
w w w. ra d i sy s . co m
Revision A • July 2006

Using Hawk™

Version 2.5

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.5 of Hawk.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

3

Contents

Introduction 19
Hawk Overview ... 20

The Hawk Project Manager ... 20
The Hawk Editor .. 20
The Hawk Debugger... 26
The Hawk Compiler .. 26

Running Hawk for the First Time 27
A First Look... 28
The Menu Bar .. 28

File Menu ... 28
Edit Menu ... 29
Search Menu ... 30
Project Menu .. 30
Debug Menu .. 31
Target Menu ... 31
Text Menu ... 31
Document Menu ... 32
The Customize Menu ... 33
Tools Menu... 34
Window Menu ... 35

Window Menu.. 36
Help Menu.. 36

Output and Project Windows... 36
The Output Window... 36

Auto-Increment Search Tabs ... 37
Append to Listing... 37

The Project Window ... 37
The Standard Toolbar... 40

Building Your First Project 41
Projects and Project Spaces .. 42

What are Hawk Projects and Project Spaces? ... 42
Creating a Project Space.. 42

Setting Project Defaults .. 42
Creating and Modifying a Project .. 43

Adding Files to a Project .. 45
Command Key, Libraries, and General Environment 49

API Command Dialog/Prompt ... 50
API Command Key/Prompt .. 50
Command Completion .. 51

Example ... 51
Loading Hawk Add-Ons .. 52

Using Hawk™

4

General Environment Settings ... 52
View Setups and Language Support 55

View Setups .. 56
Hawk View Setups... 57
Default View Setup.. 57
Output Window View Setup ... 58
Using View Setups... 58

Hawk Language Support ... 58
Language Support Lexers and DLL’s .. 59

Language DLLs... 59
The Tools Dialog .. 60

ChromaCoding Lexers.. 60
Creating a Lexer ... 61
Examples ... 61

Configuring Options in the Language Dialog ... 67
File Type List.. 68
Options Tab... 68
Tabs/Indenting Tab .. 68
Templates Tab... 69
Coloring Tab.. 69
CodeSense Tab... 71
Format Tab .. 71
Comments Tab ... 71

Adding a New File Type to the Language Dialog... 71
Aliasing... 72

Editing Features 73
Templates and Brace Expansion.. 74

Templates.. 74
Language-Specific Templates .. 74
Creating and Modifying Language-Specific Templates ... 74
Examples ... 75
Non-Language-Specific Templates, Function and File Headers, and Macros in Templates.. 75

CodeFolio Snippets... 79
Using an Existing Code Snippet ... 80
TITLE.TPL ... 80
VBFUNCT.TPL ... 80
Adding a Code Snippet .. 81
Creating a Code Snippet from the Current Document or Clipboard .. 81
Deleting or Renaming a Snippet .. 82
Editing a Snippet .. 82
Adding or Removing Snippets Directories ... 82

Brace Matching and Brace Expansion... 83
Brace Function: Finding Unmatched Braces.. 83
Command: Brace TRUE font... 84
Brace Highlighting ... 84
Brace Locating .. 84
BraceFindEx() ... 84
Example ... 85
Brace Expansion... 85

5

Align Beginning and End of Block ... 85
Example ... 85

Indenting... 86
Setting Spaces and Tabs .. 86

Example ... 86
Seek Indentation and Smart Indenting... 86

Example ... 87
Block Alignment... 87

Name Completion .. 88
CodeSense.. 88

Where CodeSense Gets its Information... 88
Library and Project Databases .. 88
Add a File to Symbols Window File List ... 89
CodeSense for Files that are Open in Hawk.. 90

CodeSense Global Configuration Dialog ... 90
Create CodeSense Library Database... 91
Edit CodeSense Library Database Location ... 92
Delete CodeSense Library Database... 92
Parser Priority/Resource Use... 93

CodeSense Databases.. 93
Database Files... 93
Database Corruption... 94

Using CodeSense .. 95
Name Completion... 95
Auto-list Members (Standard) .. 96
Auto-list Members (Special Types) .. 96
Auto-type Info... 96
Auto-Parameter Info.. 96

Comments and Comment Boxes.. 97
HTML Editing.. 98

HTML Language Support... 98
HTML Popup Menu... 98

HTML Viewing – HTML WYSIWYG Editor/Viewer and Web Browser Interface... 98
Viewing Internet Files: Installation Instructions... 99
HTML Toolbar... 99
Using HTML WYSIWYG.. 99

Hex Editing.. 101
Insert vs. Overtype Mode .. 101
Handy Hawk Hex-Editing Features .. 101

Clipboard and Scrap Buffers... 102
Scrap Buffers .. 102
Multiple Clipboard/Scrap Buffers... 102

Clipboard/Scrap Viewer.. 104
API Assistant ... 105

Using the API Assistant... 105
Using the Checkboxes .. 105
API Assistant Example... 105

Modifying the Database... 106
API Databases... 106

Using Hawk™

6

Using Help in Hawk.. 107
Indexing Help Files.. 107
Setting Up Hawk to Integrate with MSVC 6.0 Help Files .. 107
Setting Up Hawk to Integrate with MSVC 4.0 (.MVB) Help Files.. 108

Printing .. 108
Print Configurations .. 109
Paper Selection Override... 109
Color Printing ... 109
Print Preview... 109
Multi-Copy Printing ... 110
Printing Line Numbers ... 110
Wrapping Long Lines in Printed Documents.. 110
Wrapping Long Lines in Printed Documents.. 110
Print Headers and Footers... 110

Formatting Headers and Footers ... 110
Examples ... 111

Side-by-Side Difference Printing .. 111
Modified Print Dialog.. 112
Functionality.. 112

Projects, Project Spaces, and
Workspaces 113

Concepts of the Project Menu ... 114
Project Space ... 114
Project Files... 114
Project .. 114
Workspace .. 115
Component... 115

Component Options ... 115
Build Order ... 116

Unit ... 116
Unit Maintenance .. 116

Project Preferences ... 117
Creating a Project Space.. 117
The Project Properties List Box and Project Settings... 118

Project Properties List Box ... 119
Default Settings .. 119
Working Directory.. 119
Setting Project Defaults .. 120

Creating and Modifying Projects ... 120
Adding Files to a Project .. 122
Adding New Projects Using the Members Tab... 125
Reading External Makefiles and Workspaces .. 125

Steps for Setting up New Makefile/Workspace Parsers .. 126
Characteristics of the File View Tab of the Project Window .. 127
The Directories Tab of the Project Properties Dialog .. 128

Reading Configuration Settings from Other Files... 131
The Tools Tab... 131
Tool Categories .. 132

Custom Tools.. 132

7

VCS Tools... 133
Setting up Project Tools ... 134
Command Options on the Tools Tab... 134
Filename Component Macros.. 135
Symbolic Macros ... 137
The Errors Tab of Project Properties ... 138
Custom Error Parsers.. 140
Traversing the Output .. 141
The Filters Tab.. 142

Project Setup Checklist .. 143
Using Projects and Project Spaces .. 143

Selecting or Changing Projects... 143
Selecting or Changing Project Spaces... 144
Loading Files for Editing .. 144
Creating, Selecting and Saving Workspaces.. 144

Creating a New Workspace ... 144
Automatic Saving ... 145
Loading an Existing Workspace .. 145

Searching Project Files.. 146
Selecting files for Check-in or Check-out ... 146

Configuration and State Hierarchy.. 146
The Hawk Debugger 149

Overview... 150
Starting the Hawk Debugger... 150
User-State Applications .. 150
System-State Routines.. 150

The Hawk Debugger Interface ... 151
Hawk Debugger Functionality .. 152

File Functions.. 153
Commands.. 157
View Options .. 159
Browser Tool ... 163
Expression Eval Tool.. 166

Debugging User-State Applications .. 167
NDP Server Functions .. 168
NDP I/O Server .. 169
Connections.. 169

Debugger/NDP Server Connection ... 169
NDP Server/Target Process Connection ... 169
NDP I/O Server/Pseudo Keyboard Connection ... 169
Target Process/Pseudo Keyboard Connection .. 169
NDP I/O Server/Debugger Connection.. 169

Necessary Software... 170
Required Modules... 170

Debugging System-State Routines.. 170
NDP Server Functions .. 171
Connections.. 172

Debugger/NDP Server Connection ... 172
NDP Server/Meta Process Connection... 172

Using Hawk™

8

Restrictions.. 172
Communications Layer for System-state Debugging.. 172
Required Modules... 172

Debugging User-State Applications Using LLROM.. 173
 NDP Server Functions ... 174
Connections.. 174

Debugger/NDP Server Connection ... 174
NDP Server/Target Process Connection ... 175

Restrictions.. 175
Necessary Software... 175
Required Modules... 175

Installing the Debug Extensions Module for 68K Systems .. 175
Version Control 177

Using Version Control in Hawk.. 178
Version Control Menu.. 178
Source Code Revision Control—Maintenance Dialog ... 178
Version Control and Hawk Projects... 179

Associating Version Control Projects with Hawk Projects ... 180
Add Version Control Project Files to a Hawk Project ... 181
Add Hawk Project Files to an SCC Provider Project ... 182
Current Project Tree List ... 182

VCS and the User-Defined Popup Menu... 183
Modifying the Standard Popup: A Simple Example... 183
Making Your Own Version Control Popup Menu... 184

Using Multiple Configuration/Project Files (DOS VCS Utilities Only).. 184
Version Control Integration Configuration .. 185

Version Control for Use with a Command Line Version Control Provider... 185
Adding a New Command Line Provider to Version Control Setup Dialog... 186
Customizing Version Control Commands.. 186
Additional Tips.. 189

Hawk SCC Integration with Version Control Systems ... 189
Version Control for Use with a Source Code Provider DLL ... 190
Location of the SCC Provider DLLs ... 191

Search and Replace and Other Navigational Tools 193
Search and Replace and Regular Expressions .. 194

Search and Replace Dialog ... 194
Search and Replacement Edit Boxes ... 194
Save Settings... 194
Multiple Sources Search Dialog.. 194
Search and Replacement Edit Boxes ... 195
Current Directory ... 195
Multiple Source Options .. 196
File Pattern .. 196
Search List ... 196
Search Subdirectories ... 197
Edit Modified Files ... 197
Threaded ... 197
Send Listing to Output Window... 197

Edit Search List ... 198

9

Search Pattern .. 198
Patterns List ... 198
Drive and Directory Lists.. 198
Include Directory ... 199
List Editing Buttons.. 199
Default Button .. 199

Default Options ... 199
Search Direction... 200
Range .. 200
Prompt ... 201
Search Options... 201
Matches.. 201
Start... 202
Example: Multi-Source Search .. 202

Incremental Searching.. 203
ISearch Function .. 203
Quick Search .. 204
Toolbar Search... 204
Regular Expressions .. 204

Special Characters.. 205
Escape Sequences ... 206
Matching a Character.. 206
Character Classes... 207
Escaping Characters in a Class.. 207
Iteration Qualifiers ... 208
Regular Expressions: Positioning at Beginning/End of Line... 208
Alternation and Grouping.. 209
Reference Groups and Replacement Strings... 209
Placing the Cursor ... 210

Searching for Spaces, Tabs and other Blank Characters .. 211
Searching for Spaces or Tabs .. 211
Searching for New lines ... 211

Searching for Control Characters (binary/hex data).. 212
Searching for New lines: Issues.. 212

Selective Display.. 213
Selective Display Options .. 213

Pre-processed View... 214
Selective Mode ... 214

Browsing, Tags and Symbols .. 215
Using Navigational Tools ... 215

Browser .. 215
Tags ... 216
Outline Symbols... 216
Objects Window... 216

Browser Support.. 216
Selecting a Database... 217
Traversing the Tree .. 217
Label Bitmaps ... 217
Browser Toolbar ... 217

Using Hawk™

10

Jump to Code ... 218
String Search... 218
Query Button.. 218
Quick Search... 219
Called By/Calls To.. 219
Search After Go To .. 219
Filter Toggle Buttons ... 220

Tags Support .. 220
Tags Setup ... 221
Using the Tags Database.. 221

Outline Symbols: Overview .. 221
What are Symbols?.. 222
Symbol Scanning ... 223
Outline Window... 223
Outline Scanning ... 224
Symbol Parsers... 225
Symbols Database ... 226
Pop-Up Symbols Menu .. 226

Objects Window .. 227
Display an Object Hierarchy.. 227
Using the Objects Window.. 228
Objects Window and CodeSense .. 228
Objects Window Popup Menu ... 228

Symbols vs. Objects vs. Tags .. 230
Pros and Cons of Tags, Browsers, Symbols, and the Objects Window... 230

Bookmarks.. 230
Global and Local Bookmarks .. 231
Graphical Bookmark Images ... 231
Setting and Removing Bookmarks... 231
Bookmarks Dialog ... 231
Bookmarks Window.. 232
Bookmarks Window: Global Bookmarks.. 232
Bookmarks Window: Local Bookmarks .. 233
Bookmarks Window: "Other Documents" Node .. 233
Auto-Expand/Collapse .. 233

Button Links ... 233
How it Works .. 233
What you See ... 233
Defining Buttons .. 234

Checking and Formatting Files 235
Differencing.. 236

Interleaved Differencing .. 236
Difference Analysis Dialog for Interleaved Differencing ... 236
Interleaved Document.. 237

Side-by-Side Differencing .. 238
Difference Analysis Dialog for Side-by-Side Differencing... 238
Side-By-Side Difference Window ... 239
Side-by-Side Difference Printing... 242

Directory Differencing .. 242

11

Directory Difference Analysis Dialog... 243
Tree Difference Window .. 244
Directory Difference Report .. 246

Using Difference Utilities ... 247
Merging ... 247

Using the Merge Files Dialog.. 247
Merge Output... 248
Removing Changes with Merge... 249

Format Source ... 250
Setting up Your Formatting Criteria... 250
Using the Format Feature.. 251

Customizing the Interface 253
Duckbill Toolbars and Windows.. 254

Toolbars... 254
Auto-hide Toolbars ... 255
Duckbill.. 255
Enabling and Disabling Toolbars ... 255
Docking and Moving Toolbars and Windows... 256

Docking a Toolbar or Window Manually.. 256
Undocking a Toolbar or Window... 256

Customizing Toolbars and Buttons... 257
Adding New Toolbars... 257
Adding and Changing Toolbar Buttons.. 257
Binding a Function to a Button .. 258
Combo Box History Lists.. 259

Editing Combo Box History Lists .. 260
Customizing Menus.. 260

Menu Editor .. 260
Menus .. 261
Menu Items and Submenus.. 261
Changing the Functionality of a Menu Item.. 262
Adding a Menu Item... 263

Customizing External Operations within Hawk .. 264
User-Definable Popup Menus .. 265
Editing or Creating a Popup Menu.. 265
Popup Menu Semantics... 267

Creating a Menu Item... 268
Terminating Menu Sections... 268
Conditionals .. 268
'Include' mechanism... 269
Dynamic Menu Generation... 269
Supporting Functions.. 269

Using Keymaps.. 270
CUA Key Commands.. 270
BRIEF Key Commands ... 271

Mouse Commands ... 271
Mouse Scrolling Speed .. 271
Inclusive or Exclusive Selection .. 271
Closed Selections .. 272

Using Hawk™

12

Column Marking.. 272
Line Selections ... 272
Word Selections... 272
Status Line Actions .. 273
Text Drag and Drop .. 273
Mouse Copy and Move ... 274
Creating Windows with a Mouse... 275
Drag-and-Drop File Loading ... 275
Expand / Collapse Selective Display.. 275

Reassigning Keys and Mouse Actions .. 275
Keymap-Specific Assignments.. 276
 Customizing with Keybindings.. 276
Keystroke Recording/Playback ... 276

Recording a Keystroke Macro ... 276
Saving a Macro... 276
Binding Keystrokes to Functions or Macros .. 277

File Loading and Backup 279
File Loading, Reloading and Validation.. 280
File Backups and Auto-save.. 282
Making Files Read-only.. 289

Working with Large Files 293
Swap Blocks.. 294

How to Change the Number of Swap Blocks ... 294
Block Size .. 294
Consider Your Resources .. 295

Backup Files.. 295
Scroll Bars ... 295
Preloading Files ... 296
Turning off ChromaCoding... 297
Saving Large Files.. 298

Default File Saving Method... 298
File Rewrite Save Method (for Files over 1MB).. 298

Extending Hawk 301
Hawk API... 302

Using the API from the Command Key.. 302
Displaying Return Values With the Command Key ... 302
Examples of Command Key Usage... 302
Command Key Expression Evaluation .. 303

Macros and Macro Languages ... 304
DLL Extensions... 305
Where it is Defined ... 306

Perl ... 307
Getting Started with Perl.. 307

Creating and Editing Perl Scripts .. 307
Perl Window ... 308
Pop-up Menu and Options ... 308
Online Help... 309

Loading and Running Scripts.. 309
Running a Script Directly.. 309

13

Loading a Perl macro.. 309
Accessing Hawk Functions from Perl Scripts ... 310
Importing Names into the Perl Namespace.. 311
Unloading a Perl macro ... 311

Using the Perl Debug Mode ... 312
Accessing Perl Functions.. 312

Avoiding Ambiguity ... 312
Special API Functions for Perl ... 313
Files Used by Perl for Hawk .. 314
Other Perl Resources.. 315

AppBasic.. 315
Getting Started ... 316

Two Editors.. 316
Special Keybindings .. 316
Two Toolbars... 317
Pop-up Menu.. 318
Online Help... 318
UserDialog Editor... 318
Object Browser... 318

Creating a Macro ... 318
Creating a Handler .. 319
Object and Proc Dropdown Lists ... 320
Private Sub Main.. 320
Tips on Creating Macros .. 321
Creating a Modal User Dialog... 321
Running the Macro.. 324
Creating an EventHandler in AppBasic ... 324
Sample EHTEST.CWB.. 325

Debugging Your AppBasic Macro.. 326
Break Points .. 326
Evaluate Expression and Add Watch ... 327
Object Browser... 327

Load Macros Dialog.. 328
AppBasic Samples Supplied.. 329
AppBasic-related API Commands.. 331
AppBasic Window Configuration... 332

Example Configuration File Settings.. 333
Exported Functions in CWBASIC.DLL ... 333

API (C-like) Macros... 335
API Macros Defined .. 335
Getting Started with API Macros .. 335

Creating a Macro.. 336
Editing a Macro .. 336
Special Editing Keystrokes ... 336
Editing API Macros in a Hawk Window .. 336
Setup Editing in a Hawk Window... 337

Language Definition ... 337
Comments... 337
Identifier Naming Rules.. 338

Using Hawk™

14

Variables... 338
Literal Values... 339
Expressions.. 341
Other Operators... 343
Statements and Statement Blocks ... 346
Program Flow of Control Structures.. 346
Run-time Error Handling .. 348
Hawk Event Handling.. 349
Differences between API Macros and C ... 349

String Functions ... 350
Making DLL Add-Ons ... 351

Core Services.. 352
CWSTART DLL.. 352
CWDIALOG DLL .. 356
CWHELP DLL.. 356

Keyboard Command Sets ... 357
Supplemental Language Support.. 357
Auxiliary Services ... 358
Sample DLL.. 359
Dissecting a Hawk DLL .. 360

The _init Function ... 360
Exporting Functions .. 360

Making Changes and Additions... 360
Changing Existing Functions ... 360
Adding Your Own Functions... 361

Creating New Keymap Command Sets ... 361
Keymap _init Function... 361
Keymap Function .. 361
Flag Initialization .. 362
Basic Assignments... 362
Keymap Specific Assignments .. 362
Menu Accelerators .. 362

Recompiling a DLL ... 363
Using and Modifying the Makefiles... 363

Adding Files... 364
Compile and Link Options .. 364
Link Libraries .. 364

Microsoft Link ... 364
Borland Link.. 365

Using Your Own DLL.. 365
Installing Your DLL.. 366

UNIX 367
File Type and End-of-Line (EOL) Characters .. 368

Save File as New Type.. 368
Make UNIX EOL Characters the Default... 368
Enable Auto-sense File Type Option... 369
Specify UNIX EOL Characters on a File Type or Per File Basis .. 369
Change EOL Characters in the Source File.. 370

Compiling UNIX Programs from Hawk .. 371

15

Filename Case and File Securities in UNIX and Windows .. 371
Configuration Files and Command Line Parameters 373

Location of the Configuration File ... 374
Introduction to Configuration and State .. 374

Configuration File .. 375
State File .. 375
Other Files Containing Configuration Data.. 375
Example File.. 376
Example Interpretation ... 377

Processing At Startup.. 378
Order of Processing .. 378
User-Defined Sections .. 379

Relating Check Boxes to Functions.. 381
State File .. 383

Location of the State File.. 383
Contents of the State File... 384

Filenames .. 385
Parameters .. 386
Command Files.. 390

Using Hawk™ Profiler 391
Setting up the Target System ... 392
The Profiler ... 392

Running the Profiler.. 392
The Profiler Main Window .. 392
Title Bar.. 393
Menu Bar... 393

System Performance Tab ... 394
Module Data Tab ... 394
Start/Stop Button ... 394
Connect/Disconnect Button .. 395

File Menu.. 395
Options Menu.. 395
Actions Menu... 396
Using the Profiler .. 396

Viewing Functions ... 396
Saving the Profile Data... 396
Changing the Order in which Modules/Functions Appear .. 397
Profiling Selected Modules.. 397
Changing the Update Interval .. 397
Stopping Profiling.. 397
Clearing the Profiling Data .. 397
Exiting the Target System Profiler .. 397

Using HawkEye™ 399
Starting HawkEye .. 399

TagsWNN Utility 401
Usage... 401
TagsWnn Command Line Options ... 401

“Null Modem” Cable for Windows

Using Hawk™

16

 SLIP 407
Wiring Diagram ... 407

Command I/O 409
Commands... 410

asm, . .. 410
a[ssign]... 410
at[tach] ... 411
b[reak] .. 411
con[text] ... 411
dil[ist].. 411
di[sasm] ... 411
download .. 412
d[ump] ... 412
fi[nd] ... 412
fo[rk] ... 412
f[rame] ... 412
g[o].. 413
gostop or gs.. 413
i[nfo] ... 413
k[ill] ... 413
l[ist] ... 414
lo[cals] .. 414
l[o]g... 414
mc[opy].. 414
mf[ill] .. 414
mfillong.. 415
mfillword ... 415
m[onitor] ... 415
ms[earch]... 415
msearchlong... 416
msearchword.. 416
n[ext]... 416
ow ... 417
owa ... 417
owd... 417
owk ... 418
p[rint].. 418
pr[ocs] .. 418
q[uit] ... 418
re[ad] .. 418
rel[ease] ... 418
reset.. 419
r[eturn] ... 419
se[tenv] .. 419
s[tep]... 419
sy[mbol]... 420
t[race] ... 420
unse[tenv] ... 420
wait ... 420

17

wfi[nd] .. 420
x{string} ... 421

Using Hawk™

18

1

19

Introduction

This chapter provides an overview of the Hawk™ integrated development environment,
and includes the following sections:

Hawk Overview

1

1

Using Hawk™

20

1

Hawk Overview
Hawk is a comprehensive software development and management environment that
increases the efficiency of OS-9® development. The integrated tool enables you to
create, debug, analyze, and manage OS-9 real-time software development projects.

Hawk features the following integrated tools:

The Hawk Project Manager

The Hawk project manager enables programmers to configure software at any level. All
build settings are inherited by default (group source files, makefiles, libraries, etc.).
Some of the project manager’s main features include the following:

• software project organizer

• identifies dependencies between software components

• records detailed build information

• controls the build process

The Hawk Editor

The Hawk Editor is a modified version of Starbase Corporation’s Codewright editor. The
editor provides an organized, fully programmable interface for creating and maintaining
OS-9 projects.

Table 1-1 provides a list of key editing features.

Table 1-1. Hawk Editing Features

Category/Chapter Feature

Introduction Hawk is a flexible, multiple-window, multiple-file interface.
Edit as many files in as many windows as your resources
allow.

Running Hawk for
the First Time

New Each tab of the Output Window may be hidden or made
visible on the Customize -> Toolbars -> Show Tabs dialog.

Configuration Wizards assist you in setting up
the Help Index file and more. Also included is an Answer
Wizard.

Support is available for Microsoft’s HTML Help
Viewer.

There is a customization shortcut on the status bar; this
allows you to quickly access many of the items you want to
configure.

1

Chapter 1: Introduction

21

1

The Document/Window Manager has a Window
tab that consolidates the settings that affect individual
documents and windows.

The Wrap option on the Display tab of the
Document/Window Manager allows you to wrap
text on the display only, adjusting the wrap column
automatically when you resize the window. Check Column
and enter a column number to wrap at a specified column.
Check the Words box to avoid splitting words at the wrap
column.

Command Key,
Libraries and
Environment

Unicode Support. You can turn on auto-detection and bi-
directional conversion of code that follows the Unicode
standard by marking Auto-detect Unicode files
on the Customize -> Environment ->
General dialog.
The Windows API function WideCharToMultiByte()
is used to convert Unicode to ANSI Code Page characters
when a file is loaded and then
MultiByteToWideChar() is used to convert back to
Unicode when the file is written out.

Unicode File Conversion is also available on request. From
the File -> Save As dialog, you can save “Normal
Text” files as Unicode, or Unicode files as “Normal Text”.

View Setups and
Language Support

Tile specified windows horizontally, vertically, or in one row
from the Document/Window Manager.

View Setups and
Language Support

New A new lexer and CodeFolio Snippets are available for the
Vignette StoryServer Tool Command Language:
On the Customize|ChromaCoding Lexers dialog, select
Vignette TCL from the Lexer list.
On the CodeFolio tab of the Project Window, expand the vtcl
Snippets directory.

You may also download additional Code Snippets. Refer to
applicable sections of the Web Library document How To:
Setup “Vignette TCL” ChromaCoding Lexer and
CodeSnippets for Vignette StoryServer.

Interactively create ChromaCoding lexers to color the syntax
for your programming language.

Use View Setups for storing sets of colors, fonts, and window
attributes under individual names.

Table 1-1. Hawk Editing Features (Continued)

1

Using Hawk™

22

1

Background and foreground palette colors can be changed
(up to 16 million colors, if supported by your display).

Associate a View Setup with a particular file type on the
updated Language dialog.

Use color by ChromaCode to signal changed lines or
highlight language syntax.

Editing Features New The Additional Clipboard Formats and Options on the
Customize -> Environment -> Clipboard dialog allow you to
save clipboard content in RTF and/or HTML format (in
addition to text format), replace tabs with spaces, and
preserve background color settings in the clipboard content
from the current View Setup.

Multiple Clipboards/Scrap Buffers allow you to copy more
than one item for later use without overwriting previous
items.
An auto-increment clipboard option increments the
clipboard/scrap buffer to be used prior to copying or cutting
the new content.

Clipboard and Scrapboard viewer are now available in the
ClipView tab on the Output Window for viewing
and selectively pasting items in the current buffer.

Enhanced command line editing allows you to select text on
the command line for cut and paste. Keyboard shortcuts are
available for the command line prompt.

CodeSense parses programming libraries and project
source files to provide word completion for symbols,
function parameter help, and symbol definition help.

New CodeSense for C#

New C++ Namespaces are supported by CodeSense; a
Namespaces filter has been added to the Filter/Legend
dialog and to the popup menu available from the Objects
Window.

New CodeSense is able to parse source files inside .zip or .jar files
(a .jar file is like a .zip file for Java).

Table 1-1. Hawk Editing Features (Continued)

1

Chapter 1: Introduction

23

1

New Brace Matching functions have an expanded definition of
braces. In addition to recognizing and locating curly braces,
square brackets, and parentheses, language-specific
definitions allow Hawk to match various brace/tag pairs.
For Pascal, the keywords Begin and End are treated like
braces; Hawk looks for Begin and finds the matching
End. For HTML/XML, tags are also included; Hawk
considers the current tag an open brace and finds the
matching tag.

New The Customize ->CodeSense Global Configuration dialog
now allows you to Enable Extended Popup Hotkeys for use
with CodeSense and the Objects Window; adjust the
Maximum Number of Hits that a CodeSense-related lookup
will return; and view the Properties of the CodeSense library
database currently highlighted

New A new Print button and modified Print dialog let you print
from the Side-by-Side Difference Window in a manner
similar to two-up mode, except the left side will contain the
Reference document/file and the right side will contain the
Target document/file.

CodeFolio Snippets is a new CodeFolio tab on the
Project Window. It provides a directory of code samples that
are specific to programming languages and can be inserted
into the current document. Users may add snippets to the
directory.

Zoom functionality is now available on the Print
Preview dialog.

Hex mode for editing binary files, including inserting and
deleting bytes, is available.

Unlimited Undo and Redo of commands (from the Edit
menu) are available.

Powerful templates for language constructs, personalized
function headers, and more are available. Any Hawk API
function that can be executed interactively can be executed
within a template.

API Assistant helps you accurately complete function calls by
displaying the types of and options for each parameter
defined for the function. After you check the desired boxes, it
then constructs the proper call for insertion into your text.

Table 1-1. Hawk Editing Features (Continued)

1

Using Hawk™

24

1

Projects, Project
Spaces and
Workspaces

Multiple projects may be displayed at a time within a project
space.

Search and Replace
and Other
Navigational Tools

New .You can have up to five Search tabs visible on the Output
Window (Search 1 is the default).

Save and restore cursor position when closing and re-
opening documents

New The Objects tab on the Project Window has new buttons that
toggle whether to Ignore Case or Include CodeSense Library
Databases in a lookup. New buttons also access the
Filter/Legend dialog and context menu.

Complete support of regular expressions in searching and
replacing.

Multi-document or file-based search and replace is available,
including searches across multiple lines and replacement
groups.

Button Links let you reference and view external documents,
such as diagrams and word processor files, or organize notes
into a list. These links appear as graphical buttons within the
text file.

Several types of browsing, including Tags and Outline
Symbols are available.

Unlimited local and global bookmarks are available.

Checking and
Reformatting Files

New The Directory Difference Analysis dialog lets you compare
the files in two directories, with or without subdirectories. A
tree directory displays on the Difference tab of the Output
Window; double-click on any file that exists in both
directories to perform Side-by-Side Differencing on that file.

New After performing Directory Differencing, right-click on any file
in the tree directory and select Copy File to copy the file from
one directory to another.

Table 1-1. Hawk Editing Features (Continued)

1

Chapter 1: Introduction

25

1

New Once Directory Differencing has been performed, see
analysis settings, file and directory counts and a list of files in
the directory tree on the Directory Difference Report.
Customize the report using the API macro DiffDirReport.

Expanded spell check dialog and additional dictionaries for
languages other than English are available.

The spell checker will check the spelling of source code
comments and strings only, if desired. You can spell check
the whole buffer, or just the selection.

Side-by-side Differencing, Difference Editing, and Merging of
files are supported.

Customizing the
Interface

New Auto-hide toolbars are available, as are auto-hide menus in
Full Screen mode.

Interactively definable Toolbars are available for quick mouse
access to common commands.

Selective Display mode is available for selecting which lines
to make visible or invisible. It also allows selected lines to be
viewed with grep-like commands, or by preprocessing
#ifdefs.

Use Windows’ features, including resizable Common Dialogs
for familiar operation, Drag and Drop for convenient file
loading, e-mail integration, and Tabbed Dialogs (property
sheets) to simplify dealing with settings and options.

File Loading and
Backup

Auto-save limit allows you to limit the size of files that are
auto-saved.

Additional auto-save features on the Environment ->
Backup dialog for controlling the directory and file
extension to be used for auto-saved files.

Optional auto-save is available at scheduled intervals or
during idle periods.

Working with Large
Files

Line length and file size virtually unlimited.

Extending Hawk Enhanced API Macro Language is supported.

CUA, BRIEF, Epsilon, or vi style key commands are available.

Table 1-1. Hawk Editing Features (Continued)

1

Using Hawk™

26

1

The Hawk Debugger

Hawk features a fully integrated debugging tool for efficient debugging of C and C++
code. Some of its main features include the following:

• source- and assembly-level breakpoints

• display/change registers

• view locals

• watchpoints

• directly view/change memory

• stack back tracing

• easy-to-use interface

• system- or process-level debugging

• debug forked child processes and threads

In addition, the Hawk tool set features and full-function, stand-alone debugger, which
can be started and run outside of Hawk.

The Hawk Compiler

Customize the Ultra C/C++ compiler settings using a point-and-click, pull-down menu
format. Microware Ultra C/C++ is a highly optimizing compiler that uses state-of-the-art
optimization techniques to extract maximum performance from modern 16- and 32-bit
RISC and CISC microprocessors. Most compilers only let the user optimize the
application on a file-by-file basis. Ultra C/C++ can see and optimize the application,
together with libraries, as a whole.

A completely remappable keyboard is available; you can
create your own command set.

Hawk is configurable and extensible through Macros and
DLLs.

End of Line
characters

New You can specify the type of end-of-line characters that are
inserted into a new file (DOS, Unix, or Mac), and even
choose to convert existing characters to the new type. These
EOL options can be found in the following locations:

• On the Options tab of the Language dialog, to specify an
EOL style on a file-type (e.g. .C, .TXT, HTML, etc.) basis.

• On the Options tab of the Window Manager dialog, to
specify an EOL style on a per-document basis.

Table 1-1. Hawk Editing Features (Continued)

1

27

Running Hawk for the First Time

This section describes what you will see when you run Hawk for the first time. The
following sections are included:

A First Look

The Menu Bar

Output and Project Windows

If you would like to run Hawk from one server, rather than multiple workstations, you can do so
from your Microware OS-9 product CD. Simply open the main installation window, select
Install Microware OS-9 for <your product>. Once the InstallShield
brings up the Installation Options dialog, select Client Install, then follow the
remaining procedures. This will install only those components necessary to access a server
installation of OS-9.

Under the Client Install option, Hawk uses the value assigned to the HAWKCLIENT
environment variable as the path to local files and the MWOS directory as the path to the
server installation. The files that reside in the local directory are user configuration files. Any
files not found in this directory are opened on the server path. Additionally, “created files”
(such as mwhawk.pst and hawkdata.xml) are placed in the local directory, and the
installer-created PROJECTS directory is placed inside it. If HAWKCLIENT does not exist, Hawk
uses the path specified in the MWOS environment variable to open all files.

2

1

Using Hawk™

28

2

A First Look
The initial Hawk screen (shown in Figure 2-1) displays a menu bar at the top, with the
Standard toolbar docked directly beneath. The window on the left is the Project
Window; the window on the bottom left is the Output Window. These items will be
described briefly throughout the remainder of this chapter.

Figure 2-1. Initial Hawk Screen

The Menu Bar
The menu bar consists of the nine items described in the following sections.

File Menu

The first menu is the File menu. The File menu is intended for standard file
operations, such as New, Open, Save, Print. Additional items are described in other
chapters of this manual or explained below:

• The Difference and Merge utilities are described in detail in Chapter 11
Checking and Formatting Files.

• The Find menu item is used for finding files on a storage medium. Standard DOS
wildcard characters can be used when using this option to search for files.

• The Send Mail selection sends files via MS mail or cc:Mail.

• The Reload item reloads the current file from disk.

• The Change Directory item accesses a dialog that allows the current directory
to be changed.

1

Chapter 2: Running Hawk for the First Time

29

2

• The Filters dialog defines file specifications or wildcard patterns, such as *.c,
to filter files of interest from otherwise long lists of files. It is a good idea to set the
filters during the initial Hawk session so they will be ready to use in the future. Table
2-1 shows some useful filters.

Table 2-1. Filters

To store filter settings with the current project, check the Save Filename
Filters in project file box. If the box is checked but no project is open,
the settings are stored as default settings to use with future projects.

• The Change Directory dialog allows you to set a new working directory for
Hawk. If you have elected not to check the Set as CWD check box in the File
Open dialog, you may, on occasion, want to change directories using this
mechanism.

• The Print and Print Setup dialogs are described in detail in Chapter 6 Editing
Features.

Edit Menu

The first two sections of the Edit menu contain standard editing items, such as
Undo, Redo, Cut, Copy, and Paste. The following lists items with which you may
not be familiar:

• The Scrap Buffer item selects the Scrap Buffer for cut/paste operations.

• The Append item adds selected text to the end of the selected clipboard/scrap
buffer.

• The Erase item clears the selected clipboard/scrap buffer.

Hawk's Scrap and Clipboard features are described in detail in Chapter 6 Editing
Features.

The next half of the Edit menu, shown below, contains options for inserting items
into the current buffer:

• The Insert File selection brings up a dialog for selecting a file to insert into
the current document.

• The Insert Literal item brings up a dialog for entering characters into the
document that would otherwise trigger a command. The literal may be chosen
using ASCII, Hex, or Decimal values.

• The Insert Link dialog inserts a button link at the cursor position in the current
document. Button links are special action buttons that can be embedded in your
text files. You can use them to view bitmapped images, bring up a related
document or spreadsheet, run a macro, or make notes.

• The View Links item is used for viewing the contents of the Button Links
database.

Description Pattern
Text files *.TXT;*.RTF
Initialization files *.INI;*.CFG
Make files *.MAK;*.

1

Using Hawk™

30

2

Button Links are described in detail in Chapter 10 Search and Replace and
Other Navigational Tools.

• The Record, Playback, Keystroke Macros, and Run Key Macro are for
making, testing, editing and using Keystroke Macros, respectively. Hawk's
Keystroke Macros are described in detail in Chapter 12 Customizing the
Interface.

Search Menu

The Search menu contains all the items necessary for performing search and replace
operations on single or multiple files. All of Hawk's search features are described in
detail in Chapter 10 Search and Replace and Other Navigational Tools.

The Options item on the Search menu brings up the Default Search and
Replace Settings dialog; in this dialog you can set up a specific way to operate
searches. It is important to set the search options before editing so that some of the
following issues might be addressed:

• Should the search be case sensitive?

• Should there be a prompt on replacement by default?

• Should regular expressions be found?

• Should matching text be selected (highlighted)? If so, should the text be selected
momentarily or continuously? If it is selected continuously, should Restrict to
Selection be turned off so Search Again can work?

• Should the word upon which the cursor sits be typed or located in the Search
dialog by default?

Project Menu

The Project menu is used for creating, opening, closing and manipulating projects,
project spaces, and workspaces. When working with the Project menu, keep the
following in mind:

• Projects organize and store individual sets of files and configuration settings.

• Project spaces organize sets of projects.

• Workspaces are "mini-projects" within projects.

Options on the Project menu include the following:

• The Project Space option displays a submenu containing New, Open, and
Close, for adding new or existing projects and for removing projects from the
project space. Project -> Set Current is for opening a project within a
project space.

• The Compile, Compile(Debug), Build, Rebuild, Rebuild (Debug),
Debug, and Execute options must be configured in the Project ->
Properties dialog in order to be used.

More information about Hawk projects is provided in Chapter 3 Building Your First
Project and Chapter 7 Projects, Project Spaces, and Workspaces.

1

Chapter 2: Running Hawk for the First Time

31

2

Debug Menu

The Debug menu contains items necessary for debugging modules. Some of the more
pertinent menu items include the following:

• Connect: This option allows you to select the target name and location of the
module you want to debug.

• Options: This menu item allows you to set session and animation options,
location of code to be debugged, and target environment debugging options.

• View: This option toggles the visibility of various windows, such as breakpoint,
memory, and stack.

• Process: This menu item offers options pertaining to the current process, such
as reforking and attaching modules.

Target Menu

The Target menu contains items useful for working with targets.

• Load: This option loads modules into the target’s memory.

• Unlink: This option reduces the link count of the module.

• DownLoad bootfile: This option downloads a bootfile to the target machine.

• Ident Module: This option performs an ident of a module on the target
machine. The ident utility displays such information as module size and revision
number.

• Emulator: Start the Emulator Program

• HawkEye: Open the HawkEye Interface (optional Add-on product)

• Profiler: Profiles processes/threads or modules on the target system.

• Wizard: Brings up the OS-9 dialog

• TechCheck: Brings up the Microware Tech-check tool. Used to help collect
system information for technical support calls.

Text Menu

The Text menu has various items for formatting and editing text. Some of these items,
such as Selective Display, Comment, and Format Source, are discussed in
various chapters. The other items are briefly described in this section.

• The Word Wrap option enables and disables automatic line wrapping. The lines
wrap at the right-margin mark, which is set on the General tab of the
Customize -> View Setups dialog. On that dialog, if Wrap Display
Mode is selected, but Wrap Column is not, the right-margin is automatically
adjusted when the window is resized.

• The Upper and Lower menu items capitalize or un-capitalize selected text.

• The Slide In and Slide Out menu items slide the current line or the current
selection right (in) or left (out), according to the length of a tab stop. The

1

Using Hawk™

32

2

Prompted Slide In/Out items prompt the user for some text that slides text
in or out.

• The Left Justify Right Justify and Center items position text within a
column or line selection.

• The Enumerate menu item inserts line numbers in ascending or descending
order for selected text.

• The Format Columns option aligns columns within a selected block.

Document Menu

The Document menu contains items that access dialogs and perform operations
commonly used on documents. The Document/Window Manager dialog (shown
in Figure 2-2) lists documents and windows currently open in Hawk. It can be used to
change the attributes of open windows and documents on an individual basis.

Figure 2-2. Document/Window Manager Dialog

Some of the operations that can be done in Document/Window Manager include
the following:

• specify indent options

• tile/cascade individually selected documents or windows

• set View Setups (such as fonts or colors) for individual documents/windows

• change display modes (such as Selective or Hex displays)

• change window attributes (such as scrollbars or line numbers)

• set soft line Wrap (located on the Display tab)

This option wraps lines without inserting a line feed and adjusts the wrap column
as the window is resized. Check Column and enter a number to wrap at a
specified column. Check the Words option to avoid splitting words at the wrap
column.

1

Chapter 2: Running Hawk for the First Time

33

2

The Customize Menu

The Customize menu contains items that access several comprehensive dialogs.
These dialogs are used to configure and customize Hawk. Custom tools are set up in
the Project -> Settings dialog on the Tools tab. They are described more
comprehensively in Chapter 7 Projects, Project Spaces, and Workspaces.

The following items are included in the Customize menu:

• The Environment menu item accesses the Environment dialog, which has a
number of tabs for manipulating the Hawk environment. For example, setting
backup files and backup specifications is done on the Backup tab of the
Environment dialog; modifying menus is done via the Menu tab.

The following two items are vital tabs under the Environment dialog:

• General

This tab is used for setting various items in the Hawk environment. Concerns
addressed by the settings on this tab include the following:

• Should system prompts, such as API Command dialog/prompt and pop-up
in a dialog be displayed on the status line? Often, the preference is the status
line prompt, the setting for which is Use Command Line Prompt.

• Should windows and documents operate as a single unit, as they do in most
Windows applications, or independently? The toggle for this functionality is One
Document Per Window.

• Should a list of recently loaded files appear at the bottom of the File menu?
This option can be used for reloading files; it is turned on by marking Show
File List on File Menu.

• What are file loading and file validation concerns?

• Should the Vertical/Horizontal Tile options on the Window menu
tile vertically, horizontally, or in the traditional Windows manner.

• State

This tab allows you to save state information between Hawk sessions. When using this
tab, address the following questions:

• Do you want Hawk to remember and load the last file you worked on, all of the
files you worked on, or none of the files you worked on?

• Do you want to save bookmarks between sessions?

IMany of the items available on the Customize menu may also be accessed from the

Customization shortcut icon on the status bar.

IPortions of the Environment dialog are discussed in Chapter 4 Command Key,
Libraries, and General Environment. However, since the tabs in the Environment
dialog relate to a wide variety of features in Hawk, the items in the dialog will be covered more
extensively throughout this manual.

1

Using Hawk™

34

2

• The Read Configuration Data menu item on the Customize menu
accesses a dialog that allows certain configuration settings to be read from any file
into the current configuration file. Configuration files contain settings that tell Hawk
how it should look and behave.

• The Libraries option is used for interactively loading Hawk DLLs (Add-Ons) to
extend the functionality of the Hawk program. A number of commonly used Add-
Ons are contained in the list of Hawk Libraries in the Libraries dialog. The
Hawk Libraries can be conveniently loaded by placing check marks next to those
being loaded.

More Add-Ons are available on Starbase's web site, at the following address:

http://www.premia.com

• The Toolbars and Keyboard menu items bring up the Toolbar
Customization and Assign Keys dialogs, respectively. Descriptions for how
these dialogs are used can be found in Chapter 12 Customizing the Interface.

• The Language option accesses a dialog that is used for controlling language-
specific features, such as ChromaCoding (syntax coloring), and template
expansion.

• The ChromaCoding Lexers option accesses the ChromaCoding Lexer
Settings dialog. In this dialog you can create or modify lexers to color the
various elements of your programming language. The vocabulary includes such
items as identifiers, braces, preprocessors, keywords, operators, strings and
comments.

• The View Setups option accesses a dialog used for viewing and changing
document and window preferences, such as colors, fonts, line numbers, and scroll
bars.

• The CodeSense Libraries option accesses the CodeSense Libraries
screen. CodeSense completes function names as you type them; they also
automatically suggest appropriate parameters to inserted for the function. It is
available for C, C++, C#, and Java files.

CodeSense works by parsing the programming libraries that you add on the
CodeSense Libraries screen, as well as project source files. In order to use
this feature, CodeSense must be configured on the Customize ->
Language -> CodeSense dialog. For more information on CodeSense, refer
to Chapter 6 Editing Features.

Tools Menu

The Tools menu has a variety of tools for manipulating and extending Hawk. Items on
this menu include the following:

• The API Command option is described in Chapter 4 Command Key, Libraries, and
General Environment

Language, ChromaCoding Lexers, and View Setups are described in
Chapter 5 View Setups and Language Support.

1

Chapter 2: Running Hawk for the First Time

35

2

• The API Macros and Run API Macro menu items are used for making and
running Hawk API Macros.

• The AppBasic Macros and Perl Macros menu items both have submenus
containing items for loading and working with AppBasic and Perl Macros.

Macros are described in detail in Chapter 15 Extending Hawk.

• The Version Control item on the Tools menu accesses a submenu
containing items that either run version control operations or access dialogs used
for running or setting up version control.

When looking at this submenu, it is important to remember that Hawk does not
come with its own version control utility. Instead, it integrates with existing version
control systems using one of two methods: command line integration or SCC API
integration. More information about using version control from within Hawk can be
found in the chapter on Chapter 9 Version Control.

• The Filter option brings up a dialog that allows you perform an external
operation on the current document or a selected portion of it.

• The Shell option runs a command shell.

• The Shell Command option brings up a dialog that invokes a Windows/DOS
application.

• The API Database Editor command runs the API Assistant Editor.

• The Paint command runs Microsoft Paint.

Window Menu

Similar to the Document menu, the Window menu is used for manipulating and
creating windows opened in Hawk. It is important to understand how Hawk
differentiates these windows. Depending on the configurations made in Hawk, open
files may not always display in their own windows. The difference between windows
and documents is described below.

Windows and Documents

Some confusion may arise when attempting to discern how Hawk differentiates
windows and documents. Depending on the keymap being used, some documents
opened in Hawk may display in their own windows.

Most of the keymap emulations that Hawk provides, such as BRIEF, Epsilon, and vi, use
one window for all documents by default. This characteristic defers to the DOS days of
editors, from which the referenced keymap emulations were derived. The CUA
keymap, however, uses one window for every document. Therefore, in CUA, each
window contains its own document.

The "one document per window…" characteristic can be toggled for any keymap using
One Document per Window in Customize -> Environment ->
General under the General heading. Keymaps are described in Chapter 12
Customizing the Interface.

1

Using Hawk™

36

2

Window Menu

• The New Window option creates a new window. If a document is already open,
the new window will contain another instance of that document.

• The Full Screen option puts documents into full-screen mode, eliminating the
clutter caused by menus and toolbars and maximizing editing space.

• The Tile and Cascade options are alternative ways to arrange Hawk windows.

• The Arrange Icons option arranges minimized windows at the bottom of the
Hawk screen. The Close All option closes all windows that are open.

• The Project and Output options toggle the Project and Output windows
off and on. A brief description of these windows is provided in the next topic,
Output and Project Windows.

• The Manager option accesses the Document/Window Manager dialog. This is
the same dialog that is accessed when clicking the Manager option on the
Document menu. For more information about the Document/Window
Manager.

Help Menu

Hawk’s Help menu is for accessing and configuring Hawk’s online help and API
Assistant. More information on Help and the API Assistant can be found in Chapter 6
Editing Features.

Output and Project Windows
The default Hawk screen has two system windows, including one on the left and one
on the bottom. The window docked on the bottom of the Hawk screen is called the
Output Window. The window on the left is called the Project Window. These
two windows can be “undocked” by dragging them away from any edge of the Hawk
screen.

• More information on customizing the Project and Output Windows can be
found in Chapter 12 Customizing the Interface.

• The Project Window is described in detail in Chapter 7 Projects, Project Spaces,
and Workspaces.

• The Output Window contains a number of tabs that relate to various features in
Hawk. It is described in detail in various chapters of this manual.

The Output Window

The Output Window (shown in Figure 2-3) initially displays seven tabs and is
located on the bottom edge of the Hawk screen. You can add three more tabs by
loading the Add-Ons for the AppBasic and Perl macro languages and the Add-On
for the Clipboard/Scrap Viewer. Add-Ons are loaded using the Customize -
> Libraries dialog.

1

Chapter 2: Running Hawk for the First Time

37

2

Figure 2-3. The Output Window

Uses for the tabs of the Output Window may vary, however, they are generally used
for displaying and manipulating the results of operations in Hawk.

Below are descriptions of each tab of the Output Window:

• The Build tab displays the results of builds or compiles.

• The File Find tab displays the results of file searches produced by File ->
Find.

• The Search 1 tab displays the results of string searches produced from search
operations. There are five search tabs available for search operations. To make
additional ones visible select them in the Customize -> Toolbars -> Show
Tabs dialog.

• The Browse tab displays tags or browser database files.

• The Difference tab displays the differences between two files, side-by-side.

• The Shell tab acts as a virtual DOS shell.

• The Symbols tab allows you to navigate through files. This is similar to the
Browse tab.

Auto-Increment Search Tabs

To use the visible search tabs sequentially for the output of successive search
operations, select the Auto-Increment Output Tab check box. This check box is
located on the Search Output Options dialog box. The Search Output
Options dialog box is displayed from the Output button in the Search and
Replace Multiple Sources and the File Grep dialog boxes.

Append to Listing

If the Append to Listing check box is checked with the Auto-Increment
Output Tab check box, the results of the next search will be appended to any results
already in the search tab.

The Project Window

The Project Window, shown below, is initially displayed on the left edge of the
Hawk screen.

1

Using Hawk™

38

2

Figure 2-4. Project Window

Like the Output Window, the Project Window contains several tabs. They are for
viewing information about projects and other files. The tabs include the following from
left to right:

• The Project tab displays projects in project spaces, as well as project
components.

• The File View tab lists the files for the current project in hierarchical form and
allows you operate on individual files or groups of files. More information about the
File View tab can be found in Chapter 7 Projects, Project Spaces, and
Workspaces.

• The Outline tab displays a hierarchical view of Symbols in project files and any
other files that are currently loaded. More information about Symbols and the
Outline tab can be found in Chapter 10 Search and Replace and Other
Navigational Tools.

• The Objects tab is used to view and browse code. It displays a hierarchical view
of C/C++, C# and Java objects/symbols that are associated with the name that is
typed in the identifier box at the top of the window. C++ Namespaces are
supported.

• The Bookmarks tab gives a view of local and global bookmarks defined in
documents. More information about Bookmarks and the Bookmarks tab can be
found in Chapter 10 Search and Replace and Other Navigational Tools.

• The Open tab acts like a persistent File Open Dialog and file manager in
one. It presents a list of icons representing valid drives, a directory tree, an area in
which to specify a file filter (this limits the files displayed), and a box in which
matching files are listed. Double-click on any of the files listed to load it for viewing
or editing. More information on the Open tab is provided in the next section, The
Standard Toolbar.

The Open tab (shown in Figure 2-5) can perform a total of twenty operations, as
represented by a series of icons on the frame of the Open tab. Tool tips (small
popup messages) describe each of the icons.

1

Chapter 2: Running Hawk for the First Time

39

2

Figure 2-5. Project Window: Open Tab

Use File Open -> Configure dialog to remove, add, or reconfigure the icons on
the Open tab. To access this dialog, click on the Configuration Dialog button.
The Configure dialog displays:

Figure 2-6. File Open Tab –> Configure Dialog

Two of the icons you can set for the Open tab are for user-defined commands:

(User function #1) and (User function #2). User-defined
commands can be set to perform any operation on files selected within the window.
The user commands must be Hawk API function calls, rather than DOS, or other similar
commands. You may, however, execute DOS commands by specifying the API function
ExecUserCmnd. Help with ExecUserCmnd or any other Hawk API can be found in
Hawk's online Help.

Example

ExecUserCmnd "Dir"

The File Open Tab -> Configure dialog is also used to set whether or not to
display hidden file, file timestamps, file sizes and file attributes. The timestamps, file
sizes, and file attributes are only visible as ToolTips that display when the mouse
cursor pauses over a file in the window.

1

Using Hawk™

40

2

• The CodeFolio tab presents a directory tree of pre-defined chunks of code,
specific to various programming languages, that you can insert into your current
document. You may also add your own Snippets to this directory. Refer to
CodeFolio Snippets in Chapter 6 Editing Features for more information.

The Standard Toolbar

Hawk has several toolbars, but only the Standard toolbar is turned on by default
during the initial Hawk session. Since the Standard toolbar is part of the default
Hawk screen, it is introduced in this section; all of the toolbars are described in detail in
Chapter 12 Customizing the Interface.

Figure 2-7. The Standard Toolbar

The Standard toolbar buttons are explained below:

• The first nine buttons on the standard toolbar are for editing and file operations.
These include creating, opening and saving files, printing, cutting, copying and
pasting text, and redo/undo of the last change made.

• The next three buttons on the Standard toolbar relate to searching:

• Use the Toolbar Search Box refers to the search capability built into the
Standard toolbar in the form of a drop-down list box control. It provides the
most immediate, convenient way to perform simple searches. The Toolbar
Search honors all of the settings in the Search Options dialog.

To use the Toolbar Search, type in the string you wish to search for..

• Press to repeat the last search.

• Press to search for the word under the cursor in the current document.

• Press to rebuild the current project.

• Press to build the current project.

• Press to go to the next message line.

• Press to debug the module

• Press to access Hawk’s online Help.

1

41

Building Your First Project

This chapter provides an introductory guide for building Hawk projects and project
spaces. Definitions of items in the Project menu are discussed more in Chapter 7
Projects, Project Spaces, and Workspaces.

The sections covered in this chapter include the following:

 Projects and Project Spaces

 Creating a Project Space

 Creating and Modifying a Project

3

1

Using Hawk™

42

3

Projects and Project Spaces

What are Hawk Projects and Project Spaces?

Hawk Projects offer a way to store related files as a unit. They make version control
operations simpler and more convenient and they store unique configuration settings,
such as compiler commands, with each project. There are no set criteria for deciding
which files should go into a Hawk project.

Project spaces are an extension of the project facility. They store sets of projects as
units, allowing multiple projects to be displayed at a time. Before a project can be
made, a project space must be created.

The New, Open, and Close items on the Project -> Project Space submenu
are for creating, opening and closing project spaces. Project spaces are displayed in the
File View tab of the Project Window.

The appropriate steps for making projects are shown below.

1. Create a project space.

2. Make default settings.

3. Create projects and/or add existing projects to project space.

4. Add files to projects.

Creating a Project Space
To create a project space, complete the following steps:

1. Click Project -> Project Space -> New.

2. Click Browse to open the appropriate directory for your project space or enter the
filename for the space and give it an extension.

3. Click OK. The project space is created, and the Project Properties dialog
appears, with the Members tab on top. The new project space is displayed in the
list box on the left. Projects may be added to spaces and files are subsequently
added to projects in this dialog.

However, before the project is created, it is necessary to set the project defaults; this is
explained in the next section.

Setting Project Defaults

Configuration settings for new projects are inherited from the <Default
Settings> item in Hawk's Project Properties dialog. This is the same dialog

IThe .PSP extension is automatically applied to the project space configuration file, which
contains the necessary configuration information for the project space.

1

Chapter 3: Building Your First Project

43

3

that displays when you first open a new project space. It can also be accessed by
clicking on Project -> Settings.

Changes made to the settings while a project is selected are stored with that project
only. Closing the project causes all settings to revert to the defaults. For this reason, it
may be a good idea to set some configurations for the project before creating it so the
settings remain unchanged when the project is closed.

To make default settings throughout the Project Properties dialog, highlight the
<Default Settings> item in the Project -> Settings dialog, then make
various configuration settings in the various tabs of the dialog. Once you have
established the default settings, you can make modifications for future projects on a
per-project basis.

Creating and Modifying a Project
Once a project space has been created, individual projects can be created for the
space. After creating a new project space, the Project Properties dialog
appears. It is also possible to access the same dialog by clicking Project ->
Settings.

However, we will not use the Project Properties dialog to add a project to the
project space. The following steps will use a different method to create a Hawk project.

1. Click the Cancel button to dismiss the Project Properties dialog.

2. Click -> Project Space -> Add New Project to access the
Project dialog. The dialog shown below appears:

Figure 3-1. Add New Project to Project Space

3. Enter the name of the project into the Name field. Also, make sure the path to the
project’s folder in the Folder field is correct and make sure the Default
Processor displays the correct processor name.

4. Click Next. The Component dialog box appears, as shown below.

1

Using Hawk™

44

3

Figure 3-2. Add New Component to Project

5. Projects consists of multiple components. Type the following into the component
menu:

Name: The name of your program/module

Description: Whatever description you want to include

Chip: <Processor Name>

Type: Type of module is specified here

Psect File: Psect File can be left blank, Hawk will default to the correct psect file.

6. At this point, you can do one of two things:

• If you would like to add units to your project, proceed to step 6.

• If you do not want to add units to your project, click Finish and proceed to
step 11.

7. Click Next to display the Units dialog. Components consists of units, which
can be library, header, or source files. The Units dialog is shown below.

Figure 3-3. Units Dialog

8. Navigate to the file you want to add from the Look in: box.

1

Chapter 3: Building Your First Project

45

3

9. To add the file to the Added Units display, you can either click the down arrow
to the right of the Files of type box or simply double-click on the file. The
file you chose in the full path list should now appear in the Added Units box.

10. Repeat step 8 until you are through adding files. When you are done, click Finish
at the bottom of the window. The Components frame should display a folder with
the name of your added component.

11. To save the project, select Project -> Save.

Hawk creates a new project configuration file in the chosen directory that uses the
name typed in the Add New Project to Project Space dialog with a .PJT
extension appended. The new project is listed in the Project Properties list
box, under the current project space.

Hawk creates a new configuration file in the chosen directory with the name that was
typed and a .PJT extension.

Adding Files to a Project

Files can be added once the project has been created. Files are added in the Project
-> Settings -> Members dialog. To add files to your project, complete the
following steps:

1. Highlight a project to which the files will be added in the Project Properties
list box.

2. Add files using one of the following four methods:

• Click the Add New File button.

• Click the Scan button. Add individual files by typing in their names, or add
multiple files using file filters (such as *.C).

Within the Scan dialog, use the Browse button to browse for files. Add
individual files by typing in their names.

Matching files in subdirectories are included as a result of the Include
Subdirectories check box in the scan dialog.

• Use the External Makefile option to read files from an existing makefile
into the project being created.

• Use the VCS Project option to "read" a version-control project file. (See
Using Version Control in Hawk, in Chapter 9 Version Control.)

3. Click OK when done. Any matched files should be immediately added to the
project.

Semicolon delimited series of file specifications can be specified when adding files. These file
specifications would normally include DOS wild-card characters. Paths are optional. (Examples
include *.C;*.H;*.CPP; C:\TEST*.C; C:\TEST*.H).

1

Using Hawk™

46

3

Files that are included in the project are listed in the Files list box in the center of the
dialog. To remove files from the project, select the Remove selected files

from project radio button under the Members tab.

Figure 3-4. Project Properties Dialog: Members Tab

Project Tools

When the necessary files have been added in the Members tab of the Project
Properties dialog, click on the Tools tab. The Tools tab is used for setting up
various tools, such as command line compilers and version control utilities needed to
perform various jobs on files being edited in Hawk.

The commands set on the Tools tab are the commands that are run when the
various Compile, Build, Debug, etc., buttons and menu items are clicked. Figure
3-5 shows the Tools Dialog.

Figure 3-5. Project -> Settings -> Tools Dialog

Once the appropriate tools have been set on the Tools tab, click OK. The dialog
closes and the project is created with the specified characteristics. Clicking on the
project tab in the project window should now display the items in the project space.

1

Chapter 3: Building Your First Project

47

3

Click on the File View tab of the Project Window to display the project space
with the included projects beneath. An example of this tab is shown in Figure 3-6.

Figure 3-6. Project Window: File View

To load project files for editing, double-click on them in the window, or click on Load
Files in the Project menu.

1

Using Hawk™

48

3

1

49

Command Key, Libraries, and General
Environment

This following sections are included in this chapter:

 API Command Dialog/Prompt

 Loading Hawk Add-Ons

 General Environment Settings

4

1

Using Hawk™

50

4

API Command Dialog/Prompt

The API Command item on Hawk's Tools menu interactively runs Hawk API
functions. Figure 4-1 shows the API command prompt.

Figure 4-1. API Command Dialog

API functions drive the interface between the operating system and application
programs. This includes the way in which the application communicates with the
available operating system services. For example, APIs make it possible to open
windows, display message boxes, and load dialogs.

Hawk has numerous API functions, many of which are available for interactive use
within the Hawk editor. Hawk APIs can be used to change keystrokes, buttons, and
menu commands. They can also be used in the macros and DLLs that extend Hawk as
well as from the API Command prompt.

Use the API Command menu item to run Hawk's APIs on-the-fly from within Hawk.
Simply type in the function name, with any necessary parameters, and press OK.

• To get help using any number of Hawk's APIs, access the Functions menu item
from Hawk's online Help menu. Additional information can be found using the
Search for Help On… menu item.

The API Command prompt can also be accessed with a special keystroke called the
Command Key. The API Command Key/Prompt is described extensively in the
following paragraphs.

API Command Key/Prompt

If you want to execute a command in Hawk and there is neither a key command nor a
menu entry, you can use the Command Key/Prompt. Below are some guidelines to
follow when using this prompt:

• If you are using the CUA or the vi keymap command set, the Command Key is (.

• If you are using the BRIEF compatible keymap command set, the Command Key
is); this also provides access to the BRIEF interpreter.

• In keymaps where there is no KeyCommand assignment, select the API
Command from the Tools menu to access the prompt.

When you press the Command Key or choose API Command from the Tools
menu, a prompt appears (as displayed in Figure 4-1) on the status line or in a pop-up
dialog box, depending on which is enabled.

1

Chapter 4: Command Key, Libraries, and General Environment

51

4

• You can respond to the prompt by entering a Hawk API function call,
much as you would enter it in Hawk's C source code. Pressing OK
sends the command off for processing (a list of some Hawk APIs can
be found by accessing the Functions menu item from Hawk's online
Help menu).ab.

Command Completion

The API Command prompt has a command completion feature that completes
function names using the first few characters of the function for reference. This feature
is available for both the status line prompt and the pop-up dialog.

With command completion you can enter as much of a command (function name) as
you want and press the Tab key to receive a list of all commands that begin with the
same characters as the incomplete command.

Example

Complete the following steps:

1. Select Tools -> API Command.

2. Enter the word color and press Tab (shown in Figure 4-2).

Figure 4-2. Command Completion List After Entering "color"

3. Select the desired command from the list to place it on the command line for you.

ITo specify a Status Line Command Key, choose the Use Command Line Prompt
option on the Customize -> Environment -> General dialog under
the General section. Refer to the topic Command Line Response Editing, in the
online Help, for additional command line key sequences.

If you want a complete list of the commands available just press the Tab key without entering
anything at the prompt. (Refer to Hawk's online help for additional help on any API function).

More information about using Hawk's API and the Command Key can be found Chapter
15 Extending Hawk.

1

Using Hawk™

52

4

Loading Hawk Add-Ons

The Libraries option on the Customize menu is used for interactively
loading Hawk DLLs (Add-Ons) to extend the functionality of the Hawk
program. A number of commonly used Add-Ons are contained in the list of
Hawk Libraries in the Libraries dialog. The Hawk Libraries can be
conveniently loaded by placing check marks next to the ones to be loaded.

Loading a library in the Customize -> Libraries dialog adds a line similar to the
following in the CWRIGHT.INI file and loads the DLL into Hawk (This is detailed in
Chapter 17 Configuration Files and Command Line Parameters):

[LibPreload]

LibPreload=cwHTML.DLL

General Environment Settings

The General tab of the Environment dialog (accessed from the Customize
menu) is used for setting various items in the Hawk environment. Items addressed by
the settings in this dialog include the following:

• system prompts

• Should system prompts (such as the API Command dialog/prompt) pop-up
in a dialog or be displayed on the status line? Often, the preference is the
status line prompt, the setting for which is Use Command Line Prompt.
This is located under the Customize -> Environment -> General
tab.

• windows and documents

• Should windows and documents operate as a single unit, as they do in most
Windows applications, or operate independently? The toggle for this
functionality is One Document Per Window, on the Customize ->
Environment -> General tab.

• recently loaded files

• Should a list of recently loaded files appear at the bottom of the File menu?
This option can be turned on by marking Show File List on File
Menu under Customize -> Environment ->File & File
System.

• Whether Unicode should be automatically detected and converted when files are
opened and closed (mark Auto-detect Unicode files). Hawk does not

DLLs are software used by Microsoft's Windows to provide services to applications. Some DLLs
are automatically loaded when the program needs them, while others must be loaded at
system startup. DLLs can be written in any programming language used for Windows
programming. Three terms are used when referring to Hawk DLLs: Add-Ons, Libraries, and
DLLs.

1

Chapter 4: Command Key, Libraries, and General Environment

53

4

yet support Unicode internally. The Windows API function
WideCharToMultiByte() is used to convert Unicode to ANSI Code Page
characters when a file is loaded and then MultiByteToWideChar() is used to
convert back to Unicode when the file is written out. You can also elect to convert
some file types to/from Unicode from the File -> Save As dialog.

• window tiling

• Should your window should tile vertically or horizontally, or in the traditional
Windows way?

Visit the Customize -> Environment -> General dialog before beginning
any editing tasks.

1

Using Hawk™

54

4

1

55

View Setups and Language Support

The View Setups dialog contains attributes for color, fonts, line numbers, scroll bars,
and other window color schemes. It also enables language support in Hawk. Thus, the
following sections are included in this chapter:

 View Setups

 Hawk Language Support

5

1

Using Hawk™

56

5

View Setups
All items that pertain to Hawk's visual environment, such as colors, scroll bars, line
numbers, and window settings, are part of Hawk view setups. View setups are
controlled and manipulated in the View Setups dialog, which is accessed by clicking
Customize -> View Setups.

There are four tabs on the View Setups dialog, including General, Visibles,
Colors, and Font.

• The General tab is used for setting window attributes like scroll bars, line
numbers, and margins. Use the Highlight Current Line option (in
combination with the Use Background Only option on the Colors tab) to
maintain font style and foreground colors.

• The Visibles tab is used for manipulating "visibles"; this is a term used to
describe what makes invisible characters, such as spaces and tabs, appear on the
display. To turn the visibles option on, click Visibles. To give the
visibles a slightly softer color, click on the Use Visibles Color. The main
listbox lists the characters that are currently in the display. The characters can be
changed using the combo-box located above the list of visibles.

• The Colors tab (depicted in Figure 5-1) is for changing screen colors. Colors can
be changed for all text colors, such as the background, using the Synchronize
text background option or selecting the element and then changing the colors
(the latter option is for individual screen elements only).

Background and foreground palette colors can be changed into up to 16-million
colors, assuming your display supports the colors. Several default view setups are
provided to illustrate this feature (see the drop-down list in the View Setup
field).

Figure 5-1. View Setups Dialog: Colors Tab

Any combination of changes (whether the changes be color and font, window and
color, or visibles and color) made in the View Setups dialog can be saved with a

1

Chapter 5: View Setups and Language Support

57

5

name clicking the Save As button and giving the view setup a new or existing
name. Various view setups can be selected from the drop-down list under the
View Setup combo box.

Any view setups can be restored to the settings that were made prior to entering
the dialog, using the Reset button. The Defaults button returns only the
Default and Output View Setups to their defaults. The Test button
displays the latest changes to the current Hawk screen. The Apply button brings
up the Apply View Setup dialog, which allows the selected view setup, with
any changes, to be immediately applied to the Current Window, All User
Windows, or to be made the Default view setup.

• The Font tab is for changing screen fonts. The fonts selected in the dialog do not
affect printed documents. When using this tab, keep the following in mind:

• Font styles can be combined.

• The font style for individual screen elements can be changed, but only when
the selected font supports the styles.

• Many of the view setups, including Default, are set to use the 'Fixedsys'
font. One benefit of this is that ChromaCoding font styles display upon first
installation. Another benefit is that the extended umlaut (European) characters
are supported by default.

Hawk View Setups

Hawk supplies several view setups out-of-the-box. They are listed for selection in the
drop down list under the View Setups combo box. Many supplied View Setups have
“16-bit” as part of their names. This means more than 256 colors are needed to
reproduce the palettes (16-bit color is the same as 65536 colors).

• Among the list of view setups, the ones named Default and Output
Window are of particular interest. Both of these view setups affect windows in a
particular way and have additional screen elements available for modification.

• If the Default view setup is selected, additional screen elements will be available
for controlling colors and fonts of system elements such as the status bar. The
items are in the System group at the bottom of the list.

• If the Output Window View Setup is selected, additional items are available
for controlling window attributes of the Output window.

Default View Setup

The Default view setup is the view setup that is initially associated with all Hawk
windows. Changes made to this view setup affect all windows that do not have view

IScreen elements are the elements on the Hawk screen whose colors can be changed.
Examples of screen elements are functions and keywords for supported programming
languages. Screen elements are listed in the Screen Element List in the Colors
section of the View Setups dialog.

1

Using Hawk™

58

5

setups otherwise associated with them. The two ways in which you can use another
view setup as the default include the following:

• Use the Save As button in the View Setups dialog to save the selected view
setup as Default.

• Mark Make Default in the Apply View Setup dialog while the desired view
setup is selected in the View Setups dialog.

Output Window View Setup

Changing the Output window view setup changes the colors of screen elements in
the Output window. To change window settings for individual tabs of the Output
window, make the changes, then save the view setup as the following:

"Output Window n"
(Where n stands for the number, 0-9, of the tab being changed)

Using View Setups

As mentioned, windows in Hawk are initially associated with the Default view setup.
To use any other view setup, it must be associated with a Hawk window. With this in
mind, consider the following to change the colors and window attributes of a window
or set of windows:

• Change the options for the Default view setup in the View Setups dialog in
order to change the colors, fonts, and other window attributes of a window
associated with the Default view setup.

• Associate any view setup with the currently open window by selecting the view
setup and then marking Current Window in the Apply View Setup dialog
(accessed by clicking Apply in the View Setups dialog).

• Associate any view setup with selected open windows by choosing the view setup
for the selected windows in the Document/Window Manager dialog.

• Associate any view setup with all open windows by marking All User Windows
in the Apply View Setup dialog (accessed by clicking Apply in the View
Setups dialog).

• Associate any view setup with closed or open windows containing files of a certain
file type, such as .C, .H, .CPP, by choosing the view setup for the selected file
type in Customize -> Language -> Coloring.

Hawk Language Support
Hawk's language support consists primarily of the following elements:

• ChromaCoding

• Template Expansion

• Smart Indenting

Languages that are supported out-of-the-box include file-types with the following
extensions: .C, .CPP, .JAVA, .HTML, and .ASM. There are also some languages for

1

Chapter 5: View Setups and Language Support

59

5

which language Add-Ons are available, but not loaded. In these cases, a procedure for
loading the Add-Ons is is required to enable the support.

Ultimately, through the creation of ChromaCoding Lexers and language Add-Ons,
support can be enabled for any programming language. The following topics discuss
lexers and Add-Ons and the various ways they are configured to provide support for
languages not immediately supported by Hawk out-of-the-box.

Language Support Lexers and DLL’s

There are two ways that Hawk provides language support functionality-- through
ChromaCoding Lexers and DLLs; in order to have language support features such as
ChromaCoding and Template Expansion, there must be a lexer or a DLL.

Some languages are supported by default. For example, when files with .C extensions
are opened in Hawk, ChromaCoding is immediately apparent and template expansion
can be enabled and used by marking a single option in the Customize ->
Language dialog. In this sense, files with .C file-type extensions are supported by
Hawk out-of-the-box. When a language is supported out-of-the-box it often gets its
functionality from Hawk's CWSTART.DLL, which loads automatically each time Hawk
is launched.

There are two options for language support not loaded out-of-the-box. They include the
following:

• Support can be obtained from external Add-Ons (DLLs), which must be loaded
manually.

- OR -

• Support can be obtained from a Lexer, which can be created and/or modified in
the ChromaCoding Lexer Settings dialog.

The following topics describe the two methods for adding language support to Hawk.
When reading the information, keep in mind that ChromaCoding Lexers are the easiest
way to create new language support for Hawk. ChromaCoding provided by lexers is
also faster, which means the color display is smoother.

In addition, lexers do not support Smart Indenting or Template Expansion at this time.
These features are only provided with language Add-Ons. For this reason, it is best to
use Add-Ons with lexers (if available). In such cases, the lexer's functionality takes
precedence only when the same functionality (such as ChromaCoding) is provided by
both.

Language DLLs

When language support is obtained from a DLL, the first thing to do is make sure that
the DLL for the respective language is in the Hawk directory. Some language support
DLLs are already in the Hawk directory. Many more can be downloaded from
Starbase's web pages. On the web pages, the support comes in the form of a zip file,
which contains the supporting DLL, some source code, and, at times, a keyword file
and a README file.

1

Using Hawk™

60

5

The Tools Dialog

After making sure that the appropriate DLL is in the Hawk directory, you need to load
the library. Hawk libraries (including language support) are loaded using Hawk’s
Customize -> Libraries dialog. The DLLs will add functionality to Hawk,
whether that functionality is language support or another feature.

Some Add-Ons are listed in the Libraries dialog in the list of Hawk Libraries. If
a language is not supported out-of-the-box, search for the language in the list of Hawk
Libraries. The library can be loaded by clicking Add and browsing for the
appropriate DLL. For more information about the Libraries dialog, see the Loading
Hawk Add-Ons section in Chapter 4 Command Key, Libraries, and General
Environment.

ChromaCoding Lexers

ChromaCoding Lexers provide language support, such as ChromaCoding, for
programming languages edited in Hawk. They store collections of settings to color
various elements of the programming language's "vocabulary". These vocabulary
elements include identifiers, braces, preprocessors, keywords, operators, strings and
comments. Lexers are the easiest way to add support for a language that Hawk has not
previously supported.

ChromaCoding Lexers can be created or modified in the ChromaCoding Lexer
Settings dialog (shown in Figure 5-2).

Figure 5-2. ChromaCoding Lexer Settings Dialog

There are two ways to access the ChromaCoding Lexer Settings dialog:

• Click Customize -> ChromaCoding Lexers...

-OR-

• Click Customize -> Language -> Coloring to get the Language
dialog box. Then click Settings under the lexer option button.

1

Chapter 5: View Setups and Language Support

61

5

Creating a Lexer

The following sections provide steps for creating a lexer:

• Make a Lexer Name

• Define Identifier Characters

• Define Keywords

• Define Comments

• Define String Delimiters

• Define Numbers

Make a Lexer Name

To make a Lexer Name complete the following:

1. In the ChromaCoding Lexer Settings dialog, click New.

2. Type a descriptive name for the lexer.

3. Click OK.

A new Lexer should appear in the Lexer: combo-box.

Define Identifier Characters

Enter identifier characters for the language on the General tab of the
ChromaCoding Lexer Settings dialog.

Identifier characters are characters that distinguish “identifiers” from other elements of
the language. Identifiers can best be described as the elements of the language that
make up the "words" of the language. Keywords and function names are identifiers,
but operators are not. If identifier characters are not defined, ChromaCoding for
identifiers will not work.

Character classes (described under the topic Regular Expressions in Chapter 10 Search
and Replace and Other Navigational Tools) can be used when defining identifier
characters.

Examples

• A-Za-z$
_A-Za-z0-9$

There are two fields in the Identifier Characters section of the
ChromaCoding Lexer Settings dialog. They include the following:

• First is for characters that are allowed to appear as the first character of the
Identifier.

ICertain regular expression characters must be escaped with a back slash (\) in order to use
them literally. For example, to specify a dash (-) character as an identifier character, enter it as
\-.

1

Using Hawk™

62

5

• Follow is for characters that are allowed to follow the first character of each
Identifier.

The options on the lower half of the General tab apply only to certain languages and
indicate that identifiers followed by parentheses are functions (like C++). In addition,
the options address the following questions:

• If braces are used, which should be colored?

• Should the first two braces defined delimit keywords, numbers, and strings for
coloring?

Define Keywords

On the Words tab of the ChromaCoding Lexer Settings dialog (shown in
Figure 5-3), add any keywords, operators (such as +, -, *, &), or preprocessor
words (if appropriate) that the ChromaCoding Lexer should color.

Figure 5-3. ChromaCoding Lexer Settings -> Words Tab

Use the following steps to add words:

1. Choose the radio button for the group (such as Keywords or Operators) to
which the items will be added.

2. Click the New button on the left.

1

Chapter 5: View Setups and Language Support

63

5

3. In the resulting Add Words dialog, type the appropriate character(s) to add.

Define Comments

• On the Comments tab (identified in Figure 5-4) define all the appropriate
comment delimiters for each comment set. The configurations then tell the
ChromaCoding Lexer when to color comments.

• IItems can be deleted from a list by selecting the item and pressing the Delete button to
the left.

• The Get button on the bottom left adds items from a file. Clicking it brings up the Get
Words from File dialog, which is used to browse for the file containing the items to
be added. The Get Words from File feature can only read words from a file that
are separated by white space. It can not differentiate words from other characters such as
parentheses or colons.

• Added items will display in the center list-box.

• The Edit button can be used to modify one or more words in a list.
• "User…" items are for user-defined keywords, which can be colored differently than the
Keywords items (Colors are set in the View Setups dialog, described in the
previous topic on View Setups).

• The List Settings section on the top right has items that apply to a list of words
that are currently displayed. Certain items apply only to certain sets. For example, Allow
White After First (which causes preprocessors to color even if whitespace
appears after the first character) applies to lists of Preprocessors only.

• The Item Settings section has options that only apply to individually selected items.
• Certain check boxes on the Words tab apply only to certain sets. For example, Ignore
Remainder of Line is only available for the list of Preprocessor keywords.
This option tells the Lexer not to ChromaCode any text after the selected preprocessor. It is
useful for languages like C++ that have preprocessor lines similar to the following:

• #include "exports.h"
• where "exports.h" would otherwise be incorrectly colored as a string

Refer to Hawk's online help for additional information on the options available on the Words
tab.

1

Using Hawk™

64

5

Figure 5-4. ChromaCoding Lexer Settings -> Comments Tab

• To define single line comment delimiters, click the Add Line Comment button.
To define multi-line comment delimiters, click Add Multi-line Comment.
Each time either of the buttons is clicked, the Begin Column or Use
Delimiter options become available, depending on which radio button is
chosen at the time.

• If a single-line comment is being added, the right side of the Use Delimiter
section is not available.

• If a multi-line comment is being added, the Begin Column option will not be
available.

• Finish setting up the comment support by completing the fields and command
options that apply to the characteristics of the comments for the language in
question.

Define String Delimiters

On the Strings tab of the ChromaCoding Lexer Settings dialog (displayed
in Figure 5-5), choose the options necessary to tell the ChromaCoding Lexer how to
color single- or double-quoted string delimiters. If the language in question does not
use quoted strings, mark the option(s) specifying the following: Single/Double
quote does not start a string.

IMore information on the options available in the Comments tab can be found in Hawk's
online help.

1

Chapter 5: View Setups and Language Support

65

5

Figure 5-5. Strings Tab

Define Numbers

On the Numbers tab (shown in Figure 5-6), define any numbers that should be
colored by the ChromaCoding Lexer for the language in question. The available
number types include the following:

• Hexadecimal

• Decimal

• Octal

• Binary

• No type

The number types only serve to identify an entry. They are there for convenience.
When one of the types is chosen, the most appropriate number set is automatically
inserted in the Digits field. The name of the chosen type is also displayed, for
reference purposes, beside the number set in the Numbers List Box. The other
settings in the dialog control how the elements are ChromaCoded by the lexer.

1

Using Hawk™

66

5

Figure 5-6. Numbers Tab

Use the following steps to define number elements:

1. Click Add Number.

2. Choose the number type to be applied. A new item will appear in the list box at the
top of the dialog.

3. Add the numbers to the Digits field.

Character classes (such as 0-9, indicating all numbers between 0 and 9) can be used.

Commonly used character classes for the selected number type can be inserted using

the pop-up menu with the black right-arrow button ; this button is to the right of the
Digits field.

Starts With/Ends With

Numbers that are used in programming languages are often delimited with specific
starting or ending characters. For each added set of numbers, beginning and ending
characters can be specified for the ChromaCoding Lexer using the Starts With and
Ends With fields. These fields also have black right-arrow buttons to access pop-up
menus containing commonly used beginning and ending characters. The Restrict
first digit to 0-9 option is available when using the Ends With field. It
restricts the lexer to color numbers that end with certain characters only if the first digit
is numerical.

The last option in the Lexers dialog, Long numbers can end with L, specifies
that ChromaCoding includes the L when coloring languages that end long numbers
with L.

Completing the Lexer

• When all of the appropriate language characteristics have been added to the Lexer,
click OK for the dialog. If you want to delete a lexer, choose it from the drop-down

1

Chapter 5: View Setups and Language Support

67

5

list under the Lexer combo-box at the top of the ChromaCoding Lexer
Settings dialog. Click the Delete button.

Configuring Options in the Language Dialog

Whether language support is obtained from a language DLL or a ChromaCoding Lexer,
the configurations for the language need to be set up. This is done in the Language
dialog, accessed by selecting the Customize -> Language menu options.

The Language dialog (shown in Figure 5-7) is where all Hawk's language features are
stored and controlled. Hawk's language features consist of settings and support
associated with file type extensions (such as .C, .TXT, .ASM). The available features
vary depending on the extension of the file.

Figure 5-7. Customize -> Language

Some of the options in the Language dialog are available for any file type; others are
only available with file types for which a language support module is available. For
example, the Paste Indenting feature can be used for any file type, while Smart
Indenting features (described Chapter 6 Editing Features) are only available for
some file types. If a language support module does not provide support for a particular
feature in the dialog, the feature will not be available.

The Language dialog has seven tabs, which are, along with other features, described
below. When making changes in the Language dialog, remember that the changes
are file-type specific, that is, they apply only to files with extensions highlighted in the
File Type list at the time of the change.

IAll changes made in the ChromaCoding Lexer Settings dialog can be
cancelled by clicking the Cancel button.

1

Using Hawk™

68

5

File Type List

The File Type list on the left-hand side of the Language dialog lists all of the
available file types for Hawk. This dialog is displayed in Figure 5-8.

Figure 5-8. File Type List

A file type is the extension of a given file (such as .C). It is used for selecting the file
type whose settings will be viewed or modified. The file type associated with the
current document is selected initially, if it is on the list. If it is not on the list, it can be
added, or the default settings (indicated by file type .*) apply. To select more than one
extension at a time, use Ctrl or Shift.

Options Tab

The Customize -> Language -> Options dialog has options for controlling certain
attributes and functions for files of the selected type. Some of the options available are
as follows:

• Read-only controls whether files of the selected type should be opened as read-
only.

• Make backups controls whether backup files should be made for files of the
selected type.

• EOL Options control whether UNIX, DOS, or Mac EOL characters should be
inserted when the E key is pressed in files of the selected type.

• Word Wrap options control whether and how text should be wrapped in files of
the selected type.

Most of the features in the Language -> Options dialog are also available on a per-
document, non-file-type-specific basis, in the Document/Window Manager dialog.

Tabs/Indenting Tab

The Tabs -> Indenting tab of the Language dialog has options for controlling and
customizing how Hawk handles tabs, virtual space, and auto-indenting. It also offers a
choice of several popular forms of block Alignment Styles which are used when

1

Chapter 5: View Setups and Language Support

69

5

inserting templates and/or when using brace expansion. The available alignment styles
are:

• Unindented Block

• Line Saver

• Indented Block

Most of the features in the Language -> Tabs/Indenting dialog are also available
on a per-document, non-file-type-specific basis, in the Document/Window
Manager dialog.

Templates Tab

• The Templates tab of the Language dialog is for examining and redefining
language templates associated with the selected extension.

Coloring Tab

The Coloring tab of the Language dialog has options for controlling how
ChromaCoding operates. It is also where Hawk is configured to provide ChromaCoding
support for languages that are embedded in other languages. The items in the dialog
that are of special interest are the Lexer and DLL options, and the Embedded
Languages and Scripts section.

• Mark the Lexer radio button to make the Lexer options available and to cause
the combo-box to display the currently selected Lexer, as described in the section
on ChromaCoding Lexers. ChromaCoding lexers maintain numerous settings that
add support to and for programming languages edited in Hawk. To choose a
different lexer, select it from the drop-down list under the combo. The lexer
displayed in the combo box will be associated with the selected file type in the
File Type list.

The Settings button can be used to access the ChromaCoding Lexer
Settings dialog, used for making new ChromaCoding Lexers. The dialog can also
be accessed by clicking the ChromaCoding Lexers option on the Customize
menu.

• Mark the DLL radio button to have Hawk use a DLL, rather than a lexer, for
language support. Marking the DLL option enables two additional buttons.

• The Keywords button accesses the DLL Extension Keywords dialog,
used for defining and editing a file of keywords to supplement the ones
predefined by the DLL.

• The Coloring button accesses the DLL Coloring dialog, used for
controlling ChromaCoding color-timing and the number of comment lines that
will be colored. If there is no DLL loaded for the selected file type, the DLL
radio button will be unavailable.

These buttons are not available when the Lexer option is chosen.

IMore information about templates is available in Chapter 6 Editing Features.

1

Using Hawk™

70

5

• The Embedded Languages and Scripts section has the following
components and rules:

• The Configure button accesses the Embedded Language
Configuration dialog. The button will not be available if the selected file
type does not use a ChromaCoding lexer for ChromaCoding support.

The Embedded Language Configuration dialog uses regular expressions to
parse programming languages that are embedded in other programming languages
(e.g. JavaScript in an HTML file). It then colors the embedded language using a
designated ChromaCoding lexer. Other language support features, such as template
expansion, are also provided. With the proper configurations, Hawk will be able to
distinguish the embedded language from the main language, and provide support for
both.

Figure 5-9. Embedded Language Configuration dialog

Help for the dialog is available online, under the topic Embedded Language
Configuration. See the topic Regular Expressions in Chapter 10 Search and Replace
and Other Navigational Tools for help with regular expressions.

• <not defined> will appear if no embedded languages have been defined for the
file type. <n defined> will appear if one or more embedded languages have been
defined, where n is the number of defined languages.

• There must be an existing ChromaCoding lexer that provides color support for the
embedded language in order for the embedded language configuration to work. If
an appropriate lexer does not exist, it can be created in the ChromaCoding
Lexer Settings dialog.

The option Use 'background override' color in Customize ->
Language -> Coloring allows different background colors to be set for blocks of
embedded code. It uses the colors that are defined for the screen element

1

Chapter 5: View Setups and Language Support

71

5

'Background Override' in Customize -> View Setups. Use 'background
override' color is file type specific and should be marked for the file type of the
parent language.

CodeSense Tab

• The CodeSense tab of the Language dialog is used for selecting and
manipulating the Parser Selection and Name Completion. These
features parse specified text from files being edited to use for editing or
navigational purposes.

Format Tab

The Format tab of the Language dialog contains options for Code Reformatting
or beautifying. These options are used by the Format Source item on the Text
menu. Format Source is explained in detail in Chapter 11 Checking and Formatting
Files.

Comments Tab

The Comments tab of the Language dialog is used for setting the parameters for the
Comment and Comment Box menu items on the Text menu. The Comment
features are explained in more detail in Chapter 6 Editing Features.

Adding a New File Type to the Language Dialog

Loading a language support DLL or making a Lexer does not mean that Hawk will
automatically recognize and color the file type of the file for which the support was
added. To associate language-support to a file type, the file type must first be added to
the File Type list in the Language dialog. Complete the following steps to add a
new file type in the Language dialog:

1. Select New Type and add the extension for the language (without the '.', which is
automatically added). Once the file type has been added, select it in the list of file
types on the left.

2. In the same dialog, select the Coloring tab.

• If the file type will be getting its ChromaCoding support from a Lexer, select the
Lexer radio button and choose the appropriate Lexer from the Lexer combo-
box to associate it with the selected file type.

• If the file type will be getting its ChromaCoding support from a DLL, mark the
DLL radio button.

3. Once the language support method has been established, check and configure the
options on Tabs/Indenting tab (these features will be covered in Chapter 6
Editing Features) and on the Coloring tab to enable language-specific editing
features and coloring for the file type.

More information about Name Completion and CodeSense can be found in
Chapter 6 Editing Features. Symbols are described in Chapter 10 Search and
Replace and Other Navigational Tools..

1

Using Hawk™

72

5

When a source file with the new extension is opened, syntax colors (ChromaCoding)
should be visible. Other features supported by the corresponding Add-On or lexer are
also available.

Aliasing

If there is no language support DLL for a particular file type, there are two remaining
options available, including creating a DLL or adding support by creating a lexer
(described in the previous section). There is some information on creating a language
DLL in Chapter 15 Extending Hawk.

An alternative way to add language support is to alias the unsupported file type with a
supported file type. If the code style of the unsupported language is similar to one that
is supported, all of the templates, keywords, and coloring for the existing file type are
used by the unsupported file type. Keywords can be added to the supported file type's
list for additional coloring.

To alias, or map, a file type to one that already exists, complete the following steps:

1. Go to the Customize -> Language dialog and press the New Type button.

2. Add the _new_ file type.

3. Highlight the _new_ file type in the list of file types on the left.

4. Press the Map Type to button and enter the file type that will be the alias for the
unsupported language.

5. Save and exit the dialog.

When source files of the unsupported extension are opened, they use the language
support of the file type to which they are mapped.

Some of the tabs in the Language dialog are unavailable for mapped or aliased files.
This is due to the fact that aliased file types use the language-specific functions of the
type to which they are mapped. In such cases, changes need to be made to language-
specific features (such as template expansion) for mapped file types can only be made
to the original file type to which the unsupported language is aliased.

1

73

Editing Features

This chapter covers the following sections:

Templates and Brace Expansion

Indenting

CodeSense

Comments and Comment Boxes

HTML Editing

Hex Editing

Clipboard and Scrap Buffers

API Assistant

Using Help in Hawk

Printing

6

1

Using Hawk™

74

6

Templates and Brace Expansion
This section discusses working with templates and brace expansion.

Templates

Templates may be language-specific (associated with a particular programming
language) or language-independent. They make it possible to insert frequently used
text into various files at the press of a button. In addition, when appropriate
abbreviations are used, templates can automatically expand common statements
made in different programming languages.

Language-Specific Templates

Language-specific Template Expansion is activated on a per-file-type basis in the
Customize -> Language -> Templates dialog. To use it, highlight the
appropriate file type and mark the Template Expansion option.

Templates work similarly to the example shown below.

Example

Type if and press the space bar.

The appropriate ending statement and any necessary parentheses or curly braces are
inserted in the appropriate positions for the statement, as shown below:

if ()

Creating and Modifying Language-Specific Templates

Because templates are associated with a specific programming language, Hawk
associates them with file types used in that programming language.

Two methods are provided for adding template constructs or changing those already in
existence:

• Templates defined for a particular file type can be viewed, added, and changed on
the Customize -> Language -> Templates dialog. Use the
dialog to view, create, and modify the abbreviations that trigger
template expansion and the string values associated with them.

• Add templates by directly editing Hawk’s configuration file. Use a call to
ExtAssignTemplate under the [Editor] heading of the CWRIGHT.INI file.
ExtAssignTemplate is a Hawk API.

• There are three string parameters used by ExtAssignTemplate. The first
discusses which file extension to associate with the template (such as .C or .SC).
The second string parameter specifies which word or abbreviation should trigger
the template expansion (such as "if" or "else"). The third string is the template.

Help for Hawk APIs can be found in Hawk's online help using the Search For Help
On… menu item in Help menu.

1

Chapter 6: Editing Features

75

6

.

Special characters exist for use in language templates. Table 6-1 defines these
characters.

Examples

Most templates take up more than one line in the document. Therefore, you need to
specify the locations of new lines in the template string. In most templates, you also
need to specify a location in which the cursor is placed after the template is inserted.

Below are some sample template strings that show how special characters are used to
construct templates:

"if (&)\n{\n}"

"do \n{\n\t&\n}\n while();"

"for (&; ;)\n{\n}"

The following line shows how the complete ExtAssignTemplate line might look in
the configuration file:

ExtAssignTemplate=".PAS","proc","Procedure &();\nBegin\nEnd;"

The above example adds a template to use when editing files with the extension .PAS.
When the word "proc" is typed and followed by a space, a template for a Pascal
Procedure is inserted in the document. The cursor is positioned at the point where the
name of the procedure would be entered.

The ExtAssignTemplate function is described in the Hawk's online help.

Non-Language-Specific Templates, Function and File Headers, and Macros in Templates

The templates described up to this point have been language-specific, which means
they need language support to work. For more information about this topic, see
Chapter 5 View Setups and Language Support.

Templates that can be used without language support are described in this section, as
well as template macros (macros that perform specific functions inside templates).
Note that template macros can be used in language specific macros, as well as non-
language-specific macros.

More information on CWRIGHT.INI is provided in Chapter 17 Configuration Files
and Command Line Parameters.

Table 6-1. Special Characters
Character Purpose

\n New Line--simulates pressing Enter

& Specifies cursor position after template insertion

@ Issues a backspace

\c Insert ‘c’ literally, (for instance, \&, \@, \\)

\t Insert a tab

1

Using Hawk™

76

6

Two templates provided with Hawk are prime examples of non-language-specific
templates. These templates insert C++ function and file headers into the current
document. Even though the headers contain C++ language constructs, they can be
modified. In addition, new headers can be created that will insert any kind of text,
whether it is for a programming language or not. The headers are contained in two
template files in the Hawk home directory. The names of the files are FILE.TPL and
FUNCT.TPL.

• Two buttons on the Edit toolbar are used to insert the contents of FILE.TPL
and FUNCT.TPL into the current document. The buttons use the function
ExtExpandTemplate to insert the templates. The same function can be used to
insert templates with any Hawk button or Keystroke. Details for the
ExtExpandTemplate function can be found in Hawk's online help..

To see examples of how ExtExpandTemplate is used, look at the function
bindings for the two buttons on the Edit toolbar. The function bindings for the
toolbars can be viewed on the Bindings tab of the Toolbars dialog. To view the
function bindings, highlight the Edit item in the list of toolbars and scroll through the
toolbar's buttons in the right window. The function bindings for each button will appear
in the Function Bindings. The first two buttons on the Edit toolbar are the
buttons that insert the headers.

The function binding for the function header looks similar to the following:

ExtExpandTemplate %ffunct.tpl$

This command uses the %f template macro to insert the contents of FUNCT.TPL,
which contains the function header. The trailing $ is used to delimit the filename string.

Template macros can also be used within templates. FUNCT.TPL contains the '%q'
macro, which presents a prompt that queries the user for information which will be
used in the template. To understand how template macros can be used, a few more
macros will be added to FUNCT.TPL.

Below are the contents of FUNCT.TPL without modifications:

/*
 ** %qEnter function name:$
 *
 * PARAMETERS:
 *
 * DESCRIPTION:
 *
 * RETURNS:
 */

The second line contains the %q query macro, which requests the name of the
function.

Below is a modified version of the same file:

/%rep*60

The Edit toolbar is turned on by marking the Visible option in the list of toolbars on
the Toolbars tab of the Tools -> Customize -> Toolbars dialog.

1

Chapter 6: Editing Features

77

6

 ** %qEnter function name:$
 *
 * PARAMETERS: &
 *
 * DESCRIPTION:
 *
 * RETURNS:
 *
 * CREATED: %date %time
 *
 * BY: %eUSERNAME$
 */

Below are the added macros:

%rep This macro repeats the * character 60 times.

& This macro specifies where to place the cursor at the end of the insertion.

%date This macro inserts the current date.

%time This macro inserts the current time.

%e This macro inserts the value associated with the specified environment
variable, USERNAME.The $ character is used to delimit the string.

Below is an example of a header added by the expansion of this template file:

/***
 ** MyFunc
 *
 * PARAMETERS:
 *
 * DESCRIPTION:
 *
 * RETURNS:
 *
 * CREATED: 08/16/95 11:45:50
 *
 * BY: milow
 *
• A complete list of the % macros available is displayed in Table 6-2..

The function and file headers and template macros described in this section can also be used
and inserted with Hawk’s CodeFolio Snippets feature, described in the section on CodeFolio
Snippets.

Table 6-2. Macros in Templates

% Macro Form Description

%colNum Move the cursor to column Num of the current line.

%date Insert a U.S. formatted date string at the current cursor position
(mm/dd/yy).

1

Using Hawk™

78

6

%db Delete to the beginning of the line.

%dcNum Delete Num characters at cursor.

%de Delete to the end of the line.

%dlNum Delete Num lines, beginning with the current.

%dw Delete the word at the cursor.

%eEnVar$ Insert the string value associated with environment variable, EnVar.

%fFilename$ Insert the named file at the cursor.
Any template macros within the file are also processed.

%home Move the cursor to the beginning of the line.

%lineNum Move the cursor to the line named by Num.

%mdNum Move down Num lines.

%meof Move the cursor to the end of the file.

%meol Move the cursor to the end of the line.

%mlNum Move the cursor left by Num columns.

%mrNum Move the cursor right by Num columns.

%muNum Move up Num lines.

%Num See ExtSetTemplateMacro.
When Num is 0 to 9, this refers to a user-definable string that may
be different for each extension. Any macros contained in these
strings are also expanded. These definitions are normally stored in
your configuration file or CWRIGHT.EXT. The macros 0 through
3 are used for custom indentation in predefined language
templates.

Higher numbered macros (10 through 31) are not extension
specific, but are otherwise similarly definable. They are reserved for
the use of individual users.

%open Open a new line following the current, similar to going to the end of
the line and pressing Enter.

%qPrompt$ Query for string to insert, using the string Prompt to prompt the
user

%repCNum Insert Num repetitions of character Ctrl.

%restore Restored a saved position.

%save Save a position for later restoration.

%time Insert a formatted time string. (hh:mm:ss).

Table 6-2. Macros in Templates

1

Chapter 6: Editing Features

79

6

CodeFolio Snippets

CodeFolio Snippets are pre-defined chunks of code, specific to a programming
language, that may be inserted into your current document. The style and structure of
code or text that follows a Snippet remains unaffected.

Snippets have a default file extension of .TPL; configuration details for Snippets are
stored in the file CODESNIP.INI.

To see a directory of the Snippets that are shipped with Hawk, click the CodeFolio
tab located on bottom-right tab of the Project window. The directory tree is
organized by language type, as shown in Figure 6-1.

Figure 6-1. Code Folio Tab on the Project Window

In addition to using Snippets that are shipped with Hawk, you can add directories
containing your own Snippets to the CodeFolio tab (refer to Adding or Removing
Snippets Directories in this chapter). Snippets can also be edited to conform to your
own needs (see Editing a Snippet, also in this chapter).

%tof Move cursor to the top (first line) of the file.
This requires %home to assure positioning at the first character of
the file.

%xFuncCall$ Execute the Hawk API function call in FuncCall.

This may be any function that could be assigned to a key or
otherwise executed through LibFunctionExec.

Table 6-2. Macros in Templates

1

Using Hawk™

80

6

Using an Existing Code Snippet

There are three ways to place an existing Snippet into a document. First, create a new
document by clicking File -> New or opening an existing document by clicking
File -> Open in the Client Area. Next, click the CodeFolio tab of the
Project window (shown below).

Figure 6-2. Project Window Tabs

Execute a Snippet by completing one of the following:

• Left-click on the desired Snippet and drag it to your file. The Snippet will be placed
where you drop the icon.

• Double-click on the desired Snippet. It will be automatically inserted at your cursor
position in the file.

• Right-click on the desired Snippet. Select Insert from the pop-up menu. The
Snippet will be inserted at your cursor position in the file.

Other examples of Snippets include the following:

TITLE.TPL

<HTML>
<HEAD>
<TITLE>Test</TITLE>
</HEAD>
<BODY>
<H1>Test</H1>

</BODY>
</HTML>

VBFUNCT.TPL

'--
''
' ** Test
'
' Parameters:
'
' Description:
'
' Returns:
'
'
'--

1

Chapter 6: Editing Features

81

6

Adding a Code Snippet

You may save portions of code that you have written as Snippets for later use. To do
so, complete the following steps:

1. Create a new file.

2. Type or paste in the desired code.

3. Save the file with a .TPL extension in the Hawk Snippets directory.

Creating a Code Snippet from the Current Document or Clipboard

You can paste selected text from the current document, or text from the clipboard, and
save that text as a new Snippet. To do so, complete the following steps:

1. Copy the desired text to the clipboard, or select the text in your document.

2. Right-click on the Snippet directory in which you want to save the new snippet,
or drag the selection to the appropriate Snippet directory folder.

3. The following menu displays:

4. Select Create Snippet from selection or Create Snippet from
Clipboard, as appropriate.

5. The Code Snippet Properties dialog displays (as shown in Figure 6-3). In
this dialog define the display name and storage directory for your new snippet. You
can also choose whether or not to expand macros upon insertion, whether or not
to match the level of indentation at the insertion location, and whether or not to
insert code “as is”. If you want to insert the snippet at the cursor, mark the
checkbox accordingly.

1

Using Hawk™

82

6

Figure 6-3. Code Snippet Properties Dialog

Deleting or Renaming a Snippet

You can delete or change the display name of a Snippet from the pop-up menu.

To permanently delete a Snippet from your system, complete the following steps:

1. Right-click on the name of the Snippet in the CodeFolio tab’s tree directory.

2. Select Delete.

To reference the Snippet as a different name, edit the name inline.

Renaming a Snippet does not change the name of the underlying file; it changes the
reference to the Snippet on the CodeFolio tab. To determine the actual name of the
Snippet file, complete the following:

1. Right-click on the name of the Snippet in the tree directory.

2. Select Properties. The Code Snippet Properties dialog displays, with
the actual filename in the File Name field.

Editing a Snippet

To edit the actual content of a Snippet, complete the following steps:

1. Right-click on the name of the Snippet in the CodeFolio tab’s tree directory.

2. Select Edit from the pop-up menu. The Snippet is displayed in a separate
window.

3. Edit as desired. Select File -> Save from the main menu to save your changes.

4. Close the Snippet file.

Adding or Removing Snippets Directories

You can add or remove a root level node from the tree directory on the CodeFolio tab. .

To add a root level directory, complete the following steps:

1. Right-click on the directory under which the new directory should be placed.

2. Select Add Directory from the pop-up menu.

To create or remove a subdirectory of an existing Snippets directory, you must add/delete the
folder outside of the CodeFolio tab.

1

Chapter 6: Editing Features

83

6

3. Browse for and select the desired Snippets directory on your system.

To remove a root level directory, complete the following steps:

1. Right-click on the directory you wish to remove from view.

2. Select Remove Directory from the pop-up menu.

When you remove a directory, you are not actually deleting the underlying files; you are
simply removing the directory and files from this view. When you delete the last root-
level directory, the system uses the default Snippets directory.

Brace Matching and Brace Expansion

Brace matching support in Hawk works several ways, including the following:

• The current buffer is checked to see that braces are balanced. This form is useful
for checking syntax.

• The text between a set of braces is highlighted. This form is useful in visualizing the
scope of the block defined by the braces and indenting blocks.

• The matching brace is located and the cursor is moved to it, either momentarily or
permanently.

All of the Brace Matching functions are available on buttons on Hawk’s Edit toolbar.
To turn on the Edit toolbar, mark the Visible option for the Edit toolbar on the
Customize -> Toolbars -> Toolbars dialog.

These services are performed by functions assigned to keys or buttons. You may wish
to customize these assignments or make new assignments. Key assignments may be
made through the Customize -> Keyboard dialog. Button assignments may be
made through the Tools -> Customize -> Toolbars dialog. More information
on customizing buttons and keystrokes can be found in Chapter 12 Customizing the
Interface.

Brace Function: Finding Unmatched Braces

There is a function supplied with Hawk, called Brace() that processes the current
buffer to look for unmatched braces. All braces matched within the file can be
specified.

One way to invoke the Brace function is to use Hawk's API Command Key. The
API Command Key accesses a prompt or dialog from which Hawk APIs can be
interactively used to perform their associated function. To access the API Command
Key, use one of the following methods:

• Press (if you are using the CUA keymap.

• Press) if you are using the BRIEF-compatible keymap.

• Select API Command from the Tools menu.

The Command Key is described in more detail in Chapter 4 Command Key, Libraries,
and General Environment.

To match all curly braces within a file, respond to the Command: prompt in the
following manner:

1

Using Hawk™

84

6

Command: Brace TRUE font

Ignore braces in comments, omit the TRUE parameter, or supply FALSE as a parameter.

The function shows its progress by displaying the number of the line it is processing on
the status line. If the function finds an unmatched curly brace, the cursor is positioned
on that curly brace.

Brace Highlighting

There are two functions that examine or operate on the text between matching curly
braces and parentheses:

• The first function is BraceMatchNext; it looks for the next left brace or
parenthesis, locates its mate, then highlights the text between them. On
subsequent calls, this function finds pairs nested within the highlighted set, or pairs
following the highlighted set.

• The second function is BraceMatch; this function operates similarly to
BraceMatchNext, except that it searches for a match to the brace at the cursor
position. If the curly brace at the cursor is a left brace or parenthesis, the function
searches forward for its mate. If it is a right curly brace or parenthesis, the function
instead searches backward for the mate. If it is neither a left nor a right
parenthesis or if brace is at the cursor position, the function searches forward for
the next matching set.

If the parameter to this function is omitted, it will look for braces only. Passing a
non-zero parameter to either of these two functions will cause it to look for
matching parentheses in addition to curly braces.

Brace Locating

The function BraceFind is provided for locating the brace, parenthesis, or square
bracket that is the mate for the one at the cursor position. It does not create a
highlight, but positions the cursor at the corresponding object.

The function also has what is termed a "kissing" mode; this can be activated by giving
the function a TRUE or 1 value as a parameter. In kissing mode, the cursor moves to
the corresponding object, but only momentarily. After a brief pause, the cursor returns
to its original position. This provides a method for making sure that the appropriate
block or clause is closed.

BraceFindEx()

BraceFindEx() is another brace-matching function that can be used from Hawk's
API Command dialog (API Command on the Tools menu), or bound to a button or
keystroke.

Since BraceMatch looks at the current cursor position, it is not effective for highlighting a
series of blocks in sequence. On subsequent calls to this function, BraceMatch "finds"
the pair that is already highlighted.

1

Chapter 6: Editing Features

85

6

BraceFindEx is an extended brace search and match function. It has a number of
flags that can be used together or individually for more flexible brace matching.

An example of how the BraceFindEx function follows:

Example

The following combination of flags works for finding braces within quotes:

BraceFindEx BRACE_BRACES -> BRACE_PARENS -> BRACE_FORWARD

Brace Expansion

Brace Expansion is a special key assignment for C and C++ language support. It is
activated on the Customize -> Language -> Tabs/Indenting dialog. Brace
Expansion works in the following way:

• Type a brace. It is automatically positioned. The closing brace is instantly inserted in
the correct position and the cursor is placed between them.

Brace Expansion operates very much like the brace template in template
expansion. The difference between template expansion and brace expansion is that
brace expansion inserts braces whenever the left brace ({) key is typed, while
template expansion does not insert braces until the space bar is pressed.

The sequence used by template expansion may be unnatural for some programmers;
therefore, brace expansion provides an alternative. Brace expansion may also be useful
for users who do not want full template expansion, but want the benefits of automatic
brace insertion.

Align Beginning and End of Block

Align <begin/end block> is a brace-expansion feature in Hawk that
automatically positions language constructs that begin and end blocks (such as braces
in C and C++) as you type them.

Example

Set the alignment setting on the Customize -> Language ->
Tabs/Indenting dialog to Unindented Block. The closing curly brace for the
following text will be positioned directly beneath the open curly brace whether that
brace is typed at column 3 or 30:

Void myFunc(void)

{

Align <begin/end block> is similar to Brace Expansion, except that it
does not instantly insert both the closing and opening braces when a brace is typed. It
simply realigns the closing brace as it is being typed. The checkboxes for Align
<begin/end block> are located on the Tabs/Indenting tab of the
Customize -> Language dialog and are only available if the language support for
the associated file type supports it. The options for Align <begin/end block>
and Brace Expansion are mutually exclusive.

1

Using Hawk™

86

6

Indenting
This section discusses spaces and tabs, indentation, and alignment.

Setting Spaces and Tabs

Before editing a file it may be necessary to control which characters are inserted when
the tab key is pressed. In some cases, you may not want to have actual tab characters
inserted in a file. Hawk has an option for setting the tab key to insert spaces rather than
tabs on the Customize -> Language -> Tabs/Indenting dialog. To set the
tab key to insert spaces, unmark Use tabs. Remember that all changes made in the
Language dialog are language specific; therefore, be certain to highlight the file type
of the language of choice before making any changes.

The Tabs/Indenting tab is also where you set the size of tab-stops. The string
placed in the Tab Columns editbox describes where tab stops will occur. Tab stops
are placed at the columns specified in the string. For evenly spaced tab stops, you
need not specify more than two column numbers. Hawk calculates the interval
between the last two column numbers and repeats that interval between tab stops all
the way out to the number specified in the Maximum Column field. The column
count begins with 1, not 0.

Example

A four-column tab stop would be set by inserting the following numbers: 5 9.

It works in the following way:

The cursor starts in column 1. When the tab key is pressed, four columns are added,
putting the cursor in the fifth column. When the tab key is pressed again, four columns
are added, putting the cursor in the ninth column, and so on, thus explaining the
reason for the "5" and "9".

Tab settings can also be set on a per-document or per-window basis in the Document
-> Manager -> Tabs/Indenting dialog.

Seek Indentation and Smart Indenting

There are two Indenting features that can be enabled in the Customize ->
Language -> Tabs/Indenting dialog that make editing tasks easier. The
features are Seek Indentation and Smart Indenting.

• The Seek Indentation function searches backward for a line containing
printable characters and duplicates its level of indentation. It has options for the
type of white space to be inserted when the indentation occurs, whether the white
space consists of spaces, tabs or virtual space.

• Smart Indenting automatically indents according to common usage for the
line of the language being edited. If the word (or character) being typed is one for
which the following line is commonly indented, the indention occurs after pressing
Enter.

1

Chapter 6: Editing Features

87

6

Example

A line in a .C file might end with a curly brace, or begin with while. When you press
Enter to terminate the line after the curly brace, the next line will automatically be
indented.

Smart Indenting may be thought of as an extension of the Seek Indentation
feature. Smart Indenting may be used with Seek Indentation turned off, but
leaving it on ensures the most consistent appearance.

Smart Indenting will not to automatically indent lines that are being typed in a
comment. The languages for which Smart Indenting is supported include C,
C++, Pascal, dBASE, Visual Basic and Paradox.

Block Alignment

All the editing features that discussed thus far in this chapter deal with indenting blocks
of code. However, preferences as to how indenting should occur may differ; thus,
Hawk offers several different indentation styles to choose from. These styles are set on
the Align tab of the Language dialog, as shown in Figure 6-4.

Figure 6-4. The Customize -> Language -> Tabs/Indenting Tab

The Tabs/Indenting tab is used for selecting between several popular forms of
block indentation to be used for brace expansion and template expansion. Choose
from the following indentation styles:

• The Unindented Alignment places the block delimiters ({ and }, BEGIN
and END) at the same level of indent as the controlling statement that precedes
the block. Statements between the block delimiters are indented.

• The Line Saver Alignment places the opening block delimiter ({ or BEGIN,
for example) on the same line as the controlling statement that precedes the block.
The closing block delimiter (} or END, for example) is at the same level of indent
as the controlling statement. Statements between the block delimiters are
indented.

• The Indented Alignment is where the block delimiters (for example, { and },
BEGIN and END) are indented, compared to the controlling statement that
precedes the block. Statements between the block delimiters are not indented.

1

Using Hawk™

88

6

Name Completion
Name Completion automatically complete strings that occur in the current document,
the current project, or the symbols database as they are typed. (The Symbols database
is used for storing information that is used for editing and navigating code and is
described in Chapter 10 Search and Replace and Other Navigational Tools).

Name Completion is not turned on by default. To turn it on, mark Name Completion
in the Customize -> Language -> CodeSense dialog. Mark related settings in
the Name Completion group as desired.

The strings that name completion draws from are parsed as follows:

• Strings that occur in the current document are parsed by the Word delimiters
listed in the Customize -> Language -> Options dialog. The word delimiters
are customizable.

• Strings that are contained in CodeSense databases are parsed by one of the
following:

• By file-type specific parsers that are listed in the Outline Parsers dialog.
Click Symbol Patterns in Customize -> Language -> CodeSense to
access the dialog.

• By CodeSense (see the following topic CodeSense for more information).

To use Name Completion type the first few characters of the word to be completed
and press Ctrl-space.

CodeSense
Hawk offers a feature called CodeSense that provides advanced "word" completion for
.C, .CPP, .H, .HPP, .CS and .JAVA files. It works by gathering information about functions,
methods, structures, unions, namespaces and other pieces of code in source files and
then using the information for editing and informational purposes.

Information provided by CodeSense is automatically filtered based upon the file type of
the file you are currently editing. (e.g. If you are editing a C document, CodeSense will
not return Java information.)

The following topics describe CodeSense in detail and offer some troubleshooting tips
in the event that the feature does not work as expected.

Where CodeSense Gets its Information

CodeSense gets its information from databases and from files that are open in Hawk.
The next topics describe how that information is derived.

Library and Project Databases

The core of the CodeSense feature is composed of databases that store information
gathered from parsed code. The information for the databases is found in the following
places:

1

Chapter 6: Editing Features

89

6

• From C/C++, C# and Java source files in any of the library databases listed in the
Customize -> CodeSense Global Configuration dialog. These
databases can reference directories of individual files or .zip/.jar files.

To display the properties of any scanned library database, highlight the database
name and press the Properties button. If the Properties dialog indicates
that you do not have an optimal version of the library database, especially if it is a
full release different, you may want to press Rescan to rescan the database.

• From C/C++, C# and Java source files in Hawk projects. To display the properties
of the current project’s files that have been scanned for CodeSense use, plus files
parsed by the outline parser, select View Symbol DB Properties from the
status line CodeSense popup menu (right-click on the status line icon to access).
If the Properties dialog indicates that you do not have an optimal version of
the project database, you can right-click on again and select Rescan symbol
DB Files. If the project database is a full release different, and therefore invalid,
it will be rescanned automatically.

• From C/C++, C# and Java source files that are listed in the file list on Hawk's
Output Symbols Window. Files in projects should already be in the list. The next
topic describes how to add files to this list.

Add a File to Symbols Window File List

Some CodeSense information is gathered from files listed in the Symbols Window file
list. Files that are in the current project will already be in the list. To add additional files
to the list, do the following:

1. Click the Symbols tab of the Output window (located by default at the bottom
of the Hawk screen).

Figure 6-5. Symbols Window

2. Click the File List button to access the Edit Symbol File List dialog
and type in or browse for the file to be added to the list.

1

Using Hawk™

90

6

Figure 6-6. Edit Symbol File List

The following steps will also work to access the Edit Symbol File List
dialog:

3. Right-click on the left most status bar icon to access the CodeSense popup menu.

4. Click Edit Symbol DB File List to access the Edit Symbol File
List dialog.

5. Type in or browse for the file to be added to the list.

CodeSense for Files that are Open in Hawk

In addition to the information that CodeSense gets from library and project databases, it
also gets information from C/C++, C# and Java files that are open in Hawk. The
scanning process for open files relies on the option CodeSense DLL in the
Customize -> Language -> CodeSense dialog. Make sure this option is selected
for the appropriate file types (.C,.CPP, .CS and .JAVA).

CodeSense information that is gathered from open files is stored in memory rather
than in databases. It is specific to the files that are open and will only be available while
the files are open. This feature allows CodeSense to display information from files that
have not yet been saved to disk.

CodeSense Global Configuration Dialog

The bulk of the information for CodeSense is gathered from and stored in CodeSense
library databases. CodeSense library databases are listed in the CodeSense Global
Configuration dialog. They start out as directory locations for C/C++, C# and Java
files. Several default library databases can be installed with the Hawk installation. They
will appear in the dialog if they were installed. If the appropriate library database is not
available with the Hawk installation, it can be created.

1

Chapter 6: Editing Features

91

6

Regardless of the manner in which a library comes to be listed in the CodeSense
Global Configuration dialog, it must always be scanned at least once in order
for a database to be created. Libraries that are installed with Hawk have already been
scanned. If a library has not been scanned, a "(missing)" message will appear to its
immediate right. This means that it does not have an underlying database. Press
Rescan to have CodeSense scan the selected library and create a database.

CodeSense will only perform lookups on scanned library databases that have been
checked in the CodeSense Global Configuration dialog. Lookups for library
databases are done in the order in which they are listed in the dialog. Moving libraries
up and down in the list and unmarking those that are not immediately needed will
speed up the lookup process.

Figure 6-7. CodeSense Global Configuration

The CodeSense Global Configuration dialog can be accessed from two
alternate locations:

• From the Customize menu, by clicking CodeSense Global
Configuration.

• From Customize -> Language -> CodeSense, by pressing Global
Configuration.

Create CodeSense Library Database

In many cases, it will be necessary to create a new library database pointing to source
code that CodeSense will scan. Do the following to create a CodeSense library
database:

1. Click Customize -> CodeSense Global Configuration.

2. Click Add to bring up the Add Library Database dialog.

1

Using Hawk™

92

6

3. Give the library database a name, and then either type the path to the correct
location of the source files or browse for the correct location (use the Dir button
to browse for a directory, or the File button to browse for a .zip/.jar file). If you
want CodeSense to include subdirectories at the location at which files will be
scanned, put a check in the Include Subfolders when Scanning box.

4. Mark the option Full Source to have CodeSense scan all .C, .CPP, .H, and .HPP files
in the specified CodeSense library database directories. Leave the option empty to
have CodeSense scan only .H and .HPP files in the specified directories. This option
does not apply to C# or Java. All .CS and .JAVA files will be scanned regardless.

5. Click OK, then OK again. CodeSense will begin scanning the files in the specified
directory to create a database. Note that the newly-created library must be checked
in the CodeSense Global Configuration dialog in order to make its database
information available to Hawk.

Edit CodeSense Library Database Location

The default library databases provided with the Hawk installation may or may not point
to valid directories, depending on a system’s setup. Attempting to scan an invalid library
database will result in a message prompting to change its directory. Do the following to
change the location of a CodeSense library database:

1. Click Customize -> CodeSense Global Configuration.

2. Highlight the library to be changed.

3. Click Edit.

4. In the Edit Library Database dialog, either type the path to the correct
location of the source files or browse for the correct location (use the Dir button
to browse for a directory, or the File button to browse for a .zip/.jar file). If you
want CodeSense to include subdirectories at the location at which files will be
scanned, put a check in the Include Subfolders when Scanning box.

5. Mark the option Full Source to have CodeSense scan all .C, .CPP, .H, and .HPP
files in the specified CodeSense library database directories. Leave the option
empty to have CodeSense scan only .H and .HPP files in the specified directories.
This option does not apply to C# or Java. All .CS and .JAVA files will be scanned
regardless.

6. Click Rescan. CodeSense will begin scanning the files in the specified directory to
create a database.

7. Click OK, then OK again. Note that the newly-edited library must be checked in the
CodeSense Global Configuration dialog in order to make its database
information available to Hawk.

Delete CodeSense Library Database

As mentioned, default library databases can be placed in the CodeSense Global
Configuration dialog at installation. They are there for convenience only. They may
not be useful for all systems. If inapplicable databases have been installed, it may be
desirable to delete them. Do the following to delete a CodeSense library database:

1

Chapter 6: Editing Features

93

6

1. Click Customize -> CodeSense Global Configuration.

2. Highlight the library to be deleted.

3. Press Delete. A prompt will ultimately appear asking if the underlying database
should also be deleted. Click Yes to delete the database, then click OK...

Parser Priority/Resource Use

The CodeSense scanning process works on a background thread. It should not interfere
with other Hawk processes. It has been known, however, to occasionally be time and
resource intensive. If you find that your CPU usage is high because of CodeSense, you
may want to set the parser priority to low. Mark Low in the Parser Priority
section of Customize -> CodeSense Global Configuration to do this.

CodeSense Databases

Once the necessary CodeSense library databases have been established in the
CodeSense Global Configuration dialog, and the Rescan button has been
pressed if necessary, the libraries will be scanned for information that will be stored in
databases for future use. Project and Symbols Window File List databases will be
created automatically given that:

• CodeSense DLL is marked in Customize -> Language -> CodeSense
(marked by default for .C, .CPP, .H, .HPP, .CS and .JAVA files).

• Auto-update symbol database and Show Definitions in Symbols
tab are marked for the Symbol file option in the Project Properties
dialog. This dialog is accessed by selecting Project -> Settings ->
Directories

• A Hawk project containing C/C++, C# or Java files is open and/or .C, .CPP, .H,
.HPP, .CS and .JAVA files are listed in the Symbols Window’s file list.

Database Files

CodeSense databases are comprised of the following files:

FILE.CDX

FILE.DBF

FILE.FPT

SYMBOL.CDX

SYMBOL.DBF

SYMBOL.FPT

An additional file with a .SBL extension is also included among the database files,
though it is kept separately from the other files. The files can be found at the following
locations:

Databases that were created from the files in a Hawk project must be deleted outside of Hawk,
from Windows Explorer. Hawk should be closed before these databases are deleted. See the
topic Database Files to find out what files to delete and where they are located.

1

Using Hawk™

94

6

• Database files that are created for CodeSense library databases are located in the
SENSEDBS\<Library Name> directory of the Hawk home directory.

• The .SBL file is located in the Hawk home directory when no project is open and is
called mwhawk.sbl.

• If a project is open, the .SBL file is located in the project’s directory and is named
<Project Name>.SBL.

• Database files that are created for Hawk projects are located in the <.SBL file
path>\<Project Name.cs_> directory.

Database Corruption

Sometimes CodeSense databases can become corrupt. While CodeSense is designed
to detect database corruption, it is not foolproof. If it detects corruption in a database
created from a CodeSense library database, a "(Corrupted)" message will appear in the
CodeSense Global Configuration dialog to the immediate right of the library.

If database corruption is suspected, all database files should be deleted for that
database. CodeSense library databases can be deleted in one of two ways:

• By pressing the Rescan button for a selected library in the CodeSense Global
Configuration dialog. This will cause the underlying database files to be
deleted and the coinciding source files to be rescanned.

Use the following steps to rescan a CodeSense library database:

1. Go to Customize -> CodeSense Global Configuration.

2. Highlight the library database to be rescanned.

3. Press Rescan.

• By pressing the Delete button for a selected library in the CodeSense Global
Configuration dialog. A message will ultimately appear asking if the underlying
databases should also be deleted. Click Yes to delete the database. See the topic
Delete CodeSense Library Database for numbered steps to delete a library
database. Note that you will have to recreate the library database in order to rebuild
it.

To rescan databases that are maintained for projects:

1. Right-click on the Symbols tab of Hawk’s Output Window.

2. Select Rescan symbol DB files from the resulting popup menu.

3. To delete and rescan databases that are maintained for Hawk projects:

To delete and rescan databases that are maintained for Hawk projects:

1. Exit Hawk and go to Windows Explorer.

2. Navigate to the directory containing the project (.PJT) file.

3. Delete the project database. See the topic Database Files earlier in this chapter to
get a list of the files and locations that make up the database. Project files will be
rescanned automatically when the project is open so long as the following
conditions are met:

1

Chapter 6: Editing Features

95

6

• CodeSense DLL is marked in Customize -> Language -> CodeSense.

• Auto-update symbol database and Show Definitions in
Symbols tab are marked for the Symbol file option in Project
Properties Directories dialog.

Using CodeSense

Once you have loaded the programming libraries needed to recognize your symbols
and functions, you are ready to use CodeSense. Instructions for using the Auto-list
Members, Auto-type Info and Auto-parameter Info features (in
Customize -> Language -> CodeSense) are described in the following
sections.

Name Completion

To have CodeSense complete or show a list of possible matches for symbols when C-
Space is pressed, mark Name Completion in Customize -> Language ->
CodeSense. Once marked, the option can be used by pressing C-Space at
appropriate times while typing. The option is marked by default for .C, .CPP, .H, .HPP,
.CS and .JAVA file types.

Figure 6-8. Example

.

The following Name Completion options are available in the CodeSense dialog:

• Complete Document: Searches the entire document when looking for a string that
matches the one being typed.

• Symbol Database: Searches through the Symbols database (*.SBL) for a matching
string.

• Cycle Through: If multiple matching strings are found, matches are cycled until the
desired string is found.

• Show List: If multiple matching strings are found, all matches and their definitions
are shown in a drop-down list.

• Even for Single Matches: Matching string(s) are shown in a drop-down list, even if
there is only one match, rather than automatically entering the string into your
document.

• Ignore Case: Turns off case sensitivity when searching for strings that match what
you have typed.

When you highlight a definition in the list of possible matches, the Hawk status line displays
the name of the database and file in which the definition can be found. If desired, click on the
symbol’s representative (Go To) image to open the identified file with the cursor positioned
on the selected definition.

1

Using Hawk™

96

6

Auto-list Members (Standard)

The standard Auto-list Members feature helps you finish typing symbols. Once
you have entered a few characters, complete the following steps:

1. Press Ctrl-space to bring up a list box of context-sensitive symbols to choose
from (shown in Figure 6-9). The symbols begin with whatever you have typed so
far; the definition of each symbol is provided in the right-hand column.

Figure 6-9. Sample Word Completion Drop-down List

2. Highlight the appropriate symbol from the list.

3. Press (the Go button). The definition of the symbol within the library’s source
code is displayed (as shown below).

Figure 6-10. Sample Definition within Library Source Code

4. Press Enter. The highlighted symbol is entered into your document automatically,
completing the word you began.

Auto-list Members (Special Types)

CodeSense handles certain types of symbols (structs, classes, unions and enums) a bit
differently. To use the Auto-list Members feature for these symbols, complete
the following steps:

1. Type in the symbol, followed by a “.”, “->” or “::” as appropriate. The latter triggers a
drop-down list (similar to the one shown above) with all the members of that
symbol and their definitions.

2. When you see the appropriate symbol, highlight it and press (the Go button).
The definition of the symbol within the library’s source code is displayed.

3. Press Enter. The highlighted symbol is entered into your document automatically.

Auto-type Info

To use the Auto-type info feature, simply hover the mouse over the desired symbol to
display a tooltip defining that symbol.

Auto-Parameter Info

To help you accurately enter function parameters, CodeSense displays the complete
function prototype in a tooltip. As soon as you enter a left parenthesis to start writing a

1

Chapter 6: Editing Features

97

6

function call, CodeSense offers the function prototype with the current parameter
highlighted in bold. A sample is provided below.

Figure 6-11. Sample Function Call Tooltip

Once you type a right parenthesis or move your cursor away from the function call, the
tooltip disappears.

Comments and Comment Boxes
There are two items on the Text menu that are used for automatically inserting
comments into your code; these are the Comment and Comment Box. These menu
items draw a user-defined border around selected text. This feature makes it
convenient to write the text of a comment employing word wrap, then to add the
comment characters later. The border may be a comment block or any decorative
characters you care to use. The strings used for these borders are defined on the
Comment tab of the Language dialog, shown in Figure 6-12.

Figure 6-12. Comments tab of the Customize -> Language -> Comments Dialog

Define the look of Comments and Comment Boxes as follows:

• The Comment item adds a purely functional left and right border, which may serve
as the beginning and end of a comment. The default for this item is to add /* to
the beginning of each line or line segment in the selection, and to add */ at the
end of each.

• The Comment Box item does the same, but adds a decorative top and bottom
line. This type of comment is usually used for an eye-catching multi-line comment
at the beginning of a function or file. It is primarily for line selections, but may also
be used for column or stream selections.

1

Using Hawk™

98

6

The left side of the border is placed at the beginning of the line, or, in the case of a
column selection, in the first column of the selection. The right side of the border is
placed at the first tab stop to the right of the longest line in the selection.

HTML Editing
Hawk provides several features that make it ideal for HTML editing. These features are
described in the following sections.

HTML Language Support

When HTML files are opened in Hawk, ChromaCoding is immediately available. All
HTML keywords, comments, and strings are colored instantly. Template expansion
(see Templates and Brace Expansion) is also available for automatic insertion of
opening and closing tags with correct cursor positioning to allow for quick completion
of statements.

HTML Popup Menu

An HTML popup menu is available whenever you press the shift key and right-click on
an open HTML document. The menu contains a number of commonly used HTML
tags that can be automatically inserted into the file being edited. If you click on the
New Document item, a basic template for a new Web page will be inserted. You can
assign the popup menu to another key or mouse combination by using the
Customize -> Keyboard menu and assigning the command 'DlgMenuPopup
HTML.MNU' to your favorite keystroke. Doing so adds an entry to the KmapAssign
section of Hawk's configuration file, mwhawk.ini.

The following example can be found in the KMapAssign section of CWRIGHT.INI:

[KMapAssign]

KmapAssign="<Shift-mouse_right_click>", "DlgMenuPopup HTML.mnu"

Items on the popup menu can be changed by using the Edit this menu item on
the popup menu, or by editing the HTML.MNU file directly (See Chapter 12
Customizing the Interface). Edit HTML.TPL to change the way the New Document
item on the popup menu behaves.

HTML Viewing – HTML WYSIWYG Editor/Viewer and Web Browser Interface

There are two methods for displaying Internet files being edited in Hawk. They include
the following:

• An HTML WYSIWYG Editor/Viewer

• An interface that displays files being edited in certain installed web browser(s)

These viewing methods are implemented through the installation of two Add-Ons that
can be loaded in Hawk’s Customize -> Libraries dialog. The process for
installing the Add-Ons is described next.

1

Chapter 6: Editing Features

99

6

Viewing Internet Files: Installation Instructions

To install Hawk’s HTML viewer or the web browser interface, do the following:

• Go to Customize -> Libraries and mark one or both of the following
boxes:

• HTML WYSIWYG Editor/Viewer
This installs CWHTML.DLL, to enable Hawk’s WYSIWYG HTML editor

• Web Browser as Viewer

This installs CWWEB.DLL, which turns on Hawk’s web browser interface. During
startup, this option searches for installed browsers and configures itself to interact with
any that are found. If no installed browser is found or supported, the DLL may be
configured manually. See the topic Web Browser Interface in Hawk’s online
help for information on configuring and using the web browser interface.

• If neither of the options described above are listed in the Libraries dialog, click
the Add button and select the appropriate DLL(s) from those listed in the Hawk
directory. Both installation methods cause Hawk to load the library into memory. It
also adds lines to the mwhawk.ini file so that the DLL(s) will automatically load
when Hawk starts up. Examples of the entries in mwhawk.ini follow:

[LibPreLoad]

LibPreLoad=cwweb.dll

LibPreLoad=cwhtml.dll

HTML Toolbar

Hawk has an HTML toolbar which can be turned on in the Customize ->
Toolbars dialog. It links to the API Assistant and available HTML keywords (see API
Assistant).

Using HTML WYSIWYG

Once you have loaded HTML WYSIWYG editor/viewer, do the following to use it:

1. Load an HTML file.

2. Make the HTML toolbar visible (if it is not already) in Customize -> Toolbars.

3. If not already depressed, depress the Toggle viewer button on the HTML
Toolbar. This turns on the WYSIWYG view. Once the button has been depressed,
several other buttons are made available. The buttons provide the following
functions:

• View and edit the current file in a split code/WYSIWYG window.

• View the current file in a full WYSIWYG window.

• View the current file in a full code window.

1

Using Hawk™

100

6

• The remaining buttons perform various HTML WYSIWYG and code-editing tasks
such as inserting tags, setting colors, and inserting tables and graphics. They will
be alternately available and unavailable as they apply to the view (code or
WYSIWYG) that currently has focus.

• You can view/test your document in Internet Explorer, Netscape Navigator,
Mosaic or Opera, if those browsers are loaded on your system. Add the
corresponding buttons to your HTML toolbar from Customize -> Toolbars
-> Select Buttons. If your filename or path contains a space, and you are
using Opera or Mosaic, open the file directly from the browser instead using
the File -> Open command.

Editing Capabilities

HTML WYSIWYG editing provides the following capabilities:

• Edit HTML files as normal documents. Text cut or copied from the WYSIWYG
window is available on the ClipView tab of the Output window.

• Quickly insert HTML tables and graphics.

• Resize HTML tables and graphics with mouse drag operations.

Differencing/Merging

By default, changes made in the code window must be saved or undone before editing
in the WYSIWYG window. Conversely, changes made in the WYSIWYG window must
be updated or abandoned before the code window can be edited. The Update

button transfers changes one-way, from the current window to the opposite view.

If you wish to enable differencing/merging (so the Update button combines changes

from both views and updates both views), press the HTML Options button to
invoke the HTML Configuration Options dialog and mark Enable
Differencing/Merging. Also on this dialog:

• Mark Enable WYSIWYG Editing to enable editing in the WYSIWYG window.

• Mark Open Viewer in Edit Mode to open the WYSIWYG viewer in editing
mode by default..

Differencing/merging in the HTML WYSIWYG window will be disabled if any of the
following load errors are encountered:

• Document contains one or more frame sets.

• Document contains server script too complex to be parsed.

• Document contains multiple <BODY>, <HEAD>, <TITLE>, or <HTML> tags.

• Document contains server script inside a <LISTING> tag.

• Document contains server script inside a <LABEL> tag.

You can also set these flags programatically using the HTMLConfigFlags API function,
described under Help->API Assistance On.

1

Chapter 6: Editing Features

101

6

• Document contains server script inside a <TEXTAREA> tag.

• Document contains server script inside a <SELECT> tag.

Hex Editing
A frequently used Hawk editing feature is Hex-mode editing. Hex mode allows you to
view and edit a file in hexadecimal values. You may edit the file by entering values for
each byte, or by typing the ASCII equivalent. Do one of the following actions to enter
Hex mode.

• Press CSh in the CUA or the BRIEF keymap.

• Press $ in the vi keymap.

• Use the button on the Edit toolbar (described briefly in Chapter 12 Customizing
the Interface) that switches the current document to Hex mode.

When you enter the Hex mode, the T key is redefined. It may be used to switch from
the Hex values to their ASCII equivalent, and back again. To return to Standard
mode from Hex mode, press the X key.

Hex mode displays the document offset at the left, 16 bytes of hex values in the
middle, and their ASCII equivalent to the right. The 16 hex values are divided into four
groups of four. Each value has two digits: a high nibble and a low nibble.

Insert vs. Overtype Mode

Most Hex mode editors cannot change the length of a file, and therefore are always in
Overtype mode. Hawk can insert characters while in Hex mode, and it will be in Insert
mode if you were in Insert mode before entering Hex mode. .

When entering text in the ASCII portion of the Hex mode display, insertions appear as
they do when you are in normal text mode, except that the text is in a rather narrow
column. When in the Binary portion of the Hex display, each byte is displayed as two
hexadecimal numbers, the high nibble on the left and the low nibble on the right.
When you type numbers (0 to F) in these positions, it changes or inserts the character
whose numerical equivalent you have typed.

You cannot insert a nibble; you must insert an entire byte. Therefore, when you type at
the high nibble position, both nibbles of the byte are inserted. The low nibble is initially
zero. The cursor is then positioned over the low nibble. The next number you type
replaces the value of the low nibble. Thus, as you type you will alternately see two
nibbles inserted and one nibble overtyped.

Handy Hawk Hex-Editing Features

Keep in mind the following Hawk features when using Hex mode:

If the file or portion of a file you are editing is length-sensitive, you will probably want to toggle
to overtype mode.

1

Using Hawk™

102

6

• Highlighting text in Hex mode will highlight the corresponding ASCII side.

• Hex characters can be copied, cut, and pasted in the same manner that ASCII
characters can, but the document to which the hex characters are being pasted
must be in hex mode in order for the pasted text to appear in hex; otherwise, hex
characters are pasted in ASCII.

• When the cursor is in the hex side of the document, a "black on yellow" color mark
will appear for the character opposite the cursor in the corresponding ASCII side.
The color mark will appear in the same way in the hex side of the document if the
cursor is in the ASCII side. This helps track the hexadecimal equivalent if in ASCII
mode or the ASCII equivalent if in hex mode.

• The cursor will wrap on either editing side to the next/previous line when the
right/left arrow key is used..

Clipboard and Scrap Buffers
In Hawk, copy and paste operations can be stored in the Windows Clipboard or in
Hawk's Scrap Buffers. To toggle between Clipboards and Scrap Buffers,
select one or the other on the Edit pull-down menu. In both cases, multiple buffers
are allowed.

Scrap Buffers

Hawk offers the option of using Scrap Buffers as the staging area for local cut and
paste operations. Scrap Buffers can be used within or between edit documents in
Hawk much as the Windows Clipboard is used for cut and paste operations
between applications.

Hawk also supports the Windows Clipboard for transferring data between programs.
Choose the repository you want to use from the Edit menu.

Multiple Clipboard/Scrap Buffers

Hawk allows the use of multiple Clipboards or Scrap Buffers. The number of
buffers available can be defined by clicking Customize -> Environment ->
Clipboard dialog (shown in Figure 6-13). The default is one.

Tips for searching and replacing binary and hex characters can be found in Chapter 10
Search and Replace and Other Navigational Tools.

1

Chapter 6: Editing Features

103

6

Figure 6-13. Tools -> Customize -> Environment -> Clipboard Dialog

The Clipboard tab also has an Auto-increment Clipboard/Scrap Buffer
option. This option works for both the clipboard and the scrap buffer. The
clipboard/scrap buffer to use is incremented immediately prior to copying or cutting
new content. If the highest numbered clipboard/scrap buffer is already the current
one, the zeroth one is used next.

Check the Store Clipboard/Scrap Options in project file option to
store these Clipboard/Scrap settings with the project currently open. If the box is
checked but no project is open, options selected on the Clipboard tab are stored as
default settings for use with future projects.

Select RTF to save information to the clipboard in Rich Text Format, RTF, as well as
standard text format. Select HTML ,Hypertext Markup Language, to save information to
the clipboard in HTML format in addition to standard text format. These options are
only available for clipboard storage.

Select Expand Tabs to replace tabs with the proper number of spaces to reach the
next tab stop. This option works when copying content from Hawk, and uses the tab
stops in the current Hawk document at the time the clipboard content is rendered.
Rendering occurs when the first application requests the clipboard content, such as
when the information is pasted into another application or when Hawk exits.

The Expand Tabs option will work as long as it is selected prior to the clipboard content
being rendered. Currently, it only affects RTF clipboard content; tabs are always
expanded for HTML content.

This option is only available for clipboard storage.
If the Windows® Clipboard Viewer application is running, it may render the clipboard
contents immediately, rather than at the time of the paste operation.

1

Using Hawk™

104

6

When RTF or HTML format is requested, Use All Background Colors may be
selected to preserve the background color settings from the View Setup in the
clipboard content copied from a Hawk document.

If Use All Background Colors is not selected:

• The clipboard content uses the default background color of the external application
into which you are pasting; and

• A different background color is only generated in the pasted content if the
background color of a particular character in Hawk is different from the background
color for the Text element of the controlling View Setup.

Clipboard/Scrap Viewer

An extra tab for viewing the contents of the current Clipboard or Scrap Buffer
can be turned on for the Output window. The tab is called ClipView; it is displayed
in Figure 6-14. Make the ClipView tab of Hawk's Output window visible by
marking the Clipboard/Scrap Viewer option in the Tools -> Customize -
> Libraries dialog.

Figure 6-14. The ClipView Tab

The ClipView tab provides the following functionality:

• The Select button selects the currently displayed clip or scrap buffer to be the
default repository for copy/cut operations. The button is not available if the buffer
displayed in the ClipView window is already the default repository.

• The Paste button pastes the contents of the ClipView window.

• The Delete button deletes the contents of the ClipView window.

• The Overview button allows you to view all Clipboard/Scrap Buffers
available (you may have to use scroll bars to see additional buffers). When you are
in Overview mode, the Detail button returns you to the current
clipboard/buffer view only.

• The Clipboard and Scrap Buffer radio buttons allow you to view the
contents of Clipboards or Scrap Buffers, and to select either as the current
repository for copy/cut operations.

• The Increment Clipboard/Buffer change the number in this field to view
the contents of another Clipboard or Scrap Buffer.

1

Chapter 6: Editing Features

105

6

API Assistant
The API Assistant is an editing tool for Hawk that completes and inserts functions,
with their appropriate parameters, at the cursor position in the current document.

Using the API Assistant

1. Begin using the API Assistant by selecting API Assistance On from the Help
menu. If there is a word near the cursor at the time that the API Assistant is
accessed, Hawk will attempt to locate assistance for that word. If no word is
nearby, the Find Assistance dialog box appears.

2. Enter either the name or a part of the name of the desired function. If more than
one occurrence of the word is found, the Find Assistance dialog box displays
a selection to choose from. Double-click on the desired function name or select it
and click OK.

3. A dialog box for the function appears. Enter the parameters for the function in this
dialog box. There is an edit box for each parameter used by the subroutine or
function. Initially, each edit box contains the parameter type for each parameter.
Also, some functions will have an example parameter name for that parameter
displayed with the parameter type. This makes it simple to ensure that all necessary
parameters are supplied, and are of the correct type. If additional information is
needed, press the Help button to see the Windows API Help entry (or other help
file entry) for that subroutine or function.

When the form is completed, press OK and the information provided is assembled into
a complete function call, including commas and parentheses, and inserted into the
document.

Using the Checkboxes

If there are check boxes in the function or subroutine’s dialog box, they are usually
associated with a numeric parameter, such as an integer. The values checked, as
represented by the predefined labels, are ORed together in the resulting function call.

API Assistant Example

Refer to the following example and Figure 6-15 for information on using the API
Assistant:

The API Assistant can be used to help complete the gfx_alloc_mem function
from the OS-9 MAUI® API:

1. Access API Assistance On from the Help menu to bring up the Find
Assistance dialog.

1. Type gfx_alloc_mem in the Keyword dialog box and press Enter to bring up
a form containing the gfx_alloc_mem function and empty edit boxes to fill in for
the function's parameters. Check boxes for the function's numerous flags are also
available.

1

Using Hawk™

106

6

Figure 6-15. The API Assistant (gfx_alloc_mem()) Dialog

2. Fill in the necessary parameters.

3. Once the desired parameters have been inserted, click OK to insert the
gfx_alloc_mem function into the current file.

Currently, API Assistance is provided for the OS-9 API, Standard C Library
functions, Sun Java, HTML, and the Hawk API.

Modifying the Database

One of the sample “tools” placed at the end of the Tools menu is the API
Database Editor. The API Database Editor is for modifying and making
minor additions to any of the API Assistant’s databases. The database editor provides
the primary method by which parameters may be presented as a series of choices,
rather than simple edit boxes. Presenting the parameter as a series of choices assists
the user in remembering or selecting a reasonable value for the parameter, and it tends
to validate the choice.

API Databases

The databases supplied as of this writing are described in Table 6-3.

Table 6-3. API Databases
Filename Description

OS9_*.TDB,
SOFTSTAX.TDB,
OS-CALLS.TDB
MAUI.TDB

Contains information about OS-9 API function calls.

HAWKAPI.TDB Contains information about Hawk API function calls.

1

Chapter 6: Editing Features

107

6

Using Help in Hawk
Hawk's help system can be configured to support multiple help files for easy access to
help topics from different environments. When Hawk's help has been properly
configured, pressing ! when the cursor is positioned on a word in the current file will
show a list of help files in which that particular word was found. The appropriate topic
can then be chosen from the various files presented.

Indexing Help Files

Hawk ships with its own help files (CWHELP.HLP, CWAPI.HLP, CWAPPBAS.HLP, and
CW_FAQ.HLP). You can also index help files from other software packages so that you
can access that help from Hawk.

Files added to this index must end with one of the following extensions:

• .HLP

• .MVB (Microsoft C 4.0)

• .IVT (Microsoft Visual C 5.0)

• .HTML (Microsoft Visual C++ 6.0)

To index your .HLP help files, open the Configure Help Index dialog by
selecting Help -> Configure Index File, select Add in the Configure
Help Index dialog, browse for the help file you need and click Open. Then choose
Close from the Configure Help Index dialog. Hawk will add this help file to the
help index (MWHAWK.IDX).

Once the index has been created, pressing F1 on a word that is contained in the
newly-indexed help file will cause the word to appear as a choice in a help window. If
no help topic is found, a dialog comes up listing all of the available help files. Any of the
help files listed can be selected and a second search can be initiated within that help
file.

Hawk can also be set up to display help from files other than .HLP files (such as
.MVB, .IVT, and .HTML help files). These processes will be discussed next.

Setting Up Hawk to Integrate with MSVC 6.0 Help Files

With the release of Visual Studio 6.0, Microsoft changed the format of its online help
and documentation system. The new system is based on Microsoft HTML Help. Hawk
provides the ability to access MSVC's context sensitive HTML help using the ! key.

C.TDB Contains information about Standard C library functions.

RWCLASS.TDB Contains information about the C++ class library

JAVA.TDB Contains information about Java functions.

SUNJAVA.TDB Contains information about Sun Java functions.

HTML.TDB Contains information HTML tags.

Table 6-3. API Databases

1

Using Hawk™

108

6

To set Hawk up to access HTML help files, go to Help -> Configure Help
Index.

1. Click the HTML Help Setup button.

2. Check Use HTML Help Viewer as default when keyword not
found.

3. Click the OK button.

4. Click the Save button.

When configured, the Search For Help On item in the Help menu (or ! key)
will be connected to Visual Studio 6.0 Help. The first time you invoke help, the HTML
Help Viewer is launched, and a keyword lookup is performed on the topic of
interest. Subsequent help invocations bring the HTML Help Viewer to the
foreground, and perform the lookup.

Setting Up Hawk to Integrate with MSVC 4.0 (.MVB) Help Files

To set Hawk up to use MSVC 4.0 help files, complete the following:

1. Go to Help -> Configure Index File.

2. Click MVB Setup.

3. In this dialog complete the following:

• Uncheck Use As Default when keyword not found.

• Uncheck Use DDE.

• Remove the filename for the default .MVB file from the Topic field.

• Enter the following macro in the Topic field: $(MVBFILE).

4. Return to the Help -> Configure Index File dialog.

5. Press the Add button. You will see that Hawk now allows you to index multiple
.HLP and .MVB files. Add any necessary .MVB files.

Once the .MVB help integration setup is complete, position the cursor on a keyword
and press !, or enter the keyword in the Search for Help On dialog, to access all
the help (.HLP and .MVB) files listed in the index. A dialog box showing the help files
found will be presented from which to choose the help file to be viewed.

Printing
Hawk's print dialog has options that make printing more flexible and efficient.
Documents can be printed in color (if a color printer is available), line numbers can be
added, long lines can be wrapped or not wrapped (whatever the choice may be), and
sets of configurations can be created and stored with individual print configuration
names. A quick description of some of the features available in Hawk's print dialog is
shown below.

1

Chapter 6: Editing Features

109

6

Figure 6-16. Print Dialog

Print Configurations

Hawk has the ability to save named print configurations. The Configuration tab of
the Print dialog has a listbox that contains existing configuration names. Create a
configuration by choosing some options to be stored, typing a new configuration name
in the New Configuration Name box, then clicking Create.

Selected Print Configurations can be deleted, updated, or loaded. Both the
Load and Update operations modify the 'current configuration'.

Paper Selection Override

On the Page Setup tab of the Print dialog, there are three checkboxes available
that allow you to override the default paper size, source tray and orientation settings for
your printer. If not supplied, the default settings will be used.

Color Printing

The Options tab of Hawk’s Print dialog has options for printing in color. The colors
printed will be those that are seen on the screen. It is also possible to distinguish colors
using font styles (bold, italics, underlined). Font styles and colors can be used
separately or together when printing.

Do not confuse font-style printing with the printed font. Documents printed in Hawk
will always display the fonts that are set up in the Print dialog, not the fonts that are
displayed on the screen. The font styles are only for bolding, italicizing, or underlining
text being printed. Font styles can be specified in the Font Style group of the
Customize -> View Setups -> Font dialog.

Print Preview

Hawk has a Preview button in its Print dialog that allows you to see what the
document will look like before printing. The Print Preview has buttons for

zooming and for moving between pages in the document .

1

Using Hawk™

110

6

Multi-Copy Printing

Hawk's multi-copy printing feature can use the multi-copy capabilities of a printer, if
present, in non-collated mode. The configuration options are on the Scope tab of the
Print dialog.

Printing Line Numbers

The numbering option on the Options tab of the Print dialog has a line-numbering
checkbox. Unmark the check box to turn off the number increment.

Wrapping Long Lines in Printed Documents

Two checkboxes pertain to line wrapping on the Options tab of the Print dialog:
Wrap Long Lines and Mark Wrapped Lines (dependent on Wrap Long
Lines). The first enables wrapping while the second controls the printing of a
wrapping indicator on each line continuation.

Wrapping Long Lines in Printed Documents

Two checkboxes pertain to line wrapping. The first enables wrapping while the second
controls the printing of a wrapping indicator on each line continuation.

Print Headers and Footers

The header and footer groups on the File -> Print -> Page Setup dialog
permit header and footer text to be defined for each printed page.

Next to the Header and Footer edit boxes are buttons with right-pointing triangles.
Press a button to display a menu showing macros available for headers or footers,
respectively. Selected macros are inserted at the cursor position within the header or
footer edit box automatically.

Available print macros refer, in a generalized way, to the page number (%p), current
date (%d), current time (%t), and name of the file you are printing (%f). Place these
keywords at the location within the header or footer string where you want the
corresponding information to appear.

Formatting Headers and Footers

You may define up to three fields within each header and footer: left-justified, centered
and right-justified. These fields are defined by the placement of semicolons. The first
portion or field is left-justified. The field following the first semicolon is centered, and
the portion following the second semicolon is right-justified. See the format diagram
below:

<left-justified portion>;<centered portion>;<right-justified
portion>

Any field in this format may be empty.

1

Chapter 6: Editing Features

111

6

Examples

If you wanted to left-justify the filename but right-justify the date, your format would
look like the following:

%f;;%d

Based on a filename C:\CW32\FOO.C printed on 1\1\1999, the printed results of
the above header/footer macros would look like the following:

C:\CW32\FOO.C1\1\1999

To center a page number, your format would look like the following:

;%P

The printed results of the page number for page 1 would look like the following:

1

Macros to be used in headers and footers are listed in Table 6-4.

Side-by-Side Difference Printing

A Print button is available from the Side-by-Side Difference Window (on the Difference
tab of the Output Window) when the following conditions are true:

• The window is in View Mode.

• Both sides of the Window are in the same mode (i.e. normal, compressed), and
neither is in hex mode.

Table 6-4. Macros in Headers and Footers

Macro Expansion Value

%d or %D date

%t or %T time

%f or %F filename

%v or %V volume

%r or %R root

%e or %E extension

%b or %B basename

%p page n of m

%P page number

%x or %X project path

%y or %Y project root

1

Using Hawk™

112

6

Modified Print Dialog

When you press the Print button from the Side-by-Side Difference Window, a modified
Print dialog entitled Print - Side by Side Difference displays. This dialog operates much
the same as the standard Hawk Print dialog, with the following differences:

• The Documents tab is disabled.

• The Selection Only radio button on the Scope tab is disabled.

• The Print Two Up, Wrap Long Lines and Mark Wrapped Lines checkboxes on the
Options tab are disabled.

Functionality

Printing the contents of the Side-by-Side Difference Window is similar to printing a
regular document in two-up mode, except that the left side will contain the Reference
document/file, while the right side will contain the Target document/file. Differences
between the documents are shown as follows:

• Lines that are "deleted" in one side will display as a minus sign only.

• Lines that are "added" on one side will print, preceded by a plus sign.

• Lines that are modified will be preceded by an asterisk.

1

113

Projects, Project Spaces, and
Workspaces

This chapter describes how to use the Hawk project, project space, and workspace
facility. The following sections are included:

Concepts of the Project Menu

Creating a Project Space

The Project Properties List Box and Project Settings

Creating and Modifying Projects

Project Setup Checklist

Using Projects and Project Spaces

Configuration and State Hierarchy

7

1

Using Hawk™

114

7

Concepts of the Project Menu
The following section briefly defines the items included in the Project menu.

Project Space

Project spaces store sets of projects. Before a project can be made, a project space
must be created. Project spaces allow multiple projects to be displayed at one time.
The New, Open, and Close items on the Project -> Project Space submenu
are for creating, opening and closing project spaces. The Project Space submenu
also contains the Add New, Add Existing, and Remove Project(s) menu
items for adding new or existing projects, or removing projects from the current project
space. The File View tab of the Project Window displays a hierarchy of project
spaces, the projects they contain, and each project’s member files. The Version Control
status of files is also provided.

Project Files

The project is defined in two files with the same name, but different extensions. The
Hawk file extensions are *.PJT and *.MPJ. A backup of the project file
(*.mpjBackup) is saved every time the project is saved.

A project file (.PJT) is essentially a configuration file and state file all in one.
Workspaces are stored as additional "state files" within the project file. Once you
understand the format of a Hawk configuration file, you understand a Hawk project file.
These files look just like standard Windows .INI files with headings enclosed in
square brackets, and statements on lines following these headings. Statements take the
form of <keyword>=<value>.

The primary difference between a Hawk configuration or project file and a Windows
.INI file, is that keywords may not be repeated within a section of a Windows .INI
file. In a Hawk configuration or project file, keywords may be repeated. This is possible
because Hawk processes these files directly, without going though Windows. For more
information on the format of configuration and related files, refer to the topic
Configuration and State in Chapter 17 Configuration Files and Command Line
Parameters of this manual.

Project

A Hawk project is a single file containing a list of filenames and settings that are
intended to make up the project. It contains a tree of components; however, no units
can reside at the root level of the project. The project file containing the project’s files
and settings is stored in the directory in which it was created; it is given the name of the
project with a .PJT extension.

Language, compiler, version control, clipboard and scrap, and other options can all be
stored in projects. Storing settings with Hawk projects allows for unlimited feature-
variation when going from project to project. With projects, the user can create mini-
environments for sets of files that, for example, use different compiler options, have
different promotion groups for version control, or use different languages. Closing one
project and opening another automatically sets the options to that of the open project.

1

Chapter 7: Projects, Project Spaces, and Workspaces

115

7

Overall, Hawk projects allow the user to organize a group of files as a unit giving quick
access to the configurations necessary for using and working with those files more
efficiently.

Workspace

A workspace is a separate instance of Hawk. It is a "mini-project" within a project. When
you change workspaces, you have the option of picking up where you left off with a
group of files, regardless of how long it has been since you worked with them.

A workspace differs from a project in that it does not store the system-wide options
normally stored in a configuration file. In a sense, the workspace is like a swapped
Hawk state file. A state file stores transitory information about the state Hawk was in
when last exited. In addition, other state information, such as search options, response
histories, bookmarks, etc. are stored as part of the project. State files retain information
about the windows and buffers open during the last Hawk session, and the position
they were in. Workspaces are like “mini-state” files within projects. They retain different
sets of window information for each workspace.

Component

A component is analogous to a folder. It holds units as well as other components.
Hawk recognizes certain component types, including the following:

• User State Program

• System State Program

• Descriptor

• Driver

• File Manager

• I-code library

• O-code library

• collection: This component type does not actually create any binary output. It is a
holding place for other components and units; it is used to specify common
property settings.

Component Options

The following are options accessed by selecting Properties in the component pop
menu:

• Name: The name of the component.

• Chip: Override the chip type. If a chip different than the project chip is selected, all
units and components contained within the selected component will use this chip
type when compiling.

For additional discussion of workspaces, refer to the topic Creating, Selecting and Saving
Workspaces, in this chapter.

1

Using Hawk™

116

7

• Type: Change the component type.

• Output File: If the component generates a binary, this becomes the name of
that binary.

• Description: Enter a simple description for this component. The description is
not used in anyway. It’s simply saved in the Project file for documentation
purposes.

• Unit Root Psect: defaults to None.

• Exclude from build: This option is only displayed for Components and Units.
If checked, the selected unit or component will be excluded from any build. If the
user specifically chooses to build a unit or component with this option checked, he
option will be ignored.

Build Order

The order in which components are compiled is in order from first to last in the Project
Window. A child component is compiled before the parent. The child components may
be ordered by one of the following methods:

• mouse interface

If a component (child) is dragged and dropped on another component (parent), it will
be put at the end of list of child components.

• keyboard interface

Alt-Up Move component up one spot next to its siblings

Alt-Down Move component down one spot next to its siblings.

Alt-Left Move component to next higher level

Unit

A unit is the lowest element in the Hawk Project tree. A unit represents an individual file
of any type; Hawk recognizes specific file types.

Unit Maintenance

The Unit Maintenance dialog is one of the most important in the Hawk Project
Manager. Select this dialog by choosing Unit Maintenance (accessed by right-
clicking on a project component). This dialog allows you to add, delete, and reorder
units within a component (see the next topic on the Project Preferences). When the
dialog is opened initially, the units in that component are displayed with bitmaps to the
left. If you choose to add new units, they display without a bitmap. You can then
reorder the units. In addition, you can press the up/down arrow while holding the Alt
key You can also delete units using the Delete button.

1

Chapter 7: Projects, Project Spaces, and Workspaces

117

7

Below is a table of various file types and their extensions.

Project Preferences

Below is a list of project preferences and questions concerning them:

• Continue on Error: When doing a build, should Hawk stop if an error is
encountered?

• Perform Animation: Should Hawk highlight the unit or component currently
being built?

• Build Modified Units: Should Hawk save any modified buffers before
performing a build?

• Automatically adjust orientation: Should Hawk automatically adjust
the orientation of the splitter in the Project Tab? Should Hawk change the
orientation of the splitter to vertical if the length of the project tab is greater than
the height?

Creating a Project Space
To create a project space, do the following:

1. Click Project -> Project Space -> New.

2. Click Browse to find the appropriate directory for your new project space, or type a
filename in the Filename box. Keep the following in mind when completing this
step:

• The Look in same directory for external workspace option
automatically inserts the name of any similarly-titled Visual Studio Workspace
(.DSW) file that may reside in the same directory in which the project space is
being created in.

Table 7-1. Units
File Type Associated extension
C Source *.c
C++ Source *cpp, *.cxx
Header *.h, *.hpp, *.hxx, *.d
Descriptor *.des
ROF *.r
I-Code *.i
I-Code Library *.il
Assembly *.a
O-Code *.o
O-Code Library *.l
Makefile makefile., *.mak
Batch File *.cmd, *.bat

1

Using Hawk™

118

7

• A .PSP (Hawk project space) file type extension is automatically appended to
the inserted name.

• Some of the contents of the corresponding .DSW file will subsequently be read
and conformed, for use in creating the project space.

• The option supports Visual Studio 5.0 and 6.0 only. Turn off the option if
neither of those versions of Visual Studio is being used, or if it is undesirable to
have .DSW files converted to Hawk project spaces.

• For more information on what the Look in same directory for
external workspace option does, read the topic Reading External
Makefiles and Workspaces, in this chapter.

• Hawk assumes the filename extension .PSP for project space configuration
files if one is not supplied. You may specify another extension, if desired.

3. Click OK.

The project space is created and the Project Properties dialog appears, with the
Members tab on top. The new project space is displayed in the list box on the left, as
shown in Figure 7-1.

Figure 7-1. Project -> Settings -> Members

Projects are added to project spaces, then files are added to projects, in the Project
-> Settings -> Members dialog. Before covering that topic, however, it is
necessary to have some understanding of the Project Properties list box
and the process for setting project configurations.

The Project Properties List Box and Project Settings
Hawk's Project -> Settings dialog is where many necessary Hawk
configuration settings are made. One item in the dialog, the Project Properties
list box, is important to all tabs of the dialog.

1

Chapter 7: Projects, Project Spaces, and Workspaces

119

7

Project Properties List Box

The Project Properties list box (shown in Figure 7-2) is available from all
tabs of the Project -> Settings dialog. It lists the current project space and any
projects that the space contains. It also lists a special item called <Default
Settings> that is used for setting global configurations within the dialog.
Configuration settings can be manipulated for any item selected in the list box, but not
all settings are available for all items. This is reflected by the fact that the Project ->
Settings dialog changes depending on the item selected.

Figure 7-2. Project Properties List Box

Default Settings

Settings made in the project properties dialog while the <Default Settings> item
is selected will apply to all projects until those settings have been changed for the
projects individually. Settings made while a project is selected are called "project-
specific settings" and are stored with that project only.

Certain items and tabs in the Project -> Settings dialog are only available
when the <Default Settings> item is selected; others are only available when
projects or project spaces are selected. For example, the Members tab of the
Project -> Settings dialog is used for adding projects to spaces and/or files to
projects; therefore, it is not available when the <Default Settings> item is
selected (the <Default Settings> item does not store projects or files). The
Members tab is the only tab that is not used for configuration settings and is therefore
the only tab available at the project-space level (project spaces do not store
configuration settings).

The other tabs in the dialog are available for the <Default Settings> item, as well
as for selected projects; they are used for making configuration changes that can be
either global (such as Default Settings) or specific to individual projects.

Working Directory

One important item to consider when setting project defaults is the project's working
directory. The working directory is the directory from which all tool commands are run;

1

Using Hawk™

120

7

it is configured in the Project -> Settings-> Directories dialog. The
default working directory is set to %x, a filename component macro that expands to the
directory containing the project's configuration file.

Once the project's desired default settings have been established, appropriate
modifications can be made on a per-project basis. The information for setting project
configurations and the tabs of the Project -> Settings dialog, is covered
throughout the remainder of this chapter.

Setting Project Defaults

Configuration settings for new projects are inherited from the <Default
Settings> item in Hawk's Project Properties dialog. This is the same dialog
that displays when you first open a new project space. It can also be accessed by
clicking on Project -> Settings.

Changes made to the settings while a project is selected are stored with that project
only. Closing the project causes all settings to revert to the defaults. For this reason, it
may be a good idea to set some configurations for the project before creating it so the
settings remain unchanged when the project is closed.

To make default settings throughout the Project Properties dialog, highlight the
<Default Settings> item in the Project -> Settings dialog, then make
various configuration settings in the various tabs of the dialog. Once you have
established the default settings, you can make modifications for future projects on a
per-project basis.

Creating and Modifying Projects
Once a project space has been created, individual projects can be created for the
space. After creating a new project space, the Project Properties dialog
appears. It is also possible to access the same dialog by clicking Project ->
Settings.

However, we will not use the Project Properties dialog to add a project to the
project space. The following steps will use a different method to create a Hawk project.

1. Click the Cancel button to dismiss the Project Properties

2. Click Project -> Project Space -> Add New Project to access the
Create New Project dialog. The dialog shown in Figure 7-3 appears:

More information on the filename component macros and the Tools tab can be found
under the topic The Tools Tab, in this chapter.

1

Chapter 7: Projects, Project Spaces, and Workspaces

121

7

Figure 7-3. Add New Project to Project Space

3. Enter the name of the project into the Name field. Also, make sure the path to the
project’s folder in the Folder field is correct and make sure the Default
Processor displays the correct processor name.

4. Click Next. The Component dialog box appears, as shown in Figure 7-4.

Figure 7-4. Add New Component to Project

5. Projects consists of multiple components. Type the following into the component
menu:

Name:

Description:

Chip: <Processor Name>
Type:

Psect File: <Browse to the appropriate directory>.

Complete the following fields:

1

Using Hawk™

122

7

Name:

Folder:

Chip: <processor name>

6. At this point, you can do one of two things:

• If you would like to add units to your project, proceed to step 7.

• If you do not want to add units to your project, click Finish and proceed to
step 11.

7. Click Next to display the Units menu. Components consists of units, which
can be library, header, or source files. The Units menu is shown in Figure 7-5.

Figure 7-5. Units Menu

8. Navigate to the file you want to add from the Look in: box.

9. To add the file to the Added Units display, you can either click the down arrow
to the right of the Files of type box or simply double-click on the file. The
file you chose in the full path list should now appear in the Added Units box.

10. Repeat step 9 until you are through adding files. When you are done, click Finish
at the bottom of the window. The Components frame should display a folder with
the name of your added component.

11. To save the project, select Project -> Save.

Hawk creates a new project configuration file in the chosen directory that uses the
name typed in the Add New Project to Project Space dialog with a .PJT
extension appended. The new project is listed in the Project Properties list
box, under the current project space.

Hawk creates a new configuration file in the chosen directory with the name that was
typed and a .PJT extension.

Adding Files to a Project

Files can be added once the project has been created. Files are added in the Project
-> Settings -> Members dialog. To add files to your project, complete the
following steps:

1

Chapter 7: Projects, Project Spaces, and Workspaces

123

7

1. in the Project Properties list box, highlight the project to which you are
adding files.

2. Add files using one of the following four methods:

• Click the Add New File button.

• Click the Scan button. Add individual files by typing in their names, or add
multiple files using file filters (such as *.C).

Within the Scan dialog, use the Browse button to browse for files. Add
individual files by typing in their names.

Matching files in subdirectories are included as a result of the Include
Subdirectories check box in the scan dialog.

• Use the External Makefile option to read files from an existing makefile
into the project being created.

• Use the VCS Project option to "read" a version-control project file. (See
Using Version Control in Hawk, in Chapter 9 Version Control.)

3. Click OK after completing one of the above options. Any matched files should be
immediately added to the project.

Files that are included in the project are listed in the Files list box in the center of the
dialog. To remove files from the project, select the Remove selected files

from project button under the Members tab, shown in Figure 7-6.

Figure 7-6. Project -> Settings -> Members

Project Tools

When the necessary files have been added in the Members tab of the Project
Properties dialog, click on the Tools tab. The Tools tab is used for setting up
various tools, such as command line compilers and version control utilities needed to
perform various jobs on files being edited in Hawk.

1

Using Hawk™

124

7

The commands set on the Tools tab are the commands that are run when the
various Compile, Build, Debug, etc., buttons and menu items are clicked. Figure
7-7 shows the Tools Dialog.

Figure 7-7. Project -> Settings -> Tools

Once the appropriate tools have been set on the Tools tab, click OK. The dialog
closes and the project is created with the specified characteristics. Clicking on the
project tab in the project window will now display the items in the project space.

Click on the File View tab of the Project Window to display the project space
with the included projects beneath.

Figure 7-8. Project Window: File View

1

Chapter 7: Projects, Project Spaces, and Workspaces

125

7

To load project files for editing, double-click on them in the window, or click on the
Load Files item in the Project menu.

Adding New Projects Using the Members Tab

To add projects from the Members tab of the Project Properties dialog using
one of the following methods:

• From the Add New Project to Project Space dialog (shown in Figure
7-9), browse for individual project files or use extended selection list box rules (for
example, SHIFT/CTRL keys with mouse clicks) to add multiple projects from the
same directory at a time.

Figure 7-9. Add Projects Dialog

• From the External Workspace dialog at the bottom of the Members dialog,
select the Setup external workspace button. Hawk uses this to read
projects. The projects will be read from the Visual Studio Workspace into the
current Hawk project space. See the topic Reading External Makefiles and
Workspaces for more information.

Any matched projects should be immediately added to the project space. The projects
are shown below the current project space in the Project Properties list
box.

Reading External Makefiles and Workspaces

Hawk can extract the names of projects or files from either Visual Studio Workspaces or
specified makefiles, adding them to the list of project members or project spaces,
respectively. This little bit of automation helps keep the Hawk projects and project
spaces synchronized with the IDE. Hawk does not use the Workspaces and makefiles
directly, but adds the extracted filenames to Hawk projects (.PJT files) and project
spaces (.PSP files).

A *.bat or *.cmd file can be included in a Hawk project and used to run os9merge,
fixmod, or other applications and utilities. To ensure that this batch file runs correctly after a
module is created, your project should have a subcomponent that contains the module’s
source code in the component with the *.bat or *.cmd file.

1

Using Hawk™

126

7

To have Hawk automatically use this capability, mark the Look in directory for
external makefile/Workspace option in the Add New Project to
Project Space dialog, or in the Add New Project to Project Space
dialog. Hawk automatically searches the directory (in which the project/project space is
being created) for any makefiles or Workspace files whose names match the
project/project space name specified. If the files are found, Hawk automatically inserts
the name of the file into the Add New Project to Project Space/Project
Space dialog. The files or projects that are part of the Workspace or makefile are
subsequently read into the Hawk project or project space.

To have Hawk manually read files or projects from selected makefiles or Workspaces
into Hawk projects or project spaces, complete the following:

1. To read a Workspace, select the current project space in Hawk’s Project
Properties list box in the Project Properties dialog under the
Members tab. To read a makefile, select a project from the same list box.

2. Select the Setup button to bring up the Read User Makefile or Select
the type of parser from the Makefile/Workspace type combo drop-downs
to use for parsing the filenames from the respective file. Keep the following in
mind:

• A parser is composed of a regular expression pattern used to search for
filenames and other pertinent strings in the makefile.

• If none of the predefined Workspace or makefile types match the makefile
being used, a custom parser can be defined that will "understand" the
Workspace/makefile type.

• Existing parsers can be used as references for building custom parsers. (For
detailed steps on making parsers, see the next topic on Steps for Setting up
New Makefile/Workspace Parsers.)

3. Press OK.

4. In the Project -> Settings -> Members dialog, press the Read button.
The project or project space will subsequently be populated with files or projects
that correspond to files or projects contained in the associated makefile or
Workspace.

Steps for Setting up New Makefile/Workspace Parsers

Use the following steps to set up a new makefile/Workspace parser:

1. Make sure you are in the Project Properties dialog box by selecting
Project -> Settings. Select the Members tab.

2. Highlight a project or a project space.

3. Click the Setup external workspace button in the External
Makefile section.

4. Browse for the appropriate makefile or Workspace file using the Browse button
next to the Makefile Name edit box in the Read User Makefile dialog.

1

Chapter 7: Projects, Project Spaces, and Workspaces

127

7

5. In the Makefile Type edit box, give the parser a descriptive name.

6. Enter an applicable regular expression in the Regular Expression Parser
edit box.

7. Click OK.

8. Click the Read external makefile button.

9. Click OK. The respective list boxes in Project Properties should contain the
files or projects used by the makefile.

Characteristics of the File View Tab of the Project Window

The File View tab of the Project Window is specifically intended to display
projects and project spaces. By default, the Project Window is displayed on the left-
hand side of the Hawk screen.

Projects, project spaces, and files will only show in the File View tab of the
Project Window when a project space containing those projects and files has been
opened in Hawk. Projects are displayed under the project space, and project member-
files are then grouped under each individual project by filters that are established in the
Project -> Settings -> Filters dialog. Each filter is displayed as a folder
containing files of the appropriate extensions. (Refer to the topic The Filters Tab, in this
chapter, for more information on project filters).

To open a file for editing, double-click on the file in the File View window (shown in
Figure 7-10).

Figure 7-10. Project Window: File View

Creating a new makefile or Workspace parser requires some knowledge of regular expressions.
More guidance for creating regular expressions is provided under the topic Regular
Expressions in Chapter 10 Search and Replace and Other Navigational Tools.

1

Using Hawk™

128

7

When files are under version control, file-icons depicting different states of the file are
shown in the Project Window:

When the files are checked-in (or read-only) the icons that
represent the files are grayed out.

When the files are checked out, Hawk conveniently places a red

check mark to the upper right of the file icons.

 If another user has a lock on a file that is part of the project
being worked on, Hawk will display the file with a gray check
mark in the Project Window.

Some Version Control projects are set to delete work files when
they are checked in. Hawk displays files not found at the
specified location (usually archived) with an exclamation point.

When the current edit buffer differs from the latest revision in
version control, Hawk gives the corresponding file icon a slightly
different color.

The primary purpose of the Project Window is to open files and facilitate version
control operations. Right-click on a file, or one of a selected group of files, in the
Project Window to bring up a menu listing various operations that can be
performed on the file(s). Additional right-click popup menus are available when right
clicking on a project or project space.

The Directories Tab of the Project Properties Dialog

The Directories tab of the Project -> Settings dialog is used to display
and set the project's working directory as well as other directories for various system
files used in Hawk. Complete the following steps to access/edit the appropriate version
of the Directories tab:

1. Access the Project -> Settings dialog.

2. In the Project Properties list box:

• Select a project if the directories being viewed or modified are intended to be
specific to the selected project only.

• Choose <Default Settings> if the directories being viewed or modified
are intended to be global.

3. Click on the Directories tab (shown in Figure 7-11). Most of the directories
and filenames listed in this dialog can be made project-specific, but only if the Store
System Options in project file check box is marked. Once it is

Press the refresh button from time to time when using the Project Window to
carry out version control operations, or view version control status, to see the most current
status of the files.

1

Chapter 7: Projects, Project Spaces, and Workspaces

129

7

marked, the names of most of the listed files will be available for editing. They can
then be made project-specific by giving them names that are unique for the
selected project.

Figure 7-11. Project -> Settings -> Directories

A brief description of each of the directory and file listings in Project ->
Settings -> Directories follows:

• The Working Directory is the directory from which commands set on the
Tools tab of the Project -> Settings dialog will be run. By default, the
working directory is set to %x, a filename component macro that expands to the
directory in which the project file resides.

• The Browser Database indicates the name and location of the Microsoft
Browser Database (.BSC) or the compiled tags database (.PTG). More
information about tags can be found in Chapter 10 Search and Replace and Other
Navigational Tools.

• The Tag Database indicates the name and location of the file that contains
Tags information.

• The Text Link DB indicates the name and location of the file that stores
Button Link information. More information about Button Links can be found in
Chapter 10 Search and Replace and Other Navigational Tools.

• The Mark Database indicates the name and location of the file that stores
bookmark information.

• The Extension File indicates the name and location of the file that stores
extension-specific information. In the Settings area, specify a User Named
File, the Configuration file, or the Project File.

• The Button File indicates the name and location of the file that stores toolbar
resources and default button descriptions. Refer to the online topic Dockable
Toolbars and Windows in Hawk’s Frequently Asked Questions.

• The Macro File indicates the name and location of the file that stores API and
keystroke macros. More information about API macros can be found in Chapter 15
Extending Hawk

1

Using Hawk™

130

7

• The Symbol File indicates the name and location of the file that stores
information about symbols. If you create a project within a project space, the
default symbol file name is the name of the project with a .SBL extension (such
as <project_name>.SBL). If an existing project’s symbol file is MWHAWK.SBL
(the non-project default name), you will be prompted to change the symbol file
name. It is advantageous to have project-specific symbol files in order to limit the
size of the files, thereby optimizing Hawk's performance.

Selecting the Symbol File option in the Directories tab makes two options
available: Auto-Update Symbols database and Show Definitions in
Symbols Tab. These options control whether or not symbols information is
automatically computed when projects are made current. Unmarking these options
can speed up the process of opening projects. More information on Symbols can
be found in the chapter Chapter 10 Search and Replace and Other Navigational
Tools.

• The Edit Search Path specifies the order of directories to be searched when
opening files without specifying the directory in which the file resides. The Edit
Search Path is primarily useful when using Hawk's status line prompt for
opening files, instead of common dialogs. To define more than one directory in the
Edit Search Path, separate the directories with semicolons. Add an asterisk
to the end of a component of the EditPath to specify an entire directory sub-
tree.

Example

The EditPath c:\include\msvc;c:\cw* will cause Hawk to first look in
c:\include\msvc and then in c:\cw and then in all subdirectories of c:\cw.

The traversal of the sub-tree is done depth-first, meaning that a particular sub-tree is
traversed all the way down to its leaves before moving on to the next sub-tree.

Hawk projects can store configuration settings individually, making them a convenient
way to have multiple sets of configurations in one editor. Some settings are stored
automatically, when changes are made to the Project -> Settings dialog while
a project is selected. Others will only be stored with the project if certain options are
marked in various Hawk dialogs. The settings that may be stored with projects are listed
below:

• System Options: Mark Store System Options in project file for
selected projects in Project -> Settings -> Directories.

• Auto-save options: Mark Store Auto-save Options in project file
in Customize -> Environment -> Backup while the desired project is
open.

• Language options: Select the Project File radio button when the
Extension File option is chosen from the list in Project -> Settings
-> Directories for selected projects.

The backslash prior to the asterisk is optional; the two forms are entirely equivalent.

1

Chapter 7: Projects, Project Spaces, and Workspaces

131

7

• Filename Filters: Mark Save Filename Filters in project file in
File -> Filters while the desired project is open.

• Clipboard/Scrap options: Mark Store Clipboard/Scrap in project
file in Customize -> Environment -> Clipboard while the desired
project is open.

• Compiler and Command Line Version Control settings: Make the desired
configurations in Project -> Settings -> Tools while the desired project
is selected.

In addition to indicating that certain system options be stored with the project, the
Store System Options in project file check box in Project ->
Settings -> Directories allows the configuration file names listed to be
edited. Changing the names of those files on a per-project basis allows them to be
made project-specific so that the settings they store will also be project specific. To set
the Store System Options in project file check box on the appropriate
version of the Directories tab, complete the following steps:

1. Access the Project -> Settings dialog.

2. Complete the following in the Project Properties list box:

• Select a project if the options being viewed or modified are intended to be
specific to the selected project only,

- OR -

• Choose <Default Settings> if the options being viewed or modified are
intended to be global.

3. Click the Directories tab.

4. Check the Store Systems Options in project file check box, and
press OK.

Reading Configuration Settings from Other Files

In addition to storing configuration settings with projects, it may sometimes be
desirable to read specified configuration settings from designated configuration files
into a project or into the global configuration settings. It is possible to have Hawk read
configuration settings from a configuration file using a dialog on the Customize
menu called Read Configuration Data from a File. It is accessed by
selecting Customize -> Read configuration Data.The configuration information gathered
will be placed in Hawk’s main configuration file or in a Hawk project file, depending on
the data being read as well as Hawk’s current state (i.e. whether a project is open or
not).

The series of check boxes in the dialog limit what settings are read from the file. The
Update Configuration Files check box immediately updates the project
and/or configuration files with the specified information when marked.

The Tools Tab

The Tools tab of the Project -> Properties dialog is used for setting up
various tools, such as command line compilers and version control utilities needed to

1

Using Hawk™

132

7

perform various jobs on files being edited in Hawk. These tools can be made project-
specific or global. The Tools tab is located in Project -> Settings.

Tool Categories

The items in the Tools tab change depending on the tool category. Different tool
categories can be selected from the drop-down list under the Category combo box.
Project tools include command line entries for compile utilities, make or build utilities,
executables that may be run on a regular basis, and command line version control
utilities. Hawk does not come with its own utilities (such as compilers and version
control); these must be purchased separately. Hawk simply provides a way to use the
utilities in a more practical and efficient way.

The tools in the various categories correspond to menu items and buttons in Hawk that
are used to run the utilities. When one of the menu items or buttons is clicked, Hawk
runs the tool by shelling to DOS and running the tool’s command. Any output
generated is captured for display in designated tabs of Hawk’s Output Window. The
specific tool categories include the following:

• Custom Tools

• VCS Tools VCS Tools

The following sections describe the tool categories in the Project Properties
dialog box Tools tab.

Custom Tools

The Custom category of tools is provided for running any DOS program from within
Hawk. Adding a custom tool in Project -> Settings -> Tools will add it to a
list at the bottom of Hawk's Tools pull-down. Clicking on a tool's name in the menu
will then run the tool’s associated program. Two custom tools are already set up in
Hawk: Windows's Paint program, and the API Database Editor, a tool for
editing Hawk's API Assistant databases. The Custom category of the Project
Properties dialog is shown in Figure 7-12.

Figure 7-12. Project Properties Dialog: Custom Category

To make a new custom tool, complete the following steps:

1. Select Project -> Settings -> Tools.

1

Chapter 7: Projects, Project Spaces, and Workspaces

133

7

2. Choose Custom from the list of categories in the list under the Categories
combo box.

3. Click the New radio button.

4. Give the custom tool a name.

5. Click OK.

6. Highlight the new custom tool in the list box.

7. In Command, edit the box and type the appropriate command for running
whatever program the tool is intended for (to make a tool that runs a Hawk API,
type the API in the Command box, and precede it with an !.).

8. Choose any necessary command options. For descriptions on the command
options, see the topic Command Options on the Tools Tab, in this chapter.

VCS Tools

The VCS category of tools in the Project -> Settings -> Tools dialog
(shown in Figure 7-13) consists of a number of tools associated with various version
control operations; these operations are available on different menus, buttons and
dialogs in Hawk. Set the tools with the commands that will run any command-line
version control utilities used to perform version control operations (such as GET.EXE
or PUT.EXE).

Figure 7-13. Project Properties Dialog – VCS Category

You will notice that the VCS tools come pre-configured with commands for some of the
more popular version control systems. The pre-configured commands change
depending on the provider-name chosen in the Command Line Provider list box
in the Tools -> Version Control -> Setup dialog.

You can use filename component and symbolic macros as placeholders to insert or
transform filenames and filename components (such as directories and filenames)
used with the version control utilities. This obviates the need to manually insert
filenames every time the files being edited or checked in/out change. More information

1

Using Hawk™

134

7

on filename component and symbolic macros can be found in the sections on
Filename Component Macros and Symbolic Macros.

You should only be concerned with the VCS tools if you use command line (DOS)
version control utilities, such as PVCS GET.EXE or MS VSS SS.EXE, to carry out
your version control operations. You should also be aware that the VCS category of
tools is not the only method for using version control in Hawk. Version control
operations can also be performed via SCC API integration. More information about
using either of the Version Control integration methods can be found in the chapter on
Chapter 9 Version Control.

Setting up Project Tools

Setting up most of the project tools is a fairly straightforward process. In their simplest
form, the steps for configuring project tools are as follows:

1. Choose the appropriate tool-category.

2. Highlight or choose the tool to be configured.

Enter the appropriate command in the Command: edit box at the bottom of the dialog
(to make a tool that runs a Hawk API, type the API in the Command box, and precede it
with an !).

You may notice that many of the project tools in the Tools tab are already configured.
These pre-set commands may not apply to the utilities actually being used. In such
cases, the tools will need to be reconfigured.

Example

Highlighting the Custom Tool for the first time shows the following command in the
Command: edit box:

cwedit.exe

Command Options on the Tools Tab

Each category of tools in the Project -> Settings -> Tools dialog has a
number of options that affect what happens when any of the various tools are run.

Example

To control how Hawk redirects the output generated by any of the utilities
associated with the tool being used, one would mark or unmark the Redirect
output option in the list of command options displayed underneath Command
edit box.

The preceding steps are based on the assumption that the utility being launched runs
successfully from any directory in the operating system. This means that the proper
environment variables and PATH statements must be set according to the instructions
provided with the utility in question. Otherwise, the full path and filename of the utilities used
must be inserted with the command when performing Step 3.

1

Chapter 7: Projects, Project Spaces, and Workspaces

135

7

The command options should be set individually for each tool being used, regardless
of the tool’s category. Descriptions of the command options follow:

• Minimized window Starts the tool with its window minimized.

• Maximized window Starts with tool with its window maximized.

• Redirect output appends the following items to the end of the Command
that runs the Tools program:

• A DOS redirection operator.

• The name of the Error File listed on the Errors tab.

With this option marked, any output that normally displays in a DOS window will be
redirected into the error file. Hawk then uses an FTEE program to display that
information in the Build tab of the Output Window.

• No Command Shell causes the command not to be run in a command shell
(COMMAND.COM or CMD.EXE). If you select this option, redirection and other
services will not be available. If you are executing a Windows program, there is no
need for a command shell.

• Save Current File causes the current file to be saved before the
corresponding tool runs.

• Save All Files causes all files opened in Hawk to be saved before the
corresponding tool runs.

• Background determines if the program is executed in the foreground or the
background. If you elect to execute the program in the background, a message will
appear in Hawk's status bar, and a beep sounds to indicate that the program has
been completed.

• Use VDOS causes output from the compile or build to be sent to the VDOS
window. This is convenient for cutting and pasting from the output, and for re-
executing commands, but you may not be able to see a prompt if the program
prompts for a response.

• Prompt for Arguments causes a prompt to come up before the tool
executes, allowing the user to insert extra parameters to be used by the associated
program.

Filename Component Macros

When compiling or building projects, it is usually necessary to have a source or make-
file for the target of the build or compile. When setting up target files for project tools, it
isn't convenient to use literal filenames, since the files will most likely vary. Hawk
provides a number of Filename macro hints to be used on the various project-
tool command lines, which will expand the names, or portions of names of current files
or projects in Hawk.

Each category of tools has one or more macro assistants that can be used to quickly
insert appropriate filename component macros at the cursor-position of any one of the
tools' command lines. The macro assistant provides a pop-up menu listing available

1

Using Hawk™

136

7

macros. To access the pop-up menu, click the black right-arrow on the gray portion of
the Command edit box.

A sample macro assistant pop-up menu is provided in Figure 7-14.

Figure 7-14. Filename macro hints

A list of these macros and the filename specs they represent are listed in Table 7-2.
An example of how each macro looks when expanded is also provided. The examples
are based on a file named FOO.C residing in the directory "c:\test" with the Hawk
project "FOOPROJ.PJT" open (also residing in c:\test). A version control project
"VCSproj" is open as well, with its project file also in c:\test.

Table 7-2. Filename Component Macros

Components Description

%v Volume The drive component of the workfile, consisting of a
letter and a colon.
Example: C:

%p Path The path component of the workfile. This component
has no filename and no drive component. It has a trailing
backslash.
Example: \TEST\

%r Root The filename of the workfile, less the extension.

Example: FOO

%d Directory The directory component of the workfile. This
component has no filename and no drive component. It also has
no trailing backslash.
Example: \TEST

1

Chapter 7: Projects, Project Spaces, and Workspaces

137

7

Symbolic Macros

Symbolic macros are another form of macro that can be used with many of the
commands in the Project-> Settings -> Tools dialog. Hawk's Symbolic
macros are meant to make the process of constructing command lines more flexible
and convenient. A symbolic macro that is commonly used with some of the default
commands is ${FTEE}, which expands the full path and filename of FTEE.EXE, a
utility that pipes output to Hawk's Output Window. A list of Component Macros and
their descriptions appear in Table 7-3.

%e Extension The extension of the workfile. This component
begins with a dot (.) unless the extension is null.
Example: .C

%b Basename The complete workfile name, less the extension.

Example: C:\TEST\FOO

%x Project Path The path component of the project file
currently in use (usually indicates the project directory).
Example: C:\TEST

%y Project Root The base filename of the project file
currently in use.
Example: FOOPROJ

%% Percent sign Since component macros begin with a
percent sign, you must use two percent signs to represent a literal
% in your command.

$(name) Macro expansion This does something really cool, just
wait and see.

Table 7-2. Filename Component Macros

Table 7-3. Filename Component Macros

Component Description

$(BROWSEFILE) Browser file as defined in the Directories tab of the
Project -> Settings dialog.

$(FTEE) Starbase’s command for splitting output so that it goes to a file
and to the screen. This command varies according to platform.

$(HOME) Hawk’s home directory.

1

Using Hawk™

138

7

Braces {} may be used instead of parentheses ().

Additional symbolic names can be defined with the SetStringMacro function (help
for the SetStringMacro function and any other Hawk API can be found in Hawk's
online help). Any names not defined are taken as environment variables.

The Errors Tab of Project Properties

The Errors tab of the Project Properties dialog is used for specifying the
name of the file used to capture output produced from a Build or Compile. It is also
where appropriate error parsers are specified for accessing the errors displayed in
Hawk's Build window (a tab on the Output Window).

Hawk uses two methods for capturing and displaying output from a compile—FTEE and
VDOS. Once the output has been captured, Hawk uses Error Parsers to access the files
that contain the errors in that output.

An error parser is a function that takes error messages from a compiler, assembler, or
linker and extracts the name, line number and error message for the file in which the
error occurs. Hawk uses that extracted information for error navigation. The error
parsers allow you to double-click on an error or warning in the Output Window in
order to bring up the source file(s) containing the error(s). The cursor will be
positioned at the line where the error or warning occurs.

To access/edit the appropriate version of the Errors tab, complete the following
steps:

1. Access the Project -> Settings dialog.

2. In the Project Properties list box:

• Select a project if the error configurations being viewed or modified are
intended to be specific to the selected project only.

- OR -

$(KEYWORD) The word at the cursor when a context-sensitive help function is
invoked. This is used in the Default Help file settings. (Help
menu Configure Index… item)

$(TAGFILE) Tag file name as defined in Project -> Properties.

$(USER) User ID defined in Tools -> Version Control ->
Setup.

$(VCSLABEL) Revision label as defined in Tools -> Version
Control -> Maintenance.

$(WTAGS) Starbase’s command for generating a tags database. This
command varies according to platform.

Table 7-3. Filename Component Macros

1

Chapter 7: Projects, Project Spaces, and Workspaces

139

7

• Choose <Default Settings> if the error configurations being viewed or
modified are intended to be global.

3. Click the Errors tab (shown in Figure 7-15).

Figure 7-15. Project -> Settings -> Errors Tab

There are three combo-boxes in the Errors tab and one edit box for the Error File.
Complete the boxes as follows:

• In the edit box Error Filename:, specify the file needed to capture any
output produced by a compile or build. The Error File is the name of the file that is
used to capture the output of commands that have the Redirect output
command option checked. (See the topic Command Options on the Tools Tab, in
this chapter, for more information).

• Error files are created in the current directory.

• The error file is set to PROJ.ERR by default, but can be changed to any
filename desired.

• Filename component macros can be used for the filename, but it's usually best
to leave it as it is.

The output captured by the error file will be used to display in the Build tab of
Hawk's Output Window.

• Use the next three combo-boxes to specify any error parsers necessary for
accessing the errors in the Build window. Only one parser is necessary, but up to
three may be used.

1

Using Hawk™

140

7

Example

The output of a build or rebuild might contain output from a compiler, linker and
assembler. If so, three error parsers will process the errors more efficiently than one.

• The drop-down lists under the error parser combos contain the names of various
error parsers available to Hawk. More parsers can be added by marking the Error
Parsers options in Hawk's Tools -> Customize -> Libraries dialog.

• Choosing the appropriate error parser depends on the compiler being used.
Usually the correct parser contains the name of the compiler or the name of the
company that produces the compiler.

• If there are no parsers for a particular compiler, it is possible to make a custom error
parser. Press the Custom Error Parsers button to access a dialog in which
custom error parsers can be built, as described in the next section, Custom Error
Parsers.

Custom Error Parsers

The error parsers available for Hawk are listed in the drop-down lists under each of the
three error parser combo boxes in Project -> Settings -> Errors. More
error parsers can be added to the list by clicking the Error Parsers options in the
list of Hawk Libraries in the Customize -> Libraries dialog. If the
appropriate error parser is not available, it is possible to make one using the Custom
Error Parsers dialog (shown in Figure 7-16), accessed by clicking the Custom
Error Parsers button in the Errors tab of the Project Properties dialog .

Figure 7-16. Custom Error Parser Dialog

All error parsers are made up of regular expression patterns. These patterns are used
for searching error output for the filename, line number and error message of the
errors that were produced by the compiler. To make a custom error parser, you must
create a regular expression that will find the output strings that make up the errors. Use
regular expression grouping and alternation patterns to group the expression pattern in
a way that the filename, line number, and error message of the matching strings will
each be made into separate entities.

Do not be too concerned if an error parser for your compiler is not listed. When in doubt, try
the Default parser (DefaultErrorInfo).

1

Chapter 7: Projects, Project Spaces, and Workspaces

141

7

Example

A sample regular expression for making an error parser for the MS J++ Java compiler is
shown in Table 7-4. Instructions for making the parser are also provided.

To make a custom error parser using the above example, complete the following:

1. Go to the Custom Error Parser dialog and copy the name of the above
parser into the Parser Name field.

2. Copy the regex pattern into the Pattern field.

3. Fill in the appropriate group information.

4. Select OK in the dialog. The parser will then be listed as _ErrorInfoParser
MicrosoftJ++Java in the Project -> Settings -> Errors dialog.

5. Choose _ErrorInfoParser MicrosoftJ++Java from the drop-down lists
under the Error Parser combos.

6. Click OK in the Project -> Settings -> Errors dialog.

It is important to remember that syntax elements of strings that make up error output
for any compiler vary depending on the compiler being used. A unique regular
expression must usually be made for the output of each compiler.

Traversing the Output

You can use Search -> Find Next Error to go on to the next error in the
Output Window. Some keymaps have keystroke equivalents to these commands.
There is also a button available on the Standard toolbar to go to the next error.

Table 7-5 displays some keystrokes that belong to the CUA keymap that facilitate
movement in the Output Window.

Table 7-4. Error Parser for the MS J++ Java Compiler

Description Regex Pattern Groups

Microsoft J++ Java ^(.+):([0-9]+):[\t]*(.+)$ Filename:1

Line Number:2

Message:3

Table 7-5. CUA Keystrokes

Keystroke Action

SCZ Bring up output window.

X Return to current document.

1

Using Hawk™

142

7

The Filters Tab

The Filters tab of the Project Properties dialog is used to specify how files
should be sorted and displayed in the File View tab of the Project Window (the
File View tab is described in the topic on Characteristics of the File View Tab of the
Project Window, in this chapter). The Filters tab (shown in Figure 7-17) controls
how project files are "grouped" for display in the Project Window. The grouping is
accomplished using wildcard characters and filename extensions.

The Filters tab is located in Project -> Settings.

Figure 7-17. Project -> Settings -> Filters Dialog

The default file filters for project files are Source Files, Header Files, Resources, and
Other Files. Use the Filters dialog to add, remove or rearrange filters in the list. To
add a new filter, complete the following steps:

1. Give the new filter a Description and a Pattern, for example "All Files"
and *.*

2. Click Add.

SCY Parse next error.

C [Home] Go to first line.

C [End] Go to last line.

CT Go to next tab stop.

SCT Go to previous tab stop.

Table 7-5. CUA Keystrokes

1

Chapter 7: Projects, Project Spaces, and Workspaces

143

7

The new filter will be added to the top of the list.

Project Setup Checklist
Now that you have created your project and you are familiar with the various tabs of
the Project -> Settings dialog, it is a good idea to review the settings to make
sure they are appropriate for the project. A quick once-over will avoid surprises later.
There are several dialogs to revisit.

1. The Project -> Settings -> Directories dialog:

Check the Working Directory. Be sure to define a working directory for your
project. An explicit directory or %x (the path of the project file) are usually the best
choices. Remember that the items on the Directories tab are only available if
a project or the <Default Settings> item is chosen in the Project
Properties list box.

2. The Project -> Settings -> Tools tab:

Check the Project Command Lines. Make sure the major project-wide command
lines you will be using (other than the command to compile the current file) have
been defined.

Using Projects and Project Spaces
Project spaces organize and house sets of projects. Once a project space is defined, it
is primarily used to select or change projects and project spaces.

Selecting or Changing Projects

You can open or change a project in one of the following ways:

• Choose a project from the Set Current submenu of the Project menu. The
Set Current menu lists all the projects contained by the current project space.
The active project will have a check mark next to it. You may select from this list to
reload any of the projects listed. Choosing a project in the Set Current menu is
the same as opening the project.

• Choose a project from the list at the bottom of the Project menu.

• Choose Project -> Project Space -> Open, choose the filter .PJT, and
navigate the directory structure for the project file. When you select the project file,
a project space is opened as well, even if the project was not previously associated
with a project space.

Be careful not to put all-encompassing filters, such as *.*, at the top of the list. The filters sift
through the files in the order that they appear in the Project -> Settings ->
Filters dialog. Any files filtered by the first filter won't show up under subsequent filters.
Therefore, if *.* is listed as the first filter, none of the other filters will appear to work.

1

Using Hawk™

144

7

Selecting or Changing Project Spaces

You can select a project space by choosing Open from the Project -> Project
Space submenu. Navigate your directory structure as you would when using the File
-> Open dialog and select the project space (.PSP) file you wish to load.

• Recently selected project spaces will be listed at the bottom of the Project
Space submenu, numbered from one to nine. You may select from this list to
reload any of the project spaces listed.

Loading Files for Editing

One of the best things about projects is the convenience it provides when loading files.
Just choose Load Files from the Project menu to choose from a list of the files
in the current project.

• If you find that some files aren't listed, select the Members tab of Project ->
Settings to add them.

• Select Open from the File menu to load files that are not part of the project. The
rules for extended selection list boxes apply to the Load Files dialog.

Alternately, you may wish to use the Project Window to operate on files in a
project. As with the Load Files dialog, you just select the desired files from the list
and press Enter to load the files. The Project Window has the advantage of
showing which files are actually on disk (some may currently be archived), and
whether they are read/write (see the topic on Characteristics of the File View Tab of the
Project Window, in this chapter). In addition, you may define filters (file specification
patterns) to sort the file list into groups (see the topic The Filters Tab in this chapter).

Creating, Selecting and Saving Workspaces

One of the most powerful aspects of projects is the workspace. At any time while
working on a project, you can select Save Workspace from the Project menu
and create a new workspace. Just give your workspace a name — a descriptive name
this time, rather than just a file name — and you are done.

A workspace name may contain any printable characters (including spaces), but no
apostrophe ('), backslash (\), quote ("), or square brackets ([]).

Creating a New Workspace

Suppose that you have a number of files open, and want to create a new workspace
that does not include any of the files currently open. Complete the following steps:

1. Select the project that the workspace should be saved to using the Set Current
submenu on the Project menu, and then select Load Workspace from the
Project menu. The Select Workspace to Load dialog displays; this dialog is
shown in Figure 7-18.

You must select a project from the Set Current submenu on the project menu before
the workspace items on the Project menu will be available for use.

1

Chapter 7: Projects, Project Spaces, and Workspaces

145

7

Figure 7-18. Select Workspace to Load Dialog

2. You will see a workspace that is always available called <none>. Select that
workspace to wipe the slate clean.

3. Set the Close Windows/Delete Documents option to All to close all your
buffers and windows and start afresh, and click OK. Of course, if any of the buffers
contain changes that have not been saved to disk you will be given an opportunity
to do so.

Now that you have your clean slate, open the files that you want to have open in your
workspace. At any point, you can save your workspace under whatever descriptive
name you wish, by clicking Save Workspace on the Project menu.

Remember that workspaces are specific to the projects in which they are created.

Automatic Saving

Selecting Save Workspace from the Project menu is usually only necessary
when creating a new workspace. Hawk automatically updates the active workspace
whenever you:

• Close or change projects.

• Exit Hawk.

• (Optionally) when you change workspaces.

Loading an Existing Workspace

Once you have created more than one workspace, you will find it easy to switch
between them. Select Project -> Load Workspace. You will notice a couple of
options are available, as described below.

Update Current Workspace

When the Update Current Workspace box is checked, the workspace you are
leaving is automatically updated before the new workspace is loaded.

1

Using Hawk™

146

7

Close Windows/Delete Buffers

Choose one of the following options when closing a workspace, with respect to the
next workspace. Keep in mind that the saving of windows and buffers in the workspace
you are leaving is unaffected by your selection.

• Choose All to have all files carry over into the next workspace. If you do this, we
recommend that you either delete the carry-over buffers before saving the
workspace, or save the workspace under a new name. Otherwise, workspaces will
become less distinct, and therefore less useful, entities.

• Choose Current Workspace Components Only to close only the files that
are members of the workspace. This means that any files you opened during the
session, such as a special header file, will carry over to the next workspace.

• Choose None to close all windows and buffers after leaving one workspace and
before the next is loaded. In this event, no buffers or windows are carried over from
one workspace to the next.

Searching Project Files

You can search the entire group of files that are members of the current project space
or project, or you can select a subset of the member projects or files on which to
perform a search. This feature is available in the Search and Replace Multiple
Sources dialog and is described in Chapter 10 Search and Replace and Other
Navigational Tools.

Selecting files for Check-in or Check-out

Hawk's version control interface (Check-in, Check-out and related commands)
can operate independently of, or in conjunction with projects. The Tools ->
Version Control -> Maintenance dialog allows you to select from files in the
project or the current directory.

Configuration and State Hierarchy
When you have no projects in use, Hawk stores its configuration information in its
configuration file (MWHAWK.INI). Between sessions, Hawk stores the more transient
information about the files you are working on in its state file. When you are using a
project, however, some configuration information is kept in the project file, and almost
all of the state information is stored there also. The state file then serves largely to
identify which project file you were using last.

You determine the amount of configuration information kept in the project file by
selecting either the <Default Settings> item or a project from the Project
Properties list box, and then setting options in the various tabs of the Project -
> Settings dialog. The Directories tab in the dialog also has an option that
allows additional items to be stored in the project file.

Choosing to set configurations as either <Default Settings> or project specific
settings gives you the option of storing as much or as little information with projects as
you like, and allows each project to have its own, unique configurations. These

1

Chapter 7: Projects, Project Spaces, and Workspaces

147

7

configurations change as projects change. Also, storing more information in the project
file means storing less information in the Configuration file, thereby minimizing the
time it takes to load Hawk.

If you are using one or more workspaces within your project, document and window
state information is stored with the active workspace section of the project file when
you exit, rather than in the state section of the project. For more information about
Hawk's main configuration files, see Chapter 17 Configuration Files and Command Line
Parameters.

1

Using Hawk™

148

7

1

149

The Hawk Debugger

This chapter describes using the Hawk Debugger. It includes the following sections:

Overview

The Hawk Debugger Interface

Debugging User-State Applications

Debugging System-State Routines

Debugging User-State Applications Using LLROM

Installing the Debug Extensions Module for 68K Systems

8

1

Using Hawk™

150

8

Overview
The Hawk Debugger is a Windows-based, graphical user interface for debugging OS-9
projects. It is based upon and uses most of the commands from the legacy OS-9
resident source-level debugger, SrcDbg.

Depending on which OS-9 modules you have loaded on your development system,
you can use the Hawk Debugger to debug your OS-9 user-state applications and
system-state code.

Starting the Hawk Debugger

There are two versions of the Hawk Debugger. One version is integrated into the Hawk
IDE and is started by selecting Debug -> Connect from the Hawk main window.
The other version is stand-alone and can be started from a command line by running
the following program:

\MWOS\DOS\BIN\hawkdbgr.exe

The stand-alone Hawk Debugger can also be invoked automatically when a child
process or thread is forked (see Figure 8-4). The stand-alone Hawk Debugger can be
used for applications developed outside of the Hawk IDE. More than one instance of
the stand-alone Hawk Debugger can be run simultaneously..

User-State Applications

User-state is the normal program environment in which processes are typically
executed. Generally, user-state processes do not deal directly with the specific
hardware configuration of the system. Instead, these applications run under the control
of the OS-9 kernel, which performs the real-time task switching and scheduling on the
processes.

OS-9 includes security features inherent in its process-model architecture. This
architecture has the following security features:

• A user-state application runs without interfering with any other running process.

• A user-state application process does not interfere with the operating system code.
Errant pointers or bad logic do not cause a system crash or cause other processes
to fail.

System-State Routines

The OS-9 operating system creates the user-state environment and controls the
processes running under its control. The OS itself, along with device drivers and file
managers, operates in a different environment called system-state. In this environment,
the code that runs has complete access to the system. Code can access memory at
any location, and can cause processes running under OS control to fail.

To correctly use the Hawk Debugger, your target system must have the pipe and
pipeman modules in memory and available for use.

1

Chapter 8: The Hawk Debugger

151

8

Since these applications are not under the control of the kernel, however, they do not
follow the same restrictions or controls the kernel places on processes. This allows, for
example, the efficient processing of interrupts by drivers.

Operating system extension modules (sometimes call P2 modules), trap handler
modules and system-state alarms also operate in system-state. A process executes in
system-state if the supervisor state bit in the module attribute/revision word is set and
if the module is owned by the super user.

The Hawk Debugger Interface
The Hawk Debugger provides a graphical user interface for the OS-9 source-level
debugger, SrcDbg. This section documents the menu and toolbar functions. Figure
8-1 shows the main Hawk Debugger window and some of the main components.

1

Using Hawk™

152

8

Figure 8-1. The Hawk Debugger

Hawk Debugger Functionality

The Hawk Debugger functionality is accessed through the menus and tool bars. Some
of the functionality can be accessed through both means.

1

Chapter 8: The Hawk Debugger

153

8

File Functions

From the File menu you open and print source files, set the Hawk Debugger user
options, and save and select your user-defined layout configurations. You also exit the
Hawk Debugger from the File menu. Figure 8-2 shows the File menu.

Figure 8-2. File Menu

Figure 8-3 through Figure 8-7 are associated with the Hawk Debugger user Options,
which are located in the Debug file menu or the Options button on the Debugger
Connect window.

The Session tab, shown in Figure 8-3, enables you to set the following options:

Figure 8-3. Session Tab

• Read symbolic debug information causes the Hawk Debugger to
process the .stb file when loading or attaching to modules. The .stb file
contains basic symbolic information for global variables and functions.

• Read source level debug information causes the Hawk Debugger to
process the .dbg file when loading or attaching to modules. The .dbg file
contains source level debugging information.

• Use soft breakpoints is important because soft breakpoints are typically
used when the code being debugged is stored in read-only memory (ROM.)

1

Using Hawk™

154

8

Instead of placing a special processor instruction at the breakpoint location, here
the program counter is compared with the list of breakpoints after the execution of
each instruction. Because of this, programs being debugged with soft breakpoints
execute slower than when normal “hard” breakpoints are used.

• Display FPU Registers in Floating Point format causes the
Hawk Debugger to display the contents of Floating Point Unit (FPU) registers as
decimal fractions. When not selected, the contents of FPU registers are shown as a
hexadecimal number.

• Display Symbols in Hexadecimal format causes the value of symbol
to display in hexadecimal format. When this option is not selected, symbol
information is displayed in decimal format.

The Sessions tab also includes the On Child Fork menu. The options are shown in
Figure 8-4, and include the following:

Figure 8-4. On Child Fork Menu

• Run Full Speed causes processes forked by the program being debugged to
run normally.

• Start New Debugger causes a new Hawk Debugger window to display the
forked process.

Figure 8-5 shows the Animate tab options. These include the following:

1

Chapter 8: The Hawk Debugger

155

8

Figure 8-5. Animate Tab

• Action

• Step Into causes the Hawk Debugger to step into function calls.

• Step Over causes the debugger to treat function calls as one machine
instruction.

• Scope

• Source causes the Hawk Debugger to step through the executing program
one C source line at a time.

• Assembly causes the debugger to step through one machine instruction at a
time.

• Update during Animation

• Selecting a check box causes the Hawk Debugger to update the selected
window during the animation process. For example, if the Registers check
box is selected and the Registers window is open, the debugger will update
the register display after each step through the program.

• Updating the windows requires more data to be sent from the target system.
Therefore, as you enable more updating, the animation process becomes
slower.

• Execution (Animation) Speed

• This slider sets the duration between steps through the program. The handcart
represents the slowest setting and the locomotive represents the fastest
setting.

Figure 8-6 shows the Folders tab options. This enables you to set the search paths
for the desired source and object code. The symbolic information files (.stb and
.dbg) are searched for in the Object Code directories.

1

Using Hawk™

156

8

Figure 8-6. Folders Tab

Figure 8-7 shows the Environment tab options. This tab is used to set environment
variables for the debugged process. When the process is forked, these environment
variables will be passed to the target program’s main function. The Default Target
pulldown list specifies the default target system to be used for debugging.

In addition, when a process being debugged forks a new thread, it is treated in a
manner similar to the forking of a new process. The Debugger can either start a new
debug session for the new thread or optionally allow the new thread to run without
debug control.

Figure 8-7. Environment Tab

The File menu also includes a Layout selection, shown in Figure 8-8. This functionality
is also accessible through the Layout Toolbar, also shown in Figure 8-8. Once the user

1

Chapter 8: The Hawk Debugger

157

8

interface is configured as desired, the configuration can be named, saved, and used
repeatedly. You can also save more than one configuration.

Figure 8-8. Layout Options

Commands

The Hawk Debugger commands, the actual debugging operations performed on the
project’s code, are accessible through the Process menu and the Commands toolbar.
These are shown in Figure 8-9 and Figure 8-10 respectively. Each command function is
described briefly in Table 8-1.

Figure 8-9. Process Commands Menu

Figure 8-10. Process Commands Toolbar

1

Using Hawk™

158

8

In addition, the Process menu includes an Attach to Module selection. This
selection enables you to attach to a library or program module on the target system.
The Hawk Debugger will attempt to locate and process the associated .stb and .dbg
files as enabled by the Session tab in the Options dialog (see Figure 8-3 for
details).

Table 8-1. Hawk Debugger Commands

Command Description

Exit Debugger Terminates your current debug session.

Refork process Causes the current debug process to be exited and the
program to be re-forked.

Pause the process Stops an executing process.

Run process Starts a stopped process. Execution resumes from the current
program counter value.

Run to cursor The process is run up to the source line indicated by the
cursor.

Animate process The current process is stepped through automatically. The rate
of execution and which windows are updated is controlled by
the Animate tab in the Option dialog.

Step into source Steps one C/C++ source line. If a function call is encountered,
the debugger steps into the function.

Step over source Steps one C/C++ source line. If a function call is encountered,
the debugger steps over the call.

Return from function Causes the debugger to run the target process until it returns
from the currently active function.

Step into assembly Steps one machine instruction (assembly source line) at a
time. If a subroutine call is encountered, the debugger steps
into the subroutine.

Step over assembly Steps one machine instruction (assembly source line) at a
time. If a subroutine call is encountered, the debugger treats
the subroutine call as a single instruction.

1

Chapter 8: The Hawk Debugger

159

8

View Options

The Hawk Debugger view options determine how the Hawk Debugger interface
appears as you are working. These options are controlled through the View menu and
the Data Windows toolbar. These are shown in Figure 8-11 and Figure 8-12
respectively. Each command function is described briefly in Table 8-2.

Figure 8-11. View Menu

Figure 8-12. Datawindows Toolbar

Table 8-2. Hawk Debugger View Options

View Option Description

Toggle Source code visibility Toggles the display of the C/C++ source
window.

Toggle Process I/O visibility Toggles the display of the Target Process I/O
window.

1

Using Hawk™

160

8

Toggle Assembly visibility Toggles the display of the Assembly Source
Code Window.

Toggle Locals visibility Toggles the display of the Local Variables
Window.

Toggle Watch visibility Toggles the display of the Watch Expression
window.

Toggle Call Stack visibility Toggles the display of the Call Stack window.

Toggle Memory visibility Toggles the display of the Target Memory
window.

Toggle Breakpoints visibility Toggles the display of the Breakpoint window.

Toggle MPU Registers visibility Toggles the display of the MPU Registers.

Toggle FPU Registers visibility Toggles the display of the FPU Registers.

Toggle MMU Registers visibility Toggles the display of the MMU Registers. These
registers are only viewable when debugging in
system state.

Toggle “Special” Registers visibility Toggles the display of special processor control
registers. These registers are only viewable
when debugging in system state.

Toggle Exceptions visibility Toggles the display of the Exceptions window.
This window is only active when debugging in
system state.

Toggle Command visibility Toggles the Command I/O window. The
Command I/O window allows you to
communicate via command-line commands to
the debugger.

Toggle Symbol Browser visibility Toggles the Symbol Browser window. This
window can be used to enable/disable
breakpoints. It is especially helpful when
multiple modules’ symbols are available.

Lock the docked windows Prevents docked windows from becoming
undocked.

Table 8-2. Hawk Debugger View Options (Continued)

View Option Description

1

Chapter 8: The Hawk Debugger

161

8

The View menu and Data WIndows toolbar also enable control of the registers
displaying in the interface. Figure 8-13 shows these control points. As with other view
options, the register windows can be docked and undocked, and placed on the screen
as desired. Figure 8-14 shows a Hawk Debugger interface displaying registers.

Figure 8-13. Register View Options

T
og

gl
e

M
P

U
 R

eg
is

te
rs

 v
is

ib
ili

ty
T

og
gl

e
F

P
U

 R
eg

is
te

rs
 v

is
ib

ili
ty

T
og

gl
e

M
M

U
 R

eg
is

te
rs

 v
is

ib
ili

ty
T

og
gl

e
"S

pe
ci

al
"

R
eg

is
te

rs
 v

is
ib

ili
ty

1

Using Hawk™

162

8

Figure 8-14. Registers Display

The View menu also controls which toolbars display in the interface. Figure 8-15 shows
this control. Figure 8-16 shows the Hawk Debugger toolbars. All toolbars can be
docked and undocked within the interface window. The Commands toolbar can be
undocked and placed outside of the interface window.

1

Chapter 8: The Hawk Debugger

163

8

Figure 8-15. Toolbar View Options

Figure 8-16. Hawk Debugger Toolbars

Browser Tool

The Browser tool is provided under the View menu. Selecting the Browser option,
shown in Figure 8-17, displays the Symbol Browser. You can use the Symbol
Browswer to examine the block structure of the program being debugged and to set
breakpoints, set context, evaluate an expression or add a variable to the Watch window.

1

Using Hawk™

164

8

The Browser toolbar, also shown in Figure 8-17, is described in Table 8-3..

Figure 8-17. Browser Window

If you are having trouble setting breakpoints in Hawk, use the Set Context feature. This
feature is located in Hawk’s Symbol Browser and is defined in Table 8-3. Steps on how to
use the feature follow:

To use the Set Context feature, complete the following steps:
1. Open the Symbol Browser (Debug->View->Browse Symbol) and highlight the

desired function.
2. Right-click on the function and select the Set Context option. The corresponding

source file is opened in the Editor Window and a black arrow outlined in yellow identifies
the new context location.

You should now be able to toggle breakpoints from within the Editor Window by
highlighting the desired line, right clicking, and selecting the Toggle Breakpoint
option. (You can then also toggle breakpoints by left click in the border to the left of the
desired line.)

1

Chapter 8: The Hawk Debugger

165

8

Selecting the Show Properties button on the Browser toolbar, displays the
properties window shown in Figure 8-18. The type and value of the selected item is
displayed.

Table 8-3. Browser Toolbar Options

Tool Description

Browser Help Brings up the help information for the Browser.

Show properties This button causes a properties window to be
displayed as shown in Figure 8-18. The type and
value of the selected item is displayed.

Set context Causes the debugger’s context to be set to the
selected function or block. If there is an active
stack frame for the selected function or block, the
variables that are in scope can be evaluated.

Toggle breakpoint Toggles a breakpoint at the selected function or
block.

Add watch Adds the selected data item to the Watch window.

Evaluate Causes the selected data item to be evaluated and
the results displayed in an Expression Evaluation
window.

Expand/Collapse current level Toggles the view of the element list.

Automatic update Automatically updates the view according to a
preset time interval.

1

Using Hawk™

166

8

Figure 8-18. Show Properties Window

Expression Eval Tool

The Expression Eval tool, shown in Figure 8-19, displays the Expression Evaluation
window. This shows the current value of a variable or expression.

The Add Watch button in the Expression Evaluation window, also shown in Figure 8-18,
displays the value of a C/C++ expression.

Once opened, the Watches window can be docked and undocked within the interface.

1

Chapter 8: The Hawk Debugger

167

8

Figure 8-19. Expression Evaluation Window

Debugging User-State Applications
Every OS-9 kernel has debugging support built into it, which allows the kernel to
actually control the process that is being debugged. Since this support is built-in to the
kernel, it is rather a simple process to debug an OS-9 process. Debugging is
implemented as a client-server methodology, where the Windows host machine is the
client and the OS-9 machine is the server.

Figure 8-20 shows the major components involved in a debug session as well as the
communications links between them. The four components include the following:

• debugger running on Windows

• NDP Server (spfndpdc)

• NDP I/O Server (ndpio)

• Target Process running on OS-9.

Using the Hawk Debugger requires that the pipe and pipeman modules be loaded in
the target system’s memory.

1

Using Hawk™

168

8

There are five bi-directional connections between the different components. The
following sections describe the components and the connections between them.

Figure 8-20. Debugging Components and Connections

NDP Server Functions

The NDP Server (spfndpdc) controls execution of a Target Process on behalf of the
debugger. Commands and replies are passed back and forth using TCP/IP. As well as
controlling the Target Process, the NDP Server is responsible for setting up the I/O
channel between the debugger and the Target Process’s standard I/O paths (only paths
0, 1 and 2 are monitored).

Control of the Target Process is accomplished using specific debugging system calls
provided by OS-9. In response to requests from the debugger, the NDP Server
manipulates target memory and target registers, sets breakpoints and executes the
program. Because of the way the debugging system calls work, the NDP Server is
inactive whenever the Target Process is executing. This has the side effect that the
debugger cannot communicate with the NDP Server while the Target Process is
executing. Because of this, a separate process is needed to allow standard input and
output facilities between the Target Process and the debugger.

Host Machine Target Machine

Debugger NDP Server

NDP I/O Server

Pseudo Keyboard

Target Process

1

5

3 2

4

1

Chapter 8: The Hawk Debugger

169

8

NDP I/O Server

The NDP I/O Server redirects I/O from the debugger to the Target Process and vice
versa. The data is transferred to and from the Target Process by way of the Pseudo
Keyboard Manager. This gives the effect of the Target Process talking to a terminal. A
separate process is required for this task because, as discussed above, when the Target
Process is running, the NDP Server is inactive and cannot be involved in transferring
I/O data.

Connections

Debugger/NDP Server Connection

The connection between the debugger and the NDP Server (1) is a TCP connection
carrying NDP packets bi-directionally. This connection is established by the Network
Debugger Protocol Daemon (spfndpd). The port number for this connection is
13312 (0x3400).

The NDP protocol is based on the LDP protocol described in RFC-909. Several changes
have been made to improve throughput.

NDP Server/Target Process Connection

The connection between the NDP Server (2) and the Target Process is by way of the
OS-9 kernel’s _os_dfork, _os_dexec, and _os_attach system calls.

NDP I/O Server/Pseudo Keyboard Connection

The connection between the NDP I/O Server and the Pseudo Keyboard Manager
master port (3) carries input and output to and from the Target Process. Data from this
connection is passed onto the debugger through connection number (5) shown in
Figure 8-20. Data coming in from connection number (5) is given to the Pseudo
Keyboard Manager. This connection is established by the NDP Server, which forks the
NDP I/O server.

Target Process/Pseudo Keyboard Connection

The connection between the Target Process and the Pseudo Keyboard Manager slave
port (4) provides the standard input and output paths for the Target Process. Data from
the Target Process is passed through this connection to the Pseudo Keyboard Manager
and from there, to the NDP I/O Server.

NDP I/O Server/Debugger Connection

The connection between the debugger on the Host Machine and the NDP I/O Server
on the Target Machine (5) carries the standard input and output to and from the Target
Process. This connection is set up by cooperation between the debugger and the NDP
Server. The connection is a bi-directional TCP path.

1

Using Hawk™

170

8

Necessary Software

To debug using this methodology requires a stable communications package on the
host and target using TCP/IP. The supported Windows platforms have this available as a
default and it is quite reliable.

Required Modules

For user-state debugging, you need the following modules loaded on your target
system:

• spfndpd

• spfndpdc

• ndpio

• pkman

• pkdrvr

• pk

• pks (68k only).

Debugging System-State Routines
Debugging in system-state with OS-9 is a bit more complex than debugging in user-
state, but the basic client-server model is still the same. However, an additional module
is needed to control the system while debugging, since the debugging services in the
kernel are no longer available. This module, called dbgserv (or the Debug Server)
provides similar debugging services as the kernel does.

The other main difference between system- and user-state debugging is what is
actually being debugged. In user-state debugging, you are debugging one single OS-9
process. In system-state debugging, you are debugging the entire target image as one
monolithic entity. This means you are debugging the OS, drivers, file managers, and all
the running processes as one meta-process. Debugging at this level has some
interesting results. For example, when you stop at a breakpoint while system state
debugging, the entire meta-process comes to a halt. This means that all processes stop
executing, no interrupts are processed, etc. After resuming from a breakpoint, the meta-
process resumes and everything starts running again.

Figure 8-21 shows the major components involved in a system-state debug session as
well as the communications links between them. The three components include the
following:

The list above assumes that the appropriate underlying network software, including SoftStax®
and the LAN Communications with support for Ethernet, SLIP or PPP, is in place on the OS-9
target machine.

For an example of user-state debugging, see the Getting Started with Hawk manual.

1

Chapter 8: The Hawk Debugger

171

8

• debugger running on Windows

• NDP Server (sndp)

• Meta-Process running on the target

The following sections describe the components and the connections between them in
some detail.

Figure 8-21. Components of System-state Debugging Session

NDP Server Functions

The NDP Server (sndp) is a system-level module that controls execution of the Meta-
Process on behalf of the debugger. Commands and replies are passed back and forth
using TCP/IP.

Control of the Target Process is accomplished using specific debugging calls provided
by the Debugger Server, dbgserv. In response to requests from the debugger, the
NDP Server manipulates target memory and target registers, sets breakpoints and
executes the program.

Host Machine Target Machine

Debugger NDP Server

Meta-Process

1

2

1

Using Hawk™

172

8

Connections

Debugger/NDP Server Connection

The connection between the debugger and the NDP Server (1) is a TCP connection
carrying NDP packets bi-directionally. This connection is established by the NDP Server
(sndp). The port number for this connection is 13312 (0x3400).

The NDP protocol is based on the LDP protocol described in RFC-909. Several changes
have been made to improve throughput.

NDP Server/Meta Process Connection

The connection between the NDP Server (2) and the Meta-Process is established
using the Debug Server (dbgserv) API calls.

Restrictions

One of the major restrictions of the system-state client-server configuration is the
handling of system-state I/O. Due to restrictions in the communication software used
for system-state debugging, there is no ability to handle I/O generated by the Meta-
Process during debugging. Therefore, any I/O generated is displayed on the designated
OS-9 console, if one exists.

Communications Layer for System-state Debugging

Using the communications layer for system-state debugging requires a stable
communications package on the host and target using TCP/IP. The supported Windows
platforms have this available as a default and it is quite reliable.

The OS-9 communications layer is a bit different in system-state debugging than in
user-state. Since we are debugging the Meta-Process and several pieces of the
Microware LAN Communications run as processes under OS-9, system-state
debugging cannot be performed using this communications package. Instead, another
communications package needs to be used called Low-Level ROM Communications,
or LLROM.

This communications package provides minimal TCP/IP services without the use of
interrupts or other support that the OS-9 kernel provides. Instead, it uses a polled
architecture, which does affect performance, but provides the support needed in a
system-state debugging environment. LLROM is configured when you configure the
OS-9 environment.

Required Modules

For system-state debugging, you need the following modules loaded on your target
system:

• sndp

• dbgserv

• dbgentry

1

Chapter 8: The Hawk Debugger

173

8

• break.

Debugging User-State Applications Using LLROM
Many times, embedded hardware does not have resources to provide the full
Microware LAN Communications implementation. In these cases, there is a third
debugging solution on OS-9 that provides user-state debugging using the LLROM
communications layer that is used for system-state debugging.

Figure 8-22 shows the major components involved in a debug session as well as the
communications links between them. The three components are:

• debugger running on Windows

• NDP Server (undpdc)

• Target Process running on OS-9

The following sections describe the components and the connections established
between them in some detail.

This list assumes that the appropriate underlying networking is in place. For system-state
debugging, the underlying network includes the low-level communications modules.

For an example of system-state debugging, see the Getting Started with Hawk manual.

1

Using Hawk™

174

8

Figure 8-22. Debug Components and Communication Links

 NDP Server Functions

The NDP Server (undpdc) controls execution of a Target Process on behalf of the
debugger. Commands and replies are passed back and forth using TCP/IP.

Control of the Target Process is accomplished using specific debugging system calls
provided by OS-9. In response to requests from the debugger, the NDP Server
manipulates target memory and target registers, sets breakpoints and executes the
program. Because of the way the debugging system calls work, the NDP Server is
inactive whenever the Target Process is executing.

Connections

Debugger/NDP Server Connection

The connection between the debugger and the NDP Server (1) is a TCP connection
carrying NDP packets bi-directionally. This connection is established by the Network
Debugger Protocol Daemon (undpd). The port number for this connection is 13312
(0x3400).

The NDP protocol is based on the LDP protocol described in RFC-909. Several changes
have been made to improve throughput.

Host Machine Target Machine

Debugger NDP Server

Target Process

1

2

1

Chapter 8: The Hawk Debugger

175

8

NDP Server/Target Process Connection

The connection between the NDP Server (2) and the Target Process is established
using the OS-9 kernel’s _os_dfork, _os_dexec and _os_attach system calls.

Restrictions

Due to restrictions in the LLROM communication software used for debugging, there is
no ability to handle I/O generated by the target process during debugging. Therefore,
any I/O will be on the path(s) (stdin, stdout, stderr) on which undpd was
started. If a process is forked from the Debugger, it will start with the path(s) specified
at fork time, and I/O will be generated on those paths.

Necessary Software

To debug using this methodology requires a stable communications package on the
host and target using TCP/IP. The supported Windows platforms have this available as a
default and it is quite reliable.

Required Modules

For low-level user-state debugging, you need the following modules loaded on your
target system:

• undpd

• undpdc

• hlproto

Installing the Debug Extensions Module for 68K Systems
The Debug Extensions module, dbgextns, extends the OS-9 for 68K kernel to enable
new debugging features provided by the Hawk Integrated Development Environment.
These include attaching to running processes and debugging children forked by
processes being debugged.

To enable these features, dbgextns must be loaded in memory on the target system
and must also be initialized. You can initialize dbgextns using one of the following
methods:

1. Using the OS-9 p2init utility.

2. Including dbgextns in the OS-9 bootfile and including its name in the
list of extensions in the init module.

The dbgextns module can be found in the following directories, depending on the
type of host system:

• 68000,68010, CPU32, and 68070

The list above assumes that the appropriate underlying network software, including the
applicable low-level network I/O modules (also known as LLROM) with support for Ethernet
or SLIP, is in place on the OS-9 target machine.

1

Using Hawk™

176

8

MWOS/OS9/68000/CMDS/BOOTOBJS

• 68020, 68030, 68040, and 68060

MWOS/OS9/68020/CMDS/BOOTOBJS

1

177

Version Control

Hawk does not come with its own version control system, but can be configured to
integrate with an existing system. This chapter describes the Hawk version control
features. It includes the following sections:

Using Version Control in Hawk

Version Control Integration Configuration

9

1

Using Hawk™

178

9

Using Version Control in Hawk
This section describes the Hawk version control user interface. You must have an
existing version control system integrated with Hawk using one of the two methods
described in the Version Control Integration Configuration section. The appropriate
integration method to use depends on the type of version control system available.

Version Control Menu

Most version control operations in Hawk can be carried out from the Tools ->
Version Control submenu. From this menu, the following capabilities are
available:

• Perform standard put, get, get-with-lock, lock, and unlock commands.

• See the properties and histories of any files under version control using the
Properties and History items.

• Add or remove files from the version control project by clicking on Add or Remove.

• Access the Version Control Manager for the version control provider using the
Manager item.

Source Code Revision Control—Maintenance Dialog

While most of the items on the Version Control submenu are self-explanatory, an
item that requires deeper explanation is Maintenance, which accesses the Source
Code Revision Control Maintenance dialog. This dialog is a multi-purpose
dialog that works for either the command line interface or the SCC Provider interface.

This dialog is also available on the right-mouse-click pop-up menu in the Hawk
Project Window (which is displayed by default on the left-hand side of the main
Hawk window). If the Project Window doesn’t appear in Hawk, click the Project
menu item in the Window pull-down menu.

1

Chapter 9: Version Control

179

9

Figure 9-1. Source Code Revision Control Maintenance Dialog

The Maintenance dialog is useful for the following actions:

• applying labels to revisions

• locking and unlocking revisions without checking them in or out

• reviewing the revision history and properties of an archive

• performing other version control tasks

Some of these services, such as history and properties, are very specific to the version
control system or SCC provider you are using.

Version Control and Hawk Projects

Refer to this section to complete the following:

• Associate Version Control projects with Hawk projects.

• Add version control project filenames to your Hawk project.

• Add Hawk project files to an SCC Provider Project.

Any file opened in Hawk that you wish to perform version control operations on must already
be part of a version control project. In the case of the SCC interface, it must be a part of the
version control project that you have opened under Tools -> Version
Control -> Setup. The file does not have to be part of a Hawk project, although
there are advantages to using Hawk projects in conjunction with existing version control
projects.

1

Using Hawk™

180

9

Associating Version Control Projects with Hawk Projects

It is possible to associate version control projects with Hawk projects when using SCC
API version control integration. This is described in the Hawk SCC Integration with
Version Control Systems section. Doing so offers the following advantages:

• When a Hawk project is opened, the associated version control project is also
automatically opened, thus making version control facilities readily available to be
used from within Hawk. Check-in and Check-out (among other version
control commands) are immediately available, allowing for quick preparation of
files for editing.

• Closing the Hawk project automatically closes the associated version control
project.

• Files in the associated version control project can be "read" into the Hawk project,
providing a more convenient way to add appropriate files to the Hawk project.

A version control project can be associated with a Hawk project from one of two
different dialogs: the Tools -> Version Control -> Setup dialog or the
Project -> Settings -> Members dialog. To associate the two projects in the
Tools -> Version Control -> Setup dialog, complete the following steps:

1. Create a new project space with at least one member project (or open an existing
one).

2. Set a current Hawk project using the Set Current menu item on the Project
menu.

3. Go to Tools -> Version Control -> Setup.

4. Choose the SCC Provider radio button.

5. Assuming that the version control provider has already been initialized, click Open
Project.

6. Choose the version control project that you want to associate with the current
Hawk project.

7. Verify that the working directory listed is that of the version control project’s, not the
Hawk project’s (or any other) directory. If the directory is not the one that was
specified for the version control project, make it so by browsing for, or typing in, the
correct directory name.

8. Click OK, and then OK again.

To associate Hawk and version control projects in the Project -> Settings ->
Members dialog, complete the following steps:

1. Assuming that a project space has been created with at least one member project,
go to the Project -> Settings -> Members dialog.

For information about creating projects, see Chapter 7 Projects, Project Spaces, and
Workspaces.

1

Chapter 9: Version Control

181

9

2. Highlight the Hawk project that you want to associate with the version control
project.

3. In the VCS Project group, click the Setup button (the group will not be
available if a version control provider has not been installed and initialized).

4. Choose the version control project that you want to associate.

5. Verify that the working directory listed is that of the version control project’s, not the
Hawk project’s (or any other) directory. If the directory is not the one that was
specified for the version control project, make it so by browsing for, or typing in, the
correct directory name.

6. Click OK, and then click OK again.

Add Version Control Project Files to a Hawk Project

Filenames that make up version control projects can easily be added to Hawk projects
when using the SCC service provider version control integration.

To add version control files to a Hawk project, use the VCS Project Read feature. This
feature will read or scan a version control project or configuration file for files, in order
to incorporate those files into a Hawk project. The version control "Read" feature can
be found in the Project -> Settings -> Members dialog.

Figure 9-2. Project -> Settings -> Members Dialog

Address the following items that have to do with Hawk’s version control "Read"
feature:

• VCS Project: Lists the name of this version control project.

• Setup button: Allows you to associate an SCC Project, or change the association.
Complete the dialog that displays.

• The Read button: Allows you to populate the project files list box.

Having Hawk automatically read the filenames of a version control project into a Hawk
project saves the time needed to manually add files, one by one, to a Hawk project.

1

Using Hawk™

182

9

Add Hawk Project Files to an SCC Provider Project

The Project -> Settings -> Members dialog also has a feature for adding
filenames from a Hawk project file to an SCC Provider Project. To do this, complete the
following steps:

1. Make an SCC Project association using the Setup button (as described in the
preceding topic Associating Version Control Projects with Hawk Projects).

2. Verify that a check box at the bottom of the tab becomes enabled, which will Add
Project Files to VCS Project.

3. Click OK to close the Project -> Settings dialog; each Hawk project file will
be added to the SCC Provider Project. A prompt will most likely come up asking for
optional comments for the files to be newly checked in to version control.

Hawk projects make version control more visual in Hawk. When files are a part of a
Hawk project they are displayed in Hawk’s Project Window in the File View
tab. The icons that represent files in the Project Window are displayed differently
depending on what state the file is in. These are shown below.

When the files are checked-in (or read-only) the icons that represent the
files will be gray with horizontal lines in them.

When the files are checked out Hawk conveniently places a red check mark
to the upper right of the file icons.

If another user has a lock on a file that is part of the project being worked
on, Hawk represents the file with a gray check mark in the Project
Window.

Some Version Control projects are set to delete work files when they are
checked in. Hawk represents files not found at the specified location (usually
archived) with an exclamation point.

If the file currently being edited (as it is stored on disk) differs from the latest
revision in version control, Hawk will display the file’s representative icon in
a pale yellow color, indicating that it is an old version.

The file-icons in the Project Window help the user visualize the various states that
files can be in when they are under version control.

Current Project Tree List

Hawk projects make the Current Project Tree List in the Source Code
Revision Control-Maintenance dialog available. The Current Project
Tree List displays the files in the current Hawk project and allows the dialog’s

When using the Project Window to carry out version control operations, or view

version control status, it is a good idea to press the refresh button from time to time to see
the most current status of the files.

1

Chapter 9: Version Control

183

9

version control operations to be performed on one or more of those files. It eliminates
the confusion of having to sort through unnecessary and unrelated files that may not
be part of the project.

VCS and the User-Defined Popup Menu

Hawk features a variety of popup menus that can be customized. You may already be
familiar with one of these, the menu that appears when you click the right mouse
button. The right-mouse-click popup menu is context-sensitive. That is, it changes
depending on where the pointer is when the mouse is being clicked. The popup menu
discussed in the following paragraphs comes up when the right-mouse button is
clicked while the pointer is in the current document with nothing highlighted.

Modifying the Standard Popup: A Simple Example

The right mouse popup menu can be changed using Hawk’s popup menu editor. The
popup menu editor modifies menu description files that contain functions that form
Hawk popup menus. Hawk’s main menu description file is called CWRIGHT.MNU. The
Edit this menu option available on most standard popup menus will access the
popup menu editor.

The main popup menu already contains two commonly used VCS commands:
checkin and checkout. The checkout command in the menu uses the Check
Out w/ Lock command, as defined in the Version Control Setup dialog.
Following is a description of adding an item in the pop-up menu to perform a non-
locking checkout.

1. Right-click in an un-highlighted, non-HTML document to access the popup menu,
then click Edit this menu.

2. Using the existing Check out line as a frame of reference, make a new menu
item by first highlighting the Check out line and then clicking Insert ->
Menu Item.

3. In the Menu Item dialog, type Check out--no lock in the Menu Item
Text field. In the Execute Function field, type MenuCommand
IDM_TOOLS_VCS_GET.

You can choose to have your new menu item inserted before the Checkout line
by checking Insert Before.

4. Click OK, and then save the changes in the popup menu editor by clicking File -
> Save.

5. Click OK to close the dialog.

The right-mouse button popup menu should now contain three VCS commands.

More information about the popup menu editor is available in Chapter 12 Customizing
the Interface.

The above example works with command line or SCC integration for a version control system.
The commands make calls via the provider .DLL or command line utilities, depending upon
which system is currently in use.

1

Using Hawk™

184

9

Making Your Own Version Control Popup Menu

A custom popup menu can be made in Hawk with the popup menu editor. Use Hawk’s
default menu description file to store the new menu, or make a new one.

Example

To create a popup menu entitled PVCS, click File -> New Menu in the popup
menu editor, then type the name PVCS in the New Menu dialog. This will add a
[PVCS] section to Hawk’s menu file, CWRIGHT.MNU.

The command to show a menu defined in CWRIGHT.MNU is DlgMenuPopup. Its
syntax is described in Hawk’s online Help. This command may be assigned to a
keystroke, a button, another menu item, or a mouse click.

Example

If you use the Key Bindings dialog to assign <shift-mouse_right_click> to
DlgMenuPopup=“[Pvcs]”, you can call up your custom command menu by
holding down the S key and clicking the right mouse button.

Using Multiple Configuration/Project Files (DOS VCS Utilities Only)

PVCS and many other version control systems use configuration/project files that
maintain workfile and archive locations and other version control configuration
information. When using DOS version control utilities, it is sometimes desirable to use
more than one version control configuration/project file at a time. It may also be
necessary to select the configuration/project file at the time a file is checked in or out.
For example, one of your work files may be used in multiple projects.

The following examples give an idea of how multiple version control
configuration/project files can be used.

Examples

If you need to access to two checkin commands without changing projects, you can
set up each command with its own keystroke, button, or menu item.

1. Create a section in your CWRIGHT.INI file for each command:

[VCSCheckIn1]
CheckInSetCmd=’put -cvcs1.cfg -M%Q %r%e’
CheckInBuffer

[VCSCheckIn2]
CheckInSetCmd=’put -cvcs2.cfg -M%Q %r%e’

CheckInBuffer

The Hawk command ConfigFileRead can be used to execute the Hawk
commands contained in these sections.

1. To bind the first checkin command to a button or menu item, use the
function below:

ConfigFileRead='',VCSCheckIn1

1

Chapter 9: Version Control

185

9

2. For the second checkin command, use the function below:

ConfigFileRead='',VCSCheckIn2

If you are binding to a keystroke, use double quotation marks instead of the single
quotation marks shown above.

The same method works for checkout commands. Below are sample
CWRIGHT.INI file entries for checkout commands:

[VCSCheckOut1]
CheckOutSetCmd=0,’get -cvcs1.cfg %r%e’
CheckOutBuffer=0

[VCSCheckOutLock1]
CheckOutSetCmd=1,’get -cvcs1.cfg -l %r%e’
CheckOutBuffer=1

[VCSCheckOut2]
CheckOutSetCmd=0,’get -cvcs2.cfg %r%e’
CheckOutBuffer=0

[VCSCheckOutLock2]
CheckOutSetCmd=1,’get -cvcs2.cfg -l %r%e’
CheckOutBuffer=1

Version Control Integration Configuration
Hawk can work with version control software either through command line integration
or the SCC Application Programming Interface (API). The command line integration
works specifically with DOS command line utilities that perform version control
operations (for example, PVCS GET.EXE and PUT.EXE, or MS SS.EXE). The SCC
Application Programming Integration is for integrating GUI version control systems with
the Hawk GUI.

The Hawk version control capabilities vary depending on which integration method is
used and which Version Control Provider is used. The integration method is specified
by selecting either the Command Line Provider, or the SCC Service
Provider option in Hawk's Tools -> Version Control -> Setup dialog.
Descriptions of the two integration methods follow. It is only necessary to use one
integration method in order to access version control from within Hawk. Choose the
method that applies to the type of version control system you have (SCC for GUI, or
Command Line for DOS).

Version Control for Use with a Command Line Version Control Provider

Hawk is capable of supporting any version control system that can be run from a DOS
command line. It comes with predefined commands for several version control
systems, including Intersolv’s PVCS, and various versions of the RCS utility, ported from
UNIX.

Hawk integrates with command line version control utilities by creating a DOS shell to
run the utility and then returning to Hawk once the task is complete. It is possible to
perform the operation on a file currently open in Hawk. It is also possible to perform
the operation on multiple files at once.

1

Using Hawk™

186

9

To use the Hawk command-line Version Control Interface, the Source Code Control
System must be properly installed according to the instructions provided by the Version
Control Vendor.

The following information is based on the assumption that command-line version
control operations can be successfully performed from any directory in DOS according
to the instructions provided by the Version Control Vendor.

To set up the version control command lines, complete the following steps:

1. Select the Hawk Tools menu.

2. Find the Version Control submenu.

3. Select the Setup item.

4. Make sure that the Command Line Provider radio button is selected.

5. Choose a command set from the list. You are now ready to use the commands on
the Tools -> Version Control menu.

Adding a New Command Line Provider to Version Control Setup Dialog

If you do not see your provider listed in the Command Line Provider section of
the Version Control -> Setup dialog, you will need to create your own
command lines. If you know that one of the command sets listed is similar to yours,
you may want to select that one, and use its commands as a starting point for your
own. To start from scratch, select Other from the list and set up your own commands.
If you don’t see Other in the list, you can add it by adding Other to the line that
looks like the following:

_StateHistory=XVCS,RCS,TLIB,PVCS,SourceSafe

This line is located in the [Editor] section of Hawk’s configuration file,
MWHAWK.INI. The MWHAWK.INI file can be found in the Hawk home directory.

Customizing Version Control Commands

Whether you use existing version control command lines in Hawk or make your own,
you will need to use the Project -> Settings dialog to define or modify them.
To do this, complete the following steps:

1. In the Tools -> Version Control -> Setup dialog, choose the
Configure button. The Project -> Settings -> Tools dialog, as
displayed in Figure 9-3 is activated.

1

Chapter 9: Version Control

187

9

Figure 9-3. Project -> Settings -> Tools Dialog

2. Select the entry VCS in the Category field.

3. Select the entry labeled External VCS Check In in the Description field.

4. View the command sequence displayed in the Command edit control. This is the
command that is executed anytime you select Check In from any of the various
menus and toolbars that provide the Check In item. The command includes
Hawk filename component macros.

5. To see exactly how the command will run, select the Test button (switch icon).
Note that when you have a dummy file such as FOO.C opened in Hawk, the
macros resolve and the command is displayed for operation on the current
document, FOO.C.

A description of some of the default commands listed in Project -> Settings -
> Tools for version control are described below.

Default Command-Line Version Control Commands Described

The examples contained in this section use PVCS version control commands, but the
concepts apply to any command-line version control provider.

Check-in Command

The Check-in command is the command line needed to check a file into your
version control system or archive. If possible, this command should work whether or
not an archive currently exists for the workfile.

• If the check-in command is empty, the following command is used:

Put %b%e

• The initial check-in command defined in your MWHAWK.INI file is as follows:

Put –t@%Q –m@%Q %b%e

• The @ sign precedes the name of a message file that contains the change
description you want to use. This can be any text file up to 64K in size.

1

Using Hawk™

188

9

• %Q is a Hawk filename component macro that expands out the name of a
temporary response file containing the text from the Comment String
(Check-in) or Additional Options (Check-out) edit box. This
macro is case sensitive. You must use an upper-case Q.

• %b is a Hawk filename component macro that expands out the complete
workfile name, less the extension.

• %e is a Hawk filename component macro that expands out the extension of
the workfile. This component begins with a dot (.) unless the extension is
null.

• The additional flags and %Q macro enable you to supply a description of the
changes or of the archive itself, when creating a new archive, to the Check-in
command. This is done through prompting, or through the Comment String
edit box in the Check-in dialog. The text is placed in a temporary response
file.

• If you want to supply all parameters to the command, including filenames, from
within the temporary response file the %Q macro creates, use the form:

Put @%Q

Predefined command lines are provided for several version control vendors. You
select between these providers on the Tools -> Version Control -> Setup
dialog.

Check-out Command

The Check-out command is the command line to execute when you are checking
out a revision from a version control system or other archive. If your version control
system offers revision locking, this command should not lock the revision. This is the
command to be used when you are browsing or compiling the file, rather than
planning to change it.

• If you don’t define a command for Check-out, the following command is used:

Get %b%e

• If you want to be prompted for additional options or to supply them through the
Additional Options edit box in the Check-out dialog, use a command
similar to the one below:

Get @%Q %b%e

Predefined command lines are provided for several version control vendors. You
select between these in the Tools -> Version Control -> Setup dialog.

• Use the Check-out with locking command to check out a revision for the
purpose of changing it. If your version control system does not offer revision
locking, you may either make this command the same as the Check-out
command or leave it blank.

• If you don’t define a command for Check-out with locking, the following
command is used:

Get l %b%e

1

Chapter 9: Version Control

189

9

• If you want check-out with locking, and wish to be prompted for additional options
(or to supply them through the Additional Options edit box in the Check-
out dialog) use a command similar to the one below:

Get l @Q %b%e

• Predefined command lines are provided for several version control vendors. You
select between these in the Tools -> Version Control -> Setup dialog.

Lock Command

The lock command is the command that your version control system uses to lock a
revision without checking it out. This is useful when you already have a modified
version of the source file that you want to check in, but you discover that the file was
not locked.

Review each of the External VCS commands on the Project -> Settings ->
Tools dialog. Note the commands as provided are designed to minimize response
required from the user during command execution. Revise the commands as
necessary to accommodate your particular source code control operation standards.

Additional Tips

Refer to the following tips regarding command line Version Control integration:

• The version control command runs in a DOS shell. Once the command is
executed, the shell exits and any output that would normally be displayed in DOS is
lost. In order to see the output, mark Use VDOS for each of the Version Control
commands on the Project -> Settings -> Tools dialog. The output will
then be displayed in the Build tab of Hawk’s Output Window.

• One of the most commonly reported errors is Bad Command or Filename.
Placing your version control provider in your path should eliminate this error.

• The command line provider names displayed in the Version Control Setup
dialog are read from the following line in your Hawk configuration file,
MWHAWK.INI. This line is typically placed in the [Editor] section in
MWHAWK.INI:

StateHistory=XVCS,RCS,TLIB,PVCS,SourceSafe

XVCS is the name of the list internal to Hawk. This key is required. The names in
the list follow the XVCS keyword on the line. Add to or edit this line as appropriate.

Hawk SCC Integration with Version Control Systems

Hawk provides a configurable interface for use with your Source Code Control System.
Hawk does not come with a source code control system of its own. You must have a
working source code control system to successfully use the interface.

All of Hawk's SCC Provider support is based on the Microsoft Common Source Code
Control (SCC) Specification. This manual describes a dozen or so entry-points that

By default, the Output Window is docked on the bottom edge of the Hawk window. If
it is not visible, go to the Hawk Window menu and check the Output option.

1

Using Hawk™

190

9

cover various version control operations (such as check-in, check-out). For SCC
Providers to comply, they must provide an SCC Server DLL that contains these entry-
points. When this SCC Server DLL is properly installed and configured, IDEs such as
Hawk can connect their dialog boxes to these entry-points and get similar functionality,
independent of SCC Provider.

Three examples of compatible SCC Server DLLs include the following:

• Intersolv calls their SCC Server DLL, PVCS_API.DLL, the "PVCS Version Manager
Interface for Microsoft Development Environments." It comes on the same CD as
Version Manager, and has a separate installation procedure.

• Microsoft Visual Source Safe has SSSCC.DLL, which should be ready to use from
within Hawk once Microsoft Visual Source Safe has been properly installed.

• Hawk also provides its own SCC provider DLL for PVCS named PVCSIF.DLL. It is
routinely called the "PVCS Developers Toolkit". PVCSIF.DLL provides low-level
version control functionality which, in most cases, is more limited than Intersolv's
DLL. PVCSIF.DLL calls into Intersolv's VMWF520.DLL.

• Intersolv's PVCS_API.DLL didn't exist when Hawk's initial SCC interface was
implemented (Hawk 1.0), thus explaining the reason for the existence of
Hawk's PVCSIF.DLL. Hawk continues to support this DLL, as some
customers prefer it over Intersolv's offering.

To find out whether a particular Version Control Provider offers a Microsoft Common
Source Code Control (SCC) Specification DLL, check with the vendor.

Version Control for Use with a Source Code Provider DLL

Make sure you have a properly installed Source Code Control System on your
computer. Next, complete the following steps to configure SCC Provider support:

1. Select the SCC Service Provider radio button on the Tools -> Version
Control -> Setup dialog.

1

Chapter 9: Version Control

191

9

Figure 9-4. Version Control Setup Dialog

2. Select your version control system from the list in the dialog.

3. Press the Initialize Provider button.

4. Press the Open Project button in the Version Control Setup dialog.

5. Select the version control project you wish to use (the project should already exist
in your version control system).

At this point you should be completely set and ready to perform check-ins, check-outs,
and other version control operations from within Hawk.

If any of the above steps did not go as planned, read the following paragraphs.

Location of the SCC Provider DLLs

System information for SCC Version Control integration (the name and path of installed
source code control systems accessible to your computer) is placed in the Registration
Database for 32-bit systems.

If the Registry entries have not been made, or have been made incorrectly, it will
not be possible to initialize the Version Control Provider in Hawk's Tools ->
Version Control -> Setup dialog. The most common message that comes up
when the initialization fails is System or Project Initialization Failed.

If this message occurs, there are a couple of courses of action:

• Make sure all version control integration modules provided by the version control
vendor are properly installed. Many of the integration modules are not installed
with regular installations of the version control system, and some of the integration
modules don’t even come on the same CD. The version control vendor should be
able to provide the necessary information for where to get version control
integration modules and how to install them.

1

Using Hawk™

192

9

• If the necessary version control integration components have been properly
installed, but Hawk integration initialization still fails, it may be necessary to check
the registration information for the integration modules in the Registration
Database. Examples of some typical registry entries for version control integration
can be found in Hawk's online help, under the topic Version Control Configuration.
Compare these entries with similar entries in your Registration Database, and then
verify that the paths to the various indicated DLLs or other modules are correct, and
that the DLLs or modules do, indeed, exist.

The source code control vendor should make the appropriate system entries as part of the
installation process. If the Source Code Control System is installed on a network server that is
accessed by client machines, it is possible that the proper entries will not have been placed in
the Registration Database of client machines. Sometimes VCS vendors provide network setup
options in anticipation of such situations.

1

193

Search and Replace and Other Navigational
Tools

This chapter describes the following Hawk code navigation tools:

Search and Replace and Regular Expressions

Selective Display

Bookmarks

Button Links

10

1

Using Hawk™

194

10

Search and Replace and Regular Expressions
Hawk offers several methods for performing search and replace operations. Each has
its own advantages under differing circumstances. Some work on a single and others
work directly on the files on disk. Some are meant to be quick and simple while others
are designed for power.

Search and Replace Dialog

Many of the search features can be accessed from the Search menu. Clicking the
Replace option on the Search menu accesses the Replace dialog. The Search
dialog has the same options as the Replace dialog, excluding the replacement
options. It is displayed in Figure 10-1.

Figure 10-1. Replace Dialog

Search and Replacement Edit Boxes

The Find What and Replace With edit boxes allow you to enter the pattern you
want to match and the replacement string. Both of these edit boxes maintain a history
of previous responses, which you may select by pressing the down arrow to the right of
the edit box.

Save Settings

The Save Settings check box is provided to save you from editing the Search
Options dialog anytime you want to make a change to the search values. Settings are
not immediately written to disk, however. Checking the box makes the current settings
the default for that search session.

Multiple Sources Search Dialog

The Search and Replace Multiple Sources dialog allows you to define a
search or replace operation that is not confined to a single document. You may elect to

1

Chapter 10: Search and Replace and Other Navigational Tools

195

10

search through all loaded documents, through files that are members of the current
project space or project, or through any arbitrary set of files. To access the Search
and Replace Multiple Sources dialog, click Multiple Sources on the
Search menu.

Figure 10-2. Search and Replace Multiple Sources Dialog

Search and Replacement Edit Boxes

The Find What and Replace With string edit boxes in the Search and
Replace Multiple Sources dialog allow you to enter the pattern you want to
match and the replacement string, just as you would in a single document search.
Replace is disabled until the Replace With option is checked. Both of these edit
boxes maintain a history of previous responses, which you may select by pressing the
down arrow to the right of the edit box.

If you elect only to search a series of files, rather than selecting the Replace action,
you are selecting to perform a File Grep, which can also be done from the File
Grep dialog (Search -> File Grep). A list of matches in the specified files will
appear in the Search tab of the Output Window:

• The window also displays the line numbers and the line containing the matching
text.

• To move to any of the matches listed in the message box, double click on it with
the mouse.

Several features exclusive to the Search and Replace Multiple Sources
dialog make it one of the more convenient navigating tools available in Hawk.
Descriptions of some of these features are provided below.

Current Directory

The directory defined for the search is displayed at the lower left of the Search and
Replace Multiple Sources dialog, under the check box labeled Set as CWD.
Items to consider with regards to the current directory include the following:

1

Using Hawk™

196

10

• The Browse Button: If you are not in the desired directory, press the Browse
button to select a new working directory for Hawk.

• Set As CWD: After changing the directory, you may want that directory to remain
in effect after you finish searching and return to editing. If this is so, check the Set
As CWD box. If you just want the directory in effect for the current search, ensure
that this box is not checked.

Multiple Source Options

Hawk has the following options in the Multiple Sources Group in the Search
and Replace Multiple Sources dialog:

• Project Space: Use this option to search the members of the current project
space. A list box displaying all projects in the project space will appear when the
option is selected. All projects are initially selected for searching. Choose only those
that you wish to search.

• Project: Use this option to search through members of the current project.

• Documents: Use this option to search the list of currently loaded documents only.

• Files and folders: Use this option to search an arbitrary group of files in any
series of folders. Enter a name for your search set in the edit box associated with
this radio button, or select from the list of previously created search sets.

File Pattern

You may use the File Pattern edit box in the Search and Replace
Multiple Sources dialog for quick, ad hoc searches that you are not apt to repeat.
It lets you specify a file type or series of file types to search without associating it with a
search set name. While not as powerful as the Search list, it is simpler to use. Enter
one or more wildcard patterns into this box. Separate multiple patterns with a
semicolon.

The File Pattern supplements the selected items on the Search list, if any. You
may add it to the Search list by pressing the Add button.

• The File Pattern, when specified, does not override the list of files in the Search list.
If both are defined, the files in both the File Pattern and any selected members of
the Search list are searched.

Search List

The initial contents of the Search List box in the Search and Replace
Multiple Sources dialog depend on which mode of search is selected.

• If Project space is selected, the box lists all files in all selected projects.

• If Project Files is selected, the box lists the files in the current project.

• If Documents is selected, the box lists the documents currently open in Hawk.

• If Files/Folders is selected, the box reflects the search set shown in the
Files/Folders combo box.

1

Chapter 10: Search and Replace and Other Navigational Tools

197

10

• The Search List is usually a series of wildcard patterns. To edit the list, press
the Edit button to bring up the Edit Files/Folders dialog, described under
the topic Edit Search List.

When you first select your desired mode, you will see that the entire contents of the list
box are selected. If you wish to further limit the search or replace to a subset of the list,
deselect the files you want to exclude.

Selecting Files from the Search List

Click a filename or wildcard pattern in the Search and Replace Multiple
Sources dialog’s Search List to select it for the search operation. Use the
following selection options:

• Select or deselect additional files or patterns by holding down Ctrl clicking on
those members of the list.

• Select all files and click the Invert button to start your selection process over
again.

• If the list of documents you do not want to search is shorter than the list of
documents you do want to search, select the documents you want to leave out
and then press the Invert button. All of the documents that were previously
selected become unselected, while the unselected documents become selected.

Search Subdirectories

Check the Subdirectories box in the Search and Replace Multiple
Sources dialog if you want the search to encompass files in subdirectories of the path
searched.

Edit Modified Files

If you are performing a replace operation, you may wish to review the changes made,
or at least to know which files were changed. Select the Edit Modified Files
option in the Search and Replace Multiple Sources dialog to do this.
Modified files are loaded in Hawk for viewing and possible editing. This is very
convenient if you plan to check the modified files into version control.

Threaded

The Search and Replace Multiple Sources dialog’s Use Thread option
allows the search or replace operation to proceed as a separate process, so that other
tasks can be performed as the search continues. If the operation is a search only
(File Grep), the Output Window updates as matches are found. Otherwise,
matches are listed after the operation completes.

Send Listing to Output Window

The Search and Replace Multiple Sources dialog’s List to Output
Window option controls whether and what information is sent to Hawk’s tabbed
output window. Its primary purpose is to let you see the results of Search only (File
Grep) operations, but it can also be useful as a summary of replacement operations.

1

Using Hawk™

198

10

Press the Output button to display the following options in the Search Output
Options dialog:

• List filenames only: Normally, search output contains the file and line
numbers of matches, and the line of text in which the match was found. For a list
only of filenames in which matches were found, check this box.

• Append to listing: To add to the information in the output window rather
than replace what was there from previous searches, check this box.

• List to file: You may specify that the information about the matches found
be stored in a file; you may also specify the name of that file. The default name is
CWFGREP.___, which is created in the current directory. You may specify another
name if the default causes a conflict, or if you wish to save the output from the
previous or current operation, rather than allowing it to be overwritten. You may
also redisplay the results of a previous search by specifying the name of the file in
which the results were saved.

Edit Search List

The Edit button in the Search and Replace Multiple Sources dialog
brings up the Edit File/Folders dialog used for editing the Search List
more specifically. The dialog’s options are as follows:

Search Pattern

For the Edit File/Folders dialog’s Search pattern edit box complete the
following steps:

1. Enter the file specification you wish to add to the current Search Set.

2. Press Add to add the file pattern to the Patterns list. Standard wildcard
characters ? and * are allowed. Your pattern may be anything from *.c to
k:\src\cw????.??v. You can enter several patterns at once by separating
them with semicolons. When you do so, each pattern is given a separate line in the
list of patterns for the Search Set.

Patterns List

The Edit Files/Folders dialog’s File Pattern list box contains the patterns
already defined for this Search Set. The Search Set is composed of the union of these
patterns, rather than the intersection. Files are only searched once, even if they match
several of the Search Set’s patterns. Therefore, if the Search Set contains the pattern
., other patterns are superfluous unless they contain a path element. Source
patterns that do not contain a path element will apply to the current directory.

Drive and Directory Lists

The drive list box and the Directories tree list in the Edit Files/Folders
dialog allow you to select the path you want to apply to the source set. This is only
meaningful if the Include Directory check box is checked when the Search
Pattern is added to the Patterns list.

1

Chapter 10: Search and Replace and Other Navigational Tools

199

10

Include Directory

When Include Directory is checked in the Edit Files/Folders dialog, the
drive and directory selected in the adjacent list boxes are automatically added to the
pattern specified in the Search Pattern edit box as you press the Add button.

List Editing Buttons

The List Edit buttons in the Edit Files/Folders dialog work as follows:

1. Use Add, or Delete to add or remove members of the Search Patterns list.

2. Use Invert to reverse the current selection; those items that were selected
become deselected and visa versa.

3. Use Clear to deselect all the patterns on the list so that you can start selecting
from scratch.

Default Button

All of the search dialogs (with the exception of File Grep) have a Default
Options button. The Default Options button accesses the Default Search
and Replace Settings dialog, described next.

Default Options

Use the following dialog to set default options for search and replace activities.

Figure 10-3. Default Search and Replace Settings Dialog

To access the Default Search and Replace Settings dialog, complete one
of the following:

1. Click Options on the Search menu.

2. Click Default Options in the Search dialog.

3. Click Default Options in the Replace dialog.

1

Using Hawk™

200

10

4. Click Default Options in the Search and Replace Multiple
Sources dialog.

The items in the Default Search and Replace Settings dialog are
listed next.

Search Direction

The search Direction section of the Default Search and Replace
Settings dialog allows you to search forward from the cursor position or backward.

Range

The Range group of options in the Default Search and Replace Settings
dialog is specific to the replacement operation.

• Prompted replacement. When the Prompted radio button is selected, you
are prompted each time text matching the search pattern is found. You may elect at
that time to make or skip the replacement, or to cancel the search. The search
continues until no more matches are found in the defined scope of the search, or
until you select cancel. Enabling this option consequently enables the Modeless
dialog option.

• Modeless dialog. This option works with single documents only. It works
in conjunction with a prompted replacement. When Hawk prompts with
options to Replace Current, Find Next, Replace Global, and so
forth, the Modeless option eliminates the necessity of canceling the prompt
in order to edit the document. With the Modeless option turned on, the
prompt can be left running at any point that direct editing of the current file
becomes necessary. When one is ready to proceed with the search/replace,
the prompt can be re-accessed without restarting the search.

• Single replacement: When you select the Single radio button, the first
occurrence of matching text is replaced without prompting.

• Global replacement: Select the Global radio button to cause all
occurrences of matching text within the scope of the search to be replaced without
further prompting.

• Preserve Case—applies to Search/Replace: The Preserve Case option sets
the case of the replacement string to match the case of the search string. The text
must follow any of the following patterns:

• all upper case

• all lower case

• capitalized (first character upper case with the rest in lower case)

• If the matching text is found to be in mixed case, the matching text will be replaced
with the same case as the string that was entered in the Search/Replace
dialog.

1

Chapter 10: Search and Replace and Other Navigational Tools

201

10

Prompt

The options in the Prompt section of the Default Search and Replace
Settings dialog control what word appears in the Find What field by default.
Definitions of the options are as follows:

• Current word uses the word at the cursor as the default search string.

• Selection/Word uses the contents of the selection as the default search string.
If there is no selection, use the word at the cursor.

• History uses the most recent response in the history list (combo-box drop-
down).

Search Options

The Options group of check boxes is available in both the Search and the
Replace dialogs, as well as the Default Search and Replace Settings
dialog. It is also available in the Search and Replace Multiple Sources and
File Grep dialogs. The options allow you to turn various search attributes on or off.
These include:

• Ignore case: When this box is checked, uppercase characters or lower case
characters will be matched. When it is not checked, the case of the characters in
the specified search string is significant.

• Regular expression: When checked, this box indicates that the search
pattern is a regular expression. Some of the characters in regular expressions are
given a different meaning than they would have in an ordinary string search. This
allows for more powerful searches.

• Maximal match: A check in this check box indicates that regular expressions
should match the largest possible unit. If this box is not checked, regular
expressions will match the smallest possible unit, which in some cases may be 0
characters. For example, if the regular expression specifies matching 2 or more A's
in a row (AA+), and the search encounters 5 in a row (AAAAA), what does it
match? If maximal match is on, it matches five. If it is not, the search matches the
first two.

• Whole word: When the Whole Word box is checked, the pattern you are
searching will not match strings that are only partial words. That is, the pattern must
be preceded and followed by one of the following:

• beginning of file or end of file

• beginning of line or end of line

• spaces or tabs

Matches

The following settings are under the heading Matches in the Default Search
and Replace Settings dialog:

• Select string: The Select String check box specifies whether the text
that matches the search will be highlighted in a selection at the end of the search.

1

Using Hawk™

202

10

The selection may be momentary, or may be retained so that you can operate on it
(copy, cut, or replace).

• Retain selection: When the Select String box is checked, the Retain
Selection box indicates whether the selection that encompasses matching text
is momentary or retained so that you may operate on it.

Start

The following options are listed under the heading Start in the Default Search
and Replace Settings dialog:

• Document Beginning/end: When enabled, the Document
Beginning/end option causes the search to go through the whole document
regardless of cursor position.

• Current Position: When enabled, the Current Position option causes
the search to go from the cursor position to the end of the document. Choosing
this option enables the Wrap at beginning/end and Exclude Start
Position options:

• Wrap at beginning/end: A check in the Wrap at beginning/end
check box indicates that you want to search the entire document. When the
document extremity is reached (the beginning or end of the document,
depending upon the direction of search), the search is continued from the
other document extreme. The search concludes at the point at which the
search began.

• Exclude Start Position: The Exclude Start Position option
tells Hawk that if there is text matching your search at the current cursor
position to ignore it. Presumably, you are not searching for this text, and
perhaps have just finished editing it.

• Restrict to selection: The Restrict to Selection check box
allows you to indicate whether you want the search to be restricted to the selection
or marked block of text. If the box is not checked, the scope of the search is global.
This option will be disabled if no selection is defined. Enabling this option
consequently enables the Multi-line Only option.

• Multi-Line Only: This option is a modifier for the Restrict to
Selection option. When enabled, the search will only be restricted to the
selection if the selection spans more than one line. This eliminates incidental
selections of a single word, and most selections resulting from a search.

Example: Multi-Source Search

An example of one of the ways the Hawk Multiple Source Search dialog can
be used to save valuable time follows:

To look for the string version in two directories, C:\DOCS*.TXT and
D:\PROJECT*.C, complete the following steps:

1. Select Search -> Multiple Sources to get to the multiple-source search
dialog.

1

Chapter 10: Search and Replace and Other Navigational Tools

203

10

2. Select the Files/Folders radio button in the upper-right corner of the dialog.

3. In the accompanying combo box, select All Files.

4. Click the Edit button to bring up the Search List Edit dialog. If you just
want to do a search through files in the current directory, you can skip this step, and
just type in the file spec, with wildcards, into the File pattern box.

5. Use the Directories, Drives, and Files lists to select the C: drive and the
\docs directory.

6. A list of files in that directory appears in the Files list. You can restrict the number
of items in this list by selecting the appropriate entry in the Filters list.

7. Highlight the files you want to search, then hit the Add button in the lower portion
of the dialog.

8. Repeat steps 5-7 for the D:\PROJECT directory. The search list should now
show the files you want to search.

9. Click the Invert button to highlight the list, or select just the specific files you
wish to search.

10. Click OK. The output window will appear, and you will see results of the search as
the search pattern is found in the target files.

• The List to Output Window box has no effect on search-only operations.
You would check this box if you were doing a search/replace and wanted to see a
report of what replacements were made.

This may seem like a lot of mouse clicks. But often you will find that the last settings
you used are the ones you want, so most of these steps can often be skipped.

Incremental Searching

Incremental searches can save time and typing. This is because the string is matched
as the word is typed, instead of being matched after the word is typed. Many times the
search function finds the string you are looking for before it is all typed in. Hawk’s
incremental search function is called ISearch.

ISearch Function

The Hawk ISearch function is for incremental searching. It may already be bound to
a key in your keymap, but if not you can easily add such a binding with the Keyboard
dialog on the Customize menu.

You begin the search by invoking ISearch; press CBi in the CUA keymap, for
example. ISearch prompts you for the search string, and you begin typing. Keep in
mind that ISearch always searches in a case-sensitive fashion. The case of the
characters you type must agree with the case of the characters in the document, in
order to match.

When you type the first character, ISearch moves to the next occurrence of that
character and highlights it. ISearch performs a search after each character you type,
looking for the sequence of characters you have typed thus far. If it doesn't find a

1

Using Hawk™

204

10

match, it issues a beep, and the character you just typed is removed from the search
string.

If you make an error while you type, just backspace over the incorrect character or
characters. As you remove characters from the search string, the cursor backs up to the
position that first matched the characters that remain. Delete the entire search string
and you will find yourself at the position where the search began.

You cancel ISearch by pressing X. At that time, the string you typed into ISearch is
added to the search response history to make searching for that string again more
convenient. You may also use the Quick Search feature to search for the word that
is now at the cursor position.

Quick Search

The Quick Search facility is a function you can use to do an immediate search for
the word at the cursor. In the default configuration, you will find this function assigned

to the button on the Standard Toolbar and assigned to the CBq key
combination in the CUA keymap. There is also a Quick Search option in the right-
click pop-up menu that starts a quick search. Other assignments may be made, or
readily changed.

Toolbar Search

"Toolbar Search" refers to the search capability built into the Standard Toolbar in
the form of a drop-down list box control. The toolbar search provides the most
immediate, convenient way to perform simple searches.

To use the Toolbar Search, click in the Toolbar Search edit box (in the
Standard Toolbar) and type in the string you wish to search for. This may be a
regular expression pattern, if you have regular expressions turned on in the Default
Search and Replace Settings dialog. The Toolbar Search box honors all
of the settings in the Default Search and Replace Settings dialog. As soon
as you press Enter, the search commences.

If Hawk finds a match, the Toolbar Search will retain the focus. This gives you the
opportunity to search again just by pressing Enter again. Pressing anything else will
cause the Toolbar Search to lose the focus, and you are then able to edit at the
position where the match was found.

The Toolbar Search maintains its own response history, to allow you to recall
strings or patterns you previously typed. These are available when you select the down
arrow to the right of the edit box which causes the history list to drop down.

Regular Expressions

Regular Expressions are powerful notations for matching string patterns. Hawk makes
UNIX-Style Regular Expressions available for its search feature. Hawk also uses Regular

1

Chapter 10: Search and Replace and Other Navigational Tools

205

10

Expressions for interactively customizing Hawk’s Symbols, makefile reader, and Visual
Studio Workspace reader.

Investing a relatively small amount of time to gain some knowledge of Regular
Expressions will pay back in the long run with the amount time saved when searching
for string patterns.

A Regular Expression can be as simple as a single, literal character, like "a". You could
search for the character "a" from Hawk's Search dialog, with Regular
Expression marked, and you would be searching using Regular Expressions.
Such simple expressions are usually a sub-expression of more complex regular
expressions. In reading the descriptions that follow, an "expression" may mean a single
character, a group of characters, or a class of characters.

Special Characters

Regular Expressions give special meaning to certain characters. Some are operators
and some show grouping. There is also a method of representing non-printing
characters, such as a tab, within Regular Expressions. All other characters just represent
themselves, as they would in an ordinary string search.

The characters to which Regular Expressions give special meaning are called
metacharacters. These characters and their meaning are shown in Table 10-1.

For more information on Symbols, review the topic on Outline Symbols later in this chapter.
For more information on the makefile and Workspace readers, read Chapter 7 Projects,
Project Spaces, and Workspaces.

Table 10-1. Special Characters

Character Meaning

. Matches any single character, except a new line

* Matches any number of occurrences (even zero) of the expression that
precedes it.

+ Matches one or more occurrences of the preceding expression.

? Matches zero or one occurrence of the preceding expression.

[and] Defines the beginning and end of a character class.

(and) Defines the beginning and end of a group of expressions. Groups
expressions into larger units and dictates precedence. Each group is also a
Reference Group which may be pasted into a replacement string.

| Alternation. Allows matching the expression on the left or on the right of
the operator.

$ Matches the end of a line.

^ Two meanings: Matches the beginning of a line. Complement operator
when the first character in a character class.

1

Using Hawk™

206

10

Escape Sequences

There are times that you want to use a metacharacter as itself – without the special
meaning that regular expressions give it. For example, you may wish to match a dollar
sign, rather than look for the end of a line. To match a dollar sign you must escape or
quote it. This is done by preceding the character with a backslash. This is true of all the
metacharacters. To match a dollar sign, for example, you use \$ in your Regular
Expression, rather than just $.

Example

cat$ matches the word cat only if it is immediately followed by a newline character.

cat\$ matches the word cat only if it is immediately followed by the character $.

Table 10-2 is a list of other escape sequences supported by Hawk's Regular
Expressions:

Matching a Character

The basic unit of a regular expression is matching a single character. You can match a
single character in one of three ways:

• Literally, by using the character itself or the appropriate escape sequence. (such as
‘cat’)

• Ambiguously, by using the dot (.) metacharacter, if matching a character literally
is too limiting. (such as ‘..t’)

\ Used for escaping metacharacters and non printing characters.

\c The position in the pattern at which the cursor is placed at the end of a
successful search.

Table 10-2. Hawk Regular Expressions

Escape Meaning

\n New line (<CR><LF> or <LF>, depending on how it is
defined for the document)

\t Tab

\b C-H (backspace)

\r Carriage return

\f Form feed

\nnn Octal value between 0 and 0377.

\xnn Hexadecimal digit between 0x00 and 0xFF

\m The literal character m.

Table 10-1. Special Characters

1

Chapter 10: Search and Replace and Other Navigational Tools

207

10

• With a Character Class. If a literal character is too narrow a match and the dot is too
broad a match, a character class can be used for anything in between (such as [A-
Za-z]).

Character Classes

A character class is a series of characters enclosed in square brackets. It specifies a set
of characters, any one of which may match. For example, the following character class
matches any vowel, whether upper or lower case:

[AEIOUYaeiouy]

Ranges of characters may also be specified within a character class. This is done by
placing a dash between the character that begins the range and the character that ends
the range. The following character class matches any character between 0 and 9:

[0-9]

How do you match a DASH (-), then ? If it is not in the character range you specified,
just place it at the beginning or end of the character class where it is not between two
characters of the class. If you precede the dash with a backslash (\) you can put it
anywhere within the class.

The CARET (^) has a special meaning when it appears as the first character of a
character class. It complements the class. When it appears at any other position within
the character class, it just adds the up-caret to that class. You may use it as a shorthand
method of saying "match any characters except for the following:" rather than
specifying a large character class.

Example

[^$.|(){}*+?^]

Matches anything except the eleven characters following the up-caret.

Escaping Characters in a Class

Metacharacters may be used in character classes without escaping. The only characters
that must be escaped are as follows:

] " \ and sometimes - and ^ depending on the position within the class.

• Escape the - when you use it in the middle of a class but do not intend it to signify
a range.

• Escape the ^ when it would otherwise be at the beginning of a class but you do
not intend for it to signify complement.

When in doubt, escape the character. It cannot do any harm. The above characters look
like this when escaped:

\] \" \\ \- \^

1

Using Hawk™

208

10

Iteration Qualifiers

Iteration qualifiers are metacharacters that are not regular expressions by themselves.
Instead, they state how many iterations of the preceding expression there must be or
can be, in order to match. These metacharacters are: *, + and ?.

• The * matches any number of occurrences

• The + matches one or more

• The ? matches zero or one.

Without these qualifiers, a regular expression will match exactly one occurrence in the
text.

Examples

Let us consider some specific examples of how these qualifiers might be used in the
task of matching white space:

• \t*

The example above will match any number of consecutive tabs including none. By
itself, it is not very useful to match none of something. As part of a larger regular
expression, it could be quite useful. For our purposes here, the following might be
preferable:

• \t+

This example matches one or more consecutive tabs. The tab is represented as \t,
and the plus sign says "one or more of the previous." To match white space, we
need to match spaces too. We don't know what order the spaces and tabs will
come in, and we don't know how many there will be. These are signs that we need
a character class.

• [\t]+

The example above uses a character class containing a space and a tab. The + sign
following it means that this Regular Expression will match any combination of
spaces and tabs so long as there is at least one space or tab.

If you wanted to match the white space within a function call, where you knew
there might be one space or tab, or there might be none, your expression could
look like this:

• \([\t]?

The previous example searches for a left parenthesis followed by zero or one
spaces or tabs. Since the left parenthesis is a metacharacter it is necessary to
escape or quote it with a preceding backslash. The \t we have used before to
represent a tab character. The question mark says "zero or one of the preceding."

Regular Expressions: Positioning at Beginning/End of Line

You may use the metacharacters ^ and $ to qualify your Regular Expression further. We
have already seen how the ^ may be used to complement a character class, but it has
another quite different use outside of a character class. These metacharacters specify
that, in order to match your Regular Expression, the text must appear at the beginning

1

Chapter 10: Search and Replace and Other Navigational Tools

209

10

or end of a line, respectively. Unlike the iteration qualifiers, however, these
metacharacters can stand alone as Regular Expressions. That is, you can search for just
the end of the line or just the beginning of the line.

Examples

Following are some examples of regular expressions that match strings at the
beginnings and ends of lines.

• ^PUBLIC matches the word "PUBLIC" when it occurs at the beginning of a line.

• \)$ matches a right parenthesis, a character which must be escaped when it is
found at the end of a line.

• ^\)$ matches a right parenthesis when it is the only thing on the line.

Alternation and Grouping

Alternation and grouping go hand in hand. Alternation often relies on grouping and is
the primary need for grouping.

Alternation uses the metacharacter | to denote that a match has been found if the text
matches either of two Regular Expressions. This operator may be repeated to indicate
that the text may match any one of several expressions.

Because of the typical order of precedence, the alternation applies to the entire
expression, if not limited by grouping. Grouping occurs when you place parentheses
around one or more expressions that are part of a larger expression.

Examples

• PUBLIC|PRIVATE matches either "PUBLIC" or "PRIVATE".

• PUBLIC (void|DWORD) matches the word "PUBLIC", when followed by a
single space, and either "void" or "DWORD".

• ^PUBLIC[\t]+(void|int|long|DWORD) matches, at the beginning of a
line, the word "PUBLIC", followed by one or more spaces or tabs followed by any
one of the following words: "void", "int", "long" or "DWORD".

• These examples begin to show the power of regular expressions.

Reference Groups and Replacement Strings

In addition to showing association and precedence, grouping allows the use of
Reference Groups. A reference group is one or more expressions that have been
placed between parentheses and then pasted into a replacement string by referencing
its number.

Hawk assigns a reference number, from 1 to 9, to the text matching each group
defined. Reference numbers are assigned from left to right. You may paste the
associated text into a replacement string by using this number, preceded by a
backslash.

The following demonstrates how reference groups may be used:

1

Using Hawk™

210

10

Example

Search string in document:

GotoXY(cat,dog)

Search pattern:

GotoXY\((.*),(.*)\)

Replacement pattern:

move_cursor(\2,\1)

Replacement result in document:

Move_cursor(dog, cat)

Note that in replacement patterns you do not need to escape metacharacters, such as
the left parenthesis, with a backslash. There are a few escape sequences that are
meaningful in a replacement string, such as those used by reference groups, but such
sequences are not themselves regular expressions. An operation using reference
groups, such as that depicted above, could be used to reverse the parameter order
used by one function when converting to a similar function.

There is an implicit reference group that you can use in replacement strings to
represent the matching text in its entirety. You reference this group in the replacement
string with an & at the desired location. This means that you must use \& to specify an
ampersand in a replacement string, when regular expressions are enabled.

Placing the Cursor

When you search for a piece of text, it is usually because you are going to do
something with it or to it. After a successful search operation, Hawk positions the cursor
at the beginning of the matching text -- at least, that is the default action. What if you
want to edit the other end of the matching text, or perhaps the middle?

When using Hawk's regular expressions, you have a special escape sequence available
that allows you to indicate where in the matching text the cursor should be positioned.
You should note that this is available only for search operations. It is not for use in
replacement text.

The escape sequence that specifies cursor position is \c. An example of its use
follows:

singletons\[\c.*\]

This example places the cursor at the beginning of whatever text is contained between
the left and right square brackets. The square brackets are metacharacters and are
therefore escaped. This cursor positioning facilitates editing the contents of the square
brackets.

1

Chapter 10: Search and Replace and Other Navigational Tools

211

10

Examples

The examples in Table 10-3 are intended to inspire your own uses of regular
expressions:

Searching for Spaces, Tabs and other Blank Characters

One of Hawk's longstanding Search/Replace features is its ability to find and
replace invisible characters. Parts of the topics below have been generally covered in
the previous discussion on regular expressions, but they will be discussed more
specifically with regards to spaces, tabs, and new lines, here.

Searching for Spaces or Tabs

To find tabs or spaces, complete the following steps:

1. Go to the Search pull-down and click Search.

2. In the Find What field type a space (press the space bar) to insert a space, or /t
to insert a tab.

3. Before clicking OK, be sure to mark the Regular Expression and Save
Settings options.

The Regular Expression option forces the search feature to search for
non-literal characters and the Save Settings option applies the current
search options to all search sessions.

Searching for New lines

To find new-line characters, complete the following steps:

1. Go to the Search pull-down and click Search.

2. Type \n in the Find What field.

Table 10-3. Regular Expression Example

Pattern Description

[A-Za-z_][A-Za-z0-9_]* C language identifier

-?([0-9]+\.?[0-9]*|\.[0-
9]+)

Floating point (real) number

([\t]|^)[^ \t]+ Beginning of word (simple white space)

[^ \t]+\c([\t]|$) End of word (simple white space)

([^A-Za-z0-9]|^)[A-Za-z0-
9]+

Beginning of word (Non-alphanumeric)

[A-Za-z0-9]+\c([^A-Za-z0-
9]|$)

End of word (Non-alphanumeric)

/*.**/ Single-line comment (C language)

/*.*\n([\t]**.*\n)*.**/ Multi-line comment (C language)

1

Using Hawk™

212

10

3. Before clicking OK, be sure to mark the Regular Expression and Save
Settings options.

Regular Expression forces the search feature to search for non-literal characters,
and the Save Settings option applies the current search options to all search
sessions.

The procedure for replacing characters with tabs, new lines, and spaces is the same as
the procedure for finding them, only the space, \t, and \n characters are typed into
the Replace With field of the Replace dialog, instead of the Find What field of
the Search dialog. The Replace dialog is accessed by clicking the Replace item in
the Search pull-down menu.

Searching for Control Characters (binary/hex data)

You can use control characters in both search and replacement patterns. You can
specify any byte (hex) value as part of a pattern.

First, turn on Regular Expressions from the appropriate dialog. Then use the \x
notation to specify hexadecimal values. For example, to search for the form feed
character, you can use the following string:

 \x0c (backslash x zero c)

Make sure there are two digits following the x. If you want to search for two
consecutive bytes by hexadecimal value, string them together like the following:

\x0c\x0d

Searching for New lines: Issues

Generally, using '\n' for matching or replacing line ends is the suggested method in
Hawk (the '\' must be doubled when used in code), as described in the previous topic.
In some cases, however, it is more desirable to search for new lines using their
respective hexadecimal notations (for example, 0D0A, 0A, 0D). Since hexadecimal 0D
and 0A characters make up ends of lines in one form or another an exception has to
be made when searching for and replacing them to avoid disrupting partial line-end
sequences. Therefore, when searching for 0D and 0A hex characters, keep the
following in mind:

• \x0a will match a solo (without a preceding 0x0D) 0x0A but not the pair.

• \x0d will match a solo (without a following 0x0A) 0x0D but not the pair.

• \n will match a solo 0x0A or a 0x0D,0x0A pair.

• Replacing "\x0d" with "\n" would be good for converting a Macintosh file
(opened with auto-detect file type off).

Replacing "\n" with "\n" is a good way to convert a UNIX file to a MS-DOS file, or vice-
versa, if the buffer flag for UNIX EOLs is set appropriately in Customize ->
Language -> Options, or Document -> Manager -> EOL/EOF.

More information on setting and using UNIX EOLs can be found in Chapter 16 UNIX.

1

Chapter 10: Search and Replace and Other Navigational Tools

213

10

Selective Display
Hawk's Text menu has an option for Selective Display (shown in Figure 10-4
Selective Display is a feature that "collapses" or "folds" text in the current
document so that only desired text is displayed. The Selective Display menu
item accesses a dialog that has options for controlling which lines of the document are
visible.

Figure 10-4. Selective Display Dialog

The options in the dialog offer choices for how the text in the current document should
be "collapsed". A quick description of the items in the dialog follows.

Selective Display Options

Selective Display options include the following:

• Search text: Displays or hides text matching a pattern.

• Multi-level: Hides text based on braces or indentation levels.

• Preprocessor directives: Hides text based on C/C++ language
preprocessor directives.

• Lines: Displays or hides a selected group of lines.

• Paragraphs: Displays only the first line of each paragraph. A paragraph is
defined as text separated from other text by one or more blank lines.

• Routine Definitions: Displays lines containing function definitions for the
language indicated by the file type. In CUA, CSg also controls Routines selective
display.

• Display on the right-mouse popup menu accesses many Selective Display
options.

1

Using Hawk™

214

10

Pre-processed View

The Preprocessor directives option in the Selective Display dialog is a
special option for C/C++ users who find their source files cluttered with #ifdefs. The
option allows source code to be displayed exactly as the compiler will see it, while it is
being edited.

Applications that are written to run on more than one platform, or custom software
written for more than one company often use #ifdefs to avoid redundant
maintenance. If separate versions of a file are maintained for each of several platforms
or customers, each version needs to be changed whenever an improvement is made
to code that is common to all of them. #ifdefs are used to maintain different
versions in a single file. Then, changes to common code only need to be made once.

If code becomes confused with many preprocessor directives, whatever time is saved
on redundant maintenance could be lost just trying to figure out confusing source
code. Hawk allows full benefit from the use of pre-processor conditionals by letting the
code be seen more clearly for what is being worked on.

Because of the Selective Display Mode, the whole file is still included, but the
parts that do not apply can be hidden.

Adding "defines" to the Preprocessor directives Defined Constants
field allows specified defines to remain visible in preprocessed view. Multiple “defines”
can be specified by separating them with semi colons. Once the necessary “defines”
have been added, and desired options have been chosen, clicking the dialog’s OK
button hides specified preprocess code.

Selective Mode

When a document is in Selective mode (shown in Figure 10-5), lines are preceded
with a small button or icon. When the button contains a plus sign, it indicates that there
is hidden text following that line.

• To view hidden text, double-click on the plus sign or press SE on that line. The plus
sign then turns to a minus sign, to indicate that the section has been expanded to
show the "invisible" lines.

• To collapse the section again, double-click on the minus sign or press SE again.

• Double-clicking with the right mouse button also expands and collapses hidden
text.

1

Chapter 10: Search and Replace and Other Navigational Tools

215

10

Figure 10-5. Selective Mode

Press X to restore the invisible lines. CSc restores Selective Display for the
previously selected lines in the CUA or BRIEF keymaps. # restores Selective
Display for the previously selected lines in the vi emulation.

Browsing, Tags and Symbols

Whether working on someone else's code, with a long line of inheritance, or working
on code you wrote last week, a lot of time can be spent navigating copious amounts of
unknown or forgotten code. Hawk provides the following text and source code tools for
finding and navigating that code:

• Browser

• Tags

• Outline Symbols

• Objects Window

Each of the above tools have advantages and disadvantages when used for
navigational purposes. The next few paragraphs describe reasons why one might
choose one over another.

Using Navigational Tools

Browser

The best Hawk Browser uses the database file (symbols.udb) generated by the Ultra
C/C++ compiler. The browser uses a graphical tree in a special tab of the Output
Window to demonstrate relationships and simplify locating necessary files or other
pertinent information. See the Browser Support section below for more information on
using this type of database.

1

Using Hawk™

216

10

Tags

Hawk Tags support provides only limited information about your code – primarily the
location of function definitions. You can access this information in two ways: you can
use the same graphical interface as the browser, or a hypertext-style lookup of the
word at the cursor. This information, too, relies on you updating the database regularly.

Outline Symbols

Hawk's Outline/Symbols feature has its own graphical tree interface in the
Outline tab of the Project Window. It also uses the Symbols tab on the
Output Window, and background parsing to let you view the most up to date
information about your project. Furthermore, Symbols support a large number of
languages and can be readily modified to add to or expand the browse capabilities for
new or existing languages supported by Hawk.

Objects Window

Hawk’s Objects Window is a tab on the Project Window. It displays a hierarchical view
of C/C++, C# and Java symbols that are associated with the name that is typed in the
Identifier box at the top of the window. It can be used to view and browse code. Click
on a symbol in the Object Window to access the position in the source file at which its
corresponding code is located.

Browser Support

The Hawk Browse pane in the Output Window supports Ultra C/C++ databases.
These are the databases produced by the Ultra C/C++ compiler. This kind of database
is given the extension .udb by convention.

Figure 10-6. Browse Tab of the Output Window

The Browser is one of the windows available for viewing in the tabbed Output
Window. It appears when you select the Browse tab on the Output Window. The
Browser is actually two windows side by side with its own toolbar at the top. The Tree
window appears on the left and the Inspect window appears on the right.

Press ? in the Browse window to receive help, press X at any time to leave the
window and return to the current edit window.dir

1

Chapter 10: Search and Replace and Other Navigational Tools

217

10

Selecting a Database

The first step in using the Browser is to select a database. If you have previously
defined a valid .udb, .bsc, or .ptg file for the current project, that database is
loaded when you select Browse. You define the database for the project in the
Directories tab of the Project Properties dialog,. If you have not defined a
database, or if you later want to change databases, you may select a database by
choosing the File Open button on the Browser toolbar.

Traversing the Tree

Once you have loaded the database, a tree structure will be displayed in the Tree
window. You may traverse this tree from the keyboard by using the arrow keys to move
from node to node, and by pressing the Enter key to expand or collapse a node.
Using the mouse, you can double-click on a node to expand or collapse it, or click on

the (expand/collapse) button on the browser toolbar.

As you traverse the tree, note that information about the selected node appears in the
Inspect window to the right. This window lists information such as the location of the
item where it is referenced, if this information is in the database. You may move
between the Tree window and the inspect window by either pressing the Tab key or
clicking in the intended window.

Label Bitmaps

At the beginning of each line of the tree is a bitmapped label identifying to what the
information in that branch relates. A key to these labels is given in Table 10-4.

The first file in the tree list can be labeled <unknown>. These are functions and other
objects that are referenced, but whose source are not included in the current database.

Browser Toolbar

Refer to this diagram as you read the following descriptions:

Table 10-4. Label Bitmaps

Bitmap Description

 Root information coming from the database.

 Information pertaining to a file or module.

 Information pertaining to a class.

 Information pertaining to a function.

 A preprocessor macro definition.

 A type definition.

 Information pertaining to a variable.

1

Using Hawk™

218

10

Figure 10-7. The Browser Toolbar

Jump to Code

After traversing the tree, you will usually want to go to the corresponding source. There
are two Go to buttons on the Browser Toolbar that allow you to do this. If you
wish to go to the source code represented by the selected tree node (usually a point of
definition), you can press the (Go to) button on the left of the toolbar.

If you have selected a reference, a calling or called function in the Inspect window, you
may wish to press the key (Go to from Inspect) to go to that reference or
function. Pressing the g key will always take you to whatever is selected in the Tree
window.

String Search

The String Search feature of the browser works like a grep or filter of
information in the database. Use it to filter out extraneous information. It is one of the
most useful features of the browser.

To use the String Search feature, enter a string into the combo box on the
browser toolbar. Unlike some other browsers, the string you enter will not be treated in
a case sensitive manner, and wildcards are supported. That is to say, if you enter
"dump*", it will match strings like "Dump" and "dumpFile". Use the * character to
match match zero or more characters. Use the ? character to match any single
character. Use the regular expression “set” syntax to match a single character from a set
of characters. Set syntax supports character ranges in the form <start>-<end> and a
single minus(-) to negate the matching set. For example, a*[cv] would match
symbols like argc and argv. The pattern arg*[-cv] would match symbols that start
with arg, but do not end in c or v.

Each matching identifier is displayed as a node on the tree. All other nodes disappear.
You can then traverse this "filtered" tree.

Query Button

The first button to the right of the Search String combo box on the Browser

Toolbar is the Query button. You can initiate a query by pressing the button, or
by pressing the q key. Depending on the context, one of six query dialogs will appear.
An example dialog is shown below:

1

Chapter 10: Search and Replace and Other Navigational Tools

219

10

Figure 10-8. Tags Function Query

Each query dialog has a set of action buttons and filter check boxes. The filter check
boxes apply only to the action buttons that are enclosed in the same group box.
Therefore, in the example above, the check boxes apply only to the Used By and
Uses buttons. The other action buttons operate independently of the filters.

With all the filters enabled (all the check boxes checked), you may find that you have
too much information to sift through to find what you are after. It is probably best to
check the minimum number of boxes that fill your needs.

Quick Search

The Quick Search button on the Browser Toolbar is used when you are in
a normal edit window and want to look up the word at cursor in the browser database.
This step saving device acts the same as if you had typed the word into the String
Search combo box on the Browser Toolbar and pressed Enter.

Called By/Calls To

When you have selected a function in the Tree window, you may view either a list of
functions that call it, or a list of functions it calls by pressing one of the Called

By/Calls To buttons . These functions do not work with .ptg; only with .bsc
(Visual Studio) and .udb (Ultra C/C++) databases.

Search After Go To

The Search After Go To button is a toggle that determines what action is
taken after jumping to the related source code line (Go To). When this button is
depressed, the Browser executes a forward search for the item selected in the
Browser window from which it jumped. This is especially useful if you have modified

Table 10-5. Query Dialogs

Button Purpose

General General inquiries about the terminals (leaves) on the tree.

Class OOP class inquiries.

Function Inquiries about functions.

Database Inquiries from the root of the database.

Module Inquiries related to a module.

1

Using Hawk™

220

10

the source code since the last time the database was generated. The Browser may
still be able to take you directly to the item of interest.

Filter Toggle Buttons

The Filter Toggle buttons allow you to focus in on specific categories of objects
by turning filters on and off. Each of the lettered buttons at the right of the browser
toolbar has an on and off position. When depressed, the button is on, and object
associated with that button will show up in the tree. When the button is out, it is in its
off position. Related objects will not show up in the tree. You can reverse the condition
of any of these buttons by clicking on it with the mouse or by pressing the
corresponding letter on your keyboard (such as ftmvc).

Below is a list of the buttons and their related objects:

After changing the filter toggle settings, you will find that the new settings do not take
effect until you have performed some action, such as opening a branch of the tree. To
see the effect of the filter change on a branch you are already viewing, collapse and re-
expand the branch.

Tags Support

Hawk has support for CTags and other Tags generating programs whose databases
conform to the standard Tags format. The program tagsw32.exe is provided for
generating Hawk-compatible tags, use the -t, -oc, and -p options to compile a tags
database. The text file documenation for tags files is at /MWOS/DOS/BIN/tags.doc.

In addition, Hawk comes with a built-in Tags database generation capability. This
program produces both a standard Tags database and a compiled database. The
resulting compiled database may be used with Hawk's Browser in a similar fashion to a
browser database. You can search the database and traverse its contents via a graphical
tree.

A standard Tags database adds browse-like capabilities to an editor that knows how to
read and use the database. If you see the name of a function on the screen and need
to know what that function does, Hawk’s tags functions allow you to jump directly to
the original location in the original buffer.

Hawk is known to be compatible with the PCTags program from Modern Software and
GNU Tags, the former of which is available for download from Starbase's FTP sight at:

Table 10-6. Buttons and Related Objects

Letter Filter Objects

F Function references and definitions.

T Type references and definitions

M Preprocessor macro references and definitions.

V Variable references and definitions.

C OOP Class references and definitions.

1

Chapter 10: Search and Replace and Other Navigational Tools

221

10

ftp://ftp.premia.com/pub/es2vd108/addons/archive/

The latter is supplied with Hawk.

Tags Setup

To get Hawk to generate and use Tags databases automatically requires the following
steps:

1. Create a project whose members are the files you want to scan for your Tags
database. Refer to Chapter 7 Projects, Project Spaces, and Workspaces for
information on creating a Hawk project.

2. Define which files hold your Tags data – your standard Tags database and your
compiled database for use with the Browser. There are two entries on the
Directories tab of the Project Properties dialog that store the name
and location of these database files. The entries are listed as Browser
Database, and Tag Database. If you are using Hawk's compiled tags utility, be
sure to enter a filename in the Browser database field that employs the .PTG
extension.

3. Select Build Tags from the Project menu.

4. Use the Browser or TagFind function.

Using the Tags Database

To use the standard Tags (not compiled) database, you need to have the function
TagFind assigned to a key. The TagFind function looks at the word at the cursor
and tries to find a match for it in the database. You can assign this function along with
TagNext and TagPrev to keystrokes, if they are not already assigned. You do this
through the Keyboard dialog on the Tools -> Customize menu.

To use the compiled tags database with the Browser, load the .PTG file by pressing

the Browser File Open button and browsing for the file. You will then be able
to traverse a tree of your tags database, search the database, and do queries for
functions and other objects (barring friend classes). You will only be able to query
definitions, however. References are not stored in the Tags database.

Outline Symbols: Overview

Outline Symbols make up a new type of browser for navigating and investigating code.
They are named Outline Symbols because they use two system windows: one called
the Outline Window (a tab on the Project Window) and the other called the
Symbols Window (a tab on the Output Window). Outline Symbols constantly

For more information on the TagFind API, refer to Hawk’s online help. For more
information on custom keystrokes, refer to Chapter 12 Customizing the Interface.

For more information about the TagsWnn utility provided with Hawk, see Appendix A at
the end of this manual..

1

Using Hawk™

222

10

update in the background (there is no compiling required) and they have broad
application, that is, they will work with virtually all languages for which Hawk provides
support (C++, Java, Delphi/Pascal – even .INI files).

What are Symbols?

Symbols are any element of code for which a parser has been written. Parsers are
regular expression patterns used to find and separate designated string patterns from
code with the intention of displaying those string patterns in either the Symbols
Window, the Outline Window, or both. Typically, symbols include functions, classes,
macros and the like. New parsers can be added by creating the proper regular
expression parser. Files are scanned using these parsers and the locations where
symbols are defined are collected and placed in the symbols database.

Hawk's symbols parsing starts with the member list of the current project. Other files
can then be added as part of the list to be scanned. The scan list can be modified in
the Edit Symbol File List dialog, accessed by pressing the File List
button in the Symbols Window. For example, you might want to scan MFC symbols,
but not include the MFC source files in each project. To accomplish this, add the MFC
symbols to the scan list instead.

Figure 10-9. Symbols Window

The Symbols Window is normally used in conjunction with the Outline Window,
to which it has a special link. This link allows the Outline Window to pass symbol
names to the Symbol Window for lookup, thereby automating the process of viewing
symbols in the Symbols Window. Together, the Outline and Symbols Windows
provide Browser-like capabilities for a variety of file types without any need to compile
to keep current with code changes. The Symbols Window allows you to list the
location or locations where a symbol is defined.

The Symbol Box at the top of the Symbol Window
normally reflects the symbol selected in the Outline Window. A history list is
maintained in the drop-down list under the Symbol Box, recording the recent entries
in this box. Also, when the cursor is positioned in the edit buffer, Hawk will pick up
whatever the cursor is sitting on and display it in the Symbol Box. Then a background
search is done through the symbols database to see if there are any other occurrences
of this symbol.

If Hawk doesn’t display anything in the Symbols Window it is likely that the symbol is
not contained in the database. There are two reasons that a symbol may not be stored
in the database:

• The symbols parser(s) (regular expression) does not match the string.

1

Chapter 10: Search and Replace and Other Navigational Tools

223

10

• It is not the Definition of the symbol (Hawk doesn’t display References or other
uses of the symbol).

• If the symbol being displayed is only located in one file, the associated code is
displayed in the window. If there is more than one symbol in several locations, a list
of files containing those locations will be displayed in the Symbols Window. The
locations can be selected from the list by double clicking on a filename in order to
open the file in the buffer editing area. The cursor will be positioned at the
indicated location.

Symbol Scanning

The Symbols Window conducts a detect scan on listed files after a 3-second idle
period for several reasons:

• To determine if any of the time/date stamps on the files in the database have
changed.

• To determine if any newly created functions need to be added to the database.

• To determine if any newly added project files need to be added to the database.

Only if it detects these changes, does it go ahead and start updating the database. If
the symbols scan detects a keystroke, it will interrupt its detect scanning and begin
again where it left off on the next scan. The symbols scanning and updating can be
disabled (see Symbols Database below).

Outline Window

Hawk's Outline Window displays symbols in a graphical tree, with each loaded file
displayed as a root. As files are loaded, or edit windows are changed, the symbols
found in that file are displayed beneath that file’s name in the Outline Window.

A single mouse-click on the symbol of interest displays information for that symbol in
the Symbols Window. A double-click also moves the edit window to the defining
location. When you single click on a symbol listed in the Outline Window, as
described above, the view in your current edit window is not modified. This allows you
to browse symbol references without losing your place. If you double-click on a symbol
listed under one of the loaded files, your view in the current edit window moves to that
location, in addition to listing references in the Symbol Window.

1

Using Hawk™

224

10

Figure 10-10. Outline Window

As you load files or change edit windows, the Outline Window lists all open buffers
as folders, and if the Auto Expand/Collapse check mark is checked (described
below), automatically expands the view of the current buffer to show its matches.
Double-clicking on any of the listed folder icons will always expand the outline-view, if
there are symbols to be displayed for the file.

The symbols displayed in the Outline Window are listed in the order in which they
appear in the source file. They can also be displayed in alphabetical order, by clicking
the Sort check box, as described below.

There are two check boxes at the bottom of this Outline Window tab:

• Auto-Expand/Collapse turns off the automatic expansion of the symbols
matches. When this check box is checked, changing from one document to
another will close one list of symbols and open another for the newly current
document. When the box is not checked, you control when the symbol lists open
and close.

• Sort alphabetically sorts the list of symbols in the window.

Outline Scanning

The Outline Window has a threaded background scanning process that runs after 1
second of idle time. It scans the opened source files to detect new symbols to be
added to the view. The updating only occurs when changes have been made, but the
detect scan is almost always running. Available parsers can be enabled in the
Outline Parsers dialog, accessed by clicking the Symbol Patterns button in
the Customize -> Language -> CodeSense dialog. A check box to indicate if

1

Chapter 10: Search and Replace and Other Navigational Tools

225

10

the symbol type should be displayed precedes each parser name. When you select a
parser name, the settings in the dialog reflect those for that particular parser name.
More marked check boxes, mean more displayed symbols (assuming the parsers are
legitimate), and more background scanning.

If you have all the parser check boxes for a particular file type marked, you might
experience a delay when opening or closing files because of the scan process. If you
do, try un-checking the auto-expand box in the Outline Window, or disabling some
of the parser types.

Symbol Parsers

Symbols, as you recall, are any element of the code for which a parser has been
written. Typically, these are Functions, Classes, Macros and the like. You can add parsers
by creating the proper regular expression pattern, and inserting it appropriately in the
designated dialog. Symbol Parsers are regular expression patterns used to parse
particular code-elements covered by the current parser name. Patterns can be
developed using the Hawk's Search mechanism. The online help in the Outline
Parsers dialog provides information on each of the entries in this dialog, and
provides some tips on creating Regular Expressions. Regular Expressions are also
described previously in this chapter, under the topic Regular Expressions. Files are
scanned using these parsers.

The dialog for configuring parsers is accessed by clicking the Symbols Patterns
button on the Customize -> Language -> CodeSense tab. Use the following
steps to make a parser:

1. In the CodeSense dialog, highlight the file type of the file for which the parser is
being made or viewed.

2. Click the Symbol Patterns button.

3. View the box that lists the parser names or types of symbols recognized by the
current symbol parser. If the box is empty, there is no parser for the selected file
type extension.

Example

If .CPP is selected as the file type, there should be three parser name entries in the
Parser Type list box: Function, Define, and Class.

1. Click Add. The Add Parser Name dialog comes up.

2. Give the new parser a name and choose a type (such as function,
prototype, procedure) from the Type drop-down list. The type determines
what icon Hawk uses in the Outline Window.

3. Click OK.

4. Back in the Outline Parsers dialog, highlight the new parser.

5. Type or paste an appropriate regular expression in the Pattern box. The string
provides feedback, indicating whether the selected regular expression is OK or
Illegal.

1

Using Hawk™

226

10

6. Choose or enter the characters that should be found by the parser in the Keyword
Characters section.

7. Use the Keyword Position options to indicate whether characters to the left or
right of the indicated cursor position (\c in the regular expression pattern) should
be displayed in the Outline and Symbols Windows.

8. Click OK.

The new symbols should appear in the Outline Window when files of the
appropriate file type are opened in Hawk.

Symbols Database

As mentioned, parsers used to match and display symbols are defined in the
Outline Parser dialog accessed by clicking the Symbol Patterns button in the
Customize -> Language -> CodeSense dialog. They are specific to the
selected file type extension. Any symbols that are parsed are subsequently stored in
the symbols database.

The symbols database (the file that stores gathered symbols) location is defined in the
Project -> Settings -> Directories dialog. By default this database is
located in the main Hawk directory. More than one symbols database can be used, by
changing the name/location of the file. To maintain separate symbols databases for
individual projects, put the full project path for each Symbols database in the Symbol
file field of the Directories dialog.

There are two check boxes that apply to the symbols database file defined in the
Project -> Settings -> Directories dialog. The check boxes are available
when the Symbol File field is selected. The check boxes have the following
functions:

• When the option Auto-Update Symbols Database is selected, Hawk
automatically update the symbols database with any new functions when that file is
saved.

• When the option Show Definitions in Symbols Tab is selected,
automatic detection and scanning takes place for updating the
Outline/Symbols Window and the symbols database.

Pop-Up Symbols Menu

Right-clicking on the Symbols tab of the Output Window, or right-clicking on the
filename in the Outline tab of the Project Window gives a pop-up menu with
three choices:

• Rescan Outline Symbols updates the information in the symbols database
for the file currently selected in the Outline Window.

• Rescan Symbols DB deletes the database and rebuilds it. This is performed as
a background task.

• Compact Symbols DB selection optimizes the symbol database for the current
project by deleting unused records. This is performed as a background task.

1

Chapter 10: Search and Replace and Other Navigational Tools

227

10

Objects Window

The Objects Window is a tab on Hawk’s Project Window. It is used to view and browse
code. It displays a hierarchical view of C/C++ and Java objects/symbols that are
associated with the name that is typed in the window’s Identifier box. The objects in the
hierarchy can consist of C/C++ and Java classes, functions, data, macros, types, etc. as
they apply to the language being used. Each object-type has its own image, as
displayed in the Filter/Legend dialog.

Display an Object Hierarchy

The Objects Window gets its information from CodeSense, so the same information
sources that are used for CodeSense must be available for the Objects Window before
it will work (see the topic Objects Window and CodeSense in this chapter). With that in
mind, there are two ways to display an object hierarchy in the Objects Window: by
typing an identifier in the Identifier box, or by using Hawk's standard popup menu.
Those methods are described in the next topics.

• To control the quantity of hits returned in the Objects Window, adjust the Maximum
Number of Hits slider on the CodeSense Global Configuration dialog.

Type an Identifier to Display an Object Hierarchy

To display an object hierarchy by typing in an identifier, do the following:

1. Type the name of an object/symbol in the Identifier box at the top of the window.
Use the asterisk (*) wildcard character to match any characters to the right of the
asterisk (e.g., CMain* will match all symbols that begin with 'CMain'). If necessary,

click the Ignore Case button to make the window case insensitive to the
characters in the Identifier box (the button will appear depressed).

• Typing only an asterisk (*) will result in a search for all symbols, but will be
restricted to the project database. If you want to restrict a large search (e.g. C*) to
the project database and open documents, click the Include CodeSense Library

Databases button to turn it off (button will no longer appear depressed).

1. Press Enter. A hierarchy will display.

Use Hawk's Right-Click Popup Menu to Display an Object Hierarchy

To display an object hierarchy by using Hawk’s right-click popup menu, do the
following:

1. Open a .C, .CPP, or .JAVA file.

2. Right-click on, or select and right-click on, a symbol (class name, function name,
struct, etc.) in the open file. Depending on whether a selection was made, you will
see the following in the resulting popup menu:

See “Filter/Legend Dialog” on page 229.

1

Using Hawk™

228

10

• If a selection was made you will have the choice to Browse for <selection> (exact
match) or Browse for <selection>* (wildcard match).

• If no selection was made you will have the option to Browse for <symbol name>
where <symbol name> is the name of the symbol that the cursor is on.

Click on any of the above options to display an object hierarchy.

Using the Objects Window

The Objects Window can be used to view and browse C/C++ and Java
objects/symbols. Click on an object/symbol in the window to access the position in the
source file at which its corresponding code is located.

Hover tips are available for each object/symbol in the hierarchy. The tip appears when
the mouse cursor hovers over an object/symbol's representative icon. It provides
additional information about the object/symbol in question.

Note that the Identifier box in the Objects Window will be case-sensitive if the Ignore

Case button is off (button is not depressed). Click the button on (appears
depressed) to make the window case-insensitive to the string that is typed in the
Identifier box.

Objects Window and CodeSense

The Objects Window gets its hierarchy information from CodeSense. Therefore, one or
more of the following must be true before any information will display:

• One or more C/C++ and/or Java files must be open in Hawk.

• A project containing C/C++ and/or Java files must be open in Hawk.

• One or more legitimate CodeSense library databases must be listed and checked
in the CodeSense Global Configuration dialog. If the correct library is not
listed in the dialog, it can be added.

• One or more C/C++ and/or Java files must be listed in the Symbols Window Edit
Symbol File List dialog.

Objects Window Popup Menu

If you right click on an object in the Objects Window you will get a popup menu with
the following options:

• Sort Alphabetically - to sort the objects/symbols alphabetically.

• Sort by Character Set - to sort the objects/symbols by the ASCII values of
the characters in the name and according to the code page currently in use. This
allows the sort to respect locale-specific information (i.e. international characters).

• Sort by Objects - to sort by objects/symbol type.

• Display by Definition - to display objects/symbols by their definition. For
example:

See “CodeSense” on page 88.

1

Chapter 10: Search and Replace and Other Navigational Tools

229

10

MsgPopupPromptHistory(LPXSTR histName, LPXSTR prompt, LPXSTR
response)

• Display by Symbol name - to display objects/symbols by name. For example

MsgPopupPromptHistory

• Filter/Legend - to access the Filter/Legend popup menu.

• Show Members in Root - to show both class detail and function detail if class
and function names are the same.

• Ignore Case - to toggle the Ignore Case setting on/off, telling CodeSense
whether or not to consider case when lookups are performed.

• Include CodeSense Library Databases - to force the Objects Window
to include information in CodeSense Library databases when displaying a hierarchy.
If this is toggled off, searches are restricted to the project database and open
documents, speeding up the process of displaying hierarchies.

• CodeSense Editing Options - to access Customize -> Language ->
CodeSense.

• CodeSense Global Configuration - to access the CodeSense Global
Configuration dialog.

• Refresh Display - to display the most current list of applicable
objects/symbols (refreshes the current query, maintaining tree expansion).

Choose the item Filter/Legend on the Objects popup menu to access the
Filter/Legend popup menu:

The Filter/Legend popup menu lists a set of object filters. Object filters control
which objects/symbols will display in the Objects Window. Unmark any filter to prevent
objects of that type from displaying. When filters are thus applied, the

Filter/Legend dialog button appears depressed.

Filter/Legend Dialog

One of the items on the Filter/Legend popup menu is Filter/Legend. It
accesses the Filter/Legend dialog. The Filter/Legend dialog serves some of
the same purpose as the Filter/Legend popup menu, providing the same list of
Objects filters. The dialog also provides another set of filters labeled Access, that
provide additional control over Objects filters in the following ways:

• By filtering objects according to public, private, and protected access attributes.

• By filtering objects that are non-members.

For example, if one wanted to see only public classes in the Objects window, they
would mark the item Classes in the list of Objects filters, then mark the item
Public in the list of Access filters.

When using Objects and Access filters in the Filter/Legend dialog, keep in
mind the following:

• Marking or unmarking any of the Objects filters in the Filter/Legend dialog
will mark or unmark the same filter on the Filter/Legend submenu.

1

Using Hawk™

230

10

• At least one Access filter must be marked in order for any marked Objects
filters to display in the Objects Window.

• At least one Objects filter must be marked for any marked Access filters.
Otherwise the Access filters are meaningless, and objects will not display.

• When all of the Objects and Access filters are not selected on the
Filter/Legend dialog, filters have been applied and the Filter/Legend

dialog button appears depressed.

• Use the buttons Select All or Clear All to select or clear selections for all
filters.

Symbols vs. Objects vs. Tags

Hawk offers four browsing features, Symbols, the Objects Window, Tags, and
Browse, all of which have been discussed above. Each method offers its own
advantages, some of which are listed below.

Pros and Cons of Tags, Browsers, Symbols, and the Objects Window

The following items describe some pros and cons of the different browsing tools
available in Hawk:

• Hawk's compiled Tags databases (.PTG files), provide more limited code-
information, but can be built from within Hawk.

• The.PTG files are displayed in the Browse tab of the Output Window. The files
are displayed in a graphical tree format with mouse-click access.

• Tags and Symbols do not contain extended information about where symbols are
referenced or called. They only display where the symbols are defined.

• Symbols do not have to be compiled. They are created in real-time, instantly
displaying symbols as changes are made to edit-buffers.

• The Objects Window contains more extensive C/C++ and Java information, as
provided by the CodeSense library databases that are listed in Customize ->
CodeSense Global Configuration.

• Symbols are displayed in graphical tree-format with mouse-click access to their
respective file locations.

• Symbols are interactively customizable, offering the ability to display more than just
the pre-defined elements in the Outline Window.

• Symbols are available for a wide variety of programming languages, and again, they
are customizable so that more can be added for new languages if necessary.

Bookmarks
Hawk's bookmarks are handy for navigating code. Like any bookmark, they reserve
current positions in documents so that it is easy to return to those positions when
necessary. This section describes using the Hawk Bookmarks feature.

1

Chapter 10: Search and Replace and Other Navigational Tools

231

10

Global and Local Bookmarks

Bookmarks are used to facilitate movement from one position to another, within and
between documents. There are both local and global bookmarks. Local bookmarks are
known only within the document in which they were defined. Global bookmarks, on
the other hand, are recognized from any document. Global and local bookmarks can
be given names, as well as numbers, to help remember what the purpose of the
bookmark was.

Graphical Bookmark Images

If Show visible bookmarks is turned on in Customize -> Environment -
> Bookmarks (described below), graphical images representing bookmarks are
placed in the left margin of the document in which the bookmarks were placed. There

are two separate bitmaps: one for global bookmarks and one for local bookmarks
. The only difference between the two is the 'L' in the center of local bookmark

bitmaps.

Setting and Removing Bookmarks

Bookmarks can be set and removed in a number of ways:

• The Document menu has a Mark option which sets a global mark at the cursor
position. The graphical mark is placed in the left margin of the document.

• The various keymaps available in Hawk each have respective keystrokes for setting
bookmarks. For example, in CUA, the keystroke for setting a global mark is Ctrl-
[0-9].

• Right-clicking the mouse at the far left margin of a document causes a pop-up
menu to appear, with the following options, two of which are used for setting
marks:

• Set a Global Mark: Sets a global bookmark.

• Set a Local Mark: Sets a local bookmark.

• Go to Bookmark Dialog: Accesses the Tools -> Customize ->
Environment -> Bookmarks dialog, described in the following section.

Bookmarks Dialog

Clicking the Bookmarks tab of the Customize -> Environment dialog
accesses the Bookmarks dialog. The Bookmarks dialog allows you to set the
visibility and naming attributes for local and global bookmarks. You can also view and
delete bookmarks from the database in this dialog.

The desired attributes for both local and global bookmarks are selected in the
Bookmarks dialog:

• When bookmarks are visible (when the Show visible bookmarks options
are turned on), a marker appears in the left margin of each line that has a
bookmark (as described in the section on Graphical Bookmark Images).

1

Using Hawk™

232

10

• When prompting is selected, a prompt for an optional bookmark name appears
when a bookmark is dropped. This option only applies for bookmarks that are
dropped using the applicable key combination for the current keymap.

• The options in the Mark Name Database section request that named marks be
maintained in a database for future sessions and control how those saved names
will be used in the future.

• The Save Current Position and Restore Current Position options
save and restore the "current position" of documents when those documents are
closed. These positions are maintained in the bookmark database. The "current
position" entries in the database are never deleted unless Delete entries
older than threshold is checked, in which case the current age specification
applies.

Bookmarks Window

The Bookmark Window is a tab on the Project Window. It gives a view of local
and global bookmarks defined in your documents. Clicking on a bookmark in the
window moves you to the bookmark's document and location. The contents of the
bookmarks database, and other bookmark options are found on the Bookmarks tab
of the Customize -> Environment dialog.

Figure 10-11. Bookmark Window

Bookmarks Window: Global Bookmarks

Global bookmarks are listed Bookmarks Window under the Global Bookmarks
heading, regardless of the document they are located in. The entry for the global
bookmark shows:

• the bookmark number

• the bookmark name--if one was given

• the name of the document in which the bookmark is found

1

Chapter 10: Search and Replace and Other Navigational Tools

233

10

Bookmarks Window: Local Bookmarks

Local bookmarks are listed in the Bookmarks Window under the name of the
document in which they are found. The entry shows the following:

• the bookmark number

• the bookmark name--if one was given

Double-clicking the document heading makes that document current.

Bookmarks Window: "Other Documents" Node

The Other Documents (not loaded) heading at the bottom of the Bookmark
Window lists files that are not loaded but have entries in the bookmark database. Each
file under the Other Document heading lists individual named marks associated
with the file and the date stamp of the mark. Double-clicking on one of the files loads
it. The file will be grayed if it does not exist (and the double-click action described will
not occur).

Auto-Expand/Collapse

When the Auto-Expand/Collapse check box at the bottom of the Bookmark
Window is checked, changing from one document to another will automatically close
one list of bookmarks and open another for the newly current document. This saves a
step when you want to view a list of bookmarks. When the box is not checked, you
control when the bookmark lists open and close.

Button Links
Button Links are special action buttons that Hawk lets you embed in your text files. You
may use them to view bitmapped images, bring up related documents or
spreadsheets, run macros or just to make notes. To any other editor, it is still just a
straight text file, and because the buttons are placed in comments, source code files
compile as they normally would. Button Links are a navigational tool in that they
maintain the current position of the file while the link goes to a different position or file.

How it Works

You select the type of link and the text that will appear in the button. Hawk uses this
information to create an index entry for that text, and places it into the text file with a
special 3 character prefix and suffix. Comment prefixes and suffixes are used as you
indicate. The index entry refers to an entry in a database that indicates what the button
link does.

What you See

When you have turned on the View Links option in Customize -> View
Setups, you see a 3D-style button containing the text you specified, and a notation
indicating what type of link it represents. Click on the button and the associated action
is performed.

1

Using Hawk™

234

10

Defining Buttons

Button Links are defined in the Insert Link dialog, which is accessed by
clicking Insert Link on the Edit menu. Enter your button’s text (which must be
unique), select the link type, and enter the appropriate text to be associated with the
button. The nature of the associated text depends on which link type you select.

You can perform four different categories of actions using buttons:

• Macro – allows you to interactively execute any API command that is available
interactively. The text associated with a Macro link is the function call. It is limited to
a single function.

• Templates – allow you to insert text, prompt, move the cursor, or execute a
series of actions. For templates, the associated text is the contents of a template to
execute, such as those supplied to the ExtExpandTemplate function. (For
more information about Hawk templates, see Chapter 6 Editing Features.)

• Document – allows you to run the program associated with a file type, to view or
modify that document. The document might be a bitmapped diagram or a word
processor file. In this case, the text associated with the button is just the filename of
the document.

• Application – lets you define any arbitrary command line to be executed when
the button is pressed.

• URL Button Links – allows you to jump to a specified Web Address (URL) by
issuing a shell command. The Web Page comes up in your default browser. This
type of link could also be used for other shell commands.

• Popup Note links come in two flavors: standard notes and "to do" notes. These
two types of notes are essentially the same. Providing two link types for notes,
however, gives the buttons a different appearance and allows you to sort "to do"
notes separately from other notes, when viewing the list of defined links.

1

235

Checking and Formatting Files

This chapter describes the Hawk formatting and file-checking tools. It includes
the following sections:

Differencing

Merging

Format Source

11

1

Using Hawk™

236

11

Differencing
Hawk has a fairly sophisticated differencing feature that can be used directly from
within the editor; it is not an external application. The Hawk differencing feature offers
several advantages over other differencing utilities:

• The editing features on the Side-by-Side Difference window offer
convenient and easy ways to selectively merge and edit two similar documents.

• The Difference Controls allow for easy navigation between differences.

• Differences can be recomputed after changes are made, and the documents being
differenced can be immediately accessed at any point that direct editing is
necessary.

The Hawk differencing feature can be used either side-by-side or interleaved. The
following sections describe these two differencing methods.

Interleaved Differencing

The Hawk Interleaved comparison merges two documents and places them into a new,
separate document that can be edited and saved apart from the original documents.

Difference Analysis Dialog for Interleaved Differencing

All differencing in Hawk can be initiated from the File -> Difference dialog. To
do an interleaved difference, choose the Interleaved option.

Figure 11-1. Difference Analysis Dialog (Interleaved)

• When the Interleaved option is marked, the Show Sections, Copy Sections,
Intraline, and Words options in the dialog will become disabled. Those options are
specifically related to Side-by-Side Differencing.

To use interleaved differencing, complete the following tasks:

1. Set the desired differencing options. The Compressed, Ignore White space,
and Ignore case options are available, and provide the following functionality:

1

Chapter 11: Checking and Formatting Files

237

11

• Compressed displays only the parts of the files that are different.

• Ignore: All White space causes all differences in white space to be
ignored.

• Ignore: Leading White space ignores differences in white space at
the beginning of all lines.

• Ignore: Case disregards any differences in case between the documents.

2. Mark the Restore on Startup option to tell Hawk to perform the current
difference operation the next time Hawk is started. This option saves a step for on-
going differencing projects that may take more than one day.

3. Select from the File and Document radio buttons to determine what files will be
displayed when the Browse button is pressed (The Browse button is used to
browse for files to be compared.)

• If the File radio button is on, the files displayed will be files that reside
anywhere on your system.

• If the Document radio button is on, the files displayed will be those that are
loaded in Hawk.

• Choose the files to be compared. Two files are needed when doing a
difference, a Reference and a Target file.

• The Reference file is normally used as the basis of comparison. It is usually
the older of the two files. If comparing the current file with the same file on
disk, just press the Original File button and its name will be inserted into
the Reference field.

• The Target file is the file to which the Reference file is compared. It is
usually the newer of the two files being compared. If comparing the current
document with the reference, just press the Current Document button, and
the appropriate filename will be inserted in the Target field.

4. The Default Names section of the File -> Difference dialog offers two
features that help reduce the number of steps needed to browse for the files that
will be differenced. Choose from the following:

• When the Current Document radio button is selected, the files displayed in
the Reference and Target fields will default to the document that is
currently loaded in Hawk.

• When History Entries is chosen, the files in the Reference and
Target fields will default to the last files chosen when last in the File ->
Difference dialog.

5. Press OK to initiate the differencing. The differences will be displayed in a separate
document in Hawk.

Interleaved Document

The title displayed in the interleaved document will be a combination of the names of
the Target and Reference files.

1

Using Hawk™

238

11

Example

If two files, foo1.c and foo2.c, are being compared using the Interleaved option,
the title of the resulting interleaved window would look something like the following:
Foo1.c->Foo2.c

The resulting interleaved document contains lines from both documents:

• The lines that are the same in both documents will have normal coloring in the
interleaved document.

• Lines that have been added to the Target file will be preceded by plus signs (+).
Lines that have been deleted will be preceded by minus signs (-). The added and
deleted lines will also be displayed in different colors from each other and the rest
of the text.

• An exclamation point (!) will precede those lines that differ in white space only, if
options to ignore white space have been chosen.

Side-by-Side Differencing

The Side-by-Side difference is shown in a separate tab of the Hawk Output Window
(labeled Difference). Limited editing is allowed in the Side-by-Side difference
window, with utilities provided for navigating the differences shown.

Difference Analysis Dialog for Side-by-Side Differencing

To compare two files using Hawk Side-by-Side differencing, go to the File ->
Difference dialog and mark the Side-by-Side radio button.

Figure 11-2. Difference Analysis Dialog (Side-by-Side)

To perform a Side-by-Side differencing, complete the following steps:

1. When the Side-by-Side option is marked, the following four additional options
are available, which were not available for Interleaved differencing: Show
Sections, Copy Sections, Intraline, and Words. These options are
specifically related to the Side-by-Side Difference window. Mark any
desired options according to the descriptions provided:

1

Chapter 11: Checking and Formatting Files

239

11

• Mark the Show Sections option to cause differing sections of the two files
being compared to be completely highlighted in colors different from the rest
of the text. If Show Sections is not marked, only the left margins of the
portions that are different will be highlighted.

• Mark the Copy Sections option to control how lines can be edited on
either side of the difference window. If it is marked, whole sections can be
deleted or copied from one side to the other. If it is not marked, only one line
at a time can be copied.

• Mark the Intraline option to show the parts of the lines that are different,
rather than just flagging the whole line as being different.

• Mark the Words option to keep the Intraline option from displaying every
single character that differs in either document. It limits the display to show
only the whole words that differ.

2. Complete the Compressed, Ignore and Restore on Startup options in
the same way as for an Interleaved difference operation (refer to the previous
topic, Interleaved Differencing).

3. Choose the files to be compared for a Side-by-Side difference using the same
process used for Interleaved differencing. The Browse buttons are controlled by
the File and Document radio buttons, and the default Reference and
Target file names are controlled by Current Document and History
Entries radio buttons in the Default Names section of the dialog.

4. When you have set the File -> Difference dialog with the desired files and
settings, click OK to display the files, side by side, in the Difference tab of
Hawk's Output Window.

Side-By-Side Difference Window

The Side-by-Side difference window shares common vertical and horizontal
scrollbars to facilitate synchronized scrolling between the two documents.

Note the following characteristics of the Side-by-Side comparison:

• The Side-by-Side Difference window uses colors in the left margin to
mark the points where the two files differ (If the Show Sections option has
been marked, the differing text-sections will also be highlighted).

• With the standard color scheme, inserted lines will be marked with red,
modified lines are marked with blue, and deleted lines are marked with black in
the left margin.

• When intraline differencing is turned on, you will also see the differences within
the line marked as blue or modified.

• Lines that are common to both documents receive normal text colors.

• You will see these three patterns of text in the two windows:

• Normal text in both windows

• Text in one window, blank line in the other

1

Using Hawk™

240

11

• Marked text in both windows

View Mode

When you are presented with the Side-by-side difference window, it is initially in
"view only" mode. This mode allows you to see the differences but not to change
the contents of either document. You may go to a location in either document and edit
the file in the normal editing window, but this will not be reflected in the differencing
window. The window can be changed to "editing" mode by clicking on the center-
most button in the Side-by-Side Difference window's toolbar button.

Figure 11-3. View Mode Toolbar

Some of the buttons on the "view mode" toolbar are described below (in order, from
left to right).

• The Question Mark brings up Help for the Side-by-Side difference
window.

• The Recompute Differences button prompts to save the files contained in
the difference window, saves them if desired, then recomputes the differences
between the two files with the latest changes.

• The Go To File button loads the file in which the cursor sits in a Hawk buffer
and moves the cursor to the point that it currently resides in the side-by-side
difference window, preparing the file for direct editing.

• The Change to Edit Mode button changes the Side-by-Side
Difference window to editing mode. The side-by-side edit mode is described in
the next section.

• The Difference Control (triangular arrow) buttons are described in the topic
entitled Difference Controls.

Edit Mode

Side-by-Side differencing allows limited editing to be done directly in the difference
window. The editing features available in the Side-by-Side difference window are
convenient for quickly moving lines and sections of text within and between the two
difference windows. In order to maintain the integrity of the Side-by-Side
difference, direct editing (that is typing) in the difference window is not allowed. The
difference window initially displays in the view mode, as described above. The center-
most (Change to Edit Mode) button on the difference window's toolbar toggles
the difference window to edit mode, and back.

Figure 11-4. Edit Mode Toolbar

The edit mode buttons are described below (in order, from left to right).

1

Chapter 11: Checking and Formatting Files

241

11

• The Question Mark button brings up Help for the Side-by-Side
Difference window.

• The Copy Changes to Document button copies the edits in the current
difference window to the corresponding document.

• The Save Changes button saves the changes made to the current compared
document.

• The Difference Control (triangular arrow) buttons are described in the topic
entitled Difference Controls.

• The Change to View Mode button changes the window to view mode, as
described in the View Mode section in this chapter.

• The Copy selected lines to left button copies inserted lines or sections
from the right pane of the difference window to "deleted" (empty) or modified
lines on the left. If no lines are selected, the current line is copied. If the Copy
Sections option was selected when the difference operation was invoked, the
current section is copied. After the copy, the selected lines are part of the text
common to both files. If the lines are already part of the text common to both, the
operation fails.

• The Copy selected lines to right button copies inserted lines or
sections from the left pane of the difference window to "deleted" (empty) or
modified lines on the right. If no lines are selected, the current line is copied. If the
Copy Sections option was selected when the difference operation was
invoked, the current section is copied. After the copy, the selected lines are part of
the text common to both files. If the lines are already part of the text common to
both, the operation fails.

• The Delete Selected Lines button deletes the selected lines in a window.
The deleted lines are not removed, but rather are marked “deleted” and left empty.
You may wish to do this in preparation to moving lines in the adjacent window. Add
as many deleted lines as you like. They will not show up in the saved file.

• The New Deleted Line button inserts newly "deleted" blank lines in both
windows. You may wish to do this in preparation to shifting lines up or down. Once
again, add as many deleted lines as necessary. They will not show up in the saved
file.

• The Move Selected Lines Up button moves the selected line up one line. If
no lines are selected, the current line is moved. To use this button, there must be a
deleted line above, or the line shifted must be a deleted line.

• The Move Selected Lines Down button moves the selected line down one
line. If no lines are selected, the current line is moved. To use this button, there
must be a deleted line below, or the line shifted must be a deleted line.

Difference Controls

The Difference Controls are displayed on the top of the Side-by-Side
difference window as four triangular black arrows that point to the left and right. They
are used to view the various areas of difference between the two documents.

1

Using Hawk™

242

11

• Press the far right arrow (the one with the vertical bar directly to the right of it) to
jump to the last difference in the two files.

• Press the far-left arrow (also with a vertical bar) to jump to the first difference.

• The left and right arrows in between go to the immediate next and previous
differences, if there are any.

Toggling between the Two Panes of the Difference Window

There are three key-sequences for moving back and forth between the two Side-by-
Side difference windows:

• CSn, CWDiffNextWindow 1: moves to right window (next)

• CSp, CWDiffNextWindow 0: moves to left window (previous)

• CSo, CWDiffNextWindow 3: moves to other window (next & wrap)

You can customize key-sequences for the difference window using the function
CWDiffKmapAssign in the Tools -> Customize -> Keyboard dialog or the
[KmapAssign] section of MWHAWK.INI.

Side-by-Side Difference Printing

A Print button is available from the View Mode of the Side-by-Side difference
window when both sides of the window are in the same mode (i.e. normal,
compressed), and neither is in hex mode.

A modified Print dialog entitled Print - Side by Side Difference
displays. Printing the contents of the Side-by-Side difference window is similar to
printing a regular document in two-up mode, except that the left side will contain the
Reference document/file, while the right side will contain the Target document/file.

Differences between the documents are shown as follows:

• Lines that are "deleted" in one side will display as a minus sign only.

• Lines that are "added" on one side will print, preceded by a plus sign.

• Lines that are modified will be preceded by an asterisk.

Directory Differencing

Directory differencing (also referred to as "tree differencing") allows you to specify two
directories for comparison. Use the Directory Difference Analysis dialog to
request directory differencing. To access the dialog, select File -> Difference
Directories, or right-click on the Difference tab of the Output Window and
select Difference Directories.

Hawk takes each file in the Reference directory and searches for the same file in the
Target directory. Check the box Include Subdirectories to include all
subdirectories of the Reference Path and Target Path in the directory
comparison.

For more information about Hawk’s CWDiff APIs, consult the online help.

1

Chapter 11: Checking and Formatting Files

243

11

Results from the Directory Difference Analysis dialog are displayed on the
Tree Difference window (found on the Difference tab of the Output
Window). You can also run a Directory Difference Report that describes the results.
Refer to the following sections.

Directory Difference Analysis Dialog

The Directory Difference Analysis dialog appears as follows:

Figure 11-5. Directory Difference Analysis Dialog

The settings in the File Difference Settings and Ignore groups on the
Directory Difference Analysis dialog pertain to the side-by-side file
differencing that is performed on a specific file pair when you double-click on the
corresponding node in the Tree Difference window. The settings in the
Directory Difference Settings group, described next, determine which files
and directories are included in the tree directory in the Tree Difference window.

• Reference Path: Enter the path of the first directory of files to be compared, or
press Browse to look for a directory on the Select the Reference
Directory dialog. Typically the Reference directory will contain older,
unchanged versions of a set of files.

• Target Path: Enter the path of the second directory of files to be compared, or
press Browse to look for a directory on the Select the Target Directory
dialog. Typically the Target directory may contain newer, edited versions of a set
of files.

• Include Subdirectories: Check this box to include all subdirectories of the
Reference Path and Target Path in the directory comparison.

• Scope: In the Scope field, enter a semicolon-delimited list of wildcard patterns to
define which files are included in the directory differencing. If no Scope is
entered, all files are included.

1

Using Hawk™

244

11

• Check the option Exclude files matching scope to exclude files
matching the Scope from directory differencing instead. If the option is
unchecked, files matching the Scope will be included.

• Show Identical Files: Check the option Show Identical Files to
include files on the Tree Difference window that are the same in both

directories. Filenames of identical files will be gray and preceded by the icon .
Since the files are the same, you cannot double-click on identical files to difference
them.

• Show Reference-only Files: Check the Show Reference-Only
Files option to include files on the Tree Difference Window that only exist in the
Reference directory. Reference-only files display in boldface, preceded by the

icon . Since there is no file in the Target directory to compare it to, the file
cannot be differenced.

• Show Target-only Files: Check the Show Target-Only Files option
to include files on the Tree Difference Window that only exist in the Target

directory. Target-only files will display in boldface, preceded by the icon . Since
there is no file in the Reference directory to compare it to, the file cannot be
differenced.

• Show Different Files: Check the Show Different Files option to
include files on the Tree Difference window whose Reference and
Target directory versions are different. Files with differences are shown in
boldface, and preceded by one of the following icons:

• The Reference File (on the left) has been revised more recently than the
Target File.

• The Target File (on the right) has been revised more recently than the
Reference File.

• Show Directories with No Files: Check the Show Directories
with No Files option to display subdirectories of the Reference or Target
directory on the Tree Difference Window, even if the subdirectory contains no files.
This option is disabled if you have elected not to Include Subdirectories in
the directory comparison.

Tree Difference Window

The Tree Difference window shows the results of comparing the files in two
entire directories, as requested on the Directory Difference Analysis
dialog. A tree directory that integrates the Reference and Target directories is
provided; click on any file in the tree that exists in both directories to show the specific
differences in that file in Side-by-Side Differencing format.

Right-click on any file in the tree to see a file-level context menu. Select the menu
option Copy File to copy the selected file from one directory to another on the
Copy File dialog.

1

Chapter 11: Checking and Formatting Files

245

11

A sample directory differencing in the Tree Difference window is shown in Figure
11-6.

Figure 11-6. Tree Difference Window (Difference Tab of Output Window)

Tree Differencing Toolbar

Press on the Tree Difference window to show or hide the directory tree you
generated on the Directory Difference Analysis dialog. When the directory
tree is hidden (the button appears raised), the files currently being compared will
expand to fill the Tree Difference window, revealing more of each file.

Use the Previous Changed File or Next Changed File button to
display a Side-by-Side Difference on the previous/next file with differences in the
directory tree.

All other toolbar buttons are the same as used for Side-by-Side Differencing.

Tree Directory Icons

The various file icons in the tree directory are defined as follows:

• This small tree image indicates the root node. The text shows the
Reference and Target directories used in the directory difference. Right-click
on this tree icon to display a directory-level context menu.

• or The subdirectory exists in both the Reference and Target
directories.

• or The subdirectory exists only in the Reference directory.

• or The subdirectory exists only in the Target directory.

• The files are identical.

• The file exists in both directories, with the file in the Reference directory
being newer. Double-click on the item, or highlight and press Enter, to run a
Side-by-Side Difference on the file pair.

1

Using Hawk™

246

11

• The file exists in both directories, with the file in the Target directory being
newer. Double-click on the item, or highlight and press Enter, to run a Side-by-
Side Difference on the file pair.

• The file exists only in the Reference directory.

• The file exists only in the Target directory.

Directory Difference Report

The Directory Difference report shows analysis settings, file and directory counts, and a
list of files in the directory tree. To allow user customization, the API Macro
DiffDirReport is used to create this report. You may modify DiffDirReport by
editing the macro on the Tools -> API Macros dialog.

A sample report is provided.

Figure 11-7. Directory Difference Report Sample
Report on Directory Differences

Reference Directory: C:\CWM\dir1\
Target Directory: C:\CWM\dir2\
Scope:*.*
Exclude files matching scope:NO

Count TypeFilesDirectories

Different, newer reference9
Different, newer target2
Reference-only31
Target-only11
Identical23
Total 17 4

File Filters:
Show Identical Files:NO
Show Reference-Only Files:YES
Show Target-Only Files:YES
Show Different Files:YES

File List
--
Target-only.\onlyN2\temp.txt
Different, newer target.\sub\subin\TEMP.C
Reference-only.\sub\subin\TEMP.H
Target-only.\sub\subin\TEMP.HTM
Different, newer target.\sub\TEMP.C
Different, newer reference.\sub\TEMP.H
Different, newer reference.\TEMP.C
Different, newer target.\TEMP.TXT

1

Chapter 11: Checking and Formatting Files

247

11

Using Difference Utilities

Hawk has several difference APIs that allow the user to access the difference features
without using the mouse to go to the File -> Difference dialog. A list of these
functions can be found by doing a search for the keyword Differencing in Hawk's
Help -> Search For Help On dialog. These functions are available for use from
Hawk's Tools -> API Command key, for binding to custom keystrokes, buttons or
menu items, or to use in custom Hawk DLLs or macros.

Merging
The Merge Files Dialog allows you to specify three files for comparison, and the
name of the file that is to contain the merged changes. By merging files you can
determine if there are conflicts between changes made to two or more versions of a
file.

Using the Merge Files Dialog

To use the Merge Files dialog complete the following:

1. Select the File menu.

2. Choose Merge. The Merge Files dialog displays.

Figure 11-8. Merge Files Dialog

3. Complete the following fields:

• Base File: The first filename you must enter is the name of the Base
File. This is the file from which the two revisions were derived. This is usually
the oldest of the three files.

Revision 1 and Revision 2: These files are both revisions of the Base
File. It does not matter which revision you specify as Revision 1 and
which you specify as Revision 2; the outcome of the merge is not
materially affected. You may, however, wish to establish a convention for your

1

Using Hawk™

248

11

own use that Revision 1 is "mine" and Revision 2 is "theirs", or that
Revision 1 is older than Revision 2.

• Output File: In this box, specify the name of the file to contain the output
from the Merge. You may type in the name of the file or select the Browse
button to locate a file on disk. This merge file is always written to disk, rather
than just being placed into a document as the Differencing function does.
(Refer to the topic Differencing, in this chapter.)

• Overwrite File: Check this box to tell Hawk to overwrite a like-named file
when creating the output file.

If you do not check the Overwrite File option, and a like-named file exists, Hawk
will prompt you for permission to overwrite the file. If you do not give this permission,
Hawk aborts the merge.

• Edit File: Check this box to load the output file for viewing and editing at the
end of the operation.

• Synchronize Histories: Select this option to have Hawk try to anticipate
selections from the history lists. When you select the Base file from the history list,
it automatically selects the Revision 1 and Revision 2 files that you used
with that Base file last time.

Merge Output

The Merge function will alert you if it found any conflicts in the two sets of changes it
is merging. If no conflicts were reported, editing the file is probably not necessary.
When you do have one or more conflicts, you will need to know how to find them so
that you can resolve the conflict.

Merge uses a series of ten dashes to separate the conflict area from the rest of the file.
This enables you to search for conflicts in your file using the regular expression "^----
------". This pattern will match ten dashes at the beginning of a line. Each line
containing a message from the Merge function will begin in this manner. You will need
to delete these lines after resolving the conflict.

The Merge function provides the following information:

• The first message from Merge identifies the conflict by number, names the Base
File, and indicates that the Base File was read from disk (file).

For the Base File, Revision 1 and Revision 2 fields:

• You may type in the name of the file, or select the Browse button to locate the desired
file on disk or select from the document list.

• You may place the name of the file, from which the current document was read, into this
field by pressing the Original File button (for the Base File) or the
Current Document button (for the Revision files).

• The File and Document radio buttons allow you to specify whether Hawk should
look for this file on disk, or whether it has already been loaded into a document.

1

Chapter 11: Checking and Formatting Files

249

11

• The next message introduces the section of the Revision 1 file that conflicts
with Revision 2. It also gives the filename and indicates the origin of the file
(File or Document).

• The line or lines between this message and the next message from Merge are
taken from the Revision 1 file.

• After the lines from Revision 1 there is a message from the Merge function
introducing the corresponding section from Revision 2. Again Merge indicates
the filename and origin.

• Between this message and the "End Conflict" message are the lines that you
need to compare with those from the Revision 1 file to see how to resolve the
conflict.

On occasion, you may find that the section of conflicting line from one revision or the
other contains zero lines. This is an indication that the lines were deleted in one
revision and changed in the other. The revision from which the lines were deleted will
be represented by an empty conflict section.

Once you have resolved the conflict and deleted the message lines you are ready to
search for any further conflicts.

Removing Changes with Merge

Merge can also be useful when your development has been a linear progression,
rather than simultaneous revisions (branching).

Example

You may find that a bug was introduced at some point in the past, and you want to
undo those changes without abandoning the changes that you have made since.

You could do this manually, but Merge is faster and easier.

Usually, the Base File is the oldest of the three files used in the Merge comparison.
It need not be the oldest, however. For the purposes of removing changes, the Base
File is a revision in the middle that looks backward at the changes that must be
removed and looks forward to the changes that must be retained:

1. When selecting the Base File, select the first revision following the changes you
want to remove.

2. Next select the most recent revision of your file as Revision 1.

3. For Revision 2, choose the revision just before the change you want to remove
was introduced.

Compared to the Base File, the Merge function will see one set of changes that
removes the bug, and another that adds other changes. Since the Base File and the
Revision 1 file both contain the bug, the file without the bug (Revision 2) will
look like a change made to a single revision. As such, the bug fix will quite likely be
automatically incorporated into the resulting file.

1

Using Hawk™

250

11

Format Source
For your C, C++ and Java source files, Hawk provides functionality called Format
Source. This allows you to select a block of code, and reformat it based on a pre-
defined set of criteria (this is also known as beautifying the code).

Setting up Your Formatting Criteria

Before you can use the formatting capabilities within Hawk, you must establish certain
criteria for Hawk to use. This is done on the Format tab of the Language dialog. To
access this dialog:

1. Select the Customize menu.

2. Choose Language.

3. Highlight .C, .CPP, or .JAVA in the File type box. The criteria you set will
only apply to the file type you have chosen here.

4. Click on the Format tab. The following dialog displays:

Figure 11-9. Customize -> Language -> Format Dialog

5. Complete fields in the following groups:

• Indentation: The settings in this group modify how many tab stops to
indent each item:

• Broken expression–When an expression spans more than one line,
indicate how much additional indentation to give to the continuation line or
lines.

• Broken parameter list–When a parameter list spans more than
one line, indicate how much additional indentation to give to the
continuation line or lines.

• Other broken lines–When a statement other than an expression or
parameter list spans more than one line, indicate how much additional
indentation to give to the continuation line or lines.

1

Chapter 11: Checking and Formatting Files

251

11

•Switch labels–Indicate how much additional indentation to give case
items (labels) within a switch statement.

• Modify Space: These choices, when enabled, indicate how many spaces
you want surrounding certain items:

• After Keyword–Indicate how many spaces you want to follow a
keyword (reserved word or standard function). These keywords are those
recognized by Hawk for Language ChromaCoding.

• Around Expression–Indicate how many spaces you want surrounding
an expression.

• After Function–Indicate how many spaces you wish to have following
the end of a function name, preceding the opening parenthesis.

• Around Parameter List–Indicate how many spaces you want
surrounding a function call's parameter list.

• Enable block alignment: Tell Hawk whether or not you want it to re-
align code blocks during reformatting. If enabled, you can select which type of
alignment to use. If disabled, Hawk leaves block indentation alone..

• Cuddle Else–Tell Hawk whether or not to put the "else" portion of an
"If..else" construct on a line by itself or to "cuddle" it up next to the closing
brace it follows.

• Align Function–Often, the braces that begin and end a function definition
do not conform to the same alignment rules as the braces within a function.
When that is the case, leave this checkbox unchecked, and Hawk will not alter
their location. To cause them to conform to the alignment type selected in this
group (Unindented block, Line saver or Indented Block), just check this box.

Using the Format Feature

Once you have set the criteria for the type of file you are using (C, C++ or Java), you
are ready to reformat. Complete the following steps:

1. Open the file to be formatted.

2. Select the block of code to format. If you wish to format the entire file, choose
Select All from the Edit menu.

3. Once the desired section is highlighted, select the Format Source option from
the Text menu. The formatting should now occur automatically, based on the
settings in the Customize -> Language -> Format dialog.

Refer to the online help topic Align Tab for a schematic of the alignment options and popup
help descriptions for each.

1

Using Hawk™

252

11

1

253

Customizing the Interface

This chapter describes customizing the Hawk interface and includes the following
sections:

Duckbill Toolbars and Windows

Customizing Toolbars and Buttons

Customizing Menus

Mouse Commands

Reassigning Keys and Mouse Actions

12

1

Using Hawk™

254

12

Duckbill Toolbars and Windows
Hawk has several standard toolbars, and allows more to be defined. All toolbars can be
modified through a simple drag and drop interface and used in a variety of ways. For
example, toolbars can be docked or free-floating, always visible or auto-hidden. The
Tools -> Customize -> Toolbars dialog is where toolbars can be turned on,
created or modified, or otherwise manipulated.

Toolbars

Several default toolbars are available in Hawk’s Customize -> Toolbars dialog.
Marking the Visible option for any highlighted toolbar on the Toolbars tab turns
the toolbar on. Other toolbar options on the Toolbars tab include the following:

• Hide when application is inactive means that the toolbar is only
visible when Hawk is the active application. This is usually desirable for free-floating
toolbars.

• Always on top specifies that, when free floating, the selected toolbar or
window will not allow itself to be covered up by other applications or windows.

• Allow Docking, when unmarked, means that the selected toolbar or window is
prevented from docking. If you have decided to use a toolbar or window exclusively
in free-floating mode, this will prevent accidental docking.

A brief description of the toolbars in the Toolbars dialog is provided here.

• Standard Toolbar: Turned on in Hawk by default and is docked at the top of
the Hawk screen, under the main menu. A description of the Standard
Toolbar is provided in the The Standard Toolbar in .

• Build toolbar: Has buttons that perform application building operations such
as compile, make, debug, and execute

• Edit Toolbar: Has buttons that perform common editing tasks. When it is
turned on, it is positioned vertically with two buttons from left to right and eight
buttons down.

• Tools Toolbar: Has several buttons that perform various tasks, such as File
Find, Differences, or Merging.

• VCS Toolbar: Has buttons for performing various operations with your defined
version control program.

• AppBasic: This toolbar has the same items as those in the AppBasic
Window when the AppBasic extension language module is loaded in the
Tools|Customize|Libraries dialog. Many of the items on the toolbar will
not be available if the AppBasic module is not loaded.

• Project Toolbar/Window: This is a window that is turned on and docked, by
default, on the left-hand side of the Hawk screen. It has six tabs, Project, File
View, Outline, Bookmarks, File Open, and Codefolio, which are
described in various sections of this manual.

• Output Toolbar/Window: This is a window that is turned on by default. It
initially has seven tabs and is docked on the bottom edge of the Hawk screen.

1

Chapter 12: Customizing the Interface

255

12

Three more tabs can optionally be added by loading Add-On for the Passaic and
Per macro languages, and for the Clipboard/Scrap Viewer. Add-On are
loaded using the Customize -> Libraries dialog. The tabs of the Output
window are described in various chapters in this manual.

• Debug: This invokes the debugger command line that you defined for the
project.

• HTML Toolbar: Has buttons that perform operations specifically designed for
HTML files.

• Telnet Toolbar/Window: Displays a telnet window for use with the target.

• Serial Toolbar/Window: Displays a serial window to use as a serial console
for the target.

Auto-hide Toolbars

Hawk toolbars can be optionally set to auto-hide when they are docked. When auto-
hide is turned on, toolbars appear only when the mouse hovers over the area at which
they are hidden. Hawk’s toolbar-auto-hide option is turned on in Customize ->
Toolbars -> General. To set auto-hide, mark the option in the dialog that
corresponds to the edge (top, bottom, left, right) of the Hawk screen that contains the
toolbar to be hidden. Any toolbars that are docked on an auto-hide-enabled edge will
auto-hide.

When a toolbar is hidden a border with a small black arrow appears where the toolbar
should be. Running the mouse over any part of the border causes the mouse cursor to
change to an image of a hand. If the mouse cursor is allowed to maintain that shape
for a brief moment, the toolbar will appear. The size of the hidden toolbar’s border can
be increased or decreased by changing the number for Auto-hide window size
in Customize -> Toolbars -> General.

Duckbill

A duckbill window or toolbar can either be attached to one of the edges of Hawk’s
client area, or it can be “free-floating”. When the window or toolbar is docked, it reduces
the client area and does not overlay other objects. When free-floating, the window or
toolbar can be placed anywhere on the screen and resized to almost any shape, but
can partially obscure other objects.

Enabling and Disabling Toolbars

Once any duckbill toolbars or windows are enabled (visible), the following shortcut is
available for setting the visibility status of such toolbars or windows.

1. Click with the right mouse button on any non-button part of the toolbar or
window’s frame.

A list of currently defined toolbars and duckbill windows will pop up. The items
preceded by check marks are the ones that are currently visible.

2. To change the status of any toolbar or duckbill window, select it from the list.

1

Using Hawk™

256

12

As mentioned before, toolbars can also be turned on in the Toolbars
Customization dialog. If no toolbars or dockable windows are currently visible,
complete the following steps.

1. Select the Customize menu.

2. Choose Toolbars.

3. Select the desired toolbar from the list.

4. Check the Visible check box, and then press Close. The toolbar will become
visible.

Docking and Moving Toolbars and Windows

You can dock or undock a toolbar or dockable window by double clicking on any non-
button portion of its frame.

• If it was docked, it becomes free-floating.

• If it was free-floating, it becomes docked.

The exception is when the toolbar or window has never been docked before, and has
no default docking location. In this case it won’t know where to dock, and you will need
to dock it manually.

Docking a Toolbar or Window Manually

You can manually dock and undock these objects by dragging them with the mouse:

• To dock a free-floating window, drag it by a part of if its frame or part of its interior
that is not used by any toolbar items, like buttons or the title bar. It will
automatically dock when placed over the edge of the client area.

• To reposition free-floating windows without docking them, drag them by the
toolbar.

When you drag a free-floating toolbar or window to the edge of Hawk’s client area, you
will notice a change in the mouse cursor. A small square with a plus sign in it will
appear at the base of the arrow. This is to tell you that if you drop the object, it will
dock. The outline of the object you are dragging will indicate what orientation it will take
when dropped.

Undocking a Toolbar or Window

To undock a toolbar or window, complete the following steps.

1. Point the mouse at any non-button portion of the frame.

2. Press the left mouse button.

3. Drag the mouse. You will see an outline of the toolbar or window appear.

4. Continue to drag the object away from the edge of the Hawk client area, and then
drop it wherever you want it.

- OR -

1. Click on the toolbar frame with the left mouse button.

1

Chapter 12: Customizing the Interface

257

12

2. Press the Ctrl key.

3. Release the mouse button.

4. Release the Ctrl key.

You can then resize and reposition the free-floating toolbar or window at will. If you
have multiple toolbars docked along a single edge of the client area, you can use this
drag and drop technique to change their order.

Customizing Toolbars and Buttons
Hawk has a number of standard toolbars that can be modified through a simple drag
and drop interface. You can also perform the following tasks:

• Create your own toolbar with your selection of buttons.

• Modify the functions bound to each button (that will be executed when the button
is pressed).

• Customize the buttons with your own bitmaps.

Adding New Toolbars

To add a new toolbar, complete the following steps:

1. Select Customize -> Toolbars. The Toolbar Customization dialog
displays.

2. Select the Toolbars tab.

3. Click the New button. The New Toolbar dialog displays.

4. Enter the name of your new toolbar, and then click OK.

Hawk then creates a new toolbar for you. At this point the toolbar is empty. You will
need to move it and dock it. You will also need to add buttons to it. The latter is
covered in the next topic, Adding and Changing Toolbar Buttons. The toolbar
information is stored in the MWHAWK.INI file.

Adding and Changing Toolbar Buttons

To add or change a toolbar button, complete the following steps.

1. Go to the Customize -> Toolbars dialog.

2. Click the Toolbars tab.

3. Select the toolbar you wish to modify; the toolbar will be displayed in a separate
window.

4. Click the Select buttons tab. On the Select buttons tab of the Toolbar
Customization dialog, Hawk enters a special mode where the toolbars are
temporarily inoperative.

1

Using Hawk™

258

12

Figure 12-1. Toolbar Customization: Select Buttons Screen

5. From this dialog you can perform the following tasks:

• Drag and drop buttons from the dialog to any toolbar.

• Drag buttons from one toolbar to another.

• Rearrange buttons within a toolbar, dragging them into the desired position.

• Remove a button simply by dragging it off the toolbar.

There are several categories of buttons in the dialog, listed in the Classes window.
The category User-Defined Tools includes buttons with no pre-defined function
bindings, to which you can quickly bind your function.

Binding a Function to a Button

To bind a function to a toolbar button:

1. Go to the Customize -> Toolbars dialog.

2. Click on the Bindings tab.

1

Chapter 12: Customizing the Interface

259

12

Figure 12-2. Toolbar Customization: Bindings Screen

3. Select a toolbar from the list box.

4. Cycle through the buttons on that toolbar until you get to the one you want to
change.

5. Make necessary entries in the following edit boxes for each button:

• The Button text field only applies to buttons that contain text, not bitmaps.

• The Function binding field contains the function call to be executed
when the button is pressed. This function must be available to Hawk and follow
the rules of LibFunctionExec.

• The Tool Tip field contains the message that pops up when the mouse
cursor pauses over the button.

• The button information, such as the toolbar it belongs to, its position on the
toolbar, the source of the bitmap image and the function bindings, is stored in
a file called CWRIGHT.BTN in the main Hawk directory. Hawk takes care of
updating this file, much like an .INI file, as you customize your buttons..

Combo Box History Lists

Many of Hawk's prompts have combo box history lists that store previous responses
made at the prompt. Most notably, the Command Key prompt, the Search and
Replace prompts, and the prompt at which you enter the name of a file to edit, have
prompt histories. The lists can be accessed by either bringing down the drop-down list
under the combo, or by pressing the up arrow or the down arrow. Pressing the up
arrow reuses the most recently entered response, whereas pressing the down arrow
reuses the oldest. Repeatedly pressing the up arrow allows you to view earlier
responses. Repeatedly pressing the down arrow key views more recent responses.
Pressing Enter accepts the response displayed.

As each historical response is displayed, you will note that it is highlighted. If you issue
an editing command, such as [Home], [Ins] or [End] the highlighting disappears and

All bitmaps that are available in the dialog for the buttons come from the CWDLL32.DLL. If
you have your own bitmaps you would like to add, you will need to load your DLL containing
the images.

1

Using Hawk™

260

12

you are permitted to continue editing the response. You can accept the edited
response at anytime by pressing Enter. If, when the response is still highlighted, you
type characters, the typing replaces the highlighted text. This allows you to easily type in
a new response, if the one you are looking for is not in the history.

Editing Combo Box History Lists

There is a history editor on the History tab of the Environment dialog on the
Customize menu. It allows you to view and remove members of the prompt
histories. It also lets you adjust the size of the lists.

Many prompt histories are saved between Hawk sessions by default. The information is
saved in the State file..

Customizing Menus
This section describes how to edit standard menus, submenus, menu items and pop-
up menus.

Menu Editor

You can change, delete and add menus and menu items through the Menu Editor
on the Customize -> Environment -> Menu dialog.

Figure 12-3. Environment Dialog: Menu Tab Screen

The dialog list Menus and Menu Items, as described in the following topics.

Chapter 17 Configuration Files and Command Line Parameters contains additional
information about Hawk State files.

1

Chapter 12: Customizing the Interface

261

12

Menus

Menus are the top-most selections on the Menu bar. They contain items and
submenus. You begin your modification of the menu by selecting a menu from the list
on the left.

• Up/Down: Allow you to change the position of the menu relative to other menus.
Up and down refer to the position in the list box. Up moves the selected menu to
the left on the menu bar, while Down moves the menu to the right.

• Add Menu: Lets you add a menu to Hawk's menu bar. You must provide a name
for the menu, a helpful message to display when the menu is selected, and,
optionally, one or more functions to initialize the menu. The initialization functions
are responsible for disabling or check marking menu items as necessary.

• Change Menu Attributes: Similar to the Add Menu dialog, except that the
attributes for the selected menu are displayed for editing. You cannot change the
ID of a menu.

• Delete: Deletes the selected menu. You could delete all menus, if you wish. You
would then find that you are unable to add them back interactively, once you leave
this dialog. (You couldn't get the dialog back.) If the worst happens, you can restore
the original menu by editing Hawk's configuration file, MWHAWK.INI. Locate the
[Menu] section of the file and rename the section, or delete all lines under that
section heading.

Menu Items and Submenus

Menu items and submenus are the entries listed on a menu. After selecting a menu,
the items on that menu will appear in the list box on the right. Any submenus on the
menu will also be listed in order, preceded by a + sign. You may then select a menu
item or submenu from the list on which to operate.

• Up/Down: Allow you to change the position of the item or submenu on the menu.
You may also move separator lines with these buttons.

• Add Item: Lets you add an item to one of Hawk's menus. You must provide a
name for the item (Menu item text), a helpful message to display when the menu
is selected (Help string), and a function to execute when that item is selected
(Handler function). If there is a short-cut keystroke that performs the same
function, you may enter that keystroke for display on the menu (Key string).

• Add Popup: Brings up a dialog similar to the Add Menu dialog. Enter a name for
the submenu a help message, and any functions to initialize the submenu.

• Change Item Attributes: The operation of this button depends on whether
or not you have selected a submenu or a normal menu item. If you have selected
a normal menu item, the Change Item Attributes dialog is like the Add
Item dialog, except that the attributes for the selected item are displayed for
editing. If you have selected a submenu, the dialog is like the Add Popup dialog.

• Delete: Deletes the selected item. You could delete all items in a menu, if you
wish. You can also delete separators with this button.

1

Using Hawk™

262

12

• Add Separator: Allows you to add a separator line at the selected position
within the menu.

• Add List: There are five lists which may be added to the bottom of a menu:
recent files, scrap buffers, edit buffers, recent projects, and windows. If you are
using One-document-per-window mode, the list of edit buffers is not
available.

Each of these lists may only appear on one menu. Therefore, you must first delete
a list from a menu before you can add it to another. This button is disabled if there
are no unassigned lists.

Operating on Submenus

To view or modify a submenu, you must double click with the mouse on the submenu
(marked with a plus) in the list on the right. The submenu then moves to the list on the
left and is marked with a minus sign. You may then operate on it as you would a menu,
adding items, moving and deleting items as you desire.

Whenever you are through operating on a submenu, you may move it back to the list
on the right by double clicking on the name again. The minus sign will change back to
a plus when the submenu arrives in the list on the right.

This system allows you to have any level of nesting of submenus that you like. Just
keep adding them on the right and moving them over to the left.

Changing the Functionality of a Menu Item

To change the function associated with a particular menu item, complete the following
steps:

1. Select the Customize -> Environment dialog.

2. Click the Menu tab.

3. Click a menu, and corresponding menu item to change.

4. Click the Change Item Attributes button.

Figure 12-4. Change Menu Item Attributes Dialog

1

Chapter 12: Customizing the Interface

263

12

This dialog then shows you information about that menu item such as its ID in Hex,
the function bound to it, and so forth. Before you start customizing, you will find that
the existing menu items are bound to functions that begin with a lowercase letter.
These functions are not accessible directly by you. They require special menu handlers
and can only be called from a DLL.

To successfully change the functionality of a menu item, you must:

• Bind the menu item to a function that begins with an uppercase letter. Any of the
Hawk API functions should work, or your own functions (or macros), provided they
have met the criteria to be recognized by Hawk.

• Check the small check box labeled Non-standard handler when binding
functions that do not have a menu handler. You must check this box, or Hawk will
not handle your customization, and your menu items will not work.

Adding a Menu Item

To add a new menu item, complete the following steps:

1. Select the Customize -> Environment dialog.

2. Click the Menu tab.

3. Select the menu to which the item should be added.

4. Click the Add Item button. The New Menu Item Attributes dialog
displays. This dialog is the same as the Change Item Attributes dialog.

Figure 12-5. New Menu Item Attributes Dialog

5. In the Menu Item Text field, enter the desired text for the menu item.

6. In the Help String field, enter text for the menu item’s tool tip.

7. In the Key String field, enter a keyboard shortcut for this menu item.

8. In the Handler Function field, enter the function binding, beginning with an
uppercase letter.

9. Select the check box labeled Non-standard handler.

Entering a key string in the Add Menu Item Attributes dialog does not make the
key string work. It must first be defined in the Customize -> Keyboard dialog. To
learn more about customizing keystrokes, see the topic Reassigning Keys and Mouse
Actions.

1

Using Hawk™

264

12

10. Click OK. Hawk assigns the menu ID in hex to the new item.

Example: To add Hawk’s Perl help file to your Help menu, complete the following:

1. Select the Customize -> Environment dialog.

2. Click the Menu tab.

3. Select the &Help menu under Menus.

4. Click the Add Item button.

5. In the Menu Item Text field, enter: Perl Help File.

6. In the Help String field, enter Perl Help.

7. In the Key String field, enter Ctrl-Q.

8. In the Handler Function field, enter the following, then click OK:

ExecUserCmnd=’winhelp c:\mwos\dos\bin\Perl.hlp’,1.

Customizing External Operations within Hawk

As described in Chapter 7 Projects, Project Spaces, and Workspaces, Hawk provides the
ability to use external operations from within the editor. Any program can be added as
menu items to the bottom of the Tools menu. The added items will be numbered.
This is a quick and handy way to add links to your favorite applications, or execute
custom compiles or other external operations.

To add a custom item to the Tools Menu:

1. Select the Project -> Settings dialog.

2. Click the Tools tab.

3. Choose the Custom option from the drop down under the Category combo
box. The dialog is displayed next.

Figure 12-6. Project Properties Dialog — Custom Category

4. In the Command: box, enter the command or executable file that the menu item
should launch. Press the right arrow for a list of pre-defined macros; press the
Browse button to search for executable files.

If you prefer to use keystrokes instead of menus, any menu item can be bound to a keystroke.
Refer to the topic Reassigning Keys and Mouse Actions, in this chapter.

1

Chapter 12: Customizing the Interface

265

12

Remember that Hawk will shell to DOS in the directory specified on Project ->
Settings -> Directories -> Working Directory when executing your
command line, so you may need to provide the complete path.

User-Definable Popup Menus

Positioning the mouse in certain areas within Hawk and right clicking will bring up a
popup menu. You can change the way the popup menus work or add your own
sections to them using Hawk’s Popup Menu Editor. The following paragraphs
describe Hawk’s Popup Menu Editor and the steps for creating and editing popup
menus.

Hawk’s Popup Menu Editor is for editing and creating popup menus. The changes
are applied to designated files containing menu descriptions and are effective
immediately. Hawk's default menu file is MWHAWK.MNU, but other menu description
files can also be created and modified with the editor.

Clicking the Edit this menu item on most Hawk popup menus accesses the
Popup Menu Editor. The function DlgEditPopupMenu, used from Hawk's API
Command dialog, a keystroke, button, or menu item, will also access the editor.

As mentioned, changes made in the Popup Menu Editor are applied to whatever
file contains the settings for the selected popup menu. In most cases this file is the
MWHAWK.MNU file, Hawk’s main popup menu configuration file. MWHAWK.MNU
contains sections similar to a Windows .INI file. Each section begins with a section
heading, a word or label enclosed in square brackets. The lines that follow the section
heading (Item Definition Lines) describe the menu items that will appear on
the popup menu, and what happens when you select each item from the menu.

Editing or Creating a Popup Menu

Complete the following steps to edit or create a popup menu in Hawk:

1. In Tools -> API Command, type DlgEditPopupMenu.

The Popup Menu Editor should appear with Hawk’s default menu definition
file MWHAWK.MNU open.

For more information about the syntax used for creating and editing popup menus and menu
items, see the topic Popup Menu Semantics.

1

Using Hawk™

266

12

Figure 12-7. Popup Menu Editor

2. In the Popup Menu Editor, click File -> New Menu to create a new menu,
or click File -> Open Menu File to open an existing menu. If a new menu
is being created, a new, empty menu will be opened in the editor. If an existing
menu is opened, the existing menu will appear in the editor.

• When opening an existing popup menu for editing, the Open Menu or Menu
File dialog appears. The name of the menu description file (for example
MWHAWK.MNU) has to be specified in the File box, and the name of the
menu (for example [Utilities]) has to be specified in the Menu box.

Complete the following steps to add or modify a menu item in the popup menu:

1. Click Insert -> Menu Item to add a menu item. Click Edit -> Modify to
modify a selected menu item. In both cases, the Menu Item dialog appears.

Figure 12-8. Menu Item Dialog

2. Fill in the necessary fields in the Menu Item dialog. The uses for the fields are as
follows:

• Menu Item Text: The text that is seen on the popup menu. Any character
in the text that is preceded by the ampersand (&) acts as a key accelerator for
the item. Pressing the key for that character while the menu is visible accesses
the item.

1

Chapter 12: Customizing the Interface

267

12

• Execute Function: For menu items that are to appear as normal menu
items. The functions are called when the menu item is clicked. Most exported
Hawk functions can be used.

Example: The following item can be added to any popup menu for opening
files:

&Open File BufEditFile

Where &Open File is the menu item string, and BufEditFile is the
function to execute.

• Gray Function: For menu items that are grayed out if they are disabled or
if they do not apply to the state of the environment from which the popup
menu was accessed.

Example: The Terminate item on the Perl popup menu is gray when a Perl
macro is not running. The menu item is used to forcibly terminate a running
Perl macro.

&Terminate_PerlCtrl 0!_PerlCtrl –1

Where &Terminate is the menu item, !_PerlCtrl-1 is the function
that is called when the menu is first brought up, and PerlCtrl-0 is
the state of the function available when the menu item is enabled.
The exclamation point (!)that the complement of the function’s return
value should be used when the function is called.

• Check Function: The Check Function is for menu items that show
check marks when they are enabled.

Example: The Debug Mode item on the Perl popup menu, IDH Perl
Popup Menu, toggles the Perl IDH Getting Started with Perl for Hawk
interpreter’s Debug mode IDH Execute in Debug Mode. The item is not
checked if Debug Mode is turned off.

&Debug ModePerlFlags 2 –2PerlFlags 2 –1

Where &Debug is the menu item, PerlFlags 2 is the function that is called
when the menu is first brought up and PerlFlags 2 –1 is the state of the
function when the menu item is checked.

• Comment: Comments can be inserted for each menu item added. They are
not displayed on the menu. They can be used as reminders or notes for the
menu item.

Popup Menu Semantics

Changes made in the Popup Menu Editor are applied to specified menu
description files. Hawk's default menu description file is stored in the Hawk installation
directory and is called MWHAWK.MNU. It contains sections as a normal .INI file does
except that the contents are menu descriptors. As with .INI files, lines beginning with
a semicolon and blank lines are ignored. Before creating or modifying popup menus in
Hawk, there are some things to know about the semantics of the information
contained in popup menu description files.

1

Using Hawk™

268

12

Refer to the following paragraphs for information about popup menu semantics. Note
that all of the items that follow are valid when used from within the Popup Menu
Editor.

Creating a Menu Item

Keep in mind the following when creating a new menu item in Menu Item dialog of
the Popup Menu Editor:

• Beginning Check Functions or Gray Functions with an exclamation mark (!),
complements the value returned by the function being used. This can be useful
when it becomes necessary to access the opposite of the function’s return value.

• If a semicolon is required in any of the function strings it must be escaped by
preceding it with a backslash. The two character sequence '\;' will be replaced by
a semicolon prior to execution of the function string.

Terminating Menu Sections

If you look at the MWHAWK.MNU file, you will notice that individual popup menus are
contained in menu sections (designated by headings that are contained in square
brackets ' [] '), each of which ends with a special line containing

[###]

The [###] allows the menu editor to delete a menu description and write a new one
without also deleting comments that may precede the menu description that
immediately follows the one being modified. Because this special line looks like a
section name it terminates the process that is looking for the end of a section but it is
otherwise benign.

Conditionals

A conditional mechanism similar to the C/C++ #if/#else/#endif is possible
when creating new popup menu items. There is a conditional item on Insert menu
of the Popup Menu Editor that allows conditional items to be created. The general
form for popup menu conditionals is:

#if testFunction

menu description lines

#elseif testFunction

menu description lines

#else

menu description lines

#endif

The <test function> element is a function, similar to a Check function or a
Gray function, whose return value is used to determine whether or not to include the
following <menu description lines> in the popup. The conditionals may be
nested to an arbitrary depth.

As a shorthand notation, if the <test function> begins with a left parenthesis, the entire
<test function> string is passed to MacroEvaluate. This shortcut applies to all

1

Chapter 12: Customizing the Interface

269

12

entries requiring a function spec: Exec functions, Gray functions, and Check
functions. Example:

#if ClipboardQHasText

Paste From Clipboard

#endif

'Include' mechanism

Sometimes different popup menus have common elements and it is useful to be able
to define those elements once and use that description many times. This is possible
using a special menu item in one of three forms:

@file

@file[menuName]

@[menuName]

The first form specifies a file to be included in its entirety. The second form indicates a
specific menu description contained in the specified file. The third form specifies only
the name of a menu; it assumes that the menu is in the file containing the menu
description line.

Dynamic Menu Generation

It is possible to specify, directly in a menu description, the name of a function to call to
generate a menu description string (the string that is seen on the menu). The returned
string, which should be an allocated string, is then used as if it had been placed in the
menu description at that point. The syntax for specifying this action is:

*functionName

The entire line beyond the introductory asterisk is taken to be a function name and its
arguments. As with other menu functions, if the generation function begins with a left
parenthesis the entire line is passed to MacroEvaluate. Note that this item may be
used on menus that have other, explicitly defined, entries or it may be the only item in
the menu definition.

Supporting Functions

There are two functions that support the operation of popup menus. They are as
follows:

• DlgMenuPopup assigns a popup menu to a key or mouse click. The function is
formatted as the following:

DlgMenuPopup <menu>

• DlgMenuExec executes other sections within the MWHAWK.MNU file. The function
is formatted as the following:

DlgMenuExec <section>

Where:

1

Using Hawk™

270

12

<menu> — If the name starts with ‘[’, it is assumed to be a section in
the .MNU file, otherwise it is the name of the file to use (no sections
in file).

<section> — A normal Hawk section to execute out of the .MNU file.
Use ConfigFileRead() to read out of other files.

Refer to the following example:

Example: The [Utilities] section can be bound to shift-right-mouse click
through the following key binding command (see the topic in this chapter
Customizing with Keybindings for more information):

KmapAssign=’<Shift-Mouse_right_click>’ ‘DlgMenuPopup
[utilities]’

Using Keymaps
The Hawk editor is several editors in one. In its "standard" mode, the Hawk keymap
uses the Common User Access (CUA) key-command set. If you have ever used a
Windows editor before, such as NotePad or SysEdit, you will find that you can guess
many of the basic key commands. This command set offers a number of short-cut
keystrokes to bypass menus and perform various other tasks.

Hawk offers alternate keymap command sets as well. These command sets may be
more to the liking of users whose roots are embedded in DOS, UNIX and other non-
Windows platforms. These command sets have been supplemented with a number of
CUA commands.

In all, Hawk ships with four keymaps. The command sets are usually chosen at the time
of installation, but they can also be switched on the fly in the Customize ->
Environment -> Keymap dialog. Command sets may be selected from the
following choices.

• CUA command set

• BRIEF command set (emulates the BRIEF editor)

• vi command set (emulates the vi editor found on UNIX systems)

• Epsilon command set (emulates the Emacs-derived Epsilon editor from
Lugaru)

You can modify the functions that are executed when a keystroke is pressed in the
Customize -> Keyboard dialog (see Binding Keystrokes to Functions or Macros in
this chapter).

Further discussion of the CUA and BRIEF command sets follow.

CUA Key Commands

The CUA keymap has many more assignments in it than are covered by the Common
User Access standard. In devising these additional keystrokes, we have relied heavily on
mnemonics, that is, keys that easily form an association in your memory with the action
they perform. This makes the commands easier to learn and remember.

1

Chapter 12: Customizing the Interface

271

12

If you are familiar with CUA commands, you may doubt that CUA commands would be
easy to associate, and some commands are not. You will find, however, that most
commands of this variety have a more memorable equivalent.

Example: To search again you have your choice of # or CSs. To find, press Cf.

BRIEF Key Commands

BRIEF emulates the BRIEF editor that is popular in the DOS environment. BRIEF
key commands are not CUA compliant. This means that they conflict with the way
Windows commands normally work.

Example: The BRIEF commands make extensive use of Alt key combinations.
CUA rules reserve most of these for standard commands, such as accessing
menus. For instance, Alt-F is usually reserved for bringing down the File menu.
In BRIEF, this is used for displaying the output file's name on the status line.

For this reason, when using the BRIEF command set, you must press and release the
H key to access the menu. To access the File menu, for example, you press and
release the H key and then press f. Similarly, to access other menus, you press and
release H and then press the underlined letter in the menu's name.

Mouse Commands
This chapter describes using the various mouse commands in Hawk.

Mouse Scrolling Speed

If you begin selections with the mouse and then move the mouse outside the visible
window, the window will begin scrolling. Depending on how far out of the window the
mouse is, Hawk will vary that scroll rate, specifically, the farther out the mouse is, the
faster the scrolling.

In some cases, the space available to move the mouse beyond the window edge is
limited, such as full screen mode. Hawk provides some methods for gaining control
over scrolling speed in these cases. Control is gained with the Ctrl, Shift, and Alt
keys under the following conditions:

• If none of the keys are pressed, scrolling speed is the default.

• If one of the keys is pressed, scrolling speed is twice as fast.

• If two keys are pressed, scrolling speed is four times as fast.

• If three keys are pressed, scrolling speed is eight times as fast.

Inclusive or Exclusive Selection

In the standard keymaps CUA, BRIEF and vi, you can select text by clicking with the
left mouse button and dragging the mouse across the area you want to select. When
the character at the cursor is included in the block, the block is considered inclusive.
Default settings are as follows:

• In the vi keymap, inclusive block selection is the default.

1

Using Hawk™

272

12

• In the CUA and BRIEF keymaps, exclusive block selection is the default (the
character at the cursor is not included in the block).

Closed Selections

You can elect to have selections that you make with the mouse be either closed or
open when you release the mouse button. A closed selection means you will not
change the selection size or shape when you move the cursor. Your keymap dictates
the initial setting for this option; you can change the initial setting with the Leave
Mouse Selections Open option on the Customize -> Environment ->
Keymap dialog.

Selections made with key commands are usually open; one end of the selection is
defined by the cursor position, and the selection moves with the cursor. Your keymap
may have a command to toggle open or closed a mouse selection or other selection.

Examples:

In the BRIEF-compatible keymap, toggle the selection open or closed using the
Fa command.

In the CUA keymap, toggle the selection open or closed using the F. command.

To expand a closed selection, move the cursor to the new endpoint desired, and use
the applicable key command to toggle the selection open.

• The distinction between closed and open selections is not meaningful in the CUA
keymap unless you have turned on persistent selections. Otherwise, CUA removes
the selection, whether closed or open, whenever you execute a cursor motion
command.

Column Marking

To make a column selection with the mouse, just click and drag with the right mouse
button instead of the left. Column blocks are always inclusive, regardless of which
keymap you are using.

Line Selections

There is an adjustable margin between the left edge of the buffer and the window
border. You can use this area for making line selections:

• Click with the mouse in this space to select the line to the right.

• Click and drag the mouse to select a series of lines — even if the mouse happens
to stray from the margin.

Word Selections

As with many Windows editors, double clicking on a word makes a selection
encompassing that word. If you continue to hold down the button on the second click
and drag it around, you can select in units of words. You may be familiar with this
method of selection from one of several word processors.

1

Chapter 12: Customizing the Interface

273

12

Status Line Actions

There are a number of functions or pop-up menus that can be accessed just by clicking
with the right mouse button on hotspots on the status line. These actions are listed
below:

A related command is the right mouse click on the Toolbar Search combo box,
located on the Standard Toolbar instead of the status line. Right-click here to
bring up the Search Options dialog, allowing you to check or change the settings in
preparation for using the Toolbar Search or other search mechanism.

Text Drag and Drop

After you have selected a block, you can move or copy the block by dragging the block
to its new location. Text can even be moved between open windows.

Use the following drag and drop operations:

Table 12-1. Status Line Actions

Action Description

Insert/Overtype Toggle Toggle between insert and overtype mode by right-clicking on
the Ins or Ovr designation on the status line.

Read-only /Read-write
Toggle

Toggle between Read-only and Read-write status by right-clicking
in the box to the left of the line number. The box may be blank
or have a “RO” designation in it. This toggles both file and buffer
status.

Go to line Bring up the Go to Line dialog by right-clicking in the
Line number box.

Next Message Have Hawk process the next Build error message by
right-clicking in the message box at the left of the status line.

Bring up a customization pop-up menu with options for
accessing various dialogs used for customizing Hawk.

Bring up a Word Wrap Options menu to quickly toggle
wrap mode and customize wrap options.

Bring up a CodeSense customization menu to
quickly turn on and customize Hawk’s CodeSense and
Outline Symbols features.

For more information about these features see Chapter 6
Editing Features and Chapter 10 Search and Replace
and Other Navigational Tools.

1

Using Hawk™

274

12

• To move the block complete the following:

1. Place the mouse cursor in the selection's highlighted area.

2. Press the left mouse button. The cursor will change shape to indicate that a
drag and drop operation has commenced.

3. Continue to press the mouse button, moving the mouse cursor to the intended
destination.

4. The caret (text cursor) follows the mouse cursor, indicating where the
destination would be at any given moment. When the caret is at the intended
destination, release the mouse button and the selected text moves there.

• To move text between windows, complete the steps above but press Shift as
you drag. Be sure to click and hold the mouse button before pressing the Shift
key. Then drag and release the text.

• To perform a copy operation, complete the steps above, but press the Ctrl-
Insert key when you initiate the operation.

• To cancel a drag and drop operation after it has been commenced, move the
mouse cursor back over the selection and release the mouse button. A selection
cannot be copied or moved onto itself. The operation is then cancelled and the
selection removed.

• To disable text drag and drop, clear the Drag and drop text with mouse
check box on the Customize -> Environment -> General dialog.

Mouse Copy and Move

In addition to Text Drag and Drop, Hawk supports another method of copying
and moving text with the mouse:

1. Select the text you want to copy or move.

2. Point the mouse at the place you want it to go.

3. Issue the proper mouse command. The command for moving the selected text is
F . The copy command is FS .

Sometimes, when you are moving or copying text, the source and destination of the
text are too far apart to be viewed in the same window at the same time. You can still
use the mouse move and copy commands, by opening up another window, or
scrolling between source and destination:

• You might have several sections of text that you want to copy or move, all from the
same source location to a single destination. In this case, viewing the source in one
window and the destination in another is the best approach.

• If you have just one copy or move operation in mind, you can select the desired
text and then scroll to the destination. The selection will scroll off the screen, but as
long as you are using closed selections for mouse operations, it will not change.
Refer to the topic Closed Selections in this chapter.

1

Chapter 12: Customizing the Interface

275

12

Creating Windows with a Mouse

It is very easy to create windows of an arbitrary size and position when you are working
with a mouse. This is the quickest way to open up a second window on the current
buffer, so that you can view two different sections of the buffer at the same time.

To create a window, complete the following steps:

1. Point to any part of Hawk's Client Area that is not currently occupied by a
window.

2. Click with the left button and drag the mouse cursor to any other part of the
Client Area.

Whatever buffer was current prior to creating the window is also made visible in the
new window. This means you will have at least two windows in which to view the
current buffer.

If you do not like this use of the left mouse button, you can turn it off on the
Customize -> Environment -> General dialog. Clear the Create
Windows Using Mouse check box.

Drag-and-Drop File Loading

The Drag and Drop feature allows you to load files into applications from the
Windows File Manager. Select one or more files listed in the File Manager and
drag them with the mouse to a minimized application. When the mouse button is
released, the application is restored, and the file or files are loaded or processed.

If you already have files loaded in Hawk, the files you drag and drop onto Hawk will be
added to those already being edited:

• A window is created for each of the files dropped onto Hawk if you have checked
the box One document per window on the Customize ->
Environment -> General dialog.

• If windows are not created, the window that was current will contain the first file of
those dropped.

Expand / Collapse Selective Display

When you are using selective display mode, you can use a mouse for expanding and
collapsing sections of text as you might the sections of an outline.

Reassigning Keys and Mouse Actions
Refer to the following discussion of macros and keybindings.

Refer to the topic Selective Display in Chapter 10 for more information about this use of
the mouse.

1

Using Hawk™

276

12

Keymap-Specific Assignments

This section describes making keymap assignments specific to your keymap. Your main
tool for doing this will be Hawk’s Assign Keys dialog. Keys can be modified using
Hawk API functions, keystroke macros, AppBasic, Perl, or API Macros, or your
own functions from custom DLLs. Remember that custom functions need to be
exported with a LibExport call in the DLL’s _init function in order for the key
assignment to work. Otherwise, a “function not found” message will appear in Hawk’s
status bar when the keystroke is pressed.

 Customizing with Keybindings

As mentioned in the section on Using Keymaps, Hawk ships with four unique keymaps.
These are CUA, the Windows interface; BRIEF, for those used to the old DOS BRIEF
editor; EPSILON, and vi for those who come from a UNIX background. The functions
that will be executed when you press a key will depend upon which of these keymaps
you are in. You can also create your own keymaps.

If you are not happy with the way a certain operation is performed within a keymap,
you may want to try that operation in another keymap (Select Customize ->
Environment -> Keymap and change the keymap selection for testing purposes).
If you find that another keymap has a function that works more appropriately, you can
replace the original keymap’s function with the preferred function. The change is made
in the Customize -> Keyboard dialog. See Binding Keystrokes to Functions or
Macros, later in this chapter.

Keystroke Recording/Playback

Keystroke macros consist of a series of keystrokes that can be run sequentially as a
unit. The following sections describe the process for making keystroke macros in Hawk.

Recording a Keystroke Macro

You can record a keystroke macro in any of the following ways:

• Press & (or Cx in BRIEF) to begin and end a recording.

• Select Edit -> Record to begin and end a recording.

• Type the ASCII representations for a series of keystrokes directly into the
Keystroke Macros dialog (accessed by choosing Edit -> Keystroke
Macros).

Saving a Macro

The Keystroke Macros dialog is used to create, edit, save, and delete named
keystroke macros.

Refer to Chapter 15 Extending Hawk for more information on custom DLLs or Add-Ons.

1

Chapter 12: Customizing the Interface

277

12

Figure 12-9. Keystroke Macros Editor

To make a named keystroke macro, complete the following steps:

1. Record a series of keystrokes using the methods described in the Recording a
Keystroke Macro topic above.

2. Load the recorded macro into the Keystroke Macros Editor by clicking New
and then Get Current. The keystroke macro that was just-recorded will be
displayed in the editor.

3. Type a name into the Name combo-box.

4. Click Save.

Once the keystroke macro has been saved with a name, it can be used from Hawk's
Tools -> API Command dialog, or bound to a keystroke, button, or menu-item
simply by typing the name of the macro in the appropriate place. Named keystroke
macros can also be used in Hawk's AppBasic macros, Perl macros, and API
macros.

Binding Keystrokes to Functions or Macros

To bind a keystroke to a function or macro, complete the following steps:

1. Go to the Customize -> Keyboard dialog.

Figure 12-10. Tools -> Customize -> Keyboard Dialog

For more information on macros, see Chapter 15 Extending Hawk.

1

Using Hawk™

278

12

2. Enter a Key Sequence value to bind to the named function or macro.

• The easiest way to do this is to select the Main Keyboard tab, and
click the key representations in the proper sequence.

• Verify that the key sequence isn’t already assigned by pressing the
Binding button next to the Key Sequence box.

3. Locate the macro (or function) to bind from the drop-down list in the Functions
box. To narrow your search, you can do one of the following:

• Choose or enter a filter (keymap-related) in the Filter box. For
example, to see only functions that are available from the CUA
keymap DLL, type CUA_. Then when you use the drop-down list
under the Functions combo box you will only see functions that
begin with CUA_.

• Press the right arrow to the left of the Functions box, and choose
either Functions or one of the macro categories. This will cause
only the functions in the selected category to display in the drop-
down list under the Functions combo box.

4. Verify that the function or macro does not already have a key binding by pressing
the Binding button to the right of the Functions box.

5. Once the appropriate key sequence and function/macro are displayed:

• Press Update Keymap to save the keybinding for the current
session only,

- OR -

• Press Save to file to save the keybinding for continued use.

1

279

File Loading and Backup

This chapter describes options and strategies for file loading and validation, and for file
backup and auto-save. The following sections are included:

File Loading, Reloading and Validation

File Backups and Auto-save

Making Files Read-only

13

1

Using Hawk™

280

13

File Loading, Reloading and Validation
Hawk has options for preloading and auto-validating local and non-local files. This
section describes these terms, and how to use the features that enable them.

• A file is preloaded in Hawk if it is fully loaded into virtual memory, without relying
on pointers to the actual file on disk. This method for loading files is optional and
must be turned on manually. It takes longer, and uses more temporary disk storage,
but does not rely on the presence of the original file. If a network connection is lost
or if the file is somehow deleted, you will still be able to continue.

• A file is validated in Hawk when periodic checks are made to see if the file being
edited has been altered by another process. Auto-validation can be a process on
some remote media, in which case, it may be more efficient to turn it off.

To set file loading and validation options:

1. Select the Customize -> Environment dialog.

2. Click the General tab.

Figure 13-1. Customize -> Environment -> General Tab

3. The following options in the File Loading/Reloading group can be enabled
as precautionary measures to maintain the integrity of files loaded in Hawk:

• Auto-detect Unicode Files: Mark Auto-detect Unicode
files in Customize -> Environment -> General to turn on auto-
detection and bidirectional conversion of code that follows the Unicode
standard. Note that this checkbox only affects files that are loaded after its state
has been changed. To open a file in the opposite state, the file must first be
closed, the state changed, and then the file must be opened again.

When this option is marked, the first portion of a file is examined when the file
is opened. If the first word is the Unicode signature (0xfeff), and the remaining
words all convert to single-byte characters, the file is determined to be
Unicode. As the remainder of the file is read in, each Unicode character is
converted to a single-byte character. When the file is written out, the Unicode
signature is written first and the single bytes are converted back to Unicode.

1

Chapter 13: File Loading and Backup

281

13

• Hawk does not yet support Unicode internally. The Windows API function
WideCharToMultiByte() is used to convert Unicode to ANSI Code Page
characters when a file is loaded and then MultiByteToWideChar() is
used to convert back to Unicode when the file is written out.

• Auto-sense file type EOL: When this box is checked, Hawk will look
for line terminations when it first loads a file. It can detect DOS (cr/lf), UNIX
(lf), and Macintosh (cr) line terminations. If the file has UNIX-style line
terminations, the E key is made to insert only a line feed (lf). Macintosh
translations for both input and output are done at a low level and appear as
DOS files to the user.

It is advisable to use the Auto-sense file type EOL option when editing UNIX
files in Hawk.

• Suppress reload prompt: If another process alters a file that you have
loaded into Hawk, it will prompt you, asking if you wish to reload the file. If you
wish to always reload the file without being prompted, check this box.

• Preload file on open: When checked, this box indicates that all edit
files should be completely loaded into virtual memory. The alternative just
loads as much as necessary for editing, and retains pointers into the original
file. Preloading takes longer, and uses more temporary disk storage, but then
you no longer rely on the original file. If you lose your network connection or if
the file is somehow deleted, you will still be able to continue.

• Preload non-local files: When checked, this box indicates that you
want to load files on non-permanent media completely into virtual memory.
Non-permanent media includes floppy disks and network drives.

• Auto-validate preloaded files: When checked, Hawk verifies at
critical junctures that the preloaded file you are working on has not been
altered by another process.

• Auto-validate non-local files: When checked, Hawk ensures at
critical junctures that the file you are working on has not been altered by
another process, if that file is on non-permanent media. Non-permanent media
includes floppy disks, and network drives. Auto-validating can be a slow process
on some remote media. In this case, you may wish to turn off validation.

4. The following options in the File and File System group can be enabled for
quick access to files being loaded in Hawk and as precautionary measures to
maintain the integrity of files being edited:

• Show file list on File menu: When this box is checked, Hawk
maintains a list of up to 9 recently viewed files at the end of the File menu.
The most recently loaded file appears at the top of the list. To reload one of
these files may, select the filename from the list.

• Save file on loss of focus: You may wish to have files saved
whenever you switch away from Hawk to another application. If so, check this
box. This adds an extra level of security when you are testing programs that
might deprive you of the opportunity to save later.

1

Using Hawk™

282

13

Use file rewrite save method: When this option is off, Hawk uses the
traditional method of saving a file. This involves renaming files (write to a temporary
filename, rename the old file to the backup file, and then rename the temporary file).
Renaming can cause problems on some systems, where special file attributes or links
exist. When this option is on, Hawk avoids these problems by working on the original
file, and making a copy of it when it creates the backup file.

File Backups and Auto-save
This section discusses how to set up file backup and auto-save options in Hawk. The
options can be set globally, for all files being edited, per file type (for instance, .CPP,
.C, .TXT), or per individual file.

Global Backup and Auto-Save Settings

The global backup and auto-save settings can be made on the Backup tab of the
Customize -> Environment dialog. To access this tab:

1. Select the Customize menu.

2. Select Environment.

3. Click the Backup tab.

Figure 13-2. Customize -> Environment -> Backup Tab

4. Address the following fields:

• Global Backup Spec: The global backup specification dictates how the
name of a backup file is derived from the original filename. This is the most
common method of specifying the name of the backup file, though backup

The File Rewrite Save Method is also recommended for saving large files; refer
to Chapter 14 Working with Large Files for more information.

1

Chapter 13: File Loading and Backup

283

13

specifications may be set for each document. The backup specification can
indicate the directory in which backups are made, the extension used, and/or
formatting strings which transform the filenames into other names.

The default backup specification, %b.bak dictates that the backup file be
made in the same directory as the original file, but bearing the extension .BAK.

Press the arrow at the end of the Global Backup Spec field for a drop-
down list of additional specification options; click an item in the list to
automatically insert it in this field.

The backup specification is only used when backups are enabled. Refer to the
topic Formatting the Backup Specification, in this chapter, for more information.

• Auto-save Enable: Check this box to access options related to the auto-
save feature. This feature periodically saves changes to disk to avoid the
substantial loss of data that could otherwise result from a power outage or
other minor catastrophe. Normally these saves are performed using a filename
other than the original. This allows you to determine when you are ready to
overwrite the original file. You can have the auto-save feature make saves
based on elapsed time, or based on keyboard inactivity, or both.

• Overwrite auto-save files without prompting: If Auto-save
detects a file of the same name as it wants to use, it checks to see if it is a file
that it created during the current session. If it is not, Hawk prompts you before
overwriting. The file may not be an auto-save file at all, or it may be an auto-
save file from a session that terminated abnormally. In these cases, you may
wish to retain the file. On the downside, if you are not present to respond to
the prompt, the file will not be auto-saved. This check box allows you to specify
that the file be overwritten regardless of its origin without prompting.

• Store Auto-save Options in Project File: Check this box to
store auto-save settings with the project that is currently open. If the box is
checked but no project is open, the selected options are stored as default
settings for use with future projects.

• The Destination section offers four options for controlling the directory and
file-extension to be used for auto-saved files. Descriptions of the options are as
follows:

• Use file's directory, save file.x as 'file.x_~': Auto-
saved files are saved to the same directory as the file being edited. A tilde is
used as the third character of the extension. If the file being edited has only
one character in its extension, an underscore is used as the second
character of the auto-save filename.

• Use directory specified below, save file.x as
'file.x_~’: Auto-saved files are saved to the directory specified in the
Auto-save Directory field. A tilde is used as the third character of the
extension. If the file being edited has only one character in its extension, an
underscore is used as the second character of the auto-save filename.

1

Using Hawk™

284

13

• Use transformation or filename specified below: Auto-
saved files are saved with the directory and filename or equivalent
transformation pattern specified in the Auto-save file specification field.
(The field is only enabled when this box is checked.)

• Write to original file (i.e. File -> Save): Auto-saved
files are saved to the file currently being edited.

• Auto-save Directory: Enter here the name of the directory, if you want
auto-save files created in a central location. If you don't name a directory for
auto-save files, they will be created in the same directory as the original file.

The filename used will be the same as that used on the original file, except that
the third character of the extension will be a tilde (~). If the extension is less
than two characters, it will be filled with underscores (_). (For more details,
see the topic Transformation Patterns, in this chapter.)

Examples

• The file FOO.C would be auto-saved under the name FOO.C_~.

• A file whose name already has three characters, such as FOO.PAS, is auto-saved
under the name FOO.PA~. In this case the S was replaced with a tilde.

• A file with no extension, such as README, would be saved with the extension
.__~ (the new name would be README.__~).

• The Auto-save limit list box is used to limit the size of files that are auto-
saved. Files that exceed the specified size will not be auto-saved.

• Force time: This entry sets the absolute time interval that is allowed to pass
without saving to disk. This type of auto-save is performed without regard to
keyboard or other activity. Enter the number of minutes you want to allow before
auto-save interrupts editing to save the file. A value of zero has the effect of turning
this kind of auto-save off.

• Idle time: This entry sets the interval of inactivity that will trigger an auto save.
Inactivity means no key has been pressed and no button has been pushed. Enter
here the number of seconds of inactivity you want to allow. A value of zero has the
effect of turning this kind of auto-save off.

Backup Settings for Specific File Types

To make a backup specification for a specific file type (that overrides any global
specification), click the Options tab on the Language dialog:

1. Select Customize.

2. Select Language.

3. Click the Options tab.

1

Chapter 13: File Loading and Backup

285

13

Figure 13-3. Customize -> Language -> Options Dialog

4. In the File type box, highlight the extension of the desired file type.

5. In the Backup spec field, enter a string that dictates how the name of a backup
file should be derived from the original filename. The default backup specification,
%b.bak dictates that the backup file be made in the same directory as the original
file, but bearing the extension .BAK. The backup specification is only used when
backups are enabled (the Make backups box is checked).

Backup Settings for Individual Files

To make a backup specification for an individual file (that overrides any global or file
type specifications), click the Details tab of the Document/Window Manager
dialog.

1. Select Document -> Manager.

2. Click the General tab.

Refer to the topic Formatting the Backup Specification, in this chapter, for more
information.

1

Using Hawk™

286

13

Figure 13-4. Document -> Manager -> General Dialog

3. In the Document List box, select the document whose settings you want to
edit.

4. Check the Make backups check box.

5. In the Spec field, enter a string that dictates how the name of a backup file should
be derived from the original filename. The default backup specification, %b.bak
dictates that the backup file be made in the same directory as the original file, but
bearing the extension .BAK.

Formatting the Backup Specification

Hawk allows you to specify where and under what name you wish to store backup files.
It even allows you to define how to derive the root or extension of the backup filename
from the file being backed up.

Backup locations and the filenames used are controlled with formatting strings.

Formatting strings contain format controls and transformation patterns that tell Hawk
how to deal with file names that are as yet unknown. Format controls begin with a
single percent sign (%). Any other text is treated literally..

Leaving the formatting strings empty at both the global and local levels effectively turns
backups off.

The global string is located on the Customize -> Environment -> Backup
dialog; the local strings are located on the Customize -> Language ->
Options and Document -> Manager -> General dialogs.

Refer to the following topic, Formatting the Backup Specification, for more information.

It is possible to specify a format that will result in an illegal filename. Hawk does not attempt to
ensure that the resulting filename is legal. When you attempt to backup the file, an error will
occur, just as if you had specified an illegal filename for saving a file.

1

Chapter 13: File Loading and Backup

287

13

Format Controls

The format controls available for use in backup formatting strings are listed in the table
below. Note that optional portions of these format controls are enclosed in italicized
square brackets. Examples are based on the output filename C:\SRC\FOO.BAR:

Table 13-1. Backup String Format Controls

Example

The formatting string which represents the initial default is %b.bak. You would set this
default using a function call like the one below:

BufSetGlobalBackupSpec="%b.bak"

Transformation Patterns

The root and extension format controls, described above, may contain transformation
patterns. These patterns describe modifications within the root filename and extension.
You enclose the pattern within curly braces and place it between the percent sign and
the control character, r or e, respectively.

Control Represents Description

%v volume The drive letter and the colon. (Example, C:)

%p path Does not include the drive (volume) or filename.
Always ends with a backslash. (Example:
\SRC\)

%r root Does not include extension, drive (volume) or
path. May contain an optional transformation
pattern, as described below. (Example, FOO if no
transformation pattern supplied)

%d directory Includes the path, less the drive (volume)
specifier and filename, but ends with a backslash
only if describing the root directory. (Example:
\SRC)

%e extension Includes the dot that separates the basename
from the extension, unless the name of the
output file has no extension. May optionally
contain a transformation pattern, as described
below. (Example: .BAR if no transformation
pattern supplied)

%b basename The entire name of the output file (fully
qualified), less the extension.

(Example: C:\SRC\FOO)

%{??~|__}e modified extension

%x project path

%y project root

%% percent A single percent sign is represented by two
consecutive percent signs (%%).

${name} macro expansion

1

Using Hawk™

288

13

You supply the pattern in two parts, the override pattern and the fill pattern:

• The override pattern specifies characters, each of which replaces characters at the
same position within the original root or extension string. The override pattern also
may limit the length of the resulting string.

• The fill pattern specifies characters to fill empty positions within the root or
extension string.

A single vertical bar (|) separates the override pattern from the fill pattern. If you are
supplying only the override pattern, you may omit the vertical bar. Supplying only the fill
pattern results in an empty string.

The rules are the same for using transformation patterns, whether you are using them
on the root of a filename or its extension. There is one noteworthy difference in their
result, however. After the transformation is performed on an extension, the resulting
extension is examined. If the extension is not null, a dot is added to the beginning of
the extension. This is true whether or not the original extension was null.

Override Pattern

There is a character in the override pattern for each character in the resulting string. The
character at each position may be either a valid filename character, or a question mark
(?).

• If a filename character is specified, the character in the original string is replaced by
the specified character.

• If a question mark appears at a given position in the string, the character in the
original string is used.

• If no character appears in the override pattern for a given position (example, the
root is shorter than 8 characters or the extension is shorter than 3), the resulting
string is truncated at that position, even if you have supplied a fill pattern.

Fill Pattern

The fill pattern may contain only valid filename characters. The character at a given
position in the pattern is used in the resulting string if that position in the original string
is empty (for example, the original string is shorter than the fill pattern) and a question
mark is specified by the override pattern.

The following examples demonstrate the effects of various override and fill patterns:

Table 13-2. Transformation Patterns

Pattern Original Name Backup Name

%r%{??~|___}e FOO.CPP

FOO.C

FOO.CP~

FOO.C_~

%r%{??~}e FOO.CPP

FOO.C

FOO.CP~

FOO.C

1

Chapter 13: File Loading and Backup

289

13

Making Files Read-only
Files can be assigned a read-only (non-editable) status at several locations within
Hawk, much like backup specifications. The hierarchy of these locations is indicated
below, and details of each location follow.

• Customize -> Language -> Options dialog — Allows you to make all files
of a specified type read-only (For example, you could make all .INI files read-
only).

• Document -> Manager -> General — Allows you to specify that an
individual file will be read-only, overriding the setting for its file type.

• File -> Open — Directs Hawk to open this file as read-only, overriding all prior
settings.

File Types

To make files of a certain type read-only, select the Options tab of the Language
dialog and complete the following steps:

1. Select the Customize -> Language -> Options.

%r%{~??}e FOO.CPP

FOO.C

FOO.~PP

FOO.~

%r%{~}e FOO.CPP

FOO.C

FOO.~

FOO.~

%r%{?}e FOO.CPP

FOO.C

FOO.C

FOO.C

%{???????~|~~~~~~~~}r
%e

FOO

FOO.C

TESTFILE.C

FOO~~~~~

FOO~~~~~.C

TESTFIL~.C

%{?????}r%{???|bak}e FOO

FOO.C

TESTFILE.C

FOO.BAK

FOO.CAK

TESTF.CAK

Table 13-2. Transformation Patterns

Pattern Original Name Backup Name

1

Using Hawk™

290

13

Figure 13-5. Customize -> Language -> Options Tab

2. In the File type box, select the extension for the desired file type.

3. In the Document Options group, select the Read-only check box. Files of the
specified type may not be edited, unless this setting is overridden on the
Document -> Manager -> General dialog, or the File -> Open dialog.

Individual Files

To make an individual file read-only, select the General tab on the Document ->
Manager dialog and complete the following:

1. Select the Document -> Manager -> General

Figure 13-6. Document -> Manager -> General Tab

2. Select a document in the Document List field to edit its settings.

3. Check the Read-only file check box to prevent editing of this file.

Individual File upon Opening

To make a file read-only upon opening, complete the following steps:

1

Chapter 13: File Loading and Backup

291

13

1. Select the File menu.

2. Select Open.

Figure 13-7. File -> Open Dialog

3. Browse to find the file you want to open and select the filename.

4. Select the Open as read-only check box.

1

Using Hawk™

292

13

1

293

Working with Large Files

Hawk can accommodate files as large as two gigabytes.

There are several ways to configure Hawk to make it more stable and efficient when
working with large files, including the following:

Swap Blocks

Backup Files

Scroll Bars

Preloading Files

Turning off ChromaCoding

Saving Large Files

14

1

Using Hawk™

294

14

Swap Blocks
Hawk uses swap blocks to manage the memory allocated for an open, active file. Hawk
is fairly conservative about the amount of memory it initially allocates (100 8K blocks).
When all of the swap blocks initially allocated are used up, Hawk starts swapping to
disk. If you regularly work with large files, and you have plenty of memory available, you
should consider increasing the number of swap blocks used by Hawk.

Example

The 32-bit default for swap blocks is 100 8K swap blocks. You may want to try
increasing this (the maximum is 250).

How to Change the Number of Swap Blocks

Set the number of swap blocks in your configuration file (MWHAWK.INI) located in the
Hawk home directory. Find the [Editor] section of this file and insert a line under that
heading similar to the one shown below, then restart Hawk for the changes to take
effect:

[Editor]

SysSwapBlocks=200

Block Size

The size of the swap block (discussed above) can be increased using the function:

-BlockSize=

When the size of the block is increased, fewer blocks are needed, expanding Hawk's
capacity for handling longer lines and larger files.

The default block size is 0x2000 (8192) but the range can be from 0x1000 to 0xf000
(4096 to 61440 decimal).

• The default block size (0x2000) allows a single 500-Mb file to be opened and
edited in Hawk.

• Increasing the block size to 0x8000 will allow a single 2G file to be opened and
edited, or two 1G files.

• Increasing the block size more will allow additional large files to be loaded, but 2G
will still be the individual limit.

As block sizes increase, the speed of loading large files may be diminished, but overall
speed should increase.

The -BlockSize= parameter can be used from the Hawk shortcut command line, a
DOS command line, or any of the Sync program command lines.

To modify the command line for the shortcut:

1. Right-click on the Hawk shortcut.

2. Choose Properties from the resulting pop-up menu.

3. Click the Shortcut tab.

1

Chapter 14: Working with Large Files

295

14

4. In the Target edit box, add -BlockSize=0x8000 after the CW executable.

Example: C:\cw\cw32.exe -BlockSize=0x8000

Consider Your Resources

You should consider how much memory is available on your system and how big your
block size is before changing the number of swap blocks. You will know that you have
made the number too high if you begin to see degradation in the performance of
Windows itself.

Backup Files
You may wish to have Hawk not make backup copies when working with very large
files. In most cases this can be both a waste of time and disk space.

To turn off backups for a specific file type, complete the following steps:

1. Choose the Customize -> Language dialog.

2. Click the Options tab.

Figure 14-1. Customize -> Language -> Options Dialog

3. In the File type: box, select the file type(s) for which you want to turn off
backups.

4. Clear the check box labeled Make backups in the Document Options group.

Scroll Bars
To edit large files as soon as you load them, turn off scroll bars. It is too late to turn off
scroll bars after you have loaded the file, so you will want to make No Scrollbars
the default. To do this, complete the following steps:

1. Select Customize -> View Setups.

2. In the View Setups dialog, click the General tab.

1

Using Hawk™

296

14

Figure 14-2. Customize -> View Setups -> General Dialog

3. In the Window Attributes group, make sure that the Vertical
Scrollbar and Horizontal Scrollbar check boxes are not checked.

4. Click OK.

Preloading Files
When Hawk preloads files, it loads the file completely into virtual memory, which can
slow things down if the file being loaded is fairly large. There are two options that
enable the Hawk feature for preloading files. Make sure the options are not marked if
you want Hawk to handle large files more efficiently.

To disable the preloading options:

1. Select the Customize -> Environment dialog.

2. Click the General tab.

1

Chapter 14: Working with Large Files

297

14

Figure 14-3. Customize -> Environment -> General Dialog

3. In the File Loading/Reloading section, make sure the Preload file
on open and Preload non-local files on open check boxes are not
checked.

When the options are turned off, instead of loading the whole file into memory, Hawk
only loads as much of the file as necessary for editing and maintains pointers to the
original file. See Chapter 13 File Loading and Backup for more information.

Turning off ChromaCoding
If speed is of the utmost importance when loading large files, you could optionally turn
off the Hawk ChromaCoding feature. This feature colors programming language syntax
structures.

To turn off ChromaCoding, complete the following steps:

1. Select the Customize -> Language dialog.

2. Select the file type being edited in the list of File Types on the left.

3. Click the Coloring tab.

1

Using Hawk™

298

14

Figure 14-4. Customize -> Language -> Coloring Dialog

4. Uncheck the following features in the ChromaCoding section:

• Changed Lines: This causes Hawk to color lines that have been changed.

• Language Dependent: This causes Hawk to color files according to the
syntax of a particular programming language.

Saving Large Files
The Hawk default file saving method is not the preferred method for saving large files.
For large files, use the File Rewrite Save Method. Both saving methods are
described in this section.

Default File Saving Method

The default method Hawk uses to open and save files works in the following way:

Given a file, FOO.C

• Open FOO.C into Hawk.

• Hawk creates FOO.000 as a temporary file.

(The .000 extension will be .001 if .000 already exists, .002 if .000 and .001
already exists, and so on.)

• If Hawk is set to make backups, FOO.C is renamed to FOO.BAK. If the option to
make backups is not turned on, FOO.C is deleted.

• When the file is saved, FOO.000 is renamed to FOO.C.

File Rewrite Save Method (for Files over 1MB)

The File Rewrite Save Method is simpler than the default saving method. It
works in the following way:

Given a file, FOO.C

1

Chapter 14: Working with Large Files

299

14

• Open FOO.C into Hawk.

• If backups are turned on, FOO.C is copied to FOO.BAK. If not, nothing happens.

• When the file is saved, the changes are written back to the original file.

The File Rewrite Save Method offers the following advantages when saving
large files:

• Space normally needed for the temporary file (foo.000) is no longer required.
This minimizes the amount of memory needed when opening the file.

• Since the File Rewrite Save Method only writes out the changes made to
the file (as opposed to rewriting the whole file), the portions of the file that have
not been modified will not be rewritten, reducing the time needed to save the file.

To turn on the File Rewrite Save Method, complete the following steps:

1. Select the Customize -> Environment dialog.

2. Choose the General tab.

3. In the File and File System section, put a check mark in the Use file
rewrite save method option.

1

Using Hawk™

300

14

1

301

Extending Hawk

The Hawk tools provide a means for developing the necessary functions for handling
specific tasks. The tools can be used individually or together.

The following sections are included in this chapter:

Hawk API

Macros and Macro Languages

Perl

AppBasic

API (C-like) Macros

Making DLL Add-Ons

Core Services

Keyboard Command Sets

Supplemental Language Support

Auxiliary Services

Sample DLL

Dissecting a Hawk DLL

Making Changes and Additions

Creating New Keymap Command Sets

Recompiling a DLL

15

1

Using Hawk™

302

15

Hawk API
Hawk has many API functions that can be used interactively from within the interface or
attached to menu items, buttons, or keystrokes. APIs can also be used in custom
macros and DLLs designed for extending Hawk.

This chapter describes using Hawk APIs from the Command Key, macros, and DLLs.
Help and examples for most Hawk APIs can be accessed in Hawk's online help, using
the Functions or Search For Help On menu items under the Help pull-down
menu.

Using the API from the Command Key

This section describes using the Command Key.

To use the Hawk API, you must know the name of the particular function you want to
execute. Hawk's online help describes the Hawk API and specific functions. Use the
Functions option on Hawk's Help pull-down menu to find a list of some of the API
functions available, or use the Search for Help On item to do a search for APIs
that might appear under a particular topic.

Displaying Return Values With the Command Key

Hawk APIs that have return values are much more useful if the return value can be
accessed or viewed. To get the Command Key prompt to display the return value of a
function, begin the command with a question mark.

Following is an example of such a command, prior to sending the command off for
processing:

?BufQModifiedCount

When the return type is a numeric value, Hawk displays that number on the status line
in both decimal and hexadecimal notation. If the return type is a pointer to a string,
Hawk displays the contents of that string.

Examples of Command Key Usage

BufSetHexBinary

BufSetHexBinary()

bufsethexbinary

All three of the above examples do the same thing. They put Hawk in the Hex
Editing mode, with the cursor located in the "binary" portion of the display.

MovNextChar(2)

Movnextchar 2

The above examples advance the cursor position by two characters.

BufEditFile("c:\projecta\debug.c")

Remember that the Command Key is F9 if you are using the CUA or the vi keymap
command set, and F10 if you are using the BRIEF-compatible keymap command set. In
keymaps where there is no Key Command assignment, selecting Tools -> API
Command always accesses the prompt.

1

Chapter 15: Extending Hawk

303

15

bufEditFile "c:\projecta\debug.c"

BufEditfile=c:\projecta\debug.c

Either of the above commands opens a document for C:\PROJECTA\DEBUG.C.

kmapAssign("<ctrl-a>", "BufSetHexAscii")

Assigns the function BufSetHexAscii to the keystroke Ca.

MarkBeginSel(SELECTION_INCLUSIVE)

Begins an inclusive selection, using one of the labels listed in Hawk's online help.

Command Key Expression Evaluation

The Command Key can also do expression evaluation, which can be useful for
programming, debugging, or simply as a calculator. With expression evaluating, a
numeric expression that uses C language operators and grouping, can be evaluated, or
calculated, from within the Command Key prompt and the Command Key will in turn
display the results.

To use the Command Key for expression evaluating, signify that the expression is one
for evaluation by preceding the expression with two question marks.

Hawk identifiers can be used in these expressions. Here are examples of expressions to
be evaluated:

??SELECTION_INCLUSIVE

??0xcf54-3*4

??MARK_GLOBAL+1

The following operators are supported in expressions, grouped by precedence, and
listed in order of decreasing precedence:

For more information on Hawk API functions, refer to Hawk's online help.

Table 15-1. Supported Operators

Operator Operation

() Grouping

- Unary Minus

~ Bitwise Complement

! Logical NOT

/ Division

* Multiplication

% Modulus

1

Using Hawk™

304

15

Macros and Macro Languages
A macro can be defined as something simple that represents something bigger or
more complex. Under this definition, macros in the Hawk environment include
everything from keystroke recordings that are assigned to keys, and the % macros Hawk
uses in command lines, up to sophisticated code written in a programming language.

A Macro Language provides a method for creating macro source code, which may
contain control structures and variables, and which is normally interpreted at runtime.
Hawk has three macro languages from which to choose.

Each of the macro languages used for extending Hawk has its strengths. Table 15-2
describes some pros and cons that appear in the three languages. The languages

- Subtraction

+ Addition

<< Bitwise Shift Left

>> Bitwise Shift Right

> Greater Than

< Less Than

<= Less Than or Equal

>= Greater Than or Equal

== Equivalence

!= Non-Equivalence

& Bitwise AND

^ Bitwise Exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

Table 15-1. Supported Operators (Continued)

1

Chapter 15: Extending Hawk

305

15

themselves are discussed in detail in the sections on Perl, AppBasic, and API (C-like)
Macros.

DLL Extensions

You can write extensions for Hawk using any compiler that can produce DLLs. This
capability is referred to as DLL Extensibility. Most sophisticated extensions are
written using DLL Extensibility. This method of extending Hawk has the
following benefits:

• familiarity in compiling and debugging tools

• speed

Table 15-2. Macro Languages

Macro Language Strengths and Weaknesses

Perl Macros Perl is, along with JavaScript, perhaps the most popular language
for writing extensions to web pages. The syntax is similar to C or
AWK, but it has many features for the Internet built-in.
This language is least suitable for writing simple functions for
assignment to keys, because of the time it takes for the
interpreter to be loaded initially. It does, however, allow Perl
programmers to program in a familiar language, using familiar
extensions and libraries. Hawk's version of Perl is based on the
Gnu-released Perl interpreter.

AppBasic Macros AppBasic is the Hawk macro language that is similar to
Microsoft's Visual Basic for Applications. It has its own editor,
debugger, and basic functions. You'll find it on a tab of the
Output Window.
Using this macro language, you can access functions in the
following locations:

• The Microsoft Windows API.
• All of the Hawk API functions, except those designated as non-

interactive.
Functions in most any external DLL.

For those who are familiar with basic in any of its various forms,
this is an attractive option for both simple and complex macros.

API (C-like) Macros The Hawk API Macro language is the simplest of the available
macro languages. Using C-like structure and syntax, it allows you
to quickly create functions suitable for assigning to keys and other
simple uses. When writing an API Macro, you can use any
function that is available from the API command line.
You can write API Macros in the Tools -> API Macros
dialog, or you can write them in one of Hawk's standard edit
windows, and then copy them into the API Macros dialog.

1

Using Hawk™

306

15

• access to functions in other DLLs and libraries

• Hawk DLLs, or Add-Ons, can be loaded interactively from the Tools -> API
Command dialog.

DLL Extensibility, however, does have some limitations, including the following:

• It is inconvenient for simple jobs or single use programs.

• It provides little protection against user error, which could cause a system crash.

• It needs its own, separate compiler.

Under these circumstances, you may want to consider extending Hawk using one of
the supplied macro languages (Perl, AppBasic, and API).

Where it is Defined

Once an extension has been created, there is an opportunity for confusion as to exactly
which function being executed is coming from. It could be a Hawk built-in function, a
Hawk DLL function, an AppBasic macro, a Perl sub, a keystroke macro or an API macro.
The following command helps to resolve the ambiguity.

LibFunctionExistsWhere()

This command returns a string identifying the location of the function name that is
supplied as its argument. Listed below are a few sample responses.

The last example shows the response where a replacement function exists. The Perl
example shows that both the Perl script filename and the sub name are given.

For non-LibExported functions, such as those connected by responding to
EVENT_LIB_EXISTS_FAILED and EVENT_LIB_EXEC_FAILED, the 'where'
string is supplied by the responder to a new event EVENT_LIB_EXISTS_WHERE.
The event handler supplies a 'where' string (allocated) as the return value or zero if it
does not claim the function.

For details on DLL Extensibility, refer to the Making DLL Add-Ons section.

Table 15-3. Function Responses

Function Response

BufQCurrentLine Built-Ins:BufQCurrentLine

DlgPrint cwdialog:DlgPrint

MyPerlFunc cwPerli:myPerl!MyPerlFunc

_jav_init _jav_init->cwstart:_java_init

1

Chapter 15: Extending Hawk

307

15

Perl
There are two useful ways of looking at a Perl script. One is to look at Perl as an entity
that may be executed in its entirety to perform the task specified by the operations of
the script. Another way of looking at the script is as a collection of macros, each
subroutine being a macro in its own right. Using Perl with Hawk, you can make use of
Hawk custom facilities that reinforce these views as you have need.s

Getting Started with Perl

The following two loadable DLLs are necessary to use Perl with Hawk:

• Perl interpreter DLL

• Perl language support DLL

To enable these modules, go to Customize -> Libraries and select the check
box for Perl Extension Language Interpreter, and also Perl.

If the Output Window is not already showing, select it from the Window menu. You
should then see a Perl tab on the Output Window.

• Even if you have Perl already installed on your system, you must check the Perl
Extension Language check box to enable the Perl tab for the Output
Window.

The CWP.DLL is a Perl extension module that provides access to Hawk API functions
from within Perl scripts. In general, you can use any of the Hawk API functions listed in
the online help, except for those whose data types are incompatible with Perl. For a list
of available Hawk API functions, see the contents of the CWP.PM file.

Creating and Editing Perl Scripts

Perl scripts can be created and edited in standard Hawk edit windows. There are some
sample Perl script source files in Hawk's MACROS subdirectory. Load a few of these
and have a look.

Perl scripts are usually packaged in text files bearing a .PL extension. A Perl script
consists of a 'main' section, and zero or more subroutine definitions. The main section
is defined as any code not contained within subroutine definitions.

Example

The following Perl macro contains everything in its main section:

use CWP;

$filename = CWP::BufQFilename;

$filespec = "%p%r%e";

For more information see the Loading and Running Scripts section.

1

Using Hawk™

308

15

$newname = CWP::TransformFilename($filename, $filespec);

$newname =~ tr/\\/\//;

$newname =~ tr/A-Z/a-z/;

CWP::LibFunctionExec "SetStringMacro(UNIXFILE, $newname, 0)";

Perl Window

The Perl tab on the Output Window acts as a virtual console for the Perl
interpreter. That is, it replaces the stdin, stdout, and stderr devices. You can
scroll through the output of Perl Scripts in this window. There is a limit on how many
lines of output will be retained in this window. The default is 100 lines. This setting is in
the Tools -> Perl Macros -> Properties dialog.

To help distinguish stdin, stdout, and stderr elements of the Output Window,
CWPerl uses three different colors.

• stdout is displayed using the output color.

• stdin is displayed using the color defined for line numbers.

• stderr is displayed using the color designated for comments.

You can find the settings for these colors on the Customize -> View Setups -
> Colors dialog.

Pop-up Menu and Options

When you right-click on the Perl tab, or any portion of the Perl Window portion of
the Output Window, a menu pops up that has a number of additional options. If you
don't find what you are looking for on the toolbar, or the Tools menu, look in this
menu.

The Properties item on the pop-up menu brings up a dialog that lets you control
how Perl interacts with Hawk. This is where you specify options you would otherwise
provide to Perl on its command line, when invoking it from the shell prompt.

There are a variety of choices from which to select Perl's input source and output
destination including the Perl Window, the current buffer, the clipboard, the current
scrap buffer, and the current selection.

Different combinations of source and destination can produce interesting effects.

Example
If Current Document is selected for both source and destination, a Perl script
will see the entire content of the current document as its stdin and the buffer will
be replaced with Perl's stdout.

You can accomplish a similar operation on the contents of a selection choosing
Selection for both source and destination.

Input source and output destination can also be set from within a Perl Script. See the
file UPCASE.PL in the MACROS subdirectory of the Hawk installation directory for an
example of how this is done.

1

Chapter 15: Extending Hawk

309

15

Online Help

The Perl Manual by Larry Wall is supplied in online form, in the help file Perl.HLP.
The topics in this file are part of Hawk's standard help system. This means that you can
get Perl function help by placing the cursor on the name of the function and pressing
C!. You can also press ! with the cursor in the Perl Window to get other Perl help.

Loading and Running Scripts

There are two different ways to run a Perl script in the Perl tab of the Output
Window. You can load the script directly on an as-needed basis, or you can load a Perl
macro and run it any time you wish.

Running a Script Directly

To run a Perl script directly, type the following command from the Hawk API Command
Line (Command Key/ Tools -> API Command):

PerlExec <script file> <any parameters>

Where <script file> is the fully qualified path and file name of the script file,
and <any parameters> is any parameters required by the script file.

This will load the script, execute it, and unload the script automatically.

Loading a Perl macro

Loading a Perl macro is much the same as running a Perl script directly, with the added
advantage of being able to invoke the subroutines of the script individually by simply
typing them at the command line.

There are three ways to load a macro:

• Go to the Tools menu and select Perl Macros... and then select Load
macros.

• Select supplied Perl macros by checking the appropriate box in the top of the
dialog in the area called Hawk macros.

• Any Perl macros stored in the CW32\MACROS directory will show up in the Hawk
macros list.

• Add user-defined macros from here by pressing the Add button.

• Another way to load Perl macros is by right-clicking the Perl tab in the Output
Window and selecting Interpreters. This brings up the Hawk Perl
interpreters dialog. Load the macro by pressing the Load... key. All
subroutines for the loaded macro (including <main>) are automatically displayed
when you select a macro from the list. You may select an individual subroutine
from the list to run.

• Use the Hawk API command:

PerlLoad <filename>

Once the macro is loaded, you can invoke it by going to the Hawk API Command
Line and entering the name of the subroutine. As previously mentioned, you may
also run the subroutine as follows:

1

Using Hawk™

310

15

1. Right-click the Perl tab and select Interpreters.

2. Select the macro from the list.

3. When the subroutine list is displayed, select the desired subroutine.

4. Press the Run button.

5. You will be prompted for parameters; you may enter them if necessary, or simply
press the ENTER key to run without parameters.

Executing a Script

You can load and execute a Perl script from the Hawk API Command Line by using the
following command:

PerlExec filename.pl

If you only want to execute a specific subroutine in a script use the following:

PerlExecSub filename.pl subname

In both of cases, you can include additional 'command line' parameters. All text
following the syntactical elements shown in the two commands is broken down into
'parameters' using Hawk’s normal command line parsing rules, with respect to spaces,
quotes, escapes, etc.

To execute a simple Perl script that can be typed in one line, use the following
command:

PerlExecStr 'Perl-string'

Interpreters

Perl for Hawk is capable of hosting multiple simultaneous interpreters. The three
commands create an interpreter, parse the input, execute the script and then dispose
of the interpreter. You may alternately load one or more interpreters by using the
command:

PerlLoad filename.pl

This command also may be supplied command line arguments although they will only
be utilized to the extent that they affect loading the interpreter. This command can be
run several times to load different scripts. From time to time, a loaded interpreter may
be utilized by the command:

PerlRun filename.pl

If this command is issued as shown, the 'main' of the script will be executed.
Alternately, you can give a subroutine name as follows:

PerlRun filename.pl subname

As with previous commands, parameters may be supplied following either form,
however, the first form will need an extra empty string ("") to represent the 'main'
function.

Accessing Hawk Functions from Perl Scripts

More than 800 Hawk functions can be directly accessed from within Perl scripts in
Hawk. To do so, you'll need to place the following line near the top of your script:

1

Chapter 15: Extending Hawk

311

15

use CWP;

This tells Perl to load CWP.PM, which contains descriptions of functions contained in
the compiled Perl extension module CWP.DLL. The CWP.DLL consists of small C
functions that call the Hawk functions after first preparing the parameters and then
make the return value, if any, available to Perl.

You'll need to use the CWP:: prefix on Hawk functions to reference them, unless you
take further steps (described later). This prefix tells Perl that the following function
name is present in the CWP module. As an example, to find out where the cursor is on
in the current document, you could use Hawk’s BufQCurrentLine API in the
following manner:

$line = CWP::BufQCurrentLine();

Constants that are held in Hawk's lookup table can be accessed using a special
function. For example, to see if there is a column selection present you could use the
following:

if (CWP::MarkQSelType() ==

CWP::CWConst("SELECTION_COLUMN"))

{
}

A special function is also provided to execute any built-in or any function made
available through LibExport. This function is similar to the Hawk API function
LibFunctionExec. An example follows:

CWP::CWExec("ConfigFileRead", "[Editor]", 0);

This is equivalent to:

CWP::LibFunctionExec("ConfigFileRead [Editor] 0");

The primary difference is that in the latter example, the string will be parsed to separate
it into parameters to be passed to the function. In the former, the parameters are
explicitly segregated.

Importing Names into the Perl Namespace

If you have Hawk functions that you access frequently and their names do not conflict
with standard names, you can import them into the Perl namespace.

To import names into the Perl namespace, modify the use command as follows:

use CWP ("LibFunctionExec", "CWConst", "BufQCurrentLine");

or, equivalently:

use CWP qw(LibFunctionExec CWConst BufQCurrentLine);

The latter 'quoted word' shorthand obviates the need to type so many quotes. After
doing this, the named function may be invoked without the CWP:: qualifier.

$line = BufQCurrentLine();

Unloading a Perl macro

When you no longer need an interpreter it can be deleted with the following
command:

PerlUnload filename.pl

1

Using Hawk™

312

15

Using the Perl Debug Mode

There is a debugger supplied for Perl scripts. The debugger is itself a Perl script
(PERL5DB.PL). When invoking Perl from a prompt, this script is automatically loaded
if you use the -d flag. In Hawk, you accomplish the same thing by checking the Debug
Mode check box in the Perl Properties dialog (right-click the Perl tab).

When running a script in debug mode, there are three important requirements:

• Use debug mode only when invoking scripts with PerlExec on the API
command line.

• The script must not already have been loaded by Hawk prior to using the
PerlExec command (meaning the script cannot be loaded from the
Interpreters box or by the Tools -> Perl macros...-> Load
macros... pop-up dialog). If it is loaded, unload it before attempting debug
mode.

• Ensure that you have completed executing the script in debug mode before
attempting to run the script again.

Accessing Perl Functions

You can also execute the subs of loaded Perl interpreters by typing their names on the
Hawk API Command Line. Hawk has a mechanism to allow Add-Ons to respond to
indicate their recognition of otherwise unknown (to Hawk) function names. The
AppBasic interpreter and the Perl interpreter alike respond to these queries.

This means that if you have a Perl script loaded that contains a sub called
MyPerlFunc, you can execute that function by typing MyPerlFunc at the Hawk API
Command Line. Perl will check all the loaded Perl scripts to see if at least one of them
has the named subroutine.

Avoiding Ambiguity

The same subroutine name may appear in several Perl scripts. Hawk therefore provides
a mechanism to specify which Perl script you're referencing.

Example

Suppose that both SCRIPT1.PL and SCRIPT2.PL have a sub MyPerlFunc.
You don’t know which subroutine will be executed if you simply invoke
MyPerlFunc.

• One way to avoid this problem is to right-click the Perl tab and bring up the
Interpreters dialog. Select the script you intend to call, and click its
subroutine in the subroutine list.

• Another way to specify that you wish MyPerlFunc in SCRIPT2.PL to be
executed, is to invoke it as follows:

script2.pl!MyPerlFunc

(Note that the extension .PL used in this example is optional.)

1

Chapter 15: Extending Hawk

313

15

Without this specific invocation, the loading order usually determines which function
will be executed if both an AppBasic script and a Perl script contain a given function
name.

• Generally, the first macro loaded will be the one to execute.

Special API Functions for Perl

In addition to the functions available from the Hawk API, there are three additional
functions available when the Perl Extension Language (CWP) is loaded.

• DWORD CWConst(LPSTR cw_expr);

This function provides access to Hawk constants (predefined values), and any
"constants" you have defined with EvalAddStr, in Perl scripts. For example, you
may want to begin a line selection. To do this you would use the constant
SELECTION_LINE in a call to MarkBeginSel.

A more specific example follows:

CWP::MarkBeginSel(CWP::CWConst("SELECTION_LINE"));

The argument string to CWConst can take any form that is acceptable to the Hawk
function EvalExpression.

• DWORD CWExec(LPSTR cw_funcname, ...);

This function provides an alternate form of executing a Hawk function that has
been made available via LibExport(), such as all functions provided by DLLs,
both standard and Add-On. The advantage to using this form, rather than
LibFunctionExec(), is that you need not compile the arguments that you
wish to pass into a string as is required by LibFunctionExec(). You could, for
example, issue either of the following commands with the same effect:

CWP::LibFunctionExec("BufQOffsetEx", $line . " " . $column);

OR

CWP::CWExec("BufQOffsetEx", $line, $column);

• int CWPerlIO(int mode);

This function is used to query or set the current Perl I/O mode. You may recall
from the Perl Properties entry of the Perl popup menu that you can set
Perl's input source and output destination using the radio buttons. This function
serves the same purpose.

The mode argument has two components:

• Input source: occupies the least significant 8 bits of the mode value.

• Output destination: occupies the next most significant 8 bits.

The semantics of the components are as follows:

// Perl I/O source/destinations

#define PERL_IN_CON 0x0000 // input from 'console'

#define PERL_IN_BUF0x0001 // input from current buffer

#define PERL_IN_SEL0x0002 // input from selection

#define PERL_IN_CLIP0x0003 // input from clipboard

1

Using Hawk™

314

15

#define PERL_IN_SCRAP0x0004// input from scrap buffer

#define PERL_OUT_CON0x0000 // output to 'console'

#define PERL_OUT_BUF0x0001 // output to current buffer

#define PERL_OUT_SEL0x0002 // output to selection

#define PERL_OUT_CLIP0x0003 // output to clipboard

#define PERL_OUT_SCRAP0x0004 // output to scrap buffer

To determine the current I/O mode, simply call CWPerlIO with a mode value of -
1. In all cases, the return value is the prevailing 'mode' immediately prior to the call.
This function is useful to make a Perl script that responds differently depending on
certain prevailing conditions.

• The call to CWPerlIO should be made before any output operations are
performed, since changing the output destination causes all previous output to
be discarded.

Files Used by Perl for Hawk

The following files are found in the Hawk home directory after installation:

The following files are found in the Hawk PerlLib subdirectory after installation:

Table 15-4. Files in the Hawk Home Directory

Filename Purpose

CWPERL.DLL Provides language support for Perl source scripts (*.PL).

CWPERLI.DLL Adds the Perl tab in the Output Window.

CWPERLI.MNU Menu file that holds the menus for the right mouse click in Perl
tab of Output Window.

Table 15-5. Files in the PerlLib Subdirectory

Filename Purpose

CWP.DLL Allows access to Hawk API’s in the Perl script

CWP.PM Exporter for Hawk API’s

CARP.PM Error routines

CONFIG.PM Win32 Perl configuration

CWP.XS Source Perl script used to rebuild cwp.DLL

DYNALOADER.PM Dynamically loads C libraries into Perl code

1

Chapter 15: Extending Hawk

315

15

Other Perl Resources

Much useful information can be derived from your nearest CPAN (Comprehensive Perl
Archive Network) web site, or some of the Perl books by O'Reilly Press, namely
Programming Perl, and Learning Perl for Win32 Systems. There are many
mirror sites for CPAN, one of which is
ftp://ftp.cdrom.com/pub/perl/CPAN/. Other useful URLs include
http://www.perl.org for general Perl information and
http://www.activestate.com for Perl for Win32 systems.

AppBasic
This section explains how to use the AppBasic Macro Language in Hawk to create your
own macro functions.

The Hawk AppBasic Macro Language is an interpreted language that is similar in
definition and structure to Microsoft's Visual Basic. Through it, you have access to the
Windows API, the Hawk API, and functions in independent DLLs.

Example files are supplied along with Hawk to aid you in getting started.

You will find them in Hawk's MACROS subdirectory. When you press on the FileOpen
button on the AppBasic Toolbar for the first time, you will see a list of these
sample AppBasic Macros. Several of these macros are covered in this section as
well.

The advantage of an interpreted language is that no compiling is required. You can
write your macros and use them immediately. By using the AppBasic Window, a tab
on Hawk's Output Window, you can add break points and debug your macro, as
well.

EXPORTER.PM Default import method for modules

PERL5DB.PL Perl 5.0 Debugger

TYPEMAP Hawk variable types (for use with CWP.XS)

XSUBPP.PL Converts Perl XS code into C code (for use with
cwp.xs)

TERM\CAP.PM Perl termcap interface

TERM\COMPLETE.PM Perl word completion module

TERM\READLINE.PM Perl interface to various C<readline> packages.

Table 15-5. Files in the PerlLib Subdirectory (Continued)

1

Using Hawk™

316

15

Figure 15-1. Output Window with AppBasic Tab Selected

Getting Started

To enable the AppBasic Macro Language, go to the Customize -> Libraries
dialog, and you will see a list of optional packages or modules you can use with Hawk.
Select the check box for AppBasic Macro Language. After loading the
AppBasic package, you should be able to see an AppBasic tab on the Output
Window when it is visible. You can make the Output Window visible by selecting it
from the Window menu.

Two Editors

You can select one of two editors to use to edit your AppBasic source code. You can
use Hawk as your editor, or the Rich Text Editor.

If you use Hawk, you get the benefits of standard keystrokes and advanced features. If
you use the Rich Text Editor, you get a very close emulation of the Visual Basic editor,
including automatic case correction.

You can select which editor appears in the AppBasic Window by enabling or
disabling the Rich Text Editor. You will find this setting on the Tools ->
AppBasic Macros -> View menu.

Special Keybindings

The following keybindings are in effect in the Rich Text Editor and cannot be changed.
When using the Hawk Editor in AppBasic these keybindings are only valid when you
have a .CWB file current. Otherwise, they revert to your original keybinding for your
default keymap.

Table 15-6. Keybindings

Keystroke Operation

C+ A View Macro

C + E View Immediate Tab Window

1

Chapter 15: Extending Hawk

317

15

Two Toolbars

AppBasic has two nearly identical toolbars that you can use. One toolbar, the one
you see depicted in the preceding AppBasic Environment graphic, has a fixed
location at the top of the AppBasic Window. We will refer to this toolbar as the
AppBasic Window Toolbar.

C + W View Watch Tab Window

C + T View Stack Tab Window

C + L View Loaded Tab Window

% Debug Run

S + % Debug Stop

X Debug Pause

* Debug Step Into

S + * Debug Step Over

C + * Debug Step Out

& Debug Step To

C+S+ (Debug Clear All Breakpoints

C + (Debug Add Watch

S +(Debug Quick Watch

(Debug Toggle Breakpoint

C + N File New

C + O File Open

C + - File Close

C + S File Save

C + P File Print

Table 15-6. Keybindings (Continued)

1

Using Hawk™

318

15

The other toolbar is one of the Hawk Dockable Toolbars. You can position it
anywhere on your screen, or dock it against any edge of the Hawk Client Area. We
refer to this as the AppBasic Dockable Toolbar, to avoid confusion. You can
enable this toolbar via the Toolbars dialog on the Customize menu.

Pop-up Menu

When you right-click in the AppBasic Window, a menu pops up that has a number
of additional options. If you do not find what you are looking for on the Toolbar, or
the Tools menu, refer to this menu.

Online Help

Online help is available for the AppBasic Window, the AppBasic Language, and its
built-in functions:

• For help on using the AppBasic Window, or language syntax, press the Help
button on the AppBasic Window Toolbar.

• For help on functions or subroutines, press the ! key anytime the cursor is in the
AppBasic Window. Hawk will attempt to bring up help for the word at the
cursor. If there is no word at the cursor, you can still browse a list of available
functions and subroutines.

UserDialog Editor

AppBasic comes with its own dialog editor. A UserDialog is a dialog defined in a
macro program. It is described within a Begin Dialog...End Dialog block. To
create or edit a UserDialog graphically, place the cursor in a UserDialog block
and press the Edit UserDialog button.

Object Browser

The Object Browser shows information about all the available special data types,
particularly for OLE Automation. Select the label that you wish to look up, and click the
Browse Object button.

If no label is selected, or the label is not found in the known libraries, the edit box at the
top of the dialog will be empty. You may still browse the existing data types and
methods.

Creating a Macro

To create an AppBasic macro, complete the following steps:

1. Select the AppBasic tab on the Output Window.

2. Right-click in the window and select Properties. In the Module
Properties dialog, you can provide the names of the AppBasic functions you
want to call from LibFunctionExec, the Hawk API Command, or bind to a
Hawk button.

AppBasic refers to the functions as Handlers. A Handler exports the function for
use by defining its return value, along with parameters and types. For those who are
familiar with writing DLL extensions for Hawk, Handlers serve the same purpose as

1

Chapter 15: Extending Hawk

319

15

calling LibExport. Once made available to Hawk in this way, Handlers can be
assigned to keys or run from menus.

You can define and create Functions or Subs in the Module Properties dialog
before or after creating a Handler. The handler must be added at some point, however,
for the function to be called from Hawk.

1. When you have finished adding your functions, select OK. Then, on the Modules
Properties dialog, select Add. The Add Handler dialog displays.

Creating a Handler

To create a Handler:

• In the Add Handlers dialog, name your function and declare its type.

• Functions and Subroutines must start with a letter and can then be followed by an
underscore or letter.

• Type in any parameters you want.

• At this time, parameters cannot be added later, to do this you must delete the
function and add it again.

Example:

From the Add Handlers dialog:

1. Enter DoThis as the name of the subroutine

2. Use a void return type and empty parameter list.

3. Press OK to return to the Module Properties dialog.

4. Press OK again.

5. When you are back in the AppBasic Tab, use the Proc list to select
DoThis.

The DoThis subroutine will be inserted as follows:

Private Sub DoThis()

End Sub

6. Now add the following line inside the DoThis Sub.

MsgNotify "This is a test"

MsgNotify is a Hawk API function that notifies the user with a message.

The DoThis subroutine will now look as follows:

Private Sub DoThis()

MsgNotify "This is a test"

End Sub

7. You should now save the macro to a file. By convention, the .CWB extension is
used for AppBasic macros.

8. Now Run the macro. You may do this in any one of the following ways:

1

Using Hawk™

320

15

• Press the Start/Resume button on the AppBasic Window toolbar

.

• Press the Run Current Macro button on the AppBasic Dockable

toolbar .

• Press the right mouse click when over the AppBasic Output Window
and select Run.

9. After running the macro, go to the Hawk menu Tools -> API Command
and type: DoThis

10. Click OK. A message box should appear with the words "This is a test"
in it. .

Object and Proc Dropdown Lists

The Object list shows all the objects for the current module. The object named
groups together all of the procedures that are not part of any specific object.

The Proc list shows all the procedures for the current object. Selecting a procedure
that is not bold inserts the proper procedure definition for that procedure.

Figure 15-2. The Object and Proc Dropdowns

Handlers you added in the Properties dialog will appear in the Object and Proc
list.

Example

You create a function named Srch_Backwards(), then the Object list contains
Srch and the Proc list contains Backwards.

The underscore divides the function name between the Object and Proc lists.

Private Sub Main

Any initialization can be done in a special subroutine named Private Sub Main().

Example

Private Sub Main()

Dim firstTime As Boolean

Dim i As Integer

 firstTime = True

It is not always expedient to load the macro by starting it in the AppBasic Window.
When the macro is no longer in need of editing, it can be loaded using the Load
AppBasic Extension Macros dialog, accessed by clicking Load Macros
on the AppBasic Macros submenu of the Tools menu.

1

Chapter 15: Extending Hawk

321

15

If (firstTime = True) Then

' no LibExports() needed here, use Modules Property
' Dialog And add handler as a replacement.

firstTime = False

Set SaveEvent = EventRegister(EVENT_SAVE_BUFFER,

EVENT_NORMAL, "Buffer_Saved")

End If

End Sub

Tips on Creating Macros

When creating macros, consider the following tips:

• You may only edit macros that are not currently loaded for execution. To unload a
macro, right-click on the AppBasic tab of the Output Window to bring up the
Show Loaded Modules dialog. Removing the check from the check box in front
of the filename will unload the macro. It can also be unloaded by calling
cwbUnloadFile(filename) through the API Command prompt. If you try to
edit a macro that is currently loaded an error message will appear, asking you to
unload the module.

• When your cursor leaves a line of source code, it is automatically processed. You
may note that capitalization has consequently changed, if you are using the Rich
Text Editor.

• A dot in the left margin of the line indicates a break point. Break points may be
toggled on/off, using the button on the AppBasic toolbar.

Creating a Modal User Dialog

To create a modal user dialog:

1. Place the cursor in the subroutine or function that you want to place the dialog.

2. Select one of the following:

• AppBasic toolbar button Edit UserDialog

- OR -

• Hawk AppBasic toolbar button Insert/Edit User Dialog

The UserDialog Editor displays:

1

Using Hawk™

322

15

Figure 15-3. UserDialog Editor

3. Select the Edit Properties toolbar button (or right-click the mouse button on
the dialog that you are creating). The Edit UserDialog Properties screen
displays.

Figure 15-4. Edit UserDialog Properties

4. Name your dialog in the Caption box.

5. Enter the name of the function that will be used to process the dialog in the
Dialog Function box.

This is a very important step in the process. A question about creating the skeleton
will not show up upon exiting the screen if you have not filled in the Dialog
Function box.

6. Click the Close button to re-display the dialog in the UserDialog Editor.

7. Using the OK and Can tools on the vertical toolbar, add an OK and/or a Cancel
button to the dialog.

A Cancel button is needed to activate the "X" system menu in the top right hand
corner of the dialog.

8. Perform additional editing as desired.

9. Save and exit the User Dialog Editor, by clicking the Save and Exit
button. A dialog will appear that asks: Create the skeleton dialog
function?

1

Chapter 15: Extending Hawk

323

15

10. Answer YES to this question. Your code should now look similar to the following:

Private Sub DoThis()

MsgNotify "This is a test"

Begin Dialog UserDialog 400,91,"DoThis Test dialog",.DoThisTest

Text 30,28,330,28,"This is a test dialog.",.Text1

OKButton 40,63,90,21

CancelButton 160,63,90,21

End Dialog

Dim dlg As UserDialog

Dialog dlg

End Sub

Rem See DialogFunc help topic for more information.

Private Function DoThisTest(DlgItem$, Action%, SuppValue%) As
Boolean

Select Case Action%

Case 1 ' Dialog box initialization

Case 2 ' Value changing or button pressed

Rem DoThisTest = True ' Prevent button press from closing dialog

Case 3 ' TextBox or ComboBox text changed

Case 4 ' Focus changed

Case 5 ' Idle

Rem DoThisTest = True ' Continue getting idle actions

End Select

End Function

11. Change the following line of code from the following:

Dialog dlg

to the following:

bButtonPushed = Dialog(dlg)

See the topic Dialog Instruction/Function in the AppBasic online help for more
information on this topic and the return values. You can access AppBasic help by
pressing the "?" button on the AppBasic Window Toolbar, or by pressing !
anytime the cursor is in the AppBasic Window.

The final sample follows:

Private Sub DoThis()

MsgNotify "This is a test"

Begin Dialog UserDialog 400,91,"DoThis Test dialog",.DoThisTest

Text 30,28,330,28,"This is a test dialog.",.Text1

OKButton 40,63,90,21

Modeless Dialogs are not available in AppBasic at this time.

1

Using Hawk™

324

15

CancelButton 160,63,90,21

End Dialog

Dim dlg As UserDialog

bButtonPushed = Dialog(dlg)

End Sub

Rem See DialogFunc help topic for more information.

Private Function DoThisTest(DlgItem$, Action%, SuppValue%) As
Boolean

Select Case Action%

Case 1 ' Dialog box initialization

Case 2 ' Value changing or button pressed

Rem DoThisTest = True ' Prevent button press from closing dialog

Case 3 ' TextBox or ComboBox text changed

Case 4 ' Focus changed

Case 5 ' Idle

Rem DoThisTest = True ' Continue getting idle actions

End Select

End Function

Running the Macro

Run the macro to see if you have any syntax errors. After editing any syntax errors, go to
the Tools -> API Command and execute DoThis. You will see a message box
and then a dialog box show up.

The code within this subroutine will be run when the module is put into Run mode.
Once a module is debugged, it can be loaded without being in AppBasic. The Hawk
API command cwbLoadFile "FileName" will load the module and put it in run
mode without being shown in AppBasic. You can bind the command
cwbLoadFile "FileName" to a key, or add it to the [Editor] section of your
CWRIGHT.INI configuration file, to load it during start up.

Creating an EventHandler in AppBasic

Events provide a method of interrupting program flow to allow a function or functions
to have a timely effect. A number of events have been built into AppBasic using Hawk
event handlers in order to add flexibility. One reason for this flexibility is that the
number and names of the functions the event executes need not be known to the
function that triggers the event.

The functions that are executed when a specified event occurs are called Event
Handlers. Since most events originate with Hawk API functions, writing your own event

The macro can also be loaded by adding of enabling it in the Load Macros dialog, accessed by
clicking Load Macros on the AppBasic Macros submenu of the Tools
menu. Refer to the topic Load Macros Dialog for more information.

1

Chapter 15: Extending Hawk

325

15

handler gives you access to the Hawk core. You can change the way critical functions
work without rewriting Hawk.

You can use events by following the three steps listed below:

1. Select the event that represents the action in which you wish to intervene.

An event handler list can be found in the Hawk API Help file under the topic Using
Events. The sample event handler program ties itself to the event that occurs when a
character is entered into a Hawk buffer.

2. Write an appropriate event handler function for that event.

The EventHandler definition must be “Global” or the event handler will become
unregistered.

3. Register the function for execution at the event with EventRegister.

Set X=EventRegister(EVENT_CHAR_INSERTED, EVENT_NORMAL,
"EventTestHandler").

Sample EHTEST.CWB

' * EhTest.cwb

' *

' * Sample Event handler EVENT_CHAR_INSERTED, Message box ' ' ' *
pops up and displays the character that was pressed.

' *

' * Usage:

' * occurs automatically when the macro is loaded

' * because the event is registered in Private Sub Main().

'**

' Note!!!! EventHandler must be Global or event handler will '
become unregistered.

Dim X As EventHandler

' This function needs to be executed for the handler to take '
affect. You can put the EventRegister in a main()

' subroutine if you want it to be available every time the

' macro is executed.

Additional information on events can be found in the Hawk API (Functions) Help file under
the section Programming and the topics Events and Using Events.

Deregistration of the event is handled automatically when the macro file is unloaded in Hawk.
To stop an event handler before terminating the program (module), set returned
EventHandler Object to "Nothing".

Additional information for event handlers can be found in the Hawk API Help file. Topics
include Event Handler and Events.

1

Using Hawk™

326

15

Private Sub Main()

 Set X=EventRegister(EVENT_CHAR_INSERTED,EVENT_NORMAL,

"EventTestHandler")

End Sub

Private Function EventTestHandler(ID As Long, Datap As Long) As
Integer

MsgBox StringFromPointer(Datap)

EventTestHandler = 0

End Function

Debugging Your AppBasic Macro

When you are ready to begin debugging an AppBasic macro, the following steps will
help you get started:

1. Open the macro file for modification, if you have not already done so (Load it into
the AppBasic Window).

2. Set a Break point perhaps at the first line of the Sub or Function you are debugging,
by clicking the Toggle Breakpoint button (A dot should appear in the margin
to the left of the line).

3. Enter Run mode by clicking the Run, Step Over or Step Into button. The
Immediate, Watch, Stack and Loaded tabs then appears above the Edit
Window. You can also press * to enter this mode if you are using the RTF editor,
instead of the default Hawk edit window (Tools -> AppBasic Macros ->
View -> Rich Text Editor).

4. Call the Sub or Function so that you reach the Breakpoint you have set. You can do
this by selecting API Command from the Tools menu and entering the name of
the Sub or Function.

Break Points

Toggle a break point on the current line.

• When you are debugging the macro and have hit a break point, notifications will be
disabled in the other tabs in the Output Window. For example, if you have hit a
break point in the macro and then you do a multiple search, the double clicking in
the Search Output Window will be disabled until you have finished running
the macro or stopped it.

1

Chapter 15: Extending Hawk

327

15

Evaluate Expression and Add Watch

You may evaluate an expression, assign a value to a variable, or call a subroutine by
typing commands in the Immediate Window when AppBasic is running a macro.

The Watch Window displays the variables, functions and expressions that are
calculated. Each time execution pauses, the value of each line in the Watch Window
is updated.

In addition, the following actions are available to you:

• The expression to the left of the "->" may be edited.

• Press Enter to update all of the values displayed, to reflect any changes you have
made.

• Press Ctrl-Enter to delete the line.

Object Browser

The Object Browser shows information about all the special data types that are
available.

Table 15-7. Expressions

Command Results (when you press E)

?<expr> Shows the value of "expr"

<var> = <expr> Changes the value of "var"

Set <var> = <expr> Changes the reference of "var"

<subname> <args> Calls a subroutine or built-in instruction

Trace Toggles trace mode. Trace mode prints each statement in the
Immediate Window when a macro/module is running.

1

Using Hawk™

328

15

Figure 15-5. OLE Automation Members Dialog

You can get to the Object Browser by pressing any of the following:

• The Browse Object button on the AppBasic Window toolbar.

• The Display Object Browser button on the AppBasic Dockable
toolbar.

• The right mouse button, when over the AppBasic Output Window. Select
Object Browser from the popup menu.

Load Macros Dialog

When you choose the Tools -> AppBasic Macros -> Load Macros menu
item, you will be presented with the following dialog.

Figure 15-6. Load AppBasic Extension Macros Screen

This dialog allows you the opportunity to load the sample macros or user defined
macros into memory.

1

Chapter 15: Extending Hawk

329

15

AppBasic Samples Supplied

A list of the AppBasic modules supplied with Hawk follows, along with usage notes.
Most of these samples were not intended to perform a useful task, but rather to show
how features of Hawk are accessed through AppBasic.

• Baskeywd.cwb

The function AddBasKeywords adds the keyword Integer to BASIC language
ChromaCoding (syntax coloring).

Usage:

AddBasKeywords()

• Colsum.cwb

SumSelectedText adds the selected column of numbers and outputs the total
on Hawk’s status line.

Usage:

SumSelectedText(1)

• Diffdir.cwb

DiffDirectory differences the file in the reference directory against the files in
the target directory. This uses a Modal dialog to display the files being differenced.

Usage:

DiffDirectory("c:\testdir1","c:\testdir2")

• Dispname.cwb

cwbDisplayFileName displays the name of the current file on the status line.
An asterisk " * " follows the filename when the file contains unsaved edits.

Usage:

cwbDisplayFileName()

• EditNext.cwb

cwbEditNextBuffer makes the next buffer in the list of buffers current.

Usage:

cwbEditNextBuffer()

• EditPrev.cwb

Edit the previous buffer in the list of buffers.

Usage:

cwbEditPrevBuffer()

• EhTest.cwb

When this macro is loaded, a message box pops up every time a key is pressed,
displaying the character that was pressed. The function is stored in the macro’s
main section; therefore, it launches automatically when the macro is loaded.

Usage:

 Main()

1

Using Hawk™

330

15

• GotoLine.cwb

cwbGotoLine prompts on the status bar for the number of a line to go to.

Usage:

 cwbGotoLine()

• HashTest.cwb

A hash table is created automatically by the main function when the macro is
loaded.

Usage:

 Main()

• SaveHdl.cwb

When loaded, this module adds an EVENT_SAVE_BUFFER event handler, which
pops up a dialog whenever a buffer is saved. This program used the Main()
subroutine to make the handler available when this program is running. No need to
call a function to start it up. The Main() subroutine is the first function to be
executed when any macro language file is loaded.

• SnapVirt.cwb

Snap up to first character on end of line skipping virtual space.

Usage:

cwbSnapVirtual()

• SrchRepl.cwb

Uses SearchTranslate() to execute multiple search and replaces on a buffer,
to test this macro use the "From:" text below and put it in a buffer for the
replacement.

Translate the following text,

From:

West Siberian plains.<252>The European part Is covered
<SUBHEAD>Soviet Period</SUBHEAD>
/par /Tab Union of Soviet Socialist
Republics<252><252><252>

To:

West Siberian plains.
/par /Tab The European part Is covered <SUBHEAD>Soviet
Period</SUBHEAD>
/par /Tab Union of Soviet Socialist Republics

Usage:

Search_Replace_Buffer()

• Stripwt.cwb

Strips trailing white space (" " or \t) from the end of a range of lines in a buffer.

Usage:

cwbStripTrailingWhite(1, 20, 5)

1

Chapter 15: Extending Hawk

331

15

• Test.cwb

This module contains several functions to test a return value's type. Use this on
commands entered at the Tools -> API Command prompt, proceeded by a ?.

Example

 Using the command ?TestBool give you the following:

Return:-1 (hex ffffffff), type:int

Usage (in Tools -> API Command dialog):

?TestBool()
?TestInt()
?TestLong()
?TestString()

• Wordcnt.cwb

CountPhrase counts the number of occurrences of a specified string that are
found in the current document. A Dialog prints out the results (Uses
Debug.Print).

Usage:

CountPhrase("the")

• ZoomWin.cwb

cwbZoomWindow toggles the window between Maximized and Restored.
Uses SendMessage() windows call.

Usage:

cwbZoomWindow()

AppBasic-related API Commands

The following useful API commands are available from the Hawk API Command
prompt (Tools -> API Command):

• cwbLoadFile <moduleName>)

Once an AppBasic module contains no syntax errors, it can be loaded for
execution. It can then be run without the use of the AppBasic window.

• cwbLoadFile "FileName"

Will load the module and make its exported functions (handlers) available for
running. You can also bind keys and buttons to the handlers in the loaded Macro
file.

• cwbUnloadFile (<moduleName>)

An AppBasic module cannot be modified while it is loaded for execution. If you
have loaded the file using cwbLoadFile() from your CWRIGHT.INI file or
from a button and you want to now edit the file in AppBasic you will need to
unload the file using cwbUnloadFile().

1

Using Hawk™

332

15

AppBasic Window Configuration

Most users will find the standard configuration of the AppBasic Window satisfactory.
If desired, however, you can turn off the AppBasic Window Toolbar and the
AppBasic Object and Proc drop down lists that appear at the top of the
AppBasic Window.

To change the appearance of the AppBasic Window, go to the Tools ->
AppBasic Macros -> View menu. Here you can enable or disable the
AppBasic Window Toolbar, the AppBasic Object and Proc drop down list,
or change from a Hawk Edit Window to the WinWrap Rich Text Editor.

Figure 15-7. Menu

This configuration can also be set by right-clicking over the AppBasic Window, and
then selecting View from the pop-up menu.

If you wish to change the configuration of the window programmatically, the following
Hawk API commands will assist you. These commands may be issued by the API
Command dialog (Command Key) on the Tools menu. If you find them useful, you
may make your settings more permanent by modifying similar commands in the
MWHAWK.INI configuration file.

• cwbShowToolbar (int nShow)

This function will Hide/Show the Standard AppBasic Toolbar.

Example

cwbShowToolbar(0)

cwbShowToolbar(1)

The first example will cause the toolbar to be hidden. The second example will show
the toolbar. Any positive integer value for the parameter will display the toolbar.

• cwbShowProcDisplay (int nShow)

This function will Hide/Show the Object and Proc dropdown lists.

Example

cwbShowProcDisplay(0)

cwbShowProcDisplay(1)

The first example will cause the Object and Proc dropdown lists to be hidden. The
second example displays them. Any positive integer value for the parameter will
display the Object and Proc dropdown lists.

• cwbCreateCWWindow(int bCWWindow)

This function is used to change the Editor in AppBasic. There are two choices:
one is to make it a Hawk Editor and the other is a Rich Text Editor.

1

Chapter 15: Extending Hawk

333

15

Example

 To change to a Hawk Editor call the following:

cwbCreateCWWindow(1) or cwbCreateCWWindow(TRUE)

Example

 To change to Rich Text Editor call the following:

cwbCreateCWWindow(0) or cwbCreateCWWindow(FALSE)

Example Configuration File Settings

The AppBasic window's configuration is stored in the MWHAWK.INI file, in the
[AppBasic Setup] section as shown below:

[AppBasic Setup]
cwbShowProcDisplay=2
cwbShowToolbar=1

Exported Functions in CWBASIC.DLL

Refer to the following functions:

• cwbAddHandler(LPSTR lpszHandlerDef, LPSTR lpszModule)

Adds a callable Sub/Function to AppBasic module — equivalent to
LibExport

lpdzHandlerDef - Sub/Function Prototype ex: Private Sub
CallMe(FName As String)
lpszmodule - cwb file containing this Sub/Function (Full
Path) ex: c:\cw32\colsum.cwb.

• cwbToggleBreakPoint(void)

Toggles a break point in currently edited module at the current line.

• cwbEditFile(LPSTR lpszFile)

Loads a .CWB file into the AppBasic editor.

• cwbLoadFile(LPSTR lpszFile)

Loads and runs AppBasic file.

• cwbUnloadFile (LPSTR lpszFile)

Unloads File from Engine (Stop Run)

• cwbExecuteCommand(long cmd)

1

Using Hawk™

334

15

Executes an AppBasic Operational Command.

• cwbShowToolbar (int nShow)

Hide/Show Standard AppBasic Toolbar.

• cwbShowProcDisplay (int nShow)

Table 15-8. Commands

cmdFileNew = 0 CmdFileOpen = 1 cmdFileSave = 2

cmdFileSaveAs = 3 CmdFilePrint = 4 cmdFilePrintSetup =
5

cmdMacroRun = 6 CmdMacroPause = 7 cmdMacroEnd = 8

cmdDebugStepInto = 9 CmdDebugStepOver = 10 cmdDebugStepTo = 11

cmdDebugBreak = 12 CmdDebugQuickWatch =
13

cmdDebugAddWatch =
14

cmdDebugBrowse = 15 CmdDebugSetNext = 16 cmdDebugShowNext =
17

cmdHelpApp = 18 CmdHelpLanguage = 19 cmdHelpTopic = 20

cmdHelpAbout = 21 CmdEditUndo = 22 cmdEditCut = 23

cmdEditCopy = 24 CmdEditPaste = 25 cmdEditFind = 26

cmdEditReplace = 27 CmdEditAgain = 28 cmdEditFont = 29

cmdEditDelete = 30 CmdEditSelectAll = 31 cmdEditUserDialog =
32

cmdFileClose = 33 CmdFileSaveAll = 34 cmdDebugStepOut = 35

cmdSheetOpenUses =
36

CmdSheetCloseAll = 37 cmdSheet1 = 38

cmdSheet2 = 39 CmdSheet3 = 40 cmdSheet4 = 41

cmdSheet5 = 42 CmdSheet6 = 43 cmdSheet7 = 44

cmdSheet8 = 45 CmdSheet9 = 46 cmdEditProperties =
50

CmdFileNewObjectModu
le = 48

CmdFileNewClassModul
e = 49

cmdFileNewCodeModule
= 47

1

Chapter 15: Extending Hawk

335

15

Hide/Show Object and Proc Dropdown Lists.

API (C-like) Macros
Hawk API commands are function calls that can be made interactively. This means that
they can be assigned to keys, menu items, buttons, popup context menus and issued
from the API command line. Hawk API Macros build upon this capability to provide a
quick and simple way to write extensions for Hawk.

If you have previously used, or read about using API commands interactively, the
following differences should be noted if they are being used from API macros:

• You can nest API commands as parameters to other API Commands in macros.

• All functions must be followed by opening and closing parentheses around the
parameter list, if any.

• Parameters must be separated by commas.

API Macros Defined

API Macros are one or more sequential, iterative, or conditional statements that are
given a name. These statements often contain Hawk API function calls. They are stored
in a file, MWHAWK.MAC, and may be recalled by name for execution within Hawk.

A ChromaCoding lexer called API Macro has been developed to make working with
the language easier. Without any special changes you should be able to do the
following:

• Load the MWHAWK.MAC file into Hawk.

• See it correctly ChromaCoded.

• Compile it with the menu or button

Parse errors from the Build tab of the Output Window.

Getting Started with API Macros

The Tools -> API Macros dialog lets you create, edit and test API Macros.

For more information on Lexers, refer to the topic ChromaCoding Lexers in Chapter 5
View Setups and Language Support.

1

Using Hawk™

336

15

Figure 15-8. API Macros Dialog

Creating a Macro

To create an API macro, complete the following steps:

1. Name the macro in the Name edit box.

2. Type in the API commands you wish to execute into the Edit box.

3. Press the Save button. Pressing the Run button will send away the dialog. Any
unsaved edits are automatically saved by default.

Editing a Macro

To edit a macro previously created, select its name from the Name listbox. The text of
the macro will appear in the Edit box and you can proceed to make your changes.
Pressing either Run or Save will save your changes to disk.

Each time a macro is saved it is checked for errors. If there are errors, use the four
buttons at the lower left of the dialog to parse the position and text for each error.

Special Editing Keystrokes

In addition to the buttons, the next error can be parsed by using SCY. To insert a
<Tab> character, use CT. As in a Hawk window, press ! to bring up help for the
function under the cursor.

Editing API Macros in a Hawk Window

You can edit and create API Macros in a standard Hawk edit window. This gives you
access to Hawk’s advanced editing capabilities, error parsing and ChromaCoding.

Complete the following steps:

1. Open the file MWHAWK.MAC into Hawk.

2. Create a new macro using the following syntax:

1

Chapter 15: Extending Hawk

337

15

[API Macro:<macro_name>]

- OR -

Find the location of the macro to edit by searching for [API
Macro:<macro_name>]. The macro is contained in the lines following its
name <macro_name>, but before the next bracketed section, if any.

3. Make any necessary edits.

4. Save the file before running the macro, since macros are always read from the file.

Setup Editing in a Hawk Window

Complete the following:

1. Use the API Macro ChromaCoding lexer in Customize -> Lanaguage ->
Coloring to get ChromaCoding for API Macros that are edited in Hawk edit
windows. Associate the lexer with a .mac file type, which should be added to the
file type list on the left-hand side of the Edit dialog.

2. To set up the compiler for API macros: Enter !MacroMakeErrorFile in the
Compiler Name field for the Compiler category of tools in Project ->
Settings-> Tools.

3. In the Project -> Settings -> Errors dialog, choose _APIMacroInfo
for the error parser.

Running a Macro

The most common way to run a macro is from the menu or dialog. Macros can also be
executed from within Hawk in as many ways as API functions can be. Just use the
macro’s name, and optionally its parameters, as if it were a Hawk API function.

Language Definition

For further information on the API Macro language, refer to the following sections:

• Comments

• Variables

• Literal Values

• Expressions

• Statements and Statement Blocks

• Program Flow of Control Structures

Comments

Comments can be used almost anywhere, including within statements.

• C style multi-line comments may be used in API Macros. The comment starts with
the forward slash and asterisk, '/*', and ends with the asterisk and forward slash,
'*/'. This kind of comment can cover a partial line, or many lines. Nested
comments are not supported.

1

Using Hawk™

338

15

• C++ style comments may be used in API Macros. When two forward slashes, '//',
appear on a line, the remainder of the line is ignored.

Identifier Naming Rules

Identifiers include macro and variable names. The first character must be an
alphabetical or underscore (_) character. The remaining characters can be
alphanumeric or the underscore character.

Variables

There are two types of variables available, 'int' and 'string':

• 'int' type variables are long signed integer numbers. You can use the 'int' type
for accessing most of the parameter and return types of Hawk’s API commands.
These include char, int, long, UINT, WORD, DWORD, BOOL, HBUFFER,
HWINDOW, etc.

• 'string' type variables are NULL terminated character arrays. They are
automatically allocated and freed as needed. Use the 'string' type when accessing
parameter and return types of LPSTR and LPMSTR. Strings must start and end
with the quote character (").

Variables must be declared before they can be used. They can be assigned a value in
the same statement they are declared in. Here are some example declarations;

int i;

int j = 1;

string s;

string a = "abc";

Two of these examples include initialization. Macro variables are never uninitialized. If
they do not have a value assigned to them, their value will be zero or NULL.

static

Use the 'static' keyword directly before the 'int' or 'string' type keyword. Static
variables maintain their values between macro calls.

If you wish the initialized value of the variable to be non-zero, be sure to follow it with
an assignment expression. This expression cannot contain any macro or function calls.

global

Use the 'global' keyword directly before the 'int' or 'string' type keyword. Like
static variables, global variables maintain their values between macro calls. They have
the additional benefit of being available in more than one macro.

Each macro that uses a global type variable must declare it. For each declaration, use
the same assignment value for initialization. Otherwise, the starting value may be
undetermined, since it would depend on which macro is compiled (used) first.

1

Chapter 15: Extending Hawk

339

15

Parameters and Return Type

Declare parameter variables at the beginning of a macro. Use the following format for
the macro declaration:

<ret_type> <macro_name>(<type> <param1_name>,

<type><param2_name>, ...)

{

<statement>;

// more lines here

return <expression>;

}

The following formatting guidelines apply when working with API Macros:

• For backwards compatibility the parameters line and the outside braces enclosing
the macro are optional.

• The <ret_type> part of the parameters line is required. If the macro returns no
value, use the special type 'void'. Otherwise use either 'int or 'string' here.

• The <macro_name> part is optional since it serves no functional purpose.
However to maintain good C style form, use the same name here as the macro
name shown in the dialog's combo box.

• The left and right parentheses frequently contain one or more comma-separated
formal parameters. Each formal parameter variable begins with either 'int' or
'string', and ends with the identifier naming it. If no parameters are used, use
the special 'void' type alone between the left and right parentheses.

• If the return type is not 'void':

• Use the return statement at the end of the macro.

• Include an expression in the return statement to use for the return value.

Literal Values

Literal values can include numbers, characters and strings.

Number Literal Formats

Decimal, hexadecimal and octal number formats are supported. Hexadecimal numbers
must start with '0x'. Octal numbers must start with '0'. All other numbers are
considered decimal.

Character Literals

Character literals are just an alternate method of specifying a literal number. Delimit
character literals at the beginning and end with a single quote (') character.

Character literals usually contain one character but will have two or three if the first one
is the backslash (\) escape character. Use the backslash before a contained single
quote if you wish the single quote to represent the character literal value.

1

Using Hawk™

340

15

String Literals

String literals are sequences of characters that are delimited at the beginning and end
by the double quote (") character. To include the quote in the string, precede it with
the backslash (\) escape character. String literals can continue onto following lines if
the last character in the line is a backslash.

Escape Sequences

The following are escape sequences for both string and char literals:

• If you want to use the backslash in function calls that expect a single backslash in
the string, be sure to double it in the literal string.

Automatic Type Conversion

Values are automatically converted to another type when used where that type is
expected.

Examples

• If a 'string' type is used where an 'int' is expected, this is how it is converted:

If the string begins with decimal, octal or hexadecimal characters, they are converted
for the number. If not, the value will be one if the string contains at least one character
and zero if it is empty.

• If the 'int' type is used where a 'string' is expected, the value is converted to
decimal characters.

Table 15-9. Escape Sequences

Literal Escape Sequence

\n New line (<CR><LF> or <LF>, depending on how it is defined for the
document)

\t Horizontal tab

\b Backspace,Ctrl-H

\r Carriage return

\f Form feed, 0x0c

\nnn Octoal value between 0 and 0377

\xnn Hexadecimal digit between 0x00 and 0xFF

\m The literal character m.

1

Chapter 15: Extending Hawk

341

15

Expressions

Expressions are made up of operators and operands. Operators can be variables,
literals, operators, and function or macro calls; support is provided for all C operators.
Numeric, logical and string expressions are allowed. Expressions can be used as
function call parameters.

Assignments and Operators

Assignments take the form:

<variable> <assign_op> <expression>

Assignments are allowed to begin at three places in a statement: at the beginning of
the statement, directly following a left parenthesis or directly following a comma.
Multiple assignments are allowed in the same expression.

Example

a = b = c = 0;

The assignment operators available include the following:

The numerical operators available include the following:

Table 15-10. Assignment Operators

Operator Description

= Simple assignment

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulo and assign

<<= Shift bits left and assign

>>= Shift bits right and assign

Table 15-11. Numerical Operators

 Operator Description

+ Addition

1

Using Hawk™

342

15

Logical expressions evaluate to a one or zero, TRUE or FALSE, respectively.

Logical operators include the following:

- Subtraction

* Multiplication

/ Division

% Modulo (remainder)

<< Shift bits left

>> Shift bits right

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise Complement

Table 15-12. Logical Operators

 Operator Description

== Equivalence

!= Non-equivalence

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

&& AND

|| OR

! Negation

Table 15-11. Numerical Operators (Continued)

1

Chapter 15: Extending Hawk

343

15

String Operator Rules

Some operators have special meaning when their operands are strings. Use '+' to
Concatenate; use '+=' to concatenate and assign.

String concatenation is the joining of two strings where the string following the operator
is appended to the string before the operator. If the left operand is of type 'string',
string concatenation is done, otherwise numerical addition is done. The right operand is
converted as needed for either form. This capability makes it easy to compose output
strings containing the descriptions and values of variables.

The following are logical comparison operations:

== TRUE if string1 and string2 match

!= TRUE if string1 and string2 don't match

> TRUE if string1 is alphabetically after string2

< TRUE if string1 is alphabetically before string2

>= TRUE if string1 is alphabetically after string2 or matches

<= TRUE if string1 is alphabetically before string2 or matches

String comparison operations require that both operands be strings. Otherwise the
numerical comparison is done. The single string operand is converted to type 'int' if
needed.

By default, string comparisons are case insensitive (ignore case is on).

• To change case sensitivity for the current invocation of a macro, put the call below
in your macro:

MacroIgcase(FALSE);

• To query the current state use the following:

MacroIgcase(-1)

Other Operators

Refer to the following descriptions of other available operators:

Table 15-13. Other API Macro Operators

Operator Description

, Comma operator. This operator is used for two purposes:
• Separates parameters in the calls to other macros or functions. (most

commonly).
• Separates sub-expressions within a larger expression. This use is often seen

in the ‘for’ statement, where it allows multiple sub-expressions in any of the
three semicolon-separated sections that control the ‘for’ statement.

The value taken for a sequence of comma-delimited sub-expressions is that of
the right-most sub-expression.

1

Using Hawk™

344

15

Operator Precedence Rules

Operators with the highest precedence are evaluated first. These operators are binary
(requiring left and right operands) unless otherwise indicated.

Associativity indicates the order of evaluation when two operators have the same
precedence. For example, most operators evaluate starting at the left in an expression,
processing right.

? : Conditional operator. This operator takes the form:
<test_expr> ? <true_expr> : <false_expr>

If <test_expr> evaluates as non-zero, the <true_expr> is executed
and its value is taken. Otherwise, the <false_expr> is executed and its
value is taken. Although this operator can be used without restriction within
expressions, it is commonly used as the right part of assignment statements.
bValue = bTest ? bVal1 : bVal2;

++ Pre-increment or post-increment operator. This operator can only be used
directly preceding or trailing an 'int' type variable:
• When used before the variable, the variable's value is increased by one

before it is used within an expression, if any.

• When used after the variable, the variable's value is taken first for use in a
expression, then the variable's value has one added to it.

-- Pre-decrement or post-decrement operator. This operator can only be used
directly preceding or trailing an 'int' type variable:
• When used before the variable, the variable's value is decreased by one

before it is used within a expression, if any.
• When used after the variable, the variable's value is taken first for use in a

expression, then the variable's value has one subtracted from it.

Table 15-14. Operator Associativity

Operators (from high to low precedence) Associativity

() none

- ~ ! ++ -- (all unary) R to L

* / % L to R

<< >> L to R

+ - L to R

Table 15-13. Other API Macro Operators (Continued)

1

Chapter 15: Extending Hawk

345

15

Parentheses in Expressions

Left and right parentheses, '(' and ')', may be used to group expression parts to set
evaluation preference.

Short Circuiting

The '&&' and the '||' operators have special evaluation rules. The idea of short
circuiting is that often only the left operand needs to be executed and evaluated.

• For the '&&' operator, if the left operand evaluates as zero, the value of the
operation must be zero (FALSE) so the right operand can be ignored.

• For the '||' operator, if the left operand evaluates as non-zero, the value of the
operation must be one (TRUE), so the right operand can be ignored.

Function Calls

Function calls, including those to Hawk API functions and macros, take the following
form:

<macro_name> <parameter1>,<parameter2>,...<parameterN>)

The following rules apply:

• Spaces and tabs are allowed after the macro name and between parameters.

• Parameters must be separated by commas.

< > <= >= L to R

== != L to R

& L to R

^ L to R

| L to R

&& L to R

| | L to R

? : (trinary operator) L to R

= *= /= %= += -= <<= >>= &= |=
^=

R to L

, (comma operator) L to R

Table 15-14. Operator Associativity (Continued)

1

Using Hawk™

346

15

• You may supply fewer parameters than a function is defined to use. The remaining
parameters will be supplied for you as zeros or NULLs.

Exiting and Macro Return Values

Use the return statement to exit a macro before the last line and if the macro has a
return type, return a value. End the return statement with a semicolon.

For backward compatibility, if there is no specified macro return type, the return value is
optional. For what is allowed, see the discussion on Expressions in this chapter.

If the expression does not evaluate to the type expected by the macro's defined return
type, the value is automatically converted. See the preceding discussion on Automatic
Type Conversion, in this chapter.

Statements and Statement Blocks

Statements are expressions including optional preceding assignments, ended by a
semicolon. Statements can span multiple lines if needed. More than one statement
can share a line, but it is better form to have them on separate lines. A statement need
not contain anything more than a semicolon.

Statement blocks are a series of statements. They are normally used in conjunction
with control structures. Use curly braces '{' and '}', to begin and end statement
blocks, respectively. A statement block can be used anywhere a single statement can
be used.

Program Flow of Control Structures

The available program flow control structures are of conditional and iterative types.
Both conditional and iterative statements can be used anywhere statements might be
used.

Conditional Statements

Examples of conditional statements include:

• 'if' statement

if (<expression>)
<statement>;

• 'if-else' statement

if (<expression>)
<statement>;
else
<statement>;

Testing for several conditions can be done by using the 'if-else' statement in place
of the statement following the 'else'. The following does this and also uses a
statement block:

• See the discussion on Expressions, in this chapter, for what can be used as parameters.
Macro recursion is supported.

1

Chapter 15: Extending Hawk

347

15

• 'if' (<expression one>)

{
<statement>;
<statement>;

}
else if (<expression two>)

<statement>;
else if (<expression three>)

<statement>;
else

<statement>;

• 'switch' statement

switch (<test_expression>)
{
case <constant_expression1>:
<statement>;
<statement>;

break;
case <constant_expression2>:

break;
default:

<statement>;
break;

}

The 'switch' statement executes specific statements based on the value of a test
expression. Specify which statements to execute for given values via the 'case'
lines. There can be many 'case' lines, but each must have a unique value from the
constant expression.

These constant expressions must be able to be evaluated at compile time. They must
not contain function or macro calls. They must not contain variables or string literals.

The 'break' statement line following each 'case' section is optional. Without a
'break', execution continues into the following 'case' or 'default' section. The optional
'default' section is executed if none of the cases are matched by the test expression.
The braces are required.

Iterative Statements

Refer to the following types of iterative statements:

• 'while' statement

while (<expression>)

<statement>;

The 'while' statement allows you to execute a statement repeatedly.

The <expression> is evaluated before each iteration:

• If non-zero, the contained statement is executed.

• If zero, execution proceeds with the statement following the 'while'
statement.

1

Using Hawk™

348

15

• 'do-while' statement

do

{

<statement>;

} while (<expression>);

The 'do-while' statement also allows you to execute a statement repeatedly.
The <expression> is evaluated after each iteration. The 'do-while'
statement will execute its contained statements at least once. The braces are
required.

• 'for' statement

for (<init_expression>; <test_expression>;
incr_expression>)

<statement>;

The 'for' statement contains three parts within the parenthesis:

• The first part, <init_expression>, only executes once, but before any
other part of the for statement.

• The second part, <test_expression>, is executed before each
iteration of the loop. If its value is non-zero, the contained <statement>
is executed. If <test_expression> is missing, the contained
<statement> always executes.

• The third part, the <incr_expression>, is executed after each loop
iteration.

Each of the three parts is optional. If you leave out the <test
expression>, it is common to end the loop from within the contained
statement section using the 'break' statement.

• 'break' statement

break;

The 'break' statement causes execution to resume immediately following the
innermost statement containing 'switch', 'while', 'do-while' or 'for'.

• 'continue' statement

continue;

The 'continue' statement causes execution to not finish the current iteration
of the innermost containing loop; instead, the next iteration is begun. In the
'while' and 'do-while' statements, the next evaluated is the <test
expression>. In the 'for' statement, the <increment expression>
is evaluated next.

Run-time Error Handling

API macros protect against several kinds of run-time errors:

• Ctrl-break stop

1

Chapter 15: Extending Hawk

349

15

If you have written a locked loop in your macro, use the C[Break] keystroke to
terminate it.

• Divide by zero error

If the macro attempts a divide or modulo by zero, you will get this error.

• Runaway recursion protection

Recursion macro code can sometimes have the problem of not ending the
recursion correctly. This can lead to an ever-expanding stack. Each time an API
macro is called from another, the level of call is checked to see if it is greater than
the allowed maximum (default is 50). This maximum level can be adjusted with
the function MacroMaxRecursion.

Hawk Event Handling

Three special macros have been added to MWHAWK.MAC to facilitate event handling by
API macros:

• _Init_API_Macro — This macro is automatically called when Hawk starts up. To
register events you want to handle, put calls to EventRegister here. You can
also put other code here you want run at startup.

• _API_Macro_int_handler — This macro is an example handler for when the
event data is known not to be type 'LPSTR'. Use this macro for most events.

• _API_Macro_string_handler —This macro is an example handler for when
the event data is known to be the type 'LPSTR'.

On events where the data is a pointer of type other than 'LPSTR', you can still trap the
event but will not be able to access the data.

Differences between API Macros and C

The following are included in C, but not in API macros:

• types 'char', 'short', 'float', 'double', 'unsigned'

• arrays and pointers

• Typedefs, enums, structs and unions

• variable scope limited to statement blocks

• preprocessor capability

• "…" parameter type (printf)

• 'goto' statement and labels

• link phase and libraries

The following are included in API macros, but not in C:

• variables needn’t be declared at function top (like C++)

• lesser number of parameters in calls allowed (like C++)

• string type and special operator capability

1

Using Hawk™

350

15

• automatic memory management (for 'string' type)

• compile on demand (first time run)

• run-time error handling

• global variables are declared within macros

String Functions

Since library functions are not available in API Macros, a number of string functions are
made available through the Hawk API for building and comparing strings.

• LPMSTR StringApnd(LPSTR str1, LPSTR str2);

Append str2 onto str1. Neither string is freed.

• LPMSTR StringNApnd(LPSTR str1, LPSTR str2, int len2);

Append len2 bytes of str2 onto str1. Neither string is freed.

• int StringLength(LPSTR str);

Return the length of str.

• int StringCompare(LPSTR str1, LPSTR str2);

Returns < 0 if str1 is alphabetically before str2. Returns > 0 if str1 is
alphabetically after str2. Returns 0 if str1 matches str2.

• int StringICompare(LPSTR str1, LPSTR str2);

Like StringCompare but ignores case.

• int StringNCompare(LPSTR str1, LPSTR str2, int len2);

Like StringCompare but only compares len2 bytes.

• int StringNICompare(LPSTR str1, LPSTR str2, int len2);

Like StringCompare but ignores case and only compares len2 bytes.

• LPMSTR StrAscii(int ch);

Converts a character into a single character length string.

• LPMSTR StrItoA(long value, int radix);

Converts a number into a string. Use a radix of 10 for decimal string.

• LPMSTR StrLtrim(LPSTR string, LPSTR cset);

Trims characters in cset off the left of string.

• LPMSTR StrTrim(LPSTR string, LPSTR cset);

Trims characters in cset off the right of string.

• LPMSTR StrSubStr(LPSTR string, int start, int end);

Return a substring out of string.

• LPMSTR StrFormatDate(long t, LPSTR fmtStr);

Formats a time/date value into a string.

• LPMSTR TransformFilename(LPSTR filename, LPSTR spec);

Documented in the online help.

1

Chapter 15: Extending Hawk

351

15

• BOOL StrFileMatch(LPSTR fpattern, LPSTR fname, BOOL igcase);

Determine if a filename is matched by a pattern.

Making DLL Add-Ons

Loading DLLs, or Add-Ons, interactively from the Customize -> Libraries dialog
will add functionality to Hawk. The functionality that is added depends on what the DLL
in question is designed to do. Many Add-Ons are available in a list of Hawk
Libraries in the Libraries dialog. Those Add-Ons are quickly loaded by placing
check marks next to the desired Add-On. More Add-Ons are available on the Hawk CD.

Consider adding a function by modifying a Hawk DLL or creating a new DLL, only if all
of the following are true:

• Hawk can not perform a particular function.

• There is no existing Add-On or macro that will add that function.

• Creating a macro is out of the question.

Source code for most Hawk DLLs is provided with a full installation of Hawk. A full
Hawk installation also installs a Sample subdirectory in the Hawk directory that
contains source code for an essentially empty DLL, which can easily be modified to add
any function desired.

This section has three major provisions for changing or adding capabilities to Hawk
through DLLs:

• It provides direction to the source code to be changed or added to.

• It provides some assistance for making the changes or additions.

• It provides tips on how to compile and make use of the changes or additions that
have been made.

The first step to changing Hawk is to understand its anatomy.

The primary executable, MWHAWK.EXE, contains the Hawk Application Programming
Interface (API). These are the functions and capabilities that are basic to Hawk's
operation. Although you cannot rewrite the functions in the API, you can replace them,
in a limited fashion. However, please note that the source code for main executable is
not supplied.

External to the primary executable are several Dynamically Linked Libraries (DLLs)
which provide services in several areas, including the following:

• core services

• supplemental language support

• keyboard command sets

• auxiliary services

The following illustration depicts the organization of the Hawk software system. The
auxiliary and language supplements are not complete. Hawk offers more in these areas
than would fit on a page. However, the picture gives an accurate idea of the Hawk
architecture.

1

Using Hawk™

352

15

Figure 15-9. Hawk Architecture

Core Services
The core services are those that Hawk always expects to have available. Some of these
services are so essential that Hawk is unable to properly initialize without them. For
example, you could use Hawk if no keyboard command sets were available — you
could even build or find a keyboard command set. If the core services were missing,
however, the keyboard commands would be of no use.

CWSTART DLL

The main DLL that starts Hawk is named CWSTART.DLL. It performs numerous
initialization tasks, such as loading other DLLs and reading the configuration file. The
source code to CWSTART.DLL is provided. Many of the extension functions are
defined in this DLL. To use them in your own source code you need to include the
header file CWSTART.H, which is in Hawk's CWSTART subdirectory.

The tree diagram and file descriptions below will help you locate the functions provided
in the various source files for CWSTART.

1

Chapter 15: Extending Hawk

353

15

Figure 15-10. Tree Diagram of CWSTART.DLL

Table 15-15. Source Files

ASM.C AUTOSAVE.C BRACE.C ERRORFIX.C

C.C COMPILE.C CURSOR.C ERRINFO.C

CPP.C CONFIG.C ENTAB.C

LANGUAGE.C CWSTART.C PREPROC.C

PAS.C DLGMENU.C PROMPT.C

HTML.C FILTER.C REPEAT.C

CWJAVA.C OUTPUT.C SLIDE.C

STATE.C TABSET.C

UTIL.C TAGS.C

VCS.C EXECMAC.C

WWRAP.C

DLGUTIL.C

NAMEMARK.C

OUTLINE.C

PROJECT.C

1

Using Hawk™

354

15

• Support for additional languages, such as Paradox and dBASE/Clipper are
contained in separate DLLs. These DLLs are Language Supplements, and their use
is optional. See the topic Supplemental Language Support, for a more complete
description.

Descriptions of the files listed in the preceding diagram are provided in the following
tables.

Table 15-16. Language Features

File Description

LANGUAGE.C The file that contains the engine for language specific features,
such as ChromaCoding, Template Expansion, and Language
Indenting. It relies on a series of functions being defined elsewhere
that incorporate the corresponding filename extension into the
function name (such as, _c_indent(),
_pas_indent()).

ASM.C This file contains the functions that support language specific
features for assembly language source files (.ASM files).

C.C This file contains the functions that support language specific
features for C language source files (.C files).

CPP.C This file contains the functions that support language specific
features for C++ language source files (.CPP files).

PAS.C This file contains the functions that support language specific
features for Pascal language source files (.PAS files).

HTML.C This file contains the functions that support language specific
features for HTML source files (.HTML files).

CWJAVA.C This file contains the functions that support language specific
features for Java language source files (.JAVA files).

Table 15-17. Utilities

File Description

AUTOSAVE.C Contains the functions in support of the Auto-save feature.

COMPILE.C Contains the functions for the Compile, Make, and Rebuild
selections on the Project menu.

1

Chapter 15: Extending Hawk

355

15

CONFIG.C Contains the functions that read, write and process the
configuration file.

CWSTART.C The functions in this file initialize the CWSTART DLL.

DLGMENU.C Contains the supporting functions for the Popup Menu defined by
CWRIGHT.MNU.

FILTER.C Contains the functions that support the Filter selection on the
Project Properties dialog.

OUTPUT.C Contains the supporting functions for the tabbed Output
Window.

STATE.C Contains the functions that read, write and process the state file.

UTIL.C Contains functions used by one or more of the keymaps and other
shared functions, such as NextWord/PrevWord.

VCS.C Contains the functions supporting the Version Control
submenu.

WWRAP.C Contains the function in support of the Word Wrap and related
features.

DLGUTIL.C Contains functions for enhancing Hawk dialogs.

NAMEMARK.C Contains functions for naming Hawk’s bookmarks.

OUTLINE.C Contains functions for Hawk’s Outline Symbols feature.

PROJECT.C Contains certain functions relating to Hawk projects.

Table 15-18. Error Parsing

File Description

ERRORFIX.C This file contains the engine that drives the various error parsers for
different compilers and languages.

ERRINFO.C This file contains the actual error parsers for the various compilers.

Table 15-17. Utilities (Continued)

1

Using Hawk™

356

15

CWDIALOG DLL

Many of the Hawk dialog functions are contained in a DLL that is loaded during
initialization. The name of this file is CWDIALOG.DLL. This library contains the dialog
functions that support the menuing and other interactive operations. The source code
for the CWDIALOG DLL is supplied Hawk.

There are a number of functions in this DLL that allow you to access the dialogs on the
menu directly. It is sometimes useful to assign these functions directly to keys, or to call
them from your own source code. These functions are the functions beginning with
Dlg... and Print. To use these functions, just include the file CWDIALOG.H into
your C source code. You will find this file in Hawk's CWDIALOG subdirectory.

CWHELP DLL

The CWHELP DLL contains the functions that access the various Help libraries used by
Hawk. These include the contextual help for the editor, the Hawk API function help, and

Table 15-19. Macros

File Description

BRACE.C The source code file for the Hawk brace matching features, including
the functions Brace, BraceMatch and
BraceMatchNext.

CURSOR.C This file contains functions to make and support mouse assignments
and operations.

ENTAB.C The functions that support entabbing and detabbing the current
buffer are contained in this file.

PREPROC.C Contains the functions in support of the Preprocess function.

PROMPT.C This source file contains the prompting functions and supporting
functions that use the prompt history facility.

REPEAT.C Contains the source code for the function Repeat, which repeats a
command a specified number of times.

SLIDE.C Contains the functions for moving a block of text in or out.

TABSET.C Contains the functions supporting setting tabs, including extension
specific settings.

TAGS.C The source file for the functions that support the CTags features.

EXECMAC.C Contains source code for Hawk’s API Macros.

1

Chapter 15: Extending Hawk

357

15

the Microsoft Windows API (SDK) help, if you have it. The name of the DLL is
CWHELP.DLL.

If you want to call the function cwhelp from your C source code, you will need to
include the file CWHELP.H in your file. This header file is located in Hawk's CWHELP
subdirectory.

Keyboard Command Sets
Hawk is supplied with four keyboard command sets, also called keymaps. They include
the following:

• CUA (Common User Access)

• BRIEF emulation

• Epsilon emulation

• vi emulation

Each is contained in a separate DLL. The C source code files and makefiles are
included for each of these DLLs. Unless you have elected not to install portions of the
source code, each set of source code has been installed in its own subdirectory.

Supplemental Language Support
In addition to the support for C/C++, Pascal, HTML, and assembly language built into
the CWSTART DLL, support is provided for other languages in separate DLLs. The
source code for these DLLs is provided. Below is a description of the language support
DLLs provided:

• For more information on Hawk’s keymaps, refer to the topic Using Keymaps in Chapter
12 Customizing the Interface.

Table 15-20. DLL Language Support

DLL Description

PRG.DLL This DLL contains the functions that support language specific
features for dBASE and Clipper language source files (.PRG files).

SC.DLL This DLL contains the functions that support language specific
features for Paradox PAL source files (.SC files).

COB.DLL This DLL contains the functions that support language specific
features for COBOL source files (.COB files).

BAS.DLL This DLL contains the functions that support language specific
features for Visual Basic for Windows (.BAS files).

1

Using Hawk™

358

15

These DLLs are not automatically loaded, as is CWSTART.DLL. You will need to use
the Libraries dialog on the Tools -> Customize menu. It adds a statement to
your Hawk configuration file (MWHAWK.INI). Below are example load statements for
these DLLs:

[LibPreload]

LibPreload=PRG.DLL

LibPreload=SC.DLL

LibPreload=COB.DLL

LibPreload=BAS.DLL

The statements above load the DLLs and make the functions in them immediately
available for use. This does have the effect of slowing the initial loading of Hawk. An
alternative is to use LibAutoLoad rather than LibPreload. This will cause the
DLLs to be loaded only on demand. It does, however, require listing all of the function
in the DLL in the statement. See the description of this function for details.

Auxiliary Services
The Auxiliary Services or DLLs provide support for supplemental features. These
features or groups of features are generally provided in separate DLLs. The source code
for each DLL, if provided, is in a subdirectory within the Hawk home directory. Each
subdirectory is given a name that is the same as the root name of the DLL.

These Features or DLLs are Add-On packages that may not be required by every
user. Like the additional language support DLLs, they may require a little setup to use.
They are generally not loaded automatically.

CWHTML.DLL This DLL contains additional support for the HTML language,
including a split window viewer.

CWJAVA This DLL contains the functions that support language specific
features for JAVA source files.

Table 15-20. DLL Language Support (Continued)

Table 15-21. Additional Language Support DLLs

DLL Description

CWLDRAW.DLL This DLL allows remapping the keyboard so that you can draw
lines and boxes in your file, using the IBM OEM character set. You
must be using OEMfixed, 8514oem, terminal, or similar
font. If not, these lines will be displayed as international
characters. It is not loaded automatically.

1

Chapter 15: Extending Hawk

359

15

Sample DLL
As mentioned, the source code for an essentially empty sample DLL is included with a
full Hawk installation. You will find it in the SAMPLE subdirectory in the Hawk home
directory. You can add to this file, or you may use it as an example of what elements go
into a Hawk DLL.

The source code for SAMPLE.DLL is a skeleton of comments and function stub or
two. The comments show you where to insert additions or changes that you want to
make to Hawk. These insertions might include some of the following:

• Loading other DLLs, possibly written in a programming language other than C.

• Adding event handlers.

• Setting defaults, much as you would in the configuration file.

• Adding key commands.

• Writing and installing replacement functions.

A makefile is also included for this DLL.

CWREDIT.DLL This DLL provides the user with the ability to edit the Tool
Toolbar and SideBar interactively. It supports the
Tools -> Customize -> Toolbars menu
selection.

CWDIFF.DLL This DLL contains the support for the Hawk differencing feature. It
allows side-by-side differencing of files or buffers, in addition to
single buffer difference analysis.

CWFOPEN.DLL This DLL supports the File Open mode of the Hawk
SideBar.

CWDDE.DLL This DLL contains the functions that turn Hawk into a DDE server.
Other applications can then operate Hawk remotely to perform
syntax checking, Lint, and Tags database updating. The DLL is not
loaded automatically.

CWBROWSE.DLL This DLL contains the main support for the Hawk Browser. This
DLL is loaded automatically, when needed.

CWTAGS.DLL This DLL supports the use of Starbase compiled Tags databases
with the Browser. It is loaded as needed.

CWBSC7.DLL This DLL supports the use of Microsoft Browser databases
(C/C++ V7.0+) with the Browser. It is loaded as needed.

CWWEB.DLL This DLL supports loading files edited in Hawk into various Web
browsers. It is not loaded automatically.

Table 15-21. Additional Language Support DLLs (Continued)

1

Using Hawk™

360

15

Dissecting a Hawk DLL
Your compiler imposes certain requirements in order to correctly produce a Microsoft
Windows-compatible DLL. In addition to those requirements, there are a few essentials
required by Hawk. This section will help you understand what Hawk requires and why.
The following sections describe a typical Hawk DLL.

The _init Function

Whenever Hawk loads a library, it executes that DLLs _init function, if the library has
one. This is the function you use for initializing the DLL and letting Hawk know what
functions the library has to contribute. Generally, this function consists of a series of
LibExport function calls, which export the functions defined in that DLL for use by
other entities in Hawk.

Exporting Functions

The functions in a DLL, and the parameters for each, must be registered with Hawk
before you can make full use of them. If you don't register them with Hawk, you will
not be able to assign them to a key or call them from the API Command Key. You
register or export the functions with the LibExport function. This is in addition to any
export declarations required by the programming language.

This requirement is a result of the use of Pascal calling conventions. When using Pascal
calling conventions, the program stack would become unbalanced if any function
parameters were omitted. Yet, the function LibFunctionExec, which services the
API Command Key and the key assignments, has no way of knowing the type and
number of parameters are required unless you tell it. The LibExport function does
this.

• If you change the number or type of parameters in a DLL function, you must
remember to change the corresponding LibExport call that registers that
function.

Making Changes and Additions
When you have determined that you are going to modify the Hawk source code, you
have two approaches available to you. You can change existing functions or add new
functions to the system.

Changing Existing Functions

Changing an existing function is often an efficient method of change, if your change is
small and you want the change to be reflected whenever a certain function is called.
This usually avoids the need to create or change a LibExport call.

For example, you might want to change the function that moves the cursor ahead in
increments of a word. You can be relatively certain that this function is going to be
called as the result of some key command.

1

Chapter 15: Extending Hawk

361

15

If you were less certain about what other routines might be using the function, you
would need to consider the effects of your changes on those other routines. If you are
in serious doubt about what routines may be relying upon the function, it is best not to
change it. Instead, create a new function that is called when you want it, and leave the
old function in place for the routines that use it.

Adding Your Own Functions

When adding your own functions, you must be sure that they are declared in the same
manner as other Hawk functions. You won't be able to assign your functions to keys,
call them from the API Command Key, and other useful things, unless you properly
export your functions to Hawk. This means using LibExport.

If you create a new file for your functions, you will have to be sure it uses the necessary
header files (CWSTART.H, CWDIALOG.H, CWHELP.H...), and that it is included in the
compile and link.

There is a macro defined in EXPORTS.H that simplifies defining new functions for
Hawk, when programming in C. Just define your function as DLL and it is automatically
declared as Pascal calling conventions, exported, and so forth. Here is an example of its
use:

void DLL

KeyNotInUse(void) {

SysBeep();

MsgWarning("Unassigned key");

}

Windows NT also requires that all functions be added to the .DEF file in order to be
properly exported. Just edit this text file and add your function name to the end of the
existing list. Also note that Windows NT is case sensitive in function names, whereas
Windows 95 and Windows 98 are not.

Creating New Keymap Command Sets
Keymaps have additional requirements over and above those of a Hawk DLL. This
section describes the basic outline of a keymap.

Keymap _init Function

Like the _init function for any other Hawk DLL, the Keymap's _init function
typically contains a series of LibExport calls that make functions available to Hawk.
This is necessary for any functions you create to assign to keys within the keymap.

Normally, the _init function does not install the keymap. If it did, you would not be
able to load the DLL to have access to its functions without loading the keymap.

Keymap Function

The keymap function is the function that creates and installs the new keymap. To be
compatible with the DefaultKeymap function, this function must have the same

1

Using Hawk™

362

15

name as the root of the DLL in which it resides. For example, the CUA keymap is in the
file CUA.DLL and is installed with the CUA function.

Flag Initialization

One of the first tasks in your keymap function is to set options the way users of your
keymap will expect to find them. For example, the BRIEF keymap needs to allow
assignments to Alt keys, and does not create a new window for each new file that is
loaded. If the users of your keymap expect to have vertical and horizontal scroll bars
on their edit windows, now is the time to implement that functionality.

There are several functions that assist in setting the options you require. They are
SysSetFlags, SysSetDefault, and SrchSetFlags:

• Use SysSetFlags to set options you might otherwise set from various Hawk
dialogs.

• Use SysSetDefault to set up window and buffer settings the way you want,
even before any buffers or windows have been created.

• Use SrchSetFlags to set the default search settings.

You are not dictating with these settings how a user must operate. The settings you
create here may be overridden by settings stored in the configuration file or state file.

Basic Assignments

When you create a new keymap, it is empty. The only keys or mouse actions that will
work are those that Hawk lets Windows process. This includes menus, HT, HX, H$ and
such. If you want pressing the A key to produce an A in a buffer, you need to make that
key assignment.

There are functions provided to take the drudgery out of making these assignments.
KmapAssignTypables and KmapAssignRange are your primary assistants. The
difference between these two functions is that the first makes assumptions about what
you want the keys to do, whereas the second allows you to specify the function that is
assigned to the keys.

Keymap Specific Assignments

Now you are ready to make assignments specific to your keymap. Your main tool in
doing this will be the function KmapAssign. Use the Hawk API functions, or create
your own supporting functions to assign to keys. Remember that when you create your
own functions you will need to export it with a LibExport call in the DLL's _init
function in order for the key assignment to work. Otherwise, you will get a "function not
found" message when you press the keystroke.

Menu Accelerators

The last step in creating your own keymap is to put strings indicating any "shortcut"
keys or accelerators on the menu. You will rely on the MenuAddKeyString function
to do this.

1

Chapter 15: Extending Hawk

363

15

Recompiling a DLL
Part of the Hawk directory structure is a miniature of that used by most C compilers.
There is an INCLUDE subdirectory that contains header files, a LIB subdirectory to
contain .LIB files, and subdirectories to contain the source code for each of the Hawk
DLLs you can rebuild. The INCLUDE and LIB subdirectories must be made known to
your compiler and linker. You can do this manually, or through the use of a MAKE utility
or Project file, if your compiler supports these things.

Using and Modifying the Makefiles

There are two types of makefiles supplied for each of the DLLs that can be modified.
Only one type is installed for each subdirectory containing DLL source code. The type
installed depends on the choice made at installation. The choice is between Microsoft
or Borland makefiles. If you did not choose a "Full" Hawk install, you would not have
been offered the choice of Microsoft or Borland source code, and they would not be
installed.

The primary things that makes these files specific to one compiler or another are the
compile and link command lines that they employ. If you are using some other
compiler, you should find adapting it to your compiler is a straightforward task. You can
recognize the Microsoft makefile by looking for the file with no extension that has the
same root name as the DLL it makes. The Borland makefile uses the same name,
except that the extension used is .MAK. Once again, if the desired makefile does not
appear, do a "Full" reinstall of Hawk, and choose the appropriate option when the
prompt comes up.

The compiler needs to know that you intend to create a 32-bit DLL. Defining the
environment variable CPU is normally sufficient to cause the Microsoft makefile to
generate a 32-bit DLL. Alternatively, you may generate a 32- bit DLL for Borland or
Microsoft by defining a macro named WIN32 at the beginning of the makefile:

WIN32=TRUE

The DLLs themselves are generated in a subdirectory of the source file directory. The
name of the directory varies depending on source type (Borland or Microsoft) being
compiled. Usually it will be something like “Release” or “Rel”. Once the DLL has been
compiled, it is advisable to move it up to the Hawk executable directory, although this is
not required.

The Borland compiler often relies on configuration files and command line switches to
locate include files and libraries, rather than environment variables. As a result, it may
be necessary to modify a macro definition in the Borland makefile to indicate the
location of these files, unless you have installed the Borland compiler in the default
directory. If you have installed your Borland compiler in another location, modify the
value assigned to BORPATH toward the beginning of the makefile. For example, if you
installed the compiler in the directory D:\BC, change the assignment to read as
follows:

BORPATH=D:\BC

1

Using Hawk™

364

15

Adding Files

Groups of related files have been defined as macros toward the beginning of each
makefile. This facilitates operating on the filenames as a group. Also, if you choose to
place the source code for some extensions to Hawk in a separate file, you can readily
add those filenames to the macro definitions. If the makefile employs a linker response
file, such as CWSTART.LNK, don't forget to add your file to the list in the response file
so that it will get linked in.

Compile and Link Options

The compiler options you use for compiling Hawk DLLs are largely the same as you
would use for compiling any Microsoft Windows DLL. Hawk DLLs must be compiled
using Large Memory Model. If you specify your include directories on the
command line, be sure to include the Hawk CWSTART and INCLUDE subdirectories in
your command. You will find that this has been done for you in the makefile.

Similar requirements apply to your Link command. Begin with your basic Link
command line for producing a Windows DLL. The libraries in Hawk's LIB subdirectory
must be linked with the other objects. A standard .DEF file has been supplied for each
DLL.

Link Libraries

The makefiles provided reference certain libraries in the linker command. You may find
it useful to know the purpose of each of these libraries in case you have a different
version of the same compiler or would like to construct a similar command line for a
compiler not supported.

Microsoft Link

This is the command line in the makefile for Microsoft C invoking the linker:

link /NOD $(LIBDIR)\libentry @cwstart.lnk, $(DLLDIR)\
cwstart.DLL,,libw oldnames\ lDLLcew $(LIBDIR)\
cwright,cwstart.def

The libraries used in this link command are LIBW.LIB, OLDNAMES, LDLLCEW.LIB
and CWRIGHT.LIB. Of these, the files LIBW.LIB and CWRIGHT.LIB are import
libraries. They don't contain any object code themselves, but rather tell where the
routines may be accessed at run-time. LIBW.LIB points to addresses in USER.EXE,
GDI.EXE and other executables that provide the Windows API. CWRIGHT.LIB
points to addresses in the Hawk kernel that support the Hawk API.

You may need to link in other import libraries at times, for example, if you are making
direct calls to routines in CWSTART.DLL, CWMATCH.DLL or a DLL of your own
creation. If you don't have an import library (.LIB) file corresponding to the DLL you
are using, you can create one with the ILIB utility supplied.

LDLLCEW.LIB

The library LDLLCEW.LIB contains object code to use when creating Large Memory
Model Windows DLLs. Depending on your installation of Microsoft C, you may find that

1

Chapter 15: Extending Hawk

365

15

your Large Memory Model library is named LDLLCAW.LIB instead. Alternately, you
may find that you have not installed any large model library at all. If so, you can run the
setup program that came with your compiler to add to your installation. If you use a
library intended for any other memory model you are guaranteed to have a program
that doesn't work right, and will probably crash Windows.

OLDNAMES.LIB

The library OLDNAMES.LIB is included to avoid unresolved externals. This is because
Microsoft changed the names of some of their library routines. See your MSC 7.0
README file for details. If you are using an older version of the Microsoft compiler, you
should remove this library from your command line.

Borland Link

Below is a portion of the input script for TLINK in the makefile for Borland C/C++:

..\lib\cwright.lib+

import.lib+

cwl.lib

The purpose of these libraries follows closely the libraries described above for
Microsoft. The libraries CWRIGHT.LIB and IMPORT.LIB are import libraries.
IMPORT.LIB is supplied to you by Borland for the Windows API and CWRIGHT.LIB
comes from Starbase for the Hawk API.

You may need to link in other import libraries at times, for example, if you are making
direct calls to routines in CWSTART.DLL, or a DLL of your own creation. If you don't
have an import library (.LIB) file corresponding to the DLL you are using, you can
create one with the ILIB utility supplied.

The third library CWL.LIB contains object code to use when creating Large Memory
Model Windows DLLs. This library was named CWINL.LIB in versions prior to 3.0.
Use only a Large Memory Model library intended for Windows for this purpose.

Using Your Own DLL

There are several reasons that you may have for wanting to use a DLL that you have
developed on your own, rather than modifying one of those supplied. It is expected
that if you write a new command set for the keys that you will place it in a separate
DLL. You can then use the DefaultKeymap function to facilitate loading the DLL and
calling the keymap subroutine that makes the key assignments.

You may find it more convenient to develop a DLL with Borland Pascal for Windows, or
Microsoft's Visual Basic than to modify an existing C language DLL. Alternately, you may
just be concerned about how well your C language additions will coexist with the
source code provided.

Your DLL will need all of the same parts described in the "Dissecting a Hawk DLL"
section above, regardless of what language you use to produce it. Be sure to compile
using a Large Memory Model. You need Far calls and pointers for things to work
properly.

1

Using Hawk™

366

15

Installing Your DLL

When you are ready to use your DLL, you need only reference it in the proper section
of your configuration file. If your DLL is a keymap and supporting functions, just change
the name assigned to DefaultKeymap to the basename of the DLL file; if your DLL
is named MYKEYS.DLL, change the statement to read DefaultKeymap=mykeys
under the [DefaultKeymap] section.

If your DLL just contains some additional subroutines you want to have available, you
have a couple of options:

• Always load the functions at startup-time,

- OR -

• Tell Hawk to load them when needed.

The first option may slow down the initial loading of Hawk, whereas the second can
cause a short pause when the function is first called. The second option may be better
if you have a nominal amount of memory installed. If you have a fast CPU and hard
disk, you probably won't notice much difference in daily use.

The following examples assume that you have put your DLL in Hawk's home directory,
or in a directory that your CWLIB environment variable points to. The first loads the DLL
immediately, while the second loads it only when needed. The first option is done
automatically when the library is loaded in Hawk’s Customize -> Libraries.
Loading the library in this dialog adds the following line to the [Editor] section of
the Hawk configuration file (MWHAWK.INI).

LibPreLoad=myDLL

• The second option, loading the DLL only as needed, must be done manually by
placing the following commands in the configuration file under the [Editor]
section.

• LibAutoLoad="myDLL func1 func2"

This option requires that you supply the names of the functions in the DLL which
may be called.

• For more information on configuration files, refer to Chapter 17 Configuration Files
and Command Line Parameters.

1

367

UNIX

Hawk operates on the Intel platform under Windows 95, Windows 98 and Windows
NT. Hawk does not operate under the UNIX environment. There are some Hawk
options, however, that allow UNIX files to be edited within the program.

The following sections are included in this chapter:

File Type and End-of-Line (EOL) Characters

Compiling UNIX Programs from Hawk

Filename Case and File Securities in UNIX and Windows.

• Hawk does not provide the utilities needed for setting up NFS between UNIX and Windows
systems. They must be obtained from third party vendors.

• UNIX files can be loaded via NFS (Network File Systems) networking, or through FTP (File
Transfer Protocol). Consult a network administrator to find out about the possibilities for
networking the Windows and UNIX systems via NFS.

16

1

Using Hawk™

368

16

File Type and End-of-Line (EOL) Characters
UNIX style end-of-lines characters are used for working in an environment that requires
transferring files back and forth between a DOS and UNIX system. In this case, you may
wish to have Hawk preserve the native UNIX End-of-Line (EOL) characters.

Save File as New Type

The File -> Save As dialog allows you to convert UNIX files to a “Macintosh Text” or
“MS-DOS Text” format. Conversely, other file types may sometimes be converted to
“UNIX Text” format. In the Save File as Type or Save as Type combo box, look for file
conversion possibilities following the normal filter entries.

Make UNIX EOL Characters the Default

DOS style end-of-lines are composed of a carriage-return and line-feed, and are the
initial default setting in Hawk. UNIX end-of-lines are a line-feed character only. To
enable the UNIX end-of-lines as the default, complete the following steps:

1. Select the Customize -> Language dialog.

2. Click the Options tab.

3. Highlight all applicable file type extensions.

4. Check the UNIX EOL check box.

5. Press OK to save the setting.

Making this selection does not change end-of-line sequences already in the buffer. It
affects only those inserted after the selection is made.

Original File Type Possible Conversions

Unicode “Normal Text”

UNIX “Macintosh Text”
“MS-DOS Text”

Macintosh “UNIX Text”

“MS-DOS Text”

Otherwise “Unicode Text”
“UNIX Text”
“Macintosh Text”

Macintosh, Unix and DOS option are only available if Auto-Sense File EOL is marked in
Customize -> Environment -> General; Unicode is only available if Auto-Detect Unicode Files
is marked on the same dialog.

1

Chapter 16: UNIX

369

16

Enable Auto-sense File Type Option

You will also want to enable the Auto-sense File Type EOL option. When
selected, Hawk will look for line terminators when it first loads a file. It can detect DOS
(cr/lf), UNIX (lf), and Macintosh (cr) line terminators. If the file has UNIX style
line terminators, the Enter key is made to insert only a line feed (lf). Macintosh
translations for both input and output are done at a low level and seem like DOS files
to the user.

To select Auto-sense File Type EOL:

1. Select the Customize -> Environment dialog.

2. Click on the General tab.

3. In the File Loading/Reloading group, check the box Auto-sense File
Type EOL.

Specify UNIX EOL Characters on a File Type or Per File Basis

You can also specify the type of end-of-line characters that are inserted into a new file
(DOS, Unix, or Mac), and even choose to convert existing characters to the new type.
These EOL options can be found in the following locations:

• On the Options tab of Customize -> Language, to specify an EOL style on a
file-type (e.g. .C, .TXT, HTML, etc.) basis.

• On the Options tab of Document/Window Manager dialog, to specify an EOL
style on a per-document basis.

After making the setting change for the EOL type, each file that belongs to the selected
file type in Customize -> Language -> Options, or that is selected in the
Document/Window Manager, is scanned to see if it contains inappropriate EOL
characters. If found, a dialog prompts you with the opportunity to change the EOLs.

EOL characters are converted as follows:

File Type Characters “C” Escape
Characters Hex Chars Regex Chars

DOS CR
(carriage
return), LF
(line feed)

\r\n 0x0d,0x0
a

\x0d\x0a

Unix LF \n 0x0a \x0a

Mac (file) CR \r 0x0d \x0d

Mac
(document)

LF \n 0x0a \x0a

1

Using Hawk™

370

16

For the Macintosh file type, the EOL characters will appear just the same as for Unix
(just a line feed); Hawk converts the CR to the LF as it reads the file, and converts
the LF to the CR as it writes the file. If you search through a Macintosh file in hex
mode, you will therefore find Unix style 0x0a characters instead of Mac style 0x0d
characters. .

Change EOL Characters in the Source File

EOL characters in your source file can be changed by performing a simple
Search/Replace operation. To do this, search for one type of EOL character and replace
it with another.

The Hexadecimal Values for End of Line Characters include the following:

0D = Macintosh

0A = UNIX

0D0A= DOS

Although you can search for a hexadecimal value (\x0A), it is better to use a regular
expression for this operation..

Examples

To change DOS EOLs to UNIX EOLs, complete the following steps:

1. Mark the UNIX radio button in the EOL group for the appropriate file type in
Customize -> Language -> Options

2. Select Search -> Replace.

3. Check the Regular Expression box.

4. Search for \n and replace with \n. (The meaning of the \n is a new line (cr/lf
or a lf).)

Because the Macintosh EOL is a (cr) only, it is better to use \r when searching or
replacing it.

To change DOS EOLs to Macintosh EOLs, complete the following steps:

1. Go to the Search menu.

2. Select Replace.

3. Check the Regular Expression box.

4. Search for \n and Replace with \r.

Also, saving a Unix file as MS-DOS Text or Macintosh Text has the same effect as converting
the EOL characters within the file, except that the file is also saved under a new name. Refer
to the preceding topic on Save File as New Type, in this chapter.

See the topic Searching for Control Characters (binary/hex data) in Chapter 10
Search and Replace and Other Navigational Tools..

1

Chapter 16: UNIX

371

16

Macros for Automating UNIX EOL Conversion

In addition to the available method for manually searching and replacing UNIX/DOS
EOLs, Hawk provides an API macro that performs the conversion automatically. API
macros are described in Chapter 15 Extending Hawk. To use the macro, do the
following:

1. Click API Macros on the Tools menu.

2. In the API Macros Edit dialog, choose the UNIXEOLs macro from the drop-down
list under the Name edit box.

3. Run the macro using one of the following methods:

• Click Run in the API Macros Edit dialog.

• Click Close, then click Run API Macro <UNIXEOLs> on the Tools
menu.

The macro will search the current document for all EOLs, and replace them with UNIX
EOLs.

Compiling UNIX Programs from Hawk
Hawk executes compile commands by creating a DOS shell and executing the
command, as though it were being run at a DOS prompt. The output of the
compile/build is then captured and presented to you in the Hawk Output Window.

If you compile UNIX programs, you will need to do this outside of Hawk. One possible
solution to accessing your UNIX system from within Hawk is to use a Telnet
implementation to issue commands automatically from a file.

Example

Set up the file with the necessary commands to do a build. This allows you to click the
BUILD button in Hawk to launch a Telnet session, which issues the necessary
commands. Then Hawk parses the output and steps through the errors.

• Another solution:

Use RSH (remote shell), which allows one computer to run a command on the
other. RSH comes with NT and works just like the UNIX RSH command. Use it to
control a batch UNIX process, like MAKE, from Hawk via an NFS mounted disk
drive. RSH along with FTEE make the perfect fit.

Although Microware cannot assist in setting up access to UNIX systems, we can help
make the necessary customizations to the BUILD command, given that the Build or
Compile command can already be performed successfully from a DOS prompt.

Filename Case and File Securities in UNIX and Windows
Filename case can sometimes be lost when saving files to UNIX systems from Hawk. If
you want the same kind of case-sensitivity you would have on a UNIX system, check
the option Allow Case Sensitive Filenames on the Customize ->
Environment -> General tab.

1

Using Hawk™

372

16

The loss of filename securities can also be an issue using the traditional file-saving
method in Hawk. To preserve file securities on UNIX files, use the Hawk alternative file-
saving method, called File Rewrite Save Method (also on the General tab).

To select these options, complete the following steps:

1. Select the Customize -> Environment dialog.

2. Click on the General tab.

3. Check the options Use file rewrite save method, and Allow Case
Sensitive Filenames.

1

373

Configuration Files and Command Line
Parameters

This chapter includes the following sections:

Configuration and State

Command Line Parameters

17

1

Using Hawk™

374

17

Configuration and State
The following sections describe the location and contents of configuration and state
files within Hawk.

Location of the Configuration File

Hawk configuration data is stored in the file MWHAWK.INI. During initial installation
MWHAWK.INI is placed in the same directory as the Hawk executable file. You can
move this file to another location, rename the file, and maintain several configuration
files in different work areas.

If the Hawk executables are installed on a network, it is recommended that you place
your configuration file(s) in a separate location. This maintains the integrity of individual
configurations.

Upon starting, Hawk searches several locations to determine what configuration file to
use. When Hawk determines a path to the location of the configuration file, or locates
the file itself, it stops searching and proceeds to read the file.

Following are the locations in which Hawk searches for the integration file, in the order
of searching:

1. The command line for a specified /C parameter

2. The environment settings for a variable named MWHAWKINI

3. The working directory for a file named MWHAWK.INI.

4. The directory containing MWHAWK.EXE for the file MWHAWK.INI.

5. The Windows directory for the file MWHAWK.INI.

The command line parameter, or the environment variable, will have an associated
string value when it is used to point to the configuration file. This string names the
directory in which the configuration file resides. It may also name the file itself.

Examples

The string may take the following form when specifying a directory:

d:\source\project1

It may also take the following form when specifying a file:

d:\source\projects\cencom.cfg

If Hawk finds no configuration file, one will be created in the working directory.

• Hawk can function without a configuration file, but will notify when one is not
found.

Introduction to Configuration and State

To understand Hawk projects and workspaces, its helpful to know how Hawk maintains
its configuration and preserves its state between sessions. This helps determine which

1

Chapter 17: Configuration Files and Command Line Parameters

375

17

information to keep in which file. Understanding configuration also helps when
modifying the configuration file directly.

Configuration File

The configuration file contains your Hawk settings. The settings can be specified during
installation, modified in dialog boxes, or by directly editing the configuration file. In the
latter case, the configuration file might contain almost any Hawk commands. The
configuration file is named MWHAWK.INI.

The configuration file is a text file that follows the same general format as other
Windows .INI files. It contains section headings enclosed in square brackets, followed
by configuration statements.

• Headings that appear in a Hawk configuration file include the following:
[Editor], [LibPreload], [Colors], [DefaultKeymap],
[KmapAssign], [Printer], [Compiler], [VersionControl],
[Definitions] and [Fmatch].

• The configuration statements contain keywords with string assignments. For the
lines containing keywords, the format is as follows:

<function>=<param 1>[,<param 2>,...<param n>]

The following criteria apply:

• The keywords are actually the names of functions in the Hawk API.

• The string assigned to the keyword contains the parameters required by that
function.

• The assigned string can contain white space.

• The parameters can be numbers, strings, constant identifiers and operators.

• Variables and nested function calls may not be used as parameters.

State File

The State file contains information about the buffers and windows open the last time
Hawk was exited. It also contains the more transient information about your Hawk
settings, such as your search options and responses to prompts. It follows the same
rules as a configuration file, but it is normally limited to one section named [State].
This file is named MWHAWK.PST.

Other Files Containing Configuration Data

Project files also contain configuration information. These files are intended to be
swapped on the fly, whereas the configuration file remains constant throughout a
session.

As settings are changed in the various dialog boxes, the configuration is automatically
updated. You can select which file the dialogs use to update configuration information:

The project file overrides any information duplicated in the configuration file.

1

Using Hawk™

376

17

the configuration file or the project file. You can further select which categories of
information are kept in which file.

Following is the main distinction between the two methods of storing configuration
information:

• Configuration information stored in the project file is associated with a specific
project.

• Configuration information stored in the configuration file is associated with multiple
projects.

Example File

Below is an abbreviated example of a configuration file:

[DefaultKeymap]

DefaultKeymap=BRIEF

[KmapAssign]

KmapAssign=<Ctrl-`>, Preprocess

[LibPreload]

LibPreload=PRG.DLL

[Editor]

KeyDelay=1200

KeyRepeat=5

Autosave=20

SysSetFileLocking=30

[Colors]

ColorError=0xe0

ColorWarning=0xd4

SysSetDefault=DEFAULT_COLOR_TEXT,0x1f

SysSetDefault=DEFAULT_COLOR_SELECTION,0x9e

[Printer]

PrintFooter="-Page %p-"

PrintHeader="%f %d %t"

PrintFlags=145

PrintMarginBottom=0

PrintMarginRight=0

PrintMarginLeft=0

PrintMarginTop=0

[Definitions]

EvalStrAdd=DEBUG,1

1

Chapter 17: Configuration Files and Command Line Parameters

377

17

[Compiler]

CompilerAssign='Borland C++','.c'

Example Interpretation

Following is an interpretation of the contents of the example configuration file above.
The analysis proceeds section by section:

[DefaultKeymap] Section

The default key command is set to BRIEF. This causes BRIEF.DLL to be loaded
and its function BRIEF to be called.

[KmapAssign] Section

In the [KmapAssign] section, a key assignment is added to the default keymap.
The Preprocess function is assigned to the C Backquote (`) keystroke.

[LibPreload]

One of the supplemental language support DLLs is loaded for use.

[Editor] Section

The [Editor] section of the example configuration file sets the keyboard delay
and repeat rate. Auto-save is set to occur after 20 seconds of keyboard inactivity.
File locking is enabled for 30 file handles.

[Colors] Section

The [Colors] section of the example sets the color of error messages to black on
yellow, and the color of warning messages is set to red on gray. These are global
settings. The next two color settings may be set differently for each edit window.
For this reason, we do not use the functions ColorText and ColorSelection
to set the colors, but rather set what the default color will be. You use the
SysSetDefault functions when setting defaults for things that are specific to
individual buffers or windows. In this case, the color of text is set to white on blue,
and the highlight for the selection is set to yellow on light blue.

[Printer] Section

The [Printer] section and a number of other sections use private,
undocumented functions. The Print menu item within Hawk controls the
contents of this section. It is not recommended that you modify the [Printer]
section.

[Definitions] Section

This section defines the label DEBUG and gives it a value of one. This label may be
used in numeric expressions processed by Hawk, including those given through the
Command Key and the Preprocess function (#ifdefs).

[Compiler] Section

In this section, the Borland C++ compiler is assigned for use on files that have the
.C file extension.

All of the sections discussed above contain configurations that can normally be set
from within Hawk. In most cases, it is not necessary to directly edit MWHAWK.INI.

1

Using Hawk™

378

17

Processing At Startup

When Hawk is started, the command line is processed before the configuration file or
the state file. This enables the command line to control the location of these files. It
also results in the potential for the configuration file to reverse the effects of a
parameter specified on the command line.

The following sections of the configuration file are automatically read at startup, in the
order given:

• [Menu]

• [DefaultKeymap]

• [KmapAssign]

• [LibPreload]

• [Editor]

• [VersionControl]

• [Template]

• [Colors]

• [Ribbon]

After the portions of the configuration file that are automatically read have been
processed, the state file is processed. This gives settings in the state file priority over
similar commands in the configuration file.

Order of Processing

The functions under each of the section headings are executed in the order they are
listed. Regardless of the order in which the sections occur, however, the sections are
always executed in the same order. The [Printer], [Compiler],
[Definitions] and other sections are processed as needed.

Each section heading represents a logical grouping of functions, as shown in the
following list:

Table 17-1. Section Headings and Functions

Heading Functions

Colors Functions to set the colors for text, messages and so on. This
is done with the SysSetDefault function.

Compiler Used primarily by Hawk for saving associations between file
extensions and compilers.

1

Chapter 17: Configuration Files and Command Line Parameters

379

17

Any Hawk function can be placed under any of the section headings. However,
grouping functions logically under section headings helps ensure that the functions are
executed in their proper order. For example, you could place the default keymap in the
[Editor] section, but then the modifications and additions made in the
[KmapAssign] section would be lost when the keymap is loaded over the top of
them.

User-Defined Sections

Other section headings can be defined and other editor commands can be placed
under those sections. These commands, however, are not processed automatically at
startup.

DefaultKeymap The function that sets the initial key command set, usually
BRIEF or CUA. For example, the statement
DefaultKeymap=BRIEF will cause Hawk to load
BRIEF.DLL and call its keymap function, which it
assumes to be the same as the filename root – BRIEF.

Definitions Defines labels for use in expression evaluation.

Editor System-wide functions, default settings (except for keymap),
and any other functions that are not order-dependent.

Fmatch Used by Hawk for saving the parameters used by the File
Find and File Grep features.

KmapAssign Makes key assignments that are additions or modifications to
the default keymap.

LibPreload Loads DLLs that are not automatically loaded.

Menu Defines the menu structure, if other than the default. The
results of using the Menu Editor are placed here.

Printer Used by Hawk for defining print margins and headers.

Toolbar Defines modifications to the default toolbar and sidebar
configuration after using Toolbar Configuration
dialog.

Template Contains user-defined Language Template definitions.

VersionControl For defining command lines for Check-in, Check-
out and several other related commands. The section is
duplicated for each version control system defined, so that
you may have separate commands for each.

Table 17-1. Section Headings and Functions (Continued)

1

Using Hawk™

380

17

Many functions you might want to create for assignment to a keystroke are a simple
sequence of functions to execute consecutively. Return values are not examined, and
no control structures are required. In most cases such tasks can more easily be
accomplished with the creation of a macro. However, they can also be done with user-
defined sections in the MWHAWK.INI. The sections can subsequently be assigned to a
keystroke in Hawk.

Several examples of user-defined sections follow.

Change Search Direction

[ISearchBack]
SrchSetFwd=FALSE
ISearch=
SrchSetFwd=TRUE

This example simplifies the process of performing an incremental search backward in
the buffer. Usually, the search options are set to search forward. You could bring down
the menu, change the options, and then change them back, after performing your
incremental search. The example above changes the search options to search
backward, performs the incremental search and then sets the search direction to
forward.

After you have created this section in your configuration file, you could make a key
assignment like the one below, also in your configuration file:

[KmapAssign]
KmapAssign="<F12>","ConfigFileRead '' 'ISearchBack'"

The previous key assignment causes Hawk to do a backwards incremental search when
+ is pressed. You can use similar key assignments to implement other examples or
sections of your own. Most key assignments can be made more easily using the Hawk
Customize -> Keyboards dialog.

Save and Restore Position

The following example can be used in place of the standard save and restore position
commands:
[RotateMarks]

MarkRestorePos=

MarkSavePos=

MarkRotatePos=

[StackMarks]

MarkSavePos=

MarkRotatePos=

• By using [RotateMarks] instead of the restore position command, restored
positions are not lost, but rather moved to the other end of the list. You can then
continuously cycle through your saved positions.

For more information about assigning keys through Hawk’s interface, see Chapter 12
Customizing the Interface.

1

Chapter 17: Configuration Files and Command Line Parameters

381

17

• If you use [StackMarks] to save your current position, you will restore positions
in the same order you saved them instead of the reverse order in which you saved
them.

Scrap Buffers

This example uses the Hawk multiple scrap buffers. To work appropriately, you must
first define more than one scrap buffer. To do this, enter a value of two or higher in the
Number of Scrap Buffers field on the Customize -> Environment ->
Clipboard dialog.

Use the following sections instead of Cut, Copy and Paste:

[RingCopy]

BlockCopy=

ScrapNext=

MsgMessage="Copied to current scrap"

[RingCut]

BlockCut=

ScrapNext=

MsgMessage="Cut to current scrap"

[RingPaste]

ScrapPrev=

BufInsertScrap=

MsgMessage="Current scrap inserted"

When using these three sections in place of Copy, Cut and Paste, you get a last-in,
first-out ring of scrap buffers. Successive Copy or Cut operations (without an
intervening Paste) do not overwrite each other until you run out of scrap buffers.
Successive Paste operations let you paste the contents of each scrap buffer in the
reverse order they were used. The same functionality can more easily be achieved
using the auto-increment option for scrap buffers in the Customize ->
Environment -> Clipboard dialog.

Relating Check Boxes to Functions

There is a System Options check box in the Directories tab of the Project
-> Properties dialog, and several more check boxes in the Read
Configuration Data from a File dialog (to access the latter, click Read

1

Using Hawk™

382

17

Configuration Data on the Customize menu.) The following list will help you
relate those check boxes to the contents of your configuration file or project file:

Table 17-2. Check Box and Function Relationships

Check Box Option Related Configuration Function

View Setups Reads the [Colors] section of a configuration file which
contains one or more "_RestoreViewSetup" lines.
Each "_RestoreViewSetup" line defines a view
setup.

System Options BookmarkAttr
ConfigSetBtnIniFilename
ConfigSetLinkDBFilename

ConfigSetMacroFilename
ConfigSetMarkDBFilename
ConfigSetSymbolDBFilename

EditSetPath
BufSetGlobalBackupSpec
ExtCommentSearchLimit

ExtDelayedColoring
ExtSetUpdateDelay
NameMarkFlags

NameMarkThreshold
KeyDelay
KeyRepeat

Auto-save Options Autosave

AutosaveDir

Compiler Settings BrowseSetFile
CompilerAddBuild
CompilerAssign

CompilerNewExt
TagSetFile

CompilerAdd

Language Options ExtColors
ExtColorsAssoc
ExtIndentEnable

ExtIndentEnableAssoc

1

Chapter 17: Configuration Files and Command Line Parameters

383

17

State File

Another important Hawk configuration file is the state file. The state file is stored by
default in the Hawk home directory and is called MWHAWK.PST. MWHAWK.PST records
the condition of Hawk at the time of exit. Storing state information is turned on by
default, but can be turned off in the Customize -> Environment -> State
dialog.

When a project is open, Window, Document and Mark information will be stored with
either the project (.pjt) or project space (.psp) file, as defined on the Customize ->
Environment -> State dialog. Other types of state information are stored in the
default state file MWHAWK.PST. If no project is open, all information is stored in
MWHAWK.PST.

Location of the State File

The location and name of the state file can be specified in the Hawk configuration file.
If you name a location for your state file by accessing a dialog box through the menu, it
will be saved in your configuration file. If your configuration file does not contain the
name of your state file, and saving state information is turned on, Hawk will search for
the location of the state file in much the same manner used to locate the configuration
file.

The differences are as follows:

• The command line parameter for specifying the state file is /S.

• The environment variable that points to the state file is CWPST.

• Instead of looking for MWHAWK.INI it will look for MWHAWK.PST.

If no location is dictated for the state file, and no existing file is found, the file is created
in the working directory. Hawk can operate without a state file. You can turn off the

Version Control Setup CheckInSetCmd
CheckOustSetCmd

Filename Filters FilterAdd

FilterDeleteList

Clipboard/Scrap Options ClipboardEnableSepStr
ClipboardEnableTermStr
ClipboardSetSepStr

ClipboardSetTermStr
ScrapSetCount

Table 17-2. Check Box and Function Relationships (Continued)

See the section on Command Line Parameters for more information.

1

Using Hawk™

384

17

saving of state information, and Hawk will ignore any state file and the information it
contains.

Similar to the configuration file, the strings that give the location of the state file may
also dictate a name for the file. If the string names only a directory, the name
MWHAWK.PST will be used. The following methods for setting the location of the state
file are all valid:

• Using the environment variable:

set CWPST=D:\MICROWARE

• On the command line:

CW /sD:\MICROWARE\MWHAWK.PST

• In the MWHAWK.INI file:

StateSetFilename=H:\HOME\TOMH

Contents of the State File

The following are among the data kept in the state file:

Table 17-3. Data Kept in State File

Category Types of Data in State File

Windows Visible attributes
Colors

Coordinates and extents
System flags
Attached buffer, if any

Default Window Properties for the above

Buffers File name
Output file name
Tab settings

Backup file specification
Line and column
Maximum virtual lines

Current mode (hex, compact, normal)
System flags

Default Buffer Properties for all of the above

1

Chapter 17: Configuration Files and Command Line Parameters

385

17

Command Line Parameters
Hawk supports a number of command line parameters. Command line parameters are
used to specify certain conditions to apply when Hawk is started. Parameters are added
to the command line by editing the file’s shortcut, or through the File Properties
selection in the Program Manager's menu. If you have multiple Hawk shortcuts or
program items, the command line can be used to make each operate differently.

To edit the properties of a Hawk shortcut, complete the following steps:

1. Right-click the Hawk shortcut icon on your Windows desktop (or any location where
the shortcut appears).

2. Select Properties from the pop-up menu.

3. Click the Shortcut tab.

4. The path and executable file are listed In the Target field. You can add a
command line parameter at the end of this string to command Hawk to use
specific settings when started.

Hawk allows the following three types of command line parameters:

• names of files to edit

• parameters or switches

• the command file, which contains command line parameters

The command line is processed before the configuration or state files have been read.
This has the following effects:

• It allows the command line to specify the location of the configuration and state
files.

• It allows the configuration file and state file to override the command line. Be sure
to follow the stated guidelines for the use of parameters and the contents of these
files. Possible conflicts are noted in the descriptions below.

Filenames

Any number of files can be specified for editing on the command line, limited only by
the command line length. Wildcards can be used to specify multiple files. These files
are loaded in addition to, rather than in place of, any named in the state file.

Prompt Histories Search and Replace
Command Key

Open file

Miscellaneous Search flags
Hawk’s Window frame coordinates and extents

Table 17-3. Data Kept in State File (Continued)

1

Using Hawk™

386

17

Parameters

Consider whether the configuration file should be read before or after each parameter
specified. The configuration file may in some cases cause a command line parameter
to be ineffective if the parameter is processed first.

There are upper case and lower case versions of each of the command line
parameters, where applicable.

• Parameters specified with a lower case character will be processed before the
configuration file is read.

• Parameters that use an upper case character will be processed after the
configuration file is read.

Some parameters require additional information in the form of an argument. In the
descriptions below, the arguments appear in italics following the parameter. When
supplying an argument to a parameter, Hawk permits the argument to immediately
follow the parameter, with no intervening white space, or to be separated from the
parameter by white space.

The parameters listed in Table 17-4 are shown preceded by a minus or dash character
(-). A slash also works in most cases, however, these can be mistaken for filename
paths and should be avoided.

Table 17-4. Sample Command Line Parameters

Type Format Description

Configuration
Location
Parameter

-C<configLoc>

MWHAWK -c
 c:\source\proj1

Allows you to specify the directory or file
in which configuration information can be
found. The <configLoc> argument
names that directory or file.

• If <configLoc> names only a
directory, Hawk looks for a file
named MWHAWK.INI in that
directory from which
configuration is read.

• If <configloc> names a
complete path, including
filename, Hawk will attempt to
read configuration information
from that file.

For additional location information, refer
to the topic Location of the
Configuration File, in this chapter.

1

Chapter 17: Configuration Files and Command Line Parameters

387

17

Variation of
Configuration
Location
Parameter

-C-
MWHAWK -c-

Instructs Hawk not to read a configuration
file.

Go to Line
Number

-G <lineNumber>
MWHAWK -g215

Tells Hawk to go to the line number
indicated by the argument. It should
follow the name of the file to which it
refers, and it may be specified following
each file named on the command line.
This parameter will be overridden if you
attempt to position the cursor in a file
loaded as part of the state restoration.

Heap Allocation
Parameter

-heapalloc

MWHAWK -heapalloc

Instructs Hawk to use global allocation of
memory. This makes it easier to detect
allocation errors. Use this if you suspect
your DLL has this type of memory error.

• This option is only available on the 32-
bit version of Hawk.

Keymap
Parameter

-K <keymap>

MWHAWK -k mycua
Names a default keymap to be used by
Hawk. If this parameter is used, the
[DefaultKeymap] section of the Hawk
configuration file (MWHAWK.INI) will
not be read.
The <keymap> argument to this
parameter names a DLL (less the .DLL
extension) containing the default keymap.
The argument at the same time names
the function (contained in the DLL) which
initializes the keymap and makes the key
assignments.

Library
Parameter

-L <library>

MWHAWK -Lmyutils
Designates a dynamically linked library to
be loaded at startup time. This parameter
is useful for testing user created or
modified DLLs before a more permanent
installation. It can, however, significantly
increase the amount of time it takes Hawk
to start up.

The<library> argument is the name
of the library to be loaded. If this
argument does not name a path to the
DLL, Hawk will look in the current
directory, the Windows directory and on
the PATH, in an attempt to locate the DLL.

Table 17-4. Sample Command Line Parameters (Continued)

1

Using Hawk™

388

17

Multi-Instance
Parameter

-M
MWHAWK -M

Allows you to run more than one instance
of Hawk at a time.
By default, multiple instances are
disallowed. Your operating system must
be Windows 95, Windows 98 or Windows
NT for this option to work.

No Files
Parameter

-N

MWHAWK -N

Indicates that the state file is to be
processed, except that no files from the
previous session are to be restored.

No Splash
Parameter

-NOSPLASH Suppresses the display of Hawk’s opening
splash screen. This can save a small
amount of loading time.

Paragraph
Parameter

-P <section>

MWHAWK -p "Windows
driver"

Tells Hawk to read the named section of
the configuration file. The section will be
read after all of the standard portions of
the configuration file—which gives it
priority.

The <section> argument to this
parameter is the name of the section of
the configuration file to be processed. If
you name a section that is automatically
read at startup, it will be processed twice.
This section name may contain white
space. If it does, however, it must be
enclosed in either single or double
quotes.

Limit Hawk CPU
usage on multi-
processor
machines

-Processor = d
(d is a decimal number bit
mask for the allowed CPUs
used by Hawk on startup)

This argument can be useful for avoiding
thread related problems that appear only
on multi-processor machines. It can also
limit Hawk’s CPU usage, allowing more
for other processes.
Examples:

• '-Processor=1' limits Hawk to
CPU 0.

• '-Processor=2' limits Hawk to CPU
1.

• '-Processor=3' limits Hawk to CPU
0 and CPU 1.

Table 17-4. Sample Command Line Parameters (Continued)

1

Chapter 17: Configuration Files and Command Line Parameters

389

17

State Location
Parameter

 -S <stateLoc>

MWHAWK -s h:\home\ericj
Allows you to specify the directory
or file in which state information is
to be found.

The <stateLoc> argument names
that directory or file. If <stateLoc>
names only a directory, Hawk looks
for a file named MWHAWK.PST in
that directory, from which state
information is read. If <stateLoc>
names a complete path, including
filename, Hawk will attempt to read
state information from that file.

When this parameter does not
appear on the command line, Hawk
looks for a state information file in a
series of places, unless the saving
and restoring of state information
has been turned off. These places
include:

• a directory or file named by the CWPST
environment variable,

• in MWHAWK.PST in the Working
Directory,

• in MWHAWK.PST in the directory in
which the MWHAWK.EXE file is located,

• or in a location named in
MWHAWK.INI.

Table 17-4. Sample Command Line Parameters (Continued)

1

Using Hawk™

390

17

Command Files

A command file can contain any valid command line parameters, including additional
command files. Hawk identifies filenames preceded by an @ sign as command files.
Command files are formatted in the following way:

@<commandFile>

Command files are useful for overcoming command line length limits and also for
creating reusable, logical groupings of filenames and parameters.

White space or new lines may separate parameters within a command file. New lines
are often used to promote readability.

Variation of State
Location
Parameter

-S-
MWHAWK -s-

Instructs Hawk not to read a state file.
State information, however, is not
automatically reinitialized, and may be
used subsequently.

Execute Function
Parameter

-X <function> Names a function to be invoked as part of
Hawk startup. This function should not
attempt to perform any configuration,
since such configuration may be
overridden or reversed by the subsequent
processing of the configuration and state
files.
The <function> argument to this
parameter contains the function call. If the
call contains any parameters to the
function, the entire function call must be
enclosed in single or double quotes. In
addition, it must conform to the syntax
required by LibFunctionExec.

Table 17-4. Sample Command Line Parameters (Continued)

1

391

Using Hawk™ Profiler

The Hawk™ Profiler profiles processes or modules on the target system. This chapter
describes how to use the Hawk™ Profiler and includes the following sections:

Setting up the Target System

The Profiler

File Menu

Options Menu

Actions Menu

Using the Profiler

18

1

Using Hawk™

392

18

Setting up the Target System
Before starting the Profiler on the target, you need to have TCP/IP networking running
on your target and the Profiler daemon modules loaded and running. The target
modules required are spfnppd and spfnppdc. These modules are located in
MWOS\OS9000\<PROCESSOR>\CMDS on your host system.

After you have spfnppd and spfnppdc loaded and networking is running, execute
the following command:

spfnppd <>>>/nil &.

Your target is now ready to accept messages from the host and run the Profiler..

The Profiler
The Hawk Profiler has been re-written as a Java application; it can be installed from
your Microware OS-9 product CD. To use it, you must have a Java Runtime
Environment (JRE) installed on your system.

Running the Profiler

Start the Profiler, after setting up the target, by selecting Target -> Profiler or

by clicking on the Profiler button in the Hawk™ interface.

The Profiler Main Window

The main window contains the following areas:

• Title Bar

• Menu Bar

• System Performance and Module Data Tabs

• Connect and Start Buttons

The spfnppd command can be added to an automated start script.

The Profiler does not support multiple connections to the target.

1

Chapter 18: Using Hawk™ Profiler

393

18

Figure 18-1. Target Profiler Main Window

Title Bar

The title bar shows the name of the current file being debugged.

Menu Bar

The menu bar provides menus that you can use throughout your profiling session.

Each menu is described in greater detail in the following sections.

Table 18-1. Profiler Main Window Menu Entries and Actions

Entries Actions

File Perform operations on Profiler files. For example, start a new profiling
session and save Profiler information in a file.

Actions Configure, start, stop, and clear the Profiler.

Options Use the Options menu to set preferences during the profile session.

1

Using Hawk™

394

18

System Performance Tab

The System Performance Tab is used as a quick reference for CPU and Memory usage
for the OS-9 target. Profiling information is gathered from the target and displayed as a
line chart.

Module Data Tab

This tab displays the profiling information in a more detailed manner. Each row in the
table represents the profiling information for a particular module. The profiling data
consists of the number of ticks charged to this module, and the percent of time that
this module is executing.

To view the functions for a particular module, click on the button in the f(x) column.
Figure 18-2 shows the Module Data Tab.

Figure 18-2. Module Data Tab

• Function breakdowns are only available if a .stb module for that module can be
found on the host.

Start/Stop Button

Use the Start button to begin profiling the target system. The button toggles
between stop and start, depending on the current state of the Profiler.

1

Chapter 18: Using Hawk™ Profiler

395

18

Connect/Disconnect Button

Use the Connect button to establish communication with the OS-9 target system.
This will toggle between Connect and Disconnect depending on the current state
of the Profile.

File Menu
Use the File menu to perform operations on Profiler files.

Options Menu
Use the Options menu to set preferences during the profile session.

Table 18-2. Profiler File Menu Entries and Actions

Entry Action

Save Save the current Profiler information to the current Profiler file.

Save as text Save information as text.

Restore Open a file that has been previously saved and display the information in
the Profiler windows.

Exit Exit the Profiler.

Table 18-3. Profiler Options Menu

Entry Action

Symbol Paths This shows a dialog window which allows pathnames to be
selected where OS-9 Symbol Files (.stb) can be located.

Sample Rate The update interval of the profiling information can be controlled
by this dialog.

Show All Modules Normally, only modules that have executed will show up in the
Module Data table. However, all modules on the OS-9 target
system can be viewed by selecting this option.

1

Using Hawk™

396

18

Actions Menu
Use the Actions menu to control the way profiling information is obtained.

Using the Profiler
This section describes some of the more commonly used Profiler functions.
Information gathered from the profiler can be used in the following two ways:

• As a quick reference to see how the OS-9 target is performing.

• As a tool to investigate performance during a specific task.

• It may be useful to increase the update interval to be greater than the specific task
time. Also, increasing the tick rate of the OS-9 target to 1000 can increase the
resolution of the information.

Viewing Functions

The functions of a module can be viewed by clicking on the button in the f(x) column.
This will bring up a separate window containing all the functions that have executed. If
an OS-9 Symbol file can not be located, a file selection dialog box will appear allowing
you to find the symbol file.

Saving the Profile Data

The profiling information can be saved to a text file by selecting the File->Save...
menu option.

Table 18-4. Profiler Actions Menu Entries and Actions

Entry Action

Start Start profiling and tell the target daemon to start sending information.
You can also click Start (located at the bottom of the window) or press
Ctrl-c to start profiling.

Stop Stop profiling.

You can also click Stop (located at the bottom of the window) or press
Ctrl-t to stop profiling.

Clear Clear the current timing information to zero.

Connect Connect to target.

Disconnect Disconnect from target.

1

Chapter 18: Using Hawk™ Profiler

397

18

Changing the Order in which Modules/Functions Appear

By default, when you return to the main window of the Target Profiler, the modules that
you have selected appear in the order you entered them in the Modules to Monitor
window. You can also display the modules in any of these orders:

• Alphabetical Order.

• CPU Usage Order is relevant due to the fact that after you have begun collecting
profiling information, the module using the most CPU time will be at the top of the
list, and the module using the least CPU time will be at the bottom of the list.

To change the order, click on the table heading for that column.

Profiling Selected Modules

To profile your selected modules, select Start from the Actions menu. For each
module selected, the Target Profiler displays the following information in the timing
analysis window:

• The number of tick boundaries on which this module was running.

• The percentage of the time that the module has spent in the CPU.

• A bar graph showing the amount of time the process has spent in the CPU.

• The daemon spfnppdc must be loaded into the Target memory.

Changing the Update Interval

By default, the timing analysis window is refreshed every five seconds.

The following steps guide you through changing the update interval for refreshing the
timing analysis window.

1. Select Sample Rate... from the Options menu.

2. Enter the update interval (in seconds) and click OK.

Stopping Profiling

When you are ready to stop profiling, select Stop from the Actions menu or click Stop
at the bottom of the Profiler window. The information from the profiling session
remains on your screen.

Clearing the Profiling Data

You can clear the data that you have collected from your profiling session by selecting
Clear Data from the Actions menu. The module names that you profiled are
retained, but the remaining information is cleared to zero.

Exiting the Target System Profiler

To exit the Target System Profiler, select Exit from the File menu.

1

Using Hawk™

398

18

1

399

Using HawkEye™

The HawkEye™ software application is a GUI-based execution visualization tool for the
OS-9 operating system.

You can use the HawkEye visualization tool to capture and analyze a log of events
during the execution of a program on an OS-9 target machine.

Examples of events include:

• System calls such as process forks, signals, and exits

• Context switches

• Interrupts

Starting HawkEye
You can start HawkEye from the main Hawk user interface by selecting Target ->
HawkEye... from the main toolbar.

HawkEye is documented in the Using HawkEye manual.

19

1

Using Hawk™

400

19

401

A TagsWNN Utility

TAGSWnn (TAGSW16 or TAGSW32, depending on your platform) is the Tags program
supplied with Hawk to automatically generate a tags database and compile it into a
format that can be used by the built-in browser. The program is called when you select
Build Tags from the Project menu. You may not ever need to run the program
from the command line, but in the event that you do, or if you just want to know more
about the program, its options are briefly described here.

TAGSWnn is based on the GNU Tags program written by John Kerchival. The primary
changes made to it are to allow output in the Starbase Compiled Tags format. This is
the -p option, which is the only option we have added. Other options are as described
in the TAGS.DOC file supplied with the GNU Tags program and provided with Hawk.

Usage

Example

TAGSWnn {[OPTIONS] [SOURCEFILE|@LISTFILE]}

TagsWnn Command Line Options
An option summary follows:

-h, -? Obtain a detailed help screen directed to standard
output.

@LISTFILE Use LISTFILE as a "response" file. This file lists
input filenames (with or without wildcards) one at a
time. Filenames may be separated by '+', ',', ';' or
by whitespace. In addition, comments are allowed
within the LISTFILE. Comments are delimited by
placing a pound sign '#' before the comment. This
is very similar to comments allowed in a makefile
except that comments are allowed on any line or at
the end of any line, start at the '#' and go to the end
of the current line. There must be at least one
character between the filename and the comment
character ('+', ',', ';' or whitespace) to differentiate
between the beginning of comment and a filename
character (since '#' is a valid element of a filename).

-x{EXCLUDEFILE|@LISTFILE}
Excludes the files specified by EXCLUDEFILE or

Using Hawk™

402

A

excludes all files listed in LISTFILE using the same
syntax described above.

-tTAGFILE Add new generated tags to TAGFILE. This file may
or may not exist. All tags from TAGFILE which were
derived from files currently being parsed will be
removed during the merge phase. This tagfile is
assumed to be in one of this utilities output formats.
If sorting is specified then new tags will be merged
in correct order with current case sensitivity,
otherwise tags will be placed at the beginning of the
new resulting tag file (this will result in quicker
responses during tag searches while editing). If -m
or -s are used this switch is ignored (all output is to
stdout). The behavior regarding existing files is
determined by the case of the switch as follows:

-t (lower case) creates and outputs to a file
overwriting any currently existing file.

-T (upper case) merges all output to the tagfile if
there is an already existing file.

-pCOMPILEFILE Convert output tag file (specified by -t) into a
compiled file suitable for use with Hawk. The
output flag (-t) and the Hawk output format flags
(-oc) must be specified for this flag; otherwise, it is
ignored.

-lLOGFILE Output all activity to LOGFILE. The log file will be
created in a LISTFILE format (so it is suitable as
input using the @LISTFILE syntax). The behavior
regarding existing files is determined by the case of
the switch as follows:

-l (lower case) creates and outputs to a file
overwriting any currently existing file.

-L (upper case) appends all output to the logfile if
there is an already existing file.

-o[options] This switch is used to determine the output format
to the output stream. [options] may be one of
the following:

e Epsilon (>= V6.0) tag format
(tokenString {tab} fileName {tab} characterOffset
{tab} line)

This format is used by the Epsilon editor (V6.x)
created by Lugaru Software and specifies the token
identifier, the file name (including full path,

Appendix A: TagsWNN Utility

403

A

normally), the character offset of the beginning
character (starting at character 0) and the line which
that offset is located on.

Epsilon (<= V5.03) tag format
(tokenString;fileName;characterOffset)

This format is used by the Epsilon editor (V4.x and
V5.x) created by Lugaru Software and specifies the
token identifier, the file name (including full path,
normally) and the character offset of the beginning
character (starting at character 0).

g GNU tag format(tokenString {tab} fileName
{tab} /$line^/)

This format is used by GNU's EMACS editor,
originally written by Richard Stallman and widely
used in the UNIX community. This is also the format
created by its companion utility "ctags" which does
very simple function header tagging.

s Space-Delimited format(tokenString
fileName lineNumber)

This format is the simplest format available and
requires very little parsing and is very simple to
import into foreign formats (such as database
formats).

m Microsoft Error format(tokenString
fileName(lineNumber))

This format has an advantage in that it has been
around for quite some time and a fair amount of
effort has been expended to parse this format and
move to the location in the source specified during
compilation stages. Many macros may be modified
to use this type of tag format with very minor
changes.

c Hawk tag format(tokenString
FileName(lineNumber) tokenType)

This format is a minor variant of the Microsoft format
but is generally used in conjunction with a compiled
database file format (see -p above). This is the
format used by Starbase's Hawk editor.

-a[options] This switch is used to specify the types of tokens for
which tags are generated for tagging of assembly
files. All token types are tagged as the default
(-afdlmsu). Source modules are expected in
80x86 assembly using MASM/TASM syntax. The
location of the -a switch on the command line is

Using Hawk™

404

A

important. All files (and files found in a LISTFILE)
will be tagged using assembly tagging (and the
options specified on that switch) until another -a or
-c switch is found. Order is not important for the
options to this switch.

f procedure labels (token proc)(proc token)

This is a mnemonic for function (which has nothing
to do with a procedure call in assembly. This option
specifies tagging of the "proc" keyword.

d definition labels (token equ const)(token db declaration)

This option specifies tagging of defines and
definition labels such as the tokens "equ", "db",
"dq", "dw", "df".

l local labels (token label)(label token)(token:)

This option specifies tagging of local labels (labels of
local file duration). This includes the keyword
"label" as well as the shorter ':' notation.

m macro labels (token macro)(macro token)

This option specifies tagging of defined macros
using the keyword "macro".

s struc labels (token struc)(struc token)

This option specifies tagging of structure definitions
defined using the keyword "struc".

u union labels (token union)(union token)

This option specifies tagging of union definitions
defined using the keyword "union".

-c[options] This switch is used to detail the token types to tag in
C and C++ source files. All token types are tagged
by default (-cdmstekuvcfpxi). Source files are
expected in standard ANSI 2.0 C/C++ syntax. The
location of the -c switch on the command line is
important. All files (and files found in a LISTFILE)
will be tagged using C tagging (and the options
specified on that switch) until another -a or -c
switch is found. Order is not important for the
options to this switch.

d defines (#define token statement)

This option specifies that defines are to be tagged
(preprocessor defines). This does not include
macros which are an extended use of the #define
preprocessor directive.

Appendix A: TagsWNN Utility

405

A

m macro labels (#define token() statement)

This option specifies tagging of macros defined via
use of the preprocessor #define directive.

s struct globals (struct token {})

This option specifies tagging of structures defined
via use of the "struct" keyword and implicitly
defined within C++ syntax variations.

t typedef globals (typedef declaration token, token, ...)

This option specifies tagging of identifiers defined
via use if the "typedef" keyword.

e enum globals (enum token {})

This option specifies tagging of enumerations
defined by use of the "enum" keyword.

k enum konstants (enum { token, token, token, ...})
Note the spelling of constants with a 'k'. This option
specifies tagging of enumeration constants within
declared enumerations.

u union globals (union token {})

This option specifies tagging of unions defined via
use of the "union" keyword.

v global variable (declaration token, token = {}, token, ...)

This option specifies tagging of global variable
declarations.

c global class (class token: {})

This option specifies tagging of class definitions
specified via use of the "class" keyword.

f function definitions (token() declaration {})

This option specifies tagging of function
declarations.

p prototypes (token();)

This option specifies tagging of prototypes.

x extern defines (extern declaration)

(extern "C" declaration)

(extern "C" { declaration; declaration; ... })

This option will specify that tags which have the
extern storage class are to be output. The x option
is a modifier and will only be effective when other
options are used (for example, -cpx must be
specified to obtain extern prototypes, -cx alone

Using Hawk™

406

A

yields nothing). Note also that the -cx modifier has
no effect for function, define and macro tags which
are tagged only according only to the f, d and m
options, respectively. This modifier may be placed
anywhere within the options list.

i static declarations (static declaration)

This option will specify that tags which have internal
static storage class are to be output. The i option is
a modifier and will only be effective when other
options are used (for example, -cvi must be
specified to obtain static variable declarations, -ci
alone yields nothing). Note also that the -ci
modifier has no effect for define and macro tags
which are tagged only according only to the d and m
options, respectively. This modifier may be placed
anywhere within the options list.

-d This flag specifies that all input listfiles and exclude
response files should be deleted once parsed. This
allows an automated list file generation which is
cleaned up by the tags package. See description of
LISTFILE below.

-j This is the junk filter switch to allow the filtering of
functions and declarations which are overloaded
operators in C++. For example, if the junk filters are
enabled then the declaration "inline myType
operator+(MyType m1, MyType m2);" would
not be tagged for "+" which is normally a standard
C delimiter token and operator. The junk filter if
enabled will filter all standard C delimiters from the
output.

-q This is the quiet switch and will suppress normal
status output to stderr and program version
information.

-r This switch will suppress the default output of the
full file path name and will specify the use of relative
pathnames in the generated output.

-n This switch will suppress sorting of the tag output.
(This is often used in conjunction with GNU or
Epsilon style tags.)

-i This switch specifies the use of a case-sensitive sort.
(Normally the -i option is used for a case-
insensitive sort is used).

407

B “Null Modem” Cable for Windows
 SLIP

In order to use SLIP with Windows Dial-up Networking or Windows Remote Access, a
special cable is needed to simulate a connection to a modem. The following section
explains how to simulate this connection.

Wiring Diagram
The following diagram shows how to wire the Windows host-side cable using a DB-9
connector.

Figure B-1. Wiring Diagram of Windows Side Connector

The Carrier Detect (Pin1) and Data Terminal Ready (Pin4) signals are looped back, as
well as the Request to Send (Pin7) and Clear to Send (Pin8). Looping back these
signals simulates the presence of a modem.

This connector is needed on the Windows host side of the connection. The connector
will not work if placed on the OS-9 target side.

Using Hawk™

408

B

409

C Command I/O

This appendix explains the commands that can be entered into the Command I/O area
of the main Hawk Debugger window.

Using Hawk™

410

C

Commands
The View window pull-down menu has, as one of its entries, Command I/O. Toggling
this option on or off displays or hides the command I/O area in the Debugger main
window (shown in Figure 19-1).

Figure 19-1. Hawk Debugger Window

The following pages list, in alphabetical order, the Debugger commands you can enter
in this area. The characters shown in brackets specify the alternate form of the
command. For example, the assignment command can be entered as “a” or
“assign”.

asm, .

Syntax:

asm

.

Display the current register values and current machine instruction. A period (.) has
the same effect as asm.

a[ssign]

Syntax:

a[ssign] <C_expr> = <C_expr>

Set the value of a program object.

See Also: p[rint]

Appendix C: Command I/O

411

C

at[tach]

Syntax:

at[tach] <target>@0

at[tach] <target>@<procnum>

at[tach] <module>

at[tach]@SEARCH <start> <end>

Attach to a target system, process, module, or modules in a given range.

b[reak]

Syntax:

b[reak] [<location_expr>] [@wh[en] <C_expr>] [@co[unt]

<num>]

Set a breakpoint at a specified line number, result of a <C_expr>, or upon a when
<C_expr> becoming true.

See Also: go, gostop, kill, next, print, return

con[text]

Syntax:

con[text] [<scope_expr>]

Display the complete scope expression of an object.

dil[ist]

Syntax:

dil[ist] [<location_expr>] [@ [<count>]]

Display the current C source line and the assembly code which maps to the current C
source line starting at the address specified by <location_expr>.

di[sasm]

Syntax:

di[sasm] [<C_expr>] [@ [<count>]]

Disassemble and display memory starting at the address specified by <C_expr>.

• If you specify <count>, <count> machine lines are disassembled and
displayed.

• If you do not specify <count>, sixteen machine lines are disassembled and
displayed.

Using Hawk™

412

C

download

Syntax:

download <file> <address expression>

dl <file> <address expression>

Download the contents of the specified file into the target system’s memory at the
specified address.

d[ump]

Syntax:

d[ump] [[<C_expr>] [@ [<count>]

Return a formatted display of the physical contents starting at the address specified by
<C_expr>.

• If you specify <count>, <count> lines of information are displayed.

• If you do not specify <count>, sixteen lines of information are displayed.

fi[nd]

Syntax:

fi[nd] [<name>]

Display all scope expressions found for <name>.

See Also: wfi[nd]

fo[rk]

Syntax:

fo[rk] [<machine>@]<program> {<program arg>}

["]<[path redirection>["]]

Begin executing the specified program to begin a debugging session.

If no fo[rk] arguments are specified, fo[rk] uses the last command arguments
used in fo[rk].

f[rame]

Syntax:

f[rame] [[±] <number>]

Display stack frame information.

If no arguments are specified, the name of each calling function, the location from
which it was called, and the frame number are displayed.

If f[rame] is followed by <number>, the stack frame context is changed to
<number>.

Appendix C: Command I/O

413

C

g[o]

Syntax:

g[o] [<location_expr>]

Execute the program starting at the current location. If <location_expr> is
specified, the program runs until <location_expr> is reached.

See Also: break, gostop, trace, wait, watch

gostop or gs

Syntax:

gostop [<number>]

gs [<number>]

Execute the specified number of machine instructions in the current subroutine. This
command is identical to the trace command, but does not trace through subroutines.

See Also: break, go, trace, wait, watch

i[nfo]

Syntax:

i[nfo] [<scope>]

Return information about specified program objects and the current program location.

If no argument is specified, i[nfo] returns the current location of the program.

k[ill]

Syntax:

k[ill] [<breakpoint>] {[,<breakpoint>]

Remove all specified breakpoints. k[ill] uses the following notation for breakpoints:
b1 = breakpoint #1, b2 = breakpoint #2, and so on. k[ill] can use either this
notation for breakpoints or a location expression similar to break.

See Also: break

Using Hawk™

414

C

l[ist]

Syntax:

l[ist] [<list arg> [,<list arg>]]

Return a source listing of the specified file or portion of the file. A list argument may be
a file name, line number, or a scope expression resulting in the following:

• A block number.

• A function.

• A line number.

If a beginning line number is specified, you can use a second line number to specify
the ending line number (for example, list 1 10 will list lines 1 through 10 of the
current source file).

lo[cals]

Syntax:

lo[cals]

Display the names and values of all local variables.

l[o]g

Syntax:

l[o]g <pathlist>

l[o]g @ off

Write Command I/O window commands to <pathlist>. <pathlist> is relative
to your current directory. Enter l[o]g @ off to close the log file.

mc[opy]

Syntax:

mc[opy] <dest> @ <source> @ <length>

Copy <length> bytes of memory from <source> to <dest>. All arguments are C
expressions.

mf[ill]

Syntax:

mf[ill][n] <begin> @ <end> @ <value>

Fill bytes of memory in the address range from <begin> to <end> with <value>.

All arguments are C expressions.

An optional ‘n’ character can appear after the command for compatibility with mfl and
mfw, but otherwise has no effect.

Appendix C: Command I/O

415

C

See Also: mfillong, mfillword

mfillong

Syntax:

mfilllong[n] <begin> @ <end> @ <value>

mfl[n] <begin> @ <end> @ <value>

Fill longwords of memory in the address range from <begin> to <end> with
<value>.

All arguments are C expressions.

An optional ‘n’ character can appear after the command to suppress longword
boundary checking. That is, if mfln is used, any partial longwords at the end address
will be filled with a portion of the <value>. If plain mfl is used, the filling will stop at
the last complete longword at the <end> address.

See Also: mf[ill], mfillword

mfillword

Syntax:

mfillword[n] <begin> @ <end> @ <value>

mfw[n] <begin> @ <end> @ <value>

Fill words of memory in the address range from <begin> to <end> with <value>.
All arguments are C expressions.

An optional ‘n’ character can appear after the command to suppress word boundary
checking. That is, if mfwn is used, any partial words at the end address will be filled
with a portion of the <value>. If plain mfw is used, the filling will stop at the last
complete word at the <end> address.

See Also: mf[ill], mfilllong

m[onitor]

Syntax:

m[onitor] <vector>

m[onitor] <start>-<end>

m[onitor] <vector> [@DISPLAY] [@USER] [@SYSTEM]

m[onitor]

Monitor a vector, monitor a range of vectors, or display vectors being monitored. This
command is only available if the debugger is being used as a system debuffer (system-
state debugging configuration).

ms[earch]

Syntax:

Using Hawk™

416

C

ms[earch][n] <begin> @ <end> @ <value> [@ <mask>]

Search bytes of memory from <begin> to <end> for <value> and display each line
where <value> is found.

All arguments are C expressions.

An optional ‘n’ character can appear after the command for compatibility with msl and
msw, but otherwise has no effect.

See Also: msearchlong, msearchword

msearchlong

Syntax:

msearchlong[n] <begin> @ <end> @ <value> [@ <mask>]

msl[n] <begin> @ <end> @ <value> [@ <mask>]

Search longwords of memory from <begin> to <end> for <value> and display
each line where <value> is found. All arguments are C expressions.

An optional ‘n’ character can appear after the command to suppress longword
boundary checking. That is, if msln is used, any partial longwords at the end address
will be searched for a portion of the <value>. If plain msl is used, the searching will
stop at the last complete longword at the <end> address.

See Also: msearch, msearchword

msearchword

Syntax:

msearchword[n] <begin> @ <end> @ <value> [@ <mask>]

msw[n] <begin> @ <end> @ <value> [@ <mask>]

Search words of memory from <begin> to <end> for <value> and display each
line where <value> is found.

All arguments are C expressions.

An optional ‘n’ character can appear after the command to suppress word boundary
checking. That is, if mswn is used, any partial words at the end address will be searched
for a portion of the <value>. If plain msw is used, the searching will stop at the last
complete word at the <end> address.

See Also: msearch, msearchlong

n[ext]

Syntax:

n[ext] [<number>]

Execute the specified number of executable statements of the program. If you do not
specify a <number>, one statement is executed.

Appendix C: Command I/O

417

C

n[ext] executes functions as a single statement.

See Also: go, step

ow

Syntax:

ow {<C_expr>}

Set a watch point at the address specified by <C_expr>. The address is watched for
any access: read, write, or execute. Watch points are created in the “active” state and
will trigger the next time they are hit. When a watch point is encountered, you have the
option of deactivating all of your watch points. If you do not deactivate them, it may be
impossible to advance the target since the it’s likely the watch point will be hit
repeatedly.

If no <C_expr> is specified, the current list of watch points is shown. Use this list to
get the watch point numbers for use with owk, owa, and owd.

See Also: owa, owd, owk

owa

Syntax:

owa <num>

Activate the watch point specified by <num>. When the target encounters an activated
watch point control is returned to the debugger. If the specified watch point is already
active, it remains active. Use the ow command to determine the status of your watch
points.

owd

Syntax:

owd <num>

 Note
This command is only available when Hawk is being used as the system debugger
(system-state debugging configuration).

The availability of this command is highly target dependent. Not all targets have this
facility implemented.

The number of watch points available any any given time is also target dependent.

Whether a watch point is triggered on read, write, and/or execute depends on the
target’s ability to set watch points based on those actions. For example, a target may
only be able to trigger a watch point on read or write.

Using Hawk™

418

C

Deactivate the watch point specified by <num>. Deactivated watch points are deleted
from the target. If the specified watch point is already inactive, it remains inactive. Use
the ow command to determine the status of your watch points.

owk

Syntax:

owk <num>

Kill the watch point specified by <num>. The watch point specified by <num> is
deactivated and deleted from the list of available watch points. Use the ow command
to determine the status of your watch points.

p[rint]

Syntax:

p[rint] <C_expr>

Print the value of the specified C expression.

pr[ocs]

Syntax:

pr[ocs] [$<process number>]

Display process information or change the current default process.

If specified, <process number> indicates the process that is to become the current
default process.

q[uit]

Syntax:

q[uit]

Terminate the debugging session or abort an interrupted function call.

re[ad]

Syntax:

re[ad] [<pathlist>]

Read Command I/O commands from <pathlist>. The <pathlist> is relative to
your current data directory. The l[o]g command may be used to create the file
referred to in <pathlist>.

See Also: log, step

rel[ease]

Syntax:

rel[ease] <vector>

Appendix C: Command I/O

419

C

rel[ease] <start>-<end>

rel[ease]

Release the specified vector or vectors, or release all vectors. This command can only
be used when Hawk is being used as a system debugger (system-state debugging
configuration).

reset

Syntax:

reset

rst

Reset the target system. This command can only be used when Hawk is being used as
a system debugger (system-state debugging configuration).

r[eturn]

Syntax:

r[eturn] [<number>]

Execute the program until the current function returns to the calling function or a
breakpoint is encountered.

If you specify <number>, r[eturn] executes until it returns to the specified number
of callers above the current stack frame.

See Also: frame

se[tenv]

Syntax:

se[tenv] <environment_name> <environment_definition>

Set a shell-type environment variable for use by the debugger’s child processes.

<environment_name> and <environment_definition> are strings that are
stored in the environment list by the current shell.

See Also: unsetenv

s[tep]

Syntax:

s[tep] [<number>]

Execute the specified number of executable statements of the program. If you do not
specify <number>, one statement is executed.

See Also: go, next

Using Hawk™

420

C

sy[mbol]

Syntax:

sy[mbol] [<C_expr>]

Display the result of the expression as a symbolic expression.

t[race]

Syntax:

t[race] [<number>]

Execute the specified number of machine instructions. If <number> is not specified,
t[race] executes a single instruction.

Trace is identical to gostop, but traces through subroutines as well.

See Also: gostop

unse[tenv]

Syntax:

unse[tenv]

Delete an environment variable from the environment list.

See Also: setenv

wait

Syntax:

wait [$<process number>]

Monitor a process until it suspends execution and then print the current location for
that process.

<process number> specifies the process to suspend. If you do not specify
<process number>, wait monitors the current default process.

See Also: asm

wfi[nd]

Syntax:

wfi[nd] <wildcard pattern>

Locate all symbol names that match a specified wildcard pattern. The wildcard pattern
can contain * to match any sequence of characters, ? to match any single character,
and [{-}<x>-<y><z>] to match any single character in the range <x> to <y> or
the character <z>. If the first character of the set is ‘-’ it will match a character not in
the set. The symbols are compared without consideration for uppercase or lowercase.

Appendix C: Command I/O

421

C

x{string}

Syntax:

x{string}

Execute an “OEM extension” command and display the result. This command attempts
to execute {string} as a RomBug OEM extension command. The list of available
OEM commands varies from target to target, but there is usually some help text
displayed by issuing the x? command.

 Note
This command is only available when Hawk is being used as the system debugger
(system-state debugging configuration).

The RadiSys OEM extensions are in the module called oemcmd. This module must be
initialized prior to attempting any x commands. The init module can be modified to
initalize this module via the configuration wizard or the oemcmd module can by
dynamically initialized with the p2init utility.

Using Hawk™

422

C

	Using Hawk™
	Contents
	Hawk Overview
	The Hawk Project Manager
	The Hawk Editor
	The Hawk Debugger
	The Hawk Compiler

	A First Look
	The Menu Bar
	File Menu
	Edit Menu
	Search Menu
	Project Menu
	Debug Menu
	Target Menu
	Text Menu
	Document Menu
	The Customize Menu
	Tools Menu
	Window Menu
	Window Menu

	Help Menu

	Output and Project Windows
	The Output Window
	Auto-Increment Search Tabs
	Append to Listing

	The Project Window
	The Standard Toolbar

	Projects and Project Spaces
	What are Hawk Projects and Project Spaces?

	Creating a Project Space
	Setting Project Defaults

	Creating and Modifying a Project
	Adding Files to a Project

	API Command Dialog/Prompt
	API Command Key/Prompt
	Command Completion
	Example

	Loading Hawk Add-Ons
	General Environment Settings
	View Setups
	Hawk View Setups
	Default View Setup
	Output Window View Setup
	Using View Setups

	Hawk Language Support
	Language Support Lexers and DLL’s
	Language DLLs
	The Tools Dialog

	ChromaCoding Lexers
	Creating a Lexer
	Examples

	Configuring Options in the Language Dialog
	File Type List
	Options Tab
	Tabs/Indenting Tab
	Templates Tab
	Coloring Tab
	CodeSense Tab
	Format Tab
	Comments Tab

	Adding a New File Type to the Language Dialog
	Aliasing

	Templates and Brace Expansion
	Templates
	Language-Specific Templates
	Creating and Modifying Language-Specific Templates
	Examples
	Non-Language-Specific Templates, Function and File Headers, and Macros in Templates

	CodeFolio Snippets
	Using an Existing Code Snippet
	TITLE.TPL
	VBFUNCT.TPL
	Adding a Code Snippet
	Creating a Code Snippet from the Current Document or Clipboard
	Deleting or Renaming a Snippet
	Editing a Snippet
	Adding or Removing Snippets Directories

	Brace Matching and Brace Expansion
	Brace Function: Finding Unmatched Braces
	Command: Brace TRUE font
	Brace Highlighting
	Brace Locating
	BraceFindEx()
	Example
	Brace Expansion
	Align Beginning and End of Block
	Example

	Indenting
	Setting Spaces and Tabs
	Example

	Seek Indentation and Smart Indenting
	Example

	Block Alignment

	Name Completion
	CodeSense
	Where CodeSense Gets its Information
	Library and Project Databases
	Add a File to Symbols Window File List
	CodeSense for Files that are Open in Hawk

	CodeSense Global Configuration Dialog
	Create CodeSense Library Database
	Edit CodeSense Library Database Location
	Delete CodeSense Library Database
	Parser Priority/Resource Use

	CodeSense Databases
	Database Files
	Database Corruption

	Using CodeSense
	Name Completion
	Auto-list Members (Standard)
	Auto-list Members (Special Types)
	Auto-type Info
	Auto-Parameter Info

	Comments and Comment Boxes
	HTML Editing
	HTML Language Support
	HTML Popup Menu

	HTML Viewing - HTML WYSIWYG Editor/Viewer and Web Browser Interface
	Viewing Internet Files: Installation Instructions
	HTML Toolbar
	Using HTML WYSIWYG

	Hex Editing
	Insert vs. Overtype Mode
	Handy Hawk Hex-Editing Features

	Clipboard and Scrap Buffers
	Scrap Buffers
	Multiple Clipboard/Scrap Buffers
	Clipboard/Scrap Viewer

	API Assistant
	Using the API Assistant
	Using the Checkboxes
	API Assistant Example

	Modifying the Database
	API Databases

	Using Help in Hawk
	Indexing Help Files
	Setting Up Hawk to Integrate with MSVC 6.0 Help Files
	Setting Up Hawk to Integrate with MSVC 4.0 (.MVB) Help Files

	Printing
	Print Configurations
	Paper Selection Override
	Color Printing
	Print Preview
	Multi-Copy Printing
	Printing Line Numbers
	Wrapping Long Lines in Printed Documents
	Wrapping Long Lines in Printed Documents
	Print Headers and Footers
	Formatting Headers and Footers
	Examples

	Side-by-Side Difference Printing
	Modified Print Dialog
	Functionality

	Concepts of the Project Menu
	Project Space
	Project Files
	Project
	Workspace
	Component
	Component Options
	Build Order

	Unit
	Unit Maintenance

	Project Preferences

	Creating a Project Space
	The Project Properties List Box and Project Settings
	Project Properties List Box
	Default Settings
	Working Directory
	Setting Project Defaults

	Creating and Modifying Projects
	Adding Files to a Project
	Adding New Projects Using the Members Tab
	Reading External Makefiles and Workspaces
	Steps for Setting up New Makefile/Workspace Parsers

	Characteristics of the File View Tab of the Project Window
	The Directories Tab of the Project Properties Dialog
	Reading Configuration Settings from Other Files

	The Tools Tab
	Tool Categories
	Custom Tools
	VCS Tools

	Setting up Project Tools
	Command Options on the Tools Tab
	Filename Component Macros
	Symbolic Macros
	The Errors Tab of Project Properties
	Custom Error Parsers
	Traversing the Output
	The Filters Tab

	Project Setup Checklist
	Using Projects and Project Spaces
	Selecting or Changing Projects
	Selecting or Changing Project Spaces
	Loading Files for Editing
	Creating, Selecting and Saving Workspaces
	Creating a New Workspace
	Automatic Saving
	Loading an Existing Workspace

	Searching Project Files
	Selecting files for Check-in or Check-out

	Configuration and State Hierarchy
	Overview
	Starting the Hawk Debugger
	User-State Applications
	System-State Routines

	The Hawk Debugger Interface
	Hawk Debugger Functionality
	File Functions
	Commands
	View Options
	Browser Tool
	Expression Eval Tool

	Debugging User-State Applications
	NDP Server Functions
	NDP I/O Server
	Connections
	Debugger/NDP Server Connection
	NDP Server/Target Process Connection
	NDP I/O Server/Pseudo Keyboard Connection
	Target Process/Pseudo Keyboard Connection
	NDP I/O Server/Debugger Connection

	Necessary Software
	Required Modules

	Debugging System-State Routines
	NDP Server Functions
	Connections
	Debugger/NDP Server Connection
	NDP Server/Meta Process Connection

	Restrictions
	Communications Layer for System-state Debugging
	Required Modules

	Debugging User-State Applications Using LLROM
	NDP Server Functions
	Connections
	Debugger/NDP Server Connection
	NDP Server/Target Process Connection

	Restrictions
	Necessary Software
	Required Modules

	Installing the Debug Extensions Module for 68K Systems
	Using Version Control in Hawk
	Version Control Menu
	Source Code Revision Control-Maintenance Dialog
	Version Control and Hawk Projects
	Associating Version Control Projects with Hawk Projects
	Add Version Control Project Files to a Hawk Project
	Add Hawk Project Files to an SCC Provider Project
	Current Project Tree List

	VCS and the User-Defined Popup Menu
	Modifying the Standard Popup: A Simple Example
	Making Your Own Version Control Popup Menu

	Using Multiple Configuration/Project Files (DOS VCS Utilities Only)

	Version Control Integration Configuration
	Version Control for Use with a Command Line Version Control Provider
	Adding a New Command Line Provider to Version Control Setup Dialog
	Customizing Version Control Commands
	Additional Tips

	Hawk SCC Integration with Version Control Systems
	Version Control for Use with a Source Code Provider DLL
	Location of the SCC Provider DLLs

	Search and Replace and Regular Expressions
	Search and Replace Dialog
	Search and Replacement Edit Boxes
	Save Settings
	Multiple Sources Search Dialog
	Search and Replacement Edit Boxes
	Current Directory
	Multiple Source Options
	File Pattern
	Search List
	Search Subdirectories
	Edit Modified Files
	Threaded
	Send Listing to Output Window

	Edit Search List
	Search Pattern
	Patterns List
	Drive and Directory Lists
	Include Directory
	List Editing Buttons
	Default Button

	Default Options
	Search Direction
	Range
	Prompt
	Search Options
	Matches
	Start
	Example: Multi-Source Search

	Incremental Searching
	ISearch Function
	Quick Search
	Toolbar Search
	Regular Expressions
	Special Characters
	Escape Sequences
	Matching a Character
	Character Classes
	Escaping Characters in a Class
	Iteration Qualifiers
	Regular Expressions: Positioning at Beginning/End of Line
	Alternation and Grouping
	Reference Groups and Replacement Strings
	Placing the Cursor

	Searching for Spaces, Tabs and other Blank Characters
	Searching for Spaces or Tabs
	Searching for New lines

	Searching for Control Characters (binary/hex data)
	Searching for New lines: Issues

	Selective Display
	Selective Display Options
	Pre-processed View
	Selective Mode

	Browsing, Tags and Symbols
	Using Navigational Tools
	Browser
	Tags
	Outline Symbols
	Objects Window

	Browser Support
	Selecting a Database
	Traversing the Tree
	Label Bitmaps
	Browser Toolbar
	Jump to Code
	String Search
	Query Button
	Quick Search
	Called By/Calls To
	Search After Go To
	Filter Toggle Buttons

	Tags Support
	Tags Setup
	Using the Tags Database

	Outline Symbols: Overview
	What are Symbols?
	Symbol Scanning
	Outline Window
	Outline Scanning
	Symbol Parsers
	Symbols Database
	Pop-Up Symbols Menu

	Objects Window
	Display an Object Hierarchy
	Using the Objects Window
	Objects Window and CodeSense
	Objects Window Popup Menu

	Symbols vs. Objects vs. Tags
	Pros and Cons of Tags, Browsers, Symbols, and the Objects Window

	Bookmarks
	Global and Local Bookmarks
	Graphical Bookmark Images
	Setting and Removing Bookmarks
	Bookmarks Dialog
	Bookmarks Window
	Bookmarks Window: Global Bookmarks
	Bookmarks Window: Local Bookmarks
	Bookmarks Window: "Other Documents" Node
	Auto-Expand/Collapse

	Button Links
	How it Works
	What you See
	Defining Buttons

	Differencing
	Interleaved Differencing
	Difference Analysis Dialog for Interleaved Differencing
	Interleaved Document

	Side-by-Side Differencing
	Difference Analysis Dialog for Side-by-Side Differencing
	Side-By-Side Difference Window
	Side-by-Side Difference Printing

	Directory Differencing
	Directory Difference Analysis Dialog
	Tree Difference Window
	Directory Difference Report

	Using Difference Utilities

	Merging
	Using the Merge Files Dialog
	Merge Output
	Removing Changes with Merge

	Format Source
	Setting up Your Formatting Criteria
	Using the Format Feature

	Duckbill Toolbars and Windows
	Toolbars
	Auto-hide Toolbars
	Duckbill
	Enabling and Disabling Toolbars
	Docking and Moving Toolbars and Windows
	Docking a Toolbar or Window Manually
	Undocking a Toolbar or Window

	Customizing Toolbars and Buttons
	Adding New Toolbars
	Adding and Changing Toolbar Buttons
	Binding a Function to a Button
	Combo Box History Lists
	Editing Combo Box History Lists

	Customizing Menus
	Menu Editor
	Menus
	Menu Items and Submenus
	Changing the Functionality of a Menu Item
	Adding a Menu Item

	Customizing External Operations within Hawk
	User-Definable Popup Menus
	Editing or Creating a Popup Menu
	Popup Menu Semantics
	Creating a Menu Item
	Terminating Menu Sections
	Conditionals
	'Include' mechanism
	Dynamic Menu Generation
	Supporting Functions

	Using Keymaps
	CUA Key Commands
	BRIEF Key Commands

	Mouse Commands
	Mouse Scrolling Speed
	Inclusive or Exclusive Selection
	Closed Selections
	Column Marking
	Line Selections
	Word Selections
	Status Line Actions
	Text Drag and Drop
	Mouse Copy and Move
	Creating Windows with a Mouse
	Drag-and-Drop File Loading
	Expand / Collapse Selective Display

	Reassigning Keys and Mouse Actions
	Keymap-Specific Assignments
	Customizing with Keybindings
	Keystroke Recording/Playback
	Recording a Keystroke Macro
	Saving a Macro
	Binding Keystrokes to Functions or Macros

	File Loading, Reloading and Validation
	File Backups and Auto-save
	Global Backup and Auto-Save Settings
	Backup Settings for Specific File Types
	Backup Settings for Individual Files
	Formatting the Backup Specification
	Format Controls
	Transformation Patterns

	Making Files Read-only
	File Types
	Individual Files
	Individual File upon Opening
	Swap Blocks
	How to Change the Number of Swap Blocks
	Block Size
	Consider Your Resources

	Backup Files
	Scroll Bars
	Preloading Files
	Turning off ChromaCoding
	Saving Large Files
	Default File Saving Method
	File Rewrite Save Method (for Files over 1MB)

	Hawk API
	Using the API from the Command Key
	Displaying Return Values With the Command Key
	Examples of Command Key Usage
	Command Key Expression Evaluation

	Macros and Macro Languages
	DLL Extensions
	Where it is Defined

	Perl
	Getting Started with Perl
	Creating and Editing Perl Scripts
	Perl Window
	Pop-up Menu and Options
	Online Help

	Loading and Running Scripts
	Running a Script Directly
	Loading a Perl macro
	Accessing Hawk Functions from Perl Scripts
	Importing Names into the Perl Namespace
	Unloading a Perl macro

	Using the Perl Debug Mode
	Accessing Perl Functions
	Avoiding Ambiguity

	Special API Functions for Perl
	Files Used by Perl for Hawk
	Other Perl Resources

	AppBasic
	Getting Started
	Two Editors
	Special Keybindings
	Two Toolbars
	Pop-up Menu
	Online Help
	UserDialog Editor
	Object Browser

	Creating a Macro
	Creating a Handler
	Object and Proc Dropdown Lists
	Private Sub Main
	Tips on Creating Macros
	Creating a Modal User Dialog
	Running the Macro
	Creating an EventHandler in AppBasic
	Sample EHTEST.CWB

	Debugging Your AppBasic Macro
	Break Points
	Evaluate Expression and Add Watch
	Object Browser

	Load Macros Dialog
	AppBasic Samples Supplied
	AppBasic-related API Commands
	AppBasic Window Configuration
	Example Configuration File Settings

	Exported Functions in CWBASIC.DLL

	API (C-like) Macros
	API Macros Defined
	Getting Started with API Macros
	Creating a Macro
	Editing a Macro
	Special Editing Keystrokes
	Editing API Macros in a Hawk Window
	Setup Editing in a Hawk Window

	Language Definition
	Comments
	Identifier Naming Rules
	Variables
	Literal Values
	Expressions
	Other Operators
	Statements and Statement Blocks
	Program Flow of Control Structures
	Run-time Error Handling
	Hawk Event Handling
	Differences between API Macros and C

	String Functions
	Making DLL Add-Ons

	Core Services
	CWSTART DLL
	CWDIALOG DLL
	CWHELP DLL

	Keyboard Command Sets
	Supplemental Language Support
	Auxiliary Services
	Sample DLL
	Dissecting a Hawk DLL
	The _init Function
	Exporting Functions

	Making Changes and Additions
	Changing Existing Functions
	Adding Your Own Functions

	Creating New Keymap Command Sets
	Keymap _init Function
	Keymap Function
	Flag Initialization
	Basic Assignments
	Keymap Specific Assignments
	Menu Accelerators

	Recompiling a DLL
	Using and Modifying the Makefiles
	Adding Files

	Compile and Link Options
	Link Libraries
	Microsoft Link
	Borland Link

	Using Your Own DLL
	Installing Your DLL

	File Type and End-of-Line (EOL) Characters
	Save File as New Type
	Make UNIX EOL Characters the Default
	Enable Auto-sense File Type Option
	Specify UNIX EOL Characters on a File Type or Per File Basis
	Change EOL Characters in the Source File
	Macros for Automating UNIX EOL Conversion

	Compiling UNIX Programs from Hawk
	Filename Case and File Securities in UNIX and Windows

	Configuration and State
	Location of the Configuration File
	Introduction to Configuration and State
	Configuration File
	State File
	Other Files Containing Configuration Data
	Example File
	Example Interpretation

	Processing At Startup
	Order of Processing
	User-Defined Sections

	Relating Check Boxes to Functions
	State File
	Location of the State File
	Contents of the State File

	Command Line Parameters
	Filenames
	Parameters
	Command Files
	Setting up the Target System
	The Profiler
	Running the Profiler
	The Profiler Main Window
	Title Bar
	Menu Bar
	System Performance Tab
	Module Data Tab
	Start/Stop Button
	Connect/Disconnect Button

	File Menu
	Options Menu
	Actions Menu
	Using the Profiler
	Viewing Functions
	Saving the Profile Data
	Changing the Order in which Modules/Functions Appear
	Profiling Selected Modules
	Changing the Update Interval
	Stopping Profiling
	Clearing the Profiling Data
	Exiting the Target System Profiler

	Starting HawkEye
	Usage
	TagsWnn Command Line Options

	“Null Modem” Cable for Windows SLIP Appendix B
	Wiring Diagram
	Commands
	asm, .
	a[ssign]
	at[tach]
	b[reak]
	con[text]
	dil[ist]
	di[sasm]
	download
	d[ump]
	fi[nd]
	fo[rk]
	f[rame]
	g[o]
	gostop or gs
	i[nfo]
	k[ill]
	l[ist]
	lo[cals]
	l[o]g
	mc[opy]
	mf[ill]
	mfillong
	mfillword
	m[onitor]
	ms[earch]
	msearchlong
	msearchword
	n[ext]
	ow
	owa
	owd
	owk
	p[rint]
	pr[ocs]
	q[uit]
	re[ad]
	rel[ease]
	reset
	r[eturn]
	se[tenv]
	s[tep]
	sy[mbol]
	t[race]
	unse[tenv]
	wait
	wfi[nd]
	x{string}

