88K Computer

00 Process has terminated: process table entry
now available .

01 A system process: always in primary memory.
02 Parent is tracing process .
04 Tracing parent's signal has stopped process:

parent is waiting ptrace(2) .
08 Process cannot wake up by a signal.
10 Process currently in core .
20 Process cannot be swapped.
40 Set when signal goes remote .
80 Process in stream poll.

- 2 -

PS (l)

s

UID

PID

PPID

c

PRI

(I)

(f, I)

(all)

(f, I)
(f, I)
(I)

NI (I)
ADDR (I)
SZ (I)

WCHAN (I)

(Essential Utilities)

The state of the process:

[O, l . .N-1]

PS (l)

Process i s currently running on system proces
sor whose number is displayed.

S Sleeping: process is waiting for an event to
complete .

R Runnable: process is on run queue .

I Idle: process is being created.

Z Zombie state: process terminated and parent
not waiting.

T Traced: process stopped by a signal because
parent is tracing it.

X SXBRK state: process is waiting for more pri
mary memory.

A Awaiting: process is waiting for an atomic
event to complete .

The user ID number of the process owner (the login
name is printed under the -£ option) .

The process ID of the process (this datum is necessary
to kill a process) .

The process ID of the parent process.

Processor utilization for scheduling.

The priority of the process (higher numbers mean
lower priority) .

Nice value, used in priority computation.

The memory address of the process.

The size (in pages or clicks) of the swappable process' s
image in main memory.

The address of an event for which the process is sleep
ing or in SXBRK state (if blank, the process is running) .
For awaiting processes, it is a pointer to the waitchan
nel structure .

- 3 -

I

I

PS (l)

FILES

STIME (t)

ITY (all)

TIME (all)

COMMAND(all)

(Essential Utilities) PS (l)

The starting time of the process, given in hours,
minutes, and seconds . (A process begun more than
twenty-four hours before the ps inquiry is executed is
given in months and days.)

The controlling terminal for the process (the message,
?, is printed when there is no controlling terminal) .

The cumulative execution time for the process.

The command name (the full command name and its
arguments are printed under the -f option) .

A process that has exited and has a parent, but has not yet been waited
for by the parent, is marked < defunct> .

/dev
/dev/sxtf•
/dev/tty•
/dev/xtf•
/dev/krnem
/dev/swap
/dev/mem
/etc/passwd
/etc/ps_data
/unix

terminal ("tty'') names searcher files
kernel virtual memory
the default swap device
memory
UID information supplier
internal data structure
system namelist

SEE ALSO
kill(l), nice{l)
getty(lM) in the System Administrator's Reference Manual.

WARNING
Things can change while ps is running; the snap-shot it gives is only true
for a split-second, and it may not be accurate by the time you see it.
Some data printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout,
and stderr in that order, looking for the controlling terminal and will
attempt to report on processes associated with the controlling terminal.
In this situation, if stdin, stdout, and stderr are all redirected, ps will not -
find a controlling terminal, so there will be no report.

- 4 -

PS (l) (Essential Utilities) PS (l)

On a heavily loaded system, ps may report an lseek(2) error and exit. ps I
may seek to an invalid user area address: having obtained the address of
a process' user area, ps may not be able to seek to that address before the
process exits and the address becomes invalid.

ps -ef may not report the actual start of a TIY login session, but rather an
earlier time, when a getty was last respawned on the tty line.

If the user specifies the -n flag, the real and effective UID/GID will be set
to the real UID/GID of the user invoking ps.

- 5 -

PWD (l) (Essential Utilities)

I NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l)

DIAGNOSTICS

PWD (l)

"Cannot open . . " and "Read error in . . " indicate possible file system trou
ble and should be referred to your local system administrator.

- 1 -

REAL (l) (Essential Utilities) REAL(l)

NAME
real - echo the real device in the permissions file for a given alias

" SYNOPSIS
real [-r] [name]

DESCRIPTION

FILES

real has an optional argument name. This argument is used to search the
permissions file and determine the real device that would be accessed.
The file is searched, and when name matches either the slice or alias field
of a permissions file entry, the pathname of the real device is echoed.
This device pathname is used by the disk access routines chk, mnt and
umnt.

The default value for name is floppy.

The optional -r argument indicates that the real device desired is the raw
device . This device pathname is used by the routines dcpy and fs.

/etc/real
/etc/filesys permissions file

SEE ALSO
filesys(4) in the Programmer's Reference Manual.

- 1 -

I

REGCMP(l) (Advanced C Utilities) REGCMP (l)

I NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
The regcmp command performs a function similar to regcmp(3X) and, in
most cases, precludes the need for calling regcmp(3X) from C programs.
This saves on both execution time and program size . The command
regcmp compiles the regular expressions in file and places the output in
file.i . If the - option is used, the output will be placed in file . c . The for
mat of entries in file is a name (C variable) followed by one or more
blanks followed by a regular expression enclosed in double quotes. The
output of regcmp is C source code . Compiled regular expressions are
represented as extern char vectors . file .i files may thus be included in C
programs, or file .c files may be compiled and later loaded. In the C pro
gram which uses the regcmp output, regex(abc, line) will apply the regular
expression named abc to line . Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z] [A-Za-z0-9 _]*)$0"

tel no '\({0, 1}([2-9] [01] [1-9])$0\){0, 1} * "

"([2-9] [0-9]{2})$1[-]{0, 1}"
"([0-9]{4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X)

- 1 -

RLOGIN(l) (Internet Utilities) RLOGIN (l)

NAME
rlogin - remote login.

SYNOPSIS
rlogin host [-ex] [-1 username] [-8)

DESCRIPTION
rlogin connects your terminal on the current local host system lhost to the
remote host system rhost.

Each host has a file /etc/hosts .equiv that contains a list of rhosts with
which it shares account names. (The host names must be the standard
names as described in remsh(l) .) When you rlogin as the same user on an
equivalent host, you may not need to give a password (depending on the
restrictions imposed by login(l) on the remote host) . Each user may also
have a private equivalence list in a file .rhosts in his login directory. Each
line in this file should contain a rhost and a username separated by a
space, giving additional cases where logins without passwords may be
permitted. If the originating user is not equivalent to the remote user,
then a login and password will be prompted for on the remote machine as
in login(l) . To avoid some security problems, the .rhosts file must be
owned by either the remote user or root.

Your remote terminal type is the same as your local terminal type (as
given in your environment TERM variable) . All echoing takes place at the
remote site, so that (except for delays) the rlogin is transparent. Flow con
trol via �s and �Q and flushing of input and output on interrupts are han
dled properly.

A line of the form - • (where - is the escape character) disconnects from
the remote host. A different escape character may be specified by the -ex
option. There is no space separating this option flag and the argument
character x.

While connected, an input string of the form - ! introduces an arbitrary
command to be executed locally (a Ia cu(l)) . - ! alone spawns a local
shell . - ! must be preceded by a < CR> (i . e . , must be the first two char
acters of a new input line) .

� Using the -8 option configures the connection for eight-bit data transfers
(seven-bit data is the default) .

SEE ALSO
remsh(l)

- 1 -

I

RLOGIN(l) (Internet Utilities) RLOGIN (l)

I FILES

BUGS

/etclhosts. equiv
$HOME/.rhosts

More terminal characteristics should be propagated.

When connecting to SYSTEM V/88 systems running NSE, users may be
required to enter their password (if they have one) on the remote system.
This is due to the operation of login on these systems .

- 2 -

RM (l) (Essential Utilities) RM (l)

NAME
rm, rmdir - remove files or directories

' SYNOPSIS
rm [-£] [-i] file . . .

rm -r [-£] [-i] dirname . . . [file . . .]

rmdir [-p] [-s] dirname . . .

DESCRIPTION
rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. If a file has no write per
mission and the standard input is a terminal, the full set of permissions
(in octal) for the file are printed followed by a question mark. This is a

prompt for confirmation. If the answer begins with y (for yes), the file is
deleted, otherwise the file remains .

When the target is a symbolic link, rm removes the symbolic link itself,
not the file that the link points to.

Note that if the standard input is not a terminal, the command will
operate as if the -f option is in effect.

Three options apply to rm :
-£

-r

This option causes the removal of all files (whether write-protected or
not) in a directory without prompting the user. In a write-protected
directory, however, files are never removed (whatever their permis
sions are), but no messages are displayed. If the removal of a
write-protected directory is attempted, this option will not suppress
an error message.

This option causes the recursive removal of any directories and sub
directories in the argument list. The directory will be emptied of files
and removed. Note that the user is normally prompted for removal
of any write-protected files which the directory contains . The write
protected files are removed without prompting, however, if the -£
option is used, or if the standard input is not a terminal and the -i
option is not used.

If the removal of a non-empty, write-protected directory is attempted, the
command will always fail (even if the -£ option is used), resulting in an
error message .

- 1 -

I

I

RM (l)

-i

(Essential Utilities) RM (l)

With this option, confirmation of removal of any write-protected file
occurs interactively. It overrides the -f option and remains in effect
even if the standard input is not a terminal .

Two options apply to rmdir:

-p

-s

This option allows users to remove the directory dirname and its
parent directories which become empty. A message is printed on
standard output as to whether the whole path is removed or part of
the path remains for some reason.

This option is used to suppress the message printed on standard error
when -p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.
It is forbidden to remove the files ". " and " . . " in order to avoid the conse
quences of inadvertently doing something like the following:

rm -r ·*

Both rm and rmdir return exit codes of 0 if all the specified directories are
removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unlink(2), rmdir(2) in the Programmer's Reference Manual .

- 2 -

RMDEL(l) (Source Code Control System Utilities) RMDEL(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSJD files

DESCRIPTION

FILES

rmdel removes the delta specified by the SID from each named sees file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named sees file . In addition, the speci
fied must not be that of a version being edited for the purpose of making a
delta (i . e . , if a p-file (see get {l)) exists for the named sees file, the speci
fied must not appear in any entry of the p-file) .

The -r option is used for specifying the SID level of the delta to be
removed.

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed;
non-sees files and unreadable files are silently ignored.

Simply stated, they are either (1) if you make a delta you can remove it; or
(2) if you own the file and directory you can remove a delta .

x.file (see delta (!))
z.file (see delta (!))

SEE ALSO
delta{l), get{l), prs{l), sccsfile(4)
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(!) for explanations .

- 1 -

I

SACT(l) (Source Code Control System Utilities) SACT(l)

NAME
sact - print current sees file editing activity

SYNOPSIS
sact files

DESCRIPTION
sact informs the user of any impending deltas to a named sees file. This
situation occurs when get (1) with the -e option has been previously exe
cuted without a subsequent execution of delta (1) . If a directory is named
on the command line, sact behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable
files are silently ignored. If a name of - is given, the �tandard input is
read with each line being taken as the name of an sees file to be pro
cessed.

The output for each named file consists of five fields separated by spaces.

Field 1
specifies the SID of a delta that currently exists in the sees file to
which changes will be made to make the new delta .

Field 2
specifies the SID for the new delta to be created.

Field 3
contains the logname of the user who will make the delta (i .e . , exe
cuted a get for editing) .

Field 4
contains the date that get -e was executed.

Field 5
contains the time that get -e was executed.

SEE ALSO
delta(1), get(1), unget(1)

DIAGNOSTICS
Use help(1) for explanations .

- 1 -

I

SAR(l) (System Performance Analysis Utilities) SAR(l)

NAME
sar - system activity reporter

SYNOPSIS
sar [-uUbdycwaqvmMprDSAPK] [-o file] t [n]

sar [-uUbdycwaqvmMprDSAPK] [-s time] [-e time] [-i sec] [-£ file]

DESCRIPTION
sar, in the first instance, samples cumulative activity counters in the
operating system at n intervals of t seconds, where t should be 5 or
greater. (If the sampling interval is less than 5, the activity of sar itself
may affect the sample .) If the -o option is specified, it saves the samples
in file in binary format. The default value of n is 1. In the second
instance, with no sampling interval specified, sar extracts data from a pre
viously recorded file, either the one specified by the -£ option or, by
default, the standard system activity daily data file /usr/adm/sa/sadd for
the current day dd. The starting and ending times of the report can be
bounded via the -s and -e time arguments of the form hh [:mm [:ss]] . The -i
option selects records at sec second intervals. Otherwise, all intervals
found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u
Report CPU utilization (the default) :
%usr, %sys, %wio, %idle - portion of time running in user mode,
running in system mode, idle with some process waiting for block
UO, and otherwise idle . When used with -D, %sys is split into per
cent of time servicing requests from remote machines (%sys remote)
and all other system time (%sys local) .

-U Report
CPU utilization for each active system processor and a total for all
processors:
CPU id#, %usr, %sys, %wio, % idle - the processor id number, por
tion of time it was running in user mode, running in system mode,
idle with some process waiting for block UO, and otherwise idle .
When used with -D, %sys is split into percent of time servicing
requests from remote machines (%sys remote) and all other system
time (%sys local) . Lastly, the average for all system processors is
printed. This line will be identical to that reported by the -u option.

- 1 -

I

SAR (l)

I

(System Performance Analysis Utilities) SAR(l)

-b
Report buffer activity:
bread/s, bwritls - transfers per second of data between system buffers
and disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, i. e . , (1-bread/lread) as a per
centage;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.
When used with -D, buffer caching is reported for locally-mounted
remote resources.

-d
Report activity for each block device, e. g . , disk or tape drive, with
the exception of XDC disks and tape drives. When data is displayed,
the device specification dsk- is generally used to represent a disk
drive . The device specification used to represent a tape drive is
machine dependent. The activity data reported is:

%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+ w/s, blks/s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly
on queue, and average time to be serviced (which for disks includes
seek, rotational latency and data transfer times) .

-y

-c

Report TIY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt
rates .

Report system calls:
scalVs - system calls of all types;
sread/s, swritls, fork/s, exeds - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system
calls . When used with -D, the system calls are split into incoming,
outgoing, and strictly local calls .

- ? -

SAR(l) (System Performance Analysis Utilities) SAR(l)

-w

-a

Report system swapping and switching activity:
swpin/s, swpot/s, bswinls, bswotls - number of transfers and number
of 512-byte units transferred for swapins and swapouts (including ini
tial loading of some programs);
pswch/s - process switches.

Report use of file access system routines:
iget!s, namei/s, dirblk/s .

-q
Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready
to run.

-v
Report status of process, i-node, file tables:
text-sz, proc-sz, inod-sz, file-sz, lock-sz - entries/size for each table,
evaluated once at sampling point;
ov - overflows that occur between sampling points for each table .

-m
Report message and semaphore activities:
msgls, sema/s - primitives per second.

-M
Report multiprocessor information for each active processor:
CPU id# - processor id number;
scalVs - system calls of all types for this processor;
pgfltls - page faults for this processor;
resch/s - process rescheduling for this processor;
pswchls - process switch for this processor;
traps/s - traps (other than system calls) for this processor;
intrp/s - interrupts for this processor.

-p
Report paging activities:
vflt/s - address translation page faults (valid page not in memory);
pfltls - page faults from protection errors (illegal access to page) or
"copy-on-writes";
pgfiVs - vfltls satisfied by page-in from file system;
rclm/s - valid pages reclaimed for free list.

- 3 -

I

SAR(l)

I -r

(System Performance Analysis Utilities)

Report unused memory pages and disk blocks:
freemem - average pages available to user processes;
freeswap - disk blocks available for process swapping.

SAR(l)

-D
Report Remote File Sharing activity:
When used in combination with -u, -U, -b or -c, it causes sar to pro
duce the remote file sharing version of the corresponding report.
-Du is assumed when only -D is specified.

-S
Report server and request queue status:
Average number of Remote File Sharing servers on the system
(serv/lo-hi), % of time receive descriptors are on the request queue
(request %busy), average number of receive descriptors waiting for
service when queue is occupied (request avg lgth), % of time there
are idle servers (server %avail), average number of idle servers when
idle ones exist (server avg avail) .

-P
Report overall parallelism of all active system processors:
This option reports how much parallelism of execution is being
achieved by all active system processors . It reports the percent of
time that: zero, one, two, three, and four processors were found
busy. Do not interpret these numbers as CPU id numbers . These
percentages represent the total number of system processors found
simultaneously busy doing useful work. For example, if two proces
sors are found busy 100% of the time, this implies that any combina
tion of two system processors were always found busy. It does NOT
mean that processor id# two was busy. If zero processors are found
busy 100% of the time, your system is idle .

- 4 -

SAR(l) (System Performance Analysis Utilities) SAR(l)

-K
Report the contention of all active processors for the kernel sema
phore (lock):
The multiprocessor kernel is a peer-processor semaphored architec
ture. All processors are equal, each capable of running both system
and user code. The only restriction prohibits two or more processors
from running in the kernel at the same time. To prevent this, a sema
phore has been placed at those kernel entry points that represent the
beginning of system execution. This option reports the amount of
contention each processor encounters when it attempts to enter the
kernel to start execution of system code.
CPU id# number - the processor's id number;
enters/s - number of times this processor enter the kernel;
%waiting - percentage of time this processor had to wait before being
allowed to enter.

-A
Report all data. Equivalent to -uUdqbwcayvmMprSDPK .

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -o temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

/usr/adm/salsadd daily data file, where dd are digits representing the
day of the month.

SEE ALSO
sag(lG), sar(lM)

- 5 -

I

SCCSDIFF (l) (Source Code Control System Utilities) SCCSDIFF(l)

I NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSIDl -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

sccsdiff compares two versions of an sees file and generates the differ
ences between the two versions . Any number of sees files may be speci
fied, but arguments apply to all files .

-rSID?
SID1 and SID2 specify the deltas of an sees file that are to be com
pared. Versions are passed to bdiff(l) in the order given.

-p
pipe output for each file through pr(l) .

-sn
n is the file segment size that bdiff will pass to diff(l) . This is useful
when diff fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
get(l)
bdiff{l), help(l), pr(l) in the User's Reference Manual.

DIAGNOSTICS
"file : No differences" If the two versions are the same.
Use help (l) for explanations .

- 1 -

SDB (l) (88K-SGS) SDB (l)

NAME
sdb - symbolic debugger

' SYNOPSIS
sdb [-u] [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION
The sdb command calls a symbolic debugger that can be used with C pro
grams compiled with the GreenHills 88000 compiler. It may be used to
examine their object files and core files and to provide a controlled
environment for their execution.

objfil is an executable program file that has been compiled with the -g
(debug) option. If it has not been compiled with the -g option, the sym
bolic capabilities of sdb will be limited, but the file can still be examined
and the program debugged. The default for objfil is a.out. corfil is
assumed to be a core image file produced after executing objfil; the default
for corfil is core . The core file need not be present. A - in place of corfil
will force sdb to ignore any core image file. The colon separated list of
directories (directory-list) is used to locate the source files used to build
objfil.

It is useful to know that at any time there is a current line and current file .
If corfil exists then they are initially set to the line and file containing the
source statement at which the process terminated. Otherwise, they are
set to the first line in mtlin() . The current line and file may be changed
with the source file examination commands.

By default, warnings are provided if the source files used in producing
objfil cannot be found, or are newer than objfil . This checking feature and
the accompanying warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C. sdb does not truncate
names. Variables local to a procedure may be accessed using the form
procedure:variable. If no procedure name is given, the procedure contain
ing the current line is used by default.

Current compilers prepend an underscore character to all variable names,
sdb allows the user to optionally supply the leading underscore. If the -u
flag is given then sdb will always require the leading underscore on vari
able names and will always print names in the same fashion.

- 1 -

I

SDB (l)

I

(88K-SGS) SDB (l)

It i s also possible to refer to structure members as variable .member,
pointers to structure members as variable - > member and array elements as
variable[number] . Pointers may be dereferenced by using the form
pointer[O] . Combinations of these forms may also be used.

F77 common variables may be referenced by using the name of the com
mon block instead of the structure name. Blank common variables may
be named by the form .variable. A number may be used in place of a
structure variable name, in which case the number is viewed as the
address of the structure, and the template used for the structure is that of
the last structure referenced by sdb. An unqualified structure variable may
also be used with various commands.

Generally, sdb will interpret a structure as a set of variables. Thus, sdb
will display the values of all the elements of a structure when it is
requested to display a structure . An exception to this interpretation
occurs when displaying variable addresses. An entire structure does have
an address, and it is this value sdb displays, not the addresses of indivi
dual elements .

Elements of a multidimensional array may be referenced as variable
[number] [number] . . . , or as variable [number,number, . . .] . In place of number,
the form number;number may be used to indicate a range of values, * may
be used to indicate all legitimate values for that subscript, or subscripts
may be omitted entirely if they are the last subscripts and the full range of
values is desired. As with structures, sdb displays all the values of an
array or of the section of an array if trailing subscripts are omitted. It
displays only the address of the array itself or of the section specified by
the user if subscripts are omitted. A multidimensional parameter in an
F77 program cannot be displayed as an array, but it is actually a pointer,
whose value is the location of the array. The array itself can be accessed
symbolically from the calling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in nam
ing variables may be used. number is the occurrence of the specified pro
cedure on the stack, counting the top, or most current, as the first. If no
procedure is specified, the procedure currently executing is used by
default.

It is also possible to specify a variable by its address . All forms of integer
constants which are valid in C may be used, so that addresses may be
input in decimal, octal or hexadecimal.

SDB (l) (88K-SGS) SDB (l)

Line numbers in the source program are referred to as file-name:number or I
procedure:number. In either case the number is relative to the beginning of
the file . If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or
file is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil . An initial argument of -w
permits overwriting locations in objfil .

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file . Each mapping is represented by two
triples (b1 , el , fl.) and (b2, e2, f2) and the file address corresponding to a

written address is calculated as follows:

bl < =address <el

file address =address + f1-b1

otherwise

b2 < =address<e2

file address =address + f2 -b2,

Otherwise, the requested address is not legal . In some cases (e .g. , for pro
grams with separated I and D space), the two segments for a file may
overlap.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, bl is set
to 0, el is set to the maximum file size, and f1 is set to 0; in this way the
whole file can be examined with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers .

Commands
The commands for examining data in the program are:

t
Print a stack trace of the terminated or halted program.

T
Print the top line of the stack trace .

- 3 -

SDB (l)

I

(88K-SGS) SDB (l)

variable/elm
Print the value of variable according to length l and format m . A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers
are:

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for m are:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assume variable is a string pointer and print characters

starting at the address pointed to by the variable .
a Print characters starting at the variable's address. This for

mat may not be used with register variables .
p pointer to procedure
i disassemble machine-language instruction with addresses

printed numerically and symbolically.
I disassemble machine-language instruction with addresses

just printed numerically.

Length specifiers are only effective with the c, d, u, o and x formats . Any
of the specifiers, c, l, and m, may be omitted. If all are omitted, sdb
chooses a length and a format suitable for the variable's type as declared
in the program. If m is specified, this format is used for displaying the
variable. A length specifier determines the output length of the value to
be displayed, sometimes resulting in truncation. A count specifier c tells
sdb to display that many units of memory, beginning at the address of
variable . The number of bytes in one such unit of memory is determined
by the length specifier l , or if no length is given, by the size associated
with the variable. If a count specifier is used for the s or a command, then
that many characters are printed. Otherwise, successive characters are
printed until either a NULL byte is reached or 128 characters are printed.
The last variable may be redisplayed with the command ./.

A

SDB (l)

\

(88K-SGS) SDB (l)

The sh(l) metacharacters * and 7 may be used within procedure and vari
able names, providing a limited form of pattern matching. If no pro
cedure name is given, variables local to the current procedure and global
variables are matched; if a procedure name is specified then only variables
local to that procedure are matched. To match only global variables, the
form :pattern is used.

linenumber?lm
variable:?lm

Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the format lm .
The default format is 'i' .

varillble = lm
linenumber = lm
number =lm

Print the address of variable or linenumber, or the value of number, in
the format specified by lm . If no format is given, then lx is used.
The last variant of this command provides a convenient way to con
vert between decimal, octal and hexadecimal.

variable!value
Set variable to the given value . The value may be a number, a charac
ter constant or a variable. The value must be well defined; expres
sions which produce more than one value, such as structures, are not
allowed. Character constants are denoted 'character.

Numbers are viewed as integers unless a decimal point or exponent is
used. In this case, they are treated as having the type double. Registers
are viewed as integers. The variable may be an expression that indicates
more than one variable, such as an array or structure name. If the
address of a variable is given, it is regarded as the address of a variable of
type int . C conventions are used in any type conversions necessary to
perform the indicated assignment.

X
Print the machine registers and the current machine-language instruc
tion.

X
Print the current machine-language instruction.

- 5 -

SDB (l)

I

(88K-SGS) SDB (l)

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory . The
default is the current working directory. The latter two forms change
the value of directory . If no procedure, file name, or directory is
given, the current procedure name and file name are reported.

/regular expression/
Search forward from the current line for a line containing a string
matching regular expression as in ed(l). The trailing I may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(l). The trailing ? may be deleted.

p

z

w

Print the current line.

Print the current line followed by the next 9 lines. Set the current line
to the last line printed.

Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count +
Advance the current line by count lines. Print the new current line.

count -
Retreat the current line by count lines. Print the new current line .

- r. -

SDB (l) (88K-SGS) SDB (l)

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin
ning with < or > causes redirection for the standard input or output,
respectively. If count is given, it specifies the number of breakpoints
to be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, the pro
gram will stop when count breakpoints have been encountered. The
signal which caused the program to stop is reactivated with the C
command and ignored with the c command. If a line number is
specified then a temporary breakpoint is placed at the line and execu
tion is continued. The breakpoint is deleted when the command fin
ishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line .
If count is given, it specifies the number of breakpoints to be ignored.

s count
S count

i

Single step the program through count lines. If no count is given then
the program is run for one line. S is equivalent to s except it steps
through procedure calls .

I Single step by one machine-language instruction. The signal which
caused the program to stop is reactivated with the I command and
ignored with the i command.

variable$m count
address:m count

Single step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is
done by software, it can be very slow.

- 7 -

I

SDB (l)

I

(88K-SGS) SDB (l)

level v
Toggle verbose mode, for use when single stepping with S, s or m. If
level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it
is on for any level.

k
Kill the program being debugged.

procedure(argl,arg2, . . .)
procedure(argl,arg2, . . .)/m

Execute the named procedure with the given arguments. Arguments
can be integer, character or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
I f no format is given, i t defaults to d. This facility is only available if
the program was loaded with the -g option.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g. , "proc:"), a breakpoint is placed at the first line
in the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control is returned to sdb . Otherwise, the commands are executed
when the breakpoint is encountered and execution continues . Multi
ple commands are specified by separating them with semicolons . If k
is used as a command to execute at a breakpoint, control returns to
sdb, instead of continuing execution.

B
Print a list of the currently active breakpoints .

linenumber d

D

Delete a breakpoint at the given line. If no linenumber is given then
the breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d then the breakpoint is deleted.

Delete all breakpoints .

0

SDB (l) (88K-SGS) SDB (l)

I
Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the command
effectively does a linenumber b 1. If linenumber is of the form proc:, the
command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh(l) .

newline
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the previ
ous command displayed a memory location, then display the next
memory location.

end-of-file character
Scroll . Print the next 10 lines of instructions, source or data depend
ing on which was printed last. The end-of-file character is usually
CTRL-D.

< filename

M

Read commands from file name until the end of file is reached, and
then continue to accept commands from standard input. When sdb is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file .

Print the address maps.

M [?!] [*] b e f
Record new values for the address map. The arguments ? and I
specify the text and data maps, res�ctively. The first segment (b1 ,
el , f1) is changed unless * is specified, in which case the second seg
ment (b2, e2, f2) of the mapping is changed. If fewer than three
values are given, the remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

- 9 -

I

I

SDB (l)

FILES

(SSK-SGS) SDB (l)

q
Exit the debugger.

h
Print help.

SDBPSl
The shell environment variable $SDBPS1 if set, will be used as the sdb
user prompt in place of the default asterisk prompt.

The following commands also exist and are intended only for debugging
the debugger:

v
Print the version number.

Q
Print a list of procedures and files being debugged.

a. out
core

SEE ALSO
cc(l), a.out(4), core(4), syms(4)
sh(l) in the User's Reference Manual.

WARNINGS

BUGS

When sdb prints the value of an external variable for which there is no
debugging information, a warning is printed before the value. The size is
assumed to be int (integer) .

Line number information in optimized functions is unreliable, the com
piler always performs some minimal optimisation which can re-order
line-numbers in the final object code.

If a procedure modifies any of its arguments, sdb will always print the
modified value rather than the original, this can lead to misleading stack
back-traces.

Current compiler optimisation causes problems when printing local vari
ables, the effects may be reduced with the Greenhills compiler by using
the -X159 option which disables some of the register optimisation used by
the GreenHills compiler. The cc front-end automatically passes the -X159
option to the compiler when it detects the -g option on the command line .

- 10 -

SDB (l) (88K-SGS) SDB (l)

Even when the -X159 option is used the debugger may still have trouble
locating some automatic variables when tracing programs under sdb, care
should be exercised when attempting to modify local (automatic) vari
ables.

Stack back-tracing on the 88100 causes problems due to the lack of a frame
pointer register. The stack back-trace code relies heavily on code exami
nation to perform stack frame construction and register value location dur
ing code tracing. Certain code modules, especially those built from
assembly code rather than 'C' source can cause the back-trace to fail . This
results in problems ranging from incorrect data symbols in disassembled
code to total failure to provide a back-trace .

If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initial
ized before the procedure is started. This makes it impossible to use a
procedure which formats data from a core image.

- 11 -

SDIFF (l) (Directory and File Management Utilities) SDIFF (l)

NAME
sdiff - side-by-side difference program

' SYNOPSIS
sdiff [options . . .] filel file2

DESCRIPTION
sdiff uses the output of diff(1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is
printed with a blank gutter between them if the lines are identical, a < in
the gutter if the line only exists in filel , a > in the gutter if the line only
exists in file2 , and a I for lines that are different.

For example:

X
a
b
c
d

<
<

y
a

d
> c

The following options exist:

-w n

-1

-s

Use the next argument, n, as the width of the output line . The
default line length is 130 characters .

Only print the left side of any lines that are identical.

Do not print identical lines .

-o output
Use the next argument, output , as the name of a third file that is
created as a user-controlled merging of filel and file2 . Identical lines
of filel and file2 are copied to output . Sets of differences, as produced
by diff(l), are printed; where a set of differences share a common
gutter character. After printing each set of differences, sdiff prompts
the user with a % and waits for one of the following user-typed com
mands:

1 append the left column to the output file

r append the right column to the output file

- 1 -

I

I

SDIFF(l)

s

v

(Directory and File Management Utilities)

tum on silent mode; do not print identical lines

tum off silent mode

e 1 call the editor with the left column

e r call the editor with the right column

SDIFF(l)

e b call the editor with the concatenation of left and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the end of
the output file .

SEE ALSO
diff(l), ed(l)

- 2 -

SED (l) (Essential Utilities) SED (l)

NAME
sed - stream editor

" SYNOPSIS
sed [-n] [-e script] [-£ sfilef] [£files]

DESCRIPTION
sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The -£ option causes the script
to be taken from file sfile; these options accumulate. If there is just one -e
option and no -£ options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands,
one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence
all commands whose addresses select that pattern space, and at the end of
the script copies the pattern space to the standard output (except under
-n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address,
i .e . , a /regular expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression? , where ? is
any character, is identical to /regular expression/. Note that in the con
text address \xabc\xdefx, the second x stands for itself, so that the
regular expression is abcxdef.

The escape sequence \n matches a newline embedded in the pattern
space.

A period . matches any character except the terminal newline of the pat
tern space.

A command line with no addresses selects every pattern space .
A command line with one address selects each pattern space that

matches the address.

- 1 -

I

SED (l)

I

(Essential Utilities) SED (l)

A command line with two addresses selects the inclusive range from
the first pattern space that matches the first address through the next
pattern space that matches the second. (If the second address is a
number less than or equal to the line number first selected, only one
line is selected.)Thereafter the process is repeated, looking again for
the first address .

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function ! (below) .

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses .

The text argument consists of one or more lines, all but the last of which
end with \ to hide the newline. Backslashes in text are treated like
backslashes in the replacement string of an s command, and may be used
to protect initial blanks and tabs against the stripping that is done on
every script line . The rfile or wfile argument must terminate the command
line and must be preceded by exactly one blank. Each wfile is created
before processing begins. There can be at most 10 distinct wfile argu
ments .

(1) a\
text

(2) b label

(2) c\
text

(2) d
(2) 0

(2) g

(2) G
(2) h

(2) H
(1) i\
text

Append. Place text on the output before reading the next input
line .
Branch to the : command bearing the label . If label is empty,
branch to the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at
the end of a 2-address range, place text on the output . Start
the next cycle .
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the fi rst
newline. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space .
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space .

Insert. Place text on the standard output.

- 2 -

SED (l)

(2) 1

(2) n

(2) N

(2) p
(2) P

(1) q

(Essential Utilities) SED (l)

List the pattern space on the standard output in an unambigu
ous form. Non-printable characters are displayed in octal nota
tion and long lines are folded.
Copy the pattern space to the standard output. Replace the
pattern space with the next line of input.
Append the next line of input to the pattern space with an
embedded newline. (The current line number changes .)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
newline to the standard output.
Quit. Branch to the end of the script. Do not start a new
cycle.

(2) r rfile Read the contents of rfile . Place them on the output before
reading the next input line.

(2) s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of /. For a fuller description see ed(1) . Flags is zero or
more of:
n

g

p
w wfile

n= 1 - 512. Substitute for just the n th occurrence
of the regular expression.
Global. Substitute for all nonoverlapping instances
of the regular expression rather than just the first one .
Print the pattern space if a replacement was made .
Write. Append the pattern space to wfile if a
replacement was made.

(2) t label Test. Branch to the : command bearing the label if any substi
tutions have been made since the most recent reading of an
input line or execution of a t . If label is empty, branch to the
end of the script.

(2) w wfile Write. Append the pattern space to wfile .
(2) x Exchange the contents of the pattern and hold spaces.
(2) ylstring1 /string21

Transform. Replace all occurrences of characters in string1
with the corresponding character in string2 . The lengths of
string1 and string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is {) only to
lines not selected by the address(es) .

- 3 -

I

SED (l)

(0) : label

(1) =
(2) {

(0)
(0) #

SEE ALSO

(Essential Utilities) SED (l)

This command does nothing; it bears a label for b and t com
mands to branch to.
Place the current line number on the standard output as a line .
Execute the following commands through a matching } only
when the pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script
file, then that entire line is treated as a comment, with one
exception. If the character after the # is an 'n', then the
default output will be suppressed. The rest of the line after #n
is also ignored. A script file must contain at least one non
comment line.

awk{l), ed{l), grep(l)

- 4 -

SETPGRP(l)

NAME
setpgrp - set process group id and execute command

SYNOPSIS
setpgrp command [arg . . .]

DESCRIPTION

SETPGRP (l)

The setpgrp command sets its own process group id to its process id and
then executes the command line that is the argument list.

SEE ALSO
getpgrp(2), setpgrp(2), getpid(2)

- 1 -

I

SETUP(l) (Essential Utilities) SETUP(l)

I NAME
setup - initialize system for first user

SYNOPSIS
setup

DESCRIPTION
The setup command, which is also accessible as a login by the same name,
allows the first user to be established as the "owner" of the machine .

The user is permitted to add the first logins to the system, usually starting
with his or her own.

The user can then protect the system from unauthorized modification of
the machine configuration and software by giving passwords to the
administrative and maintenance functions . Normally, the first user of the
machine enters this command through the setup login, which initially has
no password, and then gives passwords to the various functions in the
system. Any that the user leaves without password protection can be
exercised by anyone.

The user can then give passwords to system logins such as "root", "bin",
etc . (provided they do not already have passwords) . Once given a password,
each login can only be changed by that login or "root".

The user can then set the date, time and time zone of the machine .

The user can then set the node name of the machine .

SEE ALSO
passwd(l)

DIAGNOSTICS
The passwd(l) command complains if the password provided does not
meet its standards.

WARNING
If the setup login is not under password control, anyone can put pass
words on the other functions .

- 1 -

SH(l) (Essential Utilities) SH (l)

NAME
sh, rsh - shell, the standard/restricted command programming language

' SYNOPSIS
sh [-acefhiknrstuvx] [args]
rsh [-acefhiknrstuvx] [args]

DESCRIPTION
sh is a command programming language that executes commands read
from a terminal or a file. rsh is a restricted version of the standard com
mand interpreter sh; it is used to set up login names and execution
environments whose capabilities are more controlled than those of the
standard shell. See Invocation for the meaning of arguments to the shell .

Definitions
A blank is a tab or a space . A name is a sequence of letters, digits, or
underscores beginning with a letter or underscore. A parameter is a name,
a digit, or any of the characters •, @, #, ?, -, $, and ! .

Commands
A simple-command is a sequence of non-blank words separated by blanks .
The first word specifies the name of the command to be executed. Except
as specified below, the remaining words are passed as arguments to the
invoked command. The command name is passed as argument 0 (see
exec(2)) . The value of a simple-command is its exit status if it terminates
normally, or (octal) 200+ status if it terminates abnormally (see signal (2) for
a list of status values) .

A pipeline is a sequence of one or more commands separated by 1 . The
standard output of each command but the last is connected by a pipe(2) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate . The
exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or
I J, and optionally terminated by ; or &. Of these four symbols, ; and &
have equal precedence, which is lower than that of && and I J . The sym
bols && and I I also have equal precedence. A semicolon (;) causes
sequential execution of the preceding pipeline; an ampersand (&) causes
asynchronous execution of the preceding pipeline (i . e . , the shell does not
wait for that pipeline to finish) . The symbol && (I I) causes the list fol
lowing it to be executed only if the preceding pipeline returns a zero
(non-zero) exit status. An arbitrary number of newlines may appear in a
list, instead of semicolons, to delimit commands .

- 1 -

I

SH(l)

I

(Essential Utilities) SH(l)

A command i s either a simple-command or one of the following. Unless oth
erwise stated, the value returned by a command is that of the last simple
command executed in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word . . . is omitted, then the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in [pattern [I pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation) except that a slash,
a leading dot, or a dot immediately following a slash need not be
matched explicitly.

if list then list [eli£ list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list fol
lowing eli£ is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed . If no
else list or then list is executed, then the if command returns a zero
exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth
erwise the loop terminates. If no commands in the do list are exe
cuted, then the while command returns a zero exit status; until may
be used in place of while to negate the loop termination test.

(list)
Execute list in a sub-shell.

{list;}
list is executed in the current (that is, parent) shell.

name () {list;}
Define a function which is referenced by name. The body of the func
tion is the list of commands between { and }. Execution of functions
is described below (see Execution) .

- 2 -

SH(l) (Essential Utilities) SH(l)

The following words are only recognized as the first word of a com- I
mand and when not quoted:

if then else eli£ fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following charac
ters up to a newline to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents
(' ') and the standard output from these commands may be used as all or
part of a word. Trailing newlines from the standard output are removed.

No interpretation is done on the string before the string is read, except to
remove backslashes (\) used to escape other characters . Backslashes may
be used to escape a grave accent (') or another backslash (\) and are
removed before the command string is read. Escaping grave accents
allows nested command substitution. If the command substitution lies
within a pair of double quotes (" . . . ' . . . ' . • • "), a backslash used to escape
a double quote (\ ") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a newline character (\newline), both the
backslash and the newline are removed (see the later section on Quoting) .
In addition, backslashes used to escape dollar signs (\$) are removed.
Since no interpretation is done on the command string before i t is read,
inserting a backslash to escape a dollar sign has no effect. Backslashes
that precede characters other than \, ' , ", newline, and $ are left intact
when the command string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters . There are
two types of parameters, positional and keyword. If parameter is a digit, it
is a positional parameter. Positional parameters may be assigned values
by set. Keyword parameters (also known as variables) may be assigned
values by writing:

name = value [name = value] . . .

Pattern-matching is not performed on value . There cannot be a function
and a variable with the same name .

- 3 -

SH(l)

I

(Essential Utilities) SH(l)

${parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or under
score that is not to be interpreted as part of its name. If parameter is *
or @, all the positional parameters, starting with $1, are substituted
(separated by spaces) . Parameter $0 is set from argument zero when
the shell is invoked.

${parameter:-word}
If parameter is set and is non-HULL, substitute its value; otherwise sub
stitute word .

${parameter: = word}
If parameter is not set or is NULL set it to word; the value of the
parameter is substituted. Positional parameters may not be assigned
to in this way.

${parameter:?word}
If parameter is set and is non-HULL, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, the message
"parameter HULL or not set" is printed.

${parameter: + word}
If parameter is set and is non-HULL, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substi
tuted string, so that, in the following example, pwd is executed only if d
is not set or is HULL:

echo ${d:- ' pwd ' }

If the colon (:) is omitted from the above expressions, the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command .

?

$

The decimal value returned by the last synchronously executed com
mand.

The process number of this shell.

- 4 -

SH(l) (Essential Utilities) SH(l)

The process number of the last background command invoked.

The following parameters are used by the shell:

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see Execution) . The user may not
change PATH if executing under rsh .

CD PATH
The search path for tlte cd command.

MAIL
If �his parameter is set to the name of a mail file and the MAILP ATH
parameter is not set, the shell informs the user of the arrival of mail
in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check
for the arrival of mail in the files specified by the MAILP ATH or MAIL
parameters. The default value is 600 seconds (10 minutes) . If set to
0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files . Each file name can be followed by % and a message that will be
printed when the modification time changes. The default message is
you h av e mai l .

PSl
Primary prompt string, by default "$ 11 •

PS2
Secondary prompt string, by default "> 11 •

IFS
Internal field separators, normally space, tab, and newline.

SHACCT
If this parameter is set to the name of a file writable by the user, the
shell will write an accounting record in the file for each shell pro
cedure executed.

- 5 -

I

I

SH(l) (Essential Utilities) SH(l)

SHELL
When the shell is invoked, it scans the environment (see Environ
ment) for this name. If it is found and 'rsh' is the file name part of its
value, the shell becomes a restricted shell .

The shell gives default values to PATH, PSl, PS2, MAILCHECK and IFS .
HOME and MAIL are set by login(!) .

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and
split into distinct arguments where such characters are found. Explicit
NULL arguments ("" or ' ') are retained. Implicit NULL arguments (those
resulting from parameters that have no values) are removed.

Input/Output
A command's input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple
command or may precede or follow a command and are not passed on as
arguments to the invoked command. Note that parameter and command
substitution occurs before word or digit is used.

<word
Use file word as standard input (file descriptor 0) .

>word
Use file word as standard output (file descriptor 1) . If the file does
not exist it is created; otherwise, it is truncated to zero length.

> >word
Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the EOF); otherwise, the file is
created.

< < [-]word
After parameter and command substitution is done on word, the shell
input is read up to the first line that literally matches the resulting
word, or to an EOF. If, however, - is appended to < < :

1) leading tabs are stripped from word before the shell input is
read (but after parameter and command substitution is done
on word),

2) leading tabs are stripped from the shell input as it is read
and before each line is compared with word, and

- 6 -

SH(l) (Essential Utilities) SH(l)

3) shell input is read up to the first line that literally matches I
the resulting word, or to an end-of-file.

If any character of word is quoted (see Quoting), no additional pro
cessing is done to the shell input. If no characters of word are
quoted:

1) parameter and command substitution occurs,

2) (escaped) \newline is ignored, and

3) \ must be used to quote the characters \, $, and " .

The resulting document becomes the standard input.

<&digit
Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

<&-
The standard input is closed. Similarly for the standard output using
>&-.

If any of the above is preceded by a digit, the file descriptor which will be
associated with the file is that specified by the digit (instead of the default
0 or 1) . For example:

. . . 2>&1

associates file descriptor 2 with the file currently associated with file
descriptor 1 .

The order in which redirections are specified i s significant. The shell
evaluates redirections left-to-right. For example:

. . . 1>xxx 2>&1

first associates file descriptor 1 with file xxx . It associates file descriptor 2
with the file associated with file descriptor 1 (i .e . , xxx) . If the order of
redirections were reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and file descriptor 1 would
be associated with file xxx .

Using the terminology introduced on the first page, under Commands, if
a command is composed of several simple commands, redirection will be
evaluated for the entire command before it is evaluated for each simple com
mand . That is, the shell evaluates redirection for the entire list, then each
pipeline within the list , then each command within each pipeline, then each
list within each command .

- 7 -

I

SH(l) (Essential Utilities) SH(l)

I f a command i s followed by &: the default standard input for the com
mand is the empty file /dev/null. Otherwise, the environment for the exe
cution of a command contains the file descriptors of the invoking shell as
modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the
characters •, ?, and [. If one of these characters appears the word is
regarded as a pattern . The word is replaced with alphabetically sorted file
names that match the pattern. If no file name is found that matches the
pattern, the word is left unchanged. The character . at the start of a file
name or immediately following a /, as well as the character I itself, must
be matched explicitly.

Quoting

• Matches any string, including the NULL string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters . A pair of
characters separated by - matches any character lexically
between the pair, inclusive. If the first character following
the opening "[" is a "!" any character not enclosed is
matched.

The following characters have a special meaning to the shell and cause
termination of a word unless quoted:

; &: () I A < > newline space tab

A character may be quoted (i .e . , made to stand for itself) by preceding it
with a backslash (\) or inserting it between a pair of quote marks (' ' or
"") . During processing, the shell may quote certain characters to prevent
them from taking on a special meaning. Backslashes used to quote a sin
gle character are removed from the word before the command is executed .
The pair \newline i s removed from a word before command and parame
ter substitution.

- 8 -

SH(l) (Essential Utilities) SH (l)

All characters enclosed between a pair of single quote marks (' '), except I
a single quote, are quoted by the shell. Backslash has no special meaning
inside a pair of single quotes. A single quote may be quoted inside a pair
of double quote marks (for example, " ' } .

Inside a pair of double quote marks (""), parameter and command substi
tution occurs and the shell quotes the results to avoid blank interpretation
and file name generation. If $• is within a pair of double quotes, the posi
tional parameters are substituted and quoted, separated by quoted spaces
("$1 $2 . . . "); however, if $@ is within a pair of double quotes, the posi
tional parameters are substituted and quoted, separated by unquoted
spaces ("$1" "$2" . . .) . \ quotes the characters \, ' , ", and $. The pair
\newline is removed before parameter and command substitution. If a
backslash precedes characters other than \, ' , ", $, and newline, then the
backslash itself is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PSl before
reading a command. If at any time a newline is typed and further input is
needed to complete a command, the secondary prompt (i .e . , the value of
PS2) is issued.

Environment
The environment (see environ (5)) is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. If the user modifies the value of any of
these parameters or creates new parameters, none of these affects the
environment unless the export command is used to bind the shell's param
eter to the environment (see also set -a) . A parameter may be removed
from the environment with the unset command. The environment seen
by any executed command is thus composed of any unmodified name
value pairs originally inherited by the shell, minus any pairs removed by
unset, plus any modifications or additions, all of which must be noted in
export commands.

- 9 -

I

SH (l) (Essential Utilities) SH(l)

The environment for any simple-command may be augmented by prefixing
it with one or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned) .

If the -k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints
a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &; otherwise, signals have the values inher
ited by the shell from its parent, with the exception of signal ll (but see
also the trap command).

Execution
Each time a command is executed, the above substitutions are carried out.
If the command name matches one of the Special Commands listed
below, it is executed in the shell process . If the command name does not
match a Special Command, but matches the name of a defined function,
the function is executed in the shell process (note how this differs from
the execution of shell procedures) . The positional parameters $1, $2,
are set to the arguments of the function. If the command name matches
neither a Special Command nor the name of a defined function, a new pro
cess is created and an attempt is made to execute the command via
exec(2) .

- 10 -

SH(l) (Essential Utilities) SH(l)

The shell parameter PATII defines the search path for the directory con- I
taining the command. Alternative directory names are separated by a
colon (:) . The default path is :/bin:/usr/bin (specifying the current direc
tory, /bin, and /usr/bin, in that order) . Note that the current directory is
specified by a NULL pathname, which can appear immediately after the
equal sign, between two colon delimiters anywhere in the path list, or at
the end of the path list. If the command name contains a I the search
path is not used; such commands will not be executed by the restricted
shell. Otherwise, each directory in the path is searched for an executable
file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A sub-shell is spawned
to read it. A parenthesized command is also executed in a sub-shell .

The location in the search path where a command was found is remem
bered by the shell (to help avoid unnecessary execs later) . If the command
was found in a relative directory, its location must be re-determined
whenever the current directory changes. The shell forgets all remembered
locations whenever the PATII variable is changed or the hash -r command
is executed (see below) .

Special Commands
Input/output redirection is now permitted for these commands. File
descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is returned .
• file

Read and execute commands from file and return. The search path
specified by P A Til is used to find the directory containing file .

break [n]
Exit from the enclosing for or while loop, if any. If n is specified
break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop.

- 11 -

SH(l)

I

(Essential Utilities) SH(l)

cd [arg]
Change the current directory to arg . The shell parameter HOME is
the default arg . The shell parameter CDPATH defines the search path
for the directory containing arg . Alternative directory names are
separated by a colon (:) . The default path is NULL (specifying the
current directory) . Note that the current directory is specified by a
NULL pathname, which can appear immediately after the equal sign
or between the colon delimiters anywhere else in the path list. If arg
begins with a I the search path is not used. Otherwise, each direc
tory in the path is searched for arg . The cd command may not be exe
cuted by rsh .

echo [arg . . .]
Echo arguments. See echo(l) for usage and description.

eval [arg . . .]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg . . .]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n . If n is omit
ted the exit status is that of the last command executed (an EOF will
also cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given,
variable names that have been marked for export during the current
shell's execution are listed. (Variable names exported from a parent
shell are listed only if they have been exported again during the
current shell's execution.) Function names are not exported.

getopts
Use in shell scripts to support command syntax standards (see
intro (l)); it parses positional parameters and checks for legal options .
See getopts (l) for usage and description.

- 12 -

SH(l) (Essential Utilities) SH(l)

hash [-r] [ntlme . . .]
For each ntlme , the location in the search path of the command speci
fied by ntlme is determined and remembered by the shell. The -r
option causes the shell to forget all remembered locations. If no argu
ments are given, information about remembered commands is
presented. hits is the number of times a command has been invoked
by the shell process. cost is a measure of the work required to locate
a command in the search path. If a command is found in a "relative"
directory in the search path, after changing to that directory, the
stored location of that command is recalculated. Commands for
which this will be done are indicated by an asterisk (*) adjacent to the
hits information. cost will be incremented when the recalculation is
done.

newgrp [arg . . .]
Equivalent to exec newgrp arg See newgrp(l) for usage and
description.

pwd
Print the current working directory. See pwd(l) for usage and
description.

read [ntlme . . .]
One line is read from the standard input and, using the internal field
separator, IFS (normally space or tab), to delimit word boundaries,
the first word is assigned to the first ntlme, the second word to the
second ntlme, etc., with leftover words assigned to the last ntlme .
Lines can be continued using \newline. Characters other than new
line can be quoted by preceding them with a backslash. These
backslashes are removed before words are assigned to ntlmes , and no
interpretation is done on the character that follows the backslash.
The return code is 0 unless an EOF is encountered.

readonly [ntlme . . .]
The given ntlmes are marked readonly and the values of the these
ntlmes may not be changed by subsequent assignment. If no argu
ments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n . If n is
omitted, the return status is that of the last command executed.

set [-aefhkntuvx [arg . . .]]

-a
Mark variables which are modified or created for export.

- 13 -

I

SH(l)

I

(Essential Utilities) SH(l)

-e
Exit immediately if a command exits with a non-zero exit status.

-f
Disable file name generation

-h
Locate and remember function commands as functions are defined
(function commands are normally located when the function is exe
cuted) .

-k
All keyword arguments are placed in the environment for a com
mand, not just those that precede the command name.

-n
Read commands but do not execute them.

-t
Exit after reading and executing one command.

-u
Treat unset variables as an error when substituting.

-v
Print shell input lines as they are read.

-X
Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell . The current set of flags
may be found in $-. The remaining arguments are positional parame
ters and are assigned, in order, to $1, $2, If no arguments are
given the values of all names are printed.

shift [n]
The positional parameters from $n + 1 . . . are renamed $1 If n
is not given, it is assumed to be 1 .

test
Evaluate conditional expressions. See test(l) for usage and descrip
tion.

times
Print the accumulated user and system times for processes run
from the shell.

- 14 -

SH(l) (Essential Utilities) SH(l)

trap I arg] I n] . . .
The command arg is to be read and executed when the shell
receives signal(s) n . (Note that arg is scanned once when the trap
is set and once when the trap is taken.) Trap commands are exe
cuted in order of signal number. Any attempt to set a trap on a sig
nal that was ignored on entry to the current shell is ineffective. An
attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent all trap(s) n are reset to their original values. If arg is
the MULL string this signal is ignored by the shell and by the com
mands it invokes. If n is 0 the command arg is executed on exit
from the shell. The trap command with no arguments prints a list
of commands associated with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
Impose a size limit of n blocks on files written by the shell and its
child processes (files of any size may be read) . If n is omitted, the
current limit is printed. You may lower your own ulimit, but only
a super-user (see su (lM)) can raise a ulimit.

umask [nnn]
The user file-creation mask is set to nnn (see umask(l)) . If nnn is
omitted, the current value of the mask is printed.

unset [name . . .]
For each name, remove the corresponding variable or function. The
variables PATH, PSI, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report
its termination status. If n is omitted, all your shell's currently
active background processes are waited for and the return code will
be zero.

- 15 -

I

SH(l) (Essential Utilities) SH(l)

Invocation
If the shell is invoked through exec(2) and the first character of argument
zero is -, commands are initially read from /etc/profile and from
$HOMEI.profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
/bin/sh . The flags below are interpreted by the shell on invocation only;
Note that unless the -c or -s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remain
ing arguments are passed as positional parameters to that command file:

-c string

-s

-i

-r

If the -c flag is present commands are read from string .

If the -s flag is present or if no arguments remain commands are read
from the standard input. Any remaining arguments specify the posi
tional parameters . Shell output (except for Special Commands) is writ
ten to file descriptor 2.

If the -i flag is present or if the shell input and output are attached to
a terminal, this shell is interactive . In this case TERMINATE is ignored
(so that kill 0 does not kill an interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible) . In all cases, QUIT
is ignored by the shell .

If the -r flag is present the shell is a restricted shell .

The remaining flags and arguments are described under the set command
above.

rsh Only
rsh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell . The
actions of rsh are identical to those of sh, except that the following are
disallowed:

changing directory (see cd(l)),
setting the value of $PATH,
specifying path or command names containing /,
redirecting output {> and >>) .

The restrictions above are enforced after . profile i s interpreted.

- 16 -

® MOTOROLA INC.

M i c rocom puter Div's ion
2'lOO South Diat-'o Wav
Tempe Anzona 8528::0
P 0 Box 2<:l'5::.
P'loe n r x , Ar zona 85062

Motorola rs an Equal Employ'Tient
Opportu l i ty, Affi rmative Act ion E-nployer

M otorolc: 'lnd M are reg iste: ed
tre: a 'r ,, trk' 11 orol nc

1 1 039 PRINTED I N USA (3190) WPC 2,500

