
Enterprise Objects Framework Release 2.1. Copyright 1997 by Apple Computer, Inc. All Rights Reserved.

Release Notes:
Enterprise Objects Framework 2.1

This document contains the release notes for release 2.1 of Enterprise Objects Framework.

The release notes that ship with this product are complete and up-to-date as of the time the
CD-ROM was manufactured. Information about the release discovered since manufacture
are continually being incorporated into the release notes, which can be obtained from
NeXTanswers. For the location of the most up-to-date release notes for this or any other
NeXT product, request NeXTanswer #2455.

The MachOS version of this release is 3-way fat; it can be used to develop software for
NeXT, Intel, and SPARC. The OpenStep for Windows version of this release can be used to
develop software for Intel machines running Windows NT. The PDO version of this release
can be used to develop software for Solaris and HPUX.

These release notes are organized into the following sections:

• Information About Other Releases
• Notes specific to Windows NT Developers
• Database Client Libraries
• New Features in Release 2.1
• Installing the Examples
• Enterprise Objects Framework User Defaults
• Locating the Documentation for this Release
• Known Problems in Release 2.1

Note: Because release 2.1 of Enterprise Objects Framework is based on the same
architecture as release 2.0, many of the subjects in this document are relevant to both
releases. Consequently, the term "release 2.x" is used where a discussion applies equally
to releases 2.0 and 2.1.

Information About Other Releases

This document describes the features introduced, the bugs fixed, and the known problems in
Enterprise Objects Framework release 2.1.

For a description of the features introduced in Enterprise Objects Framework release 2.0,
see the 2.0 release notes. They contain a lot of information that’s still relevant for 2.1,
including information about converting release 1.x applications to 2.0 and a list of features
shared with Enterprise Objects Framework release 1.2. The 2.0 release notes are available
in NeXTanswers as NeXTanswer #2455. If you have access to the World Wide Web, you
can look up using the URL
http://www.next.com/NeXTanswers/HTMLFiles/2455.htmld/2455.html.

For a description of how Enterprise Objects Framework 2.0 and 2.1 differ from the
preceding releases, see the document Differences Between Enterprise Objects Framework
1x and 2.0 in /NextLibrary/Documentation/NextDev/EnterpriseObjects/1x_To_2.

Notes Specific to Windows NT Developers

References to filenames in this document use UNIX format. On Windows NT, you can
interpret these by reading backslashes for the slashes and adding the installation directory
(c:\NeXT\ by default) to the beginning. For example, /NextLibrary/Documentation on
Windows NT is c:\NeXT\NextLibrary\Documentation .

To use Enterprise Objects Framework on Windows NT, you must have the appropriate
database client libraries. The Sybase client libraries are provided on the OpenStep
Enterprise 4.2 CD as an optional package. To install the Sybase client libraries, you must
do a custom installation and explicitly specify that you want to install the package. To use
Enterprise Objects Framework with Oracle or Informix, you must purchase the appropriate
client libraries from your database vendor.

Here’s what you need:

Oracle

Phone: (800) 542-1170
Ask for: SQLNET v2.2 for PC/Windows NT

The Oracle adaptor on NT requires the Oracle 7.3 or 7.2 Client Library. It won’t work with
the 7.1 libraries.

Informix

Phone: (800) 331-1763
Ask for: ESQL/C version 7.2 for Win32

Notes Specific to PDO Developers

To use Enterprise Objects Framework on PDO, you must have the appropriate database
client libraries.

Here’s what you need:

Oracle

Phone: (800) 542-1170
Ask for: 7.3.2 SQLNet V2 TCP/IP Client libraries

Informix

Phone: (800) 331-1763
Ask for: ESQL/C Version 7.20.UC2

Sybase

Phone: (800) 685-8225
Ask for: OpenClient/C Version 10.0.4

On PDO applications must explicitly link against the adaptor framework and the client
libraries. For an example of how to do this, see the makefiles in the example "SimpleFetch"
in NextDeveloper/Examples/EnterpriseObjects.

Database Client Libraries

This section includes some tips on using database client libraries with Enterprise Objects
Frameworks. It is organized by database vendor.

Oracle

On Windows NT, using the latest release of the client library (7.3) requires you to use
SQL*Net v2, which requires a tnsnames.ora file. tnsnames.ora is a file that you put on
client machines, generally in the directory Orant/Network/Admin . The file contains
information needed to connect to a server over the network. Entries in tnsnames.ora are
keyed off of a server ID alias, and they include information such as the server ID, the host
machine name, and the network protocol used by the client library to resolve the server ID
alias. An entry in tnsnames.ora might resemble the following:

myServerAlias = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=myMachine) (PORT=1521))(CONNECT_DATA=(SID=eof)))

Oracle provides tools you can use to create tnsnames.ora files. Refer to your Oracle
documentation for more information on tnsnames.ora files and the tools you can use to
create them.

If you’re using the 7.2 version of the Oracle client libraries on Windows NT or if you’re
using Mach clients, you can use either SQL*Net v1 or SQL*Net v2. To use SQL*Net v1,
you should set your adaptor’s connectionDictionary serverId entry to
"T:<host-machine>:<server-name>".

To use SQL*Net V2 on Mach clients, you should create a tnsnames.ora file and put it in
the /etc directory.

Informix

If you get the error "INFORMIXSERVER not in sqlhosts file (25596)" but can connect to
your database server using the Informix ilogin program, you may need to run SetNet32 to
update the environment variables used by Informix.

The Informix client libraries appear to have redundant sources of server information. They
use the sqlhosts file ($INFORMIXDIR/etc/sqlhosts) as well as a collection of
environment variables managed by the Setnet32 program.

See your Informix documentation for more information on the sqlhosts file and the Setnet32
program.

New Features for 2.1

Integration with Project Builder and Interface Builder

• There is a new Enterprise Objects Framework Wizard that automates the creation of
simple Enterprise Objects Framework applications. When you create an application in
Project Builder, you have the option of either creating an empty Enterprise Objects
Framework application or using the wizard to automate the creation of the user interface.

• Interface Builder now has a "New Database Interface" command that invokes the Wizard
to add a new interface to an existing project.

 •You can display totals, averages, and other aggregate computations without writing any
code. Interface Builder now allows you to form connections using special keys. For
example, you can associate the maximum salary to a text field using the key
@max.salary.

 • You can create "query by example" user interfaces without writing any code. Using
Interface Builder, you can connect user interface control objects to special keys such as
@query=.departmentName or @query>.budget, and Enterprise Objects Framework
constructs and applies qualifiers for them.

• In Interface Builder, you can specify a qualifier for an EODisplayGroup’s

EODatabaseDataSource using the Data Source Inspector.

• Interface Builder allows you to set a fetch limit for an EODisplayGroup’s
EODatabaseDataSource.

• You no longer have to manually add key paths to an EODisplayGroup in Interface Builder.
Instead, you can use the Interface Builder’s Inspector to traverse relationships and
connect to the desired property.

• When you connect a user interface control to an EODisplayGroup in Interface Builder, a
formatter based on the data type of the associated property is automatically added to the
control.

• There is a new EOComboBoxAssociation.

• There is a new EOArrayDataSource class.

EOModeler

• EOModeler has a new "Explorer" outline interface that makes navigating the model
easier.

• EOModeler provides an Inspector for editing the connection dictionary.

• EOModeler has a new Diagram View that helps you visualize relationships between
entities.

• EOModeler supports cutting and pasting and model objects both within and between
models. You can also drag and drop model objects within and between models.

• EOModeler supports quicker creation of EOModels by reading only the tables you specify.

Adaptors

• The Oracle and Informix adaptors link with the newest client libraries.

• The new Oracle login panel is designed to work more naturally with SQL*Netv2.

Framework

• The Framework supports whole-table caching for read-only entities, thereby avoiding
redundant fetches of reference data.

• Exceptions raised by the framework now contain more information. For example,
validation exceptions include the object and property that failed validation, and update
exceptions indicate the object and database operation that were involved in the failure.

Examples

• The Enterprise Objects Framework examples have been updated.

Installing the Examples

This release provides on-line examples to help familiarize you with Enterprise Objects
Framework 2.x. These examples are located in

/NextDeveloper/Examples/EnterpriseObjects. Installing the examples involves these
steps:

• Setting up users and databases on your database server for the example databases.
• Installing the example directory.
• Populating your database server with example data.

Setting up Database Accounts

The Enterprise Objects Framework 2.x examples use two sets of tables: Movies and
Rentals. Some examples use just one of the these databases, while others use both. The
multi-database support in Enterprise Objects Framework 2.x makes it possible for you to
install these databases in three different configurations:

• Both sets of tables together in a single user/database.
• Each set of tables in its own user/database on the same database server.
• Each set of tables on its own database server (for example, Movies on Informix, Rentals

on Oracle).

Depending on your desired setup, you use the tools available with your database server to
set up one or two new user/databases. For example. on Sybase you might create a new
database on your server called “Movies” and login with the user “sa”. On Oracle you might
create a new user with the name “Movies”. Once you have set up these accounts, you’re
ready to install the examples.

Copying the Example Directory

To configure and build the examples you need to copy the example directory to a writable
area in your file system. You can do this by copying the
/NextDeveloper/Examples/EnterpriseObjects folder into your home directory (or any
other directory writable by you).

Configuring the Example Models

The model files used by the examples must be configured to use your adaptor and server. To
configure the examples, run the configure_examples program in your copy of the examples
directory. It will ask you for the name of the adaptor you wish to use (Informix, Oracle,
Sybase, and so on) and for the login information for your database. It will then convert the
example models for your server.

Populating the Databases

Now that the examples are configured, you can fill your example databases with sample
data. The install_database tool in the DatabaseSetUp directory will connect to your
databases, add the example tables, and fill them with data. If you later wish to remove the
data, simple run the drop_database tool.

Building the Example Programs

With your example projects installed and your database filled with data, you are ready to
build and run the examples. To do this, in a command shell cd to your example directory and
type make all. This performs a make install on BusinessLogic.framework and
EOExtensions.framework to put them in /LocalDeveloper/Frameworks, where they are
shared by many of the other examples. It then makes all of the examples applications.

Note: The /LocalDeveloper/Frameworks directory must be created and writable by you
in order to build the examples. On Mach this can be accomplished by using su to become
the superuser and then executing the following commands:

mkdirs /LocalDeveloper/Frameworks
chmod a+w /LocalDeveloper/Frameworks

Enterprise Objects Framework Defaults

This section lists the user defaults for which Enterprise Objects Framework checks and
changes its behavior.

Defaults in the NSGlobalDomain

To change these defaults, issue a command such as the following from a shell:
defaults write NSGlobalDomain EOAdaptorUseBindVariables NO

EOFDebugEditingContext
Default is NO.
EOControl Layer will log every time an object is changed.

EOFDebugUndo
Default is NO.
Logs each time something is pushed on or popped off an undo list.
Also logs in [_EOUndoStack dealloc] .

EOAdaptorDebugEnabled
Default is NO.
Logs for connection attempts, all transaction activity (begin, rollback, commit), and SQL
statements (select, update, etc.).

EOProjectSourceSearchPath
An optional array of paths in which EOAccess searches for framework project
directories that contain models.

EOAdaptorUseBindVariables
Default is YES.
Controls whether or not the SQL generation process will use bind variables (for Oracle

and Informix).

EOOracleTableNamesSQL
SQL statement used to identify tables for the model reverse-engineering process.
Default is:

SELECT TABLE_NAME FROM USER_TABLES ORDER BY TABLE_NAME")

If you would like the model reverse-engineering to look at a different set of the tables,
you can provide your own SQL statement, for example:

SELECT TABLE_NAME FROM USER_TABLES ORDER BY TABLE_NAME
WHERE TABLE_NAME not in (’MY_USELESS’, ’FOO’)

EOOracleUseNoWaitLocks
Default is NO.
Controls whether Oracle uses NOWAIT locks.

EOSybaseInterfacesFile
Default is unset.
If the default is set, the SybaseAdaptor initializes the client library to run with this
interface the specified interfaces file. This default is not applicable on Windows NT.

EOSybaseTableNamesSQL
This default can be used to change the default SQL used to determine the tables that are
analyzed in creating a new model.
Default is

select name from sysobjects where type = ’U’ or type = ’V’

EOSybaseAttributeSQL
SQL statement used to get the attribute information for a given table.
Default is
select a.name attr_name, b.type attr_type, b.name type_name,
b.allownulls allownulls, c.type primary_key, a.length width, a.prec
prec, a.scale scale from syscolumns a, systypes b, syskeys c where a.id
= object_id(’%@’) and a.id *= c.id and (a.colid *= c.key1 or a.colid *=
c.key2 or a.colid *= c.key3 or a.colid *= c.key4) and (c.type = 1 or
c.type is null) and a.usertype = b.usertype and datalength(a.name) > 0
order by a.name

EOSybaseRelationshipSQL
Default is
select a.keycnt, b.name tname, c.name cname, d.name dtname, e.name
dcname from syskeys a, sysobjects b, syscolumns c, sysobjects d,
syscolumns e where (b.type = ’U’ or b.type = ’V’) and a.depid is not
null and a.depid > 0 and b.id = a.id and b.id = c.id and ((c.colid =
a.key1 and e.colid = a.depkey1) or (c.colid = a.key2 and e.colid =
a.depkey2) or (c.colid = a.key3 and e.colid = a.depkey3) or (c.colid =
a.key4 and e.colid = a.depkey4)) and d.id = a.depid and d.id = e.id
order by b.name, d.name

EOSybaseStoreProcedureSQL
Default is
select name, id from sysobjects where type = ’P’

EOSybaseStoredProcedureDetailsSQL
Default is
sp_sproc_columns %@

InformixINFORMIXSERVER
No default value.
The name of the Informix server.

InformixInformixTableNamesSQL
This default can be used to change the default SQL used to determine the tables that will
be analyzed in creating a new model.
Default is
select tabname, owner, tabid from informix.systables where (tabid > 99)
and (tabname <> ’ANSI’) order by tabname

Defaults in the EOModeler Domain

To change these defaults, issue a command such as the following from a shell:
defaults write EOModeler DisableInheritenceCheck YES

BundlesToLoad
If you write extensions to EOModeler, you can get EOModeler to load them by setting
this default. This default is an array, so remember to include parentheses when you set it.
For example:
defaults write EOModeler BundlesToLoad
"(/LocalDeveloper/ModelerBundles/MyModelerBundle.bundle,
$HOME/eoexamples/ModelerBundle/ModelerBundle.bundle) "

RECORD_FETCH_LIMIT
Default is 100.
For the Data Browser in EOModeler. This controls how many rows to fetch before
asking users if they want to fetch all, fetch another n rows, or just stop now.

Consistency Checks
All of the following defaults have the default NO:

DisableConsistencyCheckOnSave
DisableExternalNameCheck
DisableInheritenceCheck
DisablePrimaryKeyCheck

DisableRelationshipCheck
DisableStoredProcedureCheck

SkipBeautifyNamesOnModelCreation
Default is NO.
Setting this default to YES will cause EOModeler to leave the entity names and attribute
names matching the exact names of their corresponding database objects (including the
case).

DisableAdvancedOptions
Default is NO.
If set to YES, the EOModeler runs in "Simplified mode". The advanced inspectors don’t
appear, the choices of table view columns is limited, and so on.

Locating the Documentation for this Release

The documentation for this release is provided in PDF and Windows Help formats. On
Windows NT, you can view documentation by choosing OPENSTEP Books On-Line from
the OPENSTEP Enterprise program group. You can also find the documentation in the
following on-line locations:

• The Differences Between Enterprise Objects Framework 1x and 2.0 document describes
how the product has changed between the 1x and 2.0 releases. See
/NextLibrary/Documentation/NextDev/EnterpriseObjects/1x_To_2.

• Using Enterprise Objects Framework with OPENSTEP provides a tutorial and information
on creating an Enterprise Objects Framework application on OpenStep. In addition to the
hard copy book, a version of the book is provided on-line in PDF format. See
/NextLibrary/Documentation/NextDev/EnterpriseObjects/UsingEOFwithOS.

• The Enterprise Objects Framework Developer’s Guide provides a conceptual overview of
the product. In addition to the hard copy book, a version of the book is provided on-line in
PDF format. See /NextLibrary/Documentation/NextDev/EnterpriseObjects/Guide.

• The Enterprise Objects Framework Reference includes class specifications for the
Enterprise Objects Framework classes. Reference documentation is located in
/NextLibrary/Frameworks in one of these locations:

/EOAccess.framework/Resources/English.lproj/Documentation/Reference
/EOInterface.framework/Resources/English.lproj/Documentation/Reference
/EOControl.framework/Resources/English.lproj/Documentation/Reference
/InformixEOAdaptor.framework/Resources/English.lproj/Documentation/Reference
/ODBCEOAdaptor.framework/Resources/English.lproj/Documentation/Reference
/OracleEOAdaptor.framework/Resources/English.lproj/Documentation/Reference
/SybaseEOAdaptor.framework/Resources/English.lproj/Documentation/Reference

If You Need a PDF Reader...

PDF readers for various platforms can be found on the
OPENSTEP Enterprise CD-ROM in the /3RD_PRTY directory. Or, you can download one
from one of the following web locations:

• For Windows or Solaris: http://www.adobe.com/acrobat/
• For NEXTSTEP: http://www.BITart.com/PDFView/

Note: If you’re using the Acrobat Reader to view PDF files on Windows NT, some text may
initially appear as gray lines. If this happens, you can fix it by choosing File -> Preferences
-> General. In the General Preferences panel, uncheck the Greek Text option.

Other Documentation

Depending upon your application, the OpenStep Conversion Guide may also provide useful
information to you. It discusses how to use the automated conversion process to convert
applications to OpenStep. See
/NextLibrary/Documentation/NextDev/Conversion/ConversionGuide.

Documentation Feedback

Your comments on our documentation are especially valuable. Please send electronic mail
with your comments and suggestions to techpubs_feedback@next.com. Please include
EODoc: as the first part of your message’s subject.

Known Problems in Release 2.1

This section describes known problems with release 2.1 of Enterprise Objects Framework.
It is organized into the following sections:

• Access Layer
• Control Layer
• Interface Layer
• Miscellaneous Framework
• Informix Adaptor
• Oracle Adaptor
• Sybase Adaptor
• EOModeler
• On-line Examples
• Documentation

Access Layer

These problems exist in the access layer of this Enterprise Objects Framework release:

Reference: 77721

Problem: Can’t update rows containing string attributes with trailing spaces.

Description: The Enterprise Objects Framework adaptors automatically strip trailing spaces
from string values fetched from the database. They also strip spaces on newly
inserted strings before sending them to the database. This works fine until you
fetch data that a non-Enterprise Objects Framework application inserted that
contains trailing spaces. If that attribute is marked as "used for locking,"
Enterprise Objects Framework will be unable to update the row (because the
version in the database is different from the space-stripped version in the
snapshot).

Workaround: Do not mark columns that could contain trailing spaces as used for locking.
Alternately, strip the spaces from the data in your server.

Reference: 77546

Problem: Inclusion of framework models in defaultModelGroup doesn’t happen
automatically on PDO.

Description: Applications on PDO that link with framewoks that include models don’t
automatically get the models put in the applications.

Workaround: Manually construct the the model group yourself at application initialization. For
example:

EOModelGroup *group = [EOModelGroup new];

 // repeat for each model containing framework used by app

 NSBundle *bundle = [NSBundle bundleForClass:[SomeClassInFramework class]]

NSEnumerator *enumerator = [[bundle pathsForResourcesOfType:@"eomodeld"

inDirectory:nil] objectEnumerator];

NSString *modelPath;

while (modelPath = [enumerator nextObject])

 [group addModelWithFile:modelPath];

[EOModelGroup setDefaultGroup:group];

[group release];

Reference: 77631

Problem: If you’re editing a model (in code or with EOModeler), sometimes an
EORelationship will return nil from inverseRelationship, even though you just
added the inverse relationship.

Description: The first time you ask an EORelationship for its inverse relationship, it searches

all the relationships in its destinationEntity looking for an inverse. It caches the
result of this search, and this cache does not always get invalidated when the
relationships of the destinationEntity change.

Workaround: See the category on EORelationship in the
ModelerBundle/RelationshipExtras.m example.

Reference: 77354

Problem: Problems saving changes to attributes with mutable custom value objects.

Description: Suppose you have a mutable custom value type, PhoneNumber, that implements
methods such as setAreaCode: and setPrefix: to change an enterprise object’s
values. If you use such methods to modify an enterprise object’s values and save
changes, the enterprise object is not saved to the database.

Workaround: To use mutable value classes you must do three things:

1. In the PhoneNumber value class object, implement isEqual: to appropriately
compare two instances.

2. If the PhoneNumber value is about to be modified, its owning enterprise
object must invoke [self willChange] before the modification.

3. In your enterprise object class, you must implement a "set" method that
copies rather than retains the object passed to it. For example:

- (void)setDayTimePhone:(PhoneNumber *)number {
[dayTimePhone autorelease]
dayTimePhone = [number copy];

}

#1 would be required, even in a perfect world. #2 is a requirement of the basic
Enterprise Objects Framework architecture. #3 is a bug in Enterprise Objects
Framework -- Enterprise Objects Framework should be passing enterprise
objects a copy of their values, but instead it’s passing the the same instance that’s
shared in the snapshot.

In general, the simplest workaround is to use immutable custom value objects.

Reference: 72619

Problem: EOAdaptorChannel does not inherit EOAdaptor’s delegate.

Description: According to the EOAdaptorChannel class specification and header file, the
EOAdaptorChannel’s delegate should automatically be kept in synch with its

adaptor. Indeed, if a new delegate is assigned to an EOAdaptor, the new
delegate is propagated to any of that adaptor’s existing contexts and channels.
However, if you create an EOAdaptor, assign a delegate to it, and then create
EOAdaptorContexts and EOAdaptorChannels, the newly-created contexts and
channels don’t have the delegate assigned to them.

Workaround: Wait until all of the channels and contexts are instantiated before assigning the
adaptor’s delegate, or reassign the adaptor’s delegate each time a new channel or
context is created.

Reference: 61475

Problem: Enterprise Objects Framework performs less efficient deep fetches for
single-table inheritance mappings than it should.

Description: To perform a deep fetch, Enterprise Objects Framework performs a fetch for
each concrete class in an inheritance hierarchy. For a single-table inheritance
mapping, Enterprise Objects Framework should perform only one fetch and then
sort the results in memory. For example, if Person, Employee, and Customer
objects are stored in one table—the PERSON table—the Framework should
perform one fetch on the PERSON table to fulfill a deep fetch request of Person,
Employee, and Customer objects. Instead, it performs three fetches: one to get
Person objects, one to get Employee objects, and another to get Customer objects.

Workaround: Define only one entity for the entire inheritance hierarchy, and use the
EOModelGroup delegate methods subEntityForEntity:primaryKey:isFinal: ,
and entity:classForObjectWithGlobalID: to create instances of the proper
subclasses from database rows.

Reference: 74251

Problem: Changes made during saveChanges are silently lost.

Description: If you change an enterprise object while its editing context is in its saveChanges
method (for example, if you change an enterprise object in an
EODatabaseContext delegate method), the changes may be silently lost.

Workaround: Don’t make changes to objects during the save process. Instead, make the
changes from the EOEditingContext delegate method
editingContextWillSaveChanges:.

Reference: 74345

Problem: You can’t update to-many relationship if the foreign key isn’t marked as a class
property or as used for locking.

Description: Suppose that an entity’s foreign key attribute isn’t marked as a class property or
as used for locking. If you designate the foreign key attribute as a to-many
relationship’s destination key, the foreign key value isn’t always updated. This
occurs because the destination entity doesn’t know that the attribute participates
in a relationship. Therefore, the destination entity doesn’t fetch the foreign key
from the database or update it.

Workaround: Mark attributes that are destination keys of a to-many relationship so they are
fetched. For example, you could:
• Mark them as class properties.
• Mark them as used for locking.
• Use them in inverse relationships to the problematic to-many’s source entity.

Reference: 74379

Problem: EODatabaseContext can’t be the direct parentObjectStore of an
EOEditingContext.

Description: The EODatabaseContext requires that an EOObjectStoreCoordinator sit between
it and any EOEditingContexts that it serves. This is the default configuration set
up by the framework, so you shouldn’t normally run into this problem. Just a
reminder, you can set up an editingContext and be ready to go with this one line:

EOEditingContext *editingContext = [EOEditingContext new];

// automatically uses [EOObjectStoreCoordinator defaultCoordinator]

// as parentObjectStore

Any necessary EODatabaseContexts are created and registered automatically.

Workaround: Don’t assign an EODatabaseContext as the parentObjectStore of an
EOEditingContext. There’s no benefit to doing so anyway.

Reference: 76526

Problem: Applying a qualifier with key path to top of horizontally mapped inheritance
hierarchy generates invalid SQL.

Description: Enterprise Objects Framework’s query building mechanism doesn’t handle
relationships to inheritance hierarchies. For example, suppose that you are are
attempting to qualify a fetch through a to-many relationship (planes) that points to
the top of a horizontally mapped inheritance hierarchy (for the entities Plane,

FighterPlane, and TrainerPlane). If you want the query to test against all tables,
you’d expect Enterprise Objects Framework to generate SQL similar to the
following:

SELECT t0.AIRPORT_ID
FROM PLANE t1, FIGHTER t2, TRAINER t3, AIRPORT t0
WHERE

(t1.LENGTH <= 1000 AND t0.AIRPORT_ID = t1.AIRPORT_FK) OR
(t2.LENGTH <= 1000 AND t0.AIRPORT_ID = t1.AIRPORT_FK) OR
(t3.LENGTH <= 1000 AND t0.AIRPORT_ID = t1.AIRPORT_FK)

Instead, Enterprise Objects Framework generates the following SQL:

SELECT t0.AIRPORT_ID
FROM PLANE t1, AIRPORT t0
WHERE

(t1.LENGTH <= 1000) AND
t0.AIRPORT_ID = t1.AIRPORT_FK

In other words, only the table for the root of the hierarchy is queried.

Workaround: You can create a qualifier that generates the correct SQL by:

1. Adding relationships in the source entity to all the tables in the inheritance
hierarchy. For example, to the Airport entity, you’d add the relationships
toFighters and toTrainers to the destination entities FighterPlane and
TrainerPlane, respectively. Mark the relationships so they aren’t class
properties.

2. When building your query, explicitly list these extra relationships. In the
Planes example, you’d fetch from Airport where "planes.length < 1000 OR
toFigtherPlanes.length < 1000 OR toTrainerPlanes.length < 1000"

Alternatively, you might be able to solve this problem more generally by writing a
post processor for EOQualifiers that splits up clauses that perform inheritance
tests. The post processor could even programmatically generate the additional
relationships on demand and register them with the model using names like
"plane_Subclass_Fighter".

A generic EOQualifier post processor could be wired into Enterprise Objects
Framework so that application writers don’t have to know it exists. The right
place for such a mechanism is probably in EOKeyValueQualifier’s
schemaBasedQualifierWithRootEntity: method (see EOSQLQualifier.h). You
could put the post processor code in a subclass of EOKeyValueQualifier (with an
appropriate call to super after the transformation, if any, is performed) and have
your subclass pose as EOKeyValueQualifier.

Reference: 47832

Problem: Enterprise Objects Framework can’t update attributes whose internal types are
custom (such as NSImages).

Description: A custom value class must implement isEqual: to be used for attributes marked
as used for locking.

Workaround: Implement isEqual: in the custom value class or don’t mark the attribute as used
for locking.

Reference: 65078

Problem: Seemingly innocuous qualified fetch always causes exception.

Description: Some qualified fetches raise exceptions because values in the SQL have been
formatted as strings when they should have been formatted as some other type.
This can happen when you enter an invalid external type or when a Sybase model
doesn’t contain information about user-defined types that are used in the model.

Workaround: In the case of an invalid external type, simply correct it. In the case of a user
defined type, create a new model by reverse engineering the database. The new
model’s connection dictionary contains information about user-defined types.
Copy the connection dictionary from the new model to the original one.

Reference: 69039

Problem: Alert panel displaying adaptor error is never dismissed.

Description: This occurs whenever an adaptor operation that was invoked from an
awakeFromNib: method displays an alert panel. The problem is that the entire
object graph is not yet instantiated when awakeFromNib: is invoked.

Workaround: Database operations should be begun from the applicationDidFinishLaunching:
method rather than the awakeFromNib: method. Of course, this means that any
methods that indirectly cause database communication should also be invoked
from the applicationDidFinishLaunching: method.

Reference: 76885

Problem: The set of valid values for the databaseEncoding entry of a connection
dictionary are not documented, and the set can vary in different locales.

Description: A connection dictionary’s databaseEncoding entry contains the localized name

for the string encoding. The localized names are not documented. Furthermore,
the localized names for string encodings can vary with the user’s locale.
Consequently, the specified encoding for an application might not work for users
in different locales.

Workaround: You can find the localized name for string encodings in
/NextLibrary/Frameworks/Foundation.framework/Resources/language.lproj
/EncodingNames.strings.

Reference: 59472

Problem: Derived attributes are limited and don’t offer full SQL as advertised.

Description: Placing a string or a numeric constant in the definition field of a derived attribute
generates invalid SQL. Definitions such as “title” and “0.0” don’t work correctly.
However, definitions such as “att1 + 5” should work correctly when “att1”
specifies another attribute.

Workaround: None.

Reference: 70049

Problem: EOModelGroup doesn’t raise an exception when more than one entity has the
same name.

Description: Although it is illegal to have the same entity name in two different models in a
model group, EOModelGroup doesn’t check to see if this is the case when adding
a model.

Workaround: Manually verify that no two models have entities with the same name or write a
method to perform the check.

Reference: 70260

Problem: Some error messages returned by the Framework’s default validation methods
(such as methods that check that a value doesn’t exceed the maximum width
specified in its attribute) aren’t localized.

Workaround: Implement an exception handler for use with the EOEditingContext, and have the
handler replace the error messages with localized strings.

Reference: 76152

Problem: Inserting and deleting objects involved in inverse, to-many relationships can be

very slow.

Description: Suppose that a ServiceRequest has a to-one relationship to its
CustomerServiceRepresentative, and that the CustomerServiceRepresentative
has an inverse to-many relationship to its ServiceRequests. When you assign a
request to a representative using
addObject:toBothSidesOfRelationshipWithKey:, you fire the fault for the
CustomerServiceRepresentative.serviceRequests. So, if a representative has
a large number of requests, assigning a new request to a representative can be
very slow. Correspondingly, when you delete a request, Enterprise Objects
Framework fires the corresponding representative’s serviceRequests fault so it
can remove the request from the array.

Workaround: Set the inverse, to-many relationship so it isn’t a class property. For example, in
the above request-represpentative scenario, you would remove the
serviceRequests relationship from the class properties of the
CustomerServerRepresentative entity.

Control Layer

These problems exist in the control layer of this Enterprise Objects Framework release:

Reference: 77714

Problem: Qualifier for nil to-one relationship always returns no matches.

Description: If you want to fetch all employees without a department, you’d expect to be able
to use the qualifier:

"toDepartment = nil"

Currently, this will always (incorrectly) return no matches because it’s testing the
primary key on the other side of the relationship rather than the foreign key on the
employee side. This is a bug in the EOQualifier method
schemaBasedQualifierWithRootEntity: when it translates object references to
foreign key references.

Workaround: Query explicitly on the foreign key in the Employee object. For example, "deptID
= nil". This works even if deptID is not a class property of Employee. Note,
however, that in this case the qualifier only works when run against the database,
not for in-memory evaluation.

Reference: 77668

Problem: EOArrayDataSource.h isn’t imported by EOControl.h.

Workaround: Explicitly import EOControl/EOArrayDataSource.h in your code.

Reference: 68146

Problem: Fault failure leaves EOInterface layer unstable.

Description: If a displayed enterprise object has a to-one relationship to a non-existent
destination row, attempting to access the destination object raises an exception
and corrupts the state of user interface objects. (Enterprise Objects Framework
raises an exception when a to-one relationship cannot be resolved due to a
referential integrity problem in the database).

Workaround: See the chapter "Advanced Enterprise Object Modeling" in the Enterprise
Objects Framework Developer’s Guide for information on handling optional
to-one relationships.

Reference: 64084

Problem: Inserted enterprise objects don’t get removed from EODisplayGroup after
sending revert to EOEditingContext.

Description: If you fetch objects into an EODisplayGroup, insert a few objects, delete a few
objects, and then update a few objects; telling the EOEditingContext to revert
backs out the updates, but not insertions or deletions. The actual insertions and
deletions have been reverted, but the EODisplayGroup doesn’t know how to
revert its object list (since is doesn’t keep track of what its original object list was
before the insertions and deletions).

Workaround: Programmatically tell all affected EODisplayGroups to refetch after telling the
EOEditingContext to revert, or use refetch: (invalidateAllObjects:) instead of
revert.

Reference: 72177

Problem: Deleted objects are still registered in the EOEditingContext after a saveChanges
operation.

Description: If an object is deleted in the EOEditingContext and then the EOEditingContext is
saved, the deleted object isn’t forgotten by the EOEditingContext (i.e., sending
the EOEditingContext the message objectForGlobalID: should return nil , but it
doesn’t).

Workaround: Fortunately, this should have no affect on most applications. However, if you need
to work around this problem, remember the deleted objects in the

editingContextWillSaveChanges: delegate, and then invoke forgetObject: for
each object after a successful save.

Reference: 72269

Problem: You can’t tell Enterprise Objects Framework to not undo your changes when
delete propagation fails.

Description: The EOEditingContext delegate method
editingContextShouldUndoUserActionsAfterFailure: is supposed to allow
programs to indicate that they do not want user actions undone if a validation or
delete propagation error occurs. However, the EOEditingContext undoes the user
action regardless of the return value from the method.

Workaround: None.

Reference: 72903

Problem: Aborted deletions are incorrectly recorded in the undo stack as empty undos.

Description: When the deletion of an object fails due to a deny rule, the undo manager records
an empty undo group. This means that although nothing actually happened during
the operation, the operation still needs to be undone before previous operations
can be undone. For interactive programs this is not normally a problem since
users rely on visual cues to determine how many times to undo. However, this
may be a problem for code that programmatically performs undo operations.

Workaround: None.

Reference: 74965

Problem: The EOEditingContext delegate method
editingContext:shouldPresentException: isn’t called when saveChanges is
invoked programmatically.

Description: If you use the following code:

eo = [[[Movie alloc] init] autorelease];

[eo setTitle:nil]; // Assume that the TITLE column doesn’t allow NULLs

[editingContext insertObject:eo];

 [editingContext saveChanges];

the editingContext:shouldPresentException: delegate method isn’t called.
Instead, an exception is raised.

However, if you instead set a user interface control object as the target for the
editing context’s saveChanges: action, the delegate method is invoked.

Workaround: When they encounter an error, most editing context methods raise exceptions
instead of calling the delegate and the message handler. The message handler is
only called when the operation is invoked from a target-action hook (like
saveChanges : sender) where the caller can’t catch the exception. Thus, when
invoking the editing context APIs directly, you must catch the exceptions
explicitly using NS_DURING/NS_HANDLER/NS_ENDHANDLER.

Reference: 76466

Problem: EOEditingContexts don’t propagate uninserts.

Description: Propagate delete works fine for an object that that is fetched from the database.
However, if an object is created and inserted in an editing context and then
deleted (thus never being saved to the database), the delete isn’t propagated to
the destinations of the object’s relationships. For example, suppose you create
an ExpenseReport object and several LineItems for it. If you then delete the
ExpenseReport, the delete doesn’t propagate to the LineItems. If the LineItems
can’t exist without an owning ExpenseReport, EOEditingContext’s saveChanges
fails when the delete is performed within the same event as the insert.

Workaround: Call [editingContext processRecentChanges] before deleting the previously inserted
object.

Reference: 76901

Problem: Associations are refreshed too early when the fetch limit panel is raised, possibly
causing an exception.

Description: Suppose you have two EODisplayGroups that are set to fetch on load. If the
second display group to fetch exceeds the fetch limit, an alert panel inquiring
whether to continue the fetch pops up. Presenting the panel causes the run loop to
flush the first display group’s user interface drawing. If the first display group’s
user interface displays enterprise object properties via key paths, EOFaults may
be fired. Since the default EODatabaseChannel is busy with the fetch for the
second display group, an exception is raised because there isn’t an available
channel.

Workaround: There are three workarounds:
1. Don’t use the fetch "prompt on limit" feature.
2. Implement your own fetch limit panel that doesn’t invoke a modal event loop.

3. Register an additional EODatabaseChannel with the EODatabaseContext so
the fetch of the faults can occur while the second EODisplayGroup fetch is
paused.

Reference: 77181

Problem: The EOQualifier contains operator doesn’t do SQL generation.

Description: The contains operator is meant to do to-many array comparison. For example,
you might query on the Studio entity using the following qualifier format:

"movies contains %@", someMovieObj

The resulting qualifier works for an in-memory search, but doesn’t generate SQL
for a database search.

On the other hand, using the equality operator for to-many array comparison kind
of works in SQL, but not in memory. For example, you might query on the Studio
entity using the following qualifier format:

"movies = %@", someMovieObj

The resulting qualifier returns no matches when evaluated in memory because
the array property is not equal to the movie object as determined by isEqual:.
However, when it’s evaluated in the database, it returns the same studio N times
(where N is the number of movies in the Studio’s movies array), even though the
qualifier is attempting to match only one movie.

Workaround: Use the contains operator for qualifiers in-memory evaluation and the equality (=)
operator (with usesDistinct on the fetch specification) for evaluation in the
database.

Reference: 69934

Problem: EOQualifier needs a case insensitive ’like’ operator that works both in memory
and in SQL.

Workaround: You can use a pattern like ’*[Hh][Ee][Ll][Ll][Oo]*’ or you can create a method
on the enterprise object that always returns a version in uppercase and use that
method as a key in the qualifier.

Interface Layer

These problems exist in the interface layer of this Enterprise Objects Framework release:

Reference: 77378

Problem: Undo of uncommitted edit in text field doesn’t undo.

Description: Make a change in a text field, and then, without exiting the field, press undo. The
change that you made in the text field is not undone.

This is happening because the editing context only knows about changes to
enterprise objects. An uncommitted edit in a text field is not known to the
enterprise object and thus not to the editing context or undo manager.
Consequently, it won’t be undone.

Workaround: Users can leave the field (tab or hit return) and then undo.

To make this work correctly, you’d need to subclass the
EOGenericControlAssociation to register an undo record with the undo manager
in control:textShouldBeginEditing:. The association would need to be smart
enough to know to ignore callbacks from the undo manager when it has already
committed the edit (since at that point the edit would be undone by the editing
context).

Reference: 71553

Problem: EOPickTextAssociation displays an alert panel whenever the ’[’ character is
entered.

Description: EOPickTextAssociation should either escape all substitution characters or wait
until a complete expression is typed in before executing. Since it does not,
EOQualifier thinks that it has found an illegal pattern and raises an exception,
which the EOPickTextAssociation displays in an alert panel.

Workaround: None.

Reference: 76902

Problem: Query by example does not work correctly for to-many relationship properties.

Description: If a query interface’s user interface control is bound to a to-many relationship
property (using the EODetailSelection association, for example) the resulting
query searches on only the first object added to the to-many relationship array
(instead of searching on all the objects in the array).

Workaround: Don’t use Query By Example for to-many relationship properties—implement
your own query mechanism instead.

Reference: 57842

Problem: An EODisplayGroup doesn’t show its keys in Interface Builder’s Inspector.

Description: This occurs when Enterprise Objects Framework is unable to find the model file
for an EODisplayGroup’s entity. To verify that this is the problem, inspect the
EODisplayGroup’s data source (click on the EODisplayGroup, open the Inspector
panel, and select the DataSource panel from the Inspector popup). If the Model
field is blank, then Enterprise Objects Framework is unable to find your model.

Workaround: Quit Interface Builder and verify that the model containing the entity referenced
in the EODisplayGroup is added as a resource in the project containing the nib
file.

Reference: 65061

Problem: Interface Builder connections are broken when you make changes to a model.

Description: When the name of an EOAttribute or EORelationship is changed in a model, any
EOAssociations that use the old name become invalid because EOAssociations’
keys aren’t automatically updated to the new name. Unfortunately, Interface
Builder’s Connection Inspector doesn’t directly support breaking the connection.

Workaround: To repair broken connections:
1. Select the display object that’s bound to the obsolete key.
2. Use the associations popup to select "Outlets."

This removes the old association connectors.
3. Reselect the appropriate association type and reform the association to the

new key.

Reference: 67804

Problem: EOModeler can’t find model from another framework.

Description: This problem has two symptoms:
• When you load a nib file into your application, it can’t find the model you have

in your framework.
• When you save changes to a model file in your framework, the change isn’t

reflected in open nib files.

Enterprise Objects Framework 2.x finds models for an application by looking for
all models in the application and in any frameworks used by the application. By
default Enterprise Objects Framework looks for referenced framework in their

installation location. Thus if you don’t have the framework that contains the
model installed, Enterprise Objects Framework won’t find the model. Similarly, a
change saved to a model in the framework project isn’t noticed by Interface
Builder since it’s looking at the installed version, not the source version.

Workaround: You can tell Enterprise Objects Framework to look at the source for your
framework projects by using the following defaults command (executed in a
shell):

defaults write NSGlobalDomain EOProjectSourceSearchPath
"($(HOME)/myProjectsDirectory1, /myOtherProjectsDirectory)"

Then, when Interface Builder or EOModeler is looking for models contained in
one of your frameworks, it will first search all project directories within
$(HOME)/myProjectsDirectory1 and /myOtherProjectsDirectory before
searching for the built versions.

Alternatively, if you update a model in a framework, reinstall the framework (via
make install), restart Interface Builder, and reopen the application nib file.

Reference: 68604

Problem: Repeated false alert that Enterprise Objects Framework 1x nib file is being
converted to Enterprise Objects Framework 2.0.

Description: When you reopen a nib file after conversion you get the message: “This
Enterprise Objects Framework 1x nib file has been translated to Enterprise
Objects Framework 2.0. If you did not intend to convert to Enterprise Objects
Framework 2.x, unload EOPalette, quit Interface Builder without saving this file,
and reopen the nib.”

Workaround: Quit Interface Builder, then reopen the nib file.

Reference: 70847

Problem: After disconnecting all EOColumnAssociations from a table view, you can’t
reconnect the table view columns to a different EODisplayGroup.

Description: Suppose you form EOColumnAssociations between all of a table view’s columns
and an EODisplayGroup, and suppose you then disconnect them all. Subsequent
attempts to connect a column to a different display group are not allowed. (All of
the display group’s properties are grayed out in Interface Builder’s inspector.)

The reason for this is as follows. When the first EOColumnAssociation for a
table view is created, an EOTableViewAssociation is also created and connected

to the table view itself. The EOTableViewAssociation remains connected to the
original display group even after all the columns have been disconnected,
preventing columns from being connected to a different display group.

Workaround: To make the new connection, click on the table view and disconnect the
EOTableViewAssociation.

Reference: 73688

Problem: EOPalette finds the wrong models for projects contained in another project’s
directory.

Description: When you open a nib whose project is in a subdirectory of another project,
Interface Builder uses the model from the parent directory, instead of the model
from the nib’s own project.

Workaround: Do not store projects directly inside another project’s directory. Instead, put at
least one level of directories between the projects. For example, instead of
putting "test" projects directly in a master project’s directory, put them in a
subdirectory called "Tests".

Reference: 74947

Problem: If you drag a symbolic link for a model into Interface Builder and answer YES to
the "add Model to project" panel, Interface Builder crashes.

Workaround: Drag the actual model file instead of the symbolic link.

Reference: 76591

Problem: EOPalette tries to load model files twice in aggregate projects.

Description: Suppose you have an aggregate project that contains a framework for business
logic (and associated model files) and that also contains an application that uses
the business logic framework. If you try to open the application’s nib file,
Interface Builder tries to add the model file to the EOModelGroup twice, raising
an exception. This occurs because Interface Builder finds the model in the
aggregate project and then finds it again in the framework linked by the
application (which is part of the aggregate).

Workaround: Don’t keep your application and framework projects in the same aggregate
project.

Reference: 76892

Problem: Multiple fetch-on-load display groups associated with an invalid connection
dictionary can cause an exception.

Description: When loading a nib file that has more than one display group set to fetch on load,
an application can crash if the display groups’ model has an invalid connection
dictionary. A crash occurs because the second display group tries to run the
adaptor’s login panel while the first one already has the panel open. This
confuses the Application Kit.

Workaround: Validate the connection dictionaries for all models in the [EOModelGroup

defaultGroup] before opening the nib.

Miscellaneous Framework

These problems exist in this Enterprise Objects Framework release:

Reference: 46679

Problem: Enterprise Objects Framework’s private instance variables aren’t declared
@private and don’t have names that begin with the underbar (’_’) character.

Description: All instance variables in Enterprise Objects Framework should be considered
private.

Workaround: Don’t directly access Enterprise Objects Framework instance variables.

Reference: 69211

Problem: Link errors on Windows NT.

Description: Programs on Windows NT must add explicit references to at least one class in
each framework in order to avoid link errors at run time.

Workaround: Add a function like that in the following code snippet, which refers to classes in
each of Enterprise Objects Framework’s layers. Though never invoked, it forces
the appropriate linking to occur.

 #ifdef WIN32

 #import <EOControl/EOControl.h>

 #import <EOAccess/EOAccess.h>

 #import <EOInterface/EOInterface.h>

 void _referenceAllEOFrameworks()

 {

 [EODisplayGroup new]; // EOInterface

 [EOEntity new]; // EOAccess

 [EOEditingContext new]; // EOControl

 }

 #endif

If you create your project with the type "EOApplication," this code is
automatically added to your project main file.

Reference: 72027

Problem: EOKeyValueCoding is broken for doubles on HPUX PDO.

Description: EOKeyValueCoding doesn’t work correctly for accessor methods that set and
return doubles on HPUX under PDO 4.1 (and previous releases). This means that
users cannot correctly fetch enterprise objects that have class properties with
accessor methods that use doubles.

Workaround: Change your enterprise objects’ accessor methods to return and take as
arguments NSNumbers, NSDecimalNumbers, or ints.

Informix Adaptor

These problems exist in the Informix adaptor supplied with this release of Enterprise
Objects Framework:

Reference: 64031

Problem: Informix adaptor user defaults for Enterprise Objects Framework 2.x are different
than those for Enterprise Objects Framework 1.2.

Description: In Enterprise Objects Framework 1.2, the InformixAdaptor stores defaults in the
EOFInformixAdaptor domain and uses the following keys:
INFORMIXDIR, DBDATE, DBLANG, DBMONEY, InformixLogErrors,
ShowSystables, ShowTableOwner, Beautify, DefaultIsolationLevel,
GlobalOptimization, GlobalExplain, GlobalLockMode, GlobalPDQPriority,
GlobalDataSkip, GlobalConstraints, DatabaseExclusive

Enterprise Objects Framework 2.x stores defaults in the standard
NSGlobalDomain and prefixes all keys with “Informix”, that is:
InformixINFORMIXDIR, InformixDBDATE, InformixDBLANG,
InformixDBMONEY, InformixLogErrors, InformixShowSystables,
InformixShowTableOwner, InformixBeautify, InformixDefaultIsolationLevel,
InformixGlobalOptimization, InformixGlobalExplain, InformixGlobalLockMode,
InformixGlobalPDQPriority, InformixGlobalDataSkip,
InformixGlobalConstraints, InformixDatabaseExclusive.

Workaround: None.

Reference: 70232

Problem: Informix adaptor raises an exception when you try to sort on attributes that are
not in the select list.

Description: Due to a restriction in the Informix adaptor, it’s not possible to sort on attributes
that aren’t included in the select list. This means that it isn’t possible to sort the
results using an attribute that is not marked on the entity as either a primary key,
used for locking, or a class property.

Workaround: If possible, add the attribute to the entity and mark it as used for locking.
Otherwise, there is no workaround.

Oracle Adaptor

These problems exist in the Oracle adaptor supplied with this release of Enterprise Objects
Framework:

Reference: 77517

Problem: If you try to update an enterprise object with an attribute that maps to a LONG
RAW column while using on-demand locking, you get the following exception:

 "fetchObject -- EODatabaseChannel 0x12345678: attempt to
 lock object that has out of date snapshot"

Description: It appears that the Oracle database sometimes returns wrong BLOB values when
it’s passed "SELECT ... <long-raw-column,... FOR UPDATE". So when the
EODatabaseChannel attempts to acquire a lock on the row, the results of the
SELECT don’t match the results that were gotten on the last SELECT (without
the FOR UPDATE clause).

Workaround: None. You can’t use on-demand locking if you’re going to be updating tables with
LONG RAW columns.

Reference: 77366

Problem: If you’re using pessimistic locking in combination with batch faulting or
prefetching of relationships, you’ll get the error "ORA-01786: FOR UPDATE of
this query expression is not allowed" when you run your application.

Description: When you use pessimistic locking mode in combination with batch faulting or
prefetching of relationships, Enterprise Objects Framework generates a SQL
statement like the following:

<OracleSQLExpression: "SELECT DISTINCT t0.CATEGORY, t0.DATE_RELEASED,

t0.LANGUAGE, t0.MOVIE_ID, t0.RATING, t0.REVENUE, t0.STUDIO_ID, t0.TITLE FROM

DIRECTOR t1, MOVIE t0 WHERE t1.TALENT_ID = :talentID AND t0.MOVIE_ID =

t1.MOVIE_ID FOR UPDATE" withBindings:{talentID = 87; }>

This statement fails with the ORA-01786 error. The Oracle RDBMS doesn’t
support the use of DISTINCT with the FOR UPDATE clause.

Workaround: If you use the pessimistic locking mode against an Oracle database, you can’t use
the batch faulting or prefetching features.

Reference: 62425

Problem: Oracle Adaptor doesn’t read stored procedures inside of packages.

Description: There is no way to get the database to tell you the components (procedures and
functions) that are inside a package definition. Clients can still create stored
procedures in the model that will call into packages, it’s just that model
description using EOModeler won’t create these at connect time.

Workaround: You can use EOModeler to create the stored procedure definitions in the model.
Just set the external name of the stored procedure to
package-name.procedure-name.

Reference: 63348

Problem: Converted models have no width information—Oracle fetches empty strings.

Description: The Enterprise Objects Framework 2.x Oracle Adaptor has problems if you
attempt to use an eomodel file from the Enterprise Objects Framework 1.0
release. These model files don’t contain width information for string values,
which results in all the strings being fetched with 0 length. If this happens for the
column that is the primary key, you will also have problems with uniquing since
every row will appear to have the same key.

Workaround: Use EOModeler to add width information for VARCHAR2 and RAW columns.

Reference: 73333

Problem: The Oracle adaptor has character set problems on Sparc and m68k.

Description: The Oracle adaptor on Mach does not properly support certain character set
conversion on certain architectures:

• On SPARC ISOLatin1 works, but Japanese character sets do not.

• On m68k non-ASCII ISOLatin1 characters are stripped and Japanese character
sets don’t work at all.

On Intel all character sets work fine, including European and Japanese.

Workaround: To get non-ASCII character sets on SPARC and m68k, install the
EO2JOracleAdaptor.pkg that’s on the Enterprise Objects Framework 2.1 Mach
CD.

Note: The EO2J Oracle Adaptor is built with the 7.0 version of the Oracle client
libraries. Consequently, returning fetch sets from stored procedures is not
supported.

Sybase Adaptor

These problems exist in the Sybase adaptor supplied with this release of Enterprise Objects
Framework:

Reference: 62634

Problem: The Sybase adaptor uses CS_CONVERT() to convert numeric data into
NSDecimalNumbers.

Description: Fetching decimal numbers in locales that use a characters other than ‘.’ for the
decimal may not work.

Workaround: None.

Reference: 63169

Problem: Models created for version 4.9 Sybase servers do not include stored procedures.

Description: EOModeler gets stored procedure information using functionality that isn’t
provided in old servers.

Workaround: Use EOModeler’s Stored Procedure Editor to add EOStoredProcedure objects to
a model.

Reference: 75024

Problem: The SQL generation for primary key support in the Sybase adaptor isn’t
sufficient.

Description: The SQL generated by EOModeler to support primary key generation in Sybase
simply invokes the sp_primarykey stored procedure. sp_primarykey adds

useful information to the syskeys table, but doesn’t create constraints that enforce
uniqueness (or NOT NULL) in the primary key columns.

Workaround: Add the constraints yourself using statements of the following form:

alter table <table-name> add constraint primary key (<column-name> {,

<column-name })

EOModeler

These problems exist in EOModeler with this release of Enterprise Objects Framework:

Reference: 77608

Problem: Existing Enterprise Objects Framework projects don’t see the new Enterprise
Objects Framework 2.1 source code generation templates (used when you issue
the "Generate Source Files..." command in EOModeler).

Description: Enterprise Objects Framework 2.1 includes fixes and additions to
EOInterfaceFile.template and EOImplementationFile.template. If a user has a
project from Enterprise Objects Framework 2.0 that contains the old versions of
these files, the old versions will continue to be used.

Workaround: If you didn’t customize the templates, then you should just remove thes old files
from your project.

If want to build a customized template based on the newest versions, copy
/NextDeveloper/Apps/EOModeler.app/Resources/EOImplementationFile.templat
e and
/NextDeveloper/Apps/EOModeler.app/Resources/EOInterfaceFile.template into
your project directory.

Reference: 77603

Problem: When you create a subclass in your model and generate source files for it, the
resulting header file won’t compile.

Description: For example, suppose you create a Salesman subclass of Employee and generate
source files for it. The header for Salesman correctly inherits from Employee, but
it doesn’t include the Employee.h header, so it can’t be compiled.

// Salesman.h

//

// Created on Mon Mar 10 10:19:41 PST 1997 by NeXT EOModeler Version 304

#import <EOControl/EOControl.h>

@class Employee;

@class Department;

@interface Salesman : Employee <NSCoding>

{

}

@end

If you attempt to compile this code, you’ll get this error:

Salesman.h:12: Cannot find interface declaration for ‘Employee’, superclass of

‘Salesman’

gnumake: *** [Salesman.o] Error 1

Workaround: Change
 @class Employee

to
 #import "Employee.h"

Reference: 77134

Problem: If you open two different Diagram View windows for the same model file, the
layout for only one of the windows is saved, and which layout is saved is
indeterminate.

Workaround: Only open one Diagram View window for a model at a time.

Reference: 77191

Problem: Pasted attributes do not retain their primary key, used for locking, or class
property settings.

Description: If you copy and paste an attribute, the pasted attribute’s primary key, used for
locking, and class property bits revert to their default settings, regardless of their
state in the original. This occurs because the settings are actually maintained by
the owning entity, which isn’t incorporated into an attribute’s pasteboard
rendering.

Workaround: Manually set the bits after pasting.

Reference: 51250

Problem: You can’t join on derived attributes.

Description: Invalid SQL is generated whenever a derived attribute is designated as a join
attribute in a relationship.

Workaround: None.

Reference: 75801

Problem: Editing nested dictionaries with the UserInfo or ConnectionDictionary editors
doesn’t work.

Description: Suppose that a model has a userInfo or connection dictionary that contains
another dictionary. If you use EOModeler’s UserInfo or Connection Dictionary
Inspector to edit the enclosed object, EOModeler converts it to a string. For
example, if the userInfo dictionary contains the following dictionary:

myValue = {

hello = world;

}

and you convert "hello" and "world" to uppercase, EOModeler saves the
following string to the model file:

myValue = "{\n HELLO = WORLD;\n}"

Similarly, EOModeler converts arrays to strings.

Workaround: If you need to store such compound data structures in your userInfo or
connectionDictionary, you will need to edit it by hand using Edit, or write a your
own custom Inspector.

On-line Examples

These problems exist in the on-line examples included in this release of Enterprise Objects
Framework:

Reference: 64283

Problem: Enterprise Objects Framework 2.x examples merge with obsolete Enterprise
Objects Framework 1.1 examples.

Description: If a system has Enterprise Objects Framework 1.1 Developer installed on it
(EODeveloper.pkg) and then upgrades to 4.0, the EODeveloper package
(incorrectly) stays installed, and the examples stay in
/NextDeveloper/Examples/EnterpriseObjects.

When the user later installs EO2Developer, the Enterprise Objects Framework
2.x examples are merged with the Enterprise Objects Framework 1.1 example
files already in /NextDeveloper/Examples/EnterpriseObjects.

Workaround: Uninstall 1.1 EODeveloper.pkg before installing EO2Developer.pkg.

Reference: 65165

Problem: install_database doesn’t work: Sybase: Can’t find type ‘decimal’.

Description: The install_database script in the EnterpriseObjects/DatabaseSetUp directory
doesn’t work for Sybase 4.9 servers.

When the models in the examples directory were converted to Sybase, the server
version wasn’t taken into account. Some of the attributes were converted to
“decimal” data type and the Sybase 4.x server doesn’t know about these.

Workaround: Use EOModeler to find and change all the external types from decimal to float in
each of the models in your examples directory.

Reference: 68231

Problem: make all in the Enterprise Objects Framework examples fails sometimes.

Description: The Enterprise Objects Framework examples will fail to make if
${NEXT_ROOT}/LocalDeveloper is present on your system and you don’t
have write access to it. The makefile tries to install the BusinessLogic
framework in the /LocalDeveloper/Frameworks directory.

Workaround: Execute make as root or ask your system administrator to create a
/LocalDeveloper/Frameworks directory and make it writable by you.

Reference: 70557

Problem: The Customer.app example doesn’t propagate changes to CreditCard objects.

Description: The relationship between CreditCard and Member is not modeled correctly in the
examples. CreditCard’s primary key is composed of its cardNumber and
cardType attributes. In the Customer application, you can modify the
cardNumber and cardType of a Member’s CreditCard, but these changes aren’t
propagated to the objects to which the CreditCard is related. That is, after saving
the changes to the database, the CreditCard’s cardNumber and cardType are
updated, but foreign keys in the MEMBER table still have the old values.

CreditCard should have a separate primary key identifier, such as cardID , on
which the CreditCard-Member relationships are based. This approach would
keep CreditCards and Members in sync, and it would also be a more efficient

implementation.

Workaround: None.

Reference: 72246

Problem: The ODBC adaptor source code provided as an example is only available on
OpenStep for Windows NT.

Description: The source code for the ODBC adaptor is available on Windows NT as an
example. It is not, however, included on Mach or PDO.

Workaround: Copy the source code from an NT machine.

Note: If you just want the ODBC adaptor to see an example of a concrete
adaptor, you can look at the FlatFile adaptor that’s included in all releases.

Reference: 76020

Problem: In the Studios.app, buying the movies associated with a Talent doesn’t update the
Movies’ Studios.

Description: The Studio class’s buyAllMoviesStarring: method doesn’t take advantage of
Enterprise Objects Framework’s EOKeyRelationshipManipulation methods.
Instead, it simply invokes [self addToMovies:...] .

Workaround: Change Studio.m’s buyAllMoviesStarring: implementation to the following:

- (void)buyAllMoviesStarring:(Talent *)talent

{

 NSEnumerator *movieEnumerator = [[talent moviesStarredIn]

objectEnumerator];

 id movie;

 while ((movie = [movieEnumerator nextObject]))

 [self addObject:movie toBothSidesOfRelationshipWithKey:@"movies"];

}

Reference: 69419

Problem: Example data for Movie and Rental models must be installed in different
databases.

Description: When installing data for more than one model in a database, the
eo_sequence_table is only properly initialized for the first model installed.

Workaround: You can either install the data for each model in a different database or change
the last line in the install_database script located in the DatabaseSetUp directory
of your examples directory as follows:

Change this:

${EOUTIL} dump ../BusinessLogic/Rentals.eomodeld -source plist
database -schemaCreate -postInstall < RentalData.plist

To this:

${EOUTIL} dump ../BusinessLogic/Rentals.eomodeld -source plist
database -schemaCreate -postInstall -force < RentalData.plist

When you use the −force option as a workaround, exceptions are logged because
the eo_sequence_table table and eo_pk_for_table procedure already exist when
you execute install_databases. You can just ignore these exceptions.

Documentation

This problem exists in the documentation included in this release of Enterprise Objects
Framework:

Reference: 77170

Problem: Enterprise Objects Framework Developer’s Guide sections about ordering
database operations are out of date.

Description: The sections "How Do I Order Database Operations" and "Constraints for
Enforcing Relational Integrity Rules" in the chapter "Answers to Common Design
Questions" in the Enterprise Objects Framework Developer’s Guide need to be
updated to reflect a new operation ordering algorithm.

The new algorithm works as follows:

• If an entity (Movie) has a to-one relationship to a second entity (Studio) and
the inverse relationship is a to-many, then the second entity (Studio) is
considered the master.

• If an entity (Talent) has a to-one relationship to a second entity (TalentPhoto)
and the inverse relationship is also a to-one, then the entities are peers.

Enterprise Objects Framework builds up an entity ordering based on the
"master-ness" of the entities. This ordering is built up dynamically and is
enhanced as your application touches more and more entities.

Before sending operations to the database, Enterprise Objects Framework orders
the operations based on the entity ordering. For inserts, Enterprise Objects

Framework orders master entities first; whereas for deletes, Enterprise Objects
Framework orders master entities last. Order on updates doesn’t generally
matter, Enterprise Objects Framework orders masters first.

This new algorithm should reduce the number of scenarios in which you have to
reorder operations. However, if your database has sophisticated referential
integrity, if it uses triggers, or there are referential integrity constraints that are
not modeled as EORelationships, you may still need to reorder adaptor operations
programmatically.

