
SG24-4938-00

UNIX C Applications Porting to AS/400
Companion Guide

November 1996

SG24-4938-00

International Technical Support Organization

UNIX C Applications Porting to AS/400
Companion Guide

November 1996

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information
in Appendix F, “Special Notices” on page 115.

First Edition (November 1996)

This edition applies to V3R6 ILE C/400, 5716-CX4, for use with V3R6 OS/400, 5716-SS1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . vii

Tables . ix

Preface . xi
How This Redbook Is Organized . xi
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction . 1
1.1 What is Portability? . 1
1.2 Understanding the Issues and Solutions 1
1.3 Elements Involved in Application Porting 2
1.4 The C Programming Language . 2

1.4.1 ILE C/400 . 2
1.4.2 UNIX C . 3

1.5 Portability of Language . 3
1.5.1 UNIX C . 4
1.5.2 ILE C/400 . 4

1.6 Expected Portability Differences . 4

Chapter 2. Overview of Source and Target Environment 5
2.1 Character Encoding . 5
2.2 Collating Sequence . 5
2.3 Character Set . 6
2.4 Trigraphs . 7

2.4.1 UNIX C . 7
2.4.2 ILE C/400 . 7
2.4.3 Comments . 8

2.5 Data Types . 8
2.5.1 Comments: . 8
2.5.2 Packed Data Type . 8

2.6 Data Alignment . 9
2.6.1 Fundamental Data Types . 9
2.6.2 Abstract Data Types - Structures and Unions 11

2.7 Pointer Usage . 12
2.7.1 UNIX C . 12
2.7.2 ILE C/400 . 12
2.7.3 Comments: . 13

2.8 Main() Function . 14
2.8.1 UNIX C . 14

 Copyright IBM Corp. 1996 iii

2.8.2 ILE C/400 . 14
2.9 Software Development Tools in AS/400 System 14
2.10 Database Management . 15

Chapter 3. File Handling . 17
3.1 File Specifications . 17

3.1.1 UNIX . 17
3.1.2 OS/400 . 17

3.2 File Organization and Record Format 17
3.2.1 UNIX . 17
3.2.2 OS/400 . 17

Chapter 4. Networking . 21
4.1 TCP/IP . 21

4.1.1 Application Protocol Standards . 21
4.1.2 FTP . 21
4.1.3 TELNET . 22
4.1.4 SMTP . 22
4.1.5 Remote Printing (LPR and LPD) 23
4.1.6 TCP/IP File Server Support/400 . 23
4.1.7 Application Program Interface (API) To TCP/IP 23

4.2 Sockets . 24
4.3 APPC . 27

Chapter 5. Data Conversion . 29
5.1 Data Conversion APIs . 29
5.2 Convert Data (QDCXLATE) API . 30

5.2.1 Required Parameters: . 30
5.2.2 Optional Parameters: . 30

5.3 Code Conversion API - iconv() . 31
5.3.1 Syntax . 31
5.3.2 Error Conditions . 32

5.4 Code Conversion Deallocation API - iconv_close() 33
5.4.1 Syntax . 33
5.4.2 Error Conditions . 33

5.5 Code Conversion Allocation API - iconv_open() 33
5.5.1 Syntax . 33
5.5.2 Error Conditions . 34

5.6 QtqIconvOpen() - Code Conversion Allocation API 34
5.6.1 Syntax . 34
5.6.2 Error Conditions . 35

Chapter 6. MI Instruction Function Calls 39
6.1 MI Instruction Function Calls . 39

iv UNIX C Applications Porting to AS/400 Companion Guide

6.2 Interfaces for the Machine Interface . 40
6.3 MI Instruction Header Files . 40
6.4 Sample Workaround Using MI Instruction Calls 40

Chapter 7. Message and Error Handling 47
7.1 Message Handling in UNIX . 47
7.2 AS/400 Specific Message Handling Techniques 48

7.2.1 Message Files and Commands . 48
7.2.2 Messages Queues . 50
7.2.3 Message Handling APIs . 51
7.2.4 Display Files . 53

7.3 Error Handling in AS/400 System . 56
7.3.1 Exception Handlers . 56
7.3.2 Signal Handlers . 56
7.3.3 Error Handlers . 58

7.4 Preprocessor Directives . 61

Chapter 8. Display Handling . 63
8.1 Static and Dynamic Display Handling 63
8.2 Comparison of Curses and DSM . 64
8.3 Mapping the Curses Functionality . 65
8.4 Example of Changes Required for Porting Window or Display

Component . 68

Appendix A. HP C to ILE C/400 Application Porting 79
A.1 C Compiler Environment . 79
A.2 Library Functions . 81
A.3 Signals . 83
A.4 Error Handling . 83
A.5 Compiler Directives . 83

Appendix B. SCO System C to ILE C/400 Application Porting 85
B.1 The C Compiler Environment . 85
B.2 #Pragma Compiler Directives . 87
B.3 C Language Constructs . 89
B.4 Using the Huge Memory Model . 90
B.5 Errno Values . 91
B.6 Signals . 91

Appendix C. Sun Solaris C to ILE C/400 Application Porting 93
C.1 Data Type . 93
C.2 C Compiler Environment . 93
C.3 Signals . 96
C.4 Error Handling . 96

Contents v

C.5 Compiler Directives . 96

Appendix D. AIX C to ILE C/400 Application Porting 97
D.1 Data Alignment . 97
D.2 C Compiler Environment . 97
D.3 Pre-Processor Directives . 102
D.4 CPI-C on AIX . 102

Appendix E. DEC ALPHA C to ILE C/400 Application Porting 105
E.1 Data Types and Alignments . 105
E.2 C Compiler Environment . 106
E.3 Macros . 110
E.4 Preprocessor Directives . 110
E.5 Error Handling . 112
E.6 Signals . 113

Appendix F. Special Notices . 115
F.1 Industry Standards . 117

Appendix G. Related Publications . 119
G.1 International Technical Support Organization Publications 119
G.2 Redbooks on CD-ROMs . 119
G.3 Other Publications . 119
G.4 References on the World Wide Web (WWW) 121

How To Get ITSO Redbooks . 123
How IBM Employees Can Get ITSO Redbooks 123
How Customers Can Get ITSO Redbooks 124
IBM Redbook Order Form . 125

Glossary . 127

Index . 135

vi UNIX C Applications Porting to AS/400 Companion Guide

Figures

 1. Use of APIs iconv(), iconv_close(), iconv_open() in Converting Data 36
 2. Use of API QDCXLATE in Converting Data 37
 3. API Lockf() . 41
 4. Main() Function to Call Lockf() . 45
 5. DDS Source for a Subfile T1520DDG 54
 6. ILE C/400 Source Using Subfile . 54
 7. Use of Function_Riofbk() . 60
 8. Using Curses Functions for Display Handling in UNIX C

Environment . 68
 9. Using DSM Functions for Display Handling in ILE C/400

Environment . 72
10. The Output of the DSM Program in Figure 9 76

 Copyright IBM Corp. 1996 vii

viii UNIX C Applications Porting to AS/400 Companion Guide

Tables

 1. Trigraph Sequences in ILE C/400 . 7
 2. Data Types in UNIX C and ILE C/400 8
 3. Data Alignment in UNIX C . 9
 4. Data Alignment in ILE C/400 . 9
 5. Storage Layout of Structure structm on AS/400 10
 6. Storage Layout of Packed Structure structm on AS/400 11
 7. Pointer Types on AS/400 . 13
 8. File Types on AS/400 . 18
 9. Comparison of Sockets Implementation in AS/400 and BSD 24
10. errno Values in UNIX C That Are Not Supported in ILE C/400 58
11. errno Values in ILE C/400 That Are Not Available in UNIX C 59
12. A Comparison Between Curses and Dynamic Screen Manager

(DSM) . 64
13. Mapping Curses Functions to Dynamic Screen Manager (DSM)

APIs . 65
14. Pragma loop_opt() in SCO C . 88
15. Pragma pack() in SCO C . 88
16. Data Alignment in AIX XL C . 97
17. Data Alignment in DEC Alpha C . 105
18. Macros used with DEC Alpha C Compiler 110

 Copyright IBM Corp. 1996 ix

x UNIX C Applications Porting to AS/400 Companion Guide

Preface

This document is a collection of the knowledge acquired by consultants and
IBM experts who have been working with customers porting applications
from UNIX system to the AS/400 system.

This document supplements the ITSO Rochester Center redbook, UNIX C
Application Porting to AS/400, SG24-4438-00, and provides porting
information not covered in the previous redbook, such as data conversion,
networking, display handling, and so on. It also contains UNIX
platform-specific information that you can use when you port C applications
to the AS/400 system.

This document is intended to help customers, business partners, and IBM
specialists in writing or porting UNIX C style applications to the AS/400
system.

To utilize this document effectively, you should have a working knowledge of
the AS/400 system and UNIX system and a knowledge of UNIX C and ILE
C/400 application development.

How This Redbook Is Organized

This redbook contains 156 pages. It is organized as follows:

• Chapter 1, “Introduction”

This chapter describes the general purpose of the book. It talks about
common portability issues and discusses the two systems (AS/400 and
UNIX System) in this perspective.

• Chapter 2, “Overview of Source and Target Environment”

This chapter discusses the C language environment in the two systems,
highlighting their differences. It also mentions the software development
tools provided by the AS/400 system that make application development
easier.

• Chapter 3, “File Handling”

This chapter talks about the differences in file handling features in the
two systems.

• Chapter 4, “Networking”

This chapter points out the differences in the TCP/IP features in the
source and target systems. It also talks about the APPC implementation
differences in the two systems wherever applicable.

 Copyright IBM Corp. 1996 xi

• Chapter 5, “Data Conversion”

This chapter provides a discussion on the Data Conversion APIs of
OS/400. Examples are provided illustrating their use.

• Chapter 6, “MI Instruction Function Calls”

This chapter discusses the MI instruction calls in OS/400 and illustrates
how unsupported features of UNIX may be implemented using them.

• Chapter 7, “Message and Error Handling”

This chapter provides a comparison between the message and error
handling techniques in the two systems. Tips on porting these features
are also provided with examples.

• Chapter 8, “Display Handling”

This chapter discusses how a UNIX application can have the user
interface redesigned for an AS/400 implementation by using Dynamic
Screen Manager (DSM) and other native AS/400 constructs to create
menus, panels, and so on.

Appendixes of this document include:

• Appendix A, “HP C to ILE C/400 Application Porting”

This appendix contains a discussion of the platform-specific features of
C on the HP-UX environment and techniques to implement these in ILE
C/400.

• Appendix B, “SCO System C to ILE C/400 Application Porting”

This appendix contains a discussion of the platform-specific features of
C on the SCO UNIX environment and techniques to implement these in
ILE C/400.

• Appendix C, “Sun Solaris C to ILE C/400 Application Porting”

This appendix contains a discussion of the platform-specific features of
C on the SUN Solaris environment and techniques to implement these in
ILE C/400.

• Appendix D, “AIX C to ILE C/400 Application Porting”

This appendix contains a discussion of the platform-specific features of
C on the AIX environment and techniques to implement these in ILE
C/400.

• Appendix E, “DEC ALPHA C to ILE C/400 Application Porting”

This appendix contains a discussion of the platform-specific features of
C on the DEC Alpha environment and techniques to implement these in
ILE C/400.

xii UNIX C Applications Porting to AS/400 Companion Guide

A glossary of the new terms introduced in the document is also provided.

The Team That Wrote This Redbook

This redbook was produced by the AS/400 Partners In Development
UNIX-to-AS/400 Porting Team in conjunction with Tata Consultancy Services
(TCS), Noida, India with the help of the International Technical Support
Organization Rochester Center.

Charlie Quigg is a staff programmer in the AS/400 Partners in Development
organization. He leads a team as a technical consultant for UNIX-to-AS/400
porting. He coauthored the redbook ″UNIX C Applications Porting to
AS/400″ and previously worked in the Rochester Development Lab
integrating UNIX-type system interfaces into OS/400.

Rajeev Jain is a Senior Systems Analyst in Tata Consultancy Services, India.
He has been working at TCS for 6 years on various assignments including
application development, conversion, and maintenance. Currently he is a
member of the UNIX-to-AS/400 Porting Team in Partners In Development at
IBM Rochester. His area of expertise includes application development on
the AS/400 system, UNIX, and Oracle.

Praveen Kumar is a Senior Systems Analyst in Tata Consultancy Services,
India. He has been working at TCS for 2 years in the AS/400 field. He has
worked at Indian Institute of Technology (IIT), Delhi, India in the field of VLSI.
His area of expertise includes the application development on the AS/400
and UNIX system.

Anu Bahri is a Systems Analyst in Tata Consultancy Services. He has been
working at TCS for 4 years. His expertise includes application development
on the AS/400 system, UNIX, and Oracle.

Rakesh Sarup is an Assistant Systems Analyst in Tata Consultancy Services.
He has been working at TCS for 2 years. His area of expertise includes
application development on the AS/400 system.

Thanks to the following people for their invaluable contributions to this
project:

Jaejin Ahn
ITSO Rochester Center

Rajeev K Arora
TCS, Nodia, India

Preface xiii

Comments Welcome

We want our redbooks to be as helpful as possible. Should you have any
comments about this or other redbooks, please send us a note at the
following address:

 redbook@vnet.ibm.com

Your comments are important to us!

xiv UNIX C Applications Porting to AS/400 Companion Guide

Chapter 1. Intr oduction

1.1 What is Portability?

It is common to speak of portability as a desirable quality for a
programming language for code produced by a particular compiler, but what
does the term portability really mean? Portability can be divided into two
categories:

• Source code portability: The ability to take a program that can be
compiled, linked, and run on one platform with one compiler and
compile, link, and run it one another platform. There are two types of
problems associated with source code portability in C:

− Platform-specific differences: Variations that are a direct result of
the characteristics of the platform.

− Implementation-specific differences: Variations that are a result of
behavior that is left unspecified in a given C language definition, and
variations that are a result of differences between two distinct C
language definitions.

• Object code portability: The ability to run compiled and linked object
code on more than one platform.

This book deals with source code portability.

1.2 Understanding the Issues and Solutions

This document identifies many differences between the two systems that
must be resolved before the porting begins and then constantly monitored
throughout the portability process. Once the difference between the two
systems is understood, a set of installation standards can be developed for
the portability process. As in any programming effort to solve a given
programming problem, there can be as many workable solutions as there
are programmers. A standard way of handling these differences makes the
entire porting process much smoother and ensures that the problems are
handled in the same manner by everyone.

This manual does not attempt to discuss the pros and cons of either system
but attempts to point out the areas where major differences are found in
porting applications written on C from a UNIX system to the ILE C/400
application on an IBM AS/400 system.

 Copyright IBM Corp. 1996 1

1.3 Elements Involved in Application Porting

An application is a collection of programs and data and their interactions
with the system environment. Porting an application written in C in a UNIX
environment can involve one or more of the following application elements.

• Porting UNIX C Language programs to Integrated Language Environment
C/400 programs.

• Porting UNIX command ″shell″ programs to the AS/400 system. This
can be in the AS/400 Control Language (CL) or any of the AS/400
languages that can provide an efficient functional equivalent.

• Applications involving specific devices such as communications lines
involve the portability of the logical file representations of these devices.

• Porting application data from UNIX to the AS/400 system. This involves
flat file porting or database porting from the UNIX to the AS/400 system.

Application portability involves finding efficient functional equivalents
wherever possible on the AS/400 system and working around solutions
wherever equivalent functions are not available.

1.4 The C Programming Language

The C programming language is available for many software platforms on
both IBM and non-IBM equipment. Most language implementations offered
on a specific hardware and software environment follow the specifications of
the ANSI standard for the C programming language. However, in each
environment, the C language often contains extensions to the ANSI
standards to better exploit the capabilities offered by the environment. The
ILE C/400 language incorporates all of the ANSI language elements and also
provides extensions to exploit the AS/400 environment. C languages on
UNIX generally follow the X3.159-1989 ANSI C standard. There are many
extensions to this ANSI C to exploit its specific architecture in use.

When porting applications from one environment to another, the common
elements in a language need little or no change. The language extensions
and the extent to which they are used often determine the complexity of the
portability project. Other issues depend on using system features in the
application.

1.4.1 ILE C/400
The ILE C/400 compiler is a licensed program that has many new features
and enhancements, such as:

• Improved run-time performance.

2 UNIX C Applications Porting to AS/400 Companion Guide

• The compile time for ILE C/400 C programs is less, reducing the amount
of time a programmer has to wait for a compilation to complete.

• The C language now has a packed decimal data type allowing the C
programs to directly manipulate the packed data in database files.

• Static binding is provided as part of ILE greatly benefits C programs.
The programs are statically bound at program creation time rather than
only at run time. This reduces the call overhead in calling among
modules.

• The checkout compiler option tells the compiler to perform further
checking of the C program for common programming errors. This helps
the programmer create error free programs faster.

• The Dynamic Screen Manager allows the C programmer to control the
display from the program dynamically rather than having to create a
DDS for display.

• ILE C/400 now includes access to the machine interface (MI).

• It supports the industry standards for C such as ANSI and ISO. This
provides greater portability of code from other platforms when written in
these standards.

The ILE C/400 compiler improves the run-time performance of applications
and helps improve the programmers′ productivity when creating
applications.

1.4.2 UNIX C
UNIX C is the generic name for the C language available on UNIX platform
of different vendors such as HP, SUN, SCO, and so on. These languages
are very similar to each other, but many differences exist among them.
Some specific platforms are discussed in the appendixes. Some system
and hardware-specific differences exist among machines of different sizes.
The language supports ANSI and other standards.

1.5 Portability of Language

Portability is one of the most important characteristics of the C language.
However, certain elements of the C language, such as the alignment of
members in structures, are highly dependent on the platform on which the C
code runs. These elements cannot be standardized for all of the
implementations of C. While this book deals with the differences in the C
language on the UNIX and AS/400 platforms, most of the elements that make
up the definition of C are consistent among the two.

Chapter 1. Introduction 3

1.5.1 UNIX C
C language on UNIX platforms has been standardized to a great extent but
differences are real enough sometimes to hinder porting applications from a
UNIX C environment to another UNIX environment. These differences are
mainly due to differences in the underlying processors. The C available on
a smaller machine is not the same as C available in larger machines. Most
versions of C have core features that are ANSI compliant.

1.5.2 ILE C/400
ILE C/400 follows the ANSI standard. However, to exploit system features,
many extensions have been provided. These extensions are not supported
by C on other environments. Typical extensions are externally described
database and distributed database files, display files, ICF (Inter-program
Communication Files), extensive natural language support, and so on.
Using APIs is another extension that is not available on other systems. ILE
C/400 can call unbounded compiled programs of many ILE languages that
other C languages do not support. ILE C/400 has more additional types of
pointers than UNIX C. ILE C/ 400 also supports Record I/O apart from
stream I/O as in UNIX C.

1.6 Expected Portability Differences

Differences are likely to occur when porting UNIX C applications to ILE C/400
because of the following characteristics of programming:

• Differences in the operating system environment
• Unstructured programming
• Using extended compiler options
• Using assembly language format
• Floating point operations
• Data alignment differences
• Data file incompatibility and Input/Output operation
• Memory and address use

− Using shared memory
− Absolute addressing
− Memory organization
− Architecture dependent memory addressing

• Language differences
− Using extended language
− Features based on specific architecture
− Different semantics of language

4 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 2. Overview of Source and Target Environment

This chapter describes the differences between the C language constructs
on the two systems. The C language constructs such as character sets,
data types, data alignment, predefined macros, and preprocessor directives
are covered. Other features such as inter-language calling, error handling,
and signal handling are covered. Each section contains comments on how
to proceed with the conversion when the differences are present.

2.1 Character Encoding

The encoding of characters is not the same on all platforms. The UNIX C
products run on platforms that use ASCII encoding, while the AS/400
products run on platforms that use EBCDIC encoding.

If a character value is to be indicated, the character itself should be used
rather than the encoding of the character. For example, the code shown in
the following example gives a different output in ILE C/400:

inc lude <s td io .h>
main () {

char x;
x = ′ \x4E′;
printf(″Here is the character: %c \n″, x):

}

The output in UNIX C is:

Here is the character: N

The output in ILE C/400 is:

Here is the character: +

The fourth line should be changed to:
x = ′N′ ;

2.2 Collating Sequence

Each encoding produces a collating sequence that specifies the order of
characters in the encoding. The collating sequences in the UNIX C
products are different from the collating sequence in the ILE C/400 products

 Copyright IBM Corp. 1996 5

as the UNIX C products run on platforms that use ASCII encoding, while the
AS/400 products run on platforms that use EBCDIC encoding.

Portable code should not depend on the relative position of characters in
the collating sequence. In particular, portable code should not depend on:

• The contiguity of the letters.

• The relative position of the uppercase and lowercase letters.

• The relative position of the letters and the digits.

If two strings are to be compared (for example, in the strcmp() function), and
the differences between collating sequences are to be avoided, these three
steps should be followed:

• Create a locale that includes a standard collating sequence.

• Use the setlocale function to set the locale to the one that was created.

• Compare the strings using the strcoll function.

2.3 Character Set

The following lists the basic character set that must be available at both
compile and run time:

• The uppercase and lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The decimal digits 0 to 9:

0 1 2 3 4 5 6 7 8 9

• The following graphic characters:

! ″ # % & ′ () * + , - . / :
; < = > ? & [\] _ { }

• The caret (^) character in ASCII (bitwise exclusive OR symbol) is
represented by or the equivalent not (-) character in EBCDIC.

• The split vertical bar () character in ASCII that may be represented by
the vertical bar (|) character in EBCDIC systems.

• The space characters.

• The control characters representing horizontal tab, vertical tab, form
feed, and end of string.

6 UNIX C Applications Porting to AS/400 Companion Guide

Uppercase and lowercase letters are treated as distinct characters. If a
lowercase is specified as part of an identifier name, one cannot substitute
an uppercase in its place. The lowercase letter must be used.

For the keyboards that do not support the entire character set, one can use
trigraphs as alternate symbols to represent some characters.

2.4 Trigraphs

2.4.1 UNIX C
UNIX C uses the ASCII character set and all of the C language characters
are available on UNIX keyboards. However, reduced character sets that can
also be used as trigraphs are defined. This trigraph definition is the same
as in ILE C/400.

2.4.2 ILE C/400
The AS/400 system uses the EBCDIC character set. Some characters used
in the C language are not available on some IBM keyboards. Sequences of
three characters called trigraphs, as defined by the ANSI standard, are used
to emulate such characters.

The following trigraph sequences may be used in an ILE C/400 source
program.

In the C/400 language, the ^ character in ASCII for the bitwise exclusive OR
is represented by the ¬ character in the EBCDIC.

Table 1. Trigraph Sequences in ILE C/400

Trigraph Character Name

? ? = # Number sign

??([Left bracket

??)] Right bracket

??. { Left brace

? ? > } Right brace

??/ \ Back slash

??′ ^ Caret

??! | Vertical bar

??- ∼ Tilde

Chapter 2. Overview of Source and Target Environment 7

2.4.3 Comments
The square brackets ([and]) can be used on the PC after modifying the
keyboard profile for the equivalent EBCDIC hex values. The session profile
should be changed to display the square brackets.

2.5 Data Types

The sizes of the C data types vary among the C compilers on different
machines. Unlike many other high-level languages that offer a wide variety
of basic data types, C offers only a few, keeping the language simple and
compact. The basic types are char, int, float, and double; a short list indeed,
considering that even a character string is not a basic type.

Table 2. Data Types in UNIX C and ILE C/400

Type UNIX C

Size
(In bytes)

ILE C/400

Size
(In bytes)

Char 1 1

Short 2 2

Int 4 4

Long 4 4

Float 4 4

Double 8 8

Long double 16 8

Enum 4 1, 2, or 4

Pointer 4 16

2.5.1 Comments:
• ILE C has a 16-bytes long pointer that is different from the size of int.

• Double float has different sizes on different series of UNIX machines.

2.5.2 Packed Data Type
Packed decimal is a new arithmetic data type that is an extension to ANSI
C. It allows representation of a larger number of significant digits (32)
useful in business and commercial applications. In ILE C/400, packed
decimal has been defined as a separate data type. The include file is
< d e c i m a l . h > . The packed decimal data type is declared, and normal
operators (such as arithmetic operators, relational operators, comma
operators, assignment operators, conditional operators, equality operators,

8 UNIX C Applications Porting to AS/400 Companion Guide

logical operators, primary operators, and unary operators) work on these.
Bitwise operators do not work on these. Packed decimal can be passed as
an argument to functions and library functions.

2.6 Data Alignment

According to ANSI (X3.159-1989), alignment is the requirement that objects
of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address. An object that has alignment n
(where n is a non-negative integer) begins on an address that is divisible by
n.

2.6.1 Fundamental Data Types

2.6.1.1 UNIX C
In UNIX C, the data is aligned a little differently on different machines. The
alignment of data is:

These default alignments can be changed by using storage modifiers that
ensure a particular alignment scheme.

Table 3. Data Al ignment in UNIX C

Type Alignment (in bytes)

Char 1

Short 2

Int 4

Long 4

Float 4

Double 8

Long double (ANSI mode only) 8

Enum 1, 2, or 4

Pointer 4

2.6.1.2 ILE C/400
All data types in the ILE C/400 language align on their natural boundary.
For example, the int fields in a structure align on a four-byte boundary.

Table 4 (Page 1 of 2). Data Al ignment in ILE C/400

Type Alignment (in bytes)

Char 1

Chapter 2. Overview of Source and Target Environment 9

The following example shows the effect of the alignment:

struct {
char x;
int y;
char *p;

} structm;

The storage layout for this structure is as follows:

From the preceding example, clearly a padding of three bytes is used in the
structure layout before the integer y, and the padding of eight bytes is used
before the pointer p.

The rules that the ILE C/400 compiler and the library follow for storage
layout are:

• Padding is added to allow each field to align on its natural boundary.

Table 4 (Page 2 of 2). Data Al ignment in ILE C/400

Type Alignment (in bytes)

Short 2

Int 4

Long 4

Float 4

Double 8

Long double (ANSI mode only) 8

Enum 1, 2, or 4

Pointer 16

Table 5. Storage Layout of Structure structm on AS/400

Offset Bytes Length Field

0 1 x

1 3 padding

4 4 y

8 8 padding

16 16 p

10 UNIX C Applications Porting to AS/400 Companion Guide

• Padding is added before an embedded structure to allow the most
restrictive field in the embedded structure to align on its natural
boundary.

2.6.2 Abstract Data Types - Structures and Unions
Each member in a structure is aligned along a particular address boundary
depending on the type of the member. This alignment can leave unused
space between members in a structure. This unused space is called
padding.

The instruction set and the word size of a system determine, in part, how an
element of a particular type can be used efficiently. For this reason, the
alignment of a member within a structure depends on the type of member,
and the alignment of members of a particular type varies from system to
system. So structures, unions, and enumerators suffer most from a data
alignment problem. UNIX supports many types of alignments that can be
used by pragma directives to the compiler.

The ILE C/400 language provides the _Packed storage class to reduce the
padding in the structure storage layout. When the _Packed is used in a
structure declaration, the fields of the structure align on the byte boundary.
However, the ILE C/400 language pointers are exceptions that always align
on a 16-byte boundary.

The preceding structure is declared next with the _Packed construct as
follows:

_Packed struct{
char x;
int y;
char *p;
} structm;

From the preceding example, clearly a padding of 11 bytes is used in the
structure layout before the pointer p. The padding of 3 bytes before the

Table 6. Storage Layout of Packed Structure structm on AS/400

Offset Bytes Length Field

0 1 x

1 4 y

5 11 padding

16 16 p

Chapter 2. Overview of Source and Target Environment 11

integer y is removed. The pointers are exceptions that always align on the
16-byte boundary.

2.7 Pointer Usage

This section describes some differences between ILE C/400 and UNIX C
pointers.

2.7.1 UNIX C
In UNIX C, the address pointers are four bytes long. An address can be
assigned to an integer, an integer to a pointer, and the address of an object
of one type to a pointer to another type. Such assignments are simple copy
operations with no conversion.

2.7.2 ILE C/400
In ILE C/400 language, a pointer is an AS/400 system space pointer that
points to a system space object. The use of a pointer variable on the
AS/400 system is controlled by the hardware and is different from other C
platforms. The AS/400 system uses 16-byte pointers. The pointer arithmetic
works the same way in the ILE C/400 language as long as the system is
aware that this variable is an address pointer.

Programming habits, such as manipulating pointers as integers, does not
work on this system. For example:

int *p, i, j = 1;
p = & j ; /* initialize p to address of j */
i = (int)p; /* gives offset into space */
p = (int*) i ; /* always NULL */

In statement three, the pointer p is cast to an integer. In statement four, it is
cast back to a pointer. Since the compiler does not have enough
information to know which space the offset is in, the pointer is set to NULL.

Packed and non-packed structures have different memory layouts in the
AS/400 system. Therefore, comparisons and assignments between pointers
to packed or non-packed objects may produce an undesirable result.

ANSI C pointers are derived from function type, data object type, or an
incomplete type. However, AS/400 pointers can also come from other
AS/400 entities, such as system objects, code labels, and process objects.
Such pointers do not support the usual pointer operations.

12 UNIX C Applications Porting to AS/400 Companion Guide

A NULL pointer cannot be used in a relational operation with any pointer
type. Relational and arithmetic operations are valid only for an OPEN
pointer having an address of SPACE pointer or for SPACE pointers.

Rules of pointer casting:

 1. When int is cast to a pointer, the result is always a NULL pointer.

 2. When an OPEN pointer is cast to int, if it has the address of SPACE
pointer at that time, then an offset is returned, otherwise a run-time
exception occurs.

 3. All other pointers cast to int always give zero.

 4. A SPACE pointer cast to int always gives the offset; a NULL pointer cast
to int always gives zero.

Table 7. Pointer Types on AS/400

Pointer Type Function

Open Void pointers

Space Data object pointer

Function Function pointer

System Pointer to system objects

Label Pointers to fixed locations

Invocation Pointers to space objects

Suspend Enters to location in a procedure where control
has been suspended

2.7.3 Comments:
Since a pointer in the ILE C/400 is 16 bytes long, it cannot be treated as an
integer as previously shown. A pointer can only be assigned to any other
pointer type with proper casting. An assignment to a pointer as in
statement four on 12 is not useful. Such statements need to be replaced by
some other equivalent statements. In the preceding example, statement
four on 12 can be removed.

In a UNIX C program, an integer can be assigned to an address. An
address of an object of one type can be assigned to a pointer of another
type without a proper pointer casting operation. Such assignment
operations may produce undesirable exceptions in an ILE C/400 language
program.

Chapter 2. Overview of Source and Target Environment 13

Pointers to packed and non-packed objects are quite different. So a packed
structure or a packed union cannot a reference non-packed structure or
union. Proper type casting is needed in such cases.

2.8 Main() Function

2.8.1 UNIX C
When called from the command line, standard arguments referred to as
argc, argv, and envp (pointer to the environment) can be passed.

2.8.2 ILE C/400
When called from the command line, the arguments argc and argv can be
passed.

2.9 Software Development Tools in AS/400 System

Many tools are available on the AS/400 system. These tools make
application development on the AS/400 system easy, consistent, and cost
effective. Some of the tools are:

SEU The source entry editor (SEU) provides editing, syntax checking, and
intelligent prompting for application development. However, there is
no syntax checking and prompting for free format languages such as
C.

SDA Screen Design Aid (SDA) makes the display and menu design for
applications easy and consistent.

PDM Programming Development Manager (PDM) provides a menu-driven
environment to develop application programs.

DFU Data File Utility (DFU) is the utility to manipulate data in the database
files.

IDDU Interactive Data Definition Utility (IDDU) is used for interactively
describing external data.

Other utilities are for character generation (CGU), report layout making
(RLU), Advance Function Printer Utility (AFPU), SQLC, and so on.

There are two tools to assist programmers in AS/400 programming. The
TMKMAKE tool, an AS/400 version of MAKE, does the repetitive tasks in
compiling and binding applications. The CHECKOUT compiler option finds
the possible programming errors during compilations.

Note: TMKMAKE is provided ″AS IS″ in the QUSRTOOL library.

14 UNIX C Applications Porting to AS/400 Companion Guide

2.10 Database Management

The AS/400 system has DB2 for AS/400 Relational Database Management
System (RDBMS) integrated into its operating system right from the
introduction of it. However, the UNIX system has no RDBMS with it and the
RDBMS is provided by the third party. As there is no unique RDBMS
associated with UNIX, a porting strategy can be formulated only when the
RDBMS of the source is known. However, a few observations are:

• Most prominent DB vendors use SQL as the language for DB operations.
The AS/400 system fully supports the ANSI standard SQL. The porting
process has to look for extensions of ANSI SQL being used by the DB.

• The AS/400 system supports stored procedure, referential integrity,
Triggers, and so on. However, the exact syntax may vary from some of
the third party RDBMS. Most of the third party RDBMS allow only SQL
in a stored procedure together with some constructs for the control of
flow. On the AS/400 system, stored procedures and triggers are written
in any of the HLL (COBOL, RPG, C, and so on) that may or may not have
embedded SQL.

Chapter 2. Overview of Source and Target Environment 15

16 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 3. File Handling

This chapter describes the differences in the file handling features on the
two systems. The features such as file specifications, file organization,
record formats, and the function fopen are covered. The alternative method
of the UNIX type of file system, called Integrated File System, is also
discussed.

3.1 File Specifications

3.1.1 UNIX
The hierarchical file system in UNIX is a tree structure with a root denoted
by ″/″. A file is a node in the tree containing source programs or data,
whereas a directory contains names and addresses of other files and
directories. A file or directory may be accessed by its full or relative path
name.

3.1.2 OS/400
The Integrated File System on the AS/400 system supports the hierarchical
file system as in UNIX. In addition, it also has its native file system, wherein
all data is stored in objects. A library is an object that contains other
objects called files. A file has members containing program sources or
data.

3.2 File Organization and Record Format

3.2.1 UNIX
UNIX treats a file as a continuous stream of characters. All I/O operations
are carried out using the stream.

3.2.2 OS/400
The AS/400 system also supports stream I/O as in UNIX. In addition, in the
native file system of the AS/400 system, files may be made up of records,
and I/O operations at the OS level are carried out on records using data
management operations. The following are the different types of files in the
native file system:

 Copyright IBM Corp. 1996 17

ILE C/400 provides functions for its hierarchical file system as well as its
native object based file system. The low-level calls such as open(), close(),
read(), and so on work on stream files, whereas calls such as fopen(), fclose
(), fread(), and so on work on database files. However, the latter set can
also be made to work on the stream files in QOpenSys by specifying *IFSIO
on the ″System Interface Option″ provided on the CRTCMOD command.
Besides these, there are APIs such as _Ropen(), _Rread(), _Rformat(), and
so on for record-oriented file I/O.

Many functions are provided in ILE C/400 that allow file I/O at the record
level to improve performance. Many options such as blocking of records,
record format, character set id, commitment control, sequence of arrival,
indicators, and so on can be exercised.

The fseek() function in the ILE C/400 run-time library is functionally different
from the same in the UNIX C run-time library. Only the ANSI C elements
are supported by the fseek function in ILE C/400. Also, the lseek() function
used in C should be replaced by an equivalent code when porting to the
AS/400 system.

Filenames in an ILE C/400 program can be any of the following forms:

Filename
Filename (member-name)
Library-name/fi lename
Library-name/fi lename (member-name)
Member-name.fi lename
Library-name/fi lename/member-name

The last two forms of the file specifications can be used only in a #include
directive.

Table 8. File Types on AS/400

File Type Function

Database files To store data on the AS/400 system.

Device files To provide access to externally
attached devices such as Display,
printer, tape, diskette, Intersystem
Communications Functions (ICF).

Save files To save data in a format used for
backup and recovery purposes.

Distributed Data Management (DDM)
files

To access data on remote systems.

18 UNIX C Applications Porting to AS/400 Companion Guide

All characters specified for library-name, filename, or member-name are
folded to uppercase unless surrounded by a back slash and quotation mark.

For information on standard C file I/O APIs, see the ILE C/400 Programmer′s
Reference. For information on Integrated File System (POSIX) file I/O APIs,
see the System API Reference.

Chapter 3. File Handling 19

20 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 4. Networking

This chapter discusses the implementation differences of TCP/IP protocols
on UNIX and OS/400 with respect to command, command options, and sub
commands. Implementation of APPC is also discussed.

4.1 TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) refers to a family of
non-proprietary network protocols, of which TCP, providing host-to-host
transmission, and IP, providing data routing from source to destination, are
two important parts. It consists of a layered structure of protocols that
range from low-level, hardware-dependent programs to high-level
applications. FTP and TELNET are examples of high-level protocols. One
strength of the TCP/IP protocol suite is the availability of these standard
applications for a variety of operating environments. The AS/400 system
puts TCP/IP into effect as part of OS/400 and as part of a licensed program
called TCP/IP Connectivity Utilities/400.

4.1.1 Application Protocol Standards
The TCP/IP Connectivity Utilities/400 licensed program contains the
following high-level applications and their associated CL commands:

• File Transfer Protocol (FTP)

• TELNET Protocol (TELNET)

• Simple Mail Transfer Protocol (SMTP)

• Remote Printing (LPR and LPD)

• Simple Network Management Protocol (SNMP)

• TCP/IP File Server Support/400

The following sections compare the options and sub-commands of the major
applications with the corresponding UNIX implementation. For further
details on the AS/400 implementation, see the OS/400 TCP/IP Configuration
and Reference.

4.1.2 FTP
FTP allows you to transfer data between local and remote hosts. OS/400
TCP/IP supports both client and server FTP functions. The FTP server on
OS/400 fully supports the sub commands provided by ftpd, the UNIX FTP
server process. The inactivity time-out period that is passed as a parameter
to ftpd, can be changed by the CHGFTPA command on the AS/400 system.

 Copyright IBM Corp. 1996 21

To change the inactivity time-out period, the AS/400 system also supports
the FTP server TIME subcommand, which can be sent to the server with the
FTP client QUOTE subcommand.

The FTP client on the AS/400 system supports almost all of the sub
commands provided by its UNIX counterpart except for certain enhanced
features such as defining macros, proxy execution of commands on a
secondary control connection, filename mapping/ filename character
translation mechanism, storing files on the local system with unique file
names. The FTP client on the AS/400 system cannot send files located in
the Root, QOpenSys, and QLanSrv file systems.

4.1.3 TELNET
The TELNET protocol allows the client to access and to use the resources of
a remote system (the server) as if the client were locally connected to the
remote system. AS/400 TCP/IP TELNET provides client and server support
that allows a remote logon to hosts within an internet. The AS/400 TELNET
client allows an AS/400 TCP/IP user to sign on to and use applications on a
remote system that has a TELNET server application.

The AS/400 TELNET client provides control functions that allow you to
control workstation processing on the server system when you are in a
TELNET session. These correspond to the send command of the UNIX
TELNET client (Telnet). The AS/400 TELNET client can send IP(Interrupt),
AYT(Are You There), and QUIT sequences but does not provide for sending
ESCAPE, BRK(Break), EC(Erase Character) and EL(Erase Line) sequences.
The UNIX counterpart provides other commands to:

• Open and close connection to hosts.

• Suspend Telnet.

• Set and display Telnet variables (escape, erase, and so on) and boolean
flags.

These are not supported by the OS/400 TELNET client. The AS/400 system
allows the use of System Request Key and Print key functions during a
Telnet session.

4.1.4 SMTP
The Simple Mail Transfer Protocol (SMTP) function allows you to send or
receive electronic mail. For consistency with other AS/400 mail functions,
SMTP is coupled to the AS/400 SNA distribution services (SNADS). SNADS
is part of OS/400 and it contains extensions to support SMTP. SNADS
allows you to send mail to various types of users (not just SMTP users) with
one consistent user interface.

22 UNIX C Applications Porting to AS/400 Companion Guide

4.1.5 Remote Printing (LPR and LPD)
It is possible in a TCP/IP network to send your spooled files to any system
in your network. The term often used by UNIX TCP/IP software to describe
this support is line printer requester (LPR). LPR is the sending, or client
portion, of a spooled file transfer. On the AS/400 system, the Send TCP/IP
Spooled File (SNDTCPSPLF) command provides this function by allowing
you to specify what system you want the spooled file printed on and how
you want it printed.

The printing of the file is done by the printing facilities of the destination
system. On the AS/400 system, the line printer daemon (LPD) is the
process on the destination system that receives the file sent by the
SNDTCPSPLF command.

4.1.6 TCP/IP File Server Support/400
The TCP/IP File Server Support /400 allows you to manipulate files on
remote TCP/IP hosts as if they reside on your local host. It is based on NFS
protocol and uses RPC (Remote Procedure Call) protocol to communicate
between the client and the server. TCP/IP File Server Support/400 is a
server-only implementation of NFS.

4.1.7 Application Program Interface (API) To TCP/IP
The application program interface (API) to the Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) layers on the AS/400 system
enables you to write programs that communicate with other systems using
TCP/IP.

Many times, an enterprise has unique interoperability requirements for its
private networks. This means that the enterprise must provide its own
applications to fulfill these unique requirements. On the AS/400 system, this
is accomplished with several programming interfaces. These are:

• Sockets Interface

• Pascal API

A socket interface (sockets) allows you to write your own applications to
supplement those supplied by TCP/IP. Sockets allows unrelated processes
to exchange data locally and over networks. Both connection-oriented and
connectionless communications are provided for TCP/IP. With this support,
you can write applications to the TCP, UDP, and IP protocols directly. The
TCP/IP applications that run on sockets are FTP, SMTP, SNMP, LPR, and
LPD. The sockets interface operates over TCP/IP or (by using AnyNet/400)
over SNA.

Chapter 4. Networking 23

The TCP/UDP programming interface provides a system programmer with a
programming interface to TCP or UDP as a set of procedure calls from an
AS/400 Pascal program. The TELNET application and Network File Server
support use the Pascal API and can only run on TCP/IP.

4.2 Sockets

In this section, we discuss the sockets interface as implemented in the
AS/400 system and compare it with the BSD (Berkeley Software
Distributions) implementation. For details of the AS/400 sockets
implementation, see the OS/400 Sockets Programming.

The sockets application programming interface (API) is available only from
Integrated Language Environment (ILE) C/400 language programs. It is the
standard API for Transmission Control Protocol/Internet Protocol(TCP/IP),
and supports a UNIX domain and TCP/IP as part of OS/400. For V3R6,
OS/400 also supports Novell NetWare.

Sockets is a Berkeley Software Distributions (BSD) interface. The semantics
such as the return codes that an application receives and the arguments
available on supported functions are BSD semantics. Some BSD semantics,
however, are not available in the OS/400 implementation, and changes may
need to be made to a typical BSD socket application in order for it to run on
AS/400 systems.

The following table summarizes the differences between the OS/400
implementation and the BSD implementation.

• /etc/resolv.conf

The OS/400 implementation requires that this information be configured
using the CFGTCP menu.

• bind()

Table 9. Comparison of Sockets Implementation in AS/400 and BSD

OS/400 File UNIX File Contents

QATOCHOST /etc/hosts List of host names and the
corresponding IP addresses

QATOCPP /etc/protocols List of protocols used in the Internet

QATOCPS /etc/services List of services, specific port, and
protocol a service uses

QATOCPN /etc/networks List of networks and the
corresponding IP addresses

24 UNIX C Applications Porting to AS/400 Companion Guide

On a BSD system, a client can create an AF_UNIX socket using socket(),
connect to a server using connect(), and then bind a name to its socket
using bind(). The OS/400 implementation does not support this scenario
(the bind() fails).

• close()

The OS/400 implementation supports the linger timer for close() except
for AF_INET sockets over SNA. The BSD implementation does not
support the linger timer for close().

• connect()

On a BSD system, if a connect() is issued against a socket that was
previously connected to an address and is using a connectionless
transport service, and a not valid address or a not valid address length
is used, the socket is no longer connected. The OS/400 implementation
does not support this scenario (the connect() fails and the socket is still
connected).

A connectionless transport socket for which a connect() has been issued
can be disconnected by setting the address_length parameter to zero
and issuing another connect().

• ioctl()

On a BSD system, with a socket of type SOCK_DGRAM, the FIONREAD
request returns the length of the data plus the length of the address. On
the OS/400 implementation, FIONREAD only returns the length of data.

Not all requests available on most BSD implementations of ioctl() are
available on the OS/400 implementation of ioctl().

• listen()

On a BSD system, issuing a listen() with the backlog parameter set to a
value that is less than zero or greater than {SOMAXCONN} does not
result in an error. In addition, the BSD implementation, in some cases,
does not use the backlog parameter, or uses some algorithm to come
up with a final result for the backlog value. The OS/400 implementation
returns an error if the backlog value is not between zero and
{SOMAXCONN}, and setting the backlog to a valid value results in the
value being used as the backlog.

• OOB data

In the OS/400 implementation, OOB data is not discarded if
SO_OOBINLINE is not set, OOB data has been received, and the user
then sets SO_OOBINLINE on. The initial OOB byte is considered normal
data.

• protocol parameter of socket()

Chapter 4. Networking 25

As a means of providing additional security, no user is allowed to create
a SOCK_RAW socket specifying a protocol of IPPROTO_TCP or
IPPROTO_UDP.

• res_xlate() and res_close()

These functions are included in the resolver routines for the OS/400
implementation. The res_xlate() function translates DNS packets from
EBCDIC to ASCII and from ASCII to EBCDIC. The res_close() function is
used to close a socket that was used by res_send() with the
ES_STAYOPEN option set. It also resets the _res structure.

• sendmsg() and recvmsg()

On the OS/400 implementation, access rights cannot be passed to a
descriptor using sendmsg() and recvmsg(). However, a job can pass
access rights to a descriptor using givedescriptor() and takedescriptor().

The OS/400 implementation of sendmsg() and recvmsg() allows up to
and including {MSG_MAXIOVLEN} I/O vectors. The BSD implementation
allows MSG_MAXIOVLEN - 1} I/O vectors.

• shutdown()

The OS/400 implementation of shutdown() may block if an output
function is currently blocked on the socket descriptor. On a BSD
implementation, the blocking output function is ended with the EPIPE
errno value. Similarly, a BSD implementation ends blocking input
operations with a zero output value when they are blocking and a
shutdown() is issued from another process or thread. The OS/400
implementation simply fails any subsequent input function with a zero
output value, but the blocking input function continues to block until data
is received or some other action is taken to remove it from a waiting
state.

• SO_REUSEADDR option

On BSD systems, a connect() on a socket of family AF_INET and type
SOCK_DGRAM causes the system to change the address to which the
socket is bound to the address of the interface that is used to reach the
address specified on the connect(). For example, if you bind a socket of
type SOCK_DGRAM to address INADDR_ANY, and then connect it to an
address of a.b.c.d, the system changes your socket so it is now bound to
the IP address of the interface that was chosen to route packets to
address a.b.c.d. In addition, if this IP address that the socket is bound
to is a.b.c.e, for example, address a.b.c.e now appears on
getsockname() instead of INADDR_ANY, and the SO_REUSEADDR option
must be used to bind any other sockets to the same port number with
an address of a.b.c.e.

26 UNIX C Applications Porting to AS/400 Companion Guide

In contrast in this example, the OS/400 implementation does NOT
change the local address from INADDR_ANY to a.b.c.e. getsockname(),
continues to return ADDR_ANY after the connect is performed, and the
SO_REUSEADDR option has no meaning for a socket of type
SOCK_DGRAM.

• SO_SNDBUF and SO_RCVBUF options

The values set for SO_SNDBUF and SO_RCVBUF on a BSD system
provide a greater level of control than on an OS/400 implementation.
On an OS/400 implementation, these values are taken as advisory
values.

4.3 APPC

The AS/400 Advanced Program-to-Program Communications (APPC) support
is the AS/400 system implementation of the Systems Network Architecture
(SNA) logical unit (LU) type 6.2 and node type 2.1 architectures.

The APPC support handles all of the SNA protocol requirements when the
AS/400 system is communicating with a remote system using the LU type
6.2 and node type 2.1 architectures. You can connect your system to any
other system that supports the APPC program interface. APPC application
programs can also communicate over lines using the Internet Protocol (IP)
of Transmission Control Protocol/Internet Protocol (TCP/IP). This is
achieved by the Multiprotocol Transport Networking (MPTN) architecture.
On the AS/400 system, the MPTN architecture is put into effect as AnyNet
that is a family of products that allow applications written for one type of
network protocol to be run over a different type of network protocol. The
AnyNet support allows APPC application programs (such as ICF or CPI
Communications applications) to communicate between systems in a TCP/IP
network. The systems running the APPC application programs must both
have APPC over TCP/IP support.

The APPC protocol consists of a set of verbs that are common to the local
and remote systems in a network. However, the way in which each system
provides a program interface to the verbs may differ.

The AS/400 system provides the following program interfaces:

• The Intersystem Communications Function (ICF) file interface

• The Common Programming Interface (CPI) communications call
interface

• The CICS file interface

• The sockets application program interface (API)

Chapter 4. Networking 27

In ICF, the LU 6.2 verbs are implemented using data description
specifications (DDS) keywords and system-supplied formats. If you use ICF,
you can write application programs using the following languages:

• ILE C/400
• ILE COBOL/400
• FORTRAN/400
• ILE RPG/400

In CPI Communications, the LU 6.2 verbs are implemented using CPI
communications calls. If you use CPI communications, you can write
application programs in the following programming languages:

• ILE C/400
• ILE COBOL/400
• FORTRAN/400
• REXX/400
• ILE RPG/400
• Cross System Product (CSP)

In CICS/400 support, the LU 6.2 verbs are implemented using EXEC CICS
commands. If you use CICS, you can write application programs using the
ILE COBOL/400 language.

For the sockets API, the LU 6.2 verbs are implemented using the socket
functions. If you use sockets, you can write application programs using the
ILE C/400 language. Both the source and target programs must use the
sockets API.

APPC is also implemented on some UNIX environments. For example, AIX
provides the CPI communications call interface to APPC. Refer to
Appendix D, “AIX C to ILE C/400 Application Porting” on page 97 for a
comparison of CPI-C implementation on AIX and the AS/400 system.

28 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 5. Data Conversion

Most UNIX systems run on hardware that uses the ASCII character set to
encode data, whereas the AS/400 system uses the EBCDIC set to encode
data. This should not cause problems in porting source code if the
application makes no assumptions about the character set. However, the
files containing data need to be converted to the correct format according to
the requirements. To facilitate this task, the AS/400 system provides data
conversion APIs. We discuss them in the following sections.

5.1 Data Conversion APIs

The X/Open, CAE specification defines a set of functions that provide data
conversion capabilities from the program level. These require the user to
initialize a data conversion stream, identifying both the source and the
target data. The AS/400 system uses Coded Character Set Identifier
(CCSID) values to identify the source and target data. Once initialized,
character sequences encoded in the source CCSID can be converted, and
equivalent sequences encoded in the target CCSID are returned.

In this section, we discuss the following data conversion APIs:

 1. QDCXLATE - Convert Data - converts data through the use of a table
object.

 2. iconv() - Code Conversion - converts a buffer of characters from one
CCSID into another.

 3. iconv_close() - Code Conversion Deallocation - closes the conversion
descriptor (cd) that was initialized by the iconv_open() or
QtqIconvOpen() function.

 4. iconv_open() - Code Conversion Allocation - performs the necessary
initializations to convert character encoding and returns a conversion
descriptor of type iconv_t.

 5. QtqIconvOpen() - Code Conversion Allocation - performs the necessary
initializations to convert character encoding and returns a conversion
descriptor. The only difference between this function and the
iconv_open() function is the format of the parameters.

For details of the data conversion APIs, see the AS/400 System API
Reference.

An example illustrating the use of a few of these is included at the end of
the chapter.

 Copyright IBM Corp. 1996 29

In general, the conversion process of the data conversion APIs comprises
the following three steps:

 1. Open a conversion descriptor with a specified CCSID pair (through
iconv_open() or QtqIconvOpen()).

 2. Do multiple conversions (through iconv()).

 3. Close the conversion descriptor when done (through iconv_close()).

The API QDCXLATE converges these three steps into one with slight
modifications.

Note: Among the APIs previously mentioned, only iconv(), iconv_open(),
and iconv_close() conform to the X/Open industry standard functions.

5.2 Convert Data (QDCXLATE) API

5.2.1 Required Parameters:
• Length of data being converted

• Conversion data

• Single-Byte Character Set (SBCS) conversion table name

5.2.2 Optional Parameters:
• SBCS conversion table library name

• Output data

• Length of output buffer

• Length of converted data

• Double-Byte Character Set (DBCS) language

• Shift-out and shift-in characters

• Type of conversion

The Convert Data (QDCXLATE) API converts data through the use of a table
object. The conversion table that QDCXLATE uses for the conversion may
be created by the user, or an IBM-supplied table may be used from the
QUSRSYS library. When the QDCXLATE API is called with the mandatory
parameters only, it converts single-byte data. When all parameters are
specified, DBCS conversion takes place. The QDCXLATE API can
distinguish double-byte from single-byte characters when converting from
ASCII to EBCDIC and vice-versa if the proper parameters have been
supplied. The required conversion table may be created by the user, or any
IBM-supplied table may be used.

30 UNIX C Applications Porting to AS/400 Companion Guide

Return Value: The QDCXLATE API converts data byte for byte and returns
the converted data to the program. When only single-byte data is
converted, the input (unconverted) data is replaced with the converted data.
When double-byte data is converted, the converted data is placed in the
output data parameter.

Note: For ASCII to EBCDIC DBCS conversion, the type of conversion
parameter is mandatory. The possible values are:

*AE Convert ASCII to EBCDIC
*EA Convert EBCDIC to ASCII

5.3 Code Conversion API - iconv()

5.3.1 Syntax
size_t iconv (cd, inbuf, inbytesleft, outbuf, outbytesleft)
iconv_t cd;
char **inbuf;
size_t *inbytesleft;
char **outbuf;
size_t *outbytesleft;

The iconv() function converts a buffer of characters specified by the inbuf
parameter from one coded character set identifier (CCSID) into another
CCSID and stores the converted characters into a buffer specified by the
outbuf parameter. The CCSIDs used are those in the conversion descriptor,
cd, which was returned from the call to either the iconv_open() or the
QtqIconvOpen() function. On input, the inbytesleft parameter indicates the
number of bytes in inbuf to be converted. Similarly, the outbytesleft
parameter indicates the number of bytes available in outbuf. These values
are decremented when the conversion is done, such that on return, they
indicate the state of their associated buffers. If the output buffer is not large
enough to hold the entire converted input, conversion stops just prior to the
input bytes that cause the output buffer to overflow. During conversion,
iconv() may encounter valid characters in the input buffer that do not exist in
the target CCSID. This is known as a character mismatch. In this case,
iconv() performs the conversion based on the conversion alternative
specified in the fromcode parameter of the iconv_open() function.

Return Value: If the entire input buffer is successfully converted, iconv() may
return the number of non-identical conversions performed based on the
substitution alternative. Otherwise, a zero is returned. If an error occurs,
iconv() returns (size_t)-1, and errno is set to indicate the error.

Chapter 5. Data Conversion 31

5.3.2 Error Conditions
The following errors can be returned in errno:

[E2BIG] Insufficient space. Conversion stopped due to lack of space in
the output buffer or there was not enough space to store the
NULL character in the output buffer.

[EBADDATA]
Shift state not valid in input data. The beginning shift state of
the input data buffer does not correspond to the shift state of
the conversion descriptor. A shift-state sequence was
encountered that tried to change the shift state of the input
buffer to the current shift state of the conversion descriptor.
For example, an EBCDIC shift-in control character may have
been encountered while the conversion descriptor indicated
single-byte state. This error is only supported for EBCDIC
mixed-byte (X′1301′) encoding schemes.

[EBADF] Descriptor not valid. The conversion descriptor (cd) parameter
is not valid.

[ECONVERT]
The mixed input data contained DBCS characters. Input
conversion stopped due to the occurrence of DBCS characters
in the input data when converting from a mixed-byte encoding
scheme. The shift state for EBCDIC mixed data remains in the
initial single-byte shift state. This error can only be returned
when the mixed error option has been set accordingly for the
QtqIconvOpen() or iconv_open() function.

[EFAULT] Bad address. The system detected an address that was not
valid when attempting to use an argument from the parameter
list. An escape message may also be signaled as a result.

[EINVAL] Parameter not valid. The conversion stopped because of an
incomplete character or shift state sequence at the end of the
input buffer.

[ENOBUFS] Number of bytes for the input or output buffer not valid, or the
input length cannot be determined. The specified number of
bytes for inbytesleft or outbytesleft is not valid. If the input
length option field (on the call to iconv_open() or
QtqIconvOpen()) specifies that iconv() determines the length of
the input buffer and if iconv() cannot find a NULL character in
the input buffer, this error is returned.

[ENOMEM] Not enough space. Insufficient storage space was available to
perform the conversion.

32 UNIX C Applications Porting to AS/400 Companion Guide

[EUNKNOWN]
Undetected error. An undetected error occurred. Contact your
service organization. An escape message may also be
signaled as a result.

5.4 Code Conversion Deallocation API - iconv_close()

5.4.1 Syntax
int iconv_close (cd)
iconv_t cd;

The iconv_close() function closes the conversion descriptor (cd) that was
initialized by the iconv_open() or QtqIconvOpen() function.

Return Value: If an error occurs, iconv_close() returns a value of -1 and
errno is set to indicate the error. If iconv_close() completes successfully, a
value of zero is returned.

5.4.2 Error Conditions
The following errors can be returned in errno:

[EBADF] Descriptor not valid. The conversion descriptor (cd) parameter
is not valid.

[EUNKNOWN]
Undetected error. An undetected error occurred. Contact your
service organization. An escape message may also be
signaled as a result.

5.5 Code Conversion Allocation API - iconv_open()

5.5.1 Syntax
iconv_t iconv_open (tocode, fromcode)
char *tocode;
char *fromcode;

The iconv_open() function performs the necessary initializations to convert
character encoding from the source CCSID identified by the fromcode
parameter to the CCSID identified by the tocode parameter. It then returns
a conversion descriptor of data type iconv_t. This API performs the same
function as the QtqIconvOpen() API (described later in the chapter) except
that the input types of fromcode and tocode are character strings. The
conversion descriptor remains valid in a job until that job closes it with

Chapter 5. Data Conversion 33

iconv_close() or the job ends. The components of the fromcode and the
tocode parameters are elaborated in the AS/400 System API Reference.

Return Value: If successful, iconv_open() returns a conversion descriptor of
data type iconv_t. This conversion descriptor must be passed unchanged as
an input parameter to the iconv() and iconv_close() functions. If
unsuccessful, iconv_open() returns -1 in the return value of the conversion
descriptor and sets errno to indicate the error.

5.5.2 Error Conditions
The following errors can be returned in errno:

[EFAULT] Bad address. The system detected an address that was not
valid when attempting to use an argument from the parameter
list. An escape message may also be signaled as a result.

[EINVAL] Parameter not valid. The conversion specified in the fromcode
and tocode parameters is not supported. When an errno value
of EINVAL is returned, check the fromcode and tocode
parameters for CCSIDs that are not valid or unsupported
alternatives and options.

[ENOMEM] Not enough space. Insufficient storage space is available.

[EUNKNOWN]
Undetected error. An undetected error occurred. Contact your
service organization. An escape message may also be
signaled as a result.

5.6 QtqIconvOpen() - Code Conversion Allocation API

5.6.1 Syntax
iconv_t QtqIconvOpen (tocode, fromcode)

QtqCode_T *tocode;
QtqCode_T *fromcode;

The QtqIconvOpen() function performs the necessary initializations to
convert character encoding from the source CCSID identified by the
fromcode to the CCSID identified by the tocode. It then returns a conversion
descriptor of data type iconv_t. This API performs the same function as the
iconv_open() API except that the input type of fromcode and tocode is of
data type QtqCode_T. The conversion descriptor remains valid in a job until
that job closes with iconv_close() or the job ends.

Return Value: If successful, QtqIconvOpen() returns a conversion descriptor
of data type iconv_t. This conversion descriptor must be passed unchanged

34 UNIX C Applications Porting to AS/400 Companion Guide

as an input parameter to the iconv() and iconv_close() functions. If
unsuccessful, QtqIconvOpen() returns -1 and in the return value of the
conversion descriptor and sets errno to indicate the error.

5.6.2 Error Conditions
The following errors can be returned in errno:

[EFAULT] Bad address. The system detected an address that was not
valid when attempting to use an argument from the parameter
list. An escape message may also be signaled as a result.

[EINVAL] Parameter not valid. The conversion specified in the fromcode
and tocode parameters is not supported. When an errno value
of EINVAL is returned, check the fromcode and tocode
parameters for CCSIDs that are not valid or unsupported
alternatives and options.

[ENOMEM] Not enough space. Insufficient storage space is available.

[EUNKNOWN]
Undetected error. An undetected error occurred. Contact your
service organization. An escape message may also be
signaled as a result.

The following examples illustrate the fundamental steps involved in using
the functions iconv_open(), iconv() and iconv_close() for ASCII to EBCDIC
SBCS data conversion. Figure 1 on page 36 demonstrates the use of the
API functions, while Figure 2 on page 37 shows how the same objective can
be accomplished using the QDCXLATE API.

Chapter 5. Data Conversion 35

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <iconv.h> /* contains the Data Conversion APIs */
#include <errno.h>

extern iconv_t iconv_open (char *, char *);
extern size_t iconv (iconv_t, char **, size_t *, char **, size_t *);
extern int iconv_close (iconv_t);

main(int argc, char *argv[])
{
/* All parameters named as in the explanation given earlier */

iconv_t cd;

/* The fromcode and tocode parameters are character strings formed */
/* by a concatenation of different substrings depending on the */
/* conversion specifications. */
char fromcode[33] = ″IBMCCSID003670000101″ ;
char tocode[33] = ″IBMCCSID00037″ ;

/* inputstr and outputstr would contain the source and the converted */
/* strings respectively. */
char *inputstr = NULL;
char *outputstr = NULL;

char **inbuf = &inputstr; /* function iconv() requires pointers */
char **outbuf = &outputstr; /* of type (char **) */

size_t *inbytesleft, *outbytesleft, result;
int count;

memset(&fromcode[20],′ / 0 ′ , 1 3) ; /* The remaining positions in */

/* the fromcode and tocode */
memset(&tocode.[13],′ / 0 ′ , 2 0) ; /* parameters must be set to */

/* hexadecimal zeros. */
inbytesleft = malloc(sizeof(size_t));
outbytesleft = malloc(sizeof(size_t));
*inbytesleft = 50;
*outbytesleft = 50;
inputstr = (char *) malloc(50 * sizeof(char));
outputstr = (char *) malloc(50 * sizeof(char));

strcpy(inputstr, ″ABCDEFGHIJ″) ; / * String of characters in ASCII */
strcpy(outputstr, ″ ″) ; /* This would contain the converted text in EBCDIC */
cd = iconv_open (tocode, fromcode); /* returns a conversion descriptor */
result = iconv (cd, &inputstr, inbytesleft, &outputstr, outbytesleft);

/* converts data acording to specifications */
iconv_close (cd) /* closes the conversion descriptor */
};

Figure 1. Use of APIs iconv(), iconv_close(), iconv_open() in Convert ing Data

36 UNIX C Applications Porting to AS/400 Companion Guide

The same conversion is achieved by using only the API QDCXLATE with the
appropriate parameters as shown in the following figure:

#include <decimal.h>

#ifdef __ILEC400__
#pragma linkage(QDCXLATE,OS,nowiden)
#else
extern ″OS″
#endif

void QDCXLATE (_Decimal(5,0) *, char *, char *);

main()
{
_Decimal(5,0) length = 10;
char inputstr[20] = ″ABCDEFGHIJ″ ;
char tablename[10] = ″QASCII ″ ;

QDCXLATE(&length, inputstr, tablename);
return;
};

Figure 2. Use of API QDCXLATE in Convert ing Data

Chapter 5. Data Conversion 37

38 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 6. MI Instruction Function Calls

MI (machine interface) library functions provide many of the system level
functions required by programmers. These functions can be used as basic
building blocks to create more functions, if required. For the analyst porting
UNIX applications to the AS/400 system, these functions are of immense
value as MI instruction function calls help in providing workarounds for
unsupported APIs or library functions. This chapter gives an overview of MI
functions. An example of designing UNIX type APIs is included.

For details on the machine interface library functions, see the ILE C/400
Programmer ′s Reference.

6.1 MI Instruction Function Calls

MI instruction calls are low-level system interfaces accessible in ILE C/400
that provide system level programming capabilities. Some of the areas
where MI instruction calls provide help are:

• Data conversions such as:
− ASCII to HEX
− Char to SNA format
− Left adjusted byte copying with or without padding
− Compressing or decompressing of data
− Translation using tables

• Computation and branching
• Date/Time/Timestamp manipulations
• Pointer/Name resolution addressing
• Space object addressing
• Space management
• Program management
• Program execution
• Independent index
• Queue management
• Object lock management
• Authorization management
• Process management
• Resource management
• Machine observation
• Machine interface support
• Mutex
• Job information

 Copyright IBM Corp. 1996 39

6.2 Interfaces for the Machine Interface

The machine interface (MI) is the machine instruction set that allows access
to low-level machine procedures. Most of the MI instructions can be
accessed through two interfaces: the built-in interface and the function
interface. Some of the functions in the ILE C/400 MI library do not have a
built-in interface, and some of the built-ins do not have a function interface.

The built-in interface is a built-in routine that directly accesses the low-level
machine procedure. The address of a routine through its built-in interface is
not available. Also, there is no stack frame associated with a call to a
routine through its built-in interface. Performance may be improved if a
built-in interface is used. However, the machine procedures do not use a
consistent parameter passing mechanism nor do they make use of return
values and null-terminated strings such as C library functions.

Although built-in versions are mentioned in the discussion of the function,
the syntax is not provided. Refer to the Machine Interface Functional
Reference where the syntaxes of all the MI built-ins are provided.

The function interface provides an easier, more consistent, way for passing
parameters and using the ILE C/400 function calling conventions. If the
parameter lists of the function interface and the built-in interface to a
machine procedure are identical, the function interface is available as a
macro that maps directly to the built-in.

6.3 MI Instruction Header Files

The ILE C/400 MI header files contain definitions for both the built-in and
function interface to an MI instruction. In releases prior to V3R6, the ILE
C/400 MI functions and built-ins were declared in header files according to
their use (MI group header files), located in library QCLE. In V3R6 and
following releases, the MI header files are residing in library QSYSINC, file
MIH, with member names identical to the name of the header files.

6.4 Sample Workaround Using MI Instruction Calls

One of the APIs of UNIX that is not directly supported on the AS/400 system
is lockf. This is available in HP-UX for providing semaphore and record
locking facilities in the file. API lockf takes the file descriptor, control
function, and offset size as argument, and puts a lock on the specified
region. The syntax is:

int lockf(int fildes, int function, off_t size);

40 UNIX C Applications Porting to AS/400 Companion Guide

fildes provide the file descriptor to the API lockf,

function provides the type of operation to be performed,

size is the number of contiguous bytes to be locked.

Some behavioral characteristics of lockf are:

• The size can take negative arguments. The locking in this case goes in
the backward direction until offset size.

• Locking can cross the file boundary, if the size of offset (size) is so.

• Locking is valid until file is open and the process that called lockf exists.

In the following example, these basic characteristics are provided. Some
error conditions, contiguity checks, and so on have been simplified to keep
the example code simple.

/* This module gives a workaround for UNIX API ″lockf″ . The */
/* UNIX API lockf gives file locking/semaphore type locking */
/* facility for the specified portion of the file. The syntax is */
/* */
/* #include <unistd.h> */
/* int lockf(int fildes, int function, off_t size) */
/* */
/* where: */
/* */
/* fildes is an open file descriptor, */
/* function is control value that specifies action to be taken */
/* F_TEST: test if the required portion is locked */
/* F_LOCK: lock the required portion, */
/* F_TLOCK: test if lock exist on the required portion, */
/* then lock if required. */
/* F_ULOCK: Unlock the required portion */
/* */
/* size is the number of contiguous bytes to be */
/* locked/unlocked. */
/* */
/* The example uses MI functions available in the ILE C/400 */
/* library to give the workaround. The MI functions used are: */
/* */
/* matobjlk() */
/* unlocksl() */
/* locksl() */
/* */
/* The example shows the workaround for basic functionality. */
/* Some details have been omitted for the sake of clarity of */
/* the example code. For instance, size 0 in UNIX locks file */
/* until the end of file (EOF). Here it locks only one byte */
/* in the file. See HP-UX Reference Vol-2, Section 2 for full */
/* description of lockf. */

Figure 3 (Part 1 of 3). API Lockf()

Chapter 6. MI Instruction Function Calls 41

#include <stdlib.h>
#include <recio.h>
#include <stdio.h>
#include <errno.h>
#include <milock.h>
#include <mispcobj.h>
#include <milib.h>
#define F_ULOCK 0
#define F_LOCK 1
#define F_TLOCK 2
#define F_TEST 3

_MOBJL_Template_T allocated_locks;
_RFILE *file_pointer;
char *fp;
int locked=0, result=0, i;
int lockf(_RFILE *fildes, int function, int size) {

/* The fildes is a pointer to the type _RFILE. It is converted */
/* to pointer of type char to make it address a data type */
/* of size 1 char. */

fp = (char *) fildes;

/* If size is negative, decrement the loop index and pointer */

if (size < 0) {
fp += size;
size = size * -1;

}

/* Test if region is already locked for F_TEST & F_TLOCK */

if: ((function == F_TEST) || (function == F_TLOCK)) {
for (i =0; i < size +1; i++, fp++){

matobjlk(&allocated_locks, fp);

/* If lenr bit is set */

if (allocated_locks.Lock_Alloc & _LENR_LOCK) {
locked += 1;

}
}

if ((function == F_TEST) && (locked > 0)) {
printf(″%d bytes are locked \n″ , locked);
return(0);

}

if ((function == F_TLOCK) && (locked > 0)){
printf(″%d bytes are already locked \n ″ , locked);
return(-1);

}

}

Figure 3 (Part 2 of 3). API Lockf()

42 UNIX C Applications Porting to AS/400 Companion Guide

/* F_ULOCK needs unlocking a locked region */

if (function == F_ULOCK) {
for (i =0 ; i < size +1; i++,fp++){

matobjlk(&allocated_locks, fp);
if (allocated_locks.Lock_Alloc & _LENR_LOCK)

unlocksl(fp, _LENR_LOCK);
matobjlk(&allocated_locks, fp);

/* If LENR bit is bit is still set */

if (allocated_locks.Lock_Alloc & _LENR_LOCK){
printf(″Error. The LENR lock still exists.\n″) ;
exit(-1);

}
}

}
/* F_LOCK & F_TLOCK need locking an unlocked region */

if ((function == F_LOCK) || (function == F_TLOCK)) {
for (i =0 ; i < size +1; i++,fp++){

locksl(fp, _LENR_LOCK);
matobjlk(&allocated_locks, fp);

/* If lenr bit is set */

if (allocated_locks.Lock_Alloc & _LENR_LOCK) {
printf(″The LENR lock is placed as desired.\n″) ;
printf(″location with address: %p \n\n″ , fp);

}
else printf(″ERROR. The LENR lock request was not satisfied.\n″) ;

}
}
return(0);

} /* of function lockf */

Figure 3 (Part 3 of 3). API Lockf()

This source code is compiled as a module and bound to a service program
and a binding directory. After this, this function lockf can be used by any
program calling this API and including a different service program or
binding directory. The steps involved are:

 1. Create the module from the source given in member lockf:

CRTCMOD MODULE(MYLIB/LOCKF) SRCFILE(MYLIB/QCSRC) SRCMBR(LOCKF)
OUTPUT(*PRINT) CHECKOUT(*ALL) DBGVIEW(*ALL)

 2. Create a binding directory:

CRTBNDDIR BNDDIR(MYLIB/MYBNDDIR)

 3. Create the binder language source for declaring the items (API lockf in
this case) that are to be exported from the service program:

Chapter 6. MI Instruction Function Calls 43

a. Create a source physical file, if required. Add a member
MYSRVSRC to it:

CRTSRCPF FILE(MYLIB/QSRVSRC) MBR(MYSRVPGM)

b. Using SEU, enter the source lines into the member MYSRVSRC:

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(′ lockf′) /* export the API name */
ENDPGMEXP

The symbol name lockf is enclosed in quotes to protect its case,
otherwise symbol LOCKF is exported, which results in an error.

 c. Create the service program using the module object lockf (from
which symbol is to be exported) and the source binder language
code (stored in file QSRVSRC, member MYSRVSRC):

CRTSRVPGM SRVPGM(MYLIB/MYSRVPGM) MODULE(MYLIB/LOCKF)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(MYSRVSRC)

The service program now has exported symbol lockf.

 4. Add information about the service program that is to be associated with
the binding directory:

ADDBNDDIRE BNDDIR(MYLIB/MYBNDDIR) OBJ((MYLIB/MYSRVPRG))
POSITION(*FIRST)

The program in Figure 4 on page 45 is using the lockf API, linking to it
using the service program/binding directory previously created. The steps
to compile and link it to the lockf API are as follows:

 1. Compile the program as a module:

CRTCMOD MODULE(MYLIB/MAINLKF) SRCFILE(MYFILE/QCSRC)
OUTPUT(*PRINT) CHECKOUT(*ALL) DBGVIEW(*ALL)

 2. Link this program to the service program and binding directory that has
exported lockf:

CRTPGM PGM(MYLIB/RUNLOCKF) MODULE(MYLIB/MAINLKF) ENTMOD(*ONLY)
BNDSRVPGM(MYLIB/MYSRVPGM)

or

CRTPGM PGM(MYLIB/RUNLOCKF) MODULE(MYLIB/MAINLKF) ENTMOD(*ONLY)
BNDDIR(MYBNDDIR)

The runnable program has the name runlockf.

44 UNIX C Applications Porting to AS/400 Companion Guide

int main(int argc, char *argv•“) {

int function, size, result;
_RFILE *file_pointer;
_MOBJL_Template_T allocated_locks;

if (argc != 3) {
printf(″This program needs 2 parameters\n″) ;

}

function = atoi(argv•1“);
size = atoi(argv•2“);

if ((function < 0) ||(function > 3)){
printf(″Value of function is out of range\n″) ;
exit(-1);

}

if((file_pointer= _Ropen(″MYLIB/MYFILE″ , ″rr,arrseq=Y″))== NULL){
printf(″OPEN failed.\n″) ; exit(-1);

}

allocated_locks.Template_Size = sizeof(_MOBJL_Template_T);
result = lockf(file_pointer, function, size);
_Rclose(file_pointer);
printf(″The return value of lockf call is %d \n″ , result);
return(0);

}

Figure 4. Main() Function to Call Lockf()

Chapter 6. MI Instruction Function Calls 45

46 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 7. Message and Error Handling

In any operating system, communication between procedures or programs,
between jobs, between users, and between users and procedures or
programs is of great importance. There may be several points within a
single application, especially in larger ones (with frequent interactions with
the database or between programs) where information regarding the current
status of operations has to be passed back and forth. Conventionally,
applications are said to pass information to and from, through messages.
And therefore, differences in message handling techniques between the
source and target systems are of utmost importance in porting applications.

7.1 Message Handling in UNIX

UNIX does not support most of the advanced message handling facilities of
the AS/400 system. An application usually interacts with the user or the
environment by using built-in C function calls such as printf(), fprintf(), and
so on, on files and streams that are available on all systems supporting
ANSI C, including the AS/400 system. The function perror() is used to map
the error number in errno to an error message for easier debugging.

The system defines three file descriptors inseparably linked with files that it
opens and closes automatically. These are:

• stdin (standard input)
− used by the user to feed data to the application

• stdout (standard output)
− used by the application to communicate to the user

• stderr (standard error)
− used by the application to write error messages and warnings to the

error file

Alternatively, an application can use displays designed with the help of the
curses package (defined in the header file <cu rses .h>) , to interact with the
user. This again, is easily implemented in ILE C/400 using display files.

Note: On the AS/400 system, file descriptors 0,1, and 2 are not reserved for
stdin, stdout, and stderr respectively.

 Copyright IBM Corp. 1996 47

7.2 AS/400 Specific Message Handling Techniques

7.2.1 Message Files and Commands
An application program in the AS/400 system may send messages that are
hard coded within the program or stored in the database. An object called
a message file (object type *MSGF) stores a list of messages along with
their message IDs and severity codes.

The following are the AS/400 message file commands for modifying the
database of message files:

CHGMSGF
Change Message File - changes the attributes of a specified
message file or a list of message files.

CRTCSPMSGF
Create CSP/AE User Message File - updates an OS/400
message file with formatted Cross System Product /
Application Environment user messages.

CRTMSGF
Create Message File - creates a user-defined message file for
storing message descriptions.

CRTMSGFMNU
Create Menu from Message Files - creates a menu (display
file) from the specified message files.

CRTS36MSGF
Create S/36 Message File - creates a message file from the
System/36 message source member. This enables the user to
convert the System/36 message source to the message source
on this system.

DLTMSGF
Delete Message File - deletes the specified message files from
the system, including all of the message descriptions stored in
the file.

MRGMSGF
Merge Message File - allows a user to merge messages from
one message file with those in another message file.

OVRMSGF
Override Message File - overrides a message file used in a
program. The overriding message file is used whenever a
message is sent or retrieved and the overridden message file
is specified.

48 UNIX C Applications Porting to AS/400 Companion Guide

WRKMSGF
Work with Message Files - allows the user to show a list of
message files from one or more libraries.

Control Language (CL) commands may be issued by the application to send
messages to the user or to other applications. These commands may have
the message text hard coded within them or may refer to a message in a
message file with a particular value of the message ID.

The following are the AS/400 message commands that may be used to
exchange messages with the user or with other applications with or without
help from the message file database:

DSPMSG
Display Messages - used by the display station user to show
the messages received at the specified message queue.

MONMSG
Monitor Message - used to monitor escape, notify, and status
messages sent to the program message queue of the program
in which the command is used.

RCVMSG
Receive Message - used by a program to receive a message
being sent to a message queue.

RMVMSG
Remove Message - used by a program to remove the specified
message, or a group of messages, from the specified message
queue.

RTVMSG
Retrieve Message - used by a program to retrieve a specified
predefined message from a message file and copy it into CL
variables in the program.

SNDBRKMSG
Send Break Message - used to send an immediate message to
one or more workstation message queues. The command
causes the message to be delivered always in break mode.

SNDMSG
Send Message - used by a display station user to send an
immediate message from the display station to one or more
message queues.

SNDNETMSG
Send Network Message - sends a message to another user on
the local or a remote system through the SNADS network.

Chapter 7. Message and Error Handling 49

SNDNWSMSG
Send Network Server Message - sends a message to users or
workstations on the Local Area Network (LAN).

SNDPGMMSG
Send Program Message - sends a message to a named
message queue or to a call message queue. Each time a
program or procedure is called, a new message queue is
associated with its call stack entry.

SNDRPY
Send Reply - sends a reply message to the sender of an
inquiry message.

SNDUSRMSG
Send User Message - used by a program to send a message to
a message queue and optionally receive a reply to that
message.

7.2.2 Messages Queues
Message queues provide a form of message passing in which any process
(given that it has the necessary permissions) can read a message from or
write a message to any message queue on the system.

Note: AS/400 message queues, as discussed here, should not be confused
with X/Open IPC message queues. IPC message queues are also
supported on the AS/400 system.

The AS/400 message queue commands are:

CHGMSGQ
Change Message Queue - changes the attributes of the
specified message queue.

CLRMSGQ
Clear Message Queue - clears (removes) all messages from a
specified message queue.

CRTMSGQ
Create Message Queue - creates a user-defined message
queue and stores it in a specified library.

DLTMSGQ
Delete Message Queue - deletes the specified message
queues and any messages in those message queues.

WRKMSGQ
Work with Message Queues - the Work with Message Queues
(WRKMSGQ) command shows a list of message queues and

50 UNIX C Applications Porting to AS/400 Companion Guide

allows the user to display, change, delete, and clear specified
message queues.

7.2.3 Message Handling APIs
The message handling APIs let your applications work with AS/400
messages. You can use these APIs to send messages to various
destinations, sharing status and error information between programs only,
or between programs and users. For details, see the AS/400 System API
Reference. The Message Handling APIs consist of the following:

Change Exception Message (QMHCHGEM)
Changes an exception message on a call message queue. This
API allows the current program to perform a variety of actions
on an exception message that was sent to its caller, a previous
caller, or itself.

Control Job Log Output (QMHCTLJL)
Controls the production of a job log when the related job ends
or when the job message queue becomes full and the
print-wrap option is in effect for the job.

List Job Log Message (QMHLJOBL)
Lists messages from the job message queue. This function
gets the requested message information and returns it in a
user space in the format specified in the parameter list.

List Non-program Messages (QMHLSTM)
Lists messages from one or two non-program message
queues. This function gets the requested message information
and returns it in a user space in the format specified in the
parameter list.

Move Program Messages (QMHMOVPM)
Moves messages from one call message queue to the
message queue of an earlier call stack entry in the call stack.
This is especially useful for error handling.

Promote Message (QMHPRMM)
Promotes an escape or status message that was sent to a call
stack entry. That is, the message is handled and replaced with
a new escape or status message. You may promote an
escape message to another escape message or to a status
message. You may promote a status message to an escape
message or to another status message.

Receive Non-program Message (QMHRCVM)
Receives a message from a non-program message queue,
providing information about the sender of the message as well

Chapter 7. Message and Error Handling 51

as the message itself. This API is similar in function to the
Receive Message (RCVMSG) command with the MSGQ
parameter.

Receive Program Message (QMHRCVPM)
Receives a message from a call message queue and provides
information about the sender of the message as well as the
message itself. This API is similar in function to the Receive
Message (RCVMSG) command with the PGMQ parameter.

Remove Non-program Messages (QMHRMVM)
Removes messages from non-program message queues. This
API is similar in function to the Remove Message (RMVMSG)
command with the MSGQ parameter.

Remove Program Messages (QMHRMVPM)
Removes messages from call message queues. This API is
similar in function to the Remove Message (RMVMSG)
command with the PGMQ parameter.

Resend Escape Message (QMHRSNEM)
Resends an escape message from one call message queue to
the message queue of the previous call stack entry in the call
stack.

Retrieve Message (QMHRTVM)
Retrieves the message text and other elements of a predefined
message stored in a message file on your AS/400 system.
This API is similar to the Retrieve Message (RTVMSG)
command.

Retrieve Message File Attributes (QMHRMFAT)
Retrieves information about the attributes of a message file.

Retrieve Non-program Message Queue Attributes (QMHRMQAT)
Provides information about the attributes of a non-program
message queue.

Retrieve Request Message (QMHRTVRQ)
Retrieves request messages from the current job′s call
message queue.

Send Break Message (QMHSNDBM)
Sends a message to a workstation for immediate display,
interrupting the workstation user′s task. You can use break
messages to warn users of impending system outages and
such. This API is similar in function to the Send Break
Message (SNDBRKMSG) command.

52 UNIX C Applications Porting to AS/400 Companion Guide

Send Non-program Message (QMHSNDM)
Sends a message to a system user or a message queue that is
not associated with a specific program. This API is similar in
function to the Send Program Message (SNDPGMMSG)
command with the TOMSGQ parameter.

Send Program Message (QMHSNDPM)
Sends a message to the message queue of a call stack entry
in the call stack. This API is similar in function to the Send
Program Message (SNDPGMMSG) command with the
TOPGMQ parameter.

Send Reply Message (QMHSNDRM)
Sends a response to an inquiry message. This API is similar
in function to the Send Reply (SNDRPY) command.

Send Scope Message (QMHSNDSM)
Sends a scope message that allows a user to specify a
program to run when your program or job is completed.

7.2.4 Display Files
The most commonly used methodology in the AS/400 system by which an
application communicate with the user is through the use of display files.
Any use of text windows in UNIX can efficiently be ported to the AS/400
system through display files. A display file defines the format of the
information to be presented on a display station, and how that information is
processed by the system on its way to and from the display station. Data
description specifications (DDS) describe the data referred to by a display
file. Messages may be displayed over the entire window, or may take up
only a part of the window, thus retaining much of the earlier text. The most
popular way of sending messages from an application to a user is through
the use of a subfile, which is just a special type of display file.

The following example illustrates the use of a subfile in the AS/400 system
for message passing. Figure 5 on page 54 shows a simple DDS for a
subfile implementation and Figure 6 on page 54 shows a source file in ILE
C/400 that uses this subfile for message passing.

Chapter 7. Message and Error Handling 53

A* The Record format name of the Subfile record is SFL
A* The Record format name of the Subfile Control record is SFLCTL
A* The Subfile has two fields NAME and PHONE
A*
A DSPSIZ(24 80 *DS3)
A R SFL SFL
A NAME 10A B 10 25
A PHONE 10A B +5
A R SFLCTL SFLCTL(SFL)
A SFLPAG(5)
A SFLSIZ(26)
A SFLDSP
A SFLDSPCTL
A 22 25′<PAGE DOWN> FOR NEXT PAGE′
A 23 25′<PAGE UP> FOR PREVIOUS PAGE′

Figure 5. DDS Source for a Subfile T1520DDG

/* This program illustrates how to use subfiles. */

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

#define LEN 10
#define NUM_RECS 20
#define SUBFILENAME ″MYLIB/T1520DDG″
#define PFILENAME ″MYLIB/T1520DDH″

/* T1520DDH is a physical file with the following format: */
/* R ENTRY */
/* NAME 10A */
/* PHONE 10A */

typedef struct{
char name[LEN];
char phone[LEN];

}pf_t;

#define RECLEN sizeof(pf_t)

void init_subfile(_RFILE *, _RFILE *);

Figure 6 (Part 1 of 2). ILE C/400 Source Using Subfile

54 UNIX C Applications Porting to AS/400 Companion Guide

int main(void)
{

_RFILE *pf;
_RFILE *subf;

/* Open the subfile and the physical file. */

if ((pf = _Ropen(PFILENAME, ″rr″)) == NULL)
{

printf(″can′ t open file %s\n″ , PFILENAME);
exit(1);

}

if ((subf = _Ropen(SUBFILENAME, ″ar+″)) == NULL)
{

printf(″can′ t open file %s\n″ , SUBFILENAME);
exit(2);

}

/* Initialize the subfile with records from the physical file. */
init_subfile(pf, subf);

/* Write the subfile to the display by writing a record to the subfile control format. */
_Rformat(subf, ″SFLCTL″) ;
_Rwrite(subf, ″″ , 0) ;
_Rreadn(subf, ″″, 0, __DFT);

/* Close the physical file and the subfile. */
_Rclose(pf);
_Rclose(subf);

}
void init_subfile(_RFILE *pf, _RFILE *subf)
{
 _RIOFB_T *fb;
 int i;
 pf_t record;

/* Select the subfile record format. */
_Rformat(subf, ″SFL″) ;
for (i = 1; i <= NUM_RECS; i++)
{

fb = _Rreadn(pf, &record, RECLEN, __DFT);
if (fb->num_bytes != EOF)
{

fb = _Rwrited(subf, &record, RECLEN, i);
if (fb->num_bytes != RECLEN)
{

printf(″error occurred during write\n″) ;
exit(3);

}
}

}
}

Figure 6 (Part 2 of 2). ILE C/400 Source Using Subfile

Chapter 7. Message and Error Handling 55

7.3 Error Handling in AS/400 System

In the AS/400 system, error handling is done through exception handlers,
signal handlers, and error handlers.

7.3.1 Exception Handlers
There are three levels of exception handlers in ILE C. They are:

• Direct monitor handlers that are enabled with the #pragma
exception_handler directive.

• ILE condition handlers that allow the user to register a condition handler
at run time using the ILE condition handler bindable API CEEHDLR.

• HLL-specific handlers, for example, the C signal() function.

The except.h include file declares types and macros used in ILE C/400
exception handling.

pragma preprocessor directives for Exception handling

• Exception handler: Enables a user-defined ILE exception handler at the
point in the code where the #pragma exception_handler is located. Any
exception handlers enabled by #pragma exception_handler that are not
disabled using #pragma disable_handler are implicitly disabled at the
end of the function in which they are enabled.

• Cancel handler: Specifies that the function named is to be enabled as a
user-defined ILE cancel handler at the point in the code where the
#pragma cancel_handler directive is located. Any cancel handler that is
enabled by a #pragma cancel_handler directive is implicitly disabled
when the call to the function containing the directive is finished and the
call is removed from the call stack, if the handler has not been explicitly
disabled by the #pragma disable_handler directive.

• Disable handler: Disables the handler most recently enabled by either
the exception_handler or cancel_handler pragma. This directive is only
needed when a handler has to be explicitly disabled before the end of a
function since all enabled handlers are implicitly disabled at the end of
the function in which they are enabled.

For details, see the ILE C/400 Programmers Guide and the ILE C/400
Programmers Reference.

7.3.2 Signal Handlers
Signals are generated by events, such as system detected errors,
programming errors, software interrupts, and user interrupts. The C library
routine signal defines how to handle signals. This section lists the different

56 UNIX C Applications Porting to AS/400 Companion Guide

types of signals implemented in both C languages. Signals Different in the
Two Systems

UNIX supports the following signals that are absent in the AS/400 system.
However, this list is not uniform across all UNIX platforms, and the use of a
particular signal may differ even on platforms that support them.

SIGEMT
EMT instruction

SIGIOT
IOT instruction

SIGLOST
File lock lost (NFS file locking)

SIGPWR
Power fail

SIGWINCH
Window size change

ILE C/400, in turn, supports a few signals that are not supported in most
UNIX platforms. These are enumerated in the following list:

SIGDANGER
System crash imminent.

SIGHUP
Controlling process/terminal is hung up.

SIGINT
System interrupt.

SIGOTHER
Record file error condition.

SIGPOLL
Pollable event.

SIGPRE
Programming exception.

SIGXCPU
Processor time limit exceeded.

SIGXFSZ
File size limit exceeded.

AS/400 Signal Routines Not Present in UNIX

ILE C/400 supports the following signal functions and APIs not present in
UNIX C:

Chapter 7. Message and Error Handling 57

QpOsDisableSignals
Disable process for signal

QpOsEnableSignals
Enable process for signal

siglongjump
Perform nonlocal goto with signal handling

sigsetjump
Set jump point for nonlocal goto

For details, see the AS/400 CPA Process Management Extensions for OS/400
(V3R1) or the AS/400 System API Reference (V3R6).

7.3.3 Error Handlers
When a C library function or a system call executes unsuccessfully, it may
return an error code depending on the reason for failure. This return code
is stored in macro errno in UNIX C and ILE C/400. Most of the errnos set by
UNIX C are available on ILE C/400 through APIs. Most of the unavailable
ones are being set by functions for performing operating system related
tasks. ILE C/400 does not have such library functions and, hence, these
errno are not needed.

In the following two tables, we have listed the differences in the errno
values supported by the two systems. This table points out the errno values
in UNIX C that are not supported by or are different in ILE C/400:

The following list gives the errno values in ILE C/400 that are not present in
UNIX.

Table 10. errno Values in UNIX C That Are Not Supported in ILE C/400

Errno of UNIX function Equivalent value in ILE
C/400 or AS/400 APIs

Description

ENOEXEC None Exec format error

ENOSYM None Symbol not in
executable

ENOTBLK None Block device required

ENOTTY None Not a typewriter

ETXTBSY None Text file busy

EREFUSED None Connection refused

EREMOTE None Too many remote in
path

58 UNIX C Applications Porting to AS/400 Companion Guide

Error Handling Functions in ILE C/400

assert (in assert.h)
Prints diagnostic messages.

atexit (in stdlib.h)
Registers a function to be executed at program termination.

perror (in stdio.h)
Prints an error message to stderr.

Table 11. errno Values in ILE C/400 That Are Not Available in UNIX C

Errno Description

EBADDATA Message data is not valid.

EBADKEYLN The key length specified is not valid.

EBADMODE Specified file mode is not valid.

EBADPOS Invalid position.

EBADSEEK Bad offset.

EGETANDPUT An illegal write operation after read.

ENOPOS No record at specified position.

ENOREC Record not found.

ENOTDLT File not opened for write.

ENOTOPEN File not opened for write.

ENOTREAD File not opened for write.

ENOTUPD File not opened for write.

ENOTWRITE File not opened for write.

ENUMMBRS More than 1 member.

ENUMRECS Too many records.

EPAD Padding occurred on write.

EPUTANDGET An illegal read operation after write.

ERECIO File is open for record mode.

ESTDERR Stderr cannot be opened.

ESTDIN Stdin cannot be opened.

ESTDOUT Stdout cannot be opened.

ETRUNC Truncation occurred in I/O operation.

Chapter 7. Message and Error Handling 59

_getexcdata (in signal.h)
Retrieves information about an exception from within a C
signal handler.

raise (in signal.h)
Initiates a signal.

signal (in signal.h)
Allows handling of an interrupt signal from the operating
system.

strerror (in string.h)
Sets pointer to system error message.

clearerr (in stdio.h)
Resets the error indicator and end-of-file indicator for the
specified stream.

Errors in File Handling

Most errors in file handling are discernible from the return code of the I/O
function. For further details about the cause of the error, the I/O Feedback
area may be referred to for the File Status code. The _Riofbk function
returns a pointer to a copy of the I/O feedback area for the file specified by
fp. It returns NULL if an error occurs.

The following example shows how the _Riofbk function may be used.

#include <stdio.h>
#include <recio.h>
#include <string.h>
#include <stdlib.h>
typedef struct {

char name[20];
char address[25];
} format1 ;

typedef struct {
char name[8];
char password[10];
} format2 ;

typedef union {
format1 fmt1;
format2 fmt2;
} formats ;

int main(void)
{
_RFILE *fp; /* File pointer */
_RIOFB_T *rfb; /* Pointer to the file′ s feedback structure */
_XXIOFB_T *iofb; /* Pointer to the file′ s feedback area */
formats buf, in_buf, out_buf;/* Buffers to hold data */

Figure 7 (Part 1 of 2). Use of Function_Riofbk()

60 UNIX C Applications Porting to AS/400 Companion Guide

/*Open the device file. */
 if ((fp = _Ropen (″MYLIB/T1677RD2″, ″ar+″)) == NULL)

{
printf (″Could not open file\n″) ;
exit (1);
}

_Racquire (fp,″DEVICE1″) ; /* Acquire another device. Replace */
/* with actual device name. */

_Rformat (fp,″FORMAT1″) ; /* Set the record format for the display file. */
rfb = _Rwrite (fp, ″″, 0) ; /* Set up the display. */
_Rpgmdev (fp,″DEVICE2″) ; /* Change the default program device. */

/* Replace with actual device name. */
_Rformat (fp,″FORMAT2″) ; /* Set the record format for the display file. */
rfb = _Rwrite (fp, ″″, 0) ; /* Set up the display. */
rfb = _Rwriterd (fp, &buf, sizeof(buf));

rfb = _Rwrread (fp, &in_buf, sizeof(in_buf), &out_buf, sizeof(out_buf));
_Rreadindv (fp, &buf, sizeof(buf), __DFT);

/* Read from the first device that */
/* enters data - device becomes */
/* default program device. */
/* Determine which terminal responded first. */

iofb = _Riofbk (fp);
if (!strncmp (″FORMAT1 ″ , iofb -> rec_format, 10))
if (!strncmp (″FORMAT1 ″ , iofb -> rec_format, 10))

{
_Rrelease (fp, ″DEVICE1″) ;
}

else
{
_Rrelease(fp, ″DEVICE2″) ;
}

/*Continue processing*/
printf (″Data displayed is %45.45s\n″, &buf);
_Rclose (fp);
}

Figure 7 (Part 2 of 2). Use of Function_Riofbk()

7.4 Preprocessor Directives

Syntax:
#error pp-token“

Error directives on UNIX C produce diagnostic messages only in ILE C/400, it
causes the compilation to fail. Therefore, in ILE C/400, you can use the
#error directive as a safety check during compilation. For example, if a
program uses preprocessor conditional compilation directives, #error
directives can be placed in the source file to make the compilation fail if, for
instance, a section of the program is reached that should be bypassed.

Chapter 7. Message and Error Handling 61

62 UNIX C Applications Porting to AS/400 Companion Guide

Chapter 8. Display Handling

This chapter deals with the issues regarding conversion of window
components of UNIX applications to the ILE C/400 applications. Porting of
user windows are difficult as all I/O operations are generally optimized for
the use with a particular architecture. The UNIX C applications are likely to
use the curses library, X Windows, and so on for the display handling. In
the AS/400 system, the display handling has been made simple with the use
of display files, message handling, UIM (User Interface Manager), DSM
(Dynamic Screen Manager), and so on. Because of these extra utilities on
the AS/400 system, porting display handling components requires changes
or rewriting of the code.

8.1 Static and Dynamic Display Handling

Display (or window) handling in UNIX is most commonly done using the
curses library routine, though they may not necessarily need the dynamic
display management capability. For display interfaces of static attributes,
porting is easily done using the display files, subfiles, and UIM. The Screen
Design Aid (SDA) is provided in the AS/400 system for generating menus
and displays. The SDA allows a user to design displays corresponding to
which display files are generated. Using these displays and message files,
screen I/O is done the same as any other file I/O in a very simple manner.
Refer to Chapter 8 of the ILE C/400 Programmer′s Guide for further
reference of using display files in ILE C/400.

For the applications that have curses-based displays that are defined
dynamically, DSM (Dynamic Screen Manager) APIs are to be used in the
AS/400 system. These APIs are a set of screen I/O interfaces that provide a
dynamic way to create and manage displays for ILE environment high-level
languages. The DSM support provided varies from low-level interfaces for
direct display manipulation to windowing support. The curses library has
functions that have no direct counterpart in DSM. In spite of this, the
rewriting or changes are easier than the appearance. The rest of this
chapter deals with changing curses application displays to that of DSM.
Refer to the System API Reference for detailed information about DSM APIs.

 Copyright IBM Corp. 1996 63

8.2 Comparison of Curses and DSM

The difference between curses and DSM is that while curses sets most of
the values from the parameters of different available functions, DSM, to
some extent, relies on the structures for environment description, window
description, and so on to do its job. The comparison is:

Table 12. A Comparison Between Curses and Dynamic Screen Manager (DSM)

Curses DSM

Windows are given various values
generally through parameters of a
function.

Windows has a unique window
description structure, an environment
description structure, and so on
associated with it. Most of the
required attributes are put into these
struct from which window picks up
various attributes and processing.

Messages are conventionally
displayed through a dialogue box that
is a new pop-up window.

Every window can have a dedicated
message display line apart from the
conventional pop-up dialogue box.

Windows are changed using functions
that are independent of windows.

Each window can associate certain
functions to it that are called when a
relevant API call is made. For
example, a user-defined draw routine
is associated with each window.
Whenever an API is called that makes
window draw or redraw, this draw
routine is automatically called.

In curses, you can take any key as
input and process it, such as a
command key if required. The
method for getting character-at-a-time
input without echoing is:
initscr();
nonl(); cbreak(); noecho();

Character-at-a-time input can be had
by defining a character field of length
1. However, this is done through the
QsnInpDta() API while command keys
are taken through the QsnGetAid()
API. These are to be processed
separately. Also noecho mode for
character-at-a-time input not
available.

A default window stdscr is provided.

Many functions act on stdscr, while
another group of functions takes
window handle also as a parameter.
For example, addch(ch) acts on stdscr
while waddch(win, ch) has window
handle also.

There is no default window.

All functions use window handle, if
required.

64 UNIX C Applications Porting to AS/400 Companion Guide

8.3 Mapping the Curses Functionality

Mapping of the more commonly used curses functions to that of DSM APIs
is given in the following table:

Table 13 (Page 1 of 3). Mapping Curses Functions to Dynamic Screen
Manager (DSM) APIs

Curses DSM

WINDOW *win1;
The preceding statement defines a
pointer win1 that is pointing to a
structure of type WINDOW.Win1 is
thus the window handle.

Qsn_Win_T win1;
Define a window handle win1.

addch(), addstr(), printw(), mvaddch(),
mvwaddch(), mvwaddstr(), mvprintw().

QsnWrtDta, QsnSetOutAdr()
Almost all output to a window and a
display is handled through the
QsnWrtDta() API.

All functions that move the cursor to
various locations before doing other
operations. (For example, functions
such as mvaddch()).

The cursor movement functions are
not necessarily required as locations
are parameter to all input, output
APIs. However, if required,
QsnSetCur() does this job in DSM.

attrof(), attron(). The attributes are passed to the
QsnWrtDta() API as a parameter.

beep() Qsnbeep()

Chapter 8. Display Handling 65

Table 13 (Page 2 of 3). Mapping Curses Functions to Dynamic Screen
Manager (DSM) APIs

Curses DSM

box(win,vert,hor)
That is, box(win1,0,0)

Set the following in window
description:
border_flag
show_border;
left_border_char
right_border_char
right_border_char
top_border_char
bottom_border_char
and so on. For example:
Qsn_Win_Desc_T win_desc;
/* setting a window des- */
/* cription struct win_desc */
win_desc.show_border = 1;
win_desc.border_f lag = ′1′;
win_desc.left_border_char = ′ | ′ ;
and so on
The create window APIs pick up the
window attributes from the window
description that is passed as a
parameter to those APIs. Refer to
System API Reference for full details.

delay_outputs(ms) Include this into file:
i nc l ude<un i s td .h>
Then use sleep(ms).

delch(), mvdelch(), mvwdelch(). Use QsnWrtDta()to write blanks at the
required positions.

delwin(win), endwin() QsnEndWin()

getchh(), getstr(), mvgetch(),
mvgetstr(), mvwgetch(), mvwgetstr()

QsnGetAID() gets the command keys,

QsnReadImm(), to read immediate
fields QsnReadInp(),
QsnReadMDTAlt() APIs provide the
input field read, modified field read
capabilit ies.

getyx() to get the current cursor
locations.

QsnGetCurAdr(), QsnGetCurAdrAID()

mvwin() QsnMovWin(), QsnmovWinUsr()

66 UNIX C Applications Porting to AS/400 Companion Guide

Table 13 (Page 3 of 3). Mapping Curses Functions to Dynamic Screen
Manager (DSM) APIs

Curses DSM

newwin(). The parameters passed
with this function are the position and
size of the required window.

QsnInzWin(), QsnCrtWin(),
QsnStrWin(). The position and size of
window are picked up from the
window description specified in the
parameter. For example:

win_desc.top_row = 1;
win_desc.top_col = 10;
win_desc.no_row = 5; and so on.

Chapter 8. Display Handling 67

8.4 Example of Changes Required for Porting Window or Display
Component

Here is a program that dynamically creates and manages displays using the
routines available in curses. The same is changed to run in ILE C/400
applications using DSM APIs that are bindable to ILE C/400 applications.
You have to have QSYSINC library, which is separately installable, installed
to run DSM with ILE C/400. The changes have been explained by relating
the lines of codes that are used for the same processing. The method
shown is certainly not the unique method of porting; there are many
alternatives.

The program in Figure 8 using the curses library:

#include <curses.h>
#include <string.h>
#include <stdlib.h>
#define MAX_STR_LEN 45
#define MAXSCRSIZE 13 /* maximum no. of items in screen */

/* display */
int No_Of_Items
int Items_In_Scr
char *heading
char *Item_name[MAXSCRSIZE];
char *s=″\0″

/* Global Window handles */
WINDOW *status_win; �6�
WINDOW *dlg_win;

int rs =0, sel = 0, scrsize =0, done =0;
int selected_item=0;

int list_files(void){

}

int display_msg(char * msg) �10�
{

char lmsg[MAX_STR_LEN];
int ret=1, press_len;
mvwaddstr(status_win,0,2,″ ″) ;
mvwaddstr(status_win,1,2,″ ″) ;
wrefresh(status_win);
strcpy(lmsg,msg);
press_len = strlen(lmsg)+strlen(″ Press a key″) ;
if (press_len <= MAX_SCR_LEN-4)

strcat(lmsg,″ Press a key″) ;

Figure 8 (Part 1 of 4). Using Curses Functions for Display Handling in UNIX C
Environment

68 UNIX C Applications Porting to AS/400 Companion Guide

else
mvwaddstr(status_win,1,2,″ Press a key″) ;

mvwprintw(status_win,0,2,″%s″ , lmsg);
wrefresh(status_win);
if(wgand so onh(status_win) == 0x1b)

ret=0;
mvwaddstr(status_win,0,2,″ ″) ;
mvwaddstr(status_win,1,2,″ ″) ;
wrefresh(status_win);
return ret;

}
int list_files(void){

}

int display_menu(int num_row,
int num_col,
int pos_y,
int pos_x) {

WINDOW *w2,*w3; /* Window handles �6� */
char exit_flag = ′ n′ ;
int cur_item=0 , I=0;
w2 = newwin(num_row, num_col, pos_y, pos_x); �1�
w3 = newwin(1,78,23,1);
keypad(w2, TRUE);
box(w2,0,0); �3�
wattron(w2, A_REVERSE); �4�
rs = strlen(heading);
mvwaddstr(w2, 0, num_col /2-(rs/2), heading);
wattroff(w2,A_REVERSE); �4�
wattron(w3,A_BOLD);
mvwaddstr(w3,0,25,″ENTER->Select Esc->Exit″) ;�5�
wattroff(w3,A_BOLD);
while ((itemname[cur_item] != NULL)

&& (cur_item < MAXSCRSIZE)) {
strcpy(s, itemname[cur_item]);
mvwaddstr(w2,cur_item+2, 2, s);
wmove(w2,i+2,2);
cur_item++;

}
wattron(w2,A_REVERSE);
strcpy(s, itemname[selected_item]);
mvwaddstr(w2,cur_item+2, 2, s);
wmove(w2,i+2,2);
wattroff(w2,A_REVERSE);
wrefresh(w2);
wrefresh(w3);

Figure 8 (Part 2 of 4). Using Curses Functions for Display Handling in UNIX C
Environment

Chapter 8. Display Handling 69

while(! done) {
switch(wgand so onh(w2)) {
case 0x1b :/* Esc key was pressed*/ �7�

done =1;
break;

case KEY_UP : �7�
selected_item--;
if(selected_item < 0)

selected_item = scrsize -1;
break;

case 0x0a :/* Selection key ENTER was pressed*/ �7�
done=1;
return(selected_item + 1);
break;

case KEY_DOWN : �7�
selected_item++;
if(selected_item >= scrsize)

selected_item = 0;
break;

}
werase(w2);
attrset(0); �8�
box(w2,0,0);
wattron(w2,A_REVERSE);
rs = strlen(heading);
mvwaddstr(w2,0,num_col/2-(rs/2),heading);
wattroff(w2,A_REVERSE);

while ((itemname[cur_item] != NULL)
&& (cur_item < MAXSCRSIZE)) {

strcpy(s, itemname[cur_item]);
mvwaddstr(w2,cur_item+2, 2, s);
cur_item++;

}

wattron(w2,A_REVERSE);
strcpy(s, itemname[selected_item]);
mvwaddstr(w2,cur_item+2, 2, s)
wattroff(w2,A_REVERSE); �8�

} /* of While*/
wrefresh(w2);
werase(w2);
wrefresh(w2);
werase(w3);
wrefresh(w3);
delwin(w2);
delwin(w3);
return retval;

}

Figure 8 (Part 3 of 4). Using Curses Functions for Display Handling in UNIX C
Environment

70 UNIX C Applications Porting to AS/400 Companion Guide

int main(void)
{

initscr();
status_win=newwin(1,65,21,2);
dlg_win=newwin(18,70,3,2);
WINDOW * win1;
int I =0,choice=0;

char *msg = ″This option is for demo only″ ;
char *msg3= ″ This is an invalid option″ ;

itemname[0] =″1. Delete File″ ;
itemname[1] =″2. View File″ ;
itemname[2] =″3. Cancel Spool File″ ;
itemname[3] =″4. Exit″ ;

win1 = newwin(23,80,0,0);/* window to put Heading */ �9 2�

wattron(win1,A_BOLD); /* this heading is sticked to screen all time */
box(win1,0,0);
mvwaddstr(win1,1,26,″SPACE COMMUNICATIONS PVT. LTD.″) ;
wattroff(win1,A_BOLD);
wrefresh(win1); �9�

strcpy(heading,″MAIN MENU″) ;
while(! done) {

sel = display_menu(18,60,3,10)
if(sel==0) done = 1;
switch(choice) {

case 1 :
list_files();
break;

case 2 :
display_msg();
break;

case 3 :
display_msg();
break;

case 4:
done=1;
break;

default :
display_msg(″Invalid option. Internal Error. ″) ;
break;

}
} /* end of while loop */

werase(win1);
wrefresh(win1);
delwin(win1);
endwin();

}

Figure 8 (Part 4 of 4). Using Curses Functions for Display Handling in UNIX C
Environment

Chapter 8. Display Handling 71

The following program is the rewritten version in Figure 8 to run in the ILE
C/400 environment:

/* This program is the using DSM APIs of OS/400 to define and manage */
/* screens for the applications. The program is functionally equivalent to */
/* the UNIX program given in Figure 8 */

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include ″QCPA/H/pthread″ /* Needed for sleep() function */
#include ″QSNWIN.H″ /* Header file for DSM APIs */
#include ″QSNLL.H″ /* */

/* Global Declarations */
#define MAXSCRSIZE 13 /* maximum no. of items in screen */

/* display */
char *msg, aid ;
int rs=0, sel=0,scrsize=0, done = 0 ;

Qsn_Win_T win1, win2 cur;�1� /* window handles */

Qsn_Win_Desc_T win_desc;�1� /* window description for storing */
/* window informations */

Q_Bin4 win_desc_length = sizeof(win_desc);�1�

/* Initializing the function names */
/* that get associated with various */
/* window operations */

Qsn_Win_Ext_Inf_T ext = { NULL, NULL, NULL, NULL, NULL, NULL };�1�

char *itemname•MAXSCRSIZE“;
char *s = ″\0″ ;

int selected_item=0;

/* This function is for displaying the */
/* member list of given file. User can */
/* delete elect the files for deletion */
/* from this list */

int list_files(void){

}

Figure 9 (Part 1 of 5). Using DSM Functions for Display Handling in ILE C/400
Environment

72 UNIX C Applications Porting to AS/400 Companion Guide

/* This generic draw function will */
/* display a message in the called */
/* window. It is called by other draw */
/* routines. */

void GenericDraw(const Qsn_Cmd_Buf_T *cbuf, const Qsn_Win_T *win)
{

char *msg1 = ″F3: quit F4: move F5: resize F12: cancel″ ;
�5� �4� �4�

QsnWrtDta(msg1, strlen(msg1), 0, -1, 1, QSN_SA_HI, QSN_SA_NORM,
QSN_SA_BLU, QSN_SA_NORM, *cbuf, *win, NULL);

} �4� �4�
/* This draw function is used to draw */
/* a base window */

void Draw1(const Qsn_Win_T *win, const Qsn_Cmd_Buf_T *cbuf)
{
char *heading1 = ″SPACE COMMUNICATIONS PVT. LTD.″ ;

QsnWrtDta(heading1, strlen(txt), 0, 1, 15, QSN_SA_UL, QSN_SA_NORM,
QSN_SA_RED_RI, QSN_SA_NORM, *cbuf, *win, NULL);

}

/* This draw function is used to draw */
/* the second window displaying */
/* the menu. All the changes in the */
/* menu (window) is done by */
/* re-calling this routine. */

void Draw2(const Qsn_Win_T *win, const Qsn_Cmd_Buf_T *cbuf)
{
char *heading = ″MAIN MENU″ ;
char *msg2 = ″F6: Next Item F7: Previous Item F8: Select″ ;
int cur_item=0;

GenericDraw(cbuf, win);

 while ((itemname• cur_item “ != NULL)
&& (cur_item < MAXSCRSIZE)) {
strcpy(s, itemname• cur_item “);
QsnWrtDta(s, strlen(s), 0, 4+ cur_item, 20, QSN_SA_UL,

QSN_SA_NORM,QSN_SA_WHT, QSN_SA_NORM,
*cbuf, *win, NULL);

cur_item++;
 }
 strcpy(s, itemname• selected_item “);
 QsnWrtDta(s, strlen(s), 0, 4+ selected_item, 20, QSN_SA_UL,

QSN_SA_NORM,QSN_SA_WHT_RI, QSN_SA_NORM,
*cbuf, *win, NULL);

 scrsize = cur_item; �4� �4�
 QsnWrtDta(heading , strlen(txt), 0, 1, 20, QSN_SA_UL, QSN_SA_NORM,

QSN_SA_RED, QSN_SA_NORM, *cbuf, *win, NULL);
�4� �4�

QsnWrtDta(msg2, strlen(msg2), 0, -2, 10, QSN_SA_UL, QSN_SA_NORM,
QSN_SA_BLU, QSN_SA_NORM, *cbuf, *win, NULL);

}

Figure 9 (Part 2 of 5). Using DSM Functions for Display Handling in ILE C/400
Environment

Chapter 8. Display Handling 73

int display_menu(int r, int c, int nr, int nc) {

/* define and start window 2 */

win_desc.top_row = r;�1�
win_desc.left_col = c;�1�
win_desc.num_rows = nr;�1�
win_desc.num_cols = nc;�1�
win_desc.show_border = ′ 1 ′ ; �3�

win_desc.fullscreen = ′ 0 ′ ;
ext.draw_fp = Draw2 ; /* The Function Draw2 is being */

/* associated with the draw */
/* routine of win2. QsnCrtWin */
/* is passed this struct ext */

win2 = QsnCrtWin(&win_desc, win_desc_length, &ext, sizeof(ext),
′ 1 ′ , NULL, 0, NULL, NULL);

cur = win2;

for (;;) {
if (((aid=QsnGetAID(NULL, 0, NULL)) == QSN_F3))�7�

break;
else if (aid == QSN_F4) �7�

QsnMovWinUsr(cur, NULL);
else if (aid == QSN_F5) �7�

QsnRszWinUsr(cur, NULL);
else if (aid == QSN_F12){ �7�

QsnSand so onurWin(win2, NULL);
}
else if (aid == QSN_F6) { �7�
selected_item++;
if (selected_item == scrsize) {

selected_item = 0;
}
QsnDspWin(win2,NULL);�8�

}
else if (aid == QSN_F7) { �7�
selected_item--;
if (selected_item < 0) {

selected_item = scrsize -1;
}

QsnDspWin(win2,NULL); �8�
}
else if (aid == QSN_F8){ �7�
return(selected_item + 1);
break;

}
else {
/* default processing */

}
}

}

Figure 9 (Part 3 of 5). Using DSM Functions for Display Handling in ILE C/400
Environment

74 UNIX C Applications Porting to AS/400 Companion Guide

int main (void) {
int i=0;
char *msg = ″This option is for demo only″ ;
char *msg3= ″This is an invalid option″ ;
QsnInzWinD(&win_desc, win_desc_length, NULL);

win_desc.GUI_support = ′ 1 ′ ;

itemname•0“ = ″1. Delete file″ ;
itemname•1“ = ″2. View file″ ;
itemname•2“ = ″3. Cancel spool file″ ;
itemname•3“ = ″4. Exit″ ;

/* define and start base window */

win_desc.fullscreen= ′ 1 ′ ; �2�

ext.draw_fp = Draw1;_ �9�

win1 = QsnCrtWin(&win_desc, win_desc_length, &ext, sizeof(ext), �9�
′ 1 ′ , NULL, 0, NULL, NULL);

aid = QsnGetAID(NULL,0,NULL);
while(!done) { /* A non trivial selection was made */

sel = display_menu(3,10,18,60);

if (sel == 0) done = 1;
switch (sel){
case 1:
list_files();
break;

case 2:
QsnPutWinMsg(win2, msg, sizeof(*msg), �10�

′ 0 ′ , NULL,NULL, 1, 1,
QSN_SA_WHT,QSN_SA_WHT,
QSN_SA_NORM,QSN_SA_NORM, NULL);

done =1;
sleep(100);
break;

case 3:
QsnPutWinMsg(win2, msg, sizeof(*msg),

′ 0 ′ , NULL,NULL, 1, 1,
QSN_SA_WHT,QSN_SA_WHT,
QSN_SA_NORM,QSN_SA_NORM, NULL);

break;
done =1;
sleep(100);

case 4:
done=1;
break;

Figure 9 (Part 4 of 5). Using DSM Functions for Display Handling in ILE C/400
Environment

Chapter 8. Display Handling 75

default:
QsnPutWinMsg(win2, msg3, sizeof(*msg),

′ 0 ′ , NULL,NULL, 1, 1,
QSN_SA_WHT,QSN_SA_WHT,
QSN_SA_NORM,QSN_SA_NORM, NULL);

sleep(100);
break;

}
}

}

Figure 9 (Part 5 of 5). Using DSM Functions for Display Handling in ILE C/400
Environment

� �
SPACE COMMUNICATIONS PVT.LTD.

Main Menu

1. Delete File
2. View File
3. Cancel spool File
4. Exit

F3: quit F4:move F5: resize F12: cancel
F6: Next Item F7: Previous Item F8: Select� �

Figure 10. The Output of the DSM Program in Figure 9

76 UNIX C Applications Porting to AS/400 Companion Guide

Note:

�1� Newwin() creates a new window with the specified position in
Figure 8. In Figure 9, to initialize a window, three declarations are
needed as shown. The position of window is specified through the
win_desc struct.

�2� A new full screen window is created by making win_desc.fullscreen
= ′1′ in Figure 9 and windows boundaries are not specified in this case.

�3� For the box() function in Figure 8, win_desc.show_border = ′1′ has
been specified. In window description, a different character to be used
in drawing various window boundaries can be specified, if required.

�4� This group of code in Figure 8 is specifying the attribute of output
text using attron() and attroff() functions before output function
mvaddstr(). In DSM, these attributes are passed with the output function
QsnWrtDta().

�5� An output is done in Figure 8 using mvaddstr() while in Figure 9,
QsnWrtDta() is used.

�6� Show window handles in two programs.

�7� Processing for input (key_pressed) in the menu. In Figure 9, arrow
keys are substituted by F6 and F7. F4, F5, and F12 represent additional
facilities shown (just to make the display an AS/400 system type
appearance).

�8� The group of lines shown in Figure 8 between these marks are for
refreshing the window after one iteration of the display loop. It is
drawing the window again with the new values attained in previous
processing. In Figure 9, this much coding is not required as
QsnDspWin() calls the draw function (Draw2 in this case) associated with
the window.

�9� Shows the codes in two figures that create a base window with a
heading.

�10� Shows the usual method used for displaying messages. Figure 8
uses a pop-up window. While Figure 9 has put win_desc.msg = ′1′ (this
is the default, hence, not set explicitly in Figure 9). QsnPutWinMsg() is
then used to put messages in the window. The pop-up window method
can also be used in Figure 9 the same as any other window, if desired.

Chapter 8. Display Handling 77

78 UNIX C Applications Porting to AS/400 Companion Guide

Appendix A. HP C to ILE C/400 Application Porting

This appendix summarizes the differences that are specific to the HP-UX on
an HP 9000 system C language application porting to ILE C/400 on the
AS/400 system.

A.1 C Compiler Environment

HP-UX

CC is the HP-UX C compiler, C89 is the HP-UX POSIX conferment C
compiler.

cc {options} files
c89 {options} files

The argument ″files″ can be any of the following:

• Arguments ending with .c are C source files, that are compiled and the
object file with .o extension is made. If a single C file is compiled and
linked all in one step, then the .o file is deleted.

• Arguments with an .s extension, that are assembly source files are
assembled and an .o file produced.

• Arguments with an .i extension, that are the output of cpp are compiled
without invoking CPP again, and the result put in a file with extension
′. l′.

• Arguments of the form -lx cause the linker to search the library libx. sl
or libx.a for resolving currently unresolved external references.

• Other arguments, such as with extensions .o or .a, are considered to be
relocatable object files that are to be included in the link operation.

Arguments and options can also be specified to the compiler through the
CCOPTS environment variable.

The following options are recognized by both cc and c89:

-n/-N
Cause the output file from the linker to be marked as
shareable/unshareable.

-q/-Q
Cause the output file from the linker to be marked as demand
loadable/not demand loadable.

 Copyright IBM Corp. 1996 79

-s
Create the output of the linker to be stripped of symbol table
information.

-tx,name
Substitute sub-process x with name, where x is one or more of a set of
identifiers indicating the sub-process or sub-processes.

Many compiler options are specific to the HP-UX series; these are:

Series 300/400 Specific Options

+b fpa / + f fpa / +M
Tell the compiler whether to generate code that uses accelerator
card / math coprocessor.

+ s
Execute cpp and cpass1 as distinct processes.

-Wc
Performs function inlining / Causes source code to be printed on
the assembly file.

-Wg
Tell the global optimizer to apply all optimizations.

+ y
Tell the compiler to generate symbolic debugging information or
static analysis information for all items.

Series 700/800 Specific Options

+DA / DS
Generate code and instruction scheduler for the architecture
specified.

+ F P
Specifies how the run-time behavior for floating point operations
should be initialized at program startup.

+ L
Enable the listing facility and listing pragmas.

+ o
Cause the code offsets to be printed in hexadecimal.

+R num
Allow only the first num register variables to actually have the
register class.

+ r
Inhibits the automatic promotion of float to double.

80 UNIX C Applications Porting to AS/400 Companion Guide

+ u
Allow pointers to access non-natively aligned data.

+ w n
Specify the leveln of warning messages.

ILE C/400 The following is a description of the parameters of the
CRTCMOD command in ILE C/400 that can be used to approximate the
effects of the unsupported HP-UX compiler options discussed previously:

Inline Options
These allow the user to request that the compiler consider
replacing a function call with the called function′s instructions.

Language level
Specifies which group of library function prototypes are included
when the source is compiled.

System includes
Specifies whether or not the library QSYSINC is added to the
library list during compile time. This library provides additional
system include files.

Portability Tips for unsupported compiler options:

 1. Options -ldir, -Ldir, and -lx should be removed and a corresponding
change should be done in *LIBL in OS/400 before compiling.

 2. -G option should be replaced by *DEBUG parameter in ILE C.

 3. -C option of HP C compiler is similar to *NOGEN of ILE C.

 4. -E, -P options are similar to *PPONLY of ILE C.

 5. -O is to be replaced by proper option of *PRTFILE parameter of ILE C
compiler.

 6. -U option should be commented out and #ifdef should be used.

 7. Option -n, -N, -q, -Q, -s, and -S should be commented out as these
options have functionality not needed in OS/400. If required,
equivalent constructs in OS/400 have to be coded to perform the
same job.

A.2 Library Functions

 1. All of the NLS related functions of HP should be rewritten using the
national language support available on ILE C/400. The method to use
ILE C NLS is:

• Create a source physical file with a specific Coded Character Set
Identifier (CCSID).

Appendix A. HP C to ILE C/400 Application Porting 81

• Change the CCSID of a member in a source physical file to the
CCSID of another member in another source physical file.

• Convert the CCSID for specific source in a member.

 2. Though all of the mathematical functions of HP C are not available in ILE
C/400, almost all functions of HP C can be transferred perhaps with a
loss in accuracy. These mathematical functions are mostly variants of
the functions that are common to both systems. If they are required in
same format, the coding should be done for these functions.

 3. DBM is a collection of basic database routines available from the C
library in HP-C. It can handle only one database at a time. NDBM is a
collection of upgraded routines and can handle multiple databases. The
AS/400 system has an integrated database and its functionality is
available to ILE C in the record mode of file operation. These routines
are listed under heading Record Input/Output of ILE C specific functions
in Chapter 3, “File Handling” on page 17.

 4. The multimedia audio functions, are not available in OS/400. However,
the Ultimedia Facilities feature of OS/400 provides a set of application
program interfaces (APIs) to enable AS/400 and programmable
workstation (PWS) applications to perform multimedia functions.

 5. The curses routines of HP C Windowing environment on ILE C can be
had by using the bindable APIs. DSM APIs provide the required facility.
These functions have to be replaced by DSM APIs bound together with
the application.

 6. The basic random number generator is available in ILE C. Codes using
other variants of functions have to be rewritten using this function.

 7. All hardware control functions of HP machine are not available in the
AS/400 system.

 8. Packed Decimal set of calls invokes the library functions for emulating
3000-mode (MPE V/E) packed-decimal operations. These functions are
in library libcl. These functions are not needed in ILE C as packed
decimal is a defined data type. The multiplication, addition, and so on
can be performed by respective binary operators.

 9. Time manipulation in ILE C can be done through CL commands, time
manipulation functions, MI functions, and APIs for time manipulation.

10. Floating point functions available in HP-C are not used in the AS/400
system, as floating point representations are different in HP and AS/400
machines. The AS/400 system provides packed decimal format
representation that is listed in Chapter 4, “Networking” on page 21.

82 UNIX C Applications Porting to AS/400 Companion Guide

11. Library Functions of HP C provide support for managing libraries. The
AS/400 system has no equivalent library functions and an object can be
used by anyone having proper authority. The related CL commands are
in object management and security management.

A.3 Signals

Some of the signals of HP UNIX are not supported on ILE C/400. SIGCLD in
HP is for a change in child status, so SIGCHLD should be used in the AS/400
system. Signal for NFS file locking, power fail signal, and window size
change signal are other signals that are not supported, but these are not
generally required on the AS/400 system.

HP has an additional set of signals that can be used instead of the
conventional one. These areSIGSET, SIGHOLD, SIGRELEASE, SIGIGNORE,
and SIGPAUSE. These are unsupported on other UNIX as well as on AS/400
machines.

A.4 Error Handling

Some of the ERRNO being set in HP C are not supported on ILE C/400.
Errors ENOTBLK, ENOTTY, ETXTBUSY, EREFUSED, ENOEXEC, ENOSYM, and
EROFS are not supported, hence,they must be monitored by rewriting the
code. The ERRNO EROFS (Read only file system error) is replaceable by
one from ENOTWRITE, ENOTUPD, or ENOTOPEN in ILE C/400.

A.5 Compiler Directives

Many #pragma can be given in HP C compiler for the manipulation of data
alignment. All such #pragma (for example, HP_ALIGN HPUX_WORD,
HP_ALIGN POP, and so on) cannot give the data alignment required in ILE
C/400. All such #pragmas′ should be commented out during the porting
process. Refer to Chapter 2, “Overview of Source and Target Environment”
on page 5.

Appendix A. HP C to ILE C/400 Application Porting 83

84 UNIX C Applications Porting to AS/400 Companion Guide

Appendix B. SCO System C to ILE C/400 Application Porting

This appendix summarizes the differences that are specific to the SCO
system C language application porting to ILE C/400 on the AS/400 system.
The version of the C language supported on the SCO system is commonly
known as SCO C or Microsoft (the two terms are used interchangeably in
this chapter).

B.1 The C Compiler Environment

The following Compiler Options specific to SCO C are not supported by ILE
C/400. Such options, wherever used, should be carefully ported using
equivalent commands and options.

-B{1|2|3|a|l|m} path/filename
Defines alternate passes, assembler, loader, preprocessor, and so on.

-compat
Makes an executable that is binary compatible across the
systems--386 UNIX System V Release 3.2, UNIX-286 System V,
UNIX-386 System V, UNIX-286 3.0, and UNIX-8086 System V.

-CS{ON|OFF}
Enables/disables ″common sub-expression″ optimization.

-F num
Sets the size of the program stack to num bytes.

-F{a|c|e|l|m|o|s} { filename }
Changes the default name of the assembly listing, merged assembler
and C listing, executable, linker map listing, object, source listing, and
so on to filename.

-Gs
Removes stack probe routines to reduce binary size and speed
execution.

-M{s|m|c|l|h}
Sets the program configuration--that is, defines the memory model,
word order, and data threshold.

-n
Sets pure text model--the only model supported for 80386 binaries.

-nl len
Sets the maximum length of external symbols to len.

 Copyright IBM Corp. 1996 85

-nointl
Directs cc to create a binary that does not include international
functionality.

N{D|M|T} name
Sets the data segment name, module name, and text segment name to
name.

-os2
Directs cc to create an executable program for OS/2.

-pack
Packs structures.

-posix
Enforces strict POSIX conformance.

-S{l|p|s|t} constant
Sets the characters per line, lines per page, subtitle, and title in the
source listing.

-strict
Restricts the language to ANSI specifications.

-unix
Generates SCO UNIX COFF files.

-Wnum
Sets the output level for compiler warning messages.

-xenix
Produces object and executable files using the Intel Object Module
Format (OMF).

-xpg3
Enforces strict XPG3 conformance.

-x2.3
Produces object and executable files using the Intel Object Module
Format (OMF) and the XENIX System V/Release 2.3 run-time library.

-Z{a|d|e|g|i|l|}
Includes or removes information such as of line numbers, keywords,
function declarations, debuggers, libraries, and so on in the output file.

-Zp{1|2|4}
Packs structure members as specified by #pragma pack() (described
later).

Relevant Compiler Options in ILE C/400

86 UNIX C Applications Porting to AS/400 Companion Guide

The following options during creation of an ILE C/400 module and binding of
such modules may be of help where the SCO UNIX compiler options are not
supported in the AS/400 system.

Inline Options
These allow the user to request that the compiler consider replacing a
function call with the called function′s instructions.

Language level
Specifies which group of library function prototypes are included when
the source is compiled.

System includes
Specifies whether or not the library QSYSINC is added to the library
list during compile time. This library provides additional system
include files.

B.2 #Pragma Compiler Directives

The following pragmas specific to SCO C are not available in ILE C/400. A
work-around in the AS/400 system, wherever possible, is mentioned
alongside.

• alloc_text
Specifies modules to be grouped into a specified far-text segment.

• check_stack
Controls stack checking on a local basis--that is, by specifying this
pragma with parameters on or off; stack checking for the functions
called subsequently may be enabled or disabled.

• Data_seg
Specifies the data-segment name used by functions that load their own
data segments. The named segment also contains all data that is
normally allocated in the DATA segment.

• function
Specifies which functions are compiled as standard function calls.

• linesize
Sets the number of characters per line in the source listing. On the
AS/400 system, the source is listed as a spooled file. The CHGSPLFA
can be used to change several attributes of the spooled file.

• loop_opt
Turns loop optimizations on or off. This pragma can be used in
conjunction with the [-Ox | -Ol] compiler option with the following
effects:

Appendix B. SCO System C to ILE C/400 Application Porting 87

• message
Sends a message to the standard output without terminating the
compilation. On the AS/400 system, the parameters FLAG and
MSGLMT are used to approximate the effect.

• pack
This preprocessor directive, along with the -Zp compiler option,
controls where and how much packing is done on structure members,
as described in the following table:

Table 14. Pragma loop_opt() in SCO C

Syntax Compiled with the -Ox or Ol
Option?

Action

#pragma loop_opt() No Turns off
optimizations
for loops
that follow.

#pragma loop_opt() Yes Turns on
optimizations
for loops
that follow.

#pragma loop_opt(on) Yes or no Turns on
optimizations
for loops
that follow.

#pragma loop_opt(off) Yes or no Turns off
optimizations
for loops
that follow.

Table 15 (Page 1 of 2). Pragma pack() in SCO C

Syntax Compiled with the -Zp
Option?

Action

#pragma pack() Yes Reverts to
packing
specified on
the
command
line for
structures
that follow

88 UNIX C Applications Porting to AS/400 Companion Guide

• same_seg
Tells the compiler to assume that specified variables are allocated in
the same far data segment.

Table 15 (Page 2 of 2). Pragma pack() in SCO C

Syntax Compiled with the -Zp
Option?

Action

#pragma pack() No Reverts to
default
packing for
structures
that follow

#pragma pack(n) Yes or no Packs the
following
structures to
the given
byte
boundary (n)
unti l
changed or
disabled

B.3 C Language Constructs

Portability Tips

Since SCO C closely adheres to the ANSI C standards, the C language is
almost identical to that on other ANSI platforms. But it has some specific
features, mostly due to hardware dependencies that makes porting of
programs from SCO C to ILE C/400 a little different from general porting
procedures. The following information is an attempt to highlight these
specialties.

• In SCO C, both internal and external identifiers are significant up to
exactly 31 characters. In general, C does not specify any length for
identifiers and for internal identifiers (including preprocessor directives),
at least the first 31 characters are significant; some implementations
may make more characters significant. For identifiers with external
linkage, implementations may make as few as the first six characters
significant.

• The identifiers asm and entry are deleted from the list of keywords in
SCO C, and the keyword volatile has been implemented syntactically but
not semantically. Instead, some other identifiers can be used as
keywords depending on whether the corresponding options are enabled

Appendix B. SCO System C to ILE C/400 Application Porting 89

when the program is compiled. These are: - cdecl, far, fortran, huge,
near, and pascal.

• In SCO C, as a result of the method used to assign types to hexadecimal
and octal integer constants, these always act the same as unsigned int
in type conversions, whereas UNIX allows octal or hexadecimal integer
constants to take types of int, unsigned int, long int, or unsigned long int,
depending on its form, value, and suffix.

• SCO C limits the number of hexadecimal digits following ′ \x ′ in escape
sequences to three. It also defines three additional escape sequences,
viz.

\v - represents a vertical tab
\″ - represents the double-quotation-mark-character
\a - represents the bell (or alert)

Also, character constants always have type int, with the result that they
are sign extended in type conversions.

• UNIX, in general, does not specify any fixed size for data types int, short
int, or long int but only restricts shorts and ints to at least 16 bits and
longs to at least 32 bits. Also, shorts cannot be longer than ints, which
in turn may not be longer than longs. SCO C defines the short type to
be exactly 16 bits long, and long type to be 32 bits long. The size of an
int is machine dependent.

• In connection with the sizeof operator, the ANSI standards do not
enforce any length of a byte, whereas SCO C defines a byte as an 8-bit
quantity.

• In general, SCO C type conversions during arithmetic operations are
compatible to that in other UNIX versions. However, SCO C describes
its conversions in greater detail, including the specific path for each type
of conversion.

B.4 Using the Huge Memory Model

Apart from the near and far type of addressing of ANSI C, SCO C also allows
a third type of address--huge. The huge address is similar to a far address
in that each consists of a segment value and an offset value, but the two
differ in the way address arithmetic is performed on pointers. Huge pointers
perform pointer arithmetic on all 32 bits of the data item′s address, thus
allowing data items to be referenced across more than one segment. The
-Mh compiler option creates a huge model program, wherein both code and
data items are accessed with huge addresses, and thus can reside across
more than one segment.

90 UNIX C Applications Porting to AS/400 Companion Guide

The AS/400 system defines all pointers to be 16 bytes long and all SCO C
pointers are converted homogeneously to 16 bytes irrespective of the
memory model.

B.5 Errno Values

The following SCO specific errno values are not present in ILE C/400:

E2NSYNC, EBADE, EBADR, EBADRQC, EBADSLT, EBFONT, EINIT, EISNAM,
ELBIN, ELNRNG, ENANO, ENAVAIL, ENOTNAM, EREMDEV, EREMOTEIO,
EUCLEAN, EXFULL.

Hence, sections of SCO C code using these values may have to be modified,
possibly by using other similar errnos, or replacing the function calls
altogether.

B.6 Signals

There is very little difference between applications on SCO UNIX and those
on any other ANSI UNIX platform regarding generation and handling of
signals. One notable exception is sigpoll, which is issued when a file
descriptor corresponding to a stream file has a ″selectable″ event pending.
Sigpoll is defined to have a value of 20 if used in cross-compiling for XENIX.

Appendix B. SCO System C to ILE C/400 Application Porting 91

92 UNIX C Applications Porting to AS/400 Companion Guide

Appendix C. Sun Solaris C to ILE C/400 Application Porting

This appendix summarizes the differences that are specific to porting
Solaris C applications to ILE C applications. Solaris C is the implementation
of C on the Solaris operating system running on an X86 architecture.

C.1 Data Type

Solaris C provides a long data type that is eight bytes in size. It aligns to a
boundary of four bytes. This data type is not available in conformance or
strictly ANSI mode.

C.2 C Compiler Environment

cc {options} fi les {l ibraries}

cc , the Solaris C compiler lets you compile and link any combination of the
following:

• C source files having a .c suffix.

• C preprocessed source files, having a .l suffix.

• Operating system object code files, having .o suffixes.

• Assembler source files having .s suffixes.

The following compiler options are recognized by Solaris C in addition to
those provided by the standard UNIX compiler:

#
Shows each component as it is invoked (verbose mode).

###
Shows each component as it is invoked but does not execute it.

F
Reserved for floating point operations.

fast
Select the optimum combination of compilation options for speed.

flags
Print a one-line summary of available options.

fnonstd
Causes non-standard initialization of floating point arithmetic software.

 Copyright IBM Corp. 1996 93

fsingle
Causes the compiler to evaluate float expressions as single precision
rather than double precision.

fstore
Forces floating point expression assignment to a variable to the
precision of the variable.

fnostore
Do not force floating point expressions assigned to the variable to the
precision of the variable.

h
Assign a name to a shared dynamic library.

I
Ignore the LD_LIBRARY_PATH setting.

keeptemp
Retain temporary files created during compilation.

native
Generate code for the best floating point option available on the
machine.

noqueue
Tells the compiler to not queue your requests if no license is available.

R
A colon separated list of directories used to specify library search
directories to the run-time linker.

w
Do not print warnings when compiling.

xF
Enables performance analysis of the executable using Proworks
Analyzer and Debugger.

xa
Insert code to count how many times each basic block is executed.

xlibmieee
Force IEEE style return value for math routines in exceptional cases.

xlicinfo
Returns information on the status of licensing.

xM
Run only the macro preprocessor.

94 UNIX C Applications Porting to AS/400 Companion Guide

xnolib
Do not link any libraries by default.

xnolibmil
Reset-fast option so that it does not include inline templates.

xO
Optimizes for execution time.

xpg
Prepare object code to collect data for profiling with gprof.

xs
Passes -s option to the assembler.

xsb
Generate extra symbol table information for the source code browser.

xsbfast
Create the database for the source code browser but do not compile.

xstrconst
Insert string literals into the text segment.

xtime
Reports the time spent compiling each component.

Portability Tips

 1. Options -ldir, -Ldir, and -lx should be removed and a corresponding
change should be done in *LIBL in OS/400 before computing.

 2. The -g option should be replaced by the DEBUG parameter of
CRTCMOD.

 3. The -c option of Solaris C compiler is similar to the *NOGEN option of
CRTCMOD.

 4. The -P options are similar to the *PPONLY option of CRTCMOD.

 5. The -O is to be replaced by the OPTIMIZE parameter of CRTCMOD.

 6. The DEFINE parameter is the equivalent of -D option.

 7. The -xinline option is similar to the *INLINE parameter used in
conjunction with # pragma inline.

 8. The -w option, specific to Solaris C compiler, can be simulated by
setting FLAG=30 for CRTCMOD.

Appendix C. Sun Solaris C to ILE C/400 Application Porting 95

C.3 Signals

The signals SIGWAITING, SIGLWP, SIGFREEZE, SIGTHAW, and SIGCANCEL
related to light weight processes and CPR′s are unique to Solaris C and are
not supported in ILE C.

C.4 Error Handling

The error numbers unique to Solaris C are ECANCELED, ENOTSUP, EDQOT,
EBADE, EBADR, EXFULL, ENOANO, EBADRQC, EBADSLT, EDEADLOCK, and
EBFONT. ILE C provides the EDEADLK errno. The rest have to be
monitored by rewriting the code.

C.5 Compiler Directives

The following pragmas are Solaris C specific. These can be included within
a source file, but may not be used within a function:

#pragma

• ALIGN
Changes the memory alignment of variables to that specified.

• FINI
Calls the functions mentioned after the main function.

• INIT
Calls the functions mentioned before calling main.

• IDENT
Places string in the comment section of the executable.

• INT_TO_UNSIGNED
Changes the return type from unsigned to int.

• UNKNOWN_CONTROL_FLOW
Specifies a list of routines that violate the usual control flow.

• WEAK
Defines a weak global symbol. The linker does not produce an error
message if it does not find a definition for the symbols.

These pragmas should be commented out while porting to ILE C as they are
not valid pragmas in ILE C. The FINI and INIT pragmas can be simulated by
calling the functions at the end and the beginning of main function
respectively. A typecasting to int should be done for each call of the
functions specified in UNKNOWN_CONTROL_FLOW pragma.

96 UNIX C Applications Porting to AS/400 Companion Guide

Appendix D. AIX C to ILE C/400 Application Porting

This appendix summarizes the differences that are specific to porting XL C
applications to ILE C/400. XL C is the implementation of C on AIX version
3.2 for RISC System/6000. In the rest of this chapter, we use the two names
interchangeably.

D.1 Data Alignment

The alignment of data in XL C is as follows:

Table 16. Data Al ignment in AIX XL C

Type Size
(bytes)

Alignment of Member
Power Two Byte Packed

Char 1 Byte Byte Byte

Short 2 Half word Half word Byte

Long(int) 4 Word Half word Byte

Pointer 4 Word Half word Byte

Float 4 Word Half word Byte

(Long)double 8 Double word if in
a union or if first
member in a
structure,
otherwise word

Half word Byte

The alignment can be changed by using the pragma keyword as well as by
compiler options. These are discussed in the following sections.

D.2 C Compiler Environment

The XL C compiler provides the following options in addition to the standard
UNIX C compiler. The compiler options can be divided into five categories
by function. These are:

Options describing compiler characteristics

-B
Used to construct substitute compiler, assembler, linkage editor, or
preprocessor program names.

-qchars=signed/unsigned
Instructs the compiler to treat all variables of type char as having sign
type signed or unsigned.

 Copyright IBM Corp. 1996 97

-qcpluscmt/-qnocpluscmt
Instructs the compiler to recognize the character sequence // as the
beginning of a C ++ comment.

-qdbcs
This option is required if the program contains double-byte characters.

-Fconfig_file:stanza
This option names an alternate configuration file for xlc.

-qlanglvl=ansi/saal2/saa/extended
Selects the C language level for the compilation.

-qmbcs
This option is required if the program contains multibyte characters.

-tprograms
Designates the programs to which the -B prefix name is appended.

-Wprogram,options
Passes the listed options to the designated compiler program.

Options describing the compiler object code to be produced

-qalign=power/twobyte/packed
Sets the alignment of structures and unions.

-qansialias/-qnoansialias
Specifies whether a type-based alias is to be used during optimization.

-qcompact/-qnocompact
Reduces code size where possible at the expense of execution speed.

-qenum=int/small
Controls the storage allocation of enumeration variables.

-qextchk/-qnoextchk
Generates bind-time type checking information.

-qfloat=options
Specifies various floating point options.

-qflttrap/-qnoflttrap/-qnoflttrap = options
Generates extra instructions to detect and trap floating-point
exceptions.

-qfold/-qnofold
Specifies that constant floating-point expressions are to be evaluated
at compile time.

-qhsflt/-qnohsflt
Removes range checking on single-precision float results and on
conversions from floating point to integer.

98 UNIX C Applications Porting to AS/400 Companion Guide

-qhssngl/-qnohssngl
Specifies that single-precision expressions are rounded only when the
results are stored into float memory locations.

-qinitauto=hex-value/-qnoinitauto
Initializes automatic storage to the hexadecimal byte value hex_ value.

-qisolated_calls=names
Lists functions that do not alter data objects visible at the time of the
function call.

-qmaf/-qnomaf
Specifies whether floating-point multiply-add instructions are to be
generated.

-qmaxmem=size
Limits the amount of memory used for local tables of specific,
memory-intensive optimizations to size kilobytes.

-O3/-O2/-O/-qoptimize=3/-qoptimize=2/-qoptimize/-qnooptimize
Optimizes code at a choice of levels during compilation.

-qproclocal [= names]/-qprocimported [= names]/-qprocunknown [=
names]

These options mark functions as local, imported, or unknown.

-Q / -Q! / -Q-names / -Q+names / -Q=threshold
Attempts to inline functions instead of generating calls to a function.

-qrndsngl/-qnorndsngl
Specifies that the result of each single-precision (float) operation is to
be rounded to single precision.

-qro/-qnoro
Specifies the storage type for string literals as read-only/read-write
storage.

-qrrm/-qnorrm
Prevents floating point optimizations that are incompatible with
run-time rounding to plus and infinity modes.

-qspill=size
Specifies the register allocation spill area as size entries.

-qspnans|-qnospnans
Generates extra instructions to detect signalling NaN on conversion
from single precision to double precision.

-yrounding_mode
Specifies the compile time rounding mode of constant floating point
expressions.

Appendix D. AIX C to ILE C/400 Application Porting 99

Options describing the compiler output

-qattr/-qattr=full
Produces a compiler listing that includes an attribute listing. The
default is noattr.

-qflag=severity1:severity2
Specifies the minimum severity level at which diagnostic messages
are reported.

-qhalt=severity
Stops compilation at any compilation phase that encounters an error of
a specified severity or greater.

-qlist/-qnolist
Produces a compiler listing that includes an object listing.

-qlistopt/-qnolistopt
Produces a compiler listing that displays all options in effect.

-qnoprint
Suppresses listings. It overrides all listing options.

-qsource/-qnosource
Produces a compiler listing and includes C source code.

-qsrcmsg/-qnosrcmsg
Specifies the style of diagnostic messages.

-qstat/-qnostat
Produces a compiler listing that reports table size and timing statistics.

-w
Requests that warning messages be suppressed. This option is
equivalent to f lag=e:e.

-qxref/-qxref=full/-qnoxref
Produces a compiler listing and includes a cross-reference listing.

100 UNIX C Applications Porting to AS/400 Companion Guide

Options used for debugging

-#
Traces compilation.

-qcheck/-qnocheck
Causes the program to generate trap information for run-time
exceptions that the dbx symbolic debug program uses to determine
the cause of the exception.

-qdbxextra/-qnodbxextra
Specifies whether the -g option is to generate information in the object
file for all symbols or only for those that are referenced.

-qignprag=disjoint/isolated/all
Ignores either or both of the disjoint and isolated_call alias pragmas.

-pg
Sets up the object files for profiling, but provides more information
than is provided by the -p option.

-qphsinfo/-qnophsinfo
The phsinfo reports the time taken for both the entire compilation and
each compilation phase.

Options performing preprocessor functions

-M
Creates an output file that contains targets suitable for inclusion in a
description file for the AIX make command.

-ma
Substitutes inline code for calls to function alloca.

Options used by the linkage editor

-r
Permits the output file to be produced even though it contains
unresolved symbols

Portability Tips

 1. Setting the OPTION parameter of CRTCMOD to *XREF/*NOXREF is
equivalent to -qxref/-qnoxref options.

 2. A -qnoprint can be achieved by setting the OUTPUT parameter to none.

 3. OPTIMIZE = BASIC/FULL corresponds to -O3/-O2 options.

 4. The equivalence in inlining compiler options in the two systems is:

-Q! is the same as INLINE = OFF.

Appendix D. AIX C to ILE C/400 Application Porting 101

-Q = threshold is equivalent to INLINE = ON, MODE = AUTO and
THRESHOLD = threshold.
-Q + names can be achieved by specifying #pragma inline for the
named functions in the source program.
-Q - names can be achieved by specifying #pragma no inline in the
source program.

 5. A -qlanglvl is equivalent to the LANGLVL parameter of the CRTCMOD
command.

 6. The lower l imit of -qflag can be achieved by setting the FLAG parameter.

 7. A -qhalt is equivalent to the MSGLMT parameter.

D.3 Pre-Processor Directives

Some pragmas available in XL C are:

#pragma options compiler_options
#pragma langlvl
#pragma chars
#pragma strings
#pragma isolated_call
#pragma disjoint

The chars and langlvl pragmas are available in ILE C as well.

D.4 CPI-C on AIX

CPI-C is the programming Interface to APPC on the AIX system. AIX SNA
Services/6000 running on all models of the IBM RISC System/6000
workstation supports application program use of CPI communications calls
to communicate with programs on other RISC System/6000 workstations or
on other systems in an SNA network. Communication with other programs
on the same RISC System/6000 workstation is supported in a limited
fashion.

The CPI communications calls are part of the library libcpic.a that is shipped
with SNA Services/6000. These calls are structured to act as independent
C-language calls. SNA Services/6000 offers some extensions to the basic
CPI communications interface. These extension calls have a prefix of xc
rather than the cm prefix used for the basic CPI Communications calls.

Deviations from CPI C on OS/400

CPI communications calls on SNA Services/6000 are supported by the C
language only.

102 UNIX C Applications Porting to AS/400 Companion Guide

SNA Services/6000 supports CPI communications calls with these
distinctions:

• The Set_Log_Data call is accepted; however, it performs no operation.
SNA Services/6000 does not log or transmit the data.

• The Set_Return_Control call accepts only the value
CM_WHEN_SESSION_ALLOCATED. This means that control does not
return to the program until a conversation is allocated.

• Communication with other programs on the same RISC System/6000
workstation LU is not supported.

• Communication with other programs on the same RISC System/6000
workstation, but on different LUs, is supported if the workstation is
configured so that each LU is associated with a different control point on
the workstation.

Appendix D. AIX C to ILE C/400 Application Porting 103

104 UNIX C Applications Porting to AS/400 Companion Guide

Appendix E. DEC ALPHA C to ILE C/400 Application Porting

This appendix summarizes the differences that are specific to the DEC
ALPHA C language application porting to ILE C/400 on the AS/400 system.

E.1 Data Types and Alignments

Data types in OSF/1 differ from other UNIX as well as from the AS/400
system in the size of pointer type and long. The data types that differ are:

Data alignment is implied by data type. For example, an int (32 bits) is
aligned on a 4-byte boundary; a long (64 bits) is aligned on an 8-byte
boundary.

The DEC ALPHA C compiler supports the use of 4-bytes pointers on the
64-bit DEC OSF/1 operating system. All system interfaces use 64-bit
pointers. The 4-byte pointer data type is provided to help developers reduce
the amount of memory used by dynamically allocated pointers, and to assist
with the porting of applications that contain assumptions about the sizes of
pointers.

The use of 32-bit pointers in applications requires source code modifications
and the use of compiler options.

• Short pointer: A 32-bit pointer.
• Long pointer: A 64-bit pointer. This is the default pointer type on DEC

ALPHA systems.
• Simple pointer: A pointer to a non-pointer data type, for example: int

*num_val;.
• Compound pointer: A pointer to a pointer, or a pointer to an indefinite

array, for example: char *argv• or char **FontList.

Two cc flags and a set of pragmas control the usage of 32-bit pointers. The
compiler flag - also causes the compiler to respond to the #pragma
pointer_size directives. The -xtaso_short compiler flag causes the compiler
to allocate 32-bytes pointers by default and is recognized only when used

Table 17. Data Al ignment in DEC Alpha C

Data Types Size in bytes

long 8

long long 8

pointer 8

 Copyright IBM Corp. 1996 105

with the -xtaso flag. The cc flags for controlling pointer size are the
following:

• -xtaso: Enables the use of short pointers. All pointer types default to
long pointers, but short pointers can be declared through the use of the
pointer_size pragmas.

• -xtaso_short: Enables the use of short pointers. All pointer types
default to short pointers. Long pointers can be declared though the use
of the pointer_size pragmas.

E.2 C Compiler Environment

On DEC ALPHA, machine C has two versions of compilation mode:

• The default is OSF/1 C.
• DEC C is obtained by the -migrate flag.

cc -option(s) filenames

The various compilation flags are grouped into:

General options

-cpp
Runs the C macro preprocessor on C and assembly source files before
compiling.

-Dname

-Dname=def
Define a name to the C macro preprocessor by a #define directive. If
no definition is given, the name is defined as 1.

-I
Causes the C macro preprocessor to never search for #include files in
the standard directory (/usr/include).

-Idir
Causes the C macro preprocessor to search for #include files whose
names do not begin with a slash (/) in dir after looking in the current
dir but before looking in the standard directory.

-Ldir
Specifies the pathname dir as an additional search directory for the
linker.

-no_cpp
Does not run the C macro preprocessor on C and assembly source
files before compiling.

106 UNIX C Applications Porting to AS/400 Companion Guide

-P
Runs only the C macro preprocessor and puts the result for each
source file in a .i file.

-non_shared
Produce a static executable program.

-o outfile
Specifies that the executable program is named outfile rather than the
default, a.out.

-o output
Names the final output file output.

-std
Enforces the ANSI standard with extensions.

-std0
Enforces the K&R standard with some ANSI extensions.

-std1
Enforces the ANSI standard.

-v
Displays the compiler passes as they execute.

-verbose
Displays the long form of error and warning messages.

-w or -w1
Suppresses warning messages.

-w2
Displays warnings and aborts as if an error occurred.

-w3
Suppresses warning messages. Exits with a non-zero status when
warnings occur.

Options for macros

-resumption_safe
All -scope_safe functionality plus the code generated in trap shadows
are restricted so that they are re-executable.

-scope_safe
Ensures that any trap pc is reported in the procedure or guarded
scope the trap occurred in.

-shared
Produces a shared object.

Appendix E. DEC ALPHA C to ILE C/400 Application Porting 107

-call_shared
Produces a dynamic executable program file. The object created may
use shared objects at run time.

-lstring
Specifies additional libraries to search in addition to the libraries
associated with the compiler driver invoked on the command line. The
characters specified as string are appended to lib and form a file name
of a library.

-migrate
Enables language processing rules and language extensions for the
DEC C compilation environment.

Debugging options

-g or -g2
Permits full source-level debugging. These flags often suppress
optimizations that might interfere with full debugging.

-g0
Produces an object file without debugging information, thereby
reducing its size; use when debugging is no longer required. It also
retains all optimizations. This is the default.

-g1
Permits accurate but limited source- level debugging, retains most
optimizations.

-g3
Permits full but inaccurate debugging on fully optimized code. The
debugger output may be confusing or misleading.

Profiling options

-no_pg
Disables gprof profiling for all objects that follow this flag on the cc.

-p or -p1
These flags set up profiling by periodically sampling the value of the
program counter and affect only the linking.

-p0
Disables profiling. This is the default.

-pg
Sets up gprof profiling that sets up statistical sampling, call graph
reporting, and links with grt0.o and libprof1.a.

Optimizer options

108 UNIX C Applications Porting to AS/400 Companion Guide

-O0
Prevents all optimizations.

-O1
Causes the assembler and the code generator to perform as many
optimizations as possible without affecting compile-time performance.

-O3, -O4
Performs global register allocation across the bounds of individual
compilation units.

-Olimit num
Specifies the maximum size in basic blocks of a routine that is
optimized by the global optimizer.

-om
Invokes the post-link optimizer.

-O or -O2
Global optimization. Optimizes within the bounds of individual
compilation units.

Options to control floating point operations

-fprm c
Enables chopped rounding (round towards zero) of the results of IEEE
floating-point instructions generated by the compiler.

-fprm d
Enables the dynamic setting of the rounding mode applied to the
results of IEEE floating-point instructions.

-fprm m
Enables the rounding to minus infinity of the results of IEEE
floating-point instructions generated by the compiler.

-fprm n
Enables normal rounding (unbiased round to nearest) of the results of
IEEE floating-point instructions generated by the compiler. This is the
compiler ′s default behavior.

-fptm n
Disables all floating point trapping modes.

-fptm su
Enables floating point trapping on underflow with software completion.

-fptm sui
Enables floating point trapping on underflow or inexact with software
completion.

Appendix E. DEC ALPHA C to ILE C/400 Application Porting 109

-fptm u
Enables floating point trapping on underflow.

-ieee_with_inexact
Provides full IEEE support.

Default flags that are in effect during compiler invocation: std0, cpp,
call_shared, g0, O1, p0 Portability Tips:

 1. Option -g0 is to be replaced by DBGVIEW(*NONE) in ILE C/400.
 2. -P, -cpp is the same as *PPONLY of ILE C/400.
 3. A -o is to be replaced by the PGM parameter of ILE C.
 4. All -Dname are to be replaced by #ifdef in ILE C/400.
 5. -w, -w1, -w2, and -w3 are related to the warning generation. Replace by

appropriate value of FLAG parameter in ILE C/400.
 6. ILE C/400 follows ANSI standard. Hence, all compilations correspond to

-std1. -Std0 (non ANSI compilation) is not allowed though -std is
supported but for the extensions.

E.3 Macros

The following macros are defined in ALPHA C. The table shows the
compilation modes in which these are supported:

Table 18. Macros used with DEC Alpha C Compiler

Macro std0 std std1

LANGUAGE_C Yes No No

__LANGUAGE_C__ Yes Yes Yes

UNIX Yes No No

__UNIX__ Yes Yes Yes

__osf__ Yes Yes Yes

__alpha__ Yes Yes Yes

LANGUAGE_ASSEMBLY Yes Yes Yes

__LANGUAGE_ASSEMBLY_ Yes Yes Yes

E.4 Preprocessor Directives

Using Pragmas:

A pragma is a preprocessor directive, similar in syntax to a #define
statement. The #pragma directive has the following form: #pragma
token-sequence

110 UNIX C Applications Porting to AS/400 Companion Guide

The C compiler supports the following pragmas:

Weak
The weak pragma defines a new weak external symbol and associates
this new symbol with an external symbol.

Pack
The pack pragma is used to change the alignment restrictions on
structure members.

Intrinsic
Intrinsic functions are functions in which the C compiler generates
optimized.

Function
Code in certain situations, possibly avoiding a function call to to
control whether or not a function is treated as an intrinsic you use one
of hte following pragmas (the func_name_list is a comma-separated
list of function names that optionally is enclosed within parentheses):
#pragma intrinsic [(] func_name_list [)]

#pragma function [(] func_name_list [)]

#pragma function ()

Pointer_size
This pragma has the following syntax:

#pragma pointer_size specifier
The specifier must be one of following:

• Long
• Short
• Save
• Restore

Preprocessor directives enabled by the -migrate flag: Compiling the -migrate
flag with the cc driver enables additional preprocessor directives that are
available only with this flag. The following pragmas are supported:

• [no]inline
Function inlining is the inline expansion of function calls; it replaces
the function call with the function code itself.

• [no]member_alignment
By default, the compiler aligns structure members on natural
boundaries.

#pragma [no]member_alignment {specifier} preprocessor directive to
determine the byte-alignment of structure members. This pragma has
the following formats:

Appendix E. DEC ALPHA C to ILE C/400 Application Porting 111

#pragma member_alignment
#pragma member_alignment save
#pragma member_alignment restore
#pragma nomember_alignment

• Message
The #pragma message directive controls the issuance of individual
diagnostic messages or groups of diagnostic messages. Use of this
pragma overrides any command-line flags that may affect the issuance
of messages.

The #pragma message directive has the following format:

#pragma message flag1 (message-list)
#pragma message flag2

E.5 Error Handling

Following are errno values that are different in DEC ALPHA C:

EBADMSG, EBADRPC, EBUSY, ECANCELED, EDIRTY, EDOM, EDQUOT,
EINVAL, EIO, EMTIMERS, ENODATA, ENODEV, ENOENT, ENOEXEC, ENOSR,
ENOSTR, ENOSYM, ENOTBLK, ENOTTY, EPERM, EPROCUNAVAIL,
EPROGMISMATCH, EPROGUNAVAIL, EPROTO, ERANGE, EREMOTE,
ERPCMISMATCH, ETIME, ETOOMANYREFS, EUSERS, EVERSION

The DEC OSF/1 Calling Standard for AXP Systems defines special structures
and mechanisms for the processing of exceptional events. The standards
defined are the following:

• The manner in which exception handlers are established.
• The way in which exceptions are raised.
• How the exception system searches for and invokes a handler.
• How a handler returns to the exception system.
• The manner in which the exception system traverses the stack and

maintains procedure context.

A termination handler consists of code that executes when the flow of
control leaves a specific body of code.

The ability to raise user-defined exceptions or convert UNIX signals to
exceptions are through routines such as exc_raise_status_exception,
exc_raise_signal_exception, exc_raise_exception, exc_exception_dispatcher,
and exc_dispatch_exception. These exception management routines also
provide the mechanism to dispatch exceptions to the appropriate handlers.
In the case of C-language, the structured exception handling capabilities
provided by the DEC ALPHA C compiler allow you to deal with the

112 UNIX C Applications Porting to AS/400 Companion Guide

possibility that a certain exception condition may occur in a certain code
sequence. The syntax establishing a structured exception handler is as
follows:

try {
try-body
}

except (exception-filter) {
exception-handler
}

This has to be substituted by appropriate codes in ILE C/400. Refer to the
ILE C/400 Programmers Guide for details of exception handling in ILE C/400.

E.6 Signals

The signal SIGTKSZ set by ALPHA is not available in ILE C/400. The signal
SIGPWR can be mapped to SIGDANGER of ILE C/400 in most situations.

Appendix E. DEC ALPHA C to ILE C/400 Application Porting 113

114 UNIX C Applications Porting to AS/400 Companion Guide

Appendix F. Special Notices

This publication is intended to help customers, business partners, and IBM
specialists in writing or porting UNIX C style applications for the AS/400
systems. The information in this publication is not intended as the
specification of any programming interfaces that are provided by the
OS/400, 5716-SS1, and Common Programming APIs. See the
PUBLICATIONS section of the IBM Programming Announcement for IBM
Programming Announcement for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the
mutual use of the information which has been exchanged, should contact
IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and

 Copyright IBM Corp. 1996 115

integrate them into the customer′s operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this
document should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo
are trademarks or registered trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

IBM IBM
Application System/400 AS/400
C/400 FORTRAN/400
Operating System/400 OS/400
OS/2 Sustem Application Architecture
SAA SQL/400
400

116 UNIX C Applications Porting to AS/400 Companion Guide

Other trademarks are trademarks of their respective companies.

F.1 Industry Standards

The ILE C/400 library routines are designed according to the specifications
of the American National Standard Programming Language C, American
National Standard Institute (ANSI), and the IBM System Applications
Architecture (SAA) Common Programming Interface for the C language.

Appendix F. Special Notices 117

118 UNIX C Applications Porting to AS/400 Companion Guide

Appendix G. Related Publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

G.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 123.

• UNIX C Application Porting to AS/400, SG24-4438-00

• The IBM AS/400 as a TCP/IP Network File Server, GG24-4092-00

• IBM AS/400 V3 Communication API Handbook, SG24-2573-00

• Developing (Real) DCE Applications for OS/400, SG24-2572-00

• AS/400 Integrated Language Environment: A Practical Approach ,
GG24-4148-00

• IBM AS/400 TCP/IP Configuration and Operation, GG24-3442-02

G.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection (available soon) SBOF-7250 SK2T-8042

G.3 Other Publications

These publications are also relevant as further information sources:

• Version 3 Release 6 publications:

− AS/400 CL Programming, SC41-4721

− AS/400 CL Reference, SC41-4722

 Copyright IBM Corp. 1996 119

− AS/400 Common Programming APIs Toolkit/400 Reference,
 SC41-4802

− AS/400 ILE C/400 Programmer′s Guide, SC09-2069

− AS/400 ILE C/400 Programmer′s Reference, SC09-2070

− AS/400 ILE Concepts, SC41-4606

− AS/400 Integrated File System Introduction, SC41-4711

− AS/400 Machine Interface Functional Reference, SC41-3810

− OS/400 Data Management, SC41-4710

− OS/400 Work Management, SC41-4306

− AS/400 Sockets Programming, SC41-4422

− AS/400 System API Reference, SC41-4801

• Version 3 Release 1 publications:

− AS/400 CL Programming, SC41-3721

− AS/400 CL Reference, SC41-3722

− CPA Extensions for OS/400 Reference, SC41-3820

− CPA Process Management Extensions for OS/400, GI10-1000

− AS/400 ILE C/400 Programmer′s Guide, SC09-1820

− AS/400 ILE C/400 Programmer′s Reference, SC09-1821

− AS/400 ILE Concepts, SC41-3606

− AS/400 Integrated File System Introduction, SC41-3711

− OS/400 Data Management, SC41-3710

− OS/400 Work Management, SC41-3306

− AS/400 Sockets Programming, SC41-3422

− AS/400 System API Reference, SC41-3801

• Others:

− APPC Programming, SC41-3443

− Programming Reference Summary, SX41-3720

− SAA CPI - Communications Reference, SC26-4399-06

− System API Programming, SC41-3800

− TCP/IP configuration and Reference,SC41-3420

− TCP/IP File Server Support/400 Installation and User′s Guide,
SC41-0125

120 UNIX C Applications Porting to AS/400 Companion Guide

G.4 References on the World Wide Web (WWW)

Internet users may find information at the following World Wide Web sites:
AS/400 home page: http://as400.rochester.ibm.com

ITSO Redbooks home page: http://www.redbooks.ibm.com

AS/400 Partners in Development home page:
http://www.softmall.ibm.com/as400

 In particular, click on ″Of Interest to UNIX Developers″

Appendix G. Related Publications 121

122 UNIX C Applications Porting to AS/400 Companion Guide

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The
latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• ITSO4USA category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

 Copyright IBM Corp. 1996 123

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 415 855 43 29 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword
subscribe in the body of the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

124 UNIX C Applications Porting to AS/400 Companion Guide

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.

How To Get ITSO Redbooks 125

126 UNIX C Applications Porting to AS/400 Companion Guide

Glossary

Advanced Program-to-Program Communication
(APPC) . The APPC support handles all of the
SNA protocol requirements when your system is
communicating with a remote system using the
LU type 6.2 and node type 2.1 architectures.
You can connect your system to any other
system that supports the APPC program
interface.

American Standard Code For Information
Interchange (ASCII) . It is the coded character
set used by UNIX. It defines 128 characters and
each is represented by 7-bit binary values.

API . See Application Program Interface.

APPC . See Advanced Program to Program
Communication.

Application Program Interface (API) . A formal
interface that is intended to be used in the
building of applications. It provides a path into
system functions.

argument . In a high-level language (HLL)
procedure call, an expression that represents a
value that the calling procedure passes to called
procedure.

ASCII . See American Standard Code For
Information interchange. ASCII is the coded
character set. It defines 128 characters and
each is represented by 7-bit binary values.

bind . To create a program that can be run by
combining one or more modules created by an
Integrated Language Environment (ILE)
compiler. See also binder and binding.

binder language . A small set of commands
(STRPGMEXP, EXPORT, and ENDPGMEXP) that
defines the external interface (signature) for a
service program. These commands are in a
source file and cannot be run alone.

binder . The system component that creates a
bound program by packing Integrated Language

Environment (ILE) modules and resolving
symbols passed between those modules.

binding directory . A list of names of modules
and service programs that may be needed when
creating an ILE program or service program. A
binding directory is not a repository of modules
and service programs. Instead, it allows them
to be referred to by name and type.

binding . The process of creating a program by
packaging an Integrated Language Environment
(ILE) modules and resolving symbols passed
between those modules.

block . A group of one or more logical records
treated as a single piece of data.

blocked record . A physical record that contains
more than one logical records.

bound program . An AS/400 object that
combines one or more modules created by an
Integrated Language Environment (ILE)
compiler.

call message queue . A message queue that
exists for each call stack entry within a job.

call stack entry . A program or procedure in the
call stack. Each call stack entry has information
about the local, automatic variables for the
procedures, and other resources scoped to the
call stack entry such as condition handlers and
cancel handlers.

call stack . The ordered list of all programs or
procedures currently started for a job. The
order is last in, first out. The programs and
procedures can be started explicitly with the
CALL instruction, or implicitly from some other
event.

call . Adds a new entry to the call stack for the
called procedure or program and transfers
control to the called object.

CCSID. See Coded Character Set Identifier.

 Copyright IBM Corp. 1996 127

character set . The aggregate of all valid
characters allowed by the standard followed.

child process . A new process created by an
existing process. The new process is thereafter
known to the preexisting process as the child
process. The preexisting process is called
parent process.

client (Xwindow) . An application program
connects to the window system server by some
Interprocess communication (IPC) path, such as
a TCP connection or a shared memory buffer.
This program is referred to as a client of the
window system server.

client . A node in a network that requests a
service to be performed.

Coded Character Set Identifier (CCSID) . A set
of values used by the AS/400 system to denote
different languages.

collation . The logical ordering of strings in a
predetermined sequence according to
established rules. This is usually done to
provide native language support.

command language interface . The interface
between the HLL and the OS that processes all
commands issued by the HLL program and
generates equivalent code for the OS and
vice-versa.

commit . To make all changes permanent that
were made to one or more database files since
the last commit or rollback operation, and to
make the changed records available to other
users.

commitment control . A means of grouping file
operations that allow the processing of a group
of database changes as a single unit through the
Commit command or the removal of a group of
database changes as a single unit through the
Rollback command.

commitment definition . Information used by the
system to maintain the commitment control
environment throughout a routine step and, in
case of a system failure, throughout an initial

program load (IPL). This information is obtained
from the Start Commitment Control command,
which establishes the commitment control
environment, and the file open information in a
routing step.

connection (Xwindows) . The IPC path between
the server and client program is known as a
connection.

connectivity . Interaction between the client and
server.

control language . The system language on the
AS/400 that provides greater control of lower
level system features than HLLs.

conversion descriptor . A structure used by
AS/400 Data Conversion APIs to pass encoded
information about the conversion method being
followed.

CPI-C. CPI Communications provides a
consistent application programming interface for
applications that require program-to-program
communication. The interface makes use of
SNAs LU 6.2 to create a rich set of
inter-program services.

curses . A C subroutine library to allow
programs to easily display output at specific
positions on the screen of a cathode ray tube
(CRT). It uses the termcap terminal capabilit ies
database. Curses and termcap were originally
developed for the vi text editor.

daemon . Daemon processes on the UNIX
system do system-wide functions, such as
administration and control of networks. They
are not associated with any user.

data alignment . Data of a particular size needs
to be stored on the storage boundaries with
addresses that are a particular multiple of byte
addresses. The resultant arrangement of data is
called data alignment.

data description specification (DDS) . A
description of the user′s database or device file
that is entered into the system in a fixed form.
The description is then used to create files.

128 UNIX C Applications Porting to AS/400 Companion Guide

data type modifier . Keywords that affect the
allocation or access of data storage. The two
data type modifiers are const and volatile.

database file . An AS/400 file type used to store
data.

DBCS . See Double-Byte Character Sequence.

debug mode . A mode in which a program
provides detailed output about its activities to
aid a user in detecting and correcting errors in
the program itself or in the configuration of the
program or system.

debug . To detect, diagnose and eliminate
errors in programs.

debugger . A tool used to detect and trace
errors in computer programs.

default entry point . An entry point in an
application that receives control from the
operating system. In a C program, the main()
function is the default entry point.

descriptor . A set of data structures that
collectively represent the characteristic of an
open file. The data structures contain the file′s
attributes, identification, access control,
accounting information and are maintained by
file system routines.

direct monitor handler . An exception handler
that allows the application programmer to
directly declare an exception monitor.

display file . An AS/400 file type for screen I/O.

Double-Byte Character Sequence (DBCS) . A
sequence of two bytes used in the AS/400
system to denote characters of native languages
that are not supported by the EBCDIC character
set.

dynamic screen manager . A set of APIs for
controll ing screen interaction.

EBCDIC . See Extended Binary Coded Decimal
Integer Code.

enumeration . A data type in C language that
can have a value from a specified set of values.

environment variables . Strings of the form
″n a m e = v a l u e ″ that are stored in an
environment space outside the program.

error handler . An operating system facility to
trap errors and pass relevant information to the
application identifying the error.

event (Xwindow) . Clients are informed of
information asynchronously by means of events.

exception handler . An operating system facility
to trap exceptions and pass relevant information
to the application identifying the exception.

exception handling . Handling of error condition
by the application.

export . An external symbol defined in a module
or program that is available for use by other
modules or programs. See also external
symbol. Contrast with import.

Extended Binary Coded Decimal Integer Code.
(EBCDIC) . It is the coded character set used by
the AS/400 system. It defines 256 characters
and each is represented by 8-bit binary values.

external data . Data that is exported from one
procedure and imported by another procedure.
Contrast with internal data.

external symbol . An item defined in a
high-level language program that represents
such things as procedures or variables.
Resolving external symbols is the means by
which the binder connects modules to form a
bound program or a service program.

externally described data . Data contained in a
file for which the fields and the records are
described outside the program using facilit ies
such as DDS, IDDU, and SQL/400, and used by
the program when the file is processed.

file descriptor . In the UNIX environment, the
integer that identifies a file.

Glossary 129

IFS. See integrated file system.

ILE . See Integrated Language Environment.

import . A reference to an external symbol
defined in another module or program. Contrast
with export.

indicator . An internal switch used by a program
to remember when a certain event occurs and
what to do when that event occurs.

integrated file system (IFS) . The file system in
OS/400 that supports stream I/O and storage
management similar to UNIX while providing an
integrating structure over all of the information
stored on the AS/400 system.

Integrated Language Environment (ILE) . A set
of constructs and interfaces (APIs) for all ILE
conforming HLLs.

Interprocess communication (IPC) .
Communication between different processes.

I/O feedback area . An area in the memory
allocated to a job where the AS/400 system
stores information about all I/O operations done
in the current job.

IPC. See interprocess communication.

keyed sequence access path . An access path to
a database file that is arranged according to the
contents of key fields contained in individual
records. See also arrival sequence access path
and access path.

linger timer . The time to wait before any
buffered data to be sent is discarded during
close() socket operation.

locale . An object that contains information
about valid alphabetic characters, the collating
sequence, the format of numbers and currency
amounts, and the format of date and time. This
information is used by certain C/400 library
routines in application programs.

locking . The technique of capturing access to a
shared resource, wherein any other process or

job can be completely or partially restricted
from using it.

logical file . A description of how data is to be
presented to a program. This type of database
file contains no data, but it defines the format
for one or more physical files.

machine interface . The interface between the
OS and the hardware. Limited control is
available to the programmer on this interface
through system functions and APIs.

memory model . A basis for classifying memory
based on its size. This also determines the size
of the memory addresses.

menu . An AS/400 object for screen I/O where
the user can optionally choose to enter a system
command as well.

message . A means of communication between
the job and the user. Types of message are
inquiry, status, escape, informational, notify and
so on.

message file . An AS/400 object for storing
message texts along with unique message IDs.

message description . All information about a
particular message - message ID, message text,
severity, type, and so on.

message queue . A list on which messages are
placed when they are sent to a person or
program. The AS/400 system-recognized
identifier for the project is *MSGQ.

module . In the ILE model, module is the object
that results from compiling the source code.
Module cannot be run before binding into a
program object or service program.

mutex . A mutual exclusion mechanism for
synchronizing between threads, such as a fast
memory lock.

native language support . A feature of OS/400
that provides tools for customizing applications
for International use.

130 UNIX C Applications Porting to AS/400 Companion Guide

network . A computer network is a collection of
computer nodes physically connected by a
suitable communications medium.

network protocols . Network protocols are sets
of rules that control the communication and
transfer of data between two or more devices in
a communications system.

NFS. A file sharing protocol with the goal of
providing file sharing in a heterogeneous
environment.

OOB data . Out-of-band (OOB) data is
user-specific data that only has meaning for
connection-oriented (stream) sockets.

open data path (ODP) . A control block created
when a file is opened. An ODP contains
information about merged fi le attribute and
information returned by input or output
operations. The ODP only exists while the file is
open.

packed decimal . A method of storing decimal
data in a more compact form using half-byte for
each digit and another half byte for the sign.

padding . Unused spaces in the data file to align
the different type of member of structure or
union at their alignment boundaries. This
alignment is required to provide faster retrieval
of data.

parameter . (1) In ILE, an identifier that defines
the type of arguments that are passed to a
called procedure. (2) A value supplied to a
command or program that is used either as
input or to control the actions of the command
or program.

physical file . A description of how data is to be
presented to or received a program and how
data is actually stored in a database. A physical
file contains one record format and one or more
members.

pointer . A pointer type variable holds the
address of a data object or a function.

pragma . An implementation-defined instruction
to the compiler.

preprocessor . A section of the compiler that
enables you to modify the default compilation
process by changing the inputs to the compiler
or modifying the steps in the compilation
process.

procedure call . A call made to a procedure
within a module in a bound program. See also
static procedure call and procedure pointer call.
Contrast with program call.

procedure pointer call . A high-level language
call mechanism for specifying the address of a
procedure to be called. The procedure pointer
call provides a way to call a procedure
dynamically. For example, by manipulating
arrays or tables of procedure names or
addresses, the application programmer can
dynamically route a procedure call to different
procedures. Contrast with static procedure call.

procedure . A set of self contained high-level
statements that perform a particular task and
then return control to the caller.

program call . A call made to an ILE program or
to an OPM program. See also dynamic program
call. Contrast with procedure call.

program . In the ILE model, the runnable objects
that result from binding modules together.

promote . To convert an unhandled condition
into a new condition with a different meaning.
The new condition is passed on to another
condition handler.

record I/O . The file I/O method where all data
stored in files is treated as a number of records,
which may contain one or more fields. Contrast
with stream I/O.

referential integrity . Homogeneity between the
parent file and its dependent files.

resource (Xwindow) . Windows, pixmaps,
cursors, fonts, graphics, contexts, and colormaps
are known as resources. They all have unique

Glossary 131

identifiers associated with them for naming
purposes.

resource . Any device or item used by a
computer, for example, I/O devices, disk files, or
programs.

return . To remove the call stack entry and
transfer control back to the calling procedure or
program in the previous call stack entry.

SAA . See System Application Architecture
(SAA).

SBCS . See Single-Byte Character Sequence.

semaphore . A synchronization primitive, similar
to a mutex or a machine interface (MI) lock. It
can be used to control access to shared
resources, or used to notify other processes of
the availability of resources.

server (Xwindow) . The server provides the
basic windowing mechanism. It handles IPC
connections from clients, demultiplexes graphics
requests onto the screens, and multiplexes input
back to the appropriate clients.

server . The node in a network that handles the
clients request.

service function . Functions provided by the
system for debugging or adjusting the
performance of CPA programs.

service program . A bound program that
performs utility functions that can be called by
other bound programs. See also bound
program.

shared memory . That part of the virtual
address space, which is shared by more than
one process, so that they can directly
communicate amongst themselves by reading or
writing into this space.

shell . The program (in UNIX) that controls user
interactions with the system and executes
commands.

signal . A way by which the operating system
handles asynchronous events.

Single-Byte Character Sequence (SBCS) . The
default form of data encoding on the AS/400
system, where a single byte is used to store one
character. See also Double-Byte Character
Sequence.

SNA . See System Network Architecture.

sockets . Sockets allow you to write your own
applications to supplement those supplied by the
network protocol. Sockets allow unrelated
processes to exchange data locally and over
networks.

source entry utility (SEU) . A function of the
AS/400 Application Development Tools licensed
program that is used to create and change
source members.

spooled file . Spooling allows the system to
store data in an object called a spooled file. The
spooled file collects data from a device until a
program or device is available to process the
data. A program uses a spooled file as if it
were reading from or writing to an actual
device. Input Spooling is done by the system
for database and diskette files. Output Spooling
is done for printers.

stored procedure . A remote procedural call
that does not require the compilation of
interface definitions, or creation of stub
programs.

stream I/O . The file I/O method where all data
stored in files is treated as a sequence of
characters. Contrast with record I/O.

subfile . A type of display file on the AS/400
system with special features.

System Application Architecture (SAA) . An
architecture defining a set of rules for designing
a common user interface, programming
interface, applications programs, and
communications support for strategic systems
such as OS/2, OS/400, and MVS/370 operating
systems.

132 UNIX C Applications Porting to AS/400 Companion Guide

Systems Network Architecture (SNA) . This is
the dominant protocol in IBM based networks.

TCP/IP. Transmission Control Protocol/Internet
Protocol refers to a family of non-proprietary
network protocols, of which TCP, providing
host-to-host transmission, and IP, providing data
routing from source to destination, are two
important parts.

thread . A technique for concurrent
programming by allowing multiple flows of
processing within a process. Each thread in a
process is a separate processing flow.

transaction . A group of individual changes to
objects on the system that should appear as a
single atomic change to the user.

translator . An OS/400 component that performs
the final step in a program or module
compilation. In the ILE model, the translator is
called the optimizing translator.

trigger . A trigger is a set of actions that are
run automatically when a specified change

operation is performed on a specified physical
database file. The change operation can be an
insert, update, or delete high-level language
statement in an application program.

trigraphs . Sequences of three characters used
to emulate characters used in the C language
that are not available on some IBM keyboards.

UEP. See user entry procedure.

UIM . See user interface manager.

user interface manager . An AS/400 system
utility to dynamically manage displays and user
interfaces.

window handle . A pointer to a structure of type
WINDOW, that is automatically defined by the
system for each window created. It contains
information about all attributes of the window.

X-windows . A facility to create, modify, and
manage graphical user interfaces, independent
of, but supported by UNIX.

Glossary 133

134 UNIX C Applications Porting to AS/400 Companion Guide

Index

Special Characters
_getexcdata 60
_Packed storage 11
_res structure 26
_rformat API 18
_Riofbk function 60
_ropen API 18
_rread API 18

A
ADDR_ANY 26
address pointer 12
advance function printer utility (AFPU) 14
advanced program-to-program communications

(APPC) 27
AF_INET 25, 26
AF_UNIX 25
AFPU (advance function printer utility) 14
AIX SNA Services/6000 102
alignment 9
ANSI C 8
AnyNet 27
AnyNet/400) 23
API (application program interface) 23
API lockf 40
APPC 21, 102
APPC (advanced program-to-program

communications) 27
application program interface (API) 23
argc argument 14
argument

argc 14
argv 14
envp 14

argv argument 14
AS/400 message queue command 50
ASCII character set 29
ASCII encoding 5
assert 60
authorization management 39

B
backlog parameter 25
Berkeley Software Distributions (BSD) 24
bibliography 119
bind() 25
binder language source 43
binding directory 43
bound ile c/400 program

creating 18
branching 39
break message

sending 49, 52
BSD (Berkeley Software Distributions) 24
built-in 40
built-in interface 40

C
CAE specification 29
call

fclose () 18
fopen() 18
fread() 18

cancel handler 56
CCSID (coded character set identifier) 29
CEEHDLR API 56
CFGTCP (Configure TCP/IP) command 24
CGFTCP menu 24
CGU (character generation) 14
Change FTP Attributes (CHGFTPA)

command 21
Change Message File (CHGMSGF)

command 48
Change Message Queue (CHGMSGQ)

command 50
changing

ftp attributes 21
message file 48
message queue 50

char data type 8
character generation (CGU) 14

 Copyright IBM Corp. 1996 135

character set 6, 29
CHGFTPA (Change FTP Attributes)

command 21
CHGMSGF (Change Message File)

command 48
CHGMSGQ (Change Message Queue)

command 50
CICS file interface 27
CICS/400 28
Clear Message Queue (CLRMSGQ)

command 50
clearerr 60
clearing

message queue 50
close() 25
CLRMSGQ (Clear Message Queue)

command 50
coded character set identifier (CCSID) 29
collating sequence 5
collating, ASCII versus EBCDIC 5
command, CL

CFGTCP (Configure TCP/IP) 24
Change FTP Attributes (CHGFTPA) 21
Change Message File (CHGMSGF) 48
Change Message Queue (CHGMSGQ) 50
CHGFTPA (Change FTP Attributes) 21
CHGMSGF (Change Message File) 48
CHGMSGQ (Change Message Queue) 50
Clear Message Queue (CLRMSGQ) 50
CLRMSGQ (Clear Message Queue) 50
Configure TCP/IP (CFGTCP) 24
Create Bound ILE C/400 Program

(CRTCMOD) 18
Create Message File (CRTMSGF) 48
Create Message File Menu

(CRTMSGFMNU) 48
Create Message Queue (CRTMSGQ) 50
Create System/36 Message File

(CRTS36MSGF) 48
CRTCMOD (Create Bound ILE C/400

Program) 18
CRTMSGF (Create Message File) 48
CRTMSGFMNU (Create Message File

Menu) 48
CRTMSGQ (Create Message Queue) 50
CRTS36MSGF (Create System/36 Message

File) 48

command, CL (continued)
Delete Message File (DLTMSGF) 48
Delete Message Queue (DLTMSGQ) 50
Display Messages (DSPMSG) 49
DLTMSGF (Delete Message File) 48
DLTMSGQ (Delete Message Queue) 50
DSPMSG (Display Messages) 49
Merge Message File (MRGMSGF) 48
Monitor Message (MONMSG) 49
MONMSG (Monitor Message) 49
MRGMSGF (Merge Message File) 48
Override with Message File (OVRMSGF) 48
OVRMSGF (Override with Message File) 48
RCVMSG (Receive Message) 49, 51
Receive Message (RCVMSG) 49, 51
Remove Message (RMVMSG) 52
Retrieve Message (RTVMSG) 49, 52
RMVMSG (Remove Message) 52
RTVMSG (Retrieve Message) 49, 52
Send Break Message (SNDBRKMSG) 49, 52
Send Message (SNDMSG) 49
Send Network Message (SNDNETMSG) 49
Send Network Server Message

(SNDNWSMSG) 50
Send Program Message (SNDPGMMSG) 50,

53
Send Reply (SNDRPY) 50
Send TCP/IP Spooled File (SNDTCPSPLF) 23
Send User Message (SNDUSRMSG) 50
SNDBRKMSG (Send Break Message) 49, 52
SNDMSG (Send Message) 49
SNDNETMSG (Send Network Message) 49
SNDNWSMSG (Send Network Server

Message) 50
SNDPGMMSG (Send Program Message) 50,

53
SNDRPY (Send Reply) 50
SNDTCPSPLF (Send TCP/IP Spooled File) 23
SNDUSRMSG (Send User Message) 50
Work with Message Files (WRKMSGF) 49
Work with Message Queues (WRKMSGQ) 50
WRKMSGF (Work with Message Files) 49
WRKMSGQ (Work with Message Queues) 50

common programming interface (CPI)
communications call 27

136 UNIX C Applications Porting to AS/400 Companion Guide

compressing data 39
computation 39
Configure TCP/IP (CFGTCP) command 24
configuring

TCP/IP 24
connect() 25, 26
connection-oriented 23
connectionless 23
control language (CL) command 49
conversion descriptor 30
convert data (QDCXLATE) API 30
CPI 27
CPI (common programming interface)

communications call 27
CPI-C 102
Create Bound ILE C/400 Program (CRTCMOD)

command 18
create locale 6
Create Message File (CRTMSGF) command 48
Create Message File Menu (CRTMSGFMNU)

command 48
Create Message Queue (CRTMSGQ)

command 50
Create System/36 Message File (CRTS36MSGF)

command 48
creating

bound ile c/400 program 18
message file 48
message file menu 48
message queue 50
system/36 message file 48

CRGCSPMSGF command 48
CRTCMOD (Create Bound ILE C/400 Program)

command 18
CRTMSGF (Create Message File) command 48
CRTMSGFMNU (Create Message File Menu)

command 48
CRTMSGQ (Create Message Queue)

command 50
CRTS36MSGF (Create System/36 Message File)

command 48
curses l ibrary 63
curses package 47

D
data alignment 9
data conversion 29
data conversion API 29
data description specifications (DDS) 27, 53
data file utility (DFU) 14
data management 17
data type

char 8
double 8
float 8
int 8

database file 17
DB2 for AS/400 15
DBCS 32
DBCS (double-byte character set) 30
DBCS conversion 30
DBM 82
DDS (data description specification) 53
DDS (data description specifications) 27
DEC ALPHA C 105
decompressing data 39
Delete Message File (DLTMSGF) command 48
Delete Message Queue (DLTMSGQ)

command 50
deleting

message file 48
message queue 50

development tools, AS/400 14
AS/400 Development tools 14

device file 17
DFU (data file utility) 14
directory 17
display file 53, 63
display handling 63
Display Messages (DSPMSG) command 49
displaying

messages 49
distributed data management (DDM) fi le 18
DLTMSGF (Delete Message File) command 48
DLTMSGQ (Delete Message Queue)

command 50
DNS packet 26
double data type 8
double-byte character set (DBCS) 30

Index 137

DSM (dynamic screen manager) 63
DSM API 63
DSPMSG (Display Messages) command 49
dynamic screen manager (DSM) 63

E
E2BIG 32
EBADDATA 32
EBADF 32, 33
EBCDIC encoding 5
ECONVERT 32
EFAULT 32, 34, 35
EINVAL 32, 34, 35
embedded SQL 15
encoding, ASCII versus EBCDIC 5
ENOBUFS 32
ENOMEM 32, 34, 35
enumerator 11
envp argument 14
EPIPE 26
errno 47, 58, 59
error handling 56
error handling functions in ILE C/400 59
ES_STAYOPEN 26
EUNKNOWN 32, 33, 34, 35
exception handler 56
EXEC CICS 28
expected portability differences 4

F
fclose() call 18
file 17
file descriptor 40
file organization 17
file specifications 17
file transfer protocol (FTP) 21
fi lename 18
fine handling 60
FIONREAD 25
float data type 8
floating point function 82
fopen 17
fopen() call 18
fprintf() 47

fread() 18
fseek() function 18
FTP 23
FTP (file transfer protocol) 21
ftp attributes

changing 21
FTP in AS/400 21
ftpd 21

G
getsockname() 26
givedescriptor() 26
glossary 127

H
HP 9000 79
HP-UX 79
HP-UX C compiler 79

I
ICF 27
ICF (intersystem communications function) 27
iconv_close example 35
iconv_close() 29, 33, 34
iconv_open() 29, 31, 33, 34
iconv_open() example 35
iconv_t 29, 33, 34
iconv() 29, 31
iconv() example 35
IDDU (interactive data definition util ity) 14
INADDR_ANY 26
independent index 39
int data type 8
interactive data definition util ity (IDDU) 14
interface to MI functions 40
interoperabil i ty 23
intersystem communications function (ICF) 27
ioctl() 25
IPPROTO_TCP 25
IPPROTO_UDP 25

138 UNIX C Applications Porting to AS/400 Companion Guide

J
job information 39

L
l ibrary 17
line printer daemon (LPD) 23
line printer requester (LPR) 23
link to lockf API 44
listen() 25
locale, create 6
lockf 40, 43
low-level system interface 39
LPD 23
LPD (line printer daemon) 23
LPR 23
LPR (line printer requester) 23
LPR and LPD (remote printing) 21
lseek() function 18
LU 6.2 27, 28

M
machine interface 39
machine observation 39
Mapping the curses functionality 65
member 17
Merge Message File (MRGMSGF) command 48
merging

message file 48
message

monitoring 49
receiving 49, 51
removing 52
retr ieving 49, 52
sending 49

message file 48
changing 48
creating 48
deleting 48
merging 48
overriding with 48

message file menu
creating 48

message files
working with 49

message handling 47
message handling API 51
message handling APIs 51
message queue 50

changing 50
clearing 50
creating 50
deleting 50

message queue command, AS/400 50
message queues

working with 50
messages

displaying 49
MI built-in 40
MI function 39
MI header file 40
Monitor Message (MONMSG) command 49
monitoring

message 49
MONMSG (Monitor Message) command 49
MPTN (multi-protocol transport networking) 27
MRGMSGF (Merge Message File) command 48
MSG_MAXIOVLEN 26
multi-protocol transport networking (MPTN) 27
mutex 39

N
national language support (NLS) 81
NDBM 82
network fi le server 24
network message

sending 49
network server message

sending 50
NFS protocol 23
NLS (national language support) 81
Novell NetWare 24

O
object 17
object lock management 39
OOB data 25
Override with Message File (OVRMSGF)

command 48

Index 139

overr iding with
message file 48

OVRMSGF (Override with Message File)
command 48

P
packed decimal 8
packed, data type 8
padding 10
Pascal API 23
PDM (programming development manager) 14
perror 60
perror() 47
pointer casting 13
pointer operation 12
pointer usage 12
portabi l i ty 1
portabil i ty t ips 81, 89, 95, 101, 110
POSIX 79
printf() 47
process 26
process management 39
program management 39
program message

sending 50, 53
programming development manager (PDM) 14

Q
QDCXLATE 29
QDCXLATE API 30
qlansrv fi le system 22
QMHCHGEM API 51
QMHCTLJL API 51
QMHLJOBL API 51
QMHLSTM API 51
QMHMOVPM API 51
QMHPRMM API 51
QMHRCVM API 51
QMHRCVPM API 52
QMHRMFAT 52
QMHRMQAT 52
QMHRMVM API 52
QMHRMVPM 52
QMHRSNEM 52

QMHRTVM 52
QMHRTVRQ 52
QMHSNDBM 52
QMHSNDM 53
QMHSNDPM 53
QMHSNDRM 53
QMHSNDSM 53
QOpenSys 18
qopensys file system 22
QpOsDisableSignals 58
QpOsEnableSignals 58
qtqcode_t 34
qtqiconvopen() 29, 31, 33, 34
queue management 39
QUOTE subcommand 21

R
raise 60
RCVMSG (Receive Message) command 49, 51
Receive Message (RCVMSG) command 49, 51
receiving

message 49, 51
record format 17
record-oriented file I/O 18
recvmsg() 26
referential integrity 15
remote printing (LPR and LPD) 21
remote printing on AS/400 23
remote procedure call (RPC) 23
remote system 22
Remove Message (RMVMSG) command 52
removing

message 52
reply

sending 50
report layout making (RLU) 14
res_close() 26
res_send 26
res_xlate() 26
resolver routine 26
resource management 39
Retrieve Message (RTVMSG) command 49, 52
retr ieving

message 49, 52
RISC System/6000 97

140 UNIX C Applications Porting to AS/400 Companion Guide

RLU (report layout making) 14
RMVMSG (Remove Message) command 52
root fi le system 22
RPC (remote procedure call) 23
RTVMSG (Retrieve Message) command 49, 52

S
save file 17
SBCS (single-byte character set) 30
SCO system C 85
screen design aid 63
screen design aid (SDA) 14
SDA (screen design aid) 14
Send Break Message (SNDBRKMSG)

command 49, 52
Send Message (SNDMSG) command 49
Send Network Message (SNDNETMSG)

command 49
Send Network Server Message (SNDNWSMSG)

command 50
Send Program Message (SNDPGMMSG)

command 50, 53
Send Reply (SNDRPY) command 50
Send TCP/IP Spooled File (SNDTCPSPLF)

command 23
Send User Message (SNDUSRMSG)

command 50
sending

break message 49, 52
message 49
network message 49
network server message 50
program message 50, 53
reply 50
TCP/IP spooled file 23
user message 50

sendmsg() 26
service program 43
setlocale, use 6
SEU (source entry editor) 14
shift-in 30
shift-out 30
shutdown() 26
SIGDANGER 57
SIGEMT 57

SIGHUP 57
SIGINT 57
SIGIOT 57
siglongjump 58
SIGLOST 57
signal 60
signal handler 56
signals different in UNIX and AS/400 57
SIGOTHER 57
SIGPOLL 57
SIGPRE 57
sigsetjump 58
SIGWINCH 57
SIGXCPU 57
SIGXFSZ 57
simple mail transfer protocol (SMTP) 21, 22
simple network management protocol

(SNMP) 21
single-byte character set (SBCS) 30
SMTP 23
SMTP (simple mail transfer protocol) 21, 22
SNA 23
SNA (systems network architecture) 27
SNA distribution services (SNADS) 22
SNADS (SNA distribution services) 22
SNDBRKMSG (Send Break Message)

command 49, 52
SNDMSG (Send Message) command 49
SNDNETMSG (Send Network Message)

command 49
SNDNWSMSG (Send Network Server Message)

command 50
SNDPGMMSG (Send Program Message)

command 50, 53
SNDRPY (Send Reply) command 50
SNDTCPSPLF (Send TCP/IP Spooled File)

command 23
SNDUSRMSG (Send User Message)

command 50
SNMP 23
SNMP,(simple network management

protocol) 21
SO_OOBINLINE 25
SO_RCVBUF 27
SO_REUSEADDR 26

Index 141

SO_SNDBUF 27
SOCK_DGRAM 25, 26
SOCK_RAW 25
socket interface 24
socket() 25
sockets 23
sockets interface 23
software interrupt 57
Solaris C 93
SOMAXCONN 25
source entry editor (SEU) 14
space management 39
space object 12, 39
space pointer 12
spooled file 23
stderr 47
stdin 47
stdout 47
stexit 60
stored procedure 15
stored procedures on AS/400 15
stream 17
strerror 60
structure 11
subfile 63
system interface option 18
system/36 message file

creating 48
systems network architecture (SNA) 27

T
takedescriptor() 26
TCP 23
TCP/IP

configuring 24
TCP/IP (transmission control protocol/internet

protocol) 21
TCP/IP file server support/400 21
TCP/IP spooled file

sending 23
TELNET (TELNET protocol) 21
TELNET on AS/400 system 22
TELNET protocol (TELNET) 21
thread 26
TIME subcommand 21

time-out period 21
t imestamp 39
TMKMAKE tool 14
TOPGMQ parameter 53
translation 39
transmission control protocol/internet protocol

(TCP/IP) 21
tr iggers 15
triggers on AS/400 15
tr igraph 7
type casting 13

U
UDP (user datagram protocol) 23
UIM (user interface manager) 63
union 11, 13
use setlocale 6
user datagram protocol (UDP) 23
user interface manager (UIM) 63
user interrupt 57
user message

sending 50

W
Work with Message Files (WRKMSGF)

command 49
Work with Message Queues (WRKMSGQ)

command 50
working with

message files 49
message queues 50

WRKMSGF (Work with Message Files)
command 49

WRKMSGQ (Work with Message Queues)
command 50

X
X windows 63
X/Open 29
XL C 97

142 UNIX C Applications Porting to AS/400 Companion Guide

IBML 

Printed in U.S.A.

SG24-4938-00

	Contents
	Figures
	Tables
	Preface
	How This Redbook Is Organized
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1 What is Portability?
	Understanding the Issues and Solutions
	Elements Involved in Application Porting
	4 The C Programming Language
	ILE C/ 400
	UNIX C
	Portability of Language
	UNIX C
	ILE C/ 400
	Expected Portability Differences

	Chapter 2. Overview of Source and Target Environment
	1 Character Encoding
	2 Collating Sequence
	3 Character Set
	Trigraphs
	UNIX C
	ILE C/ 400
	Comments
	5 Data Types
	Comments:
	Packed Data Type
	6 Data Alignment
	Fundamental Data Types
	Abstract Data Types - Structures and Unions
	Pointer Usage
	UNIX C
	ILE C/ 400
	Comments:
	8 Main() Function
	UNIX C
	ILE C/ 400
	9 Software Development Tools in AS/ 400 System
	Database Management

	Chapter 3. File Handling
	1 File Specifications
	UNIX
	OS/ 400
	2 File Organization and Record Format
	UNIX
	OS/ 400

	Chapter 4. Networking
	1 TCP/ IP
	Application Protocol Standards
	FTP
	TELNET
	SMTP
	Remote Printing (LPR and LPD)
	TCP/ IP File Server Support/ 400
	Application Program Interface (API) To TCP/ IP
	2 Sockets
	APPC

	Chapter 5. Data Conversion
	Data Conversion APIs
	Convert Data (QDCXLATE) API
	Required Parameters:
	Optional Parameters:
	Code Conversion API - iconv()
	Syntax
	Error Conditions
	Code Conversion Deallocation API - iconv_ close()
	Syntax
	Error Conditions
	Code Conversion Allocation API - iconv_ open()
	Syntax
	Error Conditions
	QtqIconvOpen() - Code Conversion Allocation API
	Syntax
	Error Conditions

	Chapter 6. MI Instruction Function Calls
	MI Instruction Function Calls
	2 Interfaces for the Machine Interface
	3 MI Instruction Header Files
	Sample Workaround Using MI Instruction Calls

	Chapter 7. Message and Error Handling
	1 Message Handling in UNIX
	2 AS/ 400 Specific Message Handling Techniques
	Message Files and Commands
	Messages Queues
	Message Handling APIs
	Display Files
	Error Handling in AS/ 400 System
	Exception Handlers
	Signal Handlers
	Error Handlers
	Preprocessor Directives

	Chapter 8. Display Handling
	Static and Dynamic Display Handling
	Comparison of Curses and DSM
	Mapping the Curses Functionality
	Example of Changes Required for Porting Window or Display Component

	Appendix A. HP C to ILE C/ 400 Application Porting
	A. 1 C Compiler Environment
	A. 2 Library Functions
	A. 3 Signals
	A. 4 Error Handling
	A. 5 Compiler Directives

	Appendix B. SCO System C to ILE C/ 400 Application Porting
	B. 1 The C Compiler Environment
	B. 2 #Pragma Compiler Directives
	B. 3 C Language Constructs
	B. 4 Using the Huge Memory Model
	B. 5 Errno Values
	B. 6 Signals

	Appendix C. Sun Solaris C to ILE C/ 400 Application Porting
	C. 1 Data Type
	C. 2 C Compiler Environment
	C. 3 Signals
	C. 4 Error Handling
	C. 5 Compiler Directives

	Appendix D. AIX C to ILE C/ 400 Application Porting
	D. 1 Data Alignment
	D. 2 C Compiler Environment
	D. 3 Pre- Processor Directives
	D. 4 CPI- C on AIX

	Appendix E. DEC ALPHA C to ILE C/ 400 Application Porting
	E.1 Data Types and Alignments
	E.2 C Compiler Environment
	E.3 Macros
	E.4 Preprocessor Directives
	E.5 Error Handling
	E.6 Signals

	Appendix F. Special Notices
	F. 1 Industry Standards

	Appendix G. Related Publications
	G. 1 International Technical Support Organization Publications
	G. 2 Redbooks on CD- ROMs
	G. 3 Other Publications
	G. 4 References on the World Wide Web (WWW)

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	Index

