
w w w. ra d i sy s . co m
Revision A • July 2006

OS-9® for 68K OEM System-
State Debugging Addendum

Version 3.3

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 3.3 of Microware OS-9 for 68K.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

OS-9 for 68K OEM System-State Debugging Addendum 3

Table of Contents

Chapter 1: Creating Low-Level Serial Device Drivers and Timer Modules 5

6 Overview
7 The Console Device Record
8 Low-Level Serial I/O Module Services
17 Initializing the Low-Level Serial Device Drivers
19 Building the Low-Level Serial Device Drivers
20 Low-Level Timer Module

Chapter 2: p2lib Functions 25

26 Functions

Chapter 3: Console I/O Services 37

38 Functions

4 OS-9 for 68K OEM System-State Debugging Addendum

Chapter 1: Creating Low-Level Serial

Device Drivers and Timer Modules

This chapter includes the following topics:

• Overview

• The Console Device Record

• Low-Level Serial I/O Module Services

• Initializing the Low-Level Serial Device Drivers

• Building the Low-Level Serial Device Drivers

• Low-Level Timer Module

6 OS-9 for 68K OEM System-State Debugging Addendum

Overview

The distribution package contains source code for several low-level serial
modules you can configure and use in your system without modification. If
your target has a serial device for which no I/O module already exists, use
the example sources as a guide to writing your own. If both the console
port and communications port use the same type of hardware interface,
you only need to build one low-level I/O module.

The distributed low-level serial I/O module sources are in
MWOS/SRC/ROM/SERIAL. Create a subdirectory for your own source code
if you are building you own I/O module.

In addition to the directories listed earlier, each example port directory
contains <target>/ROM/IO<device> directories containing makefiles
used to build the low-level I/O module used in the port. You need to create
such a directory and makefile for your serial devices in your ports directory.
Use the example makefiles as a guide.

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 7

The Console Device Record

A console device (consdev) structure is maintained for each low level
serial I/O device included with the low-level system modules. This structure
is used to access the services of the I/O module, and to maintain lists of
such devices. The definition of consdev appears in the header file,
MWOS/SRC/DEFS/ROM/rom.h, and appears here for illustration.
struct consdev {
 idver infoid; /* structure version tag */
 void *cons_addr; /* port address of I/O device*/
 u_int32 (*cons_probe)(Rominfo, Consdev), /* h/w probe service */
 (*cons_init)(Rominfo, Consdev), /* initialization service */
 (*cons_term)(Rominfo, Consdev); /* de-initialization service*/
 u_char (*cons_read)(Rominfo, Consdev); /* read service */
 u_int32 (*cons_write)(char, Rominfo, Consdev), /* write service */
 (*cons_check)(Rominfo, Consdev); /* character check service */
 u_int32 (*cons_stat)(Rominfo, Consdev, u_int32),
 (*cons_irq)(Rominfo, Consdev),
 (*proto_upcall)(Rominfo, void*, char*);
 u_int32 cons_flags; /* device flags */
 u_char cons_csave, /* read ahead stash */
 cons_baudrate, /* communication baud rate */
 cons_parsize, /* parity, data bits, stop bits */
 cons_flow; /* flow control */
 u_int32 cons_vector, /* interrupt vector */
 cons_priority, /* interrupt priority */
 poll_timeout;
 u_char *cons_abname, /* abreviated name */
 cons_name; / full name and description */
 void *cons_data; /* device specific data */
 void *upcall_data;
 Consdev cons_next; /* next serial device in list*/
 u_int32 cons_level; /* interrupt level */
 int reserved;
};

The p2start entry point of the low-level I/O module must initialize this
structure and link it onto a list of available devices. The conscnfg and
commcnfg modules use the configured console and communication port
names, respectively, to locate the proper console device records and
initialize the console and communications port pointers.

8 OS-9 for 68K OEM System-State Debugging Addendum

Low-Level Serial I/O Module Services

The following entry points describe the services required of each low-level
serial I/O module.

Table 1-1 Low-Level Serial I/O Module Entry Points

Function Description

cons_check() Check I/O Port

cons_init() Initialize Port

cons_irq() Polled Interrupt Service Routine for I/O Device

cons_probe() Probe for Port

cons_read() Read Character from I/O Port

cons_stat() Set Status on Console I/O Device

cons_term() De-initialize Port

cons_write() Write Character to Output Port

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 9

cons_check()

Check I/O Port

Syntax
u_int32 cons_check(

Rominfo romstr,
Consdev cdev);

Description

cons_check() interrogates the port to determine if an input character is
present and returns the appropriate status.

Parameters

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

10 OS-9 for 68K OEM System-State Debugging Addendum

cons_init()

Initialize Port

Syntax
u_int32 cons_init(

Rominfo romstr,
Consdev cdev);

Description

cons_init() initializes the port. It resets the device port, sets up for
transmit and receive, and sets up baud rate, parity, bits per type, and
number of stop bits.

Parameters

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 11

cons_irq()

Polled Interrupt Service Routine for I/O Device

Syntax
u_int32 cons_irq(

Rominfo rinf,
Consdev cdev);

Description

cons_irq() is an interrupt service routine installed for the device
performing the following polling interrupt service on receipt of a device
interrupt:

1. Disables further interrupts on the device.

2. Clears the interrupt from the device and initializes the low-level polling
timer.

3. Sets the polling time-out value and loops checking the device and timer
until either a character is received or the time-out occurs.

4. Sends a received character up the protocol stack by calling the uplink
routine installed in the rominfo structure.

5. Repeats the first four steps until a timeout occurs.

6. Re-enables device interrupts and returns.

Parameters

rinf Points to the rominfo structure

cdev Points to the console device record for the
device

12 OS-9 for 68K OEM System-State Debugging Addendum

cons_probe()

Probe for Port

Syntax
u_int32 cons_probe(

Rominfo romstr,
Consdev cdev);

Description

cons_probe() should test to see if the hardware described by the
console device record cdev is actually present. Generally, this could be a
read of an I/O register based at the value of cons_addr in the console
device record.

Parameters

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 13

cons_read()

Read Character from I/O Port

Syntax
u_char cons_read(

Rominfo romstr,
Consdev cdev);

Description

cons_read() returns a character from the device’s input port.
cons_read() repeatedly calls cons_check() until a character is
present. cons_read() should not echo the character nor perform any
special character handling (for example, XON-XOFF).

Parameters

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

14 OS-9 for 68K OEM System-State Debugging Addendum

cons_stat()

Set Status on Console I/O Device

Syntax
u_int32 cons_stat(

Rominfo rinf,
Consdev cdev,
u_int32 code);

Description

cons_stat() changes the operational mode of the I/O module.

Parameters

rinf Points to the rominfo structure

cdev Points to the console device record for the
device

code Is the low-level setstat code indicating
operational mode change

Supported Setstat Codes

The supported setstat codes are defined in MWOS/SRC/DEFS/ROM/
rom.h. A description follows:

CONS_SETSTAT_POLINT_OFF/CONS_SETSTAT_ROMBUG_ON
Show interrupts are disabled for the device,
changing the operational mode to strict
polling mode.

CONS_SETSTAT_ROMBUG_OFF
Shows interrupts are enabled for the device
changing the operational mode to interrupt
driven mode.

CONS_SETSTAT_POLINT_ON
Shows interrupts are enabled for device only
if a low-level timer is available, changing the
operational mode to polled interrupt.

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 15

cons_term()

De-initialize Port

Syntax
u_int32 cons_term(

Rominfo romstr,
Consdev cdev);

Description

cons_term() should shut the port down by disabling transmit and
receive.

Parameters

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

16 OS-9 for 68K OEM System-State Debugging Addendum

cons_write()

Write Character to Output Port

Syntax
u_int32 cons_write (

char c,
Rominfo romstr,
Consdev cdev);

Description

cons_write() writes a character to the output port with no special
character processing.

The previous entry points are sufficient to support resident debugging
using RomBug. For the driver to support remote debugging over SLIP, the
following entry points must also be defined.

Parameters

c Is the character to be written

romstr Points to the rominfo structure

cdev Points to the console device record for the
device

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 17

Initializing the Low-Level Serial Device
Drivers

The initialization entry point for the low-level system modules is supplied in
a relocatable (.r) file in the distribution. This entry point branches to the C
function p2start() you need to provide for each of your low level I/O
modules. The initialization routine should perform these tasks:

• Allocate/initialize the console device structure for the device.

• Make the entry points for its services available through the consdev
structure.

• Initialize configuration data for the I/O device.

• Install its consdev structure on the list of I/O devices in the console
record.

An example p2start() routine for a low level I/O module follows. (The
console device structure is allocated in the modules static data area.)
consdev cons_r; /* allocate console device structure */

error_code p2start(
Rominfo rinf, /* bootstrap services record structure pointer */
u_char *glbls) /* bootstrap global data pointer */
{
 Cons_svcs console = rinf->cons;
 /* get the console services record pointer*/
 Consdev cdev; /* local console device structure pointer */

 /* verify a console services module has been initialized */

 if (console == NULL)
 return (EOS_NOTRDY); /*cannot install w/o the console services record*/

 /* initialize device structure for our device */

 cdev = &cons_r; /* point to our console device structure */
 cdev->struct_id = CONSDEVID; /* id and version tags */
 cdev->struct_ver = CDV_VER_MAX;
 /* export our service routine entry points */
 cdev->cons_probe = &io16450_probe;
 cdev->cons_init = &io16450_init;
 cdev->cons_term = &io16450_term;
 cdev->cons_read = &io16450_read;
 cdev->cons_write = &io16450_write;
 cdev->cons_check = &io16450_check;

18 OS-9 for 68K OEM System-State Debugging Addendum

 /* The following services are not required for the initial port */
 /*
 cdev->cons_stat = &io16450_stat;
 cdev->cons_irq = &io16450_irq;
 */

 /* initialize the device configuration data */

 cdev->cons_addr = (void *)COMM2ADDR; /* base address of I/O port */
 cdev->cons_baudrate = CONS_BAUDRATE_9600; /* communication baud rate */
 cdev->cons_vector = COMMVECTOR; /* interrupt vector */
 cdev->cons_priority = COMMPRIORITY; /* interrupt priority */
 cdev->poll_timeout = 2000; /* polling routine timout value */
 cdev->cons_abname = (u_char *)COMM2ABNAME; /* abreviated device name */
 cdev->cons_name = (u_char *)COMM2NAME; /* device name */

 /* install the device structure on the list of available I/O modules */

 cdev->cons_next = console->rom_conslist;
 console->rom_conslist = cdev;

 return (SUCCESS);
}

The definitions used to initialize the device configuration data should be
placed in the port-specific systype.h header file, leaving the I/O module
source code portable across platforms.

If the same I/O module is to be used with both the console and
communications ports, then an additional console device structure, say,
comm_r should be allocated and initialized with the proper data for the
communications port. Both console device records should then be added
to the list of available devices.

NoteNote
The console and communications port configuration modules
(conscnfg and commcnfg), using the configuration data module
(conscnfg), determine which console device record is selected as
console and communications port.

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 19

Building the Low-Level Serial Device Drivers

The makefile for you I/O module should be created in a properly named
subdirectory of your ports ROM directory (for example, <target>/
ROM/<device>). Use the makefiles from the example ports as a guide.

To add your low level serial I/O module to the system, edit the makefile,
<target>/ROM/makefile, and add your device directory name to the list
of targets used to define the TRGTS macro. Add your directory names
before the name BOOTROM, making sure BOOTROM is the last directory
name used in the TRGTS macro definition.

By doing this, you ensure your low level I/O module is rebuilt along with the
bootstrap code and the rest of the low-level system modules when the boot
image is made.

20 OS-9 for 68K OEM System-State Debugging Addendum

Low-Level Timer Module

You need to provide a low-level timer module to support the low-level driver
modules for remote debugging. The distribution contains sources for
example timers in the MWOS/SRC/ROM/TIMERS directory.

The following entry points are required in the low-level timer module.

Table 1-2 Low-Level Timer Module Entry Points

Function Description

timer_deinit() Remove Timer Initialization

timer_get() Get Time Remaining

timer_init() Initialize Timer

timer_set() Set Timer Flag

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 21

timer_deinit()

Remove Timer Initialization

Syntax
void timer_deinit(Rominfo rinf);

Description

timer_deinit() clears the timer data structures and hardware to free
the timer modules.

Parameters

rinf Points to the rominfo structure

22 OS-9 for 68K OEM System-State Debugging Addendum

timer_get()

Get Time Remaining

Syntax
u_int32 timer_get(Rominfo rinf);

Description

timer_get() returns the amount of time remaining until the time-out
occurs. If the time-out value has been reached, timer_get() returns 0.

Parameters

rinf Points to the rominfo structure

1Creating Low-Level Serial Device Drivers and Timer Modules

OS-9 for 68K OEM System-State Debugging Addendum 23

timer_init()

Initialize Timer

Syntax
error code timer_init(Rominfo rinf);

Description

timer_init() initializes data structures and hardware targeted by timer
modules.

Parameters

rinf Points to the rominfo structure

24 OS-9 for 68K OEM System-State Debugging Addendum

timer_set()

Set Timer Flag

Syntax
void timer_set(

Rominfo rinf,
u_init32 timeout);

Description

timer_set() uses the specified time-out value to initialize a time-out
flag checked by subsequent calls to timer_get().

Parameters

rinf Points to the rominfo structure

timeout Is the counter indicating the amount of time
to wait

Chapter 2: p2l ib Functions

Three libraries are shipped as part of this distribution:

• p2privat.l

• romsys.l

• p2lib.l

The p2privte.l and romsys.l libraries are only used by the
bootstrap code (romcore). The p2lib.l library contains functions
you can use to customize your own low-level system modules.

26 OS-9 for 68K OEM System-State Debugging Addendum

Functions

The p2lib.l functions and descriptions are shown in Table 2-1.

Table 2-1 p2lib.l Functions

Function Description

getrinf() Get the Rominfo Structure Pointer

hwprobe() Check a System Hardware Address

inttoascii() Convert an Integer to ASCII

outhex() Display One Hexidecimal Digit

out1hex() Display a Hexidecimal Byte

out2hex() Display a Hexidecimal Word

out4hex() Display a Hexidecimal Longword

rom_udiv() Unsigned Integer Division

setexcpt() Install Exception Handler

swap_globals() Exchange Current Globals Pointer

2p2lib Functions

OS-9 for 68K OEM System-State Debugging Addendum 27

getrinf()

Get the Rominfo Structure Pointer

Syntax
error_code getrinf(Rominfo *rinf_p)

Description

getrinf() finds and returns the pointer to the rominfo structure from
the system globals.

Parameters

rinf_p Is the address where getrinf() stores the
pointer to the rominfo structure

28 OS-9 for 68K OEM System-State Debugging Addendum

hwprobe()

Check a System Hardware Address

Syntax
error_code hwprobe(

void *addr,
u_int32 ptype,
Rominfo rinf);

Description

hwprobe() sets up the appropriate handlers to catch bus trap errors, then
probes the system memory at the specified address, attempting to read
either a byte, word, or long. In the event of a bus fault, an error is returned.
SUCCESS is returned if the read is successful.

Parameters

*addr Is the specific memory address you want
probed

ptype Is the probe type, either byte, word, or long

rinf Points to the rominfo structure

2p2lib Functions

OS-9 for 68K OEM System-State Debugging Addendum 29

inttoascii()

Convert an Integer to ASCII

Syntax
char *inttoascii(

u_int32 value,
char *bufptr);

Description

inttoascii() converts its input value to its base 10 ASCII
representation stored in bufptr. The caller must ensure bufptr points to
a sufficient storage space for the ASCII representation. inttoascii()
returns bufptr.

Parameters

value Is the integer value converted

bufptr Points to the location where the ASCII value
is stored

30 OS-9 for 68K OEM System-State Debugging Addendum

outhex()

Display One Hexidecimal Digit

Syntax
void outhex(

u_char n,
Rominfo rinf);

Description

outhex() displays one hexidecimal digit on the system console. The
lower 4 bits of the character n are displayed using the putchar() service
of the system console device.

Parameters

n Is the character for which the hex value is to
be displayed

rinf Points to the rominfo structure

2p2lib Functions

OS-9 for 68K OEM System-State Debugging Addendum 31

out1hex()

Display a Hexidecimal Byte

Syntax
void out1hex(

u_char byte,
Rominfo rinf);

Description

out1hex() displays the hexidecimal representation of a byte on the
system console device.

Parameters

byte Is the byte for which the hex value is to be
displayed

rinf Points to the rominfo structure

32 OS-9 for 68K OEM System-State Debugging Addendum

out2hex()

Display a Hexidecimal Word

Syntax
void out2hex(

u_short word,
Rominfo rinf);

Description

out2hex() displays the hexidecimal representation of a word on the
system console device.

Parameters

word Is the word for which the hex value is to be
displayed

rinf Points to the rominfo structure

2p2lib Functions

OS-9 for 68K OEM System-State Debugging Addendum 33

out4hex()

Display a Hexidecimal Longword

Syntax
void out4hex(

u_long longword,
Rominfo rinf);

Description

out4hex() displays the hexidecimal representation of a longword on the
system console device.

Parameters

longword Is the longword for which the hex value is to
be displayed

rinf Points to the rominfo structure

34 OS-9 for 68K OEM System-State Debugging Addendum

rom_udiv()

Unsigned Integer Division

Syntax
unsigned rom_udiv(

unsigned dividend,
unsigned divisor);

Description

rom_udiv() provides an integer division routine that does not rely on the
presence of a built-in hardware division instruction.

Parameters

dividend Is the number to be divided

divisor Is the number by which the dividend is to be
divided

2p2lib Functions

OS-9 for 68K OEM System-State Debugging Addendum 35

setexcpt()

Install Exception Handler

Syntax
u_int32 setexcpt(

u_int32 vector,
u_int32 irqsvc,
Rominfo rinf);

Description

setexcpt() installs an exception handler on the system exception vector
table for the specified exception. This is usually used with the setjump()
and longjump() C functions to provide a bus fault recovery mechanism
prior to polling hardware.

Parameters

vector Is the number of the exception for which the
handler should be installed

irqsvc Points to the exception handling code you
want installed

rinf Points to the rominfo structure

36 OS-9 for 68K OEM System-State Debugging Addendum

swap_globals()

Exchange Current Globals Pointer

Syntax
u_char *swap_globals(u_char *new_globals);

Description

swap_globals() replaces the caller’s global data pointer with a new
value and returns the old value.

Parameters

new_globals Is the value to be assigned to the global
data pointer

Chapter 3: Console I /O Services

The console module provides a high level I/O interface to the entry
points of the low-level serial device driver configured as the system
console. These services are made available through the console
services field of the rominfo structure. Assuming the variable rinf
points to the rominfo structure, rinf->cons can be used to
reference the console services record.

38 OS-9 for 68K OEM System-State Debugging Addendum

Functions

The header file MWOS/SRC/DEFS/ROM/rom.h contains the structure
definitions for the rominfo structure and the console services record,
cons_svcs.

Table 3-1 lists the services are available through the console services
record.

Table 3-1 Console I/O Services

Function Description

rom_getc() Read the First Character

rom_getchar() Read First Character Not XON or XOFF

rom_gets() Read a Null-terminated String

rom_putc() Output One Character

rom_putchar() Output a Character and a Line Feed for
Carriage Returns

rom_puterr() Convert Error Code to a Null-terminated String

rom_puts() Write a Null-terminated String

3Console I/O Services

OS-9 for 68K OEM System-State Debugging Addendum 39

rom_getc()

Read the First Character

Syntax
char rom_getc(

Rominfo rinf,
Consdev cdev);

Description

rom_getc() calls the low-level read routine of the specified console
device record to read a single input character from the associated serial
device.

rom_getc() returns the character read.

Parameters

rinf Points to the rominfo structure

cdev Points to the console device record for the
serial device to be used

Example
char ch;
ch = rinf->cons->rom_getc(rinf, cdev);

40 OS-9 for 68K OEM System-State Debugging Addendum

rom_getchar()

Read First Character Not XON or XOFF

Syntax
char rom_getchar(Rominfo rinf);

Description

rom_getchar() calls the low-level read routine of the console device
record configured for use as the system console. rom_getchar() reads
characters from the console until the first character other than XON or
XOFF is read.

If echoing is enable for the console, rom_getchar() calls putchar() to
echo this character. The character is then returned by rom_getchar().

Parameters

rinf Points to the rominfo structure

Example
ch = rinf->cons->rom_getchar(rinf);

3Console I/O Services

OS-9 for 68K OEM System-State Debugging Addendum 41

rom_gets()

Read a Null-terminated String

Syntax
char *rom_gets(

char *buff,
u_int32 count,
Rominfo rinf);

Description

rom_gets() calls the low-level read routine of the console device record
configured for use as the system console. rom_gets() reads a
null-terminated string from the console into the buffer designated by the
pointer buff. The rudimentary line editing feature of <backspace> is
supported by rom_gets().

rom_gets() returns to the caller when it receives a carriage return
character (0x0d), or when count many characters have been read. A
pointer to the beginning of the buffer is passed back to the caller.

Parameters

buff Points to the input buffer into which the
string is read

count Is the integer used as the size of the input
buffer including the null termination

rinf Points to the rominfo structure

Example
str = rinf->cons->rom_gets(buffer, count, rinf);

42 OS-9 for 68K OEM System-State Debugging Addendum

rom_putc()

Output One Character

Syntax
void rom_putc(

char c,
Rominfo rinf,
Consdev cdev);

Description

rom_putc() calls the low-level write routine of the specified console
device record to output a single character to the associated serial device.

Parameters

c Is the character to output

rinf Points to the rominfo structure

cdev Points to the console device record for the
serial device to be used

Example
rinf->cons->rom_putc(ch, rinf, cdev);

3Console I/O Services

OS-9 for 68K OEM System-State Debugging Addendum 43

rom_putchar()

Output a Character and a Line Feed for Carriage Returns

Syntax
void rom_putchar(

char c,
Rominfo rinf);

Description

rom_putchar() calls the low-level write routine of the console device
record configured for use as the system console. rom_putchar() writes
the specified character to the console. If the character is a carriage return
character (0x0d) rom_putchar() also writes a line feed character (0x0a)
to the console.

Parameters

c Is the character to output

rinf Points to the rominfo structure

Example
rinf->cons->rom_putchar(ch, rinf);

44 OS-9 for 68K OEM System-State Debugging Addendum

rom_puterr()

Convert Error Code to a Null-terminated String

Syntax
void rom_puterr(

error_code stat,
Rominfo rinf);

Description

rom_puterr() converts the specified error code to a null terminated ascii
string representation of the form XXX:YYY and outputs this string to the
system console using the rom_putc() service.

Parameters

stat Is the value of the error code to be displayed

rinf Points to the rominfo structure

Example
rinf->cons->rom_getchar(status, rinf);

3Console I/O Services

OS-9 for 68K OEM System-State Debugging Addendum 45

rom_puts()

Write a Null-terminated String

Syntax
void rom_puts(

char *buff,
Rominfo rinf);

Description

rom_puts() calls the low-level write routine of the console device record
configured for use as the system console. rom_puts() writes a null
terminated string to the console device.

Parameters

buff Points to the first character of the string to
output

rinf Points to the rominfo structure

Example
rinf->cons->rom_puts(buffer, rinf);

46 OS-9 for 68K OEM System-State Debugging Addendum

	OS-9® for 68K OEM System- State Debugging Addendum
	Table of Contents
	Chapter 1: Creating Low-Level Serial Device Drivers and Timer Modules
	Overview
	The Console Device Record
	Low-Level Serial I/O Module Services
	cons_check()
	cons_init()
	cons_irq()
	cons_probe()
	cons_read()
	cons_stat()
	cons_term()
	cons_write()

	Initializing the Low-Level Serial Device Drivers
	Building the Low-Level Serial Device Drivers
	Low-Level Timer Module
	timer_deinit()
	timer_get()
	timer_init()
	timer_set()

	Chapter 2: p2lib Functions
	Functions
	getrinf()
	hwprobe()
	inttoascii()
	outhex()
	out1hex()
	out2hex()
	out4hex()
	rom_udiv()
	setexcpt()
	swap_globals()

	Chapter 3: Console I/O Services
	Functions
	rom_getc()
	rom_getchar()
	rom_gets()
	rom_putc()
	rom_putchar()
	rom_puterr()
	rom_puts()

