
File No. S360-20
Order No. GC28-6534-3 OS

Systems Reference Library

IBM System/360 Operating System

Introduction
OS Release 21

This publication describes operating systems in
general and introduces the IBM System/360
Operating System. The publication is intended for
anyone interested in the System/360 Operating
system, whether or not he is familiar w ith other
operating systems. It describes the purpose,
design objectives, orga nization, fu nction, and
application of the system/360 Operat ing System,
and how it was inf luenced by previou s systems; it
also describes System/360 compatibil ity with
System/370.

The operating system consists of programming
aids and a cont rol p rogram that schedules and
supervises the processing of data. T he system is
designed for a broad range of application s,
including teleprocessing and multiprocessing. It
helps a system/360 data processing in stallation
increase productivity by using its resou rces more
effect ively.

P ag e of GC 2 8 - 6 53 4- 3 1 Revised January 15 , 1 9 7 2 , By TNL : GN 2 8 - 2 5 1 2

Fourth Edition (June, 1971)

This revision obsolet�es GC28-6534-2, Technical Newsletters
GN28-2450 and GN28-2458, and replaces IBM System/360
Operati�System: Concepts and Fa�ilities, GC28-6535. It
des c ribes only the MET and MVT configurations of the c ontrol
program. Changes to the text and small changes to
illustrations are indicated by a vertical line to the left of
the change. This publication contains a mea ns of refere ncing
other publications by the use of supers cript notation.
superscripts refer to the numbered p ublications listed i n
Part 3 , Bibliography.

This edition, with Technical Newsletter GN28-2512,
corresponds to Release 21, of IBM system/360 Operating
system, and to all subsequent release until other"?ise
indicated in new edit:ions or Technical Newsletters. Changes
are continually made to the specifications herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 and
IBM System/370 SRL NE!Wsletter, Order No. GN20-0360,
for the editions that are applicable and current.

Requests for copies of I BM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers • comments is provided a t the bac k of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Departn�nt D58, PO Box 390, P oughkeepsie, N. Y.
12602. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1964,1966,1969,1971

Page of GC 2 8 - 6 5 3 4- 3 , Rev i s ed January 1 5 , 1 9 7 2 , By TNL : GN 2 8- 2 5 1 2

This pu bl ication introduce s you t o t he IBM
system/ 3 6 0 Operati ng system , whether or not
you are fam il i ar wit h ot her operating
systems .

Part 1 g ives background informat i on to
help the newcomer under stand operating
systems in genera l . The f i rst s ect ion
des cr ibes the purpos e o f an operating
system and the res ources it requi res . The
second s ect ion des cr ibes the evo l ution of
opera ting systems a nd why they evolved as
they did .

P art 2 des cribes the System/3 6 0
Operating System . It di sc u s se s :

• T he des ign ob jec tive s of the operating
s ystem and how t hey were achieve d .

• T he org anization and f un ction o f the
operating system .

• T he two c onfigurati ons of the control
program .

Preface

• The ma j or f unctions of the operating
system : tas k ma nagement , j ob
m anag em ent , and information management.

• Pr ogram deve lopment and m anag ement
a ids .

• Adva nced types of dat a process ing
(mult iprocess ing and tel eproc e s s ing)
a nd the f aci lities that t h e operat ing
syst em provides for them .

P art 3 conta in s a numbered bib liography.
Superscri pted items in t ext refer to thes e
numbered publ ication s . Further inf ormati on
ab out th ose supers cri pted it ems m ay be
found in the corre sponding pub licati ons.

For def i n i ti on of terms us ed, s ee t he
IBM Data Process i ng Gloss ary , GC 2 0 - 1 6 9 9 .

For more in f ormati on on the System/ 3 6 0
Op erat ing sy stem , re fer to the pub lic ati ons
de scribed i n the IBM System/ 3 6 0 :
Bibl iography , GA 2 2-6 8 2 2 . The IBM
Syst em/3 6 0 Operat ing S ystem : Ma ster Index ,
GC 2 8- 6 6 4 4 , contains a read ing pla n f or
System Ref e re nc e Library publi cations .

Preface 3

PART 1 : OPERATING SYSTEMS •

INTRODUCTI ON • • •

Hardware Res ources
Information Res ources
Human Res ources
The E ffective Use of
P erformance

Throughput • •

Res pons e Time
Ava ilabil ity

Fac i l ity • • • •

Res ources •

9

• • 11
• • 12
• • 13
• • 1 3
• • 1 3
• • 1 4

1 4
• • 1 4
• • 1 4
• • 14

THE EVOLUTI ON OF OPERATING SYSTEMS • • • 15
The Fir st stage : Component Development 15

Pro gramming Aids • • • • • • • 1 5
Tr anslator Programs • • • • • • 1 5
Input/Output Control Sy stems • • 1 7
Other Programming Aids • • 1 8

P rogr am and Data s har ing • • 1 8
S ubroutine S ha r i ng • • • • 18
S har ing of General ized Programs • • 1 8
Formal Sharing • • • • • • 1 8

Growth in Appl icat ions • • • 1 9
The Second Stage : I nteg rati on and
Automat ic Operation • • • • • • • 1 9

The Mi scast Role o f the Operato r • • • 19
sys t em Integrat ion of First-sta ge
Components • • • • • • • • •

A Typical Operat ing sy stem •

A New Control Language For the

. • 21
• • 21

P rogrammer and Operator • • 2 2
B atched Job Proc e s s i ng • • • • • 2 2
A Common Job Input D evice • • 2 2
C ommon Uti l ity I / O Devi c es • • • 2 3
A Common Job Output Device • • • 2 3
Add itional I/O Devices • • 2 3
Automatic step-to-step T rans ition • 2 4
T he System Library • • • • • • • • • 2 4
Operating S ystem Subsystems • • 2 4
T he Control P rogram • • • • • • • • 2 5
A n Example : The IBM 7 0 9 0/7 0 9 4
(IBSYS) Sys tem • • • • • • •

B en e fits for Long-Running Jobs • •

Operating sys tem Appl icati ons
Online D irect Access Systems • •

Airline Res ervation sy stems
T he Problem of Coping With the
Work Load • • • • • • • •

The solution : The C oncurrent

• • 2 5
• • 2 6

2 7
• • 27
• • 2 8

• • 2 8

P rocess ing o f Transactions • • • • • 2 9
concurrent W ork Techni ques And Other
App l i c at i ons • • • • • • • • • • • • • 2 9

The T hir d Sta ge : A Uni on Of Techniques 2 9

PART 2 : THE IBM S YSTEM/3 6 0 OPERATING
SYSTEM •

A GEN ERAL PURPO SE SYSTEM •

Investing Re sourc e s
Modu l ar Construction • • •

Defin ing a nd Generati ng the System •

3 1

• • 3 3
• • 3 3
• • 3 4

3 4

Contents

T a ilor ing the system to Indivi dua l and
Da i ly Need s • • • • • • • . • • • . 3 4
Select ing Default Opt ion s • • • • • • • 3 5
Se lecting Options Whe n the contro l
Program is Initia l ized
Sharing Data Sets • • • •

cataloging Proc edures • • • •

Controlli ng System Operati on •

Controll ing the Use o f the System

3 5
. 3 5

• • • 3 5
3 5
3 6

GROWTH WITHOUT DISRUPTION
Growth in the Past • •

Evo lutionary Growth at
Evo lut ionary Growth in

• • • • 3 7
• • • • 3 7

an Insta l lat ion • 3 7
Improving the

system • • • • • • • •

Growth In Performance
Growth in Appl icat ion • • • •

Technol og i c a l Growth
Other Growth Factors •

Compatibi lity
D ev ice Independence
Multi ple Ta sk Management
St andards • • • • • •

3 7
3 8
3 8
3 8
3 9
3 9
3 9
3 9
3 9

THE GENERAL ORGAN IZAT ION AND FUNCTION
OF OPERATING SYST EM/ 3 6 0 4 1
Superv isor State Program s . • 4 1
Servic e Re que sts • • • • • 4 1
Automat ic Interrupt ion s • • • • . • 4 1
The Ef fect o f an Interrupt i on • • • • • 4 1
Priv i l eged In structions 4 2
The Ba si s of Control • • • • • • • 4 2
Probl em State Pro grams . • • • 4 2
The ma ste r a nd Job Schedul ers 4 3
IBM-Suppl ied Proc e s s ing Programs • 4 3

Language Trans lators 4 3
Ass embl ers • • • • 4 4
FORTRAN Compiler s . • . • 4 5
COBOL Compi lers . 4 6
ALGOL Compiler • • 4 7
PL/I Compi ler • • • • 4 7
Report Program Generator • 4 7

Service Prog rams • • • • • 4 7
Linkage Editors • • • . • 4 7
Loader • • • • • • • • • • 4 7
sort/Merge Program 4 7
Uti li ty P rograms • • • • • 4 8
Emulator Programs • • • • 4 8
Graph i c P rogramming Services • • 4 8
Program Products • • • • • 4 8

Control Prog ram Configurati ons 5 0
MFT Control Program • • • • • 51
MVT Control P rogram 5 3

Ma j or Functions • • • • • 5 4

TASK MANAGEMENT
Resource Sha ri ng • • • • • •

Program Sharing
Data Shari ng • •

R es ource Mana gement

• • 5 5
5 5

• 5 5
• • 5 6

5 7
Advantage s of Multi ple-Tas k Management • 5 8

Contents 5

Page of GC2 8- 6 5 34- 3 , Revi s ed Januar y 1 5 , 1 9 7 2 , By TNL: GN 2 8 - 2 5 1 2

Concurrent Tasks Wit hin Job St.eps (MVT
and MFT With Subta s king) • • • 5 8

JOB MANAGEMENT • • • • • •

Non- S t op Job Process ing
Multiple-Job Process ing
concu rrent Job Support Task s •

The MFT and MVT Job and Master
S chedul ers • •

Job Prior ities • • • •

• • 61
61

• • 6 2
• • 63

64
• • 6 5

INFORMAT ION MANAGEMENT • • • • 6 7
The C entral izati o n and Growth o:f
Informat ion • • • • • • • • • • • • 6 7
Probl em o f Growth a nd Centra li zat ion • • 6 7
Opportunit i es o f Growth an d
Centr a l i zation • • • • • • • • • • • 67
Requi rements for a Un if ied Informa tion
Mana gement System • • 67
Data Org aniz ation • • • • • e • • • • • 6 8
Librar y Refe�rence System • • • • • • • • 6 9
Methods of Storinc::r and R etr i eving Data • 72
Def ining Da t:a , Acc es s Me th ods, and
Devic es • • • • • • • • • • .. • • • • • 73

PROGRAM DEVELOPMENT AND MANAGEMENT • 7 5
A Un i f ied Program Deve lopment System • • 7 5

Modular Construction • • • . • • • 7 5
Or ganized Program Librari e s • • 77
Dynamic Program Loading . • 7 8
Checkpoint./R estart Facility • • 7 8

A Means o f Ftecovet:y • • 7 9

MULTI PROCESSI NG
CPU-t o-CPU commun icat ion •

Advantage s of Mult�iproce ssi ng

6

Inc reased Availabil ity • • • •

Increa sed Producti on Capacity

• • 81
• • 81
• • 81
• • 81
• • 81

More Eff ici ent Use of Res ources • • • 8 1
Dat a S haring • • • • • • 8 1

Operating System Support of
Mult iprocess ing • • • • • • • • 8 2

Multiproce ssi ng With Shared Dir ect
Access Storage Device s • • • • • • • • 8 2
MVT With Mode l 6 5 Mu lti proc ess ing 8 2

Oper ating Modes • • • • • • • • • • 92

TELEPROCESSING • • • • • 8 5
General Ty pe s of Appl i c ati on s • • • 8 5

Data Col lection • • • • • 8 5
Me s s age SWitchin g • • 8 5
Remote Job Process i ng 8 5
Time S haring • • • • • • • • • • 8 5
Onli ne Prob lem S o lving • • m • • • • • 8 6
Inquiry and Transact ion Process ing • • 8 6

Me s sage Control a nd Mes s age Proc ess ing
Pro grams • • • • • • • • • • D • • • • • 8 7

Me s sage Control P r ograms • • • • • 87
Queued T el ecommun ications Acc e s s
Method • • • • • • • • • o • • • • • 8 7
Telecommunication s Acce s s Method
Ba sic Telec ommunic ati ons A ccess

8 8

Method • • • • • • • • • .. • • • • • 8 9
Me s sage Proce ssing Programs • • 8 9

Spec i fic Teleproce s s i ng Appli cat i ons
Provi ded by IBM • • • • • • .. • • 8 9

9 0 Remote Job Entry • • • • • .. • •

conver sationa l Remote Job En try
Time Shari ng Opt i on

• • • 91
• • 91

Work ing at the T erminal • • • 9 2
System C ontrol • • • • • .. •

Graphic Job Pro c e s s ing • • ..

System/ 36 0 -11 30 Dat a Transmi ssion for

9 2
9 3

FORTRAN • • • • • • • • • 9 5

PART 3 : BIBLIOGRAPHY

INDEX

97

• • 9 9

Figure 1 9 . The Ru nni ng Time of a
Computing System When Proces sing a Few
Long Jobs • • • • • • • • • • • 2 7
Figure 2 0 . sequenti a l , Of f li ne
App l i cat ion • • .. • • • • • • 2 7
Figure 2 1 . Online Direct Access
Appl ic at ions • . • • • • • • . • • 2 8
Figure 2 2 . Compa r i s on Between the
Process ing of Transacti ons Singl y and
Concurrent l y • • .• • • • • • • .• .. 2 9
Figure 2 3 . Inves t i ng Resources to
Increase Productiv ity • • • • • • • • • 3 3
Figure 2 4 . Constructing Your Operating
s ystem • • • • • • • • • • • • • • • • 3 4
Figure 2 5 . Dis ruptive G rowth 3 7
Figure 2 6 . Evo luti onary Growth by
Incremental Steps • • • • • 3 7
Figure 27 . Opt imi z i ng Speci fic
Characteristics : S i ze v s . S peed • 3 8
Figure 2 8 .. Ra i s i ng the Ini tial
Producti ve Capac ity of the System
Through Des ign Improvements • 3 8
Figure 2 9 . Extend i ng the Production
capac ity and Applic ati on of the s ystem 3 8
Figure 3 0 . Operating sy stem/ 3 6 0
super visor and Prob lem State Program s • 4 1
F igure 3 1 . Language Trans l ators
Pr o v ided by I BM • • • • • • • • 4 4
F igure 3 2 . Mac ro Instructi on
Expans ion • • • • • • • • • • 4 5
Figure 3 3 . IBM 2 2 50 Di s play U nit
Model 3 • • • • • • • • .• • • • • • 4 6
F igure 3 4 . IBM 2 2 60 Di s play Stat i on,
W ith a nd W ithout Alph ameri c Keyboard • 4 9
Figure 3 5 . S ystern/3 6 0 S oftware
S ystems F or Vari ous systern/ 3 6 0 and
s ystem/3 7 0 Conf igurati ons • • • • 5 0
Figure 3 6 . Compatibi lity of MFT and
MVT Control Program Confi gurat ions • • 5 1
Figure 3 7 . Concurrent Proces s i ng of
Job S teps and Job Su pport Tas ks by an
MFT C ontrol Program • • .• • • • • • 5 2
F i gure 3 8 . Genera l Organi z at i on of
Main storage For the MFT Cont rol
Pr ogram conf igurati on • • • • • • 5 2
F igure 3 9 . Concurrent Proces s i ng , by
an MVT Control Program , of Job Steps ,
Job support Tas ks , and Tas ks W ithin
Job steps • • • • • • • • • • • • • • • 5 3

F i gure 4 0 . Genera l Org ani z at i on of
Ma in storage From the MVT Cont rol
Pr ogram Conf igurati on • .. • • • •

Figure 4 1 . A s i ng le Tas k system
F i gure 4 2 . A Multi ple-Tas k System
F i gure 4 3 . Unsha red Inf ormati on

5 3
• • • 5 5

• • 5 6

Resources • • • • • • • • • • • • • • • 5 6
F i gure 4 4 . Program Shari ng • 5 6
F i gure 4 5 . Data Shari ng • 5 6
F igure 4 6 . Job Defi niti ons • • • • 6 1
F igure 4 7 .. Sequenti a l and Concurrent
Job Process ing • • • • • • • •

Figure 4 8 . Off li ne Peri pheral
• 6 2

Operations • • • • • • • • • • • 6 3
F igure 4 9 . The MFT and MVT Job Master
S c hedulers • • • • • • • • • 6 5
F igure 5 0 . Data Organi z ati on
Figure 5 1 . Data Rec ord Formats
F i gure 5 2 . S pa nned Vari able-Length

• • 6 8
• • 6 8

Rec ords • • • • • • • • • • • • • • • • 6 9
Figure 5 3 . S implified Diagram of
Cata log System f or Loc ati ng a Volume • 7 1
Figure 5 4 . S implif ied Di ag ram of
Cata l og System For Locati ng Data Sets
Within a Direct Acces s Volume 7 2
Figure 5 5 . Program Design • • • • • • 7 6
Figure 5 6 . Program Module Libraries • 7 7
F igure 5 7 .. Reloc atabi li ty • • 7 8
Figure 5 8 . Multi proces sing With Shared
D ir ect Acces s Stor age Devi ces • • • • • 8 3
F i gure 5 9 . A S ymmetri cal
C onf igura tion of the Model 6 5
Multiprocess ing S ystem • • • • • 8 3
Figure 6 0 . Two CPUs i n Multis ystem
Mode , Bala nc ing the Executi on of Four
Tasks • • • • • • • • • • • • • •

F i gure 6 1 . S imp lif ied Di agram of
Mes sage Control Usi ng the Queued
Telecommunicati on Access Method
Figure 6 2 . IBM 27 8 0 Data Transmis sion

• 8 3

• 8 8

Terminal • • • • • • • • .. • • • • • • • 9 0
Figure 6 3 . A DESCRIBE DATA Dis pl ay
For the Graphic Job Proces sor 93
Figure 6 4 . Us i ng a Graphi c Di s pl ay
Program on a 2 25 0 • • .. • • • • • • • • 94
Figure 6 5 . A Typic a l Opti cal Design
App l ication Dis play • • • • • • • • 95

Con t en t s /Illus t r a t i on s 7

IBM s ystem/36 0 Model 6 5

8

PART 1: OPERATING SYSTEMS

This part gives bac kground i nformat ion on
operat ing systems in general , des cribing
their purpose a nd how they evo lved . If you
are a lready fami liar with operat ing
s ystems , go to Part 2: The IBM System/ 3 60
Operating Sys tem.

Part 1 : Operati ng Systems 9

Wh en comput ers w er e introduc ed s everal
y ears ago, th ey w er e usually put to wor k on
jobs that had r equir ed a g: ... : e�t d eal of

routin e human acti vity. Basic accounting,
r ecord keeping, and probl em sol ving w er e a
f ew of th es e early applications (Figur e 1) .
By and larg e, th e automatic proc essing of
such jobs pro ved th e spe ed, economy, and

r eliab ility of el ectronic data proc ess ing.

Lat er, comput ers ent er ed a mor e
chall enging phas e of d evelopm ent in which
th e industry b egan to d evis e syst em

appl ications -- applications that go far
b eyond th e m er e m echan ization of manual

op erations . Manag em ent information

Before

4f«l«l«l
MlMlMl4f

Bookkeeping System - Pencil and Paper

����
����

Accounting with Key-Driven Machines

�����
Scientific Problem Solving with Desk Calculator

����&
Punched Card Accounting

Introduction

syst ems, proc ess control syst ems, m ed ical
diagnosis syst ems, com�ut er-assist ed
instruction (C AI) syst ems, and informat ion
r etri eval syst ems ar e a f ew r ec ent exampl es

(Figur e 2) .

Today, as a r esult of this rap id
progr ess, most data proc essing
installations ar e facing an incr eas e in th e
numb er of con ventional applicat ions as w ell
as an incr eas e in th e scop e and compl exity
of larg e-scal e syst em applications. To
cop e with th es e probl ems, a data proc essin g
syst em must effici ently apply all of its
r esourc es: hardwar e r esourc es, information
r eso urc es, and human r esourc es (Figu r e 3} .

After

Figur e 1 . M echanizing Routin e Human Acti viti es

Introduction 1 1

Medical
Diagnosis

C•:>mputer-Assisted
Instruction

Figur e 2. System Applications

Programs

Human

Major Resources

CPU Time
Main Storage

Space

Work Results

Information
Retrieval

1/0 Devices

Figur e 3 . H esourc es R e quir ed to Proc ess
Data Automatically

12

Hardware Resources

To proc ess data effici ently, th e physical,
or "hardwar e, " compon ents of a computing
system must b e a vaila bl e wh en th ey ar e
n eed ed . Th e hardwar e r esourc es at a data
proc essing installation ar e:

• Time on th e c entral proc essing unit .
• Main storag e spac e .
• Input/output de vic es .
• Input/output chann el tim e .
• Dir ect acc ess storag e spac e .

Th e ma jor hardwar e r esourc e is th e tim e
a vailabl e for doing work on th e c entra l
proc essing unit (th e CP U). Th e work th e
CP U p erforms is to op erate on, or proc ess,
da ta . Th es e op era tions usually consist of
th e basic arithmetic op erations (addition,
su btraction, multiplication, and di vision),
transf erring data from on e storag e location
to anoth er, con ver ting data from on e form
to a noth er, and p erforming simpl e tests or
comparisons to choos e b etw een alt ernati ve
op erating s e qu enc es.

Indi vidually, th es e basic op erations do
not s eem very impr essi ve, but th e CP U
p erforms th em with gr eat sp eed and
r elia bility, and i· t can b e programm ed to
p erform long, compl ex s equ enc es of
op erations without human int er vention.

To perform long s e qu enc es of op erations
wi thout human interv ention, th e CP U must
hav e a r esourc e for storing information in
a r eadily acc essibl e form . Th er efor e, th e
CPU has a main storage from which it can
quickly obtain in formation and r eturn

r esults .

Also, th er e mus ·t b e som e way to quickly
en ter information into main storag e . And,

b ecaus e th e capaci ty of main storag e is
limited, th er e mus t b e a way to :r ecord
eith er for later proc essing or for us e

outsid e th e system -- th e r esults that th e
CPU plac es in main storag e . Th er efor e, two
additional r esourc es ar e r equir ed to
proc ess data automatically : on e or m or e
in put/output d evic es for r eading and
r ecording information and tim e on on e or
mor e chann els for transmitting th e
information to and from main s1:orag e .

D evic es that f eed information into main
storag e (via a chann el) or r ecord
information tak en out of main storag e < via
a chann el) ar e r ef err ed to coll ecti vely as
input/output d evic es . How ever6 th ey ar e
also storag e d evic es b ecaus e th ey stor e
information, wh ether it b e in th e form of
printed characters on pap er, hol es in
punch ed cards, or magn etiz ed spots on tap e,
drums, and disks . Dir ect acc ess d evic es,

such as magn etic drum or disk units, ar e

usua l ly cal led stora ge devi ces because they
are ma inly used for storing i nformati on .
Other devices such a s magnetic tape uni ts ,
card readers , a nd printers a re called
input/output devices , beca use they are used
primarily f or entering i nf ormati on into the
system and f or rec ording output from the
system . Therefore , I /O devi ces and direct
acces s storage space are c onsidered
separate and dist i nc t re sources because
their primary ro les differ .

Information Resources

There are two kinds of i nformation
resources at a n insta llati on: the data
that the CP U processes and the sequences of
instructions , ca l led programs , that direct
the CP U to perform operati ons in a
particular sequence .

Human Resources

Even more important than ha rdware and
information resources are the human
resources at an insta l lati on . These
cons ist of the time and talent of the
individuals who staff the instal l ati on an d
use the system. Although j ob
respons ibi lities vary among installations ,
there are usua l ly three groups of people
under the di rection of the i nsta l l at i on
manager:

• S ystem programmers who plan , generate ,
ma inta i n , extend , and c ontrol the
s ystem with the aim of improving the
productivity of the installat ion .

• Applicati ons programmers -- the main
users of the c omputing system -- who
p lan new j obs (applicati ons) for the
s ys tem and devel op the procedures and
programs needed to perform them .

• Operati ons pers o nnel , who receive j obs
from the programmer s , schedule the
order in which j obs are presented to
the s ystem , a nd direct the operation of
the s ys tem.

To a great extent , the succes s of a data
process ing insta l lat i on depends upon how
wel l these human resources a re appl ied .

The Effective Use of Resources

The res ources of a dat a process ing
insta llati on represent a c onsiderable
investment ; it is important, therefore , to
use them ef ficient ly. . To do thi s , i t i s
neces s ary to keep each resource busy doin g

the kind of work it i s best suited f or .
Hardware a nd i nf ormati on res ources must be
read ily avai lab le s o the CP U can be kept
busy with the ted i ous work of process ing
data . Human res ources must be rel ieved or
ta sk s that the c omputi ng s ystem c an
per f orm , a nd dedic ated to more creative
work: planning new a ppli cati ons ,
formulating s o luti ons to problems , reacting
to c ha nging c onditi ons and unexpected
events , a nd ma naging the i nsta llat i on.

The productivity of a data proces s ing
insta llation depends on how well its
hardware , inf ormati on , and human res ources
are selec ted a nd empl oyed to do the work at
hand . A modern c omputing s ystem c an
per f orm b i l l i ons of basi c operat i ons in a
few minutes , and with f ar greater
rel iab il ity than a human bei ng. But man
must plan a l l of the work the computing
s ystem perf orms a nd i n doi ng s o must
acc ount f or every c ontingency t hat might
ar ise. I n short , a c omputing system only
fo l l ows orders . Lacki ng a pro gram , the
s ystem is useless .

But , with a program , a comput ing system
ca n do much more th an process input data to
produce output dat a . By using the few
instructions of a c omputing s ystem in
dif ferent c ombi nati ons and s equences , a
programmer can c reate a program that w ill
direct it to do ma ny thi ngs that were once
done only by huma n bei ngs . These incl ude
translati ng la nguages , managi ng resources ,
retr ieving inf ormati on , s chedu ling and
supervis ing work a nd operati ng and
controlling mecha nic al devi ces .

A program , or set of programs , that
directs a comput i ng system to perform such
operations is c a l led an operat ing system .
An opera ting s ystem i s rea lly a n advanced
s ystem a pplication of a comput ing system in
the f orm of orga ni zed collecti ons of
programs a nd data . Like other system
app l ications it i s designed to handle
complex activities , but it di ffers in the
kind of ac tivity it supports . Most system
app licat i ons support s peci ali z ed act ivities
outs ide of the dat a proces s i ng
insta l la t i on , such as banki ng, process
control , or mi s s i le des ign . An operating
s ystem is des i gned to support the
activ ities of the dat a process ing
insta l lation itself . In s hort , an
operating sys tem i s an appli cat ion of a
computing system , i n the f orm of program
and da ta res ources , that i s spec i f ically
des igned f or use in c reati ng a nd
controll i ng the perf ormance of other
appl ications . Its prime ob jective is to
improve the perf ormance of a dat a
pr ocess ing s ystem and i ncrease facility -

the ease with which the system c an be us ed .

Introduction 1 3

Performanc:e

Th e o verall p erformanc e of a data
proc ess ing syst em is d et erm in ed by a
comb inat ion of thr ee factors. Th ey ar e
!JlrQ_-g_ghput, _r espons e t im e, and g va il ab il i_!y
(F igur e 4) .

____ __C [_::�pu] �!sponse �me
F igur e 4 . Productivity Factors

THRO UGHP U T

Throughput is th e total volum e o f work
p erform ed by th e syst em o ver a g iven p er iod
of t im e. Th is is an important factor at
any installation ; how ever, it is esp ec ially
important at a h igh - volume product ion
installat ion in wh ich large batch es of work

ar e p erform ed in accordanc e w ith a fl ex ibl e
t im e tabl e. Th is type of op erat ion is
typ ical of many account ing and r ecord

k eep ing appl icat ions.

RESPONSE TIME

R espons e t im e (som et imes call ed turnaround
t im e) is th e int er val b etw een th e t im e a
us er Cor a proc ess-controll ing d ev ic e)
subm its an it em of work to th e syst em for
proc ess ing and th e t ime h e r ec ei ves
r esults. R espons e t ime is esp ec iall y
important wh er e many d iff er en t p eopl e shar e

th e us e of th e syst em and th e ov erall
progr ess of th eir work d ep ends on th e ir
r ec e iving prompt r esults from th e syst em.
F'or exampl e, r espons e tim e is important in

a d es ign act ivity in wh ich a s eries of
calculat ions is r e qu ir ed to compl et e each
d es ign and th e d es igners cannot cont inu e
th eir work unt il th ey r ec ei ve th e r esul ts
of pr evious calculat ions. For such

act ivit ies a d ecr eas e in r espons e t im e
incr eas es th e pac e of th e act ivity and
impro ves human product ivity, s inc e l ess

t im e is sp ent in idly wa it ing for r esults.

1 4

AVAI LA BI LI TY

A va ilab il ity is th e d egr ee to wh ich a
syst em is r eady wh en n eed ed to proc ess
data. Th e a va ilab il ity of a syst em is
esp ec ially important at an installat ion
wh er e a prolong ed p er iod dur ing w h ich th e
syst em is not a vailabl e m ight r esult in a
compl et e shutdown of th e total ent erpr is e.

A h igh l evel of a va ilab il ity can oft en
b e ach ieved b y includ ing add it ional
hardwar e r esourc es, such as mult ipl e
input /output chan nels and d ev ic es, as w ell

as mult ipl e c entral proc ess ing un its. Th en
if on e un it fa ils it can b e in® ed iat ely

r eplac ed by anoth er, thus h elp ing to ensur e
cont inu ed op erat ion of th e syst em as a
whol e. A syst em us ing mult ipl e un its of
hardwar e r esourc es, includ ing two c entral
proc ess ing un its, is d escr ib ed lat er in th e
s ect ion t itl ed "Mult iproc ess ing."

Facility

Fac il ity is a m easur e of how easy it is for
p eopl e to us e a data proc ess ing syst em.
Fac il ity is ach iev ed in a syst em ma inly by
prov id ing th e us ers at an installat ion w ith
a comb inat ion of pr ogramm ing a ids,
s er v ic es, and pr ecod ed rout in es t hat can b e
employ ed us ing appropr iat e languag e

stat em ents. Th e g en eral id ea is to
s impl ify and sp eed th e job of d ef in ing,
programm ing, and sch edul ing wor k for th e
syst em , th er eby mak ing mor e eff ic ient us e
of th e human r esourc es at an installat ion.

Fac il ity can also b e incr eas ed by
impro ving th e r espons e t im e of th e syst em

and th e d egr ee of int eract ion b etw een th e
syst em and th e p eopl e who us e it. An
exampl e of th is is a comput er ass ist ed
instruct ion (CAI) appl icat ion in w h ich a

d ialogu e or con v2rsat ion tak es plac e
b etw een a stud ent and th e syst em. In such

an appl icat ion, th e stud ent l earns from h is
m istak es as h e mak es th em, th er eby sp e ed in g
up th e l earn ing proc ess. A s im ilar
approach can b e us ed to impro v e and sp e ed
up pro bl em solv ing and programm ing
proc ess es as w ell�

Although op erat ing syst ems d iff er in th e
way th ey ach iev e th e ir o bj ect ives, th ey
ha ve many commoL charact er ist ics. In fact,
mod ern op erat ing syst ems us e many conc epts
and techn iqu es d evelop ed in th e past.
Th er efor e, th e n ext s ect ion trac es th e
evolut ion of op erat ing syst ems. Th is w ill

pr epar e you for "Part 2: Th e I B M
syst em /360 Op erat ing Syst em" and h elp you
to und erstand how and why th e syst em cam e
to b e what it is and how it d iff ers from
earl ier op erat ing syst ems.

The Evolution of Operating Systems

Moder n operating systems, as typi fied by
the System /360 Operating System, e vol ved in
three stages. The first stage began d uring
the early days o f electronic data
processing , when the ma jor components of an
operating system were de veloped. During
the second stage, these components were
integrated to form systems and the name
110perating system 11 came into use. The

third stage was a union of known techni ques
with new ideas, aimed at the de velopment o f
a general purpose system that could impro ve
the producti vity o f a data processing
installation.

The First Stage: Component

Development

The first stage began mainly because o f
language dif ferences between computers an d
the people who used them. The computer
co uld not understand human languages , and
programmers found the precise, restricti ve,
numerical language of a computer hard to
read and write. Futhermore , it was
di fficult to change a complex program
written in 11machine language " and each
change often triggered a chain of errors.

The language problem was a serious
obstacle to the e fficient use o f human
resources. For a time it th reatened to
limit the growth of electronic data
processing. Although a computer coul d
process data rapidly, it had to be fed vast
amounts of instructions and data, all in
its detailed, cum bersome , numerical
language. This re quired a large sta f f of
programmers who spent their time, no t in
creati ve wor k, but in the tedious
translation o f applications and pro blem
solutions into machine language.

For example, i f a mathematician had a
problem to sol ve -- such as computing a set
o f trajectories for an artillery shell -

he would usually do it in three step s <top
o f Figure 5) . First, he wo uld analyze the
pro blem and formulate a procedure to sol ve
it. The mathe�atician had neither the time
nor inclinati �n to code his procedure in
machine language. Accordingly, he wo uld
turn o ver his procedure and data to
programmers. The procedure might be in the
form of a flowchart, a mathematical
formula, or a series of general

instructions ; in any e ve nt, the proced ure
was not in a form that was understanda ble
to the computing system.

There fore , d uri ng the second step , it
was up to the programmers to translate the
proced ure into the detailed numerical
language o f the computing system.
Depending on the complexity o f the pronlem,
the translation step co uld ta ke days ,
wee ks, or e ven months to complete and check
o ut.

The third step consisted of ex ecuting
the program on the com puting system to
process the data and prod uce results.
A fter all o f the time and ef fort de voted to
translation, the exec ution step was of ten
completed in a few minutes. The same
general three-step process was followed in
de veloping a busi ness a pplication -- again,
far too m uch time and effort was ex pended

in translating procedures into a form
accepta ble to the com puting system.

Largely as a result of this language
problem, two important , interrelated
mo vements began in the data processing
industry. One was the de velopment of a set
o f programming aids th at co uld be used to
assist programmers in doing their wor k.
The other was the sharing o f program and
data resources among the people who used
computing systems. These two mo vements
helped correct the im balance of preparation
time and execution time.

PROGRA M MING AIDS

The de velo pment of programming aids was
begun by system pr ogrammers who saw that

too much time was being spent catering to
the needs o f the c omputing system. Since
many routine operations were invol ved in
prepar ing programs and data for the
computing system, why not, they reasoned,
use some of the speed and resources of the
comp uting system to do the wor k?
Therefore , the programming aids they
de veloped too k the f orm of programs that
could be executed on the computing system.
The most important of th es e were translator
programs and in put /output control syst ems.

Translator Programs

Translator programs were designed to
translate programs written in a language
that human beings could understand into th e
numerical language of the computing system

(a, Figure 6). A num ber of "machine
or iented .. assem bler languages were the
first to appear (b, Figure 6). These were

The E volution of Operating systems 1 5

s oon followed by such 11human-o.ri en ted 11

lan guages as FORTR.i\N (c, Figuri=:! 6) and
COBOL (d, F i9ure 6) • Prog r amm•:r s could now
wri te thei r in s t ruct i o n s to the computing
wy.tem in lang uage that were aki n to
mathemat i c s (FORTRAN) o r the lan guage of
bus i nes s (COBOL) • Wi th the development of
FORTRAN, the mathemat ici an (bo1:tom of
Figure 5) now had a rea son able cho i ce. He
co uld defi n e his pro cedure in ma thema t i cal
not ation (for example, A= YC�>3 ·) and let a
profes s ional prog rammer converi: it i nto a
FORTRAN language source prog rar�. Or, he
could define the pro c edure di rec tly i n
FORTRAN (A=X/ (Y*Z**3)) wi th lii:tle o r no
help from the programmer. The s o urce
prog ram could then be qui ckly tran s lated

into a machine language ob ject pro gram an d
executed by the computing system .

Thus programmers were no longer sla ves
to the nee ds of the computing system . They
coul d de vote more of their time and effort
to creati ve work . The transla- tors not only
spee ded up the programming process but
re duce d programming errors, made it much
easier to correct errors, pro duce d better
documentation of pr ograms, reduce d trainin g

time, an d ma de life e asier for anyone who
wanted to use a computing sysbem . The
translation process was shortene d, the
burden of translation was shif·te d from the
programmer to the computing system, an d a
balance between the two was achieve d .

Before Language Translators

Problem
and

Data

Field Artillery
Trajectory

Pr·oblem
and

Data

'
Rocket

Trajectory

Analysis
and

Proc!Kiure
Formulation

Translation

�====;"Ill • - Machine

�- L'"'""'

� II
_. Pro,, ..

Prooed"" • �-
�====:::::;"���

E.Kecution

Data ····························��
Mathematician

or
mystems Analyst)

Analysis
and

Procedure
Formulation

-

It Data

Mathematician

•

Programmers

After Language Translators

Source
Program

Translation

Language
Translator

Computing System

Machine
Language
Program

Computing System

Execution

--���

Computing System

Figure 5 . Problem Sol ving Befo:['e an d After the De velopment of Language Translator
Programs

16

Results

..

Results

-

a. Machine Language

00035 4754 00 2 00000
00036 4734 00 1 00000
00037 0560 00 2 00000
00040 0500 00 1 00000
00041 0040 00 0 01002
00042 0131 00 0 00000
00043 0601 00 1 00000
00044 2 00001 1 00040
00045 4600 00 2 00000

b. Assembler Language

LOADX1 PXD 0,2
PDX 0,1

LOADQ LDQ 0,2
LOADAC CLA 0,1

TLQ *+2
XCA

STOREA STO 0,1
TIX LOADAC,1,1

STOREQ STQ 0,2

c. FORTRAN Language

16 READ(5,20)A,B,C
20 FORMAT(3E10.3)

IF(A)30,40,30
30 D'"B*B-4.*A*C

IF(D)50,60,70
50 XR1=-B/(2.*A)

XR2•-B/(2.*A)
Xll=(SQRT(-D))/(2.*A) -

d. COBOL

:IF DE,M,A,ND IS GREATER THAN STOCK-ON-HAND,

<

\

(

---'---'-' l'' ',A,�� ,D,EMA,N,D, ,T,O, ,BAC.K.-O,RD,ER,S,,, I I I I I I I I I I I �_J__j_J_J_(: MOV,E, ,BAC,K,-,O,R,D,E,R,E,D ,TO ACT,I,O,N -C,ODE ; , I I

1 1 I ;o,TgE,R�,IS,E ,,, 1 1 1 1 I • I • I I I 1 1 1 I I ' I ' I I I I I ' I I I '

SUBTRACT DE,M,A,ND F,R,OM STOC,I\-ON -HAND 'LJ__J__J_'---'--'-'---'---'--'---LL.L--4
MOVE O,R,DER-FILLED TO ACTION-CODE. -

Figure 6 . Programming Languages

Input /Out put Control systems

In additio n to the language translators,
other important programming aids, called
input /output control systems, were
de veloped. These systems were designed to
impro ve the way computing systems performed
I /O operations. In the early computing
systems, the relati vely slow I /O operations
and the much faster data processing
operations of the CP U could not be
performed at the same time (Figure 7) .
Therefore, the CP U was idle much of the
time waiting for the completion of data
transfers between I /O de vices and main
storage. To reduce this idle time,
computing systems were soon de veloped that
could perform input, output and data
processing operations all at the s am e time

(Figure 8) . This represented a significant
impro vement in the performance of computing
systems. Howe ver, to ta ke a d vantage of the
impro vement the programmer h ad to ma ke s ure
that the I /O operations were sy nchronized
with the processing of data ; otherwise, the

CP U might attempt to process input data
before it arri ved in main storage or
destroy output dat a before it was
transferred to an output de vice.
Therefore, input /output control systems
were de veloped to automatically synchronize
I /O opera tions with data processing.

Input

CPU
Processing

Output

2 3

Figure 7. se quential Input, Processing,
and output

Input

CPU
Processing

Output

2 3 4 5 6 7

Figure 8 . Concurrent Input, Processing,
a nd Output

An input /output control system consisted
of an interrelated group of programs that
was loaded into main storage along with the

processing programs. Using such a system,
a programmer merely had to issue a "RE AD"
instruction to obtain the next bloc k of
data from an input de vice or a "WRI TE"
instruction to send a bloc k of dat a to an
output de vice. The input /output control
system·pic ked up and interpreted the
instruction and then initiated and
controlled the necessary t ransfer of data
to or from main st orage. In the meantim e,
the CPU could continue processing data.

If each bloc k of in put data contained
more than one record the programmer merely
issued a "GET" instruction to get the next
record in se quence. The input /output
control system automatically controlled the
transfer and storage of data bloc ks and
parcelled out rec ords one at a t ime from
the bloc ks as they were re quested by the
processing program (Figure 9) . Similarly,
to transfer an output record, the
programmer merely issued a "P U T"
instruction. The input /output control
system then pic ked up and consolidated
records into a bloc k before transferring
the bloc k to an output de vice.

The E volution of Operating systems 17

Main Storage

Processing Program

PUT

Input Buffers Output Buffers

Input/Output Control System
"--- ·-------------·--

Figure 9 . Data Retre ival and Recording
Us ing an I nput/Output Con trol
system

Input/output c ontrol sy stems a s si sted
programmers :Ln other signifi cant: way s . For
examp le , if an error was detected during an
input/output operati on , the system
automaticall:i retried the operation and
attempted to recover f r om the -error
cond ition . It a ls o checked label s at the
beginning of magnetic ta pe reels to en sure ,
among other things , that the correct reel
was mounted on the r ight tape unit .
Input/output c ontrol sys tems , as a whol e ,
represented a n important step i n the
evo lution of operaiting systems .

Other Programming Aids
\.. ..

In addition 1to language translators and
input/output c ontrol sys tems , a vari e ty o f
other programming aids began t o evolve .
These includ1ed programs f or generating
reports,, l oadi ng other prog rams into main
stora ge , com�ining several programs into a
single program , and recording the con tents
of ma in stora ge in a readable fc>rrn .

PROGRAM AND JDATA SHARING

The other rna jor move ment that l E�d to the
deve lopment of operating sy stems started

18

with the rea lizati on that a great many of
the program a nd data res ources at an
insta llation cou ld be shared by d ifferent
user s of the c omputing system, t hereby
avo iding a great deal of programming and
data- gathering dup lic ati on . A program us ed
in one j ob c ould ofte n be us ed with l ittl e
change in another j ob. Als o , the s ame s et
o f data that was process ed during one j ob
could often be processed in a di fferent way
dur ing a nother job . Prog ram and data
shar ing bega n as an i nf ormal cooperative
venture among users within an instal l ation
but it soon involved a g reat many us ers at
different insta llations . In fact , us ers o f
medium a nd large sc ale IBM comput ing
systems f ormed a n org anizati on ,
appropria tel y c a l led SHARE , to promote the
s har ing of prog ram and data res ources .

Subroutine Sha ring_

Program sharing took many di fferent f orms .
One wa s the shari ng of subrout ines -

relative ly short seque nces of instructions
that could be incorporated i nt o a program
to per form s pec ific functi ons , such as
find ing the s quare root of a number . This
type of sharing was of ten us ed in
con junction with languag e trans lators .
Some tra ns lators h ad acces s to a magnetic
tape l ibra ry of subroutines and
incorporated the m i nt o a program when
instructed to do so by th e programmer .

�baring of Ge nera lized Programs

Another f orm of s hari ng was the u s e of
genera lized programs f or performing common
data process ing ta sks . Typi ca l of thes e
wer e the genera lized s ort/merge programs .
At many business i nstallati ons it w as f oun d
that a la rge perc e nt ag e of comput ing syst em
time was s pe nt i n s orti ng and merging data
r ecords into a pre scri bed s equence .

Rather than de sig n a new program each
time a differe nt set of records had to be
sorted or merged , many i nsta llat i ons
reduced the prograrnmi ng effort by us ing a
single genera l purpose s ort/merge program
that c ould be eas i ly modif i ed to process
dif ferent types of rec ords in dif ferent
formats a nd seque nce s .

Among other shared genera lized programs
wer e util ity programs , us ed to perf orm
ever yday ta s ks suc h as trans cribing data
from one storage or I/O devi ce to artoth er .

Forma l S ha ring

As time went by , program and dat a sharing
techniques matured and the s haring became
more forma lized . For exampl e , many of the
genera lized programs were refined and
improved so that the y automatically
modif ied themse lve s i n accordanc e with

specifications supplied by the programmer.
These specifications often developed into
formal language statements that a
programmer could use to communicate
precisely his special data processing needs
to the generalized program. At most
installations the operations staff
maintained# on magnetic tape or in the form
of punched cards, a central library of
programs and programming aids that could be
shared among the members of the
installation.

GROWTH IN APPLICATIONS

Largely because of the development of
programming aids and the formal sharing o f
program and data resources, the number of
data processing applications grew at a
surprising rate throughout the industry.
The language barrier between the
programmers and the computing system ,
although not eliminated, had at least been
breached. Many installations that h ad
specialized in long-running or often-run
jobs could now afford to program small

one-shot jobs. Many of the jobs were
developed by engineers and others who were
not professional programmers. Using the
mathematical language of FOR'I'RAN they could
now do their data processing work with
little or no help from a professional
programmer. The professional programmer
could devote much more of his time and
ingenuity in devising new application s and
posing new problems for solution.

As a result, the number of data
processing jobs at many installation s
increased faster than the computing system
and its operator could handle them.

Second Stage: Integration and

Automatic Operation

The second stage, like the first, began as
a result of basic differences between human
and hardware resources. In the first
stage, they were language difference s
between computing systems and the people
who programmed them. In the second stage,
they were differences in speed,
reliability, and reaction time between
computing systems and the people who
operated them.

THE MISCAST ROLE OF THE OPERATOR

As the volume of data processing jobs
increased throughout the industry, the
differences between the operator and the
computing system became more and more
apparent and significant. Because of these
differences# a computing system spen t a

large part of its time idly waiting while
an operator peformed routine tasks or
momentarily pondered what to do next. The
problem lay in the sim�le fact that the
operator was too much involved in the
mechanics of data processing. In this
role, he could not match the data
processing speed and reliability of a
computing system no matter how swiftly and
surely he did his work. An operator often
spent more time preparing (setting up) a
computing system for a job than the system
spent in performing it (Figure 10). Som e
computing systems, in fact, spent more than
half of the work day idly waiting for the
operator to do such things as mount
magnetic tape reels, place punched cards in
a card reader, or mani�ulate manual
controls. Wasted time, due to operator
intervention, was especially s evere at
installations where many small jobs were
performed (Figure 1 1A). Th e steadily
increasing speed of computing systems could
not compensate for such wasted time because
as jobs were processed faster, operator
"set-up" time between jobs remained the

same. Therefore, an even larger percentage
of computing system time was wasted waiting
for the operator (Figure 11B).

Operator Time

Read Instructions
Mount Tape Reels
Set Console Switches
Load First Program and Start

Normal Stop?
Remove Tape Reels
What Job Next?
Setup Job
Load and Start

Computing System Time

Time

Figure 10. Idle Computing System Time
Betwee n Jobs

The Evolution of Operating Systems 19

A Many Sma ll Jobs

Time

50% Idle Time 50% Running Time

B

Figure 1 1 . Idle Time When Processing Many Small Jobs

20

Operator Time

Many Small Jobs

Time

Computing System Time

Time Saved 25% 66-2/3% Idle Time 1 __:_3-1/3% Running Time
_ _j: _

It isn't surprising then, that the
emphasis during the second stage in the
evolution of operating systems was on
applying the fast hardware resources of
computing system to reduce the data
processing activities of the operator.
ultimate oojective was the non-stop
processing of jobs (Figure 1 2) .

Operator Time Start Computing System Time

Initial Setup 0

Figure 1 2 . The Ultimate Objective:
Non-stop Processing of Jo bs

SYSTE M INTEGRAT ION OF FIRST- STAGE
CO MPONENTS

the

The

During the second stage many of the
programming tools and generalized program s
that were developed during the first stage
were brought together and placed under the
direction of a central control program to
form a single integrated system (Figure
13). The original reason for doing this
was to improve and, to a large exten t,
mechanize the operation of the computing
system. Hence the name, "operating
system. "

The operating systems that were
developed during the second stage had a lot
of common characteristics. Many of their
features have survived the test of time
and, with refinements, improvements, and
extensions, still exist in present day

systems. Therefore, it might be helpful at
this point to briefly describe a typical
operating system, concentrating on those
characteristics that were first introduced
dur ing the second stage and are now more or
less common to all systems. This
descr iption can then serve as background
for understanding the third stage of
development, as typified by the System/360
Operating system.

Figure 13. System Integration of First
Stage Components

A TYP ICAL OPERAT ING SYSTEM

When operating systems were first
intr oduced, their major, and sometimes
only, purpose was to control the
performance of a continuous series of
independent jobs with as little operator
intervention as possible. This was largely
accomplished by designing a control program
that assumed many of the functions
previously performed by th e operator. By
reducing the degree of human participation
in the mechanics of job processing, the
control program helped ·to ensure that jobs
were processed faster and more efficiently,
and were less sub ject to human error. It
also provided the operator with more tim e
to plan and direct the overall operation of
the system.

In various operating systems, the
control program was called the system
monitor, the executive program, the master
program, or some such name. Whatever the
name, each had the same basic goal, that
is, the non-stop processing of jobs.

The Evolution of Operating systems 21

A New cont1:-ol Language For the Progr ammer
and Operator

To re ach it:s goa l , the c ontrol progr am had
to re l ieve the ope rator of his miscast ro le
a s a middleman between the programme r and
the c omputE�r s yste m . Th erefore , a control
language wa s estab li shed whi ch a progranuner
could use t:o bypass the operator and
communicatE� direct ly to the control program
a precise definit:i on of the lrJork (jobs an d
j ob steps) he wanted performc=d . Thi s
language cons istE�d of several formal iQQ
contr ol statements that could be recorded
on punched cards a nd later r(=ad ,
inter preted , and acted upon by the control
progr am . One statement, usual l y c al l ed the
JOB s tatememt , was u sed to ident ify and
mark the beginning of a job . Another
state ment , usua lly c a lle d the EXECUTE
statement , was us ed to mark 1:he beginning
of a j ob st�ep (or " j ob segment " a s it was
somet imes called) and identify by name a
spec i f ic program that was to be executed to
perform the� job step . In most s ystem s each
job c ould cons ist� of one or more suc h steps
(Figure 1 4) .

Step 3 (EXECUTE OBJECT

Stop 2 _LECUTE LOAD -----,

Figure 1 4 . JOB a nd EXECUTE Control
Statements

Although the JOB and EXECt�E statements
(or their equiva le nt s) were by far th e mo st
important and ofte n-used c ontrol
statements , most c ontrol programs were
des igned to read , interpre t , and react to a
number of other statements . A few of these
were provi ded for use by the p1rogrammer.
Although the exact numbe r and. type d i f f er ed
depending on the s pecif i c control program ,
they were genera lly used i n an auxil i ary
capac ity for such thing s a s instructing the
contr ol program to re lay a me·ssage to the
operator .

However ., most of the control statements
were des igned for use by the operator in
communicating informati on to the control
program and di rec·t ing its overall

22

oper at ion . These usually i ncluded s everal
statem�nts that the operator could use to
alert the c ontrol pr ogram to any changes he
wis hed to ma ke in the status or as s ignment
of I /O devic es . Thus , the operator was
provided with a f ormal languag e , in the
form of c ontrol statements . W ith it , he
could exe rc ise ge neral cont rol ov er the
system , without nece s s ari ly i ntervening in
it s automatic operati on.

Batched Job Proc e s s�

In order to reduce c omputi ng s ystem idl e
time , the control pr ogram automat ically
controlled the transiti on from one job or
job step to anothe r . To do this , it had to
have a bac klog of j obs avai lable and
awa it ing processi ng . Th erefore, as j ob
definitions , in the f orm of punched cards ,
wer e rece ived f rom the programmers , they
wer e placed one behi nd another to form a
batch , or " s tac k , n of j ob defi nit i ons
(F igure 1 5) . The j ob oatch was then pl aced

on a c omputing s ystem i nput device
spec if ic a l ly assig ned f or that purpose.
Because the job def i niti ons were arrang ed
in a c ontinuous seri e s on a common j ob
input device , as s oon as one j ob or jon
step was c ompleted , the control program
could read a nd i niti ate th e next j ob. Thus
a continuous stream of j obs could be read
and pr oce ssed with a mi nimum of operator
intervention . Thi s techni que is ref erred
to as either batched j ob or �>tacked j ob
pr oce s sing .

JOB 1

F igure 1 5 . A Batch of Job DE�f initions

A Common Job Input Devi ce

At some insta llati ons. , the unit ass igned to
read the job i nput stream was a c ard
r eader . H owever, at many i nst allati ons ,
espec ially la rge one s , each new batch of
job definiti ons wa s trans cri bed onto
ma gnetic tape bef ore bei ng read and
pr ocessed by the c ontrol program (a, Figur e
1 6) . The transcri pti on was usua l ly done on

a small a uxiliary co mp uting system, s uch as
an IBM 1 40 1 Data Processing System . The
reason for transcribing job batches in this
way was to a void contin ually tieing up the
larger and more e xpensi ve main comp uting
system while relatively slow card reading
operations were being perfor med .

Online

Central
Data Processor

Control Program
Translator Subsystems
Other Subsystems

(CPU and Main Storage)

Additional 1/0 Units

Fig ure 16. Jo b Processing at a Typical
Operating sy stem Install ation

common Utilit y I /O Devices

With some syste ms, advantages were gained
by assigning other I /O units to perform
specific roles for a series of job steps.
For e xample, se veral units were often
assigned as utility units that co uld be
used for the temporary storage of

intermediate data d uring the co urse of a
job step (b, Figure 16). Since the data
they contained at the end of a job ste p was
no longer re quired, the same units co uld be
used by the ne xt job step witho ut the

operator ha ving to change ta pe reels.

A Co mmon Job O ut put De vi ce

Just as a n inp ut de vice was assigned and
used as a com mon job inp ut file, most
syste ms used one or two o utp ut de vices as
common job o utp ut files for recording
o utp ut data.

In some systems, a printer or card pun ch
was used for this p urpose. However, in
most large-system installations each batch

of o utp ut data fr om a series of jobs was
recorded on magnetic tape in order to avoid
the relatively slow printing and card
p unching o perations . The o utp ut data was
then transcribed into printed or p unched
card form by a s mall a uxiliary comp uting
system (c, Fig ure 16). This was us ually
the same a uxiliary system that w as used to
transcribe the inp ut job batches from card
to tape. In some installations, a single
magnetic tape unit was used to record job
o utp ut data that was to be printed as well
as data to be p unched on cards. The
a uxiliary co mp uting system separated and
directed the two types of data to the
proper de vice d uri ng the o utp ut operation.
Us ually the p unched card o utp ut consisted

of obj ect programs prod uced by lang uage
translators . The printed o utp ut us ual ly
consisted of messages from the operating
system, so ur � c program listings, storage
d umps, and other ty pes of data from
specific applications.

Altho ugh the offline handling of jo b
inp ut and o utp ut increased the rate at
which a batch of jobs co uld be processed,
it had its drawbacks. Beca use a batch of
jobs had to be sched uled three times in
s uccession in the overall process of
handling jobs, the pr ogrammers at many
installations fo und they had to w ait a
considerable peri od of ti me after
s ubmitting a job before they recei ved any
res ult s. Nevertheless , sharing a com mon
o utp ut unit for a series of jo bs made it
unnecessary for the o perator to remo ve an

o utp ut tape reel or a deck of cards at the
concl usion of each job or job step.

Additional I /O De vices

By assigning I /O units to perform specfic
f unctions and by sharing their use for a
ser ies of jobs, many relati vely small jobs
co uld be performed witho ut any operator
intervention at all. However, operator
set up time was not eliminated entirely.
Many large job steps re qui red additional

I /O units. These had to be set up by the
operator before processing of a job step
co uld begin. However, most control
progra ms kept up -to-date records of the
e xact stat us of all I /O units. Whenever an

The Evol ution of Operating system s 2 3

a ddit ional tape unit or other de vice wa s
re quire d to per form a jo b step, it wa s
a ss igne d fz:om a pool o f a va ila ble un it s and
the operator wa s gi ven in str uct ion s a s ·to
wh ich tape reel t�o mo unt on wh ich un it . He
no lo nger ha d to pon der what to do ne xt .

A utomat ic ste p-to- ste p Tran sit ion

Whene ver t he co nt.rol pr ogram e ncountered an
EXEC UTE stateme nt. while pro c E�ssin g a ser ie s

o f jo b s, it. loa de d into main s tora ge the
pro gram name d in the statement . The
control pro gram then rel in qu i s he d con t .:ol

o f the C PU to the pr ogram . J�f ter the
pro gram wa s e xe cuted to comple te the jo b
step , control o f the C P U wa s returne d to

the control pro gram . A pro gram that wa s
th us loaded and e xec ute d to pe rform a job
step, could be any o ne o f se ve .ral
fre quently --used proce ssi ng p 1:o gram s that

were incl ud.e d a s an inte gral part o f the
operat in g sy stem . The se pro 9r .am s were
store d a nd mai nta ine d in au xiliar y storage ;
(stora ge other than main sto J�a ge) u sually

on one or more ma gneti c tape devi ce s . A s a
gro up , the y were usually re fer :red to a s the
system l ibrar y (F'igure 1 6) •

The system Li b ra ry

The pro gram s con taine d in th E! sy stem
li brary incl ude d the co ntrol pro gr am
it sel f, a s well a s a num ber o f pro grammin g
a id s an d generalize d pro gram s -- m uch li ke
tho se de veloped during the f ir st sta ge in
the e volutio n o f o peratin g S}'stem s . Many,
in fact, were ver sion s o f th ese s ame
pro grams, mo di f ied to e xecut e un der the
dire ct ion o f a co ntrol pro gram .. A ltho ugh
the num ber and var iety o f pr ogram s
co ntaine d in the sy stem l i brar y varie d from
one sy stem to another, they usuall y
in clu de d at lea st one lan gua ge tran slator
pro gram, a n inp ut /output con t.rol pro gram

(or sy stem), an d a pr ogram tha t could be
u se d i n loa din g other pr ogram s into m a in
stora ge . Ma ny sy stem s contain «:d a much
w ider sele ction o f general purpo se pro gram s
that coul d be u se d by a pro gr -ammer in
per form in g one jo b step or a serie s o f :jo b
step s . The se in clu de d general ize d
sort /mer ge pro gram s, utili ty p ro gr am s,

report pro g ram generator s, a nd se veral
d if ferent type s o f lan gua ge tran slator s .
Many o f the se were de signed, furn i she d, and

mainta ine d by the ma nufa cturer o f the
comput in g sy stem . H owe ver, so me u ser s
o ften de s i gne d fre quently-u se d pro gram s o f
the ir own and in corporate d them into the
sy stem l ibr .ary a s a permanen t part o f their

operat in g s ystem .

O perat in g system sub system �

In or der to locate a pro gram speci fied on
a n EX EC U TE car d, ·the control p ro gr am

2 4

ma inta ine d a re cord o f the name lo ca tio n o f
ea ch pro gram stored in the s ystem l ibrary .
some o f the pr ogram s in the sy stem l ibrary,
such a s the lan gua ge tran slator s, were in

e f fe ct sub syste m s of the ope ratin g sy st em
be cau se they conta ined a co ntrol pro gram
(or monitor) o f the ir own wh ich co uld read,
interpret an d rea ct to one o r more control

la ngua ge statement s . Th e pro grammer u se d
the se statement s to de f ine more prec isely
the jo b be wante d per formed by the
su b sy stem . s uch statement s were placed
beh in d the EXEC UTE statement containin g the
name o f the s ub sy stem (Fi gur e 17) . A fter
the main control pr ogram loaded a sub sy stem
into ma in stora ge an d rel in qu ished C PU
control, the s ub sy stem could read its
control statement s from the common job
inp ut de vice, interpret them , and then
per form the jo b step in ac cor dance with
spe ci f icat ion s .

The speci f ica t ion s d i f fere d depend in g on
the su b sy stem . For a generalize d sort /
mer ge pro gram, for e xample, they inclu ded
such thin gs a s a de scripti on o f the record s

to be sor te d . For a lan gua ge tran slator
su b sy stem, they i n clude d such th in gs a s

whether or not the pr ogramme r wanted a
pr inted l istin g o f hi s sourc e program or
whether or not he wanted h is pro gr am loaded
into main stora ge an d e xecut E�d a fter bein g
tran slated . For an Input /O utput Control
Sy stem , they in clu ded a de scription o f the
inp ut /output data an d the way it shoul d be

pro ce s sed .

DATA
(Source Program)

FORTRAN Translator
Control Cards

Fi gure 1 7 . A Si ngle-Step Job Conta in in g
Su bsy stem Contro l Car ds and
Data

In some opera ti ng sy stems, a pro grammer
could place input data that wa s to be
pro ce s sed b y a sub sy stem a t the end o f a
jo b step de finition (follow in g the
sub sy stem control statement s, a s shown in
Fi gure 1 7) . Thi s data coul d then be read
an d proce ssed by the su b sy stem a s it wa s
re quired . The data coul d be any o f se veral

types depending on whi ch s ubsystem wa s to
pr oc e s s it . For example , i t c ould be in
the f orm of s ourc e lang uag e statemen t s to
be tr ans lated by a lang uage translatqr
subsystem , or mac h i ne language in structions
to be l oaded into ma i n s tora ge by a l oader
s ubsys tem and the n e xe c uted , or data
records to be s orted by a sort/merge
progr am .

Two important advantages were gained by
plac i ng data to be proce ssed by a sub sy stem
in the j ob input s tream. Fi rst , it
e l iminated the need f or an a dditional I /O
devic e to r ead the d ata . Second , it
r educ ed , or e liminated j ob s tep setup tim e
by making it unnec e s sary f or the ope rator
to mount a s eparate tape reel or l oad a
s epar ate card dec k c onta i ning the d a t a .

T h e Con t rol P rogram

The c o n t rol p rogram of mo s t e a r l y oper at i ng
s y s tems con s i s ted of t wo p a r t s : t he
n ucleus o r b a s i c mon i tor, and the
t r an s 1 t ional mon i to r .

T HE NUCLEUS : The nuc leus wa s so c al l ed
because it a lways remai ned i n main s tor age
while a s eries of j obs were proc e s se d . I t
provided common faci liti es f or
inter communication a nd c ontrol among the
operator , the c ontr ol prog ram, and e a ch o f
the s ubsys tems operati ng under the control
progr am . It cont a i ne d i nf ormation s u ch a s
the e xact s tatus o f each I /O device and the
time of da y . It a ls o c ontai ned a number o f
frequently-us ed s e rvice o r uti l ity routin es
that were required by the c ontrol program ,
but c ould a ls o be s h ared and us ed by
subsystems . Typic a l ly , the s e c on s i s ted o f
sma l l r outi nes for l oad i ng programs from
the s ystem library i nto mai n storage ,
c onverting data fr om one f orm to another ,
wr iting mes sages t o the operator , or
init iating a ma in storag e dump.

More importa nt ly h owever , the nucl eus
c onta ined s upervis ory routi nes that wer e
needed to c oordinate and c ontrol I /O
operations . In s ome sy s tems a compl e te
input/output c ontr o l sy s tem was incl uded in
the nuc l eus . It re mai ne d there for
immed iate use by a ny program that ne e ded
it .

In other s ystems , to conserve main
stor age s pace , only parts of the I /O
contr ol s ys tem were inc luded in the
nuc l e us . The s e were key pa rts that were
needed to ensure c e ntraliz ed control of all
I/O transfers a nd t o prevent i nterfe rence
among the c ontrol pr og ram and its
subsystems . I n s ome sy s tems , s tandard
error recovery routi ne s we re inc l uded as

we l l . H oweve r , other parts of t he
input/output c ontr ol sys tem were l oaded
into ma in storage only wh en they were
needed in pe rf ormi ng a s peci f i c j ob s t ep .

THE TRANS ITIONAL MONITOR : The ot her m a j or
part of the c ontr ol prog ram was s omet imes
ca l l ed the tra ns iti onal program or monitor .
Unl ike the nuc leus , i t occupied main
storage only duri ng the i nterval between
one j ob or j ob ste p and another . Its main
function wa s to re ad , i nterpret , and r ea ct
to c ontrol s tateme nts (JOB and EXECUTE
statements) f rom the prog rammer and the
operator . In d oi ng s o , it automat i cally
controlled the transiti on from one j ob s t ep
to a noth e r (by load i ng and tra ns f erring CP U
control to the s ubsys tem or program named
on an EXECUTE c ard) . Once t he t r ans ition
to a new ste p was c ompleted, t he main
s t o r ag e s p ac e o c c up i ed by the t ran s i t i onal
part of the c on t rol program was ava i lab le
fo r use in p erfo rming t he j ob s tep . After
the j ob s tep was completed, the
t r an s i t i o n a l mon i to r was l o aded i n to main
s to rage ag a i n to perfo rm i t s fun c t ion of
i n i t �a t i n g the n ex t j ob s tep .

An Exampl e : The IBM 7 0 9 0/ 7 0 9 4 (IBSY S)
system

T he opera ting s ystem designed for the IBM
7 0 9 0 /7 0 9 4 Data Pr oce s s i ng s ys t em w as one o f
the most wide ly a nd h e avi ly us ed of the
ear l y operating s yste ms (Fi gure 1 8) . It
wa s typica l of other operat i ng systems of
the t ime in that it e mpl oy ed c omponents
that were la rge ly deve loped du ring the
f ir st sta ge in the ev oluti on of operat ing
s ystems . For exa mple , it us ed t he FORTRAN
II Pr oce s s or (a languag e t rans lat or > which
wa s deve l oped by IBM customers before the
opera ting system c ame i nto existence .

T he I BM 7 0 9 0/7 0 9 4 Operati ng System was
unusua l , howeve r , i n that is c ont ained what
amounted to a n ope rati ng s ys t em w ithin an
operat ing syste m . Thi s was the IBJOB
Pr oce s sor s ubsyste m , shown in Figure 1 8 ,
that c onta ined its own c ont rol pr ogram, or
" monitor" a s it was then c a l led. The IBJOB
Pr oce s sor subsyste m c oul d be u s ed to
comp i l e , a ss emb le , l oa d , and execute
programs writte n in FORTRAN IV and COBOL
la ngua ge . It c ou ld als o be us ed to
a s semble , l oa d , a nd execut e programs
wr itten in an a s s e mbler langua ge , or to
load a nd execute previ ous ly as s embled
ob j ec t programs . It als o prov ided
fac i l ities f or c ombi ni ng program s egments
wr itten in d iffere nt l anguages w ith
pr eviousl y a s se mb led s egments t o f orm a
s ingle executab le obj ect program . Many o f
t h e innovations a nd t e ch ni qu es that wer e
f ir st u s e d in the IBM 7 0 9 0/7 0 9 4 Operating
S ystem were later use d in des i gning other
opera ting syste ms .

The Evoluti on of Operat ing systems 2 5

System
Monitor

Gene11alized
Sorting
System

(Control Program) FORTRAN�
Processor _j Input/Output

Control
System

$EXECUTE CT $EXECUTE SORT

I I
$EXECUTE 9PAC $EXECUTE DK90UT

[� G
I

$EXECUTE IBJOB

I BJOB Processor Subsystem

IBJOB

..
$EXECUTE FORTRAN
or $EXECL!,TE IBSFAP

$EXECUT� RESTART

Restart J Program

$EXECtTE IOCS

I
$EXECUTE?

Installation
Programs

Monitor

J �
O RTRAN IV COBOL
ompiler Compiler [�

Macro
Assembly
Program

�
Relocatable

IBJOB Subroutines
Loader � Including

IOCS

Figure 1 8. IBM 7 0 9 0/ 7 0 9 4 I BSYS Operating Sys tem

BENEFITS FOR LONG-RUNNING JOBS

The s ec ond sta ge extended the appl ic ation
of med ium and large scale data proce s sing
systems by makin9 it more profitabl e to use
them in des i gninq a nd executing s eri e s of
sma l l prog1�arns .

When large long-runni ng programs (Figur e
19) were executecl under the di rection of
the o perating s ystem, the benefits were
les s . s impl y because there were fewe r
trans it ions and t�heref ore f ewer oper ator
interventions to be e liminated. However ,
·the se largE! programs of ten required a gr eat
many man hours to de s ig n , test, and
maintain.. Therefore , to s pe ed up the
deve lopment. proc es s , the work of de s igning ,
testing , a n d ma inta i ni ng them was often
d ivided among s evera l prog rammers. The
language t:rans lat.ors and program l oader s in
some s ystems had s pe cial provi s ion s that
allowed di f ferent. parts of the same progr am
to be designed , t.ested , and ma intain e d
independent ly and later combined to f orm a

2 6

s ingl e program. I n s ome s ys 1tems , dif f er ent
part s of the same pr og ram could be writt en
in diffe re nt la nguage s . Accordingly , the
pr oce s s of trans lati ng , test ing and
ma inta ining large prog rams i n pieces oft en
r equ ired the initi ati on and perf ormance o f
a r ela tive ly large number o f s ma l l j obs an d
job steps , l i ke th ose sh own earlier in
F i gure 1 1 . Thus , the benefits t o be
der ived f rom the aut omati c t :ca ns iti on
between j obs a nd j ob steps were not
nec e ssa r i ly limited to the d es ign and
execution of s ma l l pr og rams.

I n any event , the running t ime of a
typ ica l medium or larg e s cale computing
system wa s improved by usi ng an operating
s ystem. Moreover , the productivity of many
pr ogrammer s was improved becau s e they were
pr ovided with a vari e ty of c entrali z e d
programming a ids a nd preceded rout ines that
they c ould employ si ng ly or in c ombination
without a great de al of di ff icu lty . As a
resul t , the amount of work that c ou l d be
p er f ormed at ma ny i nstal lati ons was
s i gnific a ntly i ncre a s e d .

Few Long Jobs

Operator Time

Time

Computing System Time

1 0% Idle Time
90% Running Time

Figure 1 9 . The Ru nni ng Time of a Computing
System Whe n Proc e s s ing a F ew
Long J obs

OPERAT ING SYSTEM APPLICATIONS

T he operating s ystems that were deve l oped
dur ing the s econd stage were primari l y
des igned for prob lem solve rs - - engineer s ,
sc ientists , and mathematici a ns . Most o f
the se e a r l y operat i ng sy stems were
seque nt i a l , o f f line applications (Figure
20) .• They contro l le d the performance o f
work in a s equent i a l order, one j ob or job
step at a t ime , a nd with ra re except ion s
had no d irect c ommunicati on with the sour ce
or destination of the data that was
proc e s s e d . They were usua l ly tape-oriented
systems , re l yi ng on mag neti c tape for
a uxil iary stora ge a nd f a st I /0 . Typ i call y ,
they handled two kinds o f j obs :

• Re latively sma ll j ob s , perf ormed onl y
onc e to s o lve a prob lem or to pro cess a
program be ing deve lope d , tested , or
ma inta ined .

• :Large , l ong - ru nni ng j obs , perf ormed
peri od ica l ly f or c ommerc i a l purpos es ,
such a s pa yr o l l accounting and re cord
keeping .

Although s ome of the more rec ent systems
us e d d irec t access s t orag e dev ices f or the
s ystem l ibra ry a nd f or temporary
intermedia te storage , f ew took a dv ant ag e o f
t h e abil i ty o f the se devic es t o store an d
acc e s s da ta quic kly. Mast er dat a (dat a
such a s inventory re c ords , pers onnel
records , a nd pa yroll i nf ormati on , which
r epr e s ented the curre nt bus i ness status o f
t h e or ga n i za t i on) was mai ntai ned in a
pr escr ibed seque nt i a l order. Trans act i on
data (suc h a s debits , credits , and changes
in per sonne l a nd payr oll i nformat ion , which
r epre s ented the activiti es of the
or gani za ti on s i nce the l as t update of the
ma ster f i l e) was hatched and pres orted in
the same pre sc ribed order be fore it was
pr oc e s sed . Theref ore , the s ec ond stage
oper a t ing sys tems were limit ed to
appl ications in which i t was not ne cess ary
to r e spond immedi ate ly to requ ests f or
pr oc e s s ing a nd c onti nuous ly update the
ma ster f i le .

I n the mea nti me , h oweve r , a number of
onl ine , d i rect acc e s s syst ems were being
devel oped independ e nt ly of operat ing
systems . In the se appli cati ons , imme diat e
r e s ponse to reque sts f or process ing was o f
extr eme importa nc e .

Batches of
Transaction
Records Input

Units

Batches of Output
Data Items

F igure 2 0 . seque nti a l , O f f l ine Appl i cation

Online Direct Acces s Systems

Dur ing the 1 9 5 0 ' s and early 19 6 0 ' s , a
number of on line d i re ct access systems were
developed indepe nde nt ly of t he s econd stage
systems that caroe t o be known as operat ing
s ystems . Whereas ope rati ng systems were
or igina l l y deve loped f or prob lem s olvers -

the sc ientif ic a nd e ng i neeri ng c ommunity o f
us er s - - onl ine s ystems were dev e l oped for

The Evoluti on of Operat ing Systems 27

spec i a l i zE�d commerc ial a cti vities th at
demanded immediate r e s pons e to transac tions
(Figure 2 l) .

Bank Teller Reservations Clerk

Data
Processor

Master]-
Data
Files

Figure 2 1 .. Online Direct Acc ess
App lic ati ons

Salesman

In an online , d irect access appl i c atio n ,
the s ystem communic ate s d.i rE�c tl y with the
sour c e and destinati on of the data i t
proc e s ses .. The data can be sent to or
rece ive d f rom loc a l I/O devices or d evices
at remote locations (by way of
telec ommuni cation line s) .. 'J�herefore ,
trans action data c an be processed as it i s
rece ive d . Als o , the ma ste r fil e s can be
interrogat ed to produce up-t:o- date outp ut
information (reports , stati stic s , invoi ce s ,
etc .) a s :requirE!d .

The records of the ma ster f i l e s m ay or
may not be arra nged in a prE�scribed
seque nce . If they are a rranged in a
pre scr ibed sequenc e , they ma y occ asiona l l y
be process ed s eque nt ia l ly (to pre pare a
summar y re�port , for exampl e) , but usually
they are interroga ted i n a random
(non- sequentia l) order as th e y are re ceived

at the insta l lat ion.. There f o re , direct
acces s storage devices a re a�l:most al ways
used to st.ore the ma ster f i les in an
onl ine , di rect acc e s s appli cation ..

2 8

AI RLI NE RESERVAT ION SYSTEMS

Onl ine d i rec t acc e s s sys tem applicat i ons
were typif ied by the early airline
r e s ervation s yste ms , i n which master f i l es ,
conta ining seat i nve ntory records f or
hundreds of a i rcraft f lights , were s tored
in d ir ec t acc e s s storag e . By ent ering
pert inent data i nt o th e sys t em , t i cket
a gents a t wide ly s e pa rat ed loc at i ons could
c heck the a va i labi lity of s pa c e on a
par tic ula r f light , se l l and ca nc e l
reservati ons , a nd hand l e s imi lar
tr ansactions , a ll withi n a f ew s e c onds .

H oweve r , there we re s ome di ff icult
pr obl ems in deve lopi ng a s ys t em f or this
kind of a ppl icati on. Th e system had to
r e s pond quic kly to e a ch trans a ct i on and
complete it withi n seconds . It w as not
pos s ible to acc umu late trans act i on dat a ,
sort it i nto ba tc hes , a n d t h e n process each
ba tch to interrog ate or updat e t he mas t er
f i l e . Furthe rmore , the syst em had to keep
the ma ster f i le c onti nuous ly u p- t o- dat e . A
t icket a gent a nd h i s customer wou ld not
tolera te long de lays i n await i ng
conf irma tion on the avai labi lity of space
on a particular f light . Moreover , if the
ma s ter f i le was not k e pt up··to- date the
agent might se l l s pace al ready s old by
another a gent at a di f f erent loc at i on .

S olving these problems was a f ormi dabl e
undertaking , primari ly becaus e of the
dynamic nature of an onli ne applicat i on .

The Pr ob lem of Copi ng With the Work Loaq

A tra nsac tion usua lly re qu i red s everal
re ferenc e s to the master f i l e . In
addition , d if fe re nt ty pes of t rans act i ons
(inqu irie s , sa les , c a nce l l at i ons , etc .)

requir ed d if ferent prog rams to process
them . Al l of these prog rams cou ld not b e
i n ma in storage a t t h e s ame t ime .
Ther efore ma ny of the programs had to be
stor ed in d irect acce s s storage and brought
into ma in storage e ach time they were
needed to process a trans act i on. All of
this took time . Much time was spent , not
in proc e s s ing tra ns acti ons , but in l ocating
and ga ining acces s t o data and programs in
d irect a c c ess s·torage . Meanwhile , doz ens
of other reque s ts to proces s t rans act i ons
might have been re ceive d .

To a d d to the prob lem , t ransact ions
occurred unpredict ably . There were peak
per iods of activi t y , such as on weekends or
dur ing morning a nd eveni ng rus h hours , when
hundreds or thous a nd s of t rans act ions woul d
have to be proces sed withi n mi nutes . Even
a sudden c hange i n the weath er cou l d e f f ect

a sha rp increase or decrea se in the
frequency of the transacti on s . If the
tr ans actions were pr oce s sed one at a time
in the order they we re rec ei ved , it woul d
be impos s ib le to kee p up wi th al l of them ,
espec ially duri ng pe ri ods of peak ac tivi ty .
To do so wou ld require c ommu ni cation l in e s
a n d c omputi ng systems that were much f a ster
then thos e ava i lab le at the time .
Ther e f ore , s ome me ans had to be foun d to
hand l e transact ions more qui ckl y . Thi s
could only b e done by using the hardwar e
a nd information re s ources of the
insta l lat i on more e f f e ctive l y .
Accor d ingly , a spec i a l purpose c ontrol
progr am was des igned f or the appl ication .

The Soluti on : The C oncurrent P roc e s s ing o f
Trans actions

The s pecial purpose c ontrol program treated
eac h trans a ct io n as a separa te and d i stin ct
work unit a nd whe n neces sary handled mor e
than one transact i on at a time . To do
thi s , the control pr og ram had to keep track
o f hardware a nd i nf ormation res ource s and
a lloc ate them as they we re required to
proc e s s each tra ns action . I f the
proc e s s ing of one tr ansa cti on wa s
tempor ari ly he ld up to g ai n acc e s s to a
progr am or data in d irec t access storag e ,
then resources were a l l ocated to start
proc e s s ing a new tra nsacti on or to contin ue
proc e s s i ng a trans acti on tha t had be en
s tar ted ear lier . Thu s , seve ral
transactions c ou ld be proc e s sed
conc urrent ly to kee p pac e wi th new
tr ans act ions a nd re s pond to them within a
rea sonable period of time .

Each independent transacti on required
only a f raction of the avai labl e resources
of the s ystem. There f or e , by proces sing
more than one tra nsacti on at a t ime , by
keepi ng account of the i r status , and by
a lloc at i ng res ourc e s dynami cally (as they
were required) the c ontrol program coul d
keep up with a heavy , f luctuating work
load .

This increa s ed the rate at which the
c omputi ng s ystem c ou ld proc e s s tran s a ction s
without ext end i ng re sponse time beyond a
rea sonable limit . Thi s i s shown in F igur e
2 2 , which compares the seri al proce s s ing o f
trans actions with the c oncurrent proce ssing
of the same tra ns ac t i ons . Note that it
take s more time (a f raction of a second or
so) to proc es s tra nsacti on A c oncurrentl y
with B a nd c then t o proce s s A al one .
However , when A , B a nd C a re processed
conc urrent l y , t he time requi red to re spon d
to B and c is great ly reduc ed and the thr ee
transactions are c ompleted in l e s s t ime .
In ma ny onl ine d irec t acce s s appl ication s

it is not unus ua l f or 2 0 or more
tra nsacti ons to be pr ocess ed concurrently .

Transaction A
CPU Time

File Access Time
Transaction B
CPU Time

File Access Time
Transaction C
CPU Time

File Access Time

-

----------+- Time

Transaction A Processed Alone

CPU llllllllllllllllllllilllt'-(Control Flow �\ � I ' ' \) \ ' I
I I 1 l I :.......F':L ..,.\: : '::"' �.·· · . . ::.: .. ·: : I � �. (. . · ! , ,� � (' L-1 � ... , + ', c::::::::l � ', I \ I) I \

�� '-C]- '-[-=:y

----------� Tinoe
Transaction A Processed Concurrently

with Transactions B and C

F i gure 2 2 . Compa ri s on Between the
Proc e s si ng of Trans act i ons
S i ng ly a nd Concurrent ly

CONCURRENT WORK T ECHN I QUES AND OTHER
APPLI CATI ONS

The technique of perf ormi ng t rans act ions
concurrently made the di f f erences between
succ e s s a nd f a i lure i n online system
appl ications . It i nc reas ed the
pr oduc tivity of a commercial i nstallatron
by mak ing more e f f e ctive us e of its
hardware a nd i nf ormati on res ou rc es in
pr oc e s s ing tra nsacti ons . The process ing p f
a tra nsac tion rea l ly re :pres ent ed a data

·

pr ocessing ta s k , that i s , a defi nite unit
of work perf ormed by th e CPU . If
technique s c ou ld be developed f or
pr ocessing more th an one t rans act i on for
onl ine d irec t acc e s s a :p:pli cat i ons , why
could not simi lar techni ques be u s ed to
per f orm transact i on tasks , on other k inds
of ta sks , f or othe r appli cat i ons such as
opera ting syste ms ? If s o , the product ivit y
o f ma ny insta l lati ons cou l d be further
increa sed . This possibi lity led t o the
thir d sta ge in the evoluti on of operating
s ystems .

The Third Stage: A Union of

Techniques

T he th ird a nd c urre nt stag e in t he
evo lu-t ion of operati ng sys t ems began with
the reali zation that many of t he techniqu es
deve loped in the sec ond st age cou l d be
impr oved a nd i nc orporated i nt o a general
pur pose operati ng sys tem . These techni ques
included the methods of des i gning prog rams ,
ma na ging j obs , a nd manag i ng data that had
been deve l oped f or the early oper at ing
systems , a nd fac i liti es for the c oncurrent
per f orma nc e of data proc es s i ng t asks that
had been d eve loped f or online direct acces s
s ystems .

'l'he Evoluti on of Operat ing Systems 2 9

As a res ult of thi s uni on of techn ique s ,
the r ange o f applicati on and t:he ove r al l
productivit.y of operati ng systems wa s
subs tantially i nc re a se d . Ope1:ating s ystems
could now be des igne d to s e rve a var i e ty o f
advanced s :{stem applicati ons a s well a s
traditiona l acc ounti ng , record keeping an d
problem solving applications .

One of ic.he most important obj ectives i n
des igning suc h a:n ope rating system wa s th e
conc urrent perfo:rmance of data proce s sing

. 30

ta sks . But two other ob j e ctiv es were of
equa l importa nc e :

• To d e s ign a ge neral purpos e system that
would sa tisfy the needs of a v ari ety o f
users .

• To provide e ach u s er with a system
ta il ored to h i s needs and c apabl e of
growth in perf ormanc e , facility , and
appl icat ion with out di s rupt i on .

These ob j ect ives led t o th e development o f
t h e I BM Syste m/ 3 6 0 Operati ng System .

PART 2: THE IBM SYSTEM/360

OPERATING SYSTEM

This part desc ribe s the I BM System/ 3 6 0
Opera ting S yste m : its desi gn obj ect ives ,
or gani zati on a nd f u ncti o n , cont rol program
con f igura tions , ta s k manag ement , i nf ormat i on
management , program deve l opment and
manag ement , mu ltipr oc e s s i ng , and
tel eprocess ing .

Par t 2 : The I BM S yste m/3 6 0 Operat i ng System 3 1

One of the mos t c ha l le ng ing obj ective s in
des igning the System/3 6 0 Operating s y stem
was to produce a ge nera l purpose system
that could satis fy the data proc e s sing
needs of the ma jority of users at me d i um
and l arge s ca le Syst em/3 6 0 i nsta l l at i on s .
In the. pas t , discrete sy stems had been
des igned to meet the nee ds o f the " Typi cal
User . " But experience had shown that there
was no s uch thing as a typi cal use r . Data
proc e s s ing needs d i f fered greatl y from on e
insta l lation to a nothe r , and between
ind iv idual us ers withi n an i nstall at i on .

Any attempt to s ati sfy such d iver se
needs with a s ing le sy stem would have been
wa ste f ul of resource s . Many i nstall ation s
would end u p pa ying a pena lty, i n storage
space and other re s ourc e s , f or facil i ti e s
the y did not need , whi le other
insta llati ons wou ld suf f er f rom a l a ck o f
neede d fac i lit ies .

Therefore , instead of desi gning one or
more d iscrete s ystems , I BM decided to allow
each c ustomer to generate the k ind of
operat ing s ystem he required .

The f irst step in generating a sy stem
that satis fies the d ata proc essing ne eds of
an insta l lation i s to determine exactly
what thos e needs are . To do thi s a study
is us ua l l y c onducted to answer such
q ue stions as : What i s the total vol ume o f
data proces s i ng work tha t must b e done ?
What types o f work must be perfoimed ? What
is the relative priority of the d i f f erent
types of work? What ki nd of a s s i stan ce
doe s each member of the install ation need
to do his j ob ?

Af ter determining needs , the next step
is to s e l ect the c omputing system
(hardwa r e) c ombinati on a nd operating sy stem
(software) c ombinati on that wil l be st
sati s f y thos e need s . I n se lecting the
appropr iate hardware /sof tware c ombin ation
the main ob j ect ive i s to i mprove the
productivit y of the tota l i nsta l l ation .

Pr oductivity depe nds on the perfo rman c e
and f ac i lity (ea se o f us e a nd operat i on > o f
the total hardware / s of tware s ystem . Th ese
factors , combined with the skill of i ts
members , determine wheth er an instal l ation
ha s the capabi lity to do the work th at must
be d one .

A General Purpose System

Investing Resources

The performa nc e a nd f aci lity , and
ther efore , the productivity of a tot al
s ystem d e pend s on the h a rdware , s oftware,
and human re s ourc e s i nvested i n the syst em .
I n genera l , the greater the i nvestment in
r e s ources the gre ate r i s the perf ormance
and fac i l ity of the system (Figure 2 3) .
However , perf ormance i nvolves other
interrela ted fac t ors : throughput , res pons e
time (ca l l ed turnaround time in bat ch j ob
pr ocessing) , a nd avai l abi lit y . For a given
inve stment of res ources , one fact or can be
impr oved only at the expens e of others . At
s ome insta l la ti ons , res pons e t ime and
ava ilabil ity a re of prime importance ; at
other s , throughput i s of g reat er
importanc e .

There fore , the mai n ob j ect ive in
planning a nd se lecti ng a system shou l d be
to invest re s ourc e s in a way t hat properly
ba lanc es these f ac t ors and gives the k ind
o f per formance a nd f aci lity that the
insta l la tion re quire s .

Resource
Investments

Human
Resources

I .
Hardware Software
Resources Resources

Productivity Gain

-- -

t t t ------------ p
r
0
d
u
c
t
i
v
i
t
y

- --1------t--
Fifth
I nvestment

Fourth
Investment

Third
I nvestment

Second
Investment

Initial
I nvestment

-- ----

-- --

- -

---- --

-- ----

Throughput I l
Turnaround �il/i!::::<;E;;j
Availability liiii Facility j

F igure 2 3 . Investi ng Res ources t o Incr eas e
Productivi ty

A Ge ne ral Purpos e System 3 3

Modular Construction

In order to a llow each i ns ta llation to
select the resourc e s it re quire s , the
operating s ys tem was designed u s ing a
method cal l ed modu lar c onstruction . The
tota l s ystem cons i st s of a large number o f
parts , o r modu les , i n th e form of org ani z ed
collecti ons of ins tructi ons a nd d ata
(Figure 2 4) . These mod u le s can be

a s sembled and linked tog ether in man y
combinations to f orm uni que operating
syste ms and can be re placed i ndependently
o f one another . The re a lly distingu i shing
c har acteristic of a modu le i s the fact that
it can be rep laced i nde pende ntl y of o ther
modules . some of the module s are re q uired
in every operat ing syste m ; others are
either optiona l or a lte rnati ve . (An
in sta l lation must se lec t a modul e from a
group of alternative modu l e s but nee d not
select a modu le from a g roup of opti onal
modules .)

Replaceable Parts Produced by IBM

Alternative Required

6J ITI���CJ • -
or or or

fl D���]J:J • • • LJ o����--o • • •
or ��

Optional

D �
.___':I- S,..tem/360 -....--f+

�------.----------
Your Operating System

�

I -

--
:· -··

-��-
f

r=� __ J.
Figure 2 4 . Constructing Your Operating

Syst�em

3 4

The opera ti ng s ys tem i s not a s s embl ed
be for e de l ive ry .. Instead, IBl-'1 makes
ava ilable to its c ustomers a l l of the
req u ired , optiona l , and alt ernative modu l es
it produc e s . From them, each customer
selects a nd c onstructs the kind of
operating s yste m he re qui res . To meet the
needs of a great many i nsta l lati ons , IBM
ha s ma de ava i lable many more fac i l it i es
than a ny one insta llati on wou ld requ i re .
An insta l lat ion sh ou ld s e l ect only thos e
fa c i litie s it re a l ly nee ds ; the s e l e ction
of u nnec e s sa ry f ac i li ti es can resu lt in a
costly wa ste of s t orag e s pace, CPU time an d
other re s o urces .

D efining and Generating ·the System

Once a ha rdwa re/s oftware combi nat i on has
been s elected , the next step is to define
the c ombinat ion s o that it can be generat ed
automa tica lly . The customer does this wit h
an I BM-s uppl ied s ystem g enerat i on l angu age
with whic h he def i ne s th e opt i onal and
alter native c omponents to be i nc luded in
his system . 1 2 U s i ng thi s def: init i on and a
pr ogram l ibra ry of modules s uppli ed by IBM ,
another I BM S yste m/3 6 0 Operat ing System can
automatica l l y retrieve , as s emb le and l i nk
together a l l of the parts requ ired f or the
spec ified system. If the inst a l l ati on does
not a lread y have an operat ing system , IBM
suppl i es a pregenerate d s yst: em . Although
IBM tr ie s to a ntici pate th e needs of its
customers , inevit ably th ere are s ome parts
of an operat ing s ystem that a customer,
beca u s e of his s pe ci al needs , may wish to
des ign and s upp ly hims el f . Thes e may be in
the f orm of e ithe r re placements or
additions to the s ystem. such replacements
and a dditions c a n be i ntegrated i nto the
system when the s yste m is g enerat ed . Some
ca n even be inc orporated i nto the sys t em
after it is generate d . In s ome c as e s IBM
ha s antic i pa ted the need f or s pe c i al i z ed
add itions and e .xte nsi ons to the operating
s ystem by supplyi ng prog ramming a ids s uch
as system ut i lity prog rams , which the
system progra mmi ng s taf f can u s e f or this
purpos e . 1 5

Tailoring the System to Individual

and D aily Needs

s e lec ting and gene rati ng an operat ing
system for a n i nstallati on is j u s t the
fir s t pha se of a c onti nual process of
ta ilor ing the s ystem to changi ng nee ds .
s uch ta il oring is made pos s i b l e becaus e o f
the f l exibil ity i nhere nt i n the des ign of
the syste m . Howeve r , this f lexibility is
not provided to a l l ow every u s er compl et e
fr eedom to u s e the sys tem as he c hoos es .
The insta l lation s taff mus t narrow the

c ho ic es that can be made by individual
users so that t he sy stem does not seem
overwhe lming to those wh o use it .
Flexib i l it y is provided to a l l ow the
s yste ms programming and operation s staff to
react to changing needs and to e xerc i se
contr ol over t he u se and ope ration o f the
system . By s o doing the y can hel p to
ensur e that the hardware and s oftware
re sources of t he sy s tem are used
e f f ic ient l y , promote the sha ri ng of d ata
and program res ourc e s , avoi d dupl ica tion o f
effort and h e lp t o s impl i f y the u s e o f th e
operating s ystem. The system programming
and o perations staff can do this by :

• S el ecting defau lt opti ons when the
s ystem is generate d .

• S e lecting opt i ons at the beginning o f a
work period C at i ni tia li zation) .

• Sharing data .

• Storing standard procedures and
c ataloging them f or fast retrieval .

• C ontrolling the sy stem during
operat i on .

S electing D efault Options

Each process ing program provides a number
of opt iona l s ervic es or features that a
progr ammer can choose prior to us ing the
progr am . However , whe n th e operating
syste m is generated , the i nsta l l ation sta ff
c an s pecify which opti ons a re to be u se d by
default if the programme r does not m ake a
po sitive choi c e . F or example, at the
opt ion of the programmer a language
tr ans lator ma y or may not provide a sour c e
progr am l isting . A t sy stem generati on , the
insta l lation staff c an d eci d e whethe r or
not t he listing wi l l be supp l i ed when no
c ho ic e is made by the prog ra mme r . By
spec i fying defa u lt opti ons that wil l be st
serve the needs of the i nstallation , the
s ystems programming and operati on s staf f
c an c ontrol and standardiz e the use o f
proc e ss ing programs and limi t t h e number o f
c hoices that have to be mad e .

Selecting Options When the Control

Program is Initialized

When the operator initi a li z e s the con trol
program at the beginni ng of a work period ,
he c a n e lect t hat c e rtai n routine s ,
inc luding parts of the c ontrol progr am
itse l f , rema in in mai n stora ge througho ut
the work period . By making suc h c ho i ce s ,
ba sed o n the type of work that will be
per formed during the work peri od., he can
incr e a s e the performance of the sys tem .

Sharing Data Sets

A system progra mmer can defi ne and creat e
data sets that c a n be us ed , without further
def inition , by several programmers . This
not only save s storag e s pace but s aves time
in updating dupli c ate data , and avoids
dupl ication of eff ort on the part of the
pr ogrammers .

Cataloging Procedures

When simi lar jobs are to be perf ormed by
s evera l prog rammers , th e s ystem programmer
can cata log a nd s t ore i n di rect access
storage a sta nd ard j ob definit i on that can
la ter be retrieved and us ed by each
pr ogramme r without c ompl et ely redefining
the j ob . This not only redu ces dupl i cat i on
of effort but a ls o h e l ps to st and ardi z e the
us e of the s ystem.

Controlling System Operation

Once the c ontrol prog ram is init i al i z ed an d
the system is i n operati on , the operator
ca n dynamica l ly a lte r and ad just its .
operation , based on th e f l ow a nd type of
work a nd the avai labi lity of res ources .
For example , with certai n confi gurat i ons ot
the control program he can control the
number a nd type of j obs that are perf ormed
concurre ntl y , c a nc e l j obs , and change the
pr ior ity of jobs . In sh ort , t he operations
staf f ha s a great de a l of hi gh- level
contr ol over the operating charact eristics
of the system . This c ont rol c an be us ed to
achieve a high degre e of product ivity .
However , to ta ke f u l l advantage of it
r equir es a n operati ons planni ng activity
that a na ly zes a nd monitors work
requ irements a nd :

• Determine s which operations-relat e d
options a re t o b e sel ect ed when the
system is ge ne rated .

• Plans which opti ons a r e to b e sel ect ed
each t ime the c ontrol program is
initia l ized .

• Plans the order i n whi ch t he work is to
be entered i nt o th e system .

• Plans the ove r a l l operat ion of the
system .

• Establ is hes stand ard procedures to be
f oll owed by the operator when
pa rtic ula r c onti ng enci es aris e .

• Monitors a nd revi ews the oper at i on o f
t h e system t o e nsure that the res ources
of the s yste m are bei ng us ed most
effec t ive ly .

A Ge neral Purpos e System 3 5

Controllin1g the Use of the 8ystern

If a s ystem is to achieve the produc tion it
is c apabl e of , re�as onable c ontrol mu st al so
be exerc is e�d over its u s e . ��his i s
important t.o the succe s s o f a ny
high- product i on instal lati on .. It is do ubly
impor tant a.t inst�a ll ati ons where
information a nd hardware res ourc e s c an be
c onc urrent l y s hared by more 1:han one user ,
and where t.he operati ons sta j: f has a gr eat
deal of f l exibi lity in adj u s 1:ing the
operation of the s ystem to the workl oad .
A t such insta l lat i ons, one u ser , i n the
course of purs u i ng his own i ntere sts , can
adver s e l y a f fect the intere si:s of other
users . For example , one u s e r may assign
pr ior ity to a job that d oe s not requ ire i t ,
and unduly de lay the c ompletion of j o bs
that do . Another u ser may request more
storage s patc e t ha n his j ob require s , and
perha ps pre�vent othe r j obs f rom being
performed c oncurre nt ly with his j ob. To
prevent individua l u sers f rom unnece s saril y
d imin ishinq overa l l produc ti vity , an
insta llation ca n :

3 6

• Pr ic e the use of res ou rc es in a way
that promotes maximum sharing of
reso urce s .

• Esta b l ish r u le s and regu lati ons on the
use of the s ystem,, f or example , rul es
for a s s igni ng pri ority t o j obs or j obs
to s pec if ic c la s s es .

• Estab l ish standard ways of u s ing the
system , a ppropri ate to the types of
appl icat ions at th e i nsta l lat ion .

• Check job c ontr ol statements t o ensu r e
tha t ins ta l lati on rules a n d c onvent i ons
are followed.

E f f ec t ive c ontr ol over the u s e and
opera tion of the s ystem/ 3 6 0 Operating
S ystem is pa rticu lar ly important becau s e it
pr ovides a n opportu ni ty to great ly improve
per f ormanc e through e f f i ci ent s haring of
r e source s .

From its very begi nning , the elec troni c
data process ing industry h a s been marked by
extraor dinary growth . One a spect of this
growth has been a n ever increas ing number
of poss ible data proce s s i ng appl ic ation s .
The number and s c ope of possible
appl ications have grown so rapidl y that
indiviflual data pr ocessing i nstall ation s
have been unab le t o keep pace i n
implementing them . Growth at a data
proce s s ing insta llati on has often been an
expens ive and painf u l experi ence .
There fore , the sec ond ma jor obj ective in
des igning the Systern/ 3 6 0 Operating Sy stem
wa s to provide easy i nstallati on with the
abil ity to grow with out di s ruption .

Growth in the Past

To date , growth at many data proce ss ing
insta l lations has bee n di sruptive . I f a
s ignif icant advanc e in technology or an
increase in the number and scope of data
process ing jobs f orced a user to expand the
production capac ity of his i nstall ation , he
often had but one choice . That was to
replace his o ld system, or a large p art o f
it , with a new one . Usua l ly , thi s requir ed
that he re-program a nd modi f y many of his
appl ications . Sometime s i t even required
that he reformat a ll or most of his d ata .
In addition , i t required s ome retraining o f
the programming a nd operati ons staff .
Considering the gre at i nvestment in
program , data , and human res ourc e s at a
typ ical insta l lat i on , this kind of
disruptive growth proved to be f ar too
expens ive . In fact , it sometimes took
years f or an insta llati on to ful l y re cover .
To reduce the number of such painful
exper iences , many insta l lati ons e ither
delayed expans i on or expanded to a c apaci ty
that was far beyond thei r i mmediate needs .
As a result the ir gr owth pattern was
somewhat l i ke that shown in Figure 2 5 :
either far too much capaci ty or not enough.

Evolutionary Growth at an

Installation
To avoid di sruptive growth patterns , the
operating s ystem was de signed using modular
construction (described in the previous
section) . Modular c onstruction allows a
customer to generate a system from a
combination of requi red, optional , an d
a lternative modu le s and to replace or add
modul es when neces sary . It i s basically
the s ame method that is used to construct a
systern/ 3 6 0 Comput i ng �stem or System/3 7 0
Computing system from a wi de selection of

Growth Without Disruption

centra l proces s i ng uni ts , storage devices ,
and I /O units . By selecti ng an appropriat e
combination of operati ng system and
computing syste m opti ons , a us er can arrive
at a software/hardware sys tem whose
per forma nce matche s th e workload (number
and sc ope of applic ati ons) at his
particula r insta llati on. As the workload
increa se s , perf ormance and fac ility
(productive capac ity) can als o be increas ed

by adding or replaci ng comput ing system
resource s , s e lecti ng oth er operating sys tem
options , a nd usi ng the operat ing system in
different wa ys . Thi s can be done in smal l
incr ementa l steps i n order to kee p pa ce
with a stead y i ncrease in workload (Figure
2 6) . Thus , peri od s of extreme underl oadin g
or overloading of a system can be avoi ded .

r
Figure 2 5 . Dis ruptive Growth

I

Over Capacity Q
Under Capacity •

Time

Reserve Capacity £]

Time

F igure 2 6 . �voluti onary 'Growth by
Inc re me ntal Steps

Evolutionary Growth in Improving

the System
Modula r c onstructi on not only makes it
pos s ible f or an operating system to grow in
sma ll evolut ionary ste ps , it a ls o makes it
possible f or IBM to c ontinue to improve the
per formance a nd exte nd th e growth of the

Growth Without Disruption 3 7

system and pas s on the benef it:s to
ind ividual insta l lati ons. IBM can do thi s
by r eplacing· one module of the s ystem with
a new module that pe rf orms the s ame
func tion more effic i e nt ly., or by add i ng n ew
optional modules t hat an i nstall ation can
select in order to advance to new
appl ications or to i ncrease overall
product ivit}' • Another way i s to provide
new modules that perf orm the same basic
func tion but� have d i f f e rent performan ce
c haracte.rist�ics. An example of thi s woul d
be two a ltez:nat iVE! modul es (Figure 2 7) that
perform the same bas ic func tion but dif fer
in that one (A) is sma l l but s l ow and the
other (B) is fast but large. Anothe r
exampl e would be t:wo program tran sl ator s ,
one o f which trans late s programs qui ckly
while the ot:her pr oduc e s highly e f f i c i en·t
ob j ec t prog1:ams . The f o rmer c ould be used
for c ompil i ng s hort-running one- shot
programs , whi le the latter c ould be u sed
for l ong -running or f re quently run
progr ams . One or the othe r or both m ight
be us e d at a particu lar installation. In
suc h ways , 1::he modu lar c onstruction o f the
operating s ystem E� nable s IBM to make
evo luti onary improve me nts in the des ign o f
the s ystem. This ha s a number of important
advantages .

Figure 2 7 . Opt imi z i ng Spec i f ic
Characte ri stic s : S i ze
vs. Spe e d

GROWTH I N P ERFORMANCE

Modular constructi on makes i t. pos s ibl e to
continually upgrade the overall performan c e
and faci lity of t h e sy stem a s a whol e. In
fact , s ince the ope r ating sy stem was first
introduc ed , it has g one through a

38

succession o f ref i neme nts a n d improvements
that have s ignif i c a ntly improved its
per f ormanc e a nd made it eas i er to us e .
This has had the ge ne ral eff ect of raising
the initia l productive c apacity of the
s ystem (Figure 2 8) .

1
Upgraded
Productive
Capacity

Original
Productive
Capacity

Additional Capacity liJ

_______ ..._ Time

Figure 2 8 . Rais i ng the I nit i a l Productiv e
Capaci ty o f th e System Through
Des ig n Improvements

GROWTH IN APPLICAT ION

Modular c onstruct i on h as a ls o made it
pos s ib le f or IBM to extend t he productive
capa c ity of the s ystem (as s hown in Figur e
2 9) , thereby , i nc reasi ng t h e number and
scope of pos sib le new applica·t ions . I n
fa ct , the syste m h as already b e e n extended
to e nc ompa ss new s ystem applic at i ons that
us e such tec hnique s as multiprogramming an d
multiproc e ss ing.

r - -+
_r.r- _,.. .-r- ,..., � -- --

Future , _ __;--·-_. ..- _
_ _

Productive --- _.J �� -

Capacity -�_r--__
_

_ -

Yesterday

..- - - - -- � Possible

Today

Futura Applications
(Number and Scope)

Tomorrow

______ _., __ Time

Figure 2 9 . Exte nd i ng th e Product ion
Capaci ty and Applicat ion of the
s yste m

TECHNOLOGI CAL GROWTH

Because of the ir modu lar c onst ruction , both
the operating s ys tem and the c omputing
system ca n bene f it f r om future dev e l opments
and improveme nts i n d ata proc ess i ng

technology . By taki ng advantage of n ew
data proces s ing tech niques and equipment,
IBM,, through evoluti onary change , can
improve the performance and appl ic at i on o f
the operating s yste m. Over a period of
t ime it can even c hange the bas ic de sign
characteristics of the system, often in
ways not even c ontemplated by the original
des igners .

Other Growth Factors

Growth without disrupti on is not achi eved
through modula r c onstructi on al one .,
however.. There are a number of other
factors in the des ig n of the operating
system that ma ke it pos sible for an
insta l lation to avoid the growth problems
that have plagued the data processing
indus try i n the past .

COMPATIBILITY

To ens ure a s mooth transiti on from one
conf iguration to another., the operating
system was des igned with c ompatibil i ty as a
primary goa l . Operating system proce ssing
programs (s uch as language trans l ator s an d
utility programs etc .) that are provided
by IBM can be used with any operating
system configuration. Also, j ob s and
programs des igned to run under control of
one c onf iguration c a n run under c ontrol o f
a larger configurati on.

For example , system/ 3 6 0 is program
compatible with System/ 3 7 0 except for
Model s 2 0 , 4 4 , and 6 7. Programs used for
S ystem/ 3 60 can function on system/3 7 0 ,
except thos e programs which :

• Use System/ 3 6 0 model dependent
features .

• Use PSW bit 12 -- the ASCII bit .
• Use machine-depe ndent data .
• Use low-addres s mai n storage for

s pecial purpos e s .
• Depend on device s or facilitie s not

available in System/ 3 7 0 .
• Deliberate ly c ause program exceptions .
• Are time depe nde nt .

DEV ICE INDEPENDENCE

Using the operating system, programs can be
wr itten in suc h a way that they are not
directly tied to a parti cula r I/O un i t .
T h i s i s an important f ac tor i n achieving
growth without dis ru pti on. By keeping the
programs independe nt of the device s , it i s
pos s ible t o add new I/O equi pment without
a ffecting existing programs that might use

them . Al s o , IBM c an extend or modify the
operating system t o h andle new types of
devic es a nd make them avai lable f or
immediate use with exi sti ng programs .

(

MULTI PLE TAS K MANAGEMENT

Another factor that promotes growth without I disruption is the abi lity of the c ontrol
program to c ontrol the performance of more
tha n one data proce s s i ng task at a time .

A ta sk is simp ly work to be
accompl ished . In System/ 3 6 0 , the work to
be accompl ished is the process ing of data
by the CPU . To perf orm a data proces s ing
ta sk , the CPU carries out (executes) a
s er ies of instructi ons that is variously
ca l led a program, subprogram, routine or
subroutine . In sh ort , a data process ing
ta sk is the work perf ormed by the CPU whil e
executing a progra m or part of a program .
It is an independe nt unit of work that can
compete for the re s ources of the system .

Because of thi s abi lity , the hardware
resources of the c omputing s ystem can be
expanded and used eff i ci ent ly without
repr ogramming s i mply by i ncreas ing the
number of ta s ks th at are performed
concurrently . For exampl e , i f more main
storage s pace is added to a system , it can
be r eadily used by i ncreas i ng the number o f
jobs tha t are perf ormed concurrently . In
such multiple-ta s k c onfigurati ons , the
ba s ic mechanism f or allocating and managing
the c oncurrent use of resources already
exists . Theref ore , the syst em need not be
redes igned or modified each time additional
re source s are added .

STANDARDS

Another , perhaps not so obvi ous , way in
which the des ig n of th e operat ing system
helps to ens ure gr owth without disruption
is by establishing standards that can be
pa s sed on to a nd used by customers . Thes e
standards ensure c oordinated operat ion of
the system . They i nc lude :

• Standard data f ormats .
• Standard data labels .
• Standard ways of li nki ng programs .
• Standard wa ys af communi cat ing from on e

program or routi ne to another .

By adopting such standards a customer
ca n help to ensure that hi s data, programs ,
and method s a re c ompati ble wit h one another
and with those of pre sent and future
ver s ions of the operating system .

Growth Without Disruption 3 9

The General Organization and Function of Operating

System/360

The system/ 3 6 0 Operating System c onsi sts of
an organi zed collecti on of programs that
c ommunicate with one another in standard
ways . The s ystem is f ormed of two basi c
c la ss es of programs : programs that are
executed when the CPU is in the supe rvi sor
state (when I/O and other certa in ke y
instructi ons can be exe cuted) and progr am s
that are executed when the C P U i s i n the
problem stat e .

Supervisor State Programs

The s upervis or state programs are cal l ed ,
a s a group , the system supervi s or or
supervis or . The supervi sor is the service
and c ontrol center of th e operating system
(Figure 3 0) . Its primary function i s to

perform a variety of servi c e s reque sted by
the problem state programs , such as
allocating storage s pace , performing I /O
operations , loadi ng programs into main
storage ,, and init iating the execution of
programs . To perf orm its function , the
supervis or a lways receives c ontrol of the
CPU f ollowing an i nterrupti on of a p roblem
state program. An i nterruption may resul t
from a s peci f ic service request from a
problem state program or it may be an
automatic interrupt i on i ni ti ated by the
computing s ystem.

S ervice Requests

A service is reque sted by a problem state
program through the executi on of a
supervis or ca l l (SVC) i nstruction . Thi s
re sults in an interruption of the
reque sting program and a transfer of
control to the supervi sor. Usually the
reque st is accompa nied by i nformation that
the s upervis or require s to perform the
service . For example , a request to l oad a
program into ma in storage would be
acc ompanied by the name of the program to
be l oade d .

Automatic Interruptions

An automatic interrupti on does not
represent a s pec if ic request by a probl em
state program. Rather , it i s initiated by
the c omputing system . An automatic
interrupti on result s when a signif icant or
unusua l event occurs wi thi n the c omputing
syste m , such as the c ompleti on of an I /O
operation or the detecti on of an erro r .
The c omputing s ystem continuous l y monitor s
its own operation s o that when an event

that require s acti on by th e supervis or
occur s , the c urre nt program is i nterrupted
and CPU c ontrol is pas s ed to t he
supervisor.. The i nterrupti on network that
is built into the c omputing system rel i eves
the problem state pr ogram or the supervisor
from c ontinua lly checking t o determine if a
s i gnificant eve nt has occurred or from
wa sting time in id ly waiti ng f or an event
to occur .

Problem
State

Computing
System
Resources

Figure 3 0 . Operat i ng System/ 3 60 supervisor
a nd Problem Stat e Programs

The Effect of an Interruption

An interrupt ion to a problem stat e program
ha s the e f fect of placi ng the CPU in the
supervisor state , transf erring c ontrol of
the CPU to the supervi s or, and pas s ing on
to the supervisor i nf ormati on (in the form
of a program status w ord) i ndicat ing the
cause of the interrupti on and the status o f
the program when i t was i nterrupt ed . Once
the supervisor receives contro l , it can
per f orm te sts to dete rmi ne exactly what
event ca used the i nterrupti on and then tak e
appr opriate action. When the supervisor
ha s c ompleted its acti on , it can return

The General Organization a nd Funct ion of Operating System/ 3 6 0 4 1

contr ol to .a previou s ly inter�1pted
program , us ing the prog ram ' s status word.

An interruption of a problem state
program may be caused by an event th at i s
entir e l y unrelated t o the program . For
e xample , an interrupti on may result f rom
the c ompletion of an I/O oper·ation for
another progra m . In ba sic vers ions o f th e
operating s ystem., the supervi s<:>r always
returns contro l of the CPU to the same
problem sta te program that wa s being
executed when the i nterruption occurre d .
I n vers ions o f the operati ng system that
are des igned to c ontrol the perfo.rmance o f
more than one data proce ssi ng task at a
time ., the supervis or may return c ontrol to
the s ame or to a differe nt problem s tate
program . 8

Privileged Instructions

When the supervis or receive s control of the
CPU as a resu lt of an i nterruption , it can
have the CP U execute certai n key
instr uctions , such a s I/O and :storage
protection instruc t i ons . ThE!Se c an be
executed onl y whe·n the supervis or is in
contr ol , and are , there f ore , cal l ed
pr ivi leged instructi on s . I f p:rivileged
in str uctions were executed a s part of a
problem state program, they could in ter fere
with the executicm of anothe 1� problem state
program or with the executi on of the
supervisor its e lf . For thi s r·eason , these
instr uctions cause a n error cond ition when
an attempt is made to executE� them in a
problem state program.

The Basis of Control

The interruption network a nd the privil eg ed
instr uctions c onstitute the ba sic mechani sm
that enablE!S t he supervi sor to servi ce
reque sts by the prob lem state program s an d
ma intain d:ynamic c ontrol ove1::- the
performance� of work by the computing
s yste m . In the c ourse of executing probl em
state programs , c ontrol of the CPU i s
continua l!}' pa s sed back and forth be tween
the programs a nd the supervi sor as the
supervisor answers reque sts for servi ce s
and res ponds to e�vents detected by the
c omputing s ystem •.

During t�he int:ervals when it i s in
contr ol of the CPU , the supervisor
ma intains complet:e c ontrol over the
a lloc ati on and use of th e re sources of the
hardware/s oftware� sy stem. To do thi s , the
supervisor keeps a runni ng a ccount of all
the programs , dat:a a nd c omputing system
re sources i n the system, and the ir e xact
status . It: a ls o kee ps a running acco un t o f
its oWn continua l ly changi ng status. I t
can t hereby ma int:a i n c ontinuous c ontrol

4 2

over the activitie s of the s ystem and
prevent one progra m f rom i nt erfer ing w ith
another . By ma i nt ai ni ng up-to- date records
of everything that h a p pens , t.he supervis or
ca n c oord inate its supervi s i on of the
s ystem even though i t receive�s c ontrol of
the CPU intermittent ly . The i nterrupt ion
network ensures that th e s upervis or
rece ives c ontrol whe n necess ary and the us e
of the privi leged i nstructi ons enabl es it
to prevent interpr ogram i nt e1�ference .

Key parts of the supervis or always

I res ide in protected mai n s tora ge
(opt iona l ly protected f or MFr > . s some of

these , suc h as the su pervi s or routines that
ini��a te a nd c ontr ol I/O operat i ons , res i de
per manently in mai n storag e pr imarily to
ensur e c ontinuous and coordi nated c ontrol
over the ope rati on of th e s ystem . Other
parts of the supe rvi s or , such as the
supervisor routi ne s that cont rol the
al l oca tion of mai n storag e s pace , res i de
permanently in wai n storag e because they
ar e used f re que nt ly. supervis or routines
that are less f re que ntly us ed, and whos e
immediate prese nc e i n mai n storage is not
vita l to the effic ie nt operati on of the
system , a re us ua l ly brought into main
storage from a direct access storage devic e
o n l y when the y are re qui red to perf orm
specific f unc ti ons .

The supervis or plays a central and
ind ispensab le role as part of the operat in g
s ystem . T he ref ore , i t i s more fu lly
descr ibed in the secti ons "Tas k Management "
and " I nformation Management . "

Problem State Programs

The problem state prog rams that are
servic ed by the supervi s or can be
cla s s ified as either I BM programs or us er
(a pp l ication) prog rams . Opejrat i onally , the
IBM a nd user programs bear the s ame
r e la tions hip to one anoth er and to the
supervisor . The y adhere t o estab l ished
l inka ge c onve nti ons and data formats , and
communicate with the supervi s or in the s am e
wa y . A l l of the servi ces prov ided by the
superv isor a re equally avai lable to them .
As a group , the only re al di fference
between the IBM-de sig ned problem stat e
programs a nd the use r-desi gned programs is
that the I BM prog rams are no:rmal ly design ed
for genera l use (i n pre pari ng other
programs > , whi le the us er programs usually
ar e not . In general , th e IBM programs are
des igned to a ss i s t :

• Appl icat ions prog rammmers in devis ing
a nd programn:i ng new applicat i ons .

• system prog rammers i n generat ing and
ma inta ining the system and in ext ending
a nd c ontro l li ng i ts us e.

Pag e o f G C2 8 - 6 53 4 - 3 , Revi sed Janua ry 1 5 , 1 9 7 2 , By TNL: GN2 8 - 2 51 2

• T he ope rati ons s taff i n schedul ing work
a nd operating the s ystem.

Us er - de signed programs are usu a l ly
int e nde d f or s p ec if ic appl ication s , such a s
a pa yr o l l a pplication, and a re norma l ly
prepared and s chedul ed for exec ution using
the I BM- suppl i e d programs.

The IBM- s upplied prob lem stat e programs
prov ide the means by which programmer s can
use t he supervi sor ' s servi ces. 9 In
addit ion, t h ey ass is t the programmer s by
p er forming any one of a c ombinati on of
three main functions : tran slating
language , s upplying prec eded instruct ion
s equ e nc es , and per forming spec i f ic
service s. They perf orm the s e funct i ons in
res pons e to s equen c es of coded language
statements that a re writte n by the
programmer. Each program r e sponds to its
own c ombinati on o f stat emen ts whic h
together f orm a language. Using t hes e
stat ements in various combination s and
forms , a programmer can c ommuni cat e his
dat a proces s ing r equ ir ements , inc lud ing
requ ests f or s ervices performed by the
super visor.

IBM- supp l i e d programs d if fer f rom one
anot h er in the typ e of a s s i stan c e eac h
provid e s. s ome prog rams ass ist the u s e r
chi e f ly by perform ing specif ic s ervic e s .
For e xampl e , the linkage e di tor program is
used c hief ly to i nte grate i ndividu a l ly
t rans l at ed parts or s ect ion s o f a pr ogram.
Mo st of the programs , h owe ve r , a s s i s t the
programmer through a combination of
trans lat ing , providing pre ce ded rout ine s ,
and p er f orming spec i f ic se rvices. A ma j or
funct i on of a FORTRAN compil er , for
examp le , i s to tra ns late f rom a notat ion
that is s imil ar to mathematical nota tion to
a form of machi ne la nguage notati on .
Howev er , i t al so provide s pr ecoded
mathematic a l subrouti ne s a nd performs
spec i fic s ervi ces , s uc h as c onv e rt ing data
from one f orm to a nother. Two of the
probl em state programs s upplied by IBM -

the master s ch edul er and the j ob scheduler
- - ar e , like the s upervi s or , require d parts
of the system. The other s , except f or a
few s ystem uti lity programs , are opt i onal.
Howev er , the l inka ge editor and one or more
o ther IBM- s upplied programs would normally
be i nc lu ded in any s ystem.

The Master and Job S chedulers

The ma ster and job schedule r s , together
with the s upervisor , make up the c ont rol
pr ogr a m , which to a l arg e extent determine s
the b a s ic nature of e ach ope rat i ng s ystem
c onfi gu rat i on. The mast er scheduler
contr o l s the overa l l ope rati on of the
comp uting system-ope rati ng system
combi nat ion. The job s c he dul er enter s work

(job) def i ni ti ons i nt o the comput ing
syst em , s chedul es , and then initiate s the
perf orma nc e of work u nder c ont ro l of t he
superv isor. In oper a tion , the two differ
s l ightly f rom other problem s t at e programs
in t hat they can r ead data from a nd write
da ta i nt o storag e are as that are ass igned
for u s e by the sup ervi sor. Beca use the y
use the same storage are a , the job and
mast er s chedul ers can quickl y pa s s
i nf ormati on to t h e supervis or conc ern ing
the work it is to supervi se . I n
c on juncti on with t h e supe rvis or, t he j ob
and master s c heduler s perform a vital r ole
in scheduli ng and supervis i ng the
per formanc e o f work by the computing
syste m. Theref ore , they are more fu l ly
des cr ibed in the s ect ion " Job Management . "

IBM-Supplied Processing Programs

T he problem state programs tha t are
provided with the operating s ys t em (ot her
t han t he mas ter and j ob schedul er s > are
genera lly c a l le d proc e s s i ng programs t o
distingui sh them f rom t h e m o r e s pec ial
purpos e programs provided by the user s of
the syste m. Any of the process i ng programs
can be s el ected and used with any operating
syste m c onfi g urati on.

A wide se lecti on of IBM-s uppli ed
pro c es s ing pro grams is ava ilab le f or
inclus ion in the operating sys tem. The se
may be supplemented in the f ut ur e by othe r s
supp l ied by us ers o f t h e sys t em o r by IBM.
Th e proc e s s in g pro grams ar e de signed to
reduc e the ti me , t rai ni ng , expens e , and
manpower requir ed to d e sign and c ode
effic i e nt prob lem- state prog rams . A
programmer , or group of programmer s , may
use them sing ly or i n c ombi nat i on t o
process a particular j ob. They are
genera lly c la ss i f i ed as ei ther language
trans lat or s or s ervic e prog rams a lt hough
s ome may both tran slate and perform
spec if ic servi c es , and often supply
pr ecoded rout in es as wel l.

T he l anguage translator s and s ervice
programs descri bed be l ow are des i gned f or
us e in combination w ith one another and
with oth e r parts of the operat ing system.
Therefor e , the rol e o f each a s part of the
ove ra l l system is des cribed in ot her
s ect ions o f the book. In particular , the
r o le of the language trans l ators and the
l inkage editor is more ful l y desc r ibed i n
t h e secti on " P rogram Devel opment and
Management. "

LANGUAGE TRANSLATORS

The l anguage trans lators enabl e a
programmer to de fine a probl em so lution or
an a ppli c ati on i n a langu age t hat c an te

The Gen eral Organizat i on and Functi on of Op erating S yste m/3 6 0 4 3

Pag e of GC 2 :B- 6 53 4 -3 , Revi sed .January 15 , 19 7 2 , By TNL : GN 2 8- 2 5 1 2

more readily l earned and mor e E!a s ily used
than the machine .language of ·the comput ing
system. Th4ey rel i eve the programmer from
much of detai led work and drud9ery involved
in programmi ng , and thereby reduce the time
requ ired to produce an error- free program .
IBM p rovide s trans lators f or si.x languages .
Thes e may b4e us ed to def ine a problem
so lution or applicat ion :

• In a f orm of mathemati cal notation
(FORTRAN and ALGOL) •

• I n a concise f orm of the Englis h
l angu ag«� (COBOL) •

• I n a ne'IIIT programming l anguage C PL/I)
having features of b oth FORTRAN and
C OB OL as well as new features .

• I n a f lE:!xib le and ve rsati le! s ymbolic
languag�� (as s embler language) •

• In a tabular f orm (Report Program
Generator) .

• In a c ombination of any of the above
forms .

For the a ssemb ler 1 FORTRAN and COBOL
langu ages more than one tran slator i s
provided (F igure 3 1) • The lett ers E, F, G ,
o r H in the fi gure indicate the m inimum
amount of main storage s pace that must be
available in order to use a tran slator
under opera 1:.ing system c ontro.l. For
example, the ass embl er l anguage! tran slator
F requ ires a comput ing system lirith 6 5 , 53 6
or more bytE� s o f ma i n st orag e .. I f more
than the minimum ma in storag e s pace is
avai labl e, a trans l ator can gen erall y use
the a dd itiona l space to advanta ge .
Trans lators of a qiv en type may differ in
performance characteristic s , i n. the
fac il itie s i:.hey offe r the prcq :rammer , or
both .

Yes = IJI1
No = D
Assembler

FORTRAN

COBOL

PL/1

R.P.G.

ALGOL

Translaton

E = 32,768 bytes
F = 65,536 bytes•
G = 1 31 ,072 bytes
H = 262,144 bytes

Figure 3 1 . Language Tra ns lators Prov ided
by IBf.�

U s ing a particular language , a
programmer c:an ava il himsel f of servic e s

4 4

provided b y the s upervi s or . H owever , the
fu ll range of s ervic e s is not ava ilab le
with every language . For exampl e , when
us ing the assembler languag e , a programmer
can program the concurrent performance of
multiple data proces s i ng tas ks ; but t he
s ame abil ity is not ava ilable when using
FORTRAN . 'Ibi s is due in part to the fact
that the FORTRAN l anguage evolved before
the operating system came into being .

The l anguage tran slator s (and the
service prog rams) are basi cally no
differ ent from other problem state
programs . Theref ore , the full range of
superv isor s ervices are available for their
use i n tra ns lati ng C or servi cing) other
programs . Each of the l anguage trans lators
produce s obj ect programs Cor ob jec t
module s) i n a standard f ormat . Wit h
cert a in exceptions a n d restrictions , thi s
enab le s the linkage editor to combine
portions of a program written in one
l an guage with portions written in a nother
language to f orm a si ng le program t hat is
ready to be loaded into main storage and
exec uted . s ome of the l anguag e trans l ators
hav e program test ing fac il iti e s that can be
used to dynamica lly test a program, or part
of a program , in accordance wi th
spec if ic ati ons expres s ed in the s ource
langu age . The general characteri stic s of
each lang uage trans lator are bri efly
des cr ibed below . A complete descr iption
can be f ound i n the manuals that are
prov ided for each language . (Refer to the
IBM System/3 6 0 Bib li ography , GA 2 2- 6 8 2 2 .)

Ass emblers

Either a n E or F ass embler, or bot h, can be
included in an operating syst·em for
a s sembli ng ob ject programs f rom s ource
programs written in the a s sembler language .
The maj or di fference between ·the E and F
a s se mb le r s i s i n perf ormance . The F
as s embler is faster , but requires more main
storage s pace than the E vers i on . The
as s embler language is an extremely
ver sati le language that can be us ed to
program any type o f appl ication . All of
the services provi ded by the control
programs are ava ilable when usinq it .

Of the severa l languages avai lable with
the operating s ystem, the assembler
language i s the one clo se st to the machine
language of the c omputing syst em . Each
ass embler l anguage statement repre sents
either a si ng le machi ne i nstru ct i on or a
request to the a s s embler to perform a
spec if ic servi c e .

T he assembler language can be extended
by using the assembler to define for a
particular se rvice both a s equence of
ass embler l anguage statements and a
corre spondi ng language statement called a

macro instructi on (F igure 3 2) . Once
defined , the macro instruction a l one can be
us ed t o request the service ; the macr o
i nstructi on calls for the execut i on of the
s equ ence t o perform the specific func tion .
Thi s repre sents a n i mportant featu re of the
assembler that is us ed extens ive ly .

Source
Language

Statements

Assembler

(Mo�o
Instruction Fetch

Object
Language

Statements

Figure 3 2 . Mac ro Instruction Expans i on

If a macro instruct ion i s to be used
freq uently , the n the i nstructi on s equ ence
it ca lls can be stor ed in a macro l ibrary
a ssoc iated with the a s se mbler.

T he as s embl er l anguage ha s been e xtended
by IBM to enab le programme rs to more eas i ly
commu nicate s ervic e requests to the
supervisor and to c ommunicate with
input/output acces s method routines .
comprehens iv e s ets o f macro in str uction s
a r e provided for u s e i n the management of
data and t he s equent ial or concurrent
performa nc e of tas ks . The ass embler
langu age has also been exten ded to include
macro instructions that , in combinat i on ,
repr esent a highly s pec i ali z ed langu age .
s ets of macro instructions are p�ovided f or
des igning te leproc e s s i ng c ontrol programs ,
for des igning programs tha t di sp l a y
information on a gra phic d i s play dev ic e ,
and f or gen erat ing t he opera ting s ys tem
itse l f . users of the operating s ystem can
employ the ass embl er to cr ea te new macro
in str uc tions a nd a dd the m to the complement
provi ded by I BM . I n addit ion, t hey can,
like IBM , u s e the as s embler to create
spec ia l-purpose language s . Thes e can be
designed to meet t he s pecif i c needs of
s pec i a l ists or pro fess ional s within a
busine s s or sc i entif ic activity . For

ex ample, a spec ial-purpo se language c ould
be d e s ig ned for use by civil engineer s . 1

FORTRAN Compil ers

An y combinat i on of t hree c ompi lers CE, G ,
and H) can be included i n the operating
s ystem f or c ompi li ng ob j ect programs from
s ource programs wr itten in the FORTRAN
Language . The FORTRAN l anguage i s a widely
us ed l anguage, developed and refined over a
peri od of yea rs through the combined
ef forts o f IBM, its customer s , and the
American Standards As s oc i ation . It c l os el y
res embles the l an guage of mathematic s , a nd
enab le s e ngi neers a nd scientists to defin e
problem solutions i n a f amil iar ea sy-to-use
nota t i on.

T he l anguage o f the FORTRAN G a nd H
comp il er s is an extended ver sion of the
FORTRAN la ng uage as defined by the Ameri can
St andards A ssoc iat ion . The language of the
E c ompi ler is an exte nded vers ion of t he
Bas ic FORTRAN Langua ge , al so defined by the
Americ a n S ta ndards As s ociation .

A l ibrary o f ofte n-us ed subprograms is
prov ided w ith each comp iler . A program
user c a n s pec i f y these subprograms , t hereby
caus ing them to be incorpora ted a s part of
the pr ogram. If both a G and H c ompiler
ar e included. in the system , the two c a n
share a si ng le library of subprograms . The
E comp il er u s es a separate , somewhat
sma ller libra ry of subprog rams . T he
l ibrar ies conta in subprograms for
perf orroi ng c ommon mathemati cal
calcu l at ion s .

As an opti ona l feature , the librar i es
can also conta in subprograms that can be
used to transmi t dat a to and receiv e dat a
from a n I BM 1 1 3 0 computing system a t a
remote locati on . Thi s i s described more
ful ly in the sect i on "Teleproc ess ing . "

The FORTRAN libraries c an a ls o C as an
opt ional f eature) conta in a number of
graphic di s play subprograms . Us i ng them , a
FORTRAN programmer can create programs tha t
d i s p la y graphic i nf ormati on on one or more
IBM 2 2 50 Dis pla y U nits (Figure 3 3) , an I/O
dev ice conta in in g a TV- l ike di splay screen
a nd a ke yb oard. The dis pl ays cons ist of
charts , gr aphs , drawing s , and other f igure s
that can be f ormed f r om a combinat ion of
dots , l ines an d char ac ter s . By using the
d i s p la y subprograms , two-way communicat ion
can be establ ished between a
FORTRAN-c ompi led program and an operator at
the 2 2 5 0 D isplay U nit .

The G C ompi ler i s f aster than e it her th e
E or H compil er . On the other ha nd , the H
comp iler normal ly produc e s mor e e f f ic ie nt
ob jec t c ode . Theref ore , the G compiler may
be mor e u s e ful for comp il ing short ,

The General organiz at ion and Function o f Operating system/ 3 60 4 5

Page of GC2 8 -6 5 3 LI - 3 , Revi s e d January 1 5 , 1 9 7 2 , By TNL : GN2 8- 2 5 1 2

Figure 3 3 . IBM 2 2 5 0 D ispl ay Th1it Model 3

i nf.requ ently run pro gram s . Al ·though the E
comp i ler i s s l ower a nd produceB less
eff i c ient obj ect cod e than the o ther s , it
r equir e s le s s ma i n s t orage s pace .

COBOL Compi lers

A COBOL E comp i le r and an Ameri can Nat i onal
St andard COBOL compi l er (formerly USAS
COBOL) can be i nc luded i n the operat i ng
sys t em f or compil ing obj ect programs from
sour c e programs writte n in th e COBOL
Language .

C OBOL i s a l an guage bas ed on a
well-def ined restricted form of Engl i sh .
I t provides a c onvenient method of
des igning programs for comm ercia l da ta
proce s s ing applicati ons . COBOL was
devel oped as a cooperat ive ef fort by a
number of c omputer manu f actur e:�:- s and user s .
The USA standard o f the language is

4 6

American Nati ona l St andard COBOL,
X3 . 2 3- 19 6 8 , a s approved by the �er ic a n
Na ti ona l Standards Institut e . Amer ic an
National Stan dard COBOL is a compat ib le
subset of CODASYL C OB OL , whi ch i s the
comp lete def init ion of the l anguage , as
approved by CODASYL < the Conference on Data
Syst ems L anguage) .

An IBM Ameri ca n Nati onal Standard COBOL
comp il er -- which is c ompatib l e with th e
hi ghest l evel of t he USA s t andard , and
which contains a number cf I BM ext ens i ons
to that stan dard -- can be inc luded in the
operating system f or c ompi li ng obj ect
programs from source programs writte n in
the COBOL la nguage . I BM Ameri can Nat ional
St andard COBOL conta in s many new features
not f ound in previous implementa tions of

I COBOL . The COBOL E c om pi l er a ls o c an b�
included in the oper ating system .

Page o f GC2 8 - 6 53 4- 3 , Revised January 1 5 , 1 9 7 2 , By TNL : GN2 8 -2 5 1 2

I A library of s ubprogr am s i s provi d ed
with each COBOL c ompi le r . The library for
IBM American National S t andard COBOL can
cont a in graph i c dis p l ay subprograms l ike
tho se provided for the FORTRAN c ompi l er s .

ALGOL C ompi ler

An ALGOL F c ompi ler can be i nc l uded in the
operating system for c ompi l i ng ob ject
programs from s ource program s wr itte n in
the A LG OL lang ua ge . The ALGOL langu age is
an internationa l a lg orithmi c langu age u s e d
mainly in programming t h e sol ution to
sc ientif ic and tec hnica l problems . It is
more wi dely us ed in Europe than in the
Unit e d St at es , and is not a s widel y u sed a s
eit her FORTRAN or C OBOL .

PL/ I Compil er

A PL/I F compi l er can be inc luded in the
operati ng syst em for compil ing ob j ec t
programs from source programs written in
Prograwming Language I (PL/I) . T his
langu age incorporat es some of the bes t
features o f other high leve l language s a s
wel l a s a great ma ny new f eatures .

PL/I take s a dvantage of recent
dev e l opments in computing sy stem and
programming technology. It provi des the
programmer with an " appl ication-or iente d "
language f or eff ic ie ntly programming e i ther
scientif ic or c omme rc i a l a ppli cat i ons . It
is part i cu l arly us eful for the increa sing
number of appl i cat ions that can b est be
progr ammed using a c ombi nati on of
s ci ent i f ic and commerc ial techn iq ue s .
These inc l ude ma ny of the new s ys t ems
app l i c at ions , such as management
informa tion syste ms and c ommand and c ontrol
syst ems . The modern featur e s of PL/ I
enable it to be used f or many programming
appli c at ions for which other compiler
la ngu age s e ith er c annot be u s ed or c an be
used onl y with d i f f ic u lty.

A libr ary o f s ubprograms is provided
with t he PL/ I comp il er . The l ibrary can
conta in gra phic d i s p lay subprograms l ike
tho se provided for the FORTRAN compi lers .

Report Program Generator

The Report Progra m Gene rator (RPG) provides
the programmer with an e f f i c ient ,
easy- t o-use f aci lity for gen era ting ob j e c t
pro grams that a r e u s e d t o produce re ports
from ex ist ing s ets of data . The repor ts
may range f rom a s i mple li sti ng of
i nformat ion from a punched car d d eck to a
prec i se l y arranged a nd e dited tabu lat ion of
calculated data from s evera l input s ources .
s everal re ports can be cr eated concurrently
from a s ing le set of d at a .

SERVICE PROGRAMS

Service programs a ss i s t a progra mmer by
providi ng routi ne s f or perf orming
frequentl y us ed operat i cns s uc h as ed iting ,
l ink ing, and otherwise manipula ting
programs and data . The s e rvi c e progr ams
cons ist of l inkage ed itor s , a loader , a
s ort/merg e prog ram , a set of uti l ity
programs , emu lat or progr ams , and a s et of
graphic programming servic e s .

Linkage Editors

An E and an F li nkage edit or are prov i ded
for combining pro gram segmen ts that were
ind i vidua l ly c ompi led or assembl ed . The
linkage e di t or f orms a s i ng l e program that
i s ready to be loaded (by program fetch)
into rrai n storage and exe cut ed . T he
l inkage editor enabl e s c hange s to be made
in a prog ram without recompi l i ng C or
reas s embl ing) the c omplete program ; only
t hos e s e ct ion s that ar e changed need to be
rec ompiled . It a ls o pe rmits divis ion of a
pro gram t hat is too l arge for the space
ava i lab le in main stor ag e , so tha t e xecuted
s egme nts of the progr am can be over laid by
segments yet to be execute d .

The F li nkage edit cr re quires more
stor age spac e but is fa ster than the E
li nkage edi tor. It can als o hand le a more
comp l ex overl ay structur e o f program
s e gme nts . Othe rwi se , the two ar e muc h the
same .

The loader combine s the ba sic edit ing
f unc ti ons of the linkage editor and the
loading funct ion o f program fetc h in one
job ste p . It loads ob j e ct modu les produ ced
by l an gu age trans l ator s and load modu le s
produced by li nkage edi tor i nto main
storage for execut ion . It is des igned for
high perf ormance loading of modul e s tha t do
not requi re the s peci a l f aci lit i es of the
l inkage editor and progr am fetch . The
loade r d oe s not produce load modu l es for
pro gram l ibraries .

Sort/Merge Program

The s ort/merge program is a general iz ed
program that can be u sed to sort or merge
f i xed- or vari ab l e- length records in
ascend ing or des c e nd i ng order . The s orting
an d merging can be p er formed using magneti c
tape a nd di rect access storage dev ic es for
input , output, and intermediate s tora ge .
The pr og ram ta kes fu l l advant age of t he I/O
res ources that are a l l ocated to it by the
c ontr o l pr og ram. The sort/merge program
can be u s e d indep endently of other
programs , or it may be use d direc t l y by

I prog ra ms c ompi led by the Ameri can Nat ional
St andard COBOL and PL/I compiler s .

The Genera l O rganiz at ion and Function o f Operating S ystem/3 6 0 4 7

Page of GC2 8 -6 5 3 4 - 3 , Rev is ed January 1 5 , 1 9 7 2 , By TNL : GN 2 8- 2 5 1 2

Uti l ity Programs

•rhe ut il ity pro grams provi ded with the
opera ting system,. are divided into t hree
subs ets :

• Dat a s e�t util ity program s .
• system util it�y progr am s .
• I nd e pe ndent uti lity prog rams .

Data Set Ut.i lity P rograms : The s e program s
are u se d chie f ly by the prog rammer and
operat or t o :

• Transfe�r , c opy , or merg e sets o f data
f rom one stora ge med ium or I /O device
o nto a nother (s ometi me s i n the proces s ,
edit ing the data or chan ging its
f ormat) .

• Edit , rearrange , and update program s
a nd dat;a .

• C ompare� , pr int , or pun ch data .
• Create an i nput stre am .

System Uti l i ty Programs : ThE� s yst em
ut i l ity programs ar e used chiefly by the
system programme1� to :

• Cha nge or ext:end the i n dexing str uc ture
of the system library cata log .

• P r int an inventory of th e da ta and
programs that: are c ataloged i n t he
s ys t em l].brary .

Independent; Ut ility Program s : The
indepe ndent; uti lity prog rams are used with
the operating s ystem, but are not an
i nt egral part o f t he sy stem . They ar e us ed
chief ly by the syste m pr og rammer to prepare
dir ec t acce� s s s torage devi ce s for us e under
operat ing system control .

Emul ator Program!:�

An integrat;ed emu lat or prog ram , used in
con j u nction with a compat ibi lity feature ,
a l lows obj ect programs wri tten for one
system to be executed on another s ys t em
with litt l E! or no r eprogramming . The
comp a t ib i l i ty feature c ons i s ts of hardware
and microprogranuned rout in es that a id
emulat ion . The E�mu lator p rogram i s
executed as a problem pr ogram under the
operat i ng .system control program .

4 8

Refer to the IBM System/3 6 0
Bib l i ogr aphy, GC 2 8- 6 8 2 2 , for the order
number of the pub li c at i on de scrib ing your
int egrated emulator .

Graphic Programming services

A number of s ervic es are provided with the
operat ing sy stem for de signing and
execut ing prog rams that communicat e with a
us er at an I BM 2 2 5 0 Dis play Unit (Figur e
3 3) , or an IBM 2 2 6 0 Di splay Station
(Figure 3 4) . With these s ervi ces a program
can retr ieve in format ion from storage ,
di s p la y the i nf ormati on on the fa ce of a
TV- l ike s creen , check the in format ion f or
accurac y , modify it at the dis play s creen,
and return it to s torage .

T he . graphic pro gramming servic e s
inc lude :

• An e xtensive s et of graphi c des ign
macro in struct ion s .

• Pr oc e s si ng ro uti ne s .
• Data mani pu lation ai ds .
• I/O interrupt ion ana l y si s and c ontrol

r outi nes .
• Error recovery and dia gno stic routi ne s .

Thes e s erv ices can b e used to simp l i f y the
jon of de sig ni ng advanced appl icat ions in
the f iel ds of s c i enc e , engin eering , a nd
bus i ne ss .

Program Products

IBM Pr og ram Products pr ovide the us er with
s p ec ial iz ed task- or iented func tions .
Prog ram Products are designed t o operate
wit h other I BM pro gram s .

Some typical IBM Program Produc ts would
inc lude :

• Langu age processor s
• s orts
• Convers ion a id program s
• Ge neral purpos e ut i liti es
• Indu stry appl icat ion programs
• Ge nera l a ppli cati on programs

Program Products are ava ilable from I BM for
a lice nse fee .

Figure 3 4 . I BM 226 0 Display Station , Wi th and Wit.ho\K Alphameric Keyboard

The G en eral Organi za ti on a nd Functi on o£ Operating Sys t em/3 6 0 4 9

Page of GC2 8- 6 5 3 L�- 3 , Rev i s ed January 1 5 , 1 97 2 , By TNL : GN2 8 - 2 5 1 2

CONTROL PROGRAM CONF IGURATI ONS

An IBM syst. ern/ 3 6 0 Op erat ing system c o n si sts
of a control proqram (a supervisor , master
schedu ler , and j ob scheduler) together wi th
a number of optiona l proce s s i ng progr ams
such as thE! l an guage tr ansl a tor s , ut i l i ty
progr ams , a nd sort/merge programs des cribed
in the prev ious s ect ion . The proces s ing
pro grams are desi gned to h e l p the us er
program s olut ions to probl em s and de s ign
new a pp lica ti ons .. They do thi s by giving
the progr�1mer a combinati on of progr amming
aids 11 s ervi ces , and preceded routine s that
he ca n u s e with appropr iate language
stat ements .. Althou gh the control program
als o as s ists the us er , its primar y
func t ions are to eff icient ly schedule ,
i nit i at e , and superv is e the work per f ormed
by the c omputing system .

There are two c onfigurati ons of t he
cont r ol program :

Storage
Size

I K (2048K)

J (1 024K)

I (512K)

H (256K)

Model
25 30 40 44

256K and above supports MVT,
MFT, DOS, TOS, and BOS

50 67

• The multi programmi ng with a fix ed
number of tas ks (MFT) configurat ion .

• The multi prograremi ng with a v ar i atl e
number of tas ks (MVT) configurat ion .

Each con f iguration is design ed to be used
with a parti cular ra nge of comput ing system
mo dels and main storage si z e s . Figure 3 5
shows the c ontrol prog ram configurat ions
that can be used w ith var ious CPU mode ls
a nd mai n storage s i ze s . F or compar ison ,
the figure inc ludes the othe :r Syst em/ 3 6 0
s o ftware systems : Ba sic Programming
Support (BPS) , Ba sic Oper ating Sys tem
(BOS) , Ta pe Operat i ng system (TOS) , and

Di s k Operati n9 System (DOS) . The stor age
si ze s do not 1 nc lude IBM 2 3 6 1 Core Storage,
which can add up to 8 , 1 9 2K bytes t o the
ma in storage capac ity of a Model S O , 6 5 , or
75 i n blocks of 1 , 0 2 4K or 2 , 0 4 8K .

75 135 145

1 28K and above supports
MFT, BOS, TOS, and DOS

H-D (240K)

G (1 28K)

FED (1 12K)

F+E (96K)

F (64K)

ED (48K)

E (32K)

D (1 6K)
BK and above supports
BPS and BOS

64K and above supports
BPS, BOS, TOS, and DOS

16K and above supports
BPS, BOS, TOS, and DOS

System/360 System/370

1. BPS does not support Mod 65 and above.

2. M FT & MVT control programs only.

3. MVT control program only.

(BK) 4. Storage for System/370 Mod 195 is Jl.

Figure 3 5 . SystE�rn/3 6 0 Software Syst ems F or Variou s System/3 6 0 and Systern/ 3 7 0
Con figur at ions

5 0

Al l of the IBM-supplied proc e s s ing
programs described in the previous section
can be e xecuted under the di rection and
contr o l of any of the two operating s ystem
control program conf igurati ons . In
addition , any prob le m state program
produced us ing the proce ssi ng program s are
compatible with any of the two
con f igurations . Furthermore , any j o b s or
data that can be proce s sed by one
configuration can be proce s s ed by another ,
provided the requi red hardware and s o ftware
resource s are ava i lable (Fig ure 3 6) .
Although many of the ir e lements are
ident ic al and the ir ge ne ral organi zations
and f unctions are the same , the s i gn i ficant
differences between one ope rating system
contr ol program conf igurati on and another
ha s to do with the way e ach operates
interna l l y . The ma i n diffe rence is the
number and types of data processing t ask s
they can perform at one time . The MVT
configurati on can c ontrol the concurrent
performance of a greater number and var ie ty
of ta s ks . It can thereby keep more of the
tota l s oftware/hardware sy stem in
product ive operati on more of the time and
sign i f icant ly i ncrea se the volume of work
performed by the syste m ove r a given period
of time .

Job
Definitions

M FT
Control
Program
Configuration

IBM or User
Processsing
Programs Data

MVT
Control
Program
Configuration

M FT Results MVT Results

Figure 3 6 . Compat ib i lity of MFT and MVT
Control Prog ram configuration s

I
MFT CONTROL PROGRAM

The MFT c ontrol program confi gurat ion can
control the performance of more t han one
ta sk at a time . As its name i mpl ies ,
however , it can c ontr ol a fixed number of
ta s ks c onc urrent ly . An MFT control program
can r ead a c ontinuous stre am of j ob or j ob
step s in sequentia l orde r. Howev er , it can
read j obs f rom up to three such streams
concurre ntly . Moreove r , it can dynamically
sc hedule a nd i nitiate the performance of
each j ob based on an assig ned priority an d
cla s s . (To ba lanc e the operat i on of the
computing system, jobs can be clas s ed
accord ing to the res ources they us e ; for
example , whether they are primarily
dependent on I/0 or CPU time.) O nce
in itiated by the c ontr ol program, up to 15
job steps , repres e nti ng th e st eps of 15
dif ferent j obs , c a n be perf ormed
concurre ntly .

T he c ontrol program can als o
concurrently record up to 3 6 s treams of job
output data . The re adi ng of j ob
definitions f rom three i nput streams , the
per formance of 1 5 ste ps of di f ferent j obs ,
and the rec ording of 3 6 j ob output dat a
str eams c a n a l l be perf ormed concurrently
(Figure 3 7) , provided the tot a l does not
exceed 5 2 , a nd enough c omputing s ystem
r esource s are ava i lable . Althou gh t here is
a l imit to the number of concu rrent d at a
proces sing ta s ks a n M FT control program can
ha ndle , from a practi c al vi ewpoint , the
r ea l l imitation would more than l ikely be
the ava ilability of re s ources to perf orm
the ta sks . Moreover , there is an opt ional
feature of the MFT c ontrol program that
p ermits each job ste p to creat e an
unl imited number of additi onal t asks . This
featur e is ca lled " MFT with subt asking . "
Ta sks crea ted by a j ob step are c alled
subta sks and are perf ormed concurrently
with each other a nd with oth er t as ks in th e
s ystem . Subtas ks are de pendent on the j ob
step ta sk and must be c omplet ed before the
end of the j ob ste p .

The General Org anization a nd Function o f Ope rating Sys t em/ 3 60 5 1

The MFT Control Program

Reads and I nterprets
Jobs from 1 to 3

and
Concurrently

Performs from
1 to 15 Jobs

and
Concurrently Records Job Output

on 1 to 36 Devices Input Streams

JOB
Output
Stream 1

Figure 3 7 . Concurre nt Proc e ssing o f Job Steps and Job support Tasks by a n MFT Control
Progra m

In an MF�r configurati on , a:cea s of main
stora ge are res e�red f or the control
progr am , and optiona lly , f or the loader and
user- wr itten rout ine s that can be used
concurrently by the c ontrol program and by
any tasks that are bei ng performed . The
remainder o:1: ma in storage i s divided into
partit ions 1(Fi gurE� 3 8) . Th e si z e of each
partit ion is s et by the ope rator, and its
prior ity is determined by i t s pos ition
relat ive to other partitions . Thus ,
partit ion P O is res e rved f or the highest
prior ity j obs ., and P n the l owest. Once
defined ,, a ma in st:orage pa rti tion may be
a ss igned by the operator f or use in
performing from one to three clas ses of
jobs out of a maximum of 15 iob clas se s .
When a j ob i s init: iated., i t i s d ynami call y
a l located a particular parti tion of m ain
storage s pace depe nd ing on th«� class
ass igned to the pa rt iti on and the specif i c
class (and priority within the class) o f
the j ob . Ot:her pa rt iti ons may be a s s igne d
by the operator for use in reading and
inter pretin�r input: s tre ams of j ob
definitions and for rec ording streams of
job output clata . When the c ontrol program
is initiali ��ed at the begi nning of a work

5 2

per iod , the operat or c an i nclu de additional
input/output acce s s meth od rout ines by
load ing a sec ondary nucleus cont a ining
thos e r outines . If i ncluded , these
rout ines can be usE!d i n performing a s ingl e
job step, or more t:han one job step
concurre ntly . In an MFT cont:rol program
conf iguration , pr�rram res ources (in the
form of access method routi nes > and data
resource s , as we l l a s the hardware
resource s of the c omputi ng s ys tem , c an be
shar ed among c oncurre nt j obs .

M FT

High Storage Address

Basic Fixed Area tim
Dynamic Area D

F i gure 3 8 . Genera 1 Organi z ati on of M ain
storage For th e MFT C ontrol
Program Configurat ion

The MVT Control Program

Reads and I nterprets
Jobs from any Number
of I nput Streams

and
Concurrently

Performs from 1 to 15 Jobs
and any Number of Tasks
Within a Job Step

and
Concurrently

Records Job Output
on any Number of Devices

Note: n = any Number

Figure 3 9 . Concurrent Pro c e s sing , b y an MVT Contro l Pr og ram, of J ob Ste ps , Job Su pport
Ta s ks , a nd T as ks Within J ob St eps

MVT C ONT RCL PROGRAM

The MVT control program configuration rea d s
one or more c ontinuous s treams of jobs , and
s chedul es the j obs in or der of pr ior i ty .
With thi s c onfiguration , u p to 1 5
i ndependent j obs c an b e per formed
conc urrently . The j ob s te ps within a
si ngl e j ob are nec es s ar i ly performed in
sequential order bec ause one step may
depend on the compl et ion of another .
However , wi th i n a job step , any number and
type of d at a proces s ing ta sk s can be
in itiated (Figure 3 9) . The s e tas ks are
performed concurr ently with one another ,
with ta sks ini tiated by othe r j obs , and
with t as ks initiat ed by the control program
and by the operator . Operator initi ated
tasks include job-s upport t a s ks f or re ading
any number of j ob input stream s and f or
recording a ny number of streams of j ob
output d at a . The number o f concurrent da ta
proc e s sing ta sks an MVT c onf igurat ion c an
hand l e is l im it ed s ol el y by the
a va il abi lity of the re s ource s that wou ld be
requ ired to p er form t hem .

In an MVT c onfiguration in add i tion
to ar eas of ma in s torage res erved for t he
exc lus ive us e o f t he control program -- an
area of ma in storage (c a lled the link pack

area) is r es erved for program routine s that
can be u s e d c oncurre ntl y by th e contr ol
progra m a nd by any j obs that are be ing
p er formed (F igur e 4 0) . The se inc lude
acc e s s method rout i ne s as well as ot her
rout ines des ign ed by IBM or by a user of
the syste m. The remai ni ng s torage s erves
as a pool of stora ge from which t he
c o n t r o l p rogram a s s i g n s a s ubpoo l (o r r e g i on
as it is u sually c a l l ed) to ea ch j ob ste p
a s it is i ni tiate d . Once a job s t ep, or a
tas k wit hin a j ob step , is ini tiated , it
can draw u pon and re lease storage s pace
wit hin its a s s i gned reg ion . Upon
c omp le ti on of a j ob ste p , th e reg ion i s
returned t o t h e pool where i t i s avai lable
for a s signment to other j ob step s .

MVT

Low Storage Address

'Master Link SCheduler Pa(:k ,�egion , Area
High Storage Address

Basic Fixed Area D
Dynamic Area D

Figure 4 0 . G en era l Or gani za ti on of Ma in
Storage From th e MVT C ont rol
Pro gram Configura tion

The General Org aniz at ion and Funct ion of Operating System/ 3 6 0 5 3

Page of GC2 8 ·-6 5 3 4 - 3 , Revis ed January 1 5 , 1 9 72 , By TNL : GN2 8- 25 1 2

I n thi s c onfigurati on , program and dat a
res ou rc es , a s well a s the hardwar e
resource s of the c omput i ng s ys tE�m, c an be
s hared among concurrentl y per formed j ob s ,
ta sks within a job ste p , a nd control
program t asks . 7

The rema inde:c o f thi s book di scusses the
ma jor functions that can be performed us ing
the operatinq- syst em , br iefly descr ib ing
the pur pose of eac h functi on , how it is

5 4

per formed , and the maj or obj ective s it
he lps to achi eve . Unless otherwis e noted,
the discu s s ion appl ie s to both control
program c onfi9urat�i ons . The ma j or
funct ions are dis cus s ed in the fo llowing
topic s :

• Task management.
• Job management: .
• I nformation management .
• Progr am development and management .
• Multi proces s i ng .
• T eleprocess ing .

The c haracteristic of the Sy stem/ 3 60
Operating System t hat se ts i t apart f rom
previous genera l pur pose operating s y stem s
is its abi lity to schedule and supervi se
the perf ormance of more than one dat a
proc e s s ing tas k a t a time. It doe s thi s
through effic ient management of s ystem
resources .

Resource Sharing

A program is on ly one of several resources
that are needed to perf orm a data
proc e s s ing tas k. I/O devices or d irect
acc e s s storage s pace i s required for
enter ing or storing input data and for
recording or storing output data . T ime i s
required on I/O c ha nne ls f or transmitting
information to and f rom main storage and
for s tarting a nd c ontrol li ng I/O
operations . Ma in storag e space is requir ed
for s toring a s eries of instructions and
the d ata proc es s ed whe n the i nstruction s
a r e e xe cuted . Fina l ly , CP U time i s
required t o execute the instructions and
ther eby do the work of processing the data .

At most data proc e ssing i nsta l l at i on s ,
data proces s ing t a s ks are performed one at
a time ; that is , a new task i s not begun
until the current ta sk is compl eted . The
aver a ge data proces s i ng ta sk require s , at
any g iven moment , only a f raction of the
total available res ource s of the s ystem
(Figure 4 1) . Theref ore , many parts of the
system are often id le f or si gni ficant
periods of time . For exampl e, many task s ,
suc h as data c onvers i on ta sks , require onl y
a fraction o f the storage s pace and I /O
devic es ava i lab le in the sy stem, and only
intermittent us e of the CP U for s hort
per iods of time .

However,, at MFT and MVT i nsta l l at i on s ,
the ava ilable res ource s of the s ys tem are
dynamic a lly a llocated and shared among
severa l tas ks being perf ormed concurrentl y .
A s a result , more o f the total computing
system is kept in productive operati on more
of the time (Figure 4 2) . The sharing i s
not l imited t o the hardware o f the
computing s ystem. It i ncludes the sharing
o f program and data re sourc e s as wel l .

Task Management

Input/Output and
Direct Access Storage

0

0
(

Main Storage

Central Processing Unit

Figure 4 1 . A S i ng le Task system

Program Sharing

I nput/Output and
Direct Access Storage

0

0
Productive = Jill�
I dle

= 0

At most da ta proc e s s i ng i nsta l lat ions , onl y
one program at a time is executed to
per f orm one tas k and produce one s et of
results , a s shown i n Figure 4 3 . At such an
insta l la tion there i s always a one-f or- one
corr e spondence betwee n a program (a s eries
of instructions > a nd a tas k (t he execution
of the se instructi ons by the CPU) , and no
dist inction between them is neces s ary .

At MFT and MVT i ns tal lati ons , however,
such a distinction is ne cess ary becaus e a
s ingle program c a n be executed t o perform
s evera l ta sks c oncurrently and produce
s everal independe nt sets of resu lts (F igur e
4 6) . For example , the CPU can begin to
execute a program to process one s et of
data , and then f o l lowi ng an interruption.,
execute the same program t o proc ess another
s et of data . Thus , seve ral data process ing
ta s ks ca n be perf ormed concurrently us ing a
s ingle progra m . Such a program must be
reenterabl e ; that i s , th e program must b e

Tas k Management 5 5

des igned s o that it is not changed in any
way when the CPU exe cute s i t . In other
words , the execution of one i.n:structi on in
the program must not change any other
ins·truction in the program.

Input/Output and
Direct Access Storage

Figure 4 2 .

Single
Task

Main Storage
I nput/Output and
Direct Access Storage

0
Central Processing Unit

Productive =

Idle

A Multiple - Task System

CPU -}-and other
Resources

_

Task
Results

Figure 4 3 . Unsha:red Inf orma tion Resour ces

With an M�FT or MVT c ontrol program
conf iguratio,n , any reenterable progr am can
be loaded into mai.n storage when the
operating sy·stem i s ini tiali z ed at the
beginning of a work peri od , and can remain
there indefinitely . Thi s avoids continual
reloading of frequent ly used program s .
Other reenterable programs can be brought
into main storage when required by a
spec i f ic j ob step. The se programs are
loaded into the job step ' s partition or
region of main storage ; each can be u sed

5 6

concurrently b y a l l tasks that bel ong to
the j ob step , but not by tas ks that bel ong
to other j ob steps . The con�� rrent use of
a r eenterable program saves ma in storage,
because each ta s k does not rE�quire its own
copy of the program. Once loaded , a
reenterable program i s avai lable f or us e by
concurrent ta s ks f or as long as it remains
intact within the j ob step ' s region or
partition .

Data

Task 1

CPU J= ����l!s
and othe
Resourc Task 2

Results '-----·

Task 2

Data

Figure 4 4 . Program Sharing

Data Sharing

MFT a nd MVT c ontrol pr og rams permit the
concurrent shari ng of data , as well as
programs , when perf orming mul·tiple tasks .
several programs usi ng a c ommon s et of
input data can be executed to perf orm
different ta s ks a nd produce s everal
independent sets of re sults , as i llustrat ed
in F igure 4 5 . For example , two different
programs can be executed concurrently to
produce two differe nt summary reports
derived from the s ame basi c s �et of data .
To do thi s , the d ata set must not be
sub ject to cha nge in any way when the tasks
ar e performed .

Program

Task 1

Task 2

Program

CPU
and other
Resources

Task 1
Results

t---.- �:����
.__ ____ _,

Figure 4 5 . Data Shari ng

Resource Management

Although the ma ster and j ob schedule r s
initiate the performance o f ta sk s , the
ta sks are actua lly perf ormed under c ontrol

l and d irection of the supervi sor . The
supervisor of an MFT or MVT control progr am
manages the c oncurre nt performance of tasks
by keeping a running acc ount of all the
ta sks that are init iated and by schedul ing
the order in which they are to be
performed , bas ed on the i r relative
pr ior ities . It a ls o kee ps a running
account of a l l the avai lable resourc e s of
the s ystem and a ll oc ate s the resourc e s as
they are required to pe rf orm spec ific
tasks .

some res ources , such as reenterabl e
programs in ma i n s t orage , are always
available for immediate allocation to a
task . Other resourc e s of the s ystem , such
as the CPU , can be a llocated to only one
task at a time . If a parti c ular resource
required for a tas k i s not i mmediatel y
ava i l able , the tas k i s temporari l y
suspe nded . The tas k i s then, i n eff e ct ,
plac ed on a wa iting li st or queue . At any
time , s evera l tas ks may be waiting in a
queue f or such a res ourc e . Usua l l y , task s
in a r e s ource queue are arranged in a
pr ior ity s equence . However , other
seque nces are someti me s used to ensure more
effic ient use of particular resource s (I /O
c hanne l time , for example) . The resource
queue s , in effect , serve a s work reservoirs
that absorb f luctuat i ons in demands f or
resources . They thereby h e l p to ensure
that a ready bac klog of work i s at h and to
keep the resources as busy a s pos s ibl e .
Whenever practica l , the allocation o f a
resource is deferred unti l i t is actual l y
needed to perform a task , and the re sour c e
is re leas ed f o r rea l locati on a s soon as the
need has been sat i s f ied . I n other word s ,
the r e s ourc es a re usually allocated
dynamically , and are not ti ed up unl e ss
they are being used . Thus , within a
relat ive ly short per iod of time , a
particular resource may be used over and
over again in performing many di f ferent
ta sks .

More preci s e me a ns of manag�ng re sources
in an MFT or an MVT c ontrol program
envir onment exist f or the user. Both the
T ime Sl icing feature and the System
Management Fac i litie s (SMF) feature allow
system res ourc es to be shared more equal l y
among tasks .

The Time Slicing feature can be u sed to
prevent any ta s k i n a group from
monopoli zing t he CPU and thereby del aying
the a s s ignment of CPU c ontrol to other
tasks in the group . The supervi sor doe s
this by allocating a unif orm i nterval of

CPU time (a time s lice) to a tas k within
the group wheneve r it is ass i gned control
of the CPU . If the task is still active
when the inte rva l e nds , th en t he supervisor
a s s igns c ontrol to anoth er tas k.

At an MVT insta llati on , all of the tasks
having a predetermined pri ority are
alloca ted time intervals when CPU control
is a s s igned . At an MFT i nstallat ion, all
of t he ta sks to be pe rf ormed us ing any one
of a predete rmined group of cons ecutive
ma in storage pa rtiti ons are a lloc ated a
time interva l . (If the MFT cont rol program
includes the subtaski ng opti on , t ime
interval s are a lloc ated to tas ks whos e
pr ior itie s f a l l withi n a c erta in rang e ; the
r a nge c orre s pond s t o a predetermined group
of c onsec utive mai n storag e partit ions , but
the pr ior ity of a ny task can vary and thus
be independent of the partiti on where the
ta sk is perf ormed .) The time s lic ing
feature is e s pec ia lly us efu l for graphic
display a nd te le proce ssi ng applic ations .
It ca n he lp to e nsure a uni form t ime
response to a number of us ers who are
located at loca l or remote t erminals and
ar e shar ing the hardware and i nformation
resource s of an i nsta llati on .

T he SMF feature pr ovi des data coll ection
rout ines a nd exit li nkages for t he user .
Through SMF data c ol le ction rout ines , this
opt ion can be used as a system res ource
distr ibution and eva luation tool . By
providing your own exit routines at the
appr opria te locati ons , thi s opti on c an be
used in a monitor i ng c apacity. S ince the
da ta c ollection a nd exit f aci lit i es are
independent of one anoth e r once SMF is
inc luded in the s ystem at syst em generat ion
time , they ma y be used i n combination or
separate l y .

S MF da ta c ol lecti on routi nes gather j ob
and d irec t access a nd volume i nformation ;
this information i s used t o make a variety
of a na lyse s . Output creat ed by t he SMF
routines can a ls o be used to create and
ma inta in inventories on di rect access and
tape devices ; establishi ng a data bas e
(r ecorded data in a permanent format)

aga inst which to make an ana lys is . SMF
routines can be used t o determine e ach j ob
step ' s use of the CPU , I/O devices , and
stora ge . They can be us ed to determine
data set activity f or each problem program
and a lso to a c quire volume us a ge
informati on f or direct acces s dev ices .

S MF is not , however , confined to
after - the -fact ana lysi s . This opt ion also
a l l ows the user to wri te exit rout ines ;
these routines c a n monitor a j ob or j ob
step a t va ri ous poi nts during its
pr ocess ing c yc le , that i s , from c ontrol
statement ana lysi s to te rminat ion of the
job . (Al l l inkages f or thes e ex its are

Tas k Management 5 7

suppl ied when the opti on i s i ncluded in the
system at s ystem <ge neration time .)
Ther e f ore ., lby a dd i ng i ns ta llati on routine s
at the a ppr4Jpriate exit s , standards of
eff ic ient r4esource management -· -

identif icat:ion., priori ty , resource
a lloc ation,, and m:tximum exec ution time
can be enfo:r:ced i:n the system.

Advantages of Multiple-Task

Manageme!nt

The abi lity of MFr and MVT s uperviso r s to
dynamically a l loc ate re s ources and manage
the performance of seve ral tasks has a
numbe:r of advantaqes ove r more conve ntional
methods of data proc e s si ng :

• It incrE:!ases the eff ici ency o f the
s ystem . Resourc e s tha t might otherwi se
be idle when one task i s performed can
be used to perf orm oth e r ta sk s .

• It e nables thE� s ystem to g:r·ow without
d isruptions . The addi ti on of more
s torage s pace and othe r re source s can
be readi ly acc ommodated and used
e fficiently with out reprogramming
merely by inc re a s i ng the number o f
j obs , 01: other t asks , t o b e perf orme d .

• I t improves t h e f lex ibi lity of t h e
s ystem. The s ys tem c a n readily adj ust
to varying dema nd s f or resources and
c hanges in the� workload. This i s
particuJ.arly s ig nifi cant for
teleprocess ing a ppli cati ons , suc h as
t he airli ne reservati on appl icat i on ,
where the workload vari e s d ynami c all:y
in unpre!dictab le way s .

• I t improves the rate a t which the
s ystem c:an res po nd to work reque sts .
seve ra l ta s ks c a n prog re s s in paral l el
instead of be i ng performed in
c onsecut.ive 01:de r . 'Ibi s too is
important i n te leproces sing
a pplicat.ions , where a sy stem normally
mus t respond t�o each work reques t
within a. s hort� peri od o f time .

Concurrent Tasks Within Job Steps

(MVT and MFT With Subtaesking)

At an MVT i nsta llat i on, th e same task
management faci lit ie s that i nitiate and
contr ol the c oncurre nt perf ormance o f j obs
and j ob support ta sks are di rec·t l y
ava i lable f or use b y a c ustomer . The
fac i l ities a re a ls o avai lable a:t an MFT
installati on when the subta sking option i s
selected a t systerr1 generati on.

5 8

Previous c ontrol pr ograms , other than
the MFT a nd MVT c ontr ol prograrrs of the
op erating system, have provi ded means for
concurre ntly pe rf ormi ng data proc ess ing
ta sks . But these were s peci a l pu rpos e
control prog rams , such as th E! airl ine
reservation s ystem a ppli cati on discus s ed
ear l ier . I n these a ppli cati ons , many of
the a dva ntages of fered by a mu lt i ple task
s ystem , s uch a s f a st h andli n9 of the
wor kload , were e s se nti al to the
appl ication . The ref ore , th ey justif i ed th e
high c ost of a s peci a l purpos e c ontrol
pr ogram .

An MVT c onfigurati on of the operat ing
s ystem , or the MFT-wi th -subtas king
configura tion , is a true g eneral- purpos e
ta sk mana gement s ystem. It is not
restr icted to perf ormi ng s peci fic types of
ta sks , a group of re l ated tas ks , or a f ixed
number of c oncurre nt t as ks , but can, in
fa ct , be used to perf orm concurrently any
number or types of re l at ed or u nrel at ed
ta sks within the limits of avai lable system
resource s and the user ' s i ng enuity .

The same multiple tas k mana gement
fac il ities that a re used by t he c ontrol
program can a ls o be used by a customer in
des igning process i ng prog rams that c an be
executed to c oncurrently perform t asks
within a j ob ste p . Theref ore , the
advantage of a mu lti ple task s ystem,
her etofore l imited t o a f ew s pec i al iz ed
app l ications , can be reali z ed in a wide
ra nge of a pplicat i ons . Th e general purpos e
ta sk management faci liti es of the c ontrol
program can, in f act , be us ed in
innumerable wa ys by both I BM a nd its
customer s to i nc re ase th e product ivity and
ut i l ity of s ystem/ 3 6 0 and to broaden or
extend its a pp lic ati on .

At an insta l lati on of either MVT or MFT
with subta sking , once a j ob s t ep is
init iated by the c ontrol prog:cam, it may ,
i n tur n , initiate the performance o f other
ta sks , which c ompete f or and s hare the
r esources of the system with one another
and with the steps of other jobs . In f a ct ,
a c omplete a nd c omplex hi erarchy of tasks
can be dynamica lly i niti at ed a nd terminat ed
in the process of pe rf ormi ng a s i ngle j ob
step .

The progra mme r i s provi ded wit h a
comp lete set of ge ne r al purpos e t ask
mana gement language stat ements . With thes e
he can program dynamic control ov er t he
concurrent performance of the tasks of a
job step . He c a n , f or example , initiate

the perf ormance of new tas ks as t he
workload increases a nd termi nate t he tasks 1 as the work is c ompleted f reei ng thos e

resources . He can a ls o synchroni ze the
per formance of one t ask with that of
another or with I/O operati on ; for e x ampl e ,
h e c a n indicate that furth e r perform ance o f
one t a s k should await the completion o f one
or more other tas ks or oth er occurrence s
suc h a s the end o f the time interval .

The programmer c a n a l so establ ish a
system of relative pri oriti e s among the
tasks of a j ob ste p . If nec essary , he can
spec i f y changes in pri ority based on events
that occur as the tasks are being
performed . For example , he may raise the
prior ity of a tas k if it sti ll is not
completed a fter a s pecific period of time .

The programmer c an a l so e stabl ish new
resources and , with the help of the c ontrol
progr am , contro l the ir use in performing
concurrent tas ks . A new resource may be a
self- initia l i z i ng pr ogram that can be used
ser ia ll y ,, but not c oncurrently, in
per forming dif fere nt ta sks , or it may be a
table of data that c an be used e ither
ser ia ll y , or c oncurre ntly , depending upon
whether or not the t able can be modif ied
while it is being u sed to perform a task .
The programmer is given the means to en sure
that a res ource is u sed seri a l l y if it is
sub ject to change a nd c oncurrentl y if it is
not .

Ma in stora ge may be shared or pas sed
Qetween tas ks i n a n MVT envi ronment by
using a subpool -- a 2K block of main
storage allocated f or a ta sk under the
labe l c a l l ed a subpool number. Subpool s
can be shared by other task s , or the y can
be p a s s ed from the task that created them
to another ta s k. 8

Norma lly,, ma in s t orage s pace reque sted
by a j ob step program i s a l l ocated f rom a

partition or regi on of mai n storage that is
a s s igned to the j ob step when it is
in itiated . However , an opti onal feature o f
the MVT supervi sor a l l ows the tempor ary
ass ignment of an additi ona l region (or
regions) of mai n storage to a j ob step that
ha s outgrown its previ ous ly as s i gned
region . When additi onal s pace is requested
dur ing a j ob ste p , the supervis or attempts
to satisfy the reque st f rom an unass igned
port ion of the dynami c area of main
storage . If s pace is not avai lable , then
the c ontents of a regi on ass i gned to
another j ob s tep are trans f erred t o direct
access stora ge (rolled out) , and the
vacated region is assigned to the step that
requires a dd iti ona l s pace. When the region
is no longer needed , its ori ginal contents
ar e r estored (ro l led i n) and t he del ayed
step is a l lowed to c onti nue.

T he user indic ate s which st eps c an be
ro l led out a nd which c annot . However , the
r e lative priority of the s t eps determines
the order in which they are ro lled out and
whether or not a parti cular s t ep w ill be
rol led out .

T he multiple -ta s k manag ement f ac il ities
descr ibed in this secti on provide the bas i c
too l s re quired f or many appli cat i ons that
ar e beyond the capabi lity of a s ingl e-task
s ystem . These inc lude many
telecommunicati on appli cati ons t hat woul d
otherwise be impracti cal without a
spec ia lly designed c ontrol program . The
same fac i l ities c a n als o be us ed f or more
conventional a pplic ati ons . They enabl e the
programmer to desig n high ly effic ient
produc tion programs that , when execut ed,
r esult in a high degree of res ource s harin g
among conc urrent tasks .

Tas k Management 5 9

At a System/36 0 Operating System
insta llation , the actua l work of process ing
dat a is performed by the computing sy stem
under c ontrol a nd d i rect i on of the
superv is or . However , before any wor k can
be performed by the system, it must be
s chedu led and init iated by either the
ma ster scheduler or the j ob s chedu ler . The
mast er s chedul er is used by the oper a tor to
schedule and i nitiate the work performed by
t he j ob s chedul er . The j o b scheduler , i s
used to read , i nterpre t , sch edule ,
i niti at e , record out put for, and terminat e
t he steps of a serie s o f j obs that ar e
def ined and submitted f or process ing by t he
programming s ta f f .

In all configurat ions of the opera ting
syste m , the j ob schedu le r is des igne d to
process a continuous ser ies of j obs without
unnec e s sary de lays between one j ob or j ob
step and another . In the MFT and MVT
conf igurations of the operating s ystem, the
superv isor is capabl e of directing and
controlling the perf ormance of more t han
one dat a process ing task at a time . The
ma ster and j ob schedu le r s f or thes e
confi gurat i ons are des igned to take
advantage of this c a pabi lity , and by s o
doing increas e t he p erformance of the
system as a whole . Thi s i s accomplis hed in
two maj or ways : by schedul ing and
initiating the perf orma nce of more t han one
j ob at a t ime, and by performing j ob
support ta sks c oncurrently with t he j obs .

Non-Stop Job Proces sing

A j ob is the m a j or unit of work p erf ormed
by the operating s ys tem. Each j ob is
defined by a s eries of j ob control language
statements c oded by a prog rammer (s e e
Figure 4 6) . T h e j ob def inition i s provided
by a JOB sta tement c ontaini ng i nformati on
concerning the job, such a s it� name and
pr ior ity . ..

Each j ob c onsists of on e or more s te ps .
These are defined by the programmer and
arranged in the order in which they are to
be per f ormed . A j ob ste p is defined by an
EXEC st atement conta ining in formation such
a s the name of a program to be execut ed t o
perform t h e j ob st ep and (for MVT) the
amount of main storage s pace requ ired t o
execute t h e program . T h e specified program
may be a problem s tate program suppl ied by
IBM , such as a language tran slator , or it
may be a problem s tate program creat e d by
t he u s er of the system , such a s a pa yroll
progr am .

Job Management

I BM 2 3 6 1 Core St orage , if i ncluded in a
system, is allo cated to a j ob step in the
sa me way a s proces s or mai n storage . A
programmer can request that either
proc e s sor storage or 2 3 6 1 storage , or both ,
be allocated for a spec ific job step .

Individual j ob de f inition s can be placed
one behi nd another t o f orm a cont inu ous
s eries or str eam o f j ob definit ions . The se
c a n the n be read by the j ob scheduler and
proces sed without st oppi ng the comput ing
syst em between jobs or j ob steps . If
operator acti ons are requi red for one j ob,
such as mounting tape reel s , thes e can be
perf ormed whi le the res ources of t he sy stem
ar e be ing used to proce s s other jobs .

F i gure 4 6 . Job De fin ition s

Any s et o f data that is proces s ed during
a job ste p must be identif i e d and def ined
within the definit ion of the j ob step us ing
a DD (data defin it ion) statement . 3 A
progra mme r may place i nput data to be
processed dur in g a j ob step wi thin the j ob
step def i ni ti on a nd def i ne the dat a as
being part of the common input stream.
Simi liar ly , output dat a produced dur ing a
job step can be defined as being part of a
common j ob output stre am . It can t hen be
print ed or recorded on a commonly shared
output device . As a re sult of def ining
data s et s in this way , no operator setup
de lays are i ncurred within a j ob step .
Also , any I/O device s that would otherwi se
have bee n re qui red f or the j ob s t ep are
availabl e for other purpose s .

Job Management 6 1

Pa ge of GC2 8 -6 5 3 4 - 3 , Revis ed J anuary 1 5 , 197 2 , By TNL : GN2 8- 2 5 1 2

I f a s er i es o f job s t e p def init ions are
to be u s ed r ep eat edly with l ittl e or no
change , a programmer can s tore and c at alog
them in a goc edur e l ibrary ma inta ined in
direc t acc e s s s torage by the control
program . Thereaft er , us ing s i nqle j ob and
j ob s t e p s t at em ents in an input stream , he
can d irect the job sche du le r to pi ck up t he
job s t ep def init ions from the proced ure
l ibrar y . I f necessary , the s ame job
stat ement can overr ide specificat ions in
the j ob step definiti ons pi cked up fr om the
proc edure l i brary. U s i ng this featu r e , a
sys t e m prog rammer c an pr edefine standard
types of j ob s that a re c ommonly perf ormed
at an inst all at ion . 6 , 7

By doing thi s , t he system programmer can
elimina te the need f or a ppli cati ons
progr arr�er s to redef ine standa rd j obs e ach
time they are p er formed . He can a l s o hel p
to en sure that the s ystem i s us ed
eff i c iently and cons istentl y .

The abil i ty to pr oces s a continuo u s
s er i e s of j obs a nd j ob s te ps with little or
no operator int erv ention i s an impor tant
chara cter istic of a l l c onfigura1: i ons of the
cont r ol program . By reducing the degree of
human partic ipa tion in the mechanics of
data proces sin g , t he operat ing s ystem
ensures that jobs are proc e s sed faster and
are l e s s s ub j ec t t o huma n error.. As a
res u lt , the total volume o f work per f ormed
by the sys tem can be i nc re a s ed.

Multiple-J o:b Pro�cessing

Norma l ly , the s t eps of a data proces s ing
job are log ica l ly re late d to one anot her to
produ ce a s p eci fic end resul t . In most
ca ses , the s teps of a j ob must be per formed
in a particul ar s equ ence s ince output
produced by one sbe p often s erves as input
to a su cce edin g s t ep . For exampl e , a
typic a l job may c ons ist of the fol low ing
three steps :

• Transla ting a s ource program i nt o an
obj ect p rogr am .

• Linkage �editing the obj e ct progr am to
prod uce a prog ram suitable for loading
i nt o main stor age .

• Loading an d execut ing the p1:-ogra m .

E ach o f the se s te ps i s a necess ary part
of the compl et e job . They cannot be
performed in a ny o·ther s equenc e . Be c au s e
the st eps wiithin a s ingl e j ob ma y be
dependent upon one a nother , th ey are always
perf ormed in a s equent ial or der . Ste p s of
different j obs a re not dependent: u pon one
another , theJrefore , the y c a n be perf ormed
concu rrently . In most computi:n9 s ystem s ,

6 2

jobs and j ob step s are per formed one a t a
ti me i n a fi xed s e quenti al order as s hown
in part A of F i gur e 4 7 . No ma tter how
sma l l the j ob or h ow l arge the s ys t em all
of the r e s ources of the sys t em are t ied up
unt il the step is comp l e ted .

Wit h an MFT or MVT control program ,
the se same j obs c a n be r;erformed either
s equ entiall y (as s hown in part A of Figure
4 7) or , if enough re sour ce s a r e a va ilable ,
c onc urre ntly as s h own i n part B of Figure
47 . In the l atter in stance , any one job

rna y ta ke l onger t o pe rf orm becaus e it may
be t empor aril y dela yed from time to time
a wa iti ng a res ourc e current ly being u s e d to
per form other job s . However , bec ause the
re source s a re sha red am ong several j obs ,
the r ate at which the j obs as a whole are
performed is s i gn if ic antly increa sed ,
re s u lting i n a greater tot a l t.hroughput .

Each j ob s tep is actual ly a task that
can be per formed concurrently with other
ta s ks , i nc ludi ng ste ps of other j obs , under
management of the control progra m . The
c ontrol prog ram (b oth MFT and MVT) can
in it iate and supervise the concurrent
perf orrra nce of up to 1 5 steps o f diff erent
jobs .

Step 1

A. Sequential Job Processing .

Job 1

Step 2 Step 3

Job 2

Job 5
,.-----"----[Step 1 Step 2

Job 4
r-------�------- r---------------A-----------

Step 1 Step 2 I Step 3 Step 4 �
Job 3 Job 6

,.-------A---

- 1 Step 1 �
Time

B. Concurrent Job Processing

Fig ure 4 7 . Sequenti a l and Concurrent Job
Proces s ing

A set of data in direct acces s storage
can be s hared concurrently among severa l
jobs provided it is not ch anged in any way
by the j ob s that are shar ing i t . Whe n the
contr ol prog ram e nc ou nte rs a j ob that will
change a data s et , it prevents pos s ible
c onf licts in the use of data s et by
del aying init iat ion of the j ob u nt i l all
pr ev ious j obs that use the data set a re
c omple te d . Si mi lar ly , i f a job t hat

c hanges a data s et i s being performed , any
succeeding jobs that use the data set are
not initiated unt i l the current j ob i s
completed . The control program c an al so
dela y the initiat i on and progres s of low
pr ior ity j obs in favor of hi gher priority
jobs.. In a l l other re spects , j obs are
performed independently of one another and
the c ontrol program rec ogni z es no direct
relationshi p between one j ob and another .

Multiple- job proc essing i s particul arl y
suited to data proce ssing i nstallation s
with a high volume of work and a l arge
nUmber of resources . It enables a l arge
s ystem to perform small jobs as well as
large j obs effic ie nt ly , and to run j obs
with complementary re source requirements
concurrently,, thereby i ncrea sing
throughput . It a ls o allows a gradual ,
systematic expans i on of hardware re sources
without reprogrammi ng . Wi th multipl e - j ob
proc e s s ing , an insta llati on can achieve a
high degree of productivity by optim i z ing
the s ystem for particular classes of work
and c ontrolling the mixture and load of
work .

Concurrent Job Support Tasks

Job def initions ., a nd any i nput data that
accomparties them in an i nput stre am , ar e
usua l l y submitted f or proce ssing in the
form of punched card s . Also, much of the
job output data normally end s up in printed
or punched card form. In many
insta llations (particularly large one s > ,
the re lative ly s low printing and pun ched
card operations are pe rf ormed by a small
offline computer that speci ali zes in data
transcr iption . Although thi s can improve
job process ing eff ic iency by not tying up
the main computing system wi th l ow speed
I/O operations , it c an signi ficantly
increase job turnaround time . Typic all y ,
at s uch a n insta llat i on (Figure 4 8) the
following steps are perf ormed when
proc e s s ing jobs :

1 . The jobs , in punched card form , are
normally arranged i n pri ority order .

2 . After enough j obs have been
accumulated to f orm a batch, they ar e
trans cribed t o magneti c tape .

3 . The batch of j obs on the tape i s
manually schedu led and then proce ssed
on the centra l computi ng s ystem .

4 . After a batch of output data ha s been
recorded on a tape by the centr al
computing s ystem, it is manuall y
scheduled and the n converted to
printed or punched card form or a
combination of the two .

5 . The printed a nd punch ed card output is
manua lly s orted i nto vari ous clas s es
and d is tributed to th e indiv idu als
that submitted the j obs .

Job
Processing
Waiting
Line

Figure 4 8 . Off li ne Peri ph eral Operations

Each of these ste ps i nvolves
cons iderable huma n activity and attendant
delays . To avoid c onf usi on and
inefficienc y , the total proc es s requires
tight supervisory c ontrol and coordination .
In such a process , pri ority j obs can be
accommodated only with di fficu lty or los s
of effic ienc y . A s a result , turnaround
time at s uch an i nstallati on is measured in
hour s and da ys .

To avoid such problems at MFT or MVT
insta l lations , ope rati ons such as reading
job a nd data cards and pri nting j ob output
data , are pe rf ormed by the control program
as separa te tas ks , c oncurrent ly with other
wor k . As a res u lt , j obs can be process ed
automatica lly , from begi nning to end , on
the centra l c omputi ng syst em. Thus , the
delays a nd human activiti es i nvolved in
us ing off l ine s ystems are avoi ded and
turnaround time is reduced s i gnif ic antly .

Job Management 6 3

At MFT a.nd MVT insta l lati ons the control
program ca:n read j ob def ini tions and data
from one o:r more j ob input streams and
record j ob output data on one or more
o utput devic es , whi le i niti ating and
contr olling the perf ormance of one or mor e
j obs . As j ob de finiti ons are read and
interpreted , they are placed in an input
work queue located in di rect access
storage . .Als o , as the j obs are being
performed , output data f rom the j obs i s
p laced in an output work queue . The input
and output work queue s are roughl y
equivalent to the waiti ng li nes for j ob
proc e s s ing and output c onve r si on shown in
Figure 4 8 . However , the i nput and output
work queues are automati cally maintained in
d irect access storage by the control
program and are an i nteg ra l part of the
syste m . Thus , one j ob need not await the
comp letion of a long seri e s of preceding
job s .. As s oon as one j ob i s placed in an
input work queue , it can be initiated by
the c ontrol progra m. As soon a s the job is
completed , any output data it pl aced in the
o utput work queue c a n be rec orded .
There f ore , turna rou nd time can be reduced
from days or hours to minute s ..

The MFT1 and MVT Job and Master

Schedule:�:� a

The j ob and master schedulers control the
concurrent proces s i ng of j ob and j ob
support tas ks . The MFT and MVT j ob
schedulers are divided i nto three ma j or
parts : the reader /i nterpret.er,
initiator/terminator , and th e output writer
(Figure 4 9) . Howeve r , e ach pa.rt can be
executed concurrent ly wi th and
independently of the others a

The reader/interprete r program re ads
jobs and j ob step de fini ti ons from an input
stream , ana lyzes the def i ni t:ions , and
places them in t.he i nput work queue .

The initiator'/termi nator program sel ects
a j ob from the input work queue and
init iates the job and each of its ste p s .
Once a j ob step i s initi ated , i t i s
performed a s a separate ta sk under the
control and di rect ion of the supervi sor .
While each job step task i s being
performed , output data may be generated and
placed in the output work que ue in d irect
acc e s s storage . The i ni ti ator/termin ator
terminates the �job and each of its step s as
the y are complet.ed , and ini tiates a new j ob
step .

The out.put writer prog ram reads data
from the output work que ue and record s it
on an output devic e such a s a printe r or
card punch .

6 4

T he rea der/interprete r, the
in it ia tor/terminator , and th e output writ er
programs a re a l l e xecuted i ndependently of
one another to perf orm sepa::r·at e and
dist inct ta s ks . Theref ore , at any one
time , any one or a ll may be act iv e and each
ca n be started or st opped i ndependently of
the others .

T he ma ste r schedu le r s erves as a two-way
communica tions li nk between the operator
and the system by way of the operator ' s
console . It is used to relay mes s ages f rom
the system to the ope rator, to execute
commands , and to re s pond to replies f rom
the opera tor . The ope rator is prov ided
with a full set of c ommands which he can
us e to sta rt a nd stop j ob s chedu l ing tasks ,
log opera tiona l i nf ormati on, monitor and
contr ol the proge s s of work perf ormed by
the system , a nd re start th e syst em aft er a
shutdown .

Opera tion of the system can be pl anned
in advance a nd operator commands pl aced in
a j ob input stream. From there t hey are
relayed to the master s ch edu ler f or
execution as they are e ncount ered by the
reader /inte rpreter . Si nce the oper ator can
also ente r c omma nd s by way of t he
operator ' s c ons ole , he can dynamically
contr ol the ope rati on of the s ystem to
react to c onditi ons th at develop whil e it
is opera ting .

By issuing c ommands to the master
sc heduler , the operator can st art or stop
reader/interpreter tasks ,
in itia tor/te rminator t as ks , and output
wr iter ta sks , bas ed on the type of work to
be p erformed and the avai labi lity of
resource s to perf orm i t . At t he beginning
of a work period , an operator may st art on e
or mor e reader/interpreter t as ks . Then,
after a number of j ob definiti ons have been
p la ced in the input work queu e , he c an
star t one or more i ni ti ator/t erminator
ta sks . At any poi nt , he can s top any of
the reader/i nte rpreter tas ks thereby
relea s ing the ir a s sig ned I/O and main
storage resources f or allocati on to j ob
step ta sks . The n or later, the operator
ma y start one or more output writer t asks
to rec ord the output data s ets produced
when the j ob steps are performed .

Any reader/i nte rprete r and output writ er
ta sks that are t o be perf ormed at an
insta llation are def i ned i n much the s ame
wa y a s a s ing le step j ob i s defined . Thes e
def initi ons are cata loged i n a procedure
l ibrar y where they are avai lable f or use in
in itiating a reader/i nterpret er or output
wr iter by operator c ommand . Any number of
ta sk def initions c a n be cataloged . Each
ca n de fine a reader/i nterpreter or output
wr iter ta sk having a uni que s et of
character istic s . For exampl e, t he

Master
Scheduler
Task

Data

Messages

\
\ \

\
\
"

I \
/ '

/ '

Job Step
Task(s)

Work Queues

Data

Data Definitions

Card
Punch Units

and/or

Printers

Job Scheduler �
Figure 4 9 . The MFT and MVT Job Master Scheduler s

reader/interpreter task de finitions c an
spec ify dif ferent device s and di fferent
data set options ., as we l l a s different
default options to be used when
inter preting job or j ob step definition s .

Many o f these s pecifi cati ons c an be
overr idden and res pecified when the
operator starts the task . Thus , the
insta l lation staff i s provi ded with a great
dea l of flexibi lity in defi ning the
c haracteristics of the reader/interpreter
and output writer task to be performed .
FOr e xample , s pec ia l ta sks that sati sfy the
unique requirements of a particul ar
department or a part icular cla ss of j obs
can be defined .

At MFT and MVT i nsta l lati ons , up to 1 5
in itiator/terminator tasks c an be started
to control the initi ati on and termination
of up to 15 c oncurre nt j ob s . A t a n MVT
insta llation., a ny nu mber of
reader/ interpreter a nd output writer task s
can b e s tarted provided enough resource s
are availab l e . At an MFT i nstall ation , the
number of concurrent re ade r/interpreter
tasks is limited to thre e , and the number
of output writer t a s ks i s limited to 3 6 .

Job Priorities

so far as job management is concerned, the
ma in difference betwe e n an MFT and MVT
contr ol program has to do with t he way in
which priority is assigned and main storage
space is a ll ocated .

At an MFT or MVT i nstal lati on, each j ob
that is submitted f or proc es s ing c an be
ass igned a s pec ific pri ority relat ive to l other j ob s . 4 It c a n a l s o be as s igned to any
one of severa l c lasses of jobs . When the
job def initi ons a re re ad by the
r eader /interpreter they are plac ed in the
input work queue i n acc ordance with their
a s s i gned c la s s a nd pri ority. A s eparate
input queue is mai nt ai ne d f or each c l ass
a s s igned to the j obs . Withi n each input
queue , the j ob def i niti ons are arranged in
the order of their pri ority . Output dat a
produced during a j ob step c a n be ass igned
by the programmer to any one of up to 3 6
different data output c l as s es def ined at
the insta l lation. Whe n an output writer
ta sk is started it c an be as s i gned to
process from one to e ight di f f erent cl ass es
of output . A particular output cl ass may
repr esent such thi ng s as the priority of

Job Management 6 5

the da·ta , �the type of devi ce 1:.hat may be
used to record i·t , or the location o r
department to which i t i s t o b e sent .

In an M:I?T ins·ta llati on, any main storage
space not Jreserved f or u se by the con trol
program is logica lly divided as s pec ified
by the ope:rator :into parti ti ons o f various
s i ze s . Each pa rtiti on i s a s signed by the
operator for use i n pe rf ormi n9 e ither a
reader/interpreter or output writer t a sk or
a particula r c la s s of j obs . The priority
of a j ob sit.ep tas k i s de termined by the
part ition 1t.o which it i s a ss i 9ned . Each
part ition is a s s igne d by the operator to
one , two , or three c la sses of j obs .
Whenever a new job i s i ni ti a te�d it i s
directed t o (or :is a llocated) a parti tion
that was a s s i gned to its j ob cl a s s . The
operator can change the j ob class or
classes to which a p artiti on i s a s signed ,
and thereby contro l the mi xtw�e of j o bs .
In addition ., s ince e ach pa rti·t:ion i s
a s s igned a s pec ific pri ori ty , h e c an al so
contr ol th1e priority assigned to eac h cl a ss
of j obs . 6

6 6

I n a n MVT insta llati on, any ma in s torage
space not re served f or th e control program
s erves a s a pool of storag e from which a
r egion is dynamica lly all ocat ed by the
control prog ram t o e ach j ob s t ep or j ob
support ta sk as it is i nitiated. The s iz e
o f the region t o b e a l locat ed t o each j ob
step is s pec ified by the programmer in the
job or j ob s tep def i ni ti on. The priority
of a j ob i s a ls o s pec i f i e d by t he
programme r . When an i niti ator/t erminator
ta sk is sta rted by the operator , it c an be
ass igned to initiate j obs from one through
e ight input work queue s . By c la s s ify ing
jobs a nd a ss igni ng i ni ti at or/t erminators to
initiate s pec ific c lasses of j obs , it is
pos s ib le to c ontrol the mixture of
concurrent j obs ; thus , j obs with
comp leme ntary res ource requirements can be
p er formed c oncurre nt ly . For example , one
in itia tor/terminator c an be as s igned to a
cla s s of j ob s requiri ng a great d eal of CP U
time a nd little I/O whi le another
initia tor/terminator is as s i gned to a cl as s
r equ ir ing little CPU time and a great deal

l o f i /0 . 7

Except for human res ources , recorded
information is the s i ng le most valuable
resource of an insta llati on. Information
serves as a rationa l ba s i s for controll ing
the activities of an e nterpri se and f or
making dec i s i ons u pon which its s ucce s s
depends . · I n ma ny e nte rpri ses, more money
is spent in gathering and storing
information tha n in processi ng it . Yet ,
most are barely begi nning to tap the
potential uses of the i nformation re sources
in which they have so heavi ly invest e d .

The C entralization and Growth of

Information

Over the last few ye ars , most of the basi c
accounting , record keepi ng , and problem
solving activities of the typical large
enterprise have bee n computerized . As a
result , much of the basi c i nformation of
the enterprise has accumulated at one or
more central data pr oce s sing install ation s .
Along the way,, a gre at deal of information
that was once recorded on punched cards and
paper was transcribed in a more conden sed
form on magnetic tape s, di sk s, and drums .
Although the s pace required to store
exist ing informat ion has been reduced , the
amount of informat ion conti nues to increase
at an explosive rate that threatens to
overwhelm those who strive to manage and
use it effective ly .

Problem of Growth and

C entralization

The lack of an effective system fo�
manag ing the ma s s of i nf ormation at an
insta llation often c ause s a great de al of
dupl ication . It i sn ' t unusua l , for
example , for several nearly identical sets
of information to be independentl y created,
stored , and ma inta ined . Thi s causes severe
problems in keeping the information
up-to-date and in c ontrolli ng its use .
Without effective c ontrol over the use of
information ,, users tend to gather and
ma intain their own i nf ormation and avoi d
conso lidating and sharing i t in cooperative
ventures . As new i nf ormati on accumul ates ,
much of the obso lete inf ormation remain s
and the operations staff finds it hard to
cope with the mass of i nformation with
which they are entru sted .

Because there is no vi sible evidence o f
magnet ically recorded informati on , the
operations sta ff is usua lly forced to

Information Management

ma inta in elaborate rec ords on paper in
order to c la ss i fy., c atalog , and locate
information, control i ts us e and
disposition, 'and f i nd and as s i gn s pace for
storing it . Such eff arts are subj ect to
human errors , change s i n personne l , and
other problems that often aris e in human
act ivitie s .

Opportunities of Growth and

C entralization

Although the growth and centra li z ation of
information at data proces s i ng
insta llations c reates management prob� �s ,
it a l so c reates opportuniti es . When data
is centra l i zed , a l l of the important
records on which the d ay-to- day act ivities
of an enterprise de pe nd can be combined ·

into a single mas s of i nf ormat ion . Us ing
mathematical and programmi ng t echniques it
is possible to derive f rom this mass new
forms of inf ormati on s uch as reports and
statistic s f or ma nagement i nformation
s ystems . In other words , the same
information that i s re qui red for
trad itiona l acc ou nti ng and problem s olving
activitie s can ofte n be us ed as an
information base f or newer and more
imaginative wa ys of running a bus iness or
sc ientif ic enterprise .

Requirements for a Unified

Information Management System

To solve the prob lems that res u lt from the
gr owth and centra li zati on of data at an
insta l la tion and take advantage of the
opportunities it provi des requires a
unif ied inf ormati on management system .
Because re quire me nts dif f er widely from on e
insta llation to a nother or from one
appl ication to anothe r , IBM does not
provide a sing le s ystem that will s olve th e
information manage me nt problems of every
insta llation . It d oe s , however , make it
pos s ible f or any i nsta llati on to develop an
or gani zed and eff icie nt i nformat ion
ma na gement s ystem to meet its own
particula r needs . It does this by
pr oviding :

• A consistent way of organi z ing data .

• A bui lt- in library reference system for
use in locati ng d ata.

• A combinati on of methods for storing
and retrieving d ata. ·

I nf ormati on Management 6 7

Data Set

Block 2 Block n

Record 1 Record 2 Record 1 Record 2 1 Record n Record 1 Record 2 Record n

� ,.--A---,. � ,.--A---,. { � � ,......A-.. ,......A-.. �rT �- ,�.f� . . i:] ____ r u :: .;. :J ===��

Tape Reel
Volume

Disk Pack
Volume

Other
Volumes

Figure 5 0 . Data Org ani z ati on

Data Orgc:a.nization

A bas ic requirement of a uni fi ed
information manaqeme nt system i s that the
data be organi z ed in a c onsi st.ent manner .
Otherwise , the data cannot be eas ily shar ed
by a community of users , nor can the
activities of proc e s si ng programs be
coord inated with those of the c ontrol
programs . In many r e s pe cts ·the c ontrol
progr am usE�s traditi onal methods of
or gan i zi ng data . The smalle st. divis i on o f
information that is normally o f conc ern to
the c ontrol program is a record (F igure
5 0) . A record is f ormed of one or more
f ields recorded in an unbroken serie s , and
usua l l y represent.s an organi :z:ed body of
related dat:a , such a s a l l of t.he bas i c
accounting inforiMti on c once rning a s ingl e
sales transacti on . A f ield us ua l l y
represents a s i ng le item of informat i on ,
suc h a s an account numbe r, the name o f a
per s on , or the c a lcu lated i nterest on a
loan . In any evE�nt , such da ta f ield s are
not s ingled out or recogni z ed by the
contr ol progra m.

The operating s ystem can store and
r etr ieve rec ord s that are all the s ame
length or that differ in l ength (Figure
51) . If the rec ords are of di f fer ing
lengths , a f ie ld at the begi nning of each

I recor d must indicate h ow l ong the record
is , a nd a f i e ld precedi ng th<e first record
of each b l oc k must i ndi cat e the length of
the c omplete bloc k . These two f i elds ,
indica ting the rec ord and block lengths ,
ar e used by access meth od rout i nes in
extracting records f r om a block. If the
lengths of the rec ords of a block are not
def ined , the c omplete block can still be
stor ed or retrieved by the control program .
However , a ny c ons o lid ati on o:r extract i on o f
r ec ords must necessari ly b e done by the
user program that process es the records .

Fixed Length

Variable Length

Unspecified Length
One record or s everal rec o:r:ds grouped

together in an unbroke n se ri es form a
block . A bloc k of d ata i n a uxi l i ary
stora ge is separated f r om another bl ock by
a gap in the data , a nd is transferred to or
from ma in stora gE� as a uni t . Record s may
be grouped together to f orm a block because
they repres ent a log ical entity.. Or they
may s imply be grouped together to avo i d
wa sting auxi liary st orag e s pace o r to
reduce the nurnbe1: of se parate data
trans fers .between ma in a nd auxi l i ary
stora ge .

--- - - --- - - - --,

6 8

I
-·---- - - -- __ __J

F i gur e 5 1 . Data Rec qrd Formats

In the case of vari able-l ength records ,
a s ingle rec ord c a n be divi ded int o
segments , with each segment cont a ined i n a
separate b l oc k (Figure 5 2) . A record can

Record 1 Record 2 Record 3 Record 4

� �--------J---------� r------------------�'�-------- ---- �
Segment 2 Segment 1

��

Block 1 Block 2

Figure 5 2 . Spanned Variable- Length Recor ds

thus be longer tha n a b l ock , and may in
fact span s evera l b l ocks . As a resul t ,
block length can b e defi ned i n such a way
as to optimi ze the u se of auxil iary
stor a ge , without reg ard to record length .
No special progra� ng i s necessary to make
use of s panned record s , but programs can be
wr itte n to process e ithe r complete re cords
or record s egments . Each segment contain s
a f ie ld that def ine s it length and i t s
relat ive position withi n the rec ord . The
f ield indicates whether the segment i s the
f irst s egment , the last segment, or a
midd le segment , or whether the segme nt is a
record complete in itse lf .

One or s evera l re lated b l ocks of d ata
separ ated by gaps f orm a data set or , as it
is often ca l led� a d ata fi l e . Each s e t o f
data repres ents a n organi z ed body of
related information, such as all of the
information concerni ng a series or group o f
sales transactions . Data sets are u suall y
independent of one a nother, both log i cal l y
and p hys ica lly. The y may , f or exampl e , b e
s tore d in di fferent auxi li ary storage
volume s .

A volume is a secti on or unit of
auxil iary s tora ge s pace tha t is servi ced by
a s ingle read/write mech ani sm whose
oper ation i s ent ire ly i ndependent of any
other read/write mechani sm. In an
operating s ystem i nstallati on, a volume m ay
be :

• A reel of tape .
• A disk pac k..
• A data c e l l .
• A drum .
• A s ecti on of an IBM 23 0 2 Di sk Storage

(Model 3 or 4) servi ced by a s ingl e
read/write mec hani sm.

They are ca l led v olumes beca us e , l ike
collections of books , they store rel ated
sets of information (data sets) .
sometimes , like book s , they can be moved
from place to p lace (d i sk pack and t ape
reel volumes , for example) . O ften the
volume containing a particular s et of data

Segment 2 Segment n

�

\..__--v---'
Block 3 Block n+ 1

is located by s earchi ng through a series o f
indexe s , i n much the s ame way as a book in
a l ibrary is f ound . Als o, each direct
access volume c ontai ns a table of contents
def ining sets of d ata contai ned in the
volume a nd te l ls where they are l ocated .

Library Reference System

In a medium or large s cale dat a process ing
or ga niza tion , kee pi ng track of dat a can be
a formidable undertaki ng . This is true in
or ga ni zations that attempt to take full
advantage of the be nef its offered by dir ect
acce s s stora ge device s .

At any one time a g re at many dat a s ets
or f iles may exist withi n the organiz ation .
T he bulk of these are us ually st ored on
magnetic tape or i n di re ct access storage .
Usua lly each programme r must keep track o f
the t a pe a nd direct access storage volumes
on which his data sets are stored . For
dir ect acces s storage volumes , he must als o
keep track of e xactly where on a volume his
data sets are loc ated .

Furthermore , the operati ons staff at an
insta llation must a s sign s pace for storing
data sets . The y may assign remov abl e tape
and disk pac k volumes to programmers and,
in the cas.e of direct access s torage
volume s , the y may als o ass i gn s pec ific
ar ea s of storage on parti cular volumes . I n
a n y event , the operati ons s t a f f must
ma inta in up-to-date records on t he
as s ignment of s pace f or stori ng dat a and
must systema tica l ly c ont rol its u s e and
disposition .

Over a period of ti me , as new dat a s ets
ar e crea ted a nd o ld d ata s ets are
abandoned , the problem of managing the data
ma s s bec omes more severe . This happens not
only beca use of an i ncre as ed number of data
sets (both c urrent and obs ol et e) but als o
because human bei ngs become t o o much
involved in the mecha ni cs of managing data
and more sub ject to error. As a result ,

I nf ormati on Mana gement 6 9

data sets may be destroyed at times because
o f mi xups i. n s pace a ssig nments , and
programmers may aband on instal lation
procedure::; , ma int.ain the i r own private
library of removab le volume s , and avo id
shar ing storage s pace and data with one
another .

Another prob le!m f acing many
insta l latie�ns is the problem of us ing
direct acCE!SS storage efficientl y . Af ter a
time , availab le s pace on sha red dire c t
acc e s s s torage volume s tend s to become
fragmented , and a great dea l of s pace i s
wa sted . Ye!t any a ttempt o n the part o f the
operat ions sta f f to reorgani ze and
consol idate! the clata set s on the vol ume s
can be a di fficult u ndertaki ng involving
many individua l user s .

Be cause o f such problems , the operating
s ystem cont:ains cl bu i lt- in libra ry
refer ence s ystem t hat is used to cla s si fy
and l ocate data sets and a l locate sp ace for
stor ing the�m. In ma ny way s it resemble s
libr ary reJ:erence systems that. are used to
locate information i n book libraries . In
the operating s ystem, the cont.rol progr am
a ssumes the ro le of the librarian . G iven
the name of a dat.a set, it can identify the
vo lume cont.aining the data set. and then
locate its pos ition within the volume
provided , of course , the data set ha s been
stored and cata loged wi thi n the l ibrary
reference s ystem ..

To do this , the c ontrol p rogram s e arches
through a �::ata log c onsi s ti ng of a hierarchy
of indexes mainta i ned in di rect acce s s
stor age (Fi gure 5 3) . :1. 3 The cat:a log not only
serve s to direct the c ontrol program to the
volume containing the data set: , it al so
serve s to c:::la s s i:Ey the data SE!t. A·t any
given time there may be a great many data
sets stored in auxi liary storage .
Therefore , the system mu st ensure th at no
two d a ta sets ha·ve the same name . Thi s i s
accompl ished b y ad opting a met:hod of
c lass if ying and cata log i ng data sets that
is s imilar to the Dewey deci mal
c lass if ica·tion method used to classify and
cata l og books in a library . Instead of
numbers , alphameric name s of up to e ight
c har acters are used to i denti fy a set of
data . With this method , a data set name
may be ref.erred to as :

DES IGN . ELECTRO . ROBERTS

where ROBERTS is the ba sic name of a data
set that is c la s s i f ied under the name
ELECTRO that , in tur n , i s classif ied under
the name DESIGN . The ma j or cla s s name and
each subclass name of a data set
corres ponds to an index in the catal og . By
searc hing through the corre sponding maj or
c la ss index and each c orresponding subcl a ss
inde x , in turn , the c ontrol p:['ogram c an

7 0

ident ify the seria l number of the volume in
which a data set i s stored and , if
neces sary , instruct the operator to mou�t
the volume on an a ppropri at e device .

Once the c ontrol pr og ram i dent if ies the
volume in which a data s et i s st ored , it
can loca te the positi on of the dat a s et
within the vo lume . At the beginning of
each direct acces s v olume in t he system is
a volume labe l that di rects the c ontrol
program to a tab le of contents (Figure 5 3) .
The table of c onte nts contains t he name,
descr iption , and l oc ati on of each data s et
stor ed within the volume . By reading and
searching through the tabl e of contents ,
the c ontrol program c an f i nd t he loc ation
of a data set .

T he table of c ontents of a volume also
conta ins a record of e ach unus ed area in
the volume . The rec ord cont ai ns the
location of each are a and its s iz e .
Therefore , by searchi ng through t he tabl e
of conte nts , the c ontrol program c an
automatic a l l y f i nd and all ocat e u nused
space on the volume f or th e 'temporary or
long term storage of data s e·ts .

A tape volume d oe s not contain a t abl e I of contents . However , each data s et is
ass igned a sequence number when it is
cr eated . Us ing this sequenc e number, the
contr ol program c a n locate a part icu l ar
data set on the tape and advance the tape
to the beginning of th at data s et .

No distincti on is made wi t hin the
librar y refere nce system as to the type of
data c onta ined in a volume . Dat a is stored
in the same wa y whether it is a s et of j ob
contr ol s tatements , a s ource program, an
ob ject prog ram, or a set of data bl ocks to
be proce s sed by an ob j e ct program . The
only distinction among th e di fferent types
of data is in the nature of the dat a its el f
and the way in which it is us ed.

Most of the data sets that make up the
operating system a nd that are us ed by the
operating system in perf ormi ng its work ar e
cata loged withi n the library ref erence
system . Onc e the ope rating system is
generated , a syste m pr og rammer can extend
the cata l og usi ng system uti lity programs
spec ifica l ly provided f or that purpos e .
For example , he c a n c onstruct a c at al og
consi sting of seve ra l levels of i ndexes ,
and when more data sets are creat ed , he can
extend the cata log to ref l ect this growth .
The cata l og structure f or a particu l ar
operating system may be repres ent ed in the
form of a cha rt , as shown in Figures 53 an d
54 . The data sets that are cata loged can
be c la ssified in many di f f erent ways -- for
example , to ref lect the organi zat ional
struc ture of an engi neeri ng department that
us es the system .

Figure 5 3 .

r-�
See Figure 56

To Other I ndexes

Generation Data Groups

Simp lified Diagram of Catalog System for Locating a V olume

I nf ormati on Management 7 1

Although the highe st leve l index of th e
cata l og is a lways s t ore d on the direct
acces s volume c ontaini ng th e operating
system control program, branches of the
catal og can be stored on other direc t
access volumes , inc luding removabl e
volumes . For example , the index named
DES IGN in Figure 53, as we ll as any
subc lass indexes , c ould be sto:red on a
removable dis k pac k that i s ass igned for
exclus ive use by 1:he de sign d«�pa rtment.

In addition to c atalogi ng singl e data
sets in the library re ferenc e system ,
sever al success ive generati ons (update s) of
a data s et {ca l led a generation data group>
can be cata loged . 3 Thi s meth od c an be used
to c atalog a data set, such as a
year -to-dat e earni ng s data s et, that i s
updated weekly b y a payroll program. Each
gener at ion of the data set ma�y have the
same name and be ide ntif ied n�lative to the
current genE::rat ion of the data set . With
this method of cata loging , th«� system can
automat ica l ly keep track of the gene rations
that have bE�en cre ated., and delete obsol ete
gener at ions as new one s are created .

A s peci a l type of di rec t access data
set , called a part iti one d data set c an al so
be cataloged (Figure 5 4) . 1 0 Thi s type of
data set is us ed primari ly to store
programs , and is 1:he ref ore often referred
to as a proqram libr ary . It ha s its own
index , call ed a dire ctory, which is u sed to
locate one or more seque nti al blocks of
data (cal led members) that a re store d in
separ ate pa rtitimlli of the data set.. The
ma j or us e of partiti oned data sets i s
descr ibed i n the s ection ti tlc�d " Program
Development and Management . "

The library re fere nce system for
locat ing (and ass igning space for) d ata
sets makes it pos s ib le f or programme r s to
eff ic iently s hare the use of di rect acce s s
storage devices with a mini :mwn o f
inter ferencE� . T o he lp e nsure effic ient
shar ing ., thE� s yste m programmer i s provi ded
with a comprehensive set of system util ity
programs wit.h which he can control the
class if ication of data and the use of
direct access stm::age . 'Ibese program s can
be used to create ., re name , or delete
indexes and data s et s ; to reorgani ze and
rearrange a library of data set.s ; and to
conduct sur"eys of the organizati on and
contents of direct: acce s s stoJrage • 1 5

Methods of: Storing and Retrieving

Data

There are tvm rna jor type s of auxiliary
storage devices c ommonly used in computing
s ystems : s E�quent i a l acc ess devices and
direct access device s . A device is

7 2

cla s s ified a s one or the other depending on
the way it stores or retri eves blocks of
data .

Volume S of
Previous Figure

Volumo Toblo of Contenh ~

Data Set

Design • Electro • Roberts
Data Set

A Partitioned Data Set = tiii
Figure 5 4 . S implified Di agram of C atalog

s yste m For Locating Dat a sets
Withi n a Di rect Access Volume

Because a seque nti al access device, such
as a ma gnetic tape uni t , stores or
retr ieves a pa rticular data block in a
s er ie s , it must scan through a ll
intervening data b l ocks . This is both
time-c onsuming a nd wasteful of res ources .
Therefore , seque ntial access dev ices are
seldom used when it i s nec es s a ry to
retr ieve or s tore parti cul ar blocks of dat a
in a non- sequentia l order. However , they
ca n be used with a gre at deal of efficiency
when storing or retrievi ng a succ ess ion of
data blocks in a f ixed s e quenc e.

A direct acc e s s devi ce can retrieve a
part icula r b l oc k of a data s et more
directly . Theref ore , it can be u s ed in
appl ications where it is neces s ary to
retr ieve or update parti cu lar dat a blocks
in a non-sequenti a l orde r. A direct access
device ca n a ls o store and ret rieve a
continuous series of data blocks , often at
a fa ster rate tha n a s e quential access
devic e . The ref ore , a di rect access devi ce
is frequently used f or both di rect and
sequentia l proc es s i ng of data blocks .

To he lp an installati on us e t hese
device s effective ly , th e operat ing system

provides f ive bas ic meth ods for storing and
retrieving data : 1 o

• The Basic Sequential Access Method
C BSAM) , which store s or retrieve s data

blocks in a continuous sequence u sing
e ither a s eque ntial or direct acc e s s
device .

• The Bas ic Direct Access Method (BDAM) ,
which directly retri eves or update s
particular b lock s of a data set on a
d irect acc ess device .

• The Bas ic Indexed sequential Acce s s
Method CBISAM) , which di rectl y
retrieves o r update s particul ar block s
of a data set on a di rec t acces s
device , using an i ndex t o a utomatical ly
l ocate the data set . The index i s
stored i n direct access storage along
with the data set . Other forms of th e
BISAM method c a n be used to store or
retrieve b loc ks of the same data set in
a continuous s e que nc e . Thi s method i s
used only with d irect access dev i ce s ,
and takes advantage of both their
sequentia l and direct access
c haracteristic s .

• The Basic Partit i oned Access Method
(BPAM) , which is usually used to store

or retrieve programs . It is des cribed
in the next sect i on •program
Development and Management. •

• The Basic Telec ommunicati ons Acce ss
Method (BTAM) , which i s used onl y in
teleprocess ing a ppli cati ons . Thi s
access method i s de scribed i n the
s ect ion " Te leproce s sing . "

The proper method to use in proce s sing
data depends on the nature and organ i zation
of the data and the nature of the
app l ication . For example, the indexed
seque ntial method c ou ld be used effectively
with data that must be updated and
interrogated quic kly , and periodical l y
proce ssed in a seque ntia l order (to prepare
a summary report , f or example) .

More than one method can be used to
proce s s the same d ata set, provided the
organi zation of the data meets the basi c
requirements f or each o f the methods used.
For e xample,, the seque ntia l access me thod
could be us ed to tra nscribe a data set that
is us ual ly proces sed usi ng the direct or
indexed s equentia l acce s s method .

In addition to the basi c acc e s s methods ,
the operating s ystem provi de s extended
vers ions of the seque nti al access method ,
the s equentia l f orm of the i ndexed
seque ntial access meth od , and the
telec ommunications acce s s method. The se
are :

• The Queued Seque nti al Access Method
(QSAM) ,.

• The Queued Indexed Sequent ial Access
Method (QISAM) •

• The Queued Te lec ommuni cati ons Access
Method (QTAM) •

• The Telec ommunic ati ons Acces s Method
(TCAM) .

QTAM a nd TCAM a re di scussed i n t he section
"Teleprocess ing . "

When QSAM or Q ISAM i s us ed , the system
takes advantage of the f act that they stor e
and retrieve b loc ks and records of a data
set in a known seque nti al order. It does
this by f orming i n mai n st orage a waiting
l ine , or queue , of i nput data blocks that
are awa iting proc e s s i ng . For output data,
it forms a queue of d ata blocks that have
been processed a nd are awaiting t rans f er t o
auxiliary storage o r an output dev ice . The
queues e nable the CPU to proces s one data
block while other blocks are being
transferred in or out of mai n st orage .

Data records f r om a block i n an input
queue are pa rc e l led out , one at a t ime , as
they are requested by th e program that
processe s the data . If an i nput queue is
empty when a record i s requested by a
program , then the c ontrol program
automa tica lly holds up furth er execution o f
the program unti l the next data block is
r eceived .

When a request is made by a process ing
program to store a rec ord, the record is
cons ol idated in an output queue with the
other rec ords of the block . If t he output
queue is f ul l whe n the request is made, the
contr ol program aut omati cally holds up
further processing of records unt il a bl ock
in the output queue h as been trans ferred.

Each ba s ic or queued access method has a
number of opti ona l or alternative
var iations , .such as dif f erent ways of
transmitting data rec ords to or from a
pr oce s s ing program. The options and
a lternatives differ with each met hod . 9· , 1 0

Defining Data, Access Methods, and

D evices

In order to use an access method to creat e
a new data set , the c ontrol program must
have three types of i nf ormati on. First, it
must have inf ormati on about the data s et ,
such a s the lengths of the records and
blocks that it wi l l c ontai n. It must al s o
have information o n the access method that
wi l l be used to c reate the data s et ,
inc luding a def i niti on of a l l the select ed
optiona l a nd a lte rnative variat ions of the

Inf ormati on Management 7 3

method , such as the si z e and organi z ation
of the output queue . Then i t must know the
type or class of I/O or storage device s on
which the data s et will be recorded o

When us ing the as sembler language , the
programmer can def i ne this i nformation
within his program at the time he de sign s
it,, or he can define it in a data
def inition (DD) statement of a j ob step
definition :just pr i or to submi t.ting h i s j ob
for processing . (As previ ously described ,
each j ob step defi niti on must contain a
data def init.ion statement for each data s et
that is us ed or created during the defined
job s tep .) There are a number of re a son s
why the proqrammer may want to defer
def ining informat i on until h e submit s h i s
j ob .

First , by withholdi ng i nf ormation on the
c har acteris1:.ics of the data set. and the
method to bE:! used to create it, he c an
c hange characteris tics and access me thods
eac h time the proqram is execut.ed . He can
do this merE:!ly by changing s peci f ication s
on the data def init i on s tatement before
submi tting 1:.he job f or proc e ssing , wi thout
c hang ing or reassemb ling the program .
Thus , a proqram that i s used to create a
data set can be inde pe ndent of the method
used to create it ., and the acce!SS method
can be varied from time to time depending
on c ircumstances . For exampl e , the s i z e of
the output queue used to create a data set
can be chanqed depe nding on how much main
stor age space is avai lable when the progr am
is e xecuted ..

De ferrinq the de f i nition o:E the device
on which a newly cre ated data set is to be
stored or recorded offe rs a number of
important advantaqes . Each time the
program is E:!xecuted , the data set th at i s
cr eated c a n b e stored or rec orded on a
different t�{pe or c lass of devic e . For
example , bejEore submitti ng his j ob the
progr ammer can ind ic ate on the DD statement
whether he '�ants the data set printed on an
online prin1:.er or re c orded on magnet ic
tape , on a [>articu lar di rect acce s s vol ume
or device , or anywhe re i n di rect acc e ss
storage . This ensure s that the program i s
independent o f any parti cular t.ype of
device .

Thus , if a part ic u lar ty pe of device i s
not available when neede d , anot�her type may
be se lected .. Als o , new types of devi ce s
may be added to the sy stem without
neces sarily c ha nging or rea s sembl ing the
programs . pevice i nde pendencg makes it
po ss ible to run the programs on d ifferent
comput ing s ystems having di f ferent
complements of I/O and di rec t acc e s s
stor a ge devices .

7 4

When the programmer uses the assembl er
language to des ig n a program , he mu3t
inc lude in the program any i nformation that
is needed to a pp ly an access met hod . When
he uses a high- leve l l anguage , such as
FORTRAN , to des ig n a prog ram, the
translator provide s i nf ormation and pl aces
it in the prog ram. However, t he high- l evel
language tra ns lator normally 11'1ithholds
certa in inf ormati on in order to ensure a
degr ee of device i nde pendence and
flexibility in the use of the program . Th e
withheld informati on is suppli ed in the
data def inition statement of t he j ob step
and can be redefi ned by th e programmer .

A data set a nd the access method
emp loyed to c reate or use it can have a
gr eat many va riati ons . Defi ning and codin g
their charac teristic s can be a rather
lengthy a nd pa i nstaki ng proces s .
Therefore , the contr ol program c ontains
fac i l itie s that c a n be us ed to avoid
repet itive definiti ons and coding e ach tim e
a data set is created or us ed .

One is a fac i lity f or cata loging j ob
step and data def i niti ons . If a s eries of
job step and data defi niti ons are used

repea tedly by programme rs , they c an be
stored and cata loged i n a procedure l ibrary
maintained in direct acces s s·torage by the
contr ol program . The re after, a progr ammer
ca n , us ing a sing le j ob and job step
statement in an i nput stream , di rect the
job scheduler to pic k up the job step and
data def init ions f rom the procedure
l ibrar y . If neces sary he can , in the s ame
statement , temporari ly ove rri de
sp ec i f ications in the j ob step and data
def initi ons pic ked up f rom the procedure
librar y . Thus a progr ammer need only
de f ine and c ode changes to a data
definition that are re qui red for his
particula r j ob .

T o further reduce re petiti on i n def ining
data sets , the c ontrol program stor�s a
descr iption of each d ata s et cont ained
within the s ystem. 11 When a new data s et is
cr eated , its desc ripti on is stored on the
same volume that c ont ai ns th e dat a set . I f
it is a magnetic tape volume , the
descr iption is stored in a da·ta s et l abel
that precede s the d ata s et . If it is a
direct access volume , th e des c ription is
stor ed in the tab le of contents of the
vo lume . In eithe r c ase , once a dat a s et is
cr eated it can be used and proces s ed by
dif ferent programs with out bei ng des cribed
aga in eac h time it is us ed.

Program Development and Management

Toda y , most data proce ssing installations
have two outstanding problems.. The f ir st
concerns a shortage of programming talent
and a continua l increase i n the number and
scope of new data pr oce s si ng appl ication s .
The second prob lem c once rns the effe ct o f
machine ma l functions o n a system . Be cause
o f the·se problems ., many data process ing
insta l lations f ind it diff i c ult to cope
effic iently with the work at hand . As a
result ,, the overa l l produc tivity of an
insta llati on often suf f e rs , and the
introducti on of important new appl ic ation s
is sometimes postponed i ndefinately.
Consequent l y , variou s processi ng programs
and recovery rout i ne s have been deve l oped
to c ope with these problems .

A Unified Program D evelopment

System

To he lp combat suc h problems , the operating
system provides a variety of faci l it i e s in
the f orm of proces s i ng programs that are
des igned to reduce the time , expense , and
manpower required to program new
app l ications .. For the most part,, the se
fac il ities cons ist of the language
trans lators and service programs , whi ch
were described brief ly i n a previous
section . Although e ach of these is
important in its own right, they are real ly
des igned to be used together. When
combined with the f aci li ti e s of the c ontrol
progr am , they s erve as a uni fied system for
deve l oping and ma nag ing the use of
programs . The overa ll obj ec tive of such a
system is to reduce the total time and
effort required to program and maint ain an
app l ication from the time it is conce ived
until it becomes obs olete .

A particula r applic ati on may be a shor t
one- s hot a f fair such as computing the
inter est on a loa n , or a large compl e x ,
long-running a pplic ati on that require s mo st
of the resources of an i nsta llation .
Therefore , the operati ng sys tem is de sign ed
to a s s ist groups of prog rammers work ing
cooperatively on a s ing le proj ect or
appl ication ., as we ll as indi vidual
progr ammers working inde pendently on many
different a pp licati ons .

The operating system provides such
a s s istance in four way s . Fi rst , it
provides a method f or de signing and
constructing programs and subprograms in
the f orm of replaceable parts, or modul e s .
This method , ca lled modular construc tion ,
is the s ame bas ic me thod that is used to

construct the operati ng system. second, it
provides means f or stori ng programs and
parts of programs i n org ani z ed l ibr aries in
direct access storage where they are
immediately ava i lable f or automat ic
r etr ieva l , yet a re sti ll subj ect t o
modification . Third , i t provi des means for
dynamica l ly loadi ng pr og rams and
subprograms into mai n st orag e as they are
r equired to perform tasks . Fourth, the
Chec kpoint/Restart f aci lity provides the
programmer with the means to prevent a
complete restart of a prog ram in c as e of an
error .

MODULAR CONSTRUCT ION

Although a progra mmer can writ e a program
and have it trans lated and executed without
a hitc h , this is a n exce pti on , rather than
the rule . Most programs are t ested ,
modified , and rec ompi led s everal t imes
before they a re put to us e i n performing
us eful work . It may t ake months to
complete ly deve lop and check out a program .
Even then , it may g o through an
evolutionary proc e s s of improvement ,
extension , a nd updati ng that can, and oft en
does , la st unti l it i s nearly obs olete .

Theref ore , the languag e t rans lators and
the l inkage editor are des i gned s o that
they can be used in c ombi nat i on t o
construct programs and subprograms i n the
form of modules that are l ogically
interc onnected but c an be modi fied
separate l y . This makes it unnec ess ary for
a programmer to retrans l at e and t est his
comp lete program each time a part of it is
modif ied.. Only those pa rts (or modules)
that are affected by a modi ficat i on need be
r etransla ted .

This method of c onstructi on a l s o all ows
the work involved i n devel oping a program
to be divided up a mong s everal progr ammers
(F igure 5 5) . Ma ny pr ograms are much too
lar ge and c omplex f or a si ngle individual
to design a l one in a reas onable period of
time . This is es pec i ally true of the
lar ge , c omplex programs that are usually
required f or advanced syst em appl icat ions .

A program modu le re pres ents a c ompl et e
program or pa rt of a program that can be
modif ied or replaced without a ffect ing
other programs . It may range in s iz e f rom
a s ingle instruction t o a large progr am
that r equires a ll of the avai lable s pace in
ma in storage .

Program Deve lopme nt and Management 7 5

There are three ty:pe s of program
module s : s ource module s , ob j ect. modul e s ,
and l oad modules . Each of the:se! rep re sen ts
a d if ferent stage in the development of a
program .

A source module i s the i nput to a
language trans lator f or a partic ular
trans lation . It i s actual ly a sequence o f
language sta·t:ements which the programmer
has decided t:o c ons ider as a r•�pl ace abl e
entit y .

An ob ject modul� is the output of a
language trans lator f or a pa rticul ar
trans lation . It c ontains a program or part
of a program in thE� f orm of machine
language instruct i ons .

A load module is produced by the l inkage
ed itor . It c:a n be produced from one or
more ob j ect modu le s or a c ombination of
object module!s a nd othe r l oad module s .

A s ource module c an c ontain re ferences
to instructions a nd data i n other modul es .
It can also c onta i n i nstructi ons and data
that are re fe�rred t: o by oth er module s . Yet
each s ource module c an be transl ated
ind ividua l l y , and not c ombi ned with other
modules · unti l s omet:ime later . There for e ,
a s a part of the ti�a nslati o n p1::ocess , e ach
trans lator prepares a re cord of all
references to or from other modul es . Thi s
rec or d is represent:ed by the i nterlo cking
arrows in Figrure 5 5 . It is appended to the
ob j ect module� produc ed by the t:ransl ator
and is used later by the li nka9e edi tor to
conso l idate t.he modu le with other modul e s ..

To produce� a load module , the l ink age
ed itor resolv·es a l l cros s- re ferences among
the input modules f r om whi ch the l oad
module is to be formed . I t doE!S thi s by
replac ing each refe·rence wi th t:he addre ss
of the item referred to. The l ink age
ed itor a ls o produc e s and appends to the
load module a c ons olidated record of al l
cross -re ferenc es . The se i nc l ude
cross-references that have a l ready been
resolved as w·e l l as unre solved reference s
to modules that have yet to be inc orporated
into the load modu le . Because a l oad
module contains this rec ord , the l ink age
ed itor can be used t o c ombi ne it with
ob j ect modules or other load modules , and

I to de lete or replace previ ousl y
consol idated modu le s . 5

After a l l cros s -refe rences have been
resolved , a load modu le can be l oaded
anywhere in ma in s t orage by the� c ontrol
program . The f ina l assignment o f storage
addresses is comp leted as pa rt o:E the
load ing proces s .

7 6

Lead Programmer

�r===ll
�

Problem

Translation
and
Linkage
Editing

Composite Load Module

Figure 55 . Program Design

There a re several reas ons why a
programmer ma y want to divi de and subdivi de
a program into modu lar parts :

• He ma y , s ooner or later want to repl ace
one part with another pa rt . This may
be d one because the original part
c onta ined an err or , or had to be
updated or improved .

• He ma y want t o deve lop and t est
different parts of his pro9ram at
different t i me s a nd gradua l ly bui l d a
c omplete prog ram.

• He may want to divide up t he workload,
that is , a s s ig n re s pons i bi lity f or
deve l oping a nd mai ntai ni ng di fferent
parts of a program to di fferent
programmers .

• He ma y want to use di f ferent langu age
translators to de sig n di fferent parts
of his progra m. For example , he may
want to use the FORTRAN langu age to
de sign a part of his program that
requires the use of math emat ical

techniques , and the assembler languag e
to des i gn parts that require e ither a
great dea l of f lexibi li ty or servi ces
of the supervis or that a re not
ava i lable through the FORTRAN l anguag e.

A pr ogrammer shou ld evaluate these
cons iderations in decidi ng whether to
divide his program i nto modules . As a
gener al rul e he shou ld divi de his program
along functiona l line s i nto sel f- c ontained
modules to reduce the number of
cross -references between one module and
another .

ORGAN IZED PROGRAM LIBRARIES

In the operating s ystem, programs or parts
of programs are usua lly stored in progr am
l ibr aries mainta ined in di rect acc e s s
storage . Thes e librari e s i nclude program s
that make u p the ope rati ng system , a s wel l
a s pr ograms created by the user of the
system .

A program library i s actually a special
type of data s et c a l led a pa rtitioned data
set that i s stored in d i rect acc e s s storage
and c an be cata loged like any other d ata
set . A partitioned data set , as its name
implies , is divided into i ndependent
partitions . Each partition c onta ins a
program , or part of a prog ram, in the form
of one or more seque nti a l data bl ock s .
Each program library c ontain s a buil t-in
directory (or index) that the control
program can us e to l ocate by name a
particular program or part of a program
stored in the library .

The control program provi des an acce ss
method , cal led the partitioned acce s s
method ,, that the programmer can use to
create program librarie s f or storing and
retrieving programs . However, most
app lications programmer s us e l ibrarie s that
have already been created by a s ystem
progr ammer or by the c ontrol program .

Us ing direct acce s s storage for programs
l ibraries has a number of di stinct

Source Module
Library

Language
Translator

Object Module
Library

Figure 5 6.. Program Module Libraries

advantage s . Once a pr og ram modu le is
entered into the system, it can be stored,
translated , tested , modifi ed, retrans l ated,
and c ombined with other modules , w ithout
stor ing it on punched cards . Thus ,
programmers need not mai ntai n large , bulky
card f iles a nd c a n av oi d relat ively s l ow
card read ing and punchi ng operat ions .
Another adva ntage is that programs can be
loaded direc tly i nto mai n storage without
sear ching through a long s eri es of programs
on magnetic tapes .

In developing a nd mai ntai ni ng programs ,
thr ee libraries are generally used : a
source module library , an ob ject module
l ibrar y , a nd a load module library (Figure
5 6) . The se can be used by i ndividual
programmers or shared by s evera l
programmers worki ng on th e s ame or
different pro jects .

The source module li bra ry is used to
store source modu les whi le they are being
tr anslated and te sted . There they are
ava ilable f or updati ng or correct ion, if
nec e ssary , prior t o retrans lat ion.. IBM
pr ovides a c omprehensive s et of ut il ity
programs specific a lly designed for this
purpose .

As eac h s ource module i s trans lated, the
resulting ob ject modu le is stored in an
ob ject module library where it is av ail abl e
for pr oc e s sing , or c ons oli dati on with other
module s , by the li nkage editor . The l oad
modules produced by the li nkage ed itor are
p la ced in a load module li brary. There
they are ava i lab le f or l oadi ng into main
storage and executi on under direct ion of
the c ontrol progra m , or f or further editing
and modif ica tion by the li nkage editor .
Once a load module is test ed and fully
per fec ted , a programmer can delet e from th e
l ibrary system a ny s ource and ob j ect
module s that were used i n developing it .
The load module c a n be f urther modified,
extended , and updated , h owever , s ince a
composite rec ord i s mai ntained w ithin the
module of a l l cros s -referenc es among the
modules from which it is f ormed.

Linkage
Editor

Load Module
Library

Main
Storage

Program Deve lopme nt and Management 7 7

In other operating sy stems , large or
complex programs are often stored and
ma inta ined in auxi li ary storage in two
forms . In one form, final mai n stor age
addresses within the programs have been
ass igned . Therefore , the programs are
ready to be loaded i nto mai n storage and
executed . By the s a rre token, the progr am s
cannot be modified , short of complete
retrans lati o:n , exc ept by resorting to a
makes hift technique called " patching . "
Patch ing is genera lly avoi ded at wel l -run
insta llations because it leaves no vi sibl e
record of a modification . Therefore , the
same programs are stored and maintained in
auxil iary storage in a dif f erent form . In
this f orm , f.ina l mai n storage addres ses
within the p:rogram are not yet re sol ved ;
the various parts of the program are sti l l
subj ect to rncodific.at i on without re sorting
to e ither pa�tching or complete
retrans lation . In the systern/ 3 E> O Operating
s yste m , a sing le c omposi te load modul e i s
both sub j ect to mod ificati on and ready to
be loaded in1to rna. i n storage and executed.
Therefore , Oll'lly the load module form of a
progr am need be stored and mainta ined in
auxil iary storage .

DYNAM IC PROGHAM LOAD ING

Once a load module i s perfected and stor ed
in a program libra:ry , it i s ready to be
dynamically loaded anywhere in main storage
by the control pro::Jram, and then exe cuted .
This characb:!ristic::: of a l oad module i s
commonly refc:!rred t o as re loca tabili ty
(Figure 5 7) • :L A load module may be a

complete proqram or a part of one or more
larger programs . •rh i s i s true regardl e ss
of whether i1: was or iginally formed from a
s ingle ob j ec1: module or a combination of
modules .

Load Module
Library

.... -

Main Storage

r--l
I I

-- --"'1 I
- - - - I I

- - - L __ J

r-- -,
-· - -- - -

I I - -.... � I I I L _ _ .J

Figure 5 7 . He locatabi li ty

There are a numbe r of rea sons why a
progr ammer may divide and store his program
as separate load module s :

7 8

• He ma y wa nt t o sh are parts of his
program with other progran1mers .

• He ma y a ntici pate that a part icul ar
part of his program wi l l be deleted or
r eplaced in the f uture .

• He may want to have ma jor parts of his
program executed as separat e j ob steps ,
in which case data generat ed during on e
step may be pa ssed to a succeeding
step .

• He may want to load a pa rt icu lar part
of his program i nto mai n storage only
when a certa i n eve nt occu:r·s , such as
the expiration of a ti me period or, in
a teleprocess i ng aFpli cati on, the
arriva l of a mes s age f rom a remote
l ocation .

• H e ma y want to load di f f erent parts o f
his prog ram i nto mai n storage at
different time s i n order t o conserve
storage s pace . In such an instance,
parts of a program that are yet to be
executed ca n be brought into main
storage to re p lace parts that have
a lready been executed.

• If he is us ing an MVT operat ing syst em ,
he ma y wa nt t o have di fferent parts o f
a program executed concurrently as
separate a nd disti nct tas ks .

The j ob schedu ler and the prob lem- state
programs whose executi on it init i ates are
separate a nd disti nct programs . However ,
they a nd the ir subpr og rams mus t adhere to
standard linkage c onve nti ons s o that
contr ol can be pa s sed between them in a
cons istent manner. As a result , any
programs and subprogr ams that are stored in
the load module libraries can be shared an d
us ed for dif f erent appli cati ons . These
inc lude programs and subprograms of the
operating system itse lf as wel l as thos e
des igned by a user . �

The degree of prog ram shari ng depends
lar gely on the i nsta llati on and how well
the use of the s ystem is controlled and
coord inated . The shari ng mi ght be l imited
to a few progra mme rs or appli cat i ons or it
might extend to a l l of th e programmers at
an insta l lation .

CHECKPOI NT/RESTART FACILITY

When an e rror is detected within the
computing system an i nterrupt i on normally
occur s , a nd CPU c ontr ol is trans f erred to
an error recovery routi ne , which attempts
to r epeat the ope rati on that was being
per formed when the error was d et ected . I f
the error does not recur , i t is assumed
that the error is not permanent , and CP U

control is returned to the produc tion
program at the point at which it was
interrupted . Thus , if it i s pos s ibl e to
recover from the err or , no time is wa sted
in the middle of a producti on run in
correcting the fau lt that ca used the error .

In s ome cases however , i t is not
pos s ible to c ontinue the production run at
the point at which it is i nterrupted by an
error . The error may have been c aused by a
permanent fai lure or it may have altered or
destr oy�d data or i nstructi ons that are
required to continue with the production
run . To avoid restarting the produc tion
run from the very be gi nning when such
situations aris e , a n optional
Checkpoint/Restart f aci lity i s provi ded
with the operating s ystem. Using th i s
fac il ity i t i s pos s ible to design
production progra ms , particularl y l ong
ones , with convenient re run points
(c hec kpoints) . A pr ogrammer initiate s a

c heckpoint by requesting the supervi sor ,
via an svc instructi on, to record in
auxil iary storage a checkpoint data set
conta ining all of the i nf ormation nec e s sary
to restart the producti on program from the
po int at which the checkpoi nt i s taken.
Then., no matter where proces sing is
interrupted during the production run , it
can be restarted at the la st checkpoint
us ing the chec kpoint data set to
reconstitute ma in storage, l oad regi ster s ,
po sit ion tapes , etc .

This technique c a n a l so save time when a
program is interrupted by operator
intervention for a nother of higher priority
or for any other re a s on. At the option o f
the operator , a restart can b e e ither
a utomatic or deferred . If a utomatic , the
production program is re started imme diately
at the last chec kpoi nt . If deferred , the
production program i s re submitted sometime
later f or proces s i ng , and i s restarted then
at the last chec kpoi nt .

Us ing the Chec kpoint/Restart f acil ity ,
it i s also poss ib le t o resta rt
prede s ignated job steps in the event a j o b
step is interrupted and cannot continue .
Like a checkpoint re start of a production
program., a step re start can be automati c or
deferred at the opt i on of the operator .
The EXECUTE stateme nt of the j ob step
definit i on indicates whether a j ob step i s

J sub j e ct t o restart ing . 2

A Means of Recovery

A fa ilure of the s ystem, whether during the
deve lopment of new pr og rams or while
proce s sing MFT or MVT j obs , can result in a
los s of productivity and diminish the
effectivenes s of the system. To protect
aga inst , or at lea st to di mi nish the
effec ts of , a fai lure , reli abi lity ,
ava ilabil ity, and serviceabi lity (RAS)
fac il itie s interact with the control
program . RAS fac i lities att empt to retry
or repair machi ne ma lf uncti ons that result
in s ystem fa i lure . One means availabl e for
RAS implementation is the Recovery
Management Support (RMS) f or both
S ystem/3 6 0 a nd S ystem/3 7 0 . 6 , 7

Rec overy manage me nt routines fall into
two distinct categ ori es : Thos e that record
the environment at the time of the machine
ma lfunction; and those that exist to bypas s
var ious I/O errors . Re covery management
routines of the f irst clas s i nclude :

• System Envi ronme nt Recordi ng (SER)
r outines provide the us er with the
envir onment of the CPU and the channel
at the time of the f ai lure .

• Machine Chec k Handler (MCH) routines ,
according to the CPU model , analy z e,
rec ord , retry , and if pos s ible isol at e
the machine ma lfuncti on.

• Channe l Chec k Ha nd ler (CCH) analy z es
channel errors f or devi ce- dependent
error routines , and constructs a
permanent rec ord -- th e channe l inboard
error record -- f or th e I/O Supervisor .

• Error Rec overy Pr ocedures (ERPs)
ana lyze intermitte nt and unrec overabl e
errors , detect I/O errors , and attempt
their retry .

Recovery management routi nes of t he s e cond
cla s s inc lude :

• Alternate Path Retry (APR) al lows an
I /O operati on that has fai led on one
c hannel to be retried on another
alternate channe l .

• Dynamic Device Re configurat ion C DDR)
a ll ows the operator to move a movabl e
volume - - tape drive o r di s k -- at
system or operat or request , t o another
devic e .

Program Deve lopme nt and Management 7 9

Multiproces s ing is a technique where by th e
work of proces s ing d ata is shared among two
or more interconnected central proce s sing
units C or comput ing systems) . A
combination of a mai n computing s ystem that
spec iali zes in the proce ssi ng of j ob s , an d
a separate off line " sate lli te " computer
that s pecia li zes in transcri bing input an d
output data for the same j obs might be
considered a mu ltipr oce s si ng system since
the c ombination c ontains two central
proc e s s ing units that i ndi rectl y
communicate with one another. However , in
this kind of mu ltiple CP U i nsta l l ati on , the
communicati on betwee n one CPU and another
is achieved who lly through operator
intervention . In the c a se of the off l ine
sate l lite examp le , the c ommunication
cons ists of the operator removing a tape
ree l from a tape unit c onnected to one
computer and mount ing it on a tape unit
connected to the other c omputer .
Therefore , such a c ombi nati on is not
usua l ly considered a true multiproce s sing
syste m .

CPU-to-CPU Communication

In a true multiproce ssing i nsta l l ati on , on e
CPU may communicate with another in a
combination of ways . At one extreme ,
communication may be re pre s ented by a f ew
contr ol s igna l line s that are used to
broa d l y s ynchronize the operation of one
CPU with that of a nothe r . Then again , th e
communicati on may c onsi s t o f sharing direct
acces s storage devic e s or main storage
units among two or more CP Us . Another form
of communication c a n be achi eved by u sing a
c hannel -to-channe l adapter. Thi s device
enables blocks of data to be trans fe rred
quickly from the mai n storage of one CPU to
that of another . Communicati on c an al so
cons ist of transferring data over
te lecommunication li ne s f rom one CPU to
another at a remote locati on .

Advantages of Multiprocessing

There are a number of reasons why
multiprocess ing might be employed at an
insta l lation. Mu lt i processi ng c an incr ea se
ava i lability , increa se production capacity
of a s ys tem , ensure more efficient use of
resources , and a llow two or more CPU s to
s hare the same dat a .

Multiprocessing

I NCREASED AVAILABILITY

Multiproc ess ing c a n he lp to ensure a high
level of a va i labi lity f or a system .
Ava ilabil ity is the degree to which a
sys·tem is rea dy whe n needed to fu lfill its
ro le in an activity. An example of such an
activity is a mis s i le launching, where the
unava ilab ility of a c omputing system f or
us e in guiding the mi ssi le cou ld delay
launching or cause it to fai l. For such
app lications , more th an one CPU is empl oy ed
so tha t one can quic kly re plac e another in
the event of a fai lure . S ome ot her
app l ications in which avai labi lity is of
pr ime importance are : ai rli ne res ervation
s ystem a pplicati ons , proces s control
app lications , banki ng system appl icat ions ,
and a ir or ground traf f i c cont rol system
app lications .

I NCREASED PRODUCT ION CAPACITY

Mult ipr oc e ss ing c a n als o i ncreas e the
overall data proc e s s i ng capacity of a
s ystem . This is especially important for
so lving la rge scie nti f i c or engineering
problems in such f ie lds as theoret ical
phys ic s or a irc raf t design. P roblems such �
as these often require wee ks or months of
computation bef ore a s oluti on is arrived
at . The inc reased d ata proces s i ng c apa city
provided by multi p le processing units can
dra stica l l y reduce the time required to
s o lve such prob lems .

MORE EFF I CI ENT US E OF RESOURCES

In s ystems that c a n perf orm mu lt iple data
proc ess ing ta s ks c oncurrent ly ,
mult ipr oc e ss ing c a n re sult i n more
effic ient use of h ardware res ourc es . By
poo l ing the res ources of two comput ing
s ystems , it is s o�ti mes pos s ible to
per f orm more work, such as job st eps ,
concurre ntly tha n whe n two s eparat e and
distinct systems are employ ed. W ith
s eparate c omputing systems , a j ob or other
unit of work that is re ady to be initiat ed
on one system may be de lay ed for the l ack
o f a r es ource that i s avai labl e , but idl e ,
o n the other s ystem.

DATA SHARI NG

Multiproce ss ing c a n make it poss ible for
two or more centra l proces sing units to
s har e sets of data mai nt ai ned in direct
acc e s s stora ge . Thi s can help t o ensure
more effic ient a nd c onsi st ent process ing o f
the data . Moreover , by reducing or
el iminating redundant data , it can cons erv e

Multiproc ess ing 8 1

direc t access storage space and reduce th e
time and effort required to retrieve the
data and keE�p it up to date .

Operating System Support of

Multiprocessing

The IBM Operating system/3 6 0 support s two
gener al purpose mu ltiprocess ing
appl ications . OnE� e mploys two to four
Syste m/ 3 60 Computing Systems that sh are
direct access storage devi c e s u The o ther
employs two c omput ing sy stems that shar e
all of main storaqe and most I/O device s .

In addition to the se two general purpo se
applications , there are a number of speci al
purpose mult�i processing appli cations
supported by the ope rati ng system . These
involve the use of c e ntral processing units
a·t remote locations that communicate with
one another by way of te lecommunication
l ines , and are theref ore described in the
next section "Te le�pr oce s si ng . "

MULT IPROCESSING WITH SHARED DIRECT ACCESS
STORAGE DEVICES

As an optioiJta l feature , the ope rating
system supports a mu lti processing system
conta ining t.wo Sys te m/3 6 0 C omputing Systems
(Figure 5 8) of the s ame or diff·erent model s
that share a c ontrol uni t and up to e ight
direct access storage devi c e s . Acce s s to a
particular device is gai ned through a
two-c hannel switch that enables the shared
contr ol unit to be i nstantaneou:sly switched
between two cha nne ls . Each of ·the two
channels is connected to a di fferent
computing s ystem. The c omputing sys tem s
gain access to a particular dev:ice on a

I first come first s erved ba si s . Either of
the ma j or configur ati ons of the c ontrol
program (MFT· or MVT) can be used with
e ither of the two c omputing systems .

MVT W ITH MODEL 6 5 MULTIPROCESSING

The operating s ystem supports the Model 6 5
Multiproces s ing System through � wi th
Mode l 6 5 multiproc essing , a n extension of
MVT.. This s ystem uses two identic al Model
6 5 Pr ocessing Units (CPUs) , called Model 65
Multiprocessors . The two CP Us share al l of
ma in storage,, which may range from a
minimum of 5 2 4 ,, 2 8 8 byte s to a maximum of
2 , 0 9 7 , 1 52 bytes , a nd most I /O device s . 7

One configurat i on of the Mod��l 65
Multiprocess ing System is shown in Figure
5 9 . In thi s configurati on , the system i s
phys ically s ymmetric a l , exc luding the 1 0 5 2
Printer-Keyboards ; that i s , each CPU has
acces s to any I/O device i n the s ystem ,
except the 1 0 5 2 at·tached to the other
multiproces sor . Thi s total device
acces s ibility is made possible t.hrough use
of program-c�ontrol le d , two- channel (or

8 2

two-pr oc e s sor) switches on control units .
The 2 8 16 Switchi ng U nit and the 2 8 4 4
Auxil iary Storage Control are a l s o used to
achieve tota l device acces s ibility., in
c.�rta in insta nces .

I n other c onf igurati ons of the Model 65
Multiprocess ing S yste m , i n addit i on to the
1 0 5 2 Printer-Ke ywords , 1 4 4 3 , .2 150 , and 2 5 0 1
unit r ec ord equipme nt and devices support ed
for graphics and te le proces s i ng
applications ca n be access ed by only on e
CPU .

Operating Modes

The model 65 Multiproces s i ng system can
operate in three mode s : multisystem (M S) ,
partitioned (PTN) , and 65 mode . MVT with
Model 65 multiprocessi ng supports
mult isystem a nd partiti oned modes only .

Multisystem Mode : Whe n the Model 65
Multiproc e s s ing System operates in
multisystem mode , both CPUs s hare all of
ma in storage as though it were a s ingl e
unit . They a ls o share most I/O devices .

A s ingle supervi s or all ocat: es res ources
and a pportions work between the two CP Us .
Because two CPUs share th e workl oad , two
ent irely different tasks (or two parts of
the same tas k) can be proc es s ed
simultaneous ly. Figure 6 0 shows how four
ta sks ca n be hand led by two CPUs in
mult isystem mode .

The c ontrol program synchroni z es the
operation of both CPUs through the Direct
Contr ol Feature -- c ontrol li nes over which
the CPUs can c ommunic ate - - and through us e
of a mal functi on a lert signa l . Ex ampl es o f
s ituations in which activity must be
synchr onized a re :

• One CPU is proc e s s i ng a task and a
higher-priority task is ready and
waiting to be proce s s ed .

• I /O a c tivity c annot b e initiated by on e
CPU ; theref ore , a ch eck must be made to
see if the other CPU can i nit iate the
activity .

• An error conditi on exists in one CPU .

One require me nt f or programming support
o f the Model 6 5 Multiprocess ing system is
Recovery Manageme nt Support (RMS) . The RMS
routines hel p reduce delays , los s of data,
and other effects c aused by i ntermittent or
per s istent ha rdware f ai lufe. If a machine
error occ urs , the RMS routi nes att empt to
recover from it by retryi ng the operation
that failed and atte mpt to repair any
program damage re sulti ng f rom the error .
I f the error is persi stent , then the
recovery routi�es a lert th e operator and
provide inf ormati on to help locat e the
faulty c omponent .

In most s ing le-CPU sy stems, when a
fa ilure occurs in an I/O device , that
device can be p laced off li ne ; that i s , its
use a s a s ystem re s ource can be
d iscontinued. The system can continue to
operate . In the Mode l 6 5 Multiproce s sing
syste m , a ny nonc ritic al ma lf unctioning
component (one CPU , channe l s , areas o f main
storage in mult ip les of 2 0 4 8 byte s , and I /0
devices) can be p laced off li ne . Thu s , the
rest of the syste m c an c onti nue to
func t ion . This as sure s a high degree of
ava i l ability. ·

Partitioned Mode : Whe n a CPU is ope rating
in partitioned mode , it must have it s own
main storage , with a minimum of 512K byte s ;
a uxil iary s torage ; c ontrol units ; and I /0
devices . In this mode , the CPU oper ate s as
a separate and dist inct system under MVT
with Model 6 5 mult iproce ssing.

65 Mode : As with parti ti oned mode , a CPU
oper ating in 65 mode must have its own main
s torage , with a mi ni mum of 2 5 6K byte s ;
a uxi l iary s torage ; c ontrol units ; and I /O
de vices . In this mode , the CPU operate s as
a separate and dis t i nct system under the
MFT or MVT conf igurati on of the control
program (exc luding MVT with Model 65
multiproces s ing) .

I

Central
Processing
Unit

Main Storage
M FT or MVT
Control Program

Channels
Two Channel

Switch

Up to Eight Volumes

Central
Processing
Unit

Main Storage
M FT or MVT
Control Program

Channels

Figure 5 8 . Mu ltiproce s sing With Shared
Direct Acce s s Storage Devices

M65
Central
Processing
Unit A

CPU A
Channels

Main Storage
(MVT with Model 65
Multiprocessing
Control Program)

M65
Central
Processing
Unit B

CPU B
Channels

F igur e 5 9 . A S ymmetri cal Conf iguration of
the Mode l 6 5 Mult i proc ess ing
s yste m

Task 1

Task 2

Task 3

Task 4

Time

CPU - A Performing Task •
CPU - B Performing Task EJ
Task Inactive 0

F igure 6 0 . Two CPUs i n Mu ltis ystem Mode,
Ba la nci ng the Execut i on of Four
Ta s ks

Multiproc es s i ng 8 3

Teleprocessing re fers to a large var iety of
data proces s ing applicati ons in which data
is received from or se nt to a central data
proc e s s ing s ystem over communication line s ,
inc luding ordinary te le phone l ines .
Usua l ly the s ource or de sti nati on of the
data is remote from the central proc e ssing
s yste m , a lthough it can be i n the s ame
build ing . In any event , the source or
destination points of the data are often
called termina ls or (f or s ome appl ic ation s)
work stations .

A termina l , or work stati on, c an have
one or a combinat i on of I/O device s . A
lar ge va riety of such devi c e s are av ail abl e
for use at remote te rminal s . These incl ude
spec i a l keyboards , TV- like g raphic d i spl ay
devices , printers , c ard read- punch un its ,
and telephones . In addi ti on , a remote
termina l may be repre se nted by another data
proc e s s ing s ystem, in which case the
app l ication is not only a teleprocessing
appl ication but a mu lti proc e ss ing
appl ication as we l l .

Te leprocessing appli c ati ons range from
those in which data is recei ved by a
centr a l proc es s ing sy stem and merel y stor ed
for later proces s i ng , to large compl e x
s ystem a pplications in whi ch the hardware
and inf ormation re s ource s of the centr al
s ystem are s hared among a great many user s
at remote l ocat ions .

General Types of Applications

Sever al g enera l type s of teleproc e s s ing
app lications that are po ssible with the
oper at ing s ystem are briefly desc ribe d
be low . There are a number of variation s
and c ombinations o f the se general
appl icat ions .

DATA COLLECTION

Data collection is a te leprocess ing
app l ication in which data i s rec eive d by a
c entr a l process ing s ystem f rom one or mor e
remote termina ls a nd i s stored for l ater
proc e s s i ng . Depend i ng on th e spec if i c
appl ication , the transf e r o f data may be
in itiated either at the terminal or by th e
c entr al process ing system.

An example of a data collection
app lication would be one i n which data i s
rece ived intermittently during the d ay (a s
i t i s generated) and i s processed , when

Teleprocessing

convenient , during the s econd or third
shift , perha ps taki ng advantage of l ower
data proc e ss ing rate s f or the s hift . This
could be an a pplic ati on in whi ch production
worker s , upon c omp leti on of t heir j obs ,
transmit by means of s peci a l i nput devices
such data as their ID numbers , t he number
of work units the y c ompl et ed, and other
pertinent data . The centra l s ystem , aft er
all the data f or the day h as been coll ect ed
and stored , cou ld the n proc es s it f or
accounting a nd produc tion cont rol purpos es .

I n other a pp lic ati ons , data may be
accumulated duri ng the day and t hen pl aced
on an input device , such as a pu nched card
reader . The data could be col lected by the
centra l c omputing system during off- peak
hour s in order to take advantage of l ower
communica tion line rates .

MESSAGE SWITCHING

Mes sage switc hi ng is a type of
telepr oc e s s ing appli c ati on in which a
mes sa ge rece ived by the centra l c omputing
system from one remote termi na l is sent to
one or more other remote t ermina ls .
Mes sa ge switching c an be us ed in a
na t ion-wide or wor ld -wide t el egraph sy stem
or it ca n be us ed by a geographica lly
disper sed bus iness or sci enti fic ente rpris e
to provide insta ntane ous communication
within the enterpri se .

REMOTE JOB PROCESS ING

Remote j ob proces s i ng is a type of
app l ication in which data proc es s ing j obs ,
like those that are e ntered into the syst em
loca l l y , a re received f rom one or more
remote termina ls and proces s ed by the
op erating system.

I Two a pplicati ons of remot e j ob
pr oces sing a re provided as optional
featur es of the MFT and MVT conf igurations
of the operating syste m control program .
These are desc ribed later in t his section
under " Remote Job Entry" and
" C onversationa l Remote J ob Ent ry . "

I TIME SHARING

Time s haring is a te le proces s i ng
app l ication in which a number of users at
r emote termina ls c an concurrently use a
centr a l c omputing system . In this ty pe of
app l ication each user at a t erminal has the

Teleprocess ing 8 5

impress i on that he i s the s ole user of th e
computing s ystem. In re ali ty, however , the
resources of the s ystem are shared among
sever al us ers . Whe n the use of the
computing s ystem is momenta ri ly not
required by one us er , it i s availabl e to
satis fy the needs of others. Bec ause of
its speed , the c omputi ng sy stem c an re spond
to the needs of a l l the users within a f ew
seconds ..

Often , in this type of a ppl ic ation , a
dialogue or c onversati on i s carried on
between the us er at a remote terminal and a
program within the central c omputing
syste m . Th•= program may be desi gned to
interrogate the user and i mmediately
respond to his re plies or re quests , or even
his mistakes .

Ge neral purpose time sharing i s provid ed
as an optiona l feat ure of the MVT control
program . Ii: is described later in th i s
section undE�r the t i t le " Ti me Sharing
Option . "

ONLIN E PROBl�EM SOl� VING

Online p1�ob lem s o lving i s a form of time
shar ing that: has a great many potenti al
app l i cations in the fie lds of educat ion ,
engineering , a nd research . BE�cause the
syste m can res pond quic k ly to the ne eds o f
the user , it; can d irectly pa rtic i pate in ,
and s peed up , the pr oblem s olving pro ce ss
as we l l as other s imi lar procE�sses such a s
program des ign and learning . Thus , i f a
user , in th€! cours e of desi gni ng a program ,
makes a mi st.ake , he may be i mnediate l y
aler ted b y a. program i n the central
computing s ystem t. o take c orrec tive action .
There fore , he need not wai t until the
comp lete program is c ompi l ed and tes ted
before the mi stake is detected . S imil arl y ,
i n a c ompute·r ass isted i nstruct ion (CAI)
system - an import.ant vari ati on of th i s
type o f application - a student i s
immed iately i nformed of , and learns from q
his mistakes as he make s them.

A speci f ic a pplicati on of onl ine probl em
solving is provided as an opti onal f e ature
of the MFT a nd MVT c onf igura ti ons of the
contr ol program. Thi s appli cation al so has
certa in features of a re mote j ob proce s sing
app l ication .. It i s de scribed l a ter in thi s
s ection under the he adi ng " Graphic Jo b
Process ing . "

8 6

I NQUI RY AND TRANSACT ION PROCESS ING

Inquiry a nd transacti on proces s ing is a
telepr oc e s sing applic ati on in which
inquir ie s and rec ords of t rans act i ons are
received f rom a numbe r of remote terminals
and are used to i nterr og ate or update one
or mor e ma ster f i les mai ntai ned by the
centra l c omputi ng sys tem . Wit h this
app lication , the s ystem can di rectly
partic ipa te in a nd c ontrol various
commerc ia l , scientif i c , and mi lit ary
activitie s as the y are bei ng carr ied on .

One of the ear lie st examples of this
type of a ppl icati on is th e airline
reservation s ystem apFli cati on des cribed
pr evious ly . A si mi lar aFpli cat i on is one
in which the syste rr. i s us ed to s ervice a
geographica lly d i s persed banki ng act ivity .
In suc h a n a pplicati on, master f il es
conta ining acc ount re c ords for thous ands o f
depositors are st ored i n di rect access
storage . By enteri ng pe rtinent data into
the system , te llers at remot e loc ati ons can
us e a spec ia l I/O devi ce to c heck bal ances ,
update pa s sbook rec ords , and handle s imil ar
tr ansa cti ons withi n a matt er of s ec onds .

Other examples of thi s type of
teleproce s sing a pp lic ati on are i nformation
retr ieva l systems , management informati on
systems , a nd i nventory c ontrol systems .

An intriguing vari ati on of an inquiry
and tra nsaction processi ng applic at i on is
one in which a te leph one is us ed as the
sole mea ns of i nput and output at a
termina l . Although the t e l ephone is
normally used to c ommuni cat e wit h peopl e,
it can a l s o be used to communi cat e w ith a
centra l c omputing system. A s imple ex ampl e
of this would be one i n whi ch a s al esman
wished to chec k the delivery ·t ime f or a
particular product . He could do this , even
whi le in a custome r ' s offi ce, by f irst
d ialing the centra l c omput i ng system, and
then entering (by di a l or touch butt.ons) a
tra nsacti on c ode a nd the stock number of
the produc t . Af.ter i nte rrogat ing the
master f i le to determi ne the delivery time
for the product , the c omput i ng system coul d
then , us ing a n audi o res pons e dev ic e , such
as the I BM 7 7 7 0 Audi o Res pons e Unit ,
compose a nd return a ve rbal mess age to the
sa lesman inf orming him of th e del ivery t ime
for the item . The s a lesman could then
discuss

�
this with the customer and transmit

the order to the c e ntral s ystem or make
other inquiries , ag ai n by way of the
telephone . Thus the servi ces of a central
computing system c a n be as clos e as the
near e st tele phone .

Message Control and Message

Processing Programs

A te leproc ess ing program f or most
app lications is normally di vi ded along
functional lines i nt o two parts : a m e s sa ge

I contr ol program and one or more appl i cation
programs (traditiona lly know as mess age
proc e s s ing programs) . Mes sage is the
·trad itional name f or a unit of information
·that is trans ferred to or f rom a remote
terminal by way of te le c ommunication s
l ine s . A mes s a ge may consi st of one or
more s egments . A s i ng le - s egment mes s age i s
usua l l y compos ed o f two part s : the m e s sage
header f ollowed by the mes sage text . The
�es sage header c ontains control information
conc erning the mes s age , such as the source
or destination code of the message , the
mes s a ge pri ority , a nd the type of me s sage .
The mes sage text c onsi sts of the actual
information that is routed to a user at a
terminal or to a program i n the c entr al
computing s ystem t hat i s to proc e s s i t . I n
gener al , the information i n the mess age
header is used for c ontrol and routing
pur poses by a mess age c ontrol program , and
·the inf ormation in the mes sage text i s
proc e ssed , i f nec e s s ary , b y a n appl i c ation
progr am .

MESSAGE CONTROL PROGRAMS

The main function of a mes sage control
progr am is to c ontrol the transmiss ion of
information betwe e n an a ppli cation p rogram
in the centra l computing sy s tem and I /O
devic e s at remote te rminal s . ·In thi s
respect it performs much the same function
as access method routi ne s th at are u sed to
contr ol the transmi s s i on of information
between an ordinary proce ssi ng progr am an d
local I/O devices . For thi s rea son,
routine s that a re provided by IBM for use
in creating a mes s age control program are
also c alled access meth od routine s . Ther e
are three s ets of such routi nes : the
gueued telecommunic ati on acc ess method
(QTAM) , the te lec ommuni cati ons acce s s

method (TCAM) , and the basic
telec ommunicati on acce ss-ffiethod (BTAM) .
Although they are c a lle d access method
routines , they differ f rom other acc e ss
methods routines in a number of respects,
espec ially in the way i n whi ch they are
a ssembled to form a c omposi te set of
routine s for c ontro l li ng the transmi s sion
of I/O information. The access method
routine s for a n ordi nary process ing program
are assembled a nd li nked together by data
management rout ines in the operating system
contr ol program a s they are requested
through the use of an OPEN macro
instruct ion . The routi nes that make up a

message c ontrol program on the other hand,
ar e a ssembled by an assembler langu age
tra nslator as a se parate program when the
messa ge c ontrol program is creat ed , in much
the same way as the operating system
contr ol program is ge nerat ed.

Queued Te lec ommunic ati ons Access Method

The queued te lecommunicati ons access metho d
(a nd the telec ommunic ati ons acces s method,

descr ibed fol lowi ng thi s explanat ion) can
be used to c reate me s s age cont rol programs
for a variety of te le proces s i ng
app lications ra ngi ng f r om mes s age switching
or data c ollection to high volume inquiry
and transaction pr oc e s s i ng .

T o de s ign a me s s age control program f or
suc h appl icati ons c a n be a very difficult
and time c onsuming undertaking requ ir ing a
sp ec ia lized knowledge of tel eproc ess ing
equipment and tec h niques . There f ore , to
s imp lify a nd s peed the creat i on of a
message c ontrol program , I BM prov ides a
sp ec ia l message c ontrol language in the
form of a s sembler language macro
instructi ons . These macro i ns t ructions can
be used to se lect s pecif i c modu les from a
compr ehens ive set of mes s ag e c ontrol and
edit ing modules . The se modules c an be
ad j usted to meet s pecifi c needs and then
linked together to f orm a complet e mes s age
contr ol program . The macro instructions
r e l ieve the programmer ass igned to the
te lepr oc e s s ing a pplic ati on of the det ail ed,
intr icate , a nd s peci ali zed programming that
is usua l l y required f or such an
app l ication . The y are s peci fically
des igned f or ea s y use i n des cribing the
communica tion li ne procedures , line
con figura tions , buffer lengths , poll ing
(t ermina l interrogati on) procedu res , and

types of message trans lati on and ed it ing
r equired f or a pa rticular applicat ion .
Us ing the me s sage c ontrol macro
instructions a complete mess age control
program f or a te lepr oces s i ng applicat ion
can be described and ass embled in days
rather tha n months .

The me s sage control program s erves as an
intermed iary betwe e n the I/O dev ices at
r emote te rmina ls and the applicat ion
programs that process mes s ag es (F igure 6 1) .
It enable s the te rmi nals t o be referred to
indir ectly , in much the s ame way as l ocal
I /O devic e s a re referred t o , u s i ng such
standard mac ro i nstructi ons as GET , PUT,
OPEN , and CLOS E . It automatically performs
deta iled f unctions , such as s ending or
receiving messages , allocati ng bu ff�rs ,
trans lating message c odes , formatt ing
mes s a ges , and chec ki ng f or errors .

Teleprocess ing 8 7

Incoming
Messages
from Remote
Locations

Outgoing
Messages
to Remote
Locations

Message Control Message Processing

Main Storage li11l
Direct Access Storage = D

Figure 6 1 . Simplif ied Diag ram o f Me s sage Contro l U s ing the Queued Telecomtuu nic at ion
Acc ess Method

A messa<Je cont:rol program can be
executed as a separate task independently
of any applicat ion prog ram. As input
messages are reced ved , they are routed
(a fter trans lating , che cki ng ,. editing ,

etc .) to one or more me ssage gueues in
ma in stora9e or direct a cc e s s storag e .
Application programs take them from there
a s in ordinary proce ssing . When a me ssag e
i s t o b e semt to a termi nal b y an
appl ication progra m, i t i s placed on an
output queue in direct acc e s s storage .
(The te lecommunicati ons access method

plac e s messages on a de sti nati on queue in
either direct access storage or main
storage .) The mes s age i s then sent by the
me s sage control program to i ts destin ation .
In the caSE! of message swi telling and data
collection applicat i ons , a s pecial purpo s e
app l ication program may not b e requi red :
the mes s age! c ontrol prog ram can route an
inbound message directly to an a ppropri ate
output queue . A te lec ommuni ca tions j ob can
be entered into t�he system i n the same way
as any other job . The j ob scheduler of the
operating s ystem, theref ore , c.an be u sed to
a l locate any I/O device and di rect acce ss
storage s pace required f or me�ssage l ogs and
mes sage que�ues , a nd to prepare and s chedul e
the j ob for proCE!S S i ng . A me�ssage control
progr am , and any app licati on program
a ssoc iated with i.t , can be entered in to the
system as s eparat.e j obs ; or t:hey c an be
combined and ente�red a s a si ngl e j ob .

With MF'I' a nd MVT ope rati ng system
conf igurations , more than one j ob c an be
run c oncurrent ly . There f ore , other j obs
can s hare the phys ic al resources of the

8 8

system with a te le pr ocessi ng j ob and
thereby improve effici ency , es pec ially
dur ing pe riods whe n me ss ag e traff ic is l ow .

T e lec ommunicati ons Ac cess Method

The te lec ommunicati ons access method (TCAM)
is s imila r to QTAM , but of f ers a wider
ra nge of device a nd prog ram su pport . For
example , TCAM supports local t erminal s
connected direc t ly to th e comput ing syst em,
as we ll a s remote termi nals connected
through c ommunicati on li nes . For remote
termina l s , TCAM supports both the
star t- stop a nd bi nary sy nchronous methods
of data transmissi on; bi nary s ynchronous
support pe rmits the use of fas t er t erminal s
than are ava i lab le with QTAM� In f act ,
with TCAM , a termi nal may be an independent
computing system -- anoth er syst em/ 3 6 0 or
an I BM 1 1 3 0 .

The preceding di scussi on of QTAM appl i es
genera lly to TCAM. However, a TCAM
app lication program c an us e eit her GET and
PUT ,, or READ and WRITE macro i nstruct ions
to receive a nd s e nd me s s ag es .

To take advantage of TCAM fac i l it ies ,
QTAM appl ica tion prog rams can eas ily be
converted to TCAM. T CAM f aci l it ies
inc lude :

• Online te sting of teleproc es s ing
termina ls a nd c ontrol units .

• I nput/output e rror recordi ng .
• Program debuggi ng ai ds .
• Network rec onf igurati on faci l it ies .

The facilities f or network
reconfiguration permit g reat flexibi l i ty in
contr olling the te lec ommuni cations network .
The network can be modified by the systm
operator ., by a user at a terminal , or by an
application program.

Bas ic Telecommunic ati ons Access Method

The basic telecommunications access method
(BTAM) is des i gned f or limited appl ic ations

that do not require the extensive me s sage
control faci lities or QTAM or TCAM, or for
appl ications that require special
fac il ities not normally found in most
appl ications .

The BTAM fac i lities provide tool s that
would be required to de sig n and construct
a lmost any teleproce ssing application .
These include fac i litie s f or creating
terminal lists a nd perf ormi ng the fol lowing
operations :

• Polling termina l s .

• Answering .

• Receiving mes s ages .

• Allocating buffers dynamica l ly.

• Address ing terminals .

• Dialing .

• Creating buffer chai ns .

• Changing the status of terminal l i sts .

When the basic te lec ommunications ac ce ss
method is us ed , READ and WRITE macro
instructions ., rather than GET and PUT , ar e
used by an a pplic ati on program to retrieve
and s end input and output me ssages .•

MESSAGE PROCESS ING PROGRAMS

A mes s age process i ng program is an
application program that processes or
otherwise res ponds t o me ssages received
from remote termina l s . In designing the
program., all of the f aci li ti es of the
operating s ystem are avai lable including
the language trans lator s , service progr am s ,
and the data � program, and task management
fac il ities of the system. The proce s sing
of me ssages can be performed sequentially
as a series of s ingle ta sks or more than
one mes s age can be proce ssed concurrentl y .
In many applications , a me ssage proc e ssing

program requires acce s s to data or routines
stored in loca l direct access storage . In
such applications it is poss ible to process
several messages c oncurrently as s eparate
ta sks . As the proce ssing of one mess age is
delayed while acc e ss is being gained to
direct access storage , another mess age can
be pr oce ssed . By processing s everal
messages c onc urre nt ly , the tot a l mess ag e
thr oughput of the system can be
s ignifica ntly i nc reased. Since many of the
mes sages in such applicati ons require
identical process i ng , a si ngle reenterabl e
program in main storage can be u s ed to
perform each of several concurrent t asks ,
and thereby save mai n storage s pace and
program loading time . The general purpos e
ta sk management faci liti es of the MVT
control program are parti cularly
appr opriate to thi s type of application .
They a llow the system t o b e us ed for many
high-message -volume appli cations that woul d
otherwise be impracti cal without a
spec ia lly designed c ontrol program .

Ba sica l ly the s ame I/O macro
instructi ons (OPEN , CLOS E, GET , PUT , READ,
WRITE) a re used in a mess age proc ess ing

I program (when usi ng QTAM , TCAM or BTAM) as
are used in other appli cati on programs .
Therefore , a pplic ati on programs c an be
designed more or le ss i ndependent ly of the
devices that are used to transmit data,
whether loca l or remote . The system can
ma ke a gra dua l tra nsiti on f rom process ing
work entered loca l ly , to process ing work
r eceived f rom remote locati ons , with a
minimum of disrupti on.

Specific T eleprocessing Applications

Provided by IBM

IBM ha s designed a numbe r o f s pec ific
telepr ocessing applic ati ons and has made
them ava ilable as opti onal f eatures . Thes e
ar e applications that are of interest to a
signif icant number of customers . To date,
they inc lude the f ollowing :

• Remote job entry .

• Conversa tiona 1 re mote job entry .

• Time sha ring .•

• Graphic job processing .

• I BM system/ 3 6 0 - 113 0 data transmiss ion
for FOR!' RAN .

Except for time shari ng , thes e are
appl icati ons of the bas i c
telecommunicati ons access method (BTAM) .
Time sharing is a n appli cati on of the
telec ommunicati ons access method (TCAM) .

Teleprocess ing 8 9

Figure 6 2 . IBM 27 8 0 Data Transmission Terminal

REMOTE JOB ENTRY

Remote j ob entry is an opti onal feature o f
an MFT o r MVT ope rat i ng sy stem . It i s a
type of tel eproces s i ng a ppli ca·tion in whi ch
jobs (l ike those e ntere d i nto ·the system
loc a l l y) are rece ived f r om one or more
remote l ocations . The j obs may be entered
via s uc h input de�v ic e s as punched c ard
readers and magnet ic tape uni ts . The se may
be attached to any of the following work
stations :

• Another IBM System/ 3 60 .

• An IBM 113 0 Computing sy stem .

• An IBM 2 7 7 0 Dat a C ommuni ca·tion S y stem .

• An IBM 2 7 8 0 Data Transmi ssion Te rminal
(Figure 6 2-) •

Immed iately or on c ommand , output from a
job can either be directed to the terminal
from which the job origi nated, or
transmitted to one or more ot:her termin al s .

9 0

It ca n a l s o be pri nted or otherwise
pr oc essed by the operati ng s ystem, or
cata l oged and stored (f or lat er retrieval)
in the operating s ystem li brary . Data that
is pr oce ssed by the j ob can either be
enter ed a l ong with the j ob its elf or can be
retr ieved from the system li brary . All of
the operating s ystem f aci lities that are
ava ilable to the local programmer , such as
the language proc e s s ors , th e s erv ice
programs , and the dat a , j ob and t ask
management fac i litie s , are a ls o av ail abl e
to the programmer at the remot e l ocation .
Anything a programmer can s pec ify l ocally
he can spec ify at the remote l ocat i on
because the operati ng system i s
spec ifica l ly des ig ned f or us e at remote
locat ions as we ll as f or l oca l us e . Th e
data cata log i ng a nd management facil ities
of the system , for exam�le , enable
ind ividua l prog rammers to compi le , store,
test ,- update , rec ompi le , l oad, and ex ecut e
programs within the c onf i nes of the
op erat ing sys tem with out res orting to the
us e of punched cards , or without s pe c if i c
knowledge of the I / O confi gu rat i on o f the
s ystem .

Jobs that are rece ived f rom remote
locat ions are p laced by the remote j o b
entr y program into a j ob i nput queue in a
format acceptab le t o the j ob schedul e r .
From there , t he j obs are pic ked u p and
initiated by the i nitiator/terminator of
the j ob schedu ler i n the same manner as for
local j obs . The remote j ob entry progr am
is e xe cuted by the c e ntral computing system
a s a separate tas k, much li k e a combine d
reader/interpreter and output writer .

CONVERSATIONAL REMOTE JOB ENTRY

Like remote job e ntry , c onve rsational
remote j ob entry is an opti onal feature o f
an M FT o r MVT operat ing sy s tem. It enabl es
remote users to ente r j obs f or batch
proc e s s ing , us ing termi nal s that resembl e
ordinary office typewriters . Users enter
j ob s conversationa lly , by ca rrying on a
dialog with the c e ntral computing sy s tem .

Remote j ob input c onsi s ts of programs
and data that the us e r c reate s at a
keyboard termina l . Typed li nes of program
source statements., d at a , and j ob control
statements are c o l le cted wi thin the system ;
there is thus no need f or keypunc hing , an d
there is no wa it f or ope rator handling or
card reading . Simple e rror correction
procedures enab le the u ser to enter d ata
correctly a nd eas i ly . O pti onal facil ities
are available f or c hecki ng the s yntax o f
FORTRAN a n d PL/ I statements a s they are
enter ed,, a l lowing errors to be correc te d
befor e the stateme nt s a r e c ompiled .

Because data is transmi tted direc tly
betwe en the centra l proces sor and the
termina l , j ob turnaround time is gre atl y
reduc ed . T o submit a j ob f or e xecution ,
the user j ust s e lect s the program , data ,
and j ob contro l statements that are to be
entered in the job s tream. When the job i s
comp leted., the user can examine the o utput
at any termina l .

Remotely submitted j obs a re initi ated,
executed , and termi nated in the s ame mann er
as j obs that are s ubmitted locall y . A
remote user thus has avai lable the s ame
batch process ing f ac i li tie s that are
ava ilable to a loc a l u se r. For e xampl e , a
remote user can enter data f rom a terminal
and have it s tored at the central
insta llation for use at a later date .
Stored data can be retri eved ea s i l y f or
online display and modif ication, and can be
used as j ob input to the ope rating s y stem .
A user can update stored data by insertin g ,
rep lac ing , de leting , or changing singl e
typed lines o r groups of li nes . stored
data can be s ha red by many users , but i s
protected against u nauthori z ed acce s s or
mod if ication .•

In addition to f aci liti es for j ob
pr eparation, job e ntry , retri eva l of j ob
output , a nd ma nipu lati on of programs and
data , conversati ona l remote job entry can
pr ovide the termi nal us er wit h inf ormation
about the status of h i s data s ets and the
status of j obs that he h as submitted .
T her e is a ls o a me s s age f aci lity for
two-wa y c ommunicati on between t erminal
us er s and the ope rat or of the central
computing system.

TIME SHARING OPT ION

T ime sharing is a n opti onal feature of the
operating system with MVT. The T ime
S har ing Option (TSO) makes the fac il ities
of the opera ting system avai lable to
programmers at remote te rmi nals t o devel op ,
test,, and execute programs conveniently ,
without the job turnar ound de lays ty pi cal
of batch proc es s i ng . It gives t hose who
may not be prog rammers the us e of data
entr y , ed iting , a nd retri eval fac ilit i es .
It a l s o a l lows the management of an
insta l la ti on to dynamic ally cont rol t he us e
of the system ' s re s ources from a
term ina 1 • 1 ..

I n genera l , a time -shari ng system
differ s f rom a batch process i ng system in
thr ee ways :

1 . A te rmina l user c oncurrent ly shares
the res ource s of a comput ing system
with other termi nal us ers .

2 . A te rmina l user can ent er his probl em
statements a nd other i nput into the
system as he deve lops them, and he
r ec e ives resu lts qui ckly .

3 . A termina l user i s constantly aw are o f
the progress of h i s j ob. H e is
prompted f or inf ormation t he system
needs to e xec ute his job , he qu ickly
r ec e ives res ponses to his reques ts for
action, and he is noti fi ed immediat el y
o f errors the system detects , so that
he can ta ke c orre ctive action at onc e .

T S O is not nec e s s ari ly i nt ended to be
used a s a dedicated time -shari ng system,
that is , a s ystem on which only
time- sharing operati ons take p lac e . Time
shar ing , or f oreground operati ons , c an tak e
p lace c oncurrent ly with batch o r background
operat ions .. If there are peri ods when TSO
is not needed in the sys tem, time s haring
operations can be st opped, and t he system
wi ll the n process bac kg rou nd j obs in the
us ua l way with MVT and TCAM.

The Telec ommunic ati ons Acces s Method, or
TCAM , handle s a ll I/O between remote
termina l s and jobs i n the system . TCAM

Tel eproc ess ing 9 1

distinguishes betwee n ti me sharing
app l ications , with empha si s on quick
r esponse lback to t he c a l li ng terminal , an d
other teleprocess i ng appli cati ons , wher e
empha s is may be on r outi ng and formatting
o f me ssag•es betwee n one remote termi n al and
other s . Both type s of appli cations c an
operate simulta neous ly i n the same s y stem .

An important fe ature of TSO is the
dynamic a l l ocat ion of data s ets for time
shar i ng u:3ers .. Dynamic a l l ocation allows
data sets to be c reated , d e leted ,
c oncatenated , or s e parated without
a lloc ati on at the be gi nning of the j ob
step . A us er can thus def er def init i on o f
his data s ets unt i l h e requi res them .

Working a1:. the •rermi na l

A remote termina l has a keyboard for
enter ing :input a nd a typewri ter- l ike
pr inter or a display screen for output.
Devic e s that can be used a s t:erminal s
inc lude :

• I BM 2 7 4 1 Commu nicati on Te�rminal.
• IBM 10 50 Data communica ti on s ystem .
• I BM 2:2 6 0 Disp lay Stati on .
• IBM 2:2 6 5 Dis p lay Stati on .
• AT & T �reletypes Mode l 3 3 and 3 5 KSR .

Dur ing a typic a l se s s i on , the use r
enter s a s e ri es of c ommand s t�o define and
p er form his work. The c omma nds provided
with the s ystem ha nd le d ata a.nd progr am
entr y , program inv oc ati on i n either the
foreground or the background , program
testing , data manage me nt , and ses sion and
system control . IBM Prog ram P roduc t s are
ava i lable to support problem solving , data
manipulati on , a nd text f orma tting , to
provide tE�rmina !-orie nte d language
proc e s s ors , and to make the s e proc e s sor s
more c onvE�nient to use f rom t�he terminal.

Commands s pec if ic al ly tai lored to an
insta l lation ' s needs can be written and
added to t:he c ommand language or use d to
replace Il�-supp lied c ommand s . Any l oad
modul e can be estab l i sh e d as a c ommand an d
executed s imply by keyi ng i n the program
name at the termina l . L oad modul e s not
def ined as commands can be i nvoked in the
foreground with the CALL c ommand.

The termina l us er can a l s o submit j obs
to the background j ob stream. Commands
s imilar to those used f or the
Conversationa l Remote J ob Ent.ry f ac i l ity
are used t:o create j ob c ontrol l anguage
descr ibinCJ the :job , and to s ubmit it to the
batch j ob strea m. The use r can reque st
notif ication of job c omple ti on at hi s
termina l , and can have j ob output directe d
e ither to h i s termi na l or t o a devic e at
the c omput:e r s it:e .

9 2

System Control

Once a n insta llati on h as g enerat ed a system
that inc l ude s TSO , ti me s hari ng operat ions
ca n be sta rted a nd st OFped at any time by
the system c ons o le ope rator. The operator
ca n spec ify h ow many regi ons of main
storage a re to be assigned to t ime s haring
us er s ..

Eac h f oreg round mai n storage r egion
ha nd les many active f oreg round j obs ,
although onl y one j ob i s actua l ly in the
r e gion at a ny mome nt in ti me. _A f oreground
job is a s s igned to a mai n stora ge region
and ha s access to the syst em ' s res ources
for a short period of time ca l l ed a t im e
s l ic e . A t the e nd of th e j ob ' s t ime s l ice,
or if the j ob e nters the wait stat e f or
termina l I /0 , the mai n storage image of th e
job (tha t is , programs , work areas , and
assoc iated c ontrol b l ocks) is stored on a
dir ec t access device and another j ob is
brought into the same regi on of main
storage a nd given a ti me s li ce . The
proce s s of c opyi ng j ob i mag es back and
forth between mai n and auxi lia ry storage i s
ca l led swapping . Wri ti ng an i mage to
axuiliary storage i s a swap out ; read ing
one into ma in storage is a swap in.

A time s l ice must be long enough to
per f orm a mea ni ngful amount of process ing ,
but not s o l ong that the time between
successive s lices prevents qui ck respons e
to c onversationa l use rs . A·t t he s ame t ime,
time s l ic e s ca nnot be s o s hort and f requ ent
that system ove rhead f or s wapping and tas k
switc hing bec omes excessive. Bal ancing
the s e factors depe nds on th e number and
type of j obs the syste m is proces s ing . A
so lut i on f or one j ob mix i s not neces s arily
suitable f or a nother j ob mi .x . The TSO t im e
shar ing a lgorithms -- the f ormulas used to
ca lculate the d ivi si on of time among j obs
-- are ba sed on seve r a l vari ables , most of
which ca n be spec if ied by th e install ation
to tune the s yste m f or thei r part icul ar
wor kload .

T he ma nageme nt of an i ns-t a l lat i on can
s hift most of the re s ponsi bi lity f or
contr oll i ng the t i me shari ng s ystem f rom
the operator at the s ystem cons ole t o us ers
at r emote termi na ls , called contr ol
ter mina l s . A c ontrol te rmi na l u s er c an
alter the system c onf igurati on t o meet
cha nging work loads . For i nstanc e , he can
a s s ign an extra regi on of mai n storage to
time sha r i ng operati ons duri ng peak
per iods , a nd then re le ase i·t t o be us ed for
batc h operati ons duri ng s l ack per iods .
s uc h c ha nges re quire no shut down of T SO an d
ar e not notic ed by the us ers of other
r egions . Eve n the starti ng and st opping o f
TS O opera tions i s acc ompli s h ed w ithout
shutting d own the system or a f f ect ing
backgr ound operati ons .

GRAP H IC JOB PROCESSING

Graphic j ob proces s i ng i s an optional
feature of an MFT or MVT operating sy stem .
The graphic job proc e ssor i s a program that
enables users at remote IBM 2 2 5 0 Display
Units (Figure 6 3) to qui ckly and
conve niently define and start j obs th at are
proc e s sed by the operati ng system . The
display unit may be used to communic ate
directl y with the system/3 6 0, or

communicate with the system/ 3 6 0 by way of
an IBM 1 1 3 0 Comput i ng System.

A us er of the graphic j ob proces sor need
not be fami liar with the j ob control
language of the operating sy stem. I n stead
o f a us er defining a j ob in the form of j ob
control statements , inf ormati on about the
j ob is e licited from him by means of a
ser ies of dis p lays on the screen of the
TV- l ike 2 2 5 0 graphic di splay tube . A
sample of such a dis play i s shown in Figure
6 4 .. The us er res ponds to the displ ay s by
enter ing requested i nf ormati on and
select ing options us ing an alphameric
keyboard , a light pe n, or both. The
graphic j ob proces s or then c onverts the
information about the j ob i nto j ob c ontrol
statements that are pa s sed to the operating
system to initiate the j ob .

D E S C R I B E DATA :

D A T A NAME �-.:l L::..:E:.:.;N:..:::S..:.S:...:.A V..:...;E=------------

D A T A R E F E R E N C E L..:(O�U�T..:..P�U..:....:T-:..._ ___ _.

I N D I C A T E S T A T U S : C A T A L O G E D

MOD S HA R E

O L D

N E W

" " " A D D I T I O N A L I N FORMA T I ON W I L L B E R E Q U E S T E D F O R O T H E R T HAN:::: : :

C A T A L O G E D S T A T U S

O T H E R

C HO O S E D I S P O S I T I O N : K E E P P A S S D E L E T E

C A T L G P R I N T P U N C H

Figure 6 3 . A DESCR IBE DATA Displ ay For the
Graphic Job Processor

The graphic job process or enables the
user to:

• Identify hi mse 1f to the system (LOG
ON) .

• Define a sing le j ob st ep (SPEC IFY JOB
STEP) .

• I dent ify data to be us ed in a j ob step
(DES CRIBE DATA) .

• Start the process i ng of a j ob (BEGIN
JOB) .

• Exec ute a cata loged procedure (BEGIN
PROCEDURE) .

• Communicate with the s ystem operator
(WRITE MESSAGE) •

• Enter S O -character data records , actual
j ob c ontrol state me nts , and other
program c ontrol statements (ENTER
DATA) .

• Ca nc e l a job curre nt ly bei ng defined
(CANCEL JOB) .

• Complete inte racti on with the 2 2 5 0 and
prepare the 2 2 50 f or the next user (LOG
OFF) .

• Repea t previ ous ly compl eted oper ations
(RECALL) .

• Name an 1 1 3 0 prog ram that is to be run
in c onjunction with a program in the
I BM S ystem/ 3 6 0 Computi ng System
(S PECI FY 1 1 3 0 PROGRAM) .

The la st operation appli es only when an
11 3 0 Computing s yste m is us ed.

A System/ 3 6 0 i nstallati on a llows u p to
15 users at separate di s pl ay unit s to
process j obs i ndependently of one another .

Teleproc essing 9 3

Figur e 6 4 . Us ing a Graphi c Displ ay Progr am o n a 2 2 5 0

9 4

Communication a nd c ontrol between each user
and the operating system i s establ ished and
ma intained by the graphi c j ob proces sor .
The proces s or res pond s to a user by
displ a ying mes sages on the 2 25 0 screen . A
pr inted record of the j ob c ontrol
operations performed by a user at the
disp l a y unit ca n be provided upon reque st .

A j ob that is def ined at a displ ay uni t
can be placed in a j ob i nput queue f or
batch process ing (i ndependently of the
graphic j ob proces s or) usi ng main storage
space and other res ource s not a s s igned to
the graphic job processor. Thi s type o f
job is often ca lled a background job..
Alternative l y , a f oreground job can be
defined and executed immedi a tely using main
storage and other re sources assigned to the
graphic job proces s or .

A foreground job would norma l l y re sul t
in the execution of a g raphic displ ay
program that would i nterac t with the user
at the dis pla y cons ole , as shown in F igur e
6 4 . Thus , the graphic j ob processor can
enable engineers , de signers , and other
non-programmers to execute and us e graphi c
display programs f or a vari ety of graphic
d ispl ay applications such a s optical de si gn
(Figure 6 5) auto des ign, and civil

engineering app lic at i ons .

Figure 6 5 ,. A Typic a l Optical Des ign
Applic ati on Di splay

S YSTEM/3 6 0 -1 1 3 0 DATA TRANSMISS ION FOR
FORTRAN

A s et of optiona l subrouti nes , provided for
FORTRAN I V programmers , can be us ed to
transmit data betwee n a program being
executed under control of the System/ 3 6 0
Operating System, a nd a program being
executed under c ontrol of the Dis k Monitor
S ystem of the IBM 11 3 0 Computi ng System .
The same subrouti nes c an als o be c alled
us ing the assemb ler l anguage.

The da ta tra ns missi on subrout ines make
it pos s ible f or an 11 3 0 program to use the
high speed c omput i ng abi lity and l arge
stor a ge c a pacity of th e Syst em/ 3 60 . Thus ,
they can be used t o i ncreas e the
flexibility a nd efficiency of an 1130
appl ication .

Separate sets of transmi s s i on
subr outine s a re avai lable f or the
system/3 6 0 and the 1 1 3 0 . Thes e routines
enable a programmer to t ransmit data f rom
one system to the other without a detail ed
knowledge of te lec ommuni cati ons
programming .

The da ta tra ns mi s si on subrout ines enabl e
a pr ogrammer us i ng either system t o :

• I nitia l i ze the c ommuni cat i on l ines .

• Transmit and receive data via the
lines .

• Test the status of a previous ly
requested tra nsmit or receive
opera tion .

• I nitia te routi ne s i n the other system .

• Terminate the c ommuni cat i on l ink
between the S ystem/3 6 0 and 1 1 30 data
transmis s i on programs .

In add ition, S yste m/3 6 0 t ransmiss i on
subroutines enab le the programmer to
terminate the executi on of an 1130 mainline
program. Conve rs i on subrouti nes are
included in each set to reconc ile
differ enc e s in the FORTRAN data f ormats of
the system/3 6 0 and the 1 13 0 . These
subr outines can be c a l led only by a
system/3 6 0 prog ra m. They perform the
fol l owing c onve rsi ons :

• 1 1 3 0 integer to System/ 3 6 0 integer, an d
vice versa .

• 1 1 3 0 standa rd - pre ci si on rea l numbers to
System/3 6 0 stand ard-l ength real
numbers , a nd vice vers a .

• 1 1 3 0 extended precisi on real number t o
System/3 6 0 double - preci s i on real
numbers a nd vice vers a .

Teleproc ess ing 9 5

Page of GC 2 8 - 6 5 3 4- 3 , Rev is ed January 1 5 , 1 9 7 2 , By TNL : GN 2 8- 2 51 2

PART 3 : BIBLI (X; RAPHY

Part 3 , the bib li ogr a phy , cont ains the
t it l es o f al l the publ ication s refere nced
in thi s ma nua l.

Part 3 : Bibliography 97

Page of GC2 8 -·6 5 3 4 - 3 , Revised January 1 5 , 1 9 7 2 , By TNL : GN 2 8- 2 5 1 2

I IBM System/ 3 6 0 :

1 . As semblE�r La. nquage , GC2 8 - 6 5 14

IBM System/3 6 0 Ope rati ng Systei!! :

2 . Adv anced C heckpoint/R estart Planning
Gu ide, GC 2 8- 6 7 0 8

3 . } Job Control Language Reference ,
4 . GC 2 8- 6 7 0 4

5 . Linkage EditOlc and Loader ,, GC 28 - 6 5 3 8

6 . MFT Guide, GC :2 8 - 6 9 3 9

7 . MVT Gu ide, GC :2 8 - 6 7 2 0

9 8

8 . Pri nci ples of Operati on , GA2 2- 6 8 2 1

9 . Supervisor S ervic e s and Macro
Instructions , GC2 8 - 6 6 4 6

1 0 . Data Management Servi c e s , GC 2 6 - 37 4 6

1 1 . System C ontro l B l cck s , GC 2 8 - 6 6 2 8

1 2 . System Generatio n , GC 2 8 - 7 5 54

1 3 . Data Manageme nt f or System
Programmers , GC 2 8 - 6 5 5 0

14 . TSO P la nni ng Guide , GC2 8 - 6 6 9 8

1 5 . Uti li ti e s , GC 2 8 - 6 5 8 6

Page of GC2 8 - 6 53 4 - 3 , Revi sed Ja nuary 1 5 , 1 9 7 2 , By TNL : GN2 8 - 2 51 2

Indexe s t o systems refe rence library
manua l s are con sol idated in the pub l icati on
IBM System/ 3 6 0 Operating System : Sys tems
Reference Library Master In d ex , GC 28 - 6 6 4 4 .
For a ddit i onal informat ion about any
subj e ct l is t ed bel ow , r efer to o ther
publications li sted for the s ame sub j ect in
the M ast er Index .

acces s methods
def ining in a j ob 7 3 -7 4
provi ded by IBM 7 2- 7 3
us ing t o c reate data sets 7 3

acces s method rout in es
in :tr.LFT 5 2
i n MVT 5 3

airl i ne r es ervat ion system s 2 8
ALGOL lang uage 4 7
ALGOL c ompi ler 4 7
al loc at ion 4 2
Alte rnate P ath Retry (APR) 7 9
a l ternative module s 3 4
Amer i c an N at ional Standard COBOL 4 6 - 4 7 , 4 8
app l ications

growt h in 1 9
of operating s ystems 2 7
onl ine direct access 2 7 - 2 9
s equ ent i al , o ffl ine 2 7
s yst err, 1 1

app lication program
des c ription 4 2
me s sage proce s s i ng 8 7

appl ications programmer 1 3
AP R (s ee Alt ernate P at h Retr y)
a ssembler 4 4
ass embl er l anguage 4 4
au dio res pons e dev ic e 8 6
automat i c interruption 41
automatic resta rt 7 9
a utomatic transiti on

benef its for long-runni ng j obs 2 6
by t he control program 2 4

a uxi l iar y c omputing s ystem 2 3
a uxi l iary s torage 2 4
ava i lability

as a performanc e factor 14
in System/3 6 0 3 3
wit h multiprocess ing 8 1

bac kground j ob
in t el epro c es s ing 9 5
i n t ime sha ring 9 1

Basic D irect Acces s Method (BDAM) 7 3
bas ic f ixed area

in MFT 52
in IvlV'I' 53

bas i c monitor 25
Ba sic F ORTRAN Language 4 5
Bas i c Index ed s equ ential A c c e s s Method

(BI SAM) 7 3

Index

Bas i c Op erat in g S ystem (BOS) 5 0
Bas i c P artitioned Acc e s s Method (B PAM) 7 3
Ba sic Pr og rammi ng Su pport (BP S) 5 0
Ba sic Se quenti a l Acc e s s Method (BSAM) 7 3
Ba s ic Te le c ommunications Access Method

(BTAM) 73 I 81 I 8 9
hat ched j ob pro c es s ing

c ontra s te d with t i roe s h aring 9 1
des cr iption 2 2

BDAM (se e Bas i c Di rect Acce s s Method)
BI SAM (see Basi c I ndexed S equent i al Access

Met ho d)
b loc k , data 6 8
B OS (s ee Bas ic Operat ing S ystem>
BPAM (se e Bas i c Part it i oned Acces s Method)
BPS (s ee Bas ic Pro gramming support >
BSAM (s ee Bas ic S equential Acc e s s Me thod)
BTAM (se e Bas i c Te lec ommunicat i ons Acc e s s

Method)

CAI (see c omputer a s s i sted i nstru ct ion
system)

cata log 6 9 -7 0
cat aloged proc edures

def i ni ng 7 3- 7 4
descr i pti on 3 5
l ibrary o f 6 2
ove rridi ng 6 2

ca ta logi ng 3 5 , 7 3 - 7 4
c entral proc e s s in g un it (CPU)

as a hardware res ource 1 2
communication with another CPU 8 1
main s torage conf igurations 5 0

CCH (see Cha nne l Che c k Handl er)
channel 1 2
Channe l Chec k Hand ler (CCH) 7 9
cha nne l i nboa rd e rror reco rd , us ed with

CCH 79
channel-to- c hannel a dapter 81
checkpo int 7 8- 7 9
checkpoint r estart 7 8 - 7 9
chec kpoi nt/restart faci lity 7 8- 7 9
cl as s (s e e j ob c l a s s , output c la s s >
COBOL comp il er 4 6
COBOL language

feature s of 4 6
in I BM 7 0 9 0/7 0 9 4 Operating System 2 5

COBOL l i brary 4 7
CODASYL 4 6
c ommand la ng uage 9 2
commun ication l i ne 8 5
compatibi l i ty

a s a g rowth fact or 3 9
o f MFT , MVT 5 0

c omputer a ssi sted i ns tructi on (CAl)
s ystem 8 6

concurrent I /O 17
c oncurre nt proc es s i ng

o f I/ O 1 7
of j ob s 62
of j ob step s 5 1- 5 4

Index 9 9

Page of GC2 8: -6 5 3 4 -· 3 , Revised .January 1 5 , 1 9 7 2 , By TNL : GN2 8 - 2 5 1 2

o f j ob su pport tasks 51- 5 4 , 6 1
of ta sks 5:1 -5 4

confi gurat ions
control program 5 0
C PU/main :s torag e 5 0

control prog:r-am
conf igura·tions 5 0
i n e arly operat ing sy stem s 2 1 , 2 5
in system libra ry 2 4
i n it ial iz at ion 3 5, 1 0 3
MF T c onfigurati on of 5 1 - 5 2
MV T c onfigurati on o f 5 3 - 5 4

cont r ol t erminal 9 2
contro l uni t 8 2
cont roll ing us e o f t he system 3 6
conversat i ona l remote j ob entry (CRJE)

compatibi lity with TSO 9 2
des cr ipt ion 92

CPU (s ee cen-tra l p roce s si ng uni 1:)
CPU t ime (s ee also t ime shar ing ; time

s l ic ing) 1 2
CRJE (see c onversa t i onal r emote j ob e ntr y >

d ata
as an i nformati on res ource J. 3
bl ock 6 8 ., 9 9
def ining :i n a j ob 7 3 -7 4
mas t er 2 7
organi zati on 6 :8
record 6 :3
st or ing and r etr i ev ing 7 2- 7 3
tr a nsaction data 2 7

dat a collect ion
des cript ion 8 5
us ed by SM F rou·ti ne s 5 7

data def init ion (DD) statement 6 1
dat a f i l e (s ee al so data set)

common 2 3
d e scr iption 6 9

data management
(s ee information management)

data organi zati on 6 8
data processing i nst a l la ti on

j ob respons ibil it ies within 1 3
productivi ty fa ct ors i n 13 , 14

data proces sing res ourc e
e f f ective us e o f 1 3 , 3 5
hardware 1 2
human 1 3
information 1 3
i nvesting 3 3
management. o f '5 7
q ue ue of 5 7
s haring o f 1 8 , 5 5 , 5 6
s upervi soJr c ontro l 4 2

dat a proces s ing t ask (s e e ta sk >
data set (seE� also data f il e)

cat a l og 6 9
def ined dynamica l ly 9 2
defining in a j ob 73- 7 4
des cript ion 6 9
locat ing 7 2
partiti oned 7 2 ., 7 7
s har ing 3 5 , 6 3

data se t uti li ty programs 4 8
data shar ing

among j obs 6 2

1.0 0

among prog rammers 3 5
among tasks 5 6
betwee n C P Us 8 1
in early systems 1 8

DD (data d ef i ni ti on) statement 6 1
DDR (s ee Dynamic Dev ice Reconf igu rat i on)
dedi cat ion 9 1
def a u lt opti ons 3 5
deferred restart 7 9
def i ni ng a nd g enerat i ng the syst em 3 4
dest inat ion co de 8 8
determin ing r equir ements 3 3
deve lopme nt of operat i ng s y s tems

f ir st sta g e : component
deve lopment 1 5- 1 9

s ec ond stage : i ntegrat i on and automat i c
oper ation 19- 29

third stag e : a union o f
techniques 2 9 , 3 0

device i nd e pe ndenc e
b y de ferr i ng s e lecti on 7 4
de scri pti on 3 9

device s
d ef i ni ng i n a j ob 7 3 - 7 4
d irec t access 7 2
j ob input 2 2
j ob output 2 3
s equent ial access 7 2
uti li ty 2 3

direct access storage devices
in earl y operat in g system s 27
in onli ne di rect access applicat ions 2 8
s hare d 8 3

direct a c c e s s storage space
as a h a rdware re s ource 1 2

direct c ontrol feature 8 3
directory 7 0 , 7 7
Di sk Ope rati ng System (DOS) 5 0
DOS (see Di s k Ope rat i ng System)
Dynam ic al location

in MFT 5 5
i n MVT 5 5 , 6 6

dynamic ar ea
in MFT 5 3
i n MVT 5 4

dynamic data s et def in it ion 9 2
Dynamic D ev i c e Recon f igura tion (DDR) 7 9

emu l ator , integrated 4 8
Error Recovery Procedure s (ERPs) 7 9
ERPs (se e Error Rec overy Procedures)
establ ish in g prior itie s 3 6
evo luti on of operati ng sys tems

f irst stage : component
deve l opment 1 5- 1 9

sec ond stag e : i ntegrat i on and automat i c
operati on 19 - 29

t hird stage: a un ion o f
techni ques 29 , 30

e xec ute (EXEC) c ontrol statement
i n j ob defi nition 6 1
intro duced 2 2

e xec utive prog ra m < s ee c ontrol program)
exit r out ine s , us ed by SMF routines 5 8
external storage (see auxil iary storage)

Page of GC2 8 - 6 53 4 - 3 , Revi sed Ja nua ry 1 5 , 1 9 7 2 , By T NL : G N2 8 -2 5 1 2

faci l ity 1 4 , 3 3
fetc h (see program f etch)
file (s ee d at a f il e, data s et)
foreground j ob

i n t el eproc es s in g 9 5
i n t ime s harin g 9 1

FORTRAN IV l anguag e
in I BM 7 0 9 0/7 0 9 4 Operat ing System 2 5

FORTRAN compi l er 4 5
FORTRAN l anguage

comp i lation of 4 5
IBM s ys tem/3 6 0 - 1 1 3 0 data t ransmiss ion

f or 9 5
in early systems 16

FORTRAN l ibrary 4 5

general purpos e s ys t em 3 3 -3 6
genera l i zed programs

shar i ng of 1 8
s art/merge 4 7

general iz e d s ort/mer ge progr ams
as a subs ystem 2 4
fu nct ion o f 4 7
in system l ibra ry 2 4

gener ation data group 7 2
graphic d i s play program 9 3 - 9 5
graph ic j ob proces s i ng 9 3
g ra ph ic programming s erv ic e s 4 8

hardware re sources 1 2
header (see message header)
" human- orient ed" l an guages 16
human res ources 1 3

I/ O d ev ices
c ommon 2 3
d e f ining 3 9 , 7 4
operator a s signme nt o f 2 2
poo l i ng o f 2 4

I/O operati ons 17
IBJOB Proc essor Subsystem 2 5
IBM S ystem/3 6 0 - 1 1 3 0 data t rans miss i on f or

J!o,ORT RAN 9 5
IBM System/ 3 6 0 Opera ting System

appl icat ions 1 9 , 27
compati o i l ity 3 9
device i ndependence 3 9
generat i on o f 3 4
growt h i n p erformance 3 8
init ia l iz a ti on o f 3 5
ma i n storag e con f igurat i ons 5 0
modu l ar construct ion 3 4 , 3 7
mu ltipl e -ta s k ma nage ment 3 9
ob j ect iv es o f 3 0- 4 0
or gani zation of 4 1 - 5 3
st andards 3 9
s upport of multi proc e s s i ng 8 2- 8 4 ' s u pport o f t el eproc e s s ing 8 5 - 9 5

IBM 1 4 01 Data Proc es s i ng Sys tem 2 3
IBM 2 2 5 0 D i s pl ay Unit

graphic j ob proce s s i ng wi th 9 3- 9 5
gr aphic s ervic es 4 8
u s e with FOR��AN 4 5

IBM 2 2 6 0 D i splay S tat ion 4 8 , 4 9

IBM 2 3 6 1 Core Stor age
d e scri pti on 5 0
a l loc a ti on of 6 1

IBM 27 8 0 D ata Tran smi s s ion Termina l 9 �
IBM 7 0 9 0/7 0 9 4 (IBS YS) System 2 5 , 2 6
IBM 7 7 7 0 Audi o Re sponse Uni t 8 6
IBSYS (se e IBM7 0 9 0 /7 0 9 4 (I BSYS) S yst ew)
i d le time

between j obs 1 9
d ue t o I/O operat i ons 1 7
r educt ion o f 2 2
when process in g many sma l l

independent ut il ity programs
i nf ormati on manag e me nt 6 7 - 7 4
in formation r esources 1 3
i nit i a l i z e (IPL) 3 5
in it iat ion

of j obs 6 4

job s
4 8

1 8

of j o b steps (MF T , MVT) 5 2 - 5 3 , 6 4 - 6 6
o f ta sk s CMFT , MVT) 5 7 , 6 4 - 6 6
o f task s within a j ob step (MVT) 5 8

initia tor/te rmi nat or
in MFT , MVT 6 4- 6 5
i n remote proc ess i ng 9 1

i nput/output cha nne l t ime 1 2
i nput/output c ont rol s ystem (IOCS)

dev elopment o f 1 7- 1 8
inc lude d i n nuc leus 25
in sy stem l ibrary 24
sub system 24

input/output devices 1 2
i nput stream (see j ob i nput stream)
input work queue 6 4
inquiry and tran sact ion proc e s sing 8 6
i nstruc ti on 1 3
i nterrupti on 4 1
i nte rrupti on network 41
integrated emul ator program 4 8
IOC S (see i nput/output c ontrol system)
I PL (see i ni ti a li ze)

jon
bac kg r ound 9 1 , 9 5
batche d 2 2
c l ass 53
c ontrol s tatements 2 2
def i ni ng to the sys tem 2 2 , 6 1
f oreground 9 1 , 9 5
input device 2 2
input str eam 2 2 , 6 1
manag ement o f 61- 6 6
non- s top proce s si ng o f 2 1
output stream 5 1 , 6 1
pr ior ity 5 1- 5 2
scheduler 4 3 , 5 2 , 5 7
s in gl e- step 2 4
s tacked 2 2

job batch
proces s in g 22
r emote entry 8 5 , 9 1
tra nsc ribi ng 2 3

job cl as s
i n MFT 5 0 , 5 2 , 6 5
in MVT 6 5 -6 6

JOB control statement
i ntroduced 2 2
i n j ob de f in ition 6 1

job c ontrol statements 2 2

I ndex 1 0 1

Page of GC 2 8- 6 5 34- 3 , Rev is e d �January 1 5 , 1 9 7 2 , By TNL : GN2 8 - 2 5 1 2

job def init: i on (see a ls o j ob) 6 1
job i nput device 2 2
j ob i nput stream

in batch procE� s s i ng 22
in �1F'T , MVT 6 4
in non- stop proc ess ing 6 .1

job management 6 1 -6 6
job mix , controll ing 6 7
j o b output devicE:! 2 3
j ob output stream 5 2 , 6 1
j ob priorit:y

in MFT 5 1- 5 2, 6 5- 6 6
in MVT 5 3 , 6 5 ·-6 6
s pec ify ing 5 9 , 6 1 , 6 5

j ob process ing
c oncurrEmt 6 2
graph i c 9 3- 9 5
multiplE� 6 2 -6 3
non- stop 2 1 , 6 1 , 6 2

job q ue ue l(see input work queue)
j ob s chedul er

general f uncti on of 43 , 6 1
in �WT 5 7 1, 6 4 - 6 5
in MVT 5 7 ,. 6 4- 6 5

j ob s egment: (s ee job ste p)
j ob s t ep

c onc urre�nt proc es s i ng of 5 2- 5 4
i n J.vlFT 5 2
in MVT 5 3
i n it iat i on o f 5 2- 5 3 , 62
intr oduced 22
t r ans it i on 2 LJ , 2 5

job s te p re! start (s e e step rest a rt)
j ob s t ream < s ee j ob input stream ., job

o utp ut stream)
j ob s u pport� t asks

concurrent proc es s i ng of 5 2- 5 4 , 6 1 , 6 3- 64
in MFT 5 2
in MVT 5 3

j ob turnaround (s ee turnarow1d t ime)

Language translators
deve lopment of 1 5, 1 6
i n system l ibrary 2 4
s u bsystem 2 4
s u ppl ied by I BM 4 3- 4 7
terminal. ori ent ed 9 2

large c apacity st�or a ge (se e IBM 2 3 61 Core
Stora ge)

.LCS < see I BM 2 3 6 1. Core S tora qe)
Library

F ORTRAN 4 5
load modul e 77
ob ject module 7 7
procedure 6 2
program 7 2- 7 0
re ference system 6 9 - 7 2
s ource modul e 7 7

l imit pr iority , de f i ned 1 0 5
link pack area 5 3
li nkage editor 4 3 , 4 7, 7 6
load module 7 6
loader 47

Ma.chine Che c k Ha nd le r (MCH) 7 9
machine l anguage 1 5 , 1 6

10 2

machine mal function , with recover y
s upport 7 9

" mac hi ne ori ented " languag es 15
ma cro instruction 4 5
ma c r o linrary 4 5
ma in storage

as a hardware res ource 1 2
bas ic f ixed ar ea 51 - 53
con figuration o f 5 0
d ynamic a rea 5 1- 5 3
li nk pack area 5 3
master schedul er reg ion 5 3
organi z ati on , - with .MF T 5 1
organi zati on , with MVT 5 3
part it ion s 5 2
shared 8 2

ma in stor age part it ion 5 2
ma i n storage region

descr iption 5 3
specif yi ng si z e o f 6 6
temporary ass ignment of 5 9
t ime s har in g 9 2

ma nage me nt
o f an install a t ion 1 3 , 3 3 ·-3 6
of i nf ormati on 6 7 - 7 4
o f j obs 6 1- 6 6
of prog rams 7 5 -7 9
o f resources 5 8
of ta sks 5 5 -6 0

mast er data 2 7
ma ster data fi le

in operat ing systems 2 7
i n onli ne , di rect acces s syst ems 2 8

mast er f il e (s ee master data f ile)
ma ster pr og ram (see c ontrol program)
mast er s chedul er

funct ion o f 4 3 , 61
in MFT 5 7 , 6 4- 6 5
i n MVT 5 7 , 6 4 - 6 5

mast er s chedul er region CMVT) 5 4
MC H (s ee Machin e C heck Handl er)
member 7 2
me s sage

header 8 7
i n te l e proce s sing 8 6 , 8 7
ope rator 2 5
t ext 8 9

me ssage c ontrol prog rams 8 7
mess age header 8 7
me s s ag e t ext 8 7
me s sage process i ng programs 8 7- 8 9
mess age queue 8 8
me ssage swi chi ng 8 5
MFT co ntr ol program

compatabil ity with MVT 5 0
CPU/mai n storage c onfigurat ions 5 0
des cr ibed 5 1- 5 2
organi zati on of mai n storag e 5 2
with RMS 7 9

Mo del 6 5 Mul t ipro c e s s ing system 8 2 - 8 3
mod u lar c onstructi on

for fl ex ibil ity and growth 3 7
i n prog ram deve lopment ·7 5- 76
in " t a ilor in g" a sys tem 34

module
alt ernative 3 4
ge nera l descri pti on 3 4

Pag e of GC 2 8 - 6 5 3 4- 3 , Revised January 1 5 , 1 9 7 2 , By TNL : GN 2 8 - 2 5 1 2

l oad 7 6
o b j ect 4 4 , 7 6
opt ional 3 4
program 7 5
req uired 3 4
source 7 6

monitor (see control program)
mu lt i pl e- j ob process ing 6 2
multiple -ta s k ma na ge me nt

adv ant ages of 5 8
intr oduced 3 9

mult i pl e-t ask sys t em 5 6
multipr oc e ssing

CPU/main s torage conf ig uration s 5 0
d et a i le d desc ript ion 81- 8 4
mode 8 1- 8 2
in MFT 5 2 , 5 3
i n �lV'I' 5 3 , 5 4
with shared direc t access devices 8 2
with s hared main stor age 8 2- 8 3

mu lt i system mode 8 2- 8 3
MVT c ontrol progra m

compat ibil ity w it h MFT 5 0
C PU/main stora ge c onf igurati ons 5 0
des cribed 5 3 , 5 4
org aniz ati on o f main stor age 5 3
t im e s haring opt ion (TSO) 9 1
wit h Model 6 5 Mul t iproces sing 8 2- 8 3
with RMS 7 9

NIP (see nuc leus initial i z ati on progr am)
non - s top j ob process ing 2 1 , 6 1 , 6 2
nuc leus

in e arly systems 2 5
secondary (MFT) 5 2

ob j ec t module 4 4 , 7 6
obj ect program 16 , 4 4
o f f l ine 6 4
online 2 7 , 2 8
online, direct acc es s appl ications 2 7- 2 9
onl ine prob lem s olvi ng (se e a ls o t ime

s haring) 8 5
operat ing system

app lications 27
benefits for long-running j ob s 2 6
controlling ope rati on of 3 5
controlling us e o f 3 6
ev olut i on o f 1 5- 3 0
generati on of 3 4
growth of 3 8
IBM 7 0 9 0/ 7 0 9 4 (IBSYS) 2 5 , 2 6
i n the second s ta ge 21
i n the third stage 2 9 , 3 0
initiali zation (IPL) of 3 5
introduce d 1 3
ma j or f unctions o f 5 1 - 9 5
modu l ar construct ion 3 4 , 3 7 , 7 5 - 7 6
orderly growth 3 7
s ubsystems 2 4 , 2 5
typical exampl e o f 2 1

opera tions s ta ff
as a human resour ce 1 3
i n maintaini ng high producti vi ty 3 5

operator
action with DDR rout i ne 7 9
as a human r esource 1 3

c ommuni cati on with c ontrol program 2 2
control during oper ation 3 5
i niti a li z ati on (I PL) 3 5
misca s t role i n early syst errs 19

oper at or mes sage 25
opt ional modul e s 3 4
organ izat ion

of data 6 8
o f IBM System/ 3 6 0 Ope rati ng

System 4 1 - 5 4
o f ma in stora ge , with MFT 5 2
of mai n storage , w ith MVT 5 3

output cl ass 6 4
output stream (s ee j ob output stream)
output work queue 6 4
output wri te r 6 4 - 6 5

PAM (s ee partitioned acc e s s method)
pa rtiti on

of a data set 7 2 , 7 9
o f ma in storage (MFT) 52

partiti oned acces s method (PAM) 77
part it ioned data s et 72 , 7 7
pa�titi oned data s et membe r (s ee member)
partiti oned mode 8 3
pa tc h i ng 7 8
PDS (see parti tioned data set , progra m

library)
performanc e

f ac tors 14 , 3 3
improvement through modular

c onstruc ti on 3 8
per i phera l operati ons 6 3
PL/ 1 compil er 4 7
PL/1 language 4 7
PL/ 1 l ibrary 4 7
pr ior ity

e stabli shing 3 6
o f j obs 5 2 , 5 3
o f task s (MFT , MVT) 57
s pecif ying f or j ob s 5 9 , 6 1 , 6 6

pr ivil eged in struct ion 4 2
problem solving

a f ter language trans lat ors 16
before l an gua ge tr an sla tor s - 15

prob lem state 4 1
prob le m - state program 41 , 4 2
proc edur e l ibrary 6 2
proc e s si ng prog ra m 4 3
product iv ity 1 4
program

a pplicati on 4 2 , 9 8
d es ign o f 7 6
d evelopment 7 5- 7 9
d ynamic l oadi ng of 7 8
l ibrary (PDS) 7 2 , 7 7
man agem en t o f 7 5- 7 9
me s sage proc es s i ng 8 9
module 7 5
obj ect 1 6 , 4 4
problem s tate 4 1 , 4 2
proces s in g 4 3
ree nte rabl e 5 6
shari ng of 18 , 3 5 , 5 5 , 5 6

program f etch 4 7
program l ibrary 7 2- 7 8 , 1 0 9
progra m l oade r 2 5

I ndex 1 0 3

Page of G C 2 8- 6 5 3 4- 3 , Rev i s ed January 1 5 ,. 1 9 7 2 , By 'I NL : GN2 8 - 2 5 1 2

program products 4 8
prograrr; st atus wor d (PS W) 4 1
progr ammer 1 3
progr amm ing a i ds

d e ve lopment of 1 5 - 1 8
i n system l ibrary 2 4

progr amming l an gu a ge 6
progr amming language I (se e PL/ I)
PS W (s e e program statu s wor d)

Q ISAM (see Que ued I ndexe d Se quential Acce s s
Ivlethod)

QSAM (see Q ue ue d Seque nt i a l Acces s Method)
QTAM (s ee >d u eu e d 'T el ecommuni ca 1:ions Acce s s

Nethod)
queu e

i nput 6 •lJ
me s s age 8 8

o f input da ta 7 3
o f t asks 5 7
o f output data 7 3
out put work 6 4

Q ueued I ndexed s eque nt i a l Acces s Het h od
(Q ISAfJl) 7 3

Queued Sequenti a l Ac ce s s Me thod (QSAM) 7 3
Queued 'l' e l e cornrnunicati ons Ac ces s Met hod

(QTAI•D 7 3 ,, 8 7- 8 8

RAS (see Re liabi l i t y , Avai labi li ty ,
s erv i c e ab i l ity)

reader/ i nte rprete r
in .t-'.IFT , :MVT 6 4 - 6 5
i n r emot e proc es s ing 9 1

r eenter able program 5 5
record 6 8
recover y ma nag ement s u pp ort (�1S)

des c r i pt ion 7 9

r o ut i ne s us ed b y ill-iS
APR 7 9
CCH 7 9
DDR 7 9
ERPs 7 9
MCH 7 9
SER 7 9

u s e d with JIII...FT control prog ram 7 9
u s e d with multi proce s s ing 8 2
us ed with MV'I c ontro l prog·ram 7 9
t yp e s o f R¥� rout ine s 7 9

reent erabl e cod e 5 5- 5 6
region (se e ma i n storage regi on)
R e l i a bi l ity , Avai l ab il ity , s ervi c eab i l i ty

(RA S) .
des cr i pt ion 7 9
ma c h i ne mal fun ct ion 79

s u pport of RMS 7 9
rout ines us ed by RAS
DDR 7 9
ERPs 7 9
MC H 7 9
S E R 7 9
de s·cr i pt ion 5 7 , 9 2 SMF 5 7

reloc atabil ity 7 8
remot e j ob 4:=ntry (RJE) 9 1

(s ee a l s o c onve rs at i ona l remot e j ob
e nt ry)

r emote j ob 1;>roc es s i ng (s ee r emot e job
entry >

1 0 4

re port pr og ram g e ne rat or (RPG)
f e atu r e s o f 4 7
i n system li b ra ry 2 4

requ ir ed modul es 3 4
re s ource , data proc e s s ing (se e data

proc e s si ng res ou rc e)
res ponse t im e

a s a pe rf ormanc e f actor 1 4 , 3 3
in onl ine systems 2 9

restart
a utomatic 7 9
c heckp o int 7 8 , 7 9
d e f err ed 7 9
s te p 8 1

RJE (s ee r emote j o b e n tr y)
RMS (see rec ove ry ma nag ement s upport)
rol l ou t/roll in 5 9
RPG (see re port program generat o r)

" s at el l it e " computer 8 1
sec ondary nuc leus 5 3
s econdary stora ge (se e a ux i l ia r y s torage)
segme nt , rec ord 6 8
s e le c t i ng opti ons

at in itial i z a t ion 3 5
a t system g e ne rat i on 3 4 , 3 5

s equ ent ial a cc es s app l ication 2 7
seque nti a l I /O 1 7
sequent i a l pr oc es s i ng

of I/O op era t io n s 1 7
se que nti a l , of f li ne a ppli cat i ons 2 7
S E R (s ee Sys t em Envir onment Recor d i ng)
service pr og rams 4 7 , 4 8
s erv ice r equest (s ee sup er vi sor c a l l (SVC)

i nstruc ti on) 2 5
SHARE, formation o f 1 8
sha r i ng

o f d at a 1 8 , 3 5 , 5 6
of prog rams 1 8 , 3 5 , 5 5 , 5 6
of re s ourc es 5 5

s in g l e- t a sk system 5 5
S �� (see System Ma nag ement Fac i l it ies)
s o rt/mer g e p ro gr am 4 7
source mod ule 7 5
source program 1 6
sta c ke d j ob proc es s i ng (s e e bat ch e d j on

proc e s s i ng)
st andards 3 9
ste p re s ta rt 8 1
storage protect ion - 4 2
stor i ng a nd ret ri evi ng d at a 7 2- 7 3
s u bpool (al so s ee ma in storage region)

c reati on 59
pa s se d to othe r ta sk s 5 9

share d by oth e r ta s k s 5 9
s ub pr ogram

in COBOL 4 7
i n FOR TRAN 4 5
i n PL/I 4 7

subs yste m s
i ntroduced 24
IBJOB P ro c e s sor S ub system 2 5

s upervi s or
funct ion 4 1
i n MFT , MVT 5 7 - 5 9

s u p erv is or call (SVC) in str uc tion 4 1

Pag e of GC 2 8 - 6 5 3 4- 3 , Revised January 1 5 , 1 9 7 2 , By TNL : GN2 8 - 2 5 1 2

superv is or stat e 4 1
supervi sor state programs 4 1
supervisory routines

i n nuc leus 25
res i dent and non- res ident 4 2

svc (see. supervi sor c a l l i nstruct i on)
swap 9 2
system applica tion 11
syst em Env i ronm ent R ecor ding (SER) , used

with RMS 7 9
syst em generation 3 4
system gene ration language 3 4
system initia l i zation (s ee i nit i a liz e)
system l ibrary 24
Syst em Management Facil ities

de sc r ipti on 5 7
dat a col l ect ion r out ines 57
exit routi ne s 5 8
used with time s lic i ng 5 7

system monitor (see c ont rol program)
system programmer 1 3
syst em supervisor (s ee s upervisor)
syst em ut il ity pro gr ams 4 8

t a i l or ing t he sys t em 3 4
Tape Operating Sys te m (TOS) 4 9
tas ks

concurre nt proc e s s i ng of 5 1- 5 4 , 5 8 - 5 9
d e f i nit i on 3 9
i n online d i rect acc e ss syst ems 2 9
in MF'l' 51- 5 2
i n MVT 53 - 5 4
i n t he opera ting system 4 1
mu ltiple -ta sk s ys tem 5 5
q ue ue 5 7
s ing le -ta sk sys te m 5 6

t as k management 5 5- 5 9
TCAM (se e Te lec ommunicati ons Acc es s Met hod)
Telec ommunicati ons Acce s s Me thod (TCAM)

description 7 3 , 8 8 -8 9
us e in time shar ing 8 9- 9 1

teleproc e s s ing
appl icat i ons prov ided by IBM 8 9
data col lec tion 8 5
ge ner al appl icat ions 8 5 , 8 6
inqu iry and trans acti on proc e s sing 8 6

me s sage 8 7 -8 8
mes s ag e switching 8 5
onl ine probl em solving 8 6
remote j ob proces s i ng 8 5
time shari ng 8 5

t empor ary intermed iate storage 2 7
termi na l (se e a ls o c ontrol t ermina l)
TESTRAN 4 5
throughput 1 4 , 3 3
time shar ing 8 5 - 8 6 , 9 1
Time Sharing Option (TSO) 9 1 - 9 2
time s l i c ing

d es cr iption 5 7 , 9 2
us ed w ith SMF 5 7

TO S (see Tape Operati ng sy stem)
transaction data

in operating systems 2 7
i n onli ne , di rect access syst ems 2 8

trans act ions
concurrent pro c es s ing of 2 9
r es pon se t o 2 9

tra nsiti onal monitor 2 5
tra ns lat or prog rams 1 5 , 1 6
TSO (see Time Shari ng Opti on >
turnaround t im e 1 4 , 3 3 , 6 4
two-cha nne l switch 8 2

user -wri tten prog rams 2 4
ut il ity d evice 2 3
uti lity prog rams

funct ions o f 4 8
i n system li brary 2 4

volume
def i ni ti on 6 9
l abel 7 0
tab le of c ontents (VTOC) 7 0

VTOC (s ee vol ume tab l e o f contents)

I work queue (see i nput work queue ,
work queue)

work stati on (se e terminal)
wr iter , output 6 4 - 6 5

output

I ndex 1 0 5

Technical Newsletter File No . S 3 6 0- 2 0

Base Publ . No. GC2 8 - 6 5 3 4- 3

This Newsletter No . GN 2 8 - 2 5 1 2

Date : Januar y 1 5 , 1 9 7 2

Previous Newsletter Nos .

IBM System/360 Operating System:
I ntroduction
© I BM Corp . 1 9 6 4 , 1 9 6 6 , 1 9 6 9 , 1 9 7 1

This T echnical Newsl etter , a part of r e lea se 2 1 of I BM sys tem/ 3 6 0
Operating System, provi des rep l ac ement pages for the subj ect
publ i cation . Thes e replac ement pag es rema i n in e f fect for
s ubsequent re lea se s unles s spe c if ical l y alter ed . Pages t o be
inserted and/or removed a re :

Cover- 3
5 - 6
4 3- 5 0
5 3 , 5 4
6 1 , 6 2
9 7 - 1 2 6 (Part 3 del et ed)

A change to the text or a small change to an i l lus trat ion is
indi cated by a ve rtical l ine to the l eft of the. change .

Summary of Amendments
This T echnic a l Newsletter d e let es COBOL F from t he l i st o f C OB OL
compil ers , and adds the Sys tem/3 7 0 Mode l 1 9 5 C PU to the list of

c onf igurations .

Note : Pl eas e f i le this c over l etter at t h e back o f the manua l to
prov ide a r ecord o f changes .

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

None

PRINT E D IN U. S. A.

.

• I

I BM System/360 O perat i ng Syste m
I ntroduct i on

READER'S COMMENT FORM

O rder No . GC28-6534-3

P l ease use th is form to express your opi n i on of thi s pub l i cati on . We a re i nterested i n your
comments about i ts tec h n i ca l accuracy , organizati on , a nd c ompl eteness . A l l suggest i ons
a nd comments bec ome the property of I BM .

P l ease do not use thi s form to request tec hnica l i nformation or add i ti ona l copi es of pu b l i cati ons .
A l l suc h requests shou l d be di rected to your I B M re presentative or to the I B M Branch O ffi ce
serv i ng your loca l i ty .

• P l ease i ndi cate your occu pati on :

• H ow di d you use thi s pub l i cati on ?

D Frequent ly for reference i n my work e

D As a n i ntroducti on to the sub ject .

D As a textbook i n a cou rse .

D For spec i fi c i nformat i on on one or two sub jects .

• Comments (P l ease i nc lude page nu mbers and g ive exa mp l es .) :

• Tha nk you for your co mments . No postage necessa ry i f mai led i n the U . S . A •

GC 28-6534-3

YOUR COMMENTS, PLEASE
This manual is part of a library that serves as a reference source for systems analysts ,

programmers and operators o f m M systems . Your answers to the questions o n the back

of this form, to1�ether with your comments , will help us produce better publications for

your use . E ach reply will be carefully reviewed by the persons responsible for writing

and publishing this material . All comments and suggestions become the property of ffiM .

Note : Please direct any requests for copies of publications , or for assistance in using your

IBM system, to your ffiM representative or to the mM branch office serving your locality .

Fold

I B U S I N E S S R E P L Y M A I L
�-0-PO_S_T_A_G

_
E_s

_
T

.
AMP NEC ESSARY IF MAI LED IN THE U N ITED STATES

Attention: Programming Systems Publications
Departmen't 058

Fold

POSTAGE WILL BE PAID BY • • •

I BM Corporation
P.O. Box 390
Poughkeepsie, N .Y. 1 2602

International Business Machines Corporatilm
Data Processing Division
1133 Westchester Avenu1E1, White Plains, New York 10604
[U.S.A. only]

��;�
I B M World TraJ.e Corp·a�ation
821 Uniteli Nations Plaza., New York, New York 10017
[International]

Fold

F I RST C LASSQ PERMI T NO . 8 1
POUGHK EEPSI E , N . Y .

-

-

-
=
-

Fold

() s.

� 0 a... c
&. 0 ::J

c

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	GN28-2512
	replyA
	replyB

