
ibm.com/redbooks

Porting UNIX
Applications
Using AS/400 PASE

Gottfried Schimunek
Janet Kruger

Jim Shupe
Daryl Spartz

Explores the Portable Application
Solutions Environment

Offers links to download UNIX
application examples

The porting guide for
beginners and experts

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Porting UNIX Applications
Using AS/400 PASE

July 2000

SG24-5970-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2000)

This edition applies to Version 4 Release 5 of the AS/400 Operating System OS/400, Program Number
5769-SS1 option 33.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special notices” on page 217.

Take Note!

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on
versions of this redbook for more current information.

Note

Contents

Preface .ix
The team that wrote this redbook. ix
Comments welcome. xi

Part 1. The AS/400 PASE runtime environment. 1

Chapter 1. Introduction to the AS/400 PASE runtime environment 3
1.1 Executive overview. 3

1.1.1 Positioning of AS/400 PASE . 4
1.1.2 Planning a port to AS/400 PASE. 6

1.2 Technical overview . 7
1.2.1 Hardware considerations . 10
1.2.2 Development environment . 10
1.2.3 Performance. 10

Chapter 2. AS/400 PASE capabilities and limitations 11
2.1 Advantages of AS/400 PASE porting . 11

2.1.1 Leveraging existing skills . 11
2.1.2 Reducing time to market . 11

2.2 Successfully ported applications. 12
2.3 Capabilities . 14

2.3.1 File systems . 14
2.3.2 Shared libraries . 14
2.3.3 Runtime library members not supported 16
2.3.4 Runtime symbols . 19
2.3.5 Shells and utilities . 19
2.3.6 Logging facilities. 22
2.3.7 OS/400 access . 22

2.4 Limitations . 23
2.4.1 Devices . 23
2.4.2 File systems . 23
2.4.3 Printing . 24
2.4.4 Shells . 24
2.4.5 Libraries . 24
2.4.6 API restrictions . 24
2.4.7 Unsupported system calls. 31

Chapter 3. Getting started with AS/400 PASE . 33
3.1 Requirements. 33
3.2 Licensing issues . 33
3.3 Recommendations . 34
© Copyright IBM Corp. 2000 iii

3.4 General AS/400 PASE instructions. 34
3.4.1 General system setup . 35
3.4.2 Checking system support . 35
3.4.3 Preparing the application . 35
3.4.4 Testing the application . 35
3.4.5 Creating your AS/400 solution . 36

Part 2. AS/400 PASE from a UNIX perspective . 37

Chapter 4. AS/400 architecture from a UNIX perspective. 39
4.1 Object-oriented architecture . 39
4.2 Addressing and storage management . 40

4.2.1 Job and process structure . 41
4.3 Library and address resolution . 42
4.4 User profiles and authority management . 42
4.5 Character sets and terminal I/O . 43

4.5.1 EBCDIC versus ASCII . 43
4.5.2 Buffered versus unbuffered I/O. 44
4.5.3 I/O controllers versus device drivers . 44

4.6 Architectural summary . 44

Chapter 5. Application API analysis . 45
5.1 Introduction . 45
5.2 What you need to do . 45

5.2.1 API analysis example . 46

Chapter 6. Porting mechanism . 57
6.1 Beginning a port . 57
6.2 Compiling applications on AIX for AS/400 PASE 58
6.3 Accessing files from AS/400 PASE. 60

6.3.1 Using FTP . 60
6.3.2 Using SMB . 62
6.3.3 Remote file systems . 62

6.4 Configuration tips . 62
6.5 Starting an AS/400 PASE application . 65

6.5.1 Invocation from a 5250 terminal screen: QP2SHELL 65
6.5.2 Invocation from the AS/400 PASE terminal: QP2TERM 69
6.5.3 Invocation from an ILE application: Qp2RunPase 71
6.5.4 Invocation from an ILE application: Qp2CallPase 79
6.5.5 Calling a procedure: Qp2SignalPase . 82

6.6 Debugging an AS/400 PASE application . 84
6.6.1 Using dbx in AS/400 PASE. 84
6.6.2 AS/400 PASE unsupported system calls. 85
iv Porting UNIX Applications Using AS/400 PASE

Chapter 7. Database porting with AS/400 PASE 87
7.1 Data encoding considerations . 87
7.2 Known problems. 89
7.3 DB2CLI example program . 89

Chapter 8. ILE integration with the AS/400 PASE environment 99
8.1 Shared addressing between AS/400 PASE and single level store . . 100

8.1.1 System structure . 101
8.1.2 Memory model and program model . 102
8.1.3 File system and socket support . 104
8.1.4 Runtime support . 105
8.1.5 Development environment . 107
8.1.6 Performance. 107

8.2 Calling Java from AS/400 PASE. 108
8.3 Doing callouts to ILE from AS/400 PASE . 108

8.3.1 Setting up variables and structures. 109
8.3.2 A two part sample for calling ILE from AS/400 PASE 111
8.3.3 size_ILEarglist() function . 120
8.3.4 build_ILEarglist() function . 121
8.3.5 _ILELOAD() function . 125
8.3.6 _ILESYM() function . 127
8.3.7 _ILECALL() function . 129
8.3.8 _MEMCPY_WT() and _MEMCPY_WT2() functions 134
8.3.9 _SETSPP() function . 135
8.3.10 _CVTSPP() function . 136
8.3.11 _SETCCSID() function . 137
8.3.12 systemCL function . 138

8.4 Calling AS/400 PASE from ILE . 141
8.4.1 Qp2RunPase information . 141
8.4.2 Qp2CallPase information . 141

Part 3. AS/400 PASE from an AS/400 perspective . 143

Chapter 9. UNIX architecture from an AS/400 perspective 145

Chapter 10. AS/400 PASE porting examples . 147
10.1 GNU zip . 147
10.2 OpenDX . 150
10.3 GNU perl . 159

Chapter 11. Work management . 169
11.1 Viewing AS/400 PASE programs running on the AS/400 system . . 169
v

Chapter 12. Problem determination and messages 173
12.1 Available problem determination tools . 173

12.1.1 Tools on AIX. 173
12.1.2 Tools on OS/400. 173

12.2 Where to find messages on the AIX system 179
12.3 Where to find messages on the AS/400 system 179
12.4 Debugging the AS/400 to ILE sample . 179

Chapter 13. Security considerations . 185
13.1 User profiles in AS/400 PASE . 185
13.2 AIX exploitation points . 186

Chapter 14. AS/400 PASE globalization . 187
14.1 Locale support . 187
14.2 File system and sockets support. 188
14.3 stdin, stdout, and stderr . 189
14.4 Interactive terminal support . 189
14.5 Character encoding conversion support . 190
14.6 Date and time services . 191
14.7 Database support . 191
14.8 X-Windows support . 192
14.9 Device support . 192
14.10 Shells and utilities . 192
14.11 AS/400 PASE locales . 193
14.12 AS/400 PASE codesets . 198

Appendix A. Programming resources. 203

Appendix B. The Application Factory . 205
B.1 Overview . 205
B.2 Around the circle . 207

B.2.1 Licensing. 207
B.2.2 Installation and packaging . 207
B.2.3 Operations . 208
B.2.4 AS/400 workloads and performance. 209
B.2.5 Security . 209
B.2.6 National language and internationalization. 209
B.2.7 Problem management . 210
B.2.8 Database access . 210
B.2.9 Printing . 210
vi Porting UNIX Applications Using AS/400 PASE

Appendix C. AS/400 PASE compared to ILE . 211

Appendix D. Special notices . 217

Appendix E. Related publications . 221
E.1 IBM Redbooks . 221
E.2 IBM Redbooks collections. 221
E.3 Other resources . 222
E.4 Referenced Web sites. 222

How to get IBM Redbooks . 225
IBM Redbooks fax order form . 226

Glossary . 227

Index . 229

IBM Redbooks review . 235
vii

viii Porting UNIX Applications Using AS/400 PASE

Preface

This redbook positions the new AS/400 Portable Application Solutions
Environment (PASE), referred to as AS/400 PASE, with the other options
available to AS/400 application developers. It helps you determine whether
an AIX-based application or module can be easily ported to PASE, or whether
you should consider an ILE port.

There are five primary audiences for this redbook:

• Executives and planners who are looking at using AS/400 PASE for
portions of their solutions

• UNIX application providers who are considering a port of their application
to the AS/400 platform

• Businesses that already leverage both AS/400 and AIX solutions and want
to consolidate their solutions into one platform

• AS/400 shops looking to purchase or use an AS/400 PASE application

• AS/400 shops looking to purchase a UNIX solution who want to encourage
the vendor of that solution to consider AS/400 delivery and support

With these audiences in mind, we have developed the bulk of this book in
three parts:

• Part 1, “The AS/400 PASE runtime environment”, applies to all audiences
and provides an overview of the product.

• Part 2, “AS/400 PASE from a UNIX perspective”, targets UNIX application
providers and businesses that are looking to port their own in-house
applications from AIX to the AS/400 system.

• Part 3, “AS/400 PASE from an AS/400 perspective”, is intended for all
technical audiences, including AS/400 system operators.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester
Center.

Gottfried Schimunek is a certified Consulting I/T Architect at IBM PartnerWorld
for developers in Rochester, Minnesota. He helps IBM Business Partners and
Independent Software Providers (ISVs) to understand the newest technologies
available on the AS/400 system and provides guidance to implement them into
© Copyright IBM Corp. 2000 ix

their applications. He worked for three years in the International Technical
Support Organization as an international asignee and authored and published
many redbooks on application development and performance. Before joining the
ITSO in 1997, Gottfried worked in the Technical Support Center in Germany as a
Consultant for IBM Business Partners and Customers as well as for the IBM
sales force.

Janet Krueger is a Consulting Software Engineer at D.H. Andrews Group in
Rochester, Minnesota. She has 24 years of experience in software
development. She holds a Masters of Computer Science from the University
of Iowa. Janet worked for IBM in Rochester for 23 years. Her most recent IBM
accomplishments were in the AS/400 Partners in Development group, where
she created the AS/400 Tools Network program. Janet was the lead architect
for PC Support/400 from 1987 through 1993, and acted as a technical liaison
between the Novell corporation and the Rochester Programing Lab for three
years. Janet joined IBM in 1976, working in programming language
development for the System/34. Later, Janet transferred to the programming
support area, designing and coding both MVS and VM application
development tools for internal IBM use. Janet has been one of the primary
strategists on transforming the AS/400 application base into a set of
competitive e-business solutions. In 1998, Janet received an AS/400 Division
Award for her long-term contributions to AS/400 application modernization.
Janet is an award winning COMMON speaker and received COMMON’s
Distinguished Service Award in 1999.

Daryl Spartz is an Advisory Software Engineer in the Custom Technology
Center in Rochester, MN USA. He has 18 years of experience in the system
support, mainframe, and PC development fields. He holds Bachelor of
Science and Master of Science degrees in Computer Science from Moorhead
State University and the University of Minnesota, respectively. He has worked
at IBM for 18 years. His areas of expertise include TCP/IP, Internet security
with firewalls, C, C++, and a growing interest in Linux.

Jim Shupe is a Staff Software Engineer in the Rochester AS/400 Support
Center in Rochester, MN USA. He has eight years of experience in the
software development and support field. He holds Bachelor degrees in
Computer Science, Scientific and Technical Communication, and a Master
degree in Rhetoric and Technical Communication from Michigan
Technological University. His areas of expertise include natural language
processing, C, C++, Java, and technical writing.
x Porting UNIX Applications Using AS/400 PASE

Thanks to the following people for their invaluable contributions to this
project:

Patrick Barrett
Tracy Bashore
Pamela Bowen
Tony Cairns
Sam Ellis
Kevin Erickson
Mike Good
Rich Griswold
Jeff Holecek
David Jones
David Larson
Wade Ouren
Charlie Quigg
Dan Sundt
Kay Tate
George Timms
Neil Willis
IBM Rochester

Tarlochan Bimbra
Keane, Rochester

Shigeru Shimada
IBM Yamato

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 235 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xi

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

xii Porting UNIX Applications Using AS/400 PASE

Part 1. The AS/400 PASE runtime environment

This part is intended for use by all who are interested in AS/400 PASE. This
may include interest in porting existing applications or understanding AS/400
PASE sufficiently to manage applications purchased from a software provider.
© Copyright IBM Corp. 2000 1

2 Porting UNIX Applications Using AS/400 PASE

Chapter 1. Introduction to the AS/400 PASE runtime environment

AS/400 Portable Application Solutions Environment (AS/400 PASE) is
designed to expand the AS/400 platform solutions portfolio by allowing
customers and software vendors to port existing AIX applications to the
AS/400 system with minimal effort.

AS/400 PASE is an integrated runtime environment for AIX (or other
UNIX-like) applications running on the AS/400 system. It provides a broad
subset of the Application Binary Interface (ABI) of AIX 4.3.3. As a real runtime
(and not an emulator), it does not suffer the drawbacks of an emulation
environment. However, AS/400 PASE is not a UNIX OS on the AS/400
system, or is it Linux on the AS/400 system. AS/400 PASE is designed to
accept direct ports from AIX. Ports from any other UNIX-based environment
may require an initial port to AIX as the first step towards compatibility.

AS/400 PASE is an optional, nominally priced feature of OS/400 (option 33),
which requires AS/400 e-series processor-based machines or newer to run.
V4R5M0 AS/400 PASE ships with a subset of the AIX Version 4.3.3 shared
libraries. See 3.2, “Licensing issues” on page 33, for points to consider if you
use other AIX libraries.

This redbook explains how to port an AIX application to AS/400 PASE at
V4R5 only. Earlier and later releases of OS/400 or AS/400 PASE may have
significantly different capabilities and limitations.

1.1 Executive overview

The AS/400 platform is designed for business. It leads the industry with its
extensive industry-specific applications portfolio, which targets sectors such
as banking and finance, industrial, retail and wholesale distribution,
insurance, and telecommunications. The AS/400 system’s traditional
strengths in core business and online transaction processing (OLTP)
application markets set the stage for its leadership in midrange Enterprise
Resource Planning (ERP) markets. More recently, the AS/400 solutions
portfolio has expanded rapidly as new application markets emerged for
e-commerce, groupware, supply chain management, customer relationship
management, and business intelligence.

The AS/400 system's broad base of applications is continually enhanced by
new applications coming to the platform from a variety of sources. Up to now,
the AS/400 integrated language environment (ILE) accounted for the majority
of C or C++ application ports, many of which originally ran on UNIX. Recently,
© Copyright IBM Corp. 2000 3

however, the AS/400 system focused on investment in Java and Domino (and
even Windows NT on the Integrated Netfinity Server), which has opened up
wide new application porting and modernization opportunities for solutions
developers. With the latest addition of the AS/400 Portable Application
Solutions Environment (AS/400 PASE), solutions developers have another
option for porting UNIX applications rapidly to take advantage of the AS/400
systems extensive marketplace.

IBM's strategy for AS/400 PASE (Figure 1) is to expand its solutions portfolio,
focusing on specific industry and application segments. One example is new
supply chain management solutions that integrate with ERP applications
targeted at industrial and distribution industries.

Figure 1. AS/400 PASE’s place in the IBM strategy

Not all porting solutions on the AS/400 system equally apply to all
applications. Certain applications will fit better in ILE while others fit better in
AS/400 PASE. It is not our goal to push you in a particular direction with this
book. Rather, it is our goal to show you how you can port an appropriate
application into AS/400 PASE.

1.1.1 Positioning of AS/400 PASE
AS/400 PASE is not a replacement for AIX, a Linux environment on the
AS/400 system, or a replacement for ILE or OS/400. It is another application
enablement option on the AS/400 system.

ERP
Line of

Business SCM CRM e-commerce
BI

INDUSTRY Solutions
Solutions
Solutions

Solutions
Solutions
Solutions

Solutions
Solutions

Solutions

Solutions
Solutions
Solutions

Solutions

Solutions

Core Business e-business

UNIX
Apps

NT
AppsJava

Websphere
Apps

ASSESSMENT

AS/400 ILE

JavaJ AS/400 PASE

DominoJ NTJ
4 Porting UNIX Applications Using AS/400 PASE

Customers running an AS/400 PASE application may not need UNIX or AIX
skills. Operationally, AS/400 PASE applications look just like any other
AS/400 application. In cases where UNIX scripts need to be modified to tailor
the application for the customer’s needs, the systems integrator may require
minimal UNIX skills.

AS/400 PASE adds another porting option for solutions developers who want
to share in the success of the AS/400 marketplace. By providing a means to
cut porting time significantly, AS/400 PASE can improve the time to market
and return on investment for solutions developers. The AS/400 system
attracts customers who want an integrated system that is built for business,
offering broad application solution choices for their industry. AS/400 PASE is
for companies who want to run UNIX applications without the complexity of
running UNIX systems, and in a manner that is consistent with the AS/400
system’s integrated value proposition and low cost of ownership.

AS/400 PASE provides an application runtime that is based on a broad
subset of AIX technology. Applications are developed and compiled on an
AIX workstation running a level of AIX that is compatible with a level
supported by AS/400 PASE, and then run on the AS/400 system. AS/400
PASE exploits IBM's investment in a common processor technology for the
RS/6000 and AS/400. The PowerPC processor switches from its normal
AS/400 mode into RS/6000 mode to execute an application in the AS/400
PASE runtime. But the two brands serve separate markets. The AS/400
system sells to customers who want an integrated system that is built for
business. The RS/6000 sells to customers who want to run the leading
commercial UNIX system.

AS/400 PASE is supported on all AS/400e series servers (AS/400 systems
introduced on or after September 1997). This means that some customers or
software providers may need to upgrade their hardware to take advantage of
AS/400 PASE.

Applications running in AS/400 PASE may need to be enabled to access DB2
Universal Database for AS/400 or integrated with AS/400 security and
operations, such as backup.

The support for direct porting of application binaries is limited, depending on
the APIs used by the application. Some binaries will run without change,
while others may require limited or substantial modifications.

Application providers can obtain more support for porting their applications to
AS/400 PASE from PartnerWorld for Developers at:
http://www.ibm.com/as400/developer/factory/
Chapter 1. Introduction to the AS/400 PASE runtime environment 5

1.1.2 Planning a port to AS/400 PASE
When you are planning to port an application from AIX to the AS/400 system,
you have two choices: you can port to the AS/400 ILE environment or you can
port to the AS/400 PASE environment. Appendix C, “AS/400 PASE compared
to ILE” on page 211, has tables that compare ILE and AS/400 PASE. Some of
the strongest aspects of AS/400 PASE are outlined here:

• AS/400 PASE has a large number available operating system services. If
the UNIX/AIX APIs you use are already supported, there is very little
application porting to do. You can determine how your application stacks
up against AS/400 PASE’s supported APIs by using PartnerWorld for
Developers API Analysis process. The frontend tool in the process can be
found at http://www.ibm.com/as400/developer/porting/apitool.html

This is a shell script that produces a list of APIs that you send to the IBM
porting team. The IBM team runs the backend analysis and returns a
report to you indicating whether the application fits well on the system and
where modifications, if any, may be needed. More information on this
process is in Chapter 5, “Application API analysis” on page 45.

• AS/400 PASE provides a good environment for running computationally
intensive applications on the AS/400 system by providing highly optimized
math libraries.

• AS/400 PASE allows you to use AIX-based build processes, which is
especially useful when you have an existing, complicated process that is
not readily movable to a new platform. This would include testing
harnesses built to verify a product after its final build.

• AS/400 PASE is tailored so that existing AIX applications will find porting
to the AS/400 PASE environment simple and friendly.

• AS/400 PASE supplies support for fork() and exec(), which do not
currently exist on the AS/400 system (except through spawn(), which can
be somewhat different).

• AS/400 PASE is currently the best tool for satisfying dependencies on an
ASCII character set and for satisfying dependencies on X-Windows
support.

• Applications that rely on a large number of pointers and pointer casting
may have an easier port to a 32-bit AIX addressing model.

• AS/400 PASE fully supports several dialects of C, C++, and Fortran.

• Shell programming is well supported.

There are a number of steps you need to follow when planning and executing
a port to AS/400 PASE:
6 Porting UNIX Applications Using AS/400 PASE

1. Obtain a complete copy of the application, with both source code and
object code.

2. Obtain an API analysis from IBM to look for trouble spots.

3. Port the application to AIX Version 4.3.3 if it hasn’t been ported there
already.

4. Obtain all the hardware and software pre-requisites for running AS/400
PASE (an AS/400e with V4R5 and option 33).

5. Fix unsupported APIs in the source code, adding ILE calls or CLI library
use for the AS/400 system if necessary, and recompile new binaries on
the AIX system.

6. Move the binaries and datafiles to the AS/400 system, and run the system
using “launchers” and environment variables to work around missing
syscalls.

7. Iterate between edits and recompiles on the AIX system and test the
AS/400 PASE environment until the application works.

8. Complete productization work, as covered in Appendix B, “The Application
Factory” on page 205. Applications delivered to run AS/400 PASE can be
wrappered and packaged so that they look and feel exactly like native
AS/400 applications from an operations perspective.

1.2 Technical overview

AS/400 PASE is an integrated OS/400 runtime for porting AIX (and other
UNIX) applications to the AS/400 system. To accomplish these ports, AS/400
PASE uses a subset of AIX runtime libraries. However, it is not an operating
system or an emulated environment.

AS/400 PASE uses the AS/400 processor's ability to switch runtime modes to
enable running AS/400 PASE applications concurrent with AS/400 ILE
applications. In fact, AS/400 PASE is intimately integrated with the ILE
environment, the AS/400 file systems, and DB2 Universal Database for
AS/400. See Figure 2 on page 8 for a graphical depiction of the AS/400 PASE
architecture. It can easily call Java (via a thin wrapper) and AS/400 ILE
applications and, therefore, exploit all aspects of an AS/400 operations
environment.
Chapter 1. Introduction to the AS/400 PASE runtime environment 7

Figure 2. AS/400 PASE combine architecture (simplified)

The RS/6000 and AS/400 system share a common PowerPC chip. This
hardware base has the ability to switch between runtime modes: addressing
tags active to execute AS/400 64-bit applications and addressing tags
inactive to execute 64- or 32-bit AIX applications. AS/400 PASE exploits this
switching capability to execute 32-bit AIX applications on the AS/400 system
within AS/400 jobs. Since AS/400 PASE applications execute directly on the
hardware in PowerPC mode, computationally intensive applications use the
processor without any additional layers overhead. In addition to AS/400
PASE accessing the Power PC instruction set on the AS/400 system directly,
it can access the AS/400 PASE shared libraries (which are the ported AIX
libraries), or, from the shared libraries, it can access a syscall interface to the
SLIC Kernel. AS/400 PASE can also call out into the OS/400 ILE environment
and access ILE applications and DB2 UDB (Universal Database) for AS/400.

The System Licensed Internal Code (SLIC) kernel controls the use of the
hardware and the type of address space that can be used. SLIC is a common
kernel under the AS/400 PASE shared libraries and OS/400. The services
that SLIC provides are common to both the integrated language environment
(ILE) and AS/400 PASE environments, creating a well-integrated system,
regardless of which environment the application uses.

Device IOPsServer IOPs

Technology Independent Machine Interface

OS/400

SLIC Kernel

syscall bdy.

AS/400
PASE
Shared
Libraries

AS/400 PASE
Applications

loader

OS/400 Applications

RAID
Hardware

Power PC Power PC AS
8 Porting UNIX Applications Using AS/400 PASE

The environments share the same file systems, security mechanisms, and
threading mechanisms. They can even share memory and connect to the
same sockets (with a little care to note the pointer format expectations and
the character set being shared).

SLIC and OS/400 work together to provide an object-based OS on the
AS/400 system. AS/400 PASE has not caused the creation of new system
objects. It uses the ones that were already built to support standard APIs for
ILE. This facilitates sharing between application code and also gives AS/400
PASE an operational view that is just what AS/400 customers expect. To
AS/400 operators, AS/400 PASE applications look like ILE or other running
applications.

Programs and files for new AS/400 PASE applications are saved and
restored in familiar ways, without the operator having to know that they run in
a new way in operation.

As OS/400 sits architecturally on top of the Technology Independent Machine
Interface (TIMI), AS/400 PASE sits architecturally on top of the syscall
interface. AS/400 PASE looks architecturally like AIX in this respect. There is
a protection layer between the kernel services for AS/400 PASE and
non-privileged system or user code just as there is for OS/400. Therefore, the
syscall is not designed to provide the same virtual machine as the TIMI.
OS/400 has the capability to move applications that maintain their
intermediate form to new hardware architectures (for example, CISC to RISC)
without recompiling. This level of compatibility is not provided by the AS/400
PASE model.

AS/400 PASE applications are recompiled when the customer moves to a
new hardware architecture, as one would expect with an AIX application
making the same transition, since they have access directly to the hardware
processor.

Applications that use AS/400 PASE are fully integrated in the customer’s
AS/400 workload and look no different operationally. AS/400 PASE can also
call ILE functions, including application code and OS/400 system services. To
an AS/400 programmer, AS/400 PASE looks like just another program model.
To a UNIX programmer, AS/400 PASE provides the AIX Application Binary
Interface (ABI) for their porting process.

Programs running in AS/400 PASE have direct access to the full capabilities
of the user-state architecture of PowerPC, augmented by system services to
interact with the Single-Level Store (SLS) environment. More information on
how the addressing models can interrelate and share memory is provided in
Chapter 1. Introduction to the AS/400 PASE runtime environment 9

8.1, “Shared addressing between AS/400 PASE and single level store” on
page 100.

1.2.1 Hardware considerations
Most RISC processors used in AS/400 systems are designed to support both
PowerAS and PowerPC architectures and provide the supervisor (SLIC) with
the ability to switch architectures on demand. However, hardware
implementation issues prevent us from using PowerPC mode on some older
existing systems without jeopardizing user data or system integrity. AS/400
PASE is only supported on the AS/400e series (hardware introduced around
September 1997). SLIC prevents AS/400 PASE programs from running on
any system that is not AS/400e series hardware.

1.2.2 Development environment
AS/400 PASE development requires an AIX 4.3.3 system to run the compiler
(xlc, xlC, or some other AIX compiler) and linker (ld command). The AIX
assembler for PowerPC can also be used.

1.2.3 Performance
AS/400 PASE programs do not incur overhead to manage tagged pointers, MI
boundaries, and the elaborate MI exception architecture, so low-level code
generation may be superior to ILE in some cases. For example, incrementing
a pointer can be done with a single instruction instead of the multi-instruction
sequence required for MI, and a form of setjmp/longjmp that does not affect
signal handling is provided that does not do any system calls.

Using a segment table for address translation increases the process working
set and adds additional work in the hardware for address translation.
However, the processors used in AS/400 systems contain Segment
Lookaside Buffer (SLB) entries or segment registers to speed address
translation. Address translation through an SLB entry or segment register is
as fast as direct translation (used for tags-active mode), and AS/400 PASE
programs should exhibit locality of reference similar to AIX (contributing to the
effectiveness of SLB/segment register hardware).
10 Porting UNIX Applications Using AS/400 PASE

Chapter 2. AS/400 PASE capabilities and limitations

This chapter introduces you to the basic advantages, capabilities, and
limitations of AS/400 PASE.

2.1 Advantages of AS/400 PASE porting

In this section, we discuss the advantages of porting a UNIX or AIX
application to AS/400 PASE.

2.1.1 Leveraging existing skills
AS/400 customers running applications ported using AS/400 PASE do not
use UNIX system operations. AS/400 PASE applications run in AS/400 jobs
using standard work management (subsystems), the AS/400 integrated file
system with standard save/restore operations, and standard AS/400 security.
No special system operations are required to run AS/400 PASE applications.

Independant Service Providers (ISVs) porting to the AS/400 system using
AS/400 PASE and supporting their applications require a combination of AIX
and OS/400 programming and support skills. AS/400 PASE applications are
compiled on an AIX workstation. Primary application development continues
using their existing UNIX skills where they have their greatest application
value. AS/400 skills are required for converting database calls, providing
integration with AS/400 security, and application operational interfaces
(installation, startup, shutdown, and so on). These ancillary functions can
often be built once and then maintained from release to release.

ISVs require AS/400 skills in their support teams since customers will call
using AS/400, instead of UNIX, terminology.

2.1.2 Reducing time to market
Bringing an application to the AS/400 market requires three phases of effort:

• Market development
• Solution enablement (including porting the application)
• Market introduction

Market development and introduction are efforts common to all techniques of
moving ISV applications to the AS/400 system. AS/400 PASE can improve
several aspects of the solutions enablement phase. A faster port can mean a
shorter time to market.
© Copyright IBM Corp. 2000 11

When using AS/400 PASE for enablement, some application ports require
less effort since character set and pointer size assumptions do not change
from what they are for AIX code. An ILE port requires the use of 128-bit ILE
pointers and usually an EBCDIC character set. Also, AS/400 PASE runtime
includes more flexibility in its C language support compared to the full ANSI
compliant support provided in ILE C. A significant time savings may be
achieved in the porting phase by not having to recreate the application's build
environment. The testing cycle for an AS/400 PASE application may also be
more similar to other UNIX platform testing.

There is a second part to enablement after the application is running. All
applications, whether ported in ILE or AS/400 PASE, require a similar amount
of customization to create an AS/400 product that meets AS/400 customers'
expectations of full integration with database, save/restore, security, ease of
installation, licensing, and robust support services. A product integration and
test cycle is required for AS/400 PASE applications to fully exploit the AS/400
system environment. The Application Factory (see Appendix B, “The
Application Factory” on page 205, for a full explanation of the Application
Factory) was created to assist ISVs in identifying the items that should be
examined for a new application to appeal to the AS/400 customer base.

2.2 Successfully ported applications

Table 1 lists the UNIX-based applications that are known to have been
successfully ported to run in AS/400 PASE.

In Table 1, the license types are described as:

• GPL: GNU public license
• LGPL: Library GNU public license
• NGPL: Nethack GNU public license

Note

The porting of the applications in Table 1 are not described in this or any
other publication. It is left to the users of the application to perform the
porting process, or contract through a service, such as the Rochester
Custom Technology Center, to have the ports done for them.

These applications are not and will not be shipped with AS/400 PASE.
12 Porting UNIX Applications Using AS/400 PASE

Table 1. Successfully ported applications to AS/400 PASE

Package name License Where it can be found

ORBit GPL http://www.gnome.org/

Apache Apache
specific

http://www.apache.org/

gimp GPL http://www.gimp.org/

glib LGPL http://www.gtk.org/

gtk+ LGPL http://www.gtk.org/

gnome-libs GPL http://www.gnome.org/

gnome-print GPL http://www.gnome.org/

gnumeric GPL http://www.gnome.org/

gtk-engines GPL http://www.gnome.org/

gzip GPL ftp://prep.ai.mit.edu/pub/gnu

icewm LGPL http://icewm.sourceforge.net/

imlib GPL http://www.gnome.org/

perl GPL http://www.perl.com/

libghttp GPL http://www.gnome.org

libglade LGPL http://www.gnome.org/

libxml GPL http://www.gnome.org

vnc GPL http://www.uk.research.att.com/vnc/

emacs GPL http://www.gnu.org/

gcc GPL http://www.gnu.org/

DBI perl module GPL http://www.perl.org/CPAN/modules/

Mysql perl module GPL http://www.perl.org/CPAN/modules/
Chapter 2. AS/400 PASE capabilities and limitations 13

2.3 Capabilities

AS/400 PASE utilizes many of the existing capabilities of OS/400.

2.3.1 File systems
All of the file systems available in OS/400 IFS are available within AS/400
PASE (see Table 2). See the integrated file system document listed in E.3,
“Other resources” on page 222, for more information.

Table 2. File systems available to AS/400 PASE environment

2.3.2 Shared libraries
V4R5M0 AS/400 PASE provides a broad subset of AIX 4.3.3 functionality,
such as standard C and C++ runtime (both thread safe and non-thread safe),
Fortran runtime (both thread safe and non-thread safe), pthreads threading
package, iconv services for data conversion, BSD equivalent support,
X-windows client support with Motif widget set, and a database access
library.

Chimera GPL http://www.cs.unlv.edu/chimera/

wget GPL http://www.gnu.org/software/wget/wget.html

File system Description

/ Root file system

QOpenSys Case sensitive, hierarchical file system; designed to support
POSIX standards

QSYS.LIB Library file system, library/file.member (database storage)

QOPT Optical file system, CD-ROM access

QNTC Windows NT servers using SMB, Microsoft’s file serving protocol

QFileSvr.400 OS/400 File Server, access to remote AS/400 systems

QDLS Document Library Services, folder and document library objects;
these were used by OV/400, the AS/400 office support product

/dev/QASPxx User-defined File System, created in Auxiliary Storage Pool

Package name License Where it can be found
14 Porting UNIX Applications Using AS/400 PASE

Table 3 lists the AS/400 PASE shared libraries that are shipped in OS/400
V4R5 option 33, and installed as symbolic links in /usr/lib.

Table 3. V4R5 AS/400 PASE shipped shared libraries

Library Description

libC.a C++ runtime

libC128.a C++ 128-bit (type long double) runtime

libICE.a Inter-Client Exchange library

libIM.a Input method library

libMrm.a Motif Runtime library for UIL

libSM.a X Session Management library

libUil.a Motif User Interface Language library

libX11.a C interface for the X Window System protocol

libXaw.a Athena Widget Set

libXext.a Interfaces to X windows extensions

libXm.a Motif widget library

libXmu.a Miscellaneous X-windows utility functions

libXt.a X Toolkit Intrinsics

libbsd.a BSD Unix (TM) equivalence runtime

libc.a C runtime

libc128.a 128-bit (type long double) runtime

libcrypt.a C runtime cryptographic interfaces

libdb400.a DB2/400 SQL CLI runtime

libdbx.a dbx (debugger) utility support

libdl.a Dynamic load runtime

libgaimisc.a Internal-use X-windows support

libi18n.a Internationalization runtime

libiconv.a Character conversion runtime

libpthdebug.a Threads debug support

libpthreads.a Threads runtime
Chapter 2. AS/400 PASE capabilities and limitations 15

2.3.3 Runtime library members not supported
The runtime library members listed in Table 4 are either statically-bound or
have dependencies that prevent them from loading in AS/400 PASE. All other
members in PASE runtime libraries are shared executables that load without
error (although they may contain symbols that are not fully-supported by
AS/400 PASE). This list was accurate at the time this book was written. See
the pre-GA note box on page ii of the edition notice.

Table 4. V4R5 AS/400 PASE runtime library exceptions

libpthreads_compat.a Old threads compatibility

librtl.a Runtime linking runtime

libxlf90_r.a Fortran runtime

libxlfpthrds_compat.a Old Fortran threads compatibility

libxlomp_ser.a Open mp (multi-processing) support

libxlsmp.a Symmetric mp (multi-processing) support

Library Member AS/400 PASE
support

Comments

libbsd.a __threads.o No Statically-bound (not shared
executable)

libc.a aio.o No Will not load in PASE (needs
several syscalls)

libc.a clc.o Statically-bound (not shared
executable)

libc.a compi64.o Statically-bound (not shared
executable)

libc.a compu64 Statically-bound (not shared
executable)

libc.a fill.o Statically-bound (not shared
executable)

libc.a finite.o Statically-bound (not shared
executable)

libc.a frexp.o Statically-bound (not shared
executable)

Library Description
16 Porting UNIX Applications Using AS/400 PASE

libc.a fsavres.o Statically-bound (not shared
executable)

libc.a fstab.o No Statically-bound (not shared
executable)

libc.a getttyent.o No Statically-bound (not shared
executable)

libc.a getttynam.o No Statically-bound (not shared
executable)

libc.a itrunc.o Statically-bound (not shared
executable)

libc.a ldexp.o Statically-bound (not shared
executable)

libc.a llabs.o Statically-bound (not shared
executable)

libc.a logb.o Statically-bound (not shared
executable)

libc.a longjmp.o Statically-bound (not shared
executable)

libc.a modf.o Statically-bound (not shared
executable)

libc.a moveeq.o Statically-bound (not shared
executable)

libc.a move.o Statically-bound (not shared
executable)

libc.a pse.o No Will not load in PASE (needs
unsupported syscalls)

libc.a pty.o No Will not load in PASE (needs
_kgrantpt syscall)

libc.a scalb.o Statically-bound (not shared
executable)

libc.a strcat.o Statically-bound (not shared
executable)

libc.a strcmp.o Statically-bound (not shared
executable)

Library Member AS/400 PASE
support

Comments
Chapter 2. AS/400 PASE capabilities and limitations 17

libc.a strcpy.o Statically-bound (not shared
executable)

libc.a strncat.o Statically-bound (not shared
executable)

libc.a strncpy.o Statically-bound (not shared
executable)

libc.a uitrunc.o Statically-bound (not shared
executable)

libc.a _itrunc.o Statically-bound (not shared
executable)

libc.a _qint.o Statically-bound (not shared
executable)

libc.a _qitrunc.o Statically-bound (not shared
executable)

libc.a _qnint.o Statically-bound (not shared
executable)

libc.a _quitrunc.o Statically-bound (not shared
executable)

libc.a _setflm.o Statically-bound (not shared
executable)

libc.a _uitrunc.o Statically-bound (not shared
executable)

libc.a _xlqadd.o Statically-bound (not shared
executable)

libc.a _xlqdiv.o Statically-bound (not shared
executable)

libc.a _xlqmul.o Statically-bound (not shared
executable)

libc.a _xlqsub.o Statically-bound (not shared
executable)

libc.a __set_errno128.0 Statically-bound (not shared
executable)

libpthreads.a init.o Statically-bound (not shared
executable)

Library Member AS/400 PASE
support

Comments
18 Porting UNIX Applications Using AS/400 PASE

2.3.4 Runtime symbols
Some AIX symbols are either unsupported or have some support restrictions
in V4R5 AS/400 PASE. A list of runtime symbols that have exceptions can be
obtained from IBM PartnerWorld, AS/400 Software support, or the AS/400
PASE Web site located at:
http://www.ibm.com/as400/developer/factory/pase/index.html

Report any additions or corrections to IBM PartnerWorld or your local
Software Support organization.

2.3.5 Shells and utilities
The default AS/400 PASE shell /QOpenSys/usr/bin/sh is the Korn shell. The
Bourne and C shells are also available. The AS/400 system does not
currently provide support for teletypewriter (tty) devices or Berkeley job
control, so shell functions dependent on these elements are not supported by
the AS/400 PASE shells.

The AS/400 PASE shells and utilities run in ASCII and do no conversion
between ASCII/EBCDIC bytestream file data. Users can run the iconv utility
to do conversions as needed.

The AS/400 PASE shells and utilities listed in Table 5 on page 20 are shipped
with OS/400 option 33 (as symbolic links in directory /QOpenSys/usr/bin).
AIX documentation (see the example that follows Table 5 on page 20)
describes the syntax and behavior of all the shells and utilities listed above
except for the AS/400-unique utility system, which provides an interface for
invoking CL commands or programs from the AS/400 PASE terminal.
Chapter 2. AS/400 PASE capabilities and limitations 19

Table 5. AS/400 PASE supplied AIX utilities

The system utility is a unique AS/400 command that runs a CL command
introduced in V4R5. The system utility manages ASCII/EBCDIC conversions
for stdin, stdout, and stderr so that any ILE code run by the CL command
uses EBCDIC data, while the AS/400 PASE shell and utilities see ASCII data.
An explanation of the system utility is shown in the following sections.

Syntax
system [-b] [-h] [-i] [-k] [-K] [-n] [-q] [-s] [-v] CL-command

The system command runs a CL command. You may need to quote the CL
command to avoid PASE shell processing for special characters in the
command string.

Flags
-b Force binary mode processing for the stdin, stdout, or stderr files

used by the CL command. When -b is not specified, the system
command converts any data read from stdin from the (ASCII)
PASE CCSID to the (EBCDIC) job default CCSID, and any data
written to stdout or stderr from EBCDIC to ASCII.

alias
apply
ar
awk
banner
basename
bc
bdiff
bfs
bg
bsh
cat
cd
chgrp
chmod
chown
chroot
cksum
cmp
colrm
comm
command

compress
cp
cpio
csh
csplit
cut
date
dbx
dc
dd
diff
diff3
dircmp
dirname
dspcat
dspmsg
du
dump
echo
egrep
env
expand

expr
false
fc
fg
fgrep
file
find
fold
getconf
getopt
getopts
grep
hash
head
hostname
iconv
id
install
jobs
join
kill
ksh

ln
locale
logname
ls
mkdir
mv
nawk
newform
nl
nm
od
pack
pagesize
paste
patch
pax
pcat
pr
printenv
printf
ps
psh

pwd
read
rev
rm
rmdir
sed
sh
sleep
sort
split
strings
strip
sum
system
tab
tail
tar
tee
test
time
touch
tr

true
type
ulimit
umask
unalias
uname
uncompress
unexpand
uniq
unpack
untab
wait
wc
what
which
xargs
yes
zcat
20 Porting UNIX Applications Using AS/400 PASE

This option only controls processing for stream data read and
written by the CL command processing program. It does not affect
the encoding of text lines written to stdout and stderr for
messages and spooled output file data (which are always
converted to ASCII).

-h Write a brief description of allowable syntax for the system
command to stdout.

-i Run the CL command in the same process (OS/400 job) where the
system utility runs.

Many CL commands are not supported in a multithreaded
process. The system utility creates multiple threads to handle
CCSID conversion for stdin, stdout, and stderr, so it defaults to
running any CL command in a separate OS/400 job with only a
single thread. Using the -i option can improve performance for CL
commands that can tolerate operation in a multithreaded job.

-k Keep spooled output files after they are processed by writing the
data to stdout. The system utility defaults to removing spooled
output files produced by the CL command after it writes the data
to stdout. This option retains the spooled output files.

-K Generate a job log for the process where the CL command runs.

In most cases, the system utility does not force a job log even if the
CL command ends in error. -K can help problem determination
when a CL command does not work as expected.

-n Do not include OS/400 message identifiers in any text line written
to stdout or stderr for a message sent by the CL command.

The default format for any text lines written for OS/400 messages
is "XXX1234: message text", where “XXX1234” is the OS/400
message identifier. -n suppresses the message identifier, so only
the (first-level) message text is written to the stream.

-q Do not write any text lines to stdout or stderr for any OS/400
messages sent by the CL command.

-s Do not process spooled output files produced by the CL
command. Spooled data is not written to stdout, and spooled
output files are not deleted.

-v Write the CL command invocation string to stdout before running
the CL command.
Chapter 2. AS/400 PASE capabilities and limitations 21

Exit status
0 The CL command completed successfully.

>0 An error occurred.

The example in Figure 3 shows both the power of the system command and
the level of command integration. It runs the output through the grep

command looking for a specific string.

Figure 3. Using both the command system and grep

2.3.6 Logging facilities
There are no direct logging facilities, such as the syslog daemon, in the
AS/400 PASE runtime environment. Applications needing such services can
use existing facilities in OS/400, such as job logs for diagnostic messages
and sending severe messages to the OS/400 system operator message
queue, QSYSOPR. See Chapter 8, “ILE integration with the AS/400 PASE
environment” on page 99, and Chapter 12, “Problem determination and
messages” on page 173, for more information.

2.3.7 OS/400 access
AS/400 PASE applications have the ability to call OS/400 ILE procedures
through the _ILECALL() API (refer to 8.3.7, “_ILECALL() function” on page
129) and to run any CL command including the CL CALL command through

/QOpenSys/usr/bin/sh

$
> system dspusrprf spartz | grep -i spartz

User Profile : SPARTZ
Text : Daryl Spartz, PASE Gottfried

Message queue : SPARTZ
User Profile : SPARTZ
Home directory : /home/SPARTZ

$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
22 Porting UNIX Applications Using AS/400 PASE

the systemCL() API (refer to 8.3.12, “systemCL function” on page 138).
OS/400 system CL commands can be executed through the system utility.

2.4 Limitations

In this section, we introduce the limitations of AS/400 PASE. As stated
previously, the AS/400 PASE environment is a broad subset of the AIX
runtime. The limitations imposed by this subset are described in the following
sections.

2.4.1 Devices
The AS/400 PASE environment does not currently provide support for
physical devices, including teletype (tty) or pseudo teletype (pty) devices.
This coincides with no support of character or block special file system
interfaces stated below.

The AS/400 system does not support direct access to ASCII terminal
functions. ASCII devices attached to the workstation controllers can only be
accessed using the 5250 data stream functions.

2.4.2 File systems
The AS/400 system does not currently support the creation of character
special or block special files. The mknod and mkfifo APIs are not provided in
AS/400 PASE. Also, the AS/400 system does not support linking
application-written file systems into the kernel.

If your application requires a case sensitive file system, you need to put all
your files into /QOpenSys, which is the only case sensitive file system
provided by OS/400. However, any-user defined file system can be case
sensitive.

Files in AS/400 PASE are always opened in binary mode. Therefore, no
EBCDIC to ASCII conversion is performed, regardless of whether the file is
tagged with a CCSID (stdin, stdout, and stderr can be exceptions to this
rule). If needed, it is the responsibility of the application to provide the
encoding translation. The iconv() system interface is available for this
purpose.

There is a potential conflict of file system name space between OS/400
QSHELL and AS/400 PASE. The QSHELL environment reserves the /usr/bin
part of the file system name space for its EBCDIC utilities. AS/400 PASE
programs or scripts referring to that part of the file system need to point to
Chapter 2. AS/400 PASE capabilities and limitations 23

/QOpenSys/usr/bin. See 6.4, “Configuration tips” on page 62, for a possible
workaround other than code modification.

2.4.3 Printing
There is no facility for printing directly from PASE. If the program is capable of
writing ASCII data (for example PostScript) to an IFS stream file, the
following OS/400 commands can be used to print the file. In this example,
200 is the maximum record length and the AS/400 PASE CCSID is 819:

CRTPF FILE(QGPL/PSPRT) RCDLEN(200)

CPYFRMSTMF FROMSTMF('/home/spartz/test.ps')
TOMBR('/qsys.lib/qgpl.lib/psprt.file/test.mbr') CVTDTA(*NONE)
STMFCODPAG(819) DBFCCSID(819) ENDLINFMT(*FIXED) TABEXPN(*NO)

OVRPRTF FILE(QPRINT) DEVTYPE(*USERASCII) PAGESIZE(*N 200)

CPYF FROMFILE(QGPL/PSPRT) TOFILE(QPRINT) FROMMBR(TEST)

LPR RMTSYS(PRTSYS) PRTQ('myPSprt') FILE(QPRINT) SPLNBR(*LAST)
TRANSFORM(*NO)

2.4.4 Shells
The AS/400 system does not currently provide support for Berkeley job
control. Therefore, shell functions that depend on these elements are not
supported by the AS/400 PASE shells.

2.4.5 Libraries
Only the libraries listed in 2.3, “Capabilities” on page 14, are supported.
Other libraries, such as libdbm, libnsl, and libcurses are not provided. Do not
copy libraries from an AIX system without first ensuring that you have a
license to do so. See 3.2, “Licensing issues” on page 33, for more
information.

2.4.6 API restrictions
Table 6 represents the current V4R5M0 list of restricted or flagged APIs,
which the API analysis tool from PartnerWorld for Developers will identify.
See Chapter 5, “Application API analysis” on page 45, for information on
obtaining and using the tool. When referring to this list, you should be aware
that the table used by the API Analysis tool changes based on changes or
updates to the AS/400 PASE product. For the current table, see the
24 Porting UNIX Applications Using AS/400 PASE

PartnerWorld for Developers Web site at:
http://www.as400.ibm.com/developers/index.html

Table 6. AS/400 PASE flagged AIX APIs

API name API type Key text

_system_configuration CLIB Subset for kernel/hardware differences.

accessx FILES Only support ACC_INVOKER; or ACC_SELF if/when
the effective and real uid/gid match.

closelog SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

closelog_r SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

creat FILES No S_ISVTX or S_ENFMT support.

creat64 FILES No S_ISVTX or S_ENFMT support.

endfsent CLIB Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

endfsent_r CLIB Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

endttyent TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

endttyent_r TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

fcntl FILES Supported except F_CLOSEM.

fstatx FILES STX_XPFFD_PASE retrieves ILE descriptor number;
STX_XPFSS_PASE retrieves ILE struct stat.

getgrent AUTH Returns ENOSUP; use getpwuid/getgrgid or
getpwnam/getgrnam interfaces.

getgrnam/getgrgid AUTH Returns ENAMETOOLONG for member names
longer than eight characters.

getitimer CLIB Only supports ITIMER_REAL.

getpgrp PROC Limited process group support without full Berkeley
job control.

getpwent AUTH Returns ENOSUP; use getpwuid/getgrgid or
getpwnam/getgrnam interfaces.
Chapter 2. AS/400 PASE capabilities and limitations 25

getpwnam AUTH AS/400 PASE always sets pw_gecos to zero.

getpwnam_r AUTH AS/400 PASE always sets pw_gecos to zero.

getpwuid AUTH AS/400 PASE always sets pw_gecos to zero.

getpwuid_r AUTH AS/400 PASE always sets pw_gecos to zero.

getrlimit PROC Supports RLIMIT_STACK only.

getrusage PROC Supports RUSAGE_SELF and
RUSAGE_CHILDREN only.

getsockopt SOCK Partial support. See 2.4.6.2, “getsockopt/setsockopt
support” on page 31.

gettimerid CLIB Only ITIMER_REAL supported.

getttyent TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

getttyent_r TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

getttynam TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

getttynam_r TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

getvfsbyflag CONF Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

getvfsbyname CONF Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

getvfsbytype CONF Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

getvfsent CONF Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

gtty DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

incinterval CLIB Only ITIMER_REAL supported.

ioctl FILES Partial support. See 2.4.6.1, “IOCTL support” on
page 31.

API name API type Key text
26 Porting UNIX Applications Using AS/400 PASE

ioctlx DEV Partial support; additional argument from ioctl
ignored.

isatty TTY AS/400 PASE returns TRUE for the (non-tty)
descriptors initially assigned to fd 0/1/2; environment
variable PASE_STDIO_ISATTY=N overrides this
behavior.

lseek FILES IFS restricts directories to sequential access.

lseek64 FILES IFS restricts directories to sequential access.

mmap SHM Consider using shm... APIs instead.

mntctl FILES Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

mount FILES Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

mprotect SHM Partial support - does not work with shmxxx routines.

msem_init MEM Not supported.

msync SHM Consider using shm... APIs instead.

munmap SHM Consider using shm... APIs instead.

open FILES No S_ISVTX S_ENFMT O_DEFER O_SYNC
O_DSYNC FAIO support; O_DELAY and
O_NOCTTY ignored.

openlog SYSLOG No syslog daemon; use AS/400 logging facilities
instead.

openlog_r SYSLOG No syslog daemon; use AS/400 logging facilities
instead.

open64 FILES No S_ISVTX S_ENFMT O_DEFER O_SYNC
O_DSYNC FAIO support; O_DELAY and
O_NOCTTY ignored.

privcheck AUTH EPERM except for SET_PROC_DAC
SET_PROC_RAC and BYPASS_DAC.

psdanger PROC SIGDANGER returns system ASP storage threshold,
but the AS/400 system does not send signals for
storage limit problems.

ptrace PROC AS/400 PASE supports the parts of ptrace arch that
AIX supports.

API name API type Key text
Chapter 2. AS/400 PASE capabilities and limitations 27

readvx FILES Partial support, additional argument from ioctl
ignored.

readx FILES Partial support, additional argument from ioctl
ignored.

semop SEM SEM_UNDO is thread-based versus process-based
on AIX.

setegid AUTH Only allowed while AS/400 PASE is single-threaded.

seteuid AUTH Only allowed while AS/400 PASE is single-threaded.

setgid AUTH Only allowed while AS/400 PASE is single-threaded.

setgrent AUTH Returns ENOSUP; use getpwuid/getgrgid or
getpwnam/getgrnam interfaces.

setitimer CLIB Only ITIMER_REAL supported.

setlogmask SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

setlogmask_r SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

setuid PRIV Only allowed while AS/400 PASE is single-threaded.

setpenv AUTH The AS/400 system does not have session support.

setpgrp PROC The AS/400 system does not have session support.

setpwent AUTH Returns ENOSUP; use getpwuid/getgrgid or
getpwnam/getgrnam interfaces.

setregid AUTH Only allowed while AS/400 PASE is single-threaded.

setreuid AUTH Only allowed while AS/400 PASE is single-threaded.

setsockopt SOCK Partial support. See 2.4.6.2, “getsockopt/setsockopt
support” on page 31.

setttyent TTY Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

setttyent_r TTY Use ILE interfaces for working with mounted file
systems. See 2.3.7, “OS/400 access” on page 22.

setvfsent CONF Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

shmat SHM shmat of a file descriptor not supported.

API name API type Key text
28 Porting UNIX Applications Using AS/400 PASE

statvfs FILES Use ILE interfaces for mounted file systems. See
2.3.7, “OS/400 access” on page 22.

statx FILES STX_XPFSS_PASE retrieves ILEstat structures.

stty DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

sysconf PROC Partial support. Only SYS_GETPARMS is supported
with fields v_ncpus_cfg and v_ncpus filled in.

sysconfig CONF Subset (SYS_GETPARMS) support.

syslog SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

syslog_r SYSLOG No syslog daemon; use AS/400 logging facilities
instead. See 2.3.6, “Logging facilities” on page 22.

system CLIB Please examine source code to see what is called;
check utilities lists for the AS/400 system as needed.

tcdrain DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcflow DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcflush DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcgetattr DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcgetpgrp DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcgetsid DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcsendbreak DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcsetattr DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

tcsetpgrp DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

API name API type Key text
Chapter 2. AS/400 PASE capabilities and limitations 29

telldir FILES AS/400 PASE seekdir not recommended. Do not
position an open directory to anything other than the
beginning.

termdef DEV Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

thread_setsched THREADS Stubbed to no-op.

time PROC AS/400 PASE does not round up to next second (ILE
does).

times PROC Subset support (only user time).

ttylock TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

ttylocked TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

ttyname TTY AS/400 PASE always return NULL (ENOTTY).

ttyname_r TTY AS/400 PASE always return NULL (ENOTTY).

ttyslot TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

ttyunlock TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

ttywait TTY Some apps use isatty() to avoid other tty use if
unneeded; presence does not always cause failures.

umount FILES Use ILE interfaces for mounted file systems.

wait3 PROC Supports RUSAGE_SELF and
RUSAGE_CHILDREN only.

writevx IO Partial support, additional argument from ioctl
ignored.

writex FILES Partial support, additional argument from ioctl
ignored.

SQLGetSubstring CLI Always returns an EBCDIC substring in
CLOB/DBCLOB data types.

Trconflag DEBUG Stubbed to no-op.

API name API type Key text
30 Porting UNIX Applications Using AS/400 PASE

2.4.6.1 IOCTL support
The AS/400 PASE environment provides a limited set of supported options for
the ioctl API. Those supported in OS/400 V4R5 are listed in Table 7.

Table 7. AS/400 PASE support of ioctl API

2.4.6.2 getsockopt/setsockopt support
The AS/400 PASE environment provides a limited set of supported options for
the getsockopt() and setsockopt() APIs. Since AS/400 PASE shares the
TCP/IP stack with OS/400, the same restrictions occur in OS/400. The APIs
that are supported are listed in Table 8.

Table 8. AS/400 PASE support of getsockopt/setsockopt APIs

In addition, the user profile for a running application must have the
*IOSYSCFG special authority to specify the level parameter as IPPROTO_IP
and the option_value parameter as IP_OPTIONS.

2.4.7 Unsupported system calls
The AS/400 PASE kernel exports some system calls that are implemented by
the AIX kernel but are not supported in AS/400 PASE. Details of how these
system calls behave and how to debug them can be found in 6.6.2, “AS/400
PASE unsupported system calls” on page 85.

FIOASYNC
FIOCLEX
FIOGETOWN
FIONBIO
FIONCLEX
FIONREAD

FIOSETOWN
ISATTY
SIOCATMARK
SIOCGIFADDR
SIOCGIFBRDADDR
SIOCGIFCONF

SIOCGIFFLAGS
SIOCGIFMTU
SIOCGIFNETMASK
SIOCGPGRP
SIOCSPGRP

SO_BROADCAST
SO_DEBUG
SO_DONTROUTE
SO_KEEPALIVE
SO_LINGER

SO_OOBINLINE
SO_RCVBUF
SO_RCVLOWAT
SO_RCVTIMEO
SO_REUSEADDR

SO_SNDBUF
SO_SNDLOWAT
SO_SNDTIMEO
TCP_NODELAY
Chapter 2. AS/400 PASE capabilities and limitations 31

32 Porting UNIX Applications Using AS/400 PASE

Chapter 3. Getting started with AS/400 PASE

AS/400 PASE has several hardware and software prerequisites. These
prerequisites change depending upon whether you are an end user of a
ported AS/400 PASE application or if you are porting an application from AIX
to AS/400 PASE.

3.1 Requirements

All users are required to have the following requirements:

• OS/400 V4R5 or later (AS/400 PASE will run on V4R4, but is more limited
in support and is not covered in this book)

• Option 33 of the OS/400 (5769SS100)

• Current PTFs. A list of current PTFs can be found at:
http://www.ibm.com/as400/developer/factory/pase/misc.html

If this page doesn’t show the V4R5M0 PTFs for AS/400 PASE, contact
your local AS/400 Software Support organization.

People porting code from AIX are required to have:

• RS/6000 running AIX 4.3.3

• PC running an X-Windows server host from an AIX 4.3.3 box. Several
commercial products exist, including Hummingbird Exceed
(http://www.hummingbird.com/) and X-Win32
(http://www.starnet.com/productinfo/)

Most RISC processors used in AS/400 systems were designed to support
both PowerAS and PowerPC architectures and provide the ability for the
supervisor System Licensed Internal Code (SLIC) to switch architectures on
demand. However, hardware implementation issues prevent us from using
PowerPC mode on some older systems without jeopardizing user data or
system integrity. AS/400 PASE is formally supported on the AS/400e Series
(hardware introduced around September 1997). SLIC prevents AS/400 PASE
programs from running on any system that is not AS/400e Series hardware.

3.2 Licensing issues

AS/400 PASE provides a subset of the AIX runtime libraries on the AS/400
system. The OS/400 license authorizes you to use any library code shipped
with OS/400. This license does not imply a license to AIX libraries that were
© Copyright IBM Corp. 2000 33

not shipped with AS/400 PASE. All AIX products are separately licensed by
IBM.

As you begin porting your own applications to AS/400 PASE, you may find
that your application has dependencies on AIX libraries that were not shipped
with AS/400 PASE. Before porting these libraries to the AS/400 system, you
should determine which software product provided those libraries and
examine the terms and conditions of the license agreement for that software
product. It may be necessary to work with IBM or a third party to port
additional middleware dependencies to the AS/400 system.

We strongly encourage you to investigate every licensing agreement involved
with the code you are porting before you start porting. If you need to find out
about license agreements in place against libraries that you believe belong to
IBM, contact your IBM sales representative, one of the IBM porting centers,
the Custom Technology Center in Rochester, or PartnerWorld for Developers.
See Appendix E.4, “Referenced Web sites” on page 222, for a list of Web
sites.

3.3 Recommendations

People that port AIX code to AS/400 PASE need to closely consider these
guidelines:

• Networking between OS/400 and AIX machines

• Knowledge of both OS/400 and AIX or UNIX

Many ports do not require an individual who has extensive knowledge in
both environments. However, individuals who have deep knowledge in
each of the areas are useful. OS/400 knowledge is most needed when you
wrapper your product or need to execute a database port.

• AS/400 PASE was developed to target AIX 4.3.3. However, code created
on AIX 4.3.X releases is very likely to be upward compatible and,
therefore, should be fully portable.

3.4 General AS/400 PASE instructions

The following section lists and generally describes the steps you may go
through if you are porting a solution to AS/400 PASE.
34 Porting UNIX Applications Using AS/400 PASE

3.4.1 General system setup
On your e-series AS/400 system, install OS/400 V4R5 with option 33. This
option is specifically orderable from IBM and is a chargeable feature of
OS/400.

Check for any AS/400 PASE PTFs that were created since the installation
level of your software and load those too.

You need to have an AIX system available for compilation. It will be at the AIX
4.3.3 level, preferably, but most AIX 4.3 generated code will work since AIX
offers good upward compatibility.

3.4.2 Checking system support
It is often useful to run an API analysis on the solution to be ported. This
allows you to check the match between the APIs supported by AS/400 PASE
and those that the solution uses. This process is usually a small task and can
speed the prototyping stage greatly. See Chapter 5, “Application API
analysis” on page 45, for more information.

3.4.3 Preparing the application
You need to be sure that your AS/400 PASE program is compiled correctly on
AIX, especially if you depend on calling ILE routines or database. See the
instructions in 6.2, “Compiling applications on AIX for AS/400 PASE” on page
58, for more information. Many programs that are standalone will work
correctly as compiled for AIX.

AS/400 PASE programs are not “called” directly from the command line. You
need to either run one of the “launcher” programs, QP2TERM or QP2SHELL,
or write an ILE C program to call Qp2RunPase. If this is your first experience
with AS/400 PASE, and you are not familiar with ILE C compilations, we
recommend that you use the “launchers”. The launchers are tools intended
for prototyping. See the detailed usage documentation in 6.5, “Starting an
AS/400 PASE application” on page 65, for more information. Users of formal
releases of PASE applications most often want to write the C programs or
their own launchers to create the production environment they need.

3.4.4 Testing the application
AIX 4.3 binaries that are to be run must be moved to the root of the stream
file system “/” on the AS/400 system. If your application is sensitive to mixed
case, move them into the /QOpenSys file system under the root. Create the
path as appropriate.
Chapter 3. Getting started with AS/400 PASE 35

Use FTP to make sure you are using NAMEFMT 1 so that the files will be
transferred as stream files into stream files. If you have trouble getting the
parameter typed in and you are looking for an alternative, or if the first
command you type into FTP uses an AS/400 file name that starts with a slash
(for example, /dir/myfile), enter the NAMEFMT 1 mode automatically by the
ftp command.

3.4.5 Creating your AS/400 solution
Once your solution is running, examine some of the typical AS/400 customer
expectations to see what additional application parts would give them a
familiar look and feel. These topics are covered in Appendix B, “The
Application Factory” on page 205.
36 Porting UNIX Applications Using AS/400 PASE

Part 2. AS/400 PASE from a UNIX perspective

Part 2 is intended for users who will port a UNIX or AIX application to run in
AS/400 PASE.
© Copyright IBM Corp. 2000 37

38 Porting UNIX Applications Using AS/400 PASE

Chapter 4. AS/400 architecture from a UNIX perspective

This chapter discusses certain architectural characteristics of the AS/400
system and the integrated language environment (ILE). The aspects
considered are those of interest to a UNIX C application developer. This
chapter also discusses the characteristics of a UNIX operating system as
they relate to the AS/400 computer architecture.

AS/400 system architecture is defined by a fairly high-level machine interface
(MI), sometimes referred to as a Technology Independent Machine Interface
(TIMI). “Technology Independence” refers to the fact that the applications
(and much of the operating system) have no dependence on the type of
processor, whether it's Complex Instruction Set Computer (CISC), Reduced
Instruction Set Computer (RISC), Very Long Instruction Words (VLIW), and
so on. This section discusses the following architectural aspects of the
AS/400 system:

• Object-oriented architecture
• Addressing or storage management
• Contexts (AS/400 libraries) and address resolution
• User profiles and authority management
• Character sets and terminal I/O

The particular emphasis is on distinctions from what you might expect of an
architecture supporting a UNIX operating system.

4.1 Object-oriented architecture

Objects are the means through which information is stored and retrieved on
the AS/400 system. This concept is different from the typical byte-stream file
manipulation on many systems. Object orientation is part of the architecture
and affects both operating system implementation and high level language
interaction with the system.

As previously mentioned, the MI is a boundary (set of instructions) that
separates the hardware and System Licensed Internal Code (SLIC) from the
operating system. SLIC contains traditional kernel-type functions, such as
storage management, resource management, authority checking, and so on.

There are very fundamental objects in SLIC that are put together to create
complex objects in OS/400 above the MI. For example, a cursor object, a
physical file object, and several other objects are used to implement a
relational database table in OS/400. Each object has operational
© Copyright IBM Corp. 2000 39

characteristics and a defined set of operations that can be performed on it.
Objects are addressed through 16-byte pointers (8 bytes are used for an MI
address; the other 8 bytes are used for information about the object pointed
to and for reserved space). In addition to providing addressability to the
object, pointers provide access to the associated storage, data integrity, and
security. Above the MI, the contents of the pointer are encapsulated or
protected. For example, the hardware itself prevents an application from
fabricating a pointer from an integer.

Below the MI, the AS/400 hardware provides a logical tag bit for each
quadword (16 bytes that must be aligned on a 16-byte boundary) within main
storage. This bit is not accessible by the normal application instructions used
to access storage. The bit, when it is equal to 1, identifies quadwords in
storage containing MI pointers. Programs above the MI have no direct access
to the tag bit. The tag bit is turned on by SLIC when a pointer is set and
turned off by the hardware any time the quadword is modified (except through
a controlled set of SLIC pointer manipulation instructions). This procedure
allows the system to detect invalid pointers and prevent illegal use of a
pointer. Any attempt to subsequently use this data as a pointer results in an
exception and the instruction is not completed. It is not possible to counterfeit
a pointer or to modify a pointer in an invalid way.

The tag bit implementation allows the validation of pointers in an extremely
efficient way. It is the basis for system and data integrity since pointers can
contain authorization information as well as addresses.

Implications for High Level Language, including pointer arithmetic,
assignment operations, casting, compares, and so on, all work as expected
as long as the system is aware that variables are address pointers. A pointer
in the ILE C/400 is 16 bytes long. Programming tricks, such as manipulating
pointers in integer-sized space, do not work.

On a 32-bit UNIX system, integers and pointers are both typically 4 bytes
long. An integer can be cast to a pointer. An address of an object of one data
type can be assigned to a pointer of another data type without proper pointer
casting. On the AS/400 system, such assignment operations produce
exceptions.

4.2 Addressing and storage management

AS/400 storage management uses single level storage. With single level
storage, there is a single, large, uniformly addressable address space for all
memory (both main storage (RAM) and secondary storage (DISK)). Storage
40 Porting UNIX Applications Using AS/400 PASE

is addressed by a 64-bit address. This large virtual address equates to
roughly 18 million terabytes of addressable storage.

There is a single page directory that maps all virtual addresses to the
corresponding physical addresses. Addresses are unique across the system
for the life of the system and are not duplicated across processes. The same
address in a different process points to the same storage location. This
concept is different from UNIX (where there is one address space per
process). It also has implications for how storage is managed and how
processes are created and managed.

The UNIX System V kernel divides the virtual address space of a process into
logical regions. A region is a contiguous area of the virtual address space that
can be treated as a distinct space to be shared (with other processes) or
protected. UNIX address spaces are per process. The same address in
different processes can point to different memory spaces. Since the AS/400
address space is per system, the same address in different processes always
points to the same memory space. Consequently, the way addresses are
translated and the way memory is managed is fundamentally different
between the AS/400 architecture and from that which is typically associated
with UNIX systems. These differences are summarized in Table 9.

Table 9. AS/400 and UNIX storage management differences

PASE provides the UNIX model within the AS/400 model.

4.2.1 Job and process structure
An example of a UNIX system call that is very expensive to implement on the
AS/400 in ILE is fork(), which is how a process is created on a UNIX system.
The UNIX kernel does (among other things) the following operations for
fork():

• Allocates a slot in the process table for the new process
• Assigns a unique ID number for the child process
• Makes a logical copy of the parent process

AS/400 system UNIX

Single level storage Process-based addressing

Persistent addresses Temporary addresses

Full job structure Middleweight processes in a process
group
Chapter 4. AS/400 architecture from a UNIX perspective 41

The notion of copying storage (which contains pointers) of the parent process
is inconsistent with the AS/400 single level storage architecture. On UNIX
systems, pointers are relative to the process. On the AS/400 system, pointers
are absolute because of the single address space for the entire system.
Consequently, fork() (in UNIX terms) is not currently implemented on the
AS/400 system outside the PASE environment. A combination of fork() and
exec() semantics has been implemented on the AS/400 system with spawn()

and related APIs. In addition, the AS/400 dynamic call allows an ease-of-use
call for multiple “main” programs while remaining in the same process. This
provides single-thread dynamic execution in which programs can work
together in a single security and resource environment that is not available in
UNIX.

4.3 Library and address resolution

At the time an AS/400 object is created, the operating system places the
object name in (another) machine object called a context. Contexts are
presented to the user as OS/400 libraries (not to be confused with UNIX
libraries). The context object maps (resolves) the symbolic identification (type
and name) of an object to its virtual addresses. A user-specified (and
modifiable) list of libraries is associated with each job on the system. Objects
can be referenced by the user and can be explicitly qualified to a specific
library. If not explicitly qualified to a library, the library list of the job resolves
the references by searching each library in the list in order until a matching
entry is found. This resolution is roughly analogous to LIBPATH processing
on an AIX system.

On UNIX systems, most objects are treated as a file and addressed through
hierarchical directories. The AS/400 system has objects addressed through
contexts (AS/400 libraries). This notion contrasts to the concept of symbolic
name resolution as used with directories and file systems on UNIX systems.

The AS/400 system has a similarity with UNIX by supporting a hierarchical,
case-sensitive, POSIX-compliant name space (called QOpenSys).
Byte-stream files stored in QOpenSys are addressed through directories.

4.4 User profiles and authority management

System authorization management is based on user profiles that are also
objects. All objects created on the system are owned by a specific user. Each
operation or access to an object is verified by the system to ensure the user's
authority. The owner or appropriately authorized user profiles may delegate to
42 Porting UNIX Applications Using AS/400 PASE

other user profiles various types of authorities to operate on an object.
Authority checking is provided uniformly to all types of objects.

The object authorization mechanism provides various levels of control. A
user's authority may be limited to exactly what is needed. Files stored in
QOpenSys are authorized in the same manner as UNIX files. Figure 4 on
page 43 shows the relationship between UNIX permissions and security used
on AS/400 database files.

Figure 4. Mapping UNIX permissions to AS/400 security

4.5 Character sets and terminal I/O

This section describes the differences between two architectures, such as
character sets and terminal I/O.

4.5.1 EBCDIC versus ASCII
Most UNIX systems historically run on hardware that uses ASCII character
encoding. The AS/400 system uses EBCDIC encoding by default, although all
objects can be tagged with specific code pages. This architectural difference
is not a problem, assuming high level language applications do not have a
dependency on (or make an assumption about) the character set. Problems
arise if, for example, applications are coded with dependencies on a
hexadecimal representation of character. The hexadecimal representation
varies between ASCII/EBCDIC. Similarly, the collating sequence (that is,
ordering of characters) also differs.

Mapping UNIX Permissions to AS/400 Security

UNIX

(*OBJOPR-Use object, *EXCLUDE- No Authority)

r(read)

w(write)

e(execute)

w(write)

No Authority

*OBJOPR

AS/400
Data Authority

x

x
x

-

*ADD *UPD *DLT *XEQ*READ

x
x x x

x

- - - - -

-

--

-
- -
Chapter 4. AS/400 architecture from a UNIX perspective 43

4.5.2 Buffered versus unbuffered I/O
Input and output to and from external devices is buffered on the AS/400
system. I/O is handled by I/O processors that deal with blocks of data.
Conversely, UNIX systems typically operate with character-by-character
(unbuffered) I/O. On the AS/400 system, only certain I/O signals (for
example, the Enter key, function keys, and system request) send an interrupt
to the CPU.

4.5.3 I/O controllers versus device drivers
It may not be common, but it is possible, on most UNIX systems (as well as
most personal computers) to write applications that include device drivers for
devices specific to an application. That is, it is possible to write applications
utilizing a port that controls an I/O device. On the AS/400 system, I/O is
handled by system I/O managers (IOMs) that communicate with device
controllers to handle I/O requests.

Since IOMs are part of the AS/400 architecture, applications do not write
directly to a particular device. Also, linking application code into the kernel
(SLIC) is not allowed.

4.6 Architectural summary

This chapter has discussed AS/400 architectural distinctions from UNIX.
These differences should not affect or impede source code portability of
applications to the AS/400 system (assuming that the code is written in an
otherwise portable manner).

Significant architectural features that uniquely identify the AS/400 system
include high-level machine interface (which really defines the architecture),
object-orientation, and single-level storage. The high-level machine interface
permits the underlying implementation of the hardware to change without
affecting users above the MI (including the operating system and enduser
applications). Further, these architectural features inherently provide a high
degree of data and system integrity, authorization, and reliability. These
features, if they exist on a UNIX system, typically must be provided by
higher-level functions of the operating system or by the application.
44 Porting UNIX Applications Using AS/400 PASE

Chapter 5. Application API analysis

This chapter discusses, in depth, how to analyze your application to see how
well it matches the APIs that AS/400 PASE supports.

5.1 Introduction

API analysis is the first step in the feasibility study and assessment of the
portability of a UNIX C application to the AS/400 system. The API analysis
filters the interfaces used within the application that are not industry standard
and not supported on the AS/400 system. It also filters the interfaces that are
standard compliant but supported differently due to the different architecture
of the AS/400 system compared to UNIX machines.

The API analysis tool consists of a frontend and a backend. The frontend
scans the executables of the application to extract the interfaces (or function
calls) used by the application and generates a list of all those interfaces. The
backend of the tool takes this list of interfaces as input and compares them
with a database of “typical” system APIs and their support.

The frontend of the API analysis tool is a UNIX shell script and uses the nm or
dump command to find symbol information from the external symbol table of
the executables. The shell script runs on one of the following operating
systems, which is passed as a parameter to the script:

• AIX
• HP-UX
• SCO UNIX
• SUN Solaris
• Digital UNIX

Binaries that have been stripped of symbols may contain enough dynamic
binding information for the analysis tool to analyze. Statically bound binaries
remove the library interfaces from the analysis but still expose the syscall
boundary dependencies for analysis.

5.2 What you need to do

You need to download the API Analysis Tool Frontend, which is located on the
Web at: http://www.ibm.com/as400/developer/porting/apitool.html
© Copyright IBM Corp. 2000 45

Choose your own browser's option to save the API Analysis Tool Front-end to
your local disk in a file (for example, file rtvapi). Change the file mode to
executable with the following command:

chmod +x rtvapi

Run this script against the executables of your application. You need to
supply an operating system and (optionally) a file or directory name as
parameters:

rtvapi {AIX|HPUX|SunSolaris|ScoUNIX|DigitalUNIX} [<file name>|<directory
name>]

While running the tool, make sure:

• The executables of the application are not stripped of symbol table
information.

• You have write permission in the current directory since the tool will create
some temporary files.

• When a file name is supplied, it must be an executable file with read
permission.

• If a directory name is supplied, it must be a searchable directory. The tool
drills down to all the subdirectories to find all the executable files starting
from the directory specified.

• You redirect the output (which is a list of function calls) to a file.

The IBM porting team in PartnerWorld for Developers will run the backend of
the API analysis tool. Send the output file and a short description of your
application and target marketplace via e-mail to rchgo400@us.ibm.com. Also, if
you have any problems using the shell script, send an explanatory e-mail to
the same address.

5.2.1 API analysis example
The following example report analysis uses the porting example of OpenDX
outlined in 10.2, “OpenDX” on page 150:

1. On the AIX machine, make a temporary directory. On the AIX machine,
type:

mkdir ~/tmp/opendx

2. Either FTP or copy all files from /usr/local/dx/bin_6000 and
/usr/local/dx/lib_6000 to the temporary directory.

3. Run the API analysis tool. On the AIX machine, type:

rtvapi AIX ~/tmp/opendx > ~/api.report
46 Porting UNIX Applications Using AS/400 PASE

4. Submit the report to IBM as previously directed.

The following report summary is from IBM on OpenDX. The report generation
does not cross-reference dependencies with all of the files on which the
report is generated, that is user defined APIs. Therefore, there it is assumed
that the submitter can recognize these APIs and manually remove them from
the list.

Note that the analysis tool looks for system-related support and does not
recognize C++ runtime calls since this is part of support.

IBM AS/400 API Analysis Report
Thank you for your interest in an AS/400 API Analysis. This file is your
analysis report. While this report may not be a complete predictor of all port
effort for your solution, we have found that this process does help us identify
significant system support issues that need to be worked in porting activity.
Please look through the details below for follow up technical items requiring
further examination in your source code. Also, please note the percentages in
the table below are simplified. All APIs in this report are weighted equally,
irrespective of the number of times they are used in the solution. For
example, if a solution used two APIs, one once and the other ninety-nine
times, the support percentage would appear as 50%, while the actual system
call support would be 99%.

How to read this report
Following this description, you will see the identifying information for your
analysis. Under this information, we list the number of unique APIs/exports
we received from you with the count of those we 'recognized' as
system-related functions and the count of those we did not recognize. We
generally find that the unrecognized ones are from your own application or
the additional middleware that your application uses. If you see lists of APIs
in the 'unrecognized' section of the report that you do not recognize as your

The full report is rather extensive, comparing the application API
references to both ILE and AS/400 PASE in multiple releases. The
following report excludes the sections that refer to ILE and release
information prior to V4R5.

The report also shows as “unrecognized” APIs, APIs that the OpenDX
exports in its own libraries. These APIs are numerous and are prefixed with
DX, _dxt, _dxd, and _dxf. They have been removed.

Note
Chapter 5. Application API analysis 47

application APIs, you will need to identify the other products your application
is using so we can verify support for those products too on AS/400.

After the counts, you will see two tables with several rows and right/left
sections. Each row represents an AS/400 release. The two major right/left
sections are analyses for the AS/400 Integrated Language Environment (ILE)
and for the AS/400 Portable Application Solutions Environment (AS/400
PASE), respectively. The first table addresses the specific counts of APIs; the
second addresses the percentages of APIs that fall into the categories for a
quick overview analysis of the data.

In the first table, within each row you will see the count of APIs that are
generally supported and unsupported for each environment. Each number in
the table is a link to a following part of the report. If you click on the number,
you will be taken to the list of the APIs that fall into that category, with some
additional information as appropriate.

The 'flags' columns list additional considerations or workarounds for using a
particular API for a particular release. Flags appear on both generally
supported and unsupported APIs to point you to additional implementation
details that could affect your application. Please read through these to better
understand your port assessment. In particular, if you use system() or
popen() functions, check your source code to see what commands or utilities
you are running and check our Qshell Web page at
http://www.as400.ibm.com/developer/qshell/utils.html or AS/400 PASE Web
pages to ensure that support is available for those as well. Additional
considerations for ILE and AS/400 PASE porting are located at
http://www.as400.ibm.com/developer/factory/table.html

Again, thank you for your interest.

Company and Application Information

Company name Test library

Product name Daryl.report

Product API DB file name DARYLTEST

Analysis report date Wednesday, June 14, 2000 4:20 PM

Report prepared for OS/400 release V4R5
48 Porting UNIX Applications Using AS/400 PASE

http://www.as400.ibm.com/developer/qshell/utils.html
http://www.as400.ibm.com/developer/factory/table.html

Summaries

API count

Percentages

User Defined or Unrecognized APIs (591)
__ct__8ifstreamFPCciT2
__ct__8ofstreamFPCciT2
__ct__9strstreamFv
__dbargs
__dbsubc
__dbsubg
__dbsubn
__dl__FPv
__dt__8ifstreamFv
__dt__8ofstreamFv
__dt__9strstreamFv
__frame_ptr
__ls__7ostreamFPCc
__my_pc_address

Total APIs for review: 1194

User defined or unrecognized by
analysis:

591

APIs recognized by analysis: 603

ILE PASE

VRM

APIs
supported

APIs not
supported

VRM

APIs
supported

APIs not
supported

With
flags

With
flags

With
flags

With
flags

V4R5 142 19 461 0 V4R5 602 17 1 0

ILE PASE

VRM

APIs
supported

APIs not
supported

VRM

APIs
supported

APIs not
supported

With
flags

With
flags

With
flags

With
flags

V4R5 23% 19 77% 0 V4R5 99% 17 1% 0
Chapter 5. Application API analysis 49

__nw__FUl
__vec__delete2
__vtt8ifstream
__vtt8ofstream
__vtt9strstream
__BadRethrow
__CleanupCatch
__CurrentException
__DestructSOMBase
__ExtractRegs
__PureVirtualCalled
__ResetStackPointer
__RestoreRegsAndJump
__SaveNonVolatileRegisters
cerr
close__11fstreambaseFv
complicated_put__7ostreamFc
endl__FR7ostream
gcount__7istreamFv
getline__7istreamFPcic
libhd_dl__FPv__FPviN22PFPcUl_vUl
libhd_nw__FUl__FUliT2PFPcUl_v
m_DXLOutput
m_Pick
openprot__7filebuf
read__7istreamFPci
seekg__7istreamFl
seekg__7istreamFlQ2_3ios8seek_dir
terminate__Fv
...

[ILE information is next in the full report]

PASE V4R5 Supported List (602)
__assert
__divss
__divus
__filbuf
__flsbuf
__lc_charmap
__mulh
__quoss
__quous
__start
_iob
_system_configuration
_DBLINF
_Xm_fastPtr
_XmDifferentBackground
_XmDispatchGadgetInput
_XmDrawShadow
_XmDrawShadowType
_XmForegroundColorDefault
50 Porting UNIX Applications Using AS/400 PASE

_XmGetClassExtensionPtr
_XmHighlightBorder
_XmInputInGadget
_XmManagerEnter
_XmManagerFocusIn
_XmMoveObject
_XmPrimitiveEnter
_XmPrimitiveLeave
_XmResizeObject
_XmStrings
_XmUnhighlightBorder
_XtAppInitialize
_XtCheckSubclassFlag
_XtInherit
_XtInheritTranslations
_XtInitialize
_XtIsSubclassOf
_XtToolkitInitialize
_XtVaAppInitialize
abort
abs
alarm
applicationShellWidgetClass
atexit
atof
atoi
bcmp
bind
bsearch
bzero
calloc
chdir
chmod
close
closedir
connect
creat
cs
ctime
dup2
environ
errno
execl
execv
execve
execvp
exit
fclose
fdopen
fflush
fgetc
fgets
fopen
fork
Chapter 5. Application API analysis 51

fp_raise_xcp
fp_set_flag
fprintf
fputc
fputs
fread
free
fscanf
fseek
fstat
ftell
fwrite
getcwd
getdtablesize
getenv
geteuid
gethostbyaddr
gethostbyname
gethostname
getlogin
getopt
getpid
getpwnam
getpwuid
getsockopt
gettimeofday
herror
inet_addr
ioctl
isalnum
isalpha
isascii
isatty
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
kill
listen
load
loadbind
loadquery
lseek
malloc
mbsinvalid
mbtowc
memcmp
memset
mkdir
mktemp
52 Porting UNIX Applications Using AS/400 PASE

naccept
ngetsockname
open
opendir
optarg
overrideShellWidgetClass
pause
pclose
perror
pipe
popen
printf
putenv
qsort
random
re_comp
re_exec
read
readdir
realloc
rename
rewind
rint
sbrk
select
setbuf
setlocale
setsockopt
setvbuf
shmat
shmctl
shmget
sigaction
sigemptyset
signal
sigprocmask
socket
sprintf
srandom
sscanf
stat
strcasecmp
strchr
strcspn
strdup
strerror
strlen
strncmp
strrchr
strspn
strstr
strtod
strtol
strtoul
Chapter 5. Application API analysis 53

sys_errlist
sys_nerr
sysconf
system
time
times
tolower
topLevelShellWidgetClass
toupper
transientShellWidgetClass
umask
uname
ungetc
unlink
unload
usleep
vendorShellClassRec
vsprintf
wait
wait3
wcstombs
wctomb
widgetClassRec
write
...[long list of X Window and Motif APIs]
XWindowEvent

PASE V4R5 Supported Flagged (17)

API name API type Comment

_system_configuration CONF Subset for kernel/hardware differences

creat FILES No S_ISVTX or S_ENFMT support

getpwnam AUTH PASE always sets pw_gecos to zero

getpwuid AUTH PASE always sets pw_gecos to zero

getsockopt SOCK Partial support

ioctl DEV Partial support

isatty TTY PASE returns TRUE for the (non-tty)
descriptors initially assigned to fd 0/1/2;
environment variable
PASE_STDIO_ISATTY=N overrides this
behavior

lseek FILES IFS restricts directories to sequential access
54 Porting UNIX Applications Using AS/400 PASE

PASE V4R5 Unsupported List (1)

PASE V4R5 Unsupported Flagged (0)
None

IBM API analysis tool level: Version 0.9b
AS/400 API database level: March 9, 2000

open FILES No S_ISVTX S_ENFMT O_DEFER O_SYNC
O_DSYNC FAIO support; O_DELAY and
O_NOCTTY ignored

popen PROC Please examine source code to see what is
called; check utilities lists for AS/400 as
needed

setsockopt SOCK No support for SO_CKSUMRECV,
IP_HDRINCL, IP_RECVOPTS,
IP_RECVRETOPTS, IP_RECVDSTADDR,
IP_RETOPTS, IP_RECVMACHDR,
IP_RECVIFINFO_AIX, IP_BROADCAST_IF,
IP_DHCPMODE

shmat SHM shmat of a file descriptor not supported

sysconf PROC Partial support

system CLIB Please examine source code to see what is
called; check utilities lists for AS/400 as
needed

time TIME PASE does not round up to next second (ILE
does)

times PROC Subset support (only user time)

wait3 PROC Supports RUSAGE_SELF and
RUSAGE_CHILDREN only

API name API type

absinterval TIME

API name API type Comment
Chapter 5. Application API analysis 55

56 Porting UNIX Applications Using AS/400 PASE

Chapter 6. Porting mechanism

This chapter deals with some of the issues and means of porting a UNIX
application to AS/400 PASE. Examples of such ports are described in
Chapter 10, “AS/400 PASE porting examples” on page 147. Issues involved in
an application port that uses a database are described in Chapter 7,
“Database porting with AS/400 PASE” on page 87.

Whenever possible, porting projects should be debugged on an AIX system
before being ported to AS/400 PASE. Applications that integrate into the
AS/400 system through DB2/400 or ILE interfaces require different debugging
strategies. See Chapter 12, “Problem determination and messages” on page
173, for more information.

6.1 Beginning a port

AS/400 PASE programs are structurally identical to AIX executables for
PowerPC. They can be built using any AIX compiler and linker that generate
output compatible with the AIX Application Binary Interface (ABI) for
PowerPC and whose runtime is supported in AS/400 PASE. AS/400 PASE
provides instruction emulation support for binaries that use POWER
architecture instructions that do not exist in PowerPC (except for
cache-management POWER instructions).

AS/400 PASE supports executables built for AIX 4.3.3 (and usually earlier 4.3
AIX releases).

AS/400 PASE implements a subset of AIX syscalls that allow many AIX
programs (root executables and shared libraries) to run unchanged. The
V4R5 version of AS/400 PASE runtime contains approximately 140 MB of
executables.

AS/400 PASE defaults to delivering SIGILL (illegal instruction) to any program
that tries to use a syscall that is not supported by AS/400 PASE. See 6.6.2,
“AS/400 PASE unsupported system calls” on page 85, for information on how
to change this behavior. The syscall that caused the error can be identified by
looking at VLOG entries, using SLIC trace facilities (which you can activate
using the TRCINT CL command for TRCTYPE(*PASE)), or running dbx
against a core dump file.
© Copyright IBM Corp. 2000 57

6.2 Compiling applications on AIX for AS/400 PASE

There are two types of ports to consider at this point. One type of port is of an
application that uses only functions exported by the AIX version of runtime
libraries supplied for AS/400 PASE. You can simply compile and link with AIX
libraries to prepare AS/400 PASE binaries. This is the case in the example
application ports on GNU zip and GNU perl described in 10.1, “GNU zip” on
page 147, and 10.3, “GNU perl” on page 159.

The second kind of port is one that intends to use functions that exist on
OS/400, including native database access. These extensions to the AIX
runtime support are defined in as400_protos.h. You need to provide
definitions for the extensions when you link the application. You can do this
either with an exports file that defines the AS/400-unique library exports, or
by linking with AS/400 PASE runtime libraries (which must be accessible on
the AIX system used to build the application, perhaps through NFS).

The available header and export files are shown in Appendix A,
“Programming resources” on page 203.

Note that the sqlcli.h file is an AS/400 unique file that interfaces to DB2/400
and not DB2 on AIX. See Chapter 7, “Database porting with AS/400 PASE”
on page 87, for more information on porting to the native AS/400 database.

The as400_libc.exp file defines all the exports from the AS/400 PASE version
of libc.a that are not exported by the AIX versions of those libraries. The
libdb400.exp file defines the exports from the AS/400 PASE libdb400.a library
(DB2/400 CLI support).

If you have AS/400 PASE runtime libraries on your AIX systems, the easiest
way to link with them is to use the -Z loader option to specify the name of a
directory that contains the “lib” directory where AS/400 PASE runtime
libraries are stored. The -Z option is supported on many compiler commands
that call the linker (ld command).

Attention

We recommend using the library export files, instead of linking directly with
the AS/400 PASE runtime libraries, to reduce the risk of damaging the AIX
system with the wrong libraries. Using the unique AS/400 PASE export files
requires source code changes.
58 Porting UNIX Applications Using AS/400 PASE

If your program needs to use AS/400-unique functions in AS/400 PASE (such
as _ILECALL to call an ILE procedure, or using the ILE pointer value type to
store a tagged pointer), you need additional header files and build options.

AS/400 PASE augments standard AIX runtime with a few header files for
AS/400-unique support. Header file as400_types.h declares the ILE pointer
value type that can be used for 16-byte (quadword-aligned) tagged MI
pointers. The xlc compiler provides limited support for 16-byte alignment (for
type long double) by using the combination of -qlngdbl128 and
-qalign=natural. Use of type ILEpointer requires these compiler options to
ensure that MI pointers are quadword aligned within structures. Using option
-qldbl128 forces type long double to be a 128-bit type that requires use of
libc128.a to handle operations like printf for long double fields. An easy way
to get option -qlngdbl128 and link with libc128.a is to use the xlc128 command
instead of the xlc command.

Header file as400_types.h also relies on the long type to be a 64-bit integer.
xlc compiler option -qlonglong ensures this geometry (which is not the default
for all commands that run the xlc compiler). Assuming AS/400-unique
headers and export files are in /home/spartz/pase/include, the following
examples build the same program with the same options:

xlc -o as400_test -qldbl128 -qlonglong -qalign=natural -H16
-l c128
-I /pase/exports
-bI:/pase/include/as400_libc.exp
as400_test.c

The xlc/xlC compiler currently does not provide a way to force quadword
alignment for static or automatic variables. The compiler only guarantees
relative alignment for 128-bit long double fields within structures. But the
AS/400 PASE version of malloc always provides quadword-aligned storage,
and you can arrange quadword alignment of stack storage. See 8.3, “Doing
callouts to ILE from AS/400 PASE” on page 108, for details on how to
provide quadword alignment for static and automatic variables.

Note
Chapter 6. Porting mechanism 59

If the program is multi-threaded, use the xlc_r command to ensure the
executable links with threadsafe runtime libraries:

xlc_r -o as400_test -qldbl128 -qlonglong -qalign=natural -H16
-l c128
-I /pase/exports
-bI:/pase/include/as400_libc_r.exp
as400_test.c

-H16 is a loader option to force 16-byte alignment for each section of the
output file. Note that the xlc compiler only requests 8-byte alignment for any
allocation within BSS, so -H16 does not currently have the desired effect. We
recommend using -H16 so the entire BSS area will be quadword aligned.

The -bI directive tells the compile to pass the parameter to the linking
directive ID, ld. The directive specifies an export file containing exported
symbols from a library, to be imported by the linking directive ID for symbol
resolution.

6.3 Accessing files from AS/400 PASE

There are several techniques for referencing or copying files from the AIX
development platform to AS/400 PASE. AS/400 PASE uses the AS/400 IFS
file system, so all methods of accessing AS/400 IFS can achieve the desired
result.

6.3.1 Using FTP
AS/400 PASE does not provide, nor does it need to supply, an FTP daemon
or client. The native OS/400 FTP daemon and client can be used to transfer a
file into, or out of, the OS/400 IFS file system. Non-text files should be
transferred in binary mode. Use the bin FTP subcommand to set this mode.
Not all FTP clients default to binary. To switch back to text mode, use the
ascii or ebcdic FTP subcommand, depending on the source encoding type.

Placing files into the IFS requires the use of naming format 1 of the AS/400
FTP server. This format allows the use of UNIX path names. To enter into
naming format 1, you can either:

If you are using the AS/400 PASE DB2 UDB CLI support, you also need to
specify -bI:/pase/include/libdb400.exp on your build command.

Note
60 Porting UNIX Applications Using AS/400 PASE

• Change the directory using UNIX path names. This automatically puts the
session into name format 1. This means ensuring that the first directory is
prefaced by a “/”, for example: cd /QOpenSys/usr/bin.

• Use the FTP subcommand, quote site namefmt 1 for a remote client, or use
namefmt 1 as a local client.

6.3.1.1 Using the OS/400 FTP daemon
Data or files are transferred using the put FTP subcommand. Use the lcd FTP
subcommand to change the local directory (your workstation) for the source
objects. Use the FTP subcommand cd to set the remote (AS/400 IFS)
directory. Name format 1, as stated above, is required to store files into the
stream file part of the IFS name space. On the client FTP session, enter quote
site namefmt 1. Remember to set the transfer mode (binary, ascii, or ebcdic)
as necessary before using put.

6.3.1.2 Using the OS/400 FTP client
Data or files are transferred using the get FTP subcommand. Use the lcd FTP
subcommand to change the local (AS/400 system) directory to the
destination. If needed, namefmt is supported by the AS/400 FTP client
program. Enter quote site namefmt 1. Use the cd FTP subcommand to set the
remote directory. Remember to set the transfer mode (binary, ascii, or ebcdic)
as necessary before using get.

The FTP standard calls for data sent to use carriage return/line feed
(CRLF) for line end in text mode. On AIX, the FTP utility strips the carriage
return (CR) when it processes an inbound file in text mode.

OS/400 FTP always writes exactly what is presented in the data stream
and always retains CRLF for text mode, which causes problems with the
AS/400 PASE runtime and utilities. Where possible, use binary mode
transfer from a UNIX system to avoid this problem.

Text files transferred from personal computers will, in most cases, have
CRLF delimiting lines in the file. Transferring the files first to AIX will
correct the problem. The following workaround is offered as a means to
strip the CR off of files in the current directory:

find . -type f -print | sed 's/^\(.*\)$/cat "\1" | cat - | tr -d \\\\\r >
"\1"/' | (sh)

Note
Chapter 6. Porting mechanism 61

6.3.2 Using SMB
The AS/400 system supports SMB client and server components. With
NetServer configured and running, the AS/400 PASE environment has
access to SMB servers in the network through the /QNTC file system. On a
UNIX platform, a SAMBA server is required to provide the same service.
Installing a configured and operational UNIX system, such as AIX, can make
directories and files available to AS/400 PASE.

6.3.3 Remote file systems
OS/400 includes the ability to mount NFS file systems to a mount point in the
IFS file space. AIX supports NFS, as well as DFS and AFS, using DFS to
NFS and AFS to NFS translators, so that these file systems can be exported
and mounted by OS/400. This, in turn, allows AS/400 PASE applications to
use these file systems. Security authorization is validated through the OS/400
user profile’s user ID number and group ID number for the directory path or
file being accessed.

6.4 Configuration tips

Some important tips that can help during configuration include:

• Some shell scripts may specify the shell from the /bin directory. For
example, a shell may look like the following example:

#!/bin/sh

The /bin directory, by default, does not exist. All shell scripts that rely on
this can be changed to:

#!/QOpenSys/usr/bin/sh

Or, a symbolic link can be generated for /bin to point to
/QOpenSys/usr/bin:

ln -s /QOpenSys/usr/bin /bin

• Programs or scripts that use hardcoded paths to utilities in /usr/bin will
have problems. The /usr/bin path is used by the AS/400 system for the
QSHELL environment, an EBCDIC shell, and that directory contains
OS/400 programs, which cannot be run within AS/400 PASE. The AS/400
PASE equivalent directory is /QOpenSys/usr/bin. If other file systems are
not required, an alternative is to use the AS/400 PASE utility chroot to
change the base of the root file system, for example:

mkdir -p /QOpenSys/tmp
chroot /QOpenSys /QOpenSys/usr/bin/sh -i
62 Porting UNIX Applications Using AS/400 PASE

This creates a temporary directory for sh (trying the chroot utility without
the tmp directory will fail) and establishes /QOpenSys as / for the new
interactive instance, sh -i (see Figure 5 for an example of this process).

Figure 5. Mapping to /QOpenSys/usr/bin

• Local installed tools are typically put in /usr/local/bin. It may be useful to
set the environment variable PATH in the shell you are running to include
this. For example, in Bourne and Korn shell:

export PATH=/usr/local/bin:$PATH

In C shell:

setenv PATH /usr/local/bin:$PATH

• For X client applications, the environment variable DISPLAY must be set
to the X server that will render the graphics. The X server runs on the
user’s workstation. The variable can be set to either the hostname,
hostname:0 (if the hostname is resolvable through DNS), or the users IP
address, IP_address:0. For example, in Bourne and Korn shell:

export DISPLAY=itscid49:0

In C shell:

setenv DISPLAY=itscid49:0

You also need to make sure the X server system is authorized to the
AS/400 system for host access. There is not a common way of doing this

/QOpenSys/usr/bin/sh

QCA400 QNTC asakai itscid61 schimu
QDLS QNetWare bin ldapdir tmp
QFPNWSSTG QOPT cisco netsecrb usr
QFileSvr.400 QOpenSys core notes var
QIBM QSR dev ntins xclock
$

> mkdir -p /QOpenSys/tmp
$

> chroot /QOpenSys /QOpenSys/usr/bin/sh -i
$

> ls /
QIBM QSR core home spss usr
QOpenSys bin etc schimu tmp var
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
Chapter 6. Porting mechanism 63

across different packages, but it can be a common problem for not being
able to connect.

• A user’s home directory for AS/400 PASE and OS/400 QSHELL is
selectable within the OS/400 user profile. Use the CHGUSRPRF command to
change the field HOMEDIR to the desired home directory. Ensure that the
home directory is created, since it may not have been created when the
user profile was created.

• Job environment variables are passed to the AS/400 PASE environment
only when it is started via the launchers. Variables prefixed with PASE_
are modified within the startup of the AS/400 PASE environment by having
the prefix stripped. Use the WRKENVVAR command to change, add, or delete
environment variables as needed prior to starting AS/400 PASE.

• There are several places in which case sensitivity may cause
complications with existing code, for example Qp2Shell and Qp2Term.
UNIX-like environments differentiate between uppercase and lowercase
letters, where on OS/400 that is not always the case. Case sensitivity on a
directory or file basis will only work correctly from the /QOpenSys file
system. Other areas to be aware of are user IDS and group IDS on
OS/400. Some notable places where case (in)sensitivity may be a problem
are:

a. ls -d /qsys.lib/v4r5m0.lib/qwobj*

/qsys.lib/v4r5m0.lib/qwobj* not found

ls -d /qsys.lib/v4r5m0.lib/QWOBJ*

/qsys.lib/v4r5m0.lib/QWOBJ.FILE

The shell does a character comparison of the generic name prefix
against what is returned by readdir(). However, the file system is case
sensitive, and therefore, no results are returned in the first instance.

b. find /qsys.lib/v4r5m0.lib/ -name ‘qwobj*’ -print

find /qsys.lib/v4r5m0.lib/ -name ‘qwobj*’ -print

/qsys.lib/v4r5m0.lib/QWOBJ.FILE

This is similar to the first case (a) except that, in this case, the find
utility is doing the comparison and not the shell.

c. ps -utimms -f

UID PID PPID C STIME TTY TIME CMD

ps -uTIMMS -f

UID PID PPID C STIME TTY TIME CMD
64 Porting UNIX Applications Using AS/400 PASE

TIMMS 279 275 o 11:00:05 - 3477205:31 /QOpenSys/usr/bin/sh -i

TIMMS 321 279 0 14:55:53 - 3477205:31 ps -uTIMMS -f

The ps utility compares the string specified for the -u flag with what
comes back from getprocs(), but it does not know that user names are
case insensitive.

6.5 Starting an AS/400 PASE application

There are several techniques for starting an application in the AS/400 PASE
environment, from a terminal session, or programmatically from an
application.

Two methods, QP2SHELL and QP2TERM, can be used to start AS/400 PASE
programs from the OS/400 command line. These are two ILE programs that
are directly called.

Two APIs, QP2RunPase and Qp2CallPase, are used within ILE programs to
access AS/400 PASE programs. QP2RunPase is used to initialize the AS/400
PASE environment and cannot be used recursively. QP2CallPase is used
after the AS/400 PASE program has done an ILE callout when the program
logic requires another AS/400 PASE call. AS/400 PASE calls can be made
back into the same AS/400 PASE instantiation in a job using this method.

6.5.1 Invocation from a 5250 terminal screen: QP2SHELL
An application can be started in the AS/400 PASE environment by using the
QP2SHELL callable MI command and passing the application name to launch
as the parameter, for example:

call qp2shell parm(‘/QOpenSys/bin/ls’ ‘/’)

QP2SHELL() runs an AS/400 PASE program in the job where it is invoked. An
example of the output is shown in Figure 6 on page 66. QP2SHELL is further
explained in the following sections.
Chapter 6. Porting mechanism 65

Figure 6. Sample output from QP2SHELL CL command

6.5.1.1 Syntax
#include <qp2shell.h>
QP2SHELL (const char *pathName,

[const char *argString ...])

6.5.1.2 Parameters
The first argument for QP2SHELL is the path name for an AS/400 PASE
program. Additional arguments are optional. Copies of all argument strings
are passed to the AS/400 PASE program (following the C language
convention that the first argument is the name of the program itself).

QP2SHELL initializes AS/400 PASE environment variables with a modified
copy of the entire ILE environment. An AS/400 PASE environment variable is

CALAB QISAFIX QSYS.LIB home pfizer
MGTCTXXDIR QJAVA QTCPTMM itscid61 schimu
QCA400 QNTC asakai ldapdir tmp
QDLS QNetWare bin netsecrb usr
QFPNWSSTG QOPT core notes var
QFileSvr.400 QOpenSys dev ntins xclock
QIBM QSR etc paymentserver
Press ENTER to end terminal session.

===>

F3=Exit F4=End of File F6=Print F9=Retrieve F17=Top
F18=Bottom F19=Left F20=Right F21=User Window

When invoking QP2SHELL from CL, be sure to quote any argument string
that could be interpreted as a numeric value. CL converts unquoted
numeric arguments to the decimal or floating-point format, which does not
match the assumption made by QP2SHELL and AS/400 PASE programs
that all arguments are null-terminated character strings.

Note
66 Porting UNIX Applications Using AS/400 PASE

initialized for every ILE environment variable, but the initial value of any
AS/400 PASE variable (except those with a name beginning “PASE_”) is
overridden by the value of an environment variable with a name that
concatenates the prefix PASE_ with the original variable name. This process
avoids some interference between AS/400 PASE runtime and ILE runtime
when they require different values for the same environment variable (for
example, LANG).

QP2SHELL initializes any of these ILE environment variables that are not
already set to provide default values used by AS/400 PASE programs:

PASE_PATH = "/QOpenSys/usr/bin:/usr/ccs/bin:/usr/sbin:.:/usr/bin"

Specifies the initial value for the AS/400 PASE PATH environment
variable.

PASE_LANG and QIBM_PASE_CCSID

Specifies the initial value for the PASE LANG environment variable
and tells the system what coded character set identifier (CCSID)
the AS/400 PASE program will use. QP2SHELL sets both these
environment variables if either or both are absent. The default
values are a function of the current LANGID and CNTRYID
attributes of the job. However, the system will use
PASE_LANG=POSIX and QIBM_PASE_CCSID=819 if it does not
recognize the LANGID and CNTRYID pair.

PASE_LOCPATH = “/usr/lib/nls/loc”

Specifies the initial value for the PASE LOCPATH environment
variable.

PASE_NLSPATH = “/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat”

Specifies the initial value for the PASE NLSPATH environment
variable.

PASE_LC__FASTMSG = “true”

Specifies the initial value for the PASE LC__FASTMSG
environment variable.

PASE_TZ = “”

Specifies the initial value for the PASE TZ environment variable. If
no time zone information is provided in environment variable TZ,
the AS/400 PASE program sees Coordinated Universal Time
(UTC) as local time.

LOGIN If LOGIN is not set, QP2SHELL sets it to the middle qualifier of the
job name. For an interactive job, this is the name of the user who
did a signon to start the job.
Chapter 6. Porting mechanism 67

HOME If HOME is not set, QP2SHELL sets it to the home directory path
specified in the user profile identified by the LOGIN variable. If the
job is not currently authorized to the LOGIN user profile, the
HOME environment variable is set to a null string.

QIBM_IFS_OPEN_MAX = “33000”

Specifies the maximum number of IFS open file descriptors
desired in the job. QP2SHELL attempts to set the maximum
number of IFS descriptors using this environment variable and
updates the variable to reflect the actual limit (in case the
requested limit is not currently allowed). Any change to the
maximum number of file descriptors persists after QP2SHELL
returns.

AS/400 PASE programs assume the ability to open 32,767 files,
and the system requires an open file for each AS/400 PASE
executable it loads. Therefore, the default of 33,000 files
accommodates a maximally large AS/400 PASE program with a
fairly large number of loaded executables.

6.5.1.3 Programming notes
QP2SHELL uses the Qp2RunPase API to run the AS/400 PASE program.

QP2SHELL sets the ILE pthread cancel state and cancel type to default
values (PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED) prior to running the AS/400 PASE
program. This is done to avoid unexpected behavior for the AS/400 PASE
program if the job changed ILE pthread attributes prior to calling QP2SHELL.

QP2SHELL sets up handlers for all ILE signals while the AS/400 PASE
program runs. The handlers call the Qp2SignalPase() API to post an
equivalent AS/400 PASE signal to the AS/400 PASE program. QP2SHELL
restores the original ILE signal handling before returning to the caller.

To avoid unpredictable results, do not change ILE environment variables
QIBM_USE_DESCRIPTOR_STDIO or QIBM_PASE_DESCRIPTOR_STDIO in a job where an
AS/400 PASE program is running. Also avoid running ILE code in threads that
are not created by the AS/400 PASE program.

You may want to set the ILE environment variable PASE_TZ at the system
level to provide a default time zone other than UTC for AS/400 PASE
programs. For example, this CL command sets the default time zone to US
Central time:

ADDENVVAR ENVVAR(PASE_TZ) VALUE('CST6CDT') LEVEL(*SYS)
68 Porting UNIX Applications Using AS/400 PASE

To run several commands in the AS/400 PASE environment through
QP2SHELL, you can type:

CALL PGM(QP2SHELL) PARM('/QOpenSys/usr/bin/ksh' 'cd
/home/bhenry/test;env;pwd;echo "Hello World"')

In this case, you are passing one command to the QP2SHELL,
'/QOpenSys/usr/bin/ksh', but everything that follows is considered a
parameter to that initial command, as long as the parameter string is
enclosed in quotes. The semi-colons are standard list delimiters for UNIX
command lines since this parameter string is passed (untouched) to the ksh.

Some commands are output to the screen, while others are sent to the
spooled file (WRKSPLF). In the previous example, the output from the env
command is sent to the spooled file, while the output from the pwd and echo
commands are sent to the screen. A successful cd command doesn't
generate any output. But, unsuccessful cd commands send their error
messages to the screen. If you don't see the expected output on the screen,
check the latest QPRINT (F18 takes you to the bottom where the latest
entries are) entry in the WRKSPLF display.

6.5.1.4 Error conditions
QP2SHELL re-signals any exception message sent by the Qp2RunPase API.
It also sends escape messages if it detects errors prior to attempting to run
the AS/400 PASE program.

6.5.2 Invocation from the AS/400 PASE terminal: QP2TERM
The AS/400 PASE terminal environment is started by the command:

call qp2term

The default shell prompt is written to the screen once the terminal session is
ready. Any of the utilities listed in Table 3 on page 15 can be invoked with
stdout and stderr written and scrolled in the terminal screen. Any PASE
program can also be invoked from here. Figure 7 on page 70 shows a
terminal session. The pwd commands and ls were executed and the output
was displayed in the terminal session.

Program QP2TERM() runs an “interactive terminal session” that submits a
batch job to run an AS/400 PASE program in a batch job. It uses the
workstation display in the interactive job to present output and accept input
for files stdin, stdout, and stderr in the batch job. QP2TERM is further
explained in the following section.
Chapter 6. Porting mechanism 69

Figure 7. Sample output from QP2TERM terminal session

6.5.2.1 Syntax
#include <qp2term.h>
QP2TERM [(const char *pathName,

const char *argString ...)]

6.5.2.2 Parameters
Any argument strings for QP2TERM are passed to program QP2SHELL in the
batch job. The arguments specify a path name and argument data for an
AS/400 PASE program that runs in the batch job. If QP2TERM is invoked
without arguments, it runs the default AS/400 PASE shell,
/QOpenSys/usr/bin/sh, with a single argument of “-i” (to run an interactive
shell).

/QOpenSys/usr/bin/sh

$
> pwd
/home/SPARTZ
$

> ls
id.pl opendx perl
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry

When invoking QP2TERM from CL, be sure to quote any argument string
that could be interpreted as a numeric value. CL converts unquoted
numeric arguments to decimal or floating-point format, which does not
match the assumption made by QP2TERM and AS/400 PASE programs
that all arguments are null-terminated character strings.

Note
70 Porting UNIX Applications Using AS/400 PASE

The environment for the batch job is initialized by copying environment
variables from the interactive job and adding or replacing some variables.
These changes only affect the batch job, they do not modify the environment
in the job that called QP2TERM:

ROWS If ROWS is not set in the interactive job, it is initialized in the batch
job to the number of rows available for program output on one line
of the interactive display presented by the terminal manager
session.

COLUMNS If COLUMNS is not set in the interactive job, it is initialized in the
batch job to the number of columns available for program output to
one of the interactive displays presented by the terminal manager
session.

QIBM_USE_DESCRIPTOR_STDIO=I

This environment variable is set (unconditionally) in the batch job
to ensure that stdin, stdout, and stderr use file descriptors 0, 1,
and 2, which are associated with pipes the terminal manager uses
to communicate with the batch job.

QIBM_PASE_DESCRIPTOR_STDIO=T

This environment variable is set (unconditionally) in the batch job
to ensure that AS/400 PASE runtime does ASCII/EBCDIC text
conversion for data that the AS/400 PASE program reads or writes
to files stdin, stdout, and stderr. The binary value B may not be
used.

6.5.2.3 Programming notes
The batch job for QP2TERM is submitted by the Qp0zStartTerminal API,
which copies most of the attributes of the interactive job. For example, you
can force the batch job to produce a job log by changing the interactive job
(using the CHGJOB command) to LOG(4 0 *SECLVL) before invoking
QP2TERM.

The batch job calls program QP2SHELL to run the AS/400 PASE program.
See QP2SHELL documentation for information about controlling various
options that apply to running an AS/400 PASE program.

6.5.3 Invocation from an ILE application: Qp2RunPase
The Qp2RunPase API (to run an AS/400 PASE program) allows the caller to
initiate AS/400 PASE use, specifying the program name, argument strings,
and environment variables, similar to the industry-standard execve()

interface. In addition, the API requires the user to specify the (ASCII) CCSID
for the AS/400 PASE program (an initial value that can be modified by the
Chapter 6. Porting mechanism 71

AS/400 PASE program using the _SETCCSID interface). It also allows arbitrary
data (including tagged pointers) to be copied into memory that the AS/400
PASE program can reference through an external symbol.

The Qp2RunPase() function runs an AS/400 PASE program in the job where
the API is invoked. It loads an AS/400 PASE program (including any
necessary shared libraries) and then transfers control to the program. It is
only used to initiate the AS/400 PASE environment and returns an error if
AS/400 PASE is already active.

Qp2RunPase() includes the ability to run shell scripts and the rules for
resolving shared libraries (sometimes using the LIBPATH environment
variable). Qp2RunPase does not overlay or destroy the state of any ILE code
currently active in the process, so control returns to the caller of Qp2RunPase
when the AS/400 PASE program runs the exit function.

The Qp2CallPase API (to call a function in an AS/400 PASE program)
provides support for ILE to call back into an AS/400 PASE instantiation that
has already been started.

Applications in AS/400 PASE run unprivileged, so they must use the
PowerPC System Call instruction (assembler mnemonic sc) to access any
service outside of AS/400 PASE libraries or to return (exit) from AS/400
PASE. SLIC services all AS/400 PASE system calls and either provides the
service itself or transfers control to an ILE procedure in the SLS environment
that provides the service. SLIC (in combination with processor hardware
support) automatically sets the processor state to tags-active mode when
fielding a system call from AS/400 PASE. It also restores tags-inactive mode
when returning to AS/400 PASE.

6.5.3.1 Syntax
#include <qp2user.h>
int
Qp2RunPase(const char *pathName,

const char *symbolName,
const void *symbolData,
unsigned int symbolDataLen,

Note

Qp2RunPase calls an AS/400 PASE program and not procedures or
functions. Therefore, the code you are calling must have a main() entry
point.
72 Porting UNIX Applications Using AS/400 PASE

int ccsid,
const char *const *argv,
const char *const *envp);

The service program is QP2USER.

6.5.3.2 Authorities and locks
The user must have read and execute authority for the stream file that
contains the AS/400 PASE program (identified by the pathName argument),
and read authority to every stream file containing a shared library required by
the program.

The system opens the stream files containing the program and its dependent
shared libraries for input. It leaves the files open until the AS/400 PASE
program terminates.

6.5.3.3 Parameters
pathName Input; Pointer to Char(*)

pathName is a null-terminated character string that identifies the
stream file in the integrated file system (IFS) that contains the
AS/400 PASE program to run. The pathName string may include
an absolute or relative path qualifier in addition to the stream file
name. Relative path names are resolved using the current
directory for the job (maintained by the IFS).

symbolName Input; Pointer to Char(*)

symbolName is a null-terminated character string that specifies
the name of an external symbol in the AS/400 PASE program that
should be initialized with the data specified by the symbolData
and symbolDataLen arguments. The symbol must be defined (not
just referenced) in the AS/400 PASE program, although the
AS/400 PASE loader relocates it to memory that is dynamically
allocated (to ensure 16-byte alignment).

The system copies the symbolName string internally and converts
it from the job default CCSID to the CCSID specified by the ccsid
argument before searching for the (converted) symbol name in the
AS/400 PASE program.

The AS/400 PASE program is run without initializing symbol data
(and no errors are reported) if either the symbolName argument is
Chapter 6. Porting mechanism 73

a null pointer or the specified symbol name is not an external
(imported or exported) symbol in the AS/400 PASE program.

symbolData Input; Pointer to any data

symbolData specifies the address of data used to initialize a
symbol (identified by the symbolName argument) in the AS/400
PASE program. The symbolData argument is ignored if the
symbolName argument is a null pointer.

The system copies the symbolData (without modification) into
memory that can be referenced by the AS/400 PASE program.
Any (complete) 16-byte MI pointer values in the symbolData are
preserved in the copy presented to the AS/400 PASE program.
Tagged MI pointers in AS/400 PASE memory are destroyed by
exec processing and are also unusable in a fork child process. It
may be better to have the AS/400 PASE program use the
_ILELOAD and _ILESYM syscalls to acquire tagged pointers to
functions and data exported by an ILE program or service
program rather than rely on pointers passed using the
symbolName, symbolData, and symbolDataLen arguments on
Qp2RunPase.

symbolDataLen

Input; Unsigned Binary(4)

symbolDataLen specifies the length of data (located by the
symbolData argument) to initialize in the AS/400 PASE program
for the symbol identified by the symbolName argument. The
symbolDataLen argument is ignored if the symbolName argument
pointer is null.

ccsid Input; Binary(4)

ccsid specifies the Coded Character Set IDentifier (CCSID)
initially used by the AS/400 PASE program. The ccsid value must
specify a single-byte encoding (normally an ASCII CCSID) that
OS/400 can convert to and from the job default CCSID, or a value
of 1208 to indicate that the AS/400 PASE program uses UTF-8
encoding.

The system uses the ccsid value to set the CCSID of any IFS
bytestream file created by the AS/400 PASE program, and also to
control character encoding conversions done for AS/400 PASE
runtime interfaces that use OS/400 services. The AS/400 PASE
74 Porting UNIX Applications Using AS/400 PASE

program can use the _SETCCSID runtime interface to
dynamically change the CCSID used for AS/400 PASE runtime
interfaces or rebind to a change in the job default CCSID.

argv Input; Pointer to Array of Pointers to Char(*)

argv specifies the address of an array of space pointers that
locate argument strings for the AS/400 PASE program. The
arguments passed to an AS/400 PASE program are
null-terminated character strings. The number of arguments
passed is determined by the location of the first null pointer in the
array of space pointers.

The system copies argument strings into AS/400 PASE memory
and converts them from the job default CCSID to the CCSID
specified by the ccsid argument. The standard entry point for an
AS/400 PASE program passes the argument strings to the C main
function. By convention, the first argument string passed to an
AS/400 PASE program should be the same string specified for the
pathName argument. At least one argument string should be
passed (even if the AS/400 PASE program requires no
arguments) to avoid failures in system code and utilities that
assume the first argument is the program name.

envp Input; Pointer to Array of Pointers to Char(*)

envp specifies the address of an array of space pointers that
locate environment strings for the AS/400 PASE program.
Environment variables for an AS/400 PASE program are
null-terminated character strings. The number of environment
variables initialized for the AS/400 PASE program is determined
by the location of the first null pointer in the array of space
pointers. envp can be a null pointer if the AS/400 PASE program
requires no environment variables.

The system copies environment variable strings into AS/400
PASE memory and converts them from the job default CCSID to
the CCSID specified by the ccsid argument. The copied or
converted environment strings can be accessed by an AS/400
PASE program using standard C runtime interfaces.

Qp2RunPase checks these two environment variables to
determine how to setup AS/400 PASE files stdin, stdout, and
stderr:
Chapter 6. Porting mechanism 75

• QIBM_USE_DESCRIPTOR_STDIO: When this environment variable is
set to Y or I, both AS/400 PASE runtime and ILE C runtime use
IFS file descriptors 0, 1, and 2 for stdin, stdout, and stderr.
Otherwise, AS/400 PASE files stdin, stdout, and stderr are
mapped to ILE C runtime files stdin, stdout, and stderr (and do
not use IFS file descriptors).

AS/400 PASE and ILE generally use different descriptor
numbers for the same open file. However, when
QIBM_USE_DESCRIPTOR_STDIO is set to Y or I, any
operation against AS/400 PASE file descriptors 0, 1, or 2 is also
done for the same IFS file descriptor number. This way, AS/400
PASE and ILE C always use the same files for stdin, stdout, and
stderr.

• QIBM_PASE_DESCRIPTOR_STDIO: This environment variable controls
ASCII/EBCDIC conversion for data read or written through
AS/400 PASE files stdin, stdout, and stderr to IFS file
descriptors 0, 1, and 2. ASCII/EBCDIC conversion is always
done (and this variable is ignored) unless
QIBM_USE_DESCRIPTOR_STDIO is set to either Y or I. When
QIBM_PASE_DESCRIPTOR_STDIO is set to B, the AS/400
PASE program processes binary data (without ASCII/EBCDIC
conversion). Otherwise, ASCI/EBCDIC conversion is done for
any data read from or written to AS/400 PASE file descriptors 0,
1, or 2.

6.5.3.4 Programming notes
Users of Qp2RunPase may want to invoke the DosSetRelMaxFH API to
ensure the job has enough available file descriptors to run the AS/400 PASE
program.

AS/400 PASE users should also consider establishing Qp2SignalPase as the
handler for any (asynchronous) ILE signal that needs to be visible to the
AS/400 PASE program. For example, system support for IFS and sockets
used by AS/400 PASE only sends SIGIO and SIGURG as ILE signals, so ILE
signal handling must be setup before invoking an AS/400 PASE program that
relies on SIGIO or SIGURG as AS/400 PASE signals. AS/400 PASE runtime
automatically establishes Qp2SignalPase as the handler for every ILE signal
in a fork child job.

AS/400 PASE pthreads use ILE pthreads. Qp2RunPase assumes it is either
invoked in a job where ILE pthreads are not yet initialized, or that the ILE
pthread cancel state and cancel type are set to the defaults
76 Porting UNIX Applications Using AS/400 PASE

(PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED). The
state of these ILE pthread attributes when an AS/400 PASE program ends is
the value that was last set by either ILE or AS/400 PASE code. Users of
Qp2RunPase may want to invoke ILE interfaces pthread_setcancelstate and
pthread_setcanceltype to set ILE pthread cancel state and cancel type before
running a multi-threaded AS/400 PASE program in a process that did prior
pthread work (either ILE or AS/400 PASE).

Character conversions controlled by the ccsid argument only handle the
single-byte component of an EBCDIC mixed CCSID (for the job default
CCSID). This restricts argument strings passed through the argv argument to
single-byte characters. Double-byte characters can be passed (unconverted)
to an AS/400 PASE program using the symbolData argument.

AS/400 PASE runtime for sockets uses OS/400 sockets support, which
restricts metadata arguments (such as Internet domain names) to single-byte
characters. An AS/400 PASE program can use the entire UCS-2 character set
for metadata arguments on file system interfaces (like file names) by setting
the ccsid value to 1208 (UTF-8 encoding).

Any credentials changes (user, group, or group list changes) for an AS/400
PASE program are persistent in the calling job. The credentials used before
and after a call to Qp2RunPase may not be the same if the stream file
containing the AS/400 PASE program (or any AS/400 PASE program invoked
by the exec interface) has the S_ISUID or S_ISGID attribute, or if the AS/400
PASE program invokes any of the setuid or setgid family of interfaces.

6.5.3.5 Possible errors returned
The following error messages can appear after invoking an AS/400 PASE
program with QP2RunPase:

CPF9872 E Program or service program &1 in library &2 ended.
Reason code &3.

CPFB9C0 E Error loading program &1. See previous messages.

CPFB9C1 E System support for AS/400 PASE not available.

CPFB9C2 E Hardware support for AS/400 PASE not available.

CPFB9C3 E AS/400 PASE CCSID and job default CCSID are
incompatible.

CPFB9FF E Internal error. Error code is &1.
Chapter 6. Porting mechanism 77

6.5.3.6 Sample programs
The following sample shows a simple ILE C program to invoke an AS/400
PASE program and a simple AS/400 PASE program called from ILE.

Sample ILE program
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

/* include file for QP2RunPase. This header file
must be obtained from IBM in V4R4 */

#include <qp2user.h>

/**
Sample:
A simple ILE C Program to invoke an AS/400
PASE Program using QP2RunPase and
passing one string parameter.
When compiling this program in V4R4, bind
to SRVPGM QP2USER.
Example compilation:
CRTCMOD MODULE(MYLIB/SAMPLEILE) SRCFILE(MYLIB/QCSRC)
CRTPGM PGM(MYLIB/SAMPLEILE) BNDSRVPGM(QSYS/QP2USER)

**/
void main(intargc, char*argv[])
{
/* Path name of PASE program */
char *PasePath = "/home/samplePASE";
/* Return code from QP2RunPase */
int rc;
/* The parameter to be passed to the

AS/400 PASE program */
char *PASE_parm = "My Parm\0";
/* Argument list for AS/400 PASE program,

which is a pointer to a list of pointers */
char **arg_list;

/* allocate the argument list */
arg_list =(char**)malloc(3 * sizeof(*arg_list));
/* set program name as first element. This is a UNIX convention */
arg_list[0] = PasePath;
/* set parameter as first element */
arg_list[1] = PASE_parm;
/* last element of argument list must always be null */
arg_list[2] = 0;

/* Call AS/400 PASE program. */
rc = Qp2RunPase(PasePath, /* Path name */

(char *)NULL, /* Symbol for calling to ILE, not used in this sample */
(void *)NULL, /* Symbol data for ILE call, not used here */
0, /* Symbol data length for ILE call, not used here */
819, /* ASCII CCSID for AS/400 PASE, always 819 in V4R4 */
arg_list, /* Arguments for AS/400 PASE program */
(char **)NULL); /* Environment variable list, not used in this sample */

}

78 Porting UNIX Applications Using AS/400 PASE

Sample PASE program
#include <stdio.h>

/**
Sample:
A simple AS/400 PASE Program called from
ILE using QP2RunPase and accepting
one string parameter.
The ILE sample program expects this to be
located at /home/samplePASE. Compile on
AIX, then ftp to AS/400.
To ftp use the commands:
> binary
> site namefmt 1
> put samplePASE /home/samplePASE

**/

int main(int argc, char *argv[])
{

/* Print out a greeting and the paramter passed in. Note arv[0] is the program
name, so, argv[1] is the parameter */

printf("Hello I am in the AS/400 PASE program, parameter value is: \n %s \n",
argv[1]);

return 0;

}

6.5.4 Invocation from an ILE application: Qp2CallPase
The Qp2CallPase() function calls a procedure in an AS/400 PASE program in
the job where the API is invoked. Qp2CallPase() is only used to call into
PASE in a job that already has the AS/400 PASE environment started, that is,
if you had called ILE from AS/400 PASE and needed to make a call back to
AS/400 PASE.

6.5.4.1 Syntax
#include <qp2user.h>
int
Qp2CallPase(const void *target,

const void *arglist,
const QP2_arg_type_t *signature,
QP2_result_type_t result_type,
void *result);

Service Program: QP2USER

6.5.4.2 Authorities and locks
No special authorization or locks are required.
Chapter 6. Porting mechanism 79

6.5.4.3 Parameters
target Input; Pointer to an AS/400 PASE function descriptor

target is a pointer to a function descriptor for the procedure (in the
AS/400 PASE program) to call. The format and contents of a
function descriptor are specified by the PowerPC Application
Binary Interface (ABI) for AIX. A function descriptor contains three
AS/400 PASE addresses (not MI pointers) that point to the
executable instructions, table of contents (TOC), and environment
for the target procedure.

arglist Input; Pointer to AS/400 PASE argument list

arglist is a pointer to the argument list for the AS/400 PASE
procedure. The format and contents of an AS/400 PASE argument
list are generally specified by the PowerPC ABI for AIX. The
specific argument list structure for the AS/400 PASE procedure
identified by the target parameter is determined by the list of
argument data types specified by the signature parameter.

signature Input; Pointer to array of Binary(2)

signature specifies the address of values that identify the data
types of arguments passed to the AS/400 PASE procedure. The
signature list must account for every byte of the arglist structure. It
may require entries for bytes that are not actual argument data but
are skipped for alignment. Header file qp2user.h defines the
following constants for the data types supported as arguments to
an AS/400 PASE procedure:

• QP2_ARG_END: This special value indicates the end of the list of
argument type values.

• QP2_ARG_WORD: The argument is a 4-byte value that is either a
signed or unsigned integer, or an aggregate no longer than four
bytes. Doubleword and long aggregate argument types are
passed as successive words under the rules of the 32-bit
PowerPC ABI for AIX.

• QP2_ARG_FLOAT32: The argument is a 4-byte floating point value.

• QP2_ARG_FLOAT64: The argument is an 8-byte floating point value.

result_type

Input; Binary(2)

result_type specifies the data type of the function result returned
80 Porting UNIX Applications Using AS/400 PASE

by the AS/400 PASE procedure. Header file qp2user.h defines the
following constants for AS/400 PASE function result data types:

• QP2_RESULT_VOID: No function result is returned.

• QP2_RESULT_WORD: The function result is a 4-byte value that is
either a signed or unsigned integer, or an aggregate no longer
than four bytes.

• QP2_RESULT_DWORD: The function result is an 8-byte value that is
either a signed or unsigned integer.

• QP2_RESULT_FLOAT64: The function result is an 8-byte floating
point value.

result Output; Pointer to a buffer for the function result

result specifies the address of a buffer that will be updated with
the function result (with a data type specified by the result_type
parameter).

6.5.4.4 Restrictions
Qp2CallPase is only supported when an AS/400 PASE program is currently
running in the job. This means that there must be an active invocation of the
Qp2RunPase API in the job, or the job must be a fork child process.

An AS/400 PASE function invoked by Qp2CallPase must return to its caller.
Unpredictable results occur if the AS/400 PASE function attempts to longjmp
to an older invocation or if it performs an operation that terminates the thread
or process (such as calling the exit function). If a signal handler is on the
AS/400 PASE stack when Qp2CallPase is invoked, the called AS/400 PASE
function must also honor restrictions on runtime functions allowed in signal
handlers (see AIX signal handling documentation for details).

6.5.4.5 Programming notes
The address of any AS/400 PASE function is really the address of a function
descriptor (required for the target argument on Qp2CallPase). This way, an
AS/400 PASE program can easily provide a function descriptor to ILE code by
passing a PASE function pointer value converted to an ILE memory address.
The conversion can be done using the _SETSPP function or the
ARG_MEMPTR argument type on the _ILECALL function.

6.5.4.6 Return value
The function result from the Qp2CallPase API indicates whether the AS/400
PASE function was called successfully. Header file qp2user.h defines the
following constants for the return code from this API:
Chapter 6. Porting mechanism 81

QP2CALLPASE_NORMAL

The AS/400 PASE procedure ran to completion and its function result
(if any) was stored in the location identified by the result parameter.

QP2CALLPASE_RESULT_ERROR

The AS/400 PASE procedure ran to completion, but its function result
could not be stored at the location identified by the result parameter.
The result argument may be a null pointer value, or the space
addressed by the operand could be damaged or destroyed.

QP2CALLPASE_ENVIRON_ERROR

The requested function is not allowed at this time because no AS/400
PASE program is currently loaded. You can only run the Qp2CallPase
API while there is an active invocation of the Qp2RunPase API in the
job.

QP2CALLPASE_ARG_ERROR

One or more argument values passed to the Qp2CallPase API are
invalid.

QP2CALLPASE_TERMINATING

The AS/400 PASE program is terminating, so no function result was
returned. The program may have run the exit function, or a signal
might have caused the program to terminate.

6.5.5 Calling a procedure: Qp2SignalPase
The Qp2SignalPase() function posts an AS/400 PASE signal in the job where
the API is invoked. If there is only one AS/400 PASE thread running in the
job, the signal remains pending until control is transferred to the AS/400
PASE program. If other AS/400 PASE threads are running at the time
Qp2SignalPase() is called, the machine may choose one of the other threads
to deliver the AS/400 PASE signal.

6.5.5.1 Syntax
#include <qp2user.h>

int Qp2SignalPase(int sign);

The service program is QP2USER.

6.5.5.2 Parameter
signo Input; Binary(4) signal number

signo is a non-zero value that identifies the signal to post. A positive
number is interpreted as an ILE signal for which a corresponding
AS/400 PASE signal should be posted. ILE and AS/400 PASE signals
82 Porting UNIX Applications Using AS/400 PASE

correspond if they have the same name (for example, EFAULT) in a
system-provided header file. A negative number is interpreted as the
inverse of an AS/400 PASE signal number (providing the ability to
post any arbitrary AS/400 PASE signal).

Not all ILE signals have an AS/400 PASE equivalent, and
Qp2SignalPase never converts ILE SIGCHLD to a corresponding
AS/400 PASE signal. This special handling for SIGCHLD avoids
duplicate AS/400 PASE signals for the termination of a single child
process. The reason is because the system sends both ILE and
AS/400 PASE signals to the parent of any fork child process that ends.

6.5.5.3 Restrictions
Qp2SignalPase is only supported when an AS/400 PASE program is currently
running in the job. This means that there must be an active invocation of the
Qp2RunPase API in the job, or the job must be a forked child process.

6.5.5.4 Programming notes
Qp2SignalPase can be used directly as an ILE signal handler. However, you
need to cast the function address to ignore the function result that is not used
by the system for signal handlers:

#include <signal.h>
#include <qp2user.h>
#include <string.h>
typeahead void (SIGHANDLER*)(int);

struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_handler = (SIGHANDLER)Qp2SignalPase;
sigaction(i, &action, 0);

6.5.5.5 Return value
The function result from Qp2SignalPase indicates whether the AS/400 PASE
signal was successfully posted. Header file qp2user.h defines the following
constants for the return code from this API:

QP2CALLPASE_NORMAL

An AS/400 PASE signal was posted successfully.

QP2CALLPASE_ENVIRON_ERROR

The requested function is not allowed at this time because no AS/400
PASE program is currently loaded. You can only run Qp2SignalPase
while AS/400 PASE is active in the job.
Chapter 6. Porting mechanism 83

QP2CALLPASE_ARG_ERROR

One or more argument values passed to the Qp2SignalPase API are
invalid.

QP2CALLPASE_TERMINATING

The AS/400 PASE program is terminating. The program may have run
the exit function, or a signal may have caused the program to
terminate.

6.6 Debugging an AS/400 PASE application

Depending on the specifics and functions of the application, debugging an
AS/400 PASE application takes several different strategies.

If the AS/400 PASE application does not require any OS/400 integration,
database, or ILE functions, the application should first be debugged on AIX.
Then, when moved to AS/400 PASE, a combination of AS/400 PASE dbx and
AS/400 debug capabilities, VLOG and job logs, can be used. See Chapter 12,
“Problem determination and messages” on page 173.

The code that is changed to use AS/400 DB2CLI, database, or ILE functions
cannot be tested on AIX, but proper structure and design of the remaining
parts of the application should make those parts debuggable on AIX. See
Chapter 12, “Problem determination and messages” on page 173, for
information on debugging an AS/400 PASE and ILE application.

6.6.1 Using dbx in AS/400 PASE
The AS/400 PASE environment supports the AIX dbx debugger utility. The
utility supports debugging of related processes, such as parent and child, at
the source code level if compiled as such. However, AS/400 PASE has the
limitation of only being able to debug the parent or child, not both. In AIX,
such an arrangement would launch another xterm window with dbx attached
to the second process. AS/400 PASE does not support pty for the terminal
support and, therefore, can only debug one process. Also, if using dbx in
something like a shell in emacs, AS/400 PASE is unable to fool the program
about being a tty, since the program is hooked up to a pipe and not stdio
descriptors. The -i option is then necessary when dbx is started for interactive
mode. Otherwise, the first time the Enter key is pressed without typing anything,
dbx exits. This behavior is also due to no pty support. See 2.4.1, “Devices” on
page 23, for more information. You could debug the parent or the child from a
separate dbx session by connecting to it using the process identifier (pid).
84 Porting UNIX Applications Using AS/400 PASE

For details on dbx, access the manual page (type in the man command) for the
AIX machine or visit the RS/6000 & AIX Support Web site at:
http://duke.toraix.can.ibm.com/lngfiles/dbx.html

6.6.2 AS/400 PASE unsupported system calls
The AS/400 PASE kernel exports some system calls that are implemented by
the AIX kernel but that are not supported in PASE. The default behavior for
any unsupported syscall in AS/400 PASE is to write a VLOG entry and send
the signal SIGILL. See Chapter 12, “Problem determination and messages”
on page 173, for more information on debugging on the AS/400 system.

The unsupported syscall returns a function result of -1 with errno ENOSYS if
the signal is ignored or the handler returns.

VLOG entry major/minor code 4700/000F contains this information for any
unsupported system call:

• syscall number (GPR2 value)
• AS/400 PASE instruction address
• Link register value
• GPR3-10 values (if available, or zero otherwise)
• syscall name (if known, converted to uppercase)

If the VLOG was created because of an illegal instruction that was caused by
the attempted use of an unsupported syscall, it is possible to scroll right to
see the character representation of the VLOG information with the syscall
name (the name you would put into the environment variable to work around
the unsupported syscall) by pressing PF10. To scroll back to the left, use
PF9.

To see the VLOG entry, programmers may need to request assistance from
operations or maintenance personnel with sufficient authority to use the
service tools. See 12.1.2.2, “VLOGs” on page 175, for more information on
VLOGs.

AS/400 PASE applications can suppress SIGILL for unsupported system calls
by setting environment variable PASE_SYSCALL_NOSIGILL in the initial
AS/400 PASE environment or any time before running exec.
PASE_SYSCALL_NOSIGILL is ignored if the AS/400 PASE program has the
S_ISUID or S_ISGID attribute. Otherwise, it is interpreted as a list of syscall
function names with optional errno values, delimited by colons. The
colon-delimited values must take one of these forms:
Chapter 6. Porting mechanism 85

syscall_name
syscall_name=errno_name (errno_name is EINVAL, EPERM, etc.)
syscall_name=errno_number (errno_number is 0-127)

SIGILL is suppressed for any syscall_name in the list that is recognized as an
AS/400 PASE syscall. The first or only entry in the list may use a special
syscall_name of “ALL” to set a default behavior for all unsupported syscalls.
Any entry in the list that is not an AS/400 PASE syscall name is ignored, and
specifying the name of a syscall that is supported by the AS/400 PASE kernel
has no effect on the operation of that syscall.

Any AS/400 PASE syscall in the PASE_SYSCALL_NOSIGILL list that is
unsupported by the AS/400 PASE kernel returns a function result of -1 with
the specified errno value (defaulting to ENOSYS), except that specifying
errno_number of 0 causes the unsupported syscall to return a function result
of zero (without setting errno). An invalid errno_name or errno_number
defaults to ENOSYS.

For example, the following PASE_SYSCALL_NOSIGILL value suppresses
SIGILL for all unsupported syscalls. “vmount” returns EPERM and “audit”
returns a function result of zero, while all other unsupported syscalls return
ENOSYS:

export PASE_SYSCALL_NOSIGILL
PASE_SYSCALL_NOSIGILL=ALL:vmount=EPERM:audit=0

PASE_SYSCALL_NOSIGILL is not intended to be used in shipped AS/400
products. It is provided as a convenience for product feasibility testing
using unchanged AIX binaries that need to be modified for AS/400
“productization”.

Note
86 Porting UNIX Applications Using AS/400 PASE

Chapter 7. Database porting with AS/400 PASE

AS/400 PASE supports the OS/400 DB2 UDB Call Level Interface (CLI).
Because DB2CLI on AIX and OS/400 are not proper subsets of each other,
there are minor differences in a few interfaces and some APIs in one
implementation that may not exist in another. This implies that the code can
be generated, but not tested, on AIX itself. It must be tested cross-platform
within AS/400 PASE. For further information on OS/400 DB2CLI, see DB2
UDB for AS/400 SQL Call Level Interface (ODBC), SC41-5806. You should
also refer to E.3, “Other resources” on page 222.

7.1 Data encoding considerations

The AS/400 system is an EBCDIC encoded system, by default, while AIX is
based on ASCII. The difference in encoding schemes often requires data
conversions between the AS/400 database and the AS/400 PASE application.

Files in the QSYS.LIB file system are always EBCDIC. That is, they can only
be tagged with EBCDIC code pages. You can see the code page of a file by
using the WRKLNK command, for example:

WRKLNK '/QSYS.LIB/ASERENA.LIB/TESTFILE.FILE/TEST.MBR')

Then, use option 8 to display details about the file. Files stored in other
locations in the file system may be tagged with EBCDIC, ASCII, or another
character set.

In the AS/400 PASE implementation of the DB2 CLI, the AS/400 PASE
provided library routines automatically perform data conversions from ASCII
to EBCDIC and back for character data. The conversions are made based on
the tagged CCSID of the data being accessed and the ASCII CCSID under
which the AS/400 PASE program is running. If the database is tagged or
tagged with a CCSID of 65535, no automatic conversion takes place. It is left
to the application to understand the encoding format of the data and to do any
necessary conversion.

The default AS/400 PASE CCSID is either explicitly defined or is derived
based on a best match to the job CCSID. To explicitly set the AS/400 PASE
CCSID, the following two environment variables must be defined and set to
the appropriate values:

• PASE_LANG

• QIBM_PASE_CCSID
© Copyright IBM Corp. 2000 87

Extensions to libc.a give the AS/400 PASE application the ability to change
the running CCSID of the application. The _SETCCSID() interface takes an
integer of the new CCSID to switch to and returns an integer of the former
CCSID. A returned value of -1 indicates an error.

Another extension gives the AS/400 PASE application the ability to override
the DB2CLI interface internal conversion without changing the CCSID of the
application. This function is SQLOverrideCCSID400() and accepts as a single
parameter an integer of the override CCSID. The function returns no value,
that is, it is void.

The prototype for _SETCCSID is defined in as400_protos.h and exported out of
libc.a in the export file as400_libc.exp. The prototype for and
SQLOverrideCCSID400 is also defined in as400_protos.h and exported out of
libdb400.a in the export file libdb400.exp. See Appendix A, “Programming
resources” on page 203, for information on where to get these files.

An AS/400-specific interface called SQLOverrideCCSID400() can be called
before any other SQLxxx() routine to override the ASCII CCSID used when
the AS/400 PASE environment is setup (Qp2RunPase(), see 6.5.3,
“Invocation from an ILE application: Qp2RunPase” on page 71). The ASCII
CCSID on Qp2RunPase() can only be single byte ASCII or UTF-8.

The DB2CLI library routines are in libdb400.a for the AS/400 PASE
environment, and are implemented using pthread interfaces providing thread
safety. The routines interface to the OS/400 service program QSQCLI to
perform the desired function. A C header, sqlcli.h, and a linker export file,
libdb400.exp, are used for compilation and linking on an AIX workstation. The
sqlcli.h header file is available on the AS/400 system in library QSYSINC, file
H, member SQLCLI. This and all other header files in QSYSINC/H can be
accessed via /QIBM/include/<header>.h. See Appendix A, “Programming
resources” on page 203, for information regarding where to get the other files.
These files need to be placed in appropriate INCLUDE and LIBPATH
directories or specified with compiler or linker option switches.

The CCSID override functions, _SETCCSID() and SQLOverrideCCSID400(),

must be called before any other SQLx() API for it to take effect.
Subsequent invocations of these APIs are ignored.

Note
88 Porting UNIX Applications Using AS/400 PASE

7.2 Known problems

The following known issues existed at the time this redbook was written and had
not been resolved:

• Numeric string conversions done on behalf of the application by OS/400
CLI support will always result in an EBCDIC string. This is a problem if the
data is being fetched from DB2 UDB into the application's variables. For
example, a field in the DB is typed as an integer, but the application wants
CLI to convert implicitly to a string during a fetch operation. A workaround
would be for the application to do this conversion. Note that string-to-string
conversions are converted correctly. Basically, a CLI application can type
the data it wants in the application. If the type of the data in the database
is numeric but the application types it as a string, the OS/400 database will
do the conversion. Unfortunately, the conversion is to EBCDIC. If the data
in the database is character and the application types it as “char”, the
conversion is done correctly to ASCII.

• SQLGetSubstring always returns an EBCDIC string when sub-stringing
the CLOB/DBCLOB field. The SQLGetSubString is only used for LOB data
types.

• SQLTables, column 4 of the result set (table type), is always returned as
EBCDIC.

• DB2 UDB doesn't support UTF-8 as of yet, exposing an issue with either
mixed SBCS/DBCS text data or graphic data in the database that an
application needs.

Graphic-typed data can be rendered back to the application if the
application typecasts the data as wchar. This causes the database to
convert from a graphic and pure double-byte character to Unicode/UCS-2.
If this type conversion isn't done, the database converts between the
CCSID of the data and the CCSID of the OS/400 job. Graphic-typed data
contains no shift-in and shift-out special sequences, since all of the data is
expected as double bytes. Unfortunately, at this time, the database
doesn't support converting between EBCDIC graphic and the CCSID
(either from the Qp2RunPase() API or the SQLOverrideCCSID400() API).
The solution to this problem is being investigated for inclusion in a future
release.

7.3 DB2CLI example program

The following example shows how to compile the sample program on AIX and
then to prepare and execute the example under AS/400 PASE.
Chapter 7. Database porting with AS/400 PASE 89

The program uses the existing system database shipped with Client
Access/400, QIWS/QCUSTCDT. The contents of the database are shown in
Figure 8.

Figure 8. Data within the QIWS/QCUSTCDT database file

Complete the following steps to produce this program:

1. The header file sqlcli.h and the export file libdb400.exp are obtained and
placed in the example directory ~spartz/pase/include on the AIX machine.
See Appendix A, “Programming resources” on page 203, for a list of where
to get these files.

2. The source file is created in ~spartz/pase on the AIX machine. The
following compilation command generates the binary:

xlc -I./include -bI:./include/libdb400.exp -o paseclidb4 paseclidb4.c

3. The resulting binary is sent via FTP to the AS/400 PASE system. In this
example, it is “put” to /home/spartz/paseclidb4. See 6.3, “Accessing files
from AS/400 PASE” on page 60, for methods of moving files to the AS/400
system for use by AS/400 PASE.

4. Sign on to the AS/400 PASE system. Call the QP2TERM program:

CALL QP2TERM

5. Change the directories to where the binary was placed in IFS on the
AS/400 system:

cd /home/spartz

6. Invoke the program:

paseclidb4

The output of this program is shown in Figure 9.
90 Porting UNIX Applications Using AS/400 PASE

Figure 9. Output produced by the DB2CLI program sample

AS/400 PASE DB2 UDB example program source
The following source code produced the results shown in Figure 9, with the
exception of the name of the AS/400 system, the user ID, and password
which were changed in the fun_Connect() procedure. The appropriate values
must be substituted before compilation.

/* File paseclidb4.c created by Daryl Spartz on Thu May 11 2000.
* AS/400 PASE DB2 UDB for AS/400 example program
*
* To show an example of an AS/400 PASE program that accesses
* AS/400 DB2 UDB via SQL CLI
*
* Program accesses Client access data base, QIWS/QCUSTCDT, that
* should exist on all systems
*
* Change system name, userid, and password in fun_Connect()
* procedure to valid parms
*
* Compilation invocation:
*
* xlc -I./include -bI:./include/libdb400.exp -o paseclidb4 paseclidb4.c
*
* FTP in binary, invoke from QP2TERM terminal shell
*
* Output should show all rows with a STATE column match of MN
*/

/* Change Activity: */
/* End Change Activity */

/QOpenSys/usr/bin/sh

fun_Process(): SQLBindParam() succeeded
fun_Process(): SQLExecute() succeeded
fun_Process(): SQLBindCol() succeeded
fun_Process(): SQLFetchScroll() succeeded, LastName(Alison)
fun_Process(): SQLFetchScroll() succeeded, LastName(Abraham)
fun_Process(): SQLFetchScroll() completed all rows
fun_Process(): SQLCloseCursor() succeeded
main(): Query complete
fun_DisConnect(): SQLDisconnect() succeeded
fun_ReleaseDbcHandle(): SQLFreeConnect() succeeded
fun_ReleaseEnvHandle(): SQLFreeEnv() succeeded
main(): fun_DisConnect() succeeded
main(): normal exit
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
Chapter 7. Database porting with AS/400 PASE 91

#define SQL_MAX_UID_LENGTH 10
#define SQL_MAX_PWD_LENGTH 10
#define SQL_MAX_STM_LENGTH 255

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqlcli.h"

SQLRETURN fun_Connect(void);
SQLRETURN fun_DisConnect(void);
SQLRETURN fun_ReleaseEnvHandle(void);
SQLRETURN fun_ReleaseDbcHandle(void);
SQLRETURN fun_ReleaseStmHandle(void);
SQLRETURN fun_Process(void);
SQLRETURN fun_Process2(void);
void fun_PrintError(SQLHSTMT);

SQLRETURN nml_ReturnCode;
SQLHENV nml_HandleToEnvironment;
SQLHDBC nml_HandleToDatabaseConnection;
SQLHSTMT nml_HandleToSqlStatement;
SQLINTEGER Nmi_vParam;
SQLINTEGER Nmi_RecordNumberToFetch = 0;
SQLCHAR chs_SqlStatement01[SQL_MAX_STM_LENGTH + 1];
SQLINTEGER nmi_PcbValue;
SQLINTEGER nmi_vParam;
char *pStateName = "MN";

void main() {
static
char*pszId = "main()";
SQLRETURN nml_ConnectionStatus;
SQLRETURN nml_ProcessStatus;

nml_ConnectionStatus = fun_Connect();
if (nml_ConnectionStatus == SQL_SUCCESS) {

printf("%s: fun_Connect() succeeded\n", pszId);
} else {

printf("%s: fun_Connect() failed\n", pszId);
exit(-1);

} /* endif */

printf("%s: Perform query\n", pszId);
nml_ProcessStatus = fun_Process();
printf("%s: Query complete\n", pszId);
nml_ConnectionStatus = fun_DisConnect();
if (nml_ConnectionStatus == SQL_SUCCESS) {

printf("%s: fun_DisConnect() succeeded\n", pszId);
} else {

printf("%s: fun_DisConnect() failed\n", pszId);
exit(-1);

} /* endif */

printf("%s: normal exit\n", pszId);
} /* end main */

SQLRETURN fun_Connect()
{

static char *pszId = "fun_Connect()";
SQLCHAR chs_As400System[SQL_MAX_DSN_LENGTH];
SQLCHAR chs_UserName[SQL_MAX_UID_LENGTH];
SQLCHAR chs_UserPassword[SQL_MAX_PWD_LENGTH];
92 Porting UNIX Applications Using AS/400 PASE

nml_ReturnCode = SQLAllocEnv(&nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLAllocEnv() succeeded\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLAllocEnv() succeeded\n", pszId);

} /* endif */

strcpy(chs_As400System, "AS4PASE");
strcpy(chs_UserName, "QUSER");
strcpy(chs_UserPassword, "QUSER");
printf("%s: Connecting to %s userid %s\n", pszId, chs_As400System, chs_UserName);

nml_ReturnCode = SQLAllocConnect(nml_HandleToEnvironment,
&nml_HandleToDatabaseConnection);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLAllocConnect\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLAllocConnect() succeeded\n", pszId);

} /* endif */

nml_ReturnCode = SQLConnect(nml_HandleToDatabaseConnection,
chs_As400System,
SQL_NTS,
chs_UserName,
SQL_NTS,
chs_UserPassword,
SQL_NTS);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLConnect(%s) failed\n", pszId, chs_As400System);
fun_PrintError(SQL_NULL_HSTMT);
nml_ReturnCode = fun_ReleaseDbcHandle();
nml_ReturnCode = fun_ReleaseEnvHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLConnect(%s) succeeded\n", pszId, chs_As400System);
return SQL_SUCCESS;

} /* endif */
} /* end fun_Connect */

SQLRETURN fun_Process()
{

static
char*pszId = "fun_Process()";

charcLastName[80];

nml_ReturnCode = SQLAllocStmt(nml_HandleToDatabaseConnection,
&nml_HandleToSqlStatement);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLAllocStmt() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
Chapter 7. Database porting with AS/400 PASE 93

printf("%s: SQLAllocStmt() succeeded\n", pszId);
} /* endif */

strcpy(chs_SqlStatement01, "select LSTNAM, STATE ");
strcat(chs_SqlStatement01, "from QIWS.QCUSTCDT ");
strcat(chs_SqlStatement01, "where ");
strcat(chs_SqlStatement01, "STATE = ? ");

nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,
chs_SqlStatement01,
SQL_NTS);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLPrepare() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLPrepare() succeeded\n", pszId);

} /* endif */

Nmi_vParam = SQL_TRUE;
nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,

SQL_ATTR_CURSOR_SCROLLABLE,
(SQLINTEGER *) &Nmi_vParam);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLSetStmtOption() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLSetStmtOption() succeeded\n", pszId);

} /* endif */

Nmi_vParam = SQL_TRUE;
nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,

SQL_ATTR_FOR_FETCH_ONLY,
(SQLINTEGER *) &Nmi_vParam);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLSetStmtOption() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLSetStmtOption() succeeded\n", pszId);

} /* endif */

nmi_PcbValue = 0;
nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,

1,
SQL_CHAR,
SQL_CHAR,
2,
0,
(SQLPOINTER) pStateName,
(SQLINTEGER *) &nmi_PcbValue);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLBindParam() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
94 Porting UNIX Applications Using AS/400 PASE

return SQL_ERROR;
} else {

printf("%s: SQLBindParam() succeeded\n", pszId);
} /* endif */

nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLExecute() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLExecute() succeeded\n", pszId);

} /* endif */

nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,
1,
SQL_CHAR,
(SQLPOINTER) &cLastName,
(SQLINTEGER) (8),
(SQLINTEGER *) &nmi_PcbValue);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLBindCol() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLBindCol() succeeded\n", pszId);

} /* endif */

do {
memset(cLastName, '\0', sizeof(cLastName));
nml_ReturnCode = SQLFetchScroll(nml_HandleToSqlStatement,

SQL_FETCH_NEXT,
Nmi_RecordNumberToFetch);

if (nml_ReturnCode == SQL_SUCCESS) {
printf("%s: SQLFetchScroll() succeeded, LastName(%s)\n", pszId, cLastName

);
} else {
} /* endif */

} while (nml_ReturnCode == SQL_SUCCESS);

if (nml_ReturnCode != SQL_NO_DATA_FOUND) {
printf("%s: SQLFetchScroll() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
printf("%s: SQLFetchScroll() completed all rows\n", pszId);

} /* endif */

nml_ReturnCode = SQLCloseCursor(nml_HandleToSqlStatement);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLCloseCursor() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
nml_ReturnCode = fun_ReleaseStmHandle();
printf("%s: Terminating\n", pszId);
return SQL_ERROR;

} else {
Chapter 7. Database porting with AS/400 PASE 95

printf("%s: SQLCloseCursor() succeeded\n", pszId);
} /* endif */

return SQL_SUCCESS;
} /* end fun_Process */

SQLRETURN fun_DisConnect()
{

static
char*pszId = "fun_DisConnect()";

nml_ReturnCode = SQLDisconnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLDisconnect() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
printf("%s: Terminating\n", pszId);
return 1;

} else {
printf("%s: SQLDisconnect() succeeded\n", pszId);

} /* endif */

nml_ReturnCode = fun_ReleaseDbcHandle();
nml_ReturnCode = fun_ReleaseEnvHandle();

return nml_ReturnCode;
} /* end fun_DisConnect */

SQLRETURN fun_ReleaseEnvHandle()
{

static
char*pszId = "fun_ReleaseEnvHandle()";

nml_ReturnCode = SQLFreeEnv(nml_HandleToEnvironment);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLFreeEnv() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;

} else {
printf("%s: SQLFreeEnv() succeeded\n", pszId);
return SQL_SUCCESS;

} /* endif */
} /* end fun_ReleaseEnvHandle */

SQLRETURN fun_ReleaseDbcHandle()
{

static
char*pszId = "fun_ReleaseDbcHandle()";

nml_ReturnCode = SQLFreeConnect(nml_HandleToDatabaseConnection);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLFreeConnect() failed\n", pszId);
fun_PrintError(SQL_NULL_HSTMT);
return SQL_ERROR;

} else {
printf("%s: SQLFreeConnect() succeeded\n", pszId);
return SQL_SUCCESS;

} /* endif */
} /* end fun_ReleaseDbcHandle */

SQLRETURN fun_ReleaseStmHandle()
{

static
char*pszId = "fun_ReleaseStmHandle()";
96 Porting UNIX Applications Using AS/400 PASE

nml_ReturnCode = SQLFreeStmt(nml_HandleToSqlStatement, SQL_CLOSE);
if (nml_ReturnCode != SQL_SUCCESS) {

printf("%s: SQLFreeStmt() failed\n", pszId);
fun_PrintError(nml_HandleToSqlStatement);
return SQL_ERROR;

} else {
printf("%s: SQLFreeStmt() succeeded\n", pszId);
return SQL_SUCCESS;

} /* endif */
} /* end fun_ReleaseStmHandle */

void fun_PrintError(SQLHSTMT nml_HandleToSqlStatement)
{

static
char*pszId = "fun_PrintError()";

SQLCHAR chs_SqlState[SQL_SQLSTATE_SIZE];
SQLINTEGER nmi_NativeErrorCode;
SQLCHAR chs_ErrorMessageText[SQL_MAX_MESSAGE_LENGTH + 1];
SQLSMALLINT nmi_NumberOfBytes;

nml_ReturnCode = SQLError(nml_HandleToEnvironment,
nml_HandleToDatabaseConnection,
nml_HandleToSqlStatement,
chs_SqlState,
&nmi_NativeErrorCode,
chs_ErrorMessageText,
sizeof(chs_ErrorMessageText),
&nmi_NumberOfBytes);

if (nml_ReturnCode != SQL_SUCCESS) {
printf("%s: SQLError() failed\n", pszId);
return;

} /* endif */

printf("%s: SqlState - %s\n", pszId, chs_SqlState);
printf("%s: SqlCode - %d\n", pszId, nmi_NativeErrorCode);
printf("%s: Error Message:\n", pszId);
printf("%s: %s\n", pszId, chs_ErrorMessageText);

} /* end fun_PrintError */
Chapter 7. Database porting with AS/400 PASE 97

98 Porting UNIX Applications Using AS/400 PASE

Chapter 8. ILE integration with the AS/400 PASE environment

AS/400 PASE provides another program model for applications. Figure 10
shows all of the applications models now available on the AS/400 system.
Traditional applications can use either old program model (OPM) or
integrated language environment (ILE). Both of these models run an
instruction set that is mapped into TIMI (the Machine Interface layer that
shields the application from the hardware). Java applications run under the
context of a Java Virtual Machine (JVM) that behaves as if it were running
Java byte codes in the applications. On the AS/400 system, however, Java
objects are compiled into executable objects that also use TIMI services.
AS/400 PASE is different. It runs AIX binaries, and those objects use the
Syscall interface to access operating system services.

Figure 10. AS/400 program models

Some of you may wonder why we would ever want to make calls between the
environments. There are several reasons you may want to access both
environments, including:

• Taking advantage of legacy ILE code
• Accessing ILE middleware interfaces (such as MQSeries)
• Taking advantage of AS/400 PASE’s computational speed

PPC-AS(65-bit, tags active, EBCDIC,SLS/PLS) PPC(32,64-bit, tags inactive,ASCII,PLS)

Threads Program Interoperability Process Local Storage

OPM/ILE JAVA (ILE)

PASE/EPP

Observable Programs

Translator

16 MB(n) addressing

trusted translator

Byte Codes

Compiled
Byte
Codes
for Direct
Execution

W-Code

Runtime

JDK

execution environment

ExecutableExecutableExecutable

Process Local Storage

Runtime

JVM

RPG,Cobol,C,C++,...

Runtime

Java Compiler

Industry
Standard
Compilers

TIMI

AS/400
PASE

Program Observability Program Observability

hardware

syscall

PowerPC machine
code

4 GB addressing

direct code gen
© Copyright IBM Corp. 2000 99

We assume your goal is to take full advantage of your AS/400 system.
AS/400 PASE gives you the opportunity to take full advantage of both
environments.

8.1 Shared addressing between AS/400 PASE and single level store

In the single level store (SLS) environment, all processes share a single
address space that provides a mapping for all memory in the system (except
for unnamed teraspace regions). Programs running in SLS can address all
memory in the system to which the user of the program is authorized.
Security and integrity are provided through a combination of page-level
hardware storage protection and controlling hardware instruction sequences
(so that only “safe” memory addresses are generated). Hardware instruction
sequences are controlled by requiring all programs to be generated by the
System Licensed Internal Code (SLIC) translator from a high-level program
description called an MI program template.

AS/400 PASE provides a separate private address space for each process
and limits the references in each user program to just memory in that address
space. Programs running in AS/400 PASE can only address memory that is
mapped into the address space where the program runs. They do not have
direct access to the special PowerAS instructions that build tagged MI
pointers. This way, an AS/400 PASE program can run any arbitrary sequence
of (user-state PowerPC) hardware instructions without jeopardizing system
security or integrity.

The AS/400 PASE address space provides a mapping from AS/400 PASE
addresses to addresses in a teraspace region. Any memory mapped into the
AS/400 PASE region of teraspace has exactly the same accessibility (relative
address and storage protection) to both AS/400 PASE programs and SLS
programs. Both SLS segments and unnamed memory can be mapped into
teraspace. When building ILE code to be called from an AS/400 PASE
application, the teraspace compile options are used.

AS/400 PASE and the SLS environment can share memory (but in a
controlled manner, limited by what memory is mapped into the private
address space), allowing programs to call back and forth between
environments (within the context of a single process) as well as pass and
share data.

Figure 11 shows the relationship between AS/400 PASE and the SLS
environment. The memory for selected SLS segments is shared by mapping it
into the private address space. There is a separate call stack for tag-inactive
100 Porting UNIX Applications Using AS/400 PASE

invocations. AS/400 PASE programs deal with 4-byte (untagged) pointers, in
contrast to the 16-byte tagged MI pointers used in the SLS environment.

Figure 11. AS/400 PASE and the SLS environment

8.1.1 System structure
AS/400 PASE can be activated in any OS/400 job. AS/400 PASE programs
are XCOFF load modules (containing PowerPC instructions and data) that
are stored in bytestream files in the hierarchical directory structure of the
integrated file system (IFS). AS/400 PASE is activated by launching an
AS/400 PASE program using QP2SHELL or QP2TERM commands (refer to
6.5, “Starting an AS/400 PASE application” on page 65) or by a request to
load or run an executable from a stream file through the Qp2RunPase API.
AS/400 PASE programs can be loaded from any physical file system that
supports normal stream file access (including NFS).

AS/400 PASE runtime includes a set of shared AIX libraries that an AS/400
PASE application can link to and call, as well as some ILE service programs
(implementing an API to invoke AS/400 PASE and internal support functions
for running an AS/400 PASE program). The shared libraries are shipped in

Portable Application Solutions Environment

PASE ILE/OPM/SLIC
32-Bit Address Space
Tags-Inactive Mode
ASCII runtime
Uncontrolled codegen

PASE
Address
Space
(4GB)

4 bytes

PASE pointer
(untagged)

PASE
Teraspace
Region
(4GB)

Teraspace
(1024GB)

64-Bit Address Space
Tags-Active Mode
EBCDIC runtime
SLIC-translator codegen

SLS Segment
(16MB)

SLS Segment
(16MB)

SLS Segment
(16MB)

Reserved SID Offset

8 bytes 5 bytes 3 bytes

MI pointer (16 bytes, tagged)
Chapter 8. ILE integration with the AS/400 PASE environment 101

OS/400 option 33, while the ILE service programs are shipped in the *BASE
option of OS/400.

8.1.2 Memory model and program model
The AS/400 system treats all code running in AS/400 PASE from the point of
entry (the call to QP2RunPase) until the AS/400 PASE program does a
system call as a single invocation. Calls back into AS/400 PASE invocations
are supported and nested to any depth (subject to stack limits in SLIC, MI,
and AS/400 PASE). An AS/400 PASE program can call an ILE procedure that
re-invokes AS/400 PASE (using the Qp2CallPase() API) before returning.
Code running in AS/400 PASE can manage stacks and heap any way it wants
(within the constraints of the PowerPC Application Binary Interface used by
AIX, which is the common definition for all binaries produced by AIX
development tools). This is independent of how the SLS program model runs.

Any memory allocated in the private address space (including stack, heap,
and any shared memory mapped into the AS/400 PASE address space) can
be accessed from the SLS environment, which allows an AS/400 PASE
program to pass arguments by address to ILE procedures. However, the
reverse is not true. You can only pass arguments by value from ILE programs
to AS/400 PASE programs.

AS/400 PASE provides support for InterProcess Communication (IPC)
interfaces (shared memory, messages, and semaphores accessed through
the shm, msg, and sem APIs) using the same system support as
corresponding ILE interfaces.

When an AS/400 PASE program calls an ILE procedure, pointer arguments
are converted by SLIC to an equivalent teraspace address in an MI pointer so
the ILE procedure can reference the same memory as that addressed by the
AS/400 PASE pointer.

The AS/400 PASE memory model is uniform, with no restrictions on
accessing structures that span any range of bytes in the address space. The
traditional AS/400 SLS memory model is segmented with hardware and
program model (translator-generated) checks to prevent memory accesses

AS/400 PASE, like ILE, currently provides support for mapping keyed
memory regions using the shm interfaces, rather than files. IBM intends to
provide file services and the mmap family of APIs in a future release.

Note
102 Porting UNIX Applications Using AS/400 PASE

that span 16 MB segment boundaries. MI programs built with the
TERASPACE(*YES) attribute can access all AS/400 PASE memory, with the
same storage protection as the AS/400 PASE program.

The AS/400 PASE program model does not support MI exceptions or MI
events. All synchronous and asynchronous interrupts reported to an AS/400
PASE program are delivered as signals (signals are a simpler and potentially
faster model than MI exceptions).

AS/400 PASE programs generally must expect and tolerate interruption or
termination at any point during execution, since there are no pre-defined
interruption points in the hardware architecture they use. An AS/400 PASE
program can register signal handlers to trap interrupts, including the ability to
register a SIGTERM signal handler for cleanup processing prior to
“unexpected” AS/400 PASE termination (for example, when MI exception
handling causes AS/400 PASE to be terminated).

Any condition that would normally cause an MI exception to be delivered to
the invocation (if it were an MI program invocation) is delivered to an AS/400
PASE program as a signal. This includes program-error interrupts within the
AS/400 PASE program (such as divide by zero), as well as exception
percolation from newer (MI or SLIC) invocations to an older AS/400 PASE
invocation.

The system delivers MI event signals and (asynchronous) POSIX/ILE signals
to a process or thread while that thread is running an AS/400 PASE program.
It also allows MI process management functions (such as terminate process)
to interrupt AS/400 PASE. This means that an AS/400 PASE program may be
interrupted at any point to invoke an MI program or ILE procedure to handle
an MI event or POSIX/ILE signal. The handler can resume the interrupted
AS/400 PASE program by simply returning. Control may not return to the
interrupted AS/400 PASE program (although a SIGTERM handler may be
run) if the event handler does something that cancels the AS/400 PASE
invocation (including the possibility of terminating the process).

AS/400 PASE signals and POSIX/ILE signals are independent, so it is not
possible to directly invoke a handler for one signal type by raising the other
type of signal. However, the Qp2SignalPase() API can be used as the handler
for any ILE signal to post a corresponding AS/400 PASE signal to the AS/400
PASE program. The AS/400 PASE program can also define handlers for
AS/400 PASE signals that call ILE procedures to post equivalent ILE signals.
Program QP2SHELL and the AS/400 PASE fork function always setup
handlers to map every ILE signal to a corresponding AS/400 PASE signal.
Chapter 8. ILE integration with the AS/400 PASE environment 103

Debug support for AS/400 PASE programs is provided by the dbx utility
(ported from AIX). dbx provides both source-level and machine-level
debugging capabilities. Other debuggers for AS/400 PASE programs may be
supported in the future. IBM service personnel also have access to internal
tools, such as SLIC native macros, which may help to debug problems that
could be in user code or system code. Refer to 6.6.1, “Using dbx in AS/400
PASE” on page 84, for further information.

8.1.3 File system and socket support
AS/400 PASE runtime normally uses ILE C runtime support for files stdin,
stdout, and stderr, which provide consistent behavior for AS/400 PASE and
ILE programs. However, AS/400 PASE must always support stdin, stdout,
and stderr as file descriptors 0, 1, and 2, while ILE C does not always use file
descriptors for stdin, stdout, and stderr. The AS/400 PASE loader needs to
open bytestream files for AS/400 PASE executables, which must not
consume descriptor numbers that are visible to the AS/400 PASE program.
System support for AS/400 PASE meets these constraints with mapping
between AS/400 PASE file descriptors and IFS file descriptors. The result is
that different descriptor numbers are used by AS/400 PASE programs and
ILE C programs to access the same open file. An AS/400-unique extension to
the fstatx function, STX_XPFFD_PASE, allows an AS/400 PASE program to
determine the IFS descriptor number for an AS/400 PASE file descriptor.
Special values (negative numbers) are returned for any AS/400 PASE
descriptor attached to ILE C runtime support for files stdin, stdout, and
stderr.

If the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO is set to
Y or I when the Qp2RunPase() API is invoked, AS/400 PASE synchronizes
file descriptors 0, 1, and 2 with IFS so both AS/400 PASE and ILE C
programs use the same descriptor numbers for files stdin, stdout, and stderr.
When operating in this mode, if either AS/400 PASE code or ILE C code
closes and/or reopens file descriptor 0, 1, or 2, the change affects stdin,
stdout, and stderr processing for both environments.

AS/400 PASE runtime generally does no character encoding conversion for
data read or written through AS/400 PASE file descriptors (including sockets),
except that ASCII/EBCDIC conversion is done (between the AS/400 PASE
CCSID and job default CCSID) for data read from ILE C stdin or written to
ILE C stdout and stderr.
104 Porting UNIX Applications Using AS/400 PASE

ASCII/EBCDIC conversion for AS/400 PASE stdin, stdout, and stderr is
disabled if the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Y
and QIBM_PASE_DESCRIPTOR_STDIO is set to B (allowing binary data to be read
from stdin and written to stdout or stderr). The default for
QIBM_PASE_DESCRIPTOR_STDIO is “T” for text. This value causes translation of
EBCDIC to ASCII.

Support to synchronize AS/400 PASE and IFS file descriptors
(QIBM_USE_DESCRIPTOR_STDIO) and support for binary stdin, stdout, and stderr

processing is included.

8.1.4 Runtime support
The breadth of AS/400 PASE runtime support shipped with OS/400 (in option
33) has been greatly extended in V4R5 with support, including X-windows
with Motif, several shells, and a large number of utilities. Applications running
in AS/400 PASE work in ASCII. The AIX C compiler, xlc, does not support
EBCDIC, and much of the AS/400 PASE runtime comes from AIX code that
only works in ASCII. Any AS/400 PASE runtime service that the system
provides (including any system call or runtime function in a shared library
shipped with OS/400 option 33) handles ASCII/EBCDIC conversions as
needed, although generally no conversions are done for data read or written
to a file descriptor (bytestream file or socket). AS/400 PASE programs pass
ASCII (or UTF-8) path names to the open function to open byte stream files,
where the name is automatically converted to EBCDIC, but any data read or
written from the open file is not converted. See 6.4, “Configuration tips” on
page 62, for a tip on case sensitivity.

It is up to applications running in AS/400 PASE to handle character encoding
conversions for strings for calls from AS/400 PASE to arbitrary ILE
procedures. AS/400 PASE runtime support includes the iconv_open, iconv,
and iconv_close functions for character encoding conversion.

There are two environment variables that control the automatic translation
of stdin, stdout, and stderr:

• The variable that generally applies is QIBM_USE_DESCRIPTOR_STDIO. When
set to “Y”, the ILE runtime uses file descriptor 0, 1, or 2 for these files.

• The PASE-specific environment variable is QIBM_PASE_DESCRIPTOR_STDIO.
It has values of “B” for binary and “T” for text.

Note
Chapter 8. ILE integration with the AS/400 PASE environment 105

Conversion objects and locales for AS/400 PASE are stored as byte stream
files in IFS. A number of conversion objects and locales ship in OS/400 option
33, and customers may augment this set with their own files. All AS/400
PASE locales use ASCII or UTF-8 character encoding, so all AS/400 PASE
runtime works in ASCII (or UTF-8).

AS/400 PASE runtime only provides stream file access to or through the IFS,
which is the equivalent of SYSIFCOPT(*IFSIO) for ILE C code. Access to the
DB2/400 database is provided through the SQL CLI functions exported by an
AS/400 PASE shared library included with OS/400 option 33. An AS/400
PASE program that requires access to object types or interface options that
are not supported through IFS or SQL CLI can directly call ILE procedures.

AS/400 PASE runtime is based on AIX runtime and handles syntactic
differences (such as ASCII/EBCDIC) between AS/400 PASE and the ILE
environment. However, there are some functional limits and behavior
differences between AS/400 PASE and AIX runtime (generally beneath the
level of POSIX specification) for services, such as directory, file system, and
sockets, which AS/400 PASE runtime implements as mappings to services
that run in the AS/400 ILE environment.

Environment variable support for AS/400 PASE exists independently of the
ILE runtime. The system does not implicitly set any AS/400 PASE
environment variables. However, the Qp2RunPase() API allows its caller to
specify a set of environment variables to initialize in AS/400 PASE, and
program QP2SHELL passes a copy of all ILE environment variables to the
AS/400 PASE program. Environment variables prefixed with the string

AS/400 PASE and ILE have independent implementations of iconv
interfaces, each with its own translation tables. The translations supported
by AS/400 PASE iconv support can be modified and extended by users
because they are stored as bytestream files stored in IFS.

Note

Locale support for AS/400 PASE is independent of either forms of locale
support used by AS/400 ILE C programs (object types *CLD and
*LOCALE). In addition to internal structure differences, none of the existing
shipped locales for ILE C programs support ASCII.

Note
106 Porting UNIX Applications Using AS/400 PASE

“PASE_” are presented to the AS/400 PASE environment in the original
format and with the prefix removed. Conflicts with identical ILE variables will
be resolved by using the “PASE_”’ prefix exclusively. As QP2TERM uses
QP2SHELL, it also exhibits this behavior.

SLIC implements support for the (AIX) system calls needed to run the C
library runtime subset supported by AS/400 PASE, and also supports system
calls for platform-specific functions, such as building a tagged space pointer
(_SETSPP) and calling an ILE procedure (_ILECALL). Requirements for new
platform-specific system calls should be identified to IBM through
PartnerWorld for Developers, your local AS/400 Support Center, or the
Custom Technology Center (CTC).

8.1.5 Development environment
AS/400 PASE development requires an AIX 4.3.3 system for source code
generation to run the compiler, xlc or xlC, and linking directive ID, ld
command. The AIX assembler for PowerPC can also be used.

8.1.6 Performance
AS/400 PASE programs do not incur overhead to manage tagged pointers, MI
boundaries, and the MI exception architecture, so low-level code generation
may be more efficient than ILE in some cases. For example, incrementing a
pointer can be done with a single instruction instead of the multi-instruction
sequence required for MI, and a form of setjmp/longjmp that does not affect
signal handling is provided that does not do system calls.

Using a segment table for address translation increases the process working
set and adds additional work in the hardware for address translation.
However, the processors used in AS/400 systems contain Segment
Lookaside Buffer (SLB) entries or segment registers to speed address
translation. Address translation through an SLB entry or segment register is
as fast as direct translation (used for tags-active mode). AS/400 PASE
programs should exhibit the locality of a reference similar to AIX (contributing
to the effectiveness of SLB or segment register hardware).

Generally, we advise that you store your application binaries in the local
stream file system. It is much slower to invoke PASE programs if your
binaries (base program and libraries) are outside of the local stream file
system since file mapping cannot be done.
Chapter 8. ILE integration with the AS/400 PASE environment 107

8.2 Calling Java from AS/400 PASE

To give you another example of the integration of PASE with AS/400 facilities,
the following code shows Java being called from AS/400 PASE:

#include <stdio.h>
#include <stdlib.h>
#include "as400_protos.h"

/**
Sample: AS/400 PASE program which
invokes a Java class method.
Compile in the following way:
xlc -bI:/home/myExpDir/as400_libc.exp

-I/home/myIncludeDir/ JavaHello.C -o Javahello
Replace the directory names with the location
of the exports and the as400_protos.h and
as400_types.h files. These files must be
obtained from the PartnerWorld Web site,
or AS/400 Software Support.

**/

int main(int argc, char *argv[])
{
/* print out a greeting to confirm entry into AS/400 PASE program */
printf("Hello I am in an AS/400 PASE program\n");

int result;
char cmd[39];

sprintf(cmd, "JAVA CLASS('com.ibm.as400.system.Hello')");
result = systemCL(cmd, SYSTEMCL_MSG_STDOUT);

return 0;

}

8.3 Doing callouts to ILE from AS/400 PASE

In this section, we discuss the primary method for calling ILE code from
AS/400 PASE and provide a simple example for you to follow when learning
to call from AS/400 PASE to ILE applications.

Before we begin our examples, we need to set a few rules. All ILE programs
that will be called from AS/400 PASE must be compiled with the teraspace
option set to *YES. If your ILE programs are not compiled this way, you will
get a vague error in your AS/400 PASE application, for example: SIGTERM
with no error. If your ILE code being called is part of a service program (which
our sample is), all the modules in the service program (and any programs)
must be compiled with the teraspace option set to *YES.

Text being passed between ILE and AS/400 PASE may need to be converted
to the appropriate CCSIDs before being passed. Not doing such conversions
108 Porting UNIX Applications Using AS/400 PASE

will cause your character variables to contain undecipherable values. See
4.5, “Character sets and terminal I/O” on page 43, for additional information
on CCSIDs and AS/400 PASE.

There are several methods for calling ILE code from within AS/400 PASE and
each method has its own advantages and disadvantages. Before starting,
you need to determine whether you want to create and initialize your own
pointers to the ILE code or use our methods. We recommend using our
pre-canned methods but provide a generic sample for you to create your own.

In the example, we show two separate ways of calling the ILE procedure from
an AS/400 PASE application. Each of these sections build on each other.
Therefore, we recommend that you use the final section for testing your skills
at calling ILE from AS/400 PASE.

8.3.1 Setting up variables and structures
Some set up of variables and structures is required for calling out of AS/400
PASE to ILE. In particular, you must set up a “signature”, “result type”, and an
“argument list” variable.

8.3.1.1 Header files
The header files as400_types.h, and as400_protos.h used in the following
samples are not on your AS/400 system. You need to obtain these header
files from the PartnerWorld Web site (see Table 12 on page 203). If the files
are not there, obtain them from your AS/400 Software Support organization.
The header files are:

#include <as400_types.h>
#include <as400_protos.h>

When calling from the AS/400 PASE environment to the OS/400
environment, you must make sure that the OS/400 program is compiled
with *CALLER for activation group. Many AS/400 CL commands use
programs that were created with activation group *NEW and, when they
end or return, they destroy their activation group. When that activation
group ends in a multi-thread capable job (such as any OS/400 job started
by the AS/400 PASE fork() function), the AS/400 PASE program that
called it will also end.

In short, use AS/400 CL commands and ILE programs that are created or
compiled with the activation group *CALLER.

Note
Chapter 8. ILE integration with the AS/400 PASE environment 109

The last two headers (as400_types.h and as400_protos.h) are critical to your
AS/400 PASE program. The as400_type.h header file contains the definition
of the types used throughout the definition of the structures and variables in
your AS/400 PASE program.

8.3.1.2 Signature
The signature structure contains a description of the sequence and types of
arguments passed between AS/400 PASE and ILE. The encoding for the
types mandated by the ILE procedure you are calling can be found in the
as400_types.h header file. If a signature contains fixed-point arguments
shorter than 4 bytes or floating point arguments shorter than 8 bytes, your ILE
C code needs to be compiled with #pragma argument(ileProcedureName,

nowiden). Without this pragma, standard C linkage for ILE requires 1-byte and
2-byte integer arguments to be widened to 4 bytes and 4-byte float arguments
to be widened to 8 bytes.

static arg_type_t signature[]= {
ARG_INT32...
. . .
. . .

};

8.3.1.3 Result type
The result type is straightforward and works much like a return type in C:

static result_type_t result_type = RESULT_INT32;

8.3.1.4 Argument list
If you build your own argument list, it list should be structurally the same as
the signature, except it will actually have variables assigned to its structure.
However, you can use size_ILEarglist() and build_ILEarglist() to dynamically
build the argument list based on the signature. The following arglist is used in
the second sample, but not the first:

typedef struct {
. . .
. . .

} ILEarglist;

8.3.1.5 ROUND_QUAD function
To guarantee that your pointers are quadword aligned, you can use the
ROUND_QUAD macro. However, you must use #define ROUND_QUAD before
using it in your AS/400 PASE program:

#define ROUND_QUAD(x) (((size_t) (x) + 0xf) & ~0xf)
110 Porting UNIX Applications Using AS/400 PASE

8.3.1.6 AS/400 PASE functions for accessing ILE
AS/400 PASE provides a number of functions for accessing ILE code. Which
ones you use depends upon how much preparation and structure building
you want to do yourself versus how much you want the compiler to do for you.
The common AS/400 PASE functions are:

• size_ILEarglist: Sizes an ILE argument list
• build_ILEarglist: Builds an ILE argument list
• _ILELOAD: Loads an ILE bound program
• _ILESYM: Locates an exported ILE symbol
• _ILECALL: Calls an ILE procedure
• _MEMCPY_WT and _MEMCPY_WT2: Copy memory with tags
• _SETSPP: Sets space pointer
• _CVTSPP: Converts space pointer
• _SETCCSID: Sets PASE runtime CCSID
• systemCL: Runs a CL command

In our samples, we only use _ILELOAD, __ILESYM, size_ILEarglist,

build_ILEarglist, and _ILECALL. However, each API is thoroughly described in
its own section following the sample code sections.

8.3.2 A two part sample for calling ILE from AS/400 PASE
In this section, we present an actual working sample of AS/400 PASE code
making a call to an ILE procedure that is part of a service program. Within the
example, there are two UNIX procedures. Each procedure demonstrates
different ways of working with an ILE procedure, but both procedures call the
same ILE procedure. The “simple” procedure demonstrates building your
data structures for the _ILECALL using our pre-canned methods. The “best”
procedure then builds the argument list manually.

8.3.2.1 AS/400 PASE C code
Interspersed in the following sample code are comments that explain the
code. Make sure to read these comments as you enter or review the sample.
Remember, as400_types.h and as400_protos.h are not shipped with AS/400
PASE. You need to acquire them from PartnerWorld for Developers, the
AS/400 Support Center near you, or the CTC.

We recommend calling ILE procedures or modules that are part of a
service program rather than part of a program object. We recommend this
because _ILELOAD works better with *SRVPGMs than it does with *PGMs.

Note
Chapter 8. ILE integration with the AS/400 PASE environment 111

/* Name: PASEtoILE.c
*
* You must use compiler options -qalign=natural and -qldbl128
* to force relative 16-byte alignment of type long double
* (used inside type ILEpointer)
*/

#include <stdlib.h>
#include <malloc.h>
#include <sys/types.h>
#include <stdio.h>
#include "as400_types.h"
#include "as400_protos.h"

/*
* init_pid() saves the pid of the process that
* extracted the ILEpointer addressed by ILEtarget.
* init_pid is initialized to a value that is not a
* valid pid, to force initialization on the first
* reference after the exec() of this program
*
* If your code uses pthread interfaces, you can
* alternatively provide a handler registered using
* pthread_atfork() to re-initialize ILE procedure
* pointers in the child process and use a pointer or
* flag in static storage to force (re)initialization
* after exec()
*/
pid_t init_pid = -1;
ILEpointer*ILEtarget;/* pointer to ILE procedure */

/*
* ROUND_QUAD finds a 16-byte (quadword) aligned memory
* location at or beyond a specified address
*/
#define ROUND_QUAD(x) (((size_t)(x) + 0xf) & ~0xf)

/*
* do_init loads an ILE service program and extracts an
* ILE pointer to a procedure that is exported by that
* service program
*/
void do_init()
{

static char ILEtarget_buf[sizeof(ILEpointer) + 15];
int actmark;
int rc;

/* _ILELOAD() loads the service program */
actmark = _ILELOAD("SHUPE/ILEPASE", ILELOAD_LIBOBJ);
if (actmark == -1)
abort();

/*
* xlc does not guarrantee 16-byte alignment for
* static variables of any type, so we find an
* aligned area in an oversized buffer. _ILESYM()
* extracts an ILE procedure pointer from the
* service program activation
*/
ILEtarget = (ILEpointer*)ROUND_QUAD(ILEtarget_buf);
rc = _ILESYM(ILEtarget, actmark, "ileProcedure");
112 Porting UNIX Applications Using AS/400 PASE

if (rc == -1)
abort();

/*
* Save the current pid in static storage so we
* can determine when to re-initialize (after fork)
*/
init_pid = getpid();

}

/*
* "aggregate" is an example of a structure or union
* data type, that is passed as a by-value argument
*/
typedef struct {

char filler[5];
} aggregate;

/*
* "result_type" and "signature" define the function
* result type and the sequence and type of all
* arguments needed for the ILE procedure identified
* by ILEtarget
*
* NOTE: The fact that this argument list contains
* fixed-point arguments shorter than 4 bytes and/or
* floating point arguments shorter than 8 bytes
* implies that the target ILE C procedure is compiled
* with #pragma argument(ileProcedureName, nowiden)
*
* Absent this pragma, standard C linkage for ILE
* requires 1-byte and 2-byte integer arguments be
* widened to 4-bytes and 4-byte float arguments be
* widened to 8-bytes
*/
static result_type_tresult_type = RESULT_INT32;
static arg_type_tsignature[] =
{

ARG_INT32,
ARG_MEMPTR,
ARG_FLOAT64,
ARG_UINT8, /* requires #pragma nowiden in ILE code */
sizeof(aggregate),
ARG_INT16,
ARG_END

};

/*
* wrapper_1 accepts the same arguments and returns
* the same result as the ILE procedure it calls. This
* example does not require a customized/declared structure
* for the ILE argument list. However, this wrapper
* is simpler to understand and code, because it performs
* a malloc to obtain storage. If an exception or
* signal occurs, the storage may not be feed. If your
* program needs to prevent such a wrap storage leak,
* a signal handler must be built to handle it, or you can
* use the methods in wrapper2.
*/
int wrapper_1(int arg1, void *arg2, double arg3,

char arg4, aggregate arg5, short arg6)
{

int result;
Chapter 8. ILE integration with the AS/400 PASE environment 113

/*
* xlc does not guarrantee 16-byte alignment for
* automatic (stack) variables of any type, but
* PASE malloc() always returns 16-byte aligned storage.
* size_ILEarglist() determines how much storage is
* needed, based on entries in the signature array
*/

ILEarglist_base *ILEarglist;
ILEarglist = (ILEarglist_base*)malloc(size_ILEarglist(signature));

/*
* build_ILEarglist() copies argument values into the ILE
* argument list buffer, based on entries in the signature
* array. The last argument for build_ILEarglist is
* ignored/unused because the function result for this
* ILE procedure is not a structure or union
*/
build_ILEarglist(ILEarglist,

&arg1,
signature,
result_type,
0);

/*
* Use a saved pid value to check if the ILE pointer
* is set. ILE procedure pointers inherited by the
* child process of a fork() are not usable because
* they point to an ILE activation group in the parent
* process
*/
if (getpid() != init_pid)
do_init();

/*
* _ILECALL calls the ILE procedure. If an exception/signal
* occurs, the heap allocation is orphaned (storage leak)
*/
_ILECALL(ILEtarget,

ILEarglist,
signature,
result_type);

result = ILEarglist->result.s_int32.r_int32;
if (result == 1) {

printf("The results of the simple wrapper is: %s\n", (char *)arg2);
}
else if (result == 0) printf("ILE received other than 1 or 2 for version.\n");
else printf("The db file never opened.\n");
free(ILEarglist);
return result;

}

/*
* ILEarglist defines the structure of the ILE argument list.
* xlc provides 16-byte (relative) alignment of ILEpointer
* member fields because ILEpointer contains a 128-bit long
* double member. Explicit pad fields are only needed in
* front of structure and union types that don't naturally
* fall on ILE-mandated boundaries
*/
typedef struct {

ILEarglist_base base;
int32 arg1;
/* implicit 12-byte pad provided by compiler */
114 Porting UNIX Applications Using AS/400 PASE

ILEpointer arg2;
float64 arg3;
uint8 arg4;
char filler[7]; /* pad to 8-byte alignment */
aggregate arg5; /* 5-byte aggregate (8-byte align) */
/* implicit 1-byte pad provided by compiler */
int16 arg6;

} ILEarglistSt;

/*
* wrapper_2 accepts the same arguments and returns
* the same result as the ILE procedure it calls. This
* method uses a customized/declared structure for the
* ILE argument list to improve execution efficiency and
* avoid heap storage leaks if an exception/signal occurs
*/
int wrapper_2(int arg1, void *arg2, double arg3,

char arg4, aggregate arg5, short arg6)
{

/*
* xlc does not guarrantee 16-byte alignment for
* automatic (stack) variables of any type, so we
* find an aligned area in an oversized buffer
*/
char ILEarglist_buf[sizeof(ILEarglistSt) + 15];
ILEarglistSt *ILEarglist = (ILEarglistSt*)ROUND_QUAD(ILEarglist_buf);

/*
* Assignment statements are faster than calling
* build_ILEarglist()
*/
ILEarglist->arg1 = arg1;
ILEarglist->arg2.s.addr = (address64_t)arg2;
ILEarglist->arg3 = arg3;
ILEarglist->arg4 = arg4;
ILEarglist->arg5 = arg5;
ILEarglist->arg6 = arg6;

/*
* Use a saved pid value to check if the ILE pointer
* is set. ILE procedure pointers inherited by the
* child process of a fork() are not usable because
* they point to an ILE activation group in the parent
* process
*/
if (getpid() != init_pid)
do_init();

/*
* _ILECALL calls the ILE procedure. The stack may
* be unwound, but no heap storage is orphaned if
* an exception/signal occurs
*/
_ILECALL(ILEtarget,

&ILEarglist->base,
signature,
result_type);

if (ILEarglist->base.result.s_int32.r_int32 == 1)
printf("The results of best_wrapper function is: %s\n", arg2);

else if (ILEarglist->base.result.s_int32.r_int32 == 0)
printf("ILE received other than 1 or 2 for version.\n");
else printf("The db file never opened.\n");
return ILEarglist->base.result.s_int32.r_int32;
Chapter 8. ILE integration with the AS/400 PASE environment 115

}

void main () {
int version,

result2;
char dbText[25];
double dblNumber = 5.999;
char justChar = 'a';
short shrtNumber = 3;
aggregate agg;
strcpy(dbText, "none");

for (version =1; version <=2; version++){
if (version == 1) {
result2 = simple_wrapper(version, dbText, dblNumber, justChar, agg, shrtNumber);

} else {
result2 = best_wrapper(version, dbText, dblNumber, justChar, agg, shrtNumber);

}
}

}

8.3.2.2 ILE C code
You now write the ILE C code for this sample on your AS/400 system. You
need a source physical file (SRCPF) in your library in which to write the code.
Again, in the ILE sample, you will find comments interspersed. These
comments are critical to understanding the code. You should review them as
you enter or review the source.

#include <stdio.h>
#include <math.h>
#include <recio.h>
#include <iconv.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>

typedef struct {
char filler[5];

} aggregate;

#pragma mapinc("datafile","SHUPE/PASEDATA(*all)","both",,,"")
#include "datafile"
#pragma argument(ileProcedure, nowiden) /* not strictly necessary */

/*
* The arguments and function result for this ILE procedure
* must be equivalent to the values presented to _ILECALL
* function in the AS/400 PASE program
*/
int ileProcedure(int arg1,

char *arg2,
double arg3,
char arg4[2],
aggregate arg5,
short arg6)

{
char fromcode[33];
char tocode[33];
iconv_t cd; /* conversion descriptor */
char *src;
116 Porting UNIX Applications Using AS/400 PASE

char *tgt;
size_t srcLen;
size_t tgtLen;
int result;

/*
* Open a conversion descriptor to convert CCSID 37
* (EBCDIC) to CCSID 819 (ASCII), that is used for
* any character data returned to the caller
*/
memset(fromcode, 0, sizeof(fromcode));
strcpy(fromcode, "IBMCCSID000370000000");
memset(tocode, 0, sizeof(tocode));
strcpy(tocode, "IBMCCSID00819");
cd = iconv_open(tocode, fromcode);
if (cd.return_value == -1)
{

printf("iconv_open failed\n");
return -1;

}
/*
* If arg1 equals one, return constant text (converted
* to ASCII) in the buffer addressed by arg2. For any
* other arg1 value, open a file and read some text,
* then return that text (converted to ASCII) in the
* buffer addressed by arg2
*/
if (arg1 == 1)
{

src = "Sample 1 output text";
srcLen = strlen(src) + 1;
tgt = arg2; /* iconv output to arg2 buffer */
tgtLen = srcLen;
iconv(cd, &src, &srcLen, &tgt, &tgtLen);

result = 1;
}
else
{

FILE *fp;
fp = fopen("SHUPE/PASEDATA", "r");
if (!fp) /* if file open error */
{

printf("fopen(\"SHUPE/PASEDATA\", \"r\") failed, "
"errno = %i\n", errno);

result = 2;
}
else
{

char buf[25];
char *string;
errno = 0;
string = fgets(buf, sizeof(buf), fp);
if (!string)
{

printf("fgets() EOF or error, errno = %i\n", errno);
buf[0] = 0; /* null-terminate empty buffer */

}

src = buf;
srcLen = strlen(buf) + 1;
tgt = arg2; /* iconv output to arg2 buffer */
tgtLen = srcLen;
Chapter 8. ILE integration with the AS/400 PASE environment 117

iconv(cd, &src, &srcLen, &tgt, &tgtLen);

fclose(fp);
}

result = 1;
}

/*
* Close the conversion descriptor, and return the
* result value determined above
*/
iconv_close(cd);
return result;

}

8.3.2.3 AS/400 DDS
For this sample, you need a simple database file. We created an externally
described file and populated it with one record.

R PASEDATA
CHARDTA 25A

8.3.2.4 Compilation and runtime commands
When you compile your AS/400 PASE program, you must use compiler
options -qalign=natural and -qldbl128 to force relative 16-byte alignment of
type long double, which is used inside type ILEpointer. This alignment is
required by ILE in OS/400. For option -bI:, you should enter the path name in
which you saved as400_libc.exp:

xlc -o PASEtoILE -qldbl128 -qalign=natural
-bI:/afs/rchland.ibm.com/usr1/shupe/PASE/as400_libc.exp
PASEtoILE.c

When you compile your ILE C module and service program, you must make
sure to compile them with the teraspace option. Otherwise, AS/400 PASE can
not interact with them.

CRTCMOD MODULE(MYLIB/MYMODULE)
SRCFILE(MYLIB/SRCPF)
TERASPACE(*YES *TSIFC)

CRTSRVPGM SRVPGM(MYLIB/MYSRVPGM)
MODULE(MYLIB/MOMODULE)

Finally, you must compile your DDS and propagate at least one record of
data:

CRTPF FILE(MYLIB/MYDATAFILE)
SRCFILE(MYLIB/SRCDDSF)
SRCMBR(MYMEMBERNAME)
118 Porting UNIX Applications Using AS/400 PASE

8.3.2.5 Porting and testing your modules
To access your code from AIX, you need to FTP it to your AS/400 system.
From a 5250 command line, type:

CALL QP2TERM

This puts you in the PASE command shell. Now enter:

mkdir /home/PASEtoILE
cd /home/PASEtoILE

Back on your AIX terminal session, perform these steps:

1. cd <where you put your source>

2. ftp <your as400>

3. Sign on to your AS/400 system.
4. cd /home/PASEtoILE

5. bin

6. put PASEtoILE

7. quit

Since the first ftp command’s file name started with “/”, the file was put into
the stream file part of the file system.

The AS/400 PASE program is now in the /home/PASEtoILE directory on your
AS/400 system. From your QP2TERM session, enter on the command line:

PASEtoILE

If you made no errors entering the code, you should see the output from the
program as shown in Figure 12 on page 120.
Chapter 8. ILE integration with the AS/400 PASE environment 119

Figure 12. PASEtoILE output

However, if you have errors, you need to perform some debugging. Refer to
Chapter 12, “Problem determination and messages” on page 173, for an
in-depth discussion of debugging this sample program.

8.3.3 size_ILEarglist() function
The size_ILEarglist function computes the size of an ILE argument list from
the function signature information.

8.3.3.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>

size_t
size_ILEarglist(arg_type_t *signature);

Libraries: Standard C Library (libc.a)

8.3.3.2 Parameters
signature Input; Pointer to a list of arg_type_t values

signature is the address of a list of arg_type_t values that specify
the sequence and type of all argument values passed to the ILE
procedure. The number of arguments processed by the

/QOpenSys/usr/bin/sh

$
> cd /home/shupe
$

> PASEtoILE
The results of the simple wrapper is: Sample 1 output text

The results of best_wrapper function is: First record

$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
120 Porting UNIX Applications Using AS/400 PASE

size_ILEarglist function is determined by the number of entries in
the signature list, which is determined by the location of the first
ARG_END value in the list. The following values are supported in
the signature list:

• ARG_END: Specifies the end of the signature list

• ARG_INT8: Signed 1-byte integer argument

• ARG_UINT8: Unsigned 1-byte integer argument

• ARG_INT16: Signed 2-byte integer argument

• ARG_UINT16: Unsigned 2-byte integer argument

• ARG_INT32: Signed 4-byte integer argument

• ARG_UINT32: Unsigned 4-byte integer argument

• ARG_INT64: Signed 8-byte integer argument

• ARG_UINT64: Unsigned 8-byte integer argument

• ARG_FLOAT32: 4-byte floating-point argument

• ARG_FLOAT64: 8-byte floating-point argument

• ARG_MEMPTR: The argument is an ILE pointer value for which
the AS/400 PASE program specifies an AS/400 PASE memory
address.

• ARG_SPCPTR: The argument is an ILE pointer value for which
the AS/400 PASE program specifies an MI Space Pointer.

• ARG_OPENPTR: The argument is an ILE pointer value for which
the AS/400 PASE program specifies an MI pointer of any type.

• Any value in the range 1 to 32767: The argument is an
aggregate (structure or union). The signature list entry value is
the length (in bytes) of the aggregate.

8.3.3.3 Return value
The function result from size_ILEarglist is the number of bytes required to
build the ILE argument list (including storage for the ILEarglist_base type) or
zero if an error was detected in the signature list of argument type values.

8.3.4 build_ILEarglist() function
The build_ILEarglist function builds an ILE argument list from information
about the function argument, result types, and argument values copied from
an AS/400 PASE function with the same signature.
Chapter 8. ILE integration with the AS/400 PASE environment 121

This function encapsulates sufficient knowledge of parameter linkage
conventions for both the AIX PowerPC ABI and MI architecture to copy or
convert argument values from an AS/400 PASE argument list to the form
required by an ILE procedure.

8.3.4.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
size_t
build_ILEarglist(ILEarglist_base *ILEarglist,

void *PASEarglist,
arg_type_t *signature,
result_type_t result_type,
void *result_buf);

Libraries: Standard C Library (libc.a)

8.3.4.2 Parameters
ILEarglist Output; Pointer to buffer for ILE argument list

ILEarglist is the address of a 16-byte aligned memory buffer
allocated by the caller where the ILE argument list should be built.
The buffer must be large enough to contain all the arguments
specified by the signature list. The size_ILEarglist function can be
used to determine how much storage is needed before calling
build_ILEarglist.

The build_ILEarglist function does not always modify or set every
byte of the output ILE argument list, so the caller may want to set
the buffer to zero (0) the buffer before calling this function.

PASEarglist

Input; Pointer to an AS/400 PASE argument list

PASEarglist is the address of the first argument in the argument
list passed to an AS/400 PASE function that accepts arguments
specified by the signature list and returns a result of the type
specified by the result_type argument.

The AIX PowerPC ABI passes some argument values in
registers, but all argument values are forced into memory if the
called function takes the address of its first argument.

Note
122 Porting UNIX Applications Using AS/400 PASE

signature Input; Pointer to a list of arg_type_t values

signature is the address of a list of arg_type_t values that specify
the sequence and type of all argument values passed to the ILE
procedure. The number of arguments processed by the
build_ILEarglist function is determined by the number of entries in
the signature list, which is determined by the location of the first
ARG_END value in the list. The following values are supported in
the signature list:

• ARG_END: Specifies the end of the signature list

• ARG_INT8: Signed 1-byte integer argument

• ARG_UINT8: Unsigned 1-byte integer argument

• ARG_INT16: Signed 2-byte integer argument

• ARG_UINT16: Unsigned 2-byte integer argument

• ARG_INT32: Signed 4-byte integer argument

• ARG_UINT32: Unsigned 4-byte integer argument

• ARG_INT64: Signed 8-byte integer argument

• ARG_UINT64: Unsigned 8-byte integer argument

• ARG_FLOAT32: 4-byte floating-point argument

• ARG_FLOAT64: 8-byte floating-point argument

• ARG_MEMPTR: The argument is an ILE pointer value into
which the caller has stored an AS/400 PASE memory address
(in member field address). The build_ILEarglist function
converts the AS/400 PASE memory address to an equivalent
single-level store address, which it passes to the ILE procedure.
The build_ILEarglist function generally updates the ILE pointer
argument value in memory so it contains a tagged MI space
pointer (but the memory may not be updated if the target ILE
procedure uses ARGOPT linkage).

build_ILEarglist does not support argument type values
ARG_SPCPTR and ARG_OPENPTR (which are supported by
_ILECALL) because standard PASE (AIX PowerPC ABI)
linkage cannot ensure 16-byte alignment for arguments
(necessary to preserve tags for ILE pointers).

Note
Chapter 8. ILE integration with the AS/400 PASE environment 123

result_type

Input; result_type_t

result_type specifies the type of function result returned by the ILE
procedure. The following values are supported:

• RESULT_VOID (zero): No function result, or an aggregate
function result

• RESULT_INT8: Signed 1-byte integer result

• RESULT_UINT8: Unsigned 1-byte integer result

• RESULT_INT16: Signed 2-byte integer result

• RESULT_UINT16: Unsigned 2-byte integer result

• RESULT_INT32: Signed 4-byte integer result

• RESULT_UINT32: Unsigned 4-byte integer result

• RESULT_INT64: Signed 8-byte integer result

• RESULT_UINT64: Unsigned 8-byte integer result

• RESULT_FLOAT64: 8-byte floating-point result

MI architecture specifies that an aggregate function result is
returned by an ILE procedure into a buffer that is allocated by the
caller and passed to the target procedure using a special field in
the argument list. If the function result is an aggregate,
build_ILEarglist sets the result.r_aggregate.addr field (in type
ILEarglist_base) to the address of the AS/400 PASE memory
buffer for the function result, and the result_type passed to this
function should be zero.

result_buf Input; Pointer to result buffer

result_buf specifies the address of a buffer that will be used for an
aggregate function result no longer than four bytes. The result_buf
value is ignored (can be zero) for function results other than
aggregates (which are returned in the ILE argument list structure)
and for aggregates longer than four bytes (which use a buffer
allocated by the caller of the AS/400 PASE function and passed as
a hidden argument, per the AIX PowerPC ABI).

8.3.4.3 Restrictions
The build_ILEarglist function does no character encoding conversions, so the
AS/400 PASE program may need to convert argument and result character
124 Porting UNIX Applications Using AS/400 PASE

strings between ASCII/EBCDIC. The AS/400 PASE runtime function iconv

can be used for character conversions.

8.3.4.4 Return value
The function result from build_ILEarglist is the number of bytes required to
build the ILE argument list (including storage for the ILEarglist_base type), or
zero if an error was detected in the input arguments.

8.3.5 _ILELOAD() function
The _ILELOAD function loads a bound program into the ILE activation group
associated with the procedure that launched AS/400 PASE (either the caller
of Qp2RunPase or the activation group created for program QP2FORK in the
child process of a fork).

8.3.5.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
int
_ILELOAD(char *path,

unsigned int flags);

Libraries: Standard C Library (libc.a)

8.3.5.2 Authorities and locks
_ILELOAD requires standard authority to the directories or OS/400 library
objects needed to locate the bound program. It also requires the same
authority as the QleActBndPgm API to the bound program object.

8.3.5.3 Parameters
path Input; Pointer to the name of the bound program

path is the address of a null-terminated character string that
contains either an IFS path name or a qualified library or object
name for the bound program, depending on the value of the flags
argument. The character string must be encoded in the (ASCII)
CCSID value specified on the Qp2RunPase API or the last
successful invocation of the _SETCCSID function.

flags Input; unsigned int

flags specifies options to control how the bound program is
located and activated. The flags value is a bitwise logical-or of the
following values:
Chapter 8. ILE integration with the AS/400 PASE environment 125

• ILELOAD_PATH (zero): Specifies that the path argument
contains an absolute or relative path in the IFS namespace.
Alphabetic case is either ignored or honored depending on the
attributes of the parts of the IFS namespace being searched.
ILELOAD_PATH and ILELOAD_LIBOBJ are mutually
exclusive.

• ILELOAD_LIBOBJ: Specifies that the path argument contains
a qualified library or object name of a service program (where
omitting the library name implies resolving to the object
through the job library list). Alphabetic case is honored when
searching for a library or object name (so the string should be
all uppercase). ILELOAD_PATH and ILELOAD_LIBOBJ are
mutually exclusive.

8.3.5.4 Restrictions
_ILELOAD uses the QleActBndPgm API to activate the bound program, so it
includes any restrictions for that API.

8.3.5.5 Return value
If the bound program was successfully activated (including the case where it
was already activated before _ILELOAD ran), the function result is an
activation mark that uniquely identifies the activation within the process.

A function result of -1 indicates an error that is further qualified by an errno
value. These errno values can be returned, with other values also possible
(such as AS/400-unique ILE errno EDAMAGE):

• EACCESS: Not authorized to a library or directory that is needed to
resolve the specified path

• EBUSY: A library or directory needed to resolve the specified path is
currently in use (locked)

• EFAULT: A memory fault occurred attempting to de-reference the path
argument string

• EINVAL: An invalid argument value was specified

• EINTR: A signal interrupted the operation

• ENAMETOOLONG: Some component of the specified path is too long, or
the entire path string exceeds the system limit

• ENOENT: No file or object was found for the specified path

• ENOTDIR: A qualifier part of the IFS path is not a directory

• ELOOP: Too many levels of symbolic links
126 Porting UNIX Applications Using AS/400 PASE

8.3.5.6 Error conditions
Memory errors and errors during ILE program activation may be reported with
exceptions converted to AS/400 PASE signals (not return code or errno
values).

The specific AS/400 PASE signal delivered for an MI exception depends on
the OS/400 message identifier for the exception. AS/400 PASE delivers the
same signal as ILE C for MCH and CPF message IDs (see the ILE C/400
Programmer's Reference, SC41-5607, for details), and uses SIGTERM for
any exception that is not an MCH or CPF message ID. AS/400 PASE and ILE
use different signal numbers, but AS/400 PASE mapping uses the same
signal condition name (such as SIGSEGV) that is used by ILE C for each
message ID.

An AS/400 PASE signal handler can determine whether a signal is associated
with an exception message by inspecting the first word (4 bytes) immediately
following the struct sigcontext (as defined on AIX) argument passed to the
handler. A non-zero value is the message reference key for the OS/400
message that produced the signal. The AS/400 PASE program can pass the
message reference key value to an ILE procedure that receives the exception
message for more details about the error.

8.3.6 _ILESYM() function
The _ILESYM function locates an exported symbol in the activation of an ILE
bound program and returns addressability to the data or procedure
associated with the symbol.

8.3.6.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
int
_ILESYM(ILEpointer *export,

int actmark,
char *symbol);

Libraries: Standard C Library (libc.a)

8.3.6.2 Authorities and locks
_ILESYM requires the same authority as the QleGetExp API.
Chapter 8. ILE integration with the AS/400 PASE environment 127

8.3.6.3 Parameters
export Input; Pointer to a buffer for a tagged pointer

export is the address of an (aligned) 16-byte buffer that is used to
store a tagged pointer to the data or procedure associated with the
exported symbol.

actmark Input; int

actmark specifies an activation mark value that identifies the
activation that is searched for the symbol. An input of zero (0)
causes the system to search all activations in the activation group
that launched AS/400 PASE (either the activation associated with
the activation group that ran the Qp2RunPase API or the
activation group created for program QP2FORK). The _ILELOAD
interface returns an activation mark value when it loads a bound
program.

symbol Input; Pointer to the name of the symbol

symbol is the address of a null-terminated character string that
specifies the name of the symbol to be located. The character
string must be encoded in the (ASCII) CCSID value specified on
the Qp2RunPase API or the last successful invocation of the
_SETCCSID function.

8.3.6.4 Restrictions
_ILESYM uses the QleGetExp API to get a pointer to the exported symbol, so
it includes any restrictions for that API.

8.3.6.5 Return value
If the symbol was successfully located, the export pointer is set to the
address of the function or data associated with the symbol, and the function
result is set to one of these values:

• ILESYM_PROCEDURE: Specifies that the export argument return value is
a pointer to an ILE procedure. An ILE procedure pointer can be used with
the _ILECALL function to call the ILE procedure.

• ILESYM_DATA: Specifies that the export argument return value is a
tagged space pointer to a data item in the ILE activation.

A function result of -1 indicates an error that is further qualified by an errno
value. These errno values can be returned, with other values that are also
possible (such as AS/400-unique ILE errno EAPAR):
128 Porting UNIX Applications Using AS/400 PASE

• EACCESS: Not authorized to the activation identified by the actmark
argument value.

• ENOENT: The symbol was not found in the specified activation.

8.3.6.6 Error conditions
Memory errors and errors during ILE symbol resolution process may be
reported with exceptions converted to AS/400 PASE signals (not return code
or errno values).

The specific AS/400 PASE signal delivered for an MI exception depends on
the OS/400 message identifier for the exception. AS/400 PASE delivers the
same signal as ILE C for MCH and CPF message IDs (see the ILE C/400
Programmer's Reference, SC41-5607, for details), and uses SIGTERM for
any exception that is not an MCH or CPF message ID. AS/400 PASE and ILE
use different signal numbers, but AS/400 PASE mapping uses the same
signal condition name (such as SIGSEGV) that is used by ILE C for each
message ID.

An AS/400 PASE signal handler can determine whether a signal is associated
with an exception message by inspecting the first word (4 bytes) immediately
following the struct sigcontext (as defined on AIX) argument passed to the
handler. A non-zero value is the message reference key for the OS/400
message that produced the signal. The AS/400 PASE program can pass the
message reference key value to an ILE procedure that receives the exception
message for more details about the error.

8.3.7 _ILECALL() function
The _ILECALL function calls an ILE procedure from an AS/400 PASE
program. This API transfers control to an ILE procedure specified by a
(16-byte tagged) ILE procedure pointer, passing arguments and returning the
function result (specified by arguments passed to _ILECALL).

8.3.7.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
int
_ILECALL(ILEpointer *target,

ILEarglist_base *ILEarglist,
arg_type_t *signature,
result_type_t result_type);

Libraries: Standard C Library (libc.a)
Chapter 8. ILE integration with the AS/400 PASE environment 129

8.3.7.2 Parameters
target Input; Pointer to ILE procedure pointer

target is the address of an (16-byte tagged) ILE procedure pointer
that addresses the ILE procedure to call.

ILEarglist Input; Pointer to ILE argument list structure

ILEarglist is the address of the structure that contains any
argument values to pass to the ILE procedure, as well as memory
for a function result returned by the ILE procedure. The ILEarglist
argument must point to a buffer that is 16-byte aligned (regardless
of whether any of the ILE arguments are MI pointers).

The format and contents of the ILE argument list are specified by
the MI architecture. The base structure of an ILE argument list
(including the function result area) is specified by type
ILEarglist_base. Any argument values for the ILE procedure are
stored in memory immediately following the ILEarglist_base type.
The specific argument list structure for the ILE procedure
identified by the target argument is determined by the list of
argument data types addressed by the signature argument.

_ILECALL augments the MI architecture argument list definition to
use some of the argument list memory to return a function result
from the ILE procedure. Type ILEarglist_base includes a union
named result that defines fields to support every ILE function
result type handled by _ILECALL.

If the AS/400 PASE program needs additional ILE procedure
pointers, it can call an ILE procedure with an argument that is
the address of AS/400 PASE memory where the target
procedure should store additional ILE pointers.

Note

AS/400 PASE runtime includes two functions that can be used
to convert an argument list from the AIX PowerPC ABI used by
AS/400 PASE procedures to the MI Architecture form used by
ILE procedures: size_ILEarglist and build_ILEarglist.

Note
130 Porting UNIX Applications Using AS/400 PASE

signature Input; Pointer to a list of arg_type_t values

signature is the address of a list of arg_type_t values that specify
the sequence and type of all argument values passed to the ILE
procedure. ILE procedures can accept a maximum of 400
arguments. The actual number of ILE arguments processed by the
_ILECALL function is determined by the number of entries in the
signature list, which is determined by the location of the first
ARG_END value in the list. The following values are supported in
the signature list:

• ARG_END: Specifies the end of the signature list

• ARG_INT8: Signed 1-byte integer argument

• ARG_UINT8: Unsigned 1-byte integer argument

• ARG_INT16: Signed 2-byte integer argument

• ARG_UINT16: Unsigned 2-byte integer argument

• ARG_INT32: Signed 4-byte integer argument

• ARG_UINT32: Unsigned 4-byte integer argument

• ARG_INT64: Signed 8-byte integer argument

• ARG_UINT64: Unsigned 8-byte integer argument

• ARG_FLOAT32: 4-byte floating-point argument

• ARG_FLOAT64: 8-byte floating-point argument

• ARG_MEMPTR: The argument is an ILE pointer value into
which the caller has stored an AS/400 PASE memory address
(in member field address). The _ILECALL function converts
the AS/400 PASE memory address to an equivalent
single-level store address, which it passes to the ILE
procedure. The _ILECALL function generally updates the ILE
pointer argument value in memory so it contains a tagged MI
space pointer (but the memory may not be updated if the
target ILE procedure uses ARGOPT linkage).

• ARG_SPCPTR: The argument is an ILE pointer value where
the AS/400 PASE program has stored a tagged MI Space
Pointer.

• ARG_OPENPTR: The argument is an ILE pointer value where
the AS/400 PASE program has stored an MI pointer of any
type (including possibly an untagged/null pointer).
Chapter 8. ILE integration with the AS/400 PASE environment 131

• Any value in the range 1 to 32767: The argument is an
aggregate (structure or union). The signature list entry value is
the length (in bytes) of the aggregate.

result_type Input; result_type_t

result_type specifies the type of function result returned by the
ILE procedure. The following values are supported:

• RESULT_VOID (zero): No function result, or an aggregate
function result

• RESULT_INT8: Signed 1-byte integer result

• RESULT_UINT8: Unsigned 1-byte integer result

• RESULT_INT16: Signed 2-byte integer result

• RESULT_UINT16: Unsigned 2-byte integer result

• RESULT_INT32: Signed 4-byte integer result

• RESULT_UINT32: Unsigned 4-byte integer result

• RESULT_INT64: Signed 8-byte integer result

• RESULT_UINT64: Unsigned 8-byte integer result

• RESULT_FLOAT64: 8-byte floating-point result

MI architecture specifies that an aggregate function result is
returned by an ILE procedure into a buffer that is allocated by
the caller and passed to the target procedure using a special
field in the argument list. An AS/400 PASE program must set
the field result.r_aggregate.addr (in type ILEarglist_base) to
the address of the AS/400 PASE memory buffer for the
function result before calling an ILE procedure that returns an
aggregate result. If the ILE function result is an aggregate, the
result_type passed to _ILECALL should be zero.

An AS/400 PASE program can pass tagged MI Space Pointer
arguments to an ILE procedure using either ARG_SPCPTR or
ARG_OPENPTR, unless the target ILE procedure uses
ARGOPT linkage, in which case ARG_SPCPTR must be used.

Note
132 Porting UNIX Applications Using AS/400 PASE

8.3.7.3 Restrictions
Every module in a *PGM or *SRVPGM object containing a function directly
invoked by AS/400 PASE (using _ILECALL) must be teraspace-safe. If any
module in the program uses the default of TERASPACE(*NO), AS/400 PASE
will not be able to call any function in that program (even a function in a
module created as TERASPACE(*YES)).

The _ILECALL function does no character encoding conversions, so the
AS/400 PASE program may need to convert argument and result character
strings between ASCII/EBCDIC. The AS/400 PASE runtime function iconv
can be used for character conversions.

ILE procedure pointers address resources inside an ILE activation group. MI
architecture generally prohibits the use of activation group resources from a
process other than the owner of the activation group. This restriction means
that the child process of a fork generally cannot use ILE procedure pointers
inherited from the parent. The child process can, however, use the _ILELOAD
function to load a bound program and then use _ILESYM to get an ILE
procedure pointer into the (new) activation.

8.3.7.4 Return value
The function result from _ILECALL is zero if the ILE procedure was called
and returned normally. The function result is non-zero if errors are found in
the signature list or result type. However, most errors detected during the
execution of _ILECALL are reported through AS/400 PASE signals.

8.3.7.5 Error conditions
MI exceptions may occur during _ILECALL processing, either because of
invalid argument values (such as an invalid MI pointer type value for a
ARG_SPCPTR argument) or because of processing done in the target ILE
procedure. The Qp2RunPase and Qp2CallPase APIs contain support to
convert any MI exception sent to the AS/400 PASE program into an AS/400
PASE signal. Messages are actually sent to the Qp2xxx API invocation
because the AS/400 PASE program is not directly addressable as a target
invocation for MI operations, such as signaling an exception.

The specific AS/400 PASE signal delivered for an MI exception depends on
the OS/400 message identifier for the exception. AS/400 PASE delivers the
same signal as ILE C for MCH and CPF message IDs (see ILE C/400
Programmer's Reference, SC41-5607, for details), and uses SIGTERM for
any exception that is not an MCH or CPF message ID. AS/400 PASE and ILE
use different signal numbers, but the AS/400 PASE mapping uses the same
Chapter 8. ILE integration with the AS/400 PASE environment 133

signal condition name (such as SIGSEGV) that is used by ILE C for each
message ID.

An AS/400 PASE signal handler can determine whether a signal is associated
with an exception message by inspecting the first word (4 bytes) immediately
following the struct sigcontext (as defined on AIX) argument passed to the
handler. A non-zero value is the message reference key for the OS/400
message that produced the signal. The AS/400 PASE program can pass the
message reference key value to an ILE procedure that receives the exception
message for more details about the error.

8.3.8 _MEMCPY_WT() and _MEMCPY_WT2() functions
The _MEMCPY_WT and _MEMCPY_WT2 functions copy memory with tags.

Standard memory copy functions, such as memcpy, never produce a usable
tagged MI pointer in the target region. _MEMCPY_WT and _MEMCPY_WT2
copy memory in a way that preserves the integrity of any complete (16-byte)
tagged pointers copied as long as the source and target have the same
alignment with respect to a 16-byte boundary.

_MEMCPY_WT only copies between memory regions that are mapped into
the AS/400 PASE address space. _MEMCPY_WT2 can copy between any
memory regions addressable through tagged MI space pointers (which do not
need to be mapped into the AS/400 PASE address space).

_MEMCPY_WT and _MEMCPY_WT2 are implemented as kernel system
calls, so they generally run slower than the memcpy function.

8.3.8.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>

void*
_MEMCPY_WT(void *target,

const void *source,
size_t length);

void
_MEMCPY_WT2(ILEpointer *target,

ILEpointer *source,
size_t length);

Libraries: Standard C Library (libc.a)
134 Porting UNIX Applications Using AS/400 PASE

8.3.8.2 Parameters
target Input; Pointer to target memory or Pointer to MI space pointer

For the _MEMCPY_WT function, target is the address of the target
memory region.

For the _MEMCPY_WT2 function, target is the address of an MI
space pointer that addresses the target memory region.

source Input; Pointer to source memory or Pointer to MI space pointer

For the _MEMCPY_WT function, source is the address of the
source memory region.

For the _MEMCPY_WT2 function, source is the address of an MI
space pointer that addresses the source memory region.

length Input

length is the number of bytes to copy between the source and
target regions.

8.3.8.3 Return value
The function result from _MEMCPY_WT is the address of the source memory
region.

_MEMCPY_WT2 returns no function result.

8.3.8.4 Error conditions
Any errors detected by _MEMCPY_WT or _MEMCPY_WT2 are reported as
AS/400 PASE signals.

The specified bytes are copied without error if the source and target regions
do not have the same alignment with respect to a 16-byte boundary or if only
part of a tagged pointer is copied (although the region will not contain a
usable tagged pointer).

8.3.9 _SETSPP() function
The _SETSPP function sets a tagged MI space pointer to the teraspace
address associated with the specified AS/400 PASE memory address. The
_SETSPP function does not produce an error if no memory is mapped at the
AS/400 PASE address, and the resulting space pointer always references
whatever memory is currently mapped at the teraspace address.
Chapter 8. ILE integration with the AS/400 PASE environment 135

8.3.9.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
void
_SETSPP(ILEpointer *target,

const void *address);

Libraries: Standard C Library (libc.a)

8.3.9.2 Parameters
target Input; Pointer to buffer for MI space pointer

target is the address of an AS/400 PASE memory buffer where the
tagged MI space pointer will be returned. The buffer must be
16-byte aligned.

Address Input; Pointer to AS/400 PASE memory

Address is the address of the AS/400 PASE memory that will be
addressed by the tagged MI space pointer returned by _SETSPP

8.3.9.3 Return value
_SETSPP returns no function result.

8.3.9.4 Error conditions
Any errors detected by _SETSPP are reported as AS/400 PASE signals
(including alignment errors for the input target argument).

8.3.10 _CVTSPP() function
The _CVTSPP function returns the AS/400 PASE address contained in a
tagged MI space pointer or zero (NULL) if the space pointer does not address
AS/400 PASE memory.

8.3.10.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
void
_CVTSPP(ILEpointer *pointer);

A null pointer input value returns a null MI pointer.

Note
136 Porting UNIX Applications Using AS/400 PASE

Libraries: Standard C Library (libc.a)

8.3.10.2 Parameters
pointer Input; Pointer to the MI space pointer

pointer is the address of a tagged MI space pointer. It must be
16-byte aligned.

8.3.10.3 Return value
_CVTSPP returns the AS/400 PASE address of the memory addressed by the
MI space pointer or zero (NULL) if the space pointer does not address
AS/400 PASE memory.

8.3.10.4 Error conditions
Any errors detected by _CVTSPP are reported as AS/400 PASE signals
(including alignment and pointer type errors for the input pointer argument).

8.3.11 _SETCCSID() function
The _SETCCSID function sets the CCSID value assumed by AS/400 PASE
runtime and returns the old AS/400 PASE CCSID value. AS/400 PASE
runtime uses this CCSID to tag any IFS bytestream file created by an AS/400
PASE program. It also converts selected character data (such as bytestream
file names) to and from the encoding required by any OS/400 service used to
implement AS/400 PASE runtime support.

8.3.11.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
int
_SETCCSID(int *ccsid);

Libraries: Standard C Library (libc.a)

8.3.11.2 Parameters
ccsid Input; int

ccsid specifies the coded character set identifier (CCSID) to be
used by AS/400 PASE runtime. The ccsid value must specify a
single-byte encoding (normally an ASCII CCSID) that OS/400 can
convert to and from the job default CCSID, or a value of 1208 to
indicate that the AS/400 PASE program uses UTF-8 encoding. A
special value of -1 can be used to interrogate the current value
without changing the AS/400 PASE CCSID.
Chapter 8. ILE integration with the AS/400 PASE environment 137

8.3.11.3 Return value
The function result is either the original AS/400 PASE CCSID, before it was
modified, or -1 if an error occurred and the AS/400 PASE CCSID was left
unchanged.

8.3.12 systemCL function
The systemCL function runs a CL command, either in the process that
invoked the function or in a separate process.

8.3.12.1 Syntax
#include <as400_types.h>
#include <as400_protos.h>
int
systemCL(const char *command,

int *flags);

Libraries: Standard C Library (libc.a)

8.3.12.2 Authorities and locks
No special authority is required to run the systemCL function. The caller must
be authorized to run the specified CL command.

8.3.12.3 Parameters
command Input; Pointer to a null-terminated string

command is the address of a null-terminated character string that
contains a CL command with any parameters. The system
converts the string from the (ASCII) AS/400 PASE CCSID to the
(EBCDIC) job default CCSID before invoking the CL Command
Analyzer.

flags Input; Option flags

The flags contain a bitwise or of any of the following option values:

• SYSTEMCL_MSG_STDOUT: Directs the system to receive
OS/400 messages after normal command completion and send
them as (ASCII) text lines to stdout.

• SYSTEMCL_MSG_STDERR: Directs the system to receive
OS/400 messages after error command completion and send
them as (ASCII) text lines to stderr.

• SYSTEMCL_NOMSGID: Suppresses message identifiers in
text lines written to stdout or stderr for messages processed on
138 Porting UNIX Applications Using AS/400 PASE

behalf of SYSTEMCL_MSG_STDOUT and
SYSTEMCL_MSG_STDERR. When this option is omitted,
message text lines have the form “XXX1234: message text”,
where XXX1234 is the OS/400 message identifier.

• SYSTEMCL_SPOOL_STDOUT: Directs the system to process
any spooled output files produced by the CL command by
writing them as (ASCII) text lines to stdout.

• SYSTEMCL_SPOOL_KEEP: Directs the system to keep any
spooled printer files after they are processed for option
SYSTEMCL_SPOOL_STDOUT, instead of the default behavior,
which deletes spooled printer files after they are written to
stdout.

• SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT,
SYSTEMCL_FILTER_STDOUT: These options direct the
system to setup filters that convert text between the (ASCII)
AS/400 PASE CCSID and (EBCDIC) job default CCSID for any
data read or written by the CL command using stdin, stdout,
and stderr.

Processing for these options replaces IFS descriptors 0, 1, or 2
in whatever job runs the CL command with pipes that are
handled by ILE pthreads (not AS/400 PASE pthreads) that do
CCSID conversion and run in the process that invoked the
systemCL function.

These options only control processing for stream data read and
written by the CL command processing program. They do not
affect the encoding of text lines written to stdout and stderr for
the SYSTEMCL_MSG_STDOUT, SYSTEMCL_MSG_STDERR,
and SYSTEMCL_SPOOL_STDOUT options, which are always
converted from the (EBCDIC) job default CCSID to the (ASCII)
AS/400 PASE CCSID.

• SYSTEMCL_SPAWN: Directs the system to run the command
in a separate process that is launched using the ILE spawn
function. The OS/400 job that runs the CL command is not
multi-thread capable, so it can safely run commands that do
not work in a job that is multi-thread capable. If this option is
omitted, the CL command is run in the process that invokes the
systemCL function.

Many CL commands are not supported in a multi-threaded
Chapter 8. ILE integration with the AS/400 PASE environment 139

process. Even if the application that calls systemCL is
single-threaded, the operation of systemCL may create
multiple threads to support options
SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT,
and SYSTEMCL_FILTER_STDERR.

• SYSTEMCL_SPAWN_JOBLOG: Directs the system to
generate an OS/400 job log for the job submitted using the
SYSTEMCL_SPAWN option. A job log may help with problem
determination when a command fails.

8.3.12.4 Return value
If the command argument is a null pointer, the function result is zero if system
support to invoke the OS/400 Command Analyzer is available or a non-zero
value otherwise.

If the SYSTEMCL_SPAWN option is not used, the function result is zero for
normal command completion or -1 if an error occurred. An errno value is set if
the error is detected by AS/400 PASE runtime, but no errno is set for CL
command errors.

If the SYSTEMCL_SPAWN option is used, the function result is the exit code
from the spawned job that is returned by the waitpid function, which is
non-zero if any error occurred.

8.3.12.5 Error codes
The following error codes can occur when executing the system CL function:

• EINVAL: An invalid value was specified for the flags argument.

• ENOEXEC: System support to invoke the OS/400 Command Analyzer is
not available.

8.3.12.6 SystemCL sample
/* sampleCL.c

example to demonstrate use of sampleCL to execute a CL command

Compile with a command similar to the following.
xlc -o sampleCL -I /whatever/pase -bI:/whatever/pase/as400_libc.exp sampleCL.c

Sample execution using QP2SHELL is shown below.
call qp2shell ('sampleCL' 'wrkactjob')

*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <as400_types.h> /* PASE header */
#include <as400_protos.h> /* PASE header */
140 Porting UNIX Applications Using AS/400 PASE

void main(int argc, char* argv[])
{

int rc;

if (argc!=2)
{

printf("usage: %s \"CL command\"\n", argv[0]);
exit(1);

}
printf("running CL command: \"%s\"\n", argv[1]);

/* execute the CL command */
rc = systemCL(argv[1], /* use first parameter for CL command */

SYSTEMCL_MSG_STDOUT); /* collect mesages */

printf("systemCL returned %d. \n", rc);
if (rc != 0)
{

perror("systemCL");
exit(rc);

}

}

8.4 Calling AS/400 PASE from ILE

For more information on calling AS/400 PASE from ILE, refer to 6.5, “Starting
an AS/400 PASE application” on page 65.

8.4.1 Qp2RunPase information
Refer to 6.5.3, “Invocation from an ILE application: Qp2RunPase” on page 71,
for details on the syntax and parameters for Qp2RunPase.

8.4.2 Qp2CallPase information
Refer to 6.5.4, “Invocation from an ILE application: Qp2CallPase” on page 79,
for details on the syntax and parameters for Qp2CallPase.
Chapter 8. ILE integration with the AS/400 PASE environment 141

142 Porting UNIX Applications Using AS/400 PASE

Part 3. AS/400 PASE from an AS/400 perspective

This part is intended primarily for AS/400 sites that are trying to use a ported
application. You’ll also find this part to be helpful if you are trying to port and
test your application on an AS/400 system.
© Copyright IBM Corp. 2000 143

144 Porting UNIX Applications Using AS/400 PASE

Chapter 9. UNIX architecture from an AS/400 perspective

The UNIX architecture can generally be portrayed as a series of concentric
circles. The innermost circle is the hardware being supported. Outside of that
is the operating system kernel. Next are the libraries directly supported by the
UNIX operating system. Next are the shells and utilities provided by the
operating system. After that come libraries and other middleware provided by
the application developers. On the outermost circle are the UNIX
applications. Figure 13 shows how this looks to a UNIX developer.

Figure 13. UNIX architecture

Figure 14 on page 146 shows that AS/400 PASE is an environment on the
AS/400 system designed to behave like AIX to the applications. Instead of
mapping most of the services directly to the hardware, they are mapped into
OS/400 services. At runtime, the system operator can view AS/400 PASE
from the lower half of the circle. Because all of the services are mapped into

Other application programs

cc

Kernel

sh

who

a.out

. . .

awkgrep

comp

cpp

ld

as

vi
ed

Shared Libraries

Hardware
© Copyright IBM Corp. 2000 145

OS/400 services, the applications can be managed just like any other AS/400
application.

Figure 14. AS/400 PASE in UNIX terms

Shared Libraries

Shell and utilities

TIMI

syscall

Applications

Hardware

SLICKernel

XPF

WRKACTJOB

GO

CRTUSRPRF
COPY

RENAME

Other Applications

XPF

CL Commands or QSHELL

Applications

UNIX
viewpoint

AS/400
viewpoint
146 Porting UNIX Applications Using AS/400 PASE

Chapter 10. AS/400 PASE porting examples

We used the following criteria when choosing an application to port:

• Source or binaries freely available for download from the Internet
• Showcases the support of the X Windows library support in AS/400 PASE
• Identifies some of the more simple issues that may be encountered

Searching the World Wide Web, we found the Open Source Project based on
IBM’s Visualization Data Explorer, known as OpenDX, located at:
http://www.opendx.org

OpenDX is a software package for the visualization of scientific, engineering,
and analytical data. OpenDX requires no porting since the binaries are
available and work without source changes, except to one shell script.

One of the early problems discovered is that many open source sites
distribute archives that were generated using the GNU zip utility. Obtaining
and porting the GNU zip is the first task in the porting examples.

The final porting example is GNU perl. Perl is a popular and powerful
scripting tool that is used as a base in many Web and e-mail sites. The
popular midrange mailing list, Midrange-L, is implemented using Perl. It can
be accessed online at: http://www.midrange.com

Since these examples merely show the techniques of compilation or binary
extractions, a more thorough examination of an application would include an
API analysis. For the OpenDX example, this process was followed and the
results are shown in 5.2.1, “API analysis example” on page 46.

These examples use the C shell syntax. Use the appropriate syntax for the
shell being used.

10.1 GNU zip

Many open source sites on the Internet distribute archives that were
generated using the GNU zip utility. Since this utility is not part of AS/400
PASE, we provide this utility here as our first porting example. Perform the
following steps and the utility will be generated and can be used to un-zip
many other archives found on the Web.
© Copyright IBM Corp. 2000 147

1. From your AIX workstation, open a browser to the URL:
ftp://ftp.gnu.org/gnu/gzip/

2. Select gzip-1.2.4a.tar or another version that is desired (Figure 15).

Perform the following steps on AIX.

Starting with AIX

The GNU FTP site is a very busy site. You may not succeed with the
login process. Either try again later, or you may go to the GNU Web site,
http://www.gnu.org, and proceed to download from a mirrored site, that
is, a site that copies the GNU distributions.

Note

Note

Select a version that has a suffix of .tar, and not .gz. A suffix ending in
.gz is a GNU zipped tar file. The point of this example implies that the
utility is not available in the first place. Otherwise, you can skip this
exercise.
148 Porting UNIX Applications Using AS/400 PASE

Figure 15. The GNU gzip FTP directory

3. Press Shift and click to select a file to download. Save the file to a desired
directory.

4. From an AIX terminal window, change the directory to the saved location
of the tar file.

5. Untar the archive: tar -xvf gzip-1.2.4a.tar

6. Change the directory to the created directory:

cd gzip-1.2.4a

7. Review the README and INSTALL documentation files for background
information.
Chapter 10. AS/400 PASE porting examples 149

8. If running in C shell, enter:

setenv CC xlc

If in Bourne or Korn shell, enter:

export CC=xlc

9. Run the configuration script: ./configure

10.Run the make utility to compile the code: make

After completing these steps, a gzip and a gunzip utility are created.
Actually, the gunzip is a symbolic link to the gzip program. Other utilities
also were created, but they are not used in any of the following examples.
These tools, gzip and gunzip, can be used solely on the AIX machine, or
the unzipping process can be done in the AS/400 PASE environment as
well.

To perform the gunzip process with AS/400 PASE, FTP the gzip binary file
to the AS/400 system with AS/400 PASE into the IFS file system, in binary
mode, to a directory of your choice. The /usr/local/bin directory may be a
preferable choice and may need to be created.

11.Enter the following statement, where pase400 is the name of the AS/400
PASE system:

ftp pase400

12.Enter a valid user ID and password when prompted to do so.

13.Set to binary mode transfer by entering:

bin

14.Make the target directory by entering:

mkdir /usr
mkdir /usr/local
mkdir /usr/local/bin

15.Send the file to the AS/400 file system by entering:

put gzip /usr/local/bin/gzip

16.Exit FTP by entering:

quit

10.2 OpenDX

The next step is to acquire the OpenDX binaries from the site:
http://www.opendx.org
150 Porting UNIX Applications Using AS/400 PASE

1. From your AIX machine, open a browser to the Web site:
http://www.opendx.org

2. Click the Continue button.

3. Select Downloads on the left side of the Web page, as shown in Figure
16.

Figure 16. OpendDX home page

4. Click download in parentheses after “Binary distributions”.

Perform the following steps on AIX.

Starting with AIX
Chapter 10. AS/400 PASE porting examples 151

5. Fill out the questionnaire, and click the Agree button.

6. Select OpenDx version 4.1.0, which is the OpenDX version for AIX 4.1.

Figure 17 shows the Web page from OpenDX with all the binaries
available. Select AIX v4.1 or higher for download.

Figure 17. Selecting the AIX OpenDX binary tar file

OpenDX binaries for AIX Version 4.0.6 were found to work
unacceptably. Download the indicated version or newer for a better
demonstration.

Note
152 Porting UNIX Applications Using AS/400 PASE

7. Save the GNU zipped (suffix of.gz) file to a suitable directory.

8. Download the samples (dxsamples-4.0.8.tar.gz) under the “Common
files” heading.

9. FTP the two downloads to the AS/400 PASE system:

a. Enter: ftp paseas400

b. Set binary mode transfer: bin

c. Enter:

put opendx-4.1.0-aix41.tar.gz
/home/spartz/opendx/opendx-4.1.0-aix41.tar.gz

d. Enter:

put dxsamples-4.0.8.tar.gz
/home/spartz/opendx/dxsamples-4.0.8.tar.gz

10.Sign on to the AS/400 system with a 5250 emulation program or at the
system console.

11.Enter the AS/400 PASE terminal shell by entering the following statement
on the command line prompt:

call qp2term

12.Create a symbolic link for gunzip by entering:

ln -s /usr/local/bin/gzip /usr/local/bin/gunzip

13.Change the directory to where the tar files were sent by FTP by entering:

cd /home/spartz/opendx

14.Unzip the zipped tar files by entering:

/usr/local/bin/gunzip opendx-4.1.0-aix41.tar.gz
/usr/local/bin/gunzip dxsamples-4.0.8.tar.gz

Figure 18 on page 154 shows the command to unzip the OpenDX tar file.

Complete the following steps on the AS/400 system.

Switching to the AS/400 system
Chapter 10. AS/400 PASE porting examples 153

Figure 18. Unzipping the OpendDX tar file

15.Change the directories to the root (/). Enter:

cd /

16.Untar OpenDX by entering:

tar -xvf /home/spartz/opendx/opendx-4.1.0-aix41.tar

At this point, the normal process would be to have the binaries analyzed
for AS/400 PASE compatibility. This did not deter us from trying it first. The
analysis was performed and is shown in 5.2.1, “API analysis example” on
page 46.

17.Change the directories to OpenDX by entering:

cd /usr/local/dx

18.Untar the OpenDX samples tar file by entering:

tar -xvf /home/spartz/opendx/dxsamples-4.0.8.tar

19.Create a symbolic link for “samples”, since the default shell script uses
that name by default. Enter:

ln -s dxsamples-4.0.8 samples

20.Ensure that the file /dev/null exists. The OpenDX startup script requires its
presence. Enter:

touch /dev/null

/QOpenSys/usr/bin/sh

$
> cd /home/spartz/opendx
$

> ls
dxsamples-4.0.8 dxsamples-4.0.8.tar.gz opendx-4.1.0-aix41.tar.gz
$

> /usr/local/bin/gunzip opendx-4.1.0-aix41.tar.gz
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
154 Porting UNIX Applications Using AS/400 PASE

The basic setup is complete. There is, however, one shell script change
that is required to run OpenDX under AS/400 PASE. The
/usr/local/dx/bin/dxworker shell script uses the system utility uname to make
platform specific decisions. On AS/400 PASE, the output value is
“OS400”. Figure 19 shows the grep utility locating the script case
statement of the dxworker script where the AIX case statement needs to
be changed to OS400.

Figure 19. Locating shell script change

This can also be changed within the AS/400 PASE environment without
editing the file remotely or sending the file via FTP to another system to
edit, and transferring it back.

21.Change to the dx directory by entering:

cd /usr/local/dx/bin

22.Make a backup copy of the shell script by entering:

cp dxworker dxworker.original

23.Change “AIX*:” to “OS400:”. Enter:

sed “s/AIX.:/OS400:/” dxworker.original > dxworker

/QOpenSys/usr/bin/sh

$
> cd /usr/local/dx/bin
$

> ls
dx dxworker dxworker.original mdf2c
$

> grep AIX dxworker
case AIX*:
and .net file reading on AIX.
this is for AIX 3.2.3e, so we get the right libs at run time
echo "WARNING! AIX Version seems to be other than 3.2 or 4.x"

$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
Chapter 10. AS/400 PASE porting examples 155

An alternative to using the AS/400 PASE sed utility, is to use the OS/400
EDTF CL command, entered as follows to change the script file. Enter this
on the AS/400 terminal screen to invoke the editor:

EDTF ‘/usr/local/dx/bin/dxworker’

24.The OpenDX shell scripts look for some binaries in /bin. This directory is
not automatically created for AS/400 PASE. See 6.4, “Configuration tips”
on page 62. Create a symbolic link by entering:

ln -s /QopenSys/usr/bin /bin

Before the application is launched, you must identify the X server that is to
render the displayed output. Enter the following command in your QP2TERM
session:

export DISPLAY=10.5.118.190:0

This command exports the environment variable DISPLAY to the running
shell with the given value. X client library support uses this environment
variable to determine the destination host of the rendered screen window.
The value of the variable can either be an IP address of the TCP host running
the X server for displaying the graphics or a hostname that can be resolved to
an IP address. The “:0” identifies the display number to which the X client
application connects. This is correct under most circumstances.

You must also ensure that the host acting as the X server is authorized to
accept the connection from the client application, OpenDX. On a UNIX
workstation, the xhost +hostname command authorizes hostname to connect to
this X server. On a Microsoft Windows platform, a product, such as
Hummingbird Exceed or XWin32, needs to be installed. The Xconfig tool in
Exceed enables the Security user interface to edit the xhosts.txt, placing the
name of the hosts authorized to connect to the Exceed X server. The default
behavior of XWin32 is to allow any client.

Add /usr/local/bin, or the target directory OpenDX that was installed, to your
path environment variable, such as:

export PATH=/usr/local/bin:$PATH

If /usr/local/bin was used, launch OpenDX with:

dx &

Otherwise, use the script switch -dxroot to specify the path to the OpenDX
root:

dx -dxroot /path &
156 Porting UNIX Applications Using AS/400 PASE

Environment variables can also override the script defaults. See shell script
dxworker, untar-ed in usr/local/dx/bin.

The startup windows appear on the workstation desktop, as shown in Figure
20.

Figure 20. Running OpenDX in AS/400 PASE

One of the demo samples is of a water molecule. To run it, follow these steps:

1. Click Edit Visual Programs from the OpenDX user interface panel.

2. From the Net File Selection dialog, in the Selection input field, enter:

/usr/local/dx/samples/tutorial/example1.net

3. Click OK. In a few moments, several new panels will open.

4. In the Visual Program Editor, under the Execute pull-down, select Execute
Once. The graphic image of the water molecule shown in Figure 21 on
page 158 appears.
Chapter 10. AS/400 PASE porting examples 157

Figure 21. OpenDX tutorial exampl1.net

In the Image window, under the Options pull-down menu, View Control
provides a method of changing the image, such as rotating it and so on.

As an alternative to using QP2TERM to launch OpenDX, a QP2SHELL
command can be used:

CALL PGM(QP2SHELL) PARM('/QOpenSys/bin/sh' 'export
DISPLAY=10.5.118.190:0;export PATH=/usr/local/bin:$PATH;dx &')

Or, setup the environment variables in OS/400 before invoking QP2SHELL. If
the variable already exists, use the WRKENVVAR command and edit the variable
as needed. Add a prefix to environment variables with the prefix string
‘PASE_’ to ensure the variable is unique to AS/400 PASE. See 6.5.1,
“Invocation from a 5250 terminal screen: QP2SHELL” on page 65, for further
information:

QSYS/ADDENVVAR ENVVAR(PASE_PATH)
VALUE('/usr/local/bin:/QOpenSys/usr/bin:/usr/ccs/bin:/usr/sbin:.:/usr/bin'
)

158 Porting UNIX Applications Using AS/400 PASE

QSYS/ADDENVVAR ENVVAR(PASE_DISPLAY) VALUE('10.5.118.190:0')
CALL PGM(QP2SHELL) PARM('/QOpenSys/bin/sh' 'dx &')

10.3 GNU perl

As another example of adding Open Source tools to an AS/400 system using
AS/400 PASE, the GNU perl script interpreter is ported.

Note: All of the steps are listed in this example, including the steps that are
redone as a typical part of a new port. If you want to build perl, be sure to
read the entire example first before trying it yourself.

1. From your AIX machine, open a browser to the URL:
ftp://ftp.gnu.org/gnu/perl/

2. Select perl-5.005.03.tar.gz or another version that is desired for download
to an AIX workstation.

3. Unzip the zipped tar file by entering:

/usr/local/bin/gunzip perl perl-5.005.03.tar.gz

4. Untar the tarball. Enter:

tar -xvf perl-5.005.03.tar

5. Change the directory to the perl directory. Enter:

cd perl-5.005.03

6. Set the environment variable for the compiler (C shell syntax) by entering:

setenv CC xlc

Note: The following steps show the normal porting process. This example
shows that a compile is successful, but the executable fails.

7. Configure the build by entering:

./Configure -d

8. Press the Enter key when prompted to do so.

9. Build the interpreter. Enter:

make

10.Build the test scripts. Enter:

make test

Perform the following steps on AIX.

Starting with AIX
Chapter 10. AS/400 PASE porting examples 159

11.Create a tarball of the test directory, lib directory, and Configure file for a
full test of the compiled perl on AS/400 PASE. To do so, enter:

tar -cvf ../perltest.tar t lib Configure

12.FTP the tarball to the AS/400 PASE system. In this example, the
/home/spartz/perl5 directory is used:

mkdir /home/spartz/perl5

13.FTP the perl binary, in binary mode, to the AS/400 PASE system. Enter:

bin
put perl /home/spartz/perl5

14.FTP an example perl script to the AS/400 PASE system. Enter:

put id.pl /home/spartz/perl5

The contents of id.pl are listed here:

#!/usr/bin/perl
File id.pl created by Daryl Spartz at 15:19:09 on Tue Apr 11 2000.

#if ($#ARGV < 0 || $ARGV[0] eq ‘-h’) {
print “Usage: id [-h]\n”;
exit;
#}

sub u { local($name) = getpwuid($_[0]); $name && “($name)”;}
sub g { local($name) = getgrgid($_[0]); $name && “($name)”;}
sub bynum { $a <=> $b; }

print “uid=$<“, &u($<);
print “ gid=”, $(+0, &g($();
print “ euid=$>”, &u($>) if $> != $<;
print “ egid=”, $)+0, &g($)) if $) != $(;
@groups=split(‘ ‘, $(); shift(@groups);
@groups && print “ groups=”,

join(‘,’, sort bynum grep(($_ .= &g($_)) || 1, @groups));
print “\n”;

15.Sign on to the AS/400 system, and invoke a QP2TERM session. Enter:

call qp2term

16.Untar the perl test suite tarball:

cd /home/spartz/perl5
tar -xvf ../perltest.tar

17.Change the directory to where perl and the example script exist. Then,
invoke perl. The results are shown in Figure 22.

Complete the following steps on the AS/400 system.

Switching to the AS/400 system
160 Porting UNIX Applications Using AS/400 PASE

Figure 22. First test of ported perl

This problem occurs because the AS/400 PASE set of supplied libraries
does not include libnsl.a. FTPing the necessary library or libraries is not a
valid option. See 3.2, “Licensing issues” on page 33. What should you do
now? In this case, see if the library is actually used and, if not, remove the
dependency. For perl, the failing library is not used, so we can remove it.
The remaining steps correct the problem and rebuild the program.

18.Make a backup copy of the configuration file by entering:

cp ./Configure ./Configure.original

19.Make the file editable by entering:

chmod +w ./Configure

20.Edit the file by removing nsl from the library list. Enter:

vi ./Configure

21.Locate the library within the editor. Enter:

/nsl

/QOpenSys/usr/bin/sh

$
> cd /home/spartz/perl5
> ls
Configure id.pl lib perl t

> ./perl id.pl
Could not load program ./perl:

Dependent module libnsl.a(shr.o) could not be loaded.
Could not load module libnsl.a(shr.o).
Error was: No such file or directory
Could not load module ./perl.
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry

Perform the following steps on AIX.

Switching to AIX
Chapter 10. AS/400 PASE porting examples 161

22.Delete the library name. Press the letter “x” four times to delete each
character of file name.

23.Save and quit the editor by entering:

:wq!

24.Cleanup from the previous compile. Enter:

make realclean
rm -f config.sh

25.Repeat step 7 on page 159 through 13 on page 160.

26.Launch perl again. The new results are shown in Figure 23.

Figure 23. Rebuild perl running example

The basic mechanism of perl appears to work. However, when running the
test suite, additional problems appear.

27.Invoke the perl test suite by entering:

cd /home/spartz/perl5/t
perl TEST

Complete the following steps on the AS/400 system.

Switching to the AS/400 system

/QOpenSys/usr/bin/sh

$
> cd /home/spartz/perl5
$

> ls
Configure id.pl lib perl t
$

> perl id.pl
uid=603(SPARTZ) gid=0
$

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry
162 Porting UNIX Applications Using AS/400 PASE

At this point, examination of the source code is necessary. Using grep to
locate the error message string for the glob failures, grep “child exit” *.c,
the module pp_hot.c is identified as the source of the message. The error
is discovered to be the path to the C shell. The code uses a string point to
the C shell as /usr/bin/csh. In AS/400 PASE, the correct path is
/QOpenSys/usr/bin/csh. This and the path to the sed utility are not correct.
Another way to “discover” these errors is to use the string utility, as in
string perl | grep bin. The output of this command shows the incorrect
paths to csh and to sed.

To fix these errors, the following steps are needed:

28.Cleanup the compiled environment by entering:

make realclean

29.Rebuild the configuration. Enter:

./Configure -d

a. Edit config.sh:

!vi config.sh

b. Locate strings:

/full_

c. Change the path to csh and sed to /QOpenSys/usr/bin. See 6.4,
“Configuration tips” on page 62, for a commentary on problems with
/usr/bin.

i. Move the cursor to the starting double quote (“).
ii. Press the “a” key for insert after.
iii. Type /QOpenSys on the lines with full_csh and full_sed in them
iv. Press the ESC key to exit the entry mode.
v. File your changes by entering:

:wq!

d. Press Enter to continue.

Perform the following steps on AIX.

Switching to AIX

This time, do not press Enter at the prompt to edit config.sh.

Note
Chapter 10. AS/400 PASE porting examples 163

30.Remake the program. Enter:

make

31.Remake the tests:

make test

32.FTP the new perl binary to the AS/400 PASE system and rerun the test
suite. Refer to step 27.

The following text contains output generated to the QP2TERM session as a
result of running the perl tests. Out of 190 tests, 187 were successful. The
three failures are due to restrictions within AS/400 PASE, such as no tty
support.

> ls
opendx perl5
$

> cd perl5
$

> cd t
$

> perl TEST
base/cond..........ok
base/if............ok
base/lex...........ok
base/pat...........ok
base/rs............ok
base/term..........ok
comp/cmdopt........ok
comp/colon.........ok
comp/cpp...........skipping test on this platform
comp/decl..........ok
comp/multiline.....ok
comp/package.......ok
comp/proto.........ok
comp/redef.........ok
comp/require.......ok
comp/script........ok
comp/term..........ok
comp/use...........ok
cmd/elsif..........ok

This time the test indicates errors on AIX. This is because AIX does not
have a /QOpenSys/usr/bin path. This can be worked around by
switching to root authority and creating a symbolic link on AIX from
/usr/bin to /QOpenSys/usr/bin: ln -s /usr/bin /QOpenSys/usr/bin.

Note

Complete the following steps on the AS/400 system.

Switching to the AS/400 system
164 Porting UNIX Applications Using AS/400 PASE

cmd/for............ok
cmd/mod............ok
cmd/subval.........ok
cmd/switch.........ok
cmd/while..........ok
io/argv............ok
io/dup.............ok
io/fs..............ok
io/inplace.........ok
io/iprefix.........ok
io/pipe............ok
io/print...........ok
io/read............ok
io/tell............ok
op/append..........ok
op/arith...........ok
op/array...........ok
op/assignwarn......ok
op/auto............ok
op/avhv............ok
op/bop.............ok
op/chop............ok
op/closure.........ok
op/cmp.............ok
op/cond............ok
op/context.........ok
op/defins..........ok
op/delete..........ok
op/die.............ok
op/die_exit........ok
op/do..............ok
op/each............ok
op/eval............ok
op/exec............ok
op/exp.............ok
op/flip............ok
op/fork............ok
op/glob............ok
op/goto............ok
op/goto_xs.........ok
op/grep............ok
op/groups..........skipping test on this platform
op/gv..............ok
op/hashwarn........ok
op/inc.............ok
op/index...........ok
op/int.............ok
op/join............ok
op/list............ok
op/local...........ok
op/magic...........ok
op/method..........ok
op/misc............ok
op/mkdir...........ok
op/my..............ok
op/nothread........ok
op/oct.............ok
op/ord.............ok
op/pack............ok
op/pat.............ok
op/pos.............ok
op/push............ok
op/quotemeta.......ok
Chapter 10. AS/400 PASE porting examples 165

op/rand............ok
op/range...........ok
op/read............ok
op/readdir.........ok
op/recurse.........ok
op/ref.............ok
op/regexp..........ok
op/regexp_noamp....ok
op/repeat..........ok
op/runlevel........ok
op/sleep...........ok
op/sort............ok
op/splice..........ok
op/split...........ok
op/sprintf.........ok
op/stat............Can’t open /dev/tty--run t/TEST outside of make.
FAILED at test 35
op/study...........ok
op/subst...........ok
op/substr..........ok
op/sysio...........ok
op/taint...........getpwent: No such file or directory
FAILED at test 142
op/tie.............ok
op/tiearray........ok
op/tiehandle.......ok
op/time............ok
op/tr..............ok
op/undef...........ok
op/universal.......ok
op/unshift.........ok
op/vec.............ok
op/wantarray.......ok
op/write...........ok
pragma/constant....ok
pragma/locale......ok
pragma/overload....ok
pragma/strict......ok
pragma/subs........ok
pragma/warning.....ok
lib/abbrev.........ok
lib/anydbm.........ok
lib/autoloader.....ok
lib/basename.......ok
lib/bigint.........ok
lib/bigintpm.......ok
lib/cgi-form.......ok
lib/cgi-function...ok
lib/cgi-html.......ok
lib/cgi-request....ok
lib/checktree......ok
lib/complex........ok
lib/db-btree.......skipping test on this platform
lib/db-hash........skipping test on this platform
lib/db-recno.......skipping test on this platform
lib/dirhand........ok
lib/dosglob........ok
lib/dumper-ovl.....ok
lib/dumper.........ok
lib/english........ok
lib/env............ok
lib/errno..........ok
lib/fatal..........ok
166 Porting UNIX Applications Using AS/400 PASE

lib/fields.........ok
lib/filecache......ok
lib/filecopy.......ok
lib/filefind.......ok
lib/filehand.......ok
lib/filepath.......ok
lib/filespec.......ok
lib/findbin........ok
lib/gdbm...........skipping test on this platform
lib/getopt.........ok
lib/h2ph...........ok
lib/hostname.......ok
lib/io_dup.........ok
lib/io_pipe........ok
lib/io_sel.........ok
lib/io_sock........ok
lib/io_taint.......ok
lib/io_tell........ok
lib/io_udp.........ok
lib/io_xs..........ok
lib/ipc_sysv.......ok
lib/ndbm...........ok
lib/odbm...........Can’t load ‘../lib/auto/ODBM_File/ODBM_File.so’ for module
ODBM_File: dlopen: ../lib/auto/ODBM_File/ODBM_File.so: No such file or direc
tory at ../lib/DynaLoader.pm line 169.

at lib/odbm.t line 15
FAILED at test 0
lib/opcode.........ok
lib/open2..........ok
lib/open3..........ok
lib/ops............ok
lib/parsewords.....ok
lib/ph.............ok
lib/posix..........ok
lib/safe1..........ok
lib/safe2..........ok
lib/sdbm...........ok
lib/searchdict.....ok
lib/selectsaver....ok
lib/socket.........ok
lib/soundex........ok
lib/symbol.........ok
lib/textfill.......ok
lib/texttabs.......ok
lib/textwrap.......ok
lib/thread.........skipping test on this platform
lib/tie-push.......ok
lib/tie-stdarray...ok
lib/tie-stdpush....ok
lib/timelocal......ok
lib/trig...........ok
Failed 3 test scripts out of 190, 94.74% okay.

Since not all tests were successful, you may want to run some
of them individually and examine any diagnostic messages they
produce. See the INSTALL document’s section on “make test”.
If you are testing the compiler, then ignore this message
and run
./perl harness
in the directory ./t.
###
Since most tests were successful, you have a good chance to
get information with better granularity by running
Chapter 10. AS/400 PASE porting examples 167

./perl harness
in directory ./t.

u=0.37 s=1.12 cu=46.96 cs=117.42 scripts=182 tests=6483
$

168 Porting UNIX Applications Using AS/400 PASE

Chapter 11. Work management

This chapter illustrates how AS/400 PASE programs fit into the AS/400
system’s model of job control.

11.1 Viewing AS/400 PASE programs running on the AS/400 system

The normal work management functions can be used with AS/400 PASE jobs.
In this series of examples, AUSER signs on to the AS/400 system and starts
the AS/400 PASE environment. They then run OpenDX, which is the sample
application that we ported in 10.2, “OpenDX” on page 150.

Figure 24 shows AUSER on the WRKACTJOB command display, before
starting the AS/400 PASE environment.

Figure 24. WRKACTJOB with AUSER on the main menu

Figure 25 on page 170 shows the WRKACTJOB display after AUSER entered
CALL QP2TERM on the OS/400 command line to start the AS/400 PASE
environment. Notice that the user is now running a program named
QP2TERM, and it is in a DEQW status.

Figure 26 on page 171 shows AUSER’s terminal after starting the OpenDX
application. AUSER has been running Example1 and has several X windows

Work with Active Jobs AS25B
05/03/00 13:04:14

CPU %: .1 Elapsed time: 00:08:41 Active jobs: 190

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QBATCH QSYS SBS .0 DEQW
QCMN QSYS SBS .0 DEQW
QCTL QSYS SBS .0 DEQW
QHTTPSVR QSYS SBS .0 DEQW
QINTER QSYS SBS .0 DEQW
ADEVICE AUSER INT .0 MNU-MAIN DSPW
QPADEV0001 JCOOK INT .0 PGM-BUPMENUNE DSPW
QPADEV0006 COOK INT .0 PGM-BUPMENUNE DSPW
QPADEV0009 KRUEGER INT .0 CMD-WRKACTJOB RUN

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
© Copyright IBM Corp. 2000 169

open on their PC, that are each supported by individual forked jobs in the
AS/400 PASE environment. AUSER entered the ps -ef command to see all of
the active AS/400 PASE processes.

AS/400 PASE processes are identified with numeric process IDs. There is a
qshell command named getjobid that can be used to correlate between the
process IDs and AS/400 job names. QSHELL commands aren’t directly
supported in QP2Shell, so enter the following line to find out what the process
name is:

system qsh "cmd('getjobid 597')"

Figure 27 and Figure 28 on page 172 show two different views of the
WRKACTJOB panel with all of the AS/400 PASE jobs displayed. Notice that
they look just like other jobs on the system. See if you can determine which
job matches process ID 597 from the AS/400 PASE environment.

Figure 25. WRKACTJOB with AUSER running AS/400 PASE

Work with Active Jobs AS25B
05/03/00 13:18:56

CPU %: .2 Elapsed time: 00:23:23 Active jobs: 192

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QBATCH QSYS SBS .0 DEQW
QCMN QSYS SBS .0 DEQW
QCTL QSYS SBS .0 DEQW
QHTTPSVR QSYS SBS .0 DEQW
QINTER QSYS SBS .0 DEQW
ADEVICE AUSER INT .0 PGM-QP2TERM DEQW
QPADEV0001 JCOOK INT .0 PGM-BUPMENUNE DSPW
QPADEV0003 SPARTZ INT .0 PGM-QCMD DSPW
QPADEV0006 COOK INT .0 PGM-BUPMENUNE DSPW

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
170 Porting UNIX Applications Using AS/400 PASE

Figure 26. AS/400 PASE environment running OpenDX and looking at jobs

Figure 27. WRKACTJOB showing the AS/400 PASE jobs

/QOpenSys/usr/bin/sh

$
> dx &
[1] 597
$

> ps -ef
UID PID PPID C STIME TTY TIME CMD
AUSER596362 015:12:33 - 0:00/QOpenSys/usr/bin/sh-i

AUSER597596 015:13:05 - 0:00/usr/local/dx/bin_ibm6000/startupui
AUSER 610 597 0 15:14:10 - 0:02 /usr/local/dx/bin_ibm6000/dxui

-processors 1
AUSER 623 610 0 15:14:20 - 0:00 csh -f /usr/local/dx/bin/dxworker -exonly

-local -directory / -processors 1
AUSER 640 623 0 15:14:27 - 0:02 /usr/local/dx/bin_ibm6000/dxexec -r -p1

-B
AUSER642596 015:15:11 - 0:00 ps -ef

$
> system qsh"cmd('getjobid 597')"
Processidentifier597is075611/AUSER/QP2FORK
$

===>

F3=Exit F6=PrintF9=RetrieveF11=Truncate/WrapF12=Disconnect
F13=Clear F17=Top F18=Bottom F21=CL command entry

Work with Active Jobs AS25B
05/03/00 15:16:50

CPU %: .6 Elapsed time: 02:21:18 Active jobs: 197

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Number Type CPU % Threads
QPADEV0006 COOK 075037 INT .0 1
QPADEV0009 KRUEGER 075355 INT .0 1
QP2FORK AUSER 075611 BCI .0 1
QP2FORK AUSER 075624 BCI .0 1
QP2FORK AUSER 075637 BCI .0 1
QP2FORK AUSER 075654 BCI .0 1
QP2SHELL AUSER 075610 BCI .0 1

QSERVER QSYS 074847 SBS .0 1
QPWFSERVSD QUSER 074898 BCH .0 1

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics F11=Display status
F12=Cancel F17=Top F18=Bottom F23=More options F24=More keys
Chapter 11. Work management 171

Figure 28. WRKACTJOB showing the status of the AS/400 PASE jobs

Work with Active Jobs AS25B
05/03/00 15:19:12

CPU %: .6 Elapsed time: 02:23:40 Active jobs: 197

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QPADEV0006 COOK INT .0 PGM-BUPMENUNE DSPW
QPADEV0009 KRUEGER INT .0 CMD-WRKACTJOB RUN
QP2FORK AUSER BCI .0 SELW
QP2FORK AUSER BCI .0 SELW
QP2FORK AUSER BCI .0 THDW
QP2FORK AUSER BCI .0 SELW
QP2SHELL AUSER BCI .0 TIMW

QSERVER QSYS SBS .0 DEQW
QPWFSERVSD QUSER BCH .0 SELW

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
172 Porting UNIX Applications Using AS/400 PASE

Chapter 12. Problem determination and messages

From time to time, you will need to debug an application you are creating or
gather defect or error information about an application running in your AS/400
PASE environment. This chapter describes the tools that are available, gives
small examples of how to use them, and directs you to where in-depth
descriptions for each tool may be found.

12.1 Available problem determination tools

There are any number of problem determination tools on both AIX and
OS/400. This section only covers the ones that we found useful in producing
the samples in this redbook.

12.1.1 Tools on AIX
The tool we found most useful when developing our AIX application was dbx.
However, we found that using the printfs function in our C program was as
useful as using the dbx debugger. If you choose to use the printf function to
assist in debugging your C code in ILE, you should be aware that output is
buffered in AIX and in AS/400 PASE. Therefore, you may need to use the
setbuf() commands to flush your buffers:

setbuf(stdout, null);
setbuf(stderr, null);

These functions require including stdio.h to function.

Other tools that are available in AIX, which we didn’t use, include STEM, core
dumps, and any number of ported AIX utilities. More information about the
dbx tool can be found on the dbx Tools Web site:
http://www1.s390.ibm.com:/products/oe/dbx/dbxintoolslinks.v1r1.html

12.1.2 Tools on OS/400
There are a number of tools we found necessary on OS/400 when looking for
messages from our application:

• The job log
• VLOGs (using service tools with maintenance privileges)
• Interactive Debugger
• WRKACTJOB
• WRKSPLF (while compiling our ILE C source)
© Copyright IBM Corp. 2000 173

Any other tool for problem determination that is available on the AS/400
system is also available for use on AS/400 PASE applications:

• SLIC trace
• Operating system traces like trace job
• Performance Explorer traces like TPROF

12.1.2.1 Job logs
Your job log will contain any messages issued by OS/400 or your application
while it is running or being compiled. To look at a job log, type DSPJOBLOG on a
command line. When the Display Job Log screen appears, press the F10 key,
followed by Shift + F6. These key combinations result in the Display All
Messages screen being displayed and set to the most recent messages.
Figure 29 shows a screen after a failed compilation of an ILE C module.

Figure 29. DSPJOBLOG screen

To view the details of any particular message, you must put the cursor on the
message you want to know more about and press the F1 key. Figure 30
shows the details of one of the messages from the first line of the job log
shown in Figure 29.

Display All Messages
System: AS25B

Job. . : QPADEV0007 User . . : SHUPE Number . . . : 077196

SHUPE/QCSRC/ILEMOD line 39: Identifier arg2 must be declared before it is
used.

SHUPE/QCSRC/ILEMOD line 40: Identifier arg6 must be declared before it is
used.

SHUPE/QCSRC/ILEMOD line 40: Identifier arg3 must be declared before it is
used.

SHUPE/QCSRC/ILEMOD line 43: Identifier fp must be declared before it is
used.

SHUPE/QCSRC/ILEMOD line 62: Identifier icvc must be declared before it is
used.

Program ILEMOD is not created because statement errors occurred.
The compilation failed.

3 > wrksplf
5>> dspjoblog

Bottom
Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F17=Top F18=Bottom
174 Porting UNIX Applications Using AS/400 PASE

Figure 30. Job log message detail

12.1.2.2 VLOGs
VLOGs are issued when a more serious and lower level problem occurs. In
general, it is not useful for you to look at VLOGS because they contain
specific information about modules, stacks, and variables, which are not
easily deciphered. However, if you are going to report a problem to your local
support center, you may need to access these logs to save them and send
them to IBM.

To access VLOGS, you must be able to start system tools on your AS/400
system. Enter:

STRSST

Figure 31 on page 176 shows the result of running the STRSST command.

Additional Message Information

Message ID : CZM0620 Severity : 30
Message type : Diagnostic
Date sent : 05/09/00 Time sent : 11:07:25

Message : SHUPE/QCSRC/ILEMOD line 39: Identifier arg2 must be
declared before it is used.

Cause : An error message was generated for line 39 of member
ILEMOD in file SHUPE/QCSRC.

Recovery . . . : Correct all the errors and try the compilation again. For
more information see message CZM0041 of message file QCZMSG in library *LIBL
or the source listing if one has been generated.

Technical description : The compiler attempts to recover
from the error. Compilation continues.

Bottom
Press Enter to continue.

F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance level
Chapter 12. Problem determination and messages 175

Figure 31. STRSST startup screen

Once the system tools are started, select option 1 then option 5. At this point,
the screen shown in Figure 32 appears.

Figure 32. Licensed Internal Code Log

System Service Tools (SST)

Select one of the following:

1. Start a service tool
2. Work with active service tools
3. Work with disk units
4. Work with diskette data recovery
5. Work with system partitions

Selection

F3=Exit F10=Command entry F12=Cancel

Licensed Internal Code Log

Select one of the following:

1. Select entries from the Licensed Internal Code (LIC) log
2. Dump entries to printer from the Licensed Internal Code log
3. Dump entries to media from the Licensed Internal Code log

5. Change the Licensed Internal Code log sizes
6. Clear the Licensed Internal Code log
7. Display the status of the Licensed Internal Code log

Selection

F3=Exit F12=Cancel
176 Porting UNIX Applications Using AS/400 PASE

From here, you can dump the VLOGs to media or you can display them. If
you want to examine them yourself, you can display them but, if you are
sending them to IBM, you will want to dump them so an IBM Service
Representative can retrieve them from your system. AS/400 PASE generates
VLOGS primarily of major code 4700. You can either display any VLOGs of
this code type, or you can display all VLOGs for a given time frame. Often,
displaying the time frame is more useful since other VLOGs may be
generated, which are equally important to problem determination.

If the VLOG was created because of an illegal instruction that was caused by
the attempted use of an unsupported syscall, it is possible to scroll right to
see the character representation of the VLOG information with the syscall
name (the name you would put into the environment variable to work around
the unsupported syscall) by pressing PF10. To scroll back to the left, use
PF9.

12.1.2.3 WRKACTJOB
WRKACTJOB is a staple tool for examining jobs and job stacks on the
AS/400 system. To locate a QP2SHELL job running, you need to scroll down
to the QINTER subsystem and find the QP2SHELL job assigned to your user
ID or use the WRKACTJOB SBS(QINTER) command. See Figure 33.

Figure 33. Work with Active Jobs

Work with Active Jobs AS25B
05/09/00 12:07:27

CPU %: .0 Elapsed time: 00:00:00 Active jobs: 187

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
QPADEV0006 SHUPE INT .0 PGM-QP2TERM DEQW
+QPADEV0007 SHUPE INT .0 CMD-WRKACTJOB RUN
QPADEV0009 COOK INT .0 CMD-DSPLOG DSPW
QP2SHELL SHUPE BCI .0 TIMW
QP2SHELL SHUPE BCI .0 TIMW
QP2SHELL SHUPE BCI .0 TIMW
QP2SHELL SPARTZ BCI .0 TIMW

QSERVER QSYS SBS .0 DEQW
QPWFSERVSD QUSER BCH .0 SELW

More...
Parameters or command
===>
F3=Exit F5=Refresh F7=Find F10=Restart statistics
F11=Display elapsed data F12=Cancel F23=More options F24=More keys
Chapter 12. Problem determination and messages 177

When you find the particular job you want to examine, you need to enter
option 5 next to it to look at job specifics. Further information about
WRKACTJOB can be found in OS/400 Work Management, SC41-5306, for
the release of OS/400 you are using.

12.1.2.4 Interactive Debugger
While developing our samples, which dealt with ILE code, we needed a way
to debug an ILE job that was being started from AS/400 PASE. The best tool
for this job was the AS/400 Interactive Debugger. The Interactive Debugger is
designed to allow you to step through ILE code and examine the contents of
variables in your program. A more complete description and example of its
use is provided in 12.4, “Debugging the AS/400 to ILE sample” on page 179.

12.1.2.5 WRKSPLF (while compiling our ILE C source)
When you compile ILE programs, you can specify whether you want to print
out a listing file. These listings are printed to spooled files, which can be
accessed by using the WRKSPLF command. After you execute the
command, you arrive at the Work with All Spool Files screen. See Figure 34.

Figure 34. Work with All Spooled Files screen

From here, you can view a particular spooled file and see the kinds of errors
your program might contain.

Work with All Spooled Files

Type options, press Enter.
1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages
8=Attributes 9=Work with printing status

Device or Total Cur
Opt File User Queue User Data Sts Pages Page Copy

ILEMOD SHUPE PRT01 CRTCMOD RDY 6 1
QPSRVDMP SHUPE PRT01 RDY 1 1
QPSRVDMP SHUPE PRT01 RDY 592 1
QPJOBLOG SHUPE PRT01 QP2FORK RDY 2 1
QPJOBLOG SHUPE PRT01 QP2FORK RDY 2 1
QPJOBLOG SHUPE PRT01 QP2FORK RDY 2 1
QPJOBLOG SHUPE PRT01 QP2FORK RDY 2 1
QPJOBLOG SHUPE PRT01 QP2FORK RDY 2 1
QPJOBLOG SHUPE PRT01 QPADEV0009 RDY 15 1

Bottom
Parameters for options 1, 2, 3 or command
===>
F3=Exit F10=View 4 F11=View 2 F12=Cancel F22=Printers F24=More keys
178 Porting UNIX Applications Using AS/400 PASE

12.2 Where to find messages on the AIX system

When you are in the development stage of your AS/400 PASE application,
you will be working primarily on a system running AIX. For the samples
produced in this book, we found the messages that we needed in the terminal
session we were compiling in and in the core dump generated by more
serious errors. Further messages might be found in other areas on AIX. For
further information about AIX messages, refer to the RS/6000 & AIX Support
Web page at: http://duke.toraix.can.ibm.com

12.3 Where to find messages on the AS/400 system

Once your application is ported to AS/400 PASE, you need to look for error
and status messages on the AS/400 system. The most common place to find
messages is the job log of the job that is running the QP2TERM or the
QP2SHELL. In addition, we found useful messages written to our QP2TERM
session. In more extreme cases, you may want to look in the AS/400 system
VLOGs for lower level messages.

12.4 Debugging the AS/400 to ILE sample

In this section, we illustrate how we went through debugging our PASE to ILE
sample found in 8.3, “Doing callouts to ILE from AS/400 PASE” on page 108.
In this example, we needed to debug both AS/400 PASE code and ILE C code
running at the same time.

The primary tool for debugging an AS/400 PASE program in AS/400 PASE is
the dbx debugger. A detailed description of this tool can be found in the local
help on your AIX machine or on the RS/6000 & AIX Support Web site at:
http://duke.toraix.can.ibm.com/lngfiles/dbx.html

Our sample shows an AS/400 service program being called from an AS/400
PASE program. You need to use the AS/400 Interactive Source Debugger to
debug your ILE code. A detailed description of this tool can be found in
Interactive Source Debugger, SC09-1897.

Once you have both sets of code entered, you must compile your AS/400
PASE program on an AIX system. When you do this, compile errors may be
issued either to a specified outfile or to the screen. In either case, these
compiler errors are the first steps in debugging your code. Figure 35 on page
180 shows some compiler errors written to an xterm session.
Chapter 12. Problem determination and messages 179

Figure 35. Errors from a xlc compile

Based on the errors, we would then fix our code and FTP it to the AS/400
system on which we’re running AS/400 PASE. At this point, we have the
binary AIX object, but not necessarily a working ILE program. In our sample,
we created an ILE C module, which was then put in a service program. To
debug this ILE C module, we need to modify our compile command:

CRTCMOD MODULE(MYLIB/MYMODULE)
SRCFILE(MYLIB/SRCPF)
OUTPUT(*PRINT)
DBGVIEW(*ALL)
TERASPACE(*YES *TSIFC)

The added OUTPUT parameter creates a listing file, which can be examined,
and DBGVIEW(*ALL) creates a debuggable module, which we can access at
runtime. You can then create your service program.

We can now debug our sample on the AS/400 system. To debug the entire
program, you need two 5250 sessions on your AS/400 system: one to debug
the AS/400 PASE program and one to debug your ILE C program.

Once you have the AS/400 PASE terminal session started, start your program
in dbx:

dbx PASEtoILE

By issuing this command in the terminal session, you start a job on your
AS/400 system running the AS/400 PASE program QP2FORK. In your
second 5250 session, start the WRKACTJOB command and scroll down to the
QINTER subsystem. In this subsystem, you should now see two QP2FORK
jobs assigned to your user ID. Enter option 5 next to the second QP2FORK
job (the one with a status of THDW) and take note of the job, user, and
number parameters on the resulting screen (Figure 36).

.../shupe/PASE> xlc -o PASEtoILE -qldbl128 -qalign=natural
-bI:/afs/rchland.ibm.com/usr1/shupe/PASE/as400_libc.exp PASEtoILE.c

"PASEtoILE.c", line 63.5: 1506-045 (S) Undeclared identifier rc.

.../shupe/PASE>
180 Porting UNIX Applications Using AS/400 PASE

Figure 36. Work with Job screen

You need to start a service job to debug your ILE C program. This is
necessary because your ILE C program should have been created with
activation group *CALLER and, therefore, will run in the same activation
group as the AS/400 PASE program. To debug the program under that job,
you need a service job running:

STRSRVJOB JOB(077376/SHUPE/QP2FORK)

Now, from the AS/400 5250 session on which you started the service job,
enter:

STRDBG UPDPROD(*YES)

Those of you who are familiar with the Interactive Debugger will notice that
we did not specify a program to start debugging. This is because service
programs cannot have the STRDBG issued against them from the command
line. You need to enter command:

DSPMODSRC

Press F14 or press Shift + F2.

You should now see the Work with Module List screen shown in Figure 37 on
page 182.

Work with Job
System: AS25B

Job: QP2FORK User: SHUPE Number: 077376

Select one of the following:

1. Display job status attributes
2. Display job definition attributes
3. Display job run attributes, if active
4. Work with spooled files

10. Display job log, if active or on job queue
11. Display call stack, if active
12. Work with locks, if active
13. Display library list, if active
14. Display open files, if active
15. Display file overrides, if active
16. Display commitment control status, if active

More...
Selection or command
===>

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
Chapter 12. Problem determination and messages 181

Figure 37. Work with Module List screen

Enter option 1, the name of the service program, the library it is in, and the
type *SRVPGM in the appropriate fields. Press Enter. You should now be able
to see the module listed that you want to debug (Figure 38).

Figure 38. Work with Module List: Showing all modules in the service program

Work with Module List
System: AS25B

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

(No programs in source debugger.)

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Work with Module List
System: AS25B

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
ILEPASE SHUPE *SRVPGM
ILEPASE SHUPE *SRVPGM
ILEMOD2 *MODULE Selected

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
Program ILEPASE added to source debugger.
182 Porting UNIX Applications Using AS/400 PASE

Enter option 5 to work with the source code and set your break points. Once
the break points are set, return to the first AS/400 5250 session where your
terminal session is sitting. You can either choose to run the AS/400 PASE
code or step through it. To step through it, type an “s” and press Enter. To run
it, type run to let the program run. In either case, you eventually come to the
_ILECALL statement in your AS/400 PASE program. When you do, the
debugger session in your second AS/400 5250 session will activate and
display the source line where you set your first breakpoint.

If you are stepping through your AS/400 PASE code, you should come to a
screen like the example in Figure 39.

Figure 39. DBX in QP2PASE

At this point, the debug session in your second AS/400 5250 session
becomes active and you can step through your code there (Figure 40 on page
184).

/QOpenSys/usr/bin/sh

(dbx)
> s
stopped in do_init at line 71

71 init_pid = getpid();
(dbx)

> s
stopped in do_init at line 72

72 }
(dbx)

> s
stopped in simple_wrapper at line 160
160 _ILECALL(ILEtarget,

(dbx)
> s

===>

F3=Exit F6=Print F9=Retrieve F11=Truncate/Wrap F12=Disconnect
F13=ClearF17=Top F18=Bottom F21=CLcommandentry
Program ILEPASE added to source debugger.
Chapter 12. Problem determination and messages 183

Figure 40. Interactive debugger session

You can then evaluate variables in both programs as they are running. When
you have finished with your debug sessions, you need to run the ENDDBG and
ENDSRVJOB commands in your second AS/400 5250 session. This frees the
resources allocated to the debugging effort and reopens the source files for
changes.

Display Module Source

Program: ILEPASE Library: SHUPE Module: ILEMOD2
39 * Open a conversion descriptor to convert CCSID 37
40 * (EBCDIC) to CCSID 819 (ASCII), that is used for
41 * any character data returned to the caller
42 */
43 memset(fromcode, 0, sizeof(fromcode));
44 strcpy(fromcode, "IBMCCSID000370000000");
45 memset(tocode, 0, sizeof(tocode));
46 strcpy(tocode, "IBMCCSID00819");
47 cd = iconv_open(tocode, fromcode);
48 if (cd.return_value == -1)
49 {
50 printf("iconv_open failed\n");
51 return -1;
52 }
53

More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Step completed at line 44
Program ILEPASE added to source debugger.
184 Porting UNIX Applications Using AS/400 PASE

Chapter 13. Security considerations

From a security point of view, AS/400 PASE programs are subject to the
same security restrictions as any other programs on the AS/400 system. To
run an AS/400 PASE program on an AS/400 system, you must have authority
to the AIX binary in the integrated file system. You must also have the proper
level of authority to each of the resources accessed by that program, or the
program will receive an error when you attempt to access those resources.

13.1 User profiles in AS/400 PASE

Authentication information is stored in individual “profiles” on an AS/400
system rather than in such files as /etc/passwd. Users and groups have
profiles. All of these profiles share one name space, so you will not find a
user profile named “JOE” and a different group profile also named “JOE.”
User and group names are considered to be mono-case. If you pass a
lowercase name to the getpwnam() or getgrnam() APIs, the system will fold
the case to match the name strings as expected. If you call getpwuid() or
getgrgid() to get the profile name returned, it will be in uppercase.

Every user has a uid. Every group has a gid. These are defined according to
the POSIX 1003.1 standard. The two numeric spaces are separate, so you
can have a user with a uid of 104 and a group with a gid of 104 that are
distinct from each other.

The AS/400 system has a user profile for the security officer, QSECOFR, that
has a uid of 0. No other profile can have the uid of 0. QSECOFR is the most
privileged profile on the system and, in that sense, acts as the root user.
However, the AS/400 system also provides a set of specific privileges that
can be assigned to individual users by system administrators. One of these
privileges, *ALLOBJ, overrides the discretionary access control for file
access, for example, which is a typical use of root privileges on UNIX
systems. In a ported application that uses root access, it is probably better
security practice to create a specific user ID for the “application user” that can
be given *ALLOBJ authority, therefore avoiding the use of QSECOFR, which
has much more privilege than is needed by the single application. Unlike
UNIX systems, the AS/400 system does not require group membership for
users. The gid of 0 for a user profile on the AS/400 system means “no group
assigned” rather than referring to a group with more privileges.

AS/400 security relies on integrated security built into the system from the
hardware up. All accesses to objects must pass a security check. The
© Copyright IBM Corp. 2000 185

security check is done with respect to whichever identity the process is
running under at the time of the access.

AS/400 PASE relies on address separation for security. If a resource is not
available in your address space, you can't access it. File system security
prevents someone from loading a resource into their address space. Once in
the address space, the resource is available to the process regardless of the
identity under which the process is running.

With the advent of IFS, some of this behavior is now also seen in the AS/400
system. For example, when using a stream file, authority is only checked at
the time the file is opened and is only checked for the identity under which the
process was running at the time of the open. Security checks are not done for
additional checks after the open.

AS/400 PASE programs run in a “tags inactive” mode. At the transition to the
OS/400 environment, “tags active” is turned on and parameter validation is
done. Once in the AS/400 environment, access to traditional AS/400 objects
are covered by normal AS/400 security checks.

AS/400 PASE uses the SYSCALL interface when it needs to access
resources or behavior normally provided by SLIC. This interface gives
AS/400 PASE programs only indirect access to these internals and also
appears to be very safe.

13.2 AIX exploitation points

It is relatively difficult to create and spread OS/400-based viruses, because
OS/400 programs are protected by program validation checksum. This makes
it difficult for someone to distribute patched programs (whether they are user
or operating system programs) to other systems without the system
administrators of those systems being able to detect those programs as being
patched. While not foolproof, it can be used to identify programs not
generated by the trusted IBM translator, if the system administrators have
their systems properly configured. This is proprietary AS/400 technology.

AS/400 PASE security is more comparable to AIX security, because of the
relative ease with which AS/400 PASE programs can be patched. AIX-based
viruses could function and spread within the AS/400 PASE environment.
System administrators should implement all of the standard precautionary
measures, including scanning binaries with virus-checking software before
transferring them to the AS/400 system.
186 Porting UNIX Applications Using AS/400 PASE

Chapter 14. AS/400 PASE globalization

Globalization for AS/400 PASE applications is facilitated by the fact that
AS/400 PASE runtime is based on AIX runtime. AS/400 PASE programs can
use the same rich set of programming interfaces for locales, character string
manipulation, date and time services, and character encoding conversions
supported on AIX. AS/400 PASE runtime also provides support for
application-provided message catalogs (although no message catalogs are
shipped in V4R5 for system-supplied runtime and utilities, so any messages
from these facilities are presented in English).

AS/400 PASE provides an ASCII programming environment, while most
AS/400 system services and data stored on the system use EBCDIC
encoding. With only a few exceptions, system support for AS/400 PASE
handles ASCII/EBCDIC data conversions automatically for all supported
runtime interfaces. The runtime implementation converts character data
between the job default (EBCDIC) coded character set identifier (CCSID) and
an ASCII (or UTF-8) AS/400 PASE CCSID that is specified as an argument
on the ILE Qp2RunPase API. An AS/400 PASE program can also change the
AS/400 PASE CCSID using the _SETCCSID runtime function.

14.1 Locale support

AS/400 PASE supports all the interfaces in AIX runtime for managing the
locale that an application uses and for performing locale-sensitive functions
(such as ctype and strcoll), including support for both single-byte and
multi-byte character encodings. AS/400 PASE in V4R5 ships with a subset of
AIX 4.3.3 locales, which provide support for a large number of countries and
languages using industry-standard encodings (codesets ISO8859-x), codeset
IBM-1250, and codeset UTF-8. Euro currency support is provided for
applications, which require single-byte encodings with IBM-1252 locales, and
for applications that can use multi-byte encodings with UTF-8 locales.

AS/400 PASE does not currently provide locales for PC codesets (such as
IBM-850, IBM-943, GBK, and big5) and does not ship a utility to create new
locales. But, locales created by customers on an AIX system (using the
localedef utility) can be used in AS/400 PASE.

When an AS/400 PASE application changes locales, it generally should also
change the AS/400 PASE CCSID (using the _SETCCSID runtime function) to
match the encoding for the new locale. This is necessary to ensure that any
character data interface arguments are correctly interpreted by AS/400 PASE
runtime (and possibly converted when invoking an EBCDIC system service).
© Copyright IBM Corp. 2000 187

It is also necessary for setting the correct CCSID tag on any bytestream file
the AS/400 PASE application creates. You can use the cstoccsid runtime
function to determine what CCSID corresponds to a codeset name.

AS/400 PASE applications that support Japanese, Korean, Traditional
Chinese, and Simplified Chinese are advised to use UTF-8 locales. V4R5
includes other locales for these languages, but the system currently does not
support setting the AS/400 PASE CCSID to match the encodings for
IBM-eucXX codesets. Using UTF-8 support may require converting file data
that may be stored in other encodings (such as Shift-JIS) when the
application runs on other platforms.

14.2 File system and sockets support

AS/400 PASE file system and sockets support automatically handles CCSID
conversion for character data arguments, except for stream data read from or
written to a file descriptor. Character argument data, such as path names and
sockets addresses, is converted between the encoding specified by the
current AS/400 PASE CCSID and the encodings used internally by AS/400
Integrated File System and sockets services.

The AS/400 Integrated File System tags every bytestream file with a CCSID
that is set when the file is created. ILE runtime provides automatic data
conversion between the job default CCSID and the bytestream file CCSID for
data written to or read from a file opened in text mode. AS/400 PASE runtime
does not do CCSID conversion for bytestream file data (except for special
processing for stdin, stdout, and stderr described in the following section), so
the application must do any necessary data conversion. Similarly, AS/400
PASE sockets interfaces do no CCSID conversion for data written to or read
from an open socket. An AS/400 PASE application can determine the CCSID
of a bytestream file using the STX_XPFSS_PASE command flag on the statx
and fstatx runtime functions (an AS/400 extension to AIX runtime support that
retrieves an AS/400 stat structure).

Even though AS/400 PASE runtime does no automatic character data
conversion of stream data, bytestream files created by an AS/400 PASE
application should be correctly tagged so any character data they contain can
be correctly handled by ILE runtime. The CCSID tag for any file created by an
AS/400 PASE application is set to the current AS/400 CCSID value (specified
on the Qp2RunPase API or _SETCCSID function) when the file was created.
Applications normally write character data in the same encoding as the locale
they are using, so when an AS/400 PASE application changes to a locale with
188 Porting UNIX Applications Using AS/400 PASE

a different codeset, it should also change the AS/400 PASE CCSID (using the
_SETCCSID runtime function) to match the locale encoding.

14.3 stdin, stdout, and stderr

By default, AS/400 PASE runtime connects file descriptors 0, 1, and 2 to the
same files used by ILE C for stdin, stdout, and stderr, so any redirection of
these ILE C streams also affects stdin, stdout, and stderr for AS/400 PASE
programs. The files that ILE C uses for stdin, stdout, and stderr generally
contain EBCDIC data. AS/400 PASE runtime provides special support to
convert between the AS/400 PASE CCSID and the job default CCSID for data
read from file descriptor 0 (stdin) and for data written to file descriptors 1 and
2 (stdout and stderr). This allows an AS/400 PASE application to process
ASCII data for stdin, stdout, and stderr, while the files bound to these
streams contain EBCDIC data.

The special CCSID conversion support for AS/400 PASE file descriptors 0, 1,
and 2 applies only to the file descriptors created when an AS/400 program is
invoked by Qp2RunPase. These conversions persist through any descriptor
number bound to one of the initial descriptors (for example, when a descriptor
is duplicated using the dup runtime function). No conversions are done for
any bytestream file, pipe, or socket the application opens (even if they are
bound to descriptor numbers 0, 1, or 2).

An AS/400 PASE application can disable automatic CCSID conversion
support for file descriptors 0, 1, and 2 by setting ILE environment variables
(QIBM_IFS_USE_STANDARD_IO set to Y or I, and
QIBM_PASE_DESCRIPTOR_STDIO set to B) before starting the application.

14.4 Interactive terminal support

AS/400 PASE does not currently provide tty device support. However, file
descriptors 0, 1, and 2 created when the Qp2RunPase API is invoked are
bound to ILE C runtime support for stdin, stdout, and stderr, which provides
access to the 5250 display for an interactive job.

In an interactive job, the default ILE C runtime binding for stdin, stdout, and
stderr is a simple scrollable list presented on the 5250 display device for the
job using the Dynamic Screen Manager. When the Qp2RunPase API or
program QP2SHELL is called in an interactive job that uses the default
configuration for standard I/O, any data the AS/400 PASE program writes to
stdout or stderr is converted to EBCDIC and written to the 5250 display. And,
any data the program reads from stdin is the ASCII equivalent of data the
Chapter 14. AS/400 PASE globalization 189

user typed into the input field on the 5250 display. ILE C runtime always does
line buffering for stdin, stdout, and stderr in this mode. Therefore, an
application may need to write extra newline characters (compared to what is
needed for the application running on AIX) to force output to the display, and
wait until the user presses the Enter key for any input read from stdin.

When you call program QP2TERM to run an AS/400 PASE shell (or any
AS/400 PASE program) in a terminal session (managed by the ILE
Qp0zRunTerminal API), a similar 5250 display is presented for stdin, stdout,
and stderr. AS/400 PASE runtime does CCSID conversion (by default), but
the AS/400 PASE program runs in a batch job and uses pipes to
communicate with the interactive job. AS/400 PASE programs that run in a
terminal session do not need to write extra newline characters to stdout or
stderr to force the output to display, but must wait until the user presses the
Enter key for input data read from stdin.

14.5 Character encoding conversion support

AS/400 PASE provides automatic character data conversion support for most
supported runtime functions. However, applications must handle conversions
for stream data written to or read from an open file descriptor and for
arguments passed to or from an ILE procedure invoked with the _ILECALL
runtime function.

AS/400 PASE runtime does no automatic character argument data
conversion when an AS/400 PASE program calls an ILE procedure (using
_ILECALL). The application must do any necessary conversions in either the
calling program or the called procedure.

ILE runtime and AS/400 PASE runtime provide independent implementations
of iconv_open, iconv, and iconv_close to convert between different character
encodings. Codeset names used as arguments to the AS/400 PASE version
of iconv_open follow AIX naming conventions and are different from the
argument values passed to the ILE version of iconv_open. For example,
AS/400 PASE codeset ISO8859-1 is the same as ILE encoding
IBMCCSID00819.

In addition to support for the iconv set of runtime functions, AS/400 PASE
includes the iconv utility, which can be invoked from an AS/400 PASE shell to
convert bytestream file data.

AS/400 PASE in V4R5 ships a subset of the conversion objects provided by
AIX 4.3.3, including conversions for a wide range of EBCDIC, ASCII, UTF-8,
and UCS-2 encodings. AS/400 PASE does not currently provide a utility to
190 Porting UNIX Applications Using AS/400 PASE

create new conversion objects, but conversion objects created by customers
on an AIX system (using the genxlt utility) can be used in AS/400 PASE.

14.6 Date and time services

AS/400 PASE runtime supports most of the same interfaces as AIX runtime
for date and time services, except that AS/400 PASE does not currently
provide support to set the system clock. The system clock can be set using
standard OS/400 interfaces (such as the SETSYSVAL CL command).

The system time is returned by AS/400 PASE runtime functions, such as
gettimeofday is UTC. You must ensure that the system value QUTCOFFSET
is set correctly before starting an AS/400 PASE application. AS/400 PASE
runtime uses the environment variable TZ to convert UTC to local time, or
assume local time is UTC if the TZ variable is not set. OS/400 does not
currently store timezone information, so you may want to set ILE environment
variable PASE_TZ (or TZ) at the system level so all jobs that call program
QP2SHELL to run an AS/400 PASE program use an appropriate default
timezone. For example, the following CL command sets the default timezone
for all AS/400 PASE programs to Central Time in the USA:

ADDENVVAR ENVVAR(PASE_TZ) VALUE(CST6CDT) LEVEL(*SYS)

14.7 Database support

AS/400 PASE runtime support for database (through SQL CLI functions)
automatically handles ASCII/EBCDIC conversion for all interface elements,
with these exceptions:

• Any numeric database field bound as type SQL_CHAR and any database
field bound as type SQL_NUMERIC present EBCDIC data to the AS/400
PASE program. For example, a numeric database field with the value 0123
is returned to an AS/400 PASE program through an SQL_NUMERIC
binding as 0xf0f1f2f3 (zoned decimal format). AS/400 PASE programs can
avoid problems by not using type SQL_NUMERIC and binding numeric
fields as types other than SQL_CHAR or SQL_NUMERIC. Alternatively,
the application can use iconv services to convert the EBCDIC data to
ASCII encoding.

• Pure DBCS (graphic) database fields bound as type SQL_GRAPHIC
present EBCDIC DBCS data to the AS/400 PASE program. This restriction
will be corrected in a future release. An application can avoid problems by
binding pure DBCS database fields as type SQL_WCHAR, which presents
the data in UCS-2 encoding.
Chapter 14. AS/400 PASE globalization 191

AS/400 PASE support for database interfaces defaults to using the current
(ASCII) AS/400 PASE CCSID when the first database runtime function is
invoked by the application. An application can use a different ASCII CCSID
by invoking the (AS/400-unique) SQLOverrideCCSID runtime function before
invoking any other database interface.

14.8 X-Windows support

AS/400 PASE X-Windows client runtime provides the same support as
corresponding AIX X-Windows client runtime (including Motif support).
AS/400 PASE does not provide X-Windows server support because the
AS/400 system does not support direct attachment of graphical display
devices. However, any system that provides X-Windows server support can
be used with AS/400 PASE X-Windows application (including a dedicated
X-Station, UNIX system, or PC running X-Windows client software).

AS/400 PASE does not provide font server capability, so X-Windows servers
attached to an AS/400 PASE application must either have all necessary fonts
installed, or must be configured to use another system (generally an RS/6000
system running AIX) as a font server.

14.9 Device support

The AS/400 system does not currently provide support for any hardware
devices through files in the /usr directory. AS/400 PASE applications need to
call OS/400 interfaces (using the _ILECALL runtime function) to access
devices, such as printers and tape drives.

AS/400 PASE support for stdin, stdout, and stderr provide access to the
display device in an interactive job. The integrated file system provides a
/QOPT file that can be used by AS/400 PASE programs to access files on a
CDROM. However, no device-specific controls are possible (such as
controlling character display color or ejecting the CD) in either case.

14.10 Shells and utilities

AS/400 PASE in V4R5 includes the Korn, Bourne, and C shells, along with
over 100 utilities. The AS/400 system does not provide UNIX-style job
control, so AS/400 PASE shells and utilities do not support any functions that
rely on job control.
192 Porting UNIX Applications Using AS/400 PASE

When a shell is invoked from an interactive job by calling program
QP2TERM, the shell and any utilities it runs benefit from AS/400 PASE
support for automatic ASCII/EBCDIC conversion for stdin, stdout, and stderr.
The shell and utilities read and write ASCII data through stdin, stdout, and
stderr, even though the 5250 display only handles EBCDIC data. CCSID
conversion is only done for data read or written to the 5250 display, so no
conversions apply when the output of one utility is piped into another utility.
This allows any binary data to be piped between utilities without errors due to
character data conversion.

The AS/400 PASE iconv utility can be used to handle character encoding
differences that are not automatically handled by the system. For example,
the following command line converts an EBCDIC bytestream file to ASCII and
then outputs only the last five lines of the file:

cat ebcdic.file | iconv -f IBM-037 -t ISO8859-1 | tail -5

The AS/400 PASE “system” utility runs any CL command allowed in a batch
job. The “system” utility includes support to capture spooled output files and
write them to stdout, as well as providing ASCII/EBCDIC conversion for any
data processed by ILE C through stdin, stdout, or stderr in the CL command
processing program. The conversions done by the utility allow the CL
command processing program to read and write EBCDIC data through
standard I/O, while the shell and any utilities in the pipe see ASCII data. For
example, this command line runs the WRKACTJOB CL command and
outputs only lines containing the string QPGMR:

system wrkactjob | grep QPGMR

14.11 AS/400 PASE locales

Table 10 shows the locales shipped with AS/400 PASE in V4R5.

Table 10. Locales shipped with AS/400 PASE

Locale Language Territory CCSID

ar_AA
ar_AA.ISO8859-6
AR_AA.UTF-8

Arabic Arabic Countries 1089
1089
1208

be_BY.ISO8859-5
BE_BY.UTF-8

Byelorussian Byelorussian SSR 915
1208

bg_BG
bg_BG.ISO8859-5
BG_BG.UTF-8

Bulgarian Bulgaria 915
915
1208
Chapter 14. AS/400 PASE globalization 193

ca_ES
ca_ES.ISO8859-1
ca_ES.IBM-1252
ca_ES.IBM-1252@euro
CA_ES.UTF-8
CA_ES.UTF-8@euro

Catalan Spain 819
819
1252
1252
1208
1208

cs_CZ
cs_CZ.ISO8859-2
CS_CZ.UTF-8

Czech Czech Republic 912
912
1208

da_DK
da_DK.ISO8859-1
DA_DK.UTF-8

Danish Denmark 819
819
1208

de_CH
de_CH.ISO8859-1
DE_CH.UTF-8

German Switzerland 819
819
1208

de_DE
de_DE.ISO8859-1
de_DE.IBM-1252
de_DE.IBM-1252@euro
DE_DE.UTF-8
DE_DE.UTF-8@euro

German Germany 819
819
1252
1252
1208
1208

el_GR
el_GR.ISO8859-7
EL_GR.UTF-8

Greek Greece 813
813
1208

EN_AU.UTF-8 English Australia 1208

EN_BE.UTF-8
EN_BE.UTF-8@euro

English Belgium 1208
1208

en_GB
en_GB.ISO8859-1
en_GB.IBM-1252
en_GB.IBM-1252@euro
EN_GB.UTF-8

English Great Britain 819
819
1252
1252
1208

en_US
en_US.ISO8859-1
EN_US.UTF-8

English United States 819
819
1208

EN_ZA.UTF-8 English South Africa 1208

Locale Language Territory CCSID
194 Porting UNIX Applications Using AS/400 PASE

es_ES
es_ES.ISO8859-1
es_ES.IBM-1252
es_ES.IBM-1252@euro
ES_ES.UTF-8
ES_ES.UTF-8@euro

Spanish Spain 819
819
1252
1252
1208
1208

ET_EE.UTF-8 Estonian Estonia 1208

fi_FI
fi_FI.ISO8859-1
fi_FI.IBM-1252
fi_FI.IBM-1252@euro
FI_FI.UTF-8
FI_FI.UTF-8@euro

Finnish Finland 819
819
1252
1252
1208
1208

fr_BE
fr_BE.ISO8859-1
fr_BE.IBM-1252
fr_BE.IBM-1252@euro
FR_BE.UTF-8
FR_BE.UTF-8@euro

French Belgium 819
819
1252
1252
1208
1208

fr_CA
fr_CA.ISO8859-1
FR_CA.UTF-8

French Canada 819
819
1208

fr_CH
fr_CH.ISO8859-1
FR_CH.UTF-8

French Switzerland 819
819
1208

fr_FR
fr_FR.ISO8859-1
fr_FR.IBM-1252
fr_FR.IBM-1252@euro
FR_FR.UTF-8
FR_FR.UTF-8@euro

French France 819
819
1252
1252
1208
1208

hr_HR
hr_HR.ISO8859-2
HR_HR.UTF-8

Croatian Croatia 912
912
1208

hu_HU.
hu_HU.ISO8859-2
HU_HU.UTF-8

Hungarian Hungary 912
912
1208

is_IS
is_IS.ISO8859-1
IS_IS.UTF-8

Icelandic Iceland 819
819
1208

Locale Language Territory CCSID
Chapter 14. AS/400 PASE globalization 195

IT_CH.UTF-8 Italian Switzerland 1208

it_IT
it_IT.ISO8859_1
it_IT.IBM-1252
it_IT.IBM-1252@euro
IT_IT.UTF-8
IT_IT.UTF-8@euro

Italian Italy 819
819
1252
1252
1208
1208

iw_IL
iw_IL.ISO8859-8
HE_IL.UTF-8

Hebrew Israel 916
916
1208

ja_JP
ja_JP.IBM-eucJP
JA_JP.UTF-8

Japanese Japan 33722
33722
1208

ko_KR
ko_KR.IBM-eucKR
KO_KR.UTF-8

Korean Korea 970
970
1208

LT_LT.UTF-8 Lithuanian Lithuania 1208

LV_LV.UTF-8 Latvian Latvia 1208

mk_MK
mk_MK.ISO8859-5
MK_MK.UTF-8

Macedonian Macedonia 915
915
1208

nl_BE
nl_BE.ISO8859-1
nl_BE.IBM-1252
nl_BE.IBM-1252@euro
NL_BE.UTF-8
NL_BE.UTF-8@euro

Dutch Belgium 819
819
1252
1252
1208
1208

nl_NL
nl_NL.ISO8859-1
nl_NL.IBM-1252
nl_NL.IBM-1252@euro
NL_NL.UTF-8
NL_NL.UTF-8@euro

Dutch Netherlands 819
819
1252
1252
1208
1208

no_NO
no_NO.ISO8859-1
NO_NO.UTF-8

Norwegian Norway 819
819
1208

Locale Language Territory CCSID
196 Porting UNIX Applications Using AS/400 PASE

pl_PL
pl_PL.ISO8859-2
PL_PL.UTF-8

Polish Poland 912
912
1208

pt_BR
pt_BR.ISO8859-1
PT_BR.UTF-8

Portuguese Brazil 819
819
1208

pt_PT
pt_PT.ISO8859-1
pt_PT.IBM-1252
pt_PT.IBM-1252@euro
PT_PT.UTF-8
PT_PT.UTF-8@euro

Portuguese Portugal 819
819
1252
1252
1208
1208

ro_RO
ro_RO.ISO8859-2
RO_RO.UTF-8

Romanian Romania 912
912
1208

ru_RU
ru_RU.ISO8859-5
RU_RU.UTF-8

Russian Russia 915
915
1208

sh_SP
sh_SP.ISO8859-2
SH_SP.UTF-8

Serbian Latin Yugoslavia 912
912
1208

sk_SK
sk_SK.ISO8859-2
SK_SK.UTF-8

Slovak Slovakia 912
912
1208

sl_SI
sl_SI.ISO8859-2
SL_SI.UTF-8

Slovene Slovenia 912
912
1208

sq_AL
sq_AL.ISO8859-1
SQ_AL.UTF-8

Serbian Cyrillic Yugoslavia 915
915
1208

sr_SP.ISO8859-5
SR_SP.UTF-8

Serbian Latin Yugoslavia 915
1208

sv_SE
sv_SE.ISO8859-1
SV_SE.UTF-8

Swedish Sweden 819
819
1208

TH_TH.UTF-8 Thai Thailand 1208

Locale Language Territory CCSID
Chapter 14. AS/400 PASE globalization 197

14.12 AS/400 PASE codesets

Table 11 shows the codeset values supported for iconv conversions in AS/400
PASE V4R5. Any characters in the source encoding that are not supported in
the target encoding are converted to substitution characters.

Table 11. Supported iconv conversions

tr_TR
tr_TR.ISO8859-9
TR_TR.UTF-8

Turkish Turkey 920
920
1208

UK_UA.UTF-8 Ukrainian Ukraine 1208

VI_VN.UTF-8 Vietnamese Vietnam 1208

zh_CN
zh_CN.IBM-eucCN
ZH_CN.UTF-8

Chinese (simpl) China 1383
1383
1208

zh_TW
zh_TW.IBM-eucTW
ZH_TW.UTF-8

Chinese (trad) Republic of China 964
964
1208

Codeset name Description

UTF-8 Universal Transfer Format

IBM-037 COM EUROPE EBCDIC

IBM-1148 INTL ECECP

IBM-500 INTL EBCDIC

IBM-1140 COM EUROPE ECECP

IBM-850 LATIN-1 PC-DATA

IBM-852 LATIN-2 PC-DATA

IBM-1252 MS-WIN LATIN-1

IBM-1145 SPANISH ECECP

IBM-284 SPANISH EBCDIC

IBM-1146 UK ECECP

IBM-285 UK EBCDIC

Locale Language Territory CCSID
198 Porting UNIX Applications Using AS/400 PASE

IBM-860 PORTUGESE PC-DATA

IBM-1147 FRENCH ECECP

IBM-297 FRENCH EBCDIC

IBM-861 ICELAND PC-DATA

IBM-437 USA PC-DATA

IBM-863 CANADA PC-DATA

IBM-865 DEN/NORWAY PC-DAT

IBM-1141 AUS/GERM ECECP

IBM-273 AUS/GERM EBCDIC

IBM-1142 DEN/NORWAY ECECP

IBM-277 DEN/NORWAY EBCDIC

IBM-1143 FIN/SWEDEN ECECP

IBM-278 FIN/SWEDEN EBCDIC

IBM-1144 ITALIAN ECECP

IBM-280 ITALIAN EBCDIC

IBM-1122 ESTONIA EBCDIC

IBM-922 ESTONIA ISO-8

IBM-921 Baltic - Multilingual

IBM-1112 BALTIC EBCDIC

IBM-869 GREEK PC-DATA

IBM-875 GREEK EBCDIC

IBM-857 TURKISH PC-DATA

IBM-1026 TURKEY LATIN-5 EB

IBM-1046 ARABIC - PC

IBM-856 HEBREW PC-DATA

IBM-932 JAPAN MIX PC-DATA

IBM-942 JAPAN MIX PC-DATA

Codeset name Description
Chapter 14. AS/400 PASE globalization 199

IBM-930 JAPAN MIX EBCDIC

IBM-939 JAPAN MIX EBCDIC

IBM-934 KOREA MIX PC-DATA

IBM-944 KOREA MIX PC-DATA

IBM-933 KOREA MIX EBCDIC

IBM-946 S-CHINESE PC-DATA

IBM-936 S-CHINESE PC-DATA

IBM-1381 S-CH GB PC-DATA

IBM-935 S-CHINESE MIX EBC

IBM-836 S-CHINESE EBCDIC

IBM-837 S-CHINESE EBCDIC

IBM-948 T-CHINESE PC-DATA

IBM-938 T-CHINESE MIX PC

IBM-937 T-CHINESE MIX EBC

IBM-eucKR EUC Korean

IBM-eucJP EUC Japanese

IBM-eucCN EUC Simplified Chinese

IBM-eucTW EUC Traditional Chinese

ISO8859-1 ISO Latin-1

ISO8859-2 ISO Latin-2

ISO8859-3 ISO Latin-3

ISO8859-4 ISO Latin-4

ISO8859-5 ISO Latin-5

ISO8859-6 ISO Latin-6

ISO8859-7 ISO Latin-7

ISO8859-8 ISO Latin-8

ISO8859-9 ISO Latin-9

Codeset name Description
200 Porting UNIX Applications Using AS/400 PASE

Note: ECECP means Euro ready.

Codeset name Description
Chapter 14. AS/400 PASE globalization 201

202 Porting UNIX Applications Using AS/400 PASE

Appendix A. Programming resources

Table 12 lists the files that are available for application development and
porting to AS/400 PASE.

Table 12. Programming resource locations

File Reason Where

as400_protos.h AS/400 PASE to ILE http://www.ibm.com/as400/
developer/factory/pase/index.html
or
AS/400 Software Support

as400_types.h Unique AS/400
parameter types for
calls to ILE

See above

as400_libc.exp Link export file for
AS/400unique functions
in libc.a

See above

libdb400.exp Link export file for
AS/400 database
access

See above

qp2user.h ILE to AS/400 PASE See above

qp2shell.h ILE to AS/400 PASE See above

qp2term.h ILE to AS/400 PASE See above

sqlcli.h Access to AS/400
database header file

Available in QSYSINC/H on the AS/400
system, and /QIBM/include/sqlcli.h
within IFS (the OS/400 System
Openness Includes (Product Option 13)
needs to be installed on the AS/400
system to get this include file)
© Copyright IBM Corp. 2000 203

204 Porting UNIX Applications Using AS/400 PASE

Appendix B. The Application Factory

Could your AS/400-based applications be enhanced and complemented by
key applications that currently reside on Windows NT or UNIX systems? Are
you interested in porting additional functions that you presently deliver on
other platforms to your AS/400 solution? Are you bringing new Java functions
to your application? If you answered “yes” to any of these questions, the
Application Factory project recently initiated by PartnerWorld for Developers,
AS/400, is designed to help you. An overview of the site is provided in this
appendix. Be sure to visit the site online at:
http://www.ibm.com/as400/developer/factory/

B.1 Overview

The Application Factory is designed to help IBM Business Partners provide
attractive solutions more quickly to the AS/400 market. In short, the Factory is
an organization of information and tools to help the PartnerWorld team work
most effectively with you in bringing solutions to the AS/400 platform. The
Application Factory can help you estimate delivery of a solutions port. It can
also assist you in developing a checklist to factor in AS/400 customer
expectations regarding your new development efforts. The Application
Factory uses the Web to deliver evolving porting information and
experiences. The fundamental goal of the Application Factory is to:

• Organize existing application and porting information so you can find it
faster and use it more effectively.

• Identify areas where PartnerWorld for Developers, AS/400, should create
new documentation, tools, wizards, or support structures to facilitate the
delivery of your solutions on the AS/400 platform.

The organization of the Application Factory comes from the solution
characteristics that have long been important to AS/400 customers and from
IBM’s commitment to support you in providing solutions with these
characteristics. AS/400 customers in general are very loyal to the platform
and to those solutions that deliver these AS/400 values. We want to make it
easy for you to continue to build these values into your future solutions.

The Application Factory divides the work of creating an AS/400 solution into
several parts. Separating the discussion into these parts can help you more
accurately estimate the short term coding and longer term support costs for a
particular solution. The Factory provides a strong vehicle for PartnerWorld for
Developers, AS/400, to provide you with better tools in key areas. For ported
solutions, the Factory also helps distinguish porting costs and technologies
© Copyright IBM Corp. 2000 205

from the activities of specifically “creating an AS/400 product” — regardless
of the porting technology used (for example ILE, Integrated Netfinity Server,
or AIX integrated runtime AS/400 PASE).

So, how does the Application Factory work logistically? Well first, let’s state
the obvious: “One size does not fit all.” The structure of solutions and the
needs of partners and their customers vary. So, the Factory is intended to
provide a checklist from which you can see that the relevant porting items are
covered, and that all the right questions are asked in bringing a solution to the
AS/400 market.

Figure 41. Creating your AS/400 solution

The first Factory “area of expertise” involves core solution functionality. This
is where your domain expertise and business value is delivered to customers.
The types of support we focus on here include product creation tools, such as
those in the AS/400 AD Tools Network, and the various porting technologies.

The next area of expertise relates more to process or infrastructure. This area
encompasses items, such as acquiring hardware and software, establishing
206 Porting UNIX Applications Using AS/400 PASE

product build procedures, incorporating quality assurance and testing, and
training your AS/400 product support staff. These items are usually the
ongoing investments in supporting a platform.

The third Factory area of expertise regards those tasks that may be required
to specifically adapt an application for the AS/400 world — efforts that put
familiar faces on core solution functions for current AS/400 customers.
Generally, these components are done once and can then be reused for
future releases, so they are typically cost-contained.

B.2 Around the circle

In Figure 41, you see an outer circle of items for porting. In this section, we
outline each of those items.

B.2.1 Licensing

AS/400 provides facilities that permit you to license your software product in
the same manner in which IBM AS/400 products are licensed. These
interfaces are provided as system APIs. For more information, see 2.3,
“Capabilities” on page 14.

B.2.2 Installation and packaging

There are several means by which customers may install their AS/400
solution. They range from UNIX-like scripting to more fully integrated
installation and packaging similar to AS/400 system software.

You may choose to distribute your solution on CD-ROM. You need to acquire
the necessary hardware and software to premaster and record a CD-ROM
from your AS/400 data. More information about using CD-ROMs for
distributing AS/400 software can be found on the Web at:
http://www.ibm.com/as400/optical/cdrom/cddist.html

Several solutions are available for purchase:

• Vendor: Agent Data ApS
Product: BlueCD
Distributed in the U.S. by Kisco Information Systems

• Vendor: Bug Busters Software Engineering
Product: CD Builder
Appendix B. The Application Factory 207

• Vendor: Centerfield Technology, Inc. (formerly Bradenmark Software)
Product: CD-ROM Studio for the AS/400

• Vendor: Mid-Comp International
Product: CD Mastering Software

B.2.3 Operations

There are two types of operator interfaces on the AS/400 system today:
“green screen” menus and commands and graphical. Both can now be
extended to provide application operations interfaces. In addition, several
scripting facilities are available on the system to facilitate system operations.

The menus and command lines are the long-standing AS/400 interfaces and
are still used by many customers. While not flashy, they facilitate ISVs and
customers writing operational scripts that can automate application use and
minimize operator interventions, lowering the cost of operations for a
particular application. The AS/400 Command Language (CL), REXX, or the
QShell Interpreter (an EBCDIC shell), can be used for scripting the
commands.

The graphical interface was released for the first time several years ago and
is steadily growing in popularity. With new plug-in capabilities, applications
can add their operational interfaces to this system view also. The Operations
Navigator infrastructure now supports Java and Visual Basic Plug-ins, as well
as C++ plug-ins. In V4R4, a new toolset was added to make developing
graphical user interfaces for Java easier (GUIBuilder, Resource Script
Converter, and PCML to get or set data to AS/400 systems).

Scripting resources include:

• OS/400 CL programming

• Creating AS/400 commands:
http://www.ibm.com/as400/developer/porting/400cmds.html

• REXX programming

• Shell scripting via Qshell Interpreter:
http://www.ibm.com/as400/developer/qshell

Graphical interface resources include:

• AS/400 Operations Navigator Plug-in Support Web page:
http://www.ibm.com/as400/oper_nav/pluginpage.htm

• Tech Studio references:
http://www.ibm.com/as400/tstudio/opsnav/plugin/pludex.htm
208 Porting UNIX Applications Using AS/400 PASE

Or, consider the IBM Redbook AS/400 Client Access Express for Windows:
Implementing V4R4M0, SG24-5191.

B.2.4 AS/400 workloads and performance

OS/400 provides many services for scheduling work and monitoring how the
system is running. An understanding of this information will help you leverage
these built-in capabilities to fine tune your solutions and increase your
customers' satisfaction.

B.2.5 Security

AS/400 system security is among the best in the industry. It is rooted in the
AS/400 object-based architecture itself. This architecture provides integrated
traditional OS/400 and UNIX system security functions and facilities. Some
specific considerations for security ports are included in the security section
of the porting FAQs.

To understand these facilities and the AS/400 security perspective, see
Chapter 13, “Security considerations” on page 185, or visit the OS/400
security-related FAQs Web site at:
http://www.ibm.com/as400/developer/porting/faq.html#header_11

B.2.6 National language and internationalization

Support for worldwide customers to work in their native languages has been a
priority for the AS/400 system since its inception. Industry terms relating to
this functional area, including internationalization (I18N), national language
support (NLS), national language versions (NLV), localization, and
globalization are supported on different operating systems in different ways.

AS/400 supports multiple models—a powerful, long-standing model that tags
all data on the system with its encoding, plus message catalog support
standardized for UNIX systems. The following references are useful in
understanding this support:

• PWD/400 DBCS Guide:
http://www.ibm.com/as400/developer/dbcs/guide.html

• AS/400 International Application Development, SC41-5603

• National Language Support, SC41-5101

In addition, because the AS/400 system is historically based on the EBCDIC
character set, there are some other potential considerations for working with
application data that may already reside on the system.
Appendix B. The Application Factory 209

B.2.7 Problem management

Problem management, in AS/400 terms, includes learning how to retrieve and
respond to messages. Messages may be found in one or more queues or
logs:

• QSYSOPR (system operator) message queue
• Worstation (user) message queue
• Job log
• History log

A good place to start learning about the details of AS/400 problem
management is the manual AS/400 Basic System Operation, Administration,
and Problem Handling, SC41-5206.

To further customize your solution to capture and report problems in an
AS/400 manner, consider the OS/400 Problem Management APIs.

B.2.8 Database access

DB2 Universal Database for AS/400 is delivered with every AS/400 system. It
is fully integrated with the OS/400 for security, save/restore operations, and
other system support functions.

For general information about DB2 UDB for AS/400, see:

• DB2 Universal Database for AS/400:
http://www.ibm.com/as400/db2/db2main.htm

• Database Porting FAQs:
http://www.ibm.com/as400/developer/porting/faq.html#Header_7

B.2.9 Printing

The AS/400 system provides a print spooling subsystem that can manage
printing for you. To learn how to leverage AS/400-specific print facilities, you
may want to review the following manuals:

• OS/400 Printer Device Programming V4R4, SC41-5713
• PrintManager API Reference, S544-3304
210 Porting UNIX Applications Using AS/400 PASE

Appendix C. AS/400 PASE compared to ILE

Check the table at the following Web site for the most recent assessment of
the relative differences between PASE and ILE:
http://www.ibm.com/as400/developer/factory/table.html

A snapshot of the tables is included below, using the keys described in Table
13.

Table 13. Key

Table 14 outlines the general AS/400 issues that arise when porting or
migrating an application to OS/400.

Table 14. General considerations

Symbol Meaning

++ Very favorable; little to no effort required

+ Favorable; minor effort required

o Neutral

- Significant effort required

-- Very significant effort required

+/- Effort varies based upon analysis

Porting
considerations

ILE AS/400 PASE

AS/400 hardware
support

+
+

All current hardware
supported

+ All e-Series hardware
supported (post 9/97)

OS/400 software
support

+
+

All current releases
supported

o V4R4 and later

Use of UNIX system
interfaces

+ Some UNIX or POSIX
APIs are supported

+
+

Many UNIX and POSIX
APIs supported and AIX
extensions supported

Process for assessing
portability

+ API analysis first, then
ASCII dependencies
and pointer changes

+
+

API Analysis is a
reasonable estimator of
portability

Generate machine code -
-

Architecture does not
support

+
+

Supported

Use specific directly
attached devices

- Workaround
dependency

- Workaround
dependency
© Copyright IBM Corp. 2000 211

Table 15 outlines issues that arise due to the platform on which the
application resides before being ported.

Table 15. Currently supported platforms

Compute intensive
applications

o Math libraries not
optimized

+
+

Optimized math libraries

Staff has AS/400 skills +
+

Skills may already be
ILE, or adding ILE skills
will be a benefit to
programmers

+ Minimal AS/400 skills
needed for one time
“productization” of
product

Complicated UNIX build
process

o Use NFS to deliver
source for compilation in
ILE, map a network
drive, or use REXEC

+
+

Can use existing AIX
build structures

Extensive test harness
for quality assurance

+ Use NFS to deliver test
results for analysis, or
map network drive

+
+

Use NFS, shells, and
utilities

Porting
considerations

ILE AS/400 PASE

Release to release
compatibility required

+
+

If “observability” (AS/400
intermediate compilation
form) is maintained,
hardware change will not
require recompilation

+ Similar to AIX upgrade;
recompilation required
for new hardware
architecture, not
necessarily for
processor upgrades

Existing AIX version of
application

+
/
-

Analysis for porting
process will determine
difficulty; database use
will require changes

+
+

Database use will
require changes; other
changes minimized

Application runs on AIX
4.3.3

+
/
-

Analysis for porting
process will determine
difficulty

+
+

AS/400 PASE targets
this AIX release; for
earlier releases, may
require recompilation on
appropriate AIX release

Application is non-AIX
UNIX

o Need AS/400 skills for
both port and creating
AS/400 product;
education for new
customer base

+ Need AIX skills for port;
need AS/400 skills for
“productization”;
education to support
new customer base

Porting
considerations

ILE AS/400 PASE
212 Porting UNIX Applications Using AS/400 PASE

Table 16 outlines the application structure and integration issues that must be
considered.

Table 16. Application structure and integration

Table 17 provides a comparison between ILE and AS/400 PASE ports when
specific system services are used.

Table 17. Application interaction with system services

Porting
considerations

ILE AS/400 PASE

Integration w/ILE code
outside application

+
+

No change required + Calls to ILE supported
but should be limited;
possible performance
issues for large ASCII to
EBCIDIC conversions

Application is
extendable by customer

+
+

AS/400 development
tools are available to
build callable parts,
some as/400 hosted,
some cross-platform
tools

+ Require AIX system for
customer builds or
integration of ILE calls
into application to
connect to customer
code

Application is organized
in a UNIX library
structure

o If function is to be called
in ILE application, adapt
library to AS/400 ILE
service programs

o If function is to be called
by PASE application
code, port shared
libraries to PASE

Application function
uses a server/daemon
process model

+
+

Supported +
+

Supported

Porting
considerations

ILE AS/400 PASE

Dependency on fork or
exec (not in
combination)

- Change to use spawn
and adjust entry point

+
+

Supported

Dependency on
setuid/setgid
independent of user and
group credentials

o Change to use swap
function; or AS/400
version of setuid/setgid
functions

+
+

Supported

Dependency on X
Windows support

+ Use third-party products
for EBCDIC support

+
+

Supported
Appendix C. AS/400 PASE compared to ILE 213

Table 18 provides a comparison between ILE and AS/400 PASE when
specific languages are being used.

Table 18. Language considerations

A single environment for
both development and
deployment of
applications required

+ Available both with
AS/400 or third- party
tools for ILE

o AIX development
environment; AS/400
deployment

Dependency on ASCII
codeset

+ ASCII C runtime PRPQ
is available; other
interfaces require
EBCDIC

+
+

Supported

64 bit support (4/8/8
model)

-

-

For files
not for C runtime

For processes, recode to
use teraspace

+
+

-

For files
supported

For processes, currently
only 32-bit address
space supported

Porting
considerations

ILE AS/400 PASE

Application coded in C + ANSI standard C with
access to both stream
and database files

+
+

AIX compilation required
using AIX compilers
Non-ANSI practices are
supported

Application coded in
C++

+ ANSI C++ draft standard
X3J16/95-001
supported

+
+

Supports full ANSI C++
VisualAge C++

Application coded in
Fortran

-
-

unsupported +
+

AIX Fortran runtime

Application coded in
COBOL

+ ANSI 85 standard
COBOL supported with
AS/400 extensions

-
-

Unsupported

Application relies on
shell programming

+ QSHELL interpreter +
+

QSHELL, QP2SHELL,
and QP2TERM; PASE,
Kern, Bourne, and
Cshell

Porting
considerations

ILE AS/400 PASE
214 Porting UNIX Applications Using AS/400 PASE

Table 19 provides a comparison between ILE and AS/400 PASE when
database porting is being considered.

Table 19. Database considerations

Table 20 provides a comparison between ILE and AS/400 PASE when
third-party products are part of the porting consideration.

Table 20. Third-party product interaction

Development relies on
shell programming

+ QSHELL interpreter +
+

QSHELL, QP2SHELL
and QP2TERM
supported; PASE, Kern,
Bourne, and Cshell

Porting
considerations

ILE AS/400 PASE

Database access using
typical UNIX database

o DB2 UDB for AS/400
supported along with
native AS/400
interfaces; port required

o DB2 UDB for AS/400
supported; port required

Application uses
embedded SQL

+ Port to DB2 UDB for
AS/400 and use
precompiler

- Embedded SQL is not
available. Extract major
db interaction logic into
stored procedures and
call from PASE

Application uses CLI + Available, some
EBCDIC assumptions;
port to DB2 UDB for
AS/400

+ Available, returns ASCII
data; port to DB2 UDB
for AS/400

Application performs
many DB transactions

+
+

Many fine grained
requests supported
through proprietary
interfaces

+ Preferred fewer, larger
requests if ASCII
translation required

Porting
considerations

ILE AS/400 PASE

Application has
middleware
requirements

o If most requirements
met by ILE, port to ILE
then access PASE for
additional middleware

o If most requirements
met by PASE, port to
PASE then access ILE
for additional
middleware

Porting
considerations

ILE AS/400 PASE
Appendix C. AS/400 PASE compared to ILE 215

Dependency on larger
partner application as
primary data source

o Consider where the
major application runs
and latency between
application port under
consideration and major
application

o Consider where the
major application runs
and latency between
application port under
consideration and major
application

Porting
considerations

ILE AS/400 PASE
216 Porting UNIX Applications Using AS/400 PASE

Appendix D. Special notices

This publication is intended to help IBM Business Partners, Independent
Software Vendors and IBM Global Service Professionals to prepare, plan and
perform UNIX application porting to the AS/400 system. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by OS/400 V4R5 and option 33. See the
PUBLICATIONS section of the IBM Programming Announcement for OS/400
V4R5, 5796-SS1, for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
© Copyright IBM Corp. 2000 217

them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AS/400
AS/400e AT
C/400 CT
Current DB2
DB2 Universal Database Hummingbird
IBM� Integrated Language Environment
Language Environment Manage. Anything. Anywhere.
Netfinity OS/400
PAL PartnerWorld
PrintManager RS/6000
SP System/390
VisualAge Visualization Data Explorer
XT 400
Lotus Domino
218 Porting UNIX Applications Using AS/400 PASE

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.

Tivoli TME
NetView Cross-Site
Tivoli Ready Tivoli Certified
Appendix D. Special notices 219

220 Porting UNIX Applications Using AS/400 PASE

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks

For information on ordering these publications, see “How to get IBM
Redbooks” on page 225.

• AS/400 Client Access Express for Windows: Implementing V4R4M0,
SG24-5191

• The following publications are available online in softcopy format only at
the IBM Redbooks homepage at: http://www.redbooks.ibm.com/

At the site, click Redbooks Online and then enter the publication number
or title in the search field that appears. Click Submit Search and select
the appropriate publication title that appears.

- UNIX C Applications Porting to AS/400, SG24-4438

- UNIX C Applications Porting to AS/400 Companion Guide, SG24-4938

E.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 221

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

E.3 Other resources

These publications are also relevant as further information sources:

• PrintManager API Reference, S544-3304

• Interactive Source Debugger, SC09-1897

• National Language Support, SC41-5101

• AS/400 Basic System Operation, Administration, and Problem Handling,
SC41-5206

• OS/400 Work Management, SC41-5306

• AS/400 International Application Development, SC41-5603

• ILE C/400 Programmer's Reference, SC41-5607

• Integrated File System Introduction, SC41-5711

• OS/400 Printer Device Programming V4R4, SC41-5713

• OS/400 Network File System Support, SC41-5714

• DB2 UDB for AS/400 SQL Call Level Interface (ODBC), SC41-5806

• OS/400 UNIX-Type APIs V4R4, SC41-5875

This publication is available in softcopy format only from the AS/400
Online Library at:
http://as400bks.rochester.ibm.com/pubs/html/as400/onlinelib.htm

At the site, select your language and click GO! Select V4R4 and then click
Search or view all V4R4 books. In the search field that appears, enter
the publication number or title and click Find. Select the appropriate
publication title that appears.

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• The GNU Open Source Web site can be found at: http://www.gnu.org/

• The GNU Open Source FTP site can be found at: ftp://ftp.gnu.org/

• The OpenDX Web site can be accessed at: http://www.opendx.org/

• Visit the AS/400 Custom Technology Center online at:
http://www.ibm.com/as400/Service/welcome_3.htm

• Access the Hummingbird Exceed Windows-based X server at:
http://www.hummingbird.com/
222 Porting UNIX Applications Using AS/400 PASE

• Access the X-Win32 Windows-based X server at:
http://www.starnet.com/productinfo/

• The AS/400 QShell Interpreter can be found online at:
http://www.ibm.com/as400/developer/qshell

• The popular midrange mailing list, Midrange-L, which is implemented
using Perl, can be accessed online at: http://www.midrange.com

• An API analysis tool can be accessed online at:
http://www.ibm.com/as400/developer/porting/apitool.html

• Application providers can obtain support for porting their applications to
AS/400 PASE from PartnerWorld for Developers at:
http://www.ibm.com/as400/developer/factory/

• GNOME, part of the GNU project, is free (open source) software that can
be accessed at: http://www.gnome.org

• Organizational, legal, and financial support for the Apache open-source
software projects can be viewed online at: http://www.apache.org

• The GNU Image Manipulation Program (GIMP) is freely distributed
software suitable for such tasks as photo retouching, image composition,
and image authoring. It is available online at: http://www.gimp.org

• GTK+, an Open Source Free Software GUI Toolkit, primarily developed for
use with the X Window system, is available online at: http://www.gtk.org

• IceWM, a window manager for the X11 Window System, is available online
at: http://icewm.sourceforge.net

• Perl, a high level programming and premier Web scripting language, can
be downloaded as an open source at: http://www.perl.com

• Virtual Network Computing (VNC) is a remote display system which allows
you to view a computing 'desktop' environment from anywhere on the
Internet and from a wide variety of machine architectures. It is available
online at: http://www.uk.research.att.com/vnc

• The DBI Perl module can be accessed online at:
http://www.perl.org/CPAN/modules

• Chimera, a World Wide Web browser for UNIX-based machines running
the X window system, is available online at:
http://www.cs.unlv.edu/chimera

• GNU Wget, a freely available network utility for retrieving files from the
World Wide Web using HTTP and FTP, can be accessed at:
http://www.gnu.org/software/wget/wget.html
Appendix E. Related publications 223

• A list of current PTFs can be found at:
http://www.ibm.com/as400/developer/factory/pase/misc.html

• Acces the Qshell Utility Lists online at:
http://www.as400.ibm.com/developer/qshell/utils.html

• Considerations for ILE and AS/400 PASE porting are located at:
http://www.as400.ibm.com/developer/factory/table.html

• A detailed description of the dbx debugging tool can be found on the
RS/6000 & AIX Support Web site at:
http://duke.toraix.can.ibm.com/lngfiles/dbx.html

• Information about the dbx debugging tool can be found on the dbx Tools
Web site at:
http://www1.s390.ibm.com:/products/oe/dbx/dbxintoolslinks.v1r1.html

• For OS/400 security-related frequently asked questions, log on to:
http://www.ibm.com/as400/developer/porting/faq.html#header_11

• Access the PWD/400 DBCS Guide online at:
http://www.ibm.com/as400/developer/dbcs/guide.html

• For information about creating AS/400 commands, visit the Web site at:
http://www.ibm.com/as400/developer/porting/400cmds.html

• Visit the AS/400 Operations Navigator Plug-in Support Web page at:
http://www.ibm.com/as400/oper_nav/pluginpage.htm

• Access Tech Studio references online at:
http://www.ibm.com/as400/tstudio/opsnav/plugin/pludex.htm

• For general information about DB2 Universal Database for AS/400, log on
to: http://www.ibm.com/as400/db2/db2main.htm

• For frequently asked questions regarding Database Porting, visit the Web
site at: http://www.ibm.com/as400/developer/porting/faq.html#Header_7
224 Porting UNIX Applications Using AS/400 PASE

http://www.as400.ibm.com/developer/factory/table.html

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 225

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
226 Porting UNIX Applications Using AS/400 PASE

Glossary

ABI See Application Binary Interface.

Advanced Interactive eXecutive (AIX) An
integrated UNIX operating environment. Most of
the references in this book are for the RS/6000
version of AIX.

AFS See Andrew File System.

AIX See Advanced Interactive eXecutive.

American National Standard Code for
Information Interchange (ASCII) A code
page usually used on PCs and UNIX systems.

Andrew File System (AFS) Distributed file
system developed by IBM and CMU, now
marketed by Transarc Corp.

API Application Programming Interface.

Application Binary Interface (ABI) The
allowable machine instructions, register
conventions, stack layout, and
argument/parameter linkage required to
interoperate with other programs and a system
that uses the ABI.

AS/400 Portable Application Solutions
Environment (AS/400 PASE) An AS/400
runtime environment that delivers a broad
subset of the AIX interface on the AS/400
system.

ASCII See American National Standard Code
for Information Interchange.

CRM See Customer Relationship
Management.

Customer Relationship Management
(CRM) Generally used for the business
applications that are used to manage customer
relationships.

daemon A task, process, or thread that
intermittently awakens to perform some tasks
and then goes back to sleep (software).
Frequently used to describe management or
server tasks in UNIX.
© Copyright IBM Corp. 2000
Data Description Specifications (DDS) Used
in OS/400 to describe data, including
databases, screens, and printer files.

DDS See Data Description Specifications.

DFS See Distributed File System.

Distributed File System (DFS) An OSF DCE
component.

EBCDIC See Extended Binary Coded Decimal
Interchange Code.

Enterprise Resource Planning
(ERP) Generally used for core business
applications.

ERP See Enterprise Resource Planning.

Extended Binary Coded Decimal Interchange
Code (EBCDIC) A code page usually used on
AS/400 systems.

File Transfer Protocol (FTP) A standard
protocol used to transfer data files between
systems over TCP/IP.

FTP See File Transfer Protocol.

GNU GNU's Not UNIX. The Free Software
Foundation's UNIX-like operating system
project.

GPL GNU General Public License.

IFS See integrated file system.

ILE See integrated language environment.

IMPI See Internal Microprogramming
Interface.

ITSO International Technical Support
Organization.

integrated file system (IFS) The hierarchical
directory and file system for AS/400 systems.
AS/400 “libraries” and the objects they contain
can be accessed as a mounted file system
(QSYS.LIB) under the IFS root.

integrated language environment (ILE) The
AS/400 program execution environment that
227

supports bound procedures. All C application
programs on the AS/400 system run in ILE.

Internal Microprogramming Interface The
original processor architecture of the AS/400
system. IBM no longer manufactures IMPI-based
AS/400 systems.

LGPL Library GNU public license.

MI See Machine Interface (architecture).

Machine Interface (MI) (architecture). MI
architecture is the high-level abstract machine
definition implemented by AS/400 systems. Also
referred to as Technology-Independent Machine
Interface (TIMI).

Network File System (NFS) A standard
protocol for mapping file drives over TCP/IP,
developed by USA Sun Microsystems Inc.

NFS See Network File System.

NGPL Nethack GNU public license.

NLS National language support.

PASE See AS/400 Portable Application
Solutions Environment (AS/400 PASE).

PLS See Process Local Storage.

Process Local Storage (PLS) The part of an
address space that is private to a process. An
application program can control what memory is
mapped to a particular address in PLS, and can
specify different storage protection for multiple
mappings of the same memory. All PASE memory
is equivalent to PLS.

OLTP See on-line transaction processing.

on-line transaction processing (OLTP). Used
to refer to transactional business applications.

OSF DCE Open Systems Foundation
Distributed Computing Environment.

POSIX See Portable Operating System
Interface.

Portable Operating System Interface (POSIX).
For computer environments, an IEEE operating
system standard, closely related to the UNIX
system (software writing).

productization The process by which an
application is made into an AS/400 installable
product.

SCM See Supply Chain Management.

Simple Message Block (SMB) A standard
protocol for mapping file drives over NETBIOS or
TCP/IP, supported by Microsoft for
Windows-based file serving.

Single Level Store (SLS) The single address
space shared by all PowerAS architecture
programs running in all processes. SLS provides
a mapping for all storage (memory and disk) in an
AS/400 system.

SLIC See System Licensed Internal Code.

SLS See Single Level Store.

SMB See Simple Message Block.

Supply Chain Management (SCM) Generally
used for the business applications that are used
to manage the supply chain.

System Licensed Internal Code
(SLIC) Contains all kernel (privileged) code for
AS/400 systems, plus a large amount of low-level
user runtime code that does not require privilege.

Technology Independent Machine Interface
(TIMI) See Machine Interface.

UNIX An operating system developed at Bell
Laboratories (trademark of UNIX System
Laboratories, licensed exclusively by X/Open
Company, Ltd.).
228 Porting UNIX Applications Using AS/400 PASE

Index

Symbols
#pragma 113, 116
_CVTSPP 111
_CVTSPP() function 136

error conditions 137
parameters 137
return value 137
syntax 136

_ILECALL 111
_ILECALL() function 129

error conditions 133
parameters 130
restrictions 133
return value 133
syntax 129

_ILELOAD 111, 112
_ILELOAD() function 125

authorities and locks 125
error conditions 127
parameters 125
restrictions 126
return value 126
syntax 125

_ILESYM 111, 112
_ILESYM() function 127

authorities and locks 127
error conditions 129
parameters 128
restrictions 128
return value 128
syntax 127

_MEMCPY_WT() and _MEMCPY_WT2() func-
tions 134

error conditions 135
parameters 135
return value 135
syntax 134

_SETCCSID 111
_SETCCSID() function 137

parameters 137
return value 138
syntax 137

_SETSPP 111
_SETSPP() function 135

error conditions 136
parameters 136
© Copyright IBM Corp. 2000
return value 136
syntax 136

A
ABI 9
accessing files 60
accessing files from AS/400 PASE 60
activation group 109
address resolution 42
addressing 40
AIX 3
AIX exploitation points 186
API 24

analysis 45
analysis tool 45
restrictions 24

API analysis report 47
Application Binary Interface (ABI) 3
Application Factory 12, 205
argument list 110
AS/400 architecture 39
AS/400 DDS 118
AS/400 Interactive Debugger 178
AS/400 PASE

advantages of porting to 11
application debugging 84
C code 111
capabilities 11
codesets 198
development environment 10
devices 23
functions 111
functions for accessing ILE 111
getting started 33
globalization 187
hardware considerations 10
ILE comparison 211
limitations 11, 23
locales 193
performance 10
planning a port to 6
porting examples 147
positioning 4
runtime environment 1, 3
shells 19
starting an application 65
unsupported system calls 85
229

user profiles 185
using dbx 84
utilities 19

AS/400 performance 209
AS/400 Portable Application Solutions Environment
(AS/400 PASE) 3
AS/400 workloads 209
AS/400e 5, 10
authority management 42

B
beginning a port 57
buffered versus unbuffered I/O 44
build 6
build_ILEarglist 111
build_ILEarglist() 121
build_ILEarglist() function 121

parameters 122
restrictions 124
return value 125
syntax 122

C
call outs to ILE from AS/400 PASE 108
calling AS/400 PASE from ILE 141
calling ILE from AS/400 PASE 111
calling Java from AS/400 PASE 108
capabilities 14
CCSID 23, 24, 71, 87, 108, 137
character encoding conversion support 190
character sets 43
checking system support 35
coding 23
compilation 118
compilation and runtime commands 118
compiler options 112
compiling applications on AIX 58
computationally intensive applications 6
configuration tips 62
context 42
creating your AS/400 solution 36
CRTCMOD 118, 180
CRTPF 118
CRTSRVPGM 118

D
data encoding considerations 87

database access 210
database porting 87
database support 191
date and time services 191
DB2 Universal Database for AS/400 5
DB2CLI 87
dbx 180
dbx debugger utility 84
debugging 84
development environment 107
device 23
device support 192

E
EBCDIC versus ASCII 43
Enterprise Resource Planning (ERP) 3
exec 6
exec() 42
exit status 22

F
file system 23, 104
file system support 188
file systems 14, 23
finding messages on the AIX system 179
finding messages on the AS/400 system 179
flags 20
fork 6
fork() 41, 42

G
general PASE instructions 34
general system set up 35
GNU perl 159
GNU zip 147

H
header and export files 58
header files 109

I
I/O controllers versus device drivers 44
IBM’s strategy 4
ILE integration 99
Independant Service Providers (ISVs) 11
installation and packaging 207
integrated file system 14
230 Porting UNIX Applications Using AS/400 PASE

Integrated Language Environment (ILE) 39
integrated language environment (ILE) 3, 8
Integrated Netfinity Server 4
Interactive Debugger 178
interactive terminal support 189
internationalization 209
IOCTL support 31

J
job logs 174
job structure 41

L
leveraging existing skills 11
libraries 24
library 24
library resolution 42
license types

GNU public license (GPL) 12
Library GNU public license (LGPL) 12

licensing 34, 207
licensing issues 33
limitations 23
Linux 4
locale support 187
logging facilities 22

M
Memory model 102
memory model 102
MI program template 100
Midrange-L 147, 223

N
national language 209

O
object oriented architecture 39
online transaction processing (OLTP) 3
OpenDX 147, 150
operations 208
OS/400 access 22
OS/400 FTP client 61
OS/400 FTP daemon 61

P
PartnerWorld for Developers 5, 223
PASE 61
PASE_LANG 87
PASE_SYSCALL_NOSIGILL 85
performance 107
porting and testing 119
porting mechanism 57
porting your modules 119
positioning AS/400 PASE 4
possible errors returned 77
preparing the application 35
printing 24, 210
problem determination and messages 173
problem determination tools 173
problem management 210
process structure 41
program model 102
programming resources 203
public license

Nethack GNU public license (NGPL) 12

Q
QIBM_PASE_CCSID 87
QIBM_PASE_DESCRIPTOR_STDIO 68
QIBM_USE_DESCRIPTOR_STDIO 68, 104
QOpenSys 42
Qp2CallPase 79

authorities and locks 79
information 141
invocation from an ILE application 79
parameters 80
programming notes 81
restrictions 81
return value 81
syntax 79

Qp2RunPase 71
authorities and locks 73
information 141
invocation from an ILE application 71
parameters 73
programming notes 76
syntax 72

QP2SHELL
error conditions 69
invocation from a 5250 screen 65
parameters 66
programming notes 68
231

syntax 66
Qp2SignalPase 82

calling a procedure 82
parameter 82
programming notes 83
restrictions 83
return value 83
syntax 82

QP2TERM
invocation from the AS/400 PASE terminal 69
parameters 70
programming notes 71
syntax 70

Qp2TERM 69

R
recommendations 34
remote file systems 62
requirements 33
result type 110
ROUND_QUAD 110, 112
ROUND_QUAD function 110
RS/6000 5
runtime commands 118
runtime modes 7
runtime support 105
runtime symbols 19

S
security 209
security considerations 185
Segment Lookaside Buffer (SLB) 10
services 6
setting up variables and structures 109
shared addressing 100
shared libraries 14
shells 19, 24, 192
SIGILL 85, 86

illegal instruction 57
unsupported instruction 85

signature 110
SIGTERM 103, 108
single level store (SLS) 100
size_ILEarglist 111
size_ILEarglist() function 120

parameters 120
return value 121
syntax 120

SLIC trace facilities 57
SLS (single level store) 9, 100
SMB 62
sockets support 104, 188
spawn 6
spawn() 42
stderr 189
stdin 189
stdout 189
storage management 40
successfully ported applications 12
switching to AIX 161
switching to the AS/400 system 162
syntax 20
System Licensed Internal Code (SLIC) 8, 39
system structure 101
systemCL 111
systemCL function 138

authorities and locks 138
error codes 140
parameters 138
return value 140
syntax 138

T
TERASPACE 103
terminal I/O 43
testing 6
testing the application 35
testing your modules 119
time to market 11
TIMI 9
tools on AIX 173
tools on OS/400 173

U
UNIX perspective 39
unrecognized APIs 49
unsupported runtime library members 16
unsupported system calls 31, 85
user profiles 42
user-defined APIs 49
using FTP 60
utilities 192

V
viewing AS/400 PASE programs 169
232 Porting UNIX Applications Using AS/400 PASE

VLOG 85, 175

W
work management 169
WRKACTJOB 177

X
XCOFF 101
xlc 118
X-Windows support 192
233

234 Porting UNIX Applications Using AS/400 PASE

© Copyright IBM Corp. 2000 235

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5970-00
Porting UNIX Applications Using AS/400 PASE

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.2”spine)
0.17”<->0.473”

90<->249 pages

Porting UNIX Applications Using AS/400 PASE

®

SG24-5970-00 ISBN 0738417971

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Porting UNIX
Applications
Using AS/400 PASE
Explores the Portable
Application Solutions
Environment

Offers links to
download UNIX
application examples

The porting guide for
beginners and experts

This redbook positions the new AS/400 Portable Application
Solutions Environment (PASE), referred to as AS/400 PASE, with
the other options available to AS/400 application developers. It
helps you determine whether an AIX-based application or module
can be easily ported to PASE, or whether you should consider an
ILE port.

There are five primary audiences for this redbook. These
audiences include executives and planners who are looking at
using AS/400 PASE for portions of their solutions; UNIX application
providers who are considering a port of their application to the
AS/400 platform; businesses that already leverage both AS/400
and AIX solutions and want to consolidate their solutions into one
platform; AS/400 shops looking to purchase or use an AS/400
PASE application; and AS/400 shops looking to purchase a UNIX
solution who want to encourage the vendor of that solution to
consider AS/400 delivery and support.

With these audiences in mind, we divided this book in three parts.
Part 1, “The AS/400 PASE runtime environment”, applies to all
audiences and provides an overview of the product. Part 2,
“AS/400 PASE from a UNIX perspective”, targets UNIX application
providers and businesses that are looking to port their own
in-house applications from AIX to the AS/400 system. Part 3,
“AS/400 PASE from an AS/400 perspective”, is intended for all
technical audiences, including AS/400 system operators.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. The AS/400 PASE runtime environment
	Chapter 1. Introduction to the AS/400 PASE runtime environment
	1.1 Executive overview
	1.1.1 Positioning of AS/400 PASE
	1.1.2 Planning a port to AS/400 PASE

	1.2 Technical overview
	1.2.1 Hardware considerations
	1.2.2 Development environment
	1.2.3 Performance

	Chapter 2. AS/400 PASE capabilities and limitations
	2.1 Advantages of AS/400 PASE porting
	2.1.1 Leveraging existing skills
	2.1.2 Reducing time to market

	2.2 Successfully ported applications
	2.3 Capabilities
	2.3.1 File systems
	2.3.2 Shared libraries
	2.3.3 Runtime library members not supported
	2.3.4 Runtime symbols
	2.3.5 Shells and utilities
	2.3.6 Logging facilities
	2.3.7 OS/400 access

	2.4 Limitations
	2.4.1 Devices
	2.4.2 File systems
	2.4.3 Printing
	2.4.4 Shells
	2.4.5 Libraries
	2.4.6 API restrictions
	2.4.7 Unsupported system calls

	Chapter 3. Getting started with AS/400 PASE
	3.1 Requirements
	3.2 Licensing issues
	3.3 Recommendations
	3.4 General AS/400 PASE instructions
	3.4.1 General system setup
	3.4.2 Checking system support
	3.4.3 Preparing the application
	3.4.4 Testing the application
	3.4.5 Creating your AS/400 solution

	Part 2. AS/400 PASE from a UNIX perspective
	Chapter 4. AS/400 architecture from a UNIX perspective
	4.1 Object-oriented architecture
	4.2 Addressing and storage management
	4.2.1 Job and process structure

	4.3 Library and address resolution
	4.4 User profiles and authority management
	4.5 Character sets and terminal I/O
	4.5.1 EBCDIC versus ASCII
	4.5.2 Buffered versus unbuffered I/O
	4.5.3 I/O controllers versus device drivers

	4.6 Architectural summary

	Chapter 5. Application API analysis
	5.1 Introduction
	5.2 What you need to do
	5.2.1 API analysis example

	Chapter 6. Porting mechanism
	6.1 Beginning a port
	6.2 Compiling applications on AIX for AS/400 PASE
	6.3 Accessing files from AS/400 PASE
	6.3.1 Using FTP
	6.3.2 Using SMB
	6.3.3 Remote file systems

	6.4 Configuration tips
	6.5 Starting an AS/400 PASE application
	6.5.1 Invocation from a 5250 terminal screen: QP2SHELL
	6.5.2 Invocation from the AS/400 PASE terminal: QP2TERM
	6.5.3 Invocation from an ILE application: Qp2RunPase
	6.5.4 Invocation from an ILE application: Qp2CallPase
	6.5.5 Calling a procedure: Qp2SignalPase

	6.6 Debugging an AS/400 PASE application
	6.6.1 Using dbx in AS/400 PASE
	6.6.2 AS/400 PASE unsupported system calls

	Chapter 7. Database porting with AS/400 PASE
	7.1 Data encoding considerations
	7.2 Known problems
	7.3 DB2CLI example program

	Chapter 8. ILE integration with the AS/400 PASE environment
	8.1 Shared addressing between AS/400 PASE and single level store
	8.1.1 System structure
	8.1.2 Memory model and program model
	8.1.3 File system and socket support
	8.1.4 Runtime support
	8.1.5 Development environment
	8.1.6 Performance

	8.2 Calling Java from AS/400 PASE
	8.3 Doing callouts to ILE from AS/400 PASE
	8.3.1 Setting up variables and structures
	8.3.2 A two part sample for calling ILE from AS/400 PASE
	8.3.3 size_ILEarglist() function
	8.3.4 build_ILEarglist() function
	8.3.5 _ILELOAD() function
	8.3.6 _ILESYM() function
	8.3.7 _ILECALL() function
	8.3.8 _MEMCPY_WT() and _MEMCPY_WT2() functions
	8.3.9 _SETSPP() function
	8.3.10 _CVTSPP() function
	8.3.11 _SETCCSID() function
	8.3.12 systemCL function

	8.4 Calling AS/400 PASE from ILE
	8.4.1 Qp2RunPase information
	8.4.2 Qp2CallPase information

	Part 3. AS/400 PASE from an AS/400 perspective
	Chapter 9. UNIX architecture from an AS/400 perspective
	Chapter 10. AS/400 PASE porting examples
	10.1 GNU zip
	10.2 OpenDX
	10.3 GNU perl

	Chapter 11. Work management
	11.1 Viewing AS/400 PASE programs running on the AS/400 system

	Chapter 12. Problem determination and messages
	12.1 Available problem determination tools
	12.1.1 Tools on AIX
	12.1.2 Tools on OS/400

	12.2 Where to find messages on the AIX system
	12.3 Where to find messages on the AS/400 system
	12.4 Debugging the AS/400 to ILE sample

	Chapter 13. Security considerations
	13.1 User profiles in AS/400 PASE
	13.2 AIX exploitation points

	Chapter 14. AS/400 PASE globalization
	14.1 Locale support
	14.2 File system and sockets support
	14.3 stdin, stdout, and stderr
	14.4 Interactive terminal support
	14.5 Character encoding conversion support
	14.6 Date and time services
	14.7 Database support
	14.8 X-Windows support
	14.9 Device support
	14.10 Shells and utilities
	14.11 AS/400 PASE locales
	14.12 AS/400 PASE codesets

	Appendix A. Programming resources
	Appendix B. The Application Factory
	B.1 Overview
	B.2 Around the circle
	B.2.1 Licensing
	B.2.2 Installation and packaging
	B.2.3 Operations
	B.2.4 AS/400 workloads and performance
	B.2.5 Security
	B.2.6 National language and internationalization
	B.2.7 Problem management
	B.2.8 Database access
	B.2.9 Printing

	Appendix C. AS/400 PASE compared to ILE
	Appendix D. Special notices
	Appendix E. Related publications
	E.1 IBM Redbooks
	E.2 IBM Redbooks collections
	E.3 Other resources
	E.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

