

Install Nano Server

10/25/2021 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Important differences in Nano Server

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Windows Server 2016 offers a new installation option: Nano Server. Nano Server is a remotely administered

server operating system optimized for private clouds and datacenters. It is similar to Windows Server in Server

Core mode, but significantly smaller, has no local logon capability, and only supports 64-bit applications, tools,

and agents. It takes up far less disk space, sets up significantly faster, and requires far fewer updates and restarts

than Windows Server. When it does restart, it restarts much faster. The Nano Server installation option is

available for Standard and Datacenter editions of Windows Server 2016.

Nano Server is ideal for a number of scenarios:

As a compute host for Hyper-V virtual machines, either in clusters or not

As a storage host for Scale-Out File Server.

As a DNS server

As a web server running Internet Information Services (IIS)

As a host for applications that are developed using cloud application patterns and run in a container or

virtual machine guest operating system

Because Nano Server is optimized as a lightweight operating system for running cloud-native applications

based on containers and micro-services or as an agile and cost-effective datacenter host with a dramatically

smaller footprint, there are important differences in Nano Server versus Server Core or Server with Desktop

Experience installations:

Nano Server is headless; there is no local logon capability or graphical user interface.

Only 64-bit applications, tools, and agents are supported.

Nano Server cannot serve as an Active Directory domain controller.

Group Policy is not supported. However, you can use Desired State Configuration to apply settings at scale.

Nano Server cannot be configured to use a proxy server to access the internet.

NIC Teaming (specifically, load balancing and failover, or LBFO) is not supported. Switch-embedded teaming

(SET) is supported instead.

Microsoft Endpoint Configuration Manager and System Center Data Protection Manager are not supported.

Best Practices Analyzer (BPA) cmdlets and BPA integration with Server Manager are not supported.

Nano Server does not support virtual host bus adapters (HBAs).

Nano Server does not need to be activated with a product key. When functioning as a Hyper-V host, Nano

Server does not support Automatic Virtual Machine Activation (AVMA). Virtual machines running on a Nano

Server host can be activated using Key Management Service (KMS) with a generic volume license key or

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Getting-Started-with-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image
https://docs.microsoft.com/en-us/previous-versions/dn387184(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn303421(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/jj612867(v=ws.11)

 Current Branch for BusinessCurrent Branch for Business

 Installation scenarios
 EvaluationEvaluation

 Clean installationClean installation

IMPORTANTIMPORTANT

 UpgradeUpgrade

 MigrationMigration

using Active Directory-based activation.

The version of Windows PowerShell provided with Nano Server has important differences. For details, see

PowerShell on Nano Server.

Nano Server is supported only on the Current Branch for Business (CBB) model--there is no Long-Term

Servicing Branch (LTSB) release for Nano Server at this time. See the following subsection for more

information.

Nano Server is serviced with a more active model, called Current Branch for Business (CBB), in order to support

customers who are moving at a cloud cadence, using rapid development cycles. In this model, feature update

releases of Nano Server are expected two to three times per year. This model requires Software Assurance for

Nano Servers deployed and operated in production. To maintain support, administrators must stay no more

than two CBB releases behind. However, these releases do not auto-update existing deployments; administrators

perform manual installation of a new CBB release at their convenience. For some additional information, see

Windows Server 2016 new Current Branch for Business servicing option.

The Server Core and Server with Desktop Experience installation options are still serviced on the Long-Term

Servicing Branch (LTSB) model, comprising 5 years of mainstream support and 5 years of extended support.

You can obtain a 180-day-licensed evaluation copy of Windows Server from Windows Server Evaluations. To try

out Nano Server, choose the Nano Ser ver | 64-bit EXE optionNano Ser ver | 64-bit EXE option, and then come back to either Nano Server

Quick Start or Deploy Nano Server to get started.

Because you install Nano Server by configuring a VHD, a clean installation is the quickest and simplest

deployment method.

To get started quickly with a basic deployment of Nano Server using DHCP to obtain an IP address, see the

Nano Server Quick Start

If you're already familiar with the basics of Nano Server, the more detailed topics starting with Deploy Nano

Server offer a full set of instructions for customizing images, working with domains, installing packages for

server roles and other features both online and offline, and much more.

Once Setup has completed and immediately after you have installed all of the server roles and features you need, check

for and install updates available for Windows Server 2016. For Nano Server, see the Managing updates in Nano Server

section of Manage Nano Server.

Since Nano Server is new for Windows Server 2016, there isn't an upgrade path from older operating system

versions to Nano Server.

Since Nano Server is new for Windows Server 2016, there isn't migration path from older operating system

versions to Nano Server.

If you need a different installation option, you can head back to the main Windows Server 2016 page

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn502534(v=ws.11)
https://www.microsoft.com/licensing/licensing-programs/software-assurance-default.aspx
https://cloudblogs.microsoft.com/windowsserver/2016/07/12/windows-server-2016-new-current-branch-for-business-servicing-option/
https://support.microsoft.com/lifecycle#gp%252Fgp_msl_policy
https://www.microsoft.com/evalcenter/evaluate-windows-server-2016
https://docs.microsoft.com/en-us/windows-server/index

Changes to Nano Server in Windows Server Semi-

Annual Channel

10/25/2021 • 2 minutes to read • Edit Online

Applies to: Windows Server, Semi-Annual Channel

If you're already running Nano Server, the Window Server Semi-Annual Channel servicing model will be

familiar, since it was formerly serviced by the Current Branch for Business (CBB) model. Windows Server Semi-

Annual Channel is just a new name for the same model. In this model, feature update releases of Nano Server

are expected two to three times per year.

However, starting with Windows Server, version 1803, Nano Server is available only as a container base OScontainer base OS

imageimage. You must run it as a container in a container host, such as a Server Core installation of Windows Server.

Running a container based on Nano Server in this release differs from earlier releases in these ways:

Nano Server has been optimized for .NET Core applications.

Nano Server is even smaller than the Windows Server 2016 version.

PowerShell Core, .NET Core, and WMI are no longer included by default, but you can include PowerShell Core

and .NET Core container packages when building your container.

There is no longer a servicing stack included in Nano Server. Microsoft publishes an updated Nano container

to Docker Hub that you redeploy.

You troubleshoot the new Nano Container by using Docker.

You can now run Nano containers on IoT Core.

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/nano-in-semi-annual-channel.md
https://hub.docker.com/r/microsoft/powershell/
https://hub.docker.com/r/microsoft/dotnet/

Nano Server Quick Start

10/25/2021 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

 To quickly deploy Nano Server in a virtual machine

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Follow the steps in this section to get started quickly with a basic deployment of Nano Server using DHCP to

obtain an IP address. You can run a Nano Server VHD either in a virtual machine or boot to it on a physical

computer ; the steps are slightly different.

Once you've tried out the basics with these quick-start steps, you can find details of creating your own custom

images, package management by several methods, domain operations, and much more in Deploy Nano Server.

Nano Ser ver in a vir tual machineNano Ser ver in a vir tual machine

Follow these steps to create a Nano Server VHD that will run in a virtual machine.

NOTENOTE

1. Copy NanoServerImageGenerator folder from the \NanoServer folder in the Windows Server 2016 ISO

to a folder on your hard drive.

2. Start Windows PowerShell as an administrator, change directory to the folder where you have placed the

NanoServerImageGenerator folder and then import the module with

Import-Module .\NanoServerImageGenerator -Verbose

You might have to adjust the Windows PowerShell execution policy. Set-ExecutionPolicy RemoteSigned should

work well.

3. Create a VHD for the Standard edition that sets a computer name and includes the Hyper-V guestguest

driversdrivers by running the following command which will prompt you for an administrator password for the

new VHD:

New-NanoServerImage -Edition Standard -DeploymentType Guest -MediaPath <path to root of media> -
BasePath .\Base -TargetPath .\NanoServerVM\NanoServerVM.vhd -ComputerName <computer name>

where

-MediaPath <path to root of media>-MediaPath <path to root of media> specifies a path to the root of the contents of the

Windows Server 2016 ISO. For example if you have copied the contents of the ISO to d:\TP5ISO

you would use that path.

-BasePath-BasePath (optional) specifies a folder that will be created to copy the Nano Server WIM and

packages to.

-TargetPath-TargetPath specifies a path, including the filename and extension, where the resulting VHD or

VHDX will be created.

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Nano-Server-Quick-Start.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

 To quickly deploy Nano Server on a physical computer

NOTENOTE

NOTENOTE

NOTENOTE

Computer_nameComputer_name specifies the computer name that the Nano Server virtual machine you are

creating will have.

Example:Example:

New-NanoServerImage -Edition Standard -DeploymentType Guest -MediaPath f:\ -BasePath .\Base -
TargetPath .\Nano1\Nano.vhd -ComputerName Nano1

This example creates a VHD from an ISO mounted as f:\. When creating the VHD it will use a folder called

Base in the same directory where you ran New-NanoServerImage; it will place the VHD (called Nano.vhd)

in a folder called Nano1 in the folder from where the command is run. The computer name will be

Nano1. The resulting VHD will contain the Standard edition of Windows Server 2016 and will be suitable

for Hyper-V virtual machine deployment. If you want a Generation 1 virtual machine, create a VHD image

by specifying a .vhd.vhd extension for -TargetPath. For a Generation 2 virtual machine, create a VHDX image

by specifying a .vhdx.vhdx extension for -TargetPath. You can also directly generate a WIM file by specifying a

.wim.wim extension for -TargetPath.

New-NanoServerImage is supported on Windows 8.1, Windows 10, Windows Server 2012 R2, and Windows

Server 2016.

4. In Hyper-V Manager, create a new virtual machine and use the VHD created in Step 3.

5. Boot the virtual machine and in Hyper-V Manager connect to the virtual machine.

6. Log on to the Recovery Console (see the Nano Server Recovery Console section in this guide), using the

administrator and password you supplied while running the script in Step 3.

The Recovery Console only supports basic keyboard functions. Keyboard lights, 10-key sections, and keyboard

layout switching such as caps lock and number lock are not supported.

7. Obtain the IP address of the Nano Server virtual machine and use Windows PowerShell remoting or

other remote management tool to connect to and remotely manage the virtual machine.

Nano Ser ver on a physical computerNano Ser ver on a physical computer

You can also create a VHD that will run Nano Server on a physical computer, using the pre-installed device

drivers. If your hardware requires a driver that is not already provided in order to boot or connect to a network,

follow the steps in the Adding Additional Drivers section of this guide.

1. Copy NanoServerImageGenerator folder from the \NanoServer folder in the Windows Server 2016 ISO

to a folder on your hard drive.

2. Start Windows PowerShell as an administrator, change directory to the folder where you have placed the

NanoServerImageGenerator folder and then import the module with

Import-Module .\NanoServerImageGenerator -Verbose

You might have to adjust the Windows PowerShell execution policy. Set-ExecutionPolicy RemoteSigned should work

well.

NOTENOTE

3. Create a VHD that sets a computer name and includes the OEM drivers and Hyper-V by running the

following command which will prompt you for an administrator password for the new VHD:

New-NanoServerImage -Edition Standard -DeploymentType Host -MediaPath <path to root of media> -
BasePath .\Base -TargetPath .\NanoServerPhysical\NanoServer.vhd -ComputerName <computer name> -
OEMDrivers -Compute -Clustering

where

-MediaPath <path to root of media>-MediaPath <path to root of media> specifies a path to the root of the contents of the

Windows Server 2016 ISO. For example if you have copied the contents of the ISO to d:\TP5ISO

you would use that path.

BasePathBasePath specifies a folder that will be created to copy the Nano Server WIM and packages to.

(This parameter is optional.)

TargetPathTargetPath specifies a path, including the filename and extension, where the resulting VHD or

VHDX will be created.

Computer_nameComputer_name is the computer name for the Nano Server you are creating.

Example:Example:

New-NanoServerImage -Edition Standard -DeploymentType Host -MediaPath F:\ -BasePath .\Base -TargetPath
.\Nano1\NanoServer.vhd -ComputerName Nano-srv1 -OEMDrivers -Compute -Clustering

This example creates a VHD from an ISO mounted as F:\. When creating the VHD it will use a folder called

Base in the same directory where you ran New-NanoServerImage; it will place the VHD in a folder called

Nano1 in the folder from where the command is run. The computer name will be Nano-srv1 and will

have OEM drivers installed for most common hardware and has the Hyper-V role and clustering feature

enabled. The Standard Nano edition is used.

4. Log in as an administrator on the physical server where you want to run the Nano Server VHD.

5. Copy the VHD that this script creates to the physical computer and configure it to boot from this new

VHD. To do that, follow these steps:

a. Mount the generated VHD. In this example, it's mounted under D:\.

b. Run bcdboot d:\windowsbcdboot d:\windows .

c. Unmount the VHD.

6. Boot the physical computer into the Nano Server VHD.

7. Log on to the Recovery Console (see the Nano Server Recovery Console section in this guide), using the

administrator and password you supplied while running the script in Step 3.

The Recovery Console only supports basic keyboard functions. Keyboard lights, 10-key sections, and keyboard

layout switching such as caps lock and number lock are not supported.

8. Obtain the IP address of the Nano Server computer and use Windows PowerShell remoting or other

remote management tool to connect to and remotely manage the virtual machine.

Deploy Nano Server

10/25/2021 • 28 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Nano Server Image Builder

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

This topic covers information you need to deploy Nano Server images that are more customized to your needs

compared to the simple examples in the Nano Server Quick Start topic. You'll find information about making a

custom Nano Server image with exactly the features you want, installing Nano Server images from VHD or

WIM, editing files, working with domains, dealing with packages by several methods, and working with server

roles.

The Nano Server Image Builder is a tool that helps you create a custom Nano Server image and bootable USB

media with the aid of a graphical interface. Based on the inputs you provide, it generates reusable PowerShell

scripts that allow you easily automate consistent installations of Nano Server running either Windows Server

2016 Datacenter or Standard editions.

Obtain the tool from the Download Center.

The tool also requires Windows Assessment and Deployment Kit (ADK).

Nano Server Image Builder creates customized Nano Server images in VHD, VHDX, or ISO formats and can

create bootable USB media to deploy Nano server or detect the hardware configuration of a server. It also can

do the following:

Accept the license terms

Create VHD, VHDX or ISO formats

Add server roles

Add device drivers

Set machine name, administrator password, logfile path, and timezone

Join a domain by using an existing Active Directory account or a harvested domain-join blob

Enable WinRM for communication outside the local subnet

Enable Virtual LAN IDs and configure static IP addresses

Inject new servicing packages on the fly

Add a setupcomplete.cmd or other customer scripts to run after the unattend.xml is processed

Enable Emergency Management Services (EMS) for serial port console access

Enable development services to enable test signed drivers and unsigned applications, PowerShell default

shell

Enable debugging over serial, USB, TCP/IP, or IEEE 1394 protocols

Create USB media using WinPE that will partition the server and install the Nano image

Create USB media using WinPE that will detect your existing Nano Server hardware configuration and report

all the details in a log and on-screen. This includes network adapters, MAC addresses, and firmware Type

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Deploy-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image
https://www.microsoft.com/download/details.aspx?id=54065
https://developer.microsoft.comwindows/hardware/windows-assessment-deployment-kit

 Creating a custom Nano Server image

ROL E OR FEAT UREROL E OR FEAT URE OP T IONOP T ION

Hyper-V role (including NetQoS) -Compute

Failover Clustering and other components, detailed after this

table

-Clustering

Basic drivers for a variety of network adapters and storage

controllers. This is the same set of drivers included in a

Server Core installation of Windows Server 2016.

-OEMDrivers

File Server role and other storage components, detailed after

this table

-Storage

Windows Defender, including a default signature file -Defender

Reverse forwarders for application compatibility, for example

common application frameworks such as Ruby, Node.js, etc.

Now included by default

DNS Server role -Package Microsoft-NanoServer-DNS-Package

PowerShell Desired State Configuration (DSC) -Package Microsoft-NanoServer-DSC-Package

Internet Information Server (IIS) -Package Microsoft-NanoServer-IIS-Package

Host support for Windows Containers -Containers

(BIOS or UEFI). The detection process will also list all of the volumes on the system and the devices that do

not have a driver included in the Server Core drivers package.

If any of these are unfamiliar to you, review the remainder of this topic and the other Nano Server topics so that

you'll be prepared to provide the tool with the information it will need.

For Windows Server 2016, Nano Server is distributed on the physical media, where you will find a NanoSer verNanoSer ver

folder ; this contains a .wim image and a sub-folder called PackagesPackages . It is these package files that you use to add

server roles and features to the VHD image, which you then boot to.

You can also find and install these packages with the NanoServerPackage provider of PackageManagement

(OneGet) PowerShell module. See the Installing roles and features online section of this topic.

This table shows the roles and features that are available in this release of Nano Server, along with the Windows

PowerShell options that will install the packages for them. Some packages are installed directly with their own

Windows PowerShell switches (such as -Compute); others you install by passing package names to the -Package

parameter, which you can combine in a comma-separated list. You can dynamically list available packages using

the Get-NanoServerPackage cmdlet.

Note:Note: For full details, see Using DSC on Nano Server.

Note:Note: See IIS on Nano Server for details about working

with IIS.

https://docs.microsoft.com/en-us/archive/blogs/askcore/kms-host-client-count-not-increasing-due-to-duplicate-cmids

System Center Virtual Machine Manager agent -Package Microsoft-NanoServer-SCVMM-Package

System Center Operations Manager agent Installed separately. See the System Center Operations

Manager documentation for more details at

https://technet.microsoft.com/system-center-

docs/om/manage/install-agent-on-nano-server.

Data Center Bridging (including DCBQoS) -Package Microsoft-NanoServer-DCB-Package

Deploying on a virtual machine -Package Microsoft-NanoServer-Guest-Package

Deploying on a physical machine - Package Microsoft-NanoServer-Host-Package

BitLocker, trusted platform module (TPM), volume

encryption, platform identification, cryptography providers,

and other functionality related to secure startup

-Package Microsoft-NanoServer-SecureStartup-Package

Hyper-V support for Shielded VMs -Package Microsoft-NanoServer-ShieldedVM-Package

Simple Network Management Protocol (SNMP) agent -Package Microsoft-NanoServer-SNMP-Agent-Package.cab

IPHelper service which provides tunnel connectivity using

IPv6 transition technologies (6to4, ISATAP, Port Proxy, and

Teredo), and IP-HTTPS

-Package Microsoft-NanoServer-IPHelper-Service-

Package.cab

ROL E OR FEAT UREROL E OR FEAT URE OP T IONOP T ION

NOTENOTE

NOTENOTE

-Package Microsoft-NanoServer-SCVMM-Compute-

Package

Note:Note: Use the SCVMM Compute package only if you

are monitoring Hyper-V. For hyper-converged

deployments in VMM, you should also specify the -

Storage parameter. For more details, see the VMM

documentation.

Note:Note: This package is only available for the Datacenter

edition of Nano Server.

Note:Note: Not included with Windows Server 2016

installation media. Available online only. See Installing

roles and features online for details.

Note:Note: Not included with Windows Server 2016

installation media. Available online only. See Installing

roles and features online for details.

When you install packages with these options, a corresponding language pack is also installed based on selected server

media locale. You can find the available language packs and their locale abbreviations in the installation media in sub-

folders named for the locale of the image.

When you use the -Storage parameter to install File Services, File Services is not actually enabled. Enable this feature from

a remote computer with Server Manager.

https://docs.microsoft.com/en-us/system-center/vmm/hyper-v-nano?view=sc-vmm-2016&preserve-view=true
https://technet.microsoft.com/system-center-docs/om/manage/install-agent-on-nano-server

Failover Clustering items installed by the -Clustering parameterFailover Clustering items installed by the -Clustering parameter

 File and storage items installed by the -Storage parameterFile and storage items installed by the -Storage parameter

 Installing a Nano Server VHDInstalling a Nano Server VHD

Import-Module <Server media location>\NanoServer\NanoServerImageGenerator; New-NanoServerImage -

DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\server_en-us -BasePath .\Base -TargetPath

.\FirstStepsNano.vhdx -ComputerName FirstStepsNano

Failover Clustering role

VM Failover Clustering

Storage Spaces Direct (S2D)

Storage Quality of Service

Volume Replication Clustering

SMB Witness Service

File Server role

Data Deduplication

Multipath I/O, including a driver for Microsoft Device-Specific Module (MSDSM)

ReFS (v1 and v2)

iSCSI Initiator (but not iSCSI Target)

Storage Replica

Storage Management Service with SMI-S support

SMB Witness Service

Dynamic Volumes

Basic Windows storage providers (for Windows Storage Management)

This example creates a GPT-based VHDX image with a given computer name and including Hyper-V guest

drivers, starting with Nano Server installation media on a network share. In an elevated Windows PowerShell

prompt, start with this cmdlet:

The cmdlet will accomplish all of these tasks:

1. Select Standard as a base edition

2. Prompt you for the Administrator password

3. Copy installation media from \\Path\To\Media\server_en-us into .\Base

4. Convert the WIM image to a VHD. (The file extension of the target path argument determines whether it

creates an MBR-based VHD for Generation 1 virtual machines versus a GPT-based VHDX for Generation

2 virtual machines.)

5. Copy the resulting VHD into .\FirstStepsNano.vhdx

6. Set the Administrator password for the image as specified

7. Set the computer name of the image to FirstStepsNano

8. Install the Hyper-V guest drivers

All of this results in an image of .\FirstStepsNano.vhdx.

The cmdlet generates a log as it runs and will let you know where this log is located once it is finished. The WIM-

to-VHD conversion accomplished by the companion script generates its own log in %TEMP%\Convert-

WindowsImage\<GUID> (where <GUID> is a unique identifier per conversion session).

NOTENOTE

 Installing a Nano Server WIMInstalling a Nano Server WIM

New-NanoServerImage -Edition Standard -DeploymentType Host -MediaPath <path to root of media> -BasePath

.\Base -TargetPath .\NanoServerPhysical\NanoServer.wim -ComputerName <computer name> -OEMDrivers -Compute -

Clustering`

As long as you use the same base path, you can omit the media path parameter every time you run this cmdlet,

since it will use cached files from the base path. If you don't specify a base path, the cmdlet will generate a

default one in the TEMP folder. If you want to use different source media, but the same base path, you should

specify the media path parameter, however.

You now have the option to specify the Nano Server edition to build either the Standard or Datacenter edition. Use the -

Edition parameter to specify Standard or Datacenter editions.

Once you have an existing image, you can modify it as needed using the Edit-NanoServerImage cmdlet.

If you do not specify a computer name, a random name will be generated.

NOTENOTE

1. Copy the NanoServerImageGenerator folder from the \NanoServer folder in the Windows Server 2016

ISO a local folder on your computer.

2. Start Windows PowerShell as an administrator, change directory to the folder where you placed the

NanoServerImageGenerator folder and then import the module with

Import-Module .\NanoServerImageGenerator -Verbose .

You might have to adjust the Windows PowerShell execution policy. Set-ExecutionPolicy RemoteSigned should

work well.

To create a Nano Server image to serve as a Hyper-V host, run the following:

Where

MediaPath is the root of the DVD media or ISO image containing Windows Server 2016 .

-BasePath will contain a copy of the Nano Server binaries, so you can use New-NanoServerImage -BasePath

without having to specify -MediaPath in future runs.

-TargetPath will contain the resulting .wim file containing the roles & features you selected. Make sure to

specify the .wim extension.

-Compute adds the Hyper-V role.

-OemDrivers adds a number of common drivers.

You will be prompted to enter an administrator password.

For more information, run Get-Help New-NanoServerImage -Full .

Boot into WinPE and ensure that the .wim file just created is accessible from WinPE. (You could, for example,

copy the .wim file to a bootable WinPE image on a USB flash drive.)

Once WinPE boots, use Diskpart.exe to prepare the target computer's hard drive. Run the following Diskpart

commands (modify accordingly, if you're not using UEFI & GPT):

WARNINGWARNING

Diskpart.exe

Select disk 0

Clean

Convert GPT

Create partition efi size=100

Format quick FS=FAT32 label=System

Assign letter=s

Create partition msr size=128

Create partition primary

Format quick FS=NTFS label=NanoServer

Assign letter=n

List volume

Exit

Dism.exe /apply-image /imagefile:.\NanoServer.wim /index:1 /applydir:n:\

Bcdboot.exe n:\Windows /s s:

 Editing files on Nano Server locally and remotelyEditing files on Nano Server locally and remotely

 Installing roles and features online

NOTENOTE

 Installing roles and features from a package repositoryInstalling roles and features from a package repository

Install-PackageProvider NanoServerPackage

Import-PackageProvider NanoServerPackage

These commands will delete all data on the hard drive:

Apply the Nano Server image (adjust the path of the .wim file):

Remove the DVD media or USB drive and reboot your system with Wpeutil.exe RebootWpeutil.exe Reboot

In either case, connect to Nano Server, such as with Windows PowerShell remoting.

Once you've connected to Nano Server, you can edit a file residing on your local computer by passing the file's

relative or absolute path to the psEdit command, for example: psEdit C:\Windows\Logs\DISM\dism.log or

psEdit .\myScript.ps1

Edit a file residing on the remote Nano Server by starting a remote session with

Enter-PSSession -ComputerName 192.168.0.100 -Credential ~\Administrator and then passing the file's relative or

absolute path to the psEdit command like this: psEdit C:\Windows\Logs\DISM\dism.log

If you install an optional Nano Server package from media or online repository, it won't have recent security fixes included.

To avoid a version mismatch between the optional packages and base operating system, you should install the latest

cumulative update immediately after installing any optional packages and beforebefore restarting the server.

You can find and install Nano Server packages from the online package repository by using the

NanoServerPackage provider of the PackageManagement PowerShell module. To install this provider, use these

cmdlets:

NOTENOTE

Save-Module -Path $Env:ProgramFiles\WindowsPowerShell\Modules\ -Name NanoServerPackage -MinimumVersion

1.0.1.0

Import-PackageProvider NanoServerPackage

Find-NanoServerPackage

Save-NanoServerPackage

Install-NanoServerPackage

Find-Package -ProviderName NanoServerPackage

Save-Package -ProviderName NanoServerPackage

Install-Package -ProviderName NanoServerPackage

Get-Package -ProviderName NanoServerPackage

 Searching for Nano Server packagesSearching for Nano Server packages

Find-NanoServerPackage

 Installing Nano Server packagesInstalling Nano Server packages

If you experience errors when running Install-PackageProvider, check that you have installed the latest cumulative update

(KB3206632 or later), or use Save-Module as follows:

Once this provider is installed and imported, you can search for, download, and install Nano Server packages

using cmdlets designed specifically for working with Nano Server packages:

You can also use the generic PackageManagement cmdlets and specify the NanoServerPackage provider :

To use any of these cmdlets with Nano Server packages on Nano Server, add -ProviderName NanoServerPackage .

If you don't add the -ProviderName parameter, PackageManagement will iterate all of the providers. For more

details on these cmdlets, run Get-Help <cmdlet> . Here are some common usage examples:

You can use either Find-NanoServerPackage or Find-Package -ProviderName NanoServerPackage to search for and

return a list of Nano Server packages that are available in the online repository. For example, you can get a list

of all the latest packages:

Running Find-Package -ProviderName NanoServerPackage -DisplayCulture displays all available cultures.

If you need a specific locale version, such as US English, you could use Find-NanoServerPackage -Culture en-us

or Find-Package -ProviderName NanoServerPackage -Culture en-us or

Find-Package -Culture en-us -DisplayCulture .

To find a specific package by package name, use the -Name parameter. This parameter also accepts wildcards.

For example, to find all packages with VMM in the name, use Find-NanoServerPackage -Name *VMM* or

Find-Package -ProviderName NanoServerPackage -Name *VMM* .

You can find a particular version with the -RequiredVersion, -MinimumVersion, or -MaximumVersion

parameters. To find all available versions, use -AllVersions. Otherwise, only the latest version is returned. For

example: Find-NanoServerPackage -Name *VMM* -RequiredVersion 10.0.14393.0 . Or, for all versions:

Find-Package -ProviderName NanoServerPackage -Name *VMM* -AllVersions

You can install a Nano Server package (including its dependency packages, if any) to Nano Server either locally

or an offline image with either Install-NanoServerPackage or Install-Package -ProviderName NanoServerPackage .

https://support.microsoft.com/kb/3206632

 Downloading Nano Server packagesDownloading Nano Server packages

 Inventory installed packagesInventory installed packages

 Installing roles and features from local sourceInstalling roles and features from local source

Both of these accept input from the pipeline.

To install the latest version of a Nano Server package to an online Nano Server, use either

Install-NanoServerPackage -Name Microsoft-NanoServer-Containers-Package or

Install-Package -Name Microsoft-NanoServer-Containers-Package . PackageManagement will use the culture of the

Nano Server.

You can install a Nano Server package to an offline image while specifying a particular version and culture, like

this:

Install-NanoServerPackage -Name Microsoft-NanoServer-DCB-Package -Culture de-de -RequiredVersion 10.0.14393.0
-ToVhd C:\MyNanoVhd.vhd

or:

Install-Package -Name Microsoft-NanoServer-DCB-Package -Culture de-de -RequiredVersion 10.0.14393.0 -ToVhd
C:\MyNanoVhd.vhd

Here are some examples of pipelining package search results to the installation cmdlet:

Find-NanoServerPackage *dcb* | Install-NanoServerPackage finds any packages with dcb in the name and then

installs them.

Find-Package *nanoserver-compute-* | Install-Package finds packages with nanoserver-compute- in the name

and installs them.

Find-NanoServerPackage -Name *nanoserver-compute* | Install-NanoServerPackage -ToVhd C:\MyNanoVhd.vhd finds

packages with compute in the name and installs them to an offline image.

Find-Package -ProviderName NanoserverPackage *nanoserver-compute-* | Install-Package -ToVhd C:\MyNanoVhd.vhd

does the same thing with any package that has nanoserver-compute- in the name.

Save-NanoServerPackage or Save-Package allow you to download packages and save them without installing

them. Both cmdlets accept input from the pipeline.

For example, to download and save a Nano Server package to a directory that matches the wildcard path, use

Save-NanoServerPackage -Name Microsoft-NanoServer-DNS-Package -Path C:\ In this example, -Culture wasn't

specified, so the culture of the local machine will be used. No version was specified, so the latest version will be

saved.

Save-Package -ProviderName NanoServerPackage -Name Microsoft-NanoServer-IIS-Package -Path C:\ -Culture it-IT
-MinimumVersion 10.0.14393.0

saves a particular version and for the Italian language and locale.

You can send search results through the pipeline as in these examples:

Find-NanoServerPackage -Name *containers* -MaximumVersion 10.2 -MinimumVersion 1.0 -Culture es-ES | Save-
NanoServerPackage -Path C:\

or

Find-Package -ProviderName NanoServerPackage -Name *shield* -Culture es-ES | Save-Package -Path

You can discover which Nano Server packages are installed with Get-Package . For example, see which packages

are on Nano Server with Get-Package -ProviderName NanoserverPackage .

To check the Nano Server packages that are installed in an offline image, run

Get-Package -ProviderName NanoserverPackage -FromVhd C:\MyNanoVhd.vhd .

<?xml version=1.0 encoding=utf-8?>

 <unattend xmlns=urn:schemas-microsoft-com:unattend>

 <servicing>

 <package action=install>

 <assemblyIdentity name=Microsoft-NanoServer-IIS-Feature-Package version=10.0.14393.0

processorArchitecture=amd64 publicKeyToken=31bf3856ad364e35 language=neutral />

 <source location=c:\packages\Microsoft-NanoServer-IIS-Package.cab />

 </package>

 <package action=install>

 <assemblyIdentity name=Microsoft-NanoServer-IIS-Feature-Package version=10.0.14393.0

processorArchitecture=amd64 publicKeyToken=31bf3856ad364e35 language=en-US />

 <source location=c:\packages\en-us\Microsoft-NanoServer-IIS-Package_en-us.cab />

 </package>

 </servicing>

 <cpi:offlineImage cpi:source= xmlns:cpi=urn:schemas-microsoft-com:cpi />

</unattend>

 Customizing an existing Nano Server VHD

 Additional tasks you can accomplish with New-NanoServerImage and

Edit-NanoServerImage
 Joining domainsJoining domains

Though offline installation of server roles and other packages is recommended, you might need to install them

online (with the Nano Server running) in container scenarios. To do this, follow these steps:

1. Copy the Packages folder from the installation media locally to the running Nano Server (for example, to

C:\packages).

2. Create a new Unattend.xml file on another computer and then copy it to Nano Server. You can copy and

paste this XML content into the XML file you created (this example shows installing the IIS package):

3. In the new XML file you created (or copied), edit C:\packages to the directory you copied the content of

Packages to.

4. Switch to the directory with the newly created XML file and run:

dism /online /apply-unattend:.\unattend.xml

5. Confirm that the package and its associated language pack is installed correctly by running:

dism /online /get-packages

You should see Package Identity : Microsoft-NanoServer-IIS-Package~31bf3856ad364e35~amd64~en-

US~10.0.10586.0 listed twice, once for Release Type : Language Pack and once for Release Type : Feature

Pack.

You can change the details of an existing VHD by using the Edit-NanoServerImage cmdlet, as in this example:

Edit-NanoServerImage -BasePath .\Base -TargetPath .\BYOVHD.vhd

This cmdlet does the same things as New-NanoServerImage, but changes the existing image instead of

converting a WIM to a VHD. It supports the same parameters as New-NanoServerImage with the exception of -

MediaPath and -MaxSize, so the initial VHD must have been created with those parameters before you can make

changes with Edit-NanoServerImage.

New-NanoServerImage offers two methods of joining a domain; both rely on offline domain provisioning, but

one harvests a blob to accomplish the join. In this example, the cmdlet harvests a domain blob for the Contoso

domain from the local computer (which of course must be part of the Contoso domain), then it performs offline

provisioning of the image using the blob:

djoin

/Provision

/Domain Contoso

/Machine JoiningDomainsNoHarvest

/SaveFile JoiningDomainsNoHarvest.djoin

 Adding additional driversAdding additional drivers

md mountdir

dism\dism /Mount-Image /ImageFile:.\NanoServer.vhd /Index:1 /MountDir:.\mountdir

dism\dism /Add-Driver /image:.\mountdir /driver:

C:\Windows\System32\DriverStore\FileRepository\net1ic64.inf_amd64_fafa7441408bbecd

dism\dism /Unmount-Image /MountDir:.\MountDir /Commit

New-NanoServerImage -Edition Standard -DeploymentType Host -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\JoinDomHarvest.vhdx -ComputerName JoinDomHarvest -DomainName Contoso

When this cmdlet completes, you should find a computer named JoinDomHarvest in the Active Directory

computer list.

You can also use this cmdlet on a computer that is not joined to a domain. To do this, harvest a blob from any

computer that is joined to the domain, and then provide the blob to the cmdlet yourself. Note that when you

harvest such a blob from another computer, the blob already includes that computer's name--so if you try to

add the -ComputerName parameter, an error will result.

You can harvest the blob with this command:

Run New-NanoServerImage using the harvested blob:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\JoinDomNoHrvest.vhd -DomainBlobPath .\Path\To\Domain\Blob\JoinDomNoHrvestContoso.djoin

In the event that you already have a node in the domain with the same computer name as your future Nano

Server, you could reuse the computer name by adding the -ReuseDomainNode parameter.

Nano Server offers a package that includes a set of basic drivers for a variety of network adapters and storage

controllers; it's possible that drivers for your network adapters might not be included. You can use these steps to

find drivers in a working system, extract them, and then add them to the Nano Server image.

1. Install Windows Server 2016 on the physical computer where you will run Nano Server.

2. Open Device Manager and identify devices in the following categories:

3. Network adapters

4. Storage controllers

5. Disk drives

6. For each device in these categories, right-click the device name, and click Proper tiesProper ties . In the dialog that

opens, click the DriverDriver tab, and then click Driver DetailsDriver Details .

7. Note the filename and path of the driver file that appears. For example, let's say the driver file is e1i63x64.sys,

which is in C:\Windows\System32\Drivers.

8. In a command prompt, search for the driver file and search for all instances with dir e1i*.sys /s /b. In this

example, the driver file is also present in the path

C:\Windows\System32\DriverStore\FileRepository\net1ic64.inf_amd64_fafa7441408bbecd\e1i63x64.sys.

9. In an elevated command prompt, navigate to the directory where the Nano Server VHD is and run the

following commands:

10. Repeat these steps for each driver file you need.

NOTENOTE

 Injecting driversInjecting drivers

NOTENOTE

 Connecting with WinRMConnecting with WinRM

 Setting static IP addressesSetting static IP addresses

 Custom image sizeCustom image size

 Embedding custom dataEmbedding custom data

 Running custom commands after the first bootRunning custom commands after the first boot

In the folder where you keep your drivers, both the SYS files and corresponding INF files must be present. Also, Nano

Server only supports signed, 64-bit drivers.

Nano Server offers a package that includes a set of basic drivers for a variety of network adapters and storage

controllers; it's possible that drivers for your network adapters might not be included. You can use this syntax to

have New-NanoServerImage search the directory for available drivers and inject them into the Nano Server

image:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\InjectingDrivers.vhdx -DriverPath .\Extra\Drivers

In the folder where you keep your drivers, both the SYS files and corresponding INF files must be present. Also, Nano

Server only supports signed, 64-bit drivers.

Using the -DriverPath parameter, you can also pass a array of paths to driver .inf files:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\InjectingDrivers.vhdx -DriverPath .\Extra\Drivers\netcard64.inf

To be able to connect to a Nano Server computer using Windows Remote Management (WinRM) (from another

computer that is not on the same subnet), open port 5985 for inbound TCP traffic on the Nano Server image.

Use this cmdlet:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\ConnectingOverWinRM.vhd -EnableRemoteManagementPort

To configure a Nano Server image to use static IP addresses, first find the name or index of the interface you

want to modify by using Get-NetAdapter, netsh, or the Nano Server Recovery Console. Use the -Ipv6Address, -

Ipv6Dns, -Ipv4Address, -Ipv4SubnetMask, -Ipv4Gateway and -Ipv4Dns parameters to specify the configuration,

as in this example:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\StaticIpv4.vhd -InterfaceNameOrIndex Ethernet -Ipv4Address 192.168.1.2 -Ipv4SubnetMask
255.255.255.0 -Ipv4Gateway 192.168.1.1 -Ipv4Dns 192.168.1.1

You can configure the Nano Server image to be a dynamically expanding VHD or VHDX with the -MaxSize

parameter, as in this example:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\BigBoss.vhd -MaxSize 100GB

To embed your own script or binaries in the Nano Server image, use the -CopyPath parameter to pass an array

of files and directories to be copied. The -CopyPath parameter can also accept a hashtable to specify the

destination path for files and directories.

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\BigBoss.vhd -CopyPath .\tools

 Running custom PowerShell scripts as part of image creationRunning custom PowerShell scripts as part of image creation

 Support for development scenariosSupport for development scenarios

 Custom unattend fileCustom unattend file

NOTENOTE

 Collecting log filesCollecting log files

NOTENOTE

 Windows Server App installerWindows Server App installer

To run custom commands as part of setupcomplete.cmd, use the -SetupCompleteCommand parameter to pass

an array of commands:

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -SetupCompleteCommand @(echo foo, echo bar)

To run custom PowerShell scripts as part of the image creation process, use the -OfflineScriptPath parameter to

pass an array of paths to .ps1 scripts. If those scripts take arguments, use the -OfflineScriptArgument to pass a

hashtable of additional arguments to the scripts.

New-NanoServerImage -DeploymentType Host -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -OfflineScriptPath C:\MyScripts\custom.ps1 -OfflineScriptArgument
@{Param1=Value1; Param2=Value2}

If you want to develop and test on Nano Server, you can use the -Development parameter. This will enable

PowerShell as the default local shell, enable installation of unsigned drivers, copy debugger binaries, open a port

for debugging, enable test signing, and enable installation of AppX packages without a developer license:

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -Development

If you want to use your own unattend file, use the -UnattendPath parameter :

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -UnattendPath \\path\to\unattend.xml

Specifying an administrator password or computer name in this unattend file will override the values set by -

AdministratorPassword and -ComputerName.

Nano Server does not support setting TCP/IP settings via unattend files. You can use Setupcomplete.cmd to configure

TCP/IP settings.

If you want to collect the log files during image creation, use the -LogPath parameter to specify a directory

where all the log files are copied.

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -LogPath C:\Logs

Some parameters on New-NanoServerImage and Edit-NanoServerImage are for internal use only and can be safely

ignored. These include the -SetupUI and -Internal parameters.

Windows Server App (WSA) installer provides a reliable installation option for Nano Server. Since Windows

Installer (MSI) is not supported on Nano Server, WSA is also the only installation technology available for non-

Microsoft products. WSA leverages Windows app package technology designed to install and service

applications safely and reliably, using a declarative manifest. It extends the Windows app package installer to

support Windows Server-specific extensions, with the limitation that WSA does not support installing drivers.

Creating and installing a WSA package on Nano Server involves steps for both the publisher and the consumer

of the package.

Additional resources for creating appsAdditional resources for creating apps

 Installing drivers on Nano ServerInstalling drivers on Nano Server

Installing driver packages offlineInstalling driver packages offline

Installing driver packages onlineInstalling driver packages online

 Joining Nano Server to a domain
 To add Nano Server to a domain onlineTo add Nano Server to a domain online

The package publisher should do the following:

1. Install Windows 10 SDK, which includes the tools needed to create a WSA package: MakeAppx, MakeCert,

Pvk2Pfx, SignTool.

2. Declare a manifest: Follow the WSA manifest extension schema to create the manifest file, AppxManifest.xml.

3. Use the MakeAppxMakeAppx tool to create a WSA package.

4. Use MakeCer tMakeCer t and Pvk2PfxPvk2Pfx tools to create the certificate, and then use SigntoolSigntool to sign the package.

Next, the package consumer should follow these steps:

1. Run the Import-Certificate PowerShell cmdlet to import the publisher's certificate from Step 4 above to Nano

Server with the certStoreLocation at Cert:\LocalMachine\TrustedPeople. For example:

Import-Certificate -FilePath .\xyz.cer -CertStoreLocation Cert:\LocalMachine\TrustedPeople

2. Install the app on Nano Server by running the Add-AppxPackageAdd-AppxPackage PowerShell cmdlet to install a WSA

package on Nano Server. For example: Add-AppxPackage wsaSample.appx

WSA is server extension of Windows app package technology (though it is not hosted in Microsoft Store). If you

want to publish apps with WSA,these topics will help you familiarize yourself with the app package pipeline:

How to create a basic package manifest

App Packager (MakeAppx.exe)

How to create an app package signing certificate

SignTool

You can install non-Microsoft drivers on Nano Server by using INF driver packages. These include both Plug-

and-Play (PnP) driver packages and File System Filter driver packages. Network Filter drivers are not currently

supported on Nano Server.

Both PnP and File System Filter driver packages must follow the Universal driver requirements and installation

process, as well as general driver package guidelines such as signing. They are documented at these locations:

Driver Signing

Using a Universal INF File

Supported driver packages can be installed on Nano Server offline via DISM.exe or DISM PowerShell cmdlets.

PnP driver packages can be installed to Nano Server online by using PnpUtil. Online driver installation for non-

PnP driver packages is not currently supported on Nano Server.

1. Harvest a data blob from a computer in the domain that is already running Windows Threshold Server

using this command:

djoin.exe /provision /domain <domain-name> /machine <machine-name> /savefile .\odjblob

This saves the data blob in a file called odjblob.

2. Copy the odjblob file to the Nano Server computer with these commands:

net use z: \\<ip address of Nano Ser ver>\c$net use z: \\<ip address of Nano Ser ver>\c$

https://developer.microsoft.com/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/element-serverpreview-extension-manual
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/element-serverpreview-extension-manual
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/element-serverpreview-extension-manual
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/how-to-create-a-basic-package-manifest
https://docs.microsoft.com/en-us/windows/win32/appxpkg/make-appx-package--makeappx-exe-
https://docs.microsoft.com/en-us/windows/win32/appxpkg/how-to-create-a-package-signing-certificate
https://docs.microsoft.com/en-us/windows/win32/seccrypto/signtool
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/using-a-universal-inf-file
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-driver-servicing-command-line-options-s14
https://docs.microsoft.com/en-us/powershell/module/dism/add-windowsdriver
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/pnputil

NOTENOTE

If the net use command fails, you probably need to adjust Windows Firewall rules. To do this, first open an

elevated command prompt, start Windows PowerShell and then connect to the Nano Server computer with

Windows PowerShell Remoting with these commands:

Set-Item WSMan:\localhost\Client\TrustedHosts <IP address of Nano Server>

$ip = <ip address of Nano Server>

Enter-PSSession -ComputerName $ip -Credential $ip\Administrator

When prompted, provide the Administrator password, then run this command to set the firewall rule:

netsh advfirewall firewall set rule group=File and Printer Sharing new enable=yesnetsh advfirewall firewall set rule group=File and Printer Sharing new enable=yes

Exit Windows PowerShell with Exit-PSSession , and then retry the net use command. If successful, continue

copying the odjblob file contents to the Nano Server.

md z:\Tempmd z:\Temp

copy odjblob z:\Tempcopy odjblob z:\Temp

3. Check the domain you want to join Nano Server to and ensure that DNS is configured. Also, verify that

name resolution of the domain or a domain controller works as expected. To do this, open an elevated

command prompt, start Windows PowerShell and then connect to the Nano Server computer with

Windows PowerShell remoting with these commands:

Set-Item WSMan:\localhost\Client\TrustedHosts <IP address of Nano Server>

$ip = <ip address of Nano Server>

Enter-PSSession -ComputerName $ip -Credential $ip\Administrator

When prompted, provide the Administrator password. Nslookup is not available on Nano Server, so you

can verify name resolution with Resolve-DNSName.

4. If name resolution succeeds, then in the same Windows PowerShell session, run this command to join the

domain:

djoin /requestodj /loadfile c:\Temp\odjblob /windowspath c:\windows /localos

5. Restart the Nano Server computer, and then exit the Windows PowerShell session:

shutdown /r /t 5

Exit-PSSession

6. After you have joined Nano Server to a domain, add the domain user account to the Administrators

group on the Nano Server.

7. For security, remove the Nano Server from the trusted hosts list with this command:

Set-Item WSMan:\localhost\client\TrustedHosts

Alternate method to join a domain in one stepAlternate method to join a domain in one step

First, harvest the data blob from another computer running Windows Threshold Server that is already in your

domain using this command:

djoin.exe /provision /domain <domain-name> /machine <machine-name> /savefile .\odjblob

Open the file odjblob (perhaps in Notepad), copy its contents, and then paste the contents into the

dism\dism /Mount-ImagemediaFile:.\NanoServer.vhd /Index:1 /MountDir:.\mountdir

dism\dismmedia:.\mountdir /Apply-Unattend:.\unattend.xml

md .\mountdir\windows\panther

copy .\unattend.xml .\mountdir\windows\panther

dism\dism /Unmount-Image /MountDir:.\mountdir /Commit

 Working with server roles on Nano Server
 Using Hyper-V on Nano ServerUsing Hyper-V on Nano Server

<AccountData> section of the Unattend.xml file below.

Put this Unattend.xml file into the C:\NanoServer folder, and then use the following commands to mount the

VHD and apply the settings in the offlineServicing section:

Create a Panther folder (used by Windows systems for storing files during setup; see Windows 7, Windows

Server 2008 R2, and Windows Vista setup log file locations if you're curious), copy the Unattend.xml file to it,

and then unmount the VHD with these commands:

The first time you boot Nano Server from this VHD, the other settings will be applied.

After you have joined Nano Server to a domain, add the domain user account to the Administrators group on

the Nano Server.

Hyper-V works the same on Nano Server as it does on Windows Server in Server Core mode, with two

exceptions:

You must perform all management remotely and the management computer must be running the same

build of Windows Server as the Nano Server. Older versions of Hyper-V Manager or Hyper-V Windows

PowerShell cmdlets will not work.

RemoteFX is not available.

In this release, these features of Hyper-V have been verified:

Enabling Hyper-V

Creation of Generation 1 and Generation 2 virtual machines

Creation of virtual switches

Starting virtual machines and running Windows guest operating systems

Hyper-V Replica

If you want to perform a live migration of virtual machines, create a virtual machine on an SMB share, or

connect resources on an existing SMB share to an existing virtual machine, it is vital that you configure

authentication correctly. You have two options for doing this:

Constrained delegationConstrained delegation

Constrained delegation works exactly the same as in previous releases. Refer to these articles for more

information:

Enabling Hyper-V Remote Management - Configuring Constrained Delegation For SMB and Highly

Available SMB

Enabling Hyper-V Remote Management - Configuring Constrained Delegation For Non-Clustered Live

https://support.microsoft.com/kb/927521
https://blogs.msdn.com/b/taylorb/archive/2012/03/20/enabling-hyper-v-remote-management-configuring-constrained-delegation-for-smb-and-highly-available-smb.aspx
https://blogs.msdn.com/b/taylorb/archive/2012/03/20/enabling-hyper-v-remote-management-configuring-constrained-delegation-for-non-clustered-live-migration.aspx

 Using Failover Clustering on Nano ServerUsing Failover Clustering on Nano Server

NOTENOTE

 Using DNS Server on Nano ServerUsing DNS Server on Nano Server

 Using IIS on Nano ServerUsing IIS on Nano Server

Migration

CredSSPCredSSP

First, refer to the Using Windows PowerShell remoting section of this topic to enable and test CredSSP. Then, on

the management computer, you can use Hyper-V Manager and select the option to connect as another user.

Hyper-V Manager will use CredSSP. You should do this even if you are using your current account.

Windows PowerShell cmdlets for Hyper-V can use CimSession or Credential parameters, either of which work

with CredSSP.

Failover clustering works the same on Nano Server as it does on Windows Server in Server Core mode, but

keep these caveats in mind:

Clusters must be managed remotely with Failover Cluster Manager or Windows PowerShell.

All Nano Server cluster nodes must be joined to the same domain, similar to cluster nodes in Windows

Server.

The domain account must have Administrator privileges on all Nano Server nodes, as with cluster nodes

in Windows Server.

All commands must be run in an elevated command prompt.

Additionally, certain features are not supported in this release:

You cannot run failover clustering cmdlets on a local Nano Server through Windows PowerShell.

Clustering roles other than Hyper-V and File Server.

You'll find these Windows PowerShell cmdlets useful in managing Failover clusters:

You can create a new cluster with New-Cluster -Name <clustername> -Node <comma-separated cluster node list>

Once you've established a new cluster, you should run Set-StorageSetting -NewDiskPolicy OfflineShared on all

nodes.

Add an additional node to the cluster with

Add-ClusterNode -Name <comma-separated cluster node list> -Cluster <clustername>

Remove a node from the cluster with

Remove-ClusterNode -Name <comma-separated cluster node list> -Cluster <clustername>

Create a Scale-Out File Server with Add-ClusterScaleoutFileServerRole -name <sofsname> -cluster <clustername>

You can find additional cmdlets for failover clustering at Microsoft.FailoverClusters.PowerShell.

To provide Nano Server with the DNS Server role, add the Microsoft-NanoServer-DNS-Package to the image

(see the Creating a custom Nano Server image section of this topic. Once the Nano Server is running, connect to

it and run this command from and elevated Windows PowerShell console to enable the feature:

Enable-WindowsOptionalFeature -Online -FeatureName DNS-Server-Full-Role

For steps to use the Internet Information Services (IIS) role, see IIS on Nano Server.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/ee461009(v=technet.10)

Using MPIO on Nano ServerUsing MPIO on Nano Server

 Using SSH on Nano ServerUsing SSH on Nano Server

 Appendix: Sample Unattend.xml file that joins Nano Server to a

domain

NOTENOTE

<?xml version='1.0' encoding='utf-8'?>

<unattend xmlns=urn:schemas-microsoft-com:unattend

xmlns:wcm=https://schemas.microsoft.com/WMIConfig/2002/State xmlns:xsi=http://www.w3.org/2001/XMLSchema-

instance>

 <settings pass=offlineServicing>

 <component name=Microsoft-Windows-UnattendedJoin processorArchitecture=amd64

publicKeyToken=31bf3856ad364e35 language=neutral versionScope=nonSxS>

 <OfflineIdentification>

 <Provisioning>

 <AccountData>

AAAAAAARUABLEABLEABAoAAAAAAAMABSUABLEABLEABAwAAAAAAAAABbMAAdYABc8ABYkABLAABbMAAEAAAAMAAA0ABY4ABZ8ABbIABa0AAc

IABY4ABb8ABZUABAsAAAAAAAQAAZoABNUABOYABZYAANQABMoAAOEAAMIAAOkAANoAAMAAAXwAAJAAAAYAAA0ABY4ABZ8ABbIABa0AAcIABY

4ABb8ABZUABLEAALMABLQABU0AATMABXAAAAAAAKdf/mhfXoAAUAAAQAAAAb8ABLQABbMABcMABb4ABc8ABAIAAAAAAb8ABLQABbMABcMABb

4ABc8ABLQABb0ABZIAAGAAAAsAAR4ABTQABUAAAAAAACAAAQwABZMAAZcAAUgABVcAAegAARcABKkABVIAASwAAY4ABbcABW8ABQoAAT0ABN

8AAO8ABekAAJMAAVkAAZUABckABXEABJUAAQ8AAJ4AAIsABZMABdoAAOsABIsABKkABQEABUEABIwABKoAAaAABXgABNwAAegAAAkAAAAABA

MABLIABdIABc8ABY4AADAAAA4AAZ4ABbQABcAAAAAAACAAkKBW0ID8nJDWYAHnBAXE77j7BAEWEkl+lKB98XC2G0/9+Wd1DJQW4IYAkKBAAD

hAnKBWEwhiDAAAM2zzDCEAM6IAAAgAAAAAAAQAAAAAAAAAAAABwzzAAA

 </AccountData>

 </Provisioning>

 </OfflineIdentification>

 </component>

 </settings>

 <settings pass=oobeSystem>

 <component name=Microsoft-Windows-Shell-Setup processorArchitecture=amd64

publicKeyToken=31bf3856ad364e35 language=neutral versionScope=nonSxS>

 <UserAccounts>

 <AdministratorPassword>

 <Value>Tuva</Value>

 <PlainText>true</PlainText>

 </AdministratorPassword>

 </UserAccounts>

 <TimeZone>Pacific Standard Time</TimeZone>

 </component>

 </settings>

 <settings pass=specialize>

 <component name=Microsoft-Windows-Shell-Setup processorArchitecture=amd64

publicKeyToken=31bf3856ad364e35 language=neutral versionScope=nonSxS>

 <RegisteredOwner>My Team</RegisteredOwner>

 <RegisteredOrganization>My Corporation</RegisteredOrganization>

 </component>

 </settings>

</unattend>

For steps to use MPIO, see MPIO on Nano Server

For instructions on how to install and use SSH on Nano Server with the OpenSSH project, see the Win32-

OpenSSH wiki.

Be sure to delete the trailing space in the contents of odjblob once you paste it into the Unattend file.

https://github.com/PowerShell/Win32-OpenSSH/wiki

IIS on Nano Server

10/25/2021 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

FEAT UREFEAT URE EN A BL ED BY DEFA ULTEN A BL ED BY DEFA ULT

Common HTTP FeaturesCommon HTTP Features

Default document x

Directory browsing x

HTTP Errors x

Static content x

HTTP redirection

Health and DiagnosticsHealth and Diagnostics

HTTP logging x

Custom logging

Request monitor

Tracing

PerformancePerformance

Static content compression x

Dynamic content compression

SecuritySecurity

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

You can install the Internet Information Services (IIS) server role on Nano Server by using the -Package

parameter with Microsoft-NanoServer-IIS-Package. For information about configuring Nano Server, including

installing packages, see Install Nano Server.

In this release of Nano Server, the following IIS features are available:

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/IIS-on-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

Request filtering x

Basic authentication

Client certificate mapping authentication

Digest authentication

IIS client certificate mapping authentication

IP and domain restrictions

URL authorization

Windows authentication

Application DevelopmentApplication Development

Application initialization

CGI

ISAPI extensions

ISAPI filters

Server-side includes

WebSocket protocol

Management ToolsManagement Tools

IISAdministration module for Windows PowerShell x

FEAT UREFEAT URE EN A BL ED BY DEFA ULTEN A BL ED BY DEFA ULT

 Installing IIS on Nano Server

New-NanoServerImage -Edition Standard -DeploymentType Guest -MediaPath f:\ -BasePath .\Base -TargetPath

.\Nano1.vhd -ComputerName Nano1 -Package Microsoft-NanoServer-IIS-Package

A series of articles on other configurations of IIS (such as using ASP.NET, PHP, and Java) and other related

content is published at https://iis.net/learn.

You can install this server role either offline (with the Nano Server off) or online (with the Nano Server running);

offline installation is the recommended option.

For offline installation, add the package with the -Packages parameter of New-NanoServerImage, as in this

example:

If you have an existing VHD file, you can install IIS offline with DISM.exe by mounting the VHD, and then using

the Add-PackageAdd-Package option. The following example steps assume that you are running from the directory

specified by BasePath option, which was created after running New-NanoServerImage.

https://iis.net/learn

NOTENOTE

 Installing IIS on Nano Server onlineInstalling IIS on Nano Server online

 <unattend xmlns=urn:schemas-microsoft-com:unattend>

 <servicing>

 <package action=install>

 <assemblyIdentity name=Microsoft-NanoServer-IIS-Package version=10.0.14393.0

processorArchitecture=amd64 publicKeyToken=31bf3856ad364e35 language=neutral />

 <source location=c:\packages\Microsoft-NanoServer-IIS-Package.cab />

 </package>

 <package action=install>

 <assemblyIdentity name=Microsoft-NanoServer-IIS-Package version=10.0.14393.0

processorArchitecture=amd64 publicKeyToken=31bf3856ad364e35 language=en-US />

 <source location=c:\packages\en-us\Microsoft-NanoServer-IIS-Package_en-us.cab />

 </package>

 </servicing>

 <cpi:offlineImage cpi:source= xmlns:cpi=urn:schemas-microsoft-com:cpi />

</unattend>

1. mkdir mountdir

2. .\Tools\dism.exe /Mount-Image /ImageFile:.\NanoServer.vhd /Index:1 /MountDir :.\mountdir

3. .\Tools\dism.exe /Add-Package /PackagePath:.\packages\Microsoft-NanoServer-IIS-Package.cab

/Image:.\mountdir

4. .\Tools\dism.exe /Add-Package /PackagePath:.\packages\en-us\Microsoft-NanoServer-IIS-Package_en-us.cab

/Image:.\mountdir

5. .\Tools\dism.exe /Unmount-Image /MountDir :.\MountDir /Commit

Note that Step 4 adds the language pack--this example installs EN-US.

At this point, you can start Nano Server with IIS.

Though offline installation of the server role is recommended, you might need to install it online (with the Nano

Server running) in container scenarios. To do this, follow these steps:

1. Copy the Packages folder from the installation media locally to the running Nano Server (for example, to

C:\packages).

2. Create a new Unattend.xml file on another computer and then copy it to the Nano Server. You can copy

and paste this XML content into the XML file you created:

3. In the new XML file you created (or copied), edit C:\packages to the directory you copied the content of

Packages to.

4. Switch to the directory with the newly created XML file and run

dism /online /apply-unattend:.\unattend.xmldism /online /apply-unattend:.\unattend.xml

5. Confirm that the IIS package and its associated language pack are installed correctly by running:

dism /online /get-packagesdism /online /get-packages

You should see Package Identity : Microsoft-NanoServer-IIS-

Package~31bf3856ad364e35~amd64~~10.0.14393.1000 listed twice, once for Release Type : Language

Pack and once for Release Type : Feature Pack.

6. Start the W3SVC service either with net star t w3svcnet star t w3svc or by restarting the Nano Server.

Starting IIS

Get-VM -name <VM name> | Select -ExpandProperty networkadapters | select IPAddresses

 Enabling and disabling IIS features

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=WindowsAuthenticationModule

image=%windir%\System32\inetsrv\authsspi.dll

<modules> <add name=WindowsAuthenticationModule lockItem=true

\/>

<windowsAuthentication> <windowsAuthentication enabled=false

authPersistNonNTLM\=true><providers><add

value=Negotiate /><add value=NTLM />

</providers>
</windowsAuthentication>

 Example: installing Windows authenticationExample: installing Windows authentication

 Example: uninstalling Windows authenticationExample: uninstalling Windows authentication

 Other common IIS configuration tasks

Once IIS is installed and running, it is ready to serve web requests. Verify that IIS is running by browsing the

default IIS web page at http://<IP address of Nano Server>. On a physical computer, you can determine the IP

address by using the Recovery Console. On a virtual machine, you can get the IP address by using a Windows

PowerShell prompt and running:

If you are not able to access the default IIS web page, double-check the IIS installation by looking for the

c:\inetpubc:\inetpub directory on the Nano Server.

A number of IIS features are enabled by default when you install the IIS role (see the table in the Overview of IIS

on Nano Server section of this topic). You can enable (or disable) additional features using DISM.exe

Each feature of IIS exists as a set of configuration elements. For example, the Windows authentication feature

comprises these elements:

The full set of IIS sub-features is included in Appendix 1 of this topic and their corresponding configuration

elements is included in Appendix 2 of this topic.

dism /Enable-Feature /online /featurename:IIS-WindowsAuthentication /all

1. Open a Windows PowerShell remote session console on the Nano Server.

2. Use DISM.exe to install the Windows authentication module:

The /all switch will install any feature that the chosen feature depends on.

dism /Disable-Feature /online /featurename:IIS-WindowsAuthentication

1. Open a Windows PowerShell remote session console on the Nano Server.

2. Use DISM.exe to uninstall the Windows authentication module:

Creating websitesCreating websites

PS C:\> $sm = Get-IISServerManager

PS C:\> $sm.Sites["Default Web Site"].Applications[/].VirtualDirectories.Add(/DemoVirtualDir1,

c:\test\virtualDirectory1)

PS C:\> $sm.Sites["Default Web Site"].Applications[/].VirtualDirectories.Add(/DemoVirtualDir2,

c:\test\virtualDirectory2)

PS C:\> $sm.CommitChanges()

PS C:\> $sm = Get-IISServerManager

PS C:\> $sm.ApplicationPools.Add(DemoAppPool)

Use this cmdlet:

PS D:\> New-IISSite -Name TestSite -BindingInformation *:80:TestSite -PhysicalPath c:\test

You can then run Get-IISSite to verify the state of the site (returns the web site name, ID, state, physical path,

and bindings).

Deleting web sitesDeleting web sites

Run Remove-IISSite -Name TestSite -Confirm:$false .

Creating vir tual directoriesCreating vir tual directories

You can create virtual directories by using the IISServerManager object returned by Get-IISServerManager,

which exposes the .NET Microsoft.Web.Administration.ServerManager API. In this example, these commands

access the Default Web Site element of the Sites collection and the root application element (/) of the

Applications section. They then call the Add() method of the VirtualDirectories collection for that application

element to create the new directory:

Creating application poolsCreating application pools

Similarly you can use Get-IISServerManager to create application pools:

Configuring HTTPS and cer tificatesConfiguring HTTPS and cer tificates

Use the Certoc.exe utility to import certificates, as in this example, which shows configuring HTTPS for a website

on a Nano Server :

1. On another computer that is not running Nano Server, create a certificate (using your own certificate

name and password), and then export it to c:\temp\test.pfx.

$newCert = New-SelfSignedCertificate -DnsName www.foo.bar.com -CertStoreLocation cert:\LocalMachine\my

$mypwd = ConvertTo-SecureString -String YOUR_PFX_PASSWD -Force -AsPlainText

Export-PfxCertificate -FilePath c:\temp\test.pfx -Cert $newCert -Password $mypwd

2. Copy the test.pfx file to the Nano Server computer.

3. On the Nano Server, import the certificate to the My store with this command:

cer toc.exe -Impor tPFX -p YOUR_PFX_PASSWD My c:\temp\test.pfxcer toc.exe -Impor tPFX -p YOUR_PFX_PASSWD My c:\temp\test.pfx

4. Retrieve the thumbprint of this new certificate (in this example,

61E71251294B2A7BB8259C2AC5CF7BA622777E73) with Get-ChildItem Cert:\LocalMachine\my .

5. Add the HTTPS binding to the Default Web Site (or whatever website you want to add the binding to) by

using these Windows PowerShell commands:

 Appendix 1: List of IIS sub-features

$certificate = get-item Cert:\LocalMachine\my\61E71251294B2A7BB8259C2AC5CF7BA622777E73

Use your actual thumbprint instead of this example

$hash = $certificate.GetCertHash()

Import-Module IISAdministration

$sm = Get-IISServerManager

$sm.Sites["Default Web Site"].Bindings.Add("*:443:", $hash, "My", "0") # My is the certificate

store name

$sm.CommitChanges()

You could also use Server Name Indication (SNI) with a specific host name with this syntax:

$sm.Sites["Default Web Site"].Bindings.Add("*:443:www.foo.bar.com", $hash, "My", "SNI")

IIS-WebServer

IIS-CommonHttpFeatures

IIS-StaticContent

IIS-DefaultDocument

IIS-DirectoryBrowsing

IIS-HttpErrors

IIS-HttpRedirect

IIS-ApplicationDevelopment

IIS-CGI

IIS-ISAPIExtensions

IIS-ISAPIFilter

IIS-ServerSideIncludes

IIS-WebSockets

IIS-ApplicationInit

IIS-Security

IIS-BasicAuthentication

IIS-WindowsAuthentication

IIS-DigestAuthentication

IIS-ClientCertificateMappingAuthentication

IIS-IISCertificateMappingAuthentication

IIS-URLAuthorization

IIS-RequestFiltering

IIS-IPSecurity

IIS-CertProvider

IIS-Performance

IIS-HttpCompressionStatic

IIS-HttpCompressionDynamic

IIS-HealthAndDiagnostics

IIS-HttpLogging

IIS-LoggingLibraries

IIS-RequestMonitor

IIS-HttpTracing

IIS-CustomLogging

Appendix 2: Elements of HTTP features

 Common HTTP featuresCommon HTTP features

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=DefaultDocumentModule

image=%windir%\System32\inetsrv\defdoc.dll />

<modules> <add name=DefaultDocumentModule lockItem=true />

<handlers> <add name=StaticFile path=* verb=*

modules=DefaultDocumentModule

resourceType=EiSecther requireAccess=Read />

<defaultDocument> <defaultDocument enabled=true>
<files>

<add value=Default.htm />
 <add

value=Default.asp />
 <add value=index.htm />

 <add value=index.html />
 <add

value=iisstart.htm />
 </files>

</defaultDocument>

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=DirectoryListingModule

image=%windir%\System32\inetsrv\dirlist.dll />

<modules> <add name=DirectoryListingModule lockItem=true />

<handlers> <add name=StaticFile path=* verb=*

modules=DirectoryListingModule resourceType=Either

requireAccess=Read />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=CustomErrorModule

image=%windir%\System32\inetsrv\custerr.dll />

<modules> <add name=CustomErrorModule lockItem=true />

Each feature of IIS exists as a set of configuration elements. This appendix lists the configuration elements for all

of the features in this release of Nano Server

Default documentDefault document

The StaticFile <handlers> entry might already be present; if so, just add DefaultDocumentModule to the

<modules> attribute, separated by a comma.

Director y browsingDirector y browsing

The StaticFile <handlers> entry might already be present; if so, just add DirectoryListingModule to the

<modules> attribute, separated by a comma.

HTTP errorsHTTP errors

<httpErrors> <httpErrors

lockAttributes=allowAbsolutePathsWhenDelegated,defaultPath>

 <error statusCode=401

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=401.htm >
 <error statusCode=403

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=403.htm />
 <error statusCode=404

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=404.htm />
 <error statusCode=405

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=405.htm />
 <error statusCode=406

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=406.htm />
 <error statusCode=412

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=412.htm />
 <error statusCode=500

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=500.htm />
 <error statusCode=501

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=501.htm />
 <error statusCode=502

prefixLanguageFilePath=%SystemDrive%\inetpub\custerr

path=502.htm />
</httpErrors>

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=StaticFileModule

image=%windir%\System32\inetsrv\static.dll />

<modules> <add name=StaticFileModule lockItem=true />

<handlers> <add name=StaticFile path=* verb=*

modules=StaticFileModule resourceType=Either

requireAccess=Read />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=HttpRedirectionModule

image=%windir%\System32\inetsrv\redirect.dll />

<modules> <add name=HttpRedirectionModule lockItem=true />

<httpRedirect> <httpRedirect enabled=false />

 Health and diagnosticsHealth and diagnostics

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=HttpLoggingModule

image=%windir%\System32\inetsrv\loghttp.dll />

<modules> <add name=HttpLoggingModule lockItem=true />

Static contentStatic content

The StaticFile \<handlers> entry might already be present; if so, just add StaticFileModule to the <modules>

attribute, separated by a comma.

HTTP redirectionHTTP redirection

HTTP loggingHTTP logging

<httpLogging> <httpLogging dontLog=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=CustomLoggingModule

image=%windir%\System32\inetsrv\logcust.dll />

<modules> <add name=CustomLoggingModule lockItem=true />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=RequestMonitorModule

image=%windir%\System32\inetsrv\iisreqs.dll />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=TracingModule

image=%windir%\System32\inetsrv\iisetw.dll \/>
<add name=FailedRequestsTracingModule

image=%windir%\System32\inetsrv\iisfreb.dll />

<modules> <add name=FailedRequestsTracingModule lockItem=true

/>

<traceProviderDefinitions> <traceProviderDefinitions>
 <add name=WWW

Server guid\={3a2a4e84-4c21-4981-ae10-

3fda0d9b0f83}>
 <areas>
 <clear />

<add name=Authentication value=2 />
 <add

name=Security value=4 />
 <add name=Filter

value=8 />
 <add name=StaticFile value=16 />

 <add name=CGI value=32 />
 <add

name=Compression value=64 />
 <add name=Cache

value=128 />
 <add name=RequestNotifications

value=256 />
 <add name=Module value=512 />
 <add name=FastCGI value=4096 />
 <add

name=WebSocket value=16384 />
 </areas>

</add>
 <add name=ISAPI Extension guid=

{a1c2040e-8840-4c31-ba11-9871031a19ea}>

<areas>
 <clear />
 </areas>
 </add>

</traceProviderDefinitions>

 PerformancePerformance

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=StaticCompressionModule

image=%windir%\System32\inetsrv\compstat.dll />

<modules> <add name=StaticCompressionModule lockItem=true />

Custom loggingCustom logging

Request monitorRequest monitor

TracingTracing

Static content compressionStatic content compression

<httpCompression> <httpCompression

directory=%SystemDrive%\inetpub\temp\IIS Temporary

Compressed Files>
 <scheme name=gzip

dll=%Windir%\system32\inetsrv\gzip.dll />

<staticTypes>
 <add mimeType=text/*

enabled=true />
 <add mimeType=message/*

enabled=true />
 <add

mimeType=application/javascript enabled=true \/>
 <add mimeType=application/atom+xml enabled=true

/>
 <add mimeType=application/xaml+xml

enabled=true />
 <add mimeType=**

enabled=false />
 </staticTypes>

</httpCompression>

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=DynamicCompressionModule

image=%windir%\System32\inetsrv\compdyn.dll />

<modules> <add name=DynamicCompressionModule lockItem=true />

<httpCompression> <httpCompression

directory\=%SystemDrive%\inetpub\temp\IIS Temporary

Compressed Files>
 <scheme name=gzip

dll=%Windir%\system32\inetsrv\gzip.dll \/>
 \

<dynamicTypes>
 <add mimeType=text/*

enabled=true \/>
 <add mimeType=message/*

enabled=true />
 <add mimeType=application/x-

javascript enabled=true />
 <add

mimeType=application/javascript enabled=true />
 <add mimeType=*/* enabled=false />

<\/dynamicTypes>
</httpCompression>

 SecuritySecurity

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=RequestFilteringModule

image=%windir%\System32\inetsrv\modrqflt.dll />

<modules> <add name=RequestFilteringModule lockItem=true />

<requestFiltering> <requestFiltering>
 <fileExtensions

allowUnlisted=true applyToWebDAV=true />

<verbs allowUnlisted=true applyToWebDAV=true />
 <hiddenSegments applyToWebDAV=true>
 <add

segment=web.config />
 </hiddenSegments>

</requestFiltering>

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=BasicAuthenticationModule

image=%windir%\System32\inetsrv\authbas.dll />

<modules> <add name=WindowsAuthenticationModule lockItem=true

/>

Dynamic content compressionDynamic content compression

Request filter ingRequest filter ing

Basic authenticationBasic authentication

<basicAuthentication> <basicAuthentication enabled=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=CertificateMappingAuthentication

image=%windir%\System32\inetsrv\authcert.dll />

<modules> <add name=CertificateMappingAuthenticationModule

lockItem=true />

<clientCertificateMappingAuthentication> <clientCertificateMappingAuthentication

enabled=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=DigestAuthenticationModule

image=%windir%\System32\inetsrv\authmd5.dll />

<modules> <add name=DigestAuthenticationModule lockItem=true

/>

<other> <digestAuthentication enabled=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=CertificateMappingAuthenticationModule

image=%windir%\System32\inetsrv\authcert.dll />

<modules> <add name=CertificateMappingAuthenticationModule

lockItem=true

/>`

<clientCertificateMappingAuthentication> <clientCertificateMappingAuthentication

enabled=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=IpRestrictionModule

image=%windir%\System32\inetsrv\iprestr.dll />
<add name=DynamicIpRestrictionModule

image=%windir%\System32\inetsrv\diprestr.dll />

<modules> <add name=IpRestrictionModule lockItem=true \/>
<add name=DynamicIpRestrictionModule

lockItem=true \/>

<ipSecurity> <ipSecurity allowUnlisted=true />

Client cer tificate mapping authenticationClient cer tificate mapping authentication

Digest authenticationDigest authentication

IIS client cer tificate mapping authenticationIIS client cer tificate mapping authentication

IP and domain restr ictionsIP and domain restr ictions

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=UrlAuthorizationModule

image=%windir%\System32\inetsrv\urlauthz.dll />

<modules> <add name=UrlAuthorizationModule lockItem=true />

<authorization> <authorization>
 <add accessType=Allow users=*

/>
</authorization>

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=WindowsAuthenticationModule

image=%windir%\System32\inetsrv\authsspi.dll />

<modules> <add name=WindowsAuthenticationModule lockItem=true

/>

<windowsAuthentication> <windowsAuthentication enabled=false

authPersistNonNTLM\=true>
 <providers>

<add value=Negotiate />
 <add value=NTLM />
 <\providers>
<\windowsAuthentication>

<windowsAuthentication enabled=false

authPersistNonNTLM\=true>
 <providers>

<add value=Negotiate />
 <add value=NTLM />
 <\/providers>
<\/windowsAuthentication>

 Application developmentApplication development

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=ApplicationInitializationModule

image=%windir%\System32\inetsrv\warmup.dll />

<modules> <add name=ApplicationInitializationModule

lockItem=true />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=CgiModule

image=%windir%\System32\inetsrv\cgi.dll />

<add name=FastCgiModule

image=%windir%\System32\inetsrv\iisfcgi.dll />

<modules> <add name=CgiModule lockItem=true />
<add

name=FastCgiModule lockItem=true />

<handlers> <add name=CGI-exe path=*.exe verb=*

modules=CgiModule resourceType=File

requireAccess=Execute allowPathInfo=true />

URL authorizationURL authorization

Windows authenticationWindows authentication

Application initializationApplication initialization

CGICGI

ISAPI extensionsISAPI extensions

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=IsapiModule

image=%windir%\System32\inetsrv\isapi.dll />

<modules> <add name=IsapiModule lockItem=true />

<handlers> <add name=ISAPI-dll path=*.dll verb=*

modules=IsapiModule resourceType=File

requireAccess=Execute allowPathInfo=true />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=IsapiFilterModule

image=%windir%\System32\inetsrv\filter.dll />

<modules> <add name=IsapiFilterModule lockItem=true />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <

add name=ServerSideIncludeModule

image=%windir%\System32\inetsrv\iis_ssi.dll />

<modules> <add name=ServerSideIncludeModule lockItem=true />

<handlers> <add name=SSINC-stm path=*.stm verb=GET,HEAD,POST

modules=ServerSideIncludeModule resourceType=File

\/>
<add name=SSINC-shtm path=*.shtm

verb=GET,HEAD,POST modules=ServerSideIncludeModule

resourceType=File />
<add name=SSINC-shtml

path=*.shtml verb=GET,HEAD,POST

modules=ServerSideIncludeModule resourceType=File

/>

<serverSideInclude> <serverSideInclude ssiExecDisable=false />

SEC T IONSEC T ION C ON F IGURAT ION EL EM EN T SC ON F IGURAT ION EL EM EN T S

<globalModules> <add name=WebSocketModule

image=%windir%\System32\inetsrv\iiswsock.dll />

<modules> <add name=WebSocketModule lockItem=true />

ISAPI filtersISAPI filters

Ser ver-side includesSer ver-side includes

WebSocket protocolWebSocket protocol

MPIO on Nano Server

10/25/2021 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Using MPIO on Nano Server

#

Copyright (c) 2015 Microsoft Corporation. All rights reserved.

#

THIS CODE AND INFORMATION IS PROVIDED AS IS WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

PARTICULAR PURPOSE

#

<#

.Synopsis

 This powershell script allows you to enable Multipath-IO support using Microsoft's

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

This topic introduces the use of MPIO in Nano Server installations of Windows Server 2016. For general

information about MPIO in Windows Server, see Multipath I/O Overview.

You can use MPIO on Nano Server, but with these differences:

Only MSDSM is supported.

The Load Balancing Policy is chosen dynamically and cannot be modified. The policy has these

characteristics:

Default -- RoundRobin (active/active)

SAS HDD -- LeastBlocks

ALUA -- RoundRobin with Subset

Path states (active/passive) for ALUA arrays are picked up from the target array.

Storage devices are claimed by bus type (for example, FC, iSCSI, or SAS). When MPIO is installed on Nano

Server, disks are still exposed as duplicates (one available per path) until MPIO is configured to claim and

manage particular disks. The sample script in this topic will claim or unclaim disks for MPIO.

iSCSI boot is not supported.

Enable MPIO with this Windows PowerShell cmdlet:

Enable-WindowsOptionalFeature -Online -FeatureName MultiPathIO

This sample script will allow the caller to claim or unclaim disks for MPIO by changing certain registry keys.

Though you can claim other storage devices by adding them to these keys, manipulating the keys directly is not

recommended.

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/MPIO-on-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc725907(v=ws.11)

 This powershell script allows you to enable Multipath-IO support using Microsoft's

 in-box DSM (MSDSM) for storage devices attached by certain bus types.

 After running this script you will have to either:

 1. Disable and then re-enable the relevant Host Bus Adapters (HBAs); or

 2. Reboot the system.

.Description

.Parameter BusType

 Specifies the bus type for which the claim/unclaim should be done.

 If omitted, this parameter defaults to All.

 All - Will claim/unclaim storage devices attached through Fibre Channel, iSCSI, or SAS.

 FC - Will claim/unclaim storage devices attached through Fibre Channel.

 iSCSI - Will claim/unclaim storage devices attached through iSCSI.

 SAS - Will claim/unclaim storage devices attached through SAS.

.Parameter Server

 Allows you to specify a remote system, either via computer name or IP address.

 If omitted, this parameter defaults to the local system.

.Parameter Unclaim

 If specified, the script will unclaim storage devices of the bus type specified by the

 BusType parameter.

 If omitted, the script will default to claiming storage devices instead.

.Example

MultipathIoClaim.ps1

Claims all storage devices attached through Fibre Channel, iSCSI, or SAS.

.Example

MultipathIoClaim.ps1 FC

Claims all storage devices attached through Fibre Channel.

.Example

MultipathIoClaim.ps1 SAS -Unclaim

Unclaims all storage devices attached through SAS.

.Example

MultipathIoClaim.ps1 iSCSI 12.34.56.78

Claims all storage devices attached through iSCSI on the remote system with IP address 12.34.56.78.

#>

[CmdletBinding()]

param

(

 [ValidateSet('all','fc','iscsi','sas')]

 [string]$BusType='all',

 [string]$Server=127.0.0.1,

 [switch]$Unclaim

)

#

Constants

#

$type = [Microsoft.Win32.RegistryHive]::LocalMachine

[string]$mpioKeyName = SYSTEM\CurrentControlSet\Control\MPDEV

[string]$mpioValueName = MpioSupportedDeviceList

[string]$msdsmKeyName = SYSTEM\CurrentControlSet\Services\msdsm\Parameters

[string]$msdsmValueName = DsmSupportedDeviceList

[string]$fcHwid = MSFT2015FCBusType_0x6

[string]$sasHwid = MSFT2011SASBusType_0xA

[string]$iscsiHwid = MSFT2005iSCSIBusType_0x9

#

Functions

#

function AddHardwareId

{

 param

 (

 [Parameter(Mandatory=$True)]

 [string]$Hwid,

 [string]$Srv=127.0.0.1,

 [string]$KeyName=SYSTEM\CurrentControlSet\Control\MultipathIoClaimTest,

 [string]$ValueName=DeviceList

)

 $regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($type, $Srv)

 $key = $regKey.OpenSubKey($KeyName, 'true')

 $val = $key.GetValue($ValueName)

 $val += $Hwid

 $key.SetValue($ValueName, [string[]]$val, 'MultiString')

}

function RemoveHardwareId

{

 param

 (

 [Parameter(Mandatory=$True)]

 [string]$Hwid,

 [string]$Srv=127.0.0.1,

 [string]$KeyName=SYSTEM\CurrentControlSet\Control\MultipathIoClaimTest,

 [string]$ValueName=DeviceList

)

 [string[]]$newValues = @()

 $regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($type, $Srv)

 $key = $regKey.OpenSubKey($KeyName, 'true')

 $values = $key.GetValue($ValueName)

 foreach($val in $values)

 {

 # Only copy values that don't match the given hardware ID.

 if ($val -ne $Hwid)

 {

 $newValues += $val

 Write-Debug $($val) will remain in the key.

 }

 else

 {

 Write-Debug $($val) will be removed from the key.

 }

 }

 $key.SetValue($ValueName, [string[]]$newValues, 'MultiString')

}

function HardwareIdClaimed

{

 param

 (

 [Parameter(Mandatory=$True)]

 [string]$Hwid,

 [string]$Srv=127.0.0.1,

 [string]$KeyName=SYSTEM\CurrentControlSet\Control\MultipathIoClaimTest,

 [string]$ValueName=DeviceList

)

 $regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($type, $Srv)

 $key = $regKey.OpenSubKey($KeyName)

 $values = $key.GetValue($ValueName)

 foreach($val in $values)

 {

 if ($val -eq $Hwid)

 {

 return 'true'

 }

 }

 return 'false'

}

function GetBusTypeName

{

 param

 (

 [Parameter(Mandatory=$True)]

 [string]$Hwid

)

 if ($Hwid -eq $fcHwid)

 {

 return Fibre Channel

 }

 elseif ($Hwid -eq $sasHwid)

 {

 return SAS

 }

 elseif ($Hwid -eq $iscsiHwid)

 {

 return iSCSI

 }

 return Unknown

}

#

Execution starts here.

#

#

Create the list of hardware IDs to claim or unclaim.

#

[string[]]$hwids = @()

if ($BusType -eq 'fc')

{

 $hwids += $fcHwid

}

elseif ($BusType -eq 'iscsi')

{

 $hwids += $iscsiHwid

}

elseif ($BusType -eq 'sas')

elseif ($BusType -eq 'sas')

{

 $hwids += $sasHwid

}

elseif ($BusType -eq 'all')

{

 $hwids += $fcHwid

 $hwids += $sasHwid

 $hwids += $iscsiHwid

}

else

{

 Write-Host Please provide a bus type (FC, iSCSI, SAS, or All).

}

$changed = 'false'

#

Attempt to claim or unclaim each of the hardware IDs.

#

foreach($hwid in $hwids)

{

 $busTypeName = GetBusTypeName $hwid

 #

 # The device is only considered claimed if it's in both the MPIO and MSDSM lists.

 #

 $mpioClaimed = HardwareIdClaimed $hwid $Server $mpioKeyName $mpioValueName

 $msdsmClaimed = HardwareIdClaimed $hwid $Server $msdsmKeyName $msdsmValueName

 if ($mpioClaimed -eq 'true' -and $msdsmClaimed -eq 'true')

 {

 $claimed = 'true'

 }

 else

 {

 $claimed = 'false'

 }

 if ($mpioClaimed -eq 'true')

 {

 Write-Debug $($hwid) is in the MPIO list.

 }

 else

 {

 Write-Debug $($hwid) is NOT in the MPIO list.

 }

 if ($msdsmClaimed -eq 'true')

 {

 Write-Debug $($hwid) is in the MSDSM list.

 }

 else

 {

 Write-Debug $($hwid) is NOT in the MSDSM list.

 }

 if ($Unclaim)

 {

 #

 # Unclaim this hardware ID.

 #

 if ($claimed -eq 'true')

 {

 RemoveHardwareId $hwid $Server $mpioKeyName $mpioValueName

 RemoveHardwareId $hwid $Server $msdsmKeyName $msdsmValueName

 $changed = 'true'

 Write-Host $($busTypeName) devices will not be claimed.

 }

 else

 {

 {

 Write-Host $($busTypeName) devices are not currently claimed.

 }

 }

 else

 {

 #

 # Claim this hardware ID.

 #

 if ($claimed -eq 'true')

 {

 Write-Host $($busTypeName) devices are already claimed.

 }

 else

 {

 AddHardwareId $hwid $Server $mpioKeyName $mpioValueName

 AddHardwareId $hwid $Server $msdsmKeyName $msdsmValueName

 $changed = 'true'

 Write-Host $($busTypeName) devices will be claimed.

 }

 }

}

#

Finally, if we changed any of the registry keys remind the user to restart.

#

if ($changed -eq 'true')

{

 Write-Host The system must be restarted for the changes to take effect.

}

Manage Nano Server

10/25/2021 • 12 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Using Windows PowerShell remoting

NOTENOTE

$ip = <IP address of Nano Server>

$user = $ip\Administrator

Enter-PSSession -ComputerName $ip -Credential $user

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Nano Server is managed remotely. There is no local logon capability at all, nor does it support Terminal Services.

However, you have a wide variety of options for managing Nano Server remotely, including Windows

PowerShell, Windows Management Instrumentation (WMI), Windows Remote Management, and Emergency

Management Services (EMS).

To use any remote management tool, you will probably need to know the IP address of the Nano Server. Some

ways to find out the IP address include:

Use the Nano Recovery Console (see the Using the Nano Server Recovery Console section of this topic

for details).

Connect a serial cable to the computer and use EMS.

Using the computer name you assigned to the Nano Server while configuring it, you can get the IP

address with ping. For example, ping NanoServer-PC /4 .

To manage Nano Server with Windows PowerShell remoting, you need to add the IP address of the Nano Server

to your management computer's list of trusted hosts, add the account you are using to the Nano Server's

administrators, and enable CredSSP if you plan to use that feature.

If the target Nano Server and your management computer are in the same AD DS forest (or in forests with a trust

relationship), you should not add the Nano Server to the trusted hosts list--you can connect to the Nano Server by using

its fully qualified domain name, for example: PS C:> Enter-PSSession -ComputerName nanoserver.contoso.com -Credential

(Get-Credential)

To add the Nano Server to the list of trusted hosts, run this command at an elevated Windows PowerShell

prompt:

Set-Item WSMan:\localhost\Client\TrustedHosts <IP address of Nano Server>

To start the remote Windows PowerShell session, start an elevated local Windows PowerShell session, and then

run these commands:

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Manage-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

NOTENOTE

 Using Windows PowerShell CIM sessions over WinRM

$ip = <IP address of the Nano Server\>

$user = $ip\Administrator

$cim = New-CimSession -Credential $user -ComputerName $ip

Get-CimInstance -CimSession $cim -ClassName Win32_ComputerSystem | Format-List *

Get-CimInstance -CimSession $Cim -Query SELECT * from Win32_Process WHERE name LIKE 'p%'

 Windows Remote Management

winrm quickconfig

winrm set winrm/config/client @{TrustedHosts=<ip address of Nano Server>}

chcp 65001

winrs -r:<IP address of Nano Server> -u:Administrator -p:<Nano Server administrator password> ipconfig

 Running a network trace on Nano Server

New-NetEventSession [-Name]

Add-NetEventPacketCaptureProvider -SessionName

Start-NetEventSession [-Name]

Stop-NetEventSession [-Name]

You can now run Windows PowerShell commands on the Nano Server as normal.

Not all Windows PowerShell commands are available in this release of Nano Server. To see which are available, run

Get-Command -CommandType Cmdlet

Stop the remote session with the command Exit-PSSession

You can use CIM sessions and instances in Windows PowerShell to run WMI commands over Windows Remote

Management (WinRM).

Start the CIM session by running these commands in a Windows PowerShell prompt:

With the session established, you can run various WMI commands, for example:

You can run programs remotely on the Nano Server with Windows Remote Management (WinRM). To use

WinRM, first configure the service and set the code page with these commands at an elevated command

prompt:

Now you can run commands remotely on the Nano Server. For example:

For more information about Windows Remote Management, see Windows Remote Management (WinRM)

Overview.

Netsh trace, Tracelog.exe, and Logman.exe are not available in Nano Server. To capture network packets, you can

use these Windows PowerShell cmdlets:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn265971(v=ws.11)

 Installing servicing packages

 Managing updates in Nano Server

 View all available updatesView all available updates

$sess = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName MSFT_WUOperationsSession

$scanResults = Invoke-CimMethod -InputObject $sess -MethodName ScanForUpdates -Arguments

@{SearchCriteria=IsInstalled=0;OnlineScan=$true}

These cmdlets are documented in detail at Network Event Packet Capture Cmdlets in Windows PowerShell

If you want install a servicing packages, use the -ServicingPackagePath parameter (you can pass an array of

paths to .cab files):

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath .\Base
-TargetPath .\NanoServer.wim -ServicingPackagePath \\path\to\kb123456.cab

Often, a servicing package or hotfix is downloaded as a KB item which contains a .cab file. Follow these steps to

extract the .cab file, which you can then install with the -ServicingPackagePath parameter :

1. Download the servicing package (from the associated Knowledge Base article or from Microsoft Update

Catalog. Save it to a local directory or network share, for example: C:\ServicingPackages

2. Create a folder in which you will save the extracted servicing package. Example: c:\KB3157663_expanded

3. Open a Windows PowerShell console and use the Expand command specifying the path to the .msu file

of the servicing package, including the -f:* parameter and the path where you want servicing package

to be extracted to. For example:

Expand C:\ServicingPackages\Windows10.0-KB3157663-x64.msu -f:* C:\KB3157663_expanded

The expanded files should look similar to this: C:>dir C:\KB3157663_expanded Volume in drive C is OS

Volume Serial Number is B05B-CC3D

Directory of C:\KB3157663_expanded

04/19/2016 01:17 PM <DIR> . 04/19/2016 01:17 PM <DIR> .. 04/17/2016 12:31 AM 517 Windows10.0-

KB3157663-x64-pkgProperties.txt 04/17/2016 12:30 AM 93,886,347 Windows10.0-KB3157663-x64.cab

04/17/2016 12:31 AM 454 Windows10.0-KB3157663-x64.xml 04/17/2016 12:36 AM 185,818

WSUSSCAN.cab 4 File(s) 94,073,136 bytes 2 Dir(s) 328,559,427,584 bytes free

4. Run New-NanoServerImage with the -ServicingPackagePath parameter pointing to the .cab file in this

directory, for example:

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath
.\Base -TargetPath .\NanoServer.wim -ServicingPackagePath C:\KB3157663_expanded\Windows10.0-KB3157663-
x64.cab

Currently you can use the Windows Update provider for Windows Management Instrumentation (WMI) to find

the list of applicable updates, and then install all or a subset of them. If you use Windows Server Update

Services (WSUS), you can also configure Nano Server to contact the WSUS server to obtain updates.

In all cases, first establish a remote Windows PowerShell session to the Nano Server computer. These examples

use $sess for the session; if you are using something else, replace that element as needed.

Obtain the full list of applicable updates with these commands:

Note:Note: If no updates are available, this command will return the following error :

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn265971(v=ws.11)
https://catalog.update.microsoft.com/v7/site/home.aspx

Invoke-CimMethod : A general error occurred that is not covered by a more specific error code.

At line:1 char:16

+ ... anResults = Invoke-CimMethod -InputObject $sess -MethodName ScanForUp ...

+ ~~~

 + CategoryInfo : NotSpecified: (MSFT_WUOperatio...-5b842a3dd45d)

 :CimInstance) [Invoke-CimMethod], CimException

 + FullyQualifiedErrorId : MI RESULT 1,Microsoft.Management.Infrastructure.

 CimCmdlets.InvokeCimMethodCommand

 Install all available updatesInstall all available updates

$sess = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName MSFT_WUOperationsSession

$scanResults = Invoke-CimMethod -InputObject $sess -MethodName ApplyApplicableUpdates

Restart-Computer

 Verify installation of updatesVerify installation of updates

$sess = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName MSFT_WUOperationsSession

$scanResults = Invoke-CimMethod -InputObject $sess -MethodName ScanForUpdates -Arguments

@{SearchCriteria=IsInstalled=1;OnlineScan=$true}

Get-WindowsPackage -Online

 Using WSUSUsing WSUS

You can detect, download, and install allall available updates at one time by using these commands:

Note:Note: Windows Defender will prevent updates from installing. To work around this, uninstall Windows

Defender, install the updates, and then reinstall Windows Defender. Alternately, you can download the updates

on another computer, copy them to the Nano Server, and then apply them with DISM.exe.

Use these commands to get a list of the updates currently installed:

Note:Note: These commands list what is installed, but do not specifically quote installed in the output. If you need

output including that, such as for a report, you can run

The commands listed above will query the Windows Update and Microsoft Update serviceon the Internet to find

and download updates. If you use WSUS, you can set registry keys on the Nano Server to use your WSUS

server instead.

See the Windows Update Agent Environment Options Registry Keys table in Configure Automatic Updates in a

Non-Active-Directory Environment

You should set at least the WUSer verWUSer ver and WUStatusSer verWUStatusSer ver registry keys, but depending on how you have

implemented WSUS, other values might be needed. You can always confirm these settings by examining

another Windows Server in the same environment.

Once these values are set for your WSUS, the commands in the section above will query that server for updates

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc708449(v=ws.10)

 Automatic UpdatesAutomatic Updates

 Performance and event monitoring on Nano Server

NOTENOTE

 Query available event providersQuery available event providers

wpr.exe -providers

PS C:\> wpr.exe -providers | select-string Storage

 595f33ea-d4af-4f4d-b4dd-9dacdd17fc6e : Microsoft-Windows-

StorageManagement-WSP-Host

 595f7f52-c90a-4026-a125-8eb5e083f15e : Microsoft-Windows-StorageSpaces-

Driver

 69c8ca7e-1adf-472b-ba4c-a0485986b9f6 : Microsoft-Windows-StorageSpaces-

SpaceManager

 7e58e69a-e361-4f06-b880-ad2f4b64c944 : Microsoft-Windows-

StorageManagement

 88c09888-118d-48fc-8863-e1c6d39ca4df : Microsoft-Windows-

StorageManagement-WSP-Spaces

 Record traces from a single ETW providerRecord traces from a single ETW provider

PS C:\> New-EtwTraceSession -Name ExampleTrace -LocalFilePath c:\etrace.etl

and use it the download source.

Currently, the way to automate update installation is to convert the steps above into a local Windows

PowerShell script and then create a scheduled task to run it and restart the system on your schedule.

Nano Server fully supports the Event Tracing for Windows (ETW) framework, but some familiar tools used to

manage tracing and performance counters are not currently available on Nano Server. However, Nano Server

has tools and cmdlets to accomplish most common performance analysis scenarios.

The high-level workflow remains the same as on any Window Server installation -- low-overhead tracing is

performed on the target (Nano Server) computer, and the resulting trace files and/or logs are post-processed

offline on a separate computer using tools such as Windows Performance Analyzer, Message Analyzer, or

others.

Refer to How to copy files to and from Nano Server for a refresher on how to transfer files using PowerShell remoting.

The following sections list the most common performance data collection activities along with a supported way

to accomplish them on Nano Server.

Windows Performance Recorder is tool to query available event providers as follows:

You can filter the output on the type of events that are of interest. For example:

You can use new Event Tracing Management cmdlets for this. Here is an example workflow:

Create and start the trace, specifying a file name for storing the events.

Add a provider GUID to the trace. Use wpr.exe -providers for Provider Name to GUID translation.

https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh448170(v=win.10)
https://www.microsoft.com/download/details.aspx?id=44226
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt708806(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh448229(v=win.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh448229(v=win.10)

PS C:\> wpr.exe -providers | select-string Kernel-Memory

 d1d93ef7-e1f2-4f45-9943-03d245fe6c00 : Microsoft-Windows-Kernel-Memory

PS C:\> Add-EtwTraceProvider -Guid {d1d93ef7-e1f2-4f45-9943-03d245fe6c00} -SessionName ExampleTrace

PS C:\> Remove-EtwTraceSession -Name ExampleTrace

PS C:\> dir .\etrace.etl

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 9/14/2016 11:17 AM 16515072 etrace.etl

NOTENOTE

 Record traces from multiple ETW providersRecord traces from multiple ETW providers

Remove the trace -- this stops the trace session, flushing events to the associated log file.

This example shows adding a single trace provider to the session, but you can also use the Add-EtwTraceProvider

cmdlet multiple times on a trace session with different provider GUIDs to enable tracing from multiple sources. Another

alternative is to use wpr.exe profiles described below.

The -profiles option of Windows Performance Recorder enables tracing from multiple providers at the same

time. There are a number of built-in profiles like CPU, Network, and DiskIO to choose from:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh448229(v=win.10)

PS C:\Users\Administrator\Documents> wpr.exe -profiles

Microsoft Windows Performance Recorder Version 10.0.14393 (CoreSystem)

Copyright (c) 2015 Microsoft Corporation. All rights reserved.

 GeneralProfile First level triage

 CPU CPU usage

 DiskIO Disk I/O activity

 FileIO File I/O activity

 Registry Registry I/O activity

 Network Networking I/O activity

 Heap Heap usage

 Pool Pool usage

 VirtualAllocation VirtualAlloc usage

 Audio Audio glitches

 Video Video glitches

 Power Power usage

 InternetExplorer Internet Explorer

 EdgeBrowser Edge Browser

 Minifilter Minifilter I/O activity

 GPU GPU activity

 Handle Handle usage

 XAMLActivity XAML activity

 HTMLActivity HTML activity

 DesktopComposition Desktop composition activity

 XAMLAppResponsiveness XAML App Responsiveness analysis

 HTMLResponsiveness HTML Responsiveness analysis

 ReferenceSet Reference Set analysis

 ResidentSet Resident Set analysis

 XAMLHTMLAppMemoryAnalysis XAML/HTML application memory analysis

 UTC UTC Scenarios

 DotNET .NET Activity

 WdfTraceLoggingProvider WDF Driver Activity

 Record ETW traces during operating system boot timeRecord ETW traces during operating system boot time

PS C:\> New-AutologgerConfig -Name BootPnpLog -LocalFilePath c:\bootpnp.etl

Add-EtwTraceProvider -Guid {9c205a39-1250-487d-abd7-e831c6290539} -AutologgerName BootPnpLog

PS C:\> Remove-EtwTraceSession -Name BootPnpLog

For detailed guidance on creating custom profiles, see the WPR.exe documentation.

Use the New-AutologgerConfig cmdlet to collect events during system boot. Usage is very similar to the

New-EtwTraceSession cmdlet, but providers added to the Autologger's configuration will only be enabled early at

next boot. The overall workflow looks like this:

First, create a new Autologger config.

Add a ETW provider to it. This example uses the Kernel PnP provider. Invoke Add-EtwTraceProvider again,

specifying the same Autologger name but a different GUID to enable boot trace collection from multiple

sources.

This does not start an ETW session immediately, but rather configures one to start at next boot. After rebooting,

a new ETW session with the Autologger configuration name is automatically started with the added trace

providers enabled. After Nano Server boots, the following command will stop the trace session after flushing

the logged events to the associated trace file:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/hh448223(v=win.10)

PS C:\> Remove-AutologgerConfig -Name BootPnpLog

 Capture performance counter dataCapture performance counter data

PS C:\> typeperf.exe -q | Select-String UDPv6

\UDPv6\Datagrams/sec

\UDPv6\Datagrams Received/sec

\UDPv6\Datagrams No Port/sec

\UDPv6\Datagrams Received Errors

\UDPv6\Datagrams Sent/sec

PS C:\> typeperf.exe \Processor Information(0,0)\% Idle Time -si 3 -sc 5

(PDH-CSV 4.0),\\ns-g2\Processor Information(0,0)\% Idle Time

09/15/2016 09:20:56.002,99.982990

09/15/2016 09:20:59.002,99.469634

09/15/2016 09:21:02.003,99.990081

09/15/2016 09:21:05.003,99.990454

09/15/2016 09:21:08.003,99.998577

Exiting, please wait...

The command completed successfully.

 Interact with the Windows Event LogInteract with the Windows Event Log

To prevent another trace session from being auto-created at next boot, remove the Autologger configuration as

follows:

To collect boot and setup traces across a number of systems or on a diskless system, consider using Setup and

Boot Event Collection.

Usually, you monitor performance counter data with Perfmon.exe GUI. On Nano Server, use the Typeperf.exe

command-line equivalent. For example:

Query available counters--you can filter the output to easily find the ones of interest.

Options allow specifying the number of times and the interval at which counter values are collected. In the

example below, Processor Idle Time is collected 5 times every 3 seconds.

Other command-line options allow you to specify performance counter names of interest in a configuration file,

redirecting output to a log file, among other things. See the typeperf.exe documentation for details.

You can also use Perfmon.exe's graphical interface remotely with Nano Server targets. When adding

performance counters to the view, specify the Nano Server target in the computer name instead of the default

<Local computer>.

Nano Server supports the Get-WinEvent cmdlet, which provides Windows Event Log filtering and querying

capabilities, both locally as well as on a remote computer. Detailed options and examples are available at the

Get-WinEvent documentation page. This simple example retrieves the Errors noted in the System log during the

past two days.

https://docs.microsoft.com/en-us/windows-server/administration/get-started-with-setup-and-boot-event-collection
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb490960(v=technet.10)
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-winevent?view=powershell-5.1&preserve-view=true

PS C:\> $StartTime = (Get-Date) - (New-TimeSpan -Day 2)

PS C:\> Get-WinEvent -FilterHashTable @{LogName='System'; Level=2; StartTime=$StartTime} | select

TimeCreated, Message

TimeCreated Message

----------- -------

9/15/2016 11:31:19 AM Task Scheduler service failed to start Task Compatibility module. Tasks may not be

able to reg...

9/15/2016 11:31:16 AM The Virtualization Based Security enablement policy check at phase 6 failed with

status: {File...

9/15/2016 11:31:16 AM The Virtualization Based Security enablement policy check at phase 0 failed with

status: {File...

 Graphical interface toolsGraphical interface tools

 Using Windows PowerShell Desired State Configuration with Nano

Server

Nano Server also supports wevtutil.exe which allows retrieving information about event logs and publishers.

See wevtutil.exe documentation for more details.

Web-based server management tools can be used to remotely manage Nano Server targets and present a Nano

Server Event Log by using a web browser. Finally, the MMC snap-in Event Viewer (eventvwr.msc) can also be

used to view logs -- just open it on a computer with a desktop and point it to a remote Nano Server.

You can manage Nano Server as target nodes with Windows PowerShell Desired State Configuration (DSC).

Currently, you can manage nodes running Nano Server with DSC in push mode only. Not all DSC features

function with Nano Server.

For full details, see Using DSC on Nano Server.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc732848(v=ws.11)
https://techcommunity.microsoft.com/t5/windows-admin-center-blog/bg-p/Windows-Admin-Center-Blog
https://techcommunity.microsoft.com/t5/windows-admin-center-blog/bg-p/Windows-Admin-Center-Blog

Updating Nano Server

10/25/2021 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

 mkdir C:\ServicingPackages_expanded

 mkdir C:\ServicingPackages_expanded\KB3176936

 mkdir C:\ServicingPackages_expanded\KB3192366

 Expand C:\ServicingPackages\KB3176936.msu -F:* C:\ServicingPackages_expanded\KB3176936

 Expand C:\ServicingPackages\KB3192366.msu -F:* C:\ServicingPackages_expanded\KB3192366

 mkdir C:\ServicingPackages_cabs

 copy C:\ServicingPackages_expanded\KB3176936\Windows10.0-KB3176936-x64.cab C:\ServicingPackages_cabs

 copy C:\ServicingPackages_expanded\KB3192366\Windows10.0-KB3192366-x64.cab C:\ServicingPackages_cabs

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Nano Server offers a variety of methods for staying up to date. Compared to other installation options of

Windows Server, Nano Server follows a more active servicing model similar to that of Windows 10. These

periodic releases are known as Current Branch for Business (CBB)Current Branch for Business (CBB) releases. This approach supports

customers who want to innovate more quickly and move at a cloud cadence of rapid development lifecycles.

More information about CBB is available on the Windows Server Blog.

Between these CBB releasesBetween these CBB releases , Nano Server stays current with a series of cumulative updates. For example, the

first cumulative update for Nano Server was released on September 26, 2016 with KB4093120. With this and

subsequent cumulative updates, we provide various options for installing these updates on Nano Server. In this

article, we'll use the KB3192366 update as an example to illustrate how to obtain and apply cumulative updates

to Nano Server. For more information on the cumulative update model, see the Microsoft Update blog.

If you install an optional Nano Server package from media or online repository, it won't have recent security fixes included.

To avoid a version mismatch between the optional packages and base operating system, you should install the latest

cumulative update immediately after installing any optional packages and beforebefore restarting the server.

In the case of the Cumulative Update for Windows Server 2016: September 26, 2016 (KB3192366), you should

first install the latest Servicing Stack Update for Windows 10 Version 1607: August 23, 2016 as a prerequisite

(KB3176936). For most of the options below, you need the .msu files containing the .cab update packages. Visit

the Microsoft Update Catalog to download each of these update packages:

https://catalog.update.microsoft.com/v7/site/Search.aspx?q=KB3192366

https://catalog.update.microsoft.com/v7/site/Search.aspx?q=KB3176936

After downloading the .msu files from the Microsoft Update Catalog, save them to a network share or local

directory such as C:\ServicingPackages. You can rename the .msu files based on their KB number as we've done

below to make them easier to identify. Then use the EXPAND utility to extract the .cab files from the .msu files

into separate directories and copy the .cabs into a single folder.

Now you can use the extracted .cab files to apply the updates to a Nano Server image in a few different ways,

depending on your needs. The following options are presented in no particular order of preference - use the

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Update-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image
https://cloudblogs.microsoft.com/windowsserver/2016/07/12/windows-server-2016-new-current-branch-for-business-servicing-option/
https://support.microsoft.com/help/4093120/windows-10-update-kb4093120
https://docs.microsoft.com/en-us/archive/blogs/mu/patching-with-windows-server-2016
https://support.microsoft.com/kb/3192366
https://support.microsoft.com/kb/3176936
https://catalog.update.microsoft.com/v7/site/Search.aspx?q=KB3192366
https://catalog.update.microsoft.com/v7/site/Search.aspx?q=KB3176936

NOTENOTE

 Option 1: Integrate a cumulative update into a new image

New-NanoServerImage -ServicingPackagePath 'C:\ServicingPackages_cabs\Windows10.0-KB3176936-x64.cab',

'C:\ServicingPackages_cabs\Windows10.0-KB3192366-x64.cab' -<other parameters>

 Option 2: Integrate a cumulative update into an existing image

Edit-NanoServerImage -ServicingPackagePath 'C:\ServicingPackages_cabs\Windows10.0-KB3176936-x64.cab',

'C:\ServicingPackages_cabs\Windows10.0-KB3192366-x64.cab' -TargetPath .\NanoServer.wim

 Option 3: Apply the cumulative update to an existing offline VHD or

VHDX

 Option 4: Apply the cumulative update to a running Nano Server

option that makes the most sense for your environment.

When using the DISM tools to service Nano Server, you must use a version of DISM that is the same as or newer than

the version of Nano Server you're servicing. You can achieve this by running DISM from a matching version of Windows,

installing a matching version of the Windows Asssessment and Deployment Kit (ADK), or running DISM on Nano Server

itself.

If you are building a new Nano Server image, you can integrate the latest cumulative update directly into the

image so that it's fully patched on first boot.

If you have an existing Nano Server image that you use as a baseline for creating specific instances of Nano

Server, you can integrate the latest cumulative update directly into your existing baseline image so that

machines created using the image are fully patched on first boot.

If you have an existing virtual hard disk (VHD or VHDX), you can use the DISM tools to apply the update to the

virtual hard disk. You need to make sure the disk is not in use either by shutting down any VMs using the disk or

unmounting the virtual hard disk file.

Mount-WindowsImage -ImagePath .\NanoServer.vhdx -Path .\MountDir -Index 1

Add-WindowsPackage -Path .\MountDir -PackagePath C:\ServicingPackages_cabs

Dismount-WindowsImage -Path .\MountDir -Save

dism.exe /Mount-Image /ImageFile:C:\NanoServer.vhdx /Index:1 /MountDir:C:\MountDir

dism.exe /Image:C:\MountDir /Add-Package /PackagePath:C:\ServicingPackages_cabs

dism.exe /Unmount-Image /MountDir:C:\MountDir /Commit

Using PowerShell

Using dism.exe

If you have a running Nano Server VM or physical host and you've downloaded the .cab file for the update, you

can use the DISM tools to apply the update while the operating system is online. You will need to copy the .cab

file locally on the Nano Server or to an accessible network location. If you're applying a servicing stack update,

make sure to restart the server after applying the servicing stack update before applying additional updates.

https://developer.microsoft.comwindows/hardware/windows-assessment-deployment-kit

NOTENOTE

$s = New-PSSession -ComputerName (Read-Host "Enter Nano Server IP address") -Credential (Get-Credential)

Copy-Item -ToSession $s -Path C:\ServicingPackages_cabs -Destination C:\ServicingPackages_cabs -Recurse

Enter-PSSession $s

 Option 5: Download and install the cumulative update to a running

Nano Server

Enter-PSSession -ComputerName (Read-Host "Enter Nano Server IP address") -Credential (Get-Credential)

If you've created the Nano Server VHD or VHDX image using the New-NanoServerImage cmdlet and didn't specify a

MaxSize for the virtual hard disk file, the default size of 4GB is too small to apply the cumulative update. Prior to installing

the update, use Hyper-V Manager, Disk Management, PowerShell, or other tool to expand the size of the virtual hard disk

and system volume to at least 10GB, or use the ScratchDir parameter on the DISM tools to set the scratch directory to a

volume with at least 10GB of free space.

Apply the servicing stack update first and then restart

Add-WindowsPackage -Online -PackagePath C:\ServicingPackages_cabs\Windows10.0-KB3176936-x64.cab

Restart-Computer; exit

After restarting, apply the cumulative update and then restart

Enter-PSSession -ComputerName (Read-Host "Enter Nano Server IP address") -Credential (Get-Credential)

Add-WindowsPackage -Online -PackagePath C:\ServicingPackages_cabs\Windows10.0-KB3192366-x64.cab

Restart-Computer; exit

Apply the servicing stack update first and then restart

dism.exe /Online /Add-Package /PackagePath:C:\ServicingPackages_cabs\Windows10.0-KB3176936-x64.cab

After the operation completes successfully and you are prompted to restart, it's safe to

press Ctrl+C to cancel the pipeline and return to the prompt

Restart-Computer; exit

After restarting, apply the cumulative update and then restart

Enter-PSSession -ComputerName (Read-Host "Enter Nano Server IP address") -Credential (Get-Credential)

dism.exe /Online /Add-Package /PackagePath:C:\ServicingPackages_cabs\Windows10.0-KB3192366-x64.cab

Restart-Computer; exit

Using PowerShell

Using dism.exe

If you have a running Nano Server VM or physical host, you can use the Windows Update WMI provider to

download and install the update while the operating system is online. With this method, you don't need to

download the .msu file separately from the Microsoft Update Catalog. The WMI provider will detect, download,

and install all available updates at once.

Scan for available updates

 Additional Options

$ci = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName

MSFT_WUOperationsSession

$result = $ci | Invoke-CimMethod -MethodName ScanForUpdates -Arguments

@{SearchCriteria="IsInstalled=0";OnlineScan=$true}

$result.Updates

$ci = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName

MSFT_WUOperationsSession

Invoke-CimMethod -InputObject $ci -MethodName ApplyApplicableUpdates

Restart-Computer; exit

$ci = New-CimInstance -Namespace root/Microsoft/Windows/WindowsUpdate -ClassName

MSFT_WUOperationsSession

$result = $ci | Invoke-CimMethod -MethodName ScanForUpdates -Arguments

@{SearchCriteria="IsInstalled=1";OnlineScan=$true}

$result.Updates

Install all available updates

Get a list of installed updates

Other methods for updating Nano Server might overlap or complement the options above. Such options

include using Windows Server Update Services (WSUS), System Center Virtual Machine Manager (VMM), Task

Scheduler, or a non-Microsoft solution.

Configuring Windows Update for WSUS by setting the following registry keys:

Managing Fabric Updates in VMM

Registering a Scheduled Task

WUServer

WUStatusServer (generally uses the same value as WUServer)

UseWUServer

AUOptions

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/dd939844(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/system-center/system-center-2012-r2/gg675084(v=sc.12)
https://docs.microsoft.com/en-us/previous-versions/system-center/system-center-2012-r2/gg675084(v=sc.12)

Developing for Nano Server

10/25/2021 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Using Windows PowerShell remoting

NOTENOTE

$ip = \<IP address of Nano Server>

$user = $ip\Administrator

Enter-PSSession -ComputerName $ip -Credential $user

NOTENOTE

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

These topics explain important differences in PowerShell on Nano Server and also provide guidance for

developing your own PowerShell cmdlets for use on Nano Server.

PowerShell on Nano Server

Developing PowerShell Cmdlets for Nano Server

To manage Nano Server with Windows PowerShell remoting, you need to add the IP address of the Nano Server

to your management computer's list of trusted hosts, add the account you are using to the Nano Server's

administrators, and enable CredSSP if you plan to use that feature.

If the target Nano Server and your management computer are in the same AD DS forest (or in forests with a trust

relationship), you should not add the Nano Server to the trusted hosts list--you can connect to the Nano Server by using

its fully qualified domain name, for example: PS C:> Enter-PSSession -ComputerName nanoserver.contoso.com -Credential

(Get-Credential)

To add the Nano Server to the list of trusted hosts, run this command at an elevated Windows PowerShell

prompt:

Set-Item WSMan:\localhost\Client\TrustedHosts <IP address of Nano Server>

To start the remote Windows PowerShell session, start an elevated local Windows PowerShell session, and then

run these commands:

You can now run Windows PowerShell commands on the Nano Server as normal.

Not all Windows PowerShell commands are available in this release of Nano Server. To see which are available, run

Get-Command -CommandType Cmdlet

Stop the remote session with the command Exit-PSSession

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Developing-on-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

 Using Windows PowerShell CIM sessions over WinRM

$ip = <IP address of the Nano Server\>

$ip\Administrator

$cim = New-CimSession -Credential $user -ComputerName $ip

Get-CimInstance -CimSession $cim -ClassName Win32_ComputerSystem | Format-List *

Get-CimInstance -CimSession $Cim -Query SELECT * from Win32_Process WHERE name LIKE 'p%'

You can use CIM sessions and instances in Windows PowerShell to run WMI commands over Windows Remote

Management (WinRM).

Start the CIM session by running these commands in a Windows PowerShell prompt:

With the session established, you can run various WMI commands, for example:

PowerShell on Nano Server

10/25/2021 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

 PowerShell Editions

$PSVersionTable

Name Value

---- -----

PSVersion 5.1.14300.1000

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

CLRVersion 4.0.30319.42000

BuildVersion 10.0.14300.1000

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Starting with version 5.1, PowerShell is available in different editions which denote varying feature sets and

platform compatibility.

Desktop Edition:Desktop Edition: Built on .NET Framework and provides compatibility with scripts and modules targeting

versions of PowerShell running on full footprint editions of Windows such as Server Core and Windows

Desktop.

Core Edition:Core Edition: Built on .NET Core and provides compatibility with scripts and modules targeting versions of

PowerShell running on reduced footprint editions of Windows such as Nano Server and Windows IoT.

The running edition of PowerShell is shown in the PSEdition property of $PSVersionTable.

Module authors can declare their modules to be compatible with one or more PowerShell editions using the

CompatiblePSEditions module manifest key. This key is only supported on PowerShell 5.1 or later.

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/PowerShell-on-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

New-ModuleManifest -Path .\TestModuleWithEdition.psd1 -CompatiblePSEditions Desktop,Core -PowerShellVersion

5.1

$moduleInfo = Test-ModuleManifest -Path \TestModuleWithEdition.psd1

$moduleInfo.CompatiblePSEditions

Desktop

Core

$moduleInfo | Get-Member CompatiblePSEditions

 TypeName: System.Management.Automation.PSModuleInfo

Name MemberType Definition

---- ---------- ----------

CompatiblePSEditions Property System.Collections.Generic.IEnumerable[string] CompatiblePSEditions {get;}

Get-Module -ListAvailable | ? CompatiblePSEditions -Contains Desktop

 Directory: C:\Program Files\WindowsPowerShell\Modules

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Manifest 1.0 ModuleWithPSEditions

Get-Module -ListAvailable | ? CompatiblePSEditions -Contains Core | % CompatiblePSEditions

Desktop

Core

Set-Content C:\script.ps1 -Value #requires -PSEdition Core

Get-Process -Name PowerShell

Get-Content C:\script.ps1

#requires -PSEdition Core

Get-Process -Name PowerShell

C:\script.ps1

C:\script.ps1 : The script 'script.ps1' cannot be run because it contained a #requires statement for

PowerShell editions 'Core'. The edition of PowerShell that is required by the script does not match the

currently running PowerShell Desktop edition.

At line:1 char:1

+ C:\script.ps1

+ ~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (script.ps1:String) [], RuntimeException

 + FullyQualifiedErrorId : ScriptRequiresUnmatchedPSEdition

 Differences in PowerShell on Nano Server

When getting a list of available modules, you can filter the list by PowerShell edition.

Script authors can prevent a script from executing unless it is run on a compatible edition of PowerShell using

the PSEdition parameter on a #requires statement.

Nano Server includes PowerShell Core by default in all Nano Server installations. PowerShell Core is a reduced

footprint edition of PowerShell that is built on .NET Core and runs on reduced footprint editions of Windows,

such as Nano Server and Windows IoT Core. PowerShell Core functions in the same way as other editions of

PowerShell, such as Windows PowerShell running on Windows Server 2016. However, the reduced footprint of

Nano Server means that not all PowerShell features from Windows Server 2016 are available in PowerShell

Core on Nano Server.

 Using Windows PowerShell Desired State Configuration with Nano

Server

Windows PowerShell features not available in Nano Ser verWindows PowerShell features not available in Nano Ser ver

ADSI, ADO, and WMI type adapters

Enable-PSRemoting, Disable-PSRemoting (PowerShell remoting is enabled by default; see the Using

Windows PowerShell Remoting section of Install Nano Server).

Scheduled jobs and PSScheduledJob module

Computer cmdlets for joining a domain { Add | Remove } (for different methods to join Nano Server to a

domain, see the Joining Nano Server to a domain section of Install Nano Server).

Reset-ComputerMachinePassword, Test-ComputerSecureChannel

Profiles (you can add a startup script for incoming remote connections with Set-PSSessionConfiguration)

Clipboard cmdlets

EventLog cmdlets { Clear | Get | Limit | New | Remove | Show | Write } (use the New-WinEvent and Get-

WinEvent cmdlets instead).

Get-PfxCertificate cmdlet

TraceSource cmdlets { Get | Set }

Counter cmdlets { Get | Export | Import }

Some web-related cmdlets { New-WebServiceProxy, Send-MailMessage, ConvertTo-Html }

Logging and tracing using PSDiagnostics module

Get-HotFix (to obtain and manage updates on Nano Server, see Manage Nano Server).

Implicit remoting cmdlets { Export-PSSession | Import-PSSession }

New-PSTransportOption

PowerShell transactions and Transaction cmdlets { Complete | Get | Start | Undo | Use }

PowerShell Workflow infrastructure, modules, and cmdlets

Out-Printer

Update-List

WMI v1 cmdlets: Get-WmiObject, Invoke-WmiMethod, Register-WmiEvent, Remove-WmiObject, Set-

WmiInstance (use CimCmdlets module instead.)

You can manage Nano Server as target nodes with Windows PowerShell Desired State Configuration (DSC).

Currently, you can manage nodes running Nano Server with DSC in push mode only. Not all DSC features

function with Nano Server.

For full details, see Using DSC on Nano Server.

https://docs.microsoft.com/en-us/powershell/scripting/dsc/getting-started/nanodsc

Developing PowerShell Cmdlets for Nano Server

10/25/2021 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Overview

 PowerShell editions

$PSVersionTable

Name Value

---- -----

PSVersion 5.1.14300.1000

PSEdition Desktop

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}

CLRVersion 4.0.30319.42000

BuildVersion 10.0.14300.1000

WSManStackVersion 3.0

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

Applies to: Windows Server 2016

Starting in Windows Server, version 1709, Nano Server will be available only as a container base OS image. Check out

Changes to Nano Server to learn what this means.

Nano Server includes PowerShell Core by default in all Nano Server installations. PowerShell Core is a reduced-

footprint edition of PowerShell that is built on .NET Core and runs on reduced-footprint editions of Windows,

such as Nano Server and Windows IoT Core. PowerShell Core functions in the same way as other editions of

PowerShell, such as Windows PowerShell running on Windows Server 2016. However, the reduced footprint of

Nano Server means that not all PowerShell features from Windows Server 2016 are available in PowerShell

Core on Nano Server.

If you have existing PowerShell cmdlets that you'd like to run on Nano Server, or are developing new ones for

that purpose, this topic includes tips and suggestions that should help make that easier.

Starting with version 5.1, PowerShell is available in different editions which denote varying feature sets and

platform compatibility.

Desktop Edition:Desktop Edition: Built on .NET Framework and provides compatibility with scripts and modules targeting

versions of PowerShell running on full footprint editions of Windows such as Server Core and Windows

Desktop.

Core Edition:Core Edition: Built on .NET Core and provides compatibility with scripts and modules targeting versions of

PowerShell running on reduced footprint editions of Windows such as Nano Server and Windows IoT.

The running edition of PowerShell is shown in the PSEdition property of $PSVersionTable.

Module authors can declare their modules to be compatible with one or more PowerShell editions using the

CompatiblePSEditions module manifest key. This key is only supported on PowerShell 5.1 or later.

https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/get-started/Developing-PowerShell-Cmdlets-for-Nano-Server.md
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/using-insider-container-images#install-base-container-image

New-ModuleManifest -Path .\TestModuleWithEdition.psd1 -CompatiblePSEditions Desktop,Core -PowerShellVersion

5.1

$moduleInfo = Test-ModuleManifest -Path \TestModuleWithEdition.psd1

$moduleInfo.CompatiblePSEditions

Desktop

Core

$moduleInfo | Get-Member CompatiblePSEditions

 TypeName: System.Management.Automation.PSModuleInfo

Name MemberType Definition

---- ---------- ----------

CompatiblePSEditions Property System.Collections.Generic.IEnumerable[string] CompatiblePSEditions {get;}

Get-Module -ListAvailable | ? CompatiblePSEditions -Contains Desktop

 Directory: C:\Program Files\WindowsPowerShell\Modules

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Manifest 1.0 ModuleWithPSEditions

Get-Module -ListAvailable | ? CompatiblePSEditions -Contains Core | % CompatiblePSEditions

Desktop

Core

Set-Content C:\script.ps1 -Value #requires -PSEdition Core

Get-Process -Name PowerShell

Get-Content C:\script.ps1

#requires -PSEdition Core

Get-Process -Name PowerShell

C:\script.ps1

C:\script.ps1 : The script 'script.ps1' cannot be run because it contained a #requires statement for

PowerShell editions 'Core'. The edition of PowerShell that is required by the script does not match the

currently running PowerShell Desktop edition.

At line:1 char:1

+ C:\script.ps1

+ ~~~~~~~~~~~~~

 + CategoryInfo : NotSpecified: (script.ps1:String) [], RuntimeException

 + FullyQualifiedErrorId : ScriptRequiresUnmatchedPSEdition

 Installing Nano Server

When getting a list of available modules, you can filter the list by PowerShell edition.

Script authors can prevent a script from executing unless it is run on a compatible edition of PowerShell using

the PSEdition parameter on a #requires statement.

Quick-start and detailed steps for installing Nano Server on virtual or physical machines are provided in Install

Nano Server, which is the parent topic for this one.

NOTENOTE

 Determining the type of cmdlet implementation

 Porting CIM cmdlets

 Building C++ for Nano ServerBuilding C++ for Nano Server

 Porting .NET cmdlets

 Powershell Core SDKPowershell Core SDK

For development work on Nano Server, you might find it useful to install Nano Server by using the -Development

parameter of New-NanoServerImage. This will enable installation of unsigned drivers, copy debugger binaries, open a port

for debugging, enable test signing and enable installation of AppX packages without a developer license. For example:

New-NanoServerImage -DeploymentType Guest -Edition Standard -MediaPath \\Path\To\Media\en_us -BasePath

.\Base -TargetPath .\NanoServer.wim -Development

PowerShell supports a number of implementation types for cmdlets, and the one you've used determines the

process and tools involved in creating or porting it to work on Nano Server. Supported implementation types

are:

CIM - consists of CDXML files layered over CIM (WMIv2) providers

.NET - consists of .NET assemblies implementing managed cmdlet interfaces, typically written in C#

PowerShell Script - consists of script modules (.psm1) or scripts (.ps1) written in the PowerShell language

If you're not sure which implementation you've used for existing cmdlets you want to port, install your product

or feature and then look for the PowerShell module folder in one of the following locations:

%windir%\system32\WindowsPowerShell\v1.0\Modules

%ProgramFiles%\WindowsPowerShell\Modules

%UserProfile%\Documents\WindowsPowerShell\Modules

<your product installation location>

Check in these locations for these details:

CIM cmdlets have .cdxml file extensions.

.NET cmdlets have .dll file extensions, or have assemblies installed to the GAC listed in the .psd1 file

under the RootModule, ModuleToProcess, or NestedModules fields.

PowerShell script cmdlets have .psm1 or .ps1 file extensions.

Generally, these cmdlets should work in Nano Server without any conversion necessary. However, you must

port the underlying WMI v2 provider to run on Nano Server if that has not already been done.

To get C++ DLLs working on Nano Server, compile them for Nano Server rather than for a specific edition.

For prerequisites and a walkthrough of developing C++ on Nano Server, see Developing Native Apps on Nano

Server.

Most C# code is supported on Nano Server. You can use ApiPort to scan for incompatible APIs.

The module Microsoft.PowerShell.NanoServer.SDK is available in the PowerShell Gallery to facilitate developing

.NET cmdlets using Visual Studio 2015 Update 2 that target the versions of CoreCLR and PowerShell Core

available in Nano Server. You can install the module using PowerShellGet with this command:

https://docs.microsoft.com/en-us/archive/blogs/nanoserver/developing-native-apps-on-nano-server
https://github.com/Microsoft/dotnet-apiport
https://www.powershellgallery.com/packages/Microsoft.PowerShell.NanoServer.SDK/

 Searching for compatible APIsSearching for compatible APIs

 PInvokePInvoke

 Building C# for Nano ServerBuilding C# for Nano Server

 Building managed C++ (CPP/CLI) for Nano ServerBuilding managed C++ (CPP/CLI) for Nano Server

Find-Module Microsoft.PowerShell.NanoServer.SDK -Repository PSGallery | Install-Module -Scope <scope>

The PowerShell Core SDK module exposes cmdlets to set up the correct CoreCLR and PowerShell Core reference

assemblies, create a C# project in Visual Studio 2015 targeting those reference assemblies, and set up the

remote debugger on a Nano Server machine so that developers can debug their .NET cmdlets running on Nano

Server remotely in Visual Studio 2015.

The PowerShell Core SDK module requires Visual Studio 2015 Update 2. If you do not have Visual Studio 2015

installed, you can install Visual Studio Community 2015.

The SDK module also depends on the following feature to be installed in Visual Studio 2015:

Windows and Web Development -> Universal Windows App Development Tools -> Tools (1.3.1) and

Windows 10 SDK

Review your Visual Studio installation before using the SDK module to ensure these prerequisites are satisfied.

Make sure you select to install the above feature during the Visual Studio installation, or modify your existing

Visual Studio 2015 installation to install it.

The PowerShell Core SDK module includes the following cmdlets:

New-NanoCSharpProject: Creates a new Visual Studio C# project targeting CoreCLR and PowerShell Core

included in the Windows Server 2016 release of Nano Server.

Show-SdkSetupReadMe: Opens the SDK root folder in File Explorer and opens the README.txt file for

manual setup.

Install-RemoteDebugger: Installs and configures the Visual Studio remote debugger on a Nano Server

machine.

Start-RemoteDebugger: Starts the remote debugger on a remote machine running Nano Server.

Stop-RemoteDebugger: Stops the remote debugger on a remote machine running Nano Server.

For detailed information about how to use those cmdlets, run Get-Help on each cmdlet after installing and

importing the module as follows:

Get-Command -Module Microsoft.PowerShell.NanoServer.SDK | Get-Help -Full

You can search in the API catalog for .NET Core or disassemble Core CLR reference assemblies. For more

information about platform portability of .NET APIs, see Platform Portability

In the Core CLR that Nano Server uses, some fundamental DLLs such as kernel32.dll and advapi32.dll were split

into numerous API sets, so you'll need to ensure that your PInvokes reference the correct API. Any

incompatibility will manifest as a runtime error.

For a list of native APIs supported on Nano Server, see Nano Server APIs.

Once a C# project is created in Visual Studio 2015 by using New-NanoCSharpProject , you can simply build it in

Visual Studio by clicking the BuildBuild menu and selecting Build ProjectBuild Project or Build SolutionBuild Solution. The generated

assemblies will be targeting the correct CoreCLR and PowerShell Core shipped in Nano Server, and you can just

copy the assemblies to a computer running Nano Server and use them.

Managed C++ is not supported for CoreCLR. When porting to CoreCLR, rewrite managed C++ code in C# and

make all native calls through PInvoke.

https://www.visualstudio.com/products/visual-studio-community-vs.aspx
https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/PlatformPortability.md
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt588480(v=vs.85)

Porting PowerShell script cmdlets

 Dependency on built-in cmdletsDependency on built-in cmdlets

 Consider using PowerShell classesConsider using PowerShell classes

Add-Type -ReferencedAssemblies ([Microsoft.Management.Infrastructure.Ciminstance].Assembly.Location) -

TypeDefinition @'

public class TestNetConnectionResult

{

 // The compute name

 public string ComputerName = null;

 // The Remote IP address used for connectivity

 public System.Net.IPAddress RemoteAddress = null;

}

'@

Create object and set properties

$result = New-Object TestNetConnectionResult

$result.ComputerName = Foo

$result.RemoteAddress = 1.1.1.1

class TestNetConnectionResult

{

 # The compute name

 [string] $ComputerName

 #The Remote IP address used for connectivity

 [System.Net.IPAddress] $RemoteAddress

}

Create object and set properties

$result = [TestNetConnectionResult]::new()

$result.ComputerName = Foo

$result.RemoteAddress = 1.1.1.1

 Remotely debugging scriptsRemotely debugging scripts

PowerShell Core has full PowerShell language parity with other editions of PowerShell, including the edition

running on Windows Server 2016 and Windows 10. However, when porting PowerShell script cmdlets to Nano

Server, keep these factors in mind:

Are there dependencies on other cmdlets? If so, are those cmdlets available on Nano Server. See PowerShell

on Nano Server for information about what is not available.

If you have dependencies on assemblies that are loaded at runtime, will they still work?

How can you debug the script remotely?

How can you migrate from WMI .Net to MI .Net?

Not all cmdlets in Windows Server 2016 are available on Nano Server (see PowerShell on Nano Server). The

best approach is to set up a Nano Server virtual machine and discover whether the cmdlets you need are

available. To do this, run Enter-PSSession to connect to the target Nano Server and then run

Get-Command -CommandType Cmdlet, Function to get the list of available cmdlets.

Add-Type is supported on Nano Server for compiling inline C# code. If you're writing new code or porting

existing code, you might also consider using PowerShell classes to define custom types. You can use PowerShell

classes for property bag scenarios as well as for Enums. If you need to do a PInvoke, do this via C# using Add-

Type or in a pre-compiled assembly. Here's a sample showing the use of Add-Type:

This sample shows using PowerShell classes on Nano Server :

To remotely debug a script, connect to the remote computer using Enter-PSsession from the PowerShell ISE.

 Migrating from WMI .NET to MI .NETMigrating from WMI .NET to MI .NET

 CimCmdlets moduleCimCmdlets module

 C# APIC# API

Once inside the session, you can run psedit <file_path> and a copy of the file will be open in your local

PowerShell ISE. Then, you can debug the script as if it were running locally by setting breakpoints. Also, any

changes you make to this file will be saved in the remote version.

WMI .NET is not supported, so all cmdlets using the old API must migrate to the supported WMI API: MI. NET.

You can access MI .NET directly through C# or through the cmdlets in the CimCmdlets module.

The WMI v1 cmdlets (e.g., Get-WmiObject) are not supported on Nano Server. However, the CIM cmdlets (e.g.,

Get-CimInstance) in the CimCmdlets module are supported. The CIM cmdlets map pretty closely to the WMI v1

cmdlets. For example, Get-WmiObject correlates with Get-CimInstance using very similar parameters. Method

invocation syntax is slightly different, but is well documented via Invoke-CimMethod. Be careful regarding

parameter typing. MI .NET has stricter requirements regarding method parameter types.

WMI .NET wraps the WMIv1 interface, while MI .NET wraps the WMIv2 (CIM) interface. The classes exposed

might be different, but the underlying operations are very similar. You enumerate or get instances of objects and

invoke operations on them to accomplish tasks.

https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.7.1
https://docs.microsoft.com/en-us/previous-versions/dn387184(v=vs.85)

	Cover Page
	Get started
	Get started with Windows Server
	Overview
	What's new in Windows Server
	Windows Server 2022
	Windows Server, versions 2004 and 20H2
	Windows Server, versions 1903 and 1909
	Windows Server 2019
	Windows Server 2016

	Servicing channels comparison
	Editions feature comparison
	Windows Server 2022
	Windows Server 2019
	Windows Server 2016

	Hardware requirements
	Features removed or no longer developed
	Windows Server 2022
	Windows Server, version 1903 and 1909
	Windows Server 2019
	Windows Server 2016

	Release information
	Extended Security Updates

	Concepts
	Server Core App Compatibility Feature on Demand
	Activation
	Automatic VM Activation
	KMS activation planning

	Microsoft Server application compatibility
	Windows Server 2022
	Windows Server 2019
	Windows Server 2016

	Migration of Windows Server Roles and Features
	Upgrade and Conversion Options for Windows Server 2016
	Windows Server 2016 Role Upgrade and Migration
	Azure Hybrid Benefit for Windows Server

	How-to guides
	Install, upgrade, or migrate
	Install Server Core
	Install Server with Desktop Experience

	Activation
	Create KMS host
	KMS client activation

	Get Extended Security Updates

	Install Nano Server
	Changes to Nano Server in the next release of Windows Server
	Nano Server Quick Start
	Deploy Nano Server
	IIS on Nano Server
	MPIO on Nano Server

	Manage Nano Server
	Service and Update Nano Server

	Developing on Nano Server
	PowerShell on Nano Server
	Developing PowerShell Cmdlets for Nano Server

	Troubleshooting
	Activation
	Troubleshooting Windows volume activation
	Troubleshooting KMS
	Slmgr.vbs options
	Solutions to common activation issues
	Resolve Windows activation error codes
	KMS activation: known issues
	MAK activation: known issues
	Troubleshooting DNS-related activation issues
	Rebuild the Tokens.dat file
	Example: Troubleshooting ADBA clients that do not activate

	Nano Server

	Resources
	Windows release health
	Windows Server product page
	Windows Server license terms

